
Practical
C++20 Financial
Programming

Problem Solving for Quantitative Finance,
Financial Engineering, Business, and
Economics
—
Second Edition
—
Carlos Oliveira

Practical C++20 Financial
Programming

Problem Solving for Quantitative
Finance, Financial Engineering,

Business, and Economics

Second Edition

Carlos Oliveira

Practical C++20 Financial Programming: Problem Solving for Quantitative Finance,
Financial Engineering, Business, and Economics

ISBN-13 (pbk): 978-1-4842-6833-9				 ISBN-13 (electronic): 978-1-4842-6834-6
https://doi.org/10.1007/978-1-4842-6834-6

Copyright © 2021 by Carlos Oliveira

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Fly-D on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484268339 and on
coliveira.net/. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Carlos Oliveira
Seattle, WA, USA

https://doi.org/10.1007/978-1-4842-6834-6

To my family, my real source of inspiration.

v

Table of Contents

Chapter 1: ��The Fixed Income Market��� 1

Fixed Income Overview�� 2

Why Use C++��� 5

Calculating Simple Interest Rates�� 7

Problem�� 7

Solution�� 7

How It Works�� 7

Complete Code��� 11

Sample Use�� 13

Compound Interest��� 13

Problem�� 14

Solution�� 14

How It Works�� 15

Complete Code��� 16

Sample Use�� 19

Modeling Cash Flows��� 19

Problem�� 19

Solution�� 20

Complete Code��� 23

Running the Code��� 27

Modeling Bonds��� 28

Problem�� 28

Solution�� 28

About the Author��xv

Introduction��xvii

vi

Complete Code��� 29

Running the Code��� 32

Further Reference�� 32

Conclusion��� 33

Chapter 2: ��The Equities Market��� 35

Equities Market Concepts�� 36

Market Participants�� 36

Moving Average Calculation��� 38

Problem�� 38

Solution�� 38

Complete Code��� 42

Running the Code��� 47

Calculating Volatility��� 48

Problem�� 48

Solution�� 48

Complete Code��� 51

Running the Code��� 55

Computing Instrument Correlation��� 56

Problem�� 56

Solution�� 56

Complete Code��� 57

Running the Code��� 63

Calculating Fundamental Indicators�� 64

Problem�� 64

Solution�� 64

Complete Code��� 66

Running the Code��� 73

Conclusion��� 73

Chapter 3: ��C++ Programming Techniques in Finance��� 75

Calculating Interest Rates for Investment Instruments�� 76

Solution�� 76

Table of Contents

vii

Complete Code��� 78

Running the Code��� 84

Creating Financial Statement Objects�� 84

Solution�� 84

Smart Pointers�� 85

Using Unique Pointers�� 86

Complete Code��� 88

Transferring Ownership�� 91

Pitfalls of Unique Pointers�� 92

Determining Credit Ratings�� 93

Solution�� 93

Using Shared Pointers�� 93

Complete Code��� 95

Using the auto Keyword��� 98

Collecting Transaction Data��� 100

Solution�� 100

Exception Handling��� 100

Complete Code��� 102

Implementing Vector Operations�� 106

Solution�� 106

Operator Overloading��� 106

Complete Code��� 108

Conclusion��� 111

Chapter 4: ��Common Libraries for Financial Applications�������������������������������������� 113

Handling Analyst Recommendations��� 114

Solution�� 114

More About STL Vectors and Maps��� 115

Complete Code��� 119

Performing Time-Series Transformations�� 125

Solution�� 125

Using STL Algorithms��� 127

Table of Contents

viii

Complete Code��� 128

Running the Code��� 132

Copying Transaction Files�� 132

Solution�� 132

Boost Libraries��� 132

Complete Code��� 137

Running the Code��� 142

Handling Dates��� 142

Solution�� 142

Complete Code��� 145

Running the Code��� 150

Conclusion��� 150

Chapter 5: ��Designing Numerical Classes��� 153

Representing Matrices in C++��� 154

Solution�� 154

Complete Code��� 157

Using Templates to Calculate Factorials�� 162

Solution�� 163

Complete Code��� 167

Running the Code��� 169

Using C++20 Features to Compute Factorial��� 170

Representing Calmar Ratios at Compile Time�� 170

Solution�� 171

Representing Calmar Ratios��� 172

Complete Code��� 174

Running the Code��� 176

Generating Statistical Data�� 177

Solution�� 177

Probability Distributions��� 178

Table of Contents

ix

Complete Code��� 182

Running the Code��� 186

Conclusion��� 187

Chapter 6: ��Plotting Financial Data��� 189

Plotting with Gnuplot�� 190

Solution�� 190

Complete Code��� 195

Running the Code��� 200

Plotting Data from a GUI��� 201

Solution�� 201

Complete Code��� 203

Running the Code��� 208

Conclusion��� 209

Chapter 7: ��Linear Algebra�� 211

Using Basic Linear Algebra Operations�� 212

Solution�� 212

Complete Code��� 215

Using Matrix-Oriented Operations�� 219

Solution�� 219

Complete Code��� 222

Running the Application��� 229

Calculating the Determinant of a Matrix�� 229

Solution�� 229

Complete Code��� 230

Conclusion��� 232

Chapter 8: ��Interpolation��� 235

Linear Interpolation�� 236

Solution�� 236

Complete Code��� 238

Running the Code��� 241

Table of Contents

x

Polynomial Interpolation�� 242

Solution�� 242

Complete Code��� 246

Running the Code��� 249

Conclusion��� 250

Chapter 9: ��Calculating Roots of Equations�� 251

Bisection Method��� 252

Solution�� 252

Complete Code��� 255

Running the Code��� 259

The Secant Method�� 260

Solution�� 260

Complete Code��� 263

Running the Code��� 266

Newton’s Method��� 267

Solution�� 267

Complete Code��� 271

Running the Code��� 274

Conclusion��� 275

Chapter 10: ��Numerical Integration�� 277

The Midpoint Method��� 278

Solution�� 278

Complete Code��� 282

Running the Code��� 285

Trapezoid Method��� 285

Solution�� 286

Complete Code��� 288

Running the Code��� 291

Table of Contents

xi

Using Simpson’s Method��� 292

Solution�� 292

Complete Code��� 294

Running the Code��� 297

Conclusion��� 298

Chapter 11: ��Solving ODEs and PDEs�� 299

Solving Ordinary Differential Equations��� 300

Solution�� 300

Euler’s Method�� 302

Complete Code��� 303

Running the Code��� 306

Runge-Kutta Method for Solving ODEs�� 307

Solution�� 307

Complete Code��� 309

Running the Code��� 312

Solving the Black-Scholes Equation�� 313

Solution�� 313

Complete Code��� 316

Running the Code��� 320

Conclusion��� 321

Chapter 12: ��Optimization��� 323

Interfacing with a Linear Programming Solver�� 324

Solution�� 324

Linear Programming Concepts��� 325

Using LP Solver Libraries�� 326

Complete Code��� 328

Running the Code��� 335

Solving Two-Dimensional Investment Problems�� 336

Solution�� 336

Complete Code��� 338

Running the Code��� 341

Table of Contents

xii

Creating Mixed-Integer Programming Models��� 342

Solution�� 342

Complete Code��� 344

Running the Code��� 347

Conclusion��� 348

Chapter 13: ��Asset and Portfolio Optimization��� 351

Financial Resource Allocation�� 352

Solution�� 352

Implementation�� 353

Complete Code��� 354

Running the Code��� 357

Portfolio Optimization�� 357

Solution�� 358

Complete Code��� 364

Running the Code��� 368

Extensions to Modified CAP��� 369

Solution�� 369

Complete Code��� 370

Running the Code��� 375

Conclusion��� 375

Chapter 14: ��Monte Carlo Methods��� 377

Monte Carlo-Based Integral Computation�� 377

Solution�� 378

Complete Code��� 379

Running the Code��� 384

Simulating Asset Prices��� 384

Solution�� 384

Complete Code��� 386

Running the Code��� 389

Table of Contents

xiii

Calculating Option Probabilities��� 389

Solution�� 389

Determining Profit Probabilities��� 391

Complete Code��� 394

Running the Code��� 399

Conclusion��� 399

Chapter 15: ��Extending Financial Libraries��� 401

Exporting C++ Stock Handling Code to Python��� 402

Solution�� 402

Complete Code��� 405

Running the Code��� 411

Exporting C++ Classes Directly to Python��� 413

Solution�� 413

Complete Code��� 415

Running the Code��� 418

Using Lua as an Extension Language�� 419

Solution�� 419

Complete Code��� 421

Running the Code��� 429

Conclusion��� 429

Chapter 16: ��Using C++ with R and Maxima��� 431

Integrating C++ with R�� 432

Solution�� 432

Complete Code��� 435

Running the Code��� 438

Integrating with the Maxima CAS�� 439

Solution�� 440

Complete Code��� 443

Running the Code��� 446

Conclusion��� 448

Table of Contents

xiv

Chapter 17: ��Multithreading��� 449

Creating Threads with the Pthreads Library�� 450

Solution�� 450

Complete Code��� 454

Running the Code��� 457

Calculating Options Probabilities in Parallel�� 457

Solution�� 458

Complete Code��� 460

Running the Code��� 465

Using Mutexes to Prevent Unsynchronized Access�� 465

Solution�� 465

Complete Code��� 467

Running the Code��� 472

Creating Threads Using the Standard Library�� 472

Conclusion��� 474

��Appendix A: Features of C++20��� 475

��Automatic Type Detection�� 476

�Lambdas��� 479

��User-Defined Literals�� 480

��Range-Based for��� 481

���Rvalue References�� 482

��New Function Declarator Syntax and decltype��� 485

���Delegating Constructors��� 486

��Inheriting Constructors�� 488

��Generalized Attributes�� 488

��Generalized Constant Expressions��� 489

��Null Pointer Constant��� 490

��Defaulted and Deleted Member Functions��� 491

��Initializer Lists�� 493

Index�� 497

Table of Contents

xv

About the Author

Carlos Oliveira works in the area of optimization and

quantitative finance, with more than 15 years of experience

in creating scientific and financial models in C++. During

his career, Carlos has developed several large-scale

applications for financial companies such as Bloomberg

L.P. and Incapital LLC. Carlos obtained a PhD in Operations

Research and Systems Engineering from the University of

Florida, an MSc in Computer Science from UFC (Brazil),

and a BSc in Computer Science from UECE (Brazil). He also

performs academic research in the field of combinatorial

optimization, with applications in diverse areas such as

finance, telecommunications, computational biology, transportation, and logistics.

Carlos has written more than 30 academic papers on optimization and authored four

books, including Options and Derivatives Programming in C++20: Algorithms and

Programming Techniques for the Financial Industry, Second Edition (Apress, 2020).

xvii

Introduction

This is a hands-on book for programmers who want to learn about how C++20 is used

in the financial industry. The book concentrates on the parts of the language that are

more frequently used to write financial software, including the STL (standard template

library), templates, and support for numerical libraries. I also describe many of the

important problems in financial engineering that are part of the day-to-day work of

financial programmers and quantitative analysts in investment banks and hedge funds.

The book provides how-to examples that cover all the major tools and concepts

used to build working solutions for financial applications. Each chapter teaches readers

how to use advanced C++ concepts as well as the basic building libraries used by

modern C++ developers, such as the STL and Boost. I discuss how to create correct

and efficient applications, leveraging knowledge of object-oriented and template-

based programming. I assume only a basic knowledge of C and C++ and build on these

concepts to explain techniques already mastered by developers who are familiar with

modern C++.

In the process of writing this book, I was concerned with providing a great value for

readers who are trying to use their programming knowledge to become proficient in

the style of programming used in financial institutions such as banks, hedge funds, and

other companies in the financial industry. However, I have introduced the topics covered

in the book in a logical and structured way, so that even novice programmers will be able

to absorb the most important topics and competencies necessary to develop financial

applications in C++.

An important feature of the book is its focus on specific themes and practical

solutions for financial problems. While the emphasis is not on the theoretical aspects of

finance, I do discuss topics such as numerical algorithms, integration techniques, and

differential equations for derivative valuation. Moreover, the reader will gain a good

understanding of how to model such problems using modern C++ concepts.

The financial literature for programmers typically has a large number of books

written from an academic standpoint, with most of the time spent on the discussion

of mathematics concepts behind algorithms, rather than the software engineering

xviii

challenges that developers need to overcome. Therefore, in this book, I decided to

focus on working solutions for common programming problems, in the form of code

examples, offering readers much more value for their reading efforts.

�Audience
This book is intended for readers who already have a working knowledge of

programming in C, C++, or another mainstream language. These are usually

professionals or advanced students in computer science, engineering, physics, and

mathematics, who have an interest in learning C++20 financial programming either

for personal improvement or for professional reasons. The book is also directed at

practitioners of C++ programming in financial institutions, who would use the book as a

ready-to-use reference for common development problems.

By reading this book, you will learn how to use modern C++20 techniques to

implement practical applications. Being a multi-paradigm language, C++ is used slightly

differently in each application area. Therefore, skills that are valuable for developing

desktop applications are not necessarily the same as those used to write high-

performance software. A large part of major high-performance financial applications are

written in C++, which means that programmers who want to enter this lucrative market

need to acquire a working knowledge of a few specific and relevant parts of the language.

This book therefore would be an excellent choice for developers who want to advance

their knowledge effectively while learning one of the most sought-after and marketable

skill sets for modern applications and high-performance software development.

�Content Overview
Here is a brief overview of the contents of each chapter.

Chapter 1—The Fixed Income Market: The fixed income market is a large part of

the financial engineering industry, and it presents unique computational challenges

for its practitioners. C++ programming is widely used in this area, offering the ability to

compute rates and cash flow variations with incredible speed, as readers will learn in this

chapter. I present C++ coding examples that can be used in the solution of some of the

most common problems occurring in fixed income markets. I include C++ algorithms for

topics such as (1) interest rate calculation, (2) present value computation, (3) cash flows,

and (4) valuation of bonds.

Introduction

xix

Chapter 2—The Equities Market: Equity markets are multifaceted and offer a great

variety of investment vehicles. As a result, the number and complexity of computational

techniques used for financial analysis of equity markets continue to grow. In this chapter,

I present C++ examples for a few selected problems occurring in the equities markets

and their derivatives. I cover programming topics such as the following: (1) moving

average computation, (2) calculating volatility, (3) computing instrument correlation,

and (3) calculating fundamental indicators.

Chapter 3—C++ Programming Techniques in Finance: The C++ language was

created as an extension of C, which means that most programs written in C are also valid

C++ programs. However, good C++ programs need to make use of high-level features

made available by the language to control program complexity. This is especially

important for financial applications, where we want to create fast and expressive

applications. In this chapter, I explore fundamental techniques that financial C++

programmers use to write better code with less effort, including (1) class templates, (2)

auto pointers, (3) shared pointers, (4) resource acquisition is initialization (RAII), (5)

automatic type detection, (6) exception handling, and (7) operator overloading.

Chapter 4—Common Libraries for Financial Applications: Modern coding in

C++ uses libraries that simplify the creation of fast, standard-conforming classes. The

STL offers a set of generic, standard containers that can be used in almost any situation.

Knowing how to use the STL well is one of the main skills necessary for effective C++

programming. Another common set of classes is contained in the Boost libraries, which

are usually the basis for the next version of the C++ standard. Readers will learn about

topics such as (1) STL containers, (2) STL algorithms, (3) boost libraries, and (4) date and

time handling.

Chapter 5—Designing Numerical Classes: At the heart of financial applications is

a set of well-designed numerical classes. This chapter tells you how to create numerical

classes that will perform efficiently when used in production code. You will also see

examples in C++ that show how to integrate with existing numerical classes and

algorithms. You will learn how to (1) implement a matrix class, (2) perform calculations

at compilation time with templates, (3) represent ratios with C++ templates, and (4)

generate statistical data.

Chapter 6—Plotting Financial Data: A common activity in financial programming

is the generation of data that needs to be visualized by traders or other financial

stakeholders. Most of the time, the data needs to be plotted in the form of a chart for easy

visualization. I give a few examples that show how to plot data in C++ programs using

Introduction

xx

common libraries. You will learn about topics such as (1) using Gnuplot to plot data, (2)

designing a class to create Gnuplot charts, and (3) plotting from a GUI (graphical user

interface) application using Qt.

Chapter 7—Linear Algebra: Linear algebra (LA) techniques are used throughout

the area of financial engineering. Therefore, it is important to understand how the

traditional methods of LA can be applied in C++. With this goal in mind, I present a

few examples that show how to use some of the most common LA algorithms. In this

chapter, you will also learn about (1) integrating existing LA libraries into your code, (2)

basic LA operations, (3) the BLAS (basic linear algebra subprograms) library, and (4)

calculating the determinant of a matrix with BLAS.

Chapter 8—Interpolation: Interpolation is a commonly used technique that finds

a mathematical function approximating a set of points. Fast interpolation is the secret

for high-performance algorithms in several areas of financial engineering. This chapter

will show you programming samples that cover a few of the most common interpolation

methods, with efficient implementation in C++. The main techniques discussed in this

chapter are (1) linear interpolation and (2) polynomial interpolation.

Chapter 9—Calculating Roots of Equations: Equations are one of the building

blocks of algorithms in financial engineering, and it is important to be able to calculate

equation roots efficiently. In this chapter, you will find algorithms for different methods

of calculating equation roots, along with explanations of how they work and when they

should be used. Topics include (1) the bisection method, (2) the secant method, and (3)

Newton’s method.

Chapter 10—Numerical Integration: Function integration is a common part of

many financial algorithms. However, it is hard to solve certain classes of equations

exactly, and numerical methods need to be employed in such cases. In this chapter,

you will see examples of C++ code that can be readily applied to common integration

problems. I also discuss the performance and the accuracy of such methods. The

programming examples in this chapter cover topics such as (1) the midpoint method, (2)

the trapezoid method, and (3) Simpson’s method.

Chapter 11—Solving ODEs and PDEs: Differential equations are at the heart

of many techniques used in the analysis of equity markets. There are several

processes for solving and analyzing ordinary differential equations (ODE) and partial

differential equations (PDE) that can be implemented in C++. In this chapter, I present

programming examples that cover aspects of ODEs and PDE modeling and application

in C++. Topics covered include the following: (1) solving ODEs, (2) using the Runge-

Kutta method, and (3) solving the Black-Scholes equation.

Introduction

xxi

Chapter 12—Optimization: Optimization refers to a set of techniques used to find

the minimum or maximum of a function. Optimization strategies are used in several

areas of financial engineering. In this chapter, I discuss programming techniques that

can be used to implement common aspects of optimization algorithms. I provide a

concise explanation of some techniques and how they are typically implemented in

C++20. You will learn about (1) modeling optimization problems, (2) interfacing with

linear programming (LP) solvers, (3) solving two-dimensional LP problems, and (4)

mixed integer–programming models.

Chapter 13—Asset and Portfolio Optimization: Portfolio managers have to

face the issue of balancing a portfolio for optimal performance, depending on their

predefined portfolio goals. Optimization-based techniques have been developed to deal

with some of the most common portfolio construction problems. In this chapter, we

consider algorithms for portfolio optimization using C++. We consider how to design

such optimization code in order to get results that are as fast and as accurate as possible.

Topics include (1) creating a portfolio model, (2) performing resource allocation, and (3)

using linear techniques for portfolio optimization.

Chapter 14—Monte Carlo Methods: Among other programming techniques used

in equity markets analysis, Monte Carlo simulation has a special place due to its wide

applicability and easy implementation. These methods can be used to forecast prices

or to validate buying strategies, for example. In this chapter, I provide programming

examples that can be used as part of simulation-based algorithms, with topics such as

(1) random number generation, (2) optimization through Monte Carlo methods, and (3)

simulation models for price forecasting.

Chapter 15—Extending Financial Libraries: C++ is a complete language that can

be used to develop the most complex software. However, it is sometimes beneficial

to combine C++ libraries with scripting languages that can simplify the creation of

prototypes and other noncritical applications. In this chapter, I show you how to use

the solutions and algorithms discussed in the text as external libraries for scripting

languages that are commonly employed in the financial industry. In particular, you will

learn how to (1) extend C++ with Python and (2) extend C++ with Lua scripts.

Chapter 16—Using C++ Code with R and Maxima: Financial algorithms in C++

can be used not only as part of executable code but also as part of other modeling

and development environments. In this chapter, I show you how to integrate financial

libraries into two well-known simulation and modeling environments for financial

Introduction

xxii

analysis: R and Maxima. You will see how it is possible to create loadable modules for

these environments, incorporating complex C++ algorithms in a way that they are ready

to use from scripts written in R and Maxima.

Chapter 17—Multithreading: Financial applications have very stringent performance

requirements. A common way to improve response time is to use concurrency and parallel

programming techniques, such as multithreading. C++ can be used to write very responsive

multithreaded applications, and in this chapter, I explore algorithms for creating and

managing threads, with applications to financial problems. I also cover the important topic

of data access synchronization. Topics include (1) creating threads, (2) protecting shared

memory, (3) synchronization techniques, and (4) threads using the standard library.

Appendix A—C++20 Features: C++ is an evolving language, and in the last few

years, we have seen a renewed effort to bring much-needed updates. The latest efforts

are the C++17 and C++20 standards, and major C++ compilers are incorporating these

features at a fast pace. In the appendix, I cover examples that show how some of these

features can improve your code and simplify the development of new programs and

libraries. You will learn about new features such as (1) auto variables, (2) closures, (3)

rvalues, (4) const expressions, and (5) initializer lists.

�Introduction to the Second Edition
In this second edition of the book, the examples and the text have been revised to

conform to the latest C++ standard, C++20. While much of our examples continue to

compile and work properly in the new standard, we felt the need to present new C++

features that will make it easier to develop financial applications.

For example, the appendix now presents some new features only available in C++20.

We also explain how to use threads in the standard library, among other improvements.

All examples have been tested to make sure that we conform to the latest standard.

�Compiling the Code Samples
The examples given in this book have all been tested on Windows using the MingW

gcc compiler and on Mac OS X using the Xcode 12 IDE. You should be able to build the

code, however, using any standards-compliant C++ compiler that implements the C++20

standard. For example, gcc is available on Linux and other platforms, and Microsoft

Visual Studio will also work on Windows.

Introduction

xxiii

If you use Mac OS X and don’t have Xcode installed in your computer, you can

download it for free from Apple’s developer website at http://developer.apple.com.

The code can also be compiled from the command line, as it is explained in each chapter.

If you instead want to use MingW on Windows, you can download it from the website

www.mingw.org.

Once MingW is installed, start the command prompt from the MingW program

group in the start menu. Then, you can type gcc to check that the compiler is properly

installed.

To download the complete set of examples, visit the web page for this book at

http://coliveira.net, or navigate to apress.com/9781484268339 and click the

Download Source Code button.

Introduction

http://developer.apple.com
http://www.mingw.org
http://coliveira.net

1
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_1

CHAPTER 1

The Fixed Income Market
The fixed income market is a large part of the financial industry, and it presents unique

challenges and opportunities for its practitioners. A large amount of the money managed

by pension funds and other institutional funds is allocated to fixed income investments.

Because fixed income has a predictable income stream, conservative money managers

view it as a safer investment option when compared to stocks and more exotic

derivatives. As a result, traditional institutions commit a lot of time and effort to the fixed

income industry.

As software engineers, our main goal when working in the fixed income market is to

define computational strategies and solve problems so that our clients can be successful.

C++ is a language that is uniquely poised to the solution of problems in this industry.

This is due to its flexibility and high performance on standard computational platforms.

Moreover, C++ is a highly portable language that can be used in a variety of computer

systems.

As a result of the advantages just mentioned, C++ programing has been widely used

in this area of finance, and it is one of the preferred languages used in banks, hedge

funds, pension funds, and other large institutions that have to deal with fixed income as

one of their main investment vehicles. Programmers who work with C++ have over the

years developed software that offers useful capabilities for fixed income analysis, such

as computing prevailing interest rates and determining cash flow valuations. All of these

features need to execute with incredible speed, with the help of some of the techniques

explored in later sections of this book. Due to its new standard, C++20, the language

is nowadays even more capable of satisfying the strict requirements demanded by the

financial industry.

https://doi.org/10.1007/978-1-4842-6834-6_1#DOI

2

In this chapter, I provide a quick introduction to this area of finance and show you a

few C++ coding examples that can be used in the solution of some of the most common

programming problems occurring in fixed income markets. These coding examples

include the solution to problems involving

•	 Simple interest rate calculation

•	 Compound interest rate calculation

•	 Cash flow modeling

•	 Determination of the present value of cash flows

•	 Modeling and valuation of bonds

In the remainder of this chapter, I will also show you why C++20 may be the ideal

language to deal with programming problems occurring in the financial investment

industry and in particular how to solve problems in fixed income investing. Then, I

will provide a general introduction to the issues occurring in fixed income investments

and an overview of how the fixed income market works. Then, I will start with a few

programming examples that explore the concepts discussed in the previous sections.

�Fixed Income Overview
We start our discussion with a general overview of fixed income instruments. While

this is not a book on finance or economics, it is still important to have a few concepts

in place. My general goal is to describe how to use these concepts in the solution of the

practical computational problems that we discuss in the latter part of this chapter.

In a fixed income investment, a contractually defined exchange occurs between two

parties. Both parties agree to exchange cash flows that are assigned based on interest

rates and the time of cash exchanges. Fixed income investments are very diverse, but

they include the following well-known types of investments vehicles:

•	 Money market funds: These are short-term investments that offer

a small rate of return but at the same time provide easy availability

of funds at your own convenience. Money market funds have a very

short-term horizon, and they only pay returns that are close to the

spot rate practiced by banks. Since money market funds have a small

return that is hard to predict over a long period, they are used mostly

for their liquidity.

Chapter 1 The Fixed Income Market

3

•	 Bonds: This is a major category of fixed income applications. Bonds

pay a predetermined interest rate for a well-defined period of time.

They are issued by a variety of institutions, including companies and

all levels of government. The American government, for example,

issues treasury bonds, which are one of the main investment vehicles

used throughout the world.

•	 Certificates of deposit: These are fixed income investments issued by

banks to their retail customers. They are simple investments that pay

a fixed interest rate for a predefined period, usually between 1 and

5 years. They are used mainly for the convenience of small investors

who lack access to more sophisticated fixed income markets and

want to invest from their own checking or savings account.

The main reason for investors to enter the fixed income market is to take advantage

of a relatively safe investment opportunity, where the returns are known and predictable.

Compared to the stock market, fixed income investments have the advantage of

being easier to analyze. This is true because, for equity investments, for example, it is

practically impossible to determine how much money a company will make in a few

years from now. With a fixed income investment such as a bond, however, you have a

contract that guarantees the return on the investment for a specified period of time.

Clearly, there are also risks in such fixed income investments. A well-known risk is

that of the default of the institution issuing the bond, for example. In that case, investors

may lose a part of the, or the whole, investment. The second big risk, which is frequently

overlooked by investors, is that the rate of return will not be able to cope with inflation

during the period of the investment. For example, if the rate of return is 6% a year but

inflation is around 4%, then your real rate of return is just 2% (and that is the return

before taxes).

This all shows that analyzing fixed income investments is not as easy as it initially

sounds. It is not just a matter of finding the institution paying the largest interest rate and

putting all your money on its bonds. This is one of the reasons why money managers

need reliable software that can be used to decide which is best among myriad fixed

income investments. Just as the stock market presents thousands of possibilities that

need to be carefully analyzed, the fixed income industry has a huge number of available

choices. One of the big tasks for software developers is to create systems that can easily

track these investments and help in choosing the right options for long-term investors.

Chapter 1 The Fixed Income Market

4

Note  Fixed income investments have risks that are hard to measure because
they depend on the future economic environment. Sound fixed income investments
need to take into consideration the several risks involved. High-quality C++
software for fixed income may help investors to take into consideration some of
these external factors.

Here are some of the most important concepts about fixed income investments used

through this chapter.

•	 Interest rate: The return of investment in percentage points for a

given period (usually 1 year). Fixed income investments will have

a well-defined interest rate that is determined as a contractual

obligation.

•	 Principal: The amount of the original fixed income loan or

investment. This is the value over which the interest rate is calculated

in the case of a fixed income investment such as a bond.

•	 Compound interest: Interest that is accrued over time and added to

the principal as regular interest payments are made at each period.

The amount of compound interest is regulated by the interval

between interest payments.

•	 Continuous compounding: As the number of periods increase,

the effect of compound interest becomes more pronounced. For

example, compound interest paid at the end of every month will

produce more than at a yearly payment schedule. In theory, this

compounding process could happen in a continuous schedule, and

the resulting compound interest can be calculated using a simple

formula, which I explain later in this chapter.

•	 Present value: When a set of scheduled cash flows and an interest

rate are defined, it is possible to calculate the present value of

those cash flows. This is done using the contractual interest rate to

determine the discounted value of each future cash flow and adding

together all these values. The present value is a very powerful tool to

compare two cash flow streams.

Chapter 1 The Fixed Income Market

5

Using these simple concepts, it is possible to analyze very complex investments. You

will learn how to use these concepts in some of the coding examples contained later in

this chapter.

�Why Use C++
C++ is a language that has been used with great success in all kinds of financial applications.

It is the number one language used by Wall Street firms to create fast, high-performance

code that can be employed to implement efficient algorithms for financial engineering.

