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Introduction

This is a hands-on book for programmers who want to learn about how C++20 is used
in the financial industry. The book concentrates on the parts of the language that are
more frequently used to write financial software, including the STL (standard template
library), templates, and support for numerical libraries. I also describe many of the
important problems in financial engineering that are part of the day-to-day work of
financial programmers and quantitative analysts in investment banks and hedge funds.

The book provides how-to examples that cover all the major tools and concepts
used to build working solutions for financial applications. Each chapter teaches readers
how to use advanced C++ concepts as well as the basic building libraries used by
modern C++ developers, such as the STL and Boost. I discuss how to create correct
and efficient applications, leveraging knowledge of object-oriented and template-
based programming. I assume only a basic knowledge of C and C++ and build on these
concepts to explain techniques already mastered by developers who are familiar with
modern C++.

In the process of writing this book, I was concerned with providing a great value for
readers who are trying to use their programming knowledge to become proficient in
the style of programming used in financial institutions such as banks, hedge funds, and
other companies in the financial industry. However, I have introduced the topics covered
in the book in a logical and structured way, so that even novice programmers will be able
to absorb the most important topics and competencies necessary to develop financial
applications in C++.

An important feature of the book is its focus on specific themes and practical
solutions for financial problems. While the emphasis is not on the theoretical aspects of
finance, I do discuss topics such as numerical algorithms, integration techniques, and
differential equations for derivative valuation. Moreover, the reader will gain a good
understanding of how to model such problems using modern C++ concepts.

The financial literature for programmers typically has a large number of books
written from an academic standpoint, with most of the time spent on the discussion
of mathematics concepts behind algorithms, rather than the software engineering
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INTRODUCTION

challenges that developers need to overcome. Therefore, in this book, I decided to
focus on working solutions for common programming problems, in the form of code
examples, offering readers much more value for their reading efforts.

Audience

This book is intended for readers who already have a working knowledge of
programming in C, C++, or another mainstream language. These are usually
professionals or advanced students in computer science, engineering, physics, and
mathematics, who have an interest in learning C++20 financial programming either

for personal improvement or for professional reasons. The book is also directed at
practitioners of C++ programming in financial institutions, who would use the book as a
ready-to-use reference for common development problems.

By reading this book, you will learn how to use modern C++20 techniques to
implement practical applications. Being a multi-paradigm language, C++ is used slightly
differently in each application area. Therefore, skills that are valuable for developing
desktop applications are not necessarily the same as those used to write high-
performance software. A large part of major high-performance financial applications are
written in C++, which means that programmers who want to enter this lucrative market
need to acquire a working knowledge of a few specific and relevant parts of the language.
This book therefore would be an excellent choice for developers who want to advance
their knowledge effectively while learning one of the most sought-after and marketable
skill sets for modern applications and high-performance software development.

Content Overview

Here is a brief overview of the contents of each chapter.

Chapter 1—The Fixed Income Market: The fixed income market is a large part of
the financial engineering industry, and it presents unique computational challenges
for its practitioners. C++ programming is widely used in this area, offering the ability to
compute rates and cash flow variations with incredible speed, as readers will learn in this
chapter. I present C++ coding examples that can be used in the solution of some of the
most common problems occurring in fixed income markets. I include C++ algorithms for
topics such as (1) interest rate calculation, (2) present value computation, (3) cash flows,
and (4) valuation of bonds.
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Chapter 2—The Equities Market: Equity markets are multifaceted and offer a great
variety of investment vehicles. As a result, the number and complexity of computational
techniques used for financial analysis of equity markets continue to grow. In this chapter,
I present C++ examples for a few selected problems occurring in the equities markets
and their derivatives. I cover programming topics such as the following: (1) moving
average computation, (2) calculating volatility, (3) computing instrument correlation,
and (3) calculating fundamental indicators.

Chapter 3—C++ Programming Techniques in Finance: The C++ language was
created as an extension of C, which means that most programs written in C are also valid
C++ programs. However, good C++ programs need to make use of high-level features
made available by the language to control program complexity. This is especially
important for financial applications, where we want to create fast and expressive
applications. In this chapter, I explore fundamental techniques that financial C++
programmers use to write better code with less effort, including (1) class templates, (2)
auto pointers, (3) shared pointers, (4) resource acquisition is initialization (RAII), (5)
automatic type detection, (6) exception handling, and (7) operator overloading.

Chapter 4—Common Libraries for Financial Applications: Modern coding in
C++ uses libraries that simplify the creation of fast, standard-conforming classes. The
STL offers a set of generic, standard containers that can be used in almost any situation.
Knowing how to use the STL well is one of the main skills necessary for effective C++
programming. Another common set of classes is contained in the Boost libraries, which
are usually the basis for the next version of the C++ standard. Readers will learn about
topics such as (1) STL containers, (2) STL algorithms, (3) boost libraries, and (4) date and
time handling.

Chapter 5—Designing Numerical Classes: At the heart of financial applications is
a set of well-designed numerical classes. This chapter tells you how to create numerical
classes that will perform efficiently when used in production code. You will also see
examples in C++ that show how to integrate with existing numerical classes and
algorithms. You will learn how to (1) implement a matrix class, (2) perform calculations
at compilation time with templates, (3) represent ratios with C++ templates, and (4)
generate statistical data.

Chapter 6—Plotting Financial Data: A common activity in financial programming
is the generation of data that needs to be visualized by traders or other financial
stakeholders. Most of the time, the data needs to be plotted in the form of a chart for easy
visualization. I give a few examples that show how to plot data in C++ programs using
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common libraries. You will learn about topics such as (1) using Gnuplot to plot data, (2)
designing a class to create Gnuplot charts, and (3) plotting from a GUI (graphical user
interface) application using Qt.

Chapter 7—Linear Algebra: Linear algebra (LA) techniques are used throughout
the area of financial engineering. Therefore, it is important to understand how the
traditional methods of LA can be applied in C++. With this goal in mind, I present a
few examples that show how to use some of the most common LA algorithms. In this
chapter, you will also learn about (1) integrating existing LA libraries into your code, (2)
basic LA operations, (3) the BLAS (basic linear algebra subprograms) library, and (4)
calculating the determinant of a matrix with BLAS.

Chapter 8—Interpolation: Interpolation is a commonly used technique that finds
a mathematical function approximating a set of points. Fast interpolation is the secret
for high-performance algorithms in several areas of financial engineering. This chapter
will show you programming samples that cover a few of the most common interpolation
methods, with efficient implementation in C++. The main techniques discussed in this
chapter are (1) linear interpolation and (2) polynomial interpolation.

Chapter 9—Calculating Roots of Equations: Equations are one of the building
blocks of algorithms in financial engineering, and it is important to be able to calculate
equation roots efficiently. In this chapter, you will find algorithms for different methods
of calculating equation roots, along with explanations of how they work and when they
should be used. Topics include (1) the bisection method, (2) the secant method, and (3)
Newton’s method.

Chapter 10—Numerical Integration: Function integration is a common part of
many financial algorithms. However, it is hard to solve certain classes of equations
exactly, and numerical methods need to be employed in such cases. In this chapter,
you will see examples of C++ code that can be readily applied to common integration
problems. I also discuss the performance and the accuracy of such methods. The
programming examples in this chapter cover topics such as (1) the midpoint method, (2)
the trapezoid method, and (3) Simpson’s method.

Chapter 11—Solving ODEs and PDEs: Differential equations are at the heart
of many techniques used in the analysis of equity markets. There are several
processes for solving and analyzing ordinary differential equations (ODE) and partial
differential equations (PDE) that can be implemented in C++. In this chapter, I present
programming examples that cover aspects of ODEs and PDE modeling and application
in C++. Topics covered include the following: (1) solving ODEs, (2) using the Runge-
Kutta method, and (3) solving the Black-Scholes equation.
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Chapter 12—Optimization: Optimization refers to a set of techniques used to find
the minimum or maximum of a function. Optimization strategies are used in several
areas of financial engineering. In this chapter, I discuss programming techniques that
can be used to implement common aspects of optimization algorithms. I provide a
concise explanation of some techniques and how they are typically implemented in
C++20. You will learn about (1) modeling optimization problems, (2) interfacing with
linear programming (LP) solvers, (3) solving two-dimensional LP problems, and (4)
mixed integer-programming models.

Chapter 13—Asset and Portfolio Optimization: Portfolio managers have to
face the issue of balancing a portfolio for optimal performance, depending on their
predefined portfolio goals. Optimization-based techniques have been developed to deal
with some of the most common portfolio construction problems. In this chapter, we
consider algorithms for portfolio optimization using C++. We consider how to design
such optimization code in order to get results that are as fast and as accurate as possible.
Topics include (1) creating a portfolio model, (2) performing resource allocation, and (3)
using linear techniques for portfolio optimization.

Chapter 14—Monte Carlo Methods: Among other programming techniques used
in equity markets analysis, Monte Carlo simulation has a special place due to its wide
applicability and easy implementation. These methods can be used to forecast prices
or to validate buying strategies, for example. In this chapter, I provide programming
examples that can be used as part of simulation-based algorithms, with topics such as
(1) random number generation, (2) optimization through Monte Carlo methods, and (3)
simulation models for price forecasting.

Chapter 15—Extending Financial Libraries: C++ is a complete language that can
be used to develop the most complex software. However, it is sometimes beneficial
to combine C++ libraries with scripting languages that can simplify the creation of
prototypes and other noncritical applications. In this chapter, I show you how to use
the solutions and algorithms discussed in the text as external libraries for scripting
languages that are commonly employed in the financial industry. In particular, you will
learn how to (1) extend C++ with Python and (2) extend C++ with Lua scripts.

Chapter 16—Using C++ Code with R and Maxima: Financial algorithms in C++
can be used not only as part of executable code but also as part of other modeling
and development environments. In this chapter, I show you how to integrate financial
libraries into two well-known simulation and modeling environments for financial
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analysis: R and Maxima. You will see how it is possible to create loadable modules for
these environments, incorporating complex C++ algorithms in a way that they are ready
to use from scripts written in R and Maxima.

Chapter 17—Multithreading: Financial applications have very stringent performance
requirements. A common way to improve response time is to use concurrency and parallel
programming techniques, such as multithreading. C++ can be used to write very responsive
multithreaded applications, and in this chapter, I explore algorithms for creating and
managing threads, with applications to financial problems. I also cover the important topic
of data access synchronization. Topics include (1) creating threads, (2) protecting shared
memory, (3) synchronization techniques, and (4) threads using the standard library.

Appendix A—C++20 Features: C++ is an evolving language, and in the last few
years, we have seen a renewed effort to bring much-needed updates. The latest efforts
are the C++17 and C++20 standards, and major C++ compilers are incorporating these
features at a fast pace. In the appendix, I cover examples that show how some of these
features can improve your code and simplify the development of new programs and
libraries. You will learn about new features such as (1) auto variables, (2) closures, (3)
rvalues, (4) const expressions, and (5) initializer lists.

Introduction to the Second Edition

In this second edition of the book, the examples and the text have been revised to
conform to the latest C++ standard, C++20. While much of our examples continue to
compile and work properly in the new standard, we felt the need to present new C++
features that will make it easier to develop financial applications.

For example, the appendix now presents some new features only available in C++20.
We also explain how to use threads in the standard library, among other improvements.
All examples have been tested to make sure that we conform to the latest standard.

Compiling the Code Samples

The examples given in this book have all been tested on Windows using the MingW

gcc compiler and on Mac OS X using the Xcode 12 IDE. You should be able to build the
code, however, using any standards-compliant C++ compiler that implements the C++20
standard. For example, gcc is available on Linux and other platforms, and Microsoft
Visual Studio will also work on Windows.
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If you use Mac OS X and don’t have Xcode installed in your computer, you can
download it for free from Apple’s developer website at http://developer.apple.com.
The code can also be compiled from the command line, as it is explained in each chapter.

If you instead want to use MingW on Windows, you can download it from the website
WWw . mingw.org.

Once MingW is installed, start the command prompt from the MingW program
group in the start menu. Then, you can type gcc to check that the compiler is properly
installed.

To download the complete set of examples, visit the web page for this book at
http://coliveira.net, or navigate to apress.com/9781484268339 and click the
Download Source Code button.
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CHAPTER 1

The Fixed Income Market

The fixed income market is a large part of the financial industry, and it presents unique
challenges and opportunities for its practitioners. A large amount of the money managed
by pension funds and other institutional funds is allocated to fixed income investments.
Because fixed income has a predictable income stream, conservative money managers
view it as a safer investment option when compared to stocks and more exotic
derivatives. As a result, traditional institutions commit a lot of time and effort to the fixed
income industry.

As software engineers, our main goal when working in the fixed income market is to
define computational strategies and solve problems so that our clients can be successful.
C++ is a language that is uniquely poised to the solution of problems in this industry.
This is due to its flexibility and high performance on standard computational platforms.
Moreover, C++ is a highly portable language that can be used in a variety of computer
systems.

As aresult of the advantages just mentioned, C++ programing has been widely used
in this area of finance, and it is one of the preferred languages used in banks, hedge
funds, pension funds, and other large institutions that have to deal with fixed income as
one of their main investment vehicles. Programmers who work with C++ have over the
years developed software that offers useful capabilities for fixed income analysis, such
as computing prevailing interest rates and determining cash flow valuations. All of these
features need to execute with incredible speed, with the help of some of the techniques
explored in later sections of this book. Due to its new standard, C++20, the language
is nowadays even more capable of satisfying the strict requirements demanded by the
financial industry.
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CHAPTER 1 THE FIXED INCOME MARKET

In this chapter, I provide a quick introduction to this area of finance and show you a
few C++ coding examples that can be used in the solution of some of the most common
programming problems occurring in fixed income markets. These coding examples
include the solution to problems involving

e Simple interest rate calculation

o Compound interest rate calculation

o Cash flow modeling

e Determination of the present value of cash flows
e Modeling and valuation of bonds

In the remainder of this chapter, I will also show you why C++20 may be the ideal
language to deal with programming problems occurring in the financial investment
industry and in particular how to solve problems in fixed income investing. Then, I
will provide a general introduction to the issues occurring in fixed income investments
and an overview of how the fixed income market works. Then, I will start with a few
programming examples that explore the concepts discussed in the previous sections.

Fixed Income Overview

We start our discussion with a general overview of fixed income instruments. While
this is not a book on finance or economics, it is still important to have a few concepts
in place. My general goal is to describe how to use these concepts in the solution of the
practical computational problems that we discuss in the latter part of this chapter.

In a fixed income investment, a contractually defined exchange occurs between two
parties. Both parties agree to exchange cash flows that are assigned based on interest
rates and the time of cash exchanges. Fixed income investments are very diverse, but
they include the following well-known types of investments vehicles:

e Money market funds: These are short-term investments that offer
a small rate of return but at the same time provide easy availability
of funds at your own convenience. Money market funds have a very
short-term horizon, and they only pay returns that are close to the
spot rate practiced by banks. Since money market funds have a small
return that is hard to predict over a long period, they are used mostly
for their liquidity.
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e Bonds: This is a major category of fixed income applications. Bonds
pay a predetermined interest rate for a well-defined period of time.
They are issued by a variety of institutions, including companies and
all levels of government. The American government, for example,
issues treasury bonds, which are one of the main investment vehicles
used throughout the world.

o Certificates of deposit: These are fixed income investments issued by
banks to their retail customers. They are simple investments that pay
a fixed interest rate for a predefined period, usually between 1 and
5 years. They are used mainly for the convenience of small investors
who lack access to more sophisticated fixed income markets and
want to invest from their own checking or savings account.

The main reason for investors to enter the fixed income market is to take advantage
of a relatively safe investment opportunity, where the returns are known and predictable.
Compared to the stock market, fixed income investments have the advantage of
being easier to analyze. This is true because, for equity investments, for example, it is
practically impossible to determine how much money a company will make in a few
years from now. With a fixed income investment such as a bond, however, you have a
contract that guarantees the return on the investment for a specified period of time.

Clearly, there are also risks in such fixed income investments. A well-known risk is
that of the default of the institution issuing the bond, for example. In that case, investors
may lose a part of the, or the whole, investment. The second big risk, which is frequently
overlooked by investors, is that the rate of return will not be able to cope with inflation
during the period of the investment. For example, if the rate of return is 6% a year but
inflation is around 4%, then your real rate of return is just 2% (and that is the return
before taxes).

This all shows that analyzing fixed income investments is not as easy as it initially
sounds. It is not just a matter of finding the institution paying the largest interest rate and
putting all your money on its bonds. This is one of the reasons why money managers
need reliable software that can be used to decide which is best among myriad fixed
income investments. Just as the stock market presents thousands of possibilities that
need to be carefully analyzed, the fixed income industry has a huge number of available
choices. One of the big tasks for software developers is to create systems that can easily
track these investments and help in choosing the right options for long-term investors.
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Note Fixed income investments have risks that are hard to measure because
they depend on the future economic environment. Sound fixed income investments
need to take into consideration the several risks involved. High-quality C++
software for fixed income may help investors to take into consideration some of
these external factors.

Here are some of the most important concepts about fixed income investments used
through this chapter.

o Interestrate: The return of investment in percentage points for a
given period (usually 1 year). Fixed income investments will have
awell-defined interest rate that is determined as a contractual
obligation.

o Principal: The amount of the original fixed income loan or
investment. This is the value over which the interest rate is calculated

in the case of a fixed income investment such as a bond.

e Compound interest: Interest that is accrued over time and added to
the principal as regular interest payments are made at each period.
The amount of compound interest is regulated by the interval
between interest payments.

¢ Continuous compounding: As the number of periods increase,
the effect of compound interest becomes more pronounced. For
example, compound interest paid at the end of every month will
produce more than at a yearly payment schedule. In theory, this
compounding process could happen in a continuous schedule, and
the resulting compound interest can be calculated using a simple
formula, which I explain later in this chapter.

o Present value: When a set of scheduled cash flows and an interest
rate are defined, it is possible to calculate the present value of
those cash flows. This is done using the contractual interest rate to
determine the discounted value of each future cash flow and adding
together all these values. The present value is a very powerful tool to
compare two cash flow streams.



CHAPTER 1  THE FIXED INCOME MARKET

Using these simple concepts, it is possible to analyze very complex investments. You
will learn how to use these concepts in some of the coding examples contained later in
this chapter.

Why Use C++

C++ is alanguage that has been used with great success in all kinds of financial applications.
It is the number one language used by Wall Street firms to create fast, high-performance
code that can be employed to implement efficient algorithms for financial engineering.

While C++ is already a mature language with more than 30 years of history, and
other programming languages have appeared since then with high-level features that are
easier to use, C++ still holds the place as the standard language for high-performance
computation. Large financial institutions such as banks, hedge funds, and pension funds
rely daily on C++ to solve their most complex computational problems for the following
reasons:

o Performance: The most obvious reason why C++ is used is its
performance. Due to the fact that C++ has little runtime overhead
compared to other high-level languages, it is possible to use it to
write very fast software. Not only is C++ fast enough by default, but
it also allows expert C++ programmers to explore many additional
low-level techniques for code optimization, which are not available
to programmers using languages such as Java and Python.

o Standards compliance: C++ is a standard language, developed
over the years by an international group of experts with the goal of
providing high-level features such as object-oriented programming
(OO0P) without the overhead that is normally associated with them.
As a result of the standardization effort, C++ is available on all kinds
of platforms, ranging from microcontrollers to the largest servers.
This means that you can run your algorithms unmodified between
platforms. This is an obvious advantage for financial algorithms,
since this kind of software can be easily ported to faster architectures
over the years to take advantage of improvements in new hardware
and software design.
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Existing libraries: C++ offers an almost unparalleled set of libraries
for numerical and financial programming. Each topic we discuss in
this book has several libraries available that can save time and effort.

Multi-paradigm language: Developers designed the C++ language
from the beginning to support multiple programming paradigms,
so programmers don’t need to change the essence of an algorithm
to fit into a particular paradigm. For example, although OOP is
supported, the language does not mandate the use of OOP. In this
way, programmers are free to use the most expressive technique for
the desired application.

High-level features: Although C++ allows programmers to achieve
high performance by targeting low-level features of their hardware,
good programmers can still use several high-level features that make
C++ atruly modern language. For example, C++ was one of the first
languages to embrace the concept of OOP, which is without question
the most common paradigm for modern software design. C++ has
also pioneered other features such as exceptions and template-based
containers. More recently, C++ incorporated even more high-level
features by means of the new C++11 standard of the language.
Automated type detection, lambda expressions, and user-defined
literals are just a few of the new features that have become available
to application developers since the new standard was approved.

For the reasons stated previously, programmers have trusted C++ as the main vehicle

for implementing high-performance financial algorithms. In this book, we explore code

examples that make use of these computational advantages.

Like any other tool, C++ also has its share of problems. One of the themes in learning

C++ programming is to avoid dangerous practices that can lead to bugs and unsafe

programs. Most of the techniques you will see in the next chapters embrace the use of

modern libraries, which not only simplify the process of creating C++ programs but also

allow you to create software that is well designed and fault tolerant. Using the standard

library, which includes the STL (standard templates library), is the best way to use C++

safely.
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You will also learn how to use the high-quality libraries that have been made
available through the boost project. The boost libraries have been designed from the
ground up to use modern C++ concepts in a way that simplifies the creation of new
software. The boost libraries are the result of the work of some of the greatest experts in
C++ programming, including people involved in the C++ standard committee itself. In
fact, many of the libraries shipped with boost have become part of the standard library.
Therefore, using boost libraries, you will be getting early access to some features that will
be included in future versions of the language.

Calculating Simple Interest Rates

To start, I will show you how to solve a very simple problem in fixed income analysis,
as a way to introduce some of the features of C++ class design that we use throughout
this book.

Problem

Interest rates determine how much a financial institution is going to pay in exchange for
holding a cash deposit over a period of time. Calculate the future value of a deposit given
the interest rate and the initial value of the deposit, assuming a single period of deposit.

Solution

You just need to use the mathematic equation for simple interest rate calculation, which
is given by the expression

V=P (1+R)

In this formula, V is the future value after a single period, and P is the present value
of the deposit. With this formula, you can calculate the interest rate for a single period.

How It Works

The IntRateCalculator class, defined in Listing 1-1, determines the calculation of
single-period interest rates.
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Listing 1-1. The IntRateCalculator Class

class IntRateCalculator {

public:
IntRateCalculator(double rate);
IntRateCalculator(const IntRateCalculator &v);
IntRateCalculator 8operator =(const IntRateCalculator &v);
~IntRateCalculator();

double singlePeriod(double value);
private:
double m_rate;

};

First, we define a new class that becomes responsible for the calculation. A
fundamental principle of object-oriented design is to have responsibilities unified under
very well-defined interfaces. You should embrace this principle when creating C++ classes,
since it will simplify maintenance and avoid costly mistakes. Even if you need to write
additional code using this strategy, the increased organization pays off in the long run.

In the definition of the IntRateCalculator class, we define a constructor, a
destructor, a copy constructor, and the assignment operator. These are methods that,
ifyou don’t define them yourself, will be added to the class by the compiler. It is useful
to create your own versions of such member functions, however, because in this way,
you can be sure that you are getting the desired behavior, instead of what the compiler
writers think is the right choice.

Note You should create classes that specify the four basic member functions
automatically defined by the C++ compiler. In this way, you can avoid costly
mistakes by having the created objects use a well-defined life cycle. Failing to
provide such member functions can result in classes that don’t respond correctly
to such basic operations as assignment (defined by the assignment operator) and
copy construction. If your class is supposed to be the base for other classes, you
should also make the destructor virtual, so that the derived classes can properly
release the resources they use. This way, the runtime system can properly detect
the polymorphic type of the object and call the right destructor.
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The compiler automatically adds the following member functions, unless you specify
otherwise in the class declaration:

e The default constructor: The default constructor is automatically
added, allowing an object to be created using the new keyword,
even if the class writer didn’t include it. A default constructor is one
that has no arguments. It is not included automatically, however,
if the class declaration contains another constructor that requires
arguments. For example, in our IntRateCalculator class, the
constructor receives one parameter, the interest rate. Therefore, the
default constructor is not automatically included, which means that
to create an object of the IntRateCalculator class, the programmer
needs to specify a valid interest rate argument.

e The copy constructor: The copy constructor allows you to create
copies of an existing object of the same class. It is included by default
only if there are no other constructors in the class definition. In
our case, we need to supply a copy constructor, to guarantee that
itis possible to create copies of existing objects. Copy constructors
become important when objects need to be added to containers,
particularly the containers provided in the STL, such as vectors,
maps, and multimaps.

e The destructor: A destructor defines how the resources used by a
particular object will be freed once the object is destroyed. A proper
constructor is required to avoid memory leaks and other undesirable
resource leaks in an object. In the IntRateCalculator class, there are
no internal or external resources that need to be freed, but it is still
better to define this explicitly.

o The moving constructor: A moving constructor provides the
operations used when the C++ moving semantic is required.

e The assignment operator: This member function is used when an
assignment operation occurs between two objects of the same class.
Defining this type, you can specify how the contents of an object are
transferred from one object to the next: that can be done either by value
or by reference. Other details of the copy, such as reference counters,
for example, can also be established in the assignment operator.
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The singlePeriod member function encapsulates the operation that returns the
future value of a deposit after a single period. Depending on the structure of the loan or
the input parameters, this can refer to 1 month or 1 year of interest. The signature of the
member function is

double singlePeriod(double value);

This simple version of the code uses the double type (instead of float) for extra
precision. In the next chapters, we will discuss how to deal with precision issues that are
inherent to floating point numbers.

The IntRateCalculator class contains a single member variable, m_rate, which
stores the current interest rate. In this way, it is not necessary to input the interest rate
every time the singlePeriod member function is called. Therefore, to create a new
instance of IntRateCalculator, you need to provide the interest rate as a parameter to
the constructor.

The header file, IntRateCalculator.h, defines the singlePeriod member function
as inline (see Listing 1-2).

inline double IntRateCalculator::singlePeriod(double value)
{

double f = value * ( 1 + this->m rate );

return f;

The keyword inline is used here to suggest that the member function be directly
embedded in the code that calls it. What this means is that there is no penalty for calling
this function, since the function call will be removed from the executed code, and the
content of the method will be directly substituted. Think of this as a way of achieving
the same performance of a macro, with all the compiler support of calling a function. In
high-performance C++ code, it is common to see member functions defined as inline, in
order to achieve even higher performance than equivalent member function calls. This
kind of flexibility is one of the features that separate C++ from other languages, where it
would be much more difficult to achieve similar performance.

10
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Complete Code

Listing 1-2. IntRateCalculator.h

//
// IntRateCalculator.h

#ifndef _ FinancialSamples IntRateCalculator
#define _ FinancialSamples IntRateCalculator

#include <iostream>

class IntRateCalculator {

public:
IntRateCalculator(double rate);
IntRateCalculator(const IntRateCalculator &v);
IntRateCalculator &operator =(const IntRateCalculator &v);
~IntRateCalculator();

double singlePeriod(double value);
private:
double m rate;

b
inline double IntRateCalculator::singlePeriod(double value)

{

double f = value * ( 1 + this->m rate );
return f;

}
#endif /* defined(__FinancialSamples IntRateCalculator ) */

//
// IntRateCalculator.cpp

#include "IntRateCalculator.h"

IntRateCalculator::IntRateCalculator(double rate)
: m_rate(rate)

11
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{

}

IntRateCalculator::~IntRateCalculator()
{

}

IntRateCalculator::IntRateCalculator(const IntRateCalculator &v)
: m_rate(v.m rate)

{

}

IntRateCalculator &IntRateCalculator::operator=(const IntRateCalculator &v)

{
if (& != this)

{
this->m_rate = v.m_rate;
}
return *this;
}
//

//  main.cpp
#include "IntRateCalculator.h"
#include <iostream>

// the main function receives parameters passed to the program
int main(int argc, const char * argv[])
{

if (argc != 3)

{

std::cout << "usage: progName <interest rate> <value>
<< std::endl;
return 1;

12
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double rate = atof(argv[1]);
double value = atof(argv[2]);

IntRateCalculator irCalculator(rate);
double res = irCalculator.singlePeriod(value);

std::cout << " result is " << res << std::endl;
return O;

}

Sample Use

First, you need to compile the code using your favorite C++ compiler. For example, using
the makefile provided in a UNIX platform, you could just use the make command, with
the following results:

$ make

gcc -c IntRateCalculator.cpp

gcc -c main.cpp

gcc -o intrate IntRateCalculator.o main.o

You can now run this program by passing a given interest rate and initial value. For
example, you could type the following:

./intrate 0.08 10000
result is 10800

This shows that the future value of an investment of $10,000 at an 8% interest rate is
$10,800 after a single period.

Compound Interest

You can use simple interest rates to analyze single-period cash flows. However, most
financial operations, such as loans, have multiple periods. For this purpose, you need to
consider compound interest.

13
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Problem

Calculate the compound interest accumulated by a given principal value after the
passage of N time periods.

Solution

The solution uses a new C++ class that encapsulates the concept of compound interest.
With this class, it becomes easy to answer the proposed question using two member
functions. The first function, multiplePeriod, returns the future value of a fixed income
investment after a given number of periods, as passed in the function parameter.

As mentioned previously, interest can be calculated either as a discrete or a
continuous compounding process. For discrete compounding, we assume that interest
is paid only at regular intervals, as defined by the investment vehicle. The compounding
happens as interest is added to the original principal.

The formula for discrete compounded interest rate is

V=P(1+R)"

where P is the present value, V is the future value, R is the interest rate, and N is
the number of periods. The interest rate is the value passed as a parameter to the class
constructor and stored as a member variable. The number of periods N is passed as the
second parameter to the multiplePeriod method.

For continuous compounding calculation, you need to use a separate method,
continuousCompounding. In this case, we assume that compounding doesn’t happen in
discrete steps but that the payments are made continuously over time. This is a possible
way to determine the future value of a financial application (or at least an upper bound
for the desired future value).

The formula for the calculation of continuous interest rate compounding is

V = pe™

Here, V is the desired future value, P is the present value, R is the interest rate during
the period, and N is the number of periods. For example, to find the future value of
continuously compounded interest after 2 years at 8% interest per year, you should use
the value of the previous equation with parameters R = 0.08 and N = 2.

14
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How It Works

The two member functions, multiplePeriod and continuousCompounding, calculate the
given formulas using the mathematical functions pow and exp from the standard C++
library. These two functions implement a fast way to calculate the power function and
the exponential function, respectively.

To use any mathematical function from the standard library, you should first include
the header file cmath. Table 1-1 provides a short list of mathematical functions made
available from that header file.

Table 1-1. Some of the Mathematical Functions in
the Standard Library

Function Corresponding mathematical operations

exp Exponential function (natural base)

pow Power function

log Natural logarithm function

log10 Logarithm function on decimal base

sqrt Square root function

Sin Sine function

cos Cosine function

tan Tangent function

acos Arc cosine function (inverse of cosine)

asin Arc sine function (inverse of sine)

atan Arc tangent function (inverse of tangent)

ceil Ceiling function (smallest integer higher than
parameter)

floor Floor function (largest integer lower than parameter)

fabs Absolute value for float numbers
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The mathematical functions provided by the standard library should be used
whenever possible, instead of custom versions, for the following reasons:

o Compatibility: Using functions from the standard library guarantees
that they will be available in any compiler that implements it.

e Performance: Functions in the standard library are implemented
as part of the package sold by compiler vendors. The code of these
mathematical functions is generally optimized for the particular
architecture, which usually results in much better performance.

Complete Code

The code in Listing 1-3 shows the implementation for class
CompoundIntRateCalculator, divided into a header file and an implementation file.
I also present a sample main function that shows how to use the class.

Listing 1-3. CompoundIntRateCalculator.h

//
//  CompoundIntRateCalculator.h

#ifndef _ FinancialSamples CompoundIntRateCalculator
#idefine _ FinancialSamples CompoundIntRateCalculator _

class CompoundIntRateCalculator {

public:
CompoundIntRateCalculator(double rate);
CompoundIntRateCalculator(const CompoundIntRateCalculator &v);
CompoundIntRateCalculator &operator =(const CompoundIntRateCalculator &v);
~CompoundIntRateCalculator();

double multiplePeriod(double value, int numPeriods);

double continuousCompounding(double value, int numPeriods);
private:

double m rate;

}s
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#tendif /* defined(__FinancialSamples CompoundIntRateCalculator ) */

//

//  CompoundIntRateCalculator.cpp

#include "CompoundIntRateCalculator.h"

#include <cmath>

CompoundIntRateCalculator
: m_rate(rate)

{
}

CompoundIntRateCalculator
{

}

CompoundIntRateCalculator
CompoundIntRateCalculator
: m_rate(v.m rate)

{

}

CompoundIntRateCalculator
CompoundIntRateCalculator
{

if (this != &v)

{

: :CompoundIntRateCalculator(double rate)

: :~CompoundIntRateCalculator()

: :CompoundIntRateCalculator(const
&v)

&CompoundIntRateCalculator: :operator =(const
&v)

this->m_rate = v.m_rate;

}

return *this;
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double CompoundIntRateCalculator::multiplePeriod(double value, int
numPeriods)
{

double f = value * pow(1 + m_rate, numPeriods);

return f;

}

double CompoundIntRateCalculator::continuousCompounding(double value, int
numPeriods)

{
double f = value * exp(m_rate * numPeriods);
return f;

}

//

//  main.cpp
#include "CompoundIntRateCalculator.h”
#include <iostream>

// the main function receives parameters passed to the program
int main(int argc, const char * argv[])

{
if (argc != 4)

{

std::cout << "usage: progName <interest rate> <present value> <num
periods>" << std::endl;
return 1;

}

double rate = atof(argv[1]);
double value = atof(argv[2]);
int num_periods = atoi(argv[3]);

CompoundIntRateCalculator cIRCalc(rate);
double res = cIRCalc.multiplePeriod(value, num_periods);

double contRes = cIRCalc.continuousCompounding(value, num_periods);
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std::cout << " future value for multiple period compounding is " << res
<< std::endl;
std::cout << " future value for continuous compounding is
<< std::endl;

<< contRes

return 0;

Sample Use

The code in Listing 1-3 can be compiled into an executable and run from the command
line. The program expects three arguments: the interest rate, the present value of the
investment, and the number of periods of compounding.

The following is an example of its use:

$ ./compound 0.05 1000 4
future value for multiple period compounding is 1215.51
future value for continuous compounding is 1221.4

As expected, the value returned by continuous compounding is slightly higher than
the value achieved by discrete compounding.

Modeling Cash Flows

A more general way of thinking about fixed income investments is to look at the flow
of cash exchanged between the two involved parties. A cash flow is a sequence of
payments, scheduled during a specified period of time. It is clear that the value of the
cash flows between two entities should be equal in some way. In this section, you will
learn how to determine if a set of cash flows is equivalent.

Problem

Calculate the present value of two cash flows and determine if they are equivalent.
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Solution

Cash flows are the basic tool for comparing two or more fixed income investments. A
cash flow establishes the sequence of cash transfers between two interested parties. The
traditional way to denote these cash exchanges is by using positive and negative values.

For example, consider a common loan, where a customer requests a quantity at a
given interest rate. The customer will make a sequence of cash payments during the
lifetime of the loan. At the end of the transaction, the payments made by both parties
should be equivalent.

The equivalence is established using the concept of present value. The present
value of a payment in the future needs to be discounted by the interest rate that would
be applied to that same value. In other words, discounting is the inverse concept to
compounding.

Calculating Present Value

A general principle of investing is that money in your pocket today is more valuable
than the same money received in the future. This general principle can be quantified
using the knowledge of value compounding based on interest rates. The present value
of a fixed income investment is the value that corresponds to the sum of cash flows
taking place in the future, after their corresponding interest has been considered and
discounted.

The formula for present value (PV) of a future payment is determined by

PV =FV/(1+R)"

In this equation, PV is the desired present value, FV is the future value that we want
to discount, R is the interest rate, and N is the number of periods between the present
value and the future value.

As you see, the formula for PV is the inverse of the calculation of compound interest
rate. This clearly shows that we are just using a similar process to determine a present
value when starting from a known future value.
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Calculating Present Value in C++

Formulas for calculating PV can be found in any financial engineering book. For a C++
programmer, however, the main interest in this topic is centered on how to perform PV
calculations with high performance. The standard procedure is to denote values paid by
the two parties using positive and negative signs. For example, we can denote an initial
loan as a negative number and each payment of the loan as a positive number. Using this
approach, for a cash flow from two parties to be equivalent, the present value of all cash
transfers needs to add to zero.

This is the method used by the CashFlowCalculator class, which is presented next.
Here is the class definition.

class CashFlowCalculator {
public:
// constructors

void addCashPayment(double value, int timePeriod);
double presentValue();
private:
std: :vector<double> m_cashPayments;
std::vector<int> m_timePeriods;
double m rate;
double presentValue(double futureValue, int timePeriod);

}s

The addCashPayment method is used to add new payments to the desired cash flow.
The arguments are the value of the payment, and the second is the time period when
this payment occurs. The value is positive or negative depending on the originator of the
payment, as previously discussed. The data is stored on two vectors, m_cashPayments
and m_timePeriods, using the STL vector template.
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The presentValue method in this class is used to compute the PV or the whole cash
flow stored in the current object. This is done with the determination of the PV for each
cash exchange as stored in the m_cashPayments vector and finally adding these values to
the total variable.

double CashFlowCalculator::presentValue()

{
double total = 0;
for (int i=0; i<m _cashPayments.size(); ++i)
{
total += presentValue(m cashPayments[i], m timePeriods[i]);
}
return total;
}

The auxiliary member function presentValue(double, int) isused to calculate the
PV for a single payment. It is defined using the foregoing formula.

double CashFlowCalculator::presentValue(double futureValue, int timePeriod)
{

double pValue = futureValue / pow(1+m_rate, timePeriod);

std::cout << " << pValue << std::endl;

return pValue;

value

}

Using STL Containers

The code in the CashFlowCalculator class is made simpler by the use of vector
containers. The std: :vector<> template is used in modern C++ applications to store
ordered sequences of elements that require random access. Unlike traditional C and
C++ arrays, which decay to pointers when passed as arguments to a function, a vector is
an object that maintains its properties, such as size, during the whole time the vector is
used. A vector also knows how to clean up after itself, avoiding memory leaks that are so
common in old-style C++ applications.

To use a vector in a C++ application, you need to declare the object by passing the
element type as a parameter to the vector template. Therefore, std: :vector<int> will
create a vector of int elements. The vector template class has member functions that can
be used to manipulate and retrieve information about the elements.
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e size: Returns the number of elements stored in the vector object.

o push_back: Copies the object passed as a parameter and stores it at
the end of the vector. If necessary, additional memory is allocated for
the new element, which can take O(n).

e pop_back: Removes the last element from the vector and undoes
the changes made by push_back (except for memory that is not
released).

o operator[]: Provides access to the contents of the vector, using
syntax similar to the access of traditional C++ arrays.

The vector template is just one among other STL containers that are available for
C++ developers. The complete list changes as new templates are added to the standard
library, but Table 1-2 lists the most used containers.

Table 1-2. Common Containers Provided by the STL

Container Description

vector Ordered collection of elements with constant random access time
queue Container where elements are added at the end and removed from the front position
map Associative container that connects keys to their associated element

multimap  Associative container that connects keys to a set of associated elements

list A linked list of elements, which provides constant time inclusion/exclusion at any
position

stack A specialized container that allows only addition and removal of the last element (the
top of the stack)

Complete Code

Listing 1-4 presents the code for the class CashFlowCalculator. The code is divided into
a header file and an implementation file. You can see how to use the code in the example
shown in the section “Running the Code.”
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Listing 1-4. CashFlowCalculator.h

//
// CashFlowCalculator.h

#ifndef _ FinancialSamples CashFlowCalculator
#define _ FinancialSamples CashFlowCalculator

#include <vector>

class CashFlowCalculator {

public:
CashFlowCalculator(double rate);
CashFlowCalculator(const CashFlowCalculator &v);
CashFlowCalculator 8operator =(const CashFlowCalculator 8&v);
~CashFlowCalculator();

void addCashPayment(double value, int timePeriod);
double presentValue();
private:
std::vector<double> m_cashPayments;
std::vector<int> m_timePeriods;
double m rate;
double presentValue(double futureValue, int timePeriod);

};
#tendif /* defined(_FinancialSamples CashFlowCalculator ) */

//
// CashFlowCalculator.cpp

#include "CashFlowCalculator.h"

#include <cmath>
#include <iostream>

CashFlowCalculator::CashFlowCalculator(double rate)
: m_rate(rate)

{
}
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CashFlowCalculator: :CashFlowCalculator(const CashFlowCalculator &v)
: m_rate(v.m rate)

{

}

CashFlowCalculator::~CashFlowCalculator()
{

}

CashFlowCalculator &CashFlowCalculator::operator =(const CashFlowCalculator
&v)

{
if (this != &v)
{
this->m_cashPayments = v.m_cashPayments;
this->m_timePeriods = v.m_timePeriods;
this->m_rate = v.m_rate;
}
return *this;
}

void CashFlowCalculator::addCashPayment(double value, int timePeriod)

{

m_cashPayments.push_back(value);
m_timePeriods.push_back(timePeriod);

}

double CashFlowCalculator::presentValue(double futureValue, int timePeriod)

{

double pValue = futureValue / pow(1+m_rate, timePeriod);
std::cout << " value " << pValue << std::endl;

return pValue;
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double CashFlowCalculator::presentValue()

{
double total = 0;
for (int i=0; i<m_cashPayments.size(); ++i)
{
total += presentValue(m cashPayments[i], m_timePeriods[i]);
}
return total;
}
//

//  main.cpp
#include "CashFlowCalculator.h"
#include <iostream>

// the main function receives parameters passed to the program
int main(int argc, const char * argv[])
{
if (arge != 2)
{
std::cout << "usage: progName <interest rate>" << std::endl;
return 1;

}
double rate = atof(argv[1]);

CashFlowCalculator cfc(rate);
do {
int period;
std::cin >> period;
if (period == -1) {
break;
}
double value;
std::cin >> value;
cfc.addCashPayment(value, period);
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} while (1);

double result = cfc.presentValue();
std::cout << " The present value is

<< result << std::endl;

return O;

Running the Code

The program can be compiled using a standards-compliant C++ compiler such as GCC
on Linux or Mac OS X. The resulting program can be executed in the following way:

./presentValue 0.08

1 200

2 300

3 500

4 -1000

-1

value 190.476
value 272.109
value 431.919
value -822.702
The present value is 71.8014

The first few lines display the input for the program. The command line argument
(in this case 0.08) is the desired interest rate—it is used as the parameter to the class
constructor. The following lines are a sequence of the time periods and payment values.
The last line of the sequence is marked using the number -1. When that number is read,
the program stops reading the input and starts to calculate the PV of the given cash
transfers, in the order in which they were received.

The last few lines display the output of the program. The code prints the PV for each
component of the cash flow. Finally, it prints the PV of the whole sequence of payments.
To use this program to validate a common fixed income instrument, such as a loan, you
should input each pair of time period-payment value. At the end of the calculation, the
PV should add to zero (or close to zero, due to possible numerical inaccuracies).
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Modeling Bonds

Bonds are a very common type of fixed income instrument. They are used by large
corporations and governments all over the world to attract cash investments that will be
repaid in the long term. In exchange, they offer the guaranteed payment of a periodic
coupon. Most bonds mature (are paid off) in a time period between 5 and 30 years.

Problem

Create a C++ class to model a bond instrument and determine its annual interest rate.

Solution

Bonds are structured in such a way that the investor deposits the principal value at the
beginning of the term of the bond. Frequently, the principal is repaid in its entirety at
maturity. Between the period between the initial investment and its maturity, investors
are paid a constant value, also called the coupon value, which determines the interest
rate paid by the bond.

For example, consider a 30-year, $100,000 bond investment in company XYZ, with
an annual coupon of $5,000. This translates into a fixed income investment that pays a
5% interest on the principal. Company XYZ has the right to use the principal during the
specified period of time, and the total value of the principal is returned to the investor in
30 years at maturity.

To model this kind of investment using C++, you can create a class that contains the
needed information, such as principal value, coupon value, and maturity period. The
class has the following declaration:

class BondCalculator {

public:
BondCalculator(const std::string institution, int numPeriods, double
principal, double couponValue);
BondCalculator(const BondCalculator &v);
BondCalculator &operator =(const BondCalculator &v);
~BondCalculator();

double interestRate();
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private:
std::string m_institution;
double m_principal;
double m_coupon;
int m_numPeriods;

s

This class has member variables that store the name of the institution that
originates the bond (known as the issuer), the principal invested, the coupon amount,
and the number of periods (usually defined in years). The class can be used to record
information about bond investments as part of an application that tracks such fixed
income investments. The interestRate method can be used to return the internal rate
of returned implied by the coupon.

Complete Code

Listing 1-5 shows a complete listing for class BondCalculator. The code is split into a
header file and an implementation file. You can also check a sample usage contained in
the main function.

Listing 1-5. BondCalculator.h

//
// BondCalculator.h

#ifndef _ FinancialSamples BondCalculator
#define _ FinancialSamples BondCalculator

class BondCalculator {

public:
BondCalculator(const std::string institution, int numPeriods, double
principal, double couponValue);
BondCalculator(const BondCalculator &v);
BondCalculator &operator =(const BondCalculator &v);
~BondCalculator();

double interestRate();

29



CHAPTER 1 THE FIXED INCOME MARKET

private:
std::string m_institution;
double m_principal;
double m_coupon;
int m_numPeriods;

};
#endif /* defined(__FinancialSamples BondCalculator ) */

//
// BondCalculator.cpp

#include "BondCalculator.h"

BondCalculator: :BondCalculator(const std::string institution, int numPeriods,
double principal, double couponValue)
: m_institution(institution),
m_numPeriods(numPeriods),
m_principal(principal),
m_coupon(couponValue)

{

}

BondCalculator::BondCalculator(const BondCalculator &v)
: m_institution(institution),

m_numPeriods(v.m numPeriods),

m_principal(v.m principal),

m_coupon(v.m_coupon)

{

}

BondCalculator: :~BondCalculator()
{

}
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BondCalculator &BondCalculator::operator =(const BondCalculator &v)

{

}

if (this != 8v)

{
this->m_institution = v.m institution;
this->m_principal = v.m_principal;
this->m_numPeriods = v.m_numPeriods;
this->m_coupon = v.m_coupon;

}

return *this;

double BondCalculator::interestRate()

{
}

return m_coupon / m_principal;

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

if (argc != 4)
{
std::cout << "usage: progName <institution> <principal> <coupon>
<num periods>"
<< std::endl;
return 1;

}

std::string issuer = argv[1];
double principal = atof(argv[2]);
double coupon = atof(argv[3]);
int num_periods = atoi(argv[4]);

BondCalculator bc(issuer, principal, coupon, num periods);
std::cout << "reading information for bond issued by " << issuer <<
std::endl;
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std::cout << " the internal rate of return is " << bc.interestRate() <«
std::endl;

return 0;

Running the Code

The code can be compiled using a standards-compliant C++ compiler. It has been tested
on Linux and Mac OS X. You can run the program using the following command at your
preferred shell:

$ ./bondCalculator XYZ 100000 5000 20
reading information for bond issued by XYZ
the internal rate of return is 0.5

The first line in bold is the command that you need to execute. The parameters are
the name of the issuer institution, the total principal invested in the bond, the value of
the periodic coupon, and the number of time periods for this investment.

The output of the program displays the rate of return calculated from the coupon
value. The class BondCalculator can now be used in a larger application to store
information about this type of fixed income investment.

Further Reference

This chapter provides an introduction to the general topic of fixed income investments.
While we are mostly concerned about the C++ programming issues involved in this area,
there are several books that can help you get a greater understanding of the financial
engineering techniques that were introduced here.

The following books are just suggestions that you can explore to achieve a better
understanding of the world of fixed income investments.

o Investment Science by David Luenberger (Oxford University Press,
1998): This is an undergraduate-level book that describes the basic
theory of investment. Most of the book explains the fundamentals
of fixed income investments, including algorithms for the most
common problems.
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o Investments by Zvi Bodie, Alex Kane, and Alan Marcus (McGraw-
Hill/Irwin, 2004): This is a standard textbook on investment theory
that explains, among other topics, the ideas behind fixed income

investments.

e Mathematics for Finance by Marek Carpinski and Tomasz Zastawniak
(Springer, 2011): This book is more for the mathematically inclined.
It not only explains the basics of fixed income investments but also
gives a lot of mathematical methods that are useful in their analysis.

Conclusion

In this chapter, I introduced the topic of fixed income investments and how they can be
modeled and analyzed using C++ code. The first part of the chapter explains the general
concepts behind fixed income investments. These investments are used as a relatively
safe way to maintain and generate wealth, as compared to the equity and derivatives
market.

I have also explained why C++, especially in its current standard C++20, is the ideal
programming language to create computational solutions for the problems in this area
of finance. Due to its performance characteristics and high-level programming support,
C++ provides the best balance between expressiveness and raw speed. As a result, C++
is the de facto standard for the development of core applications in the finance field,
especially in applications that deal with fixed income data.

The first example introduced a basic class that can be used to calculate simple
interest rates. It introduces not only the concept of interest rate calculation methods but
also the typical way such solutions are designed and coded in modern C++.

The second example introduced the concept of interest rate compounding, both
in discrete and continuous intervals. You learned there how to create a C++ class to
calculate this type of interest rate using standard C++ library functions. I presented a
summary of such mathematical functions and how they are used in C++ programs.

The third example in this chapter explored the important concept of cash flows and
their corresponding PV. The calculation of PV is central to the comparison of two or
more fixed income investments. Using the inverse of the formulas for interest rate, you
can determine the real value of a given set of cash flows in the present. You learned how
to solve this type of problem using a new C++ class.
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Finally, this chapter explains how bonds are used in financial applications and
presented a class to model these investments. In future chapters, you will learn more
about the computational challenges of using these financial vehicles as part of an
investment portfolio.

In the next chapter, I will introduce another large part of the financial investment
landscape: the equities market. You will see a few programming techniques that can be
useful in these markets, along with an introduction to other important concepts that we
explore in the later part of this book.
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The Equities Market

Owning shares of company profits is one of the most common ways to invest and
generate wealth. A large number of people who have made a fortune have achieved

it by creating or buying an equity stake in a successful corporation. This is the reason
the equity market is so popular among all kinds of investors. Moreover, the stock
market is so vast that it provides opportunities for everyone willing to participate: from
small investors to large hedge funds, you will find an investment style for each kind of
participant.

The equities market is also an exciting area for software engineers, since it provides
so many opportunities to apply computational techniques, which can be implemented
in C++. Software engineers are also great allies to market analysts and investors in
general, helping in vital activities such as modeling market data and devising algorithms
needed to make fast and accurate trading decisions.

Due to their large size, equity markets are multifaceted and offer a huge variety
of investment vehicles. From small cap stocks to blue chips, ETFs (exchange-traded
funds), equity and index options, and other derivatives, there are a great number of
opportunities for employing investment algorithms, in order to get an edge in the
market. As a result, there is also great incentive (from banks and other investment
institutions) to apply high-speed C++ programming techniques to solve such problems.

In this chapter, we present C++ code for a few selected problems occurring in the
equities markets and their derivatives. We will consider financial programming topics
such as the following:

e Calculating simple moving averages

o Computing exponential moving averages

e Calculating volatility

o Computing correlation of equity instruments

e Modeling and calculating fundamental indicators
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Equities Market Concepts

Equity markets exist to expedite the trading of equity-based investments. The goal of an
equity investment is to allocate money directly or indirectly to company stock, which
gives buyers a certain share of ownership in a company. The idea behind this investment
is to profit from the growth of the institution represented by that particular investment
vehicle. For example, buying shares of IBM stock gives ownership of a small part of the
company, along with the future profits associated with that ownership.

Direct stock ownership is the simplest example of an equity investment. Anyone with
a brokerage account can buy shares in public companies, that is, companies that have
put their shares for sale in the public market. Using their particular trading accounts
or retirement accounts, individual investors have the ability to invest in any one of the
thousands of publicly traded companies in the US and international markets.

However, directly controlling a company stock is not the only (or even the easiest)
way to participate in the stock market. There are nowadays a plethora of products that
offer alternative ways to invest in equity. This includes mutual funds, ETFs, index funds,
options, and other more exotic derivatives. How to select the right instrument from such
a large array of tradable issues is one of the many problems faced by money managers
and individual investors.

Market Participants

The equities market is composed of many participants. They have different goals and
interests; however, they work continuously to maintain market prices while trying to
profit from them.

Large institutions form a sizable portion of the equities market landscape. These
big, sell-side investment institutions (such as investment banks and exchanges) are
viewed as the backbone of the market. Therefore, they are also commonly referred to as
market makers. These large companies are buying and selling great volumes of equity
investment vehicles (such as stocks) daily, with the goal of having small profits in each
operation. More recently, high-frequency trading was added to this picture, resulting in
increased volume and speed in market transactions.
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The following is a quick list of the most common players in the equities market:

Mutual funds: These funds receive investments from retail investors
and institutions and make investments in areas of the market

that they believe will have larger than usual investment returns.
Mutual funds are mostly limited to buying stocks and ETFs, so their
performance is limited when the market is in a downtrend.

Hedge funds: Hedge funds use more advanced techniques, such as
shorting stocks and buying options and futures on risky investments
not available to common investors, so they are limited to wealthier
investors and some kinds of institutions that can cope with the
increased risk.

Investment banks: These institutions are actively working on

the market composition. For example, they act in bringing to the
market new issues (also known as IPOs) that will be traded by other
investors. They are also allowed to trade for themselves and other
large clients.

High-frequency trading funds: These funds use high-performance
computational techniques to provide instant liquidity to the markets
while making small profits in a large number of transactions.

Brokerage companies: These companies work directly with
individual investors providing the ability to buy or sell stocks, ETFs,
mutual funds, and options for a small or even no commission per
transaction. Their services are made available through the Internet
on several platforms such as desktops, web browsers, and mobile
devices.

Pension funds: These are institutions that hold large pools of
investment money derived from retirement funds. They are geared
toward long-term investments that will support the desired growth of
the fund for an extended time period.

Retail investors: These are individuals who control a brokerage
account and do their own research and make their own decisions on
what to buy and sell in the market.
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As you can see, there is a great deal of competition for profits in the equities
market. Most large institutions spend a lot of money on research that can give them an
edge on the future moves of the market. This type of analytical approach depends on
accurate information and instant access to trading data, which is possible only with the
computational power provided by computer software, most of it written in languages
such as C++.

In the next few sections, I provide C++ examples for common problems found in the
analysis of equity investments. You will learn about tools and concepts that can be used
in a large number of situations in which equity investments are involved.

Moving Average Calculation
Problem

Given a particular equity investment, determine the simple moving average and the
exponential moving average for a sequence of closing prices.

Solution

One of the most common strategies to analyze equity instruments such as stocks and
ETFs is to use supply/demand methods that consider price and volume as the important
variables to observe. Traders who use price/volume-based strategies call this set of
methods technical analysis (TA). With TA, traders look at special price points that have
been defined by previous price movements, such as support, resistance, trend lines,
and moving averages, with the objective of identifying pricing regions with a higher
probability of profit.
For example, support and resistance values are typically used to determine price
areas that are considered to be of importance for a given instrument. If a stock reaches a
certain price when moving up and reverses course, the high price point is considered to be
aresistance price. In the future, when the price again reaches the same area, traders will
tend to sell around in the same region, creating an even stronger resistance point. Similarly,
support prices are formed when traders buy the same stock or ETF in a well-known region.
A similar type of pattern occurs with moving averages. Buyers and sellers tend to
look at moving averages to determine if a particular stock is on a low-risk buy or sell
point. These psychological price points are self-reinforcing and play an important role in
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the dynamics of equity trading. Figure 2-1 shows an example of a moving average used in
the analysis of common stock for Apple.

AAPL Apple, Inc. Nasdaq 6S ® StockCharts.com
Technology / Computer Hardware Tuesday 4-Feb-2014
Open: 505.85 Ask 507.87 PE 12.80 A +1.45%
High: 509.46 AskSize: 70 EPS: 39.75 Options: yes Chy: +7.26
Low: 502.76 Bid Last $10 shrs  Dividends: yes Last: 508.79
Prev Close: 501,53 Bid Size: VWAP. 506,59 SCTR(SPS00) 50.6 Volume: 13,455,098
W) AAPL (Daily) S08.79 575.14 i 580

—MA(50) 544,33

dh\olume 13,455,098 ' Tﬁl £60.20 b
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Figure 2-1. Simple moving average for daily prices of Apple (AAPL), with
parameter 50

The moving average can be calculated using a simple average formula that is
repeated for each new period. Given prices pl, p2, ..., pN, the general formula for a

particular time period is given by
MA = (1/N) (p1 + p2 + ... + pN)

You can easily perform this calculation if you maintain and update the sequence of
prices as new values are added to the sequence.

To calculate the moving average in C++, we first create a new class that stores a
sequence of prices using a STL (standard templates library) vector object. The object is
responsible for adding new values to the sequence, using the addPriceQuote member
function. The implementation of this member function is simple because it relies on the
functionality provided by std: : vector to maintain a sequence of numbers, as well as the

storage requirements.
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void MACalculator::addPriceQuote(double close)
{

m_prices.push back(close);

The number of periods for moving average calculation is determined by the
parameter to the constructor of the MACalculator class. For example, to compute a
moving average for 20 time periods (normally the equivalent to 4 trading weeks when
the period is a single trading day), you can create an object of the MACalculator class in
the following way:

MACalculator calculator(20); // will compute the moving average for 20 periods.

The calculation of the simple moving average is performed by the calculateMA
member function of the MACalculator class. The main idea of this function is to iterate
through the sequence of prices stored in the MACalculator class, as shown in the
following code:

std: :vector<double> MACalculator::calculateMA()
{
std::vector<double> ma;
double sum = 0;
for (int i=0; i<m prices.size(); ++i)
{
sum += m_prices[i];
if (i »>= m_numPeriods)
{
ma.push _back(sum / m_numPeriods);
sum -= m_prices[i-m numPeriods];

}

return ma;

To calculate a moving average, it is necessary to have at least the number of
observations determined by the number of periods (let N be the number of periods).
Therefore, the first N elements of the vector of prices don’t generate a corresponding
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moving average. These initial elements are simply added to the sumlocal variable, so
their values are used later.

For each element after the Nth position, it is possible to calculate the moving
average. This is achieved using the sum of the previous N elements and dividing it by
the value N. The resulting value is appended to the vector of moving average elements.
Finally, it is necessary to update the variable sum, so that the first item of the N-element
sequence is dropped from the summation. This happens when the algorithm subtracts
the valuem_prices[i-m numPeriods], preparing for the next iteration.

The exponential moving average (EMA) is different from the simple moving average
because each new value is multiplied by a factor. This factor is used to give more
weight to new values, as compared to older observations. As a result, the EMA is more
responsive to changes in the observed values, and it can indicate new trends sooner and
with better accuracy. This may be an advantage if you want to quickly spot changes in
trend. The following is the code that I used:

std: :vector<double> MACalculator::calculateEMA()

{
std: :vector<double> ema;
double multiplier = 2.0 / (m_numPeriods + 1);
// calculate the MA to determine the first element corresponding
// to the given number of periods
std::vector<double> ma = calculateMA();
ema.push_back(ma.front());
// for each remaining element, compute the weighted average
for (int i=m_numPeriods+1; i<m_prices.size(); ++i)
{
double val = (1-multiplier) * ema.back() + multiplier * m prices[i];
ema.push_back(val);
}
return ema;
}

The initial part of the calculation is similar to the simple moving average. Values are
added using the sum variable, until at least N values have been observed. This is used
as the initial value for the EMA. Different implementations of EMA use other ways to
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initialize the sequence, but the results converge to the same values after a few iterations.

You can see a graphical example of EMA in Figure 2-2.

AAPL Apple, Inc. Nasdaq ¢S @® StockCharts.com
Technology f Computer Hardware Friday 14-Feb-2014
Open: 54247 Ask PE 13.45 \ 4 0.08%

High: 54598 Ask Size EPS: 40.44 Options: yes Chy: -0.44
Low: 541.21 Bid Last: Dividends: no Last: 543.99
Prev Close: 544.43 Bid Size: VAP SCTR: Volume: 9,773,695
™ AAPL (Daily) 543,99 57171 R 580

—EMA(20) 528,68
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Figure 2-2. Exponential moving average with a parameter of 20 days

The main step of the EMA calculation is the addition of new values that are weighted
by the multiplier. The default multiplier r for EMA computation is given by

2
N+1

P

This multiplier gives greater weight to new values, thus making the EMA more
responsive to price changes than the simple moving average.

Complete Code

In Listing 2-1, you can see the complete implementation of the simple moving average as
well as the EMA. I also show a sample main function that is responsible for reading a few
data points from standard input and calculate the corresponding moving averages.
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Listing 2-1. MACalculator

//
// MACalculator.h

#ifndef _ FinancialSamples MACalculator
#define _ FinancialSamples MACalculator

#include <vector>

class MACalculator {
public:
MACalculator(int period);
MACalculator(const MACalculator &);
MACalculator &operator = (const MACalculator 8);
~“MACalculator();

void addPriceQuote(double close);
std: :vector<double> calculateMA();
std: :vector<double> calculateEMA();
private:
// number of periods used in the calculation
int m_numPeriods;
std: :vector<double> m_prices;

};
#tendif /* defined(__FinancialSamples MACalculator ) */

//
//  MACalculator.cpp

#include "MACalculator.h"
#include <iostream>

MACalculator::MACalculator(int numPeriods)
: m_numPeriods(numPeriods)

{
}

THE EQUITIES MARKET
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MACalculator::~MACalculator()
{

}

MACalculator::MACalculator(const MACalculator &ma)

: m_numPeriods(ma.m_numPeriods)

{
}

MACalculator &MACalculator::operator
{

if (this != &ma)

(const MACalculator 8ma)

{
m_numPeriods = ma.m_numPeriods;
m_prices = ma.m_prices;
}
return *this;
}
std: :vector<double> MACalculator::calculateMA()
{
std::vector<double> ma;
double sum = 0;
for (int i=0; i<m prices.size(); ++i)
{
sum += m_prices[i];
if (i »>= m_numPeriods)
{
ma.push_back(sum / m_numPeriods);
sum -= m_prices[i-m numPeriods];
}
}
return ma;
}
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std: :vector<double> MACalculator::calculateEMA()

{
std: :vector<double> ema;
double sum = 0;
double multiplier = 2.0 / (m_numPeriods + 1);
for (int i=0; i<m prices.size(); ++1i)
{
sum += m_prices[i];
if (i == m_numPeriods)
{
ema.push_back(sum / m_numPeriods);
sum -= m_prices[i-m numPeriods];
}
else if (i > m_numPeriods)
{
double val = (1-multiplier) * ema.back() + multiplier * m_
prices[i];
ema.push_back(val);
}
}
return ema;
}
void MACalculator::addPriceQuote(double close)
{
m prices.push back(close);
}
//

//  main.cpp
#include "MACalculator.h"
#include <iostream>

// the main function receives parameters passed to the program
// and calls the MACalculator class
int main(int argc, const char * argv[])
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{

46

if (argc != 2)
{

std::cout << "usage: progName <num periods>" << std::endl;
return 1;

}
int num_periods = atoi(argv[1]);

double price;
MACalculator calculator(num periods);

for (55) {
std::cin >> price;
if (price == -1)
break;

calculator.addPriceQuote(price);

std: :vector<double> ma = calculator.calculateMA();
for (int i=0; i<ma.size(); ++i)

std::cout << "average value

std::vector<double> ema = calculator.calculateEMA();

for (int i=0; i<ema.size(); ++i)

{
std::cout << "exponential average value "
<< 1< " =" << ema[i] << std::endl;
}
return 0;

<< 1< " =" << mal[i] << std::endl;
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Running the Code

You can compile this code using the gcc compiler (as well as any other standards-
compliant compiler such as Visual Studio or C++ builder). For example, the following
command line can be used from the UNIX shell:

gcc -o macalc main.cpp macalculator.cpp
The following is a display of a sample execution of the program:

$ ./macalc 5
10

11

22

12

13

23

12

32

12

3

2

22

32

-1

average value 0 = 18.2
= 18.6
= 22.8
20.8
= 19

= 16.8
= 16.6
average value 7 = 20.6

average value
average value
average value
average value
average value

v A W N B O
n

average value

exponential average value 0 = 18.2

exponential average value 1 = 16.1333
exponential average value 2 = 21.4222
exponential average value 3 = 18.2815
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13.1877
exponential average value 5 = 9.45844
exponential average value 6 = 13.639
exponential average value 7 = 19.7593
Program ended with exit code: 0

exponential average value 4

In the first line, I entered the command that calls the moving average program
(which here is simply called macalc). The single argument in the command line
means that I want to calculate the moving average for five data points. Then, I entered
a sequence of numbers that represents the observed prices for a certain investment
vehicle. Finally, I entered the value -1, which indicates the end of the input. The next few
lines then give a list of values that define the simple moving average and the EMA.

Calculating Volatility
Problem

Calculate the volatility of a particular equity instrument, given a sequence of prices for
the last few days.

Solution

One of the important characteristics of stocks and other equity instruments is that they
change in price very frequently. For highly liquid stocks and ETFs, prices will change
during the whole trading day, as new buyers and sellers exchange shares. The result is a
high degree of volatility, as compared to other investment instruments.

Volatility is also an important concept when comparing investment options. For
example, an Internet stock will vary in price much more widely than a traditional food
producer. Their volatility profiles will be completely different. Higher volatility may be an
advantage or a disadvantage, depending on your investment objectives.

The important thing to consider about volatility is that it is not just a one-dimensional
concept. Different investment strategies require different ways of viewing price variations.
For example, if you are making investment decisions based on the expected volatility
for the next few days (due to a news event or earnings release), then the previous week’s
volatility may not be so important.
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In this section, I present three ways to measure volatility given a sequence of prices.
The first strategy is computing the range of values observed during that period. This is
probably the simplest way to view volatility: calculate the highest and lowest observed
values and return its difference. It is also a common indicator used by many investors.
Most newspapers print a list of 1-year high and low prices, so you can quickly see the
simple range for the previous year. The following is the implementation using a
vector of prices:

double VolatilityCalculator::rangeVolatility()

{
if (m_prices.size() < 1)
{
return 0;
}
double min = m prices[0];
double max = min;
for (int i=1; i<m prices.size(); ++1i)
{
if (m_prices[i] < min)
{
min = m _prices[i];
}
if (m_prices[i] > max)
{
max = m prices[i];
}
}
return max - min;
}

The second strategy is calculating the average range for a given time period. For
example, many investment strategies use the idea of looking at the past few days and
taking an average of the observed ranges. The result is then charted as an indicator of the
rate of change for a particular stock, for example. Simply calculating the average of the
previously observed daily ranges can be used to return this value. Here is our code.
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double VolatilityCalculator::avgDailyRange()
{

unsigned long n = m prices.size();
if (n < 2)

{

return 0;

}

double previous = m_prices[0];

double sum = 0;

for (int i=1; i<m prices.size(); ++1i)

{
double range = abs(m prices[i] - previous);
sum += range;

}

return sum / n - 1;

Finally, a more sophisticated way to gauge the variation of values for an equity
instrument is to use the statistical definition of standard deviation. The standard
deviation is useful as a way to derive volatility from the expected value (also known
as mean) of a set of prices. A well-known formula is used to calculate the standard
deviation, which is given by

In this equation, N is the number of data points (prices) and m is the average of these
values. The standard deviation can be calculated in C++ with the following code:

double VolatilityCalculator::stdDev()
{

const double m = mean();

double sum = 0;

for (int i=0; i<m prices.size(); ++1i)
{

double val = m prices[i] - m;
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sum += val * val;

}

return sqrt(sum / (m_prices.size()-1));

Complete Code

Listing 2-2 provides the complete code for the strategies just described. I introduce a new
C++ class named VolatilityCalculator, which encapsulates the concept of computing
the price volatility. We have these three strategies coded in the rangeVolatility,
avgDailyRange, and stdDev member functions. You can use this class as a starting point
and later add other methods for volatility calculation as additional member functions.