While C++ is already a mature language with more than 30 years of history, and

other programming languages have appeared since then with high-level features that are

easier to use, C++ still holds the place as the standard language for high-performance

computation. Large financial institutions such as banks, hedge funds, and pension funds

rely daily on C++ to solve their most complex computational problems for the following

reasons:

•	 Performance: The most obvious reason why C++ is used is its

performance. Due to the fact that C++ has little runtime overhead

compared to other high-level languages, it is possible to use it to

write very fast software. Not only is C++ fast enough by default, but

it also allows expert C++ programmers to explore many additional

low-level techniques for code optimization, which are not available

to programmers using languages such as Java and Python.

•	 Standards compliance: C++ is a standard language, developed

over the years by an international group of experts with the goal of

providing high-level features such as object-oriented programming

(OOP) without the overhead that is normally associated with them.

As a result of the standardization effort, C++ is available on all kinds

of platforms, ranging from microcontrollers to the largest servers.

This means that you can run your algorithms unmodified between

platforms. This is an obvious advantage for financial algorithms,

since this kind of software can be easily ported to faster architectures

over the years to take advantage of improvements in new hardware

and software design.

Chapter 1 The Fixed Income Market

6

•	 Existing libraries: C++ offers an almost unparalleled set of libraries

for numerical and financial programming. Each topic we discuss in

this book has several libraries available that can save time and effort.

•	 Multi-paradigm language: Developers designed the C++ language

from the beginning to support multiple programming paradigms,

so programmers don’t need to change the essence of an algorithm

to fit into a particular paradigm. For example, although OOP is

supported, the language does not mandate the use of OOP. In this

way, programmers are free to use the most expressive technique for

the desired application.

•	 High-level features: Although C++ allows programmers to achieve

high performance by targeting low-level features of their hardware,

good programmers can still use several high-level features that make

C++ a truly modern language. For example, C++ was one of the first

languages to embrace the concept of OOP, which is without question

the most common paradigm for modern software design. C++ has

also pioneered other features such as exceptions and template-based

containers. More recently, C++ incorporated even more high-level

features by means of the new C++11 standard of the language.

Automated type detection, lambda expressions, and user-defined

literals are just a few of the new features that have become available

to application developers since the new standard was approved.

For the reasons stated previously, programmers have trusted C++ as the main vehicle

for implementing high-performance financial algorithms. In this book, we explore code

examples that make use of these computational advantages.

Like any other tool, C++ also has its share of problems. One of the themes in learning

C++ programming is to avoid dangerous practices that can lead to bugs and unsafe

programs. Most of the techniques you will see in the next chapters embrace the use of

modern libraries, which not only simplify the process of creating C++ programs but also

allow you to create software that is well designed and fault tolerant. Using the standard

library, which includes the STL (standard templates library), is the best way to use C++

safely.

Chapter 1 The Fixed Income Market

7

You will also learn how to use the high-quality libraries that have been made

available through the boost project. The boost libraries have been designed from the

ground up to use modern C++ concepts in a way that simplifies the creation of new

software. The boost libraries are the result of the work of some of the greatest experts in

C++ programming, including people involved in the C++ standard committee itself. In

fact, many of the libraries shipped with boost have become part of the standard library.

Therefore, using boost libraries, you will be getting early access to some features that will

be included in future versions of the language.

�Calculating Simple Interest Rates
To start, I will show you how to solve a very simple problem in fixed income analysis,

as a way to introduce some of the features of C++ class design that we use throughout

this book.

�Problem
Interest rates determine how much a financial institution is going to pay in exchange for

holding a cash deposit over a period of time. Calculate the future value of a deposit given

the interest rate and the initial value of the deposit, assuming a single period of deposit.

�Solution
You just need to use the mathematic equation for simple interest rate calculation, which

is given by the expression

V = P (1 + R)

In this formula, V is the future value after a single period, and P is the present value

of the deposit. With this formula, you can calculate the interest rate for a single period.

�How It Works
The IntRateCalculator class, defined in Listing 1-1, determines the calculation of

single-period interest rates.

Chapter 1 The Fixed Income Market

8

Listing 1-1.  The IntRateCalculator Class

class IntRateCalculator {

public:

 IntRateCalculator(double rate);

 IntRateCalculator(const IntRateCalculator &v);

 IntRateCalculator &operator =(const IntRateCalculator &v);

 ~IntRateCalculator();

 double singlePeriod(double value);

private:

 double m_rate;

};

First, we define a new class that becomes responsible for the calculation. A

fundamental principle of object-oriented design is to have responsibilities unified under

very well-defined interfaces. You should embrace this principle when creating C++ classes,

since it will simplify maintenance and avoid costly mistakes. Even if you need to write

additional code using this strategy, the increased organization pays off in the long run.

In the definition of the IntRateCalculator class, we define a constructor, a

destructor, a copy constructor, and the assignment operator. These are methods that,

if you don’t define them yourself, will be added to the class by the compiler. It is useful

to create your own versions of such member functions, however, because in this way,

you can be sure that you are getting the desired behavior, instead of what the compiler

writers think is the right choice.

Note  You should create classes that specify the four basic member functions
automatically defined by the C++ compiler. In this way, you can avoid costly
mistakes by having the created objects use a well-defined life cycle. Failing to
provide such member functions can result in classes that don’t respond correctly
to such basic operations as assignment (defined by the assignment operator) and
copy construction. If your class is supposed to be the base for other classes, you
should also make the destructor virtual, so that the derived classes can properly
release the resources they use. This way, the runtime system can properly detect
the polymorphic type of the object and call the right destructor.

Chapter 1 The Fixed Income Market

9

The compiler automatically adds the following member functions, unless you specify

otherwise in the class declaration:

•	 The default constructor: The default constructor is automatically

added, allowing an object to be created using the new keyword,

even if the class writer didn’t include it. A default constructor is one

that has no arguments. It is not included automatically, however,

if the class declaration contains another constructor that requires

arguments. For example, in our IntRateCalculator class, the

constructor receives one parameter, the interest rate. Therefore, the

default constructor is not automatically included, which means that

to create an object of the IntRateCalculator class, the programmer

needs to specify a valid interest rate argument.

•	 The copy constructor: The copy constructor allows you to create

copies of an existing object of the same class. It is included by default

only if there are no other constructors in the class definition. In

our case, we need to supply a copy constructor, to guarantee that

it is possible to create copies of existing objects. Copy constructors

become important when objects need to be added to containers,

particularly the containers provided in the STL, such as vectors,

maps, and multimaps.

•	 The destructor: A destructor defines how the resources used by a

particular object will be freed once the object is destroyed. A proper

constructor is required to avoid memory leaks and other undesirable

resource leaks in an object. In the IntRateCalculator class, there are

no internal or external resources that need to be freed, but it is still

better to define this explicitly.

•	 The moving constructor: A moving constructor provides the

operations used when the C++ moving semantic is required.

•	 The assignment operator: This member function is used when an

assignment operation occurs between two objects of the same class.

Defining this type, you can specify how the contents of an object are

transferred from one object to the next: that can be done either by value

or by reference. Other details of the copy, such as reference counters,

for example, can also be established in the assignment operator.

Chapter 1 The Fixed Income Market

10

The singlePeriod member function encapsulates the operation that returns the

future value of a deposit after a single period. Depending on the structure of the loan or

the input parameters, this can refer to 1 month or 1 year of interest. The signature of the

member function is

double singlePeriod(double value);

This simple version of the code uses the double type (instead of float) for extra

precision. In the next chapters, we will discuss how to deal with precision issues that are

inherent to floating point numbers.

The IntRateCalculator class contains a single member variable, m_rate, which

stores the current interest rate. In this way, it is not necessary to input the interest rate

every time the singlePeriod member function is called. Therefore, to create a new

instance of IntRateCalculator, you need to provide the interest rate as a parameter to

the constructor.

The header file, IntRateCalculator.h, defines the singlePeriod member function

as inline (see Listing 1-2).

inline double IntRateCalculator::singlePeriod(double value)

{

 double f = value * (1 + this->m_rate);

 return f;

}

The keyword inline is used here to suggest that the member function be directly

embedded in the code that calls it. What this means is that there is no penalty for calling

this function, since the function call will be removed from the executed code, and the

content of the method will be directly substituted. Think of this as a way of achieving

the same performance of a macro, with all the compiler support of calling a function. In

high-performance C++ code, it is common to see member functions defined as inline, in

order to achieve even higher performance than equivalent member function calls. This

kind of flexibility is one of the features that separate C++ from other languages, where it

would be much more difficult to achieve similar performance.

Chapter 1 The Fixed Income Market

11

�Complete Code
Listing 1-2.  IntRateCalculator.h

//

// IntRateCalculator.h

#ifndef __FinancialSamples__IntRateCalculator__

#define __FinancialSamples__IntRateCalculator__

#include <iostream>

class IntRateCalculator {

public:

 IntRateCalculator(double rate);

 IntRateCalculator(const IntRateCalculator &v);

 IntRateCalculator &operator =(const IntRateCalculator &v);

 ~IntRateCalculator();

 double singlePeriod(double value);

private:

 double m_rate;

};

inline double IntRateCalculator::singlePeriod(double value)

{

 double f = value * (1 + this->m_rate);

 return f;

}

#endif /* defined(__FinancialSamples__IntRateCalculator__) */

//

// IntRateCalculator.cpp

#include "IntRateCalculator.h"

IntRateCalculator::IntRateCalculator(double rate)

: m_rate(rate)

Chapter 1 The Fixed Income Market

12

{

}

IntRateCalculator::~IntRateCalculator()

{

}

IntRateCalculator::IntRateCalculator(const IntRateCalculator &v)

: m_rate(v.m_rate)

{

}

IntRateCalculator &IntRateCalculator::operator=(const IntRateCalculator &v)

{

 if (&v != this)

 {

 this->m_rate = v.m_rate;

 }

 return *this;

}

//

// main.cpp

#include "IntRateCalculator.h"

#include <iostream>

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 if (argc != 3)

 {

 �std::cout << "usage: progName <interest rate> <value> "

<< std::endl;

 return 1;

 }

Chapter 1 The Fixed Income Market

13

 double rate = atof(argv[1]);

 double value = atof(argv[2]);

 IntRateCalculator irCalculator(rate);

 double res = irCalculator.singlePeriod(value);

 std::cout << " result is " << res << std::endl;

 return 0;

}

�Sample Use
First, you need to compile the code using your favorite C++ compiler. For example, using

the makefile provided in a UNIX platform, you could just use the make command, with

the following results:

$ make

gcc –c IntRateCalculator.cpp

gcc –c main.cpp

gcc –o intrate IntRateCalculator.o main.o

You can now run this program by passing a given interest rate and initial value. For

example, you could type the following:

./intrate 0.08 10000

 result is 10800

This shows that the future value of an investment of $10,000 at an 8% interest rate is

$10,800 after a single period.

�Compound Interest
You can use simple interest rates to analyze single-period cash flows. However, most

financial operations, such as loans, have multiple periods. For this purpose, you need to

consider compound interest.

Chapter 1 The Fixed Income Market

14

�Problem
Calculate the compound interest accumulated by a given principal value after the

passage of N time periods.

�Solution
The solution uses a new C++ class that encapsulates the concept of compound interest.

With this class, it becomes easy to answer the proposed question using two member

functions. The first function, multiplePeriod, returns the future value of a fixed income

investment after a given number of periods, as passed in the function parameter.

As mentioned previously, interest can be calculated either as a discrete or a

continuous compounding process. For discrete compounding, we assume that interest

is paid only at regular intervals, as defined by the investment vehicle. The compounding

happens as interest is added to the original principal.

The formula for discrete compounded interest rate is

	 V P R
N� �� �1 	

where P is the present value, V is the future value, R is the interest rate, and N is

the number of periods. The interest rate is the value passed as a parameter to the class

constructor and stored as a member variable. The number of periods N is passed as the

second parameter to the multiplePeriod method.

For continuous compounding calculation, you need to use a separate method,

continuousCompounding. In this case, we assume that compounding doesn’t happen in

discrete steps but that the payments are made continuously over time. This is a possible

way to determine the future value of a financial application (or at least an upper bound

for the desired future value).

The formula for the calculation of continuous interest rate compounding is

	 V PeRN= 	

Here, V is the desired future value, P is the present value, R is the interest rate during

the period, and N is the number of periods. For example, to find the future value of

continuously compounded interest after 2 years at 8% interest per year, you should use

the value of the previous equation with parameters R = 0.08 and N = 2.

Chapter 1 The Fixed Income Market

15

�How It Works
The two member functions, multiplePeriod and continuousCompounding, calculate the

given formulas using the mathematical functions pow and exp from the standard C++

library. These two functions implement a fast way to calculate the power function and

the exponential function, respectively.

To use any mathematical function from the standard library, you should first include

the header file cmath. Table 1-1 provides a short list of mathematical functions made

available from that header file.

Table 1-1.  Some of the Mathematical Functions in

the Standard Library

Function Corresponding mathematical operations

exp Exponential function (natural base)

pow Power function

log Natural logarithm function

log10 Logarithm function on decimal base

sqrt Square root function

Sin Sine function

cos Cosine function

tan Tangent function

acos Arc cosine function (inverse of cosine)

asin Arc sine function (inverse of sine)

atan Arc tangent function (inverse of tangent)

ceil Ceiling function (smallest integer higher than

parameter)

floor Floor function (largest integer lower than parameter)

fabs Absolute value for float numbers

Chapter 1 The Fixed Income Market

16

The mathematical functions provided by the standard library should be used

whenever possible, instead of custom versions, for the following reasons:

•	 Compatibility: Using functions from the standard library guarantees

that they will be available in any compiler that implements it.

•	 Performance: Functions in the standard library are implemented

as part of the package sold by compiler vendors. The code of these

mathematical functions is generally optimized for the particular

architecture, which usually results in much better performance.

�Complete Code
The code in Listing 1-3 shows the implementation for class

CompoundIntRateCalculator, divided into a header file and an implementation file.

I also present a sample main function that shows how to use the class.

Listing 1-3.  CompoundIntRateCalculator.h

//

// CompoundIntRateCalculator.h

#ifndef __FinancialSamples__CompoundIntRateCalculator__

#define __FinancialSamples__CompoundIntRateCalculator__

class CompoundIntRateCalculator {

public:

 CompoundIntRateCalculator(double rate);

 CompoundIntRateCalculator(const CompoundIntRateCalculator &v);

 CompoundIntRateCalculator &operator =(const CompoundIntRateCalculator &v);

 ~CompoundIntRateCalculator();

 double multiplePeriod(double value, int numPeriods);

 double continuousCompounding(double value, int numPeriods);

 private:

 double m_rate;

};

Chapter 1 The Fixed Income Market

17

#endif /* defined(__FinancialSamples__CompoundIntRateCalculator__) */

//

// CompoundIntRateCalculator.cpp

#include "CompoundIntRateCalculator.h"

#include <cmath>

CompoundIntRateCalculator::CompoundIntRateCalculator(double rate)

: m_rate(rate)

{

}

CompoundIntRateCalculator::~CompoundIntRateCalculator()

{

}

CompoundIntRateCalculator::CompoundIntRateCalculator(const

CompoundIntRateCalculator &v)

: m_rate(v.m_rate)

{

}

CompoundIntRateCalculator &CompoundIntRateCalculator::operator =(const

CompoundIntRateCalculator &v)

{

 if (this != &v)

 {

 this->m_rate = v.m_rate;

 }

 return *this;

}

Chapter 1 The Fixed Income Market

18

double CompoundIntRateCalculator::multiplePeriod(double value, int

numPeriods)

{

 double f = value * pow(1 + m_rate, numPeriods);

 return f;

}

double CompoundIntRateCalculator::continuousCompounding(double value, int

numPeriods)

{

 double f = value * exp(m_rate * numPeriods);

 return f;

}

//

// main.cpp

#include "CompoundIntRateCalculator.h"

#include <iostream>

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 if (argc != 4)

 {

 �std::cout << "usage: progName <interest rate> <present value> <num

periods>" << std::endl;

 return 1;

 }

 double rate = atof(argv[1]);

 double value = atof(argv[2]);

 int num_periods = atoi(argv[3]);

 CompoundIntRateCalculator cIRCalc(rate);

 double res = cIRCalc.multiplePeriod(value, num_periods);

 double contRes = cIRCalc.continuousCompounding(value, num_periods);

Chapter 1 The Fixed Income Market

19

 �std::cout << " future value for multiple period compounding is " << res

<< std::endl;

 �std::cout << " future value for continuous compounding is " << contRes

<< std::endl;

 return 0;

}

�Sample Use
The code in Listing 1-3 can be compiled into an executable and run from the command

line. The program expects three arguments: the interest rate, the present value of the

investment, and the number of periods of compounding.

The following is an example of its use:

$./compound 0.05 1000 4

 future value for multiple period compounding is 1215.51

 future value for continuous compounding is 1221.4

As expected, the value returned by continuous compounding is slightly higher than

the value achieved by discrete compounding.

�Modeling Cash Flows
A more general way of thinking about fixed income investments is to look at the flow

of cash exchanged between the two involved parties. A cash flow is a sequence of

payments, scheduled during a specified period of time. It is clear that the value of the

cash flows between two entities should be equal in some way. In this section, you will

learn how to determine if a set of cash flows is equivalent.

�Problem
Calculate the present value of two cash flows and determine if they are equivalent.

Chapter 1 The Fixed Income Market

20

�Solution
Cash flows are the basic tool for comparing two or more fixed income investments. A

cash flow establishes the sequence of cash transfers between two interested parties. The

traditional way to denote these cash exchanges is by using positive and negative values.

For example, consider a common loan, where a customer requests a quantity at a

given interest rate. The customer will make a sequence of cash payments during the

lifetime of the loan. At the end of the transaction, the payments made by both parties

should be equivalent.

The equivalence is established using the concept of present value. The present

value of a payment in the future needs to be discounted by the interest rate that would

be applied to that same value. In other words, discounting is the inverse concept to

compounding.

�Calculating Present Value

A general principle of investing is that money in your pocket today is more valuable

than the same money received in the future. This general principle can be quantified

using the knowledge of value compounding based on interest rates. The present value

of a fixed income investment is the value that corresponds to the sum of cash flows

taking place in the future, after their corresponding interest has been considered and

discounted.

The formula for present value (PV) of a future payment is determined by

	 PV FV R
N� �� �/ 1 	

In this equation, PV is the desired present value, FV is the future value that we want

to discount, R is the interest rate, and N is the number of periods between the present

value and the future value.

As you see, the formula for PV is the inverse of the calculation of compound interest

rate. This clearly shows that we are just using a similar process to determine a present

value when starting from a known future value.

Chapter 1 The Fixed Income Market

21

�Calculating Present Value in C++

Formulas for calculating PV can be found in any financial engineering book. For a C++

programmer, however, the main interest in this topic is centered on how to perform PV

calculations with high performance. The standard procedure is to denote values paid by

the two parties using positive and negative signs. For example, we can denote an initial

loan as a negative number and each payment of the loan as a positive number. Using this

approach, for a cash flow from two parties to be equivalent, the present value of all cash

transfers needs to add to zero.

This is the method used by the CashFlowCalculator class, which is presented next.

Here is the class definition.

class CashFlowCalculator {

public:

 // constructors

 void addCashPayment(double value, int timePeriod);

 double presentValue();

private:

 std::vector<double> m_cashPayments;

 std::vector<int> m_timePeriods;

 double m_rate;

 double presentValue(double futureValue, int timePeriod);

};

The addCashPayment method is used to add new payments to the desired cash flow.

The arguments are the value of the payment, and the second is the time period when

this payment occurs. The value is positive or negative depending on the originator of the

payment, as previously discussed. The data is stored on two vectors, m_cashPayments

and m_timePeriods, using the STL vector template.

Chapter 1 The Fixed Income Market

22

The presentValue method in this class is used to compute the PV or the whole cash

flow stored in the current object. This is done with the determination of the PV for each

cash exchange as stored in the m_cashPayments vector and finally adding these values to

the total variable.

double CashFlowCalculator::presentValue()

{

 double total = 0;

 for (int i=0; i<m_cashPayments.size(); ++i)

 {

 total += presentValue(m_cashPayments[i], m_timePeriods[i]);

 }

 return total;

}

The auxiliary member function presentValue(double, int) is used to calculate the

PV for a single payment. It is defined using the foregoing formula.

double CashFlowCalculator::presentValue(double futureValue, int timePeriod)

{

 double pValue = futureValue / pow(1+m_rate, timePeriod);

 std::cout << " value " << pValue << std::endl;

 return pValue;

}

�Using STL Containers

The code in the CashFlowCalculator class is made simpler by the use of vector

containers. The std::vector<> template is used in modern C++ applications to store

ordered sequences of elements that require random access. Unlike traditional C and

C++ arrays, which decay to pointers when passed as arguments to a function, a vector is

an object that maintains its properties, such as size, during the whole time the vector is

used. A vector also knows how to clean up after itself, avoiding memory leaks that are so

common in old-style C++ applications.

To use a vector in a C++ application, you need to declare the object by passing the

element type as a parameter to the vector template. Therefore, std::vector<int> will

create a vector of int elements. The vector template class has member functions that can

be used to manipulate and retrieve information about the elements.

Chapter 1 The Fixed Income Market

23

•	 size: Returns the number of elements stored in the vector object.

•	 push_back: Copies the object passed as a parameter and stores it at

the end of the vector. If necessary, additional memory is allocated for

the new element, which can take O(n).

•	 pop_back: Removes the last element from the vector and undoes

the changes made by push_back (except for memory that is not

released).

•	 operator[]: Provides access to the contents of the vector, using

syntax similar to the access of traditional C++ arrays.

The vector template is just one among other STL containers that are available for

C++ developers. The complete list changes as new templates are added to the standard

library, but Table 1-2 lists the most used containers.

Table 1-2.  Common Containers Provided by the STL

Container Description

vector Ordered collection of elements with constant random access time

queue Container where elements are added at the end and removed from the front position

map Associative container that connects keys to their associated element

multimap Associative container that connects keys to a set of associated elements

list A linked list of elements, which provides constant time inclusion/exclusion at any

position

stack A specialized container that allows only addition and removal of the last element (the

top of the stack)

�Complete Code
Listing 1-4 presents the code for the class CashFlowCalculator. The code is divided into

a header file and an implementation file. You can see how to use the code in the example

shown in the section “Running the Code.”

Chapter 1 The Fixed Income Market

24

Listing 1-4.  CashFlowCalculator.h

//

// CashFlowCalculator.h

#ifndef __FinancialSamples__CashFlowCalculator__

#define __FinancialSamples__CashFlowCalculator__

#include <vector>

class CashFlowCalculator {

public:

 CashFlowCalculator(double rate);

 CashFlowCalculator(const CashFlowCalculator &v);

 CashFlowCalculator &operator =(const CashFlowCalculator &v);

 ~CashFlowCalculator();

 void addCashPayment(double value, int timePeriod);

 double presentValue();

private:

 std::vector<double> m_cashPayments;

 std::vector<int> m_timePeriods;

 double m_rate;

 double presentValue(double futureValue, int timePeriod);

};

#endif /* defined(__FinancialSamples__CashFlowCalculator__) */

//

// CashFlowCalculator.cpp

#include "CashFlowCalculator.h"

#include <cmath>

#include <iostream>

CashFlowCalculator::CashFlowCalculator(double rate)

: m_rate(rate)

{

}

Chapter 1 The Fixed Income Market

25

CashFlowCalculator::CashFlowCalculator(const CashFlowCalculator &v)

: m_rate(v.m_rate)

{

}

CashFlowCalculator::~CashFlowCalculator()

{

}

CashFlowCalculator &CashFlowCalculator::operator =(const CashFlowCalculator

&v)

{

 if (this != &v)

 {

 this->m_cashPayments = v.m_cashPayments;

 this->m_timePeriods = v.m_timePeriods;

 this->m_rate = v.m_rate;

 }

 return *this;

}

void CashFlowCalculator::addCashPayment(double value, int timePeriod)

{

 m_cashPayments.push_back(value);

 m_timePeriods.push_back(timePeriod);

}

double CashFlowCalculator::presentValue(double futureValue, int timePeriod)

{

 double pValue = futureValue / pow(1+m_rate, timePeriod);

 std::cout << " value " << pValue << std::endl;

 return pValue;

}

Chapter 1 The Fixed Income Market

26

double CashFlowCalculator::presentValue()

{

 double total = 0;

 for (int i=0; i<m_cashPayments.size(); ++i)

 {

 total += presentValue(m_cashPayments[i], m_timePeriods[i]);

 }

 return total;

}

//

// main.cpp

#include "CashFlowCalculator.h"

#include <iostream>

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 if (argc != 2)

 {

 std::cout << "usage: progName <interest rate>" << std::endl;

 return 1;

 }

 double rate = atof(argv[1]);

 CashFlowCalculator cfc(rate);

 do {

 int period;

 std::cin >> period;

 if (period == -1) {

 break;

 }

 double value;

 std::cin >> value;

 cfc.addCashPayment(value, period);

Chapter 1 The Fixed Income Market

27

 } while (1);

 double result = cfc.presentValue();

 std::cout << " The present value is " << result << std::endl;

 return 0;

}

�Running the Code
The program can be compiled using a standards-compliant C++ compiler such as GCC

on Linux or Mac OS X. The resulting program can be executed in the following way:

./presentValue 0.08

1 200

2 300

3 500

4 -1000

-1

 value 190.476

 value 272.109

 value 431.919

 value -822.702

 The present value is 71.8014

The first few lines display the input for the program. The command line argument

(in this case 0.08) is the desired interest rate—it is used as the parameter to the class

constructor. The following lines are a sequence of the time periods and payment values.

The last line of the sequence is marked using the number -1. When that number is read,

the program stops reading the input and starts to calculate the PV of the given cash

transfers, in the order in which they were received.

The last few lines display the output of the program. The code prints the PV for each

component of the cash flow. Finally, it prints the PV of the whole sequence of payments.

To use this program to validate a common fixed income instrument, such as a loan, you

should input each pair of time period–payment value. At the end of the calculation, the

PV should add to zero (or close to zero, due to possible numerical inaccuracies).

Chapter 1 The Fixed Income Market

28

�Modeling Bonds
Bonds are a very common type of fixed income instrument. They are used by large

corporations and governments all over the world to attract cash investments that will be

repaid in the long term. In exchange, they offer the guaranteed payment of a periodic

coupon. Most bonds mature (are paid off) in a time period between 5 and 30 years.

�Problem
Create a C++ class to model a bond instrument and determine its annual interest rate.

�Solution
Bonds are structured in such a way that the investor deposits the principal value at the

beginning of the term of the bond. Frequently, the principal is repaid in its entirety at

maturity. Between the period between the initial investment and its maturity, investors

are paid a constant value, also called the coupon value, which determines the interest

rate paid by the bond.

For example, consider a 30-year, $100,000 bond investment in company XYZ, with

an annual coupon of $5,000. This translates into a fixed income investment that pays a

5% interest on the principal. Company XYZ has the right to use the principal during the

specified period of time, and the total value of the principal is returned to the investor in

30 years at maturity.

To model this kind of investment using C++, you can create a class that contains the

needed information, such as principal value, coupon value, and maturity period. The

class has the following declaration:

class BondCalculator {

public:

 �BondCalculator(const std::string institution, int numPeriods, double

principal, double couponValue);

 BondCalculator(const BondCalculator &v);

 BondCalculator &operator =(const BondCalculator &v);

 ~BondCalculator();

 double interestRate();

Chapter 1 The Fixed Income Market

29

private:

 std::string m_institution;

 double m_principal;

 double m_coupon;

 int m_numPeriods;

};

This class has member variables that store the name of the institution that

originates the bond (known as the issuer), the principal invested, the coupon amount,

and the number of periods (usually defined in years). The class can be used to record

information about bond investments as part of an application that tracks such fixed

income investments. The interestRate method can be used to return the internal rate

of returned implied by the coupon.

�Complete Code
Listing 1-5 shows a complete listing for class BondCalculator. The code is split into a

header file and an implementation file. You can also check a sample usage contained in

the main function.

Listing 1-5.  BondCalculator.h

//

// BondCalculator.h

#ifndef __FinancialSamples__BondCalculator__

#define __FinancialSamples__BondCalculator__

class BondCalculator {

public:

 �BondCalculator(const std::string institution, int numPeriods, double

principal, double couponValue);

 BondCalculator(const BondCalculator &v);

 BondCalculator &operator =(const BondCalculator &v);

 ~BondCalculator();

 double interestRate();

Chapter 1 The Fixed Income Market

30

private:

 std::string m_institution;

 double m_principal;

 double m_coupon;

 int m_numPeriods;

};

#endif /* defined(__FinancialSamples__BondCalculator__) */

//

// BondCalculator.cpp

#include "BondCalculator.h"

BondCalculator::BondCalculator(const std::string institution, int numPeriods,

 double principal, double couponValue)

: m_institution(institution),

 m_numPeriods(numPeriods),

 m_principal(principal),

 m_coupon(couponValue)

{

}

BondCalculator::BondCalculator(const BondCalculator &v)

: m_institution(institution),

 m_numPeriods(v.m_numPeriods),

 m_principal(v.m_principal),

 m_coupon(v.m_coupon)

{

}

BondCalculator::~BondCalculator()

{

}

Chapter 1 The Fixed Income Market

31

BondCalculator &BondCalculator::operator =(const BondCalculator &v)

{

 if (this != &v)

 {

 this->m_institution = v.m_institution;

 this->m_principal = v.m_principal;

 this->m_numPeriods = v.m_numPeriods;

 this->m_coupon = v.m_coupon;

 }

 return *this;

}

double BondCalculator::interestRate()

{

 return m_coupon / m_principal;

}

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 if (argc != 4)

 {

 �std::cout << "usage: progName <institution> <principal> <coupon>

<num periods>"

 << std::endl;

 return 1;

 }

 std::string issuer = argv[1];

 double principal = atof(argv[2]);

 double coupon = atof(argv[3]);

 int num_periods = atoi(argv[4]);

 BondCalculator bc(issuer, principal, coupon, num_periods);

 �std::cout << "reading information for bond issued by " << issuer <<

std::endl;

Chapter 1 The Fixed Income Market

32

 �std::cout << " the internal rate of return is " << bc.interestRate() <<

std::endl;

 return 0;

}

�Running the Code
The code can be compiled using a standards-compliant C++ compiler. It has been tested

on Linux and Mac OS X. You can run the program using the following command at your

preferred shell:

$./bondCalculator XYZ 100000 5000 20

reading information for bond issued by XYZ

 the internal rate of return is 0.5

The first line in bold is the command that you need to execute. The parameters are

the name of the issuer institution, the total principal invested in the bond, the value of

the periodic coupon, and the number of time periods for this investment.

The output of the program displays the rate of return calculated from the coupon

value. The class BondCalculator can now be used in a larger application to store

information about this type of fixed income investment.

�Further Reference
This chapter provides an introduction to the general topic of fixed income investments.

While we are mostly concerned about the C++ programming issues involved in this area,

there are several books that can help you get a greater understanding of the financial

engineering techniques that were introduced here.

The following books are just suggestions that you can explore to achieve a better

understanding of the world of fixed income investments.

•	 Investment Science by David Luenberger (Oxford University Press,

1998): This is an undergraduate-level book that describes the basic

theory of investment. Most of the book explains the fundamentals

of fixed income investments, including algorithms for the most

common problems.

Chapter 1 The Fixed Income Market

33

•	 Investments by Zvi Bodie, Alex Kane, and Alan Marcus (McGraw-

Hill/Irwin, 2004): This is a standard textbook on investment theory

that explains, among other topics, the ideas behind fixed income

investments.

•	 Mathematics for Finance by Marek Carpinski and Tomasz Zastawniak

(Springer, 2011): This book is more for the mathematically inclined.

It not only explains the basics of fixed income investments but also

gives a lot of mathematical methods that are useful in their analysis.

�Conclusion
In this chapter, I introduced the topic of fixed income investments and how they can be

modeled and analyzed using C++ code. The first part of the chapter explains the general

concepts behind fixed income investments. These investments are used as a relatively

safe way to maintain and generate wealth, as compared to the equity and derivatives

market.

I have also explained why C++, especially in its current standard C++20, is the ideal

programming language to create computational solutions for the problems in this area

of finance. Due to its performance characteristics and high-level programming support,

C++ provides the best balance between expressiveness and raw speed. As a result, C++

is the de facto standard for the development of core applications in the finance field,

especially in applications that deal with fixed income data.

The first example introduced a basic class that can be used to calculate simple

interest rates. It introduces not only the concept of interest rate calculation methods but

also the typical way such solutions are designed and coded in modern C++.

The second example introduced the concept of interest rate compounding, both

in discrete and continuous intervals. You learned there how to create a C++ class to

calculate this type of interest rate using standard C++ library functions. I presented a

summary of such mathematical functions and how they are used in C++ programs.

The third example in this chapter explored the important concept of cash flows and

their corresponding PV. The calculation of PV is central to the comparison of two or

more fixed income investments. Using the inverse of the formulas for interest rate, you

can determine the real value of a given set of cash flows in the present. You learned how

to solve this type of problem using a new C++ class.

Chapter 1 The Fixed Income Market

34

Finally, this chapter explains how bonds are used in financial applications and

presented a class to model these investments. In future chapters, you will learn more

about the computational challenges of using these financial vehicles as part of an

investment portfolio.

In the next chapter, I will introduce another large part of the financial investment

landscape: the equities market. You will see a few programming techniques that can be

useful in these markets, along with an introduction to other important concepts that we

explore in the later part of this book.

Chapter 1 The Fixed Income Market

35
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_2

CHAPTER 2

The Equities Market
Owning shares of company profits is one of the most common ways to invest and

generate wealth. A large number of people who have made a fortune have achieved

it by creating or buying an equity stake in a successful corporation. This is the reason

the equity market is so popular among all kinds of investors. Moreover, the stock

market is so vast that it provides opportunities for everyone willing to participate: from

small investors to large hedge funds, you will find an investment style for each kind of

participant.

The equities market is also an exciting area for software engineers, since it provides

so many opportunities to apply computational techniques, which can be implemented

in C++. Software engineers are also great allies to market analysts and investors in

general, helping in vital activities such as modeling market data and devising algorithms

needed to make fast and accurate trading decisions.

Due to their large size, equity markets are multifaceted and offer a huge variety

of investment vehicles. From small cap stocks to blue chips, ETFs (exchange-traded

funds), equity and index options, and other derivatives, there are a great number of

opportunities for employing investment algorithms, in order to get an edge in the

market. As a result, there is also great incentive (from banks and other investment

institutions) to apply high-speed C++ programming techniques to solve such problems.

In this chapter, we present C++ code for a few selected problems occurring in the

equities markets and their derivatives. We will consider financial programming topics

such as the following:

•	 Calculating simple moving averages

•	 Computing exponential moving averages

•	 Calculating volatility

•	 Computing correlation of equity instruments

•	 Modeling and calculating fundamental indicators

https://doi.org/10.1007/978-1-4842-6834-6_2#DOI

36

�Equities Market Concepts
Equity markets exist to expedite the trading of equity-based investments. The goal of an

equity investment is to allocate money directly or indirectly to company stock, which

gives buyers a certain share of ownership in a company. The idea behind this investment

is to profit from the growth of the institution represented by that particular investment

vehicle. For example, buying shares of IBM stock gives ownership of a small part of the

company, along with the future profits associated with that ownership.

Direct stock ownership is the simplest example of an equity investment. Anyone with

a brokerage account can buy shares in public companies, that is, companies that have

put their shares for sale in the public market. Using their particular trading accounts

or retirement accounts, individual investors have the ability to invest in any one of the

thousands of publicly traded companies in the US and international markets.

However, directly controlling a company stock is not the only (or even the easiest)

way to participate in the stock market. There are nowadays a plethora of products that

offer alternative ways to invest in equity. This includes mutual funds, ETFs, index funds,

options, and other more exotic derivatives. How to select the right instrument from such

a large array of tradable issues is one of the many problems faced by money managers

and individual investors.

�Market Participants
The equities market is composed of many participants. They have different goals and

interests; however, they work continuously to maintain market prices while trying to

profit from them.

Large institutions form a sizable portion of the equities market landscape. These

big, sell-side investment institutions (such as investment banks and exchanges) are

viewed as the backbone of the market. Therefore, they are also commonly referred to as

market makers. These large companies are buying and selling great volumes of equity

investment vehicles (such as stocks) daily, with the goal of having small profits in each

operation. More recently, high-frequency trading was added to this picture, resulting in

increased volume and speed in market transactions.

Chapter 2 The Equities Market

37

The following is a quick list of the most common players in the equities market:

•	 Mutual funds: These funds receive investments from retail investors

and institutions and make investments in areas of the market

that they believe will have larger than usual investment returns.

Mutual funds are mostly limited to buying stocks and ETFs, so their

performance is limited when the market is in a downtrend.

•	 Hedge funds: Hedge funds use more advanced techniques, such as

shorting stocks and buying options and futures on risky investments

not available to common investors, so they are limited to wealthier

investors and some kinds of institutions that can cope with the

increased risk.

•	 Investment banks: These institutions are actively working on

the market composition. For example, they act in bringing to the

market new issues (also known as IPOs) that will be traded by other

investors. They are also allowed to trade for themselves and other

large clients.

•	 High-frequency trading funds: These funds use high-performance

computational techniques to provide instant liquidity to the markets

while making small profits in a large number of transactions.

•	 Brokerage companies: These companies work directly with

individual investors providing the ability to buy or sell stocks, ETFs,

mutual funds, and options for a small or even no commission per

transaction. Their services are made available through the Internet

on several platforms such as desktops, web browsers, and mobile

devices.

•	 Pension funds: These are institutions that hold large pools of

investment money derived from retirement funds. They are geared

toward long-term investments that will support the desired growth of

the fund for an extended time period.

•	 Retail investors: These are individuals who control a brokerage

account and do their own research and make their own decisions on

what to buy and sell in the market.

Chapter 2 The Equities Market

38

As you can see, there is a great deal of competition for profits in the equities

market. Most large institutions spend a lot of money on research that can give them an

edge on the future moves of the market. This type of analytical approach depends on

accurate information and instant access to trading data, which is possible only with the

computational power provided by computer software, most of it written in languages

such as C++.

In the next few sections, I provide C++ examples for common problems found in the

analysis of equity investments. You will learn about tools and concepts that can be used

in a large number of situations in which equity investments are involved.

�Moving Average Calculation
�Problem
Given a particular equity investment, determine the simple moving average and the

exponential moving average for a sequence of closing prices.

�Solution
One of the most common strategies to analyze equity instruments such as stocks and

ETFs is to use supply/demand methods that consider price and volume as the important

variables to observe. Traders who use price/volume-based strategies call this set of

methods technical analysis (TA). With TA, traders look at special price points that have

been defined by previous price movements, such as support, resistance, trend lines,

and moving averages, with the objective of identifying pricing regions with a higher

probability of profit.

For example, support and resistance values are typically used to determine price

areas that are considered to be of importance for a given instrument. If a stock reaches a

certain price when moving up and reverses course, the high price point is considered to be

a resistance price. In the future, when the price again reaches the same area, traders will

tend to sell around in the same region, creating an even stronger resistance point. Similarly,

support prices are formed when traders buy the same stock or ETF in a well-known region.

A similar type of pattern occurs with moving averages. Buyers and sellers tend to

look at moving averages to determine if a particular stock is on a low-risk buy or sell

point. These psychological price points are self-reinforcing and play an important role in

Chapter 2 The Equities Market

39

the dynamics of equity trading. Figure 2-1 shows an example of a moving average used in

the analysis of common stock for Apple.

The moving average can be calculated using a simple average formula that is

repeated for each new period. Given prices p1, p2, ..., pN, the general formula for a

particular time period is given by

MA = (1/N) (p1 + p2 + ... + pN)

You can easily perform this calculation if you maintain and update the sequence of

prices as new values are added to the sequence.

To calculate the moving average in C++, we first create a new class that stores a

sequence of prices using a STL (standard templates library) vector object. The object is

responsible for adding new values to the sequence, using the addPriceQuote member

function. The implementation of this member function is simple because it relies on the

functionality provided by std::vector to maintain a sequence of numbers, as well as the

storage requirements.

Figure 2-1.  Simple moving average for daily prices of Apple (AAPL), with
parameter 50

Chapter 2 The Equities Market

40

void MACalculator::addPriceQuote(double close)

{

 m_prices.push_back(close);

}

The number of periods for moving average calculation is determined by the

parameter to the constructor of the MACalculator class. For example, to compute a

moving average for 20 time periods (normally the equivalent to 4 trading weeks when

the period is a single trading day), you can create an object of the MACalculator class in

the following way:

MACalculator calculator(20); // will compute the moving average for 20 periods.

The calculation of the simple moving average is performed by the calculateMA

member function of the MACalculator class. The main idea of this function is to iterate

through the sequence of prices stored in the MACalculator class, as shown in the

following code:

std::vector<double> MACalculator::calculateMA()

{

 std::vector<double> ma;

 double sum = 0;

 for (int i=0; i<m_prices.size(); ++i)

 {

 sum += m_prices[i];

 if (i >= m_numPeriods)

 {

 ma.push_back(sum / m_numPeriods);

 sum -= m_prices[i-m_numPeriods];

 }

 }

 return ma;

}

To calculate a moving average, it is necessary to have at least the number of

observations determined by the number of periods (let N be the number of periods).

Therefore, the first N elements of the vector of prices don’t generate a corresponding

Chapter 2 The Equities Market

41

moving average. These initial elements are simply added to the sum local variable, so

their values are used later.

For each element after the Nth position, it is possible to calculate the moving

average. This is achieved using the sum of the previous N elements and dividing it by

the value N. The resulting value is appended to the vector of moving average elements.

Finally, it is necessary to update the variable sum, so that the first item of the N-element

sequence is dropped from the summation. This happens when the algorithm subtracts

the value m_prices[i-m_numPeriods], preparing for the next iteration.

The exponential moving average (EMA) is different from the simple moving average

because each new value is multiplied by a factor. This factor is used to give more

weight to new values, as compared to older observations. As a result, the EMA is more

responsive to changes in the observed values, and it can indicate new trends sooner and

with better accuracy. This may be an advantage if you want to quickly spot changes in

trend. The following is the code that I used:

std::vector<double> MACalculator::calculateEMA()

{

 std::vector<double> ema;

 double multiplier = 2.0 / (m_numPeriods + 1);

 // calculate the MA to determine the first element corresponding

 // to the given number of periods

 std::vector<double> ma = calculateMA();

 ema.push_back(ma.front());

 // for each remaining element, compute the weighted average

 for (int i=m_numPeriods+1; i<m_prices.size(); ++i)

 {

 double val = (1-multiplier) * ema.back() + multiplier * m_prices[i];

 ema.push_back(val);

 }

 return ema;

}

The initial part of the calculation is similar to the simple moving average. Values are

added using the sum variable, until at least N values have been observed. This is used

as the initial value for the EMA. Different implementations of EMA use other ways to

Chapter 2 The Equities Market

42

initialize the sequence, but the results converge to the same values after a few iterations.

You can see a graphical example of EMA in Figure 2-2.

The main step of the EMA calculation is the addition of new values that are weighted

by the multiplier. The default multiplier r for EMA computation is given by

	
� �

�
2

1N 	

This multiplier gives greater weight to new values, thus making the EMA more

responsive to price changes than the simple moving average.

�Complete Code
In Listing 2-1, you can see the complete implementation of the simple moving average as

well as the EMA. I also show a sample main function that is responsible for reading a few

data points from standard input and calculate the corresponding moving averages.

Figure 2-2.  Exponential moving average with a parameter of 20 days

Chapter 2 The Equities Market

43

Listing 2-1.   MACalculator

//

// MACalculator.h

#ifndef __FinancialSamples__MACalculator__

#define __FinancialSamples__MACalculator__

#include <vector>

class MACalculator {

public:

 MACalculator(int period);

 MACalculator(const MACalculator &);

 MACalculator &operator = (const MACalculator &);

 ~MACalculator();

 void addPriceQuote(double close);

 std::vector<double> calculateMA();

 std::vector<double> calculateEMA();

private:

 // number of periods used in the calculation

 int m_numPeriods;

 std::vector<double> m_prices;

};

#endif /* defined(__FinancialSamples__MACalculator__) */

//

// MACalculator.cpp

#include "MACalculator.h"

#include <iostream>

MACalculator::MACalculator(int numPeriods)

: m_numPeriods(numPeriods)

{

}

Chapter 2 The Equities Market

44

MACalculator::~MACalculator()

{

}

MACalculator::MACalculator(const MACalculator &ma)

: m_numPeriods(ma.m_numPeriods)

{

}

MACalculator &MACalculator::operator = (const MACalculator &ma)

{

 if (this != &ma)

 {

 m_numPeriods = ma.m_numPeriods;

 m_prices = ma.m_prices;

 }

 return *this;

}

std::vector<double> MACalculator::calculateMA()

{

 std::vector<double> ma;

 double sum = 0;

 for (int i=0; i<m_prices.size(); ++i)

 {

 sum += m_prices[i];

 if (i >= m_numPeriods)

 {

 ma.push_back(sum / m_numPeriods);

 sum -= m_prices[i-m_numPeriods];

 }

 }

 return ma;

}

Chapter 2 The Equities Market

45

std::vector<double> MACalculator::calculateEMA()

{

 std::vector<double> ema;

 double sum = 0;

 double multiplier = 2.0 / (m_numPeriods + 1);

 for (int i=0; i<m_prices.size(); ++i)

 {

 sum += m_prices[i];

 if (i == m_numPeriods)

 {

 ema.push_back(sum / m_numPeriods);

 sum -= m_prices[i-m_numPeriods];

 }

 else if (i > m_numPeriods)

 {

 �double val = (1-multiplier) * ema.back() + multiplier * m_

prices[i];

 ema.push_back(val);

 }

 }

 return ema;

}

void MACalculator::addPriceQuote(double close)

{

 m_prices.push_back(close);

}

//

// main.cpp

#include "MACalculator.h"

#include <iostream>

// the main function receives parameters passed to the program

// and calls the MACalculator class

int main(int argc, const char * argv[])

Chapter 2 The Equities Market

46

{

 if (argc != 2)

 {

 std::cout << "usage: progName <num periods>" << std::endl;

 return 1;

 }

 int num_periods = atoi(argv[1]);

 double price;

 MACalculator calculator(num_periods);

 for (;;) {

 std::cin >> price;

 if (price == -1)

 break;

 calculator.addPriceQuote(price);

 }

 std::vector<double> ma = calculator.calculateMA();

 for (int i=0; i<ma.size(); ++i)

 {

 std::cout << "average value " << i << " = " << ma[i] << std::endl;

 }

 std::vector<double> ema = calculator.calculateEMA();

 for (int i=0; i<ema.size(); ++i)

 {

 std::cout << "exponential average value "

 << i << " = " << ema[i] << std::endl;

 }

 return 0;

}

Chapter 2 The Equities Market

47

�Running the Code
You can compile this code using the gcc compiler (as well as any other standards-

compliant compiler such as Visual Studio or C++ builder). For example, the following

command line can be used from the UNIX shell:

gcc -o macalc main.cpp macalculator.cpp

The following is a display of a sample execution of the program:

$./macalc 5

10

11

22

12

13

23

12

32

12

3

2

22

32

-1

average value 0 = 18.2

average value 1 = 18.6

average value 2 = 22.8

average value 3 = 20.8

average value 4 = 19

average value 5 = 16.8

average value 6 = 16.6

average value 7 = 20.6

exponential average value 0 = 18.2

exponential average value 1 = 16.1333

exponential average value 2 = 21.4222

exponential average value 3 = 18.2815

Chapter 2 The Equities Market

48

exponential average value 4 = 13.1877

exponential average value 5 = 9.45844

exponential average value 6 = 13.639

exponential average value 7 = 19.7593

Program ended with exit code: 0

In the first line, I entered the command that calls the moving average program

(which here is simply called macalc). The single argument in the command line

means that I want to calculate the moving average for five data points. Then, I entered

a sequence of numbers that represents the observed prices for a certain investment

vehicle. Finally, I entered the value -1, which indicates the end of the input. The next few

lines then give a list of values that define the simple moving average and the EMA.

�Calculating Volatility
�Problem
Calculate the volatility of a particular equity instrument, given a sequence of prices for

the last few days.

�Solution
One of the important characteristics of stocks and other equity instruments is that they

change in price very frequently. For highly liquid stocks and ETFs, prices will change

during the whole trading day, as new buyers and sellers exchange shares. The result is a

high degree of volatility, as compared to other investment instruments.

Volatility is also an important concept when comparing investment options. For

example, an Internet stock will vary in price much more widely than a traditional food

producer. Their volatility profiles will be completely different. Higher volatility may be an

advantage or a disadvantage, depending on your investment objectives.

The important thing to consider about volatility is that it is not just a one-dimensional

concept. Different investment strategies require different ways of viewing price variations.

For example, if you are making investment decisions based on the expected volatility

for the next few days (due to a news event or earnings release), then the previous week’s

volatility may not be so important.

Chapter 2 The Equities Market

49

In this section, I present three ways to measure volatility given a sequence of prices.

The first strategy is computing the range of values observed during that period. This is

probably the simplest way to view volatility: calculate the highest and lowest observed

values and return its difference. It is also a common indicator used by many investors.

Most newspapers print a list of 1-year high and low prices, so you can quickly see the

simple range for the previous year. The following is the implementation using a

vector of prices:

double VolatilityCalculator::rangeVolatility()

{

 if (m_prices.size() < 1)

 {

 return 0;

 }

 double min = m_prices[0];

 double max = min;

 for (int i=1; i<m_prices.size(); ++i)

 {

 if (m_prices[i] < min)

 {

 min = m_prices[i];

 }

 if (m_prices[i] > max)

 {

 max = m_prices[i];

 }

 }

 return max - min;

}

The second strategy is calculating the average range for a given time period. For

example, many investment strategies use the idea of looking at the past few days and

taking an average of the observed ranges. The result is then charted as an indicator of the

rate of change for a particular stock, for example. Simply calculating the average of the

previously observed daily ranges can be used to return this value. Here is our code.

Chapter 2 The Equities Market

50

double VolatilityCalculator::avgDailyRange()

{

 unsigned long n = m_prices.size();

 if (n < 2)

 {

 return 0;

 }

 double previous = m_prices[0];

 double sum = 0;

 for (int i=1; i<m_prices.size(); ++i)

 {

 double range = abs(m_prices[i] - previous);

 sum += range;

 }

 return sum / n - 1;

}

Finally, a more sophisticated way to gauge the variation of values for an equity

instrument is to use the statistical definition of standard deviation. The standard

deviation is useful as a way to derive volatility from the expected value (also known

as mean) of a set of prices. A well-known formula is used to calculate the standard

deviation, which is given by

1

1 1

2

N
x

i

N

i�
�� �

�
� �

In this equation, N is the number of data points (prices) and m is the average of these

values. The standard deviation can be calculated in C++ with the following code:

double VolatilityCalculator::stdDev()

{

 const double m = mean();

 double sum = 0;

 for (int i=0; i<m_prices.size(); ++i)

 {

 double val = m_prices[i] - m;

Chapter 2 The Equities Market

51

 sum += val * val;

 }

 return sqrt(sum / (m_prices.size()-1));

}

�Complete Code
Listing 2-2 provides the complete code for the strategies just described. I introduce a new

C++ class named VolatilityCalculator, which encapsulates the concept of computing

the price volatility. We have these three strategies coded in the rangeVolatility,

avgDailyRange, and stdDev member functions. You can use this class as a starting point

and later add other methods for volatility calculation as additional member functions.

Listing 2-2.   VolatilityCalculator.h

//

// VolatilityCalculator.h

#ifndef __FinancialSamples__VolatilityCalculator__

#define __FinancialSamples__VolatilityCalculator__

#include <vector>

class VolatilityCalculator

{

public:

 VolatilityCalculator();

 ~VolatilityCalculator();

 VolatilityCalculator(const VolatilityCalculator &);

 VolatilityCalculator &operator=(const VolatilityCalculator &);

 void addPrice(double price);

 double rangeVolatility();

 double stdDev();

 double mean();

 double avgDailyRange();

Chapter 2 The Equities Market

52

private:

 std::vector<double> m_prices;

};

#endif /* defined(__FinancialSamples__VolatilityCalculator__) */

//

// VolatilityCalculator.cpp

#include "VolatilityCalculator.h"

#include <iostream>

#include <cmath>

VolatilityCalculator::VolatilityCalculator()

{

}

VolatilityCalculator::~VolatilityCalculator()

{

}

VolatilityCalculator::VolatilityCalculator(const VolatilityCalculator &v)

: m_prices(v.m_prices)

{

}

VolatilityCalculator &VolatilityCalculator::operator =(const

VolatilityCalculator &v)

{

 if (&v != this)

 {

 m_prices = v.m_prices;

 }

 return *this;

}

Chapter 2 The Equities Market

53

void VolatilityCalculator::addPrice(double price)

{

 m_prices.push_back(price);

}

double VolatilityCalculator::rangeVolatility()

{

 if (m_prices.size() < 1)

 {

 return 0;

 }

 double min = m_prices[0];

 double max = min;

 for (int i=1; i<m_prices.size(); ++i)

 {

 if (m_prices[i] < min)

 {

 min = m_prices[i];

 }

 if (m_prices[i] > max)

 {

 max = m_prices[i];

 }

 }

 return max - min;

}

double VolatilityCalculator::avgDailyRange()

{

 unsigned long n = m_prices.size();

 if (n < 2)

 {

 return 0;

 }

Chapter 2 The Equities Market

54

 double previous = m_prices[0];

 double sum = 0;

 for (int i=1; i<m_prices.size(); ++i)

 {

 double range = abs(m_prices[i] - previous);

 sum += range;

 }

 return sum / n - 1;

}

double VolatilityCalculator::mean()

{

 double sum = 0;

 for (int i=0; i<m_prices.size(); ++i)

 {

 sum += m_prices[i];

 }

 return sum/m_prices.size();

}

double VolatilityCalculator::stdDev()

{

 double m = mean();

 double sum = 0;

 for (int i=0; i<m_prices.size(); ++i)

 {

 double val = m_prices[i] - m;

 sum += val * val;

 }

 return sqrt(sum / (m_prices.size()-1));

}

//

// main.cpp

#include "VolatilityCalculator.h"

#include <iostream>

Chapter 2 The Equities Market

55

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 double price;

 VolatilityCalculator vc;

 for (;;)

 {

 std::cin >> price;

 if (price == -1)

 {

 break;

 }

 vc.addPrice(price);

 }

 �std::cout << "range volatility is " << vc.rangeVolatility() <<

std::endl;

 �std::cout << "average daily range is " << vc.avgDailyRange() <<

std::endl;

 std::cout << "standard deviation is " << vc.stdDev() << std::endl;

 return 0;

}

�Running the Code
Here is an example of the volatility class being used. You can compile the code presented

in Listing 2-2, assuming that the binary is called volatility. Then, you can use the

program by entering price values that will be later used to compute the volatility

employing the three methods described. The end of the input sequence is determined

by a single -1 value entered as the last input value.

$./volatility

3

3.5

5

4.48

Chapter 2 The Equities Market

56

5.2

6

6.1

5.5

5.2

5.7

-1

range volatility is 3.1

average daily range is 0.7

standard deviation is 1.02957

�Computing Instrument Correlation
�Problem
Given a sequence of closing prices for the last N periods, calculate the correlation

between two equity instruments.

�Solution
One of the main problems that money managers need to solve is how to diversify a

portfolio. The problem of diversification occurs because, when investing in the market,

it is not desirable to have all your assets in the same type of investment. Correlated

investments tend to go down at the same time, making it harder to avoid losses in a

portfolio.

For example, consider two companies operating in a similar business. The classic

example is beverage companies such as Coca-Cola and Pepsi. They tend to rise and

fall at the same time due to the similarity of their business. Therefore, we say that they

are highly correlated. Correlation is a mathematical concept that was developed for the

analysis of statistical events. It turns out to be an important concept in the equities market,

since probability plays such a big role in the evaluation and modeling of equity-based

investments.

To make the code for this example more extensible, we divide the solution into two

classes. The first class, called TimeSeries, represents the often-used concept of a set

of numbers that apply to a certain quantity over a given period of time. This concept

Chapter 2 The Equities Market

57

is commonly referred to as a time series. The TimeSeries class is responsible for

calculating values that are specific to a single time series, such as the average, or the

standard deviation.

The second class used is CorrelationCalculator, which is responsible for collecting

data for the desired time series and computing the correlation using the formula

	

1

1N

x x y yi i

x y�
� �� � �� �

� � 	

In this equation, N is the number of observations, xi is the i-th observation of the first

time-series, yi is the i-th observation of the second time-series, x and y are the mean

(average) of the two sequences of prices, sx is the standard deviation of the x values, and

sy is the standard deviation of the y values.

The mean value and the standard deviation are calculated in the TimeSeries class.

These values are then used in the CorrelationCalculator to determine the correlation

between the values observed for both sequences.

�Complete Code
The computation discussed in the previous section is implemented in the class

TimeSeries. Listing 2-3 includes the complete class. You can also see how to use

techniques to calculate correlation, as displayed in the class CorrelationCalculator.