Listing 2-2. VolatilityCalculator.h

//
// VolatilityCalculator.h

#ifndef _ FinancialSamples VolatilityCalculator
#define _ FinancialSamples VolatilityCalculator

#include <vector>

class VolatilityCalculator
{
public:
VolatilityCalculator();
~VolatilityCalculator();
VolatilityCalculator(const VolatilityCalculator &);
VolatilityCalculator &operator=(const VolatilityCalculator &);

void addPrice(double price);
double rangeVolatility();
double stdDev();

double mean();

double avgDailyRange();
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private:
std: :vector<double> m_prices;

};
#endif /* defined(__FinancialSamples  VolatilityCalculator ) */

//
// VolatilityCalculator.cpp

#include "VolatilityCalculator.h"

#include <iostream>
#include <cmath>

VolatilityCalculator::VolatilityCalculator()
{

}

VolatilityCalculator::~VolatilityCalculator()
{

}

VolatilityCalculator::VolatilityCalculator(const VolatilityCalculator 8&v)
: m_prices(v.m prices)

{

}

VolatilityCalculator &VolatilityCalculator::operator =(const
VolatilityCalculator &v)

{
if (& != this)
{
m_prices = v.m_prices;
}
return *this;
}
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void VolatilityCalculator::addPrice(double price)
{

m_prices.push _back(price);

}

double VolatilityCalculator::rangeVolatility()
{

if (m_prices.size() < 1)

{

return 0;

}

double min = m_prices[0];
double max = min;
for (int i=1; i<m prices.size(); ++i)
{

if (m_prices[i] < min)

{

min = m prices[i];
}
if (m_prices[i] > max)

{

max = m prices[i];

}

return max - min;

}

double VolatilityCalculator::avgDailyRange()
{

unsigned long n = m prices.size();
if (n < 2)
{

return 0;
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double previous = m prices[0];

double sum = 0;

for (int i=1; i<m prices.size(); ++1i)

{
double range = abs(m prices[i] - previous);
sum += range;

}
return sum / n - 1;
}
double VolatilityCalculator::mean()
{
double sum = 0;
for (int i=0; i<m prices.size(); ++i)
{
sum += m_prices[i];
}
return sum/m_prices.size();
}
double VolatilityCalculator::stdDev()
{
double m = mean();
double sum = 0;
for (int i=0; i<m prices.size(); ++1i)
{
double val = m_prices[i] - m;
sum += val * val;
}
return sqrt(sum / (m _prices.size()-1));
}
//

//  main.cpp
#include "VolatilityCalculator.h"

#include <iostream>
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// the main function receives parameters passed to the program
int main(int argc, const char * argv[])

{
double price;
VolatilityCalculator vc;
for (53)
{
std::cin >> price;
if (price == -1)
{
break;
}
vc.addPrice(price);
}
std::cout << "range volatility is " << vc.rangeVolatility() <«
std::endl;
std::cout << "average daily range is " << vc.avgDailyRange() <«
std::endl;
std::cout << "standard deviation is " << vc.stdDev() << std::endl;
return 0;
}

Running the Code

Here is an example of the volatility class being used. You can compile the code presented
in Listing 2-2, assuming that the binary is called volatility. Then, you can use the
program by entering price values that will be later used to compute the volatility
employing the three methods described. The end of the input sequence is determined

by a single -1 value entered as the last input value.

$ ./volatility
3

3.5

5

4.48
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5.2

6

6.1

5.5

5.2

5.7

-1

range volatility is 3.1
average daily range is 0.7
standard deviation is 1.02957

Computing Instrument Correlation
Problem

Given a sequence of closing prices for the last N periods, calculate the correlation
between two equity instruments.

Solution

One of the main problems that money managers need to solve is how to diversify a
portfolio. The problem of diversification occurs because, when investing in the market,
itis not desirable to have all your assets in the same type of investment. Correlated
investments tend to go down at the same time, making it harder to avoid losses in a
portfolio.

For example, consider two companies operating in a similar business. The classic
example is beverage companies such as Coca-Cola and Pepsi. They tend to rise and
fall at the same time due to the similarity of their business. Therefore, we say that they
are highly correlated. Correlation is a mathematical concept that was developed for the
analysis of statistical events. It turns out to be an important concept in the equities market,
since probability plays such a big role in the evaluation and modeling of equity-based
investments.

To make the code for this example more extensible, we divide the solution into two
classes. The first class, called TimeSeries, represents the often-used concept of a set
of numbers that apply to a certain quantity over a given period of time. This concept
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is commonly referred to as a time series. The TimeSeries class is responsible for
calculating values that are specific to a single time series, such as the average, or the
standard deviation.

The second class used is CorrelationCalculator, which is responsible for collecting
data for the desired time series and computing the correlation using the formula

1 Z(xi _J_C)(yi _J_/)

N-1 0,0,

In this equation, N is the number of observations, x; is the i-th observation of the first
time-series, y; is the i-th observation of the second time-series, X and y are the mean
(average) of the two sequences of prices, s, is the standard deviation of the x values, and
s,is the standard deviation of the y values.

The mean value and the standard deviation are calculated in the TimeSeries class.
These values are then used in the CorrelationCalculator to determine the correlation
between the values observed for both sequences.

Complete Code

The computation discussed in the previous section is implemented in the class
TimeSeries. Listing 2-3 includes the complete class. You can also see how to use
techniques to calculate correlation, as displayed in the class CorrelationCalculator.

Listing 2-3. TimeSeries.h

//
// TimeSeries.h

#ifndef _ FinancialSamples TimeSeries
#define _ FinancialSamples TimeSeries

#include <vector>

class TimeSeries

{
public:
TimeSeries();
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TimeSeries(const TimeSeries &);
TimeSeries &operator=(const TimeSeries &);
~TimeSeries();

void addValue(double val);
double stdDev();
double mean();
size t size();
double elem(int i);
private:
std: :vector<double> m_values;

};
#tendif /* defined(__FinancialSamples TimeSeries ) */

//
// TimeSeries.cpp

#include "TimeSeries.h"
#include <cmath>
#include <iostream>

TimeSeries: :TimeSeries()
: m_values()

{
}

TimeSeries::~TimeSeries()

{
}

TimeSeries::TimeSeries(const TimeSeries &ts)
: m_values(ts.m values)

{
}

TimeSeries &TimeSeries::operator =(const TimeSeries &ts)

{
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if (this != &ts)

{
m_values = ts.m values;
}
return *this;
}
void TimeSeries::addValue(double val)
{
m_values.push back(val);
}
double TimeSeries::mean()
{
double sum = 0;
for (int i=0; i<m values.size(); ++1i)
{
sum += m_values[i];
}
return sum/m_values.size();
}
double TimeSeries::stdDev()
{
double m = mean();
double sum = 0;
for (int i=0; i<m values.size(); ++1i)
{
double val = m_values[i] - m;
sum += val * val;
}
return sqrt(sum / (m_values.size()-1));
}
size t TimeSeries::size()
{
return m_values.size();
}

THE EQUITIES MARKET
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double TimeSeries::elem(int pos)

{

return m_values[pos];

}

//
// CorrelationCalculator.h

#ifndef _ FinancialSamples CorrelationCalculator
#define _ FinancialSamples CorrelationCalculator

class TimeSeries;

class CorrelationCalculator

{

public:
CorrelationCalculator(TimeSeries 8a, TimeSeries &b);
~CorrelationCalculator();
CorrelationCalculator(const CorrelationCalculator &);
CorrelationCalculator 8operator =(const CorrelationCalculator 8);

double correlation();
private:

TimeSeries &m tsA;

TimeSeries &m tsB;

};
#endif /* defined(__FinancialSamples CorrelationCalculator ) */

//
// CorrelationCalculator.cpp

#include "CorrelationCalculator.h"

#include "TimeSeries.h"
#include <iostream>

CorrelationCalculator::CorrelationCalculator(TimeSeries &a, TimeSeries &b)
: m_tsA(a),
m_tsB(b)
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{
}

CorrelationCalculator::~CorrelationCalculator()

{
}

CorrelationCalculator::CorrelationCalculator(const CorrelationCalculator &c)
: m_tsA(c.m_tsA),

m tsB(c.m tsB)
{

}

CorrelationCalculator &CorrelationCalculator::operator=(const
CorrelationCalculator &c)

{
if (this != 8&c)
{
m_tsA = c.m_tsA;
m_tsB = c.m_tsB;
}
return *this;
}
double CorrelationCalculator::correlation()
{

double sum = 0;
double meanA

m_tsA.mean();
double meanB

m_tsB.mean();

if (m_tsA.size() != m_tsB.size()) {
std::cout << "error: number of observations is different"
<< std::endl;
return -1;
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for (int i=0; i<m tsA.size(); ++1i)

{
auto val = (m_tsA.elem(i) - meanA) * (m_tsB.elem(i) - meanB);
sum += val;

}

double stDevA = m_tsA.stdDev();

double stDevB = m tsB.stdDev();

sum /= (stDevA * stDevB);

return sum / (m_tsB.size() - 1);

}

//
//  main.cpp

#include "CorrelationCalculator.h"
#include "TimeSeries.h"

#include <iostream>

// the main function receives parameters passed to the program
int main(int argc, const char * argv[])

{

double price;

TimeSeries tsa;
TimeSeries tsb;

for (5;5) {
std::cin >> price;
if (price == -1)
{
break;
}
tsa.addValue(price);

std::cin >> price;
tsb.addValue(price);
}

CorrelationCalculator cCalc(tsa, tsb);
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auto correlation = cCalc.correlation();

std::cout << "correlation is " << correlation << std::endl;
return O;

Running the Code

After compiling the provided code, you can run the resulting program by calling the
executable without any parameters. The program works by reading the data from
standard input, which you can do manually or by redirecting a file to the program using
the shell. Each line of the input contains prices for the two equity instruments we want
to compare. The last line is marked using the special value -1, which indicates the end of
the input stream.

The following is a sample execution:

$ ./correlation
1.2 3.4

2 3.3

2.5 3

4 5.5

3 1.2

6 2.4

5.5 3.2

6.3 3.1

7.1 2.9

5.4 3.2

-1

correlation is -0.050601

The second example shows the result for stocks that display inverse correlation:
when the price of the first instrument increases, the price of the second one decreases.

$ ./correlation
110
29
38
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47
56
65
74
-1
avg is 4
avg is 7
avg is 4
avg is 7
correlation is -1

Calculating Fundamental Indicators
Problem

Compute a set of fundamental indicators for a particular stock holding.

Solution

In the last few sections, we have seen methods for analyzing price changes in equity
instruments. These techniques are generally labeled as technical indicators, since

they allow for the TA of past price and volume data. Another way to analyze stocks is

to consider more fundamental information that is not contained in the sequence of
observed prices. Such fundamental information includes company earnings, intellectual
property, physical assets, and debt.

Fundamental indicators are one of the most common ways of analyzing the quality
of a stock. The disclosure of fundamental information is required from public companies
and released every quarter for most publicly traded stocks. It includes financial data that
is considered by the Securities and Exchange Commission to be of value for investors
and is used to tell how well a company is performing compared to its peers in the
marketplace. For example, earnings per share are a fundamental indicator that tells how
much profit is being generated per period (usually a quarter or a year) for each share
of the stock. This information is then used to make decisions about buying, selling, or
holding a particular investment vehicle.
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In this example, I present a class that can be used to model stocks and allows one to
calculate and display a set of fundamental indicators associated with the stock. The code is
encapsulated in the class FundamentalsCalculator. The idea is to have a central location
where you can calculate and store all the fundamental indicators associated with a stock.

Here is a list of the items that you can retrieve using the FundamentalsCalculator
class and how they are defined:

Price-earnings ratio (P/E): This is calculated as the price of the
total stock of the company divided by the earnings as published in
the last-quarter earnings release. This ratio can be interpreted as
a measure of the cost of the company stock as compared to other
companies with similar earnings.

Book value: The book value corresponds to the amount of assets
currently on the company balance sheet. This is in essence

an accounting measure of the value of the company, without
considering market factors such as future earnings, for example.

Price-to-book ratio (P/B): This ratio is determined by dividing
the stock price by the assets minus liabilities. The following
accounting formula can be used:

StockPrice
Assets — Liablities and IntangibleAssets

Notice that only tangible assets, the ones that can be eventually
sold, are considered in this equation.

Price-earnings to growth (PEG): This indicator can be used to
compare companies with similar P/E but different growth rates.
The formula to calculate this value is simply

p

E
EPS annual growth

Earnings before interest, taxes, depreciation, and amortization
(EBITDA): This is a measure that can be used to determine how
a company is making a profit, and it is based on accounting
information provided by the company in every earnings release.
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The value simply represents how much profit the company made
before items such as taxes and related expenses were paid.

Return on equity (ROE): This ratio is used to determine the
percentage of net income generated based on shareholders’
equity. Investors are usually interested in companies able to
generate higher income on the same amount of equity. The value
is simply calculated as

NetIncome
ShareholdersEquity

Forward P/E: This number is similar to the P/E ratio, but instead
of being calculated based on existing revenue data, itis a
prediction for the next quarter made by analysts. When compared
to P/E, this number can be used to determine if analysts expect
the revenue to increase, decrease, or stay at the same levels.

Complete Code

Most of the indicators explained in the previous list are easy to calculate, but they
are very important when making decisions on which stocks to buy or sell. The class
presented in Listing 2-2 offers a good place to store the associated data needed for these
indicators, along with the simple calculations needed to produce the desired values with
the minimum amount of input.

Listing 2-4 is the complete listing of the FundamentalsCalc class and its associated
test code.

Listing 2-4. FundamentalsCalc.h

//
// FundamentalsCalc.h

#ifndef _ FinancialSamples FundamentalsCalc
#idefine _ FinancialSamples FundamentalsCalc

#include <string>

class FundamentalsCalculator {
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FundamentalsCalculator(const std::string &ticker, double price, double
dividend);

~FundamentalsCalculator();

FundamentalsCalculator(const FundamentalsCalculator &);
FundamentalsCalculator &operator=(const FundamentalsCalculator&);

void
void
void
void
void
void
void
void
void

setNumOfShares(int n);

setEarnings(double val);
setExpectedEarnings(double val);
setBookValue(double val);
setAssets(double val);
setLiabilitiesAndIntangibles(double val);
setEpsGrowth(double val);
setNetIncome(double val);
setShareHoldersEquity(double val);

double PE();

double forwardPE();

double bookValue();

double priceToBookRatio();

double priceEarningsToGrowth();
double returnOnEquity();
double getDividend();

private:

std::

string m_ticker;

double m_price;

double m dividend,
double m_earningsEstimate;
int m_numShares;

double m_earnings;
double m_bookValue;
double m_assets;

double m_liabilitiesAndIntangibles;
double m_epsGrowth;
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double m_netIncome;
double m_shareholdersEquity;

};
#endif /* defined(__FinancialSamples  FundamentalsCalc__ ) */

//
//  FundamentalsCalc.cpp

#include "FundamentalsCalc.h"
#include <iostream>

FundamentalsCalculator: :FundamentalsCalculator(const std::string &ticker,
double price, double
dividend) :

m_ticker(ticker),

m price(price),

m_dividend(dividend),

m_earningsEstimate(0),

m_numShares(0),

m_bookValue(0),

m_assets(0),

m liabilitiesAndIntangibles(0),

m_epsGrowth(0),

m_netIncome(0),

m_shareholderskEquity(0)

{
}

FundamentalsCalculator: : FundamentalsCalculator(const FundamentalsCalculator &v) :
m ticker(v.m ticker),

m_price(v.m price),

m_dividend(v.m dividend),
m_earningsEstimate(v.m earningsEstimate),
m_numShares(v.m_numShares),
m_bookValue(v.m bookValue),

m_assets(v.m assets),
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m_liabilitiesAndIntangibles(v.m_liabilitiesAndIntangibles),
m_epsGrowth(v.m epsGrowth),

m_netIncome(v.m netIncome),
m_shareholderskquity(v.m_shareholdersEquity)

{

}

FundamentalsCalculator: :~FundamentalsCalculator()

{
}

FundamentalsCalculator &FundamentalsCalculator::operator=(const
FundamentalsCalculator &v)
{
if (this != &v)
{
m ticker = v.m_ticker;
m_price = v.m price;
m_dividend = v.m_dividend;
m_earningsEstimate = v.m_earningsEstimate;
m_numShares = v.m_numShares;
m_bookValue = v.m_bookValue;
m_assets = v.m assets;
m_liabilitiesAndIntangibles = v.m liabilitiesAndIntangibles;
m_epsGrowth = v.m_epsGrowth;
m_netIncome = v.m_netIncome;
m_shareholderskquity = v.m_shareholdersEquity;

}

return *this;

}

double FundamentalsCalculator::PE()
{

return (m_price * m_numShares)/ m_earnings;
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double FundamentalsCalculator::forwardPE()
{

return (m_price * m_numShares)/ m_earningsEstimate;

}

double FundamentalsCalculator::returnOnEquity()
{

return m_netIncome / m_shareholdersEquity;

}

double FundamentalsCalculator::getDividend()
{

return m_dividend;

}

double FundamentalsCalculator::bookValue()
{

return m_bookValue;

}

double FundamentalsCalculator::priceToBookRatio()

{

return (m_price * m numShares) / (m_assets -
m_liabilitiesAndIntangibles);

}

double FundamentalsCalculator::priceEarningsToGrowth()

{
return PE()/ m_epsGrowth;

}

void FundamentalsCalculator::setNumOfShares(int n)

{

m_numShares = n;

}

void FundamentalsCalculator::setEarnings(double val)

{

m_earnings = val;
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}

void FundamentalsCalculator::setExpectedEarnings(double val)

{

m_earningsEstimate = val;

}
void FundamentalsCalculator::setBookValue(double val)
{
m_bookValue = val;
}
void FundamentalsCalculator::setEpsGrowth(double val)
{
m_epsGrowth = val;
}
void FundamentalsCalculator::setNetIncome(double val)
{
m_netIncome = val;
}

void FundamentalsCalculator::setShareHoldersEquity(double val)
{

m_shareholderskquity = val;

}

void FundamentalsCalculator::setliabilitiesAndIntangibles(double val)

{

m_liabilitiesAndIntangibles = val;

}
void FundamentalsCalculator::setAssets(double val)
{
m_assets = val;
}
//

//  main.cpp
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#include "FundamentalsCalc.h"

#include <iostream>

// the main function receives parameters passed to the program

// and uses class FundamentalsCalculator
int main(int argc, const char * argv[])

{

72

FundamentalsCalculator fc("AAPL", 543.99, 12.20);

// values are in millions
fc.setAssets(243139);
fc.setBookValue(165234);
fc.setEarnings(35885);
fc.setEpsGrowth(0.22);
fc.setExpectedEarnings(39435);
fc.setliabilitiesAndIntangibles(124642);
fc.setNetIncome(37235);
fc.setNumOfShares(891990);
fc.setShareHoldersEquity(123549);

std::cout << "P/E: " << fc.PE()/1000 << std::endl; // prices in thousands
std::cout << "forward P/E: " << fc.forwardPE()/1000 << std::endl;

std::cout << "book value: " << fc.bookValue() << std::endl;

std::cout << "price to book: " << fc.priceToBookRatio() << std::endl;
std::cout << "price earnings to growth: " << fc.
priceEarningsToGrowth() << std::endl;

std::cout << "return on equity: " << fc.returnOnEquity() << std::endl;
std::cout << "dividend: " << fc.getDividend() << std::endl;

return 0;
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Running the Code

You can compile the code displayed in Listing 2-4 along with the respective test
contained in the main function. The result would be displayed as follows:

$ ./fundamentalind

P/E: 13.5219

forward P/E: 12.3046

book value: 165234

price to book: 4094.9

price earnings to growth: 61463.2
return on equity: 0.301378
dividend: 12.2

Conclusion

In this chapter, I provided an overview of the problems and opportunities in the equities
market. As you have seen, being a major part of the financial system, equity trading

is an area in which computational problems exist in all phases of analysis and trade
execution.

The chapter starts with a short introduction to the equities market, describing the
main players and the financial instruments used in the trading process. In the first
section, you learned how to calculate moving averages using C++. Moving averages are
widely used to uncover trends in stock prices. In the same section, I discussed how to
calculate the EMA, in which the most recent prices receive a larger weight. The EMA is
more responsive to recent changes in price, which may be a better way to make buy or
sell decisions in some algorithms.

Next, I presented some code to calculate the volatility of an equity instrument. The
notion of volatility is important when making decisions about which instruments to hold
in a portfolio. The methods for calculating volatility include using the simple observed
range as well as the probabilistic measure of volatility, also called standard deviation.

In this chapter, you have also learned how to calculate the correlation between two
stocks, indicating if there is positive, negative, or no correlation based on their observed
prices. Finally, this chapter introduces techniques for modeling and calculating
fundamental data about a stock holding. Such a C++ class is easy to create, but it is
also very useful when fundamental data is required during the analysis of a particular
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stock. You can modify this example to add new fundamental indicators as needed and
therefore reuse existing code in other areas of your financial applications.

In the next chapter, you will learn more about C++ features that are frequently used
in the creation of financial software. You will see a number of techniques that are readily
available to developers in the financial industry. Such C++ features are able to improve
the performance, robustness, and flexibility of most code that is created for the analysis

of investments.
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C++ Programming
Techniques in Finance

The C++ language was designed as an extension of C, which means that most programs
written in C are also valid C++ programs. However, experienced programmers
typically make use of a set of high-level features made available exclusively in C++ as
a way to control program complexity, including features that were introduced in the
C++20 standard. This is an especially important consideration for financial software
development, where we want to create fast and expressive applications.

In this chapter, we explore a few fundamental techniques that financial programmers
have used over the years to write better C++ code with less effort. These techniques
have been selected among the many features provided by C++ as the most effective in
improving the quality and expressiveness of code. Such features include the following:

o Templates: A feature that allows the creation of generic software, with
classes and functions that can be applied over a set of possibly unrelated
types that satisfy the set of requirements for a desired operation.

o Shared pointers: A programming technique that reduces the need for
direct manipulation of pointers. With shared pointers, you can avoid
a big source of mistakes inherent to the way C++ programs manage
memory and other resources.

e Operator overloading: With overloading, you can apply standard
operators already available in the language to your own classes and
structures.

o C++20 features: The latest iteration of the C++ standard has introduced
many new features that help control the complexity of programs. These
features, which can be easily used for the creation of financial software,
include shared pointers and automatic type detection.
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In the next sections, you will see a few selected programming examples that explore
some of these C++ features in the context of financial applications.

Calculating Interest Rates for Investment
Instruments

Interest rates are a fundamental concept for fixed income investors. Design a C++
solution to return the annual interest rate, given a generic instrument class that provides
methods such as getMonthlyPayment and getPrincipal.

Solution

The foregoing problem is frequently used in the design of interest rate calculation
engines. You can create a solution using a number of strategies such as class hierarchies,
but for performance and design considerations, the use of templates is the most
indicated method of combining interest rate data from unrelated classes that represent
investment instruments.

A template is a mechanism, along with a special syntax, used to create code that
works with different underlying data types. Using templates, one can create functions,
member functions, and classes that are able to support different types using the same
code. The code generated using template-based programming techniques is said to
be generic, since it can be used with different types (either fundamental types such as
int or double or user-defined classes and structures). Generic functions and types are
instantiated using the name of the target type(s) between angle brackets, which indicates
a particular version of the desired function or type. In the most recent standard revisions,
a generic function can also be defined using automatic argument deduction.

The creation and use of generic code are possible because when the compiler
finds a template, it does not generate code immediately. Instead, code is generated
only at the point where the template object or function is instantiated. When that
happens, the compiler detects the types involved in the expression, and the template is
instantiated. Only then the traditional compilation steps such as syntactic analysis and
code generation are performed on the instantiated code, and any resulting errors will be
detected and reported to the programmer.
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To solve the interest rate calculation problem, you can use templates to implement
an interest rate engine class, called IntRateEngine. This class is defined in such a way
that you can apply it to any class implementing the methods getMonthlyPayment and
getPrincipal. I have included two sample classes that implement these methods, the
classes BondInstrument and MortgageInstrument. However, the big advantage of using
templates is that you don’t need to derive such classes from a particular base class, for
example. You can use a class supplying these same methods, and the compiler will do
the hard work of combining these classes. This means that there is no coupling between
investment instruments and the interest rate calculation engine. In fact, if you look at
the files for IntRateEngine, you will not find any reference to the investment instrument
classes.

Here is a quick look at the relevant parts of the BondInstrument class.

class BondInstrument {

public:
double getMonthlyPayment();
double getPrincipal();

// other methods here...
};

With this class, one could instantiate the template that calculates the annual interest
rate. The template class that performs the calculation is defined in the following way:

template <class T>
class IntRateEngine {
public:
void setInstrument(T &inv);
double getAnnualIntRate();
// other methods here ...
private:
T m_instrument;

};

Notice that the type of instrument is left unspecified as a type argument T. This is
the parameterization that allows different classes to be used with the same template.
Similarly, you can see the implementation of the getAnnualIntRate method.
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template <class T>
double IntRateEngine<T>::getAnnualIntRate()

{
double payment = m_instrument.getMonthlyPayment();
double principal = m_instrument.getPrincipal();
return (12 *payment) / principal;

}

Notice that the method only requires the parameter T to be offered the
getMonthlyPayment and getPrincipal methods. Any type that supports these two
methods can be used by IntRateEngine without problems.

Complete Code

The algorithm described previously has been implemented in the classes
BondInstrument, MortgageInstrument, and IntRateEngine, as displayed in Listing 3-1.

Listing 3-1. InvestmentInstrument.h

//
//  InvestmentInstrument.h

#ifndef _ FinancialSamples_ InvestmentInstrument _
#define _ FinancialSamples InvestmentInstrument

#include <iostream>

class BondInstrument {
public:

BondInstrument(double principal, double monthlyPayment);
~BondInstrument();

BondInstrument(const BondInstrument 8a);

BondInstrument &operator =(const BondInstrument &a);

double getMonthlyPayment();
double getPrincipal();
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// other methods here...
private:
double
m_monthlyPay,
m_principal;

b

class MortgageInstrument {
public:

MortgageInstrument(double monthlyPay, double propertyValue, double
downpayment);

~MortgageInstrument();

MortgageInstrument(const MortgageInstrument &a);
MortgageInstrument &operator =(const MortgageInstrument 8a);

double getMonthlyPayment();
double getPrincipal();

// other methods here...

private:
double
m_monthlyPay,
m_propertyValue,
m_downPayment;
b5

#tendif /* defined(__FinancialSamples InvestmentInstrument ) */

//
// InvestmentInstrument.cpp

#include "InvestmentInstrument.h"

BondInstrument::BondInstrument(double principal, double monthlyPayment)
: m_principal(principal),

m_monthlyPay(monthlyPayment)

{

}
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BondInstrument::~BondInstrument()

{
}

BondInstrument::BondInstrument(const BondInstrument &a)
: m_monthlyPay(a.m monthlyPay),
m_principal(a.m_principal)

{
}

BondInstrument &BondInstrument::operator =(const BondInstrument 8&a)

{
if (this != 8a)

{
m_principal = a.m principal;
m_monthlyPay = a.m_monthlyPay;
}
return *this;
}
double BondInstrument::getMonthlyPayment()
{
return m_monthlyPay;
}
double BondInstrument::getPrincipal()
{
return m_principal;
}
1111711111117

MortgageInstrument: :MortgageInstrument(double monthlyPay, double
propertyValue, double downpayment)

: m_monthlyPay(monthlyPay),

m_propertyValue(propertyValue),
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m_downPayment (downpayment)

{

}

MortgageInstrument::~MortgageInstrument()
{

}

MortgageInstrument: :MortgageInstrument(const MortgageInstrument &a)
: m_downPayment(a.m_downPayment),

m_propertyValue(a.m propertyValue),

m_monthlyPay(a.m monthlyPay)

{
}

MortgageInstrument &MortgageInstrument::operator =(const MortgageInstrument &a)

{
if (this != 8a)

{
m_downPayment = a.m_downPayment;
m_propertyValue = a.m propertyValue;
m_monthlyPay = a.m_monthlyPay;
}
return *this;
}
double MortgageInstrument::getMonthlyPayment()
{
return m_monthlyPay;
}
double MortgageInstrument::getPrincipal()
{
return m_propertyValue - m_downPayment;
}
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//
// IntRateEngine.h

#ifndef _ FinancialSamples IntRateEngine
#define _ FinancialSamples IntRateEngine

#include <vector>

template <class T>
class IntRateEngine {
public:

~IntRateEngine();
IntRateEngine(const IntRateEngine<T> &a);
IntRateEngine<T> &operator =(const IntRateEngine<T> &a);

void setInstrument(T &inv);

double getAnnualIntRate();
private:

T m_instrument;

}s

template <class T>
IntRateEngine<T>::~IntRateEngine()

{
}

template <class T>
IntRateEngine<T>::IntRateEngine(const IntRateEngine<T> &a)
: m_instrument(a.m_instrument)

{
}

template <class T>
IntRateEngine<T> &IntRateEngine<T>::operator =(const IntRateEngine<T> &a)

{
if (this != 8a)

{
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m_instrument = a.m_instrument;

}

return *this;

}

template <class T>
void IntRateEngine<T>::setInstrument(T &inv)

{

m_instrument = inv;

}

template <class T>
double IntRateEngine<T>::getAnnualIntRate()

{
double payment = m_instrument.getMonthlyPayment();
double principal = m_instrument.getPrincipal();
return (12 *payment) / principal;

}

#tendif /* defined(__FinancialSamples IntRateEngine ) */

//
//  main.cpp

#include "InvestmentInstrument.h"
#include "IntRateEngine.h"

#include <iostream>

int main()

{
IntRateEngine<BondInstrument> engineA;
IntRateEngine<MortgageInstrument> engineB;

BondInstrument bond(40000, 250);
MortgageInstrument mortgage(250, 50000, 5000);
engineA.setInstrument(bond);
engineB.setInstrument(mortgage);
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std::cout << " bond annual int rate: " << engineA.getAnnualIntRate()*
100 << "%" << std::endl;
std::cout << " mortgage annual int rate:

100 << "%" << std::endl;

<< engineB.getAnnualIntRate()*

return 0;

Running the Code

You can compile the code presented in Listing 3-1 with any standards-compliant
compiler. For example, with gcc, you can use the following command line:

> gcc -o intRate main.cpp InvestmentInstrument.cpp IntRateEngine.cpp
You can use the resulting test program without any parameters.

» ./intRate
bond annual int rate: 7.5%
mortgage annual int rate: 6.66667%

Creating Financial Statement Objects

Create a class that computes a financial statement and returns it to the calling client. Do
this while avoiding potential memory leaks of the returned data.

Solution

To solve this problem, you will create a simple financial statement class and a function
that returns a pointer to the financial statement. The main issue that you may want to
avoid in the solution is the possibility of memory leaks occurring when the financial
statement is returned. For this purpose, you will learn about how to use smart pointers to
manage memory. Before we explain that, however, you need to understand the concept
of smart pointers.
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Smart Pointers

The C language popularized the concept of pointers, and it innovated when it provided
a simple notation for direct memory access on a high-level language. Pointers allow the
manipulation of memory addresses in a way that complies with the underlying data type
of the data. For example, it is possible to use pointers to refer to successive addresses

using increment and decrement operators. For instance, you may have

int numbers[200];

// initialize numbers here ...

//

int *parray = numbers;

for (int i=0; i<200; ++i) {
std::cout << "value is

<< *parray << "\n";
parray+t+;

In the previous example, parray is a pointer to an integer. It can be used to refer
to the location of any integer value in memory. In particular, you can use it to hold
the address of the first element of the numbers array. The code in the for loop is then
used to print the current value pointed by parray and to update its address using the
increment operator, which moves the pointer to the next integer location. Notice that
this is possible even though the number of bytes per integer is greater than one. In fact,
the increment operator is aware of the pointer type used and will change the address to
point to the exact location of the next value for the declared type.

While the notation for pointers is very powerful, and fully supported by C++,
programmers should avoid the use of pointers in C++ code whenever possible. Pointers
have over the years been linked to poor programming practices that lead to potential
resource leaks, memory corruption, and security-related bugs. Because pointers allow
indiscriminate access to the computer memory, it is relatively easy to misuse them,
resulting in bugs that are difficult to fix.

Some C++ classes and templates provide a great alternative to pointers, with little
overhead and many of the same features. The main technique to avoid traditional
pointers is to use smart pointer templates. Such smart pointers are simple templates that
can be used to store addresses in a safer way. For example, a smart pointer of the type
std::shared ptrisatemplate-type object that allows the same address to be used by
two or more parts of the code.
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The main advantage of a smart pointer over a traditional C++ pointer is that the
smart pointer knows how to clean up itself when it is no longer needed. Thus, a large
class of problems that occur when a programmer doesn’t dispose of the pointer is
avoided. The cleanup mechanism is defined according to the rules of the RAII (Resource
Acquisition Is Initialization) idiom: resources contained in a smart pointer are initialized
in the constructor of the template object, and released during destruction, which
typically happens when the object in question goes out of scope.

There are different types of smart pointers, each one designed for a particular use
case. The most commonly used smart pointers in C++ code are unique pointers and
shared pointers.

A unique pointer (of template type unique_ptr) provides a wrapper for a traditional
C++ pointer. The template, however, defines the semantic of object ownership, so that
other references to the pointer are not valid after the transfer of ownership occurs. A
unique pointer can be used in situations in which the receiver will take full control of
the pointed object, as well as any associated resource. Therefore, a pointer passed to a
unique_ptr object should not be referenced again in contexts other than the one where
the unique_ptr is used.

A shared pointer (of template type shared ptr) is a template that can be used to
wrap an existing C++ native pointer. Unlike a unique pointer, a shared pointer can be
used by two or more parts of the code. Internally, shared pointers maintain a counter
that can be used to determine how many references to the original pointer have been
created. This type of mechanism is referred to as reference counting. Every time a shared
pointer object is destroyed, it checks its internal reference counter. If the counter is
greater than zero, the internal object is not deleted. However, if the reference counter
reaches zero, then the referred object is deleted and its destructor is activated.

In this section, you will see the details of using a unique pointer. In the next section, I
will introduce shared pointers.

Using Unique Pointers

The solution to our memory management problem involves the use of unique pointers.
A unique pointer is implemented using the standard class std: :unique_ptr and,
like other smart pointers, can be used to provide automated cleanup and resource
ownership.

The policy used by std: :unique_ptr ensures that once it has been assigned the
ownership of the pointer, the memory stored in the pointer is not owned by anyone else.
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Therefore, the semantic of an std:: unique ptr involves the automatic destruction
of the associated data as soon as the object goes out of scope. If the owner of the
unique pointer doesn’t want to destroy the memory;, it has the option of moving it to
another unique pointer, in a process of transferring the ownership to another object.
This is how I solved the issue of managing the memory associated to the returned
FinancialStatement.

First, consider the definition of the FinancialStatement class.

class FinancialStatement {
public:
FinancialStatement();
~FinancialStatement();
FinancialStatement(const FinancialStatement&);
FinancialStatement &operator=(FinancialStatement &);

double getReturn();
void addTransaction(const std::string &security, double val);

private:
double m_return;
std::vector<std::pair<std::string,double>> m transactions;

};
There is also a function that is used to create a sample financial statement.
std::unique ptr<FinancialStatement> getSampleStatement();

This function returns a unique pointer to a sample statement. This means that the
caller of the code owns the returned memory, since the caller will have a unique pointer
that has been initialized with a pointer to the resulting object. The implementation of
getSampleStatement is

std::unique_ptr<FinancialStatement> getSampleStatement()

{
std::unique_ptr<FinancialStatement> fs(new FinancialStatement);
fs->addTransaction("IBM", 102.2);
fs->addTransaction("AAPL", 523.0);
return fs;
}
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After the FinancialStatement object has been allocated and used to create a
unique pointer, it is initialized and finally returned to the caller. Since the return
statement transfers the ownership of the pointer to the returned object, the original
FinancialStatement object is not destructed. Instead, it is now owned by the caller of
the getSampleStatement function.

Complete Code

Listing 3-2 presents the code for the FinancialStatement class, which is divided into a
header file and an implementation file.

Listing 3-2. FinancialStatement.h

//
// FinancialStatement.h

#ifndef _ FinancialSamples FinancialStatement
#define _ FinancialSamples_ FinancialStatement

#include <string>
#include <vector>

class FinancialStatement {
public:
FinancialStatement();
~FinancialStatement();
FinancialStatement(const FinancialStatement&);
FinancialStatement &operator=(FinancialStatement &);

double getReturn();
void addTransaction(const std::string &security, double val);

private:
double m_return;
std::vector<std::pair<std::string,double> > m transactions;

}s

std::unique_ptr<FinancialStatement> getSampleStatement();
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void transferFinancialStatement(std::unique ptr<FinancialStatement>
&statement);

#endif /* defined(__FinancialSamples FinancialStatement ) */

//
//  FinancialStatement.cpp

#include "FinancialStatement.h"

FinancialStatement::FinancialStatement()
: m_return(0)

{
}

FinancialStatement::~FinancialStatement()

{
}

FinancialStatement::FinancialStatement(const FinancialStatement &v)
: m_return(v.m return),
m_transactions(v.m transactions)

{
}

FinancialStatement &FinancialStatement::operator=(FinancialStatement &v)

{
if (this != 8&v)

{

m_return = v.m_return;
m_transactions = v.m_transactions;

}

return *this;
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double FinancialStatement::getReturn()

{

return m_return;

}

void FinancialStatement::addTransaction(const std::string &security,
double val)
{

m_transactions.push back(std::make pair(security, val));

}

// returns a sample statement that includes a few common stocks
std::unique_ptr<FinancialStatement> getSampleStatement()
{
std::unique_ptr<FinancialStatement> fs(new FinancialStatement);
fs->addTransaction("IBM", 102.2);
fs->addTransaction("AAPL", 523.0);
return fs;

}

void transferFinancialStatement(std::unique ptr<FinancialStatement>
statement)

{

// perform transfer here

/] ...

// statement is still valid

std::cout << statement->getReturn() << std::endl;
// statement is released here

}

//
//  main.cpp

#include "FinancialStatement.h"

#include <iostream>
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int main()
{
std::unique_ptr<FinancialStatement> fs = getSampleStatement();
// do some real work here...
return O;
// the unique pointer is released at the end of the scope...

Transferring Ownership

In the previous example, you saw how to use unique pointers to transfer the ownership
of objects to the caller of a function. Another important use of these smart pointers is to
tell to a caller that the called function is taking ownership of the passed object.

For example, consider the function transferFinancialStatement, which is defined
in the following way:

void transferFinancialStatement(std::unique ptr<FinancialStatement>
statement);

The parameter statement is a unique pointer to a FinancialStatement object, which
means that once it receives a parameter of that particular type, it will become the owner
of the object. Thus, the transferFinancialStatement can use the statement object
knowing that it is the sole owner of its contents. Depending on the operations necessary
to perform on the object, this may be an important advantage.

The sample implementation of the function reads as follows:

void transferFinancialStatement(std::unique ptr<FinancialStatement>
&statement)
{
// perform transfer here
/1 ...
// statement is still valid
std::unique_ptr<FinancialStatement> another = std::move(statement);
std::cout << statement->getReturn() << std::endl;
// statement is released here
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The important thing to understand here is that the pointed object is destroyed at
the end of the transferFinancialStatement, since the parameter was transferred and
therefore goes out of scope at the end of the function block.

Pitfalls of Unique Pointers

Due to the semantics of unique pointers, which require the ownership of the referenced
data, a few errors can occur when programmers try to access data stored in this kind of
smart pointer. For example, a common source of errors is the use of functions that take
ownership of the pointed object. You can see this class of errors by using the function
transferFinancialStatement, which I showed previously. When a unique pointer
object is passed to a function that takes ownership of the memory, the unique pointer is
not valid anymore, and may cause a crash the next time it is accessed.

int main()

{
std::unique_ptr<FinancialStatement> fs = getSampleStatement();
transferFinancialStatement(fs);

// the unique_ptr object is invalid here, the next access can crash the
program
std::cout << fs->getReturn() << "\n";

return 0;

This example shows how easy it is to crash a program after a unique pointer
has transferred the ownership of the object it points to. This is done as you call the
transferFinancialStatement function.

The next line tries to access the return value, which generates an invalid access.
This results in a segmentation fault in many platforms. To avoid such invalid accesses, a
programmer needs to be careful about calling functions that accept a unique pointer, vs.
a native pointer.

Another pitfall of unique pointers is their lack of support for STL containers. For
example, it is not possible to have unique pointers as members of an std: : vector.

This happens because most containers work by copying their elements by value, which
in practice invalidates the data stored in the existing unique pointer. Moreover, many

92



CHAPTER3  C++ PROGRAMMING TECHNIQUES IN FINANCE

algorithms for STL containers perform internal copies of the data they contain. This
means that such algorithms can destroy the original elements without previous notice:
a very awkward situation. For these reasons, it is recommended that you avoid using
unique pointers when dealing with STL containers.

To avoid the problems with std: :unique_ptr, another smart pointer type has been
introduced: the std: :shared ptr template provides the semantics of pointers that can
be shared by different owners. In the next section, you will see an example of how to use
such shared pointer objects.

Determining Credit Ratings

Create a class to determine the credit ratings of a given security.

Solution

Credit risk ratings are defined by accredited rating agencies and used to determine the
risk of institutions. With this information, investors can determine the risk level of a
particular bond or stock holding and control the level of risk they are willing to assume.
For example, risk-averse investors such as pension funds and insurance companies
typically shy away from investing in any institution that is not certified as top grade
(typically AAA). There are three main credit rating agencies used by financial institutions
all over the world: Moody’s, S&P, and Fitch. They define the risk grade not only for
companies but also for local-, state-, and national-level governments.

To model credit ratings in C++, I created a separate class that encapsulates the
fundamental concepts behind credit risk rating. The class CreditRisk has a member
function called getRating, which returns the prevailing risk rating for a particular stock
or bond. A second class, named RiskCalculator, is used to perform a simple analysis
of the risk associated with a particular portfolio, given a set of risk ratings for each
component of the portfolio.

Using Shared Pointers

Since the RiskCalculator class needs to maintain a set of credit ratings, it makes sense
to have a container to hold this information. However, we would like to avoid making
copies of the data. Since the CreditRisk class is so simple, it doesn’t make much
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difference if you make copies or not. However, classes can become more complex, and
in a large application, these memory requirements start to add up. Therefore, a better
design is to avoid making copies of CreditRisk objects as we add them to collections.
We have seen, however, that std: :unique_ptr is not suitable for inclusion in collections,
which leaves us with the requirement of storing traditional pointers for objects.

A better solution is to use the std: :shared _ptr class to handle the memory
associated with CreditRisk objects. A shared pointer not only knows how to clean up
the data referenced by a pointer but is also able to share the reference with other objects.
This way, the object will not be destroyed until the last reference is also destroyed.

Shared pointers achieve this behavior through the use of a reference counting
mechanism. A counter is maintained by the shared pointer object, which determines
how many copies exist for the referenced object. When the shared pointer is destroyed,
it checks this counter to determine if other references exist. If the counter is positive,
the pointed object is not destroyed. The counter is also updated when a new copy of the
shared pointer is created. The counter is incremented to indicate that another copy of
the object reference exists. In this way, several copies of the same shared pointer can live
in memory, and they will all manage the underlying data correctly, until the last one is
destroyed and the original object is removed from memory.

I used shared pointers to handle the memory requirements of the RiskCalculator
class. The set of CreditRisk objects is maintained as a vector of shared pointers,
declared as follows:

std::vector<std::shared ptr<CreditRisk> > m_creditRisks;

In this declaration, each element of the vector is a shared pointer. Since shared
pointers know how to copy themselves, they can be used effectively as members of a
vector or any other container, unlike unique pointers.

Working with shared pointers is easy because they automatically perform the
required cleanup actions. For example, copying unique pointers is done simply with the
use of the assignment operator. New elements to them_creditRisks vector are added by
the addCreditRisk member function.

void RiskCalculator::addCreditRisk(std::shared ptr<CreditRisk> risk)
{

m_creditRisks.push back(risk);
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Complete Code

In Listing 3-3, you have the complete code for the example described in the previous
section. The class is called CreditRisk, which is contained in a header and an
implementation file.

Listing 3-3. CreditRisk.h

//
// CreditRisk.h

#ifndef _ FinancialSamples CreditRisk
#idefine _ FinancialSamples CreditRisk

// A simple class representing a credit risk assessment
class CreditRisk {
public:
// these are risk grades, as determined by rating agencies
enum RiskType {
AAA,
AAPlus,
AA,
APlus,
A,
BPlus,
BJ
CPlus,
C

};

// other methods here ...

};
#tendif /* defined(__FinancialSamples CreditRisk ) */

//
// RiskCalculator.h
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#ifndef _ FinancialSamples RiskCalculator _
#define _ FinancialSamples RiskCalculator

#include "CreditRisk.h"

#include <memory>
#include <vector>

// calculates the risk associated to a portfolio
class RiskCalculator {
public:
RiskCalculator();
~RiskCalculator();
RiskCalculator(const RiskCalculator 8&);
RiskCalculator &operator =(const RiskCalculator &);

void addCreditRisk(std::shared ptr<CreditRisk> risk);

CreditRisk::RiskType portfolioMaxRisk();
CreditRisk::RiskType portfolioMinRisk();

private:
std::vector<std::shared_ptr<CreditRisk> > m_creditRisks;

};
#endif /* defined(__FinancialSamples RiskCalculator ) */

//
// RiskCalculator.cpp

#include "RiskCalculator.h"

RiskCalculator::RiskCalculator()
{

}

RiskCalculator::~RiskCalculator()
{

}
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RiskCalculator::RiskCalculator(const RiskCalculator &v)
: m_creditRisks(v.m_creditRisks)

{
}

RiskCalculator &RiskCalculator::operator =(const RiskCalculator 8&v)

{
if (this != 8&v)

{

m_creditRisks = v.m_creditRisks;

}

return *this;

}

void RiskCalculator::addCreditRisk(std::shared ptr<CreditRisk> risk)
{

m_creditRisks.push back(risk);

}
CreditRisk::RiskType RiskCalculator::portfolioMaxRisk()
{
CreditRisk::RiskType risk = CreditRisk::RiskType::AAA;
for (int i=0; i<m creditRisks.size(); ++1i)
{
if (m_creditRisks[i]->getRating() < risk)
{
risk = m_creditRisks[i]->getRating();
}
}
return risk;
}
CreditRisk::RiskType RiskCalculator::portfolioMinRisk()
{

CreditRisk::RiskType risk = CreditRisk::RiskType::C;
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for (int i=0; i<m creditRisks.size(); ++1i)

{
if (m_creditRisks[i]->getRating() > risk)
{
risk = m _creditRisks[i]->getRating();
}
}

return risk;

Using the auto Keyword

Among the many additions to C++ introduced by the C++11 standard, the auto
keyword is one of the most practical and easy to understand. The basic idea behind this
extension is that the compiler can perform the job of type detection for many categories
of variables and expressions. Whenever this is possible, the programmer can use the
auto keyword in the variable declaration, instead of entering the full type of the desired
object. This way, the programmer can decide to let the compiler do the type detection
automatically while using the type name only when a visual labeling is desired and
convenient.

The auto keyword has a few advantages over other forms of type declaration. It

o Reduces the amount of manual work done by programmers, since it
uses the compiler itself to analyze an expression and determine the
exact type for a particular variable or expression

e Adds uniformity to the code, as most variables are declared using the
same style

o Leaves intact the ability of programmers to enter the exact type as
desired, so that any conflicts can be avoided

o Simplifies the use of templates, because data types can be
automatically detected during compilation at each instantiation of
the template

As an example of the use of the auto keyword, we can modify some of the member
functions in the RiskCalculator class to perform automatic detection of variable types.
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This is useful to simplify some of the expressions that are so common when using
template collections. The following, for instance, is the portfolioMaxRisk member
function:

CreditRisk::RiskType RiskCalculator::portfolioMaxRisk()

{
auto risk = CreditRisk::RiskType::AAA;
for (auto 8p : m_creditRisks)

{
if ((*p)->getRating() < risk)
{

risk = (*p)->getRating();

}

}

return risk;

}

This code snippet shows how the type of the local variable risk can be
automatically detected, so you don’t need to enter the redundant name of the type
CreditRisk: :RiskType. Similarly, the next line shows how to iterate through a collection
of objects using the auto keyword to determine the right type of the iterator. Seasoned
STL programmers know that using iterators may introduce a lot of extra types to a piece
of code, which frequently obfuscates the original intent of the program. For comparison,
notice that if it weren'’t for the auto keyword, the foregoing for loop would need to be
rendered as

for (std::vector<std::shared ptr<CreditRisk> >::iterator p = m_creditRisks.
begin();
p != m creditRisks.end(); ++p)

/] ...

Not only is this harder to enter manually, but it also makes the code harder to
understand and modify.
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Collecting Transaction Data

Create a solution to the problem of handling transaction orders, including BUY, SELL,
or SELL SHORT, stored in a single file. The solution must correctly handle programming
exceptions.

Solution

To solve this problem, we created a class that can handle trading transactions and
perform the necessary operations. The class is responsible for receiving a filename and
executing the instructions stored in the file. The class is also responsible for handling
any error happening during this process, including errors from reading the file as well as
incorrect trading requests sent to the application.

In this coding example, the operations allowed are simple and include only buy,
sell, and sell short. Therefore, I concentrate on the problem of processing the file and
handling unexpected errors in the program. We follow the best practices of using the
exception handling mechanism offered by C++. Therefore, we create a new class, called
TransactionHandler, which is able to read data from a file and perform the necessary
actions in the member function handleTransactions. The resulting code is able to
execute the trading actions stored in the file, but it handles possible exceptions using
the try/catch/throw mechanism supplied by the C++ language as described in the next

section.

Exception Handling

One of the basic problems faced by programmers is detecting and recovering from
errors. While we try to avoid self-inflicted errors, there are many extraordinary situations
that need to be handled even by correct programs. For example, what should your
code do when the file system is full and there is no more space to save the current file?
What can be done when a network connection is closed and the server is not available
to complete a download? Programmers need to decide on how to respond to such
exceptional situations, and a few strategies have been devised over the years in order to
respond to such conditions.

C++ uses an exception-based model to deal with unexpected conditions occurring
during program execution. This model uses a standard try/catch block to contain the
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code that you may want to protect. When an exception happens, the compiler throws an
object to indicate the unexpected condition. As a result, the enclosing blocks of code will
also destroy all local objects that have been created in that particular context, to avoid
resource leaks.

The other aspect of exception handling in C++ is the use of exception objects that
inform programmers about the class of error that occurred. These objects are created
using the throw keyword and caught using the catch block, which receives a reference to
the exception object and uses it to understand and possibly recover from an unexpected
state. Applications are free to create new classes of exceptions as a way to provide
additional information about the error that triggered the exception.

In this example, I created two exception classes. They both derive from
std::runtime_error, which provides the basic behavior for runtime exceptions. The
first class, FileError, is used to flag any error occurred during the process of reading the
file. The following is its definition:

class FileError :public std::runtime_error {
public:
FileError (const std::string &description);

};

The second exception class, TransactionTypeError, is thrown when an unknown
transaction type is found in the file, other than TRANSACTION SELL, TRANSACTION BUY,
or TRANSACTION_SHORT. The definition is similar to what you saw with FileError. These
classes are then used on the test code to determine the type of error encountered and
how to proceed. In the test application, we just print a descriptive error message using
the string returned by the what () member function before terminating the program.

try
{
TransactionHandler handler(fileName);
}
catch (FileError &e)
{
std::cerr << "received a file error: " << e.what() << std::endl;
}
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catch (TransactionTypeError &e)

{
std::cerr << "received a transaction error: " << e.what() << std::endl;
}
catch (...)
{
std::cerr << "received an unknown error\n";
}

Complete Code

Listing 3-4 provides a complete example of exception handling. The classes presented
here demonstrate how to handle exceptions while reading a transaction file. A sample
main() function, provided at the end, shows how these classes work together.

Listing 3-4. TransactionHandler.h

//
// TransactionHandler.h

#ifndef _ FinancialSamples_ TransactionHandler _
#define _ FinancialSamples TransactionHandler

#include <iostream>

enum TransactionType {
TRANSACTION_SELL,
TRANSACTION_BUY,
TRANSACTION_SHORT,

};
class FileError :public std::runtime error {
public:
FileError(const std::string 8&s);
};
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class TransactionTypeError :public std::runtime error {
public:
TransactionTypeError(const std::string &s);

};

class TransactionHandler {

public:
static const std::string SELL OP;
static const std::string BUY_OP;
static const std::string SHORT_OP;

TransactionHandler(const std::string &fileName);
TransactionHandler(const TransactionHandler &);
~TransactionHandler();

TransactionHandler &operator=(const TransactionHandler8);

void handleTransactions();
private:
std::string m_fileName;
}s
#tendif /* defined(_FinancialSamples TransactionHandler ) */

//
// TransactionHandler.cpp

#include "TransactionHandler.h"
#include <fstream>

FileError::FileError(const std::string 8&s)
: std::runtime_error(s)

{

}

TransactionTypeError::TransactionTypeError(const std::string &s)
: std::runtime_error(s)

{
}
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const std::string TransactionHandler::SELL OP = "SELL";
const std::string TransactionHandler::BUY OP = "BUY";
const std::string TransactionHandler::SHORT OP = "SHORT";

TransactionHandler::TransactionHandler(const std::string &fileName)
: m_fileName(fileName)

{
}

TransactionHandler: :TransactionHandler(const TransactionHandler &a)
: m_fileName(a.m_fileName)

{
}

TransactionHandler: :~TransactionHandler()

{
}

TransactionHandler &TransactionHandler::operator=(const
TransactionHandler&a)

{

if (this != 8a)

{

m_fileName = a.m_fileName;

}

return *this;
}
void TransactionHandler::handleTransactions()
{

std::ifstream file;

file.open(m fileName, std::ifstream::in);

if (file.fail())

{
throw new FileError(std::string("error opening file ") +
m_fileName);
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std::string op;

file >> op;
while (file.good() && !file.eof())
{

if (op != SELL OP && op != BUY _OP && op != SHORT OP)
{

throw new TransactionTypeError(std::string("unknown
transaction ") + op);

}

// process remaining transaction data...

//  main.cpp

#include "TransactionHandler.h"

#include <iostream>

int main(int argc, const char **argv)

{

if (argc < 2)

{
std::cerr << "usage: <progName> <fileName>\n";
return 1;
}
std::string fileName = argv[1];
try
{
TransactionHandler handler(fileName);
}
catch (FileError &e)
{
std::cerr << "received a file error: " << e.what() << std
}

::endl;
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catch (TransactionTypeError &e)

{
std::cerr << "received a transaction error: "
<< e.what() << std::endl;
}
catch (...)
{
std::cerr << "received an unknown error\n";
}
return 0;

Implementing Vector Operations

In this section, we implement the common addition and multiplication operators
defined on numerical vectors.

Solution

This problem can be easily solved using the C++ facilities for operator overloading. I first
give a general introduction to this programming technique and subsequently show how
to use it to implement numerical vector operations.

Operator Overloading

Operators are used in most programming languages to provide a simpler syntax for
common operations. For example, the + operator is used to implement the addition
of numbers without the need for a function called sum. So, one can type the following

expression:
int total =a + b + ¢ + d;
instead of the less convenient version

int total = sum(a, sum(b, sum(c, d)));
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Similarly, other operators perform comparable tasks for other primitive operations,
such as subtraction, multiplication, logical comparison, and pointer arithmetic.

While operators are available in most modern programming languages, C++ is
one of the few languages that allow programmers to redefine the meaning of existing
operators to adapt them to the most natural usage in the target domain. For example, in
an application where vectors of numbers are a common data structure, it makes sense to
redefine the + operator to perform the sum of vectors in addition to the traditional usage
of adding numeric (scalar) values.

C++ allows the definition of operators for each new declared type. Operators can
be defined as part of a class (as a member function) or as a freestanding function. For
example, consider the class Complex that redefines the + operator. The declaration for
the operator can be written as

class complex {
public:
// ... other methods here
complex 8operator +(const complex 8v);

};
Another way of writing the same operator is using a free function.
Complex 8operator +(const complex 8a, const complex 8b);

The difference between these two declarations is that the latter declares a function
that receives two parameters, while the member function version requires only one
additional parameter (the first parameter is the object itself). Similarly, you can declare
new versions of most C++ operators, including math, logical, and pointer operators.

To solve the problem posed, we created a new class called NumVector, a simple
numerical vector that can be used to store double numbers. To provide operations that
can be applied to a vector in a natural way, we use operators that are declared as free
functions.

NumVector operator +(const NumVector 8a, const NumVector 8b);
NumVector operator -(const NumVector &a, const NumVector &b);
NumVector operator *(const NumVector &a, const NumVector 8b);

The class also provides a few member functions that are used in the implementation
of these operations. In particular, you will want to have the member functions add, which
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adds a new element to the vector, removelast, which removes the last element, get,
which returns one of the elements given a position (index), and finally a size member
function, which returns the size of the vector.

All operators are implemented in a similar way: they all check that the two
parameters have the same size and then perform a loop that is used to perform the
required operation—addition, subtraction, or multiplication.

Complete Code

Listing 3-5 provides a sample implementation of a numeric vector. You can use this class
to create numerical vectors and perform common vector operations.

Listing 3-5. NumVector.h

//
//  NumVector.h

#ifndef _ FinancialSamples NumVector
#define _ FinancialSamples NumVector

#include <vector>

class NumVector {
public:
NumVector();
~NumVector();
NumVector(const NumVector &);
NumVector 8operator =(const NumVector &);

void add(double val);
void removelast();
double get(int pos) const;
size t size() const;
private:
std: :vector<double> m_values;

};
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NumVector operator +(const NumVector 8a, const NumVector 8b);
NumVector operator -(const NumVector 8a, const NumVector 8b);
NumVector operator *(const NumVector &a, const NumVector 8b);

#tendif /* defined(__FinancialSamples_ NumVector ) */

//
//  NumVector.cpp

#include "NumVector.h"
#include <iostream>

NumVector: :NumVector ()

{
}

NumVector: :“NumVector ()

{
}

NumVector: :NumVector(const NumVector &v)
: m_values(v.m values)

{
}
NumVector &NumVector::operator=(const NumVector 8&v)
{
if (this != 8&v)
{
m values = v.m_values;
}
return *this;
}
size t NumVector::size() const
{
return m values.size();
}
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double NumVector::get(int pos) const

{

return m_values[pos];
}
void NumVector::add(double val)
{

m_values.push back(val);
}
void NumVector::removelast()
{

m_values.pop back();
}

NumVector operator +(const NumVector &a, const NumVector 8b)

{
if (a.size() != b.size())

{

throw new std::runtime_error("vectors must have the same size");

}

NumVector result;
for (int i=0; i<a.size(); ++i)
{
result.add(a.get(i) + b.get(i));
}

return result;

}

NumVector operator -(const NumVector 8a, const NumVector 8b)

{
if (a.size() != b.size())

{

throw new std::runtime error("vectors must have the same size");

}

NumVector result;
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for (int i=0; i<a.size(); ++i)
{

result.add(a.get(i) - b.get(i));
}

return result;

}

NumVector operator *(const NumVector 8a, const NumVector 8b)
{
if (a.size() != b.size())
{
throw new std::runtime error("vectors must have the same size");
}
NumVector result;
for (int i=0; i<a.size(); ++i)

{
result.add(a.get(i) * b.get(i));
}
return result;
}
Conclusion

C++is a complex language, which provides mechanisms for the creation of software
using one or more among several paradigms, such as structured, object-oriented, and
functional programming. As a result, it is necessary to develop a set of techniques

that are more appropriate for the development of financial software while avoiding
unproductive practices that obfuscate programs and hinder our ability to modify them.
Over the years, financial engineers have successfully used a number of C++ idioms that
make it easier to use the speed and abstraction facilities of the language.

In this chapter, I discussed a few programming examples that introduced and
reviewed some of these useful C++ programming techniques, which are commonly
employed in the development of financial applications. First, I reviewed the concept
of templates, which let programmers write generic code that can be applied to several
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classes. In the first code sample, you learned how to design an interest rate calculation
engine that is independent of the definition of interest rate classes. This type of design is
very useful in the creation of large-scale financial applications.

Next, you learned how to define financial statement objects that can be sent to
other parts of the application while reducing the occurrence of memory leaks. For this
purpose, I explained the use of smart pointers as a way of making automatic decisions
about the lifetime of objects. In particular, you learned about the std: :unique_ptr
template, which implements the semantics of auto-released, self-owned pointers.

The next section dealt again with memory management issues, this time in the
context of determining credit ratings from rating agencies. In this case, you learned
how to share rating information in such a way that the memory would be automatically
destroyed even when several users had copies of the object. For this purpose, you can
learn about the std: :shared ptr template, which uses a reference counting mechanism
to determine the correct moment to delete memory, therefore avoiding memory leaks.
You have also seen the use of the auto keyword to simplify type detection with STL
containers. Both shared ptr and the auto keyword are new features introduced with the
C++11 standard, which is currently implemented by all modern C++ compilers.

Another important technique in C++ involves the handling of unexpected
conditions. The exception-based mechanism provided by C++ allows programmers
to deal with infrequent conditions in a clean way. You have seen an example of such
policies applied to the problem of processing trading operations stored in a data file.

Finally, this chapter has considered the problem of implementing mathematical
operations applied to a sequence of numbers. For this purpose, we created a new class
called NumVector, which stores numbers in a sequence. To implement the addition,
subtraction, and multiplication of vectors in a natural way, we used the operator
overloading mechanism provided by C++. In this way, an application can perform vector
operations using operators already present in the language, redefined so that they can be
applied to your own types.

In this chapter, you learned about general C++ techniques that have been
successfully used in financial applications. In the next chapter, I explain how to use
libraries that extend the language and offer useful functionality for financial software
developers. These libraries include facilities such as new data containers and algorithms,
as well as more advanced techniques for memory management, as well as time and
event handling.
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Common Libraries
for Financial Applications

Financial code implemented in C++ uses programming libraries designed to simplify
the creation of fast, standard-conformant classes. The best example of such libraries

is the STL (standard template library) itself, a convenient library that is included with
standard-compliant C++ compilers. The STL offers a set of generic, commonly used
containers that may be applied to almost any situation. Knowing how to employ well
the STL is one of the main skills necessary for effective C++ programming, especially

in the context of high-performance software development—a common requirement
for financial applications. In this chapter, you will learn programming examples that
clarify some of the most common uses of the STL for financial programming, including
containers and algorithms.

The boost project provides another set of commonly used classes. Although the
standard language committee does not officially support boost libraries, some of them
have been used as the basis for additions to the last few versions of the C++ standard
library. Therefore, a good understanding of the classes and templates included in the
boost repository is valuable as a way to have early access to functionality that will only
later be made available in all C++ implementations.

In the next few sections, we explore C++ examples that illustrate how these classes
and templates are used in financial applications. Examples of important library

components explored here include

e Vectors: These are containers used to manipulate objects of the

same type.

o Maps: STL containers that can be used to associate values to a set of
keys, which can be of any type.

113
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_4


https://doi.org/10.1007/978-1-4842-6834-6_4#DOI

CHAPTER 4  COMMON LIBRARIES FOR FINANCIAL APPLICATIONS

o Algorithms: The STL also provides a rich set of algorithms that can
be used to manipulate the standard containers. You can also extend
the existing algorithms so that they can be applied to your own
data structures. Similarly, you can use the ideas provided by STL to
implement your own algorithms.

e Boostlibraries: The STL is the foundation for other useful libraries.
Boost libraries are written by some of the C++ experts working on the
language committee. Many of the components previously included in
the boost library, such as shared_ptr, have since become part of the
language.

e Time and date handling: Financial applications are usually related
to the processing of prices over specific time periods. To make this
possible, it is necessary to use libraries to handle date uniformly.

In the next sections, you will see a few selected programming examples that explore
some of these C++ libraries in the context of financial applications.

Handling Analyst Recommendations

One of the common events around a particular stock is the release of analyst
recommendations. Create a C++ class that handles analyst recommendations and
returns the average target price for the stock.

Solution

Analyst recommendations are an important part of the Wall Street ecosystem. Many
financial institutions such as pension funds and insurance companies, as well as retail
investors, use analysts’ recommendations as a gauge of the predominant view about

a particular stock. This in turn can be used to determine future capital allocation to a
portfolio of stocks.

Analyst recommendations come from one of the several institutions that provide
public analysis of equity investments, generally from some of the major investment
banks. The recommendation for a particular stock includes a defined action such as
“buy,” “sell,” or “hold.” The recommendation also frequently includes a price target,
which determines how much the analyst expects to be the “fair price” for the instrument.

114



CHAPTER 4 COMMON LIBRARIES FOR FINANCIAL APPLICATIONS

Since there are so many analysts covering the equities market, keeping track of
recommendations is one of the important parts of the work of an institutional investor.
In this section, you will create a C++ class to store this type of information and to answer
some basic questions such as “what is the average target price for a particular stock?”

The solution for this problem involves the use of STL containers to hold the data. In
particular, you will use vectors to provide quick access to the data.

More About STL Vectors and Maps

The STL is a repository of standard data structures and algorithms that are useful in
most programming domains. For financial applications in particular, the use of the
STL is extremely important because STL components are optimized for high speed.
For example, STL components such as vectors are currently the preferred way to write
applications in C++, instead of using raw C++ arrays and similar data-container classes.
Compiler vendors have done a great job of making STL components fast and safe to use
in a wide range of applications, so that programmers don’t need to worry about intricate
issues such as memory allocation, exception handling, and algorithm complexity.

STL vectors are versatile because they can grow dynamically. Therefore, they work
in situations where you don’t have a clear idea of how many elements will be stored
in the underlying data structure (and as long as you don'’t care about the overhead of
vector resizing). For example, if you're reading trading data over a given time period,
you typically don’t know how many trades occurred during that particular time frame.
In this situation, it is easier to use a vector that can be initialized with a small number
of elements and then grow as needed, instead of using an array with a predefined (and
fixed) size. By using the STL vector in this way, you don’t need to worry about memory
allocation and exception safety of the container.

The vector template exposes an interface with operations that can be applied to
a set of elements, such as adding, removing, finding, and comparing. These common
operations can be used across concrete implementations, without any manual changes
required. For example, vectors declared as std: : vector<int> can use the push_back
member function to add int elements to the end of the vector. Similarly, a second vector
declared as std: :vector<std: :string> can also add std: : string elements using the
same template-based member function.
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The following is a quick list of the most regularly used member functions in the
std: :vector template:

o template <class T> vector(const T &c, int n):Constructor
used to create a new vector initialized with n copies of the constant
element c.

o template <class T> vector(const vector<T> &v): Constructor
used to create a new vector initialized with a copy of an existing
vector object v.

o template <class T> T 8operator [] (int pos): This operator
makes the std: :vector object behave as a native array. You can use
the notation v[1i] to access or update the value of an element stored
at position 1 of vector v.

o template <class T> void push_back(const T &c):Usedtoadda
new element to the back of a vector, allocating additional memory if
necessary. This is the most commonly used way to add new elements
to a vector, since it takes care of adding memory to store the new
element when necessary, unlike the operator [], which will crash
the application when an undefined position is accessed.

o template <class T> void pop_back(): This member function
performs the inverse of the push_back operation, removing the
element stored in the last position of the vector. However, the
memory allocated for that element is not immediately reclaimed, and
it may be used by later operations.

o template <class T> size t size(): This member function
returns the number of elements currently stored in the std: :vector.
Notice that this may be less than the total memory currently used by
the vector, since it is possible for the vector to allocate more memory
than it currently needs, depending on the number of elements
previously added or reserved.

In our problem, we use vectors to store recommendations for a particular
stock. Each stock covered by this class will have a vector of recommendations.
Each recommendation is just an object of the Recommendation class, which stores
recommendations defined in the following way:
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enum class RecommendationType {
BUY,
SELL,
HOLD,
NO_RECOMMENDATION

b
The Recommendation class is defined as

class Recommendation {
public:
Recommendation();
Recommendation(const std::string &ticker, RecommendationType rec,
double target);
~Recommendation();
Recommendatioperatoron(const Recommendation &r);
Recommendation & =(const Recommendation &r);

double getTarget() const;
RecommendationType getRecommendation() const;
std::string getTicker() const;

// private members
}s

This simple Recommendation class stores the ticker for stock, as well as its
recommendation type and price target. Notice that objects that are stored in a
std: :vector need to be from classes that can be copied or moved, since elements in a
std: :vector are stored by value. This means that a copy is created whenever there is the
need to move the object to a certain position, unless the class has a movable constr.

Using std: :vector we can keep track of the individual recommendation for a
stock. However, there are several stocks in the universe of equities that we would like
to track. To find the right recommendations, we assign a way to retrieve objects based
on the stock ticker. This is performed using a std: :map template. Using a map will also
simplify the code necessary to implement other useful operations, such as adding new
recommendations or calculating the average recommendation.

The std: :map template provides a way to associate an arbitrary key to a data object,
so that you can easily retrieve the original data. The best thing about maps is that the key
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can be of any kind of object offering a comparison operation, such as the less than (<)
operator. In our case, for example, you can use a string that indicates the unique ticker
for each particular stock. Based on the ticker, you can retrieve the vector that contains
the recommendations for that particular stock.

Here is a short list of important operations defined for std: :map:

template <class K, class T> iterator<T> find(const K&):
Returns an iterator to the data object that is associated to the given
key. If the key has no association, the function returns the end()
iterator.

template <class K, class T> T &operator[](const K&):
Associates a key with a particular data object. You can use this
operator to retrieve elements from the map container as well as

insert new elements.

template <class K, class T> size t erase(const K&):
Erases the data associated with the given key.