Listing 2-3.   TimeSeries.h

//

// TimeSeries.h

#ifndef __FinancialSamples__TimeSeries__

#define __FinancialSamples__TimeSeries__

#include <vector>

class TimeSeries

{

public:

 TimeSeries();

Chapter 2 The Equities Market

58

 TimeSeries(const TimeSeries &);

 TimeSeries &operator=(const TimeSeries &);

 ~TimeSeries();

 void addValue(double val);

 double stdDev();

 double mean();

 size_t size();

 double elem(int i);

private:

 std::vector<double> m_values;

};

#endif /* defined(__FinancialSamples__TimeSeries__) */

//

// TimeSeries.cpp

#include "TimeSeries.h"

#include <cmath>

#include <iostream>

TimeSeries::TimeSeries()

: m_values()

{

}

TimeSeries::~TimeSeries()

{

}

TimeSeries::TimeSeries(const TimeSeries &ts)

: m_values(ts.m_values)

{

}

TimeSeries &TimeSeries::operator =(const TimeSeries &ts)

{

Chapter 2 The Equities Market

59

 if (this != &ts)

 {

 m_values = ts.m_values;

 }

 return *this;

}

void TimeSeries::addValue(double val)

{

 m_values.push_back(val);

}

double TimeSeries::mean()

{

 double sum = 0;

 for (int i=0; i<m_values.size(); ++i)

 {

 sum += m_values[i];

 }

 return sum/m_values.size();

}

double TimeSeries::stdDev()

{

 double m = mean();

 double sum = 0;

 for (int i=0; i<m_values.size(); ++i)

 {

 double val = m_values[i] - m;

 sum += val * val;

 }

 return sqrt(sum / (m_values.size()-1));

}

size_t TimeSeries::size()

{

 return m_values.size();

}

Chapter 2 The Equities Market

60

double TimeSeries::elem(int pos)

{

 return m_values[pos];

}

//

// CorrelationCalculator.h

#ifndef __FinancialSamples__CorrelationCalculator__

#define __FinancialSamples__CorrelationCalculator__

class TimeSeries;

class CorrelationCalculator

{

public:

 CorrelationCalculator(TimeSeries &a, TimeSeries &b);

 ~CorrelationCalculator();

 CorrelationCalculator(const CorrelationCalculator &);

 CorrelationCalculator &operator =(const CorrelationCalculator &);

 double correlation();

private:

 TimeSeries &m_tsA;

 TimeSeries &m_tsB;

};

#endif /* defined(__FinancialSamples__CorrelationCalculator__) */

//

// CorrelationCalculator.cpp

#include "CorrelationCalculator.h"

#include "TimeSeries.h"

#include <iostream>

CorrelationCalculator::CorrelationCalculator(TimeSeries &a, TimeSeries &b)

: m_tsA(a),

 m_tsB(b)

Chapter 2 The Equities Market

61

{

}

CorrelationCalculator::~CorrelationCalculator()

{

}

CorrelationCalculator::CorrelationCalculator(const CorrelationCalculator &c)

: m_tsA(c.m_tsA),

 m_tsB(c.m_tsB)

{

}

CorrelationCalculator &CorrelationCalculator::operator=(const

CorrelationCalculator &c)

{

 if (this != &c)

 {

 m_tsA = c.m_tsA;

 m_tsB = c.m_tsB;

 }

 return *this;

}

double CorrelationCalculator::correlation()

{

 double sum = 0;

 double meanA = m_tsA.mean();

 double meanB = m_tsB.mean();

 if (m_tsA.size() != m_tsB.size()) {

 �std::cout << "error: number of observations is different"

<< std::endl;

 return -1;

 }

Chapter 2 The Equities Market

62

 for (int i=0; i<m_tsA.size(); ++i)

 {

 auto val = (m_tsA.elem(i) - meanA) * (m_tsB.elem(i) - meanB);

 sum += val;

 }

 double stDevA = m_tsA.stdDev();

 double stDevB = m_tsB.stdDev();

 sum /= (stDevA * stDevB);

 return sum / (m_tsB.size() - 1);

}

//

// main.cpp

#include "CorrelationCalculator.h"

#include "TimeSeries.h"

#include <iostream>

// the main function receives parameters passed to the program

int main(int argc, const char * argv[])

{

 double price;

 TimeSeries tsa;

 TimeSeries tsb;

 for (;;) {

 std::cin >> price;

 if (price == -1)

 {

 break;

 }

 tsa.addValue(price);

 std::cin >> price;

 tsb.addValue(price);

 }

 CorrelationCalculator cCalc(tsa, tsb);

Chapter 2 The Equities Market

63

 auto correlation = cCalc.correlation();

 std::cout << "correlation is " << correlation << std::endl;

 return 0;

}

�Running the Code
After compiling the provided code, you can run the resulting program by calling the

executable without any parameters. The program works by reading the data from

standard input, which you can do manually or by redirecting a file to the program using

the shell. Each line of the input contains prices for the two equity instruments we want

to compare. The last line is marked using the special value -1, which indicates the end of

the input stream.

The following is a sample execution:

$./correlation

1.2 3.4

2 3.3

2.5 3

4 5.5

3 1.2

6 2.4

5.5 3.2

6.3 3.1

7.1 2.9

5.4 3.2

-1

correlation is -0.050601

The second example shows the result for stocks that display inverse correlation:

when the price of the first instrument increases, the price of the second one decreases.

$./correlation

1 10

2 9

3 8

Chapter 2 The Equities Market

64

4 7

5 6

6 5

7 4

-1

 avg is 4

 avg is 7

 avg is 4

 avg is 7

correlation is -1

�Calculating Fundamental Indicators
�Problem
Compute a set of fundamental indicators for a particular stock holding.

�Solution
In the last few sections, we have seen methods for analyzing price changes in equity

instruments. These techniques are generally labeled as technical indicators, since

they allow for the TA of past price and volume data. Another way to analyze stocks is

to consider more fundamental information that is not contained in the sequence of

observed prices. Such fundamental information includes company earnings, intellectual

property, physical assets, and debt.

Fundamental indicators are one of the most common ways of analyzing the quality

of a stock. The disclosure of fundamental information is required from public companies

and released every quarter for most publicly traded stocks. It includes financial data that

is considered by the Securities and Exchange Commission to be of value for investors

and is used to tell how well a company is performing compared to its peers in the

marketplace. For example, earnings per share are a fundamental indicator that tells how

much profit is being generated per period (usually a quarter or a year) for each share

of the stock. This information is then used to make decisions about buying, selling, or

holding a particular investment vehicle.

Chapter 2 The Equities Market

65

In this example, I present a class that can be used to model stocks and allows one to

calculate and display a set of fundamental indicators associated with the stock. The code is

encapsulated in the class FundamentalsCalculator. The idea is to have a central location

where you can calculate and store all the fundamental indicators associated with a stock.

Here is a list of the items that you can retrieve using the FundamentalsCalculator

class and how they are defined:

Price-earnings ratio (P/E): This is calculated as the price of the

total stock of the company divided by the earnings as published in

the last-quarter earnings release. This ratio can be interpreted as

a measure of the cost of the company stock as compared to other

companies with similar earnings.

Book value: The book value corresponds to the amount of assets

currently on the company balance sheet. This is in essence

an accounting measure of the value of the company, without

considering market factors such as future earnings, for example.

Price-to-book ratio (P/B): This ratio is determined by dividing

the stock price by the assets minus liabilities. The following

accounting formula can be used:

StockPrice

Assets Liablities and IntangibleAssets−

Notice that only tangible assets, the ones that can be eventually

sold, are considered in this equation.

Price-earnings to growth (PEG): This indicator can be used to

compare companies with similar P/E but different growth rates.

The formula to calculate this value is simply

P
E

EPS annual growth

Earnings before interest, taxes, depreciation, and amortization

(EBITDA): This is a measure that can be used to determine how

a company is making a profit, and it is based on accounting

information provided by the company in every earnings release.

Chapter 2 The Equities Market

66

The value simply represents how much profit the company made

before items such as taxes and related expenses were paid.

Return on equity (ROE): This ratio is used to determine the

percentage of net income generated based on shareholders’

equity. Investors are usually interested in companies able to

generate higher income on the same amount of equity. The value

is simply calculated as

NetIncome

ShareholdersEquity

Forward P/E: This number is similar to the P/E ratio, but instead

of being calculated based on existing revenue data, it is a

prediction for the next quarter made by analysts. When compared

to P/E, this number can be used to determine if analysts expect

the revenue to increase, decrease, or stay at the same levels.

�Complete Code
Most of the indicators explained in the previous list are easy to calculate, but they

are very important when making decisions on which stocks to buy or sell. The class

presented in Listing 2-2 offers a good place to store the associated data needed for these

indicators, along with the simple calculations needed to produce the desired values with

the minimum amount of input.

Listing 2-4 is the complete listing of the FundamentalsCalc class and its associated

test code.

Listing 2-4.   FundamentalsCalc.h

//

// FundamentalsCalc.h

#ifndef __FinancialSamples__FundamentalsCalc__

#define __FinancialSamples__FundamentalsCalc__

#include <string>

class FundamentalsCalculator {

Chapter 2 The Equities Market

67

public:

 �FundamentalsCalculator(const std::string &ticker, double price, double

dividend);

 ~FundamentalsCalculator();

 FundamentalsCalculator(const FundamentalsCalculator &);

 FundamentalsCalculator &operator=(const FundamentalsCalculator&);

 void setNumOfShares(int n);

 void setEarnings(double val);

 void setExpectedEarnings(double val);

 void setBookValue(double val);

 void setAssets(double val);

 void setLiabilitiesAndIntangibles(double val);

 void setEpsGrowth(double val);

 void setNetIncome(double val);

 void setShareHoldersEquity(double val);

 double PE();

 double forwardPE();

 double bookValue();

 double priceToBookRatio();

 double priceEarningsToGrowth();

 double returnOnEquity();

 double getDividend();

private:

 std::string m_ticker;

 double m_price;

 double m_dividend;

 double m_earningsEstimate;

 int m_numShares;

 double m_earnings;

 double m_bookValue;

 double m_assets;

 double m_liabilitiesAndIntangibles;

 double m_epsGrowth;

Chapter 2 The Equities Market

68

 double m_netIncome;

 double m_shareholdersEquity;

};

#endif /* defined(__FinancialSamples__FundamentalsCalc__) */

//

// FundamentalsCalc.cpp

#include "FundamentalsCalc.h"

#include <iostream>

FundamentalsCalculator::FundamentalsCalculator(const std::string &ticker,

 �double price, double

dividend) :

m_ticker(ticker),

m_price(price),

m_dividend(dividend),

m_earningsEstimate(0),

m_numShares(0),

m_bookValue(0),

m_assets(0),

m_liabilitiesAndIntangibles(0),

m_epsGrowth(0),

m_netIncome(0),

m_shareholdersEquity(0)

{

}

FundamentalsCalculator::FundamentalsCalculator(const FundamentalsCalculator &v) :

m_ticker(v.m_ticker),

m_price(v.m_price),

m_dividend(v.m_dividend),

m_earningsEstimate(v.m_earningsEstimate),

m_numShares(v.m_numShares),

m_bookValue(v.m_bookValue),

m_assets(v.m_assets),

Chapter 2 The Equities Market

69

m_liabilitiesAndIntangibles(v.m_liabilitiesAndIntangibles),

m_epsGrowth(v.m_epsGrowth),

m_netIncome(v.m_netIncome),

m_shareholdersEquity(v.m_shareholdersEquity)

{

}

FundamentalsCalculator::~FundamentalsCalculator()

{

}

FundamentalsCalculator &FundamentalsCalculator::operator=(const

FundamentalsCalculator &v)

{

 if (this != &v)

 {

 m_ticker = v.m_ticker;

 m_price = v.m_price;

 m_dividend = v.m_dividend;

 m_earningsEstimate = v.m_earningsEstimate;

 m_numShares = v.m_numShares;

 m_bookValue = v.m_bookValue;

 m_assets = v.m_assets;

 m_liabilitiesAndIntangibles = v.m_liabilitiesAndIntangibles;

 m_epsGrowth = v.m_epsGrowth;

 m_netIncome = v.m_netIncome;

 m_shareholdersEquity = v.m_shareholdersEquity;

 }

 return *this;

}

double FundamentalsCalculator::PE()

{

 return (m_price * m_numShares)/ m_earnings;

}

Chapter 2 The Equities Market

70

double FundamentalsCalculator::forwardPE()

{

 return (m_price * m_numShares)/ m_earningsEstimate;

}

double FundamentalsCalculator::returnOnEquity()

{

 return m_netIncome / m_shareholdersEquity;

}

double FundamentalsCalculator::getDividend()

{

 return m_dividend;

}

double FundamentalsCalculator::bookValue()

{

 return m_bookValue;

}

double FundamentalsCalculator::priceToBookRatio()

{

 �return (m_price * m_numShares) / (m_assets -

m_liabilitiesAndIntangibles);

}

double FundamentalsCalculator::priceEarningsToGrowth()

{

 return PE()/ m_epsGrowth;

}

void FundamentalsCalculator::setNumOfShares(int n)

{

 m_numShares = n;

}

void FundamentalsCalculator::setEarnings(double val)

{

 m_earnings = val;

Chapter 2 The Equities Market

71

}

void FundamentalsCalculator::setExpectedEarnings(double val)

{

 m_earningsEstimate = val;

}

void FundamentalsCalculator::setBookValue(double val)

{

 m_bookValue = val;

}

void FundamentalsCalculator::setEpsGrowth(double val)

{

 m_epsGrowth = val;

}

void FundamentalsCalculator::setNetIncome(double val)

{

 m_netIncome = val;

}

void FundamentalsCalculator::setShareHoldersEquity(double val)

{

 m_shareholdersEquity = val;

}

void FundamentalsCalculator::setLiabilitiesAndIntangibles(double val)

{

 m_liabilitiesAndIntangibles = val;

}

void FundamentalsCalculator::setAssets(double val)

{

 m_assets = val;

}

//

// main.cpp

Chapter 2 The Equities Market

72

#include "FundamentalsCalc.h"

#include <iostream>

// the main function receives parameters passed to the program

// and uses class FundamentalsCalculator

int main(int argc, const char * argv[])

{

 FundamentalsCalculator fc("AAPL", 543.99, 12.20);

 // values are in millions

 fc.setAssets(243139);

 fc.setBookValue(165234);

 fc.setEarnings(35885);

 fc.setEpsGrowth(0.22);

 fc.setExpectedEarnings(39435);

 fc.setLiabilitiesAndIntangibles(124642);

 fc.setNetIncome(37235);

 fc.setNumOfShares(891990);

 fc.setShareHoldersEquity(123549);

 �std::cout << "P/E: " << fc.PE()/1000 << std::endl; // prices in thousands

 std::cout << "forward P/E: " << fc.forwardPE()/1000 << std::endl;

 std::cout << "book value: " << fc.bookValue() << std::endl;

 std::cout << "price to book: " << fc.priceToBookRatio() << std::endl;

 �std::cout << "price earnings to growth: " << fc.

priceEarningsToGrowth() << std::endl;

 �std::cout << "return on equity: " << fc.returnOnEquity() << std::endl;

 std::cout << "dividend: " << fc.getDividend() << std::endl;

 return 0;

}

Chapter 2 The Equities Market

73

�Running the Code
You can compile the code displayed in Listing 2-4 along with the respective test

contained in the main function. The result would be displayed as follows:

$./fundamentalind

P/E: 13.5219

forward P/E: 12.3046

book value: 165234

price to book: 4094.9

price earnings to growth: 61463.2

return on equity: 0.301378

dividend: 12.2

�Conclusion
In this chapter, I provided an overview of the problems and opportunities in the equities

market. As you have seen, being a major part of the financial system, equity trading

is an area in which computational problems exist in all phases of analysis and trade

execution.

The chapter starts with a short introduction to the equities market, describing the

main players and the financial instruments used in the trading process. In the first

section, you learned how to calculate moving averages using C++. Moving averages are

widely used to uncover trends in stock prices. In the same section, I discussed how to

calculate the EMA, in which the most recent prices receive a larger weight. The EMA is

more responsive to recent changes in price, which may be a better way to make buy or

sell decisions in some algorithms.

Next, I presented some code to calculate the volatility of an equity instrument. The

notion of volatility is important when making decisions about which instruments to hold

in a portfolio. The methods for calculating volatility include using the simple observed

range as well as the probabilistic measure of volatility, also called standard deviation.

In this chapter, you have also learned how to calculate the correlation between two

stocks, indicating if there is positive, negative, or no correlation based on their observed

prices. Finally, this chapter introduces techniques for modeling and calculating

fundamental data about a stock holding. Such a C++ class is easy to create, but it is

also very useful when fundamental data is required during the analysis of a particular

Chapter 2 The Equities Market

74

stock. You can modify this example to add new fundamental indicators as needed and

therefore reuse existing code in other areas of your financial applications.

In the next chapter, you will learn more about C++ features that are frequently used

in the creation of financial software. You will see a number of techniques that are readily

available to developers in the financial industry. Such C++ features are able to improve

the performance, robustness, and flexibility of most code that is created for the analysis

of investments.

Chapter 2 The Equities Market

75
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_3

CHAPTER 3

C++ Programming
Techniques in Finance
The C++ language was designed as an extension of C, which means that most programs

written in C are also valid C++ programs. However, experienced programmers

typically make use of a set of high-level features made available exclusively in C++ as

a way to control program complexity, including features that were introduced in the

C++20 standard. This is an especially important consideration for financial software

development, where we want to create fast and expressive applications.

In this chapter, we explore a few fundamental techniques that financial programmers

have used over the years to write better C++ code with less effort. These techniques

have been selected among the many features provided by C++ as the most effective in

improving the quality and expressiveness of code. Such features include the following:

•	 Templates: A feature that allows the creation of generic software, with

classes and functions that can be applied over a set of possibly unrelated

types that satisfy the set of requirements for a desired operation.

•	 Shared pointers: A programming technique that reduces the need for

direct manipulation of pointers. With shared pointers, you can avoid

a big source of mistakes inherent to the way C++ programs manage

memory and other resources.

•	 Operator overloading: With overloading, you can apply standard

operators already available in the language to your own classes and

structures.

•	 C++20 features: The latest iteration of the C++ standard has introduced

many new features that help control the complexity of programs. These

features, which can be easily used for the creation of financial software,

include shared pointers and automatic type detection.

https://doi.org/10.1007/978-1-4842-6834-6_3#DOI

76

In the next sections, you will see a few selected programming examples that explore

some of these C++ features in the context of financial applications.

�Calculating Interest Rates for Investment
Instruments
Interest rates are a fundamental concept for fixed income investors. Design a C++

solution to return the annual interest rate, given a generic instrument class that provides

methods such as getMonthlyPayment and getPrincipal.

�Solution
The foregoing problem is frequently used in the design of interest rate calculation

engines. You can create a solution using a number of strategies such as class hierarchies,

but for performance and design considerations, the use of templates is the most

indicated method of combining interest rate data from unrelated classes that represent

investment instruments.

A template is a mechanism, along with a special syntax, used to create code that

works with different underlying data types. Using templates, one can create functions,

member functions, and classes that are able to support different types using the same

code. The code generated using template-based programming techniques is said to

be generic, since it can be used with different types (either fundamental types such as

int or double or user-defined classes and structures). Generic functions and types are

instantiated using the name of the target type(s) between angle brackets, which indicates

a particular version of the desired function or type. In the most recent standard revisions,

a generic function can also be defined using automatic argument deduction.

The creation and use of generic code are possible because when the compiler

finds a template, it does not generate code immediately. Instead, code is generated

only at the point where the template object or function is instantiated. When that

happens, the compiler detects the types involved in the expression, and the template is

instantiated. Only then the traditional compilation steps such as syntactic analysis and

code generation are performed on the instantiated code, and any resulting errors will be

detected and reported to the programmer.

Chapter 3 C++ Programming Techniques in Finance

77

To solve the interest rate calculation problem, you can use templates to implement

an interest rate engine class, called IntRateEngine. This class is defined in such a way

that you can apply it to any class implementing the methods getMonthlyPayment and

getPrincipal. I have included two sample classes that implement these methods, the

classes BondInstrument and MortgageInstrument. However, the big advantage of using

templates is that you don’t need to derive such classes from a particular base class, for

example. You can use a class supplying these same methods, and the compiler will do

the hard work of combining these classes. This means that there is no coupling between

investment instruments and the interest rate calculation engine. In fact, if you look at

the files for IntRateEngine, you will not find any reference to the investment instrument

classes.

Here is a quick look at the relevant parts of the BondInstrument class.

class BondInstrument {

public:

 double getMonthlyPayment();

 double getPrincipal();

 // other methods here...

};

With this class, one could instantiate the template that calculates the annual interest

rate. The template class that performs the calculation is defined in the following way:

template <class T>

class IntRateEngine {

public:

 void setInstrument(T &inv);

 double getAnnualIntRate();

 // other methods here ...

private:

 T m_instrument;

};

Notice that the type of instrument is left unspecified as a type argument T. This is

the parameterization that allows different classes to be used with the same template.

Similarly, you can see the implementation of the getAnnualIntRate method.

Chapter 3 C++ Programming Techniques in Finance

78

template <class T>

double IntRateEngine<T>::getAnnualIntRate()

{

 double payment = m_instrument.getMonthlyPayment();

 double principal = m_instrument.getPrincipal();

 return (12 *payment) / principal;

}

Notice that the method only requires the parameter T to be offered the

getMonthlyPayment and getPrincipal methods. Any type that supports these two

methods can be used by IntRateEngine without problems.

�Complete Code
The algorithm described previously has been implemented in the classes

BondInstrument, MortgageInstrument, and IntRateEngine, as displayed in Listing 3-1.

Listing 3-1.  InvestmentInstrument.h

//

// InvestmentInstrument.h

#ifndef __FinancialSamples__InvestmentInstrument__

#define __FinancialSamples__InvestmentInstrument__

#include <iostream>

class BondInstrument {

public:

 BondInstrument(double principal, double monthlyPayment);

 ~BondInstrument();

 BondInstrument(const BondInstrument &a);

 BondInstrument &operator =(const BondInstrument &a);

 double getMonthlyPayment();

 double getPrincipal();

Chapter 3 C++ Programming Techniques in Finance

79

 // other methods here...

private:

 double

 m_monthlyPay,

 m_principal;

};

class MortgageInstrument {

public:

 �MortgageInstrument(double monthlyPay, double propertyValue, double

downpayment);

 ~MortgageInstrument();

 MortgageInstrument(const MortgageInstrument &a);

 MortgageInstrument &operator =(const MortgageInstrument &a);

 double getMonthlyPayment();

 double getPrincipal();

 // other methods here...

private:

 double

 m_monthlyPay,

 m_propertyValue,

 m_downPayment;

};

#endif /* defined(__FinancialSamples__InvestmentInstrument__) */

//

// InvestmentInstrument.cpp

#include "InvestmentInstrument.h"

BondInstrument::BondInstrument(double principal, double monthlyPayment)

: m_principal(principal),

m_monthlyPay(monthlyPayment)

{

}

Chapter 3 C++ Programming Techniques in Finance

80

BondInstrument::~BondInstrument()

{

}

BondInstrument::BondInstrument(const BondInstrument &a)

: m_monthlyPay(a.m_monthlyPay),

m_principal(a.m_principal)

{

}

BondInstrument &BondInstrument::operator =(const BondInstrument &a)

{

 if (this != &a)

 {

 m_principal = a.m_principal;

 m_monthlyPay = a.m_monthlyPay;

 }

 return *this;

}

double BondInstrument::getMonthlyPayment()

{

 return m_monthlyPay;

}

double BondInstrument::getPrincipal()

{

 return m_principal;

}

/////////////

MortgageInstrument::MortgageInstrument(double monthlyPay, double

propertyValue, double downpayment)

: m_monthlyPay(monthlyPay),

m_propertyValue(propertyValue),

Chapter 3 C++ Programming Techniques in Finance

81

m_downPayment(downpayment)

{

}

MortgageInstrument::~MortgageInstrument()

{

}

MortgageInstrument::MortgageInstrument(const MortgageInstrument &a)

: m_downPayment(a.m_downPayment),

m_propertyValue(a.m_propertyValue),

m_monthlyPay(a.m_monthlyPay)

{

}

MortgageInstrument &MortgageInstrument::operator =(const MortgageInstrument &a)

{

 if (this != &a)

 {

 m_downPayment = a.m_downPayment;

 m_propertyValue = a.m_propertyValue;

 m_monthlyPay = a.m_monthlyPay;

 }

 return *this;

}

double MortgageInstrument::getMonthlyPayment()

{

 return m_monthlyPay;

}

double MortgageInstrument::getPrincipal()

{

 return m_propertyValue - m_downPayment;

}

Chapter 3 C++ Programming Techniques in Finance

82

//

// IntRateEngine.h

#ifndef __FinancialSamples__IntRateEngine__

#define __FinancialSamples__IntRateEngine__

#include <vector>

template <class T>

class IntRateEngine {

public:

 ~IntRateEngine();

 IntRateEngine(const IntRateEngine<T> &a);

 IntRateEngine<T> &operator =(const IntRateEngine<T> &a);

 void setInstrument(T &inv);

 double getAnnualIntRate();

private:

 T m_instrument;

};

template <class T>

IntRateEngine<T>::~IntRateEngine()

{

}

template <class T>

IntRateEngine<T>::IntRateEngine(const IntRateEngine<T> &a)

: m_instrument(a.m_instrument)

{

}

template <class T>

IntRateEngine<T> &IntRateEngine<T>::operator =(const IntRateEngine<T> &a)

{

 if (this != &a)

 {

Chapter 3 C++ Programming Techniques in Finance

83

 m_instrument = a.m_instrument;

 }

 return *this;

}

template <class T>

void IntRateEngine<T>::setInstrument(T &inv)

{

 m_instrument = inv;

}

template <class T>

double IntRateEngine<T>::getAnnualIntRate()

{

 double payment = m_instrument.getMonthlyPayment();

 double principal = m_instrument.getPrincipal();

 return (12 *payment) / principal;

}

#endif /* defined(__FinancialSamples__IntRateEngine__) */

//

// main.cpp

#include "InvestmentInstrument.h"

#include "IntRateEngine.h"

#include <iostream>

int main()

{

 IntRateEngine<BondInstrument> engineA;

 IntRateEngine<MortgageInstrument> engineB;

 BondInstrument bond(40000, 250);

 MortgageInstrument mortgage(250, 50000, 5000);

 engineA.setInstrument(bond);

 engineB.setInstrument(mortgage);

Chapter 3 C++ Programming Techniques in Finance

84

 �std::cout << " bond annual int rate: " << engineA.getAnnualIntRate()*

100 << "%" << std::endl;

 �std::cout << " mortgage annual int rate: " << engineB.getAnnualIntRate()*

100 << "%" << std::endl;

 return 0;

}

�Running the Code
You can compile the code presented in Listing 3-1 with any standards-compliant

compiler. For example, with gcc, you can use the following command line:

> gcc -o intRate main.cpp InvestmentInstrument.cpp IntRateEngine.cpp

You can use the resulting test program without any parameters.

> ./intRate

 bond annual int rate: 7.5%

 mortgage annual int rate: 6.66667%

�Creating Financial Statement Objects
Create a class that computes a financial statement and returns it to the calling client. Do

this while avoiding potential memory leaks of the returned data.

�Solution
To solve this problem, you will create a simple financial statement class and a function

that returns a pointer to the financial statement. The main issue that you may want to

avoid in the solution is the possibility of memory leaks occurring when the financial

statement is returned. For this purpose, you will learn about how to use smart pointers to

manage memory. Before we explain that, however, you need to understand the concept

of smart pointers.

Chapter 3 C++ Programming Techniques in Finance

85

�Smart Pointers
The C language popularized the concept of pointers, and it innovated when it provided

a simple notation for direct memory access on a high-level language. Pointers allow the

manipulation of memory addresses in a way that complies with the underlying data type

of the data. For example, it is possible to use pointers to refer to successive addresses

using increment and decrement operators. For instance, you may have

int numbers[200];

// initialize numbers here ...

//

int *parray = numbers;

for (int i=0; i<200; ++i) {

 std::cout << "value is " << *parray << "\n";

 parray++;

}

In the previous example, parray is a pointer to an integer. It can be used to refer

to the location of any integer value in memory. In particular, you can use it to hold

the address of the first element of the numbers array. The code in the for loop is then

used to print the current value pointed by parray and to update its address using the

increment operator, which moves the pointer to the next integer location. Notice that

this is possible even though the number of bytes per integer is greater than one. In fact,

the increment operator is aware of the pointer type used and will change the address to

point to the exact location of the next value for the declared type.

While the notation for pointers is very powerful, and fully supported by C++,

programmers should avoid the use of pointers in C++ code whenever possible. Pointers

have over the years been linked to poor programming practices that lead to potential

resource leaks, memory corruption, and security-related bugs. Because pointers allow

indiscriminate access to the computer memory, it is relatively easy to misuse them,

resulting in bugs that are difficult to fix.

Some C++ classes and templates provide a great alternative to pointers, with little

overhead and many of the same features. The main technique to avoid traditional

pointers is to use smart pointer templates. Such smart pointers are simple templates that

can be used to store addresses in a safer way. For example, a smart pointer of the type

std::shared_ptr is a template-type object that allows the same address to be used by

two or more parts of the code.

Chapter 3 C++ Programming Techniques in Finance

86

The main advantage of a smart pointer over a traditional C++ pointer is that the

smart pointer knows how to clean up itself when it is no longer needed. Thus, a large

class of problems that occur when a programmer doesn’t dispose of the pointer is

avoided. The cleanup mechanism is defined according to the rules of the RAII (Resource

Acquisition Is Initialization) idiom: resources contained in a smart pointer are initialized

in the constructor of the template object, and released during destruction, which

typically happens when the object in question goes out of scope.

There are different types of smart pointers, each one designed for a particular use

case. The most commonly used smart pointers in C++ code are unique pointers and

shared pointers.

A unique pointer (of template type unique_ptr) provides a wrapper for a traditional

C++ pointer. The template, however, defines the semantic of object ownership, so that

other references to the pointer are not valid after the transfer of ownership occurs. A

unique pointer can be used in situations in which the receiver will take full control of

the pointed object, as well as any associated resource. Therefore, a pointer passed to a

unique_ptr object should not be referenced again in contexts other than the one where

the unique_ptr is used.

A shared pointer (of template type shared_ptr) is a template that can be used to

wrap an existing C++ native pointer. Unlike a unique pointer, a shared pointer can be

used by two or more parts of the code. Internally, shared pointers maintain a counter

that can be used to determine how many references to the original pointer have been

created. This type of mechanism is referred to as reference counting. Every time a shared

pointer object is destroyed, it checks its internal reference counter. If the counter is

greater than zero, the internal object is not deleted. However, if the reference counter

reaches zero, then the referred object is deleted and its destructor is activated.

In this section, you will see the details of using a unique pointer. In the next section, I

will introduce shared pointers.

�Using Unique Pointers
The solution to our memory management problem involves the use of unique pointers.

A unique pointer is implemented using the standard class std::unique_ptr and,

like other smart pointers, can be used to provide automated cleanup and resource

ownership.

The policy used by std::unique_ptr ensures that once it has been assigned the

ownership of the pointer, the memory stored in the pointer is not owned by anyone else.

Chapter 3 C++ Programming Techniques in Finance

87

Therefore, the semantic of an std:: unique_ptr involves the automatic destruction

of the associated data as soon as the object goes out of scope. If the owner of the

unique pointer doesn’t want to destroy the memory, it has the option of moving it to

another unique pointer, in a process of transferring the ownership to another object.

This is how I solved the issue of managing the memory associated to the returned

FinancialStatement.

First, consider the definition of the FinancialStatement class.

class FinancialStatement {

public:

 FinancialStatement();

 ~FinancialStatement();

 FinancialStatement(const FinancialStatement&);

 FinancialStatement &operator=(FinancialStatement &);

 double getReturn();

 void addTransaction(const std::string &security, double val);

private:

 double m_return;

 std::vector<std::pair<std::string,double>> m_transactions;

};

There is also a function that is used to create a sample financial statement.

std::unique_ptr<FinancialStatement> getSampleStatement();

This function returns a unique pointer to a sample statement. This means that the

caller of the code owns the returned memory, since the caller will have a unique pointer

that has been initialized with a pointer to the resulting object. The implementation of

getSampleStatement is

std::unique_ptr<FinancialStatement> getSampleStatement()

{

 std::unique_ptr<FinancialStatement> fs(new FinancialStatement);

 fs->addTransaction("IBM", 102.2);

 fs->addTransaction("AAPL", 523.0);

 return fs;

}

Chapter 3 C++ Programming Techniques in Finance

88

After the FinancialStatement object has been allocated and used to create a

unique pointer, it is initialized and finally returned to the caller. Since the return

statement transfers the ownership of the pointer to the returned object, the original

FinancialStatement object is not destructed. Instead, it is now owned by the caller of

the getSampleStatement function.

�Complete Code
Listing 3-2 presents the code for the FinancialStatement class, which is divided into a

header file and an implementation file.

Listing 3-2.  FinancialStatement.h

//

// FinancialStatement.h

#ifndef __FinancialSamples__FinancialStatement__

#define __FinancialSamples__FinancialStatement__

#include <string>

#include <vector>

class FinancialStatement {

public:

 FinancialStatement();

 ~FinancialStatement();

 FinancialStatement(const FinancialStatement&);

 FinancialStatement &operator=(FinancialStatement &);

 double getReturn();

 void addTransaction(const std::string &security, double val);

private:

 double m_return;

 std::vector<std::pair<std::string,double> > m_transactions;

};

std::unique_ptr<FinancialStatement> getSampleStatement();

Chapter 3 C++ Programming Techniques in Finance

89

void transferFinancialStatement(std::unique_ptr<FinancialStatement>

&statement);

#endif /* defined(__FinancialSamples__FinancialStatement__) */

//

// FinancialStatement.cpp

#include "FinancialStatement.h"

FinancialStatement::FinancialStatement()

: m_return(0)

{

}

FinancialStatement::~FinancialStatement()

{

}

FinancialStatement::FinancialStatement(const FinancialStatement &v)

: m_return(v.m_return),

m_transactions(v.m_transactions)

{

}

FinancialStatement &FinancialStatement::operator=(FinancialStatement &v)

{

 if (this != &v)

 {

 m_return = v.m_return;

 m_transactions = v.m_transactions;

 }

 return *this;

}

Chapter 3 C++ Programming Techniques in Finance

90

double FinancialStatement::getReturn()

{

 return m_return;

}

void FinancialStatement::addTransaction(const std::string &security,

double val)

{

 m_transactions.push_back(std::make_pair(security, val));

}

// returns a sample statement that includes a few common stocks

std::unique_ptr<FinancialStatement> getSampleStatement()

{

 std::unique_ptr<FinancialStatement> fs(new FinancialStatement);

 fs->addTransaction("IBM", 102.2);

 fs->addTransaction("AAPL", 523.0);

 return fs;

}

void transferFinancialStatement(std::unique_ptr<FinancialStatement>

statement)

{

 // perform transfer here

 // ...

 // statement is still valid

 std::cout << statement->getReturn() << std::endl;

 // statement is released here

}

//

// main.cpp

#include "FinancialStatement.h"

#include <iostream>

Chapter 3 C++ Programming Techniques in Finance

91

int main()

{

 std::unique_ptr<FinancialStatement> fs = getSampleStatement();

 // do some real work here...

 return 0;

 // the unique pointer is released at the end of the scope...

}

�Transferring Ownership
In the previous example, you saw how to use unique pointers to transfer the ownership

of objects to the caller of a function. Another important use of these smart pointers is to

tell to a caller that the called function is taking ownership of the passed object.

For example, consider the function transferFinancialStatement, which is defined

in the following way:

void transferFinancialStatement(std::unique_ptr<FinancialStatement>

statement);

The parameter statement is a unique pointer to a FinancialStatement object, which

means that once it receives a parameter of that particular type, it will become the owner

of the object. Thus, the transferFinancialStatement can use the statement object

knowing that it is the sole owner of its contents. Depending on the operations necessary

to perform on the object, this may be an important advantage.

The sample implementation of the function reads as follows:

void transferFinancialStatement(std::unique_ptr<FinancialStatement>

&statement)

{

 // perform transfer here

 // ...

 // statement is still valid

 std::unique_ptr<FinancialStatement> another = std::move(statement);

 std::cout << statement->getReturn() << std::endl;

 // statement is released here

}

Chapter 3 C++ Programming Techniques in Finance

92

The important thing to understand here is that the pointed object is destroyed at

the end of the transferFinancialStatement, since the parameter was transferred and

therefore goes out of scope at the end of the function block.

�Pitfalls of Unique Pointers
Due to the semantics of unique pointers, which require the ownership of the referenced

data, a few errors can occur when programmers try to access data stored in this kind of

smart pointer. For example, a common source of errors is the use of functions that take

ownership of the pointed object. You can see this class of errors by using the function

transferFinancialStatement, which I showed previously. When a unique pointer

object is passed to a function that takes ownership of the memory, the unique pointer is

not valid anymore, and may cause a crash the next time it is accessed.

int main()

{

 std::unique_ptr<FinancialStatement> fs = getSampleStatement();

 transferFinancialStatement(fs);

 �// the unique_ptr object is invalid here, the next access can crash the

program

 std::cout << fs->getReturn() << "\n";

 return 0;

}

This example shows how easy it is to crash a program after a unique pointer

has transferred the ownership of the object it points to. This is done as you call the

transferFinancialStatement function.

The next line tries to access the return value, which generates an invalid access.

This results in a segmentation fault in many platforms. To avoid such invalid accesses, a

programmer needs to be careful about calling functions that accept a unique pointer, vs.

a native pointer.

Another pitfall of unique pointers is their lack of support for STL containers. For

example, it is not possible to have unique pointers as members of an std::vector.

This happens because most containers work by copying their elements by value, which

in practice invalidates the data stored in the existing unique pointer. Moreover, many

Chapter 3 C++ Programming Techniques in Finance

93

algorithms for STL containers perform internal copies of the data they contain. This

means that such algorithms can destroy the original elements without previous notice:

a very awkward situation. For these reasons, it is recommended that you avoid using

unique pointers when dealing with STL containers.

To avoid the problems with std::unique_ptr, another smart pointer type has been

introduced: the std::shared_ptr template provides the semantics of pointers that can

be shared by different owners. In the next section, you will see an example of how to use

such shared pointer objects.

�Determining Credit Ratings
Create a class to determine the credit ratings of a given security.

�Solution
Credit risk ratings are defined by accredited rating agencies and used to determine the

risk of institutions. With this information, investors can determine the risk level of a

particular bond or stock holding and control the level of risk they are willing to assume.

For example, risk-averse investors such as pension funds and insurance companies

typically shy away from investing in any institution that is not certified as top grade

(typically AAA). There are three main credit rating agencies used by financial institutions

all over the world: Moody’s, S&P, and Fitch. They define the risk grade not only for

companies but also for local-, state-, and national-level governments.

To model credit ratings in C++, I created a separate class that encapsulates the

fundamental concepts behind credit risk rating. The class CreditRisk has a member

function called getRating, which returns the prevailing risk rating for a particular stock

or bond. A second class, named RiskCalculator, is used to perform a simple analysis

of the risk associated with a particular portfolio, given a set of risk ratings for each

component of the portfolio.

�Using Shared Pointers
Since the RiskCalculator class needs to maintain a set of credit ratings, it makes sense

to have a container to hold this information. However, we would like to avoid making

copies of the data. Since the CreditRisk class is so simple, it doesn’t make much

Chapter 3 C++ Programming Techniques in Finance

94

difference if you make copies or not. However, classes can become more complex, and

in a large application, these memory requirements start to add up. Therefore, a better

design is to avoid making copies of CreditRisk objects as we add them to collections.

We have seen, however, that std::unique_ptr is not suitable for inclusion in collections,

which leaves us with the requirement of storing traditional pointers for objects.

A better solution is to use the std::shared_ptr class to handle the memory

associated with CreditRisk objects. A shared pointer not only knows how to clean up

the data referenced by a pointer but is also able to share the reference with other objects.

This way, the object will not be destroyed until the last reference is also destroyed.

Shared pointers achieve this behavior through the use of a reference counting

mechanism. A counter is maintained by the shared pointer object, which determines

how many copies exist for the referenced object. When the shared pointer is destroyed,

it checks this counter to determine if other references exist. If the counter is positive,

the pointed object is not destroyed. The counter is also updated when a new copy of the

shared pointer is created. The counter is incremented to indicate that another copy of

the object reference exists. In this way, several copies of the same shared pointer can live

in memory, and they will all manage the underlying data correctly, until the last one is

destroyed and the original object is removed from memory.

I used shared pointers to handle the memory requirements of the RiskCalculator

class. The set of CreditRisk objects is maintained as a vector of shared pointers,

declared as follows:

std::vector<std::shared_ptr<CreditRisk> > m_creditRisks;

In this declaration, each element of the vector is a shared pointer. Since shared

pointers know how to copy themselves, they can be used effectively as members of a

vector or any other container, unlike unique pointers.

Working with shared pointers is easy because they automatically perform the

required cleanup actions. For example, copying unique pointers is done simply with the

use of the assignment operator. New elements to the m_creditRisks vector are added by

the addCreditRisk member function.

void RiskCalculator::addCreditRisk(std::shared_ptr<CreditRisk> risk)

{

 m_creditRisks.push_back(risk);

}

Chapter 3 C++ Programming Techniques in Finance

95

�Complete Code
In Listing 3-3, you have the complete code for the example described in the previous

section. The class is called CreditRisk, which is contained in a header and an

implementation file.

Listing 3-3.  CreditRisk.h

//

// CreditRisk.h

#ifndef __FinancialSamples__CreditRisk__

#define __FinancialSamples__CreditRisk__

// A simple class representing a credit risk assessment

class CreditRisk {

public:

 // these are risk grades, as determined by rating agencies

 enum RiskType {

 AAA,

 AAPlus,

 AA,

 APlus,

 A,

 BPlus,

 B,

 CPlus,

 C

 };

 // other methods here ...

};

#endif /* defined(__FinancialSamples__CreditRisk__) */

//

// RiskCalculator.h

Chapter 3 C++ Programming Techniques in Finance

96

#ifndef __FinancialSamples__RiskCalculator__

#define __FinancialSamples__RiskCalculator__

#include "CreditRisk.h"

#include <memory>

#include <vector>

// calculates the risk associated to a portfolio

class RiskCalculator {

public:

 RiskCalculator();

 ~RiskCalculator();

 RiskCalculator(const RiskCalculator &);

 RiskCalculator &operator =(const RiskCalculator &);

 void addCreditRisk(std::shared_ptr<CreditRisk> risk);

 CreditRisk::RiskType portfolioMaxRisk();

 CreditRisk::RiskType portfolioMinRisk();

private:

 std::vector<std::shared_ptr<CreditRisk> > m_creditRisks;

};

#endif /* defined(__FinancialSamples__RiskCalculator__) */

//

// RiskCalculator.cpp

#include "RiskCalculator.h"

RiskCalculator::RiskCalculator()

{

}

RiskCalculator::~RiskCalculator()

{

}

Chapter 3 C++ Programming Techniques in Finance

97

RiskCalculator::RiskCalculator(const RiskCalculator &v)

: m_creditRisks(v.m_creditRisks)

{

}

RiskCalculator &RiskCalculator::operator =(const RiskCalculator &v)

{

 if (this != &v)

 {

 m_creditRisks = v.m_creditRisks;

 }

 return *this;

}

void RiskCalculator::addCreditRisk(std::shared_ptr<CreditRisk> risk)

{

 m_creditRisks.push_back(risk);

}

CreditRisk::RiskType RiskCalculator::portfolioMaxRisk()

{

 CreditRisk::RiskType risk = CreditRisk::RiskType::AAA;

 for (int i=0; i<m_creditRisks.size(); ++i)

 {

 if (m_creditRisks[i]->getRating() < risk)

 {

 risk = m_creditRisks[i]->getRating();

 }

 }

 return risk;

}

CreditRisk::RiskType RiskCalculator::portfolioMinRisk()

{

 CreditRisk::RiskType risk = CreditRisk::RiskType::C;

Chapter 3 C++ Programming Techniques in Finance

98

 for (int i=0; i<m_creditRisks.size(); ++i)

 {

 if (m_creditRisks[i]->getRating() > risk)

 {

 risk = m_creditRisks[i]->getRating();

 }

 }

 return risk;

}

�Using the auto Keyword
Among the many additions to C++ introduced by the C++11 standard, the auto

keyword is one of the most practical and easy to understand. The basic idea behind this

extension is that the compiler can perform the job of type detection for many categories

of variables and expressions. Whenever this is possible, the programmer can use the

auto keyword in the variable declaration, instead of entering the full type of the desired

object. This way, the programmer can decide to let the compiler do the type detection

automatically while using the type name only when a visual labeling is desired and

convenient.

The auto keyword has a few advantages over other forms of type declaration. It

•	 Reduces the amount of manual work done by programmers, since it

uses the compiler itself to analyze an expression and determine the

exact type for a particular variable or expression

•	 Adds uniformity to the code, as most variables are declared using the

same style

•	 Leaves intact the ability of programmers to enter the exact type as

desired, so that any conflicts can be avoided

•	 Simplifies the use of templates, because data types can be

automatically detected during compilation at each instantiation of

the template

As an example of the use of the auto keyword, we can modify some of the member

functions in the RiskCalculator class to perform automatic detection of variable types.

Chapter 3 C++ Programming Techniques in Finance

99

This is useful to simplify some of the expressions that are so common when using

template collections. The following, for instance, is the portfolioMaxRisk member

function:

CreditRisk::RiskType RiskCalculator::portfolioMaxRisk()

{

auto risk = CreditRisk::RiskType::AAA;

for (auto &p : m_creditRisks)

{

 if ((*p)->getRating() < risk)

 {

 risk = (*p)->getRating();

 }

}

return risk;

}

This code snippet shows how the type of the local variable risk can be

automatically detected, so you don’t need to enter the redundant name of the type

CreditRisk::RiskType. Similarly, the next line shows how to iterate through a collection

of objects using the auto keyword to determine the right type of the iterator. Seasoned

STL programmers know that using iterators may introduce a lot of extra types to a piece

of code, which frequently obfuscates the original intent of the program. For comparison,

notice that if it weren’t for the auto keyword, the foregoing for loop would need to be

rendered as

for (std::vector<std::shared_ptr<CreditRisk> >::iterator p = m_creditRisks.

begin();

 p != m_creditRisks.end(); ++p)

{

 // ...

}

Not only is this harder to enter manually, but it also makes the code harder to

understand and modify.

Chapter 3 C++ Programming Techniques in Finance

100

�Collecting Transaction Data
Create a solution to the problem of handling transaction orders, including BUY, SELL,

or SELL SHORT, stored in a single file. The solution must correctly handle programming

exceptions.

�Solution
To solve this problem, we created a class that can handle trading transactions and

perform the necessary operations. The class is responsible for receiving a filename and

executing the instructions stored in the file. The class is also responsible for handling

any error happening during this process, including errors from reading the file as well as

incorrect trading requests sent to the application.

In this coding example, the operations allowed are simple and include only buy,

sell, and sell short. Therefore, I concentrate on the problem of processing the file and

handling unexpected errors in the program. We follow the best practices of using the

exception handling mechanism offered by C++. Therefore, we create a new class, called

TransactionHandler, which is able to read data from a file and perform the necessary

actions in the member function handleTransactions. The resulting code is able to

execute the trading actions stored in the file, but it handles possible exceptions using

the try/catch/throw mechanism supplied by the C++ language as described in the next

section.

�Exception Handling
One of the basic problems faced by programmers is detecting and recovering from

errors. While we try to avoid self-inflicted errors, there are many extraordinary situations

that need to be handled even by correct programs. For example, what should your

code do when the file system is full and there is no more space to save the current file?

What can be done when a network connection is closed and the server is not available

to complete a download? Programmers need to decide on how to respond to such

exceptional situations, and a few strategies have been devised over the years in order to

respond to such conditions.

C++ uses an exception-based model to deal with unexpected conditions occurring

during program execution. This model uses a standard try/catch block to contain the

Chapter 3 C++ Programming Techniques in Finance

101

code that you may want to protect. When an exception happens, the compiler throws an

object to indicate the unexpected condition. As a result, the enclosing blocks of code will

also destroy all local objects that have been created in that particular context, to avoid

resource leaks.

The other aspect of exception handling in C++ is the use of exception objects that

inform programmers about the class of error that occurred. These objects are created

using the throw keyword and caught using the catch block, which receives a reference to

the exception object and uses it to understand and possibly recover from an unexpected

state. Applications are free to create new classes of exceptions as a way to provide

additional information about the error that triggered the exception.

In this example, I created two exception classes. They both derive from

std::runtime_error, which provides the basic behavior for runtime exceptions. The

first class, FileError, is used to flag any error occurred during the process of reading the

file. The following is its definition:

class FileError :public std::runtime_error {

public:

 FileError (const std::string &description);

};

The second exception class, TransactionTypeError, is thrown when an unknown

transaction type is found in the file, other than TRANSACTION_SELL, TRANSACTION_BUY,

or TRANSACTION_SHORT. The definition is similar to what you saw with FileError. These

classes are then used on the test code to determine the type of error encountered and

how to proceed. In the test application, we just print a descriptive error message using

the string returned by the what() member function before terminating the program.

try

{

 TransactionHandler handler(fileName);

}

catch (FileError &e)

{

 std::cerr << "received a file error: " << e.what() << std::endl;

}

Chapter 3 C++ Programming Techniques in Finance

102

catch (TransactionTypeError &e)

{

 std::cerr << "received a transaction error: " << e.what() << std::endl;

}

catch (...)

{

 std::cerr << "received an unknown error\n";

}

�Complete Code
Listing 3-4 provides a complete example of exception handling. The classes presented

here demonstrate how to handle exceptions while reading a transaction file. A sample

main() function, provided at the end, shows how these classes work together.

Listing 3-4.  TransactionHandler.h

//

// TransactionHandler.h

#ifndef __FinancialSamples__TransactionHandler__

#define __FinancialSamples__TransactionHandler__

#include <iostream>

enum TransactionType {

 TRANSACTION_SELL,

 TRANSACTION_BUY,

 TRANSACTION_SHORT,

};

class FileError :public std::runtime_error {

public:

 FileError(const std::string &s);

};

Chapter 3 C++ Programming Techniques in Finance

103

class TransactionTypeError :public std::runtime_error {

public:

 TransactionTypeError(const std::string &s);

};

class TransactionHandler {

public:

 static const std::string SELL_OP;

 static const std::string BUY_OP;

 static const std::string SHORT_OP;

 TransactionHandler(const std::string &fileName);

 TransactionHandler(const TransactionHandler &);

 ~TransactionHandler();

 TransactionHandler &operator=(const TransactionHandler&);

 void handleTransactions();

private:

 std::string m_fileName;

};

#endif /* defined(__FinancialSamples__TransactionHandler__) */

//

// TransactionHandler.cpp

#include "TransactionHandler.h"

#include <fstream>

FileError::FileError(const std::string &s)

: std::runtime_error(s)

{

}

TransactionTypeError::TransactionTypeError(const std::string &s)

: std::runtime_error(s)

{

}

Chapter 3 C++ Programming Techniques in Finance

104

const std::string TransactionHandler::SELL_OP = "SELL";

const std::string TransactionHandler::BUY_OP = "BUY";

const std::string TransactionHandler::SHORT_OP = "SHORT";

TransactionHandler::TransactionHandler(const std::string &fileName)

: m_fileName(fileName)

{

}

TransactionHandler::TransactionHandler(const TransactionHandler &a)

: m_fileName(a.m_fileName)

{

}

TransactionHandler::~TransactionHandler()

{

}

TransactionHandler &TransactionHandler::operator=(const

TransactionHandler&a)

{

 if (this != &a)

 {

 m_fileName = a.m_fileName;

 }

 return *this;

}

void TransactionHandler::handleTransactions()

{

 std::ifstream file;

 file.open(m_fileName, std::ifstream::in);

 if (file.fail())

 {

 �throw new FileError(std::string("error opening file ") +

m_fileName);

 }

Chapter 3 C++ Programming Techniques in Finance

105

 std::string op;

 file >> op;

 while (file.good() && !file.eof())

 {

 if (op != SELL_OP && op != BUY_OP && op != SHORT_OP)

 {

 �throw new TransactionTypeError(std::string("unknown

transaction ") + op);

 }

 // process remaining transaction data...

 }

}

//

// main.cpp

#include "TransactionHandler.h"

#include <iostream>

int main(int argc, const char **argv)

{

 if (argc < 2)

 {

 std::cerr << "usage: <progName> <fileName>\n";

 return 1;

 }

 std::string fileName = argv[1];

 try

 {

 TransactionHandler handler(fileName);

 }

 catch (FileError &e)

 {

 std::cerr << "received a file error: " << e.what() << std::endl;

 }

Chapter 3 C++ Programming Techniques in Finance

106

 catch (TransactionTypeError &e)

 {

 std::cerr << "received a transaction error: "

 << e.what() << std::endl;

 }

 catch (...)

 {

 std::cerr << "received an unknown error\n";

 }

 return 0;

}

�Implementing Vector Operations
In this section, we implement the common addition and multiplication operators

defined on numerical vectors.

�Solution
This problem can be easily solved using the C++ facilities for operator overloading. I first

give a general introduction to this programming technique and subsequently show how

to use it to implement numerical vector operations.

�Operator Overloading
Operators are used in most programming languages to provide a simpler syntax for

common operations. For example, the + operator is used to implement the addition

of numbers without the need for a function called sum. So, one can type the following

expression:

int total = a + b + c + d;

instead of the less convenient version

int total = sum(a, sum(b, sum(c, d)));

Chapter 3 C++ Programming Techniques in Finance

107

Similarly, other operators perform comparable tasks for other primitive operations,

such as subtraction, multiplication, logical comparison, and pointer arithmetic.

While operators are available in most modern programming languages, C++ is

one of the few languages that allow programmers to redefine the meaning of existing

operators to adapt them to the most natural usage in the target domain. For example, in

an application where vectors of numbers are a common data structure, it makes sense to

redefine the + operator to perform the sum of vectors in addition to the traditional usage

of adding numeric (scalar) values.

C++ allows the definition of operators for each new declared type. Operators can

be defined as part of a class (as a member function) or as a freestanding function. For

example, consider the class Complex that redefines the + operator. The declaration for

the operator can be written as

class complex {

public:

 // ... other methods here

 complex &operator +(const complex &v);

};

Another way of writing the same operator is using a free function.

Complex &operator +(const complex &a, const complex &b);

The difference between these two declarations is that the latter declares a function

that receives two parameters, while the member function version requires only one

additional parameter (the first parameter is the object itself). Similarly, you can declare

new versions of most C++ operators, including math, logical, and pointer operators.

To solve the problem posed, we created a new class called NumVector, a simple

numerical vector that can be used to store double numbers. To provide operations that

can be applied to a vector in a natural way, we use operators that are declared as free

functions.

NumVector operator +(const NumVector &a, const NumVector &b);

NumVector operator -(const NumVector &a, const NumVector &b);

NumVector operator *(const NumVector &a, const NumVector &b);

The class also provides a few member functions that are used in the implementation

of these operations. In particular, you will want to have the member functions add, which

Chapter 3 C++ Programming Techniques in Finance

108

adds a new element to the vector, removeLast, which removes the last element, get,

which returns one of the elements given a position (index), and finally a size member

function, which returns the size of the vector.

All operators are implemented in a similar way: they all check that the two

parameters have the same size and then perform a loop that is used to perform the

required operation—addition, subtraction, or multiplication.

�Complete Code
Listing 3-5 provides a sample implementation of a numeric vector. You can use this class

to create numerical vectors and perform common vector operations.

Listing 3-5.  NumVector.h

//

// NumVector.h

#ifndef __FinancialSamples__NumVector__

#define __FinancialSamples__NumVector__

#include <vector>

class NumVector {

public:

 NumVector();

 ~NumVector();

 NumVector(const NumVector &);

 NumVector &operator =(const NumVector &);

 void add(double val);

 void removeLast();

 double get(int pos) const;

 size_t size() const;

private:

 std::vector<double> m_values;

};

Chapter 3 C++ Programming Techniques in Finance

109

NumVector operator +(const NumVector &a, const NumVector &b);

NumVector operator -(const NumVector &a, const NumVector &b);

NumVector operator *(const NumVector &a, const NumVector &b);

#endif /* defined(__FinancialSamples__NumVector__) */

//

// NumVector.cpp

#include "NumVector.h"

#include <iostream>

NumVector::NumVector()

{

}

NumVector::~NumVector()

{

}

NumVector::NumVector(const NumVector &v)

: m_values(v.m_values)

{

}

NumVector &NumVector::operator=(const NumVector &v)

{

 if (this != &v)

 {

 m_values = v.m_values;

 }

 return *this;

}

size_t NumVector::size() const

{

 return m_values.size();

}

Chapter 3 C++ Programming Techniques in Finance

110

double NumVector::get(int pos) const

{

 return m_values[pos];

}

void NumVector::add(double val)

{

 m_values.push_back(val);

}

void NumVector::removeLast()

{

 m_values.pop_back();

}

NumVector operator +(const NumVector &a, const NumVector &b)

{

 if (a.size() != b.size())

 {

 throw new std::runtime_error("vectors must have the same size");

 }

 NumVector result;

 for (int i=0; i<a.size(); ++i)

 {

 result.add(a.get(i) + b.get(i));

 }

 return result;

}

NumVector operator -(const NumVector &a, const NumVector &b)

{

 if (a.size() != b.size())

 {

 throw new std::runtime_error("vectors must have the same size");

 }

 NumVector result;

Chapter 3 C++ Programming Techniques in Finance

111

 for (int i=0; i<a.size(); ++i)

 {

 result.add(a.get(i) - b.get(i));

 }

 return result;

}

NumVector operator *(const NumVector &a, const NumVector &b)

{

 if (a.size() != b.size())

 {

 throw new std::runtime_error("vectors must have the same size");

 }

 NumVector result;

 for (int i=0; i<a.size(); ++i)

 {

 result.add(a.get(i) * b.get(i));

 }

 return result;

}

�Conclusion
C++ is a complex language, which provides mechanisms for the creation of software

using one or more among several paradigms, such as structured, object-oriented, and

functional programming. As a result, it is necessary to develop a set of techniques

that are more appropriate for the development of financial software while avoiding

unproductive practices that obfuscate programs and hinder our ability to modify them.

Over the years, financial engineers have successfully used a number of C++ idioms that

make it easier to use the speed and abstraction facilities of the language.

In this chapter, I discussed a few programming examples that introduced and

reviewed some of these useful C++ programming techniques, which are commonly

employed in the development of financial applications. First, I reviewed the concept

of templates, which let programmers write generic code that can be applied to several

Chapter 3 C++ Programming Techniques in Finance

112

classes. In the first code sample, you learned how to design an interest rate calculation

engine that is independent of the definition of interest rate classes. This type of design is

very useful in the creation of large-scale financial applications.

Next, you learned how to define financial statement objects that can be sent to

other parts of the application while reducing the occurrence of memory leaks. For this

purpose, I explained the use of smart pointers as a way of making automatic decisions

about the lifetime of objects. In particular, you learned about the std::unique_ptr

template, which implements the semantics of auto-released, self-owned pointers.

The next section dealt again with memory management issues, this time in the

context of determining credit ratings from rating agencies. In this case, you learned

how to share rating information in such a way that the memory would be automatically

destroyed even when several users had copies of the object. For this purpose, you can

learn about the std::shared_ptr template, which uses a reference counting mechanism

to determine the correct moment to delete memory, therefore avoiding memory leaks.