The std: :map template is used in this code example to store and retrieve
recommendations that were issued for a particular stock. The RecommendationProcessor
is the class responsible for storing, processing, and answering queries related to stock
recommendations. The general algorithm used by RecommendationProcessor consists of
storing new recommendations in an internal data structure. Then, at any future moment,
you can query the stored data using the averageTargetPrice member function.

The first member function in this class, addRecommendation, is responsible for
storing new recommendations to the m_recommendations member variable.

void RecommendationsProcessor::addRecommendation(const std::string &ticker,
RecommendationType rec,
double targetPrice)

Recommendation r(ticker, rec, targetPrice);
m_recommendations[ticker].push back(r);
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Here, you first need to create a new recommendation object based on the
information passed, such as ticker, type of reccommendation, and target price. Then,
we use them _recommendations map to access the vector of recommendations.
Finally, we use the push_back method to add the new recommendation to the list of
recommendations for that particular stock.

Another interesting member function is the one that calculates the average target
price. It looks at all recommendations to calculate an average target.

double RecommendationsProcessor::averageTargetPrice(const std::string
&ticker)
{
if (m_recommendations.find(ticker) == m_recommendations.end())
return 0;
auto vrec = m_recommendations[ticker];
std::vector<double> prices;
for (auto i=0; i<vrec.size(); ++i)
{
prices.push back(vrec[i].getTarget());
}

return std::accumulate(prices.begin(), prices.end(), 0) / prices.size();

The first thing you need to do in this code is to check if the stock has any
recommendation. If not, the function returns the value zero. Otherwise, you can retrieve
the recommendations using the [ ] operator. I added all the target prices to a temporary
vector of prices and used the std: :accumulate algorithm to compute the sum of all
prices. Finally, the member function returns the total divided by the number of such
price recommendations, which is just the average target price as desired.

Complete Code

Listing 4-1 presents the complete code for the class Recommendation, as described in the
previous section. The listing shows the header and implementation files that you will
need to include the class in your project.
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Listing 4-1. Definitions and Implementation for Class Recommendation

//
// Recommendation.h

#ifndef _ FinancialSamples Recommendation
#define _ FinancialSamples Recommendation

#include <string>

enum RecommendationType {
BUY,
SELL,
HOLD,
NO_RECOMMENDATION

};

class Recommendation {
public:
Recommendation();
Recommendation(const std::string &ticker, RecommendationType rec,
double target);
~Recommendation();
Recommendation(const Recommendation &r);
Recommendation &operator =(const Recommendation &r);

double getTarget() const;
RecommendationType getRecommendation() const;
const std::string 8getTicker() const;

private:
std::string m_ticker;
RecommendationType m_recType;
double m_target;

};
#tendif /* defined(__FinancialSamples Recommendation ) */

//
// Recommendation.cpp
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#include "Recommendation.h"

Recommendation: :Recommendation()
: m_recType(HOLD),

m_target(0)
{

}

Recommendation: :Recommendation(const std::string &ticker,
RecommendationType rec, double target)
: m_ticker(ticker),
m_recType(rec),
m_target(target)
{

}

Recommendation: :~Recommendation()

{
}

Recommendation: :Recommendation(const Recommendation 8&r)
: m_ticker(r.m ticker),

m_recType(r.m recType),

m_target(r.m_target)
{

}

Recommendation &Recommendation::operator =(const Recommendation 8&r)

{
if (this != 8&r)

{
m ticker = r.m ticker;
m_recType = r.m_recType;
m_target = r.m_target;

}
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return *this;

}
double Recommendation::getTarget() const
{
return m_target;
}

RecommendationType Recommendation::getRecommendation() const

{

return m_recType;

}
const std::string &Recommendation::getTicker() const
{
return m_ticker;
}
//

// RecommendationsProcessor.h

#ifndef _ FinancialSamples RecommendationsProcessor
#define _ FinancialSamples_ RecommendationsProcessor

#include <map>
#include <vector>

#include "Recommendation.h"

class RecommendationsProcessor {
public:
RecommendationsProcessor();
~RecommendationsProcessor();
RecommendationsProcessor(const RecommendationsProcessor 8&);
RecommendationsProcessor &operator =(const RecommendationsProcessor &);

void addRecommendation(const std::string &ticker, RecommendationType
rec, double

targetPrice);

double averageTargetPrice(const std::string &ticker);
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RecommendationType averageRecommendation(const std::string &ticker);
private:
std::map<std::string, std::vector<Recommendation> > m_recommendations;

}s
#tendif /* defined(__FinancialSamples RecommendationsProcessor ) */

//
// RecommendationsProcessor.cpp

#include "RecommendationsProcessor.h"
#include <numeric>

RecommendationsProcessor: :RecommendationsProcessor()

{
}

RecommendationsProcessor: :“RecommendationsProcessor()

{
}

RecommendationsProcessor: :RecommendationsProcessor(const
RecommendationsProcessor 8r)
: m_recommendations(r.m_recommendations)

{
}

RecommendationsProcessor &RecommendationsProcessor::operator
=(const RecommendationsProcessor &r)

{
if (this != &r)
{
m_recommendations = r.m_recommendations;
}
return *this;
}
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void RecommendationsProcessor::addRecommendation(const std::string &ticker,
RecommendationType rec,
double targetPrice)

Recommendation r(ticker, rec, targetPrice);
m_recommendations[ticker].push _back(r);

}

double RecommendationsProcessor::averageTargetPrice(const std::string &ticker)
{
if (m_recommendations.find(ticker) == m_recommendations.end())
return O;
auto vrec = m_recommendations[ticker];
std::vector<double> prices;
for (auto i=0; i<vrec.size(); ++i)
{
prices.push back(vrec[i].getTarget());
}

return std::accumulate(prices.begin(), prices.end(), 0) / prices.size();

}

RecommendationType RecommendationsProcessor::averageRecommendation(const
std::string &ticker)
{

double avg = 0;

if (m_recommendations.find(ticker) == m_recommendations.end())

{
return RecommendationType::NO RECOMMENDATION;

}

auto vrec = m_recommendations[ticker];
std::vector<int> recommendations;
for (auto i=0; i<vrec.size(); ++i)

{

recommendations.push_back((int)vrec[i].getRecommendation()+1);
}

return (RecommendationType) (int) (avg / recommendations.size());
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Performing Time-Series Transformations

Create a class that can be used to perform common time-series transformations, such as
adding or subtracting values to prices and removing undesired values.

Solution

Time-series data filtering is the task of identifying and removing values, both for
short- and long-term trends, in a sequence of data points. From the point of view of
programming, this is performed by the application of a series of transformations to data
stored in containers. This is a very common task that is properly covered by the STL. The
STL provides several templates that simplify the execution of common algorithms
such as sorting and selection, which can be applied to data containers such as vectors
and lists. Such algorithms can be accessed in C++ code by including the header file
<algorithm>. No additional work is necessary on the part of the programmer.

The <algorithm> header file provides declarations for many useful functions.
Among them, you will find

o copy: This template function is used to copy a range of elements from
a given container into a second container. Notice that, as with other
generic algorithms, the containers don’t need to be of the same type. For
example, a range of a vector can be copied into a map, and vice versa.

o copy_backward: Similar to the copy function, but the process is
performed from the last to first element of given range. This can be used,
for example, to write the elements of a container in the reverse order.

o for_each: This algorithm can be used to apply a particular function
or function object to a set of elements in a container. The for_each
algorithm can be used to avoid the use of a for loop over the elements
of a container. If the operation defined by the loop can be quickly
encapsulated within a function or function object, the for_each
algorithm can be a more concise way to perform the same operation.

o find_if:Used to find elements in a given range of a generic
container. The last parameter for the find algorithm can be a
function or a function object that is used to determine the property
satisfied by the desired element.
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o count: Return the number of elements in a given range of a generic
container.

o count_if: Return the number of elements in a given range of generic
containers that satisfy the function or function object passed as the
third parameter.

e transform: This generic function takes a range of elements in a
container, a destination container, and a transformation function
object. The elements of the input container are transformed using the
transformation function and stored in the destination container.

o fill: This function is used to fill a given range of a container with a
single element.

o reverse: Changes the given range of a generic container so that the

order of the elements in the container is reversed.

e sort: A generic algorithm that can be used to sort a sequence of
elements stored in an STL container. The first two parameters for
this algorithm define the range of elements. The third parameter is a
comparison function, which is used to determine if two elements are
correctly ordered.

e binary_search: Implements a binary search of elements over a
sorted range in a container.

o min_element: Returns the element with minimum value among the

elements stored in the given container.

o max_element: Returns the element with maximum value among the
elements stored in the given container.

These are the most common algorithms provided by the STL. While these algorithms
are in most cases simple to code, there are some advantages to using the STL algorithm
templates over manually created implementations:

o The first advantage is that they reduce the possibility of errors
when implementing similar operations. For example, the for_each
algorithm just applies the same function to all elements in a range.
While this is easy to do with a for loop, there is always the possibility
of making mistakes when manipulating individual elements of

126



CHAPTER 4 COMMON LIBRARIES FOR FINANCIAL APPLICATIONS

the container. The for _each algorithm, however, has all the logic
contained in the template definition, reducing the possibility of

€rrors.

o Algorithms in the STL have intimate knowledge of how containers
work. Implementers of the STL understand subtle nuances of the
containers, which can greatly improve the performance of these
algorithms. By using partial specialization, the authors of the STL can
tailor such algorithms to achieve maximum performance for each
container. Using the STL, you automatically take advantage of this
knowledge in your application.

o Algorithms are also a succinct way to describe your intent. Instead of
writing another for loop to find a minimum element, for example,
you can apply the min_element algorithm to the target container.

Using STL Algorithms

To solve the problem posed in this section, you will create a class,
TimeSeriesTransformations, which implements a few time-series transformation
operations. The first algorithm implemented is used to reduce prices in the series. The
solution relies on the std: : transform algorithm, and it is implemented as follows:

void TimeSeriesTransformations::reducePrices(double val)

{
std::vector<double> res;
std: :transform(m prices.begin(), m prices.end(), res.begin(),
std: :bind2nd(std: :minus<double>(), val));
m_prices.swap(res);
}

In this member function, the first step is to apply std: : transform to the vector
m_prices. The first two parameters are the iterators for the beginning and the end of
the vector. Then, you need to pass the beginning of the output vector. Finally, the last
parameter is the function object used to perform the transformation. The template
std: :bind2nd is declared in the <functional> header file and allows one to bind the
second parameter of a functional object (in this case, the minus function). The result
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is that the minus function will be applied to the m_prices vector, with the second

parameter set to the value defined by val. After the transformation is performed, the next

step is to swap the values stored in m_prices with the values stored in the result vector.
The second function is similar, but I used an alternative strategy.

void TimeSeriesTransformations::increasePrices(double val)

{
std::for_each(m prices.begin(), m prices.end(), std::bindist(std::plus
<double>(), val));

Here, the function template std: : for_each is used to perform a transformation to
each element of the original vector. In this way, you can avoid the need to swap values
into and out of the container. The for_each function applies the plus function with the
first parameter bound to the passed value. As a result, all prices are increased as desired.

The TimeSeriesTransformations class also includes a few other methods that
explore the STL algorithms. For example, the removePricesLessThan method uses the
remove_if template to eliminate prices that are less than the given value. The member
function removePricesGreaterThan is similar. Finally, the getFirstPricelLessThan
function uses the find_if template function to identify a price that is less than a given
value, if such a price exists.

Complete Code

The algorithm described previously has been implemented using a C++

class called TimeSeriesTransformations. It is divided into a header file
TimeSeriesTransformations.h and a source file TimeSeriesTransformations.cpp.
Listing 4-2 contains the complete code.

Listing 4-2. Class TimeSeriesTransformations

//
// TimeSeriesTransformations.h

#ifndef _ FinancialSamples TimeSeriesAnalysis
#define _ FinancialSamples TimeSeriesAnalysis

#include <vector>
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class TimeSeriesTransformations {
public:
TimeSeriesTransformations();
TimeSeriesTransformations(const TimeSeriesTransformations &);
~TimeSeriesTransformations();
TimeSeriesTransformations &operator=(const TimeSeriesTransformations 8&);
void reducePrices(double val);
void increasePrices(double val);
void removePriceslLessThan(double val);
void removePricesGreaterThan(double val);
double getFirstPricelLessThan(double val);
void addValue(double val);
void addValues(const std::vector<double> 8val);
private:
std: :vector<double> m_prices;

b
#endif /* defined(__FinancialSamples TimeSeriesAnalysis ) */

//
// TimeSeriesTransformations.cpp

#include "TimeSeriesTransformations.h"

#include <algorithm>
#include <functional>

TimeSeriesTransformations::TimeSeriesTransformations()
: m_prices()

{

}

TimeSeriesTransformations::TimeSeriesTransformations(const
TimeSeriesTransformations &s)
: m_prices(s.m prices)

129



CHAPTER 4  COMMON LIBRARIES FOR FINANCIAL APPLICATIONS

TimeSeriesTransformations::~TimeSeriesTransformations()

{
}

TimeSeriesTransformations &TimeSeriesTransformations::operator=(const
TimeSeriesTransformations &v)

{
if (this != &v)
{
m_prices = v.m _prices;
}
return *this;
}
void TimeSeriesTransformations::reducePrices(double val)
{
std: :vector<double> neg(m prices.size());
std: :transform(m prices.begin(), m prices.end(), neg.begin(),
std::bind2nd(std: :minus<double>(), val));
m_prices.swap(neg);
}

void TimeSeriesTransformations::increasePrices(double val)

{

std::for_each(m prices.begin(), m prices.end(), std::bindist(std::plus
<double>(), val));

}

void TimeSeriesTransformations::removePricesLessThan(double val)

{

std::remove_if(m prices.begin(), m prices.end(), std::bind2nd(std::less
<double>(), val));
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void TimeSeriesTransformations::removePricesGreaterThan(double val)

{
std::remove_if(m prices.begin(), m prices.end(), std::bind2nd(std::
greater<double>(), val));

}

double TimeSeriesTransformations::getFirstPricelLessThan(double val)
{
auto res = std::find_if(m prices.begin(), m prices.end(),
std::bind2nd(std: :less<double>(), val));
if (res != m prices.end())
return *res;

return 0;
}
void TimeSeriesTransformations::addValue(double val)
{
m_prices.push back(val);
}

void TimeSeriesTransformations::addValues(const std::vector<double> &val)

{

m_prices.insert(m prices.end(), val.begin(), val.end());

}
int main()
{
TimeSeriesTransformations ts;
std::vector<double> vals = {7, 6.4, 2.16, 5, 3, 7};
ts.addValues(vals);
ts.addvalue(6.5);
ts.reducePrices(0.5);
std::cout << " price is " << ts.getFirstPricelLessThan(6.0) << std::endl;
return 0;
}
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Running the Code

Iincluded some sample code that uses the TimeSeriesTransformations class in the
main() function. In this way, you can compile the files presented in the previous section
into a sample application. After building the application with the help of a C++ compiler
such as gcc or Visual Studio, you may run it using the following command line:

./TimeSeriesTransformations
price is 5.9

Copying Transaction Files

Create a class to copy transaction files into a temporary storage.

Solution

File operations are a common requirement in a lot of areas of programming, and it couldn’t
be different in financial applications. Data is commonly stored in formats such as CSV and
XML, as they need to be processed and filtered by other applications. Logging facilities are
also necessary to guarantee that debugging and error messages are properly handled.

This type of file manipulation problem can be solved using traditional C interfaces,
which are available for all major operating systems such as UNIX and Windows.
However, such native interfaces have a few shortcomings and should be avoided when
possible. I use this opportunity to provide an overview of a better approach, using the
boost repository of C++ libraries, and the filesystemlibrary in particular. With a basic
knowledge of how boost works, you will be in a position to use other, more complex
classes in the next few chapters.

Boost Libraries

The standard C++ library provides a large number of classes, containers, and algorithms.
However, due to the substantial effort necessary to create a new standard of the C++
language, the included set of libraries is frequently minimalist, comprising only the
essential functionality needed by most programmers. Moreover, the standard library
incorporates only classes and functions that have been well verified and established by
their use in real applications, having stood the test of time.
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Due to the slow process of including new functionality in the language standard,
a more agile strategy for software distribution and development was needed, as a way
to better incorporate new libraries approved by the C++ community. Boost libraries
were created to fill the gap left by this slow process of including new functionality in the
standard. Unlike traditional single-vendor libraries, the goal for boost developers is to
create high-level components that can be reusable across a large spectrum of domains
and architectures. Many of the contributors to boost are themselves involved in the
development of the C++ standard, which means that many of the libraries currently
included in the boost distribution will later on become part of the standard library. For
example, template classes such as std: :shared ptr originated from boost: :shared ptr.
To use boost libraries in your application, you need to download and install them
from the boost.org website. The process is made simpler because of the nature of boost
classes. Since most components in boost are defined as template classes, the complete
code is, with a few exceptions, contained in the header files. This means that you can use
all the functionality in certain boost libraries by simply adding a header file to your code.
Table 4-1 shows some of the libraries available in the boost distribution.

Table 4-1. Some of the Most Commonly Used Components in the Boost

Distribution

Library Description

boost:any A polymorphic data type designed to be used as a container to any other data
type

Bind Allows existing functions to be used by other function objects

Circular Buffer ~ Defines a storage template that can be used as a circular buffer

Chrono A set of time-related utilities
Filesystem An implementation of common file operations, including coping, moving, and
creating files or directories
Foreach Introduces a looping construct (deprecated by new features on C++11)
Function A set of templates that define function wrappers
Geometry An implementation of common geometric algorithms
(continued)
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Table 4-1. (continued)

Library Description

Graph Defines a graph data type, as well as common graph theory techniques and
algorithms

Hash A simple hash table data type, defined as a template

Lambda A set of templates that can be used to write lambda functions for functional
programming

Log A generic logging facility for C++ applications

Math Additional math functions

MPI A message passing interface library

PropertyMap Defines a generic property template, which can be used to define dynamic
attributes

SmartPtr A set of smart pointer types for storage of heap-allocated objects

In this chapter and the next, we will have the opportunity to explore some of these
libraries, as they will be needed in other financial C++ code presented in this book. In
this example, we are concerned with the filesystem library, used to provide file and
directory-related operations.

C and C++ have traditionally provided interfaces for file handling in each of the
platforms where it has been implemented. Platform vendors have created separate
libraries for this purpose, resulting in different interfaces for operating systems such
as UNIX and other Posix-compliant systems, Windows, OS/2, VMS, and others. The
differences between these interfaces, however, make it difficult to port applications
across systems. Application writers have, in practice, created abstraction layers that
interact with each different system as needed.

The filesystemlibrary in STL is an attempt to provide a set of cross-platform classes
and templates for file manipulation. The same classes and templates can be used to
handle files in each of the platforms supported by the STL. This reduces the amount
of work by application programmers, while the resulting code can be reused in other
platforms without risks.

The main components of the library are included in the std: : filesystem namespace.
These components allow you to perform common operations on files and directories.
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The classes included in the library easily support operations such as copying, moving,
changing permissions, and removing. Next, I show you some of these important
components and how they can be used to write code to manipulate file system contents.

The std: : filesystem: :path class represents a path in the file system. Having a path
class is interesting because it lets programmers represent directory paths in different
systems while using the same object. For example, paths in a UNIX system use the “/”
separator, while in Windows, the “\” separator is used. To avoid problems associated
with these different conventions, the filesystemlibrary uses a common representation.
The class path is then used by many of the functions provided in the library.

The other important concept of the filesystemlibrary is that of directory iterators.
You can create an iterator for a particular path using the directory_iterator function.
This function returns an iterator object, which has operators such as ++ and - -, allowing
programmers to move between elements of the given directory.

Other than suitable abstractions for paths and iterators, the filesystemlibrary
provides a set of functions that can be used to perform individual changes to files and
directories. These functions include the following:

o 1is regular_file:Returns true if the path supplied indicates a
regular file (instead of a directory)

e 1is directory: Returns true if the path indicates a directory

o file size: Returns the size of the filename passed as argument,
in bytes

e exists:Returns true if the path passed as argument exists in the
file system

o status:Returnsafile status object, which encapsulates the
properties of given file, such visibility and type

o create directory: Creates a new directory in the file system, with
the given path

o copy: Makes a copy of the given path to a location indicated by the
second parameter

» remove: Removes the given path from the file system

e current path: Returns a path object that indicates the current path
used by the application
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These functions can be easily combined to manipulate the file system. I used some
of these functions to implement all the functionality needed by the FileManager class.
For example, the following is how the getContents member function is coded:

std::vector<std::string> FileManager::getContents(const std::string
&prefix)
{

std::vector<std::string> results;

path aPath(prefix);

if (!is_directory(aPath))

{
std::cout << " incorrect path was used " << std::endl;
}
else
{
std::vector <path> contents;
copy(directory iterator(aPath), directory iterator(),
back_inserter(contents));
for (int i=0; i<contents.size(); ++1i)
{
results.push back(contents[i].string());
}
}

return results;

The first step is to create a path object based on the string passed as a parameter.
Once the path has been created, you can test if it points to a directory using the
is_directory function. If the path is correct, then you can use the directory_iterator
function to create an iterator object, which is passed to the copy function. The copy
function’s only job is to copy each element pointed by the iterator into the contents
vector. The elements in this container are later converted to strings and added to the
results vector.
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Finally, the function that copies files from one directory to a given destination can be

added to the FileManager class using the following code:

void FileManager::copyToTempDirectory(const std::string &prefix)

{

path tmpPath("/tmp/");

path aPath(prefix);

if (!is_directory(aPath))

{
std::cout << " incorrect path was used " << std::endl;
return;

}
std::cout << " copying the following files: " << std::endl;

this->listContents(prefix);

for (auto it = directory iterator(aPath); it != directory iterator();

++it)

{
if (is_regular file(it->path()))
{
copy_file(it->path(), tmpPath);
}
}

Here, you start checking the given path prefix to make sure that it is a reference to

a directory. Then, I have added some code to list the contents as a form of logging. The
next step is to iterate through the content of the directory using the iterator returned by
the directory iterator function. For each element of the directory, you can test if it is a
regular file and then use the copy_file function to perform the copy.

Complete Code

You can see the complete definition of the FileManager class in Listing 4-3. At the end of
the listing, you can see an example of how to use the class in the main() function.
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Listing 4-3. Definitions and Implementation for Class FileManager

//
// FileManager.h

#ifndef _ FinancialSamples FileManager
#define _ FinancialSamples FileManager

#include <string>
#include <vector>

class FileManager {

public:
FileManager(const std::string 8basePath);
FileManager(const FileManager &);
~FileManager();
FileManager &operator=(const FileManager &);

void removeFiles();

std::vector<std: :string> getDirectoryContents();
void listContents();

void copyToTempDirectory(const std::string &prefix);

private:
std::string m basePath;

};

#tendif /* defined(__FinancialSamples FileManager ) */

//
// FileManager.cpp

#include "FileManager.h"

#include <filesystem>
#include <iostream>

using namespace std::filesystem;
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FileManager::FileManager(const std::string 8basePath)
: m_basePath(basePath)

{
}

FileManager::FileManager(const FileManager &v)
: m_basePath(v.m basePath)

{
}

FileManager::~FileManager ()

{
}

FileManager &FileManager::operator=(const FileManager &v)

{
if (this != 8&v)

{
m_basePath = v.m_basePath;
}
return *this;
}
void FileManager::removeFiles()
{

std::vector<std::string> files = getDirectoryContents();
for (unsigned i=0; i<files.size(); ++i)
{

path aPath(files[i]);

if (is_regular file(aPath))
{

std::cout << " path " << files[i] <«
<< std::endl;

is not a regular file
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else
{
remove(aPath);
}
}
}
void FileManager::listContents()
{
std::vector<std::string> files = getDirectoryContents();
for (unsigned i=0; i<files.size(); ++1i)
{
path aPath(files[i]);
if (is_regular file(aPath))
{
std::cout << aPath.string() << std::endl;
}
}
}

std::vector<std::string> FileManager::getDirectoryContents()
{

std::vector<std::string> results;

path aPath(m_basePath);

if (!is_directory(aPath))

{

std::cout << " incorrect path was used " << std::endl;

}

else

{

auto iterator = directory iterator(aPath);

std::vector <path> contents;
copy(directory iterator(aPath), directory iterator(),
back_inserter(contents));
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for (unsigned i=0; i<contents.size(); ++1i)

{
results.push back(contents[i].string());

}

return results;

void FileManager::copyToTempDirectory(const std::string &tmpDir)

{

int

const path tmpPath(tmpDir);
path aPath(m basePath);

if (!is_directory(aPath))

{

std::cout << " incorrect path was used " << std::endl;

return;
}
std::cout << " copying the following files: " << std::endl;
this->listContents();

std::vector<std::string> contents = getDirectoryContents();
for (auto it = directory iterator(aPath); it != directory iterator();
++it)

{
if (is_regular file(it-»>path()))
{
copy file(it->path(), tmpPath);
}
}
main()

// create a FileManager object for the /tmp directory

//

FileManager fm("/tmp/");

std::vector<std::string> contents = fm.getDirectoryContents();
std::cout << "entries: " << std::endl;
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for (std::string entry : contents)

{

std::cout << entry << std::endl;
}
return O;

Running the Code

The class FileManager presented in Listing 4-3 can be built using any standard C++
compiler, such as gcc or Visual Studio. No extra library will be needed to use the
std: :filesystem classes if you use a recent compiler (at least C++17). Many modern
Linux distributions already include recent versions of gcc, but if you use other operating
systems, check for support.

For example, the command line necessary to build this class using gcc in my
system is

gcc -o FileManager FileManager.cpp
Once the application is generated, you can run it on a UNIX system as
./FileManager

This will display a list of files stored in the /tmp directory (you can change that
directory as necessary to test on a path in your own system).

Handling Dates

Let’s see how to create a class that can be used to determine trading days for common
securities, which are negotiated from Monday to Friday.

Solution

Dates are such a common part of financial data that you should have a well-defined way
to deal with them. Dates are an integral part of historical prices, as well as important
events for equity analysis, such as earnings releases, dividends, price splits, and other
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regulatory actions. The same can be said about fixed income, derivatives, and other
investment classes. C++ provides a wealth of features that can be used to store, calculate,
and transform dates from one format to another.

Although there are many time- and date-related functions and classes in C++, many
of these mechanisms have been inherited from C standard libraries and are not as
easy to use as other components of the STL. To smooth this process of integration with
the STL, the boost repository includes a date_time library that specializes in handling
different representations of dates, as well as providing the basic support for calculations
based on different date formats.

To solve the problem posed in this section, you will use a class called Date, which
encapsulates the concept of date as used by the application. The member variables are
simply three values representing the year, month, and day. There is also the concept of
days of the week, which are encoded in an enumeration.

enum class DayOfheek {
Sun,
Mon,
Tue,
Wed,
Thu,
Fri,
Sat
}s

The Date class exposes a number of member functions that can be used to answer
common requests, such as getDayOfiWeek, which returns the day of the week for the
current date, and islLeapYear, which tells if a year has 29 days in February. Here is a
quick list of member functions for Date.

Date(int year, int month, int day);
~Date();

bool islLeapYear();

Date &operator++();

bool operator<(const Date &d);
DayOfileek getDayOfWeek();

int daysInterval(const Date &);
bool isTradingDay();
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The isLeapYear method implementation uses the well-known definition of leap
year, which considers years that are divisible by 4, 100, and 400:

bool Date::islLeapYear()

{
if (m_year % 4 != 0) return false;
if (m_year % 100 != 0) return true;
if (m_year % 400 != 0) return false;
return true;

}

The getDayOfheek finds the day of the week for any date after January 1, 1900 (a
Monday). It does so by counting the days since that date and updating the years, months,
and days as necessary. The task of correctly adding to the current date is handled in
operator +.

Finally, the Date class computes the difference between dates using the help of the
date_time library from boost. In date_time, dates are classified according to a calendar.
The calendar used in the Western world is called the Gregorian calendar. It can be used
after you include the following header file:

<boost/date_time/gregorian/gregorian.hpp>

The date_time library defines a few generic data types that can be used for date
manipulation. In this example, we are interested in the date and date_duration types.
The date type is just a representation of a date and can be initialized with a year, month,
and day. The date_duration is used to store the difference between dates. A duration
type can be converted to an integer type using the days () member function. Here is how
you can implement daysInterval:

int Date::daysInterval(const Date 8&d)

{
date bdatei(m year, m month, m day);
date bdate2(d.m year, d.m _month, d.m day);
boost::gregorian::date_duration duration = bdatel - bdate2;
return (int) duration.days();

}
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Complete Code

You can see the complete code for the class Date in Listing 4-4. Listing 4-4 includes a
header file and an implementation file for the class. You will also see amain() function
that creates two objects of type Date and performs some simple operations with them.

Listing 4-4. Implementation for Class Date

//
// Date.h

#ifndef _ FinancialSamples Date
#idefine _ FinancialSamples Date

#include <string>

class Date {

public:
enum class DayOfheek {
Sun,
Mon,
Tue,
Wed,
Thu,
Fri,
Sat
}s
Date(int year, int month, int day);
~Date();

bool islLeapYear();

Date &operator++();

bool operator<(const Date &d);

DayOflleek getDayOfWeek();

int daysInterval(const Date &);

bool isTradingDay();

std::string toStringDate(Date::DayOfWeek day);
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private:
int m_year;
int m_month;
int m_day;
};
#tendif /* defined(_FinancialSamples Date ) */

//
// Date.cpp

#include "Date.h"

#include <vector>
#include <algorithm>

#include <boost/date_time/gregorian/gregorian.hpp>
using namespace boost::gregorian;

Date::Date(int year, int month, int day)
: m_year(year),
m_month(month),
m_day(day)
{
}

Date::~Date()

{
}

bool Date::islLeapYear()

{
if (m_year % 4 != 0) return false;
if (m_year % 100 != 0) return true;
if (m_year % 400 != 0) return false;
return true;
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Date 8Date::operator++()

{

std::vector<int> monthsWith31 = { 1, 3, 5, 7, 8, 10, 12 };

if (m_day == 31)
{

m_day = 1;

m_month++;
}
else if (m day == 30 88&

std: :find(monthsWith31.begin(),
monthsWith31.end(), m month) == monthsWith31.end())

{
m_day = 1;
m_month++;
}
else if (m_day == 29 8% m month == 2)
{
m_day = 1;
m_month++;
}
else if (m_day == 28 &% m_month == 2 8&& !islLeapYear())
{
m_day = 1;
m_month++;
}
else
{
m_day++;
}
if (m_month > 12)
{
m_month = 1;
m_year++;
}

147



CHAPTER 4  COMMON LIBRARIES FOR FINANCIAL APPLICATIONS

return *this;

}
int Date::daysInterval(const Date &d)
{
Date bdatei(m_year, m month, m day);
Date bdate2(d.m year, d.m month, d.m day);
boost::gregorian::date_duration duration = bdatel - bdate2;
return (int) duration.days();
}
bool Date::operator<(const Date 8&d)
{
if (m_year < d.m year) return true;
if (m_year == d.m_year &% m_month < d.m_month) return true;
if (m_year == d.m_year &% m month == d.m month &% m_day < d.m day)
return true;
return false;
}
Date: :DayOflleek Date::getDayOfWeek()
{
int day = 1;
Date d(1900, 1, 1);
for (;d < *this; ++d)
{
if (day == 7) day = 1;
else day++;
}
return (DayOfWeek) day;
}
bool Date::isTradingDay()
{

DayOfleek dayOfWeek = getDayOfWeek();
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if (dayOfWeek == DayOfWeek::Sun || dayOfWeek == DayOfWeek::Sat)
{

return false;

}

return true;

:string Date::toStringDate(Date::DayOfWeek day)

switch(day)

{
case DayOfWeek::Sun: return "Sunday";
case DayOfWeek::Mon: return "Monday";
case DayOfWeek::Tue: return "Tuesday";
case DayOfiWeek::Wed: return "Wednesday";
case DayOfWeek::Thu: return "Thursday";
case DayOfWeek::Fri: return "Friday";
case DayOfWeek::Sat: return "Saturday";

}

throw std::runtime_error("unknown day of week");

main()

Date myDate(2015, 1, 3);
auto dayOfWeek = myDate.getDayOfWeek();
std::cout << " day of week is "

<< myDate.toStringDate(dayOfieek) << std::endl;
Date secondDate(2014, 12, 5);
++secondDate; // test increment operator
++secondDate;

int interval = myDate.daysInterval(secondDate);
std::cout << " << interval << " days" << std::endl;
return 0;

interval is
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Running the Code

The code presented in Listing 4-4 uses standard classes that are available to any
standard C++ compiler. It also uses the boost library, which is open source and can be
downloaded for free from boost.org. You can build an application using the following
command line on Linux and other UNIX systems (assuming that boost was installed on
/usr/local/boost):

gcc -o Date -I/usr/local/boost/ Date.cpp

Executing the resulting binary will show the output of the test code included in the
main() function:

./Date
day of week is Saturday
interval is 27 days

Conclusion

In this chapter, I presented a few programming examples that cover basic libraries used
in financial programming. These include the STL, with its set of containers (such as
vector, map) and algorithms (such as sort, transform, and for_each, among others).
You have also learned about the boost repository, a group of libraries that has been
created to fill the gap resulting from the slow standardization process in C++.

Algorithms are an extensive part of the STL. These algorithms can be used to
perform common operations such as search, copy, and transform, in any container
defined by STL templates. You have also learned in this chapter how to apply these
algorithms to data containers in order to perform data analysis.

The first sample application shows how to handle analyst recommendations. To
properly process this type of information, you had to use STL vectors and maps. The
second sample application uses algorithms provided by the STL to perform simple
transformations in a time series. This kind of transformation can be used to clean up
data, perform what-if analysis, and update prices according to the requirements of
new techniques for investment analysis. You have seen how this can be done using STL
algorithms and functional templates.
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You have also learned how to create C++ code that handles files and directories in a
way that is independent of the platform or operating system. This is accomplished using
the filesystemlibrary, which is part of the boost repository. One of the main advantages
of using boost is that, while other libraries are closely tied to the operating system,
boost libraries are written in a platform-independent way, following the same strategies
employed by the standard library. In fact, many components of the boost have become
part of the standard library over the years.

Another important aspect of financial code is the frequent use of dates. This type of
data is associated with trades, analyst recommendations, dividends, and so many other
events related to an investment. You learned how to use the date type in the boost date
time library, as well as how to compute other interesting properties of dates.

This concludes a set of coding examples that reviews some basic aspects of modern
C++ programming. You need to be aware of such techniques, which are mostly based
on the use of templates, the STL, and their algorithms. It is also important to learn about
extension libraries such as the boost repository. In the next chapter, you will start to
learn more about the design of numerical classes. Financial applications in C++ make
heavy use of numerical facilities to perform quick and accurate calculations of the
desired properties of different investment classes. I will discuss some of the underlying
principles in creating such numerical classes and how modern C++ libraries can help
you simplify the resulting code.
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Designing Numerical
Classes

At the heart of any high-performance financial application, there is a set of well-designed
numerical classes. These classes are responsible for the implementation of concepts

that are an integral part of tasks such as financial modeling, forecasting, and analysis

of investment decisions. Without the support of mathematical models, it would be very
difficult to propose and evaluate effective investment methodologies. That is why, as

a programmer in the financial industry, you need to familiarize yourself with the best
strategies to design and implement mathematically oriented code in C++. Although it is
not necessary to become a math expert to use these programming techniques, it helps

to possess a basic understanding of the most important numerical issues that need to be
dealt with in your financial programming assignments.

This chapter will show you how to create classes that can run efficiently when used
in numerically oriented, production-ready code. You will also see some sample code that
show how to integrate existing numerical classes and algorithms into your applications.

Some of the concepts discussed in the code examples in this chapter include the
following:

o How to design and implement an efficient matrix class
o How to supporting common matrix operations

e How to perform calculations at compilation time

o How to calculate factorial numbers using templates

o How to represent ratios as data types

e How to use and generate stochastic values using the boost library
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Representing Matrices in C++

Implement a class that represents a matrix with some common associated operations,
such as addition, subtraction, transposition, and multiplication.

Solution

Matrix manipulation is one of the basic operations in numerical computing. C++ doesn'’t
have a matrix type, however, and it becomes necessary to implement matrices in most
financial projects. The good news is that it is relatively easy to use algorithms already
present in the standard templates library (STL) for this purpose, as you will see in the
following coding example.

A matrix is just a two-dimensional arrangement of numbers, with which one can
perform a set of standard mathematical transformations. In terms of data organization in
memory, a matrix is not very different from a vector. Considering this similarity, we can
take advantage of existing vector operations to facilitate the implementation of a Matrix
class. Here is a possible definition for such a class.

class Matrix {
public:
typedef std::vector<double> Row;

Matrix(int size, int size2);
Matrix(int size);

Matrix(const Matrix 8&s);

~“Matrix();

Matrix &operator=(const Matrix &s);

void transpose();

double trace();

void add(const Matrix &s);

void subtract(const Matrix &s);
void multiply(const Matrix &s);

Row & operator[](int pos);
private:
std::vector<Row> m_rows;

};
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Notice that, at the beginning of the public interface of the class, I used a public
typedef to define a Row type. Since a row is just a vector of numbers, I want to avoid
typing something as involved as std: :vector<std: :vector< > > to talk about simple
rows. This is also a good measure that can help you avoid mistakes when defining new
variables and member functions. As a result of this typedef, all the data stored in the
matrix is declared as a vector of Row objects in the private section of the Matrix class.

The simple Matrix class just presented has two constructors.

Matrix(int size);
Matrix(int m, int n);

The first one creates a square matrix, that is, a matrix with the same number of
rows and columns. The second constructor is used to create a more generic rectangular
matrix, with m rows and n columns.

To make the matrix operate more like its counterpart, the vector, you can introduce a
subscript operator to act as an access helper. In this way, it is possible to set and retrieve
the value of specific entries in the matrix using native syntax. The implementation of the

operator is straightforward, then, since we can refer to each individual row in the matrix.

Matrix::Row 8Matrix::operator[](int pos)

{

return m_rows[pos];

Next, we consider some elementary operations on matrices. The first operation is
transposition, which is defined as the exchange of elements between rows and columns.
That is, if A is a matrix, we need to interchange values between A[i][j] and A[j][1].

The second common operation on matrices is calculating the trace, which is defined
as the sum of the elements in the main diagonal (i.e., those elements with the same row
and column position). This can be implemented as follows:

double Matrix::trace()

{
if (m_rows.size() !'= m_rows[0].size())
{
return 0;
}

double total = 0;
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for (unsigned i=0; i<m rows.size(); ++i)
{
total += m rows[i][i];

}

return total;

The first if statement checks if the matrix has a different number of rows and
columns, in which case the trace operation is not defined. The for statement then
iterates over the diagonal, adding those values to the total variable, which is returned at
the end of the member function.

The Matrix class also implements the operations of adding and subtracting matrices.
To add one matrix to another, you just need to add the individual elements of the first one
to the corresponding elements in the second matrix. Similarly, the subtraction of matrices
is defined element-wise. These operations are straightforward to implement in C++.

Finally, you can see how to implement matrix multiplication. In this case, you need
to compute a new matrix, where each element is determined as the sum of the products
of the i-th row and j-th column. The resulting matrix has dimensions determined by the
number of rows in the current matrix and number of columns in the parameter matrix.
The main part of the algorithm is the following:

std: :vector<Row> rows;
for (unsigned i=0; i<m rows.size(); ++i)

{
std::vector<double> row;
for (unsigned j=0; j<s.m _rows.size(); ++j)
{
double Mij = 0;
for (unsigned k=0; k<m rows[0].size(); ++k)
{
Mij += m rows[i][k] * s.m rows[k][]];
}
row.push_back(Mij);
}
rows.push_back(row);
}

m_rows.swap(rows);
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In this code, we have three loops that range over the different dimensions of the
original and the parameter matrix. The value Mij represents the element in position
[i][]] for the resulting matrix. Notice that to simplify storage management, the
algorithm performs the assignments in a new set of rows. Then, the results are stored
in place of the existing values in the last line, using the swap function.

After the Matrix class has been defined, I have also added a few free operators that
make it easier to work with the previously defined operations. These operators make
sure that you can add, subtract, and multiply matrices using a syntax similar to that of
native operations, although assuming a slight overhead for the temporary objects that
become necessary. Here, for example, is the definition of operator *.

Matrix operator*(const Matrix &si1, const Matrix &s2)

{
Matrix s(s1);
s.multiply(s2);
return s;

}

Complete Code

The ideas just described have been implemented in the Matrix class, presented here
in Listing 5-1. This is a class that I will use in other examples in the next chapters of this
book, so you should be familiar with its definition and main uses.

Listing 5-1. The Matrix Class

//
// Matrix.h

#ifndef _ FinancialSamples_ Matrix__
#define _ FinancialSamples Matrix

#include <vector>

class Matrix {
public:
typedef std::vector<double> Row;
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Matrix(int size, int size2);
Matrix(int size);

Matrix(const Matrix 8&s);

“Matrix();

Matrix &operator=(const Matrix 8&s);

void transpose();

double trace();

void add(const Matrix &s);

void subtract(const Matrix &s);
void multiply(const Matrix &s);

Row & operator[](int pos);

private:
std: :vector<Row> m_rows;
};
// free operators
//

Matrix operator+(const Matrix &si, const Matrix &s2);
Matrix operator-(const Matrix &si, const Matrix &s2);
Matrix operator*(const Matrix &si1, const Matrix &s2);

#endif /* defined(__FinancialSamples Matrix ) */

//
//  Matrix.cpp

#include "Matrix.h"

Matrix::Matrix(int size)

{
for (unsigned i=0; i<size; ++i )
{
std: :vector<double> row(size, 0);
m_rows.push back(row);
}
}

158



CHAPTER 5

Matrix::Matrix(int size, int size2)

{
for (unsigned i=0; i<size; ++i )
{
std: :vector<double> row(size2, 0);
m_rows.push back(row);
}
}

Matrix::Matrix(const Matrix 8s)
: m_rows(s.m _rows)

{

}

Matrix::~Matrix()

{
}

Matrix &Matrix::operator=(const Matrix &s)

{
if (this != 8s)

{

M _TOWS = S.M _TOWS,

}

return *this;

}

Matrix::Row 8Matrix::operator[](int pos)

{

return m_rows[pos];

}

void Matrix::transpose()

{

std: :vector<Row> rows;
for (unsigned i=0;i <m rows[0].size(); ++1i)
{

std::vector<double> row;

DESIGNING NUMERICAL CLASSES
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for (unsigned j=0; j<m rows.size(); ++j)

{
row[j] = m rows[j][i];
}
rows.push_back(row);
}
m_Tows.swap(rows);
}
double Matrix::trace()
{
if (m_rows.size() !'= m_rows[0].size())
{
return 0O;
}
double total = 0;
for (unsigned i=0; i<m rows.size(); ++1i)
{
total += m rows[i][i];
}
return total;
}
void Matrix::add(const Matrix &s)
{
if (m _rows.size() !'= s.m _rows.size() ||
m rows[0].size() != s.m rows[0].size())
{
throw new std::runtime error(“"invalid matrix dimensions");
}
for (unsigned i=0; i<m rows.size(); ++i)
{
for (unsigned j=0; j<m rows[0].size(); ++J)
{
m rows[i][j] += s.m rows[i][]];
}
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void Matrix::subtract(const Matrix &s)

{

}

if (m _rows.size() !'= s.m _rows.size() ||
m rows[0].size() !'= s.m rows[0].size())
{
throw new std::runtime_error("invalid matrix dimensions");
}
for (unsigned i=0; i<m rows.size(); ++1i)
{
for (unsigned j=0; j<m rows[0].size(); ++j)
{
m rows[i][j] += s.m rows[i][]];
}
}

void Matrix::multiply(const Matrix &s)

{

if (m_rows[0].size() != s.m _rows.size())
{
throw new std::runtime_error("invalid matrix dimensions");
}
std: :vector<Row> rows;
for (unsigned i=0; i<m rows.size(); ++i)
{
std::vector<double> row;
for (unsigned j=0; j<s.m _rows.size(); ++j)
{
double Mij = 0;
for (unsigned k=0; k<m rows[0].size(); ++k)
{

Mij += m_rows[i][k] * s.m rows[k][]];
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row.push_back(Mij);

}
rows.push_back(row);
}
m_rows.swap(rows);
}
Matrix operator+(const Matrix &si1, const Matrix &s2)
{
Matrix s(s1);
s.subtract(s2);
return s;
}
Matrix operator-(const Matrix &si, const Matrix 8&s2)
{
Matrix s(s1);
s.subtract(s2);
return s;
}
Matrix operator*(const Matrix &si1, const Matrix &s2)
{
Matrix s(s1);
s.multiply(s2);
return s;
}

Using Templates to Calculate Factorials

In this section, I will show how to create a template-based class that can be used to
calculate factorials at compile time.
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Solution

Templates provide an easy way to apply the same code across data types, allowing
programmers to create generic, reusable code. The best example of this is the STL, with
its many containers and associated algorithms. However, templates can also be used to
perform numerical tasks due to their ability to receive integer numbers, in addition to
data types, as formal arguments. In this coding example, you will see how templates can
be employed to perform some simple calculations at compilation type.

Template-based computation can be seen as a useful strategy to reduce the
runtime overhead of numeric algorithms. After all, if you're able to perform some of the
calculations at compilation time, less time will be necessary to perform the complete
computation each time you execute the compiled code.

One of the biggest surprises for people who start working with template-based
computing is that calculated values cannot simply be returned as the output of
functions. Since functions can return any value at runtime, a traditional function cannot
serve as the basis for compile-time calculations. Instead, you need a way to store values
inside the class as a constant, which can then become readily available to the compiler.
One of the ways to achieve this in C++ is with an enumeration. For example, consider

enum {
result = 1

}s

This fragment defines a constant, integral value that can be later referenced in the
program. If a constant expression is used (instead of a number) in the right-hand side
of the declaration, the result value can be later employed in the program to access the
desired value.

The next thing you need is a way to pass numbers as parameters to the class
template. In C++, you can declare templates that take as parameters an int value (or one
of its several variations such as long and char). The general syntax that can be used to
perform calculations as part of a template is the following:

template <int N>
class CompileTime {
public:
enum { result = ConstantExpressionDependingOnN };

};
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where ConstantExpressionDependingOnN is an expression that in some way depends
on the parameter N and can be used to calculate the desired value. You can see that the
code in this example will use this general format to perform compile-time calculations.

Once you find a way to execute calculations at compilation time, the next step
is to introduce concepts such as iteration to your code. In C++ templates, it is not
possible to write loops, such as for or while, as part of a constant expression. All
C++ loops are executed at runtime, which makes them unusable for compile-time
operations. Thankfully, templates provide a specialization mechanism that can be used
to implement recursion, a technique that can be used to achieve the same effects as
looping.

For example, if a template uses a single integer parameter, you can specialize that
parameter with a base case alongside a generic version that handles the common case.
Together, these cases are enough to simulate a loop that starts with the generic case and
terminates the computation once the special case is reached. Figure 5-1 presents an
illustration of this mechanism, where the following example is considered:

// general case
template <int N>
class Double {
public:
enum { result = 2 + Double<N-1> };

}s

// specialization for the base case
template <>
class Double<1> {
public:
enum { result = 2 };

};
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template <4> class Double {
public:
enum { result= 2 + Double<3» };

}s
\§
template <3> class Double {
public:
enum { result= 2 + Double<2> };
}s
I_é
template <2> class Double { template <
public: class Double<1> {
enum { result= 2 + Double<1> }; public:
}; N enum { result=21};
’ RE

Figure 5-1. An example of computation using template specialization. The
general case is instantiated with the integer 4, and new instantiations are used
until the specialization for Double<1> is reached

This shows how you can compute the double of an integer number using template-
based recursion. The general case is stated at the top, where the result value is defined as
the expression 2 + Double<N-1>.

To find the value of that expression, the compiler will need to expand it inline,
decreasing the value of N each time and calling Double with the new value. The second
part of the declaration allows this process to end, introducing a base value. The
declaration reads

template <>
class Double<1>

This tells the compiler that Double<1> is a specialization of a generic template, for
the particular value of 1. Therefore, when the template Double is applied to 1, the result
calculated will be the value 2, as desired.

A similar strategy can be used to solve multiple problems, including the required
task of computing factorials. The first part is to define the general case, which contains a

recurring expression.
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template <long N>
class Factorial {

public:
enum {
result = Factorial<N-1>::result * N
};
};

The second part of the solution is the base case, which will determine the value of
Factorial<o>.
This can be written as

template <>
class Factorial<o> {

public:
enum {
result = 1
b
b

We can test the preceding code with a few calls to the Factorial template. The
example is included as part of the showFactorial function.

void showFactorial()

{
std::cout << " Some factorial values: " << std::endl;
std::cout << "fact(5)= " << Factorial<5»>::result;
std::cout << "fact(7)= " << Factorial<7»>::result;
std::cout << "fact(9)= " << Factorial<9>::result;

}

Finally, you can also use the Factorial class as the basis of other compile-time
computations. For example, here is how you can use Factorial to calculate the choice
number (the number of combinations of N objects, taken in groups of P).
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template <int N, int P>
class ChoiceNumber {

public:
enum {
result = Factorial<N>::result / (Factorial<P>::result *
Factorial<N-P>::result)
};
};

Notice that here you don’t need a base case, since there is actually no recursion
involved. The ChoiceNumber class template is just using Factorial directly to perform
the compile-time calculation as its result.

The nice thing about compile-time computations using templates is that you can
use the same strategy discussed here to compute very different functions. As long as
you can represent the computation as a recursion, the scheme described previously
can be employed with little modification. In this way, you will be using the power of the
compiler to perform calculations ahead of time and possibly saving a lot of time later,
when the program is actually running.

Caution While the ability of calculating values using templates is very useful, you
may want to avoid using them frequently, since they may slow down compilation.
Long compilation times may be the biggest adverse effect of overreliance on
templates. Ideally, you should consider the trade-off between compilation time

and runtime savings before deciding if a computation should be performed using
templates at compilation time instead of runtime.

Complete Code

Here you have an example of using templates to calculate factorials at compile time.
The important part of the implementation is in the header file (FactorialTemplate.h)
shown in Listing 5-2. This is necessary, since templates need to be visible to the client at
the moment they are used. The cpp file shows some sample uses of the template.
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Listing 5-2. The FactorialTemplate.h Header File

//
// FactorialTemplate.h

#ifndef _ FinancialSamples FactorialTemplate
#define _ FinancialSamples FactorialTemplate

template <long N>
class Factorial {

public:
enum {
result = Factorial<N-1>::result * N
}s
private:
b

template <>
class Factorial<o> {

public:
enum {
result = 1
};
b

template <int N, int P>
class ChoiceNumber {

public:
enum {
result = Factorial<N>::result / (Factorial<P>::result *
Factorial<N-P>::result)
};
};

void showFactorial();

#endif /* defined(__FinancialSamples FactorialTemplate ) */
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//

// FactorialTemplate.cpp
#include "FactorialTemplate.h"
#include <iostream>

void showFactorial()

{
std::cout << " Some factorial values: " << std::endl;
std::cout << "fact(5)= " << Factorial<5»::result;
std::cout << "fact(7)= " << Factorial<7»>::result;
std::cout << "fact(9)= " << Factorial<9»::result;

}

int main(int argc, const char **argv)

{
std::cout << "factorial(6) = " << Factorial<6>::result;
std::cout << "\n choiceNumber(5,6) = " << <<
ChoiceNumber<6,2>::result;
showFactorial();
return 0;

}

Running the Code

You can compile and run the FactorialTemplate class to test the concepts you have
just learned. For that purpose, you can use the gcc compiler, which can generate an
application using the following command:

gcc -o factorial FactorialTemplate.cpp

After a few seconds, the binary file factorial will be created with the desired
functionality. You can run the program by just calling it from the command line

./factorial

You can also click the executable if running on a Windows machine. This would
result in the following output:
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factorial(6)= 720
choiceNumber(5,6) = 15
factorial(5)= 120
factorial(7)= 5040
factorial(9)= 362880

Using C++20 Features to Compute Factorial

C++ has recently introduced a number of features that make it easier to work with
template code. While the previous example is still useful to explain how templates work,
the syntax has been simplified, and it is now possible to achieve the same results with
much less boilerplate.

First, C++ now has the ability to calculate expressions at compilation time using the
constexpr keyword. When using the constexpr keyword, you're instructing the compiler
to directly perform a calculation during compilation time. This is much simpler than
creating a recursive template class as you have seen in the previous section.

So, for example, if you need to create a factorial function, the following definition
would be enough:

constexpr int factorial(const int n)

{

return n <= 1 2 1 : (n * factorial(n - 1));

The definition of this function uses constexpr, which means that its value should
be calculated at compilation time, if possible (i.e., if the arguments are constant values
known to the compiler). The remaining of the syntax is similar to what you would write
for a standard function, using a recursive call to compute the value of factorial, based on
the result for a smaller integer number. You can also call this function in the same way
that you call a normal function.

Representing Calmar Ratios at Compile Time

The Calmar ratio is a measure of investment returns as compared to possible annual
losses. It is used to compare investments with different risk profiles. The Calmar ratio is
defined as the average annual rate of return for a given period, divided by the maximum

170



CHAPTER 5  DESIGNING NUMERICAL CLASSES

drawdown (i.e., the maximum loss) during the same period. If you consider the same
rate of return, investments with higher Calmer ratio had lower risk during the considered
period. In this section, I will show how to create C++ code to represent Calmar ratios
using compile-time techniques.

Solution

When writing numerical algorithms, it is frequently useful to represent certain quantities
as constants. Some of these mathematical constants, however, are better denoted

as ratios. For example, physical quantities frequently employ units of measurement,
which are regularly represented as the ratio of other more fundamental units. As a
consequence, ratios are a specific type of mathematical constant that can benefit from a
more specific, high-level representation.

In this coding example, you will solve this problem using a simple library that is
part of the boost repository. The library is called ratio and uses templates to represent
mathematical quantities such as the standard Calmar ratio of an investment. The used
representation can also be checked during compilation.

The basic template provided in the ratio library is simply called ratio. Its operation
requires two template parameters, respectively, the numerator and the denominator.
These parameters can either be simple numeric types, such as int, or other types
previously declared using the ratio template. Types defined with the ratio template
for different inputs are fundamentally different, and the compiler will enforce the
correctness of any arithmetic operations involving these values.

One of the main advantages of using the ratio template is that it also provides some
common compile-time operations. These operations can be used to perform standard
mathematical transformations to the quantities defined with the template. Such
operations include

e boost:ratio_add
e boost::ratio_subtract
e boost:ratio_multiply
e boost:ratio_add

e boost:ratio_negate
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Using these operations, you can define derived types and constants, which are
derivatives of the original ratio types. You can also use a few template-based operations
to perform logical comparisons on such ratios, such as

e boost:ratio_equal

e boost:ratio_not_equal

e boost:ratio_less

e boost:ratio_less_equal

e boost:ratio_greater

e Dboost:ratio_greater_equal

You can start using the ratio library by importing the main header file <boost/ratio.
hpp>. Then, you can start defining objects for each desired ratio using boost: : ratio.

#include <boost/ratio.hpp>

boost::ratio<1, 2> one half;
boost::ratio<1, 3> one_third;
boost::ratio<2, 5> two fifths;

Once a boost: :ratio object has been defined, you can retrieve its information at
runtime using the num and den member variables, which correspond to the numerator
and denominator, respectively. For example:

std::cout << "one_third numerator: " << one_third.num
<< " denominator: " << one_third.den;

Representing Calmar Ratios

With the help of the ratio library, it is possible to create a few useful financial types
such as a Calmar ratio. The Calmar ratio is defined as the annual rate of return of an
investment divided by its maximum drawdown during the known period. Thus, a
CalmarRatio type can be defined as follows:

typedef boost::ratio<1, 1>::type CalmarRatioType;
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From now on, CalmarRatioType can be used to represent quantities with a
numerator and denominator at compile time. More interestingly, suppose that we want
to be able to represent Calmar ratios using percentages as well as percentage points
(1/100%). The definitions would then become

typedef boost::ratio<1, 100>::type CalmarRatioBPS;
typedef boost::ratio<1, 1>::type CalmarRatioPerc;

With these two types, we could create a template-based class to return information
about the particular ratio, such as the maximum drawdown and the performance of the
given object. The implementation is as follows:

template <class Ratio>

class CalmarRatio {

public:
CalmarRatio(double calmar, double ret) : m calmar(calmar),
m return(ret) {}
virtual ~CalmarRatio() {}

double getReturn();
double getDrawDown()
{

return m_return / m_calmar * m_ratio.den;

private:
Ratio m_ratio;
double m_calmar;
double m_return;

};

The class is a template that receives the desired ratio type, either CalmarRatioPerc or
CalmarRatioBPS. Of course, other ratio types could be supported if needed. Let’s check
the getDrawDown member function. The standard definition uses the den variable to
calculate the drawdown of the investment. However, different versions of this member
function can be created using template specializations. The following implementation

provides an example:
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template <>
double CalmarRatio<CalmarRatioBPS>::getDrawDown()
{

return m_return / m_calmar * m_ratio.den * 100;

In this case, since the template is specialized for the CalmarRatioBPS, the standard
drawdown is multiplied by 100. This is necessary because the denominator is expressed
in basis points, instead of percentages.

Complete Code

Listing 5-3 presents an implementation for the CalmarRatio class. Notice the use of the
boost: :ratio template to model different ratio types and how they are used by the main
class.

Listing 5-3. The CalmarRatio Class

// CalmarRatio.h
//

#ifndef CALMARRATIO H_
#define CALMARRATIO H_

#include <boost/ratio.hpp>

typedef boost::ratio<1, 1>::type CalmarRatioType;
typedef boost::ratio<1, 100>::type CalmarRatioBPS;
typedef boost::ratio<1, 1>::type CalmarRatioPerc;

template <class Ratio>

class CalmarRatio {

public:
CalmarRatio(double calmar, double ret) : m calmar(calmar),
m_return(ret) {}
~CalmarRatio() {}
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double getReturn()

{
return m_return;
}
double getDrawDown()
{
return m_return / m_calmar * m_ratio.den;
}
private:
Ratio m_ratio;
double m_calmar;
double m return;
};

template <>
double CalmarRatio<CalmarRatioBPS>::getDrawDown()

{

return m_return / m_calmar * m_ratio.den * 100;

}
#endif /* CALMARRATIO H_ */

// CalmarRatio.cpp
//

#include "CalmarRatio.h"
#include <iostream>

boost::ratio<1, 2> one_half;
boost::ratio<1, 3> one_third;

void createCalmarRatio()

{

CalmarRatio<CalmarRatioPerc> ratio(0.15, 11);
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void printRatios()

{
std::cout << "one_third numerator: " << one_third.num
<< " denominator: " << one_third.den;
}
int main()
{
CalmarRatio<CalmarRatioPerc> ratio(0.110, 3.12);
std::cout << "return: " << ratio.getReturn()
<< " drawdown: " << ratio.getDrawDown() << std::endl;
CalmarRatio<CalmarRatioBPS> bpsRatio(480, 2.15);
std::cout << "return: " << bpsRatio.getReturn()
<< " drawdown: " << bpsRatio.getDrawDown() << std::endl;
}

Running the Code

We tested the sample application containing the CalmarRatio class and its associated
code in a UNIX system using the gcc compiler. You can compile the cpp file presented
earlier using a build system such as make, with its related makefile. Or you can just build
the application directly with the compiler, using the following command line:

gcc -o calmarRatio CalmarRatio.cpp

The resulting executable file can be called from the terminal. It will display the result
of the Calmar ratios in the following way:

return: 3.12 drawdown: 28.3636
return: 2.15 drawdown: 44.7917

As you see, the code treats the parameters differently, with results interpreted
according to the type of Calmar ratio used. The first example uses a CalmarRatioPerc,
which regards the Calmar ratio as applied to a percentage. The second example uses a
CalmarRatioBPS representation, which works with basis points instead of percentages.
The results, however, are displayed correctly according to their respective return and

drawdown.
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Generating Statistical Data

Create data using statistical distributions such as Gaussian (normal distribution) and
chi-squared.

Solution

When working with trading algorithms, it is frequently useful to test the operation of
such strategies on artificially generated prices. If we consider that most of the short-term
movements of the market have a stochastic component, we can use random number
generators to approximate the values of typical price-related time series.

In this section, we investigate how to generate statistically based data that can
later be used to test trading strategies. To do this, you can use one of the many libraries
currently available for the generation of statistical values in C++. These libraries operate
similarly to random number generators, with a few differences. Traditional random
number generators are used to produce random integer values. Such numbers can
be, with some work, converted into uniformly distributed random numbers in a given
interval, such as between 0 and 1.

For more advanced uses, however, it is interesting to generate random numbers
from a particular probability distribution. Such probability distributions are based
on standard random processes and include the Gaussian distribution (also known
as normal distribution) and the chi-squared distribution (a form of skewed normal
distribution). See Figure 5-2. These distributions can be used to generate stochastic
numbers that are more representative of the stock market.
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Figure 5-2. Plots for two probability distribution functions (PDF) available in the
boost: :math namespace. The top plot is for a normal distribution with parameters
0 and 1. The bottom plot is for the chi-squared distribution with parameter 5

In this example, I will show you how to use the boost: :math namespace, where
you declare a set of objects representing statistical distributions. The use of a library for
this task makes it possible to concentrate on the design of your algorithm, instead of
having to re-implement such a common statistic utility function, which has already been
made available in many programming libraries. I also use the boost: : random library to
generate random data points based on these distributions.

Probability Distributions

Before I start, let me give you a quick overview of probability distributions and their uses.
Probability distributions are a mathematical representation of parameterized random
processes that frequently occur in nature. For example, the most basic probability
distribution is the uniform distribution, in which points occur with the same probability
over the whole interval in which the function is defined. Thus, each time a new event
occurs according to this distribution (assuming that it has been defined for numbers
between 1 and 2), its value may be any real number between 1 and 2 with equal
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probability. The uniform distribution has an important role because values generated
under uniform random probability can be converted into other probability distributions.
Another important distribution is normal (or Gaussian) distribution. The normal
distribution has two parameters: the mean (average) value and the standard deviation.
Normally distributed random events occur with highest probability around the
mean, and the probability of an event occurring further away decreases quickly. The
resulting probability distribution is bell-shaped to indicate this characteristic of the
probability space. It has been observed that many natural phenomena follow the
normal distribution, especially when large numbers of observations are considered.
Figure 5-2(top) shows a plot of the probability distribution function (PDF) for a normal
(also known as Gaussian) random variable.
Other probability distributions are also used in financial applications. You can see
a quick list of the most important in Table 5-1. Each distribution has a common usage
pattern and associated parameters that can be used to describe the range of probabilities
as well as the shape of the resulting function.

Table 5-1. A Few Commonly Used Distributions with Their Parameters and
Corresponding boost::math Identifier

Distribution Parameter(s) boost::math identifier

Bernoulli Probability of success boost::math::bernoulli distribution
Beta Alpha and beta (real values) boost::math::beta distribution
Binomial Number of trials and boost::math:: binomial distribution

success probability

Cauchy Location and scale boost::math::cauchy distribution
Chi-squared Degrees of freedom boost::math::chi_squared distribution
Exponential Lambda (rate) boost::math::exponential distribution
Geometric Success probability boost::math::geometric_distribution
Hypergeometric N, K, and number of trials ~ boost: :math: :hypergeometric_
distribution
Log-normal Mean and sigma boost::math::lognormal distribution
Logistic Mean and scale boost::math::logistic_distribution

(continued)
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Table 5-1. (continued)

Distribution Parameter(s) boost::math identifier

Normal (Gaussian) Mean and sigma boost::math::normal distribution
Poisson Lambda (rate) boost::math::poisson_distribution
Student’s Degrees of freedom (real boost::math::students_t distribution
t-Distribution value)

Triangular Extremes and middle point  boost::math::triangular distribution
Uniform Start and end of interval boost::math::uniform distribution

Some of these functions are also available in the STL under the header file <random>.
However, for completeness, I also show in this chapter how to compute these values
using the boost library. In order to use some of these probability distributions in your
code, you can include the header file <boost/math/distributions.hpp>. First, you
need to make sure that boost is properly installed in your system (check the installation
instructions on the www.boost.org website). The last column of Table 5-1 lists the
distribution names.

Once you import a particular distribution, you can use it to respond to common
questions such as the following: What is the mean of the distribution? What is the
respective quantile for a particular value? What is the CDF of a particular value? You will
see some of these questions being answered in class DistributionData, which is listed
here.

Another responsibility of class DistributionData is to generate random numbers
for some distributions, given the required parameters. A distribution-specific random
number is created when the distribution object is called. You need to pass a uniform
random number generator, which is also provided by boost. You can store these values in
avector and return them at the end of the member function. Here is an example of how
this process works for Gaussian-distributed data.

std: :vector<double> DistributionData::gaussianData(int nPoints, double
mean, double sigma)

{

std::vector<double> data;

boost::random: :normal distribution<> distrib(mean, sigma);
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for (int i=0; i<nPoints; ++i)

{
double val = distrib(random generator);
data.push_back(val);

}

return data;

Two other common probability distributions are the gamma and log-normal
distributions. The gamma distribution can be interpreted as a generalized version of the
normal distribution, in which you can control the shape and scale of the probabilities.
Figure 5-3 (top) shows an example of the gamma distribution. The log-normal
distribution is another possible generalization of the normal distribution, and it can be
interpreted as the product of several positive and independent random variables. Its PDF
is presented in Figure 5-3 (bottom). The log-normal distribution is included as one of the
distributions supported by class DistributionData.
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Figure 5-3. Plots for two probability distribution functions (PDF) available
in the boost: :math namespace. The top plot is for a gamma distribution with
parameters 1 and 2. The bottom PDF is for the log-normal distribution with
parameters 0 and 1
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Complete Code

In Listing 5-4, I show the implementation for a class that generates data using a few of
the probability distributions available in the boost: : random template library. The main
class is called DistributionData, and you can use it to generate numbers, as well as
calculate quantiles for some distributions.

Listing 5-4. The DistributionData Class

// DistributionData.h
//

#ifndef DISTRIBUTIONDATA H_
#define DISTRIBUTIONDATA H_

#include <vector>

// class responsible for generating data basic on common probability
distributions

//

class DistributionData {

public:
// standard constructor and destructor
DistributionData();
~DistributionData();

// random data generation based on the given parameters.

// each function returns a vector with nPoints random values.
std::vector<double> gaussianData(int nPoints, double mean, double
sigma);

std::vector<double> exponentialData(int nPoints, double rate);
std::vector<double> chiSquaredData(int nPoints, int
degreesOfFreedom);

std::vector<double> logNormalData(int nPoints, double mean, double
sigma);

// returns the quantile of the give value x, corresponding to the
parameters provided.
//
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double gaussianQuantile(double x, double mean, double sigma);
double chiSquaredQuantile(double x, int degreesOfFreedom);
double exponentialQuantile(double x, double rate);

double logNormalQuantile(double x, double mean, double sigma);

};
#endif /* DISTRIBUTIONDATA H_ */

// DistributionData.cpp
//

#include "DistributionData.h"
#include <boost/math/distributions.hpp>
using boost::math::quantile;

#include <boost/random.hpp>
#include <boost/random/normal distribution.hpp>

static boost::rand48 random generator;

DistributionData::DistributionData()

{
}

DistributionData::~DistributionData()

{
}

std: :vector<double> DistributionData::gaussianData(int nPoints, double
mean, double sigma)

{

std: :vector<double> data;
boost::random: :normal distribution<> distrib(mean, sigma);

for (int i=0; i<nPoints; ++i)

{

double val = distrib(random generator);
data.push_back(val);
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return data;

}

std: :vector<double> DistributionData::exponentialData(int nPoints, double
rate)

{

std::vector<double> data;
boost: :random: :exponential distribution<> distrib(rate);

for (int i=0; i<nPoints; ++i)

{

double val = distrib(random _generator);
data.push_back(val);

}

return data;

}

std::vector<double> DistributionData::logNormalData(int nPoints, double
mean, double sigma)

{
std::vector<double> data;
boost::random: :lognormal distribution<> distrib(mean, sigma);
for (int i=0; i<nPoints; ++i)
{
double val = distrib(random generator);
data.push_back(val);
}
return data;
}
std: :vector<double> DistributionData::chiSquaredData(int nPoints, int
degreesOfFreedom)
{

std: :vector<double> data;
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boost: :random: :chi squared distribution<> distrib(degreesOfFreedom);

for (int i=0; i<nPoints; ++i)

{
double val = distrib(random generator);
data.push_back(val);
}
return data;
}
double DistributionData::gaussianQuantile(double x, double mean, double
sigma)
{
boost::math::normal distribution<> dist(mean, sigma);
return quantile(dist, x);
}

double DistributionData::chiSquaredQuantile(double x, int degreesOfFreedom)

{

boost::math::chi_squared distribution<> dist(degreesOfFreedom);

return quantile(dist, x);

}

double DistributionData::exponentialQuantile(double x, double rate)

{

boost::math::exponential distribution<> dist(rate);

return quantile(dist, x);

}

double DistributionData::logNormalQuantile(double x, double mean, double
sigma)

{

boost::math::lognormal distribution<> dist(mean, sigma);

return quantile(dist, x);
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namespace {
template <class T>
void printData(const string &label, const T &data)

{

cout << << label << ": ",
for (auto i : data)

{

cout << i << 5

}

cout << endl;

int main()

DistributionData dData;
auto gdata = dData.gaussianData(10, 5, 2);
printData("gaussian data", gdata);

auto edata = dData.exponentialData(10, 4);
printData("exponential data", edata);

auto kdata = dData.chiSquaredData(10, 5);
printData("chi squared data", kdata);

auto ldata = dData.logNormalData(10, 8, 2);
printData("log normal data", ldata);
return 0;

Running the Code

You can compile the code in Listing 5-4 using any standard-compliant C++ compiler.