You have also seen the use of the auto keyword to simplify type detection with STL

containers. Both shared_ptr and the auto keyword are new features introduced with the

C++11 standard, which is currently implemented by all modern C++ compilers.

Another important technique in C++ involves the handling of unexpected

conditions. The exception-based mechanism provided by C++ allows programmers

to deal with infrequent conditions in a clean way. You have seen an example of such

policies applied to the problem of processing trading operations stored in a data file.

Finally, this chapter has considered the problem of implementing mathematical

operations applied to a sequence of numbers. For this purpose, we created a new class

called NumVector, which stores numbers in a sequence. To implement the addition,

subtraction, and multiplication of vectors in a natural way, we used the operator

overloading mechanism provided by C++. In this way, an application can perform vector

operations using operators already present in the language, redefined so that they can be

applied to your own types.

In this chapter, you learned about general C++ techniques that have been

successfully used in financial applications. In the next chapter, I explain how to use

libraries that extend the language and offer useful functionality for financial software

developers. These libraries include facilities such as new data containers and algorithms,

as well as more advanced techniques for memory management, as well as time and

event handling.

Chapter 3 C++ Programming Techniques in Finance

113
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_4

CHAPTER 4

Common Libraries
for Financial Applications
Financial code implemented in C++ uses programming libraries designed to simplify

the creation of fast, standard-conformant classes. The best example of such libraries

is the STL (standard template library) itself, a convenient library that is included with

standard-compliant C++ compilers. The STL offers a set of generic, commonly used

containers that may be applied to almost any situation. Knowing how to employ well

the STL is one of the main skills necessary for effective C++ programming, especially

in the context of high-performance software development—a common requirement

for financial applications. In this chapter, you will learn programming examples that

clarify some of the most common uses of the STL for financial programming, including

containers and algorithms.

The boost project provides another set of commonly used classes. Although the

standard language committee does not officially support boost libraries, some of them

have been used as the basis for additions to the last few versions of the C++ standard

library. Therefore, a good understanding of the classes and templates included in the

boost repository is valuable as a way to have early access to functionality that will only

later be made available in all C++ implementations.

In the next few sections, we explore C++ examples that illustrate how these classes

and templates are used in financial applications. Examples of important library

components explored here include

•	 Vectors: These are containers used to manipulate objects of the

same type.

•	 Maps: STL containers that can be used to associate values to a set of

keys, which can be of any type.

https://doi.org/10.1007/978-1-4842-6834-6_4#DOI

114

•	 Algorithms: The STL also provides a rich set of algorithms that can

be used to manipulate the standard containers. You can also extend

the existing algorithms so that they can be applied to your own

data structures. Similarly, you can use the ideas provided by STL to

implement your own algorithms.

•	 Boost libraries: The STL is the foundation for other useful libraries.

Boost libraries are written by some of the C++ experts working on the

language committee. Many of the components previously included in

the boost library, such as shared_ptr, have since become part of the

language.

•	 Time and date handling: Financial applications are usually related

to the processing of prices over specific time periods. To make this

possible, it is necessary to use libraries to handle date uniformly.

In the next sections, you will see a few selected programming examples that explore

some of these C++ libraries in the context of financial applications.

�Handling Analyst Recommendations
One of the common events around a particular stock is the release of analyst

recommendations. Create a C++ class that handles analyst recommendations and

returns the average target price for the stock.

�Solution
Analyst recommendations are an important part of the Wall Street ecosystem. Many

financial institutions such as pension funds and insurance companies, as well as retail

investors, use analysts’ recommendations as a gauge of the predominant view about

a particular stock. This in turn can be used to determine future capital allocation to a

portfolio of stocks.

Analyst recommendations come from one of the several institutions that provide

public analysis of equity investments, generally from some of the major investment

banks. The recommendation for a particular stock includes a defined action such as

“buy,” “sell,” or “hold.” The recommendation also frequently includes a price target,

which determines how much the analyst expects to be the “fair price” for the instrument.

Chapter 4 Common Libraries for Financial Applications

115

Since there are so many analysts covering the equities market, keeping track of

recommendations is one of the important parts of the work of an institutional investor.

In this section, you will create a C++ class to store this type of information and to answer

some basic questions such as “what is the average target price for a particular stock?”

The solution for this problem involves the use of STL containers to hold the data. In

particular, you will use vectors to provide quick access to the data.

�More About STL Vectors and Maps
The STL is a repository of standard data structures and algorithms that are useful in

most programming domains. For financial applications in particular, the use of the

STL is extremely important because STL components are optimized for high speed.

For example, STL components such as vectors are currently the preferred way to write

applications in C++, instead of using raw C++ arrays and similar data-container classes.

Compiler vendors have done a great job of making STL components fast and safe to use

in a wide range of applications, so that programmers don’t need to worry about intricate

issues such as memory allocation, exception handling, and algorithm complexity.

STL vectors are versatile because they can grow dynamically. Therefore, they work

in situations where you don’t have a clear idea of how many elements will be stored

in the underlying data structure (and as long as you don’t care about the overhead of

vector resizing). For example, if you’re reading trading data over a given time period,

you typically don’t know how many trades occurred during that particular time frame.

In this situation, it is easier to use a vector that can be initialized with a small number

of elements and then grow as needed, instead of using an array with a predefined (and

fixed) size. By using the STL vector in this way, you don’t need to worry about memory

allocation and exception safety of the container.

The vector template exposes an interface with operations that can be applied to

a set of elements, such as adding, removing, finding, and comparing. These common

operations can be used across concrete implementations, without any manual changes

required. For example, vectors declared as std::vector<int> can use the push_back

member function to add int elements to the end of the vector. Similarly, a second vector

declared as std::vector<std::string> can also add std::string elements using the

same template-based member function.

Chapter 4 Common Libraries for Financial Applications

116

The following is a quick list of the most regularly used member functions in the

std::vector template:

•	 template <class T> vector(const T &c, int n): Constructor

used to create a new vector initialized with n copies of the constant

element c.

•	 template <class T> vector(const vector<T> &v): Constructor

used to create a new vector initialized with a copy of an existing

vector object v.

•	 template <class T> T &operator [] (int pos): This operator

makes the std::vector object behave as a native array. You can use

the notation v[i] to access or update the value of an element stored

at position i of vector v.

•	 template <class T> void push_back(const T &c): Used to add a

new element to the back of a vector, allocating additional memory if

necessary. This is the most commonly used way to add new elements

to a vector, since it takes care of adding memory to store the new

element when necessary, unlike the operator [], which will crash

the application when an undefined position is accessed.

•	 template <class T> void pop_back(): This member function

performs the inverse of the push_back operation, removing the

element stored in the last position of the vector. However, the

memory allocated for that element is not immediately reclaimed, and

it may be used by later operations.

•	 template <class T> size_t size(): This member function

returns the number of elements currently stored in the std::vector.

Notice that this may be less than the total memory currently used by

the vector, since it is possible for the vector to allocate more memory

than it currently needs, depending on the number of elements

previously added or reserved.

In our problem, we use vectors to store recommendations for a particular

stock. Each stock covered by this class will have a vector of recommendations.

Each recommendation is just an object of the Recommendation class, which stores

recommendations defined in the following way:

Chapter 4 Common Libraries for Financial Applications

117

enum class RecommendationType {

 BUY,

 SELL,

 HOLD,

 NO_RECOMMENDATION

};

The Recommendation class is defined as

class Recommendation {

public:

 Recommendation();

 �Recommendation(const std::string &ticker, RecommendationType rec,

double target);

 ~Recommendation();

 Recommendatioperatoron(const Recommendation &r);

 Recommendation & =(const Recommendation &r);

 double getTarget() const;

 RecommendationType getRecommendation() const;

 std::string getTicker() const;

 // private members

};

This simple Recommendation class stores the ticker for stock, as well as its

recommendation type and price target. Notice that objects that are stored in a

std::vector need to be from classes that can be copied or moved, since elements in a

std::vector are stored by value. This means that a copy is created whenever there is the

need to move the object to a certain position, unless the class has a movable constr.

Using std::vector we can keep track of the individual recommendation for a

stock. However, there are several stocks in the universe of equities that we would like

to track. To find the right recommendations, we assign a way to retrieve objects based

on the stock ticker. This is performed using a std::map template. Using a map will also

simplify the code necessary to implement other useful operations, such as adding new

recommendations or calculating the average recommendation.

The std::map template provides a way to associate an arbitrary key to a data object,

so that you can easily retrieve the original data. The best thing about maps is that the key

Chapter 4 Common Libraries for Financial Applications

118

can be of any kind of object offering a comparison operation, such as the less than (<)

operator. In our case, for example, you can use a string that indicates the unique ticker

for each particular stock. Based on the ticker, you can retrieve the vector that contains

the recommendations for that particular stock.

Here is a short list of important operations defined for std::map:

template <class K, class T> iterator<T> find(const K&):

Returns an iterator to the data object that is associated to the given

key. If the key has no association, the function returns the end()

iterator.

template <class K, class T> T &operator[](const K&):

Associates a key with a particular data object. You can use this

operator to retrieve elements from the map container as well as

insert new elements.

template <class K, class T> size_t erase(const K&):

Erases the data associated with the given key.

The std::map template is used in this code example to store and retrieve

recommendations that were issued for a particular stock. The RecommendationProcessor

is the class responsible for storing, processing, and answering queries related to stock

recommendations. The general algorithm used by RecommendationProcessor consists of

storing new recommendations in an internal data structure. Then, at any future moment,

you can query the stored data using the averageTargetPrice member function.

The first member function in this class, addRecommendation, is responsible for

storing new recommendations to the m_recommendations member variable.

void RecommendationsProcessor::addRecommendation(const std::string &ticker,

 �RecommendationType rec,

double targetPrice)

{

 Recommendation r(ticker, rec, targetPrice);

 m_recommendations[ticker].push_back(r);

}

Chapter 4 Common Libraries for Financial Applications

119

Here, you first need to create a new recommendation object based on the

information passed, such as ticker, type of recommendation, and target price. Then,

we use the m_recommendations map to access the vector of recommendations.

Finally, we use the push_back method to add the new recommendation to the list of

recommendations for that particular stock.

Another interesting member function is the one that calculates the average target

price. It looks at all recommendations to calculate an average target.

double RecommendationsProcessor::averageTargetPrice(const std::string

&ticker)

{

 if (m_recommendations.find(ticker) == m_recommendations.end())

 return 0;

 auto vrec = m_recommendations[ticker];

 std::vector<double> prices;

 for (auto i=0; i<vrec.size(); ++i)

 {

 prices.push_back(vrec[i].getTarget());

 }

 return std::accumulate(prices.begin(), prices.end(), 0) / prices.size();

}

The first thing you need to do in this code is to check if the stock has any

recommendation. If not, the function returns the value zero. Otherwise, you can retrieve

the recommendations using the [] operator. I added all the target prices to a temporary

vector of prices and used the std::accumulate algorithm to compute the sum of all

prices. Finally, the member function returns the total divided by the number of such

price recommendations, which is just the average target price as desired.

�Complete Code
Listing 4-1 presents the complete code for the class Recommendation, as described in the

previous section. The listing shows the header and implementation files that you will

need to include the class in your project.

Chapter 4 Common Libraries for Financial Applications

120

Listing 4-1.  Definitions and Implementation for Class Recommendation

//

// Recommendation.h

#ifndef __FinancialSamples__Recommendation__

#define __FinancialSamples__Recommendation__

#include <string>

enum RecommendationType {

 BUY,

 SELL,

 HOLD,

 NO_RECOMMENDATION

};

class Recommendation {

public:

 Recommendation();

 �Recommendation(const std::string &ticker, RecommendationType rec,

double target);

 ~Recommendation();

 Recommendation(const Recommendation &r);

 Recommendation &operator =(const Recommendation &r);

 double getTarget() const;

 RecommendationType getRecommendation() const;

 const std::string &getTicker() const;

private:

 std::string m_ticker;

 RecommendationType m_recType;

 double m_target;

};

#endif /* defined(__FinancialSamples__Recommendation__) */

//

// Recommendation.cpp

Chapter 4 Common Libraries for Financial Applications

121

#include "Recommendation.h"

Recommendation::Recommendation()

: m_recType(HOLD),

 m_target(0)

{

}

Recommendation::Recommendation(const std::string &ticker,

RecommendationType rec, double target)

: m_ticker(ticker),

 m_recType(rec),

 m_target(target)

{

}

Recommendation::~Recommendation()

{

}

Recommendation::Recommendation(const Recommendation &r)

: m_ticker(r.m_ticker),

 m_recType(r.m_recType),

 m_target(r.m_target)

{

}

Recommendation &Recommendation::operator =(const Recommendation &r)

{

 if (this != &r)

 {

 m_ticker = r.m_ticker;

 m_recType = r.m_recType;

 m_target = r.m_target;

 }

Chapter 4 Common Libraries for Financial Applications

122

 return *this;

}

double Recommendation::getTarget() const

{

 return m_target;

}

RecommendationType Recommendation::getRecommendation() const

{

 return m_recType;

}

const std::string &Recommendation::getTicker() const

{

 return m_ticker;

}

//

// RecommendationsProcessor.h

#ifndef __FinancialSamples__RecommendationsProcessor__

#define __FinancialSamples__RecommendationsProcessor__

#include <map>

#include <vector>

#include "Recommendation.h"

class RecommendationsProcessor {

public:

 RecommendationsProcessor();

 ~RecommendationsProcessor();

 RecommendationsProcessor(const RecommendationsProcessor &);

 RecommendationsProcessor &operator =(const RecommendationsProcessor &);

 �void addRecommendation(const std::string &ticker, RecommendationType

rec, double

 targetPrice);

 double averageTargetPrice(const std::string &ticker);

Chapter 4 Common Libraries for Financial Applications

123

 RecommendationType averageRecommendation(const std::string &ticker);

private:

 std::map<std::string, std::vector<Recommendation> > m_recommendations;

};

#endif /* defined(__FinancialSamples__RecommendationsProcessor__) */

//

// RecommendationsProcessor.cpp

#include "RecommendationsProcessor.h"

#include <numeric>

RecommendationsProcessor::RecommendationsProcessor()

{

}

RecommendationsProcessor::~RecommendationsProcessor()

{

}

RecommendationsProcessor::RecommendationsProcessor(const

RecommendationsProcessor &r)

: m_recommendations(r.m_recommendations)

{

}

RecommendationsProcessor &RecommendationsProcessor::operator

=(const RecommendationsProcessor &r)

{

 if (this != &r)

 {

 m_recommendations = r.m_recommendations;

 }

 return *this;

}

Chapter 4 Common Libraries for Financial Applications

124

void RecommendationsProcessor::addRecommendation(const std::string &ticker,

 �RecommendationType rec,

double targetPrice)

{

 Recommendation r(ticker, rec, targetPrice);

 m_recommendations[ticker].push_back(r);

}

double RecommendationsProcessor::averageTargetPrice(const std::string &ticker)

{

 if (m_recommendations.find(ticker) == m_recommendations.end())

 return 0;

 auto vrec = m_recommendations[ticker];

 std::vector<double> prices;

 for (auto i=0; i<vrec.size(); ++i)

 {

 prices.push_back(vrec[i].getTarget());

 }

 return std::accumulate(prices.begin(), prices.end(), 0) / prices.size();

}

RecommendationType RecommendationsProcessor::averageRecommendation(const

std::string &ticker)

{

 double avg = 0;

 if (m_recommendations.find(ticker) == m_recommendations.end())

 {

 return RecommendationType::NO_RECOMMENDATION;

 }

 auto vrec = m_recommendations[ticker];

 std::vector<int> recommendations;

 for (auto i=0; i<vrec.size(); ++i)

 {

 recommendations.push_back((int)vrec[i].getRecommendation()+1);

 }

 return (RecommendationType) (int) (avg / recommendations.size());

}

Chapter 4 Common Libraries for Financial Applications

125

�Performing Time-Series Transformations
Create a class that can be used to perform common time-series transformations, such as

adding or subtracting values to prices and removing undesired values.

�Solution
Time-series data filtering is the task of identifying and removing values, both for

short- and long-term trends, in a sequence of data points. From the point of view of

programming, this is performed by the application of a series of transformations to data

stored in containers. This is a very common task that is properly covered by the STL. The

STL provides several templates that simplify the execution of common algorithms

such as sorting and selection, which can be applied to data containers such as vectors

and lists. Such algorithms can be accessed in C++ code by including the header file

<algorithm>. No additional work is necessary on the part of the programmer.

The <algorithm> header file provides declarations for many useful functions.

Among them, you will find

•	 copy: This template function is used to copy a range of elements from

a given container into a second container. Notice that, as with other

generic algorithms, the containers don’t need to be of the same type. For

example, a range of a vector can be copied into a map, and vice versa.

•	 copy_backward: Similar to the copy function, but the process is

performed from the last to first element of given range. This can be used,

for example, to write the elements of a container in the reverse order.

•	 for_each: This algorithm can be used to apply a particular function

or function object to a set of elements in a container. The for_each

algorithm can be used to avoid the use of a for loop over the elements

of a container. If the operation defined by the loop can be quickly

encapsulated within a function or function object, the for_each

algorithm can be a more concise way to perform the same operation.

•	 find_if: Used to find elements in a given range of a generic

container. The last parameter for the find algorithm can be a

function or a function object that is used to determine the property

satisfied by the desired element.

Chapter 4 Common Libraries for Financial Applications

126

•	 count: Return the number of elements in a given range of a generic

container.

•	 count_if: Return the number of elements in a given range of generic

containers that satisfy the function or function object passed as the

third parameter.

•	 transform: This generic function takes a range of elements in a

container, a destination container, and a transformation function

object. The elements of the input container are transformed using the

transformation function and stored in the destination container.

•	 fill: This function is used to fill a given range of a container with a

single element.

•	 reverse: Changes the given range of a generic container so that the

order of the elements in the container is reversed.

•	 sort: A generic algorithm that can be used to sort a sequence of

elements stored in an STL container. The first two parameters for

this algorithm define the range of elements. The third parameter is a

comparison function, which is used to determine if two elements are

correctly ordered.

•	 binary_search: Implements a binary search of elements over a

sorted range in a container.

•	 min_element: Returns the element with minimum value among the

elements stored in the given container.

•	 max_element: Returns the element with maximum value among the

elements stored in the given container.

These are the most common algorithms provided by the STL. While these algorithms

are in most cases simple to code, there are some advantages to using the STL algorithm

templates over manually created implementations:

•	 The first advantage is that they reduce the possibility of errors

when implementing similar operations. For example, the for_each

algorithm just applies the same function to all elements in a range.

While this is easy to do with a for loop, there is always the possibility

of making mistakes when manipulating individual elements of

Chapter 4 Common Libraries for Financial Applications

127

the container. The for_each algorithm, however, has all the logic

contained in the template definition, reducing the possibility of

errors.

•	 Algorithms in the STL have intimate knowledge of how containers

work. Implementers of the STL understand subtle nuances of the

containers, which can greatly improve the performance of these

algorithms. By using partial specialization, the authors of the STL can

tailor such algorithms to achieve maximum performance for each

container. Using the STL, you automatically take advantage of this

knowledge in your application.

•	 Algorithms are also a succinct way to describe your intent. Instead of

writing another for loop to find a minimum element, for example,

you can apply the min_element algorithm to the target container.

�Using STL Algorithms
To solve the problem posed in this section, you will create a class,

TimeSeriesTransformations, which implements a few time-series transformation

operations. The first algorithm implemented is used to reduce prices in the series. The

solution relies on the std::transform algorithm, and it is implemented as follows:

void TimeSeriesTransformations::reducePrices(double val)

{

 std::vector<double> res;

 std::transform(m_prices.begin(), m_prices.end(), res.begin(),

 std::bind2nd(std::minus<double>(), val));

 m_prices.swap(res);

}

In this member function, the first step is to apply std::transform to the vector

m_prices. The first two parameters are the iterators for the beginning and the end of

the vector. Then, you need to pass the beginning of the output vector. Finally, the last

parameter is the function object used to perform the transformation. The template

std::bind2nd is declared in the <functional> header file and allows one to bind the

second parameter of a functional object (in this case, the minus function). The result

Chapter 4 Common Libraries for Financial Applications

128

is that the minus function will be applied to the m_prices vector, with the second

parameter set to the value defined by val. After the transformation is performed, the next

step is to swap the values stored in m_prices with the values stored in the result vector.

The second function is similar, but I used an alternative strategy.

void TimeSeriesTransformations::increasePrices(double val)

{

 �std::for_each(m_prices.begin(), m_prices.end(), std::bind1st(std::plus

<double>(), val));

}

Here, the function template std::for_each is used to perform a transformation to

each element of the original vector. In this way, you can avoid the need to swap values

into and out of the container. The for_each function applies the plus function with the

first parameter bound to the passed value. As a result, all prices are increased as desired.

The TimeSeriesTransformations class also includes a few other methods that

explore the STL algorithms. For example, the removePricesLessThan method uses the

remove_if template to eliminate prices that are less than the given value. The member

function removePricesGreaterThan is similar. Finally, the getFirstPriceLessThan

function uses the find_if template function to identify a price that is less than a given

value, if such a price exists.

�Complete Code
The algorithm described previously has been implemented using a C++

class called TimeSeriesTransformations. It is divided into a header file

TimeSeriesTransformations.h and a source file TimeSeriesTransformations.cpp.

Listing 4-2 contains the complete code.

Listing 4-2.  Class TimeSeriesTransformations

//

// TimeSeriesTransformations.h

#ifndef __FinancialSamples__TimeSeriesAnalysis__

#define __FinancialSamples__TimeSeriesAnalysis__

#include <vector>

Chapter 4 Common Libraries for Financial Applications

129

class TimeSeriesTransformations {

public:

 TimeSeriesTransformations();

 TimeSeriesTransformations(const TimeSeriesTransformations &);

 ~TimeSeriesTransformations();

 TimeSeriesTransformations &operator=(const TimeSeriesTransformations &);

 void reducePrices(double val);

 void increasePrices(double val);

 void removePricesLessThan(double val);

 void removePricesGreaterThan(double val);

 double getFirstPriceLessThan(double val);

 void addValue(double val);

 void addValues(const std::vector<double> &val);

private:

 std::vector<double> m_prices;

};

#endif /* defined(__FinancialSamples__TimeSeriesAnalysis__) */

//

// TimeSeriesTransformations.cpp

#include "TimeSeriesTransformations.h"

#include <algorithm>

#include <functional>

 TimeSeriesTransformations::TimeSeriesTransformations()

: m_prices()

{

}

TimeSeriesTransformations::TimeSeriesTransformations(const

TimeSeriesTransformations &s)

: m_prices(s.m_prices)

{

}

Chapter 4 Common Libraries for Financial Applications

130

TimeSeriesTransformations::~TimeSeriesTransformations()

{

}

TimeSeriesTransformations &TimeSeriesTransformations::operator=(const

TimeSeriesTransformations &v)

{

 if (this != &v)

 {

 m_prices = v.m_prices;

 }

 return *this;

}

void TimeSeriesTransformations::reducePrices(double val)

{

 std::vector<double> neg(m_prices.size());

 std::transform(m_prices.begin(), m_prices.end(), neg.begin(),

 std::bind2nd(std::minus<double>(), val));

 m_prices.swap(neg);

}

void TimeSeriesTransformations::increasePrices(double val)

{

 �std::for_each(m_prices.begin(), m_prices.end(), std::bind1st(std::plus

<double>(), val));

}

void TimeSeriesTransformations::removePricesLessThan(double val)

{

 �std::remove_if(m_prices.begin(), m_prices.end(), std::bind2nd(std::less

<double>(), val));

}

Chapter 4 Common Libraries for Financial Applications

131

void TimeSeriesTransformations::removePricesGreaterThan(double val)

{

 ��std::remove_if(m_prices.begin(), m_prices.end(), std::bind2nd(std::

greater<double>(), val));

}

double TimeSeriesTransformations::getFirstPriceLessThan(double val)

{

 auto res = std::find_if(m_prices.begin(), m_prices.end(),

 std::bind2nd(std::less<double>(), val));

 if (res != m_prices.end())

 return *res;

 return 0;

}

void TimeSeriesTransformations::addValue(double val)

{

 m_prices.push_back(val);

}

void TimeSeriesTransformations::addValues(const std::vector<double> &val)

{

 m_prices.insert(m_prices.end(), val.begin(), val.end());

}

int main()

{

 TimeSeriesTransformations ts;

 std::vector<double> vals = {7, 6.4, 2.16, 5, 3, 7};

 ts.addValues(vals);

 ts.addValue(6.5);

 ts.reducePrices(0.5);

 �std::cout << " price is " << ts.getFirstPriceLessThan(6.0) << std::endl;

 return 0;

}

Chapter 4 Common Libraries for Financial Applications

132

�Running the Code
I included some sample code that uses the TimeSeriesTransformations class in the

main() function. In this way, you can compile the files presented in the previous section

into a sample application. After building the application with the help of a C++ compiler

such as gcc or Visual Studio, you may run it using the following command line:

./TimeSeriesTransformations

 price is 5.9

�Copying Transaction Files
Create a class to copy transaction files into a temporary storage.

�Solution
File operations are a common requirement in a lot of areas of programming, and it couldn’t

be different in financial applications. Data is commonly stored in formats such as CSV and

XML, as they need to be processed and filtered by other applications. Logging facilities are

also necessary to guarantee that debugging and error messages are properly handled.

This type of file manipulation problem can be solved using traditional C interfaces,

which are available for all major operating systems such as UNIX and Windows.

However, such native interfaces have a few shortcomings and should be avoided when

possible. I use this opportunity to provide an overview of a better approach, using the

boost repository of C++ libraries, and the filesystem library in particular. With a basic

knowledge of how boost works, you will be in a position to use other, more complex

classes in the next few chapters.

�Boost Libraries
The standard C++ library provides a large number of classes, containers, and algorithms.

However, due to the substantial effort necessary to create a new standard of the C++

language, the included set of libraries is frequently minimalist, comprising only the

essential functionality needed by most programmers. Moreover, the standard library

incorporates only classes and functions that have been well verified and established by

their use in real applications, having stood the test of time.

Chapter 4 Common Libraries for Financial Applications

133

Due to the slow process of including new functionality in the language standard,

a more agile strategy for software distribution and development was needed, as a way

to better incorporate new libraries approved by the C++ community. Boost libraries

were created to fill the gap left by this slow process of including new functionality in the

standard. Unlike traditional single-vendor libraries, the goal for boost developers is to

create high-level components that can be reusable across a large spectrum of domains

and architectures. Many of the contributors to boost are themselves involved in the

development of the C++ standard, which means that many of the libraries currently

included in the boost distribution will later on become part of the standard library. For

example, template classes such as std::shared_ptr originated from boost::shared_ptr.

To use boost libraries in your application, you need to download and install them

from the boost.org website. The process is made simpler because of the nature of boost

classes. Since most components in boost are defined as template classes, the complete

code is, with a few exceptions, contained in the header files. This means that you can use

all the functionality in certain boost libraries by simply adding a header file to your code.

Table 4-1 shows some of the libraries available in the boost distribution.

Table 4-1.  Some of the Most Commonly Used Components in the Boost

Distribution

Library Description

boost:any A polymorphic data type designed to be used as a container to any other data

type

Bind Allows existing functions to be used by other function objects

Circular Buffer Defines a storage template that can be used as a circular buffer

Chrono A set of time-related utilities

Filesystem An implementation of common file operations, including coping, moving, and

creating files or directories

Foreach Introduces a looping construct (deprecated by new features on C++11)

Function A set of templates that define function wrappers

Geometry An implementation of common geometric algorithms

(continued)

Chapter 4 Common Libraries for Financial Applications

134

In this chapter and the next, we will have the opportunity to explore some of these

libraries, as they will be needed in other financial C++ code presented in this book. In

this example, we are concerned with the filesystem library, used to provide file and

directory-related operations.

C and C++ have traditionally provided interfaces for file handling in each of the

platforms where it has been implemented. Platform vendors have created separate

libraries for this purpose, resulting in different interfaces for operating systems such

as UNIX and other Posix-compliant systems, Windows, OS/2, VMS, and others. The

differences between these interfaces, however, make it difficult to port applications

across systems. Application writers have, in practice, created abstraction layers that

interact with each different system as needed.

The filesystem library in STL is an attempt to provide a set of cross-platform classes

and templates for file manipulation. The same classes and templates can be used to

handle files in each of the platforms supported by the STL. This reduces the amount

of work by application programmers, while the resulting code can be reused in other

platforms without risks.

The main components of the library are included in the std::filesystem namespace.

These components allow you to perform common operations on files and directories.

Library Description

Graph Defines a graph data type, as well as common graph theory techniques and

algorithms

Hash A simple hash table data type, defined as a template

Lambda A set of templates that can be used to write lambda functions for functional

programming

Log A generic logging facility for C++ applications

Math Additional math functions

MPI A message passing interface library

PropertyMap Defines a generic property template, which can be used to define dynamic

attributes

SmartPtr A set of smart pointer types for storage of heap-allocated objects

Table 4-1.  (continued)

Chapter 4 Common Libraries for Financial Applications

135

The classes included in the library easily support operations such as copying, moving,

changing permissions, and removing. Next, I show you some of these important

components and how they can be used to write code to manipulate file system contents.