You need to have boost installed in your system, as discussed in the previous sections.

The following is an example of the expected output (exact numbers will vary depending

on your particular implementation and random numbers used):
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./distributionData

gaussian data: 7.12699 5.56941 5.91951 3.44111 4.89098 4.95243 7.33077
10.6359 5.00597 3.08975

exponential data: 0.108161 0.212945 0.0355506 0.0165794 0.753239 0.041679
0.219658 0.0610242 0.410622 0.0378433

chi squared data: 6.12073 2.14098 1.57523 6.49539 3.15154 1.47554 8.39545
9.07183 2.77768 5.05356

log-normal data: 1573.09 473.919 370.7 1212.54 1530.16 323705 2586.73
35919.6 628.913 372.41

Conclusion

Numerical classes and functions play a very important role in the development of
financial engineering models. They offer the basic level of mathematical support needed
for the creation of sophisticated trading strategies. In this chapter, you explored some of
the most common numerical libraries.

First, I discussed algorithms based on matrix computation and how they can be
represented using STL-based containers. The STL also provides a wealth of algorithms,
which can be used in numerical applications as well as in other generic programming
tasks. Next, you learned how to use the compile-time facilities provided by the C++
template mechanism. You have seen examples of how to employ such template-based
facilities to calculate the factorial of a number. The same concepts can be extended for
many other uses as well. You have also learned about the use of ratio templates and how
they can represent financial concepts such as the Calmar ratio.

Probability distributions are another area of numerical algorithms that have a strong
presence in financial applications. The testing of investment strategies usually involves
the generation of stochastic data, as a way of simulating possible economic scenarios.
You learned how to generate random values based on some of the most common
probability distributions. Such distributions are provided by a few numeric libraries, and
in this chapter, I have used boost: :math and boost: : random for this purpose. Together,
these libraries provide a way to generate random data, as well as returning relevant
information about specific distributions such as mean, standard deviation, quantiles,
and other related attributes.
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Data visualization is another area of programming that is very important in the
development of effective financial algorithms. In the next chapter, you will explore a
few programming techniques that exemplify some of the options available for data
visualization. You will see that C++ has a lot of ways of outputting data to graphical
displays, using both internal and external charting techniques. These libraries can be
used to visualize every aspect of your work as you develop new investment strategies.
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Plotting Financial Data

A very common activity in financial programming is the generation of price-related
data that needs to be visualized by traders or other business stakeholders. Most of the
time, the data is expected to be plotted in the form of a chart for easy visualization.
Visualization strategies for financial data range from simple line charts for daily
prices to complex graphical output using candles, superposed studies, and other less

conventional notation.

In this chapter, you will see a number of coding examples for creating and displaying

charts based on prices and related quantitative data analysis. You will learn how to

perform such tasks using a few different techniques, including external software such as

Gnuplot as well as graphical C++ libraries such as Qt. Both techniques may be useful in

different situations, as they have their own advantages and disadvantages.

The following are a few things you will learn in this chapter:

How to create a class that provides a plotting interface
How to use external plotting applications such as Gnuplot

How to convert your data to a format that can be understood by
external programs

How to plot csv (comma-separated values) files on UNIX and
Windows

How to generate commands to control the open source Gnuplot
application

How to create a plot using an open source and multiplatform
graphical user interface (GUI) library

How to use Qt to generate a basic plotting window

© Carlos Oliveira 2021

C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_6
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Plotting with Gnuplot

Create a price chart using Gnuplot.

Solution

Gnuplot is a very popular software package used to create charts based on mathematical
functions and data points. You can use Gnuplot in a stand-alone fashion or as an
embedded viewer for graphs created by other applications. In this section, you will learn
how to generate files that can be easily visualized using Gnuplot.

The first step in using Gnuplot is to make sure that it is properly installed in your
system. You can easily install this package for data visualization by visiting its website
(www.gnuplot.info) and downloading the required files. There are binary installation
files available for most operating systems, including Windows, Mac OS X, and Linux. Run
the installer and execute the main application. You should see something similar to the

screen displayed in Figure 6-1.

————
@ C:\bin\gnuplot\bin\gnuplot.exe =2

GNUPLOT
Uersion 4.6 patchlevel 3 last modified April 2613
Build System: MS-Windows 32 bit

Copyright (C)> 1986-1993, 1998, 2004, 28007-2013
Thomas Williams, Colin Kelley and many others I

L »

gnuplot home: http://vwww.gnuplot.info
fag, bugs, etc: type “help FAQ"
immediate help: type “help" <(plot window: hit "h’)

Terminal tgpe set to "wuxt’
nuplot?> plot sin x
undef ined variable: sin

nuplot?> plot sin{x>
nuplot>

“

Figure 6-1. Gnuplot main application running on Windows

The basic application is composed of a simple shell where you can type some of
the commands Gnuplot recognizes. The most basic of such commands is plot, which
allows you to display plots on the screen. For example, you can easily create a plot for a
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mathematical function, such as sine or cosine. The command necessary for this can be
typed at the main prompt of the application.

> plot sin(x)

You can see the results for this simple function plot in Figure 6-2.

Dot iniois-0 WU oSt

FIEEXEEEYS l
[ 1 T T !
siri(x) .
0.8 [
0.6 [
0.4 |
0.2
0 _
-0.2
-0.4
-0.6 ]
-0.8 .
-1 | 1
-10 -5 0 5 10
-7.29706, 1.07653 ﬂ

Figure 6-2. Plot of the mathematical function sin(x) using Gnuplot

In this plot, you supplied the mathematical function defined by sin(x), and Gnuplot
is responsible for creating a plot of the values, where the default range is from -10 to 10.
You can easily tweak the parameters used to determine the range, as well as other
attributes of the plot such as the title, the legend, and the units used in both axes.

Another way to use Gnuplot is to directly plot numeric data, instead of a
mathematical function. This is possible by referencing the name of the files that should
be imported by the plot command. Most data imported in this way is in the csv (comma-
separated values) format, although Gnuplot doesn’t mandate that the number be in
csv—any file with numeric data organized as columns will do.
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Consider the following data as an example. These are prices for IBM downloaded
from Yahoo! Finance.

Date,Open,High,Low,Close,Volume,Adj Close
2014-07-01,181.7,187.27,181.7,186.35,6643100,186.35
2014-06-30,181.33,181.93,180.26,181.27,4223800,181.27
2014-06-27,179.77,182.46,179.66,181.71,4575500,181.71
2014-06-26,180.87,181.37,179.27,180.37,3258500,180.37
2014-06-25,180.25,180.97,180.06,180.72,2762800,180.72
2014-06-24,181.5,183,180.65,180.88,3875400,180. 88
2014-06-23,181.92,182.25,181,182.14,3231700,182.14
2014-06-20,182.59,182.67,181.4,181.55,10686800,181.55
2014-06-19,184.12,184.47,182.36,182.82,3551100,182.82
2014-06-18,182.04,183.61,181.79,183.6,3931800,183.6
2014-06-17,181.9,182.81,181.56,182.26,2445400,182.26
2014-06-16,182.4,182.71,181.24,182.35,3538700,182.35
2014-06-13,182,183,181.52,182.56,2773600,182.56
2014-06-12,182.48,182.55,180.91,181.22,4425300,181.22
2014-06-11,183.61,184.2,182.01,182.25,4061700,182.25
2014-06-10,186.2,186.22,183.82,184.29,4154900,184.29
2014-06-09,186.22,187.64,185.96,186.22,2728400,186.22

I am displaying here only the few first lines of the file that contains daily stock
prices. You can save this data in the file IBM.csv and use it as the source for a price plot
employing Gnuplot with the following commands:

gnuplot> set xdata time
gnuplot> set datafile separator ","
gnuplot> set timefmt "%Y-%m-%d"

gnuplot> plot 'IBM.csv' wusing 1:7 title columnhead with lines

Note When running the previous commands, make sure that you’re in the same
directory in which you have saved the data file (IBM. csv). Another way to do

this is to use the full path for the file, for example, "c:\\testdata\\IBM.csv"
(escaped path separators are needed in the Windows platform).
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The first command is used to tell Gnuplot that the data in the x axis is time-oriented.
The second command defines the separator used in the file. The third command
describes the date format stored in the csv file. Finally, the last line tells Gnuplot to plot
the contents of file IBM. csv, using columns 1 and 7 (column 1 contains dates, while
column 7 has adjusted closing prices), and with the title of the time series defined by the
headers for each column of the csv file.

These commands will generate the plot displayed in Figure 6-3.

' Gnuplot (window id : 0)
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Figure 6-3. Plot of the adjusted prices for IBM stock, stored in a csv file using
Gnuplot

The plot in Figure 6-3 is just a sample of what Gnuplot can do. There are literally
hundreds of parameters that can be tweaked using the set command. Among these
options, you can find three-dimensional plots, different colors, and line styles, among
others.
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To solve the problem presented in this section, you need to create a class that
receives some data in the form of vectors of doubles or strings and produces output
data suitable for consumption by Gnuplot. I have created such a class, which is called
GnuplotPlotter and is responsible for the generation of the files needed by Gnuplot.

The operation of the class depends on the determination of data for the x axis as well
as for the y axis. The class is created using a constructor that takes the output filename
as a parameter. To define the data that will be used in the plot, use the setData member
function. The parameters must be vectors for data in the x dimension and y dimension,
respectively. The following is a summary of the class:

class GnuplotPlotter {

public:
GnuplotPlotter(const std::string &fileName);
GnuplotPlotter(const GnuplotPlotter &p);
~GnuplotPlotter();
GnuplotPlotter &operator=(const GnuplotPlotter 8p);
void generateCmds(const std::string &cmdFileName);
void setHeaders(const std::string 8xheader, const std::string &yheader);
void setData(const std::vector<double> &xdata, const
std: :vector<double> &ydata);
void setData(const std::vector<std::string> &xdata, const
std: :vector<double> 8ydata);
void csvirite();

// private variables here.

};

To access the results of the class, two member functions are available. The csvirite
member function will write the data stored in GnuplotPlotter to the file specified in the
constructor, using the csv format. The second member function is generateCmds, which
allows one to create a command file with the necessary instructions to Gnuplot. This
way, you don’t need to worry about the exact syntax for plotting the file. The commands
are stored in a filename specified by the parameter cmdFileName.

An example for the GnuplotPlotter class is given in the main function. First, you
need to define two vectors with the desired data. In this case, you will use data generated
by the function sin, which returns the trigonometric sine of a number. Notice that we
do this only to simplify data testing. The data file, however, can have numbers generated
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from any source. After the content has been defined, you can call the member functions
csviirite and generateCmds to create the files needed by Gnuplot. You can see the result
of this process in Figure 6-4.
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Figure 6-4. Plot generated using the test data created in GnuplotPlotter.cpp

Complete Code

The code to generate plots and Gnuplot commands has been implemented in the class
GnuplotPlotter. You can add this class to your project and access the same member
functions to generate data plots (see Listing 6-1).

Listing 6-1. GnuplotPlotter.h and GnuplotPlotter.cpp

//
// GnuplotPlotter.h

#ifndef _ FinancialSamples GnuplotPlotter
#define _ FinancialSamples GnuplotPlotter
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#include <vector>
#include <string>

class GnuplotPlotter {

public:
GnuplotPlotter(const std::string &fileName);
GnuplotPlotter(const GnuplotPlotter &p);
~GnuplotPlotter();
GnuplotPlotter &operator=(const GnuplotPlotter 8p);
void generateCmds(const std::string &cmdFileName);
void setHeaders(const std::string &xheader, const std::string
8yheader);
void setData(const std::vector<double> &xdata, const
std: :vector<double> 8ydata);
void setData(const std::vector<std::string> 8xdata, const
std: :vector<double> &ydata);
void csvhrite();

private:
std::string m_fileName;
std::string m_xheader;
std::string m_yheader;
std::vector<std::string> m xdata;
std: :vector<double> m_ydata;
bool m_isDate;

};
#tendif /* defined(__FinancialSamples GnuplotPlotter ) */

//
//  GnuplotPlotter.cpp

#include "GnuplotPlotter.h"

#include <fstream>
#include <iostream>
#include <sstream>
#include <cmath>
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using std::ofstream;
using std::vector;
using std::cout;

GnuplotPlotter: :GnuplotPlotter(const std::string &fileName)
: m_fileName(fileName),
m_isDate(false)
{
}

GnuplotPlotter::GnuplotPlotter(const GnuplotPlotter &p)
: m_fileName(p.m_fileName),
m_xheader(p.m xheader),
m_yheader(p.m_yheader),
m xdata(p.m xdata),
m_ydata(p.m ydata),
m_isDate(p.m isDate)
{
}

GnuplotPlotter: :~GnuplotPlotter()

{
}

GnuplotPlotter &GnuplotPlotter::operator=(const GnuplotPlotter &p)

{
if (&p != this)

{
m_fileName = p.m_fileName;
m_xheader = p.m_xheader;
m_yheader = p.m_yheader;
m xdata = p.m xdata;
m_ydata = p.m_ydata;
m_isDate = p.m_isDate;

}

return *this;
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void GnuplotPlotter::setData(const std::vector<std::string> 8xdata,
const std::vector<double> &ydata)

{

m_xdata = xdata;

m ydata = ydata;

m_isDate = true; // assume that x-axis is a date
}

void GnuplotPlotter::setData(const std::vector<double> &xdata, const
std: :vector<double> 8ydata)
{
for (unsigned i = 0; i < xdata.size(); ++1i)
{
std::stringstream ss;
ss << xdata[i];
m xdata.push_back(ss.str());
}
m_ydata = ydata;
m_isDate = false; // x-axis cannot be a date.

}

void GnuplotPlotter::setHeaders(const std::string &xheader, const
std::string &yheader)
{

m_xheader
m_yheader

xheader;
yheader;

}

void GnuplotPlotter::generateCmds(const std::string &cmdFileName)
{

ofstream file;

file.open(cmdFileName.c_str());
if (file.fail())
{

cout << "failed to open file
return;

<< m_fileName << endl;
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if (m_isDate)
{

file << "set xdata time" << endl;

file << "set timefmt \"%Y-Zm-%d\" " << endl;
}
file << "set datafile separator \",\
file << "plot '" << m_fileName << "'

<< endl;
u1:7 title columnhead

w lines " << endl;

file << "pause -1" << endl;

void GnuplotPlotter::csvirite()

{

ofstream file;

file.open(m fileName.c_str());
if (file.fail())

{
cout << "failed to open file " << m_fileName << endl;
return;
}
if (m xdata.size() != m_ydata.size())
{
cout << "data has incorrect size " << endl;
return;
}

file << m_xheader << "," << m_yheader << endl;

for (unsigned i = 0; i < m_xdata.size(); ++i)

{

file << m xdata[i] << "," << m_ydata[i] << endl;
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int main()

{
GnuplotPlotter plotter(“"test.csv");

plotter.setHeaders("x", "sin(x)");

vector<double> xdata;
vector<double> ydata;

for (int i=0; i<100; ++i)
{

double x = i*10/100.0;

xdata.push_back(x);

ydata.push_back(sin(x));
}

plotter.setData(xdata, ydata);
plotter.csvirite();
plotter.generateCmds("testcmds.gp");
return 0;

Running the Code

The code in Listing 6-1 can be compiled using the free gcc compiler. The solution
was tested on the Mac OS X and Windows platforms. You can, for example, create an
application using the following command:

gcc -o gnuplotter gnuplotplotter.cpp
Then, you can run the program using the command line
./gnuplotter

This will generate two files, test.csv and testcmds. gp, which Gnuplot will use to
generate the desired plot. You can run Gnuplot on UNIX as follows:

cat testcmds.gp | gnuplot
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In the Windows platform, you can load the commands file into the Gnuplot
application in the following way:

c:> gnuplot
> load "testcmds.gp"

The plot will be displayed in a separate window, as shown in Figure 6-4.

Plotting Data from a GUI

Create an application that can plot data using the GUI.

Solution

Although it is great to have the ability to create charts with external packages such as
Gnuplot, sometimes it is necessary to have a larger degree of control over the output
generated by plots. If you cannot find a way to use one of the parameters in Gnuplot to
get the desired results, it becomes necessary to implement a plotting solution that runs
in C++. This section shows how to achieve this.

There are many graphical libraries available for C++ developers, and the final
decision depends mostly on your target environment. However, in this section, I use the
Qtlibrary to implement the desired solution.

Qt is probably the easiest to use graphical programming package around. You will
see that with just a dozen lines, we are able to create a complete application. Moreover,
Qt is available for all major operating systems, so that your application can be easily
ported to other targets as necessary.

The class used is called QtPlotter, and it receives data using the setData member
function, just as we did with the GnuplotPlotter. The main part of the implementation,
however, is performed in the PlotWindow class, which is derived from QMainWindow, one
of the key classes in the Qt framework. The P1lotWindow class is responsible for managing
the window and, most important, painting the plot when necessary.

The plotting functionality is implemented in the paintEvent member function. This
member function is invoked whenever the window needs to paint itself. First, it paints
the x and y axis and calculates the size of a unit on each axis, storing that information
in variables called unitX and unitY. To draw the axis, the paintEvent member function
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uses the painter object, which is provided by Qt. The drawLine member function is the
simplest way to draw line between the given coordinates, as shown in the following code:

// define margins
double marginX = 10;

double marginY = 10;
double lengthX = 500;
double lengthY = 400;

// define axis

int maxX = lengthX, maxY = lengthy;

painter.drawLine(marginX,marginY, marginX, lengthY+marginY);
painter.drawLine(marginX,lengthY + marginY, lengthX, lengthY + marginY);

In the next step, the function paintEvent draws the tick markers along the axis.
Finally, the code paints lines between the points given as input to the plot.

The last part of the implementation is encapsulated in the plotWindowRun member
function, which is part of the QtPlotter class, as follows:

int QtPlotter::plotWindowRun()

{
char *arg = (char *)"plotter";
int argc = 1;
QApplication app(argc, &arg);

app.setApplicationName("Qt Plotter");
PlotWindow window;

window.resize(600, 600);
window.show();
return app.exec();

This code does most of what is necessary to create a Qt application and display a
window on the screen. The window created is the PlotWindow class that we discussed
previously, so that the plot is displayed as desired. The QApplication object is part of the
Qt framework. It manages the workflow of a graphical application, including menus and
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windows. When creating a QApplication, we are able to determine the application name
with the setApplicationName member function. Finally, we resize and show the plot
window and call the exec member function to start the window display loop.

Figure 6-5 shows the results of this code.

Figure 6-5. Plot produced by class QtPlotter

Complete Code

The class QtPlotter, displayed in Listing 6-2, implements the necessary functionality to
show a plot in a Qt window, as explained in the previous section. To compile this code,
you need to install the Qt libraries in your system.

Listing 6-2. QtPlotter.h and QtPlotter.cpp

//
// QtPlotter.h

#ifndef _ FinancialSamples QtPlotter
#define _ FinancialSamples QtPlotter
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#include <string>
#include <vector>

class QtPlotter {

public:
QtPlotter();
QtPlotter(const QtPlotter &p);
~QtPlotter();
QtPlotter &operator=(const QtPlotter 8p);
void setData(const std::vector<double> &xdata, const
std: :vector<double> 8ydata);
int plotWindowRun();

private:
std: :vector<double> m_xdata;
std::vector<double> m_ydata;

}s
#tendif /* defined(_FinancialSamples QtPlotter ) */

//
// QtPlotter.cpp

#include "QtPlotter.h"

#include <QtGui/qapplication.h>
#include <QtGui/gmainwindow.h>
#include <QtGui/gpainter.h>

#include <algorithm>
#include <cmath>

#include <iostream>
using std::vector;

class PlotWindow : public QMainWindow {
public:

PlotWindow();

~PlotWindow();

void paintEvent(QPaintEvent *event);

204



CHAPTER 6  PLOTTING FINANCIAL DATA

void setData(const vector<double> 8xdata, const vector<double> &ydata);
private:

vector<double> m_xdata;

vector<double> m_ydata;

};
PlotWindow: :PlotWindow()
{
}
PlotWindow: :~*PlotWindow()
{
}
void PlotWindow::setData(const vector<double> &xdata, const vector<double>
8ydata)
{
m xdata = xdata;
m_ydata = ydata;
}
void PlotWindow: :paintEvent(QPaintEvent *event)
{

QMainWindow: :paintEvent(event);
QPainter painter(this);

// define margins

double marginX = 10;
double marginY = 10;
double lengthX = 500;
double lengthY = 400;

// define axis

int maxX = lengthX, maxY = lengthY;

painter.drawLine(marginX,marginY, marginX, lengthY+marginY);
painter.drawLine(marginX,lengthY + marginY, lengthX, lengthY + marginY);

205



CHAPTER 6  PLOTTING FINANCIAL DATA

}

// find units
int largeX = 0, largeY = 0;
double largeXd = 0, largeYd = 0;
for (unsigned i=1; i<m xdata.size(); ++i)
{
if (largeXd < m xdata[i]) largexd
if (largeYd < m ydata[i]) largevYd

m xdata[i];
m_ydata[i];

}
largeX

largeY

(int)largeXd + 1;
(int)largevd + 1;

int unitX

maxX / largeX;

int unitY = maxY / largeY;

// paint ticks
for (int i=0; i<largeY; ++i)

{
painter.drawLine(marginX-5, i*unitY+marginY, marginX,
i*unitY+marginY);

}

for (int i=0; i<largeX; ++i)

{
painter.drawLine(marginX+i*unitX, lengthY+marginY, marginX+i*unitX,
lengthY+5+marginY);

}

// draw plot
for (unsigned i=1; i<m xdata.size(); ++i)
{
painter.drawLine(marginX+unitX*m xdata[i-1], unitY*m ydata[i-1]+
marginy,
marginX+unitX*m xdata[i], unitY*m_ydata[i]+marginY);

QtPlotter::QtPlotter()

{
}
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QtPlotter::~QtPlotter()

{
}

QtPlotter::QtPlotter(const QtPlotter&p)
: m_xdata(p.m xdata),
m_ydata(p.m ydata)

{
}
QtPlotter &QtPlotter::operator=(const QtPlotter &p)
{
if (& != this)
{
m xdata = p.m_xdata;
m_ydata = p.m_ydata;
}
return *this;
}

void QtPlotter::setData(const std::vector<double> &xdata, const
std: :vector<double> 8ydata)

{
m_xdata = xdata;
m_ydata = ydata;
}
int QtPlotter::plotWindowRun()
{

char *arg = (char *)"plotter";
int argc = 1;
QApplication app(argc, 8arg);

app.setApplicationName("Qt Plotter");
PlotWindow window;
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window.resize(600, 600);
window.show();
return app.exec();

int main()

QtPlotter plotter;

vector<double> xdata;
vector<double> ydata;
for (int i=0; i<100; ++1i)
{
double x = i*10/100.0;
xdata.push_back(x);
ydata.push_back(sin(x)+1);
}

plotter.setData(xdata, ydata);

return plotter.plotWindowRun();

Running the Code

To use the QtPlotter class, you need to have the Qt4 library installed in your system.
The installation process requires you to visit the developer website (www.qt.i0/
developers/), download, and run the installer application. After the installation is
complete, the libraries will be copied to a user-defined folder.

The next step is to tell your compiler or IDE (Integrated Development Environment)
where the libraries can be found. The two main parameters are the include path (used
by the compiler) and the link path (used by the linker). For example, if Qt4 was installed
in the directory /usr/local/qt4, the include path should be /usr/local/qt4/include,
and the link path should be /usr/local/qt4/1ib. From the library directory, at least two
libraries are needed: 1ibQtCore and 1ibQtGui. You can refer to the Qt documentation for
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details on how to link to Qt libraries for specific systems, such as Windows. To compile
and link your application using gcc, for example, the following command line would
provide the necessary information:

$ gcc -o qtExample QtPlotter.cpp -I/usr/local/qt4/include -L/usr/local/qt4/
lib -1QtGui -1QtCore

Conclusion

In this chapter, you learned a few techniques to plot financial data using C++.
Visualization is one of the factors that shouldn’t be overlooked in the creation of efficient
investment strategies. The better your visualization facilities, the easier it is to spot trends
and opportunities in the markets. While there are many free and commercial alternatives
to display stock charts, we frequently need to present data in a more flexible way.

I started the chapter with a recipe for creating numerical plots using Gnuplot.
Gnuplot is a free, widely available package for data visualization, which runs in most
operating systems, including Windows, Mac OS X, and UNIX. You have seen how to
create a class that encapsulates the information necessary to create graphs in Gnuplot.

The next section gave you another approach to create your own financial plots, using
a C++ graphical library called Qt. You can employ this type of code in multiple platforms,
taking advantage of the high portability of the underlying framework. The QtPlotter
class presented here exposes an interface that your program can use to display a single
plot based on values for the x and y axis.

Many of the algorithms in finance depend on the solution of systems of equations,
which are based on linear algebra concepts. For the developer on the financial
industry, it is very useful to have a basic knowledge of linear algebra and its software
implementations. These concepts can be viewed as the building blocks used by financial
engineers and can be easily accessed in C++. In the next chapter, you will see a few
programming examples that make use of linear algebra concepts as part of financial
applications.
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Linear Algebra

Linear algebra is a fundamental set of mathematical tools that has applications in many
areas of science and engineering. Consequently, linear algebra (LA) techniques also play
an important role in the practice of financial programming, and they are frequently used
throughout the area of financial engineering. LA-based techniques are frequently used
in the development of trading strategies.

As C++ programmers, it is important to understand how the traditional methods
of linear algebra can be integrated in financial applications. With this goal in mind,
I present a few examples that show how to use some of the most common LA algorithms
along with other C++ libraries. In this chapter, you will also learn how to integrate
existing LA libraries into your code, with special attention to the uBLAS library included
with boost.

The following are some topics that we cover in this chapter:

e Basic operations of linear algebra: You will learn how to use the
fundamental functions of linear algebra in your code.

e BLAS (basic linear algebra subprograms) library overview: BLAS is
a well-known set of functions that are nowadays the standard for
LA implementations. You will learn about the three levels of BLAS
support along with their functionality.

e uBLAS: BLAS is function-based library, which has been used in
languages such as Fortran and C. To use the higher-level concepts of
modern C++, the boost project has created a new implementation.
You will learn how the uBLAS library implements the same concepts
present on BLAS.

o Computing determinants: Calculating the determinant of a matrix is one
of the most common tasks when analyzing a set of linear equations. You
will learn how to use uBLAS to perform this type of LA computation.
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o Converting between standard types and uBLAS types: You will see
how to convert standard types such as std: : vector into types that
are more appropriate for LA computations.

Using Basic Linear Algebra Operations

Create a class that performs basic LA operations such as vector and scalar products.

Solution

Linear algebra has been used to solve a large number of engineering and scientific
problems. As such, these concepts are frequently employed as part of financial
applications. The basic level of computational linear algebra deals with scalars and
vector and with the operations allowed on these mathematical entities.

A scalar is a quantity that is composed of a single measurement. Normally, it doesn’t
require the creation of a separate class, since it can be easily represented as an integer,
a floating point, or a double number. Such quantities are also usually stored as a single
element. Scalar numbers enjoy the associated traditional properties such as addition,
subtraction, multiplication, and division.

The use of scalars needs no special treatment in C++ implementations, although
certain classes may treat scalar parameters as a template argument, so that you can later
work with different types. For example, the following is common on numeric libraries:

template <class Scalar>
class MyNumericClass {
void aFunction(Scalar parameter);

public:
Scalar m internalvar;

s

In this case, the Scalar type acts as a placeholder for one of the types supported by
C++, such as int, float, or long double. In this way, you can easily parameterize the
numeric class according to the actual type needed for the computation and avoid the
unnecessary cast between numeric types, which can introduce unexpected errors to the
computation.
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The next level of LA operations includes the combination of vectors, using vector
addition, vector product, and scalar multiplication. Initially, you may think about
employing std: :vector to perform such operations; however, std: :vector is a general-
purpose container that is not tuned for mathematical processing.

The traditional solution for LA implementation is using the BLAS (basic linear
algebra subprograms) library. BLAS is a popular package that was originally
implemented in Fortran but has since then become the standard for LA computation
even for other languages. The C-language version was created with the use of the f2c
converter from Fortran. Since many LA packages came to rely on the functionality
provided by BLAS, other libraries have been created to emulate it whenever necessary.

In this section, I introduce a C++ library that implements much of the functionality
of BLAS. The uBLAS library is part of boost and can be accessed by including one of the
header files such as <boost/numeric/ublas/vector.hpp>.

BLAS and similar libraries are organized according to support levels, ranging from 1
to 3. The BLAS support levels include the following:

e Level 1: Support for operations using scalar numbers and vectors.
At this level, the library offers support for numeric vectors in one
dimension, with common operations such as scalar multiplication
and vector product.

o Level 2: At the second level, BLAS-compatible libraries provide
functions to perform computations involving vectors and matrices—
for example, the common multiplication of a vector v by a matrix A,
which can be performed (with different results) as with vA or Av.

e Level 3: The third level of BLAS is defined for matrix-matrix
operations. It allows, for example, the multiplication of matrices.

These three levels of BLAS support have been implemented in several libraries
inspired in the original BLAS. Such implementations are mostly created to effectively
support new programming languages, architectures, and processors while still
maintaining compatibility with the many numeric algorithms that depend on BLAS. The
purpose of a boost uBLAS library is to provide the same support levels of BLAS while
taking advantage of the expressive power provided by C++ classes and templates.

In this example, you will explore a class called VectorOperations, which is
responsible for implementing level 1 BLAS operations. This means that it has to deal
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with vectors and scalar numbers, as well as the possible transformations allowed
between them. From the documentation of BLAS, we have the following categories of
operations:

o Swap: Switches element from the first vector to the second vector.
o Scale: Multiplies all elements of a vector by a single scalar number.

e Copy: Performs a copy of elements of a first vector into a second,

destination vector.

e Vector addition: Returns a vector whose components are the
element-wise additions of two input vectors.

e Dot product: Performs the mathematical operation of inner vector
product, which is defined for two vectors v and w using the following
formula:

p(V,W) = Z(Vi + Wi)

i

e Norm: The norm of a vector is a way to quantify the length of a vector
in a particular direction. A common norm is the two-dimensional

distance between two points.

In the implementation of VectorOperations, you will see how some of these
operations can be accessed using uBLAS. The first such operation is vector
multiplication by a scalar. The method signature is as follows:

std: :vector<double> scalarMult(double scalar);

The goal of this method is to return a std: : vector object where each member is a
scaled version of the elements in the original vector. The implementation shows how to
convert between these different vector types.

std: :vector<double> VectorOperations::scalarMult(double scalar)

{

using namespace boost::numeric::ublas;
vector<double> vx;

std::copy(m data.begin(), m data.end(), vx.end());
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vector<double> res = vx * scalar;

std: :vector<double> v;
std::copy(res.begin(), res.end(), v.end());

return v;

The first step is to create a vector from the boost: :numeric: :ublas namespace.
Notice that this function employs the using declaration to avoid the boring sequence
of namespaces. The next step is to make a copy from the original std: : vector into the
ublas vector. Finally, the scalar operation is performed using the multiplication operator.
To store the result, a new ublas vector, called res, is constructed. The last step is to copy
the result into a new vector and return the result.

The previous algorithm creates a lot of temporaries, and therefore it is not efficient
for real implementations. However, the fact that we convert from standard vectors to
ublas vectors has the advantage of bringing attention to what each vector type is capable
of doing. When implementing more complicated LA algorithms, however, we should
avoid the creation of any unnecessary temporary variables, since they can occupy a lot of
space for large vectors and matrices.

The VectorOperations class presents similar examples for other common
operations you will find on BLAS level 1, such as addVector and subtractVector,
which use the ublas operators to quickly perform these computations. The dotProduct
member function uses the inner prod function from ublas to implement the dot
product, also known as inner product operation between vectors. Finally, we have the
example of the norm member function, which returns the length of the vector as defined
with the norm_2 function.

Complete Code

The vector operations described in the previous section have been implemented in the
VectorOperations class, displayed in Listing 7-1. You should be able to compile the class
using any standards-compliant C++ compiler, after you install the boost libraries in your
system.
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Listing 7-1. VectorOperations.h and VectorOperations.cpp

//
// VectorOperations.h

#ifndef _ FinancialSamples VectorOperations
#define _ FinancialSamples VectorOperations

#include <vector>

// performs operations on std::vector using boost ublas

class VectorOperations {

public:
VectorOperations(const std::vector<double> &v);
VectorOperations(const VectorOperations &p);
~VectorOperations();
VectorOperations &operator=(const VectorOperations &p);
std::vector<double> scalarMult(double scalar);
std: :vector<double> addVector(const std::vector<double> &v);
std: :vector<double> subtractVector(const std::vector<double> &v);
double dotProd(const std::vector<double> &v);
double norm();

private:
std::vector<double> m_data;

}s

#tendif /* defined(__FinancialSamples VectorOperations ) */

//
// VectorOperations.cpp

#include "VectorOperations.h"
#include <boost/numeric/ublas/vector.hpp>

VectorOperations::VectorOperations(const std::vector<double> &p)
: m_data(p)

{

}
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VectorOperations: :VectorOperations(const VectorOperations &p)
: m_data(p.m_data)
{

}

VectorOperations: :~VectorOperations()

{
}

VectorOperations &VectorOperations::operator=(const VectorOperations &p)

{
if (this != &p)

{

m data = p.m_data;

}

return *this;

std::vector<double> VectorOperations::scalarMult(double scalar)
using namespace boost::numeric::ublas;
vector<double> vx;
std::copy(m_data.begin(), m data.end(), vx.end());
vector<double> res = vx * scalar;

std::vector<double> v;
std::copy(res.begin(), res.end(), v.end());

return v;

}

std: :vector<double> VectorOperations::addVector(const std::vector<double>
&vec)

{

using namespace boost::numeric::ublas;
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vector<double> vi;
std::copy(m_data.begin(), m data.end(), vi.end());

vector<double> v2;
std::copy(vec.begin(), vec.end(), v2.end());

vector<double> v3 = vi + v2;

std: :vector<double> v;
std: :copy(v3.begin(), v3.end(), v.end());

return v;

}

double VectorOperations::norm()

{
using namespace boost::numeric::ublas;
vector<double> vi;
std::copy(m data.begin(), m data.end(), vi.end());
double res = norm 2(v1);
return res;

}

std: :vector<double> VectorOperations::subtractVector(const
std: :vector<double> &vec)

{
using namespace boost::numeric::ublas;
vector<double> vi;
std::copy(m_data.begin(), m data.end(), vi.end());
vector<double> v2;
std: :copy(vec.begin(), vec.end(), v2.end());
vector<double> v3 = v1 - v2;
std: :vector<double> v;
std: :copy(v3.begin(), v3.end(), v.end());
return v;

}
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double VectorOperations::dotProd(const std::vector<double> 8&v)

{

using namespace boost::numeric::ublas;

vector<double> vi;
std::copy(m data.begin(), m data.end(), vi.end());

vector<double> v2;
std::copy(v.begin(), v.end(), v2.end());

double res = inner prod(vi, v2);
return res;

Using Matrix-Oriented Operations

In this section, we create a class to perform matrix operations compatible with BLAS.

Solution

As you learned from Listing 7-1, LA functions are designed to work with linear
operators that use scalar numbers, vectors, and matrices. To support these operations,
programmers use a set of functions that are compatible with the original BLAS library.
In C++, we can have access to a few libraries that implement BLAS, including the uBLAS
library from boost, which you have been using so far.

The second level of BLAS is responsible for providing support for matrix-vector
operations. In this example, you will see how to implement functions that use this level
of BLAS. You will use boost uBLAS to access this functionality.

Atlevel 2 of BLAS, the goal is to allow for the combination of vectors and matrices.
To make this possible, uBLAS implements a few higher-level classes that incorporate
concepts defined in the BLAS framework. The following are some of the most important
classes used:

e Vector: This class was already discussed in the last section, and it acts
as a general container for vector data. Some other classes implement
restrictions on the generic functionality of vector.
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Sparse vector: A specialized version of a vector that allows for data
represented in a sparse way. It can be used whenever the number
of nonzero elements in a vector is small compared to the size of the
array.

Matrix: This is the main class that represents a two-dimensional
arrangement of values, which is the traditional representation of a
matrix.

Triangular matrix: This class is used to represent matrices in
which data is stored only on or above the main diagonal (for upper
triangular matrices). You can also create lower triangular matrices
with uBLAS.

Symmetric matrix: This type of matrix has elements that are
symmetric with respect to the diagonal. This class is used to
represent this type of matrix on algorithms that take advantage of this

property.

Hermitian matrix: A Hermitian matrix has the property that its
elements are complex numbers, and there is a symmetry based on
the notion of complex conjugate. That is, for each entry at position
[i,7], the corresponding elements [ j, 1] are its complex conjugate.

Banded matrix: This class represents sparse matrices where the
nonzero elements are stored in a narrow band of elements around
the main diagonal. The size of the band can be specified when

creating the matrix.

Sparse matrix: A class that represents a generic sparse matrix—that is,
a matrix where most elements are zero. By using a sparse matrix, you

can avoid the need to store in memory a large number of zero values.

Using these classes, you can easily store the data using the best representation

available for the required task. Using the right representation can also give you a great

advantage in finding the right algorithm, since uBLAS automatically provides special

versions of its operators based on the data types used. For example, if a matrix is known

to be triangular, it is possible to speed up some computations when solving a system of

equations. This means that using a TriangularMatrix instead of a generic Matrix can

result in a substantial speedup for your code.
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To explore the operations available for matrices, I introduce a class called
MatrixOperations. This class is able to convert parameters into the classes required by
uBLAS. It is also responsible for calling uBLAS operators on these converted parameters.
Using this class, you have an easy way to test several of the functions that operate on
matrix parameters.

Among the main matrix-related functions and operators in uBLAS, you will find the
following:

e Scalar multiplication: Multiplying a matrix by a scalar is a simple
process, since it uses the standard multiplication operator in C++.
You just need to save the result of the multiplication in a new matrix
variable.

e Vector multiplication: Multiplying a matrix by a vector is a common
operation. You can do this using the prod function. The product can
be performed in two ways: a pre-multiplication requires that the
vector be the first argument for the prod function. You can also post-
multiply by a vector, in which case the vector enters as the second
parameter to the prod function.

e Matrix multiplication: You can also multiply two matrices. This
results in a third matrix, which has a size defined by the sizes of the
two original matrices. You can perform the multiplication operation
using an overridden version of the prod function.

o Element-wise multiplication: This operation performs the
multiplication of each corresponding element in the matrix. That
is, given matrices A and B, the resulting matrix C is composed of
elementsC[1,j] = A[i,]j] + B[i,]].

o Transposition: The transpose of a matrix is a simple operation
where elements A[i,]j] and A[ j,1] are exchanged. This results in
a matrix that is the transposition of the original around the main
diagonal.

In the MatrixOperations class, you will find examples of each of these operations.
The arguments and return values for the member functions of MatrixOperations
are given in terms of standard vectors (std: : vector) or Matrix objects (which you
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learned about in Chapter 5). While this kind of conversion should be avoided in high-
performance code, you can take it as an example of what is necessary to create objects of
the types declared in uBLAS. Consider, for instance, the method transpose.

Matrix MatrixOperations::transpose()
{
using namespace ublas;
int d1 = m_rows.size();
int d2 = m_rows[0].size();
matrix<double> M(d1, d2);

for (int i = 0; i < d1; ++i)
{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][j];

}

matrix<double> mp = trans(M);
return fromMatrix(mp);

The first step is to determine the size of the matrix you need to build, which is
given by the dimensions d1 and d2. Using this information, you can create a new
ublas: :matrix object. You will then initialize the matrix using the data stored in the
m_rows member variable. Finally, you can call the trans function from uBLAS, which
is responsible for doing the transpose of its argument. The last step is to convert from
the uBLAS representation to a Matrix object, which is performed by the fromMatrix
function.

Complete Code

Listing 7-2 shows the implementation of the class MatrixOperations. The code
makes use of the Matrix class implemented in Chapter 5, so you need to add it to your

compilation line.
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Listing 7-2. MatrixOperations.h and MatrixOperations.cpp

//
//  MatrixOperations.h

#ifndef _ FinancialSamples MatrixOperations
#define _ FinancialSamples MatrixOperations

#include <vector>
#include "Matrix.h"

class MatrixOperations {
public:
MatrixOperations();
~MatrixOperations();
MatrixOperations(const MatrixOperations 8&p);
MatrixOperations 8operator=(const MatrixOperations 8p);

void addRow(const std::vector<double> &row);

Matrix multiply(Matrix 8&m);

Matrix transpose();

Matrix elementwiseMultiply(Matrix 8m);

Matrix scalarMultiply(double scalar);

std: :vector<double> preMultiply(const std::vector<double> &v);
std: :vector<double> postMultiply(const std::vector<double> &v);

private:
std::vector<std: :vector<double> > m rows;

};
#tendif /* defined(__FinancialSamples MatrixOperations ) */

//
// MatrixOperations.cpp

#include "MatrixOperations.h"

#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>
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namespace ublas = boost::numeric::ublas;
using std::cout;
using std::endl;

MatrixOperations::MatrixOperations()

{
}

MatrixOperations::~MatrixOperations()

{
}

void MatrixOperations::addRow(const std::vector<double> &row)

{

m_rows.push_back(row);

}

static Matrix fromMatrix(const ublas::matrix<double> &mp)

{

using namespace ublas;

int d1 = mp.size1();
int d2 = mp.size2();
Matrix res(di, d2);
for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
res[i][j] = mp(3i,]);
}
}

return res;

}

Matrix MatrixOperations::elementwiseMultiply(Matrix 8&m)

{

using namespace ublas;
int d1 = m_rows.size();
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int d2 = m _rows[0].size();
matrix<double> M(d1, d2);

for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][j];
}
}

matrix<double> M2(d1, d2);
for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M2(1,3) = m[i][]];
}
}

matrix<double> mp = element_prod(M, M2);
return fromMatrix(mp);

Matrix MatrixOperations::transpose()

{

using namespace ublas;
int d1 = m_rows.size();
int d2 = m_rows[0].size();
matrix<double> M(d1, d2);

for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][j];
}
}

LINEAR ALGEBRA
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matrix<double> mp = trans(M);
return fromMatrix(mp);

}

Matrix MatrixOperations::multiply(Matrix &m)
{
using namespace ublas;
int d1 = m_rows.size();
int d2 = m_rows[0].size();
matrix<double> M(d1, d2);

for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(i,3) = m_rows[i][j];
}
}

matrix<double> M2(d1, d2);
for (int i = 0; i < d1; ++1)

{
for (int j = 0; j < d2; ++j)
{
M2(1,3) = m[i][]];
}
}

matrix<double> mp = prod(M, M2);
return fromMatrix(mp);

}

Matrix MatrixOperations::scalarMultiply(double scalar)
{

using namespace ublas;

int d1 = m_rows.size();

int d2 = m_rows[0].size();

matrix<double> M(d1, d2);
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for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][j];
}
}

matrix<double> mp = scalar * M;
return fromMatrix(mp);

}

std: :vector<double> MatrixOperations::preMultiply(const std::vector<double> &v)
{

using namespace ublas;

ublas::vector<double> vec;

std::copy(v.begin(), v.end(), vec.end());

int d1
int d2 = m_rows[0].size();
ublas::matrix<double> M(d1, d2);

m_rows.size();

for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][j];
}
}

vector<double> pv = prod(vec, M);

std::vector<double> res;
std::copy(pv.begin(), pv.end(), res.end());
return res;
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std: :vector<double> MatrixOperations::postMultiply(const
std: :vector<double> &v)
{

using namespace ublas;

ublas::vector<double> vec;

std::copy(v.begin(), v.end(), vec.end());

int d1 = m_rows.size();
int d2 = m_rows[0].size();
ublas::matrix<doubley> M(d1, d2);

for (int i = 0; i < d1; ++i)
{
for (int j = 0; j < d2; ++j)
{
M(1,3) = m_rows[i][]];

}

vector<double> pv = prod(M, vec);

std::vector<double> res;
std::copy(pv.begin(), pv.end(), res.end());
return res;

}

int main()

{
MatrixOperations op;
for (int i=0; i<5; ++i)

{
std: :vector<double> row;
for (int j=0; j<5; ++j)
{
row.push_back(sin((double)j+i));
}
op.addRow(row);
}
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op.transpose();
Matrix res = op.scalarMultiply(12);
return 0;

Running the Application

The code shown in Listing 7-2 can be compiled using any standards-conforming C++

compiler. You need to have boost installed in your system to access uBLAS (I used
version 1.55, tested on Windows MingW and Mac OS X). For example, using the gcc
compiler on a UNIX system can be done with the following command:

gcc -o matrixOp matrixOperations.cpp

This will result in an application called matrixOp. You can run the resulting

application as
./matrixOp

This will run the test main function, which should print out the result of the
requested operations. In my system, I got the following results:

0 10.0977 10.9116 1.69344 -9.08163

10.0977 10.9116 1.69344 -9.08163 -11.5071
10.9116 1.69344 -9.08163 -11.5071 -3.35299
1.69344 -9.08163 -11.5071 -3.35299 7.88384
-9.08163 -11.5071 -3.35299 7.88384 11.8723

Calculating the Determinant of a Matrix

Write C++ code to calculate the determinant of a matrix using the classes in uBLAS.

Solution

Calculating the determinant of a matrix is one of the classic problems in LA theory.
Among other things, this value is used to determine if a system of equations (as
expressed by the matrix of coefficients) has a unique solution.
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To be able to easily compute the determinant of a matrix in C++, you can use some
of the classes and functions contained in the boost uBLAS library. These functions make
use of the matrix class, which is one of the uBLAS internal representations for matrices.

A common solution for this kind of problem uses a simple but elegant algorithm that
is taught in any course of linear algebra. The general idea is to use a recursive strategy
to calculate the determinant of small submatrices, until you find the determinant of the
complete matrix. The algorithm used by the computeDeterminant function, however,
is computationally more efficient because it uses the result of lower-upper (LU)
decomposition. LU decompositions are a way to factor a matrix into lower and upper
triangular components.

The function 1u_factorize returns zero if the matrix is non-singular, which means that
it can be inverted and its corresponding linear system solved using Gaussian elimination.
The matrix is subsequently rearranged using the Gaussian elimination procedure.
Additionally, a permutation matrix is used to record the steps of the elimination procedure.

Considering this information, the algorithm for determinant computation is
encoded in the function computeDeterminant. It uses the values stored in the main
diagonal and the information in the permutation matrix to compute the corresponding
determinant for the given matrix. You can see the complete algorithm for this method in
the next section.

Complete Code

Listing 7-3 shows you an example for the uBLAS libraries. The function
determinantSample uses some of the templates in uBLAS to calculate the determinant of

a matrix, as described in the previous section.

Listing 7-3. Determinant.cpp

//

// Determinant.cpp

#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>

namespace ublas = boost::numeric::ublas;
using std::cout;
using std::endl;
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// The sign is calculated from a given permutation.

// Just flip the sign for each change in permutation.

int getDeterminantSign(const ublas::permutation matrix<std::size t>& pm)

{

}

int sign = 1;

for (int i = 0; i < pm.size(); ++i)
{
if (i != pm(i))
{
sign *= -1.0;
}

}

return sign;

// returns the value of the determinant for matrix m

//

double computeDeterminant(ublas::matrix<double>& m)

{

ublas::permutation matrix<std::size t> pm(m.sizei1());

double det = 1.0;
if (ublas::1lu factorize(m,pm))

{
det = 0.0;
}
else
{
for(int i = 0; i < m.size1(); i++)
{
det *= m(i,i);
}
det = det * getDeterminantSign(pm);
}

return det;
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void determinantSample()

{
ublas::matrix<double> M(3, 3);
for (unsigned i = 0; i < M.sizel() ; ++i)
{
for (unsigned j = 0; j < M.size2() ; ++j)
{
M(1,3) = sin(3 * 3);
}
}
double determinant = computeDeterminant(M);
cout << " determinant value is " << determinant
<< " for matrix " << M << endl;
}

Conclusion

This chapter includes a few programming samples for linear algebra computation in
C++. One of the goals in this presentation is to show how mathematically oriented code
can be used by financial application programmers. Linear algebra is the basis for many
of the computational techniques that will be explored in the next few chapters, such as
mathematical programming and portfolio optimization.

In this chapter, I first introduced some of the important libraries for linear algebra.
Since linear algebra is such a specialized area, the best approach for programmers is
to use code that contains well-tested components written by experts in the field. The
standard for computational mathematics in the area of basic linear algebra is the BLAS
library. Although BLAS is a Fortran and C library, its concepts have been translated into
many other languages. In this chapter, you have explored uBLAS, a component of the
boost libraries that implements the same levels of functionality supported by BLAS. It
does it, however, using modern C++ techniques such as classes and templates. This can
be viewed as an easier way to achieve the functionality of BLAS while at the same time
supporting a high-level C++ interface.

232



CHAPTER 7  LINEAR ALGEBRA

The first example in Listing 7-1 shows how to use uBLAS to implement basic (level 1)
operations on vectors and scalars. The class VectorOperations shows how these basic
concepts can be invoked using the uBLAS framework.

More advanced operations are available for matrices. The second example
(Listing 7-2) contains information and code examples of how to interact with matrices
and vectors in uBLAS. Simple operations that can be easily performed by uBLAS
include scalar and vector multiplication of matrices, transposition, and matrix-matrix
multiplication.

Listing 7-3’s example shows how these concepts can be used together to calculate
the determinant of a matrix. To facilitate the solution of this problem, you can use the
LU factorization function provided by uBLAS. This shows how some of the sophisticated
algorithms in these LA libraries can be easily used to solve practical problems.

In the next chapter, we will continue to explore mathematical tools used in financial
applications. I will show you a few examples about interpolation, a technique that is
frequently used to find trends in data sets, including financial data. Along with other
computational techniques, interpolation is widely used in the development and analysis
of trading strategies.
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Interpolation

Interpolation is a commonly used technique that approximates a mathematical

function, based on a set of points given as input. Fast interpolation is the secret for high-

performance algorithms in several areas of financial engineering, which will be explored

in the next chapters. This chapter shows you a few programming examples that cover

some of the most common aspects of interpolation techniques, along with their efficient

implementation in C++. You will explore the main procedures used in applications and

see examples of how they work in practice.

Here are some of the topics covered in this chapter:

Interpolation examples: A brief discussion of examples that show the
effectiveness of using interpolation in financial problems.

Linear Interpolation: One of the simplest interpolation techniques,
linear interpolation uses linear functions, which can be represented
as line segments. The quick nature of this technique makes it one of
the most used forms of interpolation for functions that are hard to
compute.

Polynomial interpolation: If smooth transitions between different
parts of the function are required, then it is not possible to use a
linear interpolation directly. Polynomial interpolation allows the
use of a single function that approximates all of the given points
through a high-degree polynomial. You will see how to construct
this polynomial and return the desired function for each value of the
domain.

© Carlos Oliveira 2021
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Linear Interpolation

Write a solution, along with C++ code, for the problem of interpolating a given set of data
points using linear approximations.

Solution

Interpolation is the process of finding a function (or set of functions) that can be used
to approximate an unknown function, as determined by a given set of points. The input
for this process is therefore the points you would like to interpolate. The result is a
general function that can be used to compute the unknown values for points outside
the input set.

For example, suppose that you are given a time series composed of a set of
observations. It is frequently desirable to find a function that generated those
points. This estimation of the unknown function may also be used to calculate the
corresponding value for a required time instant.

Interpolation has been used in several areas of science and engineering as a way to
approximate functions. This may be necessary either because the original function is
truly unknown (e.g., in the case of empirical processes) or because such a function is
very difficult to calculate exactly. In finance, interpolation also plays an important role,
frequently as part of more complex algorithms. In the case of a financial time series,
for example, interpolation allows practitioners to calculate values for a time series that
are difficult to compute while using only an approximation for the unknown function.
Moreover, in some of these applications, interpolation can also be used as a way to
forecast values, at least for short periods of time. In this role, it can also be used as a
simple forecasting component of trading algorithms.

In this section, you will see how to perform interpolation using linear functions. This
is the simplest way to provide the interpolation of a set of points, since it requires only
two points at a time in order to directly connect input values. For example, suppose that
you're given a set of points, as displayed in Figure 8-1.

yl = (10,0.6), y2 = (20,0.11), y3 = (30,1.1), y4 = (40,1.62), y5 = (49,1.4).
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Figure 8-1. Interpolation graph for points in the first example

The points don’t need to be evenly spaced, although that might work better when
a linear interpolation is desired. Using these points, one can visualize a simple way to
interpolate values. The strategy for creating an interpolation is to sort the input points
based on their first dimension (the x axis on Figure 8-1) and join with a line the two
points that are right before and after the desired value of x. The interpolation is then
given by the formula in Step 4 of the list following Figure 8-1.

The algorithm for the linear interpolation of a set of points can, therefore, be
summarized in the following steps:

1. Read the inputvalues (x[1],y[1]) and the desired coordinate

value x.
2. Sort the input in increasing order of the first coordinate (x[1]).

3. Calculate the first pair of points (x[1],y[1]), (x[j1,y[j]) such
that j=i+1 and x is within x[1] and x[ j].

4. Use the following equation to determine the value of y
corresponding to x:
X—Xx

y:
Xo =X

You can easily implement this algorithm in C++ so that the function is computed
for each value of x. I present the LinearInterpolation as the main class responsible for

storing the necessary data as well as calculating points using this interpolation technique.
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The constructors for this class are designed to reduce any overhead for the creation
of new objects. The class provides the setPoints member function as a way to define
the known points of the interpolation. This member function retains the values passed
as a parameter. It also makes sure that the points are stored in the order of increasing
x values. This is done using a simple algorithm that sorts the x values (the standard
function std: :sort is used for this purpose).

Complete Code

//
// LinearInterpolation.h

#ifndef _ FinancialSamples LinearInterpolation
#define _ FinancialSamples LinearInterpolation

#include <vector>

class LinearInterpolation {

public:
LinearInterpolation();
LinearInterpolation(const LinearInterpolation &p);
~LinearInterpolation();
LinearInterpolation &operator=(const LinearInterpolation &p);
void setPoints(const std::vector<double> &xpoints, const
std: :vector<double> &ypoints);
double getValue(double x);

private:
std: :vector<double> m_x;
std::vector<double> m_y;

};

#tendif /* defined(_FinancialSamples LinearInterpolation_ ) */

//
// LinearInterpolation.cpp

#include "LinearInterpolation.h"
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LinearInterpolation:
:m x(),
m_y()
{
}

LinearInterpolation:

:m x(p.m x),
m_y(p.m_y)

{

}

LinearInterpolation:

{
}

LinearInterpolation
LinearInterpolation
{
if (this != &p)
{
m X
my = p.my;

p.m_X;

}

return *this;

}

CHAPTER 8  INTERPOLATION

:LinearInterpolation()

:LinearInterpolation(const LinearInterpolation &p)

:~LinearInterpolation()

8LinearInterpolation::operator=(const
&p)

void LinearInterpolation::setPoints(const std::vector<double> 8xpoints,

m_x
m.y

xpoints;

ypoints;

const std::vector<double> &ypoints)

// update points to become sorted on x axis.
std::sort(m x.begin(), m x.end());
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for (int i=0; i<m x.size(); ++1i)

{

for (int j=0; j<m x.size(); ++j)

{
if (m x[i] == xpoints[j])
{
m y[i] = ypoints[j];
break;
}
}

}

double LinearInterpolation::getValue(double x)
{

double x0=0, y0=0, x1=0, y1=0;
if (x < mx[o] || x > m x[m x.size()-1])
{

return 0; // outside of domain

}

for (int i=0; i<m x.size(); ++1i)

{
if (m x[i] < x)

{
x0 = m x[i];
yo = m_y[i];
}
else if (m x[i] »>= x)
{
x1 =m x[i];
yl = my[i];
break;
}

240



CHAPTER 8  INTERPOLATION

return yo * (x-x1)/(x0-x1) + y1 * (x-x0)/(x1-x0);

int main()

double xi

0;
double yi = 0;
vector<double> xvals;
vector<double> yvals;

while (cin >> xi)
{

if (xi == -1)

{

break;

}

xvals.push back(xi);

cin >> yi;

yvals.push back(yi);
}
double x = 0;
cin > x;
LinearInterpolation 1i;
1li.setPoints(xvals, yvals);
double y = li.getValue(x);
cout << "interpolation result for value " << x << " is " << y << endl;
return O;

Running the Code

For example, consider again the points in the example shown in Figure 8-1. To calculate
a linear interpolation for value 27, you need to execute the application and enter the
following data:
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./linearInterpolation

10 0.6

20 0.11

30 1.1

40 1.62

49 1.4

-1

27

interpolation result for value 27 is 0.803

Polynomial Interpolation

Construct a polynomial interpolation for a given set of points in C++.

Solution

In the previous example, you saw how data points may be used to interpolate values in a
continuous interval, through the use of piecewise linear equations. However, while it is
possible to use linear interpolation in a large number of practical situations, the problem
with this type of approximation is that the resulting curve is non-smooth. This means
that it contains inflection points that mark transitions in the function, exactly at the
interception of the different lines. In mathematical terms, it is said that such functions
are non-differentiable because of this sudden transition. Such perceptible changes are
undesired in some applications, and you may want to interpolate the values in such a
way that the transition between observed points is seamless.

To avoid the described problems with the use of linear interpolation, a more
sophisticated scheme may be employed, which uses higher-degree polynomials to
smooth out the transitions. What is more important, a single polynomial found using this
method can be used to interpolate all given data points at the same time. The result of
this type of interpolation is that you just need a single polynomial equation to generate
values for any desired input.

Polynomial interpolation is based on the mathematical fact that, given a polynomial
with a high enough degree, you can find a corresponding polynomial function that
passes through the exact points that are provided as input. This is guaranteed due to
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some well-known algebraic properties of polynomials. For example, suppose that we're
given the sequence of points that follow (these are the same points used in the previous
example for linear interpolation):

yl = (10,0.6), y2 = (20,0.11), y3 = (30,1.1), y4 = (40,1.62), y5 = (49,1.4).

A polynomial interpolation algorithm would return a value based on a polynomial
defined by a set of coefficients. Using that information, you can calculate any
intermediate point or even points that are outside the given range of observations, since
polynomials are typically defined for any real number. You can also use the calculated
polynomial to plot the values of the interpolating function, as you see in Figure 8-2.
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Figure 8-2. A polynomial function to interpolate values using a small number of
observations: notice how the polynomial function is smooth, unlike the solution in
Figure 8-1, which uses line segments

The technique used here to solve this polynomial interpolation problem is called
Lagrange’s interpolation algorithm. Using Lagrange’s interpolation method, for each
sequence of n+1 points (xi,yi), you can create a polynomial that has degree n and
passes through these points. Using the points given as input, the general formula for the
coefficients of the polynomial is given by

(x = x)(x = x)e(x = %) (x = xy)--(x — x,)

(o — ) (% = 1) — %) (% — %)y — %))

L, (x) =
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Notice that this function skips the value of xk to avoid zero terms in the numerator
and denominator. Now, the complete polynomial representation for interpolating the
input values xk can be written using the coefficients Lk(x).

P(x)=y,Ly(x)+-+y,L,(x)

This is a function that can be used to provide the interpolation of any value, given
the n+1 input observations (xi, yi). The proof for this formula is beyond our goals in this
section, but notice that when the input value x is one of the known xi, then it will have a
component x - xi that will result in zero in all cases, but for Li(x). In that case, however,
the numerator is the same as the denominator, which results in the value 1. Therefore,
for these values, the solution is just yi as expected.

Using this polynomial function, we can create a C++ class that implements the
interpolation mechanism through the simulation of the desired polynomial. This is
achieved using the class PolynomialInterpolation. The class has a design similar
to LinearInterpolation, storing the x and y values that are passed in the setPoints
member function. Using that information, PolynomialInterpolation is able to perform
the necessary calculations based on the initial points.

The real work is of calculating the polynomial interpolation performed in the
getValue member function, which is reproduced as follows:

double PolynomialInterpolation::getPolynomial(double x)
{

double polynomialValue = 0;

for (size t i=0; i<m x.size(); ++i)

{

// compute the numerator
double num = 1;
for (size t j=0; j<m x.size(); ++j)

{
if (jl=1)
{
num *= x - m x[j];
}
}
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// compute the denominator
double den = 1;
for (size t j=0; j<m x.size(); ++j)

{
if (j1=1)
{
den *= m x[i] - m x[j];
}
}

// value for i-th term
polynomialValue += m y[i] * (num/den);

}

return polynomialValue;

The calculation is done in an iterative way, where at each step of the for loop, one
of the polynomials Lk(x) is computed and added to the local variable polynomialValue.
The internal part of the loop can be divided into three parts. In the first part, the
numerator is calculated as a result of multiplying all of the terms x - xj, something that
is not necessary when i =j. The second part is the calculation of the denominator, which
is very similar to the first step, as you can confirm looking at the original formula. The
values of the denominator are stored in the local variable den. The third step consists
of multiplying the value of y by the fraction defined by the numerator and denominator
that were computed in the previous two steps.

The complexity of the algorithm previously described is dependent on the given
input. The more input values you provide, the longer this algorithm will take. The
variation in time is quadratic with the number of input values, since for each value, we
need to perform a for loop inside a second loop, and each such loop runs a number of
times equal to the number of points used. In terms of computational complexity, this is
said to have a time complexity of O(n?).
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Complete Code

//
//
// PolymonialInterpolation.h

#ifndef _ FinancialSamples PolymonialInterpolation
#define _ FinancialSamples PolymonialInterpolation

#include <vector>

class PolynomialInterpolation {

public:
PolynomialInterpolation();
PolynomialInterpolation(const PolynomialInterpolation &p);
~PolynomialInterpolation();
PolynomialInterpolation &operator=(const PolynomialInterpolation &);
void setPoints(const std::vector<double> &x, const std::vector<double> &y);
double getPolynomial(double x);

private:
std: :vector<double> m_x;
std: :vector<double> m_y;

}s
#tendif /* defined(__FinancialSamples PolymonialInterpolation ) */

//
// PolymonialInterpolation.cpp

#include "PolymonialInterpolation.h"

PolynomialInterpolation::PolynomialInterpolation()
:m x(),
m_y()
{
}
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PolynomialInterpolation::PolynomialInterpolation(const
PolynomialInterpolation &p)
: m_Y(p'm_Y)J
m_x(p.m_x)
{
}

PolynomialInterpolation::~PolynomialInterpolation()

{
}

PolynomialInterpolation &PolynomialInterpolation::operator=(const
PolynomialInterpolation &p)

{
if (this != 8&p)
{
mXx = p.mX;
my = p.my;
}
return *this;
}

void PolynomialInterpolation::setPoints(const std::vector<double> &x,
const std::vector<double> &y)

mX = X;
my =Yys;

}

double PolynomialInterpolation::getPolynomial(double x)
{

double polynomialValue = 0;

for (size t i=0; i<m x.size(); ++1i)
{

// compute the numerator
double num = 1;
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for (size t j=0; j<m x.size(); ++j)

{
if (j!=i)
{
num *= x - m x[j];
}
}

// compute the denominator
double den = 1;
for (size_t j=0; j<m_x.size(); ++j)

{
if (j1=i)
{
den *= m x[i] - m x[j];
}
}

// value for i-th term
polynomialValue += m y[i] * (num/den);

}

return polynomialValue;
}
int main()
{

double xi = 0;

double yi = 0;
vector<double> xvals;
vector<double> yvals;
while (cin >> xi)

{
if (xi == -1)
{
break;
}

248



CHAPTER 8  INTERPOLATION

xvals.push_back(xi);
cin >> yi;
yvals.push_back(yi);
}
double x = 0;
cin »> x;
PolynomialInterpolation pi;
pi.setPoints(xvals, yvals);
double y = pi.getPolynomial(x);
cout << "interpolation result for value " << x << " is " << y << endl;
return 0;

Running the Code

To run the previous code, you need to first compile it using a C++ compiler such as gcc.
Then you can execute the code as follows:

./polyInterpolation

10 0.6

20 0.11

30 1.1

40 1.62

49 1.4

-1

27

interpolation result for value 27 is 0.795433

The code was executed several times using the data just displayed. Figure 8-2
presents a plot of the resulting data. Notice that the plot shows a smooth function that
passes through the set of points given as input. This demonstrates that the polynomial
calculated by the presented code is a good, smooth interpolation for the given set of
points.
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Conclusion

In this chapter, you learned about interpolation, a mathematical technique used

to find reasonable approximations for a function, given a data set of known values.
Interpolation plays a role in financial data analysis since it provides a way to analyze
and simplify the calculation of complicated functions. It may also allow one to perform
a simple forecast of future price changes, as well as helping with a better understanding
of past data. You have seen a few programming examples that illustrate the use of
interpolation in the context of C++ programming.

Initially, you learned about linear interpolation, a simple method to interpolate
values when just a few points of the original function are known. This technique uses
only linear functions to perform the desired interpolation. You have seen an example
C++ class that can be used to return interpolated results for any given value in the
domain of the function.

Next, you saw how to interpolate function values using a better approximation
technique provided by the application of polynomials. Using polynomials, you have
the ability to create a smooth (differentiable) function that touches the given points
in n+1 points, where n is the degree of the polynomial. You have learned a simple
formula known as Lagrange’s method, which can be used to create such polynomial
interpolations from any given set of points. You have also learned about how to code a
C++ class that implements this algorithm. I provided a complete example of how to use
this class to generate a smooth interpolation of a given set of values.

In the next chapter, you will learn about another important mathematical skill
used in financial applications. The calculation of roots of equations is a fundamental
technique that can allow you to find solutions for many important problems in
economics and engineering. You will see how the methods for finding roots of equations
can be implemented and used in C++.
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Calculating Roots
of Equations

Solving equations is one of the building blocks of many engineering and scientific
algorithms. A typical example is the calculations needed for options and derivatives
pricing, using the Black-Scholes model. As financial algorithms become more

sophisticated, there is a great need to calculate the results of equations in general. These

results are frequently used in the analysis of investments and in new trading strategies. It

is important not only to be able to solve equations but also to calculate the roots of such

equations in an efficient way.

In this chapter, you will learn some of the popular methods for calculating roots of

equations. The coding samples presented here cover different methods of calculating

equation roots, along with explanations of how they work and when they should be used.

The following are some of the topics covered in this chapter:

e Bisection method: A simple method that explores the change
in signal around the root of equations; this method is easy to
implement. You will learn the basics of the bisection method and
how to code itin C++.

o Secant method: The secant method is an improvement over the
bisection method, which tries to use the value of the function in the
given range to guide the position of the new approximation of the
root. The secant method can in many cases speed up the search for a
root.

o Newton’s method: This method, sometimes also called the Newton/
Raphson method, uses the derivative of a function as the guide
for the search of the root for a given equation. Since the derivative

© Carlos Oliveira 2021
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determines the slope of the tangent to the function, its value can

be used to calculate a new approximation. Successive values may
converge to the desired solution, and an error parameter can be used
to determine when to stop the process.

Bisection Method

Create a class implementing the bisection method to find roots of equations.

Solution

Finding the roots of an equation is the process of determining any points for which the
corresponding function is zero. During the development of computational mathematics,
several methods have been devised to calculate roots of equations. This chapter covers a
few of the most common of these methods.

The bisection method tries to find the roots of equations by using a simple strategy:
the idea is to look at the sign of the function at different points of the domain and use
that information to decide if there is a root on that interval. For example, consider the
function

J(x) = (x-1)°

Figure 9-1 displays the graph of this function in the interval -1 to 3.
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Figure 9-1. Function (x-1)° in the interval -1 to 3
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This is a function that has a root for the value x=1 and has two areas that have distinct
signs: for values less than x=1, the sign is negative. For values greater than 1, the sign of
the function is positive. If you want to determine the exact place where the function is
equal to zero, you can start from an interval where the sign of the function is different
(in this case, you could use the interval -1 to 3) and look for the exact value where the
function changes sign: that must be the location of one of the roots of the function.

Note This argument works only when the function that you’re dealing with is
continuous. That is, there is no point where the function suddenly jumps from one
point to another, which would make the foregoing argument invalid. Continuous
functions are differentiable in the range where they’re defined, so that is a way
to know if a function is continuous. Most functions in economics, physics, and
engineering have this property, so we assume that this is the case when the
bisection method is applied.

With this intuitive insight, the bisection method tries to employ a systematic
approach to determine the range tested and the location where the change of sign
occurs. Essentially, the method is to bisect the original range and determine if the
subrange still has different signs.

For example, using the same function, consider that we take the original range
between -1 and 2. The middle of this range is 2, and therefore the algorithm will check

3 3
the sign of f l = (l - lj = (—lj = —is = —l . Now, consider the sign of the two
2 2 2 2 8
ending points of the initial range:
o f(-1) =(-1-1)* = -8, therefore with a negative sign.

o f(2)=(2-1)*=1° =1, therefore with a positive sign.

This means that between the values x=-1 and x = % , the sign is identical. On the
1
other hand, between x = 5 and x = 2, the sign changes. Therefore, the root must be in

the place where the sign changes, which is somewhere between 2 and 2.
Another iteration of this process will calculate the value of

3 3
f (%j = (% - 1) = (ij =1/4’, which has a positive sign. Since f(1/2) has a negative sign
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and f(2) has a positive sign, the change in sign must happen in the interval from 1 to =.
This is easily observed to be true by checking the graph in Figure 9-1. 24

Notice that this process will systematically reduce the size of the range where we're
searching for a root of the equation. At each step, we're decreasing the range by a half
and getting closer to the location of the root. After a number of iterations, you will get
avalue that is as close as needed from the true root. This algorithm therefore can stop
whenever the size of the remaining range is less than the desired error. For example, if
the range is less than 0.001, and your desired error is 0.01, then stop.

Using the process we just described, we can now describe the algorithm for bisection
in the following way:

1. Define an initial range (a,b) where you want to search for one or
more roots of the equation.

2. Calculate the values of f{a) and f{b).

. o . a+b .
3. Determine the bisection point ¢ = for the interval (a,b) and

its corresponding function value f{c).

4. Ifthe signs of fla) and f{c) are different, (a,c) becomes the new range
for the algorithm. Otherwise, the new range is defined as (c,b).

5. Ifthe new range has length less than the error (threshold) E, stop
and report c as the solution. Otherwise, continue with step 1.

The preceding algorithm works in an iterative way, where the size of the range
(a,b) is constantly reduced by half. Therefore, the number of steps it will perform is

(b-a)

bounded by log, 5 There is a trade-off between number of iterations and desired

approximation, which means that if you want a very small error, more iterations will be
necessary.

The procedure described has been coded as the part of the BisectionSolver
class, which can be used to find roots of equations. The interesting characteristic of
BisectionSolver is that it is a generic solver for any continuous function. You just need
to pass the function as a parameter to the constructor of the class.

For this purpose, I created a class called MathFunction that will be useful not only
here but also for other classes that use functions as parameters. The MathFunction class
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defines what is called a function object, that is, an object that behaves like a function.
This is important for our algorithms, because it allows one to use the object as if it were a
function.

To create a functional object, you need a class that implements operator (), that s,
the operator for function invocation. Moreover, I have defined the class MathFunction
as a template class, so that you can pass the right return type when creating the concrete
implementation. For example, you may want to define a MathFunction subclass that is
defined for float values only. Or, conversely, you may have a function whose domain is
the set of integers.

Finally, I want MathFunction to be just a root class, so that only concrete
implementations can be instantiated. To make this possible, MathFunction is an abstract
class, which is defined by using the =0 notation after the declaration of operator().
Concrete subclasses of this class need to provide a concrete implementation of this
operator. The example code shows how this can be done.

class F1 : public MathFunction<double> {

public:
virtual ~F1() {}
virtual double operator()(double value);
};
double F1::operator ()(double x)
{
return (x-1)*(x-1)*(x-1);
}

This is a definition for the example function f{x) = (x-1)A3.

The implementation of the function getRoot is straightforward. The function starts
with the interval given as a parameter and halves it using the criteria defined by the
bisection method.

Complete Code

//
// MathFunction.h

#ifndef MATHFUNCTION H_
#define MATHFUNCTION H_
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template <class Res>
class MathFunction {

public:

MathFunction();

virtual ~MathFunction();

virtual Res operator()(Res value) = 0;
};

#endif /* MATHFUNCTION H_*/

//
// BisectionMethod.h

#ifndef BISECTIONMETHOD H_
#define BISECTIONMETHOD H_

template <class T>
class MathFunction;

class BisectionMethod {

public:
BisectionMethod(MathFunction<double> &f);
BisectionMethod(const BisectionMethod &p);
~BisectionMethod();
BisectionMethod &operator=(const BisectionMethod &p);
double getRoot(double x1, double x2);

private:
MathFunction<double> &m_f;
double m_error;

};
#endif /* BISECTIONMETHOD H  */

//
// BisectionMethod.cpp

#include "BisectionMethod.h"
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#include "MathFunction.h"
#include <iostream>

using std::cout;
using std::endl;

namespace {
const double DEFAULT_ERROR = 0.001;

}

BisectionMethod: :BisectionMethod(MathFunction<double> &f)
:m_f(f),
m_error (DEFAULT_ERROR)
{
}

BisectionMethod: :BisectionMethod(const BisectionMethod &p)
:m f(p.m_f),
m_error(p.m error)
{
}

BisectionMethod: :~BisectionMethod()
{
}

BisectionMethod &BisectionMethod::operator =(const BisectionMethod &p)

{
if (this != &p)

mf =p.mf;
m_error = p.m_error;

}

return *this;
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double BisectionMethod::getRoot(double x1, double x2)

{
double root = 0;
while (std::abs(x1 - x2) > m_error)
{
double x3 = (x1 + x2) / 2;
root = x3;
if (m_f(x1) * m f(x3) < 0)
{
X2 = X3;
}
else
{
x1 = x3;
}
if (m_f(x1) * m_f(x2) > 0)
{
cout << " function does not converge " << endl;
break;
}
}
return root;
}
// ---- this is the implementation for an example function

namespace {

class F1 : public MathFunction<double> {
public:
virtual ~F1();
virtual double operator()(double value);

}s

F1::~F1()
{
}
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double F1::operator ()(double x)

{
return (x-1)*(x-1)*(x-1);
}
}
int main()
{
F1 f;
BisectionMethod bm(f);
cout << " the root of the function is " << bm.getRoot(-100, 100) <<
endl;
return 0;
}
Running the Code

To run the code, along with the example provided, use a compiler such as gcc to generate
the executable bisectionMethod. Then, you can run it to get results as follows:

./bisectionMethod
root is 0

root is 50

root is 25

root is 12.5
root is 6.25
root is 3.125
root is 1.5625
root is 0.78125
root is 1.17188
root is 0.976562
root is 1.07422
root is 1.02539
root is 1.00098
root is 0.98877
root is 0.994873
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root is 0.997925
root is 0.999451
root is 1.00021
the root of the function is 1.00021

This shows the result of executing the bisection method on the function f{x) = (x-1)73,
starting with the interval -100 to 100. I showed the intermediate steps just for clarity.

The Secant Method

Create a class to solve equations using the secant method.

Solution

In the previous programming example, you learned about the bisection method for the
solution of equations. You can find the roots of an equation through the decomposition
of the domain into a set of ranges, each of which you can test for changes in sign. If the
sign of the function is different from the sign at the end of the interval, then it is possible
to find a point where this function changes from positive to negative, making it the root
of the equation.

While the bisection method can find solutions to a large number of equations, it is
not the fastest method for this purpose. One of the reasons is that it doesn’t use any of
the properties of the function other than the sign at the extremes of its range. On the
other hand, using additional information about the function values, for example, it
would be possible, at least in principle, to achieve a faster convergence to the root of the
function.

One of the ways to use the value of the function is contained in the algorithm called
the secant method. The general idea of the secant method is to use the function value at
the extremes of each interval as a way to approximate how close one is from the true root
of the equation. In this wayj, it is possible to get closer to the root and reduce the number
of iterations necessary to find the desired solution.

The secant of a function is the name given to the line connecting to points defined
by that function. For example, given the function f{x) = x* in the range 1 to 4, the secant
to that function in the given range is the line segment connecting the points (1,1) and
(4,16), since these are the two points defined by function. We can generalize this concept
to any function that is continuous in a particular range.
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The secant method uses information derived from the secant to the function to
define the new segment to be explored. To do this, the method calculates the point of
intersection of the secant with the x-axis and uses that point to define the new segment.
This is possible whenever the sign of the points at the beginning and end of a range
is different, because in that case, the secant will intercept with the x-axis. As you may
remember from the previous section, this is similar to the criterion used by the bisection
method, with the difference that bisection uses the midpoint, instead of a point based on
the secant of the function.

As an example of how this works in practice, consider the same function used in
the section “Bisection Method”: f{x) = (x-1)3, in the range -1 to 2. In this case, we can
calculate the values of f{-1) = -8 and f{2) = 1, which have different signs. We can, based
on that information, use the secant to the function on this interval to find an intersection
with the x-axis. The line segment we want to use is, therefore, connecting the points
(-1,-8) and (2,1).

With a little of algebra, you will find that the slope of this line is

1= Vo

1-(-8) 9
xl—xo_Z—(—l) 5_3

And, since it is known that the point (x;,y,) = (2,1) is touched, the secant line is given by
h(x)=y+3(x-x)=1+3(x-2)

Now, the intersection point with the x-axis can be calculated using this equation and
the fact that i(x) = 0 at the intersection (see Figure 9-2):

0=1+3x-6=-5+3x

. 5. . . . .
This means that x = 3 is the intersection point between the secant and the x-axis.

You can easily see, as shown in Figure 9-2, that the intersection of the secant with the
x-axis is a point (let’s call it x,) that is one step closer to the root of the equation. This
process can be repeated with the new interval defined by x, and x,, until the root of
the equation is approximated within a small error (which can be predefined by the
algorithm).
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Figure 9-2. The original function (x-1)° and its secant in the interval -1 to 2

Generalizing the h(x)= equation shown just a bit earlier, the equation for the secant
can be denoted as

h(x)zy1 + 07 (x—xl).

X, =X,

When this equation intercepts with the line y=0, we have

Y=Y
yl+¥(x—xl)=0,
X=X
which yields the result
X, —X
x=x, _yl( 1 0)
Y=o

With this equation, we can calculate the new point x that will be used at the next step
of the algorithm. Summarizing the steps described, the secant method for finding roots
of equations can be described in the following way:

1. Define an initial range (a,b) where you want to search for one or
more roots of the equation.

2. Calculate the values of f{a) and f(b).
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3. Determine the secant line using the equation

h(x)zf(b)+wbc—b)

4. Using this equation, find the intersection point

5. Ifthe difference |c - b| has length less than the error (threshold) E,
stop and report c as the solution. Otherwise, continue with step 1.

It has been observed that for some functions, this algorithm converges to a solution
more quickly than the bisection algorithm. This happens because the secant uses
information that is already available with the function, which happens to make the
intermediate point closer to the real solution.

You can find an implementation of the algorithm discussed in the SecantSolver
class. The design of this class is similar to BisectionSolver, since the problem discussed
is the same. The main change is the use of a different middle point selection procedure,
which makes this algorithm a little different from that presented in BisectionSolver.

Complete Code

// SecantMethod.h
//

#ifndef SECANTMETHOD H_
#define SECANTMETHOD H

template <class T>
class MathFunction;

class SecantMethod {

public:
SecantMethod(MathFunction<double> &f);
SecantMethod(const SecantMethod 8p);
SecantMethod 8operator=(const SecantMethod 8p);
~SecantMethod();
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double getRoot(double x1, double x2);
private:

MathFunction<double> &m_f;

double m_error;

};

#endif /* SECANTMETHOD H_ */
// SecantMethod.cpp
//

#include "SecantMethod.h"

#include "MathFunction.h"
#include <iostream>

using std::cout;
using std::endl;

namespace {
const double DEFAULT_ERROR = 0.001;

}

SecantMethod: : SecantMethod (MathFunction<double> &f)
1 m_f(f),
m_error (DEFAULT_ERROR)
{
}

SecantMethod: : SecantMethod(const SecantMethod &p)
:m f(p.m_f),
m_error(p.m_error)
{
}

SecantMethod: : ~SecantMethod()

{
}
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SecantMethod &SecantMethod: :operator=(const SecantMethod &p)

{
if (this != &p)
{
mf =p.mf;
m _error = p.m _error,
}
return *this;
}
double SecantMethod: :getRoot(double x1, double x2)
{
double root = 0;
double fa = m_f(a);
double fb = m_f(b);
double ¢ = 0, fc = 0;
do
c =b - fb*(b-a)/(fb-fa);
root = c;
fc = m f(c);
cout << "-> "< <" e foe "
for demonstration
a =b;
fa = fb;
b =c¢;
b = fc;
}
while (std::abs(a - b) > m error);
return root;
}
// ---- this is the implementation for an example function
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namespace {

<< endl; // this line just
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class F2 : public MathFunction<double> {

public:
virtual ~F2();
virtual double operator()(double value);
};
F2::~F2()
{
}
double F2::operator ()(double x)
{
return (x-1)*(x-1)*(x-1);
}
}
int main()
{
F2 f;
SecantMethod sm(f);
double root = sm.getRoot(-10, 10);
cout << " the root of the function is " << root << endl;
return 0;
}
Running the Code

After compiling the code presented previously, you can run it and get the following
results, which show the solution for the sample equation f{x) = (x-1)3:

./secantMethod

->» 2.92233 7.10369

-» 2.85268 6.35922

-> 2.25777 1.98976

-» 1.98685 0.96108

-> 1.73375 0.395035
=>» 1.5571 0.172905



-> 1.41961
-> 1.31702
=> 1.23923
-> 1.18062
-> 1.13634
-» 1.10292
-> 1.07769
-> 1.05865
-> 1.04427
-> 1.03342
-> 1.02523
-> 1.01904
->» 1.01438
-> 1.01085
-> 1.00819
-> 1.00618
-> 1.00467
-> 1.00352
-> 1.00266

the root of the function is 1.00266

Newton’s Method

0.0738799
0.0318621
0.0136922
0.00589209
0.00253417
0.00109016
0.000468932
0.000201717
8.67704e-05
3.73252e-05
1.60558e-05
6.90655e-06
2.97092e-06
1.27797e-06
5.49731e-07
2.36472e-07
1.01721e-07
4.37562e-08
1.88221e-08
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Create a C++ class to implement Newton’s method for calculating roots of equations.

Solution

As you have seen in the last few sections, it is possible to find solutions for a large

number of equations by just using a bisection method. You can also try to improve

the rate of convergence using additional information from the function, in such a way

that the secant of the function is used in the desired interval. Taking this idea one step

further, you will arrive at one of the most used methods for solving equations, which is

attributed to Isaac Newton.
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Newton'’s method for finding roots of equations uses the derivative of the function as
a first approximation to the location of the root. Similar to the previous two methods you
have seen, the process is iterative, and at each step, you can get closer to the real root of
the equation. At the end, you will have a solution that is within a very small error, which
can be determined before the algorithm starts.

To understand how the method works, consider again the function f{x) = (x-1)3,
which we have been using as an example. The derivative of this function can be easily
calculated, since this is a polynomial, and is given by f’(x) = 3(x-1)% Now, suppose
that you start with an initial guess of what the root value might be (if there is no guess,
consider a random value as the starting point). Call that initial guess x,. At that point, we
can calculate two values, f{x,) and f'(x,).

In Figure 9-3, you will find a plot of the function and its tangent at point x, = 0 for
the example function given previously. At that point, the value of f{x,) = f{0) = -1, and
the value of f'(x,) =f(0) = 3. Since the derivative of the function at a particular point
represents the slope of the tangent to the curve at that point, we can calculate a point
x;, which is determined by the line that is tangent with the given equation using the

following formula:
G N B
X, =Xy — =0-—=—
I (%) 3.3
° (X3 —— A
4 FX /_,4
2 J_-/ 4
) // ﬁ“’_____,_---"" ]
P N
el
3" :
-1 -05 0 05 1 15 2

Figure 9-3. The example function f(x) = (x-1)° and its tangent at point x, = 0. You
may notice that the tangent intersects the x-axis at point x, = % . This is the first step

in finding the root for the given function using Newton's method
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Once the intersection of the x-axis and the tangent has been found, you have a new
starting point for the determination of the root for the given equation. Notice that, each
time a new point is found, the algorithm gets a little closer to the desired point, although
it may take a few iterations to achieve the desired precision. As in the previous two
cases, you can determine the precision as a parameter to the algorithm and stop the
computation once the difference between two successive approximations is less than the
given parameter. This shows that the solution is converging to a point where the root is
located.

In summary, Newton’s method works by successively finding points that are
determined by the tangent to the function. As you get closer to the root, the difference
between the intersection of the tangent with the x-axis will get smaller. The stopping
condition is that difference between the last and the current values is less than a given
parameter.

Based on the previous information, the algorithm for Newton’s method can be given
as follows:

1. Define an initial value x, from which you want to search for one or
more roots of the equation.

2. Given the input function f(x), determine the derivative of function
J ).
3. Calculate the values of f{x) and f'(x) for the desired value.

4. Using the value f(x) as the slope of the tangent at the point x,
calculate a new point x; using the following equation:

5. Calculate the difference between x and x, as e = |x-x;|.

6. Ifthe value of e is less than the input error (threshold) E, stop and
report x as the solution. Otherwise, rename x, to x and continue
with step 1.

The fact that Newton’s method depends not only on the function but also on its
derivative can be seen as an advantage as well as a disadvantage. Sometimes, it is very
easy to compute the derivative of a function, such as for polynomial and common
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trigonometric functions, but that is not always the case. However, the greatest advantage
of Newton’s method is that, unlike the bisection and secant methods, it works even when
there is no difference in function sign.

Consider, for example, the function f{x) = (x-1)2. Its graph is shown in Figure 9-4.
Notice that, unlike other functions that you saw in this chapter, there is no place
where it changes sign. Therefore, without some changes to the bisection method, it
is not possible to find a root in this case. On the other hand, the function clearly has a
derivative, being differentiable everywhere, and this makes it possible to find the root
using Newton’s method.

35 ¢ \ }_.-" ' 4

25

(x-1)2
[ ]

15 |

05 ¢

Figure 9-4. A continuous, quadratic function (x-1)? that never changes sign but
has a single root at x = 1

A small issue that we need to consider when using Newton’s method is the
possibility that the derivative is zero at some point. If that is the case, then the next point
is undefined, since a division by zero is not permitted. This difficulty can be avoided,
however, if the algorithm adds a small value to the current point as a way to avoid
the issue. More sophisticated techniques to solve this problem exist, however, as the
reader will be able to find in one of the many existing books on the topic of numerical
algorithms.

The previous algorithm was coded in C++ in the class NewtonMethod, which provides
the necessary support for all the steps described. The design of the class is very similar
to what you saw for the bisection method. Unlike the bisection method and the secant
method, however, NewtonMethod depends not only on the function but also on its

270



CHAPTER9  CALCULATING ROOTS OF EQUATIONS

derivative. That’s why in the example code, you will see a reference to two functions: F3
and DF3. They are necessary so that the NewtonMethod class knows how to find the value
of the function and its derivative.

Complete Code

//
// NewtonMethod.h

#ifndef NEWTONMETHOD H_
#define NEWTONMETHOD H_

template <typename T>
class MathFunction;

class NewtonMethod {
public:
NewtonMethod(MathFunction<double> &f, MathFunction<double>
8derivative);
NewtonMethod(const NewtonMethod 8p);
virtual ~NewtonMethod();
NewtonMethod &operator=(const NewtonMethod 8p);

double getRoot(double initialValue);
private:

MathFunction<double> &m f;

MathFunction<double> &m derivative;

double m_error;

};
#endif /* NEWTONMETHOD H_ */

//
// NewtonMethod.cpp

#include "NewtonMethod.h"
#include "MathFunction.h"

#include <iostream>
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using std::endl;
using std::cout;

namespace {
const double DEFAULT ERROR = 0.001;

}

NewtonMethod: :NewtonMethod (MathFunction<double> &f, MathFunction<double>
&derivative)
:m_f(f),
m_derivative(derivative),
m_error (DEFAULT ERROR)
{
}

NewtonMethod: :NewtonMethod(const NewtonMethod 8p)
:m f(p.m_f),
m derivative(p.m derivative),
m_error(p.m error)
{
}

NewtonMethod: : “NewtonMethod ()

{
}

NewtonMethod &NewtonMethod: :operator=(const NewtonMethod 8&p)

{
if (this != &p)

mf =p.mf;
m_derivative = p.m derivative;
m_error = p.m_error;

return *this;
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double NewtonMethod: :getRoot(double x0)

{
double x1 = x0;
do
{
X0 = X1;
cout << " x0 is " << x0 << endl; // this line just for
demonstration
double d = m_derivative(x0);
double y = m_f(x0);
x1=x0 -y /d;
}
while (std::abs(x0 - x1) > m_error);
return xi;
}
// ---- this is the implementation for an example function and its
derivative

namespace {

class F3 : public MathFunction<double> {

public:

virtual ~F3();

virtual double operator()(double value);
};
F3::~F3()
{
}
double F3::operator ()(double x)
{

return (x-1)*(x-1)*(x-1);
}
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class DF3 : public MathFunction<double> {

public:
virtual ~DF3();
virtual double operator()(double value);
};
// represents the derivative of F3
DF3::~DF3()
{
}
double DF3::operator ()(double x)
{
return 3*(x-1)*(x-1);
}
}
int main()
{
F3 f;
DF3 df;
NewtonMethod nm(f, df);
cout << " the root of the function is " << nm.getRoot(100) << endl;
return 0;
}

Running the Code

The code can be compiled and linked using a compiler such as gcc on UNIX. To run the
resulting program and see its associated results, use the following command line:

«/newtonMethod
X0 is 100
X0 is 67
X0 is 45
x0 is 30.3333
X0 is 20.5556
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is 14.037
is 9.69136
is 6.79424
is 4.86283
is 3.57522
is 2.71681
is 2.14454
is 1.76303
is 1.50868
is 1.33912
is 1.22608
is 1.15072
is 1.10048
is 1.06699
is 1.04466
is 1.02977
is 1.01985
is 1.01323
is 1.00882
is 1.00588
is 1.00392
is 1.00261
root of the function is 1.00174

The algorithm executes the steps for Newton’s method for the function f{x) = (x-1)3.

Notice that even when starting from a distant value of 100, the algorithm converged to

the solution 1.0 within the required error.

Conclusion

In this chapter, you have seen a few examples that deal with the search for roots of

equations. This is a topic that is frequently useful in the solutions of equations appearing

in financial engineering. Algorithms for trading and for investment analysis frequently

require the solution of equations, which makes it necessary to find efficient techniques

for the determination of equation roots.
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In this chapter, I presented some of the most common techniques for the solution of
equations that appear in finance. More specialized algorithms exist, however, and you
can use the numerical methods literature as a starting point to explore the most recent
methods.

The programming samples in this chapter show, initially, how to compute the root
solution for equations using the bisection method. With the bisection algorithm, the
desired range of the domain is divided evenly, and at each step, possible location of the
root is approximated with higher accuracy. Due to the sign of the function in each end
point of the range, it is possible to detect if a root of the equation is contained in that
range. At the end of the procedure, one can determine within a small margin of error the
location where the equation becomes zero.

Next, you have seen a programming sample for the secant method to solve
equations. The method is based on the use of the secant line to the function in the
interval that is being considered. When the secant intersects the x-axis, the new point is
usually closer to the root of the equation. Performing several iterations of this procedure,
it is possible to find the desired solution in less time than needed by the bisection
method.

You have also learned about the most popular method for the determination of
equation root, known as Newton’s method. With this algorithm, a solution can be found
through the use of the tangent to the function at a given point. Since the derivative of a
function gives the slope of the function at each point, it is possible to use the derivative
to find a reasonable approximation. As the algorithm iterates through successive points,
the approximation gets better. As with other methods, the algorithm is generally stopped
when a preset maximum error is achieved.

In the next chapter, [ will talk about another important computational tool that
is heavily used in financial algorithms: numerical integration. With algorithms for
numerical integration, it is possible to find solutions for several difficult problems with
a high degree of precision. You will also see how to implement these techniques using
C++.
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Numerical Integration

Integrating a function is a common step in many financial algorithms. For example,
some financial techniques that involve the use of differential equations depend on the
evaluation of complex integrals. Such areas include derivatives pricing, insurance, and
related algorithms.

However, when using these methods, you can find integrals that have no known
analytical solution and need to be integrated numerically. Even if an equation can be
integrated analytically, it may be more efficient to perform this task using numerical
algorithms. For this purpose, this chapter explores some of the common ways of
performing numerical integration. After reading this and the next chapters, you will have
a better understanding of how these numerical integration algorithms work in practice
and how to use them in your own projects.

We discuss programming examples that can readily be applied in the use of some
common integration methods. We also discuss their performance and the accuracy of
such numerical methods when implemented using the C++ language. The programming
examples in this chapter cover the following topics:

e Midpoint method: A simple method of integration that uses an
easy-to-compute approximation based on the midpoint of each
integration interval.

o Trapezoid method: A more accurate method of numerical integration
that employs a trapezoidal approximation to the integrated area.

e Simpson’s method: A popular technique of numerical integration,
Simpson’s method provides a slightly better approximation than the
previous two methods.

e Graphical examples of these solution methods: We present a
graphical explanation of how these methods work, along with the
code necessary to implement them.
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The Midpoint Method

In this section, we create a C++ class to integrate functions using the midpoint method.

Solution

Integrating a function means, in a few words, finding the area of the curve formed by
the function and the x-axis, when considering a single dimension. While the concept

is simple, there is a large amount of literature concerning the practical importance of
this problem. The most important result, also known as the fundamental theorem of
calculus, is that integration is the inverse function of the derivative. In other words,
applying the derivative to the integral of a function will lead to the original function. You
can also integrate the derivative of a function to reach the original (up to a constant).

Finding the integral of a function by algebraic means is highly dependent on
the previous definition. This means that you need to know a second function whose
derivative is the function you want to integrate. In that case, the second function is
the integral using the fundamental theorem of calculus. The problem is that it is not
always possible to find an antiderivative using such methods. This leads to the need to
determine the integral using the computational method.

There are several methods that can be used to integrate a function, but they all
include the strategy of dividing the area of the desired function into many subareas
and adding them all. The good thing about numerical integration is that most schemes
of subdividing the area as described previously are convergent. This means that the
solution for most functions can be used by any of the methods we discuss. What
make these methods different is the computational effort and possibly some better
convergence for a particular function or application.

We start our discussion with an algorithm commonly known as the midpoint
method. This method was so named because of the use of a midpoint approximation to
the desired area. Consider the function f{x)=x?+1, and try to calculate the integral for this
function in the interval 1 to 5. You can see a plot of this function in Figure 10-1.
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Figure 10-1. Plot of function f(x)=x’+1 in the interval 1 to 5

Of course, it would be easy to solve this problem using symbolic techniques, since
there is a well-known way to determine the integral of a polynomial function. However,
consider how the problem could be solved using a purely computational strategy.

The goal of the algorithm is to develop an approximation so that you can determine
the considered integral within a prespecified error threshold. The first step is to devise a
function that could approximate the given function in the given interval. It turns out that
the easiest function we can try is the constant function f{x)=c.

Suppose that we use the constant function to approximate the integral in the interval
1 to 5. We can take as the value of the constant the average value of f{x) in that interval, as

determined by the extreme points.

That constant value would be f (%j =f(3)=10. Check in Figure 10-2 how this

constant function compares with the original function.
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Figure 10-2. The original function f(x) = x*+1 compared to the constant function

fx)=c

The value of the approximation can be calculated as (5-1)10 = 40. You can compare

this with the value defined by the closed calculation of the integral: the antiderivative
3

of f(x) =x*+1is F(x)= X? +x, and using this equation as the definite integral on the
interval 1 to 5, you will find the value 45.33. From this, you see that there is a large error
between the correct value and the estimation using a single midpoint calculation.

The good news is that we can improve this approximation by considering smaller
intervals over the required function and adding these values together. This is the
basic technique you will see in this and in the next sections. Therefore, to improve the
approximation in the preceding example, we can just divide the interval 1-5 into two
intervals: 1 to 3 and 3 to 5.

Considering the average value for the constant function, you will find values
2

2
(%j +1=35 for the first half of the interval and (%j +1=17 for the second half.

This gives us an approximation of 2 x 5 + 2 x 17 = 44. Since the exact value is 45.33, you
see that the approximation of 44 is much closer to the real value. You can see the new
approximation in Figure 10-3.
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Figure 10-3. Approximating the integral of f(x) = x*+1 using two constant values

As you have seen, the secret of getting a great result from the midpoint method is
subdividing the desired interval in smaller units and adding them, quite similar to the
way the integral function is defined itself. While you could start with a single constant
number and then divide the interval successively, it is much easier to start with a known
large number of segments and expand the number of divisions if necessary. Using this
strategy results in the following algorithm:

Define a range (A, B) where you want to calculate the integral to the equation.
1. Subdivide the initial range into N subintervals of equal sign.
2. [Initialize the integral value S to zero.
3. For each subinterval (a,b), do the following:
a. Take the values of a and b.
b. Determine the middle point value:

m(a,b)zf(aer).

2

c. Add m(a,b) to the integral.

The implementation of this simple method can be found in the
MidpointIntegration class.
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Complete Code

You can find the complete code that implements the method just described in
Listing 10-1. The listing includes a header file for class MidpointIntegration
as well as an implementation file.

Listing 10-1. Implementation for Midpoint Integration Method

//
// MidpointIntegration.h

#ifndef _ FinancialSamples MidpointIntegration
#idefine _ FinancialSamples MidpointIntegration

template <class T>
class MathFunction;

class MidpointIntegration {

public:
MidpointIntegration(MathFunction<double> &f);
MidpointIntegration(const MidpointIntegration 8p);
~MidpointIntegration();
MidpointIntegration &operator=(const MidpointIntegration 8p);

void setNumIntervals(int n);
double getIntegral(double a, double b);

private:
MathFunction<double> &m_f;
int m_numIntervals;

};
#tendif /* defined(__FinancialSamples MidpointIntegration_ ) */

//
// MidpointIntegration.cpp

#include "MidpointIntegration.h"
#include "MathFunction.h"

#include <iostream>
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using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM_INTERVALS = 100;

}

MidpointIntegration::MidpointIntegration(MathFunction<double> &f)
:m_f(f),
m_numIntervals(DEFAULT NUM INTERVALS)
{
}

MidpointIntegration::MidpointIntegration (const MidpointIntegration &p)
:m_f(p.m_f),
m_numIntervals(p.m_numIntervals)
{
}

MidpointIntegration::~MidpointIntegration()
{
}

MidpointIntegration &MidpointIntegration::operator=(const
MidpointIntegration &p)

{
if (this != &p)
{
mf =p.mf;
m_numIntervals = p.m_numIntervals;
}
return *this;
}
void MidpointIntegration::setNumIntervals(int n)
{
m_numIntervals = n;
}
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double MidpointIntegration::getIntegral(double a, double b)

{
double S = 0;

double intSize = (b - a)/m_numIntervals;
double x = a;

for (int i=0; i<m numIntervals; ++i)

{
double midpt = m_f(x+(intSize/2));
S += intSize * midpt;
X += intSize;

}

return S;

}

// Example function x"2 + 1
namespace {

class F1 : public MathFunction<double>

{
public:
~F1();
double operator()(double x);
};
F1::~F1()
{
}
double F1::operator ()(double x)
{
return x*x+1;
}
}
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int main()
{
F1 f;
MidpointIntegration mpi(f);
double integral = mpi.getIntegral(1, 5);
cout << " the integral of the function is

<< integral << endl;

mpi.setNumIntervals(200);

integral = mpi.getIntegral(1, 5);

cout << " the integral of the function with 200 intervals is " <«
integral << endl;

return 0;

Running the Code

You can generate a binary executable from the source code in Listing 10-1 using any
standards-compliant compiler such as gcc. Then, you can execute the code to get sample
results such as the following, for the sample equation f{x) = x*+1:

./midpointIntegration
the integral of the function is 45.3344
the integral of the function with 200 intervals is 45.3336

Notice that the solution tests the approximation for two cases: when the number of
intervals is 100 (the default) and when the number of intervals is 200. Since the exact

1
value of the function is 45 + g, this shows an improvement in the result with an error

going from the third decimal place to the fourth decimal place. You can improve the
approximation for different functions or required errors by increasing the number of
intervals if necessary.

Trapezoid Method

In this section, we create a C++ class that implements the trapezoid method for definite
integral calculation.
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Solution

As you have seen in the last section, it is not difficult to come up with an approximation
for the integral of a function. However, in many applications, it is useful to have a faster
and more efficient way to determine the definite integral of a function. This is especially
true when the function that needs to be integrated is difficult to compute in the first
place. In those situations, it is better to use an approximation technique that might be
able to provide more accurate solutions to the integration problem.

In this coding example, I examine an alternative way to calculate the integral
of a continuous function, called the trapezoid method. As the name indicates, the
trapezoid method uses a geometric, intuitive idea to render the value under the curve
for a particular function, in such a way that the resulting approximation is closer to the
desired value.

To use the trapezoid method, we look at the integration problem using a geometric
intuition about the best way to approximate the desired curve. Consider the function

1
fx) = sin(x) in the range 5 to % . The desired integral is defined as the area under the

curve. A simple approach to approximate this value is to use the area of linear function
that approximates sinx between the extremes of the given interval. Using a graphical
approach, you can see the results in Figure 10-4.
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Figure 10-4. Approximating the integral of f(x)=sin(x) over the interval from 1/2
to 5/2 with the help of one iteration of the trapezoid method
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The trapezoid method applied to that interval gives a relatively poor approximation.
The real value of the indicated integral, when computed using symbolic techniques, is

cos% - cos% , which is approximately 1.6787. The trapezoid method, on the other hand,
yields the value 2-sin— +sin S sinl = sinl + siné ~1.0778.
2 2 2 2 2

Although this is a poor approximation, you can do better if you divide the interval
of the desired function in two or more subareas. As you do this, the errors will become
smaller, and the resulting value will be closer to the real value of the integral. For
example, I will show how to improve the approximation of the previous function using
the two subintervals from 1/2 to 3/2 and from 3/2 to 5/2.

The values of f(%} = sin% ~0.4794 and f(%j = sin% ~0.9974 resultin a trapezoid
with an area of 0.7384. The second interval, on the other hand, has value determined
by f (%) = sin% and f (%j = sin% ~ 0.5984 . The resulting trapezoid has area equal to
1.5364, which is closer to the exact value of 1.6787. You can see how this approximation

works graphically in Figure 10-5.
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Figure 10-5. Using the trapezoid method to approximate the area under the
function f(x)=sin x, with two intervals (1/2 to 3/2 and 3/2 to 5/2)

It can be proved, as shown in the previous two examples, that as the number of
subintervals is increased, the quality of the approximation gets better. As a result, you
can get as close as desired from the true value of the definite integral by increasing the
number of subintervals in the trapezoid method.
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I present a class, called TrapezoidIntegration, which shows how to implement
the trapezoid method for any function passed as an argument. The implementation is
made generic with the use of the MathFunction class. Passing a new object of the desired
MathFunction class, you can calculate definite integrals for different functions using the
getIntegral member function.

With the TrapezoidIntegration class, you can also determine the desired number
of intermediate intervals used, if you use the member function setNumIntervals.
This, as a result, allows you to reduce the error in the estimates of the definite integral,
if necessary. Another thing you can do using the setNumIntervals is to reduce the
computational effort necessary, by reducing the number of iterations of the algorithm. In
this way, you have complete control over the trade-off between degree of approximation
and computational efficiency.

Complete Code

Listing 10-2 is a complete implementation for the trapezoid method for integration as

discussed in the previous section. You will find this code divided into a header file and
an implementation file. There is also a main function that presents an example for the

class TrapezoidIntegration.

Listing 10-2. Trapezoid Integration Method

//
// TrapezoidIntegration.h

#ifndef _ FinancialSamples TrapezoidIntegration
#define _ FinancialSamples_ TrapezoidIntegration _

template <class T>
class MathFunction;

class TrapezoidIntegration {

public:
TrapezoidIntegration(MathFunction<double> &f);
TrapezoidIntegration(const TrapezoidIntegration 8p);
~TrapezoidIntegration();
TrapezoidIntegration &operator=(const TrapezoidIntegration &p);
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void setNumIntervals(int n);
double getIntegral(double a, double b);

private:
MathFunction<double> &m_f;
int m_numIntervals;

};
#tendif /* defined(__FinancialSamples TrapezoidIntegration ) */

//
// TrapezoidIntegration.cpp

#include "TrapezoidIntegration.h"
#include "MathFunction.h"

#include <iostream>
#include <cmath>

using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM_INTERVALS = 100;

}

TrapezoidIntegration::TrapezoidIntegration(MathFunction<double> &f)
:m_f(f),
m_numIntervals(DEFAULT NUM_INTERVALS)
{
}

TrapezoidIntegration::TrapezoidIntegration (const TrapezoidIntegration &p)
:m_f(p.m_f),
m_numIntervals(p.m numIntervals)

{
}
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TrapezoidIntegration::~TrapezoidIntegration()

{
}

TrapezoidIntegration &TrapezoidIntegration::operator=(const
TrapezoidIntegration &p)

{
if (this != 8&p)
{
mf =p.mf;
m_numIntervals = p.m _numIntervals;
}
return *this;
}

void TrapezoidIntegration::setNumIntervals(int n)

{

m_numIntervals = n;

}

double TrapezoidIntegration::getIntegral(double a, double b)

{
double S = 0;

double intSize = (b - a)/m_numIntervals;
double x = a;

for (int i=0; i<m numIntervals; ++i)

{
double midpt = (m f(x) + m_f(x+intSize))/ 2;
S += intSize * midpt;
X += intSize;

}

return S;

}

// Example function

namespace {
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class F2 : public MathFunction<double>

{
public:
~“F2();
double operator()(double x);
};
F2::~F2()
{
}
double F2::operator()(double x)
{
return sin(x);
}
main()
F2 f;

TrapezoidIntegration ti(f);
double integral = ti.getIntegral(0.5, 2.5);
cout << " the integral of the function is

ti.setNumIntervals(200);
integral = ti.getIntegral(0.5, 2.5);

NUMERICAL INTEGRATION

<< integral << endl;

cout << " the integral of the function with 200 intervals is " <«

integral << endl;
return 0;

Running the Code

You can compile the code presented in Listing 10-2 using a standards-compliant

compiler such as gcc, Visual Studio, or llvm. After you compile the code, you can run

the resulting application to test the results. The following is a sample of the program

execution:
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./trapezoidMethod
the integral of the function is 1.67867
the integral of the function with 200 intervals is 1.67871

The program displays the value of the integral of sin(x) from 1/2 to 5/2. The
approximation is given for two different settings of the number of subintervals. The first
result is for 100 subintervals. The second result shows the approximation achieved when
that number of subintervals is doubled.

As in the previous example, it is possible to control the quality of the approximation
by increasing the number of subintervals. Also, you can reduce that number in case you
prefer to get quicker results.

Using Simpson’s Method

Implement Simpson’s method for definite integral calculation.

Solution

You have seen two common ways to calculate the value of the definite integral for a given
continuous function. A third method, known as Simpson’s method, is presented in this
programming example. As with any technique for numeric integration, the general idea
is to create a second function that approximates the desired function and apply it to
several subintervals of the original domain until you get a good approximation.

Simpson’s method, unlike the previous two methods that use linear approximations
to the given function, employs a second-order polynomial to achieve a better
convergence. In this way, instead of relying on a linear function to achieve the desired
result, the approximation proposed with Simpson’s method is better adapted to the
behavior of the original curve.

The way Simpson’s method work can be easily visualized with an example. Suppose
you want to integrate the function used in the previous section: f{x) = sin x. This function,
being trigonometric, has no simple finite representation as a polynomial. However, it is
possible to find very good approximations for a representation if you restrict the search
to a small part of the function.

For example, I have shown in Figure 10-6 how it is possible to use a second-order
polynomial function to approximate the value of sinx in the interval 1/2 to 5/2. Observe
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that the similarity between these two curves is good enough only in the short range
of values inside the given interval, and outside that interval, these two functions vary
widely.

0 05 1 15 2 25 3
X

Figure 10-6. Using a second-degree polynomial to approximate the value of
f(x)=sin x in the interval 1/2 to 5/2

The same idea is used in Simpson’s method. Since a quadratic approximation may
be so close to the desired function, the use of quadratic functions may dramatically
improve the value of the definite integral calculated in this way. In fact, experiments have
shown that Simpson’s method has better accuracy than other algorithms, such as the
midpoint method and the trapezoid method.

Note The additional accuracy of Simpson’s method can make it possible to reduce
the number of subintervals necessary for the calculation of the definite integral.
However, since you need to use a quadratic approximation instead of a simple linear
function, the computational effort of each iteration will be higher. In the end, while
Simpson’s method produces superior results for most functions, users need to be
aware of a possible trade-off in terms of computational time per iteration.

The second-order polynomial used in Simpson’s method is defined in the following
equation, which can be used to directly implement the proposed rule:

el s (452} 1)
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Therefore, you can summarize the general algorithm as follows:

1. Define arange (A, B) where you want to calculate the integral to
the equation.

2. Subdivide the initial range into N subintervals of equal sign.
3. Initialize the integral value S to zero.
4. For each subinterval (a,b), do the following:

a. Take the values of a and b.

b. Determine the approximation to the integral in the interval (a,b) given by
the equation

m(a,b>:b;“[f<a)+4f(“+b]+f(b)}

2

c. Add m(a,b) to the integral.

This algorithm has been implemented as part of SimpsonsIntegration class

Complete Code

You can find the complete implementation of Simpson’s method in Listing 10-3. The
implementation presented there is later used in the main function.
Listing 10-3. Code for Simpson’s Integration Method

//
//  SimpsonsIntegration.h

#ifndef _ FinancialSamples SimpsonsIntegration
#define _ FinancialSamples_ SimpsonsIntegration

template <class T>
class MathFunction;

class SimpsonsIntegration {
public:
SimpsonsIntegration(MathFunction<double> &f);
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SimpsonsIntegration(const SimpsonsIntegration &p);
~SimpsonsIntegration();
SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

double getIntegral(double a, double b);
void setNumIntervals(int n);
private:
MathFunction<double> &m_f;
int m_numIntervals;

}s
#tendif /* defined(__FinancialSamples SimpsonsIntegration ) */

//
// SimpsonsIntegration.cpp

#include "SimpsonsIntegration.h"
#include "MathFunction.h"

#include <iostream>
#include <cmath>

using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction<double> &f)
:m_f(f),
m_numIntervals(DEFAULT NUM INTERVALS)
{
}

SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration 8p)
:m f(p.m f),
m_numIntervals(p.m numIntervals)
{
}
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SimpsonsIntegration::~SimpsonsIntegration()

{
}

SimpsonsIntegration &SimpsonsIntegration::operator=(const
SimpsonsIntegration 8p)

{
if (this != 8&p)
{
mf =p.mf;
m_numIntervals = p.m _numIntervals;
}
return *this;
}

double SimpsonsIntegration::getIntegral(double a, double b)

{
double S = 0;

double intSize = (b - a)/m_numIntervals;
double x = a;

for (int i=0; i<m numIntervals; ++i)

{
S += (intSize / 6) * ( m_f(x) + m_f(x+intSize) + 4* m f ((x +
x+intSize)/2) );
X += intSize;
}
return S;
}
void SimpsonsIntegration::setNumIntervals(int n)
{
m_numIntervals = n;
}

// Example function

namespace {
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class F2 : public MathFunction<double>

{
public:
~“F2();
double operator()(double x);
};
F2::~F2()
{
}
double F2::operator()(double x)
{
return sin(x);
}
main()
F2 f;

SimpsonsIntegration si(f);
double integral = si.getIntegral(0.5, 2.5);
cout << " the integral of the function is

si.setNumIntervals(200);
integral = si.getIntegral(0.5, 2.5);

NUMERICAL INTEGRATION

<< integral << endl;

cout << " the integral of the function with 200 intervals is " <«

integral << endl;
return 0;

Running the Code

The code displayed in Listing 10-3 was tested using the function f{x) = sin x. The

compiler used was gcc on Mac OS X and Windows. The program was tested on both

platforms, generating identical results.
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After compiling the class SimpsonsIntegration, you can run the application and
observe output similar to the following:

./simpsonsIntegration
the integral of the function is 1.67873
the integral of the function with 200 intervals is 1.67873

As you can observe from these results, the accuracy of the solution with 100 intervals
is similar to the accuracy for 200 intervals. This shows that 100 subdivisions are already
enough to get very good results for this technique.

Conclusion

Integrating functions is one of the basic tasks in computational mathematics, due to the
great importance of integration (also known as antiderivative) as a fundamental area

of calculus. In the development of financial algorithms, there are also many situations
where it is necessary to find quick solutions to problems that involve the evaluation of
definite integrals.

In this chapter, you have learned a few C++ programming examples that explore
some of the most common techniques for numerical integration. You have seen how
integration methods such as the trapezoid and Simpson’s rule can be applied to the task
of finding the area under the curve for some preestablished functions.

The trapezoid method is the second important algorithm used to evaluate definite
integrals. Given a general function, this method uses the function value at the extremes
of the interval in order to define a trapezoid-based geometric approximation. You have
seen some examples of how this strategy works, along with working code to implement
the rule.

I have also discussed the well-known Simpson’s method for definite integration.
Here, the approximation to the curve is performed using a quadratic equation. You saw
an example of how to use polynomial equations to achieve the desired accuracy. Using
Simpson’s method, you can perform integration with very good approximations, despite
the fact that fewer subintervals may be necessary to read this accuracy.

Partial differential equations (PDEs) are another important mathematical tool for
the financial software developer. It is important to understand how they work, as well
as having tools to find solutions based on PDEs. In the next chapter, I discuss some
important PDE-related techniques and their implementation in C++.
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Solving ODEs and PDEs

The solution of ODEs (ordinary differential equations) and PDEs (partial differential
equations) is at the heart of many techniques used in the analysis of financial markets.
Important analytical tools for derivative valuation such as the Black-Scholes model for
stock options and other derivatives can be directly represented as differential equations.
Such equations need to be regularly solved in order to determine the price of financial
instruments traded in the global markets. This creates the need for high-performance
code, capable of finding efficient solutions to these mathematical models.

Due to the large number of applications of ODEs and PDEs in science, engineering,
and finance, several methods to solve them have been developed. In addition to
the exact mathematical methods, capable of analyzing and finding the solution to
differential equations, a software engineer also has to deal with purely computational
approaches, as well as their implementation in C++.

Examples of differential equations of interest in finance include

o Thiele’s differential equation: Used to determine fair prices for life
insurance contracts

o Black-Scholes differential equation: Used to price options and related
derivatives

o Market reserve differential equation

e Dynamic variations of portfolio optimization

e Merton’s equations for utility optimization

o Along with several variations of these differential equations

Since the application of differential equations to financial problems is such a
large area, in this chapter I am able to present only an overview of the methods most
frequently used for their solution.
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The programming examples discussed in this chapter cover a few particular aspects
of ODE and PDE modeling and applications. Topics that you will explore include the
following:

o Euler’s method for ODEs: An algorithm that is simple to implement
and can be applied directly to any first-order ODE.

¢ Runge-Kutta method: An improvement over the general ideas of
Euler’s algorithm, the Runge-Kutta method provides better stability
and accuracy for the solution to ODEs.

o Black-Scholes equation: A general discussion of the Black-Scholes
PDE and an overview of the forward method to solve this model.

Solving Ordinary Differential Equations

In this section, we will create a class to solve ODEs using Euler’s method.

Solution

I start the discussion of differential equations with some methods for the numerical
solution to ordinary differential equations. Before I can start with a first example,
however, let’s remember some of the relevant facts about ODEs.

An ordinary differential equation is an equation that includes the rate of change
(derivative) with respect to a single variable in one or more of its terms. Given a
differential equation, its order is defined as the maximum order of any of the derivatives
included in the equation. The following are a few examples of ODEs:

2
x3d—f+xﬂ+y=x5
dx dx
dy 2
X—+4x" =
dx Yy

Both equations involve the derivative of the variable y with respect to x. In the first
equation, the derivative is applied twice, resulting in the term d?y/dx* which means that
itis a second-order ODE. The second equation contains only a first-order derivative with
respect to x, making it a first-order ODE.
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Standard equations (the ones that don’t involve derivatives) usually have solutions
that can be expressed as a single number. ODEs, however, include derivatives, and
therefore their solutions are better described as being one or more functions, which
together satisfy the conditions implied by the derivatives. For example, the following
well-known differential equation describes Newton'’s law of gravity:

m d—zx =-mg
dr’

The solution of such an equation is a general function describing the velocity and
acceleration of an object. To find out a numeric solution to such a particular problem,
you would need to supply one or more initial conditions that, when plugged into the
general solutions, will provide an explicit value for x in the given equation.

As you have seen from the previous example, numerically solving an ODE involves
working with initial conditions that can be substituted in the general function that solves
the equation. As a consequence, numerical methods to solve ODEs (and PDEs) require
the determination of initial conditions as a prerequisite to find their numerical solutions.

There are two main types of methods that can be used to solve differential equations.
The first kind of solution is based on symbolic methods. Such methods use algebraic
techniques, including the known rules of differentiation and integration, to simplify and
derive a closed solution to a differential equation. Symbolic methods can be performed
manually or by computers, and there is a class of software that was created specifically
to perform such symbolic manipulations. Main examples include Mathematica, Maple,
and Maxima, among others.

While symbolic methods are very useful in solving certain classes of ODEs and
PDEs, many differential equations are too complex to be solved to a closed form using
symbolic manipulation. Moreover, such symbolic techniques are very specialized and
are normally used only during the modeling and exploration phases, when the engineer
or mathematician is creating a model based on differential equations. For these reasons,
symbolic techniques are mostly confined to specialized software packages, rather than
being used as libraries for general-purpose languages.

The second class of techniques for solving differential equations is based on
numerical algorithms. These algorithms are more general in the sense that they can
be applied to any differential equation, as long as some basic requirements are met.
Moreover, many common differential equations have no known closed solutions, and in
such cases, numerical methods are the only ones available. Because numerical methods
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for ODEs and PDEs can be implemented using standard programming techniques, they
are commonly used as part of mathematical libraries for programming languages such
as FORTRAN and C++.

Euler’s Method

The first numerical algorithm for ODEs you will learn about is a simple technique
called Euler’s method, which is based on the successive evaluation of the desired ODE
at predetermined steps. Starting from a given initial condition, Euler’s method tries to
find the next value of the differential equation, using approximation formulas that are
applied at predetermined intervals.

The idea of Euler’s method is to correct possible errors in the evaluation of the ODE
when starting from the given initial condition. For example, suppose that you want to
evaluate an ODE at desired point ¢, when starting from initial condition x,. To make the
argument simpler, assume that x, < ¢, although the same ideas are valid in the other
direction. To solve the ODE, the idea of this algorithm is to perform the evaluation in N
steps, where N is a given parameter. As a consequence, the step size is given by

_c—X,

h= .
N

Let’s assume that the differential equation can be represented as a first-order ODE in
the following general form:

y’:ﬂxr)/)

Also, the initial condition (x,,y,) is known.

In general terms, at each step (given by the value &), Euler’s algorithm will try to
determine the correct value of the solution for the ODE for that small step size. The
biggest problem, however, is that the solution to the differential equation is not known
in an explicit way, so the algorithm has to guess a particular value for each step. Since
the step size is a small interval, a possible way to guess the value of the function is to
approximate it using a straight line. If we call y, the value of the function at step ¢, then
this leads to the following approximation for y;:

(o) + f(xo +hy+hf (x3,.))
2

yt zyt—l +h
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In other words, the algorithm takes the mean value of the linear approximation
between the previous point and the next point, as the next approximation to the small
value between y, , and y..

Euler’s algorithm is a simple example of what is known as a predictor-corrector
algorithm. Such methods work by predicting where a function might be in the
subsequent iteration, which in this case is performed using a linear approximation.

The next step is to correct this prediction, in this case by taking the average value. The
same strategy is repeated in many other algorithms, although with more complex
approximation schemes.

One of the biggest issues when using Euler’s algorithm is controlling for errors in the
result. As you have seen, the step size for Euler’s method is one of the input parameters
for its implementation and indicates the frequency with which we want to update the
results of the differential equation. The finer grained the steps we take in this evaluation
process, the closer to the real function we get. On the other hand, two problems occur
when we increase the number of steps in the ODE evaluation. First, there is the increase
in running time due to the additional calculations that become necessary. Second, and
of even more concern, is the fact that by increasing the number of steps, you might be
increasing the numeric errors that are inevitable when doing calculations on a computer.
Solving these precision problems leads to the development of other methods, as you see

in the next section.

Complete Code

Euler’s method, as described in the previous section, is implemented in the
EulersMethod class displayed in Listing 11-1. The important method in this class is
solve(), which receives as parameters the number of steps, the initial values x, and y,,
and the target point c.

Listing 11-1. Implementation for Euler’s Method for Solving ODEs

//
// EulersMethod.h

#ifndef _ FinancialSamples EulersMethod
#define _ FinancialSamples EulersMethod
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template <class T>
class MathFunction;

class EulersMethod {

public:
EulersMethod(MathFunction<double> &f);
EulersMethod(const EulersMethod &p);
~EulersMethod();
EulersMethod &operator=(const EulersMethod &p);

double solve(int n, double x0, double yo0, double c);
private:
MathFunction<double> &m_f;

};
#tendif /* defined(__FinancialSamples EulersMethod ) */

//
// EulersMethod.cpp

#include "EulersMethod.h"
#include "MathFunction.h"
#include <iostream>

using std::cout;
using std::endl;

EulersMethod: : EulersMethod(MathFunction<double> &f)
2 m_f(f)

{

}

EulersMethod: : EulersMethod(const EulersMethod &p)
:m f(p.m_f)

{

}
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EulersMethod: : ~EulersMethod()

{
}

EulersMethod &EulersMethod: :operator=(const EulersMethod &p)
{
if (this != 8&p)
{
mf =p.mT;
}

return *this;

}

double EulersMethod::solve(int n, double x0, double yo0, double c)

{
// problem : y' = f(x,y) ; y(x0) =yo0

auto x = x0;
auto y = yo0;
auto h = (c - x0)/n;

cout << " h is " << h << endl;

for (int i=0; i<n; ++i)

{
double F = m _f(x, y);
auto G = m f(x + h, y + h*F);
cout << " F: " << F << " G: " << G << endl;
// update values of x, y
X += h;
y += h * (F + G)/2;
cout << " x: " << x << "y: " <<y << endl;
}
return y;
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class EulerMethSampleFunc : public MathFunction<double> {
public:
double operator()(double x) { return x; } // not used
double operator()(double x, double y);

s

double EulerMethSampleFunc::operator()(double x, double y)
{

return 3 * x +2 *y + 1;

}

int main()

{
EulerMethSampleFunc f;
EulersMethod m(f);
double res = m.solve (100, 0, 0.25, 2);
cout << " result is " << res << endl;
return 0;

}

Running the Code

You can generate a binary executable from the source code in Listing 11-1 using any
standards-compliant compiler such as gcc. Then, you can execute the code to get sample
results such as the following for the sample equation f{x) = 3x + 2y + 1:

./eulexsMethod
h is 0.02
F: 1.5 G: 1.62 X: 0.02 y: 0.2812

F: 1.6224 G: 1.7473 x: 0.04 y: 0.314897
F: 1.74979 G: 1.87979 x: 0.06 y: 0.351193
F: 1.88239 G: 2.01768 x: 0.08 y: 0.390193
/7 ...

F: 137.938 G: 143.515 x: 1.94 y: 68.4034
F: 143.627 G: 149.432 x: 1.96 y: 71.334
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F: 149.548 G: 155.59 x: 1.98 y: 74.3854
F: 155.711 G: 161.999 x: 2 y: 77.5625
result is 77.5625

Notice that the solution tests the approximation for two cases: when the number of
intervals is 100 (the default) and when necessary.

Runge-Kutta Method for Solving ODEs

In this section, we will implement the Runge-Kutta method for solving ODEs.

Solution

In the last section, you saw how to use Euler’s method to solve ODEs, a technique that
iterates through a series of steps while computing an approximation to the desired
differential equations. A problem with Euler’s method, however, is its slow convergence.
Due to the first-order approximation used, the method requires a large number of steps
if any accuracy is desired. On the other hand, it is also difficult to avoid error propagation
when the number of steps increases, which makes it difficult to improve the accuracy of
this method.

To reduce some of the problems inherent in Euler’s method, other strategies have
been devised. The way these methods try to overcome such limitations is to use better
approximations for each step of the algorithm. This way, it is possible to use fewer steps
overall to find the desired solution. Also, the improved approximation makes it possible
to reduce computational errors incurred during a single step.

One of the most popular of such improved algorithms for the solution of ODEs is
called the Runge-Kutta method. Compared to Euler’s method, the Runge-Kutta method
uses a different approximation scheme for each new step of the algorithm, which
guarantees higher accuracy. As a consequence, you will also have faster convergence
when using the Runge-Kutta method.

As before, assume that we are given a first-order differential equation with relation to
the x variable:

Y =flxy)
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The initial condition (x,,y,) is known, and the goal is to calculate the value of the
differential equation at some point c. If we define as N the number of steps, the step size
can be given as

The well-known Taylor method from calculus can be used to compute the
approximation to a function given its derivatives. The approximation found using the
second-order Taylor approximation will give a more accurate result than the linear
approximation used in Euler’s algorithm. The formulas used in the original Runge-Kutta
algorithm are the following:

X, =x+h
h h
Vit =W +hf(xz +5’yt +Ef(xtayt )j

If you employ higher-order approximations derived using the Taylor method, you
can get even more precise results. The most common of such approximations is the
fourth-order Runge-Kutta method. In this case, the formula for y,,, is given by

k, =hf(xt,y,)
h k
k,=h +—=y, +—=
2 f(xt 2yt 2)
k3:hf(xt+_5yt+%j

k, =hf(xt +h,y, +k3)

Y =W +%(k1 +2k,,2k, +k4)
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This method offers good results in terms of fast approximation and is appropriate to
solve most ODE problems. The implementation is relatively straightforward, as shown in
the code that follows.

The updated algorithm can be seen in the function solve, which can be written as
follows:

double RungeKuttaODEMethod::solve(int n, double x0, double yo, double c)
{

auto x = x0;
auto y = yo0;
auto h = (c - x0)/n;

for (int i=0; i<n; ++i)

{
auto k1 = h * m f(x, y);
auto k2 = h * m f(x + (h/2), y + (k1/2));
auto k3 = h * m f(x + (h/2), y + (k2/2));
auto k4 = h *m f(x + h, y + k3);
X += h;
y += ( k1 + 2*k2 + 2*k3 + k4)/6;

}

return y;

Complete Code

Listing 11-2 presents the Runge-Kutta method for solving ODEs. The code organization
is similar to what I used for Euler’s method in the previous section. The main difference
resides in the way the next step is defined, which uses the equations based on the Taylor
method as explained previously.

Listing 11-2. Implementation of the Runge-Kutta Method to Solve ODEs

//
//  RungeKuttaODEMethod.h

#ifndef _ FinancialSamples_ RungeKuttaODEMethod
#define _ FinancialSamples RungeKuttaODEMethod
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template <class T>
class MathFunction;

class RungeKuttaODEMethod {

public:
RungeKuttaODEMethod(MathFunction<double> &f);
RungeKuttaODEMethod(const RungeKuttaODEMethod &p);
~RungeKuttaODEMethod();
RungeKuttaODEMethod &operator=(const RungeKuttaODEMethod &p);
double solve(int n, double x0, double y0, double c);

private:
MathFunction<double> &m_f;

}s
#tendif /* defined(__FinancialSamples RungeKuttaODEMethod ) */

//
//  RungeKuttaODEMethod.cpp

#include "RungeKuttaODEMethod.h"
#include "MathFunction.h"
#include <iostream>

using std::cout;
using std::endl;

RungeKuttaODEMethod: :RungeKuttaODEMethod (MathFunction<double> &f)
:m_f(f)

{

}

RungeKuttaODEMethod: :RungeKuttaODEMethod(const RungeKuttaODEMethod 8&p)
:m f(p.m_f)

{

}

RungeKuttaODEMethod: : “RungeKuttaODEMethod()

{
}
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double RungeKuttaODEMethod::solve(int n, double x0, double yo, double c)

x0)/n;

i<n; ++1)

m_f(x, y);

m f(x + (h/2), y + (k1/2));
m f(x + (h/2), y + (k2/2));
mf(x + h, y + k3);

> O S
ECRE N

+ 2*%k2 + 2*k3 + k4)/6;

{
if (this != &p)
{
mf =p.mf;
}
return *this;
}
{
auto x = x0;
auto y = yo0;
auto h = (c -
for (int i=0;
{
auto k1 =
auto k2 =
auto k3 =
auto k4 =
X += h;
y += ( k1
}
return y;
}
/1] -----

class RKMethSampleFunc : public MathFunction<double> {

public:

double operator()(double x) { return x; } // not used

double operator()(double x, double y);

};
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double RKMethSampleFunc::operator()(double x, double y)

{
return 3 * x + 2 *y + 1;

}

int main()

{
RKMethSampleFunc f;
RungeKuttaODEMethod m(f);
double res = m.solve (100, 0, 0.25, 2);
cout << " result is " << res << endl;
return 0;

}

Running the Code

The code in Listing 11-2 was compiled and tested using gcc. It should work, however,
using any standards-compliant compiler. The test code is in the main function, which
runs the algorithm using the differential equation y’ = 3x + 2y + 1. The results can be
compared with what was achieved with Euler’s method discussed previously.

«/rungeKutta

X: 0.02 y: 0.281216
X: 0.04 y: 0.314931
X: 0.06 y: 0.351245
X: 0.08 y: 0.390266
l/ ...

x: 1.9 y: 62.9518
X: 1.92 y: 65.6582
x: 1.94 y: 68.4763
X: 1.96 y: 71.4107
x: 1.98 y: 74.466
X: 2 y: 77.6472
result is 77.6472

The sample output shows the convergence of the algorithm, with 100 iterations. You
can see the complete results displayed in Figure 11-1.
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y' approximation
8 8 5 8 3

u e} 1 1 1 1 1 1

0 02 04 06 08 1 12 14 16 138 2

X values

Figure 11-1. Successive steps of the Runge-Kutta algorithm for the previous
example, with N=100

Solving the Black-Scholes Equation

Create a C++ class to solve the Black-Scholes equation using the forward method.

Solution

The Black-Scholes equation is one of the best-known methods to price derivatives. It was
developed in the 1970s to provide a better model of European-style options, but since
then, the basic model has been extended and tested on multiple derivatives markets.
While the original assumptions of the Black-Scholes equation are not exactly respected
in the real markets, the model works as an excellent analytical tool to price instruments
that present volatile behavior as observed in the stock market.

Remember that an option is a contract that allows the holder to buy (or sell) units of
a stock at a particular price in a given time in the future. For example, a call option on
MSEFT at $30 for July of the next year gives its owner the right (but not the duty) to buy
MSEFT for the price of $30 in July, irrespective of the real price at that date. Therefore, if
MSEFT stock price is significantly higher than $30, this operation will result in a profit. At
$30 or lower prices, however, this option will result in a loss. Similarly, you can do the
same analysis for a put, which is the right to sell a stock at the given price in the future.
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A call produces higher profits when the price for the underlying asset rises, with a fixed
maximum loss. On the other hand, a put produces higher profits when prices for the
underlying asset decrease, also with a fixed maximum loss.

The Black-Scholes model defines what should be the present value of a call option (a
similar analysis works for put options). It considers the following input values:

o S: The price of the underlying instrument

o K:The strike price for the option

o T:Theremaining time for the option contract
e V: The current volatility of the underlying asset
e 1:The current interest rate on deposits

Using this information, the Black-Scholes model concludes that the relationship
between the current price of the option and the input variables is given by a PDE, as
follows:

oC(St) _ e oC(8,1) s *C(S.1)

——rC (S ,t)
ot oS 2 oS

Here, the implicit function C(S,¢) is the price or the derivative, which depends on the
underlying price S and the time .

There are several ways to solve differential equations like the previous one. The one
you will use in this section is called the forward method. The general idea of solving
PDEs is not very different from what you have seen for ODEs: take small steps toward
the desired point that needs to be calculated, and evaluate the differential equation
at these intermediate points using some kind of approximation. Unlike ODEs, which
have only one dimension, however, PDEs have partial derivatives over two or more
variables. In this case, we have partial derivatives in relation to the variables # and S.
When this happens, the approximations become more complicated, because one needs
to determine the shape of the small intervals at which the PDE will be evaluated. For
example, the simplest scheme would be to divide the two-dimensional space into small
rectangles and approximate over these small elements. Depending on the class of PDE,
one can come up with more complicated and more precise ways to divide the domain
and approximate the true value of the partial equation.

The forward difference method is an extension of Euler’s method for PDEs. For the
two-dimensional case, it can be used to divide the domain into rectangular elements.
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For this method to work, you can assume that the stock price domain (S) varies between
0 and MaxS, a constant number that is in practice much higher than the desired strike
price. The time domain varies from 0 (current date) to the future time (T) in which the
option contract expires. Using these assumptions, the next task is to derive the equations
that approximate the PDE at the next step, which can be done again using the Taylor
method discussed earlier.

The initial conditions for the forward method are derived from the gain-loss
equation at expiration. At that time, the value of an option is the positive difference
between the stock price and the strike price, that is, max(S-K,0). Therefore, the steps
of the algorithm are inverted in the time dimension, starting from time T and moving
backward to the present.

The resulting algorithm is presented in member function solve of class
BlackScholesForwardMethod. The initial part of the function calculates terms of the
equation that are unchanged over time. The three main factors are stored in the vectors
a,b,and c.

1
a, =E(nrdt—(nV)2 dt)
b, :l—m't+(nV)2 dt
c, =%(nrdt+(nV)2 dt)

The next step is to initialize the process using the given initial conditions. The
calculated prices are stored in the two-dimensional vector u, which is initialized using
the prices at expiration time. Then, the algorithm proceeds to compute the values
for each of the time periods starting from expiration. At each day, starting from the
day before expiration, the price of the option is calculated for each small increase in
the underlying price. The option price for underlying value S depends on the price of
the next day for values S - dS, S, and S + dS, where dS is a small increase in price, as
determined by the parameter nx. Therefore, we have

u,=au,,  +bu, +cu

t,n n"t,n-1 n"t,n+1
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Complete Code

Listing 11-3 displays the complete implementation for the Black-Scholes forward
method. You will find the code in class BlackScholesForwardMethod, along with a
sample of its use in function main().

Listing 11-3. Black-Scholes Forward Method Implementation

//
// BlackScholesForwardMethod.h

#ifndef _ FinancialSamples_ BlackScholesForwardMethod
#idefine _ FinancialSamples_ BlackScholesForwardMethod

#include <vector>

class BlackScholesForwardMethod {

public:
BlackScholesForwardMethod(double expiration, double maxPrice, double
strike, double intRate);
BlackScholesForwardMethod(const BlackScholesForwardMethod &p);
~BlackScholesForwardMethod();
BlackScholesForwardMethod 8operator=(const BlackScholesForwardMethod &p);

std: :vector<double> solve(double volatility, int nx, int timeSteps);
private:

double m_expiration;

double m_maxPrice;

double m_strike;

double m_intRate;

};
#tendif /* defined(__FinancialSamples BlackScholesForwardMethod ) */

//
//  BlackScholesForwardMethod.cpp

#include "BlackScholesForwardMethod.h"
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#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>

using std::vector;
using std::cout;
using std::endl;
using std::setw;

BlackScholesForwardMethod: :BlackScholesForwardMethod(double expiration,
double maxPrice,
double strike, double
intRate)
: m_expiration(expiration),
m_maxPrice(maxPrice),
m_strike(strike),
m_intRate(intRate)
{
}

BlackScholesForwardMethod: :BlackScholesForwardMethod(const
BlackScholesForwardMethod 8&p)
: m_expiration(p.m_expiration),
m_maxPrice(p.m_maxPrice),
m_strike(p.m strike),
m_intRate(p.m intRate)
{
}

BlackScholesForwardMethod: : ~BlackScholesForwardMethod()

{
}

BlackScholesForwardMethod &BlackScholesForwardMethod: :operator=(const
BlackScholesForwardMethod 8&p)

{
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}

if (this != 8&p)

{
m_expiration = p.m_expiration;
m_maxPrice = p.m_maxPrice;
m strike = p.m_strike;
m_intRate = p.m_intRate;

}

return *this;

vector<double> BlackScholesForwardMethod::solve(double volatility, int nx,
int timeSteps)

{
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double dt
double dx

m_expiration /(double)timeSteps;
m_maxPrice /(double)nx;

vector<double> a(nx-1);
vector<double> b(nx-1);
vector<double> c(nx-1);

int i;

for (i =0; 1< nx - 1; i++)

{
b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);

}

for (i =0; 1< nx - 2; i++)

{
c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate
* (i+1);

}

for (i = 1; i < nx - 1; i++)

{
a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate
* (i+1);

}

vector<double> u((nx-1)*(timeSteps+1));



CHAPTER 11 SOLVING ODES AND PDES

double u0 = 0.0;
for (i =0; i< nx - 1; i++)

{
uo += dx;
u[i+0*(nx-1)] = std::max(uo - m_strike, 0.0);
}
for (int j = 0; j < timeSteps; j++)
{
double t = (double)(j) * m_expiration /(double)timeSteps;
double p = 0.5 * dt * (nx - 1) * (volatility*volatility * (nx-1) +
m_intRate)
* (m_maxPrice-m strike * exp(-m_intRate*t ) );
for (i =0; i < nx - 1; i++)
{
u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
}
for (i =0; i< nx - 2; i++)
{
u[i+(+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
}
for (i =1; i < nx - 1; i++)
{
u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
}
ulnx-2+(j+1)*(nx-1)] += p;
}
return u;
}
int main()
{

auto strike = 5.0;
auto intRate = 0.03;
auto sigma = 0.50;
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auto t1 = 1.0;

auto numSteps = 11;
auto numDays = 29;
auto maxPrice = 10.0;

BlackScholesForwardMethod bsfm(t1, maxPrice, strike, intRate);
vector<double> u = bsfm.solve(sigma, numSteps, numDays);

double minPrice = .0;
for (int 1i=0; i < numSteps-1; i++)

{
double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)/ (double)
(numSteps-1);
cout << " " << s <<« " " << u[itnumDays*(numSteps-1)] << endl;
}
return 0;
}
Running the Code

To test the code displayed in Listing 11-3, you can build it using any standards-compliant

compiler. I run this code using the llvin C++ compiler, with the following results:

./blackScholes
1 0.000452875
2 0.0148578
3 0.109172
4 0.361706
5 0.784941
6 1.34918
7 2.016
8 2.75175
9 3.53055

10 4.33362
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This result means, for example, that 29 days from expiration, a call option with strike
price $5 and volatility 0.5 would be valued at $1.3 when the price of the underlying is $6.
Notice that you can use this code to calculate prices for each price level ranging from $1
up to $10. You can also modify the code to compute option prices for more expensive
stocks.