The std::filesystem::path class represents a path in the file system. Having a path

class is interesting because it lets programmers represent directory paths in different

systems while using the same object. For example, paths in a UNIX system use the “/”

separator, while in Windows, the “\” separator is used. To avoid problems associated

with these different conventions, the filesystem library uses a common representation.

The class path is then used by many of the functions provided in the library.

The other important concept of the filesystem library is that of directory iterators.

You can create an iterator for a particular path using the directory_iterator function.

This function returns an iterator object, which has operators such as ++ and --, allowing

programmers to move between elements of the given directory.

Other than suitable abstractions for paths and iterators, the filesystem library

provides a set of functions that can be used to perform individual changes to files and

directories. These functions include the following:

•	 is_regular_file: Returns true if the path supplied indicates a

regular file (instead of a directory)

•	 is_directory: Returns true if the path indicates a directory

•	 file_size: Returns the size of the filename passed as argument,

in bytes

•	 exists: Returns true if the path passed as argument exists in the

file system

•	 status: Returns a file_status object, which encapsulates the

properties of given file, such visibility and type

•	 create_directory: Creates a new directory in the file system, with

the given path

•	 copy: Makes a copy of the given path to a location indicated by the

second parameter

•	 remove: Removes the given path from the file system

•	 current_path: Returns a path object that indicates the current path

used by the application

Chapter 4 Common Libraries for Financial Applications

136

These functions can be easily combined to manipulate the file system. I used some

of these functions to implement all the functionality needed by the FileManager class.

For example, the following is how the getContents member function is coded:

std::vector<std::string> FileManager::getContents(const std::string

&prefix)

{

 std::vector<std::string> results;

 path aPath(prefix);

 if (!is_directory(aPath))

 {

 std::cout << " incorrect path was used " << std::endl;

 }

 else

 {

 std::vector <path> contents;

 �copy(directory_iterator(aPath), directory_iterator(),

back_inserter(contents));

 for (int i=0; i<contents.size(); ++i)

 {

 results.push_back(contents[i].string());

 }

 }

 return results;

}

The first step is to create a path object based on the string passed as a parameter.

Once the path has been created, you can test if it points to a directory using the

is_directory function. If the path is correct, then you can use the directory_iterator

function to create an iterator object, which is passed to the copy function. The copy

function’s only job is to copy each element pointed by the iterator into the contents

vector. The elements in this container are later converted to strings and added to the

results vector.

Chapter 4 Common Libraries for Financial Applications

137

Finally, the function that copies files from one directory to a given destination can be

added to the FileManager class using the following code:

void FileManager::copyToTempDirectory(const std::string &prefix)

{

 path tmpPath("/tmp/");

 path aPath(prefix);

 if (!is_directory(aPath))

 {

 std::cout << " incorrect path was used " << std::endl;

 return;

 }

 std::cout << " copying the following files: " << std::endl;

 this->listContents(prefix);

 �for (auto it = directory_iterator(aPath); it != directory_iterator();

++it)

 {

 if (is_regular_file(it->path()))

 {

 copy_file(it->path(), tmpPath);

 }

 }

}

Here, you start checking the given path prefix to make sure that it is a reference to

a directory. Then, I have added some code to list the contents as a form of logging. The

next step is to iterate through the content of the directory using the iterator returned by

the directory_iterator function. For each element of the directory, you can test if it is a

regular file and then use the copy_file function to perform the copy.

�Complete Code
You can see the complete definition of the FileManager class in Listing 4-3. At the end of

the listing, you can see an example of how to use the class in the main() function.

Chapter 4 Common Libraries for Financial Applications

138

Listing 4-3.  Definitions and Implementation for Class FileManager

//

// FileManager.h

#ifndef __FinancialSamples__FileManager__

#define __FinancialSamples__FileManager__

#include <string>

#include <vector>

class FileManager {

public:

 FileManager(const std::string &basePath);

 FileManager(const FileManager &);

 ~FileManager();

 FileManager &operator=(const FileManager &);

 void removeFiles();

 std::vector<std::string> getDirectoryContents();

 void listContents();

 void copyToTempDirectory(const std::string &prefix);

private:

 std::string m_basePath;

};

#endif /* defined(__FinancialSamples__FileManager__) */

//

// FileManager.cpp

#include "FileManager.h"

#include <filesystem>

#include <iostream>

using namespace std::filesystem;

Chapter 4 Common Libraries for Financial Applications

139

FileManager::FileManager(const std::string &basePath)

: m_basePath(basePath)

{

}

FileManager::FileManager(const FileManager &v)

: m_basePath(v.m_basePath)

{

}

FileManager::~FileManager()

{

}

FileManager &FileManager::operator=(const FileManager &v)

{

 if (this != &v)

 {

 m_basePath = v.m_basePath;

 }

 return *this;

}

void FileManager::removeFiles()

{

 std::vector<std::string> files = getDirectoryContents();

 for (unsigned i=0; i<files.size(); ++i)

 {

 path aPath(files[i]);

 if (is_regular_file(aPath))

 {

 �std::cout << " path " << files[i] << " is not a regular file "

<< std::endl;

 }

Chapter 4 Common Libraries for Financial Applications

140

 else

 {

 remove(aPath);

 }

 }

}

void FileManager::listContents()

{

 std::vector<std::string> files = getDirectoryContents();

 for (unsigned i=0; i<files.size(); ++i)

 {

 path aPath(files[i]);

 if (is_regular_file(aPath))

 {

 std::cout << aPath.string() << std::endl;

 }

 }

}

std::vector<std::string> FileManager::getDirectoryContents()

{

 std::vector<std::string> results;

 path aPath(m_basePath);

 if (!is_directory(aPath))

 {

 std::cout << " incorrect path was used " << std::endl;

 }

 else

 {

 auto iterator = directory_iterator(aPath);

 std::vector <path> contents;

 �copy(directory_iterator(aPath), directory_iterator(),

back_inserter(contents));

Chapter 4 Common Libraries for Financial Applications

141

 for (unsigned i=0; i<contents.size(); ++i)

 {

 results.push_back(contents[i].string());

 }

 }

 return results;

}

void FileManager::copyToTempDirectory(const std::string &tmpDir)

{

 const path tmpPath(tmpDir);

 path aPath(m_basePath);

 if (!is_directory(aPath))

 {

 std::cout << " incorrect path was used " << std::endl;

 return;

 }

 std::cout << " copying the following files: " << std::endl;

 this->listContents();

 std::vector<std::string> contents = getDirectoryContents();

 �for (auto it = directory_iterator(aPath); it != directory_iterator();

++it)

 {

 if (is_regular_file(it->path()))

 {

 copy_file(it->path(), tmpPath);

 }

 }

}

int main()

{

 // create a FileManager object for the /tmp directory

 //

 FileManager fm("/tmp/");

 std::vector<std::string> contents = fm.getDirectoryContents();

 std::cout << "entries: " << std::endl;

Chapter 4 Common Libraries for Financial Applications

142

 for (std::string entry : contents)

 {

 std::cout << entry << std::endl;

 }

 return 0;

}

�Running the Code
The class FileManager presented in Listing 4-3 can be built using any standard C++

compiler, such as gcc or Visual Studio. No extra library will be needed to use the

std::filesystem classes if you use a recent compiler (at least C++17). Many modern

Linux distributions already include recent versions of gcc, but if you use other operating

systems, check for support.

For example, the command line necessary to build this class using gcc in my

system is

gcc -o FileManager FileManager.cpp

Once the application is generated, you can run it on a UNIX system as

./FileManager

This will display a list of files stored in the /tmp directory (you can change that

directory as necessary to test on a path in your own system).

�Handling Dates
Let’s see how to create a class that can be used to determine trading days for common

securities, which are negotiated from Monday to Friday.

�Solution
Dates are such a common part of financial data that you should have a well-defined way

to deal with them. Dates are an integral part of historical prices, as well as important

events for equity analysis, such as earnings releases, dividends, price splits, and other

Chapter 4 Common Libraries for Financial Applications

143

regulatory actions. The same can be said about fixed income, derivatives, and other

investment classes. C++ provides a wealth of features that can be used to store, calculate,

and transform dates from one format to another.

Although there are many time- and date-related functions and classes in C++, many

of these mechanisms have been inherited from C standard libraries and are not as

easy to use as other components of the STL. To smooth this process of integration with

the STL, the boost repository includes a date_time library that specializes in handling

different representations of dates, as well as providing the basic support for calculations

based on different date formats.

To solve the problem posed in this section, you will use a class called Date, which

encapsulates the concept of date as used by the application. The member variables are

simply three values representing the year, month, and day. There is also the concept of

days of the week, which are encoded in an enumeration.

enum class DayOfWeek {

 Sun,

 Mon,

 Tue,

 Wed,

 Thu,

 Fri,

 Sat

};

The Date class exposes a number of member functions that can be used to answer

common requests, such as getDayOfWeek, which returns the day of the week for the

current date, and isLeapYear, which tells if a year has 29 days in February. Here is a

quick list of member functions for Date.

Date(int year, int month, int day);

 ~Date();

 bool isLeapYear();

 Date &operator++();

 bool operator<(const Date &d);

 DayOfWeek getDayOfWeek();

 int daysInterval(const Date &);

 bool isTradingDay();

Chapter 4 Common Libraries for Financial Applications

144

The isLeapYear method implementation uses the well-known definition of leap

year, which considers years that are divisible by 4, 100, and 400:

bool Date::isLeapYear()

{

 if (m_year % 4 != 0) return false;

 if (m_year % 100 != 0) return true;

 if (m_year % 400 != 0) return false;

 return true;

}

The getDayOfWeek finds the day of the week for any date after January 1, 1900 (a

Monday). It does so by counting the days since that date and updating the years, months,

and days as necessary. The task of correctly adding to the current date is handled in

operator +.

Finally, the Date class computes the difference between dates using the help of the

date_time library from boost. In date_time, dates are classified according to a calendar.

The calendar used in the Western world is called the Gregorian calendar. It can be used

after you include the following header file:

<boost/date_time/gregorian/gregorian.hpp>

The date_time library defines a few generic data types that can be used for date

manipulation. In this example, we are interested in the date and date_duration types.

The date type is just a representation of a date and can be initialized with a year, month,

and day. The date_duration is used to store the difference between dates. A duration

type can be converted to an integer type using the days() member function. Here is how

you can implement daysInterval:

int Date::daysInterval(const Date &d)

{

 date bdate1(m_year, m_month, m_day);

 date bdate2(d.m_year, d.m_month, d.m_day);

 boost::gregorian::date_duration duration = bdate1 - bdate2;

 return (int) duration.days();

}

Chapter 4 Common Libraries for Financial Applications

145

�Complete Code
You can see the complete code for the class Date in Listing 4-4. Listing 4-4 includes a

header file and an implementation file for the class. You will also see a main() function

that creates two objects of type Date and performs some simple operations with them.

Listing 4-4.  Implementation for Class Date

//

// Date.h

#ifndef __FinancialSamples__Date__

#define __FinancialSamples__Date__

#include <string>

class Date {

public:

 enum class DayOfWeek {

 Sun,

 Mon,

 Tue,

 Wed,

 Thu,

 Fri,

 Sat

 };

 Date(int year, int month, int day);

 ~Date();

 bool isLeapYear();

 Date &operator++();

 bool operator<(const Date &d);

 DayOfWeek getDayOfWeek();

 int daysInterval(const Date &);

 bool isTradingDay();

 std::string toStringDate(Date::DayOfWeek day);

Chapter 4 Common Libraries for Financial Applications

146

private:

 int m_year;

 int m_month;

 int m_day;

};

#endif /* defined(__FinancialSamples__Date__) */

//

// Date.cpp

#include "Date.h"

#include <vector>

#include <algorithm>

#include <boost/date_time/gregorian/gregorian.hpp>

using namespace boost::gregorian;

Date::Date(int year, int month, int day)

: m_year(year),

 m_month(month),

 m_day(day)

{

}

Date::~Date()

{

}

bool Date::isLeapYear()

{

 if (m_year % 4 != 0) return false;

 if (m_year % 100 != 0) return true;

 if (m_year % 400 != 0) return false;

 return true;

}

Chapter 4 Common Libraries for Financial Applications

147

Date &Date::operator++()

{

 std::vector<int> monthsWith31 = { 1, 3, 5, 7, 8, 10, 12 };

 if (m_day == 31)

 {

 m_day = 1;

 m_month++;

 }

 else if (m_day == 30 &&

 std::find(monthsWith31.begin(),

 �monthsWith31.end(), m_month) == monthsWith31.end())

 {

 m_day = 1;

 m_month++;

 }

 else if (m_day == 29 && m_month == 2)

 {

 m_day = 1;

 m_month++;

 }

 else if (m_day == 28 && m_month == 2 && !isLeapYear())

 {

 m_day = 1;

 m_month++;

 }

 else

 {

 m_day++;

 }

 if (m_month > 12)

 {

 m_month = 1;

 m_year++;

 }

Chapter 4 Common Libraries for Financial Applications

148

 return *this;

}

int Date::daysInterval(const Date &d)

{

 Date bdate1(m_year, m_month, m_day);

 Date bdate2(d.m_year, d.m_month, d.m_day);

 boost::gregorian::date_duration duration = bdate1 - bdate2;

 return (int) duration.days();

}

bool Date::operator<(const Date &d)

{

 if (m_year < d.m_year) return true;

 if (m_year == d.m_year && m_month < d.m_month) return true;

 �if (m_year == d.m_year && m_month == d.m_month && m_day < d.m_day)

return true;

 return false;

}

Date::DayOfWeek Date::getDayOfWeek()

{

 int day = 1;

 Date d(1900, 1, 1);

 for (;d < *this; ++d)

 {

 if (day == 7) day = 1;

 else day++;

 }

 return (DayOfWeek) day;

}

bool Date::isTradingDay()

{

 DayOfWeek dayOfWeek = getDayOfWeek();

Chapter 4 Common Libraries for Financial Applications

149

 if (dayOfWeek == DayOfWeek::Sun || dayOfWeek == DayOfWeek::Sat)

 {

 return false;

 }

 return true;

}

std::string Date::toStringDate(Date::DayOfWeek day)

{

 switch(day)

 {

 case DayOfWeek::Sun: return "Sunday";

 case DayOfWeek::Mon: return "Monday";

 case DayOfWeek::Tue: return "Tuesday";

 case DayOfWeek::Wed: return "Wednesday";

 case DayOfWeek::Thu: return "Thursday";

 case DayOfWeek::Fri: return "Friday";

 case DayOfWeek::Sat: return "Saturday";

 }

 throw std::runtime_error("unknown day of week");

}

int main()

{

 Date myDate(2015, 1, 3);

 auto dayOfWeek = myDate.getDayOfWeek();

 std::cout << " day of week is "

 << myDate.toStringDate(dayOfWeek) << std::endl;

 Date secondDate(2014, 12, 5);

 ++secondDate; // test increment operator

 ++secondDate;

 int interval = myDate.daysInterval(secondDate);

 std::cout << " interval is " << interval << " days" << std::endl;

 return 0;

}

Chapter 4 Common Libraries for Financial Applications

150

�Running the Code
The code presented in Listing 4-4 uses standard classes that are available to any

standard C++ compiler. It also uses the boost library, which is open source and can be

downloaded for free from boost.org. You can build an application using the following

command line on Linux and other UNIX systems (assuming that boost was installed on

/usr/local/boost):

gcc -o Date -I/usr/local/boost/ Date.cpp

Executing the resulting binary will show the output of the test code included in the

main() function:

./Date

 day of week is Saturday

 interval is 27 days

�Conclusion
In this chapter, I presented a few programming examples that cover basic libraries used

in financial programming. These include the STL, with its set of containers (such as

vector, map) and algorithms (such as sort, transform, and for_each, among others).

You have also learned about the boost repository, a group of libraries that has been

created to fill the gap resulting from the slow standardization process in C++.

Algorithms are an extensive part of the STL. These algorithms can be used to

perform common operations such as search, copy, and transform, in any container

defined by STL templates. You have also learned in this chapter how to apply these

algorithms to data containers in order to perform data analysis.

The first sample application shows how to handle analyst recommendations. To

properly process this type of information, you had to use STL vectors and maps. The

second sample application uses algorithms provided by the STL to perform simple

transformations in a time series. This kind of transformation can be used to clean up

data, perform what-if analysis, and update prices according to the requirements of

new techniques for investment analysis. You have seen how this can be done using STL

algorithms and functional templates.

Chapter 4 Common Libraries for Financial Applications

151

You have also learned how to create C++ code that handles files and directories in a

way that is independent of the platform or operating system. This is accomplished using

the filesystem library, which is part of the boost repository. One of the main advantages

of using boost is that, while other libraries are closely tied to the operating system,

boost libraries are written in a platform-independent way, following the same strategies

employed by the standard library. In fact, many components of the boost have become

part of the standard library over the years.

Another important aspect of financial code is the frequent use of dates. This type of

data is associated with trades, analyst recommendations, dividends, and so many other

events related to an investment. You learned how to use the date type in the boost date_

time library, as well as how to compute other interesting properties of dates.

This concludes a set of coding examples that reviews some basic aspects of modern

C++ programming. You need to be aware of such techniques, which are mostly based

on the use of templates, the STL, and their algorithms. It is also important to learn about

extension libraries such as the boost repository. In the next chapter, you will start to

learn more about the design of numerical classes. Financial applications in C++ make

heavy use of numerical facilities to perform quick and accurate calculations of the

desired properties of different investment classes. I will discuss some of the underlying

principles in creating such numerical classes and how modern C++ libraries can help

you simplify the resulting code.

Chapter 4 Common Libraries for Financial Applications

153
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_5

CHAPTER 5

Designing Numerical
Classes
At the heart of any high-performance financial application, there is a set of well-designed

numerical classes. These classes are responsible for the implementation of concepts

that are an integral part of tasks such as financial modeling, forecasting, and analysis

of investment decisions. Without the support of mathematical models, it would be very

difficult to propose and evaluate effective investment methodologies. That is why, as

a programmer in the financial industry, you need to familiarize yourself with the best

strategies to design and implement mathematically oriented code in C++. Although it is

not necessary to become a math expert to use these programming techniques, it helps

to possess a basic understanding of the most important numerical issues that need to be

dealt with in your financial programming assignments.

This chapter will show you how to create classes that can run efficiently when used

in numerically oriented, production-ready code. You will also see some sample code that

show how to integrate existing numerical classes and algorithms into your applications.

Some of the concepts discussed in the code examples in this chapter include the

following:

•	 How to design and implement an efficient matrix class

•	 How to supporting common matrix operations

•	 How to perform calculations at compilation time

•	 How to calculate factorial numbers using templates

•	 How to represent ratios as data types

•	 How to use and generate stochastic values using the boost library

https://doi.org/10.1007/978-1-4842-6834-6_5#DOI

154

�Representing Matrices in C++
Implement a class that represents a matrix with some common associated operations,

such as addition, subtraction, transposition, and multiplication.

�Solution
Matrix manipulation is one of the basic operations in numerical computing. C++ doesn’t

have a matrix type, however, and it becomes necessary to implement matrices in most

financial projects. The good news is that it is relatively easy to use algorithms already

present in the standard templates library (STL) for this purpose, as you will see in the

following coding example.

A matrix is just a two-dimensional arrangement of numbers, with which one can

perform a set of standard mathematical transformations. In terms of data organization in

memory, a matrix is not very different from a vector. Considering this similarity, we can

take advantage of existing vector operations to facilitate the implementation of a Matrix

class. Here is a possible definition for such a class.

class Matrix {

public:

 typedef std::vector<double> Row;

 Matrix(int size, int size2);

 Matrix(int size);

 Matrix(const Matrix &s);

 ~Matrix();

 Matrix &operator=(const Matrix &s);

 void transpose();

 double trace();

 void add(const Matrix &s);

 void subtract(const Matrix &s);

 void multiply(const Matrix &s);

 Row & operator[](int pos);

private:

 std::vector<Row> m_rows;

};

Chapter 5 Designing Numerical Classes

155

Notice that, at the beginning of the public interface of the class, I used a public

typedef to define a Row type. Since a row is just a vector of numbers, I want to avoid

typing something as involved as std::vector<std::vector< > > to talk about simple

rows. This is also a good measure that can help you avoid mistakes when defining new

variables and member functions. As a result of this typedef, all the data stored in the

matrix is declared as a vector of Row objects in the private section of the Matrix class.

The simple Matrix class just presented has two constructors.

Matrix(int size);

Matrix(int m, int n);

The first one creates a square matrix, that is, a matrix with the same number of

rows and columns. The second constructor is used to create a more generic rectangular

matrix, with m rows and n columns.

To make the matrix operate more like its counterpart, the vector, you can introduce a

subscript operator to act as an access helper. In this way, it is possible to set and retrieve

the value of specific entries in the matrix using native syntax. The implementation of the

operator is straightforward, then, since we can refer to each individual row in the matrix.

Matrix::Row &Matrix::operator[](int pos)

{

 return m_rows[pos];

}

Next, we consider some elementary operations on matrices. The first operation is

transposition, which is defined as the exchange of elements between rows and columns.

That is, if A is a matrix, we need to interchange values between A[i][j] and A[j][i].

The second common operation on matrices is calculating the trace, which is defined

as the sum of the elements in the main diagonal (i.e., those elements with the same row

and column position). This can be implemented as follows:

double Matrix::trace()

{

 if (m_rows.size() != m_rows[0].size())

 {

 return 0;

 }

 double total = 0;

Chapter 5 Designing Numerical Classes

156

 for (unsigned i=0; i<m_rows.size(); ++i)

 {

 total += m_rows[i][i];

 }

 return total;

}

The first if statement checks if the matrix has a different number of rows and

columns, in which case the trace operation is not defined. The for statement then

iterates over the diagonal, adding those values to the total variable, which is returned at

the end of the member function.

The Matrix class also implements the operations of adding and subtracting matrices.

To add one matrix to another, you just need to add the individual elements of the first one

to the corresponding elements in the second matrix. Similarly, the subtraction of matrices

is defined element-wise. These operations are straightforward to implement in C++.

Finally, you can see how to implement matrix multiplication. In this case, you need

to compute a new matrix, where each element is determined as the sum of the products

of the i-th row and j-th column. The resulting matrix has dimensions determined by the

number of rows in the current matrix and number of columns in the parameter matrix.

The main part of the algorithm is the following:

std::vector<Row> rows;

for (unsigned i=0; i<m_rows.size(); ++i)

{

 std::vector<double> row;

 for (unsigned j=0; j<s.m_rows.size(); ++j)

 {

 double Mij = 0;

 for (unsigned k=0; k<m_rows[0].size(); ++k)

 {

 Mij += m_rows[i][k] * s.m_rows[k][j];

 }

 row.push_back(Mij);

 }

 rows.push_back(row);

}

m_rows.swap(rows);

Chapter 5 Designing Numerical Classes

157

In this code, we have three loops that range over the different dimensions of the

original and the parameter matrix. The value Mij represents the element in position

[i][j] for the resulting matrix. Notice that to simplify storage management, the

algorithm performs the assignments in a new set of rows. Then, the results are stored

in place of the existing values in the last line, using the swap function.

After the Matrix class has been defined, I have also added a few free operators that

make it easier to work with the previously defined operations. These operators make

sure that you can add, subtract, and multiply matrices using a syntax similar to that of

native operations, although assuming a slight overhead for the temporary objects that

become necessary. Here, for example, is the definition of operator *.

Matrix operator*(const Matrix &s1, const Matrix &s2)

{

 Matrix s(s1);

 s.multiply(s2);

 return s;

}

�Complete Code
The ideas just described have been implemented in the Matrix class, presented here

in Listing 5-1. This is a class that I will use in other examples in the next chapters of this

book, so you should be familiar with its definition and main uses.

Listing 5-1.  The Matrix Class

//

// Matrix.h

#ifndef __FinancialSamples__Matrix__

#define __FinancialSamples__Matrix__

#include <vector>

class Matrix {

public:

 typedef std::vector<double> Row;

Chapter 5 Designing Numerical Classes

158

 Matrix(int size, int size2);

 Matrix(int size);

 Matrix(const Matrix &s);

 ~Matrix();

 Matrix &operator=(const Matrix &s);

 void transpose();

 double trace();

 void add(const Matrix &s);

 void subtract(const Matrix &s);

 void multiply(const Matrix &s);

 Row & operator[](int pos);

private:

 std::vector<Row> m_rows;

};

// free operators

//

Matrix operator+(const Matrix &s1, const Matrix &s2);

Matrix operator-(const Matrix &s1, const Matrix &s2);

Matrix operator*(const Matrix &s1, const Matrix &s2);

#endif /* defined(__FinancialSamples__Matrix__) */

//

// Matrix.cpp

#include "Matrix.h"

Matrix::Matrix(int size)

{

 for (unsigned i=0; i<size; ++i)

 {

 std::vector<double> row(size, 0);

 m_rows.push_back(row);

 }

}

Chapter 5 Designing Numerical Classes

159

Matrix::Matrix(int size, int size2)

{

 for (unsigned i=0; i<size; ++i)

 {

 std::vector<double> row(size2, 0);

 m_rows.push_back(row);

 }

}

Matrix::Matrix(const Matrix &s)

: m_rows(s.m_rows)

{

}

Matrix::~Matrix()

{

}

Matrix &Matrix::operator=(const Matrix &s)

{

 if (this != &s)

 {

 m_rows = s.m_rows;

 }

 return *this;

}

Matrix::Row &Matrix::operator[](int pos)

{

 return m_rows[pos];

}

void Matrix::transpose()

{

 std::vector<Row> rows;

 for (unsigned i=0;i <m_rows[0].size(); ++i)

 {

 std::vector<double> row;

Chapter 5 Designing Numerical Classes

160

 for (unsigned j=0; j<m_rows.size(); ++j)

 {

 row[j] = m_rows[j][i];

 }

 rows.push_back(row);

 }

 m_rows.swap(rows);

}

double Matrix::trace()

{

 if (m_rows.size() != m_rows[0].size())

 {

 return 0;

 }

 double total = 0;

 for (unsigned i=0; i<m_rows.size(); ++i)

 {

 total += m_rows[i][i];

 }

 return total;

}

void Matrix::add(const Matrix &s)

{

 if (m_rows.size() != s.m_rows.size() ||

 m_rows[0].size() != s.m_rows[0].size())

 {

 throw new std::runtime_error("invalid matrix dimensions");

 }

 for (unsigned i=0; i<m_rows.size(); ++i)

 {

 for (unsigned j=0; j<m_rows[0].size(); ++j)

 {

 m_rows[i][j] += s.m_rows[i][j];

 }

Chapter 5 Designing Numerical Classes

161

 }

}

void Matrix::subtract(const Matrix &s)

{

 if (m_rows.size() != s.m_rows.size() ||

 m_rows[0].size() != s.m_rows[0].size())

 {

 throw new std::runtime_error("invalid matrix dimensions");

 }

 for (unsigned i=0; i<m_rows.size(); ++i)

 {

 for (unsigned j=0; j<m_rows[0].size(); ++j)

 {

 m_rows[i][j] += s.m_rows[i][j];

 }

 }

}

void Matrix::multiply(const Matrix &s)

{

 if (m_rows[0].size() != s.m_rows.size())

 {

 throw new std::runtime_error("invalid matrix dimensions");

 }

 std::vector<Row> rows;

 for (unsigned i=0; i<m_rows.size(); ++i)

 {

 std::vector<double> row;

 for (unsigned j=0; j<s.m_rows.size(); ++j)

 {

 double Mij = 0;

 for (unsigned k=0; k<m_rows[0].size(); ++k)

 {

 Mij += m_rows[i][k] * s.m_rows[k][j];

 }

Chapter 5 Designing Numerical Classes

162

 row.push_back(Mij);

 }

 rows.push_back(row);

 }

 m_rows.swap(rows);

}

Matrix operator+(const Matrix &s1, const Matrix &s2)

{

 Matrix s(s1);

 s.subtract(s2);

 return s;

}

Matrix operator-(const Matrix &s1, const Matrix &s2)

{

 Matrix s(s1);

 s.subtract(s2);

 return s;

}

Matrix operator*(const Matrix &s1, const Matrix &s2)

{

 Matrix s(s1);

 s.multiply(s2);

 return s;

}

�Using Templates to Calculate Factorials
In this section, I will show how to create a template-based class that can be used to

calculate factorials at compile time.

Chapter 5 Designing Numerical Classes

163

�Solution
Templates provide an easy way to apply the same code across data types, allowing

programmers to create generic, reusable code. The best example of this is the STL, with

its many containers and associated algorithms. However, templates can also be used to

perform numerical tasks due to their ability to receive integer numbers, in addition to

data types, as formal arguments. In this coding example, you will see how templates can

be employed to perform some simple calculations at compilation type.

Template-based computation can be seen as a useful strategy to reduce the

runtime overhead of numeric algorithms. After all, if you’re able to perform some of the

calculations at compilation time, less time will be necessary to perform the complete

computation each time you execute the compiled code.

One of the biggest surprises for people who start working with template-based

computing is that calculated values cannot simply be returned as the output of

functions. Since functions can return any value at runtime, a traditional function cannot

serve as the basis for compile-time calculations. Instead, you need a way to store values

inside the class as a constant, which can then become readily available to the compiler.

One of the ways to achieve this in C++ is with an enumeration. For example, consider

enum {

 result = 1

};

This fragment defines a constant, integral value that can be later referenced in the

program. If a constant expression is used (instead of a number) in the right-hand side

of the declaration, the result value can be later employed in the program to access the

desired value.