Conclusion

Solving differential equations is a big part of financial analysis techniques. Such
techniques are used in many areas where the price of assets is determined by complex
differential equations such as the Black-Scholes model, which is the main technique
used by banks to price equity derivatives and related investments.

In this chapter, I introduced you to the topic of numerical solutions of differential
equations. Although this is a large area that cannot be easily covered in a single chapter,
it is useful to understand the basic techniques and how they are employed in the field of
financial programming.

Euler’s method for ODEs is the first method discussed. Its main idea is to perform
several steps, where each step approximates the result of the differential equation. The
second method, the Runge-Kutta algorithm, is an improvement on this general strategy,
using higher-order Taylor approximations that make the algorithm more accurate and
avoid some of the weaknesses of Euler’s method. You have seen how to implement both
algorithms in C++, with test data that demonstrates their convergence.

The Black-Scholes equation is one of the most important mathematical models in
modern finance. While there are several robust and efficient algorithms for its solution,
I present a simple method based on forward differences. You have seen how the general
solution strategy works and how it can be efficiently implemented in C++.

Finding solutions to equations that model market behavior as viewed in this
chapter is generally the beginning of a process of data analysis. Another step is to find
the best solution that meets a particular investment goal. For this purpose, a number
of optimization techniques have been developed. In the next chapter, I present some
general optimization methods that have been successfully used in the analysis of
financial investments, along with their implementation in C++.
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Optimization

Optimization is a wide area that covers a large set of techniques used to find

the minimum or maximum of a function over a predefined group of conditions.

Optimization strategies are frequently employed in several areas of financial engineering

such as portfolio optimization and as such should be part of the basic skill set of financial

developers.

In this chapter, we discuss programming examples that explore a few of the

implement aspects of optimization algorithms. We start with a concise explanation of

some techniques and how they are typically implemented in C++. Topics covered in this

chapter include the following:

Optimization concepts: Basic concepts on optimization and how it is
used as a common step of algorithms for financial applications.

Linear programming models: The basics of linear optimization
models, with common assumptions and how the results can be
interpreted. You will also learn how to create linear programming
models for common problems.

Solving linear models: You will learn about techniques and
algorithms commonly used to solve linear programming models.
In particular, you will learn how to employ a popular open source
library to solve linear programming problems.

Solving mixed-integer programming models: A common extension of
linear programming is to require that one or more decision variables
assume only integer values. This type of problem, called an integer
programming problem, is frequently used whenever mutually
exclusive choices are part of a linear model. You will also learn how
to extend the linear programming class to solve such mixed-integer
programming models.
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Interfacing with a Linear Programming Solver

In this section, we create a generic class to solve a linear programming problem, given
the objective function and constraints in matrix form.

Solution

Optimization is a mathematical technique used to find the maximum or minimum of

a given function over a set of constraints. The methods currently used in optimization
have started as a set of simple results from calculus, where a single function is subject to
minimization or maximization. Nowadays, these techniques include complex models
involving multiple linear and nonlinear components.

In financial engineering and economics, optimization is a tool used for purposes
such as designing an optimal asset portfolio allocation or more widely to determine
the best investment decision from a large set of asset classes. Due to its origins in the
analysis of scarce resources and their optimum use, linear programming has been a
favorite tool for economists and financial analysts—which shows why optimization is
such a common technique in financial programming. Effectively, every time we need
to make a decision on asset allocation given a large number of scenarios, optimization
becomes a useful tool to help select the best decision.

In the code example in the section “Using LP Solver Libraries,” we consider how to
interface with existing libraries that can be used to solve a large class of optimization
problems. To keep the discussion well contained, I employ an open source library
called GLPK (Gnu Linear Programming Kit), which will be also used as a basis for future
examples. GLPK is simple to use, but it is a C-based library only. This means that it
provides no direct support for C++ high-level concepts such as classes, templates, and
containers. Therefore, as part of the discussion, I will show you how to create a class that
provides a basic C++ interface to GLPK and other solvers.

First, however, I give you some preliminary information about the kinds of problems
that can be solved with an optimization engine, starting with linear programming. Then,
I present some code that can be used to translate simple linear models into calls to the
solver application programming interface (API).
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Linear Programming Concepts

The first case of optimization that you will learn about is characterized by an objective
represented as a linear function. This objective is then optimized over a set of linear
functions, also called constraints. Such optimization problems are called linear
programming (LP) problems, and they constitute an important class of mathematical
models that have been widely used in disciplines such as financial analysis and
economics.

Using a more formal (mathematical) definition, LP is the area of optimization that
deals with the determination of the minimum or maximum value of a linear function

over a set of linear constraints. Each constraint is of the form

n
Zajxj =a,+...+a,<b,.
Jj=1

Similarly, the function that you want to optimize over (also known as objective
function) is a linear function. This results in a problem that can be denoted in the
following way:

n
minimizechxj
j=1

subject toiaijxj <b forie {1. . m}

J=1

x;20  for je{l...n}

In these equations, x;is a variable, and a;;, b;, and ¢; are constant values. These
parameters are frequently provided as matrix A and two vectors, b and c. Due to its
generic characteristics, this type of problem can assume several forms, depending
on the exact value for the given coefficients, as well as if they are zero or nonzero.
Also, variations of the problem involve the change of the < relation to > or = in one or
more equations. Finally, the problem can require the maximization, rather than the
minimization, of the objective function. All these variants can be easily shown to be
equivalent to each other, in the sense that it is possible to convert them to a particular
form and use the same algorithm in their solution.
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Solving an LP problem can be done with the help of a method called simplex
algorithm. The basic approach of the simplex algorithm is to consider the geometric
region defined by the constraints in a multidimensional space and start to visit the
corners of this object in a well-defined way—until an optimal solution is found.

In essence, the mechanics of solving an LP problem are not very different from
solving a sequence of linear systems, and a few strategies have been devised using this
general strategy. The simplex algorithm, which is still the most common technique to
solve LP problems, proceeds by defining a sequence of modified linear systems that are
shown to be equivalent to the original while at the same time improving the value of the
objective function. One of the advantages of the simplex algorithm is that its properties
are well known—mathematical analyses of the simplex algorithm throughout the years
have considered several important questions such as its convergence and performance.

While the operation of the simplex algorithm is not difficult to describe, the
implementation of such an algorithm contains a lot of intricate edge cases. To avoid such
issues, most frequently, you will be using an LP solver library, which has been especially
designed to hide the complexities of the implementation. Essentially, a solver provides
just a simple API so that users can call the algorithms, provide necessary data, and
retrieve the results.

Using LP Solver Libraries

There are several commercial and free libraries that implement the simplex algorithm
(and even a few more efficient algorithms for this problem). In this section, to give

a flavor of how the process of modeling and LP works, we use a simple but well-
maintained open source library called GLPK. With GLPK, it is possible to solve from
medium- to relatively large-size LP problems (as well as a few other model variants such
as mixed-integer programs).

To start using GLPK from C++, the first step is to download and compile the source
code. You will find a version of this software in the Gnu website (at the time I checked,
the URL was www. gnu.org/software/glpk). Unlike many math open source libraries,
GLPK is very easy to compile and install. You need to decompress the file and build
the library using the configure and make commands (these instructions work on UNIX
systems, but you can download software such as Cygwin that will allow you to perform
the same commands in Windows).
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Once GLPK is installed, you can link to its library, 1ibglpk.a, and make use of
the functions that are exported by its API. On Windows systems, you can use the
precompiled binary dll and lib files available on the GLPK website. You can also use the
MingWin compiler for gcc on Windows. I present a class called LPSolver that is able to
interface with the GLPK API. The following is the public part of the class declaration:

class LPSolver {
public:
LPSolver(Matrix &m, const std::vector<double> &b, const
std: :vector<double> &c);
LPSolver(const LPSolver &p);
~LPSolver();
LPSolver &operator=(const LPSolver &p);

enum ResultType {
INFEASIBLE,
FEASIBLE,
ERROR

};

void setName(const std::string &s);

bool isValid();

void setMaximization();

void setMinimization();

ResultType solve(std::vector<double> &result, double &objValue);
/...

};

First, an object of LPSolver type can be created if you pass a matrix A, a vector b, and
a vector c to the constructor. These parameters are interpreted as the coefficients of the
objective function as well as the constraints of the LP.

You can also give a descriptive name to the problem using the setName member
function. Its implementation shows how a simple function in the GLPK looks.

void LPSolver::setName(const std::string &s)

{
glp set prob name(m lp, s.c_str());
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The API function is called glp_set_prob_name. The first parameter, as for most other
functions in GLPK, is a pointer to the LP data structure. The second parameter, a string,
is unique for this API call.

The isValid member function checks if the object has been properly initialized. The
setMaximization and setMinimization member functions can be used to define the
direction of the optimization.

Finally, the solve member function performs the optimization algorithm. This is
done with a call to GLPK, where the glp_simplex function is used to do the hard work.
After the optimization is finished, the algorithm collects the result of the objective
function and the value of each variable for this optimal solution.

LPSolver::ResultType LPSolver::solve(std::vector<double> &result, double
8objValue)

{
glp_simplex(m_lp, NULL);

result.resize(m M, 0);
objValue = glp get obj val(m 1lp);

for (int i=0; i<m M; ++i)
{
result[i] = glp get col prim(m lp, i+1);

}
return LPSolver::FEASIBLE;

Finally, an example LP is used to test the LPSolver class. In this example, I
provided objective function coefficients equal to 10, 6, and 4. The right-hand side of the
constraints is also provided as a vector. Finally, the constraints of the problem are given
in the form of Matrix object A.

Complete Code

Listing 12-1 displays the complete listing for the LP solver described in the previous
section. An example of the class LPSolver is given in the main function at the end of the

listing.
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Listing 12-1. Class LPSolver Header and Implementation

//
// LPSolver.h

#ifndef _ FinancialSamples Glpk
#define _ FinancialSamples Glpk

#include <vector>
#include <string>

#include "Matrix.h"
struct glp prob;

class LPSolver {
public:
LPSolver(Matrix &A, const std::vector<double> &b,
const std::vector<double> &c);
LPSolver(Matrix &A, const std::vector<double> &b,
const std::vector<double> &c,
const std::string &probname);
LPSolver(const LPSolver &p);
~LPSolver();
LPSolver &operator=(const LPSolver &p);

enum ResultType {
INFEASIBLE,
FEASIBLE,
ERROR

};

virtual ResultType solve(std::vector<double> &result, double
8objvalue);

void setName(const std::string &s);

bool isValid();

void setMaximization();

void setMinimization();
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private:
size t m M;
size t m N;
std::vector<double> m_c;
std: :vector<double> m_b;
Matrix m_A;
glp_prob *m_lp;

void initProblem(size t M, size t N);
void setRowBounds();
void setColumnCoefs();
protected:
glp prob *getLP();
int getNumCols();
int getNumRows();
};
#tendif /* defined(_ FinancialSamples Glpk ) */

//
// LPSolver.cpp

#include "LPSolver.h"
#include <glpk.h>
#include <iostream>

using std::vector;
using std::string;
using std::cout;
using std::endl;

LPSolver: :LPSolver(Matrix 8m, const vector<double> 8b, const vector<double> 8&c)
: m_M(m.numRows()),

m N(m[0].size()),

m_c(c),

n_b(b),

m_A(m)J
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m 1p(glp create prob())

{
initProblem(m M, m N);

}

LPSolver::LPSolver(Matrix &m, const std::vector<double> &b,
const std::vector<double> &c,
const std::string &probname)

: m_M(m.numRows()),

m N(m[0].size()),
n_c(c),
m b(b),
m_A(m),
m 1p(glp create prob())
{
initProblem(m M, m N);
glp set prob name(m lp, probname.c_str());
}

LPSolver::LPSolver(const LPSolver &p)
:m M(p.m M),

m N(p.m N),

m c(p.m c),

m b(p.m_b),

m A(p.m_A),

m 1p(glp create prob())
{

initProblem(m M, m N);

}

// performs necessary initialization of the given values
void LPSolver::initProblem(size t M, size t N)

{
if (!m_1p) return;

setRowBounds();
setColumnCoefs();
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vector<int> I, J;
vector<double> V;

// indices in GLPK start on 1
I.push back(0);
J.push_back(0);
V.push_back(0);

for (int i=0; i<M; ++i)

{
for (int j=0; j<N; ++j)
{
I.push _back(i+1);
J.push_back(j+1);
V.push_back(m A[i][j]);
}
}
glp load matrix(m lp, (int)(m M * m N), &I[0], &I[0], &V[0]);
}
LPSolver::~LPSolver()
{
glp delete prob(m 1lp);
}
LPSolver &LPSolver::operator=(const LPSolver &p)
{
if (this != 8&p)
{
mM=p.mM;
mN=p.mN;
mc=p.mc;
mb =p.mb;
mA = p.mA;
m 1p = glp create prob();
initProblem(m M, m N);
}
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return *this;

}
void LPSolver::setName(const std::string &s)
{
glp set prob name(m 1lp, s.c_str());
}
bool LPSolver::isValid()
{
return m_lp != NULL;
}
void LPSolver::setMaximization()
{
glp set obj dir(m lp, GLP_MAX);
}
void LPSolver::setMinimization()
{
glp set obj dir(m lp, GLP_MIN);
}
void LPSolver::setRowBounds()
{
glp add rows(m_lp, (int)m M);
for (int i=0; i<m M; ++i)
{
glp set row bnds(m lp, i+1, GLP_UP, 0.0, m b[i]);
}
}
void LPSolver::setColumnCoefs()
{

glp_add_cols(m_lp, (int)m N);
for (int j=0; j<m_N; ++j)
{
glp set col bnds(m 1lp, j+1, GLP_LO, 0.0, 0.0);

OPTIMIZATION
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glp set obj coef(m lp, j+1, m c[j]);

}
}
LPSolver: :ResultType LPSolver::solve(std::vector<double> &result, double
8objValue)
{
glp simplex(m lp, NULL);
result.resize(m N, 0);
objValue = glp get obj val(m 1lp);
for (int j=0; j<m N; ++j)
{
result[j] = glp_get col prim(m_lp, j+1);
}
return LPSolver::FEASIBLE;
}
glp_prob *LPSolver::getLP()
{
return m_lp;
}
int LPSolver::getNumCols()
{
return (int)m N;
}
int LPSolver::getNumRows()
{
return (int)m M;
}
int main_lps()
{

Matrix A(3);

Afo][o] = 1; A[o][1] = 1; A[o][2] = 1;
Al1][o] = 10; A[1][1] = 2; A[1][2] = 4;
Al2][o] = 2; A[2][1] = 5; A[2][2] = 6;

334



CHAPTER 12 OPTIMIZATION

{10, 6, 4};
{ 100, 600, 300 };

vector<double> ¢
vector<doubley> b

LPSolver solver(A, b, c);
solver.setMaximization();
vector<double> results;

double objVal;

solver.solve(results, objVal);

for (int i=0; i<results.size(); ++i)

{
cout << " x" << 1<< " " << results[i];
}
cout << " max: " << objVal <« endl;
return 0;

Running the Code

The code presented in Listing 12-1 can be compiled with a standards-compliant
compiler, such as gcc or Visual Studio. Remember to add the GLPK library to the
link step (in gcc, this is done with the -L and -1 switches). The result of the program
execution should be similar to the following

./1pSolver

GLPK Simplex Optimizer, v4.54

3 rows, 3 columns, 9 non-zeros

* 0: obj = 0.000000000e+00 1infeas
* 2: obj = 7.565217391e+02 infeas
OPTIMAL LP SOLUTION FOUND

X0: 52.1739 x1: 39.1304 x2: 0 max: 756.522

0.000e+00 (0)
0.000e+00 (0)

Here, you see the first output of GLPK. By default, GLPK displays the best solutions
and the number of iterations it has taken to achieve the results. You can see that after two
iterations of the simplex algorithm, GLPK found a solution with an objective value equal
to 756.
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Solving Two-Dimensional Investment Problems

In this section, we use LP techniques to model and solve a financial product allocation
decision problem for two investments with known returns.

Solution

One of the main uses of optimization techniques is in the support of investment
decisions. In this respect, there are several concepts that can be optimized based on the
known properties of investment classes. For a few types of investments, such as bonds,

it is easier to determine the returns of the investment, as well as some basic information
about the risk for that class of investments. This knowledge translates into more accurate
models, particularly the ones that can be employed to optimize profits for the investor.

This section presents a very simple version of a decision support system modeled
using linear programming. This problem shows the basic geometric process that is used
to solve LPs (even the most complicated ones).

Consider the process of introducing two new financial products to the market in
alarge bank. The process is usually defined by a number of practical constraints on
resources necessary for these investments. Suppose that the bank wants to add two
classes of new products to the market: new bond-based products and new mortgage-
backed derivatives products. The question is how many hours should be spent on the
development of these new products. Let’s call these two variables x and y. Since the bank
unit receives payment from its clients based on the number of hours spent on these
tasks, the goal is to maximize the amount paid per hours. For bonds, the cost is $5.3K per
hour spent on that activity, while the price is $7.1K for derivatives.

In terms of constraints, the bank unit has to consider research expenditures costs.
The cost of working with bonds is negative because its costs can be offset by other
activities in that area. For derivatives, the full cost of research is considered. The
maximum cost spent on marketing for these financial products is prorated by working
hours too. Thus, it depends on the values of x and y. It is known that there is a constant
of $3K for working hours on bond-related products, while the multiplier for derivatives
work is $1K.

Finally, there is a limit on the amount of human resources available for these two
tasks. While there are only six units of human resources allocated to these tasks, each
hour of bond-related work is eight times more demanding than for derivatives. Notice
also that the two variables in this example are clearly non-negative.
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The result of these assumptions can be readily translated into the following LP

model, which tries to maximize the expected return (profit) for the considered unit of the

investment bank.

max 5.3x + 7.1y (maximize department results)

-2.1x + y < 3.4 (maximum research expenditure)

3.1x + y < 4.3 (maximum marketing expenditure)

7.9x + y < 6 (maximum number of employees needed)

x, ¥ > 0 (working hours are always positive)

The model described previously has only two unknowns, x and y, and therefore can

be readily plotted as seen in Figure 12-1. Being an inequality, each constraint results in

a half-space that is defined by the equality line. For example, 3x + y < 4 is the half-space

defined by all points under the line 3x + y = 4.
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Figure 12-1. Feasible set for the LP defined by inequalities shown earlier

To find a solution for a two-dimensional LP model like the one described previously,

you can concentrate on the intersections of all half-spaces defined by the constraints.

The intersection is, by definition of the problem, contained in the first quadrant of the

plot because it is known that x > 0 and y > 0. It is possible then to recognize the area

contained in the intersection of all other half-spaces. The result is a polygonal area,

whose border is defined by a set of lines derived from the given constraints.
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To find a solution for such an LP, you just need to calculate the value of the objective
function at each of the corners of the area defined by the constraints. The corner that
gives the best value of the objective function is, by definition of the linear objective
function, the best that can be found for the problem.

While the process described previously is easy to perform for two-dimensional
problems, it becomes quite difficult to accomplish for higher dimensions. As the number
of dimensions and constraints increases, the number of corners grows exponentially.

It takes a more sophisticated algorithm (such as the simplex algorithm) to find the best
corner of the multidimensional space that defines the optimum solution for the given LP.

To demonstrate how the problem is solved in practice, I show you the
C++ implementation of the proposed two-dimensional LP. The class, called
TwoDimensionallPSolver, is a blueprint of how such a problem can be implemented
using the LPSolver described in the previous section.

First, you need to create the model, which is described using a matrix A, a vector b
(the right-hand side of the constraints), and a vector c (the cost vector). The necessary
data is provided in the main function. Once the data is available, it can be used to
create an object of class LPSolver. The solve() function in the LPSolver class will then
perform any necessary data conversion and call the GLPK library to find the optimum
solution.

Complete Code

Listing 12-2 gives the complete implementation for the two-dimensional LP solver.
Function main() presents a sample use of the class TwoDimensionallPSolver.

Listing 12-2. Header File and Implementation for the Class
TwoDimensionallPSolver

//
// TwoDimensionallPSolver.h

#ifndef _ FinancialSamples TwoDimensionallPSolver
#define _ FinancialSamples TwoDimensionallPSolver

#include <vector>
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class TwoDimensionallLPSolver {

public:

using Vector = std::vector<double>;
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TwoDimensionallPSolver(const Vector &c, const Vector &A1, const Vector
8A2, const Vector 8&b);
TwoDimensionallLPSolver(const TwoDimensionallPSolver 8&p);
~TwoDimensionallPSolver();
TwoDimensionallLPSolver &operator=(const TwoDimensionallLPSolver 8p);

bool solveProblem(Vector &results, double &objval);

private:
std:
std:
std:
std:
}s

:vector<double> m_c;
:vector<double> m_A1;
:vector<double> m A2;
:vector<double> m_b;

#endif /* defined(__FinancialSamples TwoDimensionallPSolver ) */

//

//  TwoDimensionallPSolver.cpp

#include "TwoDimensionallPSolver.h"

#include "Matrix.h"
#include "LPSolver.h"

#include <iostream>

using std::vector;
using std::cout;
using std::endl;

TwoDimensionallPSolver: : TwoDimensionallPSolver(const Vector 8c, const
Vector &A1,

:m c(c),

m A1(A1),

const Vector &A2, const
Vector 8b)
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m A2(A2),
m b(b)

{

}

TwoDimensionallPSolver: : TwoDimensionallPSolver(const TwoDimensionallLPSolver &p)
:m c(p.mc),
m Al(p.m A1),
m_A2(p.m_A2),
m b(p.m b)
{
}

TwoDimensionallPSolver: :~TwoDimensionallPSolver()

{
}

TwoDimensionallLPSolver &TwoDimensionallPSolver::operator=(const
TwoDimensionallPSolver &p)

{
if (this != &p)
{
mc=p.mc;
m Al = p.m A1,
m A2 = p.m_A2;
mb =p.mb;
}
return *this;
}

bool TwoDimensionallPSolver::solveProblem(Vector &res, double &objVal)
{
int size = m_b.size();
Matrix A(size, 2);
for (int j=0; j<size; ++j)
{
A[jI[0] = m_A1[j];
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A[31[1] = m_A2[j];
}
LPSolver solver(A, m b, m c);
solver.setMaximization();
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return solver.solve(res, objVal) == LPSolver::ResultType::FEASIBLE;

main()

vector<double> A1 = { -2.1, 3.1, 7.9};
vector<double> A2 = { 1, 1, 1 };
vector<double> ¢ = { 5.3, 7.1 };
vector<double> b = { 3.4, 4.3, 6 };
TwoDimensionallPSolver solver(c, A1, A2, b);

vector<double> results;

double objVal;
solver.solveProblem(results, objVal);
cout << "objval : " << objVal << endl;
for (int i=0; i<results.size(); ++i)

{

cout << " x" << i<« << results[i];

}

cout << endl;
return O;

Running the Code

You can compile and run the provided code with your preferred standards-compliant

compiler. I tested the code using gcc and GLPK optimizer version 4.54. The results are as

follows:

«/twoDimSolver
GLPK Simplex Optimizer, v4.54
3 rows, 2 columns, 6 non-zeros
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* 0: obj = 0.000000000e+00 infeas
* 2: obj = 2.763788462e+01 infeas
OPTIMAL LP SOLUTION FOUND

objval : 27.6379

x0: 0.173077 x1: 3.76346

Program ended with exit code: 0

0.000e+00 (0)
0.000e+00 (0)

From the output listed in the example, you can see that the optimal solution was
achieved at the vertex (0.173, 3.763), which corresponds to the intersection of equations
-2.1x+y=3.4 and 3.1x + y < 4. At that point, the objective function has a value of 27.63,
which can be interpreted as the profit achieved by the department in spending the given
number of hours in the two financial products that were discussed earlier.

Creating Mixed-Integer Programming Models

Extend the LPSolver class so that it can deal with mixed-integer programming (MIP)
problems, that is, LP problems where one or more variables are restricted to be integers.

Solution

After continuous LP problems, MIP problems are probably the most common type of
optimization problem that practitioners need to deal with. In terms of modeling, the
biggest difference between LP and MIP is that such problems have one or more decision
variables that are required to be integer numbers—unlike LP problems, where all
decision variables are continuous (normally real numbers).

Integer variables are ideal for cases where you need to make decisions that are
exclusive within a small- to medium-size set. Moreover, these decision variables may be
applicable to resources that are not divisible. For example, you can use such variables
to decide on the number of local branches for a commercial bank or on the number of
different stocks included in a portfolio. These are common examples of resources that
can only be used in integer quantities.

A special type of integer variable is a binary decision variable, also called a 0-1
decision variable. These are variables that can assume only a 0 or 1 (all-or-nothing)
value. They are the purest form of integer variable, because they allow one to decide
between only two alternative choices. As you can expect, many MIP problems make use
of binary variables as their primary way to reach an optimal decision.
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In terms of techniques for problem solving, MIP problems are a lot more
complicated than LP problems. While there are very efficient algorithms available to
solve LP formulations, not all MIP problems are readily solvable by current computer
algorithms. As a short explanation, this occurs because when a decision variable is an
integer, it creates “jumps” in the objective function that make it much harder to search
for the optimum solution. So, unlike LP problems where the optimal vertex of the set of
feasible solutions can be quickly determined, MIP solvers need to spend much more
time generating possible solutions and testing if they are optimal. This exponential
explosion of options is the main reason why MIP problems are much more difficult to
solve than LP problems.

Most LP libraries have been extended to deal with at least some forms of MIP. GLPK
implements a generic algorithm for MIP solving, called branch-and-cut. With this
algorithm, it is possible to solve small- to moderate-size MIPs to optimality. More
complicated MIP problems, however, may not be solvable using this technique,
depending on the structure of the required problem.

In this coding example, you will see how to extend the LPSolver class to deal with
MIP problems, in addition to classical LP problems. In the next section, you will see an
example of how to use the LPSolver class to model and solve a MIP problem.

The main reason I decided to inherit from LPSolver, instead of creating a new
unrelated class, is that in terms of modeling, MIP problems are very close to LP
problems. The only additional thing you need to do in the latter case is to tell which
variables are integer or binary and call the right version of the function that solves and
retrieves values found by GLPK.

In the MIPSolver class, this is implemented in the following way. First, there are
two new member functions called setColBinary and setColInteger. These member
functions can be used to tell GLPK that the variable in a given column is either integer
or binary, respectively. Their implementations are straightforward and simply call the
related C function in GLPK. For example:

void MIPSolver::setColBinary(int colNum)

{
glp set col kind(getLP(), colNum+1, GLP_BV);
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The other part of the puzzle is to implement a new version of the solve member
function. The new version supersedes the original version in LPSolver and calls specific
functions for MIP, such as glp_mip obj val. One of the differences is that, for MIP
problems, you are required to solve the corresponding LP problem first, as a way to
create an initial feasible solution for the continuous problem. After that, you can call the
MIP solver, which will create the solution-search algorithm based on a tree of possible
integer values.

Complete Code

Listing 12-3 displays the complete code for the MIP solver described in the previous
section. You can test the MIPSolver class using the sample code in the main function at
the end of Listing 12-3.

Listing 12-3. MIPSolver Class

//
//  MIPSolver.h

#ifndef _ FinancialSamples MIPSolver
#define _ FinancialSamples_ MIPSolver _

#include "LPSolver.h"

class MIPSolver : public LPSolver {
public:
MIPSolver(Matrix &A, const std::vector<double> &b, const
std: :vector<double> &c);
MIPSolver(const MIPSolver &p);
~“MIPSolver();
MIPSolver &operator=(const MIPSolver 8p);

void setColInteger(int colNum);

void setColBinary(int colNum);

virtual ResultType solve(std::vector<double> &result, double
8objValue);

};
#tendif /* defined(__FinancialSamples MIPSolver ) */
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// MIPSolver.cpp

#include "MIPSolver.h"
#include "Matrix.h"

#include <glpk.h>
#include <iostream>

using std::vector;
using std::cout;
using std::endl;
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MIPSolver: :MIPSolver(Matrix &8A, const std::vector<double> &b, const

std: :vector<double> &c)
: LPSolver(A, b, ¢)

{

}

MIPSolver::MIPSolver(const MIPSolver &p)
: LPSolver(p)

{
}

MIPSolver::~MIPSolver()

{
}

MIPSolver &MIPSolver::operator=(const MIPSolver &p)
{

return *this;

}

void MIPSolver::setColInteger(int colNum)

{
glp set col kind(getLP(), colNum+1, GLP IV);
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void MIPSolver::setColBinary(int colNum)

{

glp set col kind(getLP(), colNum+1, GLP BV);
}
LPSolver::ResultType MIPSolver::solve(vector<double> 8result, double
8objValue)
{

glp simplex(getLP(), NULL);

int res = glp_intopt(getLP(), NULL);

if (res !=0)

{

cout << "res = " << res << " \n";

}

result.resize(getNumCols(), 0);

objValue = glp mip obj val(getLP());

for (int i=0; i<getNumCols(); ++1i)

{

result[i] = glp mip_col val(getLP(), i+1);

}

return LPSolver::FEASIBLE;
}
int main()
{

Matrix A(2,2);
vector<double> b = { 2
vector<double> c = { 1, 1 };

Afo][0] = 1;
Afo][1] = 2;
A[1][0] = 3;
A[1][1] = 4;

MIPSolver solver(A, b, c);

solver.setMaximization();
solver.setColInteger(0);
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vector<double> result;

double objVal;

solver.solve(result, objVal);

cout << "optimum: " << objVal << endl;

cout << " x0: " << result[0] << " x1: " << result[1] << endl;
return 0;

Running the Code

After compiling the code in Listing 12-3 with your favorite compiler, you should have
a binary program, which I will call mipSolver. The following is the output of the
application after it is executed:

«/mipSolver

GLPK Simplex Optimizer, v4.54

2 rows, 2 columns, 4 non-zeros

* 0: obj = 0.000000000e+00 infeas
* 1: obj = 1.000000000e+00 infeas
OPTIMAL LP SOLUTION FOUND

GLPK Integer Optimizer, v4.54

2 Tows, 2 columns, 4 non-zeros

1 integer variable, none of which are binary

0.000e+00 (0)
0.000e+00 (0)

Integer optimization begins...

+ 1: mip = not found yet <= +inf (1; 0)
+ 1 555> 1.000000000€+00 <= 1.000000000e+00  0.0% (1; 0)
+ 1: mip = 1.000000000e+00 <= tree is empty 0.0% (0; 1)
INTEGER OPTIMAL SOLUTION FOUND

optimum: 1

X0: 1 x1: 0

Notice that the main function has a very simple MIP model as part of the test code.
The previous output just shows how the data is printed by default by GLPK. At each step
of the process, it shows the current solution found and its objective cost.
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Conclusion

Optimization is a set of mathematical techniques that can be used to find the maximum
or minimum of a function under certain conditions. Since many problems in finance can
be described as maximizing certain outcomes (such as investment return), optimization
tools play an important role in the analysis of investments.

You have learned in this chapter how to use C++ to model and solve common
optimization problems. In the first section, I showed how to use GLPK, a popular
optimization library that is used to solve a large class of LP models. While other libraries
such as cplex and gurobi use more sophisticated algorithms, GLPK is able to solve a
surprisingly large number of models for LP and MIP. The example presented in the first
section shows how to create a C++ interface to interact with the C-based API supported
by GLPK. You have learned the main components of an LP problem and how the solver
uses these components to determine the optimal solution. The example also provided
some test code, which shows how the LPSolver class can be used to solve a simple LP
model.

The next section provided a substantial example of LP model, targeted at finding
the best resource allocation in a big investment bank. The model tries to find the best
way to develop two financial products while maximizing the department profits. The
constraints considered in the model have to do with resource limitations at the bank
unit. Solving this LP problem using the LPSolver class shows how to model such
problems in C++ and interpret the results of the optimization process returned by GLPK.

MIP is another important class of linear models that can be solved using
optimization techniques. In an MIP, some or all decision variables are restricted to
contain only integer values. This makes it possible to model situations where it is
necessary to decide between two or more scenarios in a mutually exclusive way. While
MIP models may be much harder to solve than LP models, the mechanics of setting up
the problem and using a solver are very similar. You learned how to interface with an
MIP solver by inheriting from the LPSolver class. The new class MIPSolver uses most of
the modeling mechanisms provided by LPSolver, but it adds the ability to define integer
and binary decision variables, as well as to solve the problem and retrieve the optimal
integer values. Finally, you have seen a small example of how such models work.
Chapter 13 provides more examples.
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You have so far learned some of the basic concepts of optimization and
mathematical programming models. In the next chapter, you will explore how these LP
and MIP optimization models can be applied to investment management problems.
Since one of the main applications of optimization theory is in the area of finance,
many common problems such as portfolio management have well-known optimization
models. You will learn how such modeling concepts work, as well as how these models
can be implemented with the C++ programming language.
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Asset and Portfolio
Optimization

Portfolio managers have to face several investment issues such as rebalancing a
portfolio for optimal performance or adjusting a new set of investments depending on
their client’s predefined long-term goals. Optimization-based techniques have been
developed over the years to deal with these as well as some other common portfolio
construction problems.

In this chapter, you will explore programming algorithms for asset and portfolio
optimization using C++ as a modeling language. You will be able to create such financial
models based on well-known mathematical programming formulations. You will also
see how to improve the performance of such optimization code in order to get results
that are as fast and accurate as possible.

The following are some of the topics that will be covered in the C++ examples
contained in this chapter:

o Allocating capital: One of the great problems faced by companies
and banks is how to allocate capital to a set of possible investments.
You will see how to use optimization models to perform capital
allocation.

o C(Creating a portfolio by target return: You can use optimization
models to design a portfolio of stocks or other investments, based on
the desired return. The goal of such optimal portfolios is to achieve
the best return with minimum volatility.

e Linear and quadratic models: You will learn the advantages of
quadratic and linear optimization models for portfolio optimization.
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CHAPTER 13 ASSET AND PORTFOLIO OPTIMIZATION

Financial Resource Allocation

In this section, we write a linear programming (LP) model in C++ to determine an
optimal allocation of resources for a given set of projects and their respective costs
during a 10-year horizon.

Solution

Resource allocation is one of the most common problems faced by individual and
institutional investors. Since capital is a limited resource, it makes sense to try to
improve its utilization, so that one can achieve the optimal allocation of funds to
valuable activities. Even though investment outcomes, such as stock prices, may not be
totally predictable, it is still possible to use a general forecast for the purpose of decision
making.

Linear programming offers a framework for financial allocation decisions, as you
will see in this section. In the first place, you need to determine the form of the linear
program that can be best used to model the resource allocation problem.

To work with a concrete allocation example, suppose that a company needs to
decide among a set of five different active investments. These investments may include
buying new manufacturing equipment, hiring new workers for a business, or making
improvements on a logistic software package. All of these options have a specific cost,
which can be calculated for each of the next 5 years. Moreover, the payoff of each
investment project is known in advance. For example, if the money is invested in buying
new equipment, it is known that a certain amount of profits will be generated as a result.

As a financial developer for this company, your tasks would be to implement a model
to solve the required financial allocation problem. This can be done as an LP model,
which will later be implemented in C++. So, first, let’s consider the variables, constraints,
and objective function of the LP model.

The decision variable in this case is a choice on the possible investment. That is, if
there are n possible investments, then we have variables x; =1, for j € {1,..,n}, whenever
capital is allocated to project j. If the return for each investment is denoted by r;, then we
can write the objective function of this LP as

n
max erx/'
j=1

352



CHAPTER 13 ASSET AND PORTFOLIO OPTIMIZATION

The constraints are related to the amount of money that investors want to use
each year for the next 5 years. Since the cost of each investment is known for any of
the m periods, let’s name such costs ¢;, for i € {1...m} and j € {1...n}. For each year, the
investment is limited by the value C; the amount of capital available at time period i.
Then, for each time period (where each period corresponds to 1 year), the constraint can
be written as

Zn:c,.jx.. <C;forie{l...m}.

Finally, we defined each variable x; as a one-or-nothing decision. That is, the variable
can only assume values 1 or 0, indicating that the project will be pursued or not.

x;€10,1}, forje{1,...,n}.

Because the problem described previously has a linear objective function and linear
constraints, it is a linear optimization problem. However, the last constraint makes the
problem a 0-1 integer LP problem, which can be considerably more difficult to solve
than a standard LP problem.

Implementation

To implement the problem described previously, I will take advantage of the MIPSolver
class defined in the previous chapter. Remember that the input for any mixed integer-
programming problem can be represented using a matrix of constraints, a vector

or right-hand side values, and a vector of costs. Thus, we need to define these three
elements when defining the desired capital allocation problem.

To give a clear demonstration of how this process works, I created a simple example
that can be viewed in the member function solveProblem, which is part of the class
ResourceAlloc. First, this method defines a matrix of project costs for a period of 5 years.
We also have five projects, so this results in a square matrix—notice, however, that a
square matrix is not necessary for this formulation to work.

The next few lines of the method solveProblem define the investment returns and
annual budgets. An important part of this process is to use the setBinary member
function, which says that each variable must have a binary value. Finally, you need to call
the function solve in the MIPSolver class, which will call the Gnu Linear Programming
Kit (GLPK) solver and determine the optimum values.
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Complete Code

The complete code for the resource allocation problem described in the previous section
can be viewed in Listing 13-1. The main function at the end of the listing will instantiate
the ResourceAlloc class and solve the example problem.

Listing 13-1. Cass ResourceAlloc

//
// ResourceAlloc.h

#ifndef _ FinancialSamples ResourceAlloc
#idefine _ FinancialSamples ResourceAlloc

#include <vector>

class ResourceAlloc {
public:
ResourceAlloc(std::vector<double> &result, double &objVal);
ResourceAlloc(const ResourceAlloc &p);
~ResourceAlloc();
ResourceAlloc &operator=(const ResourceAlloc &p);

void solveProblem();

private:
std: :vector<double> &m results;
double &m objVal;

};
#tendif /* defined(__FinancialSamples ResourceAlloc ) */

//
// ResourceAlloc.cpp

#include "ResourceAlloc.h"

#include "LPSolver.h"
#include "Matrix.h"
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#include <iostream>

using std::vector;
using std::cout;
using std::endl;

ResourceAlloc: :ResourceAlloc(vector<double> &result, double &objVal)
: m_results(result),
m_ob3jVal(objVal)
{
}

ResourceAlloc: :ResourceAlloc(const ResourceAlloc &p)
: m_results(p.m results),
m_objVal(p.m objVal)
{
}

ResourceAlloc: :~ResourceAlloc()

{
}

ResourceAlloc &ResourceAlloc::operator=(const ResourceAlloc &p)

{
if (this != 8p)

{
m_results = p.m_results;
m_objVal = p.m_objVal;
}
return *this;
}
void ResourceAlloc::solveProblem()
{

static const double cost array[][5] = {
// Years:
// 1 2 3 4 5
{1.81, 2.4, 2.5, 0.97, 1.5}, // proj 1
{1.29, 1.8, 2.3, 0.56, 0.5}, // proj 2
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int
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{1.22, 1.2, 0.1, 0.48, 0 }, // proj 3
{1.43, 1.4, 1.2, 1.2, 1.2}, // proj 4
{1.62, 1.9, 2.5, 2.0, 1.8}, // proj 5
b
Matrix costs(5,5); // cost matrix
for (int i=0; i<5; ++i) {
for (int j=0; j<5; ++j) {
costs[j][i] = cost array[i][j];

}

vector<double> returns = {12.13, 3.95, 7.2, 4.21, 11.39};

// investment returns
vector<double> budgets = {5.1, 6.4, 6.84, 4.5, 3.8};

MIPSolver solver(costs, budgets, returns);
solver.setMaximization();

for (int i=0; i<5; ++1i)
{

solver.setColBinary(i);

}

// --- solve the problem
solver.solve(m results, m objVal);

main()

vector<double> result;
double objVal;

ResourceAlloc ra(result, objVal);
ra.solveProblem();
cout << " optimum:

<< objval ;

// annual
budgets
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for (int i=0; i<result.size(); ++i)

{

cout << " x" << i<« << result[i];

}
cout << endl;
return 0;

Running the Code

To run the code presented in Listing 13-1, you need to first compile it using a standards-
compliant compiler such as gcc or Visual Studio. Then, you can run the resulting
executable to view the results of the optimization process.

«/investAllocSolver

GLPK Simplex Optimizer, v4.54

5 rows, 5 columns, 24 non-zeros

* 0: obj 0.000000000e+00 infeas
* 5: obj 3.209790698e+01 infeas
OPTIMAL LP SOLUTION FOUND

GLPK Integer Optimizer, v4.54

5 rows, 5 columns, 24 non-zeros

5 integer variables, all of which are binary
Integer optimization begins...

0.000e+00 (0)
0.000e+00 (0)

+ 5: mip = not found yet <= +inf (1; 0)
Solution found by heuristic: 30.72
+ 6: mip =  3.072000000e+01 <= tree is empty 0.0% (0; 1)

INTEGER OPTIMAL SOLUTION FOUND
optimum: 30.72 x0: 1 x1: 0 x2: 1 X3: 0 Xx4: 1
Program ended with exit code: 0

Portfolio Optimization

Create a C++ class that can be used to define an optimal portfolio according to an LP
variation of the capital asset pricing model.
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Solution

One of the main uses of optimization models in finance is in the determination of
investment portfolios. While there are several techniques to create balanced portfolios,
the mathematical theory developed by Nobel Prize winner Harry Markowitz is the
standard way to define an optimal portfolio, which is used by most financial institutions
when analyzing groups of investments. In this section, you will learn about the definition
of portfolio optimization models using this technique of analysis, commonly referred to
as modern portfolio theory.

The main goal of portfolio optimization is to create portfolios of financial assets that
can provide the required investment return with a minimum of risk. For example, if the
goal is to have a small return but very low risk, one can buy high-grade investments such
as US treasury bills. For higher returns, one can invest in foreign or company bonds. For
even higher returns, you can use stocks and exotic derivatives.

Faced with these options, and depending on an investor profile, a portfolio manager
can create one or more portfolios that address the perceived client needs. For example, a
more aggressive investor may request a portfolio with a larger number of high-volatility
stocks, expecting therefore a higher return. Another, more conservative investor may prefer
to hold bonds and stocks with lower volatility but also lower expected returns. It is also
possible to combine different portfolios to achieve a mix of high- and low-return assets.

This type of portfolio construction strategy was studied and formalized at the end
of the 1950s and became known as the capital asset pricing (CAP) model. The ideas,
developed by Markowitz, used classical optimization theory to characterize the optimal
solutions for such portfolio construction problems. While there is a difference between
finding an optimal allocation and really achieving the desired return in the financial
markets, the CAP is a very important tool for portfolio managers. It can be used, for
example, to define an initial portfolio that matches a particular person’s profile, or
to create financial products that target a defined long-term return (e.g., retirement
portfolios for pension funds).

The mathematical formulation of the CAP can be summarized in the following way.
Considering that there are n stocks and other assets in a portfolio, let x; for i € {1..n} be
the percentage of the portfolio held at investment i. Then it is clear that the sum of all
such values needs to add to 1.
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Also, suppose that for each investment i, we have a target return r; (e.g., you can use
past information as a baseline forecast). If the target return for the whole portfolio is R,
then we have the following constraint:

n

Zr,.xl. >R

i

Now, in the CAP model, we assume that we know the variance of each asset as well
as the covariance of pairs of assets in the same portfolio. Variance is a classical measure
of volatility of investments (i.e., the higher the variance, the higher the volatility). Thus,
we can use the available individual volatility information to try to minimize the volatility
of the whole portfolio. Since variance is a quadratic function, the objective function
will also be quadratic, with individual terms depending on the individual variance of
individual stocks (c;) and on the covariance of pairs of stocks (c;). The resulting problem
can be described as follows:

n n
min} > ¢, x, x,

i=1 j=1

ix,. =1
i=1

n

Zr,.x,. >R

x, >0 forallie{l...n}.

During the last few decades, many people have studied this optimization
problem and its variations. The formulation employs an objective function that is
quadratic (nonlinear)—that is, there are terms in the objective function that involve a
multiplication of two variables. The general solution of this problem, considering this
nonlinear structure, forms what is called an efficient frontier: a set of results for different
combinations of portfolios, where the volatility of the target portfolio is minimized. You
can see an example of efficient frontier in Figure 13-1, which shows a plot of volatility
against target return. The plot is created by, at each time, fixing a desired return and
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then using the quadratic optimization model to find the minimum associated volatility.
Asyou see in Figure 13-1, the plot shows that the relationship assumes the shape of a
parabolic curve.
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Figure 13-1. A small portion of the efficient frontier for a portfolio optimization
problem

Although the quadratic model for CAP is widely used, a difficulty with it is the fact
that you need a quadratic optimization solver to get results for a particular portfolio.
Although several packages provide direct solutions to quadratic problems (using, for
example, an interior point algorithm), GLPK is not able to solve quadratic optimization
models directly. Therefore, in this section, you will deal with a linearization of the
original problem, which can be readily calculated using LP solvers.

This linearization was proposed in Konno and Yamazaki’s article titled “Mean-
Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock
Market” (Management Science, vol. 37, pp. 519-529, 1991). The linearization is a
modified form of the original problem that contains only linear terms in the objective
function. While this is just an approximation of the original problem, in many cases
it can work well enough (it might not work, however, when the computational effort
needed to linearize the constraints becomes too costly). More important, a linearized
version of the problem may be solved more quickly than the quadratic version, which
may be an important consideration in some cases.
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Consider the additional variables y; € {1...T}, where T is the number of periods for the
proposed investment. Then, a linear model can be described as the following:

T

x, >0 forallie{l...n}

In these equations, you don’t need directly the covariance c;; instead, you use the
expected returns r; or investment i for period ¢. In other words, the idea of the model is
to divide the total periods into small segments and linearize the model during that small
period, taking the minimum over the complete time horizon.

With the model, which is linear, you can now create code in C++ using the LPSolver
class described in the previous chapter. The new class is called ModifiedCAP and is
displayed in the next section, “The Code.” The main difficulty in creating the model is
defining the required input data for LPSolver, in the form of matrix A and vectors b and
c. You can see how this is done in the code for member function solveModel.

The first part of the algorithm consists of setting up the required data. The vector ¢
that defines the objective function can be easily created, since all coefficients are equal
to 1.
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// objective function
for (int i=m_N; i<m N+m_T; ++1)
{

c[i] = 1;

Next, the right-hand side coefficients are also simple to set up. This is true because
you can move all variables y, to the left side of the inequality. Thus, most of the
coefficients are zero, except for the last three.

// right-hand side vector
vector<double> b(2*m T + 2 + 1, 0);

b[2*m T] = 1;
b[2*m T+1] = -1;
b[2*m T+2] = -m R;

Matrix A is a little more involved but is not difficult to set up either. The main
transformation you need to make is in the equality constraints. Since the problems that

LPSolver considers have inequalities only, the equality in =1 is handled by converting

i=1

it into two inequalities.
n n
in <land —in <-1
i=1 i=1

This makes it possible to continue to use the same simple input form used by the
LPSolver (GLPK can also handle equalities directly, and you could modify the LPSolver
class to do this automatically). Therefore, the following code can be used to define the
input matrix A:

// matrix A
Matrix A(2*m T + 2 + 1, m_T + m_N);
for (int i=0; i<m T; ++i)

{
for (int j=0; j<m N; ++j)
{
A[i][j] = m retMatrix[j][i] - m_assetRet[j];
}
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A[i][m N+i] = -1;

}
for (int i=m T; i<2*m T; ++i)
{
for (int j=m N; j<2*m N; ++j)
{
A[i][j] = - m_retMatrix[j-m N][i-m T] + m_assetRet[j-m N];
}
A[i][m N+i-m T] = -1;
}
for (int j=0; j<m N; ++j)
{
A[2*m T][§] = 1;
A[2*m T+1][j] = -1;
A[2*m_T+2][j] = - m_assetRet[j];
}

The remainder of the code is just to handle constructing the LPSolver class and
calling the required member functions to solve the model.

Finally, I provide a simple example of how this class could be called in practice. The
sample data has four assets and five time periods. The associated expected returns are
given by the following matrix, which you will find in the test main function:

// sample problem: 4 assets and 5 periods

// build the expected return matrix
double val[][5] = {
{0.051, 0.050, 0.049, 0.051, 0.05},
{0.10, 0.099, 0.102, 0.100, 0.101},
{0.073, 0.077, 0.076, 0.075, 0.076},
{0.061, 0.06, 0.059, 0.061, 0.062},
}s
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Complete Code

You can view the complete code for the modified CAP in Listing 13-2. The listing

contains a header and an implementation file.

Listing 13-2. Modified CAP Implementation

//
// ModifiedCAP.h

#ifndef _ FinancialSamples ModifiedCAP_
#define _ FinancialSamples_ ModifiedCAP__

#include "Matrix.h"

// a modified (linearized) model for Capital Asset Pricing
class ModifiedCAP {
public:
ModifiedCAP(int N, int T, double R, Matrix &retMatrix, const
std: :vector<double> &ret);
ModifiedCAP(const ModifiedCAP 8p);
~“ModifiedCAP();
ModifiedCAP 8operator=(const ModifiedCAP &p);

void solveModel(std::vector<double> 8results, double &objVal);
private:

int m_N; // number of investment

int m_T; // number of periods

double m R; // desired return

Matrix m_retMatrix;

std::vector<double> m_assetRet; // single returns

}s
#tendif /* defined(__FinancialSamples ModifiedCAP__ ) */

//
//  ModifiedCAP.cpp

#include "ModifiedCAP.h"
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#include "LPSolver.h"

#include <iostream>
#include <vector>

using std::vector;
using std::cout;
using std::endl;

ModifiedCAP: :ModifiedCAP(int N, int T, double R, Matrix &expectedRet, const
vector<double> &ret)
: m_N(N),
m_T(T),
m_R(R),
m_retMatrix(expectedRet),
m_assetRet(ret)
{
}

ModifiedCAP: :ModifiedCAP(const ModifiedCAP &p)
: m_N(p.m_N),
m T(p.m T),
m R(p.m R),
m_retMatrix(p.m_retMatrix),
m_assetRet(p.m assetRet)
{
}

ModifiedCAP: :~ModifiedCAP()

{
}

ModifiedCAP &ModifiedCAP::operator=(const ModifiedCAP 8p)
{

if (this != &p)

{

m N
mT

p.m N;
p.m_T;
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mR=p.mR;
m _retMatrix = p.m_retMatrix;
m_assetRet = p.m_assetRet;

}

return *this;

}

void ModifiedCAP::solveModel(std::vector<double> &results, double &objVal)
{

Matrix A(2*m T +2 + 1, m T + m N);
vector<double> c(m T + m_N, 0);

// objective function
for (int i=m _N; i<m _N+m T; ++i)
{

c[i] = 1;

}

// right-hand side vector
vector<double> b(2*m T + 2 + 1, 0);

b[2*m T] = 1;
b[2*m T+1] = -1;
b[2*m T+2] = -m R;
// matrix A
for (int i=0; i<m T; ++i)
{
for (int j=0; j<m N; ++j)
{
A[i][j] = m retMatrix[j][i] - m _assetRet[j];
}
A[i][m N+i] = -1;
}
for (int i=m T; i<2*m T; ++i)
{

for (int j=m_N; j<2*m_N; ++3)
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{
A[i][j] = - m_retMatrix[j-m N][i-m T] + m assetRet[j-m N];
}
A[i][m N+i-m T] = -1;
}
for (int j=0; j<m_N; ++j)
{
Al2*m_T][3] = 1;
A[2*m_T+1][]] = -1;
A[2*m T+2][j] = - m_assetRet[j];
}

LPSolver solver(A, b, c);
solver.setMinimization();
solver.solve(results, objval);

main()

// sample problem: 4 assets and 5 periods

// build the expected return matrix

double val[][5] = {
{0.051, 0.050, 0.049, 0.051, 0.05},
{0.10, 0.099, 0.102, 0.100, 0.101},
{0.073, 0.077, 0.076, 0.075, 0.076},
{0.061, 0.06, 0.059, 0.061, 0.062},

b

Matrix retMatrix(4, 5);

for (int i=0; i<4; ++i)

{
for (int j=0; j<5; ++j)
{
retMatrix[i][j] = val[i][]];
}
}
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vector<double> assetReturns = {0.05, 0.10, 0.075, 0.06};
ModifiedCAP mc(4, 5, 0.08, retMatrix, assetReturns);

vector<double> results;
double objVal;
mc.solveModel(results, objval);

cout << "obj value: " << objVal/5 << endl;
for (int i=0; i<results.size(); ++1i)

{

cout << " x" << i<« << results[i];

}

cout << endl;

Running the Code

The ModifiedCAP class presented in Listing 13-2 can be compiled using any standards-
compliant C++ compiler. The main class depends on other classes presented before, such
as LPSolver and Matrix. The code also depends on the GLPK library, which you can
download for free as described in the previous chapter. After building this class into the
executable ModifiedCap, you can run the test main function and see results similar to
what is shown in the following code:

GLPK Simplex Optimizer, v4.54
13 rows, 9 columns, 46 non-zeros

0: obj = 0.000000000e+00 infeas = 1.080e+00 (0)
* 8: obj = 3.380952381e-03 infeas = 0.000e+00 (0)
* 10: obj = 1.881151309e-03 infeas = 1.110e-16 (0)

OPTIMAL LP SOLUTION FOUND
obj value: 0.00037623
X0: 0.320288 x1: 0.520288 x2: 0.159424 x3: 0 x4: 1.43914e-06 x5: 0 x6:
0.000879712 x7: 0.000320288 x8: 0.000679712
Program ended with exit code: 0

Looking at the output, the result shows nine LP variables. From the formulation,
you will see that the first four variables correspond to the original CAP variables, while
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the last five are related to the time periods and therefore not used in the portfolio
construction. These results tell the portfolio manager that only the first three assets
should be considered in the portfolio, with percentages equal to 32%, 52%, and 15%,
respectively.

To improve these results, you can modify the model accordingly to your goals. For
example, you can try a different return and see how the portfolio will change based on
the additional information.

Extensions to Modified CAP

In this section, we create extensions to the modified CAP model so that no asset is
assigned more than 30% of the portfolio. Also, add a rule that asset classes gold and
treasury bills compose at least 15% of the portfolio.

Solution

In the section “Portfolio Optimization,” you saw how to create an optimization model to
determine the optimal allocation of capital to a specified portfolio so that the required
target return is achieved while minimizing the volatility of the resulting portfolio. The
given formulation is a modification of the original method proposed in CAP, which is a
quadratic optimization model. Despite this, you can achieve quite fast results using a
linear programming version of the model.

Although this model is able to cover the basis of a portfolio construction strategy, you
can try other useful variations. For example, a common modification of the LP model
presented previously consists of adding the minimum and maximum requirement for
each asset type.

For example, suppose that you may want to increase the diversification of your
portfolio by enforcing a limit on the percentage held of each asset. The main idea here is
to avoid big losses that result from a portfolio concentrated in a small number of assets.
Such a requirement could be easily added to the model with the following constraint:

x; < M, for each j € {1...n}

Here, M is the desired percentage limit. When run, the LP solver will guarantee using
this constraint that each percentage is not greater than the given amount M.
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Similarly, you can also define a minimum amount held for each asset. In this case, it
is frequently useful to have separate minimum values for each possible investment. For
example, you may want to have a portfolio where treasury bills will be at least 5% at any
time. If we denote the minimum required allocation by K, this would lead to a constraint
of the type

x; > Kj, for each j € {1...n}

In general, similar modifications can also be done for combinations of assets, such
as treasury bills and gold. This would also work for larger groups of assets, such as
adding a minimum threshold for the total number of all growth stocks in a portfolio. If
you have a group of stocks L and an associated limit K;, then this general constraint can
be denoted by

ijZKL.

JjeL

Finally, you can also use the idea of groups of assets to define an upper bound of the
percentage held in these investments. For example, if you want to limit the percentage of
a portfolio exposed to technology stocks, you can denote the group by U and the limit by
Ky, resulting in the following constraint:

ij <K,.

jeUu

For the benefit of simplicity, I have provided an alternative version of the
ModifiedCAP class, where we have an alternative rule for diversification (at 37% level)
and a minimum of 15% for the combined assets 1 and 2 (gold and treasury bills). The
new code is implemented in the function solveExtendedModel, defined as

void solveExtendedModel(std::vector<double> &results, double &objVal);

The remaining parts of the class remain unchanged in this coding example.

Complete Code

You can find the code to solve the extended version of the CAP model in Listing 13-3. In
the header file, I show the complete class declaration, which is similar to the previous
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listing except for the added function, solveExtendedModel. The implementation file
shows only the new member function, along with a test main function.

Listing 13-3. Extended Model for the CAP

//
// ModifiedCAP.h

#ifndef _ FinancialSamples_ ModifiedCAP__
#define _ FinancialSamples ModifiedCAP

#include "Matrix.h"

// a modified (linearized) model for Capital Asset Pricing
class ModifiedCAP {
public:
ModifiedCAP(int N, int T, double R, Matrix &retMatrix, const
std::vector<double> &ret);
ModifiedCAP(const ModifiedCAP 8p);
~“ModifiedCAP();
ModifiedCAP &operator=(const ModifiedCAP 8p);

void solveModel(std::vector<double> &results, double &objVal);
void solveExtendedModel(std::vector<double> &results, double &objVal);

private:
int m_N; // number of investment
int m_T; // number of periods

double m_R; // desired return
Matrix m_retMatrix;
std::vector<double> m_assetRet; // single returns

};
#tendif /* defined(__FinancialSamples ModifiedCAP_ ) */

//
//  ModifiedCAP.cpp

#include "ModifiedCAP.h"

#include "LPSolver.h"
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#include <iostream>
#include <vector>

//
// ... just like code list displayed on previous section
//

void ModifiedCAP::solveExtendedModel (std: :vector<double> &results, double
8objval)
{

vector<double> c(m T + m_N, 0);

// objective function
for (int i=m N; i<m N+m T; ++1)

{
c[i] = 1;
}
const double M = 0.37; // maximum of each asset

const double K L = 0.15;  // minimum of combined assets 1 and 2

// right-hand side vector
vector<double> b(2*m T + 2 + 1 + m N + 1 , 0);

b[2*m T] = 1;
b[2*m_T+1] = -1;
b[2*m T+2] = -m R;

for (int i=2*m T+3; i<2*m T + 3 + m N; ++i)
{
b[i] = M;
}
b[2*m T + 3 + m N] = -K_L;

// matrix A
Matrix A*m T +2+ 1 +mN+ 1, mT + mN);
for (int i=0; i<m T; ++i)

{
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for (int j=0; j<m N; ++j)

{
A[i][j] = m_retMatrix[j][i] - m_assetRet[]];
}
A[i][m N+i] = -1;
}
for (int i=m T; i<2*m T; ++i)
{
for (int j=m_N; j<2*m N; ++j)
{
A[i][3] = - m_retMatrix[j-m N][i-m_T] + m_assetRet[j-m_N];
}
A[i][m N+i-m T] = -1;
}
for (int j=0; j<m N; ++j)
{
Al2*m_T][3] = 1;
Alz*n T1][§] = -1;
A[2*m_T+2][j] = - m_assetRet[j];
}

// constraints for percentage limit
for (int i=2*m T+3; i<2*m T+3+m N; ++i)
{

A[i][i-(2*m T+3)] = 1;
}
// constraints for assets 1 and 2
A[2*m_T+3+m N][0] = -1;
A[2*m T+3+m N][1] = -1;

LPSolver solver(A, b, c);
solver.setMinimization();
solver.solve(results, objVval);
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int

{

374

main()

// sample problem: 4 assets and 5 periods

// build the expected return matrix

double val[][5] = {
{0.051, 0.050, 0.049, 0.051, 0.05},
{0.10, 0.099, 0.102, 0.100, 0.101},
{0.073, 0.077, 0.076, 0.075, 0.076},
{0.061, 0.06, 0.059, 0.061, 0.062},

b

Matrix retMatrix(4, 5);

for (int i=0; i<4; ++i)

{
for (int j=0; j<5; ++j)
{
retMatrix[i][j] = val[i][j];
}
}

vector<double> assetReturns = {0.05, 0.10, 0.075, 0.06};
ModifiedCAP mc(4, 5, 0.08, retMatrix, assetReturns);

vector<double> results;
double objVal;
mc.solveExtendedModel (results, objVal);

cout << "obj value: " << objVal/5 << endl;
for (int i=0; i<results.size(); ++i)

{

cout << " x" << i<« << results[i];

}

cout << endl;
return 0;
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Running the Code

After compiling the class described in Listing 13-3, you will be able to find the modified
results of the optimized portfolio. The following is a sample output of what I achieved by
adding the constraints explained previously:

./extendedModifiedCAP
GLPK Simplex Optimizer, v4.54
18 rows, 9 columns, 52 non-zeros

0: obj = 0.000000000e+00 infeas
* 14: obj = 2.671440000e-03 infeas
OPTIMAL LP SOLUTION FOUND
obj value: 0.000534288
X0: 0.035 x1: 0.37 X2: 0.37 x3: 0.225 x4: 1.44e-06 x5: 0.00037 x6: 0.00085
X7: 0.00026 x8: 0.00119
Program ended with exit code: 0

1.230e+00 (0)
0.000e+00 (0)

The solution found by the optimizer shows that the optimum allocation for the four
asset classes would be 3.5%, 37%, 37%, and 22%, respectively.

Conclusion

Portfolio optimization is a tool frequently used by portfolio managers to help define a
suitable capital allocation depending on the desired goals of their clients. Therefore, it is
important for financial C++ programmers to be able to devise efficient solutions for such
portfolio allocation problems.

In this chapter, you have learned a few mathematical programming models that have
been successfully used by financial institutions to create and manage portfolios as well
as other financial allocation problems. In the first section, you have seen how mixed-
integer programming (MIP) can be used to model some financial allocation problems.
You learned about some of the differences between MIP and LP models and how they
can be solved with the help of the MIPSolver class.

In the next section, the focus was on the CAP model, where the main goal is to
determine the percentages of each investment that need to be held in a portfolio,
in order to achieve the desired outcome while at the same time minimizing the
associated volatility of the investments. You have seen that although this is a quadratic
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programming problem, it is possible to achieve good results with a linearization of the
mathematical formulation. An alternative formulation was presented and implemented
in C++ using the AlternativeCAP class.

Finally, I discussed a few extensions of the basic model and how the optimization
results can be understood in the context of the required portfolio. Such extensions to the
basic CAP model are common, and they help in developing portfolios that are subject to
real-world constraints for asset allocation.

In the next chapter, you will become acquainted with another key technique in
financial engineering: Monte Carlo simulation methods. You will see a few C++ examples
of how such techniques can be quickly implemented and how the results of such
methods can be interpreted.
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Monte Carlo Methods

Among other programming techniques for equity markets, Monte Carlo simulation has a
special place due to its wide applicability and relatively easy implementation compared
to exact, non-stochastic methods. These algorithms can be used in many applications
such as price forecasting and the validation of certain buying strategies, for example.

In this chapter, we provide C++ programming code that can be used either directly or
as part of simulation-based algorithms. These examples will introduce some of the most
important concepts used in the development of stochastic methods. The following is a
quick summary of topics discussed in this chapter:

o Determining definite integrals: Random sampling is a powerful way
to calculate complicated functions with a minimum of computational
effort. You will see how to use stochastic techniques to determine
definite integrals.

o Forecasting prices: Being a common technique to simulate random
price fluctuations, Monte Carlo methods have been frequently
used as a way to forecast prices. The ability to repeat the simulation
process is a key feature of this method.

e (Calculating options prices: Among other methods for option pricing
forecasting, Monte Carlo techniques have been widely used due to
its simplicity. Unlike other mathematical methods, simulations can
be quickly coded and generally perform well compared to exact
techniques for option price forecasting.

Monte Carlo-Based Integral Computation

Create a class to estimate the integral of a generic function using a Monte Carlo strategy.
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Solution

The main concept of Monte Carlo methods is to use a random process to find solutions for
a complex problem. While a random solution may not be useful for the problem at hand,
it has the important property that it can be repeated with different results. The information
that you can gather by looking at a large number of such Monte Carlo results is the secret of
such techniques.

A classic example of using Monte Carlo methods is determining the area defined
by a curve with random sampling. For example, to find the area of a circle, you can
draw several random points and check if they are part of the circle. The area is then
determined by the percentage of points inside the circle. As the number of points
increase, you will get better approximations for the required area.

An extension of the general idea described previously is the basis for a Monte Carlo
strategy for integration. The advantage of using such Monte Carlo methods to integrate
functions is that you just need to generate random points in the given range. The
simplicity of the strategy makes it possible to estimate the integral of very complicated
functions with a minimum of code.

You can see an implementation of this method in the MonteCarloIntegration class.
The structure of the class is similar to the examples you saw in Chapter 10, which covers
integration. However, the algorithm used involves the generation of random samples, in
order to determine the percentage of area under the given function.

To generate uniformly distributed random numbers, we use the uniform real
distribution class, part of boost: :random. This simplifies the generation of samples,
avoiding numerical accuracy issues that are common when using other sources of
random numbers.

The main part of the implementation can be viewed in the getIntegral member
function.

double MonteCarloIntegration::getIntegral(double a, double b)

The code initially determines the maximum and minimum values observed. It uses
these numbers to define the total area of sampling. Then, the function generates random
numbers and checks if they are inside the curve defined by the function or outside it. At
the end, the percentage calculated with this procedure is used to compute the total area
of the integral. This process is repeated for the positive and negative parts of the given
mathematical function, using the member function integrateRegion. The total value of
the integral is then calculated as the positive minus the negative area.
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Complete Code

You will find the complete code to integrate a function using the Monte Carlo methods
in Listing 14-1. The code is divided into a header and an implementation file. A sample
main function is included to show how the class MonteCarloIntegration can be used.

Listing 14-1. Monte Carlo Integration Method

//
// MonteCarloIntegration.h

#ifndef _ FinancialSamples_ MONTECARLOINTEGRATION_H_
#idefine _ FinancialSamples MONTECARLOINTEGRATION_ H_

template <class T>
class MathFunction;

class MonteCarloIntegration {

public:
MonteCarloIntegration(MathFunction<double> &f);
MonteCarloIntegration(MathFunction<double> &f, int num_samples);
MonteCarloIntegration(const MonteCarloIntegration 8&p);
~MonteCarloIntegration();
MonteCarloIntegration &operator=(const MonteCarloIntegration &p);

void setNumSamples(int n);
double getIntegral(double a, double b);
double integrateRegion(double a, double b, double min, double max);
private:
MathFunction<double> &m_f;
int m_numSamples;

}s
#endif /* MONTECARLOINTEGRATION H_ */

//
// MonteCarloIntegration.cpp

#include "MonteCarloIntegration.h”
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#include <cmath>
#include <cstdlib>
#include <iostream>

#include "MathFunction.h"
#include <random>
static std::default random engine random generator;

using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM SAMPLES = 1000;

}

MonteCarloIntegration: :MonteCarloIntegration(MathFunction<double>& f)
:m_f(f),
m_numSamples(DEFAULT NUM_SAMPLES)
{
}

MonteCarloIntegration: :MonteCarloIntegration(MathFunction<double>& f, int
num_samples)
1 m_f(f),
m_numSamples(num_samples)
{
}

MonteCarloIntegration: :MonteCarloIntegration(const MonteCarloIntegration&
P)

:m f(p.m_f),

m_numSamples(p.m numSamples)
{
}
MonteCarloIntegration::~MonteCarloIntegration()
{
}
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MonteCarloIntegration& MonteCarloIntegration::operator =(const
MonteCarloIntegrationd p)

{
if (this != &p)
{
mf=p.mf,;
m_numSamples = p.m_numSamples;
}
return *this;
}
void MonteCarloIntegration::setNumSamples(int n)
{
m_numSamples = n;
}

double MonteCarloIntegration::integrateRegion(double a, double b, double
min, double max)
{
std::uniform real distribution<> xDistrib(a, b);
std::uniform real distribution<> yDistrib(min, max);

int pointsIn = 0;
int pointsOut = 0;
bool positive = max > 0;

for (int i = 0; i < m_numSamples; ++i)
{
double x
double y

xDistrib(random_generator);
m_f(x);

double ry = yDistrib(random generator);
if (positive && min <= ry 8& ry <= y)

{
pointsIn++;
}
else if (!positive &&% y <= ry &&% ry <= max)
{
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pointsIn++;
}
else
{

pointsOut++;
}

}

double percentageArea = 0;
if (pointsIn+pointsOut > 0)

{
percentageArea = pointsIn / double(pointsIn + pointsOut);
}
if (percentageArea > 0)
{
return (b-a) * (max-min) * percentageArea;
}
return 0;

}

double MonteCarloIntegration::getIntegral(double a, double b)
{

std::uniform real distribution<> distrib(a, b);

double max

0;
double min = 0;

for (int i = 0; i < m_numSamples; ++i)
{
double x = distrib(random generator);
double y = m_f(x);
if (y > max)
{
max = y;
}
if (y < min)
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min = y;

}
double positivelntg

double negativelntg
return positivelntg - negativelntg;

max > 0 ? integrateRegion(a, b, 0, max) : O;
min < 0 ? integrateRegion(a, b, min, 0) : 0;

}

// Example function
namespace {

class FSin : public MathFunction<double>

{
public:
~FSin();
double operator()(double x);
};
FSin::~FSin()
{
}
double FSin::operator()(double x)
{
return sin(x);
}
}
int main()
{

cout << "starting" << endl;

FSin f;

MonteCarloIntegration mci(f);

double integral = mci.getIntegral(0.5, 4.9);
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cout << " the integral of the function is " << integral << endl;

mci.setNumSamples(200000);

integral = mci.getIntegral(0.5, 4.9);

cout << " the integral of the function with 20000 intervals is
" << integral << endl;

return 0;

Running the Code

You can compile the files presented in Listing 14-1 using gcc or any other standards-
compliant C++ compiler. The result for the sample code in the main function is the
following, assuming that you named the executable as monteCarloIntegration:

$ ./monteCarloIntegration
the integral of the function is 1.74
the integral of the function with 20000 intervals is 1.6702

Notice that this can change depending on the random source used by the
implementation. However, the values should approach the correct value as the number
of samples used by the Monte Carlo method increase.

Simulating Asset Prices

Create a C++ class to mimic the price fluctuations of equities in the stock market using a
random walk simulation process.

Solution

If there is an area in investment where it is difficult to find closed solutions, that area is
financial forecasting. Although there are well-known economic models, any complex
system such as the stock market is subject to wild fluctuations that result from so many
factors, including wars, natural disasters, and personal choices of important players,
among others. Due to the big difficulty of estimating such disparate events, a large part
of market forecasting models assume that some form of random process is the source of
price fluctuations. In this scenario, Monte Carlo techniques prove to be very useful in the
simulation of future market conditions.
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In this section, I present a very simple Monte Carlo model that can be used for
forecasting purposes. To start the presentation, I introduce a first version of this method
using a set of very simple simulation rules. Then, you will see a more complex version of
this same principle, using a Gaussian distribution, in the next C++ coding example.

The basic strategy used in price forecasting is to simulate price movements using a
“random walk.” A random walk process is a stochastic technique in which the next state
of the system is defined only by its previous state (a known price) and the probability
distribution for the next possible moves. In the example presented in this C++ class,
there are three next states, each of them having the same probability. As a result, at each
moment in time, the price can go up, go down, or stay flat.

To simplify the example of random walk given in this section, we will assume that
the prices of the underlying asset are moving according to a uniform distribution. In
other words, price changes are generated in such a way that the average jump is received
as a parameter. Also, the increase or decrease in price is defined using a uniformly
distributed random variable, with values determined by the known average.

The code necessary to create this simulation is encapsulated in the RandomWalk class.
The class is needed to store the information about parameters for the process: among
these parameters are the number of steps (samples) in the Monte Carlo simulation, the
initial asset price, and the average step used in the process.

Using these parameters, the getWalk member function runs the simulation and
returns a vector of prices generated using this strategy. Figure 14-1 displays a sample result
of this random process. Once you store the prices generated by getWalk, your code can
perform additional processing, as needed. A common example where this may be useful is
during the test of new trading strategies and for determination of their profitability.
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Figure 14-1. Results of the random walk generated by RandomWalk class
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The algorithm for random walk used in the RandomWalk class can be tweaked in a
number of ways, depending on the demands of your simulation.

o For example, you may want to have the price of the underlying
instrument changing more frequently. This can be achieved with the
removal of the third branching rule (which allows the price to stay in
the same level) and therefore forcing moves either up or down.

¢ Another variation of the random walk is to have different
probabilities for up and high prices—in this way, it is possible to
simulate a “bull” or “bear” market.

o For a similar purpose as previously, it is possible to change the
amount of the price jump (up or down), so that up moves may be
bigger than down moves. This would be another way to simulate a
directional market, where prices are going up faster than usual.

Complete Code

Listing 14-2 contains the complete code for the RandomWalk class. You will find the
implementation in a header file and a cpp file, followed by a sample main function.

Listing 14-2. Implementation for RandomWalk Class

//
// RandonWalk.h

#ifndef _ FinancialSamples RandonWalk
#define _ FinancialSamples RandonWalk

#include <vector>

// Simple random walk for price simulation
class RandomWalk {
public:
RandomWalk(int size, double start, double step);
RandomWalk(const RandomWalk 8&p);
~RandomWalk();
RandomWalk &operator=(const RandomWalk &p);
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std: :vector<double> getWalk();
private:
int m_size; // number of steps
double m step; // size of each step (in percentage)
double m_start; // starting price

};
#endif /* defined(__FinancialSamples RandonWalk ) */

//
// RandonWalk.cpp

#include "RandonWalk.h"
#include <iostream>

using std::vector;
using std::cout;
using std::endl;

RandomWalk: :RandomWalk(int size, double start, double step)
: m_size(size),
m_step(step),
m_start(start)
{
}

RandomWalk: :RandomWalk(const RandomWalk 8&p)
: m_size(p.m_size),

m step(p.m step),

m start(p.m start)

{
}

RandomWalk: :~RandomWalk()

{
}

RandomWalk &RandomWalk::operator=(const RandomWalk 8&p)
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{
if (this != 8&p)
{
m size = p.m_size;
m_step = p.m_step;
m_start = p.m_start;
}
return *this;
}

std: :vector<double> RandomiWalk::getWalk()

vector<double> walk;
double prev = m_start;

for (int i=0; i<m size; ++i)

{
int r = rand() % 3;
double val = prev;
if (r == 0) val += (m_step * val);
else if (r == 1) val -= (m_step * val);
walk.push back(val);
prev = val;
}
return walk;
}
int main()
{
RandomWalk rw(100, 30, 0.01);
vector<double> walk = rw.getWalk();
for (int i=0; i<walk.size(); ++i)
{
cout << ", " << 1< ", " << walk[i];
}
cout << endl;
return 0;
}
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To run the code presented in Listing 14-2, first you need to compile it using a standards-

compliant compiler such as gcc or Visual Studio. Here are the first few lines of the

random walk using the given parameters: initial price of $30, step of 1%, and 100 steps.

«/randomWalk

5 0, 29.7, 1, 29.403, 2, 29.403, 3, 29.403, 4, 29.109, 5, 29.109, 6,
29.4001, 7, 29.4001, 8, 29.4001, 9, 29.1061, 10, 29.3971, 11, 29.3971, 12,
29.988, 15, 29.988, 16, 29.6881, 17, 29.3912, 18,

29.6911, 13,
29.0973, 19,
24, 28.8006,
29.3765, 30,
29.0799, 36,
41, 28.7833)
28.7804, 47,
52, 28.2049,
58, 28.1992,

29.6911, 14,
28.8064, 20,
25, 29.0886,
29.0828, 31,
28.7891, 37,
42, 28.4955,
28.4926, 48,
53, 27.9228,
59, 27.9173,

29.0944, 21,
26, 29.3795,
29.0828, 32,
28.5012, 38,
43, 28.7804,
28.7776, 49,
54, 27.6436,

28.8035, 22,
27, 29.6733,
29.0828, 33,
28.7862, 39,
44, 28.7804,
28.4898, 50,
55, 27.6436,

29.0915, 23, 29.0915,
28, 29.6733, 29,
28.792, 34, 28.792, 35,
29.0741, 40, 28.7833,
45, 28.7804, 46,
28.4898, 51, 28.4898,
56, 27.92, 57, 27.92,

Figure 14-1 displays a plot of the random walk generated by one execution of the

sample code. Notice how prices start near the $30 mark and display a behavior similar to

real variations observed on the stock market.

Calculating Option Probabilities

In this section, we will implement a C++ solution to computing European options

probabilities for events such as finishing above the strike price, finishing below the strike

price, or finishing between two given prices.

Solution

Options are a very popular type of equity derivatives, which can be bought in most retail

investment accounts. With options, you pay a price for the privilege of buying or selling

a stock for a particular price during a limited period of time, hence the designation

“option,” since you have the option, not the obligation, of performing the transaction.
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A call option gives the right to buy at a particular price, while a put option gives the
right to sell at a particular price. The exercise price is called the strike. Depending on the
relationship between the current price of the stock and the strike price, an option can be
classified into one of the three categories:

e Inthe money (ITM): The strike price is lower than the current price of
the stock, for call options. For put options, the strike price should be
above the current stock price.

e Out of the money (OTM): The strike price is higher than the current
price of the stock, for call options. For put options, the strike price
should be below the current stock price.

e Atthe money (ATM): The strike price is close to the current price of
the underlying stock.

These different relationships between strike price and stock price determine
different probabilities of an option to become profitable, as we will see in the remainder
of this section.

To achieve profitability, a call option needs the stock price to rise above the strike
price. When this happens, the price for the position is given by the difference between
the strike price and the stock price, plus whatever time value the option might still have.
For put options this is reversed, and the option becomes profitable when the stock prices
decrease in comparison to the strike price.

Another concept in options is the style of exercise (i.e., buying or selling the
underlying stock). European-style options allow the exercising of the option only at the
end of its target period. American-style options, on the other hand, allow exercising to
happen at any moment in time. In this section I consider European options only, since
the analysis considers only the price of the stock at the option expiration. It is not hard,
however, to extend the techniques explained to handle American-style options.

Figure 14-2 shows the profit profile for an option contract. The data assumes that
the contract costs $5, with a strike price of $90. In this case, for any final price of the
underlying stock that is below $90, the full loss of the option price is realized. On the
other hand, the loss is capped, and the investor will not suffer any losses other than the
price of the contract. When the underlying asset price achieves the strike price of $90,
the loss of the position starts to decrease, getting to an even point at $95. From that point
on, any additional price increase represents additional profit for the option position, and
gains are unlimited to the upside.
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Figure 14-2. Profit potential for an option call contract

Determining Profit Probabilities

In this section, you will learn how to use Monte Carlo techniques to determine profit
probabilities for equity options. As you have seen previously, all that is necessary to find
the profit for a call option is to calculate the price of the underlying asset at expiration
and check if the final price is above the strike price. For put options, the process is the
same, but instead you need to check if the final price is below the strike price.

The first step in creating a Monte Carlo simulation for this problem is to define the
parameters of the random process. The pricing of options is defined by what is called
the Black-Scholes model, where prices are assumed to be normally distributed. For this
reason, you will use a random walk with Gaussian distribution for price changes. At
each step, only two possibilities are available in this random process: prices either go
up or go down with 50% of chance. The price change is then determined by the normal
distribution with variance that is given as an input parameter. Figure 14-3 presents
an example of Gaussian random walk. Notice how similar this looks to actual price
fluctuations, when compared to real data for stocks.
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Figure 14-3. Example of price movement created using a Gaussian random walk

Once the random walk is generated, one can start to use the data for forecasting and
related price analysis. In this case, you would like to estimate the probabilities of some
events, such as finishing above a certain price level. To answer these questions, you just
need to use the standard Monte Carlo procedure: repeat the random walk and store
the results. After this process is performed several times, it is possible to analyze the
distribution of results in which the final price was above a certain target.

For example, suppose you want to answer the question: what is the probability of the
price finishing above the strike price? To do this, perform the random walk for a large
number of tests, and calculate the percentage of these tests in which the price finished
above the strike. The same approach can be used to collect related information, such as
the probability of finishing below the strike price, or the probability of finishing between
two given prices.

The implementation is given in the OptionsProbabilities class. The important
member functions are the following:

double probFinishAboveStrike();
double probFinishBelowStrike();

double probFinalPriceBetweenPrices(double lowPrice, double highPrice);
std::vector<double> getWalk();

The three first member functions calculate the desired probabilities. The last
member function, getWalk, returns a vector that stores a sample random walk for further
analysis. The OptionsProbabilities class internally uses the getLastPriceOfWalk
member function, which returns the last observed price observed in a Gaussian walk.
This price is the one stored as input to the probability calculations.
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Finally, price changes are computed using the Gaussian distribution. Random values
according to this distribution are generated using the gaussianValue member function:

double OptionsProbabilities::gaussianValue(double mean, double sigma)

{

std::normal distribution<> distrib(mean, sigma);
return distrib(random generator);

To see how these functions are used together, consider the implementation of
probFinishAboveStrike:

double OptionsProbabilities::probFinishAboveStrike()

{
int nAbove = 0;
for (int i=0; i<m_numIterations; ++i)
{
double val = getlLastPriceOfllalk();
if (val »>= m_strike)
{
nAbove++;
}
}
return nAbove/(double)m_numIterations;
}

The algorithm repeats as many iterations as are defined by the member variable
m_numIterations. At each iteration, you request a new Gaussian random walk and
store the last observed value. If the value satisfies the required property (in this case
finishing above the strike price), then it is counted as an occurrence of the event. Finally,
the member function returns the empirical probability defined by the percentage of
favorable cases.
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Complete Code

Listing 14-3 presents the random walk method to evaluate option probabilities. A sample
main function is given at the end of the listing, showing how the OptionsProbabilities
class can be invoked.

Listing 14-3. Class OptionsProbabilities

/7
// OptionsProbabilities.h

#ifndef _ FinancialSamples OptionsProbabilities
#define _ FinancialSamples OptionsProbabilities

#include <vector>

class OptionsProbabilities {

public:
OptionsProbabilities(double initialPrice, double strike, double
avgStep, int nDays);
OptionsProbabilities(const OptionsProbabilities 8p);
~OptionsProbabilities();
OptionsProbabilities &operator=(const OptionsProbabilities 8p);

void setNumIterations(int n);

double probFinishAboveStrike();
double probFinishBelowStrike();
double probFinalPriceBetweenPrices(double lowPrice, double highPrice);
std: :vector<double> getWalk();
private:
double m_initialPrice;
double m_strike;
double m_avgStep;
int m_numDays;
int m_numIterations;

double gaussianValue(double mean, double sigma);
double getlLastPriceOfWalk();

};
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#tendif /* defined(__FinancialSamples OptionsProbabilities ) */

//
// OptionsProbabilities.cpp

#include "OptionsProbabilities.h"

#include <random>
+#include <iostream>

using std::vector;
using std::cout;
using std::endl;

static std::default_random engine random_generator;

namespace {
const int NUM_ITERATIONS = 1000;

}

OptionsProbabilities::OptionsProbabilities(double initialPrice,
double strike, double avgStep,
int nDays)
: m_initialPrice(initialPrice),
m strike(strike),
m_avgStep(avgStep),
m_numDays (nDays),
m_numIterations(NUM_ITERATIONS)
{
}

OptionsProbabilities::OptionsProbabilities(const OptionsProbabilities &p)
: m_initialPrice(p.m_initialPrice),

m strike(p.m strike),

m_avgStep(p.m_avgStep),

m_numDays (p.m_numDays),

m_numIterations(p.m numIterations)
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OptionsProbabilities::~OptionsProbabilities()

{
}

OptionsProbabilities &0ptionsProbabilities::operator=(const
OptionsProbabilities &p)

{
if (this != &p)
{
m initialPrice = p.m_initialPrice;
m strike = p.m_strike;
m_avgStep = p.m_avgStep;
m_numDays = p.m_numDays;
m_numIterations = p.m_numIterations;
}
return *this;
}

void OptionsProbabilities::setNumIterations(int n)

{

m_numIterations = n;

}

double OptionsProbabilities::probFinishAboveStrike()
{

int nAbove = 0;
for (int i=0; i<m numIterations; ++i)

{
double val = getlLastPriceOfWalk();
if (val »= m_strike)
{
nAbove++;
}
}

return nAbove/(double)m numIterations;
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double OptionsProbabilities::probFinishBelowStrike()

{
int nBelow = 0;
for (int i=0; i<m_numIterations; ++i)
{
double val = getlastPriceOfWalk();
if (val <= m_strike)
{
nBellow++;
}
}
return nBelow/(double)m numIterations;
}

double OptionsProbabilities::probFinalPriceBetweenPrices(double lowPrice,
double highPrice)

{
int nBetween = 0;
for (int i=0; i<m numIterations; ++i)
{
double val = getlLastPriceOfWalk();
if (lowPrice <= val && val <= highPrice)
{
nBetween++;
}
}
return nBetween/(double)m numIterations;
}

double OptionsProbabilities::gaussianValue(double mean, double sigma)

{

std::normal distribution<> distrib(mean, sigma);
return distrib(random generator);

}
double OptionsProbabilities::getlLastPriceOfWalk()
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{
double prev = m_initialPrice;
for (int i=0; i<m_numDays; ++i)
{
double stepSize = gaussianValue(0, m_avgStep);
int r = rand() % 2;
double val = prev;
if (r == 0) val += (stepSize * val);
else val -= (stepSize * val);
prev = val;
}
return prev;
}

std: :vector<double> OptionsProbabilities::getWalk()

vector<double> walk;
double prev = m_initialPrice;

for (int i=0; i<m _numDays; ++i)
{
double stepSize = gaussianValue(0, m_avgStep);
int r = rand() % 2;
double val = prev;
if (r == 0) val += (stepSize * val);
else val -= (stepSize * val);
walk.push back(val);
prev = val;
}

return walk;

int main()

OptionsProbabilities optP(30, 35, 0.01, 100);

cout << " above strike prob:
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<< optP.probFinishAboveStrike() << endl;
cout << " below strike prob: "
<< optP.probFinishBelowStrike() << endl;
cout << " between 28 and 32 prob: "
<< optP.probFinalPriceBetweenPrices(28, 32) << endl;

return O;

Running the Code

To run the code in Listing 14-3, you can use any standards-compliant C++ compiler such
as gcg, llvm, or Visual C++. Once you compile the code and generate an executable file,
the application can be run with the following results (exact numbers can vary depending
on the random numbers used):

above strike prob: 0.055
below strike prob: 0.946
between 28 and 32 prob: 0.512

As you can see, the application is able to determine with good precision the
probability that the price will finish above or below the strike. This is confirmed by the
fact that the two first values add up to close to 100%. The approximation can still be
improved by increasing the number of simulated random walks.

Conclusion

Monte Carlo methods are a general approach to problem solving that use randomization
as a way to compute solutions that would be otherwise very difficult to find exactly. Due
to the inherent randomness of financial markets, Monte Carlo methods appear as an
important tool in the hands of the financial engineer and software developer.

You have seen in this chapter that such simulation techniques can be used to find
quick solutions to diverse problems in the area of finance. For example, a common way
to use Monte Carlo simulations is to forecast possible economic scenarios dictated by
price variations. While this is a difficult task for traditional mathematical methods, one
can easily design efficient algorithms such as a random walk. Such algorithms offer the
ability to forecast prices using just a few input parameters based on past behavior.
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In the first coding example, in Listing 14-1, we used a Monte Carlo technique to
calculate the definite integral of a general function. While there are efficient ways to
solve this problem with deterministic numeric algorithms, this problem shows the basic
features of Monte Carlo methods and how their results can be interpreted and improved.

In Listing 14-2, you saw how to create a very simple random walk, which is one of the
basic tools available for price simulation using Monte Carlo methods. You saw how to
implement a version of random walk where price changes are uniformly distributed. You
also saw a few common variations of the standard method, which are frequently used in
applications.

Next, you learned about the use of Monte Carlo methods to calculate profit
probabilities for options. The C++ class in Listing 14-3 illustrated a scheme that is easy to
implement and can be used to analyze options and their possible profit scenarios. You
have seen that using simulation and a few assumptions about price changes, one can
easily determine the probability that a given stock will be in a certain price range within
a number of days.

This chapter completes the discussion of the major mathematical tools used in
financial software. In the next chapter, you will start to explore additional programming
technologies that can be employed to support the creation and maintenance of such
financial applications. You will see a number of examples that show how to integrate
existing C++ code with other popular scripting languages, such as Python and Lua.
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Extending Financial
Libraries

C++ is an expressive language that can be used to develop some of the most
sophisticated software, including the high-performance applications that are routinely
used in banks and other financial institutions. However, it is sometimes beneficial to
combine and extend C++ libraries using interpreted languages that can simplify the
creation of prototypes and other noncritical applications. A number of such interpreted
languages are used for the purpose of connecting pre-compiled libraries. Among them,
Python and Lua are among the most common interpreted languages employed in the
financial industry.

In this chapter, I show how to use popular scripting and extension languages such as
Lua and Python to interact with C++ libraries. The solutions and algorithms discussed in
the next few sections allow you to reuse many of the same C++ components presented in
previous chapters as part of applications developed in other languages. In some cases,
you will also be able to use code that has been created in external languages in your own
C++ applications.

The following are some of the topics discussed in this chapter:

o Extending C++ with Python: The Python language offers great
features for the development of server-side applications. If you want
to use C++ libraries as part of other services, Python might be the best
way to integrate different libraries.

o Extending C++ with Lua: Lua is a relatively new language that is
outstanding in its simple implementation of dynamic features. It is
also used as an extension language that can be embedded into your
own larger C++ applications.

401
© Carlos Oliveira 2021

C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_15


https://doi.org/10.1007/978-1-4842-6834-6_15#DOI

CHAPTER 15  EXTENDING FINANCIAL LIBRARIES

Exporting C++ Stock Handling Code to Python

Generate code that provides the ability to export to Python a C++ stock handing class.

Solution

Python is a popular language that has been used in several domains, including web
applications, scientific data exploration, and finance. One of the greatest strengths of
Python is its ability to cleanly bring together large collections of programming libraries.
A very important reason for that interoperability is the simple mechanism used by
Python to interface with different languages, especially C and C++.

In this section, you will learn about the extension mechanism of Python and how
it can be accessed from your C++ code. I have provided a financial example for this
process, where you will give access to a Stock class originally designed and implemented
in C++.

Python is available as open source on most operating systems. The main website
where you can find the source code and binaries for most operating systems is http://
python.org. You will also find Python pre-installed on many UNIX-like operating
systems, such as Linux and Mac OS X. The main mechanism for library extension in
Python is the module. A module is used to export data and code to Python source files
or other modules. The keyword import can be used to load an existing module into
memory. For example:

import sys

This is a command used to load the sys module, which gives access to system-
dependent functions. While modules can be created in Python itself, as C++
programmers our main interest is in creating modules using C++. This is possible with
the Python module creating API (application programming interface), which is available
for C and C++ and included with most Python installations.

Since the extension mechanism is written in C (for compatibility with existing C
libraries for Python), it is necessary to create a number of C functions that encapsulate
your original C++ classes in order to achieve interoperability with the Python
environment.

As an example of how this process works, consider the Stock class, which can be
used to model a single stock. Listing 15-1 shows the public interface for this class.
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Listing 15-1. Interface for Stock Class

class Stock {
public:
Stock(const std::string &ticker, double price, double div);
Stock(const Stock &p);
~Stock();
Stock &operator=(const Stock 8p);

std::string ticker();

double price();

void setPrice(double price);
double dividend();

void setDividend(double div);
double dividendYield();

The extension API for Python is a set of header files and libraries that expose the
Python environment to other applications written in C or C++. To export a class such
as Stock to Python using the extension API, we need to create a few functions that will
receive and return the requests sent by the Python interpreter. This is done in the Stock_
Py.cpp file, which contains a list of functions that deal with each member of the Stock
class. The first function of interest is the stock create function, which is defined in the
following way:

PyObject *stock create(PyObject *self, PyObject *args)

It is common for functions called directly from Python to have a signature where two
Python objects are received and a Python object is returned. The first argument to such
a function is the Python object that is the target of the call (similar to the this pointer
in C++) whenever the call is made using the syntax object.function(). The second
parameter is a Python list that stores all the arguments passed to the function.

The first thing this function does is to retrieve the parameters passed as arguments.
This can be done in the Python API by calling the function PyArg ParseTuple, which
is responsible for checking the arguments and copying their values into data objects.
The first parameter of this function is the object representing the list of arguments. The
second parameter is a string that defines the types of each data element in the argument
list. Finally, the remaining arguments are pointers to the locations where the data should
be stored.
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if (!PyArg ParseTuple(args, "sdd", &ticker, 8price, &dividend))
return NULL;

If this function is not successful, it will return false, which causes the stock create
to return NULL. Returning NULL indicates to the interpreter that the called function failed
for some reason.

Once the input data has been validated, the next step is to create an object of class
Stock and initialize it properly. The result is stored in a Python capsule object that is
created with the function PyCapsule_New. This function call takes as the last parameter
the name of a destructor function, which in this case is just stock _destructor, a
function that calls the destructor for the Stock object. After the Python capsule has been
created, the new Python object is then returned as the result of the function.

For an example of a function that just returns a single data object, consider stock
ticker, the function that gives access to the Stock: :ticker () member function:

PyObject *stock ticker(PyObject *self, PyObject *args)

{
PyObject *obj;
if (!PyArg ParseTuple(args, "0!", &PyCapsule Type, &obj))
return NULL;
Stock *stock = getStock(obj);
return Py BuildValue("s", stock->ticker().c_str());
}

In this function, the first step is to validate the input arguments, which uses the
PyArg ParseTuple function. The PyArg ParseTuple function receives as arguments the
container of the data and a string that determines the type of each argument, followed
by pointers to variables where the data will be stored. The object to be retrieved in this
case is of type PyCapsule, as defined in the remaining arguments (which give the object
type and a pointer to an object variable). Once the argument is retrieved, you can use the
getStock function to fetch the Stock pointer. Finally, the ticker () member function is
called. To return the data to the Python interpreter, you need to convert the result into
a Python object. This is done with the Py BuildValue function, which uses a format
string to determine the type of its remaining argument. Other functions are similar, and
their main work is to retrieve data from the argument list and to convert the results into
Python objects.
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Note Even if a function that is exposed to Python returns no result, you’re still
required to return a valid Python object. In that case, you can use Py _None, which
represents a standard Python object that means “no data.”

Finally, we have the initstock function. It calls the Py _InitModule function from
the Python API to determine the functions exposed in this module. The Py _InitModule
function receives as parameters the name of the module and an array that contains
a list of all functions (called stockMethods), their names, and descriptions. When
this information is passed to the Python interpreter, it becomes available to Python
developers whenever the stock module is imported.

Complete Code

Listing 15-2 shows the complete code for the Stock class and its associated Python glue
code.

Listing 15-2. Class Stock Interface and Implementation

//
// Stock.h

#ifndef _ FinancialSamples Stock
#define _ FinancialSamples Stock

#include <string>

class Stock {
public:
Stock(const std::string &ticker, double price, double div);
Stock(const Stock &p);
~Stock();
Stock &operator=(const Stock &p);

std::string ticker();

double price();

void setPrice(double price);
double dividend();
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void setDividend(double div);
double dividendYield();

private:
std::string m_ticker;
double m_currentPrice;
double m_dividend;

};
#endif /* defined(__FinancialSamples  Stock ) */

//
// Stock.cpp

#include "Stock.h"

Stock::Stock(const std::string &ticker, double price, double div)
: m_ticker(ticker),

m_currentPrice(price),

m_dividend(div)

{

}

Stock: :Stock(const Stock 8&p)

: m_ticker(p.m ticker),
m_currentPrice(p.m currentPrice),
m_dividend(p.m_dividend)

{

}

Stock: :~Stock()

{
}

Stock 8&Stock::operator=(const Stock 8&p)

{
if (this != &p)

{

m ticker = p.m_ticker;
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m_currentPrice = p.m_currentPrice;
m_dividend = p.m_dividend;

}
return *this;
}
double Stock::price()
{
return m_currentPrice;
}
void Stock::setPrice(double price)
{
m_currentPrice = price;
}
double Stock::dividend()
{
return m_dividend;
}
void Stock::setDividend(double div)
{
m_dividend = div;
}
double Stock::dividendYield()
{
return m_dividend / m_currentPrice;
}
std::string Stock::ticker()
{
return m_ticker;
}
//

// Stock _Py.cpp

EXTENDING FINANCIAL LIBRARIES
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#include "Stock Py.h"
#include "Stock.h"

#include <Python.h>
#include <pycapsule.h>

#include <stdio.h>
namespace {

void stock destructor(PyObject *capsule)

{
printf("calling destructor\n");
Stock *stock = reinterpret cast<Stock*>(PyCapsule GetPointer(capsule,
NULL));
delete stock;
}
PyObject *stock create(PyObject *self, PyObject *args)
{
char *ticker;
double price;
double dividend;
if (!PyArg ParseTuple(args, "sdd", &ticker, 8price, &dividend))
return NULL;
printf("ticker: %s, price: %1f, dividend: %1f\n", ticker, price,
dividend);
Stock *stock = new Stock(ticker, price, dividend);
PyObject* stockObj = PyCapsule New(stock, NULL, stock destructor);
return stockObj;
}
Stock *getStock(PyObject *obj)
{

if (!PyCapsule_CheckExact(obj))
printf("error: not a stock object\n");
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fflush(stdout);
return reinterpret cast<Stock*>(PyCapsule GetPointer(obj, NULL));
}
PyObject *returnNone()
{
Py _INCREF(Py None);
return Py None;
}
PyObject *stock ticker(PyObject *self, PyObject *args)
{
PyObject *obj;
if (!PyArg ParseTuple(args, "O!", &PyCapsule Type, &obj))
return NULL;
Stock *stock = getStock(obj);
return Py BuildValue("s", stock->ticker().c_str());
}
PyObject *stock price(PyObject *self, PyObject *args)
{
PyObject *obj;
if (!PyArg ParseTuple(args, "0!", &PyCapsule Type, &obj))
return NULL;
Stock *stock = getStock(obj);
return Py BuildvValue("d", stock->price());
}
PyObject *stock setPrice(PyObject *self, PyObject *args)
{

double price;

PyObject *obj;

if (!PyArg ParseTuple(args, "0!d", &PyCapsule Type, 8obj, &price))
return NULL;

Stock *stock = getStock(obj);
if (!stock)
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return NULL;
stock->setPrice(price);
return returnNone();

}

PyObject *stock dividend(PyObject *self, PyObject *args)
{
PyObject *obj;
if (!PyArg ParseTuple(args, "0O!", &PyCapsule Type, &obj))
return NULL;

Stock *stock = getStock(obj);
if (!stock)
return NULL;
return Py BuildValue("d", stock->dividend());

}

PyObject *stock setDividend(PyObject *self, PyObject *args)
{
double dividend;
PyObject *obj;
if (!PyArg ParseTuple(args, "0!d", &PyCapsule Type, &obj, &dividend))
return NULL;

Stock *stock = getStock(obj);

stock->setDividend(dividend);
return returnNone();

}

PyObject *stock dividendYield(PyObject *self, PyObject *args)
{
PyObject *obj;
if (!PyArg ParseTuple(args, "0!", &PyCapsule Type, &obj))
return NULL;
Stock *stock = getStock(obj);
return Py BuildvValue("d", stock->dividendYield());
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PyMethodDef stockMethods[] = {
{"new", stock create, METH VARARGS, "Create a new stock object."},
{"ticker", stock ticker, METH VARARGS, "get ticker for a stock object."},
{"price", stock price, METH VARARGS, "get price for stock."},
{"setPrice", stock setPrice, METH VARARGS, "set price for a stock object."},
{"dividend", stock dividend, METH VARARGS, "get dividend for stock."},
{"setDividend", stock setDividend, METH_VARARGS, "set dividend for a
stock object."},
{"dividendYield", stock dividendYield, METH VARARGS, "get dividend
yield for stock."},
{NULL, NULL, 0, NULL}

b
}

PYMODINIT_FUNC initstock()

{
Py InitModule("stock", stockMethods);

}

#
# stock-setup.py

from distutils.core import setup, Extension

setup(name="stock", version="1.0",
ext_modules=[Extension("stock", ["Stock.cpp", "Stock Py.cpp"])])

Running the Code

The process of building a Python extension module is a little different from what

you did for other C++ applications described in this book. The process requires the
creation of a loadable module, which has a different form in each platform, such as a
dll (on Windows) or shared object file on many UNIX systems. To simplify this process,
the Python developers created a tool that uses a setup. py file to perform the build
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automatically. Using setup.py, you don’t need to figure out particular build information
such as including directories and linking libraries. As you can see in Listing 15-1, the

file stock-setup.py describes the extension, with the source files necessary to build

the module. The building process (executed on a Mac OS X system) is shown as follows.
As seen in the listing, the C++ building is generated automatically by Python using the
build ext option.

$ python stock-setup.py build ext -i

running build_ext

building 'stock' extension

cc -fno-strict-aliasing -fno-common -dynamic -arch x86 64 -arch i386 -g -Os
-pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG
-Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall
-Wstrict-prototypes -DENABLE DTRACE -arch x86_64 -arch 1386 -pipe -I/
System/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7
-c Stock.cpp -o build/temp.macosx-10.9-intel-2.7/Stock.o

cc -fno-strict-aliasing -fno-common -dynamic -arch x86 64 -arch i386 -g -Os
-pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG
-Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall
-Wstrict-prototypes -DENABLE DTRACE -arch x86 64 -arch i386 -pipe -I/
System/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7
-c Stock Py.cpp -o build/temp.macosx-10.9-intel-2.7/Stock Py.o

c++ -bundle -undefined dynamic_lookup -arch x86 64 -arch i386 -Wl,-F.
build/temp.macosx-10.9-intel-2.7/Stock.o build/temp.macosx-10.9-intel-2.7/
Stock_Py.o -o /Users/carlosoliveira/code/FinancialSamples/FinancialSamples/
stock.so

Once the module is compiled, it can be easily loaded into a Python script or iterative
session. The following is a transcript of a sample use of the stock module:

$ python
Python 2.7.5 (default, Mar 9 2014, 22:15:05)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
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Type "help", "copyright", "credits" or "license" for more information.
>>> import stock

>>> a = stock.new('IBM',1,1)

ticker: IBM, price: 1.000000, dividend: 1.000000
>>> stock.setPrice(a, 105)

>>> stock.price(a)

105.0

>>> stock.setDividend(a, 2.2)

>>> stock.dividend(a)

2.2

>>> stock.dividendYield(a)

0.020952380952380955

Exporting C++ Classes Directly to Python

Write C++ code to export existing classes into Python applications.

Solution

In the section “Exporting C++Stock Handling Code to Python,” you saw how C++ code
can be exported to Python using the module mechanism. Through the external Python
AP], itis possible to expose functions and classes that were previously created using C++.
However, the external API also imposes the creation of glue code that is not only a boring
task but also an error-prone job, which could be better done by a computer.

To simplify some of the issues raised by the external Python API, a new boost
library was developed. The boost: : python library uses a template-based mechanism
to automatically create the integration code required by Python. In this way, developers
can more easily expose classes, variables, and function using a set of C++ templates
while avoiding repetitive tasks such as converting data from and to Python objects. The
following are a few advantages of using boost to export C++ code to Python:

e Avoid boilerplate: A lot of the code necessary to export C++ classes
into Python modules is simple and repetitive. Using a template
solution makes it easy to reduce or totally remove much of the
boilerplate code needed by the Python external API.
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Provide type safety: In Python, objects have all the same type
PyObject. While there is runtime checking for the correct type in
Python, you should be able to use C++ compile-time checking
whenever possible. With boost: :python, C++ types are used, and
conversion into Python is done automatically and only when needed.

Reduce programming effort: Using the boost library, you can
leverage a lot of code that has been developed to solve the specific
problem of exporting C++ classes to Python. By using the Python API
directly, you may encounter problems that have already been solved
in boost: :python. As in other areas of C++ programming, the ideal
is to reuse good libraries and designs instead of reinventing existing
solutions.

Despite the advantages of boost: :python, there are also some reasons why you may
want to avoid it and use the Python API directly:

Using

Size of the project: Sometimes, you need it to export only a single
class or function to Python for a special use. In that case, it may be
just as easy to stick to the Python API and skip boost: :python.

Boost integration: If your project doesn’t use boost, or if you're not
allowed to incorporate other boost libraries into your code, then it
would be difficult to use this solution for Python integration.

Special needs of the project: While the templates in boost: :python
are very flexible, you may have some additional requirements for
the types you're exporting. In that case, only the underlying Python
extension API may provide the flexibility needed by your project.

the boost: :python library is straightforward, and you just need to look at

some examples and its reference to understand how to quickly export classes. In the

code presented in Listing 15-3, I will show how to do this for a single example, the Matrix

class from Chapter 5.

The boost: :python library is installed along with other boost libraries, so if boost

is already

installed in your system, you should be ready to use it. The main header file

for the library is <boost/python.hpp>, which gives access to all macros and templates

necessary to export C++ classes.
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The main macro in the library is BOOST_PYTHON_MODULE. This macro is needed to
generate the boilerplate code that the Python runtime expects. In the scope that follows
the macro, you can declare the classes, functions, and other types that will be visible
from Python.

To export C++ classes, the main facility provided is the class_template. As you
would expect, this template is used to perform the hard work of defining types and
their properties using the underlying Python API. The template parameter for class
is the class name. The constructor requires a name to be used by Python and a default
constructor. Constructors are defined using the init template, with the parameters
added as template parameters.

Attached to the main class_template, you will find calls to the def member
function, which is used to define new members to the class. Every time you call def, the
class_template generates additional code to handle calls from Python code into a given
member function. So, for example, you have the following definition:

def("subtract", &MatrixP::subtract)

Here, the subtract member function is defined with the name listed as the first
argument and the destination of the call listed as the second argument.

Complete Code

You can see the complete code for the Matrix module in Listing 15-3. The setup.py file at
the end of the listing can be used to build the module.

Listing 15-3. Matrix Module and Associated setup.py File

//
//  Matrix_Py.h

#ifndef _ FinancialSamples Matrix Py
#define _ FinancialSamples_ Matrix Py

#include <iostream>
#include "Matrix.h"
class MatrixP : public Matrix {

public:
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MatrixP(int a);
MatrixP(int a, int b);
MatrixP(const MatrixP 8p);
“MatrixP();
void set(int a, int b, double v);
double get(int a, int b);

};

#tendif /* defined(__FinancialSamples Matrix Py ) */

//
//  Matrix_Py.cpp

#include "Matrix Py.h"

// include this header file for access to boost::python templates and macros
#include <boost/python.hpp>

// add the using clause to reduce namespace clutter
using namespace boost::python;

MatrixP::MatrixP(int a)
: Matrix(a)
{

}

MatrixP::MatrixP(int a, int b)
: Matrix(a, b)

{

}

MatrixP::MatrixP(const MatrixP &p)
: Matrix(p)

{

}
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MatrixP::~MatrixP()

{
}
void MatrixP::set(int a, int b, double v)
{
(*this)[a][b] = v;
}
double MatrixP::get(int a, int b)
{
return (*this)[a][b];
}

// this macro generates all the boilerplate required by the Python API
BOOST PYTHON_MODULE (matrix)

{

// defines a new class to be exported
class_<MatrixP>("Matrix",
init<int>()) // the init form defines a constructor

// another constructor with two int parameters
.def(init<int, int>())

// here are some standard functions (name first, member function
second)

.def("add", &MatrixP::add)

.def("subtract", &MatrixP::subtract)

.def("multiply", 8MatrixP::multiply)

.def("numRows", &MatrixP::numRows)

.def("trace", &MatrixP::trace)

.def("transpose", &MatrixP::transpose)

.def("set", 8MatrixP::set)

.def("get", &MatrixP::get)
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# matrix-setup.py

#

# python code to build the matrix module
from distutils.core import setup, Extension

# you need to include include and library paths for the boost::python
library
setup(name="matrix", version="1.0",
ext_modules=[Extension("matrix", ["Matrix.cpp", "matrix Py.cpp"],
include dirs=["/opt/local/include/"],
library dirs=["/opt/local/lib/"],
libraries=["boost python-mt"])])

Running the Code

To compile the code, you can follow a procedure similar to the one described in the
previous section. This means that you can use the Python build system to compile the
extension (usually into a . so or .d11 format). To do this, you need to create a setup

file, which in our case is listed as matrix-setup.py. Notice that the libraries key is
also listed in the matrix-setup.py file. This key tells the build system to link against

the boost_python-mt library. You may also need to change the include_dirs and the
library dirs keys to the location where boost is installed in your system. The following
is the result of running the setup file through Python:

$ python matrix-setup.py build ext -i

running build_ext

building 'matrix' extension

cc -fno-strict-aliasing -fno-common -dynamic -arch x86 64 -arch i386 -g -Os
-pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG
-Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall
-Wstrict-prototypes -DENABLE DTRACE -arch x86_64 -arch 1386 -pipe -I/opt/
local/include/ -I/System/Library/Frameworks/Python.framework/Versions/2.7/
include/python2.7 -c Matrix.cpp -o build/temp.macosx-10.9-intel-2.7/
Matrix.o
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c++ -bundle -undefined dynamic_lookup -arch x86 64 -arch i386 -Wl,-F.
build/temp.macosx-10.9-intel-2.7/Matrix.o build/temp.macosx-10.9-intel-2.7/
matrix_Py.o -L/opt/local/lib/ -1lboost_python-mt -o /Users/carlosoliveira/
code/FinancialSamples/FinancialSamples/matrix.so

After this process is finished, you should have a file called matrix.so (ormatrix.dl1l,
if you're building on a Windows system). You can load it with an import statement like
the following:

$ python

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import matrix

>>> m = matrix.Matrix(s,5)

>>> m.set(2,2,4)

>>> m.get(2,2)

4.0

Using Lua as an Extension Language

Use Lua as an extension library for classes written in C++.

Solution

Lua is a scripting language that was designed to provide extension mechanisms for
C and C++ code and to work as an embedded language for other applications. In this
respect, it has been very successful, with a large number of software products that
currently use Lua to implement extension modules based on existing C and C++ class
libraries. Examples of such uses can be found in computer games, image-processing
packages, and software for the financial industry.

The success of Lua is linked to its simple system, which tries to mix as closely as
possible with the C and C++ environment. With this goal in mind, Lua offers only
the basic mechanisms necessary to build a dynamic, garbage-collected runtime
system. These features of the language have made it an easy choice for the creation of
programmatic extensions to large-scale application code bases.
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You can download Lua in its source form from the main website http://lua.org.
The easiest way to integrate Lua into a C++ project is to add the source files directly. You
can also decide to create a separate library containing the Lua interpreter and link it to
your application, using information made available in the Lua documentation. To use
Lua as an extension language, the first step is to import and initialize the Lua runtime
engine. This can be done using the Lua C API, which is part of the standard installation
of the language. The main header file, lua.h, gives developers access to the main
features of the runtime engine, as well as to Lua’s standard library.

The following is the main function for the example application, where you can see
the sequence of operations necessary to load Lua into your program:

int main (void) {
char buff[256];

lua_State *L = lual _newstate();
int error;

// load some of the (C) libraries included with Lua
luaopen_base(L);

luaopen_table(L);

luaopen io(L);

luaopen string(L);

luaopen_math(L);

// load LuaOption object
Lualrapper<LuaOption>: :Register(L);

while (fgets(buff, sizeof(buff), stdin) != NULL) {
error = lual loadbuffer(L, buff, strlen(buff), "line") ||
lua_pcall(L, o, 0, 0);
if (error) {
cerr << lua_tostring(L, -1) << endl;
lua_pop(L, 1); // remove error from Lua stack

}

lua_close(L);
return 0;
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Most of the functions in this API use the lua_State structure as a parameter. As you
can see in the aforementioned example, you can create a new lua_State object using
the lual_newstate function. Once this initialization step has been completed, you can
load some of the libraries included with the Lua runtime. It is possible to choose subsets
of the library using functions such as luaopen_string and luaopen_math, which load
Lua functions to handle strings and math operations, respectively.

The next step is to load any user-defined libraries that you might need into Lua data
tables. The Lua language is organized in such a way that its dynamic information is
stored in a stack, that is, a first-in/first-out data structure. There is a global stack, where
the equivalent of global variables is stored. You can use this stack to store new tables as
necessary. To store individual values, you push them into the stack using functions such
as lua_pushstring, lua_pushnumber, or lua_pushclosure (for functions). You can read
data from the top of the stack using functions such as lua_tonumber.

Another thing that can be done with the Lua runtime is to directly call one of the Lua
functions. To call a function, you need to push the name of the function you want to call
into the stack, followed by the required parameters. Next, you need to call the function
lua_pcall, which performs the call. You can see an example for lua_pcall at the end
of the main function presented previously. Finally, you can access the results of the
function, which on return are stored at the top of the stack.

While this initially seems to be a lot of work, it can be done easily because of the
generic nature of the Lua extension API. I provide an example of how to access a C++
class from Lua code using the Option class, which contains just two data members:

a ticker (string) and the strike price (double). The original class is accessed from Lua
using the class LuaOption. The reason this is necessary has to do with the fact that

Lua can interact only with functions that receive a parameter of type lua_State. Each
method of LuaOption retrieves the data from the stack, calls the corresponding method
in the Option class, and returns the results in the stack. Finally, the LuaOption class is
registered with the help of the template Lualrap.

Complete Code

The example in Listing 15-4 shows how to use the Lua API to embed an extension
language into your application. The only class exposed in this example is the Option
class. The class LuaOption is a simple wrapper for Option, and it is responsible for
converting parameters from and to Lua types. The main function has the ability of
loading a Lua file and calling any functions contained in it.
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Listing 15-4. Class Option and Its Lua Wrapper LuaOption

//
// Option.h

#ifndef _ FinancialSamples Option
#define _ FinancialSamples Option

#include <string>

class Option {
public:
Option(const std::string &ticker, double strike);
Option(const Option 8p);
~Option();
Option &operator=(const Option 8p);

std::string ticker();
double strike();

void setTicker(const std::string 8&);
void setStrike(double);

private:
std::string m_ticker;
double m_strike;

}s

#endif /* defined(__FinancialSamples Option_ ) */

//
// Option.cpp

#include "Option.h"

Option::Option(const std::string &ticker, double strike)
: m_ticker(ticker),
m_strike(strike)
{
}
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Option::Option(const Option &p)
: m_ticker(p.m_ticker),
m strike(p.m strike)
{
}

Option::~Option()
{
}

Option &0ption::operator=(const Option &p)

{
if (this != 8&p)

{
m_ticker = p.m_ticker;
m strike = p.m_strike;
}
return *this;
}
std::string Option::ticker()
{
return m_ticker;
}
double Option::strike()
{
return m_strike;
}

void Option::setTicker(const std::string &s)

{

m_ticker = s;

}
void Option::setStrike(double val)
{
m_strike = val;
}

EXTENDING FINANCIAL LIBRARIES
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//
//  LuaOption.h

#ifndef _ FinancialSamples LuaOption
#define _ FinancialSamples LuaOption

#include "LuaWrap.h"
class Option;
#include <string>

class LuaOption {
public:
LuaOption(lua_State *1);
void setObject(lua_State *1);

static const char className[];
static LuaWrapper<LuaOption>::RegType methods|[];

// Lua functions should receive lua_State and return int
int ticker(lua_State *1);
int strike(lua_ State *1);

int setTicker(lua State *1);
int setStrike(lua State *1);
private:
Option *m_option;
};
#tendif /* defined(__FinancialSamples  LuaOption_ ) */

//
// LuaOption.cpp

#include "LuaOption.h"
#include "Option.h"

#include <lauxlib.h>

const char LuaOption::className[] = "Option";
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LuaOption::LuaOption(lua_State *L)

{
}

m option = (Option*)lua_touserdata(L, 1);

void LuaOption::setObject(lua_State *L)

int

int

int

}

m option = (Option*)lua touserdata(L, 1);

LuaOption::ticker(lua State *L)

lua_pushstring(L, m_option->ticker().c_str());
return 1;

LuaOption::strike(lua_State *L)

lua_pushnumber(L, m option->strike());
return 1;

LuaOption::setTicker(lua_State *L)

EXTENDING FINANCIAL LIBRARIES

m_option->setTicker((const char*)lual checkstring(L, 1));

return O;

LuaOption::setStrike(lua_State *L)

m_option->setStrike((double)lual checknumber(L,

return O;

#define method(class, name) {#name, &class::name}

LuaWrapper<LuaOption>::RegType LuaOption::methods| ]

method(LuaOption, ticker),
method(LuaOption, strike),

1));

= {
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method(LuaOption, setTicker),
method(LuaOption, setStrike),
{0,0}

};

//

//  LuaWrapper.h

// original code from luna wrapper example (from http://lua-users.org/wiki/
LunaWrapper)

#ifndef _ FinancialSamples Luna__
#define _ FinancialSamples Luna

#include <lua.h>

template<class T> class LuaWrapper {
public:
static void Register(lua State *L) {
lua_pushcfunction(L, &LuaWrapper<T>::constructor);
lua_setglobal(L, T::className);

lual_newmetatable(L, T::className);
lua_pushstring(L, " gc");
lua_pushcfunction(L, 8LuaWrapper<T>::gc_obj);
lua_settable(L, -3);

}

static int constructor(lua State *L) {
T* obj = new T(L);

lua_newtable(L);

lua_pushnumber(L, 0);

T** a = (T**)lua_newuserdata(L, sizeof(T*));
*a = obj;

lual_getmetatable(L, T::className);
lua_setmetatable(L, -2);

lua_settable(L, -3); // table[0] = obj;

for (int i = 0; T::methods[i].name; i++) {
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lua_pushstring(L, T::methods[i].name);
lua_pushnumber(L, i);
lua_pushcclosure(L, &LuaWrapper<T>::thunk, 1);
lua_settable(L, -3);
}
return 1;
}.
static int thunk(lua State *L) {
int i = (int)lua_tonumber(L, lua_upvalueindex(1));
lua_pushnumber(L, 0);
lua_gettable(L, 1);

T** obj = static_cast<T**>(lual_checkudata(L, -1, T::className));
lua_remove(L, -1);
return ((*obj)->*(T::methods[i].mfunc))(L);

}

static int gc_obj(lua_State *L) {
T** obj = static_cast<T**>(lualL_checkudata(L, -1, T::className));
delete (*obj);
return 0;

}

struct RegType {
const char *name;
int(T::*mfunc)(lua_State*);
};
};

#tendif /* defined(__FinancialSamples LuaWrapper ) */

//
//  LuaMain.cpp

#include "LuaMain.h"

#include <iostream>
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#include <string.h>
#include <lua.h>

#include <lauxlib.h>
#include <lualib.h>

using std::cout;
using std::cerr;
using std::endl;

int
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main (void) {
char buff[256];

lua_State *L = lual_newstate();
int error;

// load some of the (C) libraries included with Lua
luaopen base(L);

luaopen_table(L);

luaopen io(L);

luaopen_string(L);

luaopen_math(L);

// load LuaOption object
Lualrapper<LuaOption>: :Register(L);

while (fgets(buff, sizeof(buff), stdin) != NULL) {
error = lual loadbuffer(L, buff, strlen(buff), "line") ||
lua_pcall(L, o, 0, 0);
if (error) {
cerr << lua_tostring(L, -1) << endl;
lua_pop(L, 1); // remove error from Lua stack

}

lua_close(L);
return 0;
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Running the Code

You can build the code in Listing 15-4 using any standards-compliant C++ compiler. The
only additional step is that you will have to add the path for the Lua including files and
libraries in the compiler configuration. For example, in my system, I compiled the Lua
files in the directory /code/lua-5.2.3/src/, so this code can be built as follows:

$ c++ -o luatest Option.cpp LuaOption.cpp LuaMain.cpp -I/Users/code/lua-
5.2.3/src \
-L/Users /code/lua-5.2.3/src/ -1lua

Conclusion

Extension languages such as Python and Lua have become very popular in the last few
years. They provide the ability to quickly develop applications that are composed of
existing components. Thanks to C++ flexibility, however, as you have seen, it is possible
to create C++ libraries that can be easily integrated with these languages.

Initially, you have seen how to use Python as an extension language for C++ classes.
The class presented as an example can be accessed directly from Python code by simply
using the Python external API. You have seen how to convert data from and into the data
structures maintained by Python. In a second coding example, you learned how to use
the boost: :python library, which provides a more concise way to export C++ data types
to Python. I have discussed some of the advantages and disadvantages of each method.

Lua is another language that has grown in popularity in the last few years. With
its small footprint, Lua is an ideal candidate for the position of extension language for
libraries written in C++. Due to its simplicity and modularity, you can easily embed the
Lua interpreter in a C++ application. In this chapter, you saw a C++ coding technique
that shows how to easily integrate Lua into your applications.

Using your C++ code as an external library is one of the many ways you can connect
with other tools and environments. Another option is to integrate your financial C++
code into existing scientific programming tools. Two of the most often used scientific
tools for data analysis are R and Maxima. In Chapter 16, you will learn more about these
tools and how to integrate C++ into the workflow provided by these applications.
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Using C++ with R and
Maxima

One of the advantages of code implemented in C++ is that it can be used as part of
native libraries or stand-alone applications and also integrated as a component of other
development and modeling environments. In the financial industry, for instance, it is
common to have lower-level modules implemented in C++, with high-level analysis
being performed in more user-oriented environments such as Excel, Mathematica,
Matlab, Maxima, R, and Octave.

When using a high-level data analysis environment, it is crucial to have numeric
results that are identical to the ones achieved in native code and to access the same
underlying libraries that are already coded in C++. For this reason, an important skill for
programmers working in the financial industry is to be able to integrate existing code
with one or more of the analytical applications used by analysts and mathematicians.

In this chapter, we show you how to incorporate financial libraries developed in C++
into two well-known simulation and modeling environments for financial analysis: R
and Maxima. These are open source applications that are freely available on multiple
platforms. However, the examples you see in this chapter demonstrate principles
that can be applied to other commercial tools in the areas of statistics, simulation,
engineering, and mathematics.

The following are a few topics that you will learn about in this chapter:

o Integrating C++ with R: Users of the R language have created a rich
ecosystem of statistical libraries and applications. However, it is
sometimes necessary to integrate C++ code as part of the analysis
performed in R. You will see in this chapter how to easily embed C++
classes into this system, both for increased performance as well as for
consistency with other applications deployed in C++.
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o Integrating C++ with Maxima: The Maxima Computer Algebra
System is used to develop precise mathematical models with a
simple, high-level language. It is also used for its visualization
facilities. You can easily integrate existing C++ libraries into Maxima
using the shared library mechanism supported by the language.

Integrating C++ with R

Create a C++ class to calculate the present value of a set of payments and that can be
called from the R interpreter.

Solution

Ris a programming environment that was created to perform statistical analysis of large
data sets. Due to its easy-to-use and advanced statistical abilities, R has become the most
used environment for data analysis and is the de facto standard in some areas such as
data mining. A growing number of statisticians and engineers use R daily to study the
properties of large data sets.

Ris available for the most common operating systems and computer architectures.
You can download it for free from the official website at www.r-project.org. After
running the required installation method for your operating system, you will be able to
start the iterative interpreter for the language. The standard R environment is able to run
R scripts and single commands. You can use these tools to perform quick data analysis
and create plots based on existing data. You can see in Figure 16-1 what the main
application window for the R console looks like.
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[ NON | R Console

QRmGEQO® 12 L8

R version 3.0.3 (2014-03-06) -- "Warm Puppy"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl®.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[R.app GUI 1.63 (666@) x86_64-apple-darwinl®d.8.0]

[History restored from /Users/carlosoliveira/.Rapp.history]

>

Figure 16-1. R console window on Mac OS X

R s typically used to perform a large range of mathematical algorithms and data
analysis tasks. For example, a common use of R is to run standard statistical procedures,
such as mean squared error and other types of statistical regression. R has also been
used to implement statistical tests tailored for financial data sets. As a consequence, it
can be very useful to be able to load C++ code into the dynamic environment provided in
the R console.

To make it possible to use C++ classes in R, you need to employ the R extension
application programming interface (API). The extension API consists of a set of C-based
functions that interact with the R runtime. For example, you can use the API to retrieve
and convert values from R. Similarly, you can use the API for common tasks such as
calling mathematical functions and random number generators, among others.

To create C++ functions and classes that access the R extension library, you need to
include the header file R. h. This header is the main C file that coordinates access to the
many API declarations exported by the R runtime.
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For example, suppose that you need a fast way to determine the present value of a
set of future payments. You can do this by creating your own C++ solution and using the
R extension mechanism to export this solution to R. To understand the general idea of
present-value calculations, you can refer to Chapter 1, where I discussed tools for fixed
income analysis.

The main functionality is encoded in the RExtension class. The two main methods
in this class are addCashPayment, which can be used to add a new cash flow that will be
later considered by the algorithm, and presentValue, which calculates the present value
of all cash payments added up to this point. The calculation of present value uses the
following formula:

N
4
2

i=l1 (1 + R)T;

In this equation, V;is the value of the i-th cash flow, T;is the time of the i-th cash
flow, and R is the interest rate.

The real entry point for the R interpreter is the presentValue function, which is
declared in the following way:

extern "C" {
void presentValue(int *, double *, int *, double *, double *);

}

The reason for the extern "C" statement in this declaration is to avoid the normal
mangling of function names that is performed by the C++ compiler. Only the name of
the function is affected, and the contents of the function can use most C++ features. By
declaring the function in such a way, the presentValue name will be maintained in the
library without modifications, so that the R interpreter can view and access it.

The definition of the presentValue function is not unusual. The only difference to
normal C++ code is that all parameters are passed as pointers. This is the way in which
the R runtime allows data to be shared between the interpreter and the C++ code.
Using pointers, the called function can both read and modify the passed arguments,
if necessary. The implementation of the function uses the information passed in the
parameters, which include the number of elements in the cash flow vector, the interest
rate, then a vector with time indication, followed by a vector of cash flows. The last
parameter is a pointer to the result value.
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Complete Code

Listing 16-1 shows the implementation of class RExtension. The main parts are the
definition of the class, which contains the functionality to calculate the present value of
a set of cash flows, and the presentValue function, which can be directly accessed from
the R runtime.

Listing 16-1. Code for the R Extension Library

//
// RExtension.h

#ifndef _ FinancialSamples RExtension
#define _ FinancialSamples RExtension

#include <vector>

class RExtension {
public:
RExtension(double rate);
RExtension(const RExtension &p);
~RExtension();
RExtension &operator=(const RExtension 8p);

void addCashPayment(double value, int timePeriod);
double presentValue();
private:
std::vector<double> m_cashPayments;
std::vector<int> m_timePeriods;
double m rate;
double presentValue(double futureValue, int timePeriod);

}s
#tendif /* defined(__FinancialSamples RExtension ) */

//
// RExtension.cpp

#include "RExtension.h"
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#include <iostream>
#include <cmath>

using std::cout;
using std::endl;

extern "C" {
void presentValue(int *, double *, int *, double *, double *);

}

void presentValue(int *numPayments, double *intRate,
int *timePeriods, double *payments, double *result)

int n = *numPayments;
RExtension re(*intRate);
for (int i=0; i<n; ++i)
{

re.addCashPayment(payments[i], timePeriods[i]);

}

*result = re.presentValue();

}

RExtension::RExtension(double rate)
: m_rate(rate)

{

}

RExtension::RExtension(const RExtension &v)
: m_rate(v.m rate)

{
}

RExtension::~RExtension()

{
}

RExtension &RExtension::operator =(const RExtension 8&v)
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{
if (this != &v)
{
this->m_cashPayments = v.m_cashPayments;
this->m_timePeriods = v.m_timePeriods;
this->m_rate = v.m_rate;
}
return *this;
}

void RExtension::addCashPayment(double value, int timePeriod)
{

m_cashPayments.push_back(value);

m_timePeriods.push back(timePeriod);

}

double RExtension::presentValue(double futureValue, int timePeriod)
{

double pValue = futureValue / pow(1+m_rate, timePeriod);

cout << " << pValue << endl;

return pValue;

value

}
double RExtension::presentValue()
{
double total = 0;
for (unsigned i=0; i<m cashPayments.size(); ++i)
{
total += presentValue(m cashPayments[i], m timePeriods[i]);
}
return total;
}
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Running the Code

The code presented in the previous section can be built using any standards-compliant
C++ compiler. However, the R interpreter makes it very easy to create an extension
library using the CMD option of the R command. This build technique allows you to
quickly create a shared object file that contains all the necessary C++ code, in a way that
can be readily imported into the R runtime. Using the CMD option of the R interpreter,
you also don’t need to worry about the correct compiler, the right location of header
files, and link libraries, as well as other common compilation parameters.

Here is how I generated a binary object from the given source file (this was run on a
Mac OS X system, but the result should be similar in other platforms). The compilation
command is automatically generated by R using the SHLIB option, so you don’t need to
worry about the locations of libraries.

$ R CMD SHLIB code/FinancialSamples/FinancialSamples/RExtension.cpp

g++ -arch x86_64 -I/Library/Frameworks/R.framework/Resources/include
-DNDEBUG

-I/usx/local/include -fPIC -mtune=core2 -g -02 -c
code/FinancialSamples/FinancialSamples/RExtension.cpp -o
code/FinancialSamples/FinancialSamples/RExtension.o

g++ -arch x86_64 -dynamiclib -W1,-headerpad_max_install_names -undefined
dynamic_lookup -single_module -multiply defined suppress -L/usr/local/lib
-L/usr/local/lib -o
code/FinancialSamples/FinancialSamples/RExtension.so
code/FinancialSamples/FinancialSamples/RExtension.o -F/Library/
Frameworks/R.framework/.. -framework R -Wl1,-framework -Wl,CoreFoundation

Once the shared object has been created (this is a file with a . so extension on UNIX
or .d11 extension on Windows), you can load it into the R interpreter using the dyn.
load function with the name of the file as the single parameter. After that, you just need
to use the . C function to call the compiled C or C++ function. For this to work, you need
to provide the function name as the first argument, followed by the arguments to the
function. You need to ensure, however, that the values passed to the function are marked
with the right parameter types (using functions such as as. integer and as.double).
After the .C function is executed, the resulting values are printed in the interpreter
window. Here is a sample session, where I import and use the RExtension module.
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$R

» dyn.load("RExtension.so")

» .C("presentValue", n=as.integer(4), r=as.double(0.05), t=as.
integer(c(1,2,3,4)), p=as.double(c(3,4,5,6)), res=as.double(0))
value 2.85714

value 3.62812

value 4.31919

value 4.93621
$n

[1] &

$r
[1] o.05

$t
[1]1 1234

$p
[1]3456

$res
[1] 15.74066

>

The desired result is printed as the content of the variable res, which in this case is
15.74066.

Integrating with the Maxima CAS

Implement a class to compute option probabilities that can be accessed using the
Maxima computer algebra system.
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Solution

The R environment is an example of a successful application that has been used in

the statistical analysis of data sets. Another class of mathematical applications that is
commonly employed in data analysis is a computer algebra system (CAS). Financial
analysts use such applications to perform algebraic transformations on mathematical
functions and expressions. For example, such systems can be used to perform tasks such
as solving equations, finding derivatives and integrals, or factoring polynomials. Well-
known applications in this category include Mathematica, Maple, and Maxima.

In this section, you will learn how to interact with Maxima, an open source CAS
that can be used to assist in the development of mathematical models in finance. You
will also understand how to incorporate new or existing C++ code into Maxima, so that
you can run iterative experiments with the code while using the Maxima interpreter for
visualization purposes.

The Maxima CAS is an open source application that can be freely downloaded and
installed from its Internet repository. The main website for the project is located at
http://maxima.sourceforge.net. Once installed, Maxima can be run using one of the
existing front ends that are installed by default. The most commonly used front end to
Maxima is wxMaxima, a cross-platform application available for the Windows, Mac OS
X, and Linux operating systems. You can also download wxMaxima for free: the latest
version is available on the developer’s website at http://wxmaxima.sourceforge.net/.
Figure 16-2 shows the main window of the wxMaxima application.
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Figure 16-2. Main window for the wxMaxima application, a front end for the
Maxima CAS

The wxMaxima application is an ideal environment for loading data and performing
data analysis, including graphs, summary tables, and simple charts. This functionality
can be used to perform quick studies on financial data, based on the results of
algorithms such as the ones we discussed in the previous chapters. To integrate existing
C++ code with the Maxima environment, you need to create a library that is compatible
with the conventions stated on Maxima documentation. In this section, you will learn
how to do so with a sample class that calculates options probabilities.

The first step in integrating C++ with Maxima is to create a shared object library
that can be loaded by the application. Creating such a library can be easily done with
most compilers and integrated development environments (IDEs). I will show how
this can be done in Windows with the MingW gcc compiler. Other environments have
similar features and most of these instructions will be similar, but you need to check the
documentation in Maxima’s website.
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In Windows, the gcc compiler can be used to create dll files from C++ code. The
contents of the dll will include the class OptionsProbabilities, which was explained
in Chapter 14. For ease of reference, I include the header file for the class in Listing 16-2.
The main operations of the class OptionsProbabilities are used to calculate specific
probabilities, such as the probability that an option will be above or below the strike
price, as calculated with probFinishAboveStrike and probFinishBelowStrike. You can
also compute the probability of finishing between prices using the member function
probFinalPriceBetweenPrices. Then, it is necessary to create the glue code in file
OptionProbabilityExportedFunctions.cpp. This file declares functions that can be
viewed by clients that import the dIL

Consider, for example, the function optionProbFinishAboveStrike. The extern
"C" part of the declaration says the function name should not be modified by the
C++ compiler, so that it can be found at runtime. The __declspec(dllexport)
declaration tells the compiler and linker that this function should be exported in the
resulting dll. Everything else is normal C++ code that instantiates an object of class
OptionsProbabilities and calls the desired function.

The next part of the problem that you need to solve is how to tell Maxima to find
these external functions. This is done using a simple lisp file that can be loaded by
Maxima. Lisp is the internal programming language used by Maxima to implement all
its functionality. To extend Maxima using lower-level code, you frequently have to create
some lisp functions. In this case, however, we will use only two lisp functions that create
all the necessary C++ code connecting to the dll created earlier.

The lisp file is named optionProbabilities.1 and is shown in Listing 16-2. There
are two parts in this file: the first part is a clines function that contains C code that will
be compiled and used by Maxima. The second part is a set of lisp declarations for the
desired functions. The code inside clines has to be between quotes, and for this reason,
it needs to escape any quotes (and backslash characters) using a backslash. Other than
that, you can type any normal C statement. You will find that there are four functions that
load the desired code from the dll.

The first function in optionProbabilities.1, loadLibrary, is responsible for
loading the dll if this has not been done already. This is done using two Windows API
functions: LoadLibraryA and GetProcAddress. The function LoadLibraryA takes the
name of the library as parameter and returns a reference to it, if the load was successful.
The function GetProcAddress, on the other hand, retrieves a pointer to the function
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named as in its second parameter. Once loadLibrary has completed its work, you will
have pointers to the three functions exported in the file optprob.d1l.

The next three functions in optionProbabilities.1 are then used to call each of
the desired functions in the dll. The file ends with three declarations that tell Maxima to
accept these functions as top-level operations, along with the desired types.

Complete Code

In Listing 16-2, you can find the complete code for using the OptionsProbabilities
class from the Maxima CAS. After the C++ code, you can also see the lines of lisp code
necessary to import the class into the Maxima environment.

Listing 16-2. Class OptionsProbabilities and Associated Maxima Code

//
// OptionsProbabilities.h

#ifndef _ FinancialSamples OptionsProbabilities
#define _ FinancialSamples OptionsProbabilities

#include <vector>

class OptionsProbabilities {

public:
OptionsProbabilities(double initialPrice, double strike, double
avgStep, int nDays);
OptionsProbabilities(const OptionsProbabilities &p);
~OptionsProbabilities();
OptionsProbabilities &operator=(const OptionsProbabilities 8p);

void setNumIterations(int n);

double probFinishAboveStrike();

double probFinishBelowStrike();

double probFinalPriceBetweenPrices(double lowPrice, double highPrice);
std: :vector<double> getWalk();
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private:
double m_initialPrice;
double m_strike;
double m_avgStep;
int m_numDays;
int m_numIterations;

double gaussianValue(double mean, double sigma);
double getlLastPriceOfWalk();

};
#tendif /* defined(__FinancialSamples OptionsProbabilities ) */

//
// OptionProbabilityExportedFunctions.cpp

#include "OptionsProbabilities.h"

extern "C" double  declspec(dllexport) optionProbFinishAboveStri
ke(double initialPrice, double strike, double avgStep, int nDays)
{ OptionsProbabilities optP(initialPrice, strike, avgStep, nDays);
return optP.probFinishAboveStrike();

}

extern "C" double  declspec(dllexport) optionProbFinishBelowStri
ke(double initialPrice, double strike, double avgStep, int nDays)
{ OptionsProbabilities optP(initialPrice, strike, avgStep, nDays);
return optP.probFinishBelowStrike();

}

extern "C" double  declspec(dllexport) optionProbFinishBetweenPrices
(double initialPrice, double strike, double avgStep, int nDays, double
lowPrice, double highPrice) { OptionsProbabilities optP(initialPrice,
strike, avgStep, nDays); return optP.probFinalPriceBetweenPrices(lowPrice,
highPrice);

}
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)
;; Tile optionProbabilities.l
35
(lisp:clines
static double (*optionProbFinishAboveStrike )(double,double,double,int)
NULL;
static double (*optionProbFinishBelowStrike )(double,double,double,int)
NULL;
static double (*optionProbFinishBetweenPrices )(double,double,double,int,
double,double) = NULL;
__declspec (dllimport) void * stdcall LoadLibraryA(const char *);
void * stdcall GetProcAddress(void *,const char *);
__declspec (dllimport) unsigned int  stdcall GetlLastError(void);

static int libraryloaded = 0;
static const char *1ibName = \"optprob.dlI\";

static int loadLibrary() {
void *1ib = LoadLibraryA(libName);
if ('1ib) return 0;
optionProbFinishAboveStrike = GetProcAddress(lib,
\"optionProbFinishAboveStrike\");
optionProbFinishBelowStrike = GetProcAddress(lib,
\"optionProbFinishBellowStrike\");
optionProbFinishBetweenPrices = GetProcAddress(lib,
\"optionProbFinishBetweenPrices\");
libraryloaded = 1;
return 1;

}

double 1 optionProbFinishAboveStrike(double a,double b,double c,int d) {
if (!libraryloaded 8& !loadLibrary()) return -1; /* error code */
if (loptionProbFinishAboveStrike ) return -2;
return optionProbFinishAboveStrike (a, b, c, d);
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double 1 optionProbFinishBelowStrike(double a,double b,double c,int d) {
if (!librarylLoaded && !loadlLibrary()) return -1; /* error code */
return optionProbFinishAboveStrike (a, b, c, d);

}

double 1 optionProbFinishBetweenPrices(double a,double b,double c,int

d,double e,double f) {
if (!libraryloaded 8& !loadlLibrary()) return -1; /* error code */
return optionProbFinishBetweenPrices (a, b, c, d, e, f);

}

")

(lisp:defentry $optionProbFinishAboveStrike (lisp:double lisp:double
lisp:double lisp:int)
(lisp:double "1 optionProbFinishAboveStrike"))

(lisp:defentry $optionProbFinishBelowStrike (lisp:double lisp:double
lisp:double lisp:int)
(lisp:double "1 optionProbFinishBelowStrike"))

(lisp:defentry $optionProbFinishBetweenPrices(lisp:double lisp:double
lisp:double lisp:int lisp:double lisp:double)
(lisp:double "1 optionProbFinishBetweenPrices"))

Running the Code

Once you have created the code described in Listing 16-2, the next step is to build and
run it using the Maxima CAS. First, you need to create the dll using the MingW gcc
compiler. Here is the command line I used (you may need to adjust this to use the library
paths in your system).

g++ "-IC:\\bin\\boost_1_55_0\\" -00 -g3 -Wall -c -fmessage-length=0 -0 \
"src\\OptionProbabilityExportedFunctions.o" "..\\src\\
OptionProbabilityExportedFunctions.cpp"

g++ "-IC:\\bin\\boost_1_55_0\\" -00 -g3 -Wall -c -fmessage-length=0 -0 \
"src\\OptionsProbabilities.o" "..\\src\\OptionsProbabilities.cpp"

g++ -shared -o optprob.dll "src\\TestClass.o" "src\\OptionsProbabilities.o"
\ "src\\OptionProbabilityExportedFunctions.o"

446



CHAPTER 16 USING C++ WITH R AND MAXIMA

Once the dll has been created, you can now use Maxima to load it. For these
instructions to work, you need to make sure that Maxima is using GCL (Gnu Common
Lisp) as the underlying lisp engine (you can determine this when downloading or
building Maxima). The following lines tell you this information when Maxima is started:

Maxima 5.31.2 http://maxima.sourceforge.net
using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL)
Distributed under the GNU Public License. See the file COPYING.

The following is a transcript of a session with Maxima that shows how this works:

/* [wxMaxima: input start ] */
(%i28) :lisp (compile-file
"c:/MaximaCode/optionProbabilities.1" :c-file t :h-file t)

(%028) Compiling c:/MaximaCode/optionProbabilities.l.
End of Pass 1.

End of Pass 2.

OPTIMIZE levels: Safety=2, Space=3, Speed=3

Finished compiling c:/MaximaCode/optionProbabilities.l.
#pc:/MaximaCode/optionProbabilities.o

(%i29) :lisp (load "c:/MaximaCode/optionProbabilities.o");
(%029) OK

(%i30) optionprobfinishbellowstrike(30.0, 35.0, 0.01, 800);
(%030) 0.246

In this example, the first command starting with :1isp is used to compile the lisp file
displayed. Once this is done, the combination of lisp and C code is saved as an object
file, which is then named optionProbabilities.o. The second command starting with
:1lispis used to load the resulting object file into the system. After this is finished, the
functions typed in optionProbabilities.1 will become available to Maxima.

The last step shows how to invoke the desired functions. For example, you can call
the function optionprobfinishbelowstrike with a set of parameters that define the
price of the underlying, the strike, the volatility, and the number of time periods.
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Conclusion

This chapter contains programming examples that show how to integrate existing C++
classes with two open source mathematical applications: R and Maxima. The number of
users for environments like these is growing due to the ease of programming with such
a dynamic language, along with the ability to see immediate results from computations.
Although these mathematical applications already contain a lot of functionality, most
financial developers also need to access existing C++ code when making more complex
analyses.

The examples in this chapter show you how to interface your C++ code with these
two popular open source mathematical applications. First, you learned how C++
integration can be achieved with the R programming environment. You have seen an
example where a set of payments are received as input, and the code calculates the
present value of these payments.

The second C++ example shows how to export an existing class to the Maxima
CAS. With Maxima, you have access to a large number of mathematical tools to analyze
and display data. The process of exporting C++ libraries to Maxima involves the creation
of a dll and the use of some glue code written in C. Once you have these tools, it is
possible to access any C++ code from Maxima.

One of the secrets of creating useful financial software is to employ computational
resources as efficiently as possible. In this way, it is possible to learn even more from
existing investment data while making faster and more accurate decisions. In the next
chapter, you will learn about multithreading, a programming technique that is frequently
used to improve the performance of numerical and networking code used in financial
applications. Because of the growing use of multicore processors in servers and even
desktop machines, the use of multithreading has become a necessity for modern code
written in C++. You can access such multiprocessing features from C++ using a few
standard libraries, as you will see in Chapter 17.
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Multithreading

C++20 applications are used in contexts where computational performance has great
importance. The need for performance is even more prominent in financial applications
such as high-frequency trading, where the difference between profit and loss may be
just a few microseconds away. In such cases where performance is a requirement, it

is very important to take advantage of the resources made available in modern CPUs
(central processing units). In particular, multicore processing is one of the main features
provided by new CPUs, with the number of available cores constantly increasing along
with the complexity of chips.

To benefit from multicore processors, however, C++ programmers need to learn
a few parallel programming techniques that have rapidly become part of the C++
repertoire during the last decades. Using multiple processes is a possible way to explore
this computational power. Multithreading, a method used to run several concurrent
tasks inside the same process, is another technique that has the potential to take
advantage of two or more cores at the same time.

In this chapter, you will see a few examples that explore multithreading strategies for
C++ programmers. With the knowledge provided in this chapter, you will be able to take
full advantage of existing multicore systems on your applications. While multithreading
is a useful strategy to employ in today’s applications, it will become even more important
in the future, as desktop and server manufacturers are expected to continue to add more
cores to their processors.

In the traditional approach for multithreading, C++ programmers used libraries
created to facilitate the access to the multithreading facilities provided by the operating
system. A popular example is the pthreads library. However, the current standard C++20
provides another approach, whereby the use of threading is directly supported by the
language, through templates in the <thread> header file. In this chapter, you will learn
both ways. This is important because much of the existing multithreading code uses
nonstandard libraries. However, new code should preferably use the templates provided
by the standard library.
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CHAPTER 17 MULTITHREADING

The following are some of the topics discussed in this chapter:

e Using the pthreads library: pthreads is a standard library that can be
used to create and maintain multiple threads in the same process.
In a multicore machine, creating threads is one of the most common
ways to explore the parallel abilities of current architectures. You will
learn how to create applications that employ the pthreads library to
achieve parallel computation.

e Running algorithms in parallel threads: You will see how to
decompose problems in separate threads and combine their results
into a new solution. As an example, I present a modified parallel
algorithm for the calculation of options probabilities.

e Thread synchronization: The use of multiple threads introduces
the problem of synchronizing resources. You will learn how to
use synchronization primitives such as mutexes to guarantee that
resources are accessed and modified by only one thread at each time.

e STL threads: The new multithreading classes and templates provided
by the latest releases of the C++ standard.

Creating Threads with the Pthreads Library

Create a C++ class that distributes its work through several processing threads using the
standard pthreads library.

Solution

Multithreading is one of the software solutions that have been created to support
parallel computation. A thread is a unit of processing that can be performed in parallel
along with other parts of a program, so that two or more segments of a program can

be executed concurrently. In a multicore machine, this means that the same program
may efficiently use two or more cores to perform additional work. Depending on how
the code is organized, the careful use of multithreading techniques provides a good
opportunity to improve the throughput of the whole algorithm.
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To use multithreading, however, support from the operating system is necessary.

Since each operating system implements multithreading internally in its own way,

it used to be the case that a multithreading application would be dependent on the

operating system and architecture used. To avoid this problem, a standard pthreads
(POSIX threads) library was proposed and adopted as part of POSIX. The pthreads
library is available for multiple operating systems, including UNIX, Mac OS X, and

even Windows (e.g., you can use the Cygwin libraries to access pthreads on Windows).

Table 17-1 provides a quick summary of functions in the pthreads API (application

programming interface) that are available for application developers.

Table 17-1. List of Commonly Used Functions in the Pthreads Library

Function name

Description

pthread create
pthread exit

pthread join

pthread detach
pthread attr init
pthread attr destroy

pthread attr_
setstacksize

pthread cancel
pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex _unlock
sem_init

sem_destroy

sem wait

Creates a new thread

Finishes an existing thread

Joins an existing thread, returning only after the thread exits
Detaches from a thread

Initializes an attribute data structure

Destroys an attribute data structure

Sets the size of the stack for a new thread

Cancels the thread execution

Initializes a mutex synchronization primitive
Destroys a mutex

Locks a mutex

Unlocks an existing mutex

Initializes a semaphore synchronization primitive
Destroys a semaphore

Waits on a semaphore
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While the pthreads library is written for compatibility with pure C programs, it can
easily be used as part of C++ applications. It is simple to create a wrapper around threads
created with pthreads so that they can be more easily accessible from C++ code. In this
section, you will see a C++ code example for creating a simple multithreaded application
using pthreads. The techniques used as well as the general concept of thread creation
and synchronization can be used in your own programs.

To create a separate thread of execution within a program, you need to use the
pthread_create function. It receives as parameters an identifier (integer value), a
pointer to an attribute structure (which can be null if not used), a pointer to a function
that will be executed by the thread, and a pointer to the arguments to the thread
function. The function returns zero if no error happened; otherwise, it returns an integer
error identifier.

After the pthread create function is executed, the program starts another thread
from the specified function. That thread is independent of the original program and
may run in the same or in a separate core, if there is one available in the host machine
as determined by the operating system’s thread scheduler. A thread can be terminated
either by reaching the end of the thread function or by explicitly calling the pthread_
exit function.

In this section, I show how to access the functionality provided by the pthreads
library from a C++ class. For this purpose, I introduce the Thread class, which
encapsulates the concept of a running thread. The goal of this class is to become a base
class for concrete thread classes. The only member function that is required in each new
subclass of Thread is run(), which determines the code that will be executed by the new
thread.

Notable methods in the Thread class are the following:

o start: Needs to be called to start the execution of the thread.
o endThread: Can be called to terminate the current thread.

o setJoinable: Determines if the thread can be joined by other
threads.

o join: Allows a caller to join this thread, in such a way that the caller
will continue its execution only after the thread has terminated.

e run: This member function needs to be implemented in each
subclass and defines the code that will run in its own thread.
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The Thread class uses a C function called thread function and is defined in the
Thread.cpp file:

void *thread function(void *data)

{
Thread *t = reinterpret cast<Thread*>(data);
t->run();
return nullptr;

}

The signature of this function is determined in the pthreads library. The function
is called as soon as a new thread is created. The main idea is that the data pointer
passed to the function is in fact a pointer to a Thread object. Once it is retrieved using
the reinterpret_cast operator, the object can be used to perform the run member
function. Depending on the concrete subclass of Thread, the run method may do any
task desired by the creator of the subclass. This is enough to guarantee that the code will
run as a parallel thread.

Note Remember that the reinterpret cast operator can be used to convert
between any two types in C++. Therefore, it is important to be careful when using
this operator, since there is no type checking performed by the compiler once it is
applied.

Other than that, the start() and endThread() functions use the corresponding
pthread API functions to perform the creation of a new thread and to exit from an
existing thread, respectively. This is how these functions are implemented:

void Thread::start()

{
pthread create(&m_data->m_thread, &m data->m attr, thread function,
this);

}

void Thread::endThread()

{
pthread_exit(nullptr);

}
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Complete Code

You can find the complete implementation for the Thread class in Listing 17-1.

Listing 17-1. Thread Class and a Sample Implementation

//
// Thread.h

#ifndef _ FinancialSamples Thread
#define _ FinancialSamples Thread

struct ThreadData;

class Thread {
public:
Thread();
virtual ~Thread();
private:
Thread(const Thread &p); // no copy allowed
Thread &operator=(const Thread &p); // no assignment allowed

public:
virtual void run() = 0;
void start();
void endThread();
void setJoinable(bool yes);
void join();
private:
ThreadData *m_data;
bool m_joinable;

}s
#endif /* defined(__FinancialSamples Thread ) */

//
// Thread.cpp

#include "Thread.h"
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#include <pthread.h>
#include <iostream>

using std::cout;
using std::endl;

struct ThreadData {
pthread t m_thread;
pthread attr t m attr;

}s
namespace {

void *thread function(void *data)

{
Thread *t = reinterpret cast<Thread*>(data);
t->run();
return nullptr;

}

}

Thread: : Thread()
: m_data(new ThreadData),
m_joinable(false)

{

pthread attr init(&m data->m attr);
}
Thread: :~Thread()
{

if (m_data)

{

delete m data;

}

}

CHAPTER 17

MULTITHREADING
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void Thread::start()

{
pthread create(&m data->m_thread, 8m_data->m_attr, thread function, this);
}
void Thread::endThread()
{
pthread exit(nullptr);
}
void Thread::setJoinable(bool yes)
{
pthread attr setdetachstate(8m_data->m attr, yes ? PTHREAD CREATE_
JOINABLE : PTHREAD CREATE DETACHED);
m_joinable = yes;
}
void Thread::run()
{
cout << " no concrete implementation provided " << endl;
}
void Thread::join()
{
if (!m_joinable)
{
cout << " thread cannot be joined " << endl;
}
else
{
void *result;
pthread join(m_data->m_thread, &result);
}
}
// --- sample implementation
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class TestThread : public Thread {
public:
virtual void run();

}s

void TestThread: :run()

{
cout << " this is a test implementation " << endl;
endThread();

}

int main()

{
Thread *myThread = new TestThread;
myThread->setJoinable(true);
myThread->start();
myThread->join();
return 0;

}

Running the Code

The code displayed in Listing 17-1 can be built using any standards-compliant compiler,
such as gcc, llvm, or Visual Studio. Just remember to add a link line including the
pthreads library. The following is a command line used to build the sample application
(tested on Mac OS X):

$ gcc -o threadTest Thread.cpp -lpthreads
$ ./threadTest
this is a test implementation

Calculating Options Probabilities in Parallel

Create a multiprocessing version of the class that calculates options probabilities. Use
the pthreads library to distribute work among several threads.
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Solution

The use of parallel processing techniques is highly indicated for problems that require
massive amounts of computation. This is especially true when the problem can be easily
decomposed, in which case it becomes a matter of distributing the right amount of work
to each thread and waiting for the results.

A good example of such a process is a Monte Carlo-based algorithm. The simulation
process can run in any number of threads, and their results can be combined easily into
a single number. This is the case, for example, of calculating options probabilities. As you
saw in Chapter 14, Monte Carlo techniques are effective for the simulation of options
probabilities. At each step, you just need to simulate a new random walk and use that
information to improve the current estimate of the probability.

To adapt the Monte Carlo algorithm to the determination of options probabilities, the
first step is to correctly define the way in which the problem will be decomposed. This is
easy to do here, because each loop of the computation is independent of the other. In this
case, you can do this by telling each thread to run a certain number of iterations of the
Monte Carlo method. At the end, you can combine the results found by each thread and
calculate the final result as the average of the values returned by all threads.

The algorithm just described is implemented in the ParallelOptionsProbabilities
class. The class is an outer shell that invokes several threads to run the desired algorithm.
The real work is done in a class derived from Thread, and called RandomWalkThread. As
any other subclass of Thread, it needs to implement the run() member function, which
is called from the separate thread. Inside RandomWalkThread, you will find a member
variable, m_result, which stores the output of the Monte Carlo process. After the
thread is finished, this member variable can be used to retrieve the final value of the
computation.

The run member function is very similar to the code you already saw in the
OptionsProbabilities class. The main difference is that the output is stored in them_
result member variable. The work of RandomWalkThread objects is orchestrated inside
the ParallelOptionsProbabilities class. The important member function for the job is
probFinishAboveStrike.

double ParallelOptionsProbabilities::probFinishAboveStrike()
{

const int numThreads = 20;
vector<RandomWalkThread*> threads(numThreads);
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for (int i=0; i<numThreads; ++i)

{
threads[i] = new RandomWalkThread(m numSteps, m step,
m_strikePrice);
threads[i]->setJoinable(true);
threads[i]->start();
}
for (int i=0; i<numThreads; ++i)
{
threads[i]->join();
}

double nAbove = 0;

for (int i=0; i<numThreads; ++i)

{
nAbove += threads[i]->result();
delete threads[i];

}

return nAbove/(double)(numThreads);

At the beginning of the member function, several threads are created and added to the
threads vector. You need to define these threads as joinable, so that it is possible to wait
on the result of each thread. The next step is to start the threads so that each of them can
perform the desired computations. Then, the second loop is used to join the already created
threads. By doing this, the main thread can wait while the computation is being performed
in parallel. When all threads are finished, the main thread will be resumed as a result of the
call to join(). Finally, you can store the data returned by each thread using the result()
member function. The thread objects may be deleted at this time to avoid memory leaks.
In the last line of the probFinishAboveStrike member function, you can see how the
calculated data can be combined. In this case, it is enough to return the sum of values above
the strike prices and divide that value by the number of threads used.
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Complete Code

Listing 17-2 displays the ParallelRandomWalk class. There is a sample main() function
that can be used for testing, as can be seen at the end of the listing.

Listing 17-2. Class ParallelRandomWalk

//
//
// ParallelRandomWalk.h

#ifndef _ FinancialSamples_ ParallelRandomWalk
#idefine _ FinancialSamples ParallelRandomWalk

class ParallelOptionsProbabilities {

public:
ParallelOptionsProbabilities(int size, double strike, double sigma);
ParallelOptionsProbabilities(const ParallelOptionsProbabilities &p);
~ParallelOptionsProbabilities();
ParallelOptionsProbabilities &operator=(const
ParallelOptionsProbabilities &p);

double probFinishAboveStrike();

private:
int m_numSteps; // number of steps
double m_step; // size of each step (in percentage)

double m_strikePrice; // starting price
};
#tendif /* defined(__FinancialSamples ParallelRandomWalk ) */

//
// ParallelOptionsProbabilities.cpp

#include "ParallelOptionsProbabilities.h"
#include "Thread.h"

#include <pthread.h>
#include <cstdlib>
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#include <vector>

#include <boost/random/normal distribution.hpp>
#include <boost/random.hpp>

using std::vector;
using std::cout;
using std::endl;

static boost::rand48 random generator;

using std::vector;

/1] ---

class RandomWalkThread : public Thread {

public:
RandomWalkThread(int num_steps, double sigma, double startPrice);
~RandomWalkThread();
virtual void run();

double gaussianValue(double mean, double sigma);
double getlLastPriceOfWalk();

double result();

private:
int m_numberOfSteps; // number of steps
double m_sigma; // size of each step (in percentage)

double m_startingPrice; // starting price

double m_result;
}s

RandomWalkThread: :RandomWalkThread(int numSteps, double sigma, double
startingPrice)
: m_numberOfSteps (numSteps),
m_sigma(sigma),
m_startingPrice(startingPrice)
{
}
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RandomWalkThread: : “RandomWalkThread()

{
}

double RandomWalkThread::gaussianValue(double mean, double sigma)

{

boost: :random: :normal_distribution<> distrib(mean, sigma);
return distrib(random generator);

}
double RandomWalkThread::result()
{
return m_result;
}
double RandomWalkThread::getLastPriceOfWalk()
{
double prev = m_startingPrice;
for (int i=0; i<m_numberOfSteps; ++i)
{
double stepSize = gaussianValue(0, m_sigma);
int r = rand() % 2;
double val = prev;
if (r == 0) val += (stepSize * val);
else val -= (stepSize * val);
prev = val;
}
return prev;
}
void RandomWalkThread: :run()
{

cout << " running thread " << endl;

int nAbove = 0;
for (int i=0; i<m_numberOfSteps; ++i)
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{
double val = getlLastPriceOfWalk();
if (val >= m_startingPrice)
{
nAbove++;
}
}
m_result = nAbove/(double)m numberOfSteps;
}
/] ---

ParallelOptionsProbabilities::ParallelOptionsProbabilities(int size, double
start, double step)
: m_numSteps(size),
m strikePrice(start),
m_step(step)
{
}

ParallelOptionsProbabilities::ParallelOptionsProbabilities(const
ParallelOptionsProbabilities 8&p)
: m_numSteps(p.m_numSteps),
m_strikePrice(p.m_strikePrice),
m_step(p.m_step)
{
}

ParallelOptionsProbabilities::~ParallelOptionsProbabilities()

{
}

ParallelOptionsProbabilities &ParallelOptionsProbabilities::operator=(const
ParallelOptionsProbabilities &p)

{
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}

if (this != 8&p)

{
m_numSteps = p.m_numSteps;
m_strikePrice = p.m_strikePrice;
m_step = p.m_step;

}

return *this;

double ParallelOptionsProbabilities::probFinishAboveStrike()

{
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const int numThreads = 20;

vector<RandomWalkThread*> threads(numThreads);
for (int i=0; i<numThreads; ++i)

{
threads[i] = new RandomWalkThread(m numSteps, m step,
m_strikePrice);
threads[i]->setJoinable(true);
threads[i]->start();
}
for (int i=0; i<numThreads; ++i)
{
threads[i]->join();
}

double nAbove = 0;
for (int i=0; i<numThreads; ++1i)

{

nAbove += threads[i]->result();
delete threads[i];

}

return nAbove/(double)(numThreads);
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int main()

{
ParallelOptionsProbabilities rw(100, 50.0, 52.0);
double r = rw.probFinishAboveStrike();

" << T << endl;

cout << " result is

return 0;

Running the Code

I have compiled and executed the code displayed in Listing 17-2 using the gcc compiler
on a Mac OS X machine. Any standards-compliant compiler can be used for this
purpose. The following is a sample of the expected output:

./parallelOptProb
running thread
running thread
running thread
result is 0.487

Using Mutexes to Prevent Unsynchronized Access

In this section, we will write a C++ class that implements a parallel algorithm where
mutexes are used to synchronize shared data.

Solution

Multithreading is a convenient way to distribute computational work into two or more
processor cores, which can lead to an increase in performance for the whole application.
However, while multithreading has numerous advantages, it also adds to the complexity
of the software design. For example, one of the problems that need to be solved in
multithreading architectures is the access to resources shared between threads. If a
variable in memory is used in two or more threads, its access needs to be synchronized
so that separate threads will not try to change values concurrently, for example.
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Once a new thread has been created, it is necessary to manage it, using mechanisms
provided by the pthread library. In the simplest case, the new thread is independent and
does not need to be synchronized with the original (parent) thread. More commonly,
however, it is necessary to perform synchronization between separate threads that use
the same data. The greater the need for synchronization, the greater the amount of work
spent on managing the shared data.

A section of code where two or more threads can access a shared resource is called
a critical section. The critical sections are the areas of the code where shared resources
need to be protected, in order to avoid conflicts.

To avoid the conflicts inherent to the existence of critical sections, most
multithreading APIs provide primitives that can be used to implement synchronized
operations. Such operations have proved effective in enabling resource sharing between
threads. There are a number of such primitives, such as semaphores, mutexes, and
messages, among others. The pthreads library provides direct support for some of the
most common of such mechanisms, including mutexes, which can be used to guarantee
that only one thread is able to access a particular critical section.

A mutex is a synchronization mechanism that can be used to coordinate the work
of two or more threads. The mutex state is used to determine if a thread has permission
to operate on a particular resource, such as a variable in memory. When a thread tries
to access the value of the mutex, two things can happen: if the mutex state indicates
that the critical section is available, then the thread can directly proceed to the critical
section. However, if the mutex state indicates a busy state, the thread making the
request stops its execution and is sent to a waiting area created by the operating system.
Operation will resume only when the resource has been made available by other threads.
All this waiting and resuming activity is coordinated by the operating system.

Mutexes are implemented in the pthreads API and have the type thread mutex_t.

A new mutex can be created using the function pthread mutex_init and destroyed
using the function pthread mutex destroy.

A mutex needs to be acquired and locked when a shared resource is about to be
used. This guarantees that the mutex will be available for only one thread at a time.

This is done using the function pthread_mutex_lock. This function will automatically
interrupt the thread if the mutex is not available and force the thread to wait until the
mutex has been released. You can also try to access the mutex without a forced wait
using pthread_mutex_trylock. This will return an error code in case the mutex is
currently not available, and you will be free to try it later. Finally, once a mutex has been
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acquired, you need to unlock the mutex at the end of the synchronized operation. This
is necessary to make sure that other threads can enter the critical section and use the
recently released resource. You can unlock a mutex using the function pthread mutex
unlock.

While theoretical proof of the effectiveness of the mutex can be complex, its use is
very simple. In the coding example in Listing 17-3, you will have a class called Mutex that
encapsulates the concept of a mutex synchronization operation. There are two main
functions provided by this class: lock and unlock. The first member function is called at
the beginning of a critical section. The second important member function in the class
is unlock, which should be called at the end of a critical section. The Mutex class is also
responsible for initializing the pthread mutex at the constructor with pthread mutex_
init and destroying it at the destructor with pthread mutex_destroy.

The second class used to encapsulate the mutex concept is MutexAccess. This class is
responsible for guaranteeing that each access to the mutex is composed of a pair of calls
to the lock() and unlock() member functions of Mutex. The lock() member function is
directly called in the constructor, and unlock() is automatically called in the destructor
of MutexAccess. Therefore, if the critical section ends right at the end of the scope where
the MutexAccess object is declared, you don’t need to worry about unlocking it, since
the RAIT idiom guarantees that the mutex will be automatically unlocked when the
destructor is called.

In the MutexTestThread, we have an example of using the Mutex class inside a
thread. The task demonstrated is really simple, but it illustrates how the mutex can
be used to provide synchronization of access to shared resources. Here, the shared
resource is the variable result, of double type. This variable is used to hold the desired
calculation; however, it is being accessed in all threads in the application. In order to
synchronize access to this variable, you need to use a mutex. An object of the class
MutexAccess can be instantiated, resulting in the mutex (named m_globalMutex) being
locked. After the lock has been acquired, you can now safely check the value and make
changes to the reference variable. Finally, at the end of the run() member function, the
lock will be released automatically.

Complete Code

You can view the complete code for the Mutex and MutexAccess classes in Listing 17-3.
An example of their use is also shown in class MutexTestThread.

467



CHAPTER 17 MULTITHREADING
Listing 17-3. The Mutex Class

//
// Mutex.h

#ifndef _ FinancialSamples Mutex
#define _ FinancialSamples Mutex

struct MutexData;

class Mutex {

public:
Mutex();
~Mutex();

void lock();
void unlock();
private:
Mutex(const Mutex &p); // copy not allowed
Mutex &operator=(const Mutex &p); // assignment not allowed

MutexData *m_data;

}s

class MutexAccess {
public:
MutexAccess(Mutex 8&m);
~MutexAccess();
private:
MutexAccess &operator=(const MutexAccess 8p);
MutexAccess(const MutexAccess 8p);

Mutex &m mutex;

}s

#tendif /* defined(__FinancialSamples Mutex_ ) */

//
//  Mutex.cpp
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#include "Mutex.h"
#include "Thread.h"

#include <pthread.h>
#include <cstdlib>
#include <vector>
#include <iostream>

using std::vector;
using std::cout;
using std::endl;

struct MutexData {
pthread mutex t m_mutex;

};

Mutex: :Mutex()
: m_data(new MutexData)

{
pthread mutex_init(8m_data->m mutex, NULL);
}
Mutex: :~Mutex()
{
if (m_data)
{
pthread mutex_destroy(8m_data->m mutex);
delete m_data;
}
}
void Mutex::lock()
{
pthread mutex lock(8m_data->m mutex);
}

void Mutex::unlock()
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{

pthread mutex_unlock(&m_data->m mutex);

}
/1] ----

MutexAccess: :MutexAccess(Mutex &m)
: m_mutex(m)

{

m_mutex.lock();

}

MutexAccess: :~MutexAccess()

{

m_mutex.unlock();

}
/1] ----

class MutexTestThread : public Thread {

public:
MutexTestThread(double &result, double incVal);
~“MutexTestThread();

void run();
private:

double &m result;

double m_incValue;

static Mutex m_globalMutex;
};
Mutex MutexTestThread::m globalMutex; // global mutex is static
MutexTestThread: :MutexTestThread(double &result, double incVal)

: m_result(result),
m_incValue(incVal)
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{
}
MutexTestThread: :~“MutexTestThread()
{
}
void MutexTestThread::run()
{
MutexAccess maccess(m globalMutex); // mutex is locked here
cout << " accessing data " << endl; cout.flush();
if (m_result > m_incValue)
{
m_result -= m_incValue;
}
else
{
m_incValue += m_incValue;
}
// mutex is automatically unlocked
}
int main()
{

int nThreads = 10;

vector<Thread*> threads(nThreads);
double price = rand() % 25;

for (int i=0; i<nThreads; ++i)

{
threads[i] = new MutexTestThread(price, (double)(rand() % 10));
threads[i]->setJoinable(true);
threads[i]->start();

}

for (int i=0; i<nThreads; ++i)
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{
threads[i]->join();
}
cout << " final price is " << price << endl;
return 0;

Running the Code

You can compile this code using any standard C++ compiler. I performed the test on a
machine running the Mac OS X operating system. The following is a display of sample
results:

accessing data
accessing data
accessing data
accessing data
accessing data
final price is 2

Creating Threads Using the Standard Library

In the previous section, you learned how to create multithreaded programs using the
pthreads library. In C++20, it is also possible to create multithreaded code using the
standard library. The support is provided through the <thread> header file.

To make simple multithreaded programs using the STL, it is not necessary to
create new classes or objects. The class std::thread already has the ability to perform
multithreaded operations using as input a function, a lambda, or a functional object.

Consider the following example:

#include <thread>
#include <iostream>
#include <vector>
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void compute max(const std::vector<double> &values)

{

auto total = 0.0;
for (auto v : values)

{
total += v;
}
std::cout << " total: " << total << std::endl;
}
int main()
{

std::vector<double> v = {0, 5, 3, 2, 5, 3};
std::thread first tread(compute max, v);
first tread.join();

return O;

Here, we define a simple function called compute_max, which receives as parameter a
vector of double numbers. This function could be any type of operation that takes a long
time and that we would like to move to a separate thread. To create a new thread using
this function, we just need to use the std: : thread class in the <thread> header file.

The std: : thread class takes as parameters the name of the function (or functional
object) you want to use, along with zero or more parameters that will be passed to that
function. In the previous example, we have the vector named v as the single parameter.
This could be expanded to other parameters if required by the function compute_max.

Finally, the first thread object calls the join() method, to indicate that the main
function will join the execution of that thread, until it is complete. If we didn’t want to
stop until the thread is completed, we could have used instead the detach() method,
which allows the thread to run independently while the current function continues its
operation.
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Conclusion

The constant development of multicore processors and architectures has greatly expanded
the computational capacity of modern machines. However, to explore such multicore
architectures, it is necessary to change the way you program. Modern high-performance
programming has an increased focus on multiprocessing techniques, which allow
applications to access more than one core and as result improve the performance of the
system.

Multithreading is a programming technique that allows more than one thread of
execution per process. If the machine has more than one processor, multithreading
allows you to access these processing cores to perform additional work. In this chapter,
you learned how to create, terminate, and manage threads using the standard pthreads
library.

In the first programming example, you learned about the pthreads library and how
it can be used to create new threads. You saw how to design a C++ class to encapsulate
the pthreads function calls. Using pthreads, you can simplify your multithreading
applications, as it abstracts away system-dependent APIs for multithreading.

Next, you learned how to apply pthreads to a common problem on options. You saw
that, for some problems, it is easy to distribute the necessary work into separate units of
computation. Using C++, you can encapsulate such code segments into different objects.

In the next section, you learned about synchronization primitives and how they
are implemented using the pthreads library. I introduced a class that can be used to
model the operation of a mutex. You can readily apply the Mutex class to other financial
programming projects.

Finally, I also explained how the new C++ standard C++20 provides direct support
for threads without the use of a separate library like pthreads. Thus, for new code, it is
possible to simplify the applications and rely on the STL. While much of the existing
multithreading code still uses libraries like pthread, it is important to learn how to do
this using the standard and use it in new projects.

With this chapter, I have completed a general presentation of technical tools used to
create high-performance financial applications in C++. I hope you have enjoyed learning
about the features of C++ and how they can be applied to the solution of common
problems in the financial industry.
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Features of C++20

C++ is a language in constant evolution. Since its first release in the 1980s, new concepts
and techniques that started as research topics became an integral part of the language.
The latest revision of the C++ standard is C++20, which is itself a major addition to
previous standards such as C++11, C++14, and C++17. These updates to C++ are already
part of major compilers, so it is important to understand what these modifications bring
for developers.

In this appendix, I will provide a summary of the most important changes introduced
in these recent C++ standards. You will learn about the following topics:

o auto-typed variables: A syntax that allows automatic type detection

o Lambdas: Creating functions in place and sharing variables from a

local environment
o User-defined literals: Creating literals with user-define behavior

e Range-based for: A new form of the for loop which simplifies

container manipulation

e Rvalue references: A new technique to implement move semantics
into user-defined types

o New function declarator syntax: A syntax for function where the
return type is automatically detected

e Delegating constructors: How to delegate class initialization to a
single constructor

e Inheriting constructors: Directly using constructors defined in a
parent class

¢ Generalized attributes: How to declare attributes for C++ elements
using a unified syntax
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e Generalized constant expressions: Defining expressions that can be
used at compilation time by other expression, including templates

e Null pointer constant: A new constant that uniquely defines a null
pointer

o Right angle brackets: A simplification of template syntax, avoiding
common confusions with the shift operator

o Initializer lists: A general way to perform initialization of C++

variables

Automatic Type Detection

One of the main features of C++ is the use of types to check the program during
compilation time. This feature, known as strong type checking, allows programmers to
rely on the compiler to find many bugs that would take a lot of time to remove otherwise.
It is generally accepted that static checking is a useful feature, especially for large-scale
projects, where hundreds or even thousands of classes can be made available. With
static type checking, programmers are relieved from the task of checking manually if the
correct types are used.

Although type checking is so important for C++ practitioners, the need of naming
types at each variable and function declaration has become too burdensome for some
programmers. After all, every expression in C++ has a type, and with the introduction
of containers and other templates, it becomes sometimes difficult to write the proper
type of an expression. To avoid this problem, the C++ committee decided to use the auto
keyword to allow for automatic type detection in C++ expressions. This feature was fist
introduced in C++11 but has been progressively extended through each standard until
C++20.

Automatic type deduction frees programmers from the need to indicate the type
of each variable when declaring it. The type deduction system works through the use
of information that is already available to the compiler at the moment an expression is
being parsed. For example, if a variable is created from a known constant, the compiler
can easily determine its type. On the other hand, if a variable is initialized to the result
of an expression, the compiler can also determine the type of the result and use it for the
variable. Here are some simple examples:
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void autoExample()

{

auto 1 = 1; // this is an integer

auto d = 2.0; // this is a float

auto d2 = d + 1; // this is also a float

auto str = "hello"; // this is a char *

cout << "integer : " << i << " float: "

<< d2 << " string " << str << endl;

}

Here, the first, second, and fourth variables are initialized using constants, so the
type is immediate. The third variable has its type determined through the result of the
expression given as initializer.

Another area where auto variables are very useful is when working with templates.
Many templates generate complex types, which are difficult to type and to remember.
It is very useful to be able to avoid typing these types with the help of the auto keyword.
Here is an example using an iterator to an STL container:

void autoTemporaryExample()

{
std::vector<std: :pair<int,std::string>> myVector;
// without auto
for (std::vector< std::pair<int,std::string>>::iterator
it = myVector.begin();
it != myVector.end(); ++it)
{
// do something here
}
// with auto
for (auto it = myVector.begin(); it != myVector.end(); ++it)
{
// same thing here
}
}

477



APPENDIXA  FEATURES OF C++20

The first loop shows the type of the iterator used to visit all members of the container.
It is even harder to type than the original template name. The second loop shows how to
express the same thing using the auto keyword. Here, it is possible to avoid the name of
the template, which makes it much easier to understand what the code is doing.

Another way in which the auto keyword is used is to determine parameter types for
template functions. This is a more recent use of auto, added in the C++20 standard, but
it follows the same pattern: the type of the parameter is determined by the compiler as it
determines this information from the actual parameters. Here is an example:

auto add_args(auto x, auto y) {
return x + y;

}
int main() {
int a = 10;
double b = 20;
auto res = add args(a, b);
return 0;
}

Notice that without the help of the auto operator, this would be declared in the
following way:

template <class A, class B>
A add args2(A x, By) {
return x + y;

}
int main() {
int a = 10;
double b = 20;
int res = add_args2(a,b);
return 0;
}
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Lambdas

A lambda is a function that can be created on the spot, without the need for a separate
top-level declaration. Lambda functions can, additionally, be allowed to retain
references to variables that exist at the same level in which they are introduced. A
lambda function can be saved in variables and passed to other functions, where they can
be used as needed. The variables that have been saved in the context can be used even
after the original block has finished. Here is a very simple example:

void lambdaExample()

{
auto avg = [](int a, int b) { return (a + b) / 2; };

cout << "the average of 3 and 5 is << avg(3, 5) << endl;

The syntax for lambda functions starts with an angle bracket. The return type doesn’t
need to be specified, and it is deduced from the variable or expression in the return
keyword. Here is an example where there is local variable capture:

void lambdaExample2()
{
double factor = 2.5;
auto scaledAvg = [&factor](int a, int b) {
return factor * (a + b) / 2;

15
auto modifiedAvg = [&](int a, int b) { return scaledAvg(a, b); };

cout << "the scaled average of 3 and 5 is
<< scaledAvg(3, 5) << endl;

cout << "this should be the same '
<< modifiedAvg(3, 5) << endl;

The example shows two lambda functions where there is variable capture. In the
first function, the factor variable is captured and becomes available to be used inside the
lambda function. The second example shows a lambda function where all local variables
are captured (indicated by the [&] notation). In this case, any local variable can be used,
including the scaledAvg variable.
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User-Defined Literals

You are familiar with literals for standard types such as int, float, or char. These literal
values allow one to initialize new variables as needed. C++11 introduces user-defined
literals, where a literal can be manipulated to perform any kind of preprocessing. This is
useful in the case that scalar numbers need to go though some kind of conversion before
they are used as initializers.

The syntax used for user-defined literals is similar to other operators. The operator
“” keyword is used to introduce the new literal format. Consider an example where you
wish to define numeric literals that return the price in Euros. This can be defined in the
following way:

long double operator

{

_eu(long double val)

return val / 1.24;

Notice the signature that contains the name operator “”, followed by the suffix _eu.
In this case, you'll be using a fixed conversion value, but in general, you could have a
more complex scheme for conversion from dollars to euros. Finally, you can use this
user-defined literal in the following way:

void showUserDefinedLiterals()

{
double price = 300; // price in dollars
long double priceInEU = 300.0 eu;

cout << " price in dollars:

<< " price in Euros: "

<< price
<< priceInkU << endl;

Here, you first define a price without any conversion (in dollars). Then you create
a second variable that corresponds to the same quantity, but using the user-defined
suffix _eu. Using this suffix, you will have a converted price in the priceInEU variable, as
printed at the end of the showUserDefinedLiterals function.
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Range-Based for

STL containers are some of the most used templates in any C++ system. These
containers are versatile and can be used to perform a large nuber of operations to its
components. In the previous versions of C++, it was possible to iterate through the
components of a container using an auxiliary iterator variable. For example:

void loopExamplel()
{

std::vector<std::pair<double,std::string>> v;

// without auto
for (std::vector<std::pair<double,std::string>>::iterator it =
v.begin();

it 1= v.end(); ++it)

// do something here

Or you can use an auto variable to simplify the code above a little. Still, there is a lot
of code necessary just to iterate over the elements of the container. The C++11 standard
introduces a simpler way to do this, with the container-oriented for loop. The syntax
for this special case is simplified, so you don’t need to write the boundary conditions
(begin() and end()) for the container. Here is the preceding example, modified to use the

new for loop.

void forLoopExample()

{
std::vector<std::pair<double,std::string>> vectorOfPairs;
for (auto &i : vectorOfPairs)
{
cout << " values are "
<< i.first << " and "
<< i.second << endl;
}
}
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Notice how the vectorOfPairs variable is now used only once in the second part of
the loop statement. The auto variable declaration avoids the need for a long template
declaration, which helps to keep the notation easy to read.

Rvalue References

One of the common performance issues with the use of containers and strings in C++ is

the fact that temporary variables need to be created in so many places:

¢ When moving elements between two containers, it is frequently
necessary to perform a copy and then delete the old elements.

o When implementing operators, it is often necessary to return new
objects each time an operation is performed, since the argument to
an operator (such as <<) may very well be a temporary object.

e When returning objects from functions, it becomes necessary to copy
the return object to a temporary, since it belonged to a function that
is finishing. If this temporary object is immediately assigned to a new
variable, then the temporary object is not used.

To help developers tackle these issues, C++ designers decided to introduce a
notation for variables that are not named and that cannot be assigned outside of the
current context. Such variables are known as rvalues, because in any expression, they
can only appear in the right side of the assignment. Examples of rvalues are immediate
values passed as parameters to functions and temporaries created during the evaluation
of expressions, among others.

The syntax for rvalues is similar to references, but with the && sign used instead of a
single & sign. Such declarations are useful mainly in the list of arguments for a function,

as well as in the return. Here are some examples of their use:

#include <string>
using std::string

void rvalExamp(string &&s)
{

cout << " string is " << s << endl;
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void rvalExamp(string &s)

{
cout << " string lvalue: "
}
int main()
{
rvalExamp("a test string");
string a = "string a ";
string b = "string b ";
rvalExamp(a + b);
string c = "another example";
rvalExamp(c);
return 0;
}
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<< s << endl;

// calls rval version

// calls rval version

// calls 1lval version

In this example, any string (including temporary values) can be passed to the

function rvalExamp. The rvalue may be used with the knowledge that its temporary

value will be destroyed at the end of the function. On the other hand, you can also have

a version of the function that receives a standard lvalue reference. This version of the

function is called only when a lvalue is used as parameter (in this case, it happens when

the parameter is a named variable).

An important case where rvalues may be useful is in the assignment operator. If the

parameter to the operator is a rvalue, then it is usually possible to optimize it by reducing

the number of allocations. This is shown in the following example:

#include <vector>
using std::vector;

class RvalTest {

public:
RValTest(int n);
RValTest(const RValTest 8x);
~RValTest();

RValTest 8operator=(RValTest &8p);
RValTest &operator=(RValTest &p);

// this is for RVAL
// this is for LVAL
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private:
vector<int> data;

}s

RValTest::RValTest(int n)
: data(n, 0)

{

}

RValTest::RValTest(const RValTest &p)
: data(p.data)

{

}

RValTest::~RValTest()

{
}

RValTest 8RValTest::operator=(RValTest &8p)

{
data.swap(p.data);
cout << " calling rval assignment " << endl;
return *this;

}

RValTest &RValTest::operator=(RValTest 8&p)

{
if (this != &p)

{
data = p.data;
}
cout << " calling normal assignment " << endl;

return *this;
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void useRValTest()

{
RValTest test(3);
RvalTest test2(4);
test2 = test; // use standard assignment
test = RValTest(5); // use rval assignment
}

The class RValTest knows when the assignment operator is called with a temporary.
In this case, you can just swap the elements of the data array, instead of performing
expensive data copy.

New Function Declarator Syntax and decltype

You have seen that the keyword auto was repurposed to allow for automatic type
deduction or variables. However, once this change has been made to how variables
are declared, soon you will also need to return such values. For example, consider the
following function:

void autoFunctExamplel(vector<int> &x)
{

auto iterator = x.begin();

// do something with iterator

This works fine, and you don’t need to know the exact template type returned
by begin() to use it. However, a big problem arises if you need to return the variable
iterator. In that case, you need to somehow determine the type of iterator just to declare
the function, since the return type must be part of the signature.

To help solve this problem, C++11 introduced a new form of function declaration,
which uses auto instead of the name of the type. Still, do maintain the type checking
system the compiler needs to determine the type of a function. This is where the
decltype keyword comes in. The decltype operator returns the type of any expression
that is given as a parameter. Similarly to how sizeof returns information from a type,
decltype returns the type for a variable or other general expression.
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Using decltype, you can now add a return type declaration to a function after the ->
operator, which may only appear right after the list of arguments to the function. Since at
this point the type of the arguments to the function are known, you can use them along
with decltype to define the return type. Here is an example based on the code presented
previously:

auto autoFuncExample(vector<int> 8x) -> decltype(x.begin())
{

auto iterator = x.begin();

// do something with iterator

return iterator;

Now you can return the iterator without knowing its exact type, since it is
automatically calculated during compilation time.

The decltype operator is not restricted to appear in the declaration of a return type.
You can use it anywhere a type may be required, although many times, it can be
substituted by the auto keyword. For example, the variable declaration auto x = 1
is equivalent to decltype(1) x = 1. But decltype can be used in other contexts,
such as sizeof(decltype(x.begin())),to determine the size of a deduced
type, where auto would not work.

Delegating Constructors

In older versions of C++, the problem of creating and maintaining initializers along with
constructors was well known. For example, you needed to initialize all scalar variables
in the same order that it appears in the class declaration. C++11 avoids this issue by
delegating the task of data initializing to other constructors.

A delegating constructor is simply one that can be used by other constructors,
so to avoid the repetition of data initialization statements. For example, suppose you
have a class Dimensions with three member variables. You can have three different
constructors, each one accepting a different number of components for this dimension
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object. To avoid repeating yourself during the initialization part, you can create a single

initializer constructor and call this constructor from the others. Here is a possible
implementation using C++11:

class Dimensions {
public:
Dimensions();
Dimensions(double x);
Dimensions(double x, double y);
Dimensions(double x, double y, double z);

private:
double m x;
double m_y;
double m_z;

};

Dimensions: :Dimensions()
: Dimensions(0, 0, 0)

{

}

Dimensions: :Dimensions(double x)
: Dimensions(x, 0, 0)

{

}

Dimensions::Dimensions(double x, double y)
: Dimensions(x, y, 0)

{

}

Dimensions::Dimensions(double x, double y, double z)
:m x(x),
m_y(y),
m z(z)
{
}
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The constructor Dimensions (double x, double y, double z) isthe only one that
can access the member variables directly, while the others are only using it to perform
indirect initialization.

Inheriting Constructors

Another common problem in earlier versions of C++ was the handling of constructors in
derived classes. Sometimes, a constructor derived from a class has constructors that are
identical to the constructors in the superclass. In this case, it was necessary to replicate
all constructors in the subclass so that it would become available to clients. It seems
clear that this is an undesirable code replication, and it was addressed by the C++11
standard. Now, it is possible to employ the using keyword to introduce the constructors
existing in the base class. Here is an example, using the Dimensions class as its base.

class DimensionsDerived : public Dimensions {

public:
using Dimensions::Dimensions;
b5
int main()
{
DimensionsDerived(1, 2, 4);
}

The new class can be created using the same constructors as the parent, since it
contains the using declaration for the base constructor.

Generalized Attributes

Attributes provide a standard syntax for the addition of annotations to elements
contained in C++ code. Most compilers use nonstandard mechanisms to determine
the attributes of certain elements. For example, if a function can be exported or not is
defined by attributes, which varied for each compiler vendor.
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C++14 introduced a new syntax for attributes that can be used by any compiler
vendor. The attributes are introduced inside double brackets and contain annotation for
the element that is syntactically next to the attribute. Here is an example:

struct [[exported]] AttribSample

{
int memberA;
[[gnu::aligned (16)]]
double memberB;

};

Note The list of available attributes is specific to each compiler. However, at
least for gcc, it is possible to write custom plugins that are able to process these
attributes. For example, suppose that you create a plug-in to process GUI-based
classes in your code base. Running gcc with that plug-in will let you perform
actions for each GUI class, such as generating additional code, creating resources
files to be used during run time, and other related tasks.

Generalized Constant Expressions

In modern C++, we have a great emphasis on the use of templates and related compile-
time programming techniques. The STL and many other well-known libraries, such

as boost, depend heavily on templates. However, since template-based operations

are compile-time by definition, they introduce the need for constant, compile-time
evaluated expressions. Such expressions have in common the fact that they evaluate to
constant values, so that all the results will be available at compilation time.

While normal C++ code can involve both runtime and compilation-time expressions,
it is useful to guarantee that the value in a particular function is completely evaluated at
compilation time. This cannot be guaranteed with traditional function, however, which
motivated the standards committee to introduce constant expressions as a compiler-
enforced concept.
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To guarantee that a function will evaluate only to constants that are available at
compiler time, you should use the new constexpr keyword. When this keyword is
added before a function declaration, the compiler will force its evaluation and emit an
error if the included expressions cannot be calculated at compile time. Here is a simple
example:

struct TestStruct {
int a;
char b;
double c;

b

template <class T>
constexpr int testDataSize(T)

{
return sizeof(T);
}
constexpr int minTestSize()
{
return 2 * testDataSize(TestStruct()) + 1;
}

The testDataSize function just shows how easy it is to create a compile-time
function. The return value calculated in the first function is the size of a test data
structure, which can later be used by other constant calculations. The second function
just calculates what is considered the minimum size for the test data in the application.
Results such as the ones presented previously can be freely used on templates, as a way
to perform more complex calculations.

Null Pointer Constant

A null pointer is a pointer that doesn’t correspond to any valid address in the target
machine. Traditionally, null pointer values have been used to indicate that a pointer is
not in use. For functions returning values, this usually means that the desired pointer is
invalid, among other possible uses.

490



APPENDIXA  FEATURES OF C++20

C++ inherited from C the idea that null pointers are equivalent to the constant
zero, since this is an invalid pointer value in most computer architectures. In fact, the
preprocessor macro NULL is defined in previous versions of C and C++ as 0. The fact
that the 0 value can be confused with NULL in a numeric context, however, is one of the
problems inherent to this definition. To simplify the rules concerning null pointers, the C++
committee decided to introduce a new keyword, nullptr, which can only be interpreted as
a pointer and not an integer or any other type that is related to the 0 constant.

void *testNull()

{
int *pi = new int;
if (pi == nullptr)
{
return nullptr;
}
// *pi = 1 + nullptr; // this doesn't work, nullptr is not an integer
return pi;
}

The preceding code checks if a newly allocated variable is null. Notice that the
nullptr value cannot be used to simultaneously initialize an integer variable: it can only
be used in a pointer context.

Defaulted and Deleted Member Functions

Another new feature in C++ is the ability to clearly determine if a class will use or
disallow any of the default member functions provided by the compiler. Remember that
there are four member functions automatically provided when a class is created:

¢ The default constructor

e The copy constructor

e The move copy constructor (because of new move semantics)
e The destructor

e The assignment operator

o The move assignment operator (because of new move semantics)
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Standard practice indicates that you should define these functions for every new
type, as you can see in the examples presented in this book. However, C++ gives another
option: you can use the default and delete keywords to determine which of these
member functions can be used by default (with the version created by the compiler) and
which versions should be discarded. For example:

class TestDefaults {
public:
TestDefaults() = default;
TestDefaults(int arg);
TestDefaults(const TestDefaults &) = delete;

// other member functions here

};

This class uses a default constructor, whose definition is written automatically
by the compiler, even though it has a non-default constructor that receives a single
integer argument. This was not possible in previous versions of C++, where you could
either accept the default constructor or write it again in case you wanted two or more
constructors. Notice that you can, at the same time, reject the default copy constructor.
Therefore, the previous declaration directly indicates that the type cannot be copied.

Another useful feature of default member functions is that you can introduce virtual
destructors without the need to write one. Remember that classes that include virtual
member functions also require virtual destructors in order to clean up resources in
each of the levels of the class hierarchy. The standard way of doing this is introducing
an empty virtual destructor, in order to allow for virtual destructors in the subclasses. In
C++11, you can use the default keyword to provide a default, virtual destructor. In the
previous example, this could be added in the following way:

class TestDefaults {
public:
TestDefaults() = default;
TestDefaults(int arg);
virtual ~TestDefaults() = default;
TestDefaults(const TestDefaults &) = delete;

// other member functions here

}s
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default implementation. The derived classes, however, will enjoy the use of a virtual
destructor due to the definition in the base class.

Initializer Lists

One of the confusing aspects of C++ syntax is initialization. Different objects, such as
integers, structures, classes, and arrays, have slightly different ways to be initialized.
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Notice that you don’t need to explicitly write the destructor, since it will use the

C++11, while maintaining the previous methods for variable initialization, introduces a

new way to perform initialization that is much more regular and can be applied to any

object in the language.

or variables. These elements are then applied to the new variable and interpreted

according to its type. Here are a few examples:

void initializationTest()

{

int x {}; // equivalent to int x = 0;

inty { 0 }; // same as above
const char *s { "var" };
double d { 2.4 };

struct StrTest {

int a;
double d;
char c;
b
StrTest structval { 2, 4.2, 'f' };
cout << " values are " <« x < " "
<< n n << d << n n

Ky K

<< structVal.a << endl;

<<

The syntax for initialization lists uses braces to surround one or more constants

S
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class AClass {

public:
AClass(int v) : m val(v) {}
int m_val;

};

AClass obj = { 3 } ;

Notice that all these values can be easily initialized using the brace notation. Among
the advantages of this strategy is the fact that you can also initialize containers (such as
vectors) using lists of values enclosed in braces. Here is an example of this feature:

#include <map>
#include <vector>
Using std::vector;
using std::map;

void containerInitialization()

{
vector<int> vi = {1, 3, 5, 7, 9, 11 };
for (auto &v : vi)
{
cout <« v« " "
}
map<int,double> m = { { 2, 3.0}, {4, 5.0} };
for (auto &v : m)
{
cout << v.first << " " << v.second << " ";
}
}
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You can see from the previous example how initialization lists can be effectively
used to pass data to standard containers found in the STL. Most containers in C++11
have one or more constructors that can receive initialization lists. Finally, you can also
create classes that receive lists of parameters, using the class std::initializer_list. The
compiler will automatically fill the initializer_list container with the values passed to the
constructor.

class MyClass {

public:
MyClass(std::initializer list<int> args);
vector<int> m_vector;

};
MyClass::MyClass(std::initializer list<int> args)
{
m_vector.insert(m vector.begin(), args.begin(), args.end());
}
void useClassInitializer()
{
MyClass myClass = { 2, 5, 6, 22, 34, 25 };
for (auto &v : myClass.m vector)
{
cout <« v« " "
}
}
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matrix-oriented operations, 219-229
scalars, 212
VectorOperations, 214
VectorOperations.cpp, 216-219
VectorOperations.h, 216-219
Linear and quadratic models, 351
Linear constraints, 353
Linear interpolation
algorithm, 237
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code implementation, 238-241
constructors, 238
Linearization, 360
Linear objective function, 353
Linear programming models, 323
Linear programming solver
constraints, 325
header and implementation, 329-335
libraries, 326-328
objective function, 325
simplex algorithm, 326
lock() member function, 467
Logical comparisons, 172
Log-normal distribution, 181
Lower-upper (LU) decomposition, 230
LPSolver class, 343, 362
Lua, extending C++
class LuaOption, 422-428
extension modules, 419
functions, 421
interpreter, 420
scripting language, 419
standard library, 420
user-defined libraries, 421
lual._newstate function, 421
LuaOption, 421
lua_State structure, 421
lu_factorize, 230

Market makers, 36
Market participants, 36-38
Mathematics for Finance, 33
MathFunction class, 254, 255, 288
Matrix class, 154
constructors, 155
implementation code, 157



implementation code, 157-162
multiplication, 156, 157
operator *, 157
swap function, 157
trace operation, 155, 156
transposition operation, 155
typedef, 155
Matrix, 220
Matrix-matrix operations, 213
Matrix module, 415-418
Matrix multiplication, 221
matrixOp, 229
MatrixOperations, 221, 222
MatrixOperations.cpp, 223-229
MatrixOperations.h, 223-229
matrix-setup.py file, 418
Matrix-vector operations, 219
Maxima computer algebra system
OptionsProbabilities class, 443-446
clines function, 442
GetProcAddress, 442
lisp functions, 442
MingW gcc compiler, 446
open source application, 440
OptionsProbabilities, 442
shared object library, 441
wxMaxima application, 441
Mean-absolute deviation portfolio
optimization model, 360
MidpointIntegration class, 281
Midpoint method
algorithm, 281
code implementation, 282-285
constant function, 279, 281
MIPSolver class, 344-347, 353
Mixed-integer programming (MIP)
problems
branch-and-cut, 343
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decision variable, 343
integer variables, 342
LPSolver class, 343
MIPSolver Class, 344-347
output, 347
Modern portfolio theory, 358
Modified CAP
asset classes, 375
constraint, 370
extended model, coding, 371-374
ModifiedCAP class, 370
Module, 402
Money market funds, 2
Monte Carlo-based algorithm, 458
Monte Carlo integration method, 379-386
Monte Carlo methods
integral computation
implementation, 379, 380, 382-384
getIntegral member function, 378
random process, 378
Moving average calculation
addPriceQuote member
function, 39
closing prices, 38
daily prices of Apple, 39
EMA, 41, 42
gcc compiler, 47
implementation, 42, 44-46
MACalculator class, 40
N-element sequence, 41
price/volume-based strategies, 38
program execution, 47
self-reinforcing, 38
supply/demand methods, 38
support and resistance values, 38
Multicore processing, 449
Multiple linear and nonlinear
components, 324
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Multithreading
advantages, 465
computational work, 465
operating system, 451
pthreads library (see pthreads library)
software solutions, 450
traditional approach, 449
Mutex, 466
MutexAccess, 467
Mutexes
critical sections, 466
lock() and unlock() member
functions, 467
Mutex and MutexAccess classes,
coding, 467-472
MutexAccess, 467
pthread_mutex_lock, 466
pthread_mutex_unlock, 467
pthreads API, 466
synchronization mechanism, 466
Mutex synchronization operation, 467
MutexTestThread, 467
Mutual funds, 37

N

Newton’s method, 267, 269, 272-275
Norm, 214
Normal distribution, 179
Null pointer constant, 490, 491
Numerical classes
Calmar ratio, 170-174, 176
factorials, 162, 163, 165-167, 169, 170
matrix, 154-162
probability distributions, 178-186
statistical data, 177, 178, 180
Numerical integration
midpoint method
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algorithm, 281

code implementation, 282-285

constant function, 279, 281
Simpson’s method

algorithm, 294

code, 294-298

second-order polynomial, 292, 293
trapezoid method

code execution, 291

code implementation, 288-291

graphical approach, 286

symbolic techniques, 287

Numeric libraries, 212

O

object.function(), 403
Objective function, 325, 360
operator *, 157
Operator overloading, 75, 106-108
Optimization
concepts, 323
LP (see Linear programming solver)
maximum/minimum finding, 324
MIP (see Mixed-integer programming
(MIP) problems)
optimal asset portfolio allocation, 324
Option class, 421
Option contract, 390
optionProbFinishAboveStrike, 442
Options prices, 377
Options probabilities, 442
categories, 390
European-style options, 390
OptionsProbabilities class, 394-399
profit potential, 391
profit probabilities, 391-393
strike price and stock price, 390



style of exercise, 390
OptionsProbabilities class, 392
Options probabilities in parallel

gcc compiler, run coding, 465

member function, 458

Monte Carlo algorithm, 458

ParallelOptionsProbabilities class, 458

ParallelRandomWalk class, 460-465

result() member function, 459

simulation process, 458
Out of the money (OTM), 390

P

paintEvent member function, 201
Parallel computation, 450
ParallelOptionsProbabilities class, 458
Parallel processing techniques, 458
ParallelRandomWalk class, 460-465
Parameters, 163
Pension funds, 37
Piecewise linear equations, 242
PlotWindow class, 201, 202
plotWindowRun member function, 202
Polynomial interpolation

code implementation, 246-249

getValue member function, 244
polynomialValue, 245
Portfolio construction problems, 358
Portfolio construction strategy, 358
Portfolio manager, 358
Portfolio optimization

CAP model, 359

definition, 358

efficient frontier, 360

financial assets, 358

linearization, 360
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LPSolver class, 362, 363
main function, 363
modified CAP implementation,
364-368
objective function, 359
portfolio construction strategy, 358
quadratic optimization model, 360
right-hand side coefficients, 362
Predictor-corrector algorithm, 303
presentValue function, 434, 435
Present-value calculations, 434
Price-earnings ratio (P/E), 65
Price-earnings to growth (PEG), 65
Price-to-book ratio (P/B), 65
Probability distribution functions
(PDF), 178
Probability distributions, 178, 180
code execution, 186
code implementation, 186
implementation code, 182-184, 186
Profit probabilities, 391-393
pthread_create function, 452
pthread_mutex_lock, 466
pthread_mutex_unlock, 467
pthreads library, 449, 472
functions, 451
pthread_create function, 452
start() and endThread() functions, 453
Thread class, 452
Thread Class implementation, 454-457
thread creation and
synchronization, 452
thread_function, 453
PyArg ParseTuple function, 404
Py_BuildValue function, 404
Py_InitModule function, 405
Python, 402
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Q

QApplication object, 202
QMainWindow, 201

Qt, 201

QtPlotter, 201

Quadratic function (x-1)? 270

Quadratic optimization model, 360, 369

Quadratic optimization solver, 360

R

Random number generators, 177
Random values, 393
RandomWalk class, 385
Random walk process, 385
Random walk simulation process, 384
Ratio template, 171
R console window, 433
RecommendationProcessor class, 118
Recursion, 164, 167
Reference counting mechanism, 94
reinterpret_cast operator, 453
Resource Acquisition Is Initialization
(RAII), 86
Resource allocation, 352
Retail investors, 37
Return on equity (ROE), 66
RExtension, 434, 435
R Extension library, 435-439
Risk-averse investors, 93
Roots of equations
bisection method, 252-259
Newton’s method, 267-275
secant method, 260-266
run() member function, 467
Runge-Kutta method, solving ODEs,
307-313
Rvalue references, 482, 483, 485
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S

Scalar multiplication, 221

Scalars, 212

Scale, 214

Secant method, 260-262, 264-266
SecantSolver class, 263
Second-order polynomial, 292

Securities and Exchange Commission, 64

setApplicationName member
function, 203
setData member function, 194, 201
setNumlIntervals, 288
setPoints member function, 238
setup.py file, 411, 415-418
Shared object library, 441
Shared pointers, 75, 86, 93, 94
showFactorial function, 166
Simple interest rates
assignment operator, 9
calculation, 7
cash deposit, 7
coding, 11, 12
copy constructor, 9
default constructor, 9
destructor, 9
inline, 10
IntRateCalculator class, 7, 8
moving constructor, 9
results, 13
singlePeriod member function, 10
Simplex algorithm, 326
Simpson’s method
algorithm, 294
code, 294-298
second-order polynomial, 292, 293
Single-vendor libraries, 133
sin(x), 191
Smart pointers, 85, 86



solve() function, 338
solve member function, 344
Solving linear models, 323
Solving mixed-integer programming
models, 323
Solving ODEs
Euler’s method, 302, 303
implementation, Euler’s method, 303,
305, 306
numerical algorithms, 301
numerical solution, 300-302
Runge-Kutta method
approximation, 309
implementation, 309-311
results, 312
solution, 307-309
symbolic methods, 301
Sparse matrix, 220
Sparse vector, 220
Standard templates library (STL), 6, 39,
113,154
Statistical distributions, 177
Stock pointer, 404
Stock market, 35, 36
stock-setup.py, 412
Stock::ticker() member function, 404
subtractVector, 215
Swap function, 157, 214
Symbolic methods, 301
Symbolic techniques, 279
Symmetric matrix, 220
Syntactic analysis, 76

T

Tangent, 268
Taylor method, 308
Technical analysis (TA), 38
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Template, 76
Template-based class, 162
Template-based computation, 163
Template-based operations, 172
Template-based recursion, 165
Templates, 75
Template specialization, 165
Thread class, 452
Thread object, 453
thread_function, 453
Threads, creation, 472
Thread synchronization, 466
ticker() member function, 404
Time series, 57
Time-series transformations
advantages, 126
command line, 132
data filtering, 125
functions, 125, 126
implementation, 128-131
sorting and selection algorithms, 125
STL algorithms, 127, 128
Trace operation, 155, 156
Transaction data
coding, 102
exception handling, 100, 101
try/catch/throw mechanism, 100
Transaction data, coding, 103-106
Transaction files
boost libraries, 132-137
command line, 142
definitions and implementation,
137-142
file operations, 132
traditional C interfaces, 132
TransactionHandler class, 100
Transferring ownership, 91
transpose method, 222
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Transposition, 221
Transposition operation, 155
TrapezoidIntegration, 288
Trapezoid method
code execution, 291
code implementation, 288-291
graphical approach, 286
symbolic techniques, 287
TriangularMatrix, 220
Two-dimensional investment
problems
constraints, 336
decision support system
modeled, 336
feasible set, inequalities, 337
header file and implementation,
338-341
optimization techniques, 336
results, 341
solution, 338
TwoDimensionalLPSolver, 338-341
typedef, 155

U

ublas vector, 215
uBLAS

determinant of matrix calculation,

229-232
library, 213
matrix-related functions, 221
operators, 221
ublas::matrix object, 222
Unique pointers, 86-88, 92, 93
unitX, 201
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unity, 201
unlock() member functions, 467
User-defined literals, 480

\"

Variance, 359
Vector, 219
Vector addition, 214
Vector multiplication, 221
Vector operations
implementation, 108-111
operator overloading, 106-108
programming technique, 106
VectorOperations, 213, 214
VectorOperations.cpp, 216-219
VectorOperations.h, 216-219
Vector resizing, 115
Vector types, 214
Volatility
coding, 51-53, 55
concept, 48
definition, 55
equity instrument, 48
implementation, 49
price variations, 48
rate of change, 49
single-1 value, 55
standard deviation, 50
stocks characteristics, 48
strategies, 51
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wxMaxima application, 441
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