The next thing you need is a way to pass numbers as parameters to the class

template. In C++, you can declare templates that take as parameters an int value (or one

of its several variations such as long and char). The general syntax that can be used to

perform calculations as part of a template is the following:

template <int N>

class CompileTime {

public:

 enum { result = ConstantExpressionDependingOnN };

};

Chapter 5 Designing Numerical Classes

164

where ConstantExpressionDependingOnN is an expression that in some way depends

on the parameter N and can be used to calculate the desired value. You can see that the

code in this example will use this general format to perform compile-time calculations.

Once you find a way to execute calculations at compilation time, the next step

is to introduce concepts such as iteration to your code. In C++ templates, it is not

possible to write loops, such as for or while, as part of a constant expression. All

C++ loops are executed at runtime, which makes them unusable for compile-time

operations. Thankfully, templates provide a specialization mechanism that can be used

to implement recursion, a technique that can be used to achieve the same effects as

looping.

For example, if a template uses a single integer parameter, you can specialize that

parameter with a base case alongside a generic version that handles the common case.

Together, these cases are enough to simulate a loop that starts with the generic case and

terminates the computation once the special case is reached. Figure 5-1 presents an

illustration of this mechanism, where the following example is considered:

// general case

template <int N>

class Double {

public:

 enum { result = 2 + Double<N-1> };

};

// specialization for the base case

template <>

class Double<1> {

public:

 enum { result = 2 };

};

Chapter 5 Designing Numerical Classes

165

This shows how you can compute the double of an integer number using template-

based recursion. The general case is stated at the top, where the result value is defined as

the expression 2 + Double<N-1>.

To find the value of that expression, the compiler will need to expand it inline,

decreasing the value of N each time and calling Double with the new value. The second

part of the declaration allows this process to end, introducing a base value. The

declaration reads

template <>

class Double<1>

This tells the compiler that Double<1> is a specialization of a generic template, for

the particular value of 1. Therefore, when the template Double is applied to 1, the result

calculated will be the value 2, as desired.

A similar strategy can be used to solve multiple problems, including the required

task of computing factorials. The first part is to define the general case, which contains a

recurring expression.

Figure 5-1.  An example of computation using template specialization. The
general case is instantiated with the integer 4, and new instantiations are used
until the specialization for Double<1> is reached

Chapter 5 Designing Numerical Classes

166

template <long N>

class Factorial {

public:

 enum {

 result = Factorial<N-1>::result * N

 };

};

The second part of the solution is the base case, which will determine the value of

Factorial<0>.

This can be written as

template <>

class Factorial<0> {

public:

 enum {

 result = 1

 };

};

We can test the preceding code with a few calls to the Factorial template. The

example is included as part of the showFactorial function.

void showFactorial()

{

 std::cout << " Some factorial values: " << std::endl;

 std::cout << "fact(5)= " << Factorial<5>::result;

 std::cout << "fact(7)= " << Factorial<7>::result;

 std::cout << "fact(9)= " << Factorial<9>::result;

}

Finally, you can also use the Factorial class as the basis of other compile-time

computations. For example, here is how you can use Factorial to calculate the choice

number (the number of combinations of N objects, taken in groups of P).

Chapter 5 Designing Numerical Classes

167

template <int N, int P>

class ChoiceNumber {

public:

 enum {

 �result = Factorial<N>::result / (Factorial<P>::result *

Factorial<N-P>::result)

 };

};

Notice that here you don’t need a base case, since there is actually no recursion

involved. The ChoiceNumber class template is just using Factorial directly to perform

the compile-time calculation as its result.

The nice thing about compile-time computations using templates is that you can

use the same strategy discussed here to compute very different functions. As long as

you can represent the computation as a recursion, the scheme described previously

can be employed with little modification. In this way, you will be using the power of the

compiler to perform calculations ahead of time and possibly saving a lot of time later,

when the program is actually running.

Caution  While the ability of calculating values using templates is very useful, you
may want to avoid using them frequently, since they may slow down compilation.
Long compilation times may be the biggest adverse effect of overreliance on
templates. Ideally, you should consider the trade-off between compilation time
and runtime savings before deciding if a computation should be performed using
templates at compilation time instead of runtime.

�Complete Code
Here you have an example of using templates to calculate factorials at compile time.

The important part of the implementation is in the header file (FactorialTemplate.h)

shown in Listing 5-2. This is necessary, since templates need to be visible to the client at

the moment they are used. The cpp file shows some sample uses of the template.

Chapter 5 Designing Numerical Classes

168

Listing 5-2.  The FactorialTemplate.h Header File

//

// FactorialTemplate.h

#ifndef __FinancialSamples__FactorialTemplate__

#define __FinancialSamples__FactorialTemplate__

template <long N>

class Factorial {

public:

 enum {

 result = Factorial<N-1>::result * N

 };

private:

};

template <>

class Factorial<0> {

public:

 enum {

 result = 1

 };

};

template <int N, int P>

class ChoiceNumber {

public:

 enum {

 �result = Factorial<N>::result / (Factorial<P>::result *

Factorial<N-P>::result)

 };

};

void showFactorial();

#endif /* defined(__FinancialSamples__FactorialTemplate__) */

Chapter 5 Designing Numerical Classes

169

//

// FactorialTemplate.cpp

#include "FactorialTemplate.h"

#include <iostream>

void showFactorial()

{

 std::cout << " Some factorial values: " << std::endl;

 std::cout << "fact(5)= " << Factorial<5>::result;

 std::cout << "fact(7)= " << Factorial<7>::result;

 std::cout << "fact(9)= " << Factorial<9>::result;

}

int main(int argc, const char **argv)

{

 std::cout << "factorial(6) = " << Factorial<6>::result;

 �std::cout << "\n choiceNumber(5,6) = " << <<

ChoiceNumber<6,2>::result;

 showFactorial();

 return 0;

}

�Running the Code
You can compile and run the FactorialTemplate class to test the concepts you have

just learned. For that purpose, you can use the gcc compiler, which can generate an

application using the following command:

gcc -o factorial FactorialTemplate.cpp

After a few seconds, the binary file factorial will be created with the desired

functionality. You can run the program by just calling it from the command line

./factorial

You can also click the executable if running on a Windows machine. This would

result in the following output:

Chapter 5 Designing Numerical Classes

170

factorial(6)= 720

choiceNumber(5,6) = 15

factorial(5)= 120

factorial(7)= 5040

factorial(9)= 362880

�Using C++20 Features to Compute Factorial
C++ has recently introduced a number of features that make it easier to work with

template code. While the previous example is still useful to explain how templates work,

the syntax has been simplified, and it is now possible to achieve the same results with

much less boilerplate.

First, C++ now has the ability to calculate expressions at compilation time using the

constexpr keyword. When using the constexpr keyword, you’re instructing the compiler

to directly perform a calculation during compilation time. This is much simpler than

creating a recursive template class as you have seen in the previous section.

So, for example, if you need to create a factorial function, the following definition

would be enough:

constexpr int factorial(const int n)

{

 return n <= 1 ? 1 : (n * factorial(n - 1));

}

The definition of this function uses constexpr, which means that its value should

be calculated at compilation time, if possible (i.e., if the arguments are constant values

known to the compiler). The remaining of the syntax is similar to what you would write

for a standard function, using a recursive call to compute the value of factorial, based on

the result for a smaller integer number. You can also call this function in the same way

that you call a normal function.

�Representing Calmar Ratios at Compile Time
The Calmar ratio is a measure of investment returns as compared to possible annual

losses. It is used to compare investments with different risk profiles. The Calmar ratio is

defined as the average annual rate of return for a given period, divided by the maximum

Chapter 5 Designing Numerical Classes

171

drawdown (i.e., the maximum loss) during the same period. If you consider the same

rate of return, investments with higher Calmer ratio had lower risk during the considered

period. In this section, I will show how to create C++ code to represent Calmar ratios

using compile-time techniques.

�Solution
When writing numerical algorithms, it is frequently useful to represent certain quantities

as constants. Some of these mathematical constants, however, are better denoted

as ratios. For example, physical quantities frequently employ units of measurement,

which are regularly represented as the ratio of other more fundamental units. As a

consequence, ratios are a specific type of mathematical constant that can benefit from a

more specific, high-level representation.

In this coding example, you will solve this problem using a simple library that is

part of the boost repository. The library is called ratio and uses templates to represent

mathematical quantities such as the standard Calmar ratio of an investment. The used

representation can also be checked during compilation.

The basic template provided in the ratio library is simply called ratio. Its operation

requires two template parameters, respectively, the numerator and the denominator.

These parameters can either be simple numeric types, such as int, or other types

previously declared using the ratio template. Types defined with the ratio template

for different inputs are fundamentally different, and the compiler will enforce the

correctness of any arithmetic operations involving these values.

One of the main advantages of using the ratio template is that it also provides some

common compile-time operations. These operations can be used to perform standard

mathematical transformations to the quantities defined with the template. Such

operations include

•	 boost::ratio_add

•	 boost::ratio_subtract

•	 boost::ratio_multiply

•	 boost::ratio_add

•	 boost::ratio_negate

Chapter 5 Designing Numerical Classes

172

Using these operations, you can define derived types and constants, which are

derivatives of the original ratio types. You can also use a few template-based operations

to perform logical comparisons on such ratios, such as

•	 boost::ratio_equal

•	 boost::ratio_not_equal

•	 boost::ratio_less

•	 boost::ratio_less_equal

•	 boost::ratio_greater

•	 boost::ratio_greater_equal

You can start using the ratio library by importing the main header file <boost/ratio.

hpp>. Then, you can start defining objects for each desired ratio using boost::ratio.

#include <boost/ratio.hpp>

boost::ratio<1, 2> one_half;

boost::ratio<1, 3> one_third;

boost::ratio<2, 5> two_fifths;

Once a boost::ratio object has been defined, you can retrieve its information at

runtime using the num and den member variables, which correspond to the numerator

and denominator, respectively. For example:

std::cout << "one_third numerator: " << one_third.num

 << " denominator: " << one_third.den;

�Representing Calmar Ratios
With the help of the ratio library, it is possible to create a few useful financial types

such as a Calmar ratio. The Calmar ratio is defined as the annual rate of return of an

investment divided by its maximum drawdown during the known period. Thus, a

CalmarRatio type can be defined as follows:

typedef boost::ratio<1, 1>::type CalmarRatioType;

Chapter 5 Designing Numerical Classes

173

From now on, CalmarRatioType can be used to represent quantities with a

numerator and denominator at compile time. More interestingly, suppose that we want

to be able to represent Calmar ratios using percentages as well as percentage points

(1/100%). The definitions would then become

typedef boost::ratio<1, 100>::type CalmarRatioBPS;

typedef boost::ratio<1, 1>::type CalmarRatioPerc;

With these two types, we could create a template-based class to return information

about the particular ratio, such as the maximum drawdown and the performance of the

given object. The implementation is as follows:

template <class Ratio>

class CalmarRatio {

public:

 �CalmarRatio(double calmar, double ret) : m_calmar(calmar),

m_return(ret) {}

 virtual ~CalmarRatio() {}

 double getReturn();

 double getDrawDown()

 {

 return m_return / m_calmar * m_ratio.den;

 }

private:

 Ratio m_ratio;

 double m_calmar;

 double m_return;

};

The class is a template that receives the desired ratio type, either CalmarRatioPerc or

CalmarRatioBPS. Of course, other ratio types could be supported if needed. Let’s check

the getDrawDown member function. The standard definition uses the den variable to

calculate the drawdown of the investment. However, different versions of this member

function can be created using template specializations. The following implementation

provides an example:

Chapter 5 Designing Numerical Classes

174

template <>

double CalmarRatio<CalmarRatioBPS>::getDrawDown()

{

 return m_return / m_calmar * m_ratio.den * 100;

}

In this case, since the template is specialized for the CalmarRatioBPS, the standard

drawdown is multiplied by 100. This is necessary because the denominator is expressed

in basis points, instead of percentages.

�Complete Code
Listing 5-3 presents an implementation for the CalmarRatio class. Notice the use of the

boost::ratio template to model different ratio types and how they are used by the main

class.

Listing 5-3.  The CalmarRatio Class

// CalmarRatio.h

//

#ifndef CALMARRATIO_H_

#define CALMARRATIO_H_

#include <boost/ratio.hpp>

typedef boost::ratio<1, 1>::type CalmarRatioType;

typedef boost::ratio<1, 100>::type CalmarRatioBPS;

typedef boost::ratio<1, 1>::type CalmarRatioPerc;

template <class Ratio>

class CalmarRatio {

public:

 �CalmarRatio(double calmar, double ret) : m_calmar(calmar),

m_return(ret) {}

 ~CalmarRatio() {}

Chapter 5 Designing Numerical Classes

175

 double getReturn()

 {

 return m_return;

 }

 double getDrawDown()

 {

 return m_return / m_calmar * m_ratio.den;

 }

private:

 Ratio m_ratio;

 double m_calmar;

 double m_return;

};

template <>

double CalmarRatio<CalmarRatioBPS>::getDrawDown()

{

 return m_return / m_calmar * m_ratio.den * 100;

}

#endif /* CALMARRATIO_H_ */

// CalmarRatio.cpp

//

#include "CalmarRatio.h"

#include <iostream>

boost::ratio<1, 2> one_half;

boost::ratio<1, 3> one_third;

void createCalmarRatio()

{

 CalmarRatio<CalmarRatioPerc> ratio(0.15, 11);

}

Chapter 5 Designing Numerical Classes

176

void printRatios()

{

 std::cout << "one_third numerator: " << one_third.num

 << " denominator: " << one_third.den;

}

int main()

{

 CalmarRatio<CalmarRatioPerc> ratio(0.110, 3.12);

 std::cout << "return: " << ratio.getReturn()

 << " drawdown: " << ratio.getDrawDown() << std::endl;

 CalmarRatio<CalmarRatioBPS> bpsRatio(480, 2.15);

 std::cout << "return: " << bpsRatio.getReturn()

 << " drawdown: " << bpsRatio.getDrawDown() << std::endl;

}

�Running the Code
We tested the sample application containing the CalmarRatio class and its associated

code in a UNIX system using the gcc compiler. You can compile the cpp file presented

earlier using a build system such as make, with its related makefile. Or you can just build

the application directly with the compiler, using the following command line:

gcc -o calmarRatio CalmarRatio.cpp

The resulting executable file can be called from the terminal. It will display the result

of the Calmar ratios in the following way:

return: 3.12 drawdown: 28.3636

return: 2.15 drawdown: 44.7917

As you see, the code treats the parameters differently, with results interpreted

according to the type of Calmar ratio used. The first example uses a CalmarRatioPerc,

which regards the Calmar ratio as applied to a percentage. The second example uses a

CalmarRatioBPS representation, which works with basis points instead of percentages.

The results, however, are displayed correctly according to their respective return and

drawdown.

Chapter 5 Designing Numerical Classes

177

�Generating Statistical Data
Create data using statistical distributions such as Gaussian (normal distribution) and

chi-squared.

�Solution
When working with trading algorithms, it is frequently useful to test the operation of

such strategies on artificially generated prices. If we consider that most of the short-term

movements of the market have a stochastic component, we can use random number

generators to approximate the values of typical price-related time series.

In this section, we investigate how to generate statistically based data that can

later be used to test trading strategies. To do this, you can use one of the many libraries

currently available for the generation of statistical values in C++. These libraries operate

similarly to random number generators, with a few differences. Traditional random

number generators are used to produce random integer values. Such numbers can

be, with some work, converted into uniformly distributed random numbers in a given

interval, such as between 0 and 1.

For more advanced uses, however, it is interesting to generate random numbers

from a particular probability distribution. Such probability distributions are based

on standard random processes and include the Gaussian distribution (also known

as normal distribution) and the chi-squared distribution (a form of skewed normal

distribution). See Figure 5-2. These distributions can be used to generate stochastic

numbers that are more representative of the stock market.

Chapter 5 Designing Numerical Classes

178

In this example, I will show you how to use the boost::math namespace, where

you declare a set of objects representing statistical distributions. The use of a library for

this task makes it possible to concentrate on the design of your algorithm, instead of

having to re-implement such a common statistic utility function, which has already been

made available in many programming libraries. I also use the boost::random library to

generate random data points based on these distributions.

�Probability Distributions
Before I start, let me give you a quick overview of probability distributions and their uses.

Probability distributions are a mathematical representation of parameterized random

processes that frequently occur in nature. For example, the most basic probability

distribution is the uniform distribution, in which points occur with the same probability

over the whole interval in which the function is defined. Thus, each time a new event

occurs according to this distribution (assuming that it has been defined for numbers

between 1 and 2), its value may be any real number between 1 and 2 with equal

Figure 5-2.  Plots for two probability distribution functions (PDF) available in the
boost::math namespace. The top plot is for a normal distribution with parameters
0 and 1. The bottom plot is for the chi-squared distribution with parameter 5

Chapter 5 Designing Numerical Classes

179

probability. The uniform distribution has an important role because values generated

under uniform random probability can be converted into other probability distributions.

Another important distribution is normal (or Gaussian) distribution. The normal

distribution has two parameters: the mean (average) value and the standard deviation.

Normally distributed random events occur with highest probability around the

mean, and the probability of an event occurring further away decreases quickly. The

resulting probability distribution is bell-shaped to indicate this characteristic of the

probability space. It has been observed that many natural phenomena follow the

normal distribution, especially when large numbers of observations are considered.

Figure 5-2(top) shows a plot of the probability distribution function (PDF) for a normal

(also known as Gaussian) random variable.

Other probability distributions are also used in financial applications. You can see

a quick list of the most important in Table 5-1. Each distribution has a common usage

pattern and associated parameters that can be used to describe the range of probabilities

as well as the shape of the resulting function.

Table 5-1.  A Few Commonly Used Distributions with Their Parameters and

Corresponding boost::math Identifier

Distribution Parameter(s) boost::math identifier

Bernoulli Probability of success boost::math::bernoulli_distribution

Beta Alpha and beta (real values) boost::math::beta_distribution

Binomial Number of trials and

success probability

boost::math:: binomial_distribution

Cauchy Location and scale boost::math::cauchy_distribution

Chi-squared Degrees of freedom boost::math::chi_squared_distribution

Exponential Lambda (rate) boost::math::exponential_distribution

Geometric Success probability boost::math::geometric_distribution

Hypergeometric N, K, and number of trials boost::math::hypergeometric_

distribution

Log-normal Mean and sigma boost::math::lognormal_distribution

Logistic Mean and scale boost::math::logistic_distribution

(continued)

Chapter 5 Designing Numerical Classes

180

Some of these functions are also available in the STL under the header file <random>.

However, for completeness, I also show in this chapter how to compute these values

using the boost library. In order to use some of these probability distributions in your

code, you can include the header file <boost/math/distributions.hpp>. First, you

need to make sure that boost is properly installed in your system (check the installation

instructions on the www.boost.org website). The last column of Table 5-1 lists the

distribution names.

Once you import a particular distribution, you can use it to respond to common

questions such as the following: What is the mean of the distribution? What is the

respective quantile for a particular value? What is the CDF of a particular value? You will

see some of these questions being answered in class DistributionData, which is listed

here.

Another responsibility of class DistributionData is to generate random numbers

for some distributions, given the required parameters. A distribution-specific random

number is created when the distribution object is called. You need to pass a uniform

random number generator, which is also provided by boost. You can store these values in

a vector and return them at the end of the member function. Here is an example of how

this process works for Gaussian-distributed data.

std::vector<double> DistributionData::gaussianData(int nPoints, double

mean, double sigma)

{

 std::vector<double> data;

 boost::random::normal_distribution<> distrib(mean, sigma);

Table 5-1.  (continued)

Distribution Parameter(s) boost::math identifier

Normal (Gaussian) Mean and sigma boost::math::normal_distribution

Poisson Lambda (rate) boost::math::poisson_distribution

Student’s

t-Distribution

Degrees of freedom (real

value)

boost::math::students_t_distribution

Triangular Extremes and middle point boost::math::triangular_distribution

Uniform Start and end of interval boost::math::uniform_distribution

Chapter 5 Designing Numerical Classes

http://www.boost.org

181

 for (int i=0; i<nPoints; ++i)

 {

 double val = distrib(random_generator);

 data.push_back(val);

 }

 return data;

}

Two other common probability distributions are the gamma and log-normal

distributions. The gamma distribution can be interpreted as a generalized version of the

normal distribution, in which you can control the shape and scale of the probabilities.

Figure 5-3 (top) shows an example of the gamma distribution. The log-normal

distribution is another possible generalization of the normal distribution, and it can be

interpreted as the product of several positive and independent random variables. Its PDF

is presented in Figure 5-3 (bottom). The log-normal distribution is included as one of the

distributions supported by class DistributionData.

Figure 5-3.  Plots for two probability distribution functions (PDF) available
in the boost::math namespace. The top plot is for a gamma distribution with
parameters 1 and 2. The bottom PDF is for the log-normal distribution with
parameters 0 and 1

Chapter 5 Designing Numerical Classes

182

�Complete Code
In Listing 5-4, I show the implementation for a class that generates data using a few of

the probability distributions available in the boost::random template library. The main

class is called DistributionData, and you can use it to generate numbers, as well as

calculate quantiles for some distributions.

Listing 5-4.  The DistributionData Class

// DistributionData.h

//

#ifndef DISTRIBUTIONDATA_H_

#define DISTRIBUTIONDATA_H_

#include <vector>

// class responsible for generating data basic on common probability

distributions

//

class DistributionData {

public:

 // standard constructor and destructor

 DistributionData();

 ~DistributionData();

 // random data generation based on the given parameters.

 // each function returns a vector with nPoints random values.

 �std::vector<double> gaussianData(int nPoints, double mean, double

sigma);

 std::vector<double> exponentialData(int nPoints, double rate);

 �std::vector<double> chiSquaredData(int nPoints, int

degreesOfFreedom);

 �std::vector<double> logNormalData(int nPoints, double mean, double

sigma);

 �// returns the quantile of the give value x, corresponding to the

parameters provided.

 //

Chapter 5 Designing Numerical Classes

183

 double gaussianQuantile(double x, double mean, double sigma);

 double chiSquaredQuantile(double x, int degreesOfFreedom);

 double exponentialQuantile(double x, double rate);

 double logNormalQuantile(double x, double mean, double sigma);

};

#endif /* DISTRIBUTIONDATA_H_ */

// DistributionData.cpp

//

#include "DistributionData.h"

#include <boost/math/distributions.hpp>

using boost::math::quantile;

#include <boost/random.hpp>

#include <boost/random/normal_distribution.hpp>

static boost::rand48 random_generator;

DistributionData::DistributionData()

{

}

DistributionData::~DistributionData()

{

}

std::vector<double> DistributionData::gaussianData(int nPoints, double

mean, double sigma)

{

 std::vector<double> data;

 boost::random::normal_distribution<> distrib(mean, sigma);

 for (int i=0; i<nPoints; ++i)

 {

 double val = distrib(random_generator);

 data.push_back(val);

 }

Chapter 5 Designing Numerical Classes

184

 return data;

}

std::vector<double> DistributionData::exponentialData(int nPoints, double

rate)

{

 std::vector<double> data;

 boost::random::exponential_distribution<> distrib(rate);

 for (int i=0; i<nPoints; ++i)

 {

 double val = distrib(random_generator);

 data.push_back(val);

 }

 return data;

}

std::vector<double> DistributionData::logNormalData(int nPoints, double

mean, double sigma)

{

 std::vector<double> data;

 boost::random::lognormal_distribution<> distrib(mean, sigma);

 for (int i=0; i<nPoints; ++i)

 {

 double val = distrib(random_generator);

 data.push_back(val);

 }

 return data;

}

std::vector<double> DistributionData::chiSquaredData(int nPoints, int

degreesOfFreedom)

{

 std::vector<double> data;

Chapter 5 Designing Numerical Classes

185

 boost::random::chi_squared_distribution<> distrib(degreesOfFreedom);

 for (int i=0; i<nPoints; ++i)

 {

 double val = distrib(random_generator);

 data.push_back(val);

 }

 return data;

}

double DistributionData::gaussianQuantile(double x, double mean, double

sigma)

{

 boost::math::normal_distribution<> dist(mean, sigma);

 return quantile(dist, x);

}

double DistributionData::chiSquaredQuantile(double x, int degreesOfFreedom)

{

 boost::math::chi_squared_distribution<> dist(degreesOfFreedom);

 return quantile(dist, x);

}

double DistributionData::exponentialQuantile(double x, double rate)

{

 boost::math::exponential_distribution<> dist(rate);

 return quantile(dist, x);

}

double DistributionData::logNormalQuantile(double x, double mean, double

sigma)

{

 boost::math::lognormal_distribution<> dist(mean, sigma);

 return quantile(dist, x);

}

Chapter 5 Designing Numerical Classes

186

namespace {

 template <class T>

 void printData(const string &label, const T &data)

 {

 cout << " " << label << ": ";

 for (auto i : data)

 {

 cout << i << " ";

 }

 cout << endl;

 }

}

int main()

{

 DistributionData dData;

 auto gdata = dData.gaussianData(10, 5, 2);

 printData("gaussian data", gdata);

 auto edata = dData.exponentialData(10, 4);

 printData("exponential data", edata);

 auto kdata = dData.chiSquaredData(10, 5);

 printData("chi squared data", kdata);

 auto ldata = dData.logNormalData(10, 8, 2);

 printData("log normal data", ldata);

 return 0;

}

�Running the Code
You can compile the code in Listing 5-4 using any standard-compliant C++ compiler.

You need to have boost installed in your system, as discussed in the previous sections.

The following is an example of the expected output (exact numbers will vary depending

on your particular implementation and random numbers used):

Chapter 5 Designing Numerical Classes

187

./distributionData

gaussian data: 7.12699 5.56941 5.91951 3.44111 4.89098 4.95243 7.33077

10.6359 5.00597 3.08975

exponential data: 0.108161 0.212945 0.0355506 0.0165794 0.753239 0.041679

0.219658 0.0610242 0.410622 0.0378433

chi squared data: 6.12073 2.14098 1.57523 6.49539 3.15154 1.47554 8.39545

9.07183 2.77768 5.05356

log-normal data: 1573.09 473.919 370.7 1212.54 1530.16 323705 2586.73

35919.6 628.913 372.41

�Conclusion
Numerical classes and functions play a very important role in the development of

financial engineering models. They offer the basic level of mathematical support needed

for the creation of sophisticated trading strategies. In this chapter, you explored some of

the most common numerical libraries.

First, I discussed algorithms based on matrix computation and how they can be

represented using STL-based containers. The STL also provides a wealth of algorithms,

which can be used in numerical applications as well as in other generic programming

tasks. Next, you learned how to use the compile-time facilities provided by the C++

template mechanism. You have seen examples of how to employ such template-based

facilities to calculate the factorial of a number. The same concepts can be extended for

many other uses as well. You have also learned about the use of ratio templates and how

they can represent financial concepts such as the Calmar ratio.

Probability distributions are another area of numerical algorithms that have a strong

presence in financial applications. The testing of investment strategies usually involves

the generation of stochastic data, as a way of simulating possible economic scenarios.

You learned how to generate random values based on some of the most common

probability distributions. Such distributions are provided by a few numeric libraries, and

in this chapter, I have used boost::math and boost::random for this purpose. Together,

these libraries provide a way to generate random data, as well as returning relevant

information about specific distributions such as mean, standard deviation, quantiles,

and other related attributes.

Chapter 5 Designing Numerical Classes

188

Data visualization is another area of programming that is very important in the

development of effective financial algorithms. In the next chapter, you will explore a

few programming techniques that exemplify some of the options available for data

visualization. You will see that C++ has a lot of ways of outputting data to graphical

displays, using both internal and external charting techniques. These libraries can be

used to visualize every aspect of your work as you develop new investment strategies.

Chapter 5 Designing Numerical Classes

189
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_6

CHAPTER 6

Plotting Financial Data
A very common activity in financial programming is the generation of price-related

data that needs to be visualized by traders or other business stakeholders. Most of the

time, the data is expected to be plotted in the form of a chart for easy visualization.

Visualization strategies for financial data range from simple line charts for daily

prices to complex graphical output using candles, superposed studies, and other less

conventional notation.

In this chapter, you will see a number of coding examples for creating and displaying

charts based on prices and related quantitative data analysis. You will learn how to

perform such tasks using a few different techniques, including external software such as

Gnuplot as well as graphical C++ libraries such as Qt. Both techniques may be useful in

different situations, as they have their own advantages and disadvantages.

The following are a few things you will learn in this chapter:

•	 How to create a class that provides a plotting interface

•	 How to use external plotting applications such as Gnuplot

•	 How to convert your data to a format that can be understood by

external programs

•	 How to plot csv (comma-separated values) files on UNIX and

Windows

•	 How to generate commands to control the open source Gnuplot

application

•	 How to create a plot using an open source and multiplatform

graphical user interface (GUI) library

•	 How to use Qt to generate a basic plotting window

https://doi.org/10.1007/978-1-4842-6834-6_6#DOI

190

�Plotting with Gnuplot
Create a price chart using Gnuplot.

�Solution
Gnuplot is a very popular software package used to create charts based on mathematical

functions and data points. You can use Gnuplot in a stand-alone fashion or as an

embedded viewer for graphs created by other applications. In this section, you will learn

how to generate files that can be easily visualized using Gnuplot.

The first step in using Gnuplot is to make sure that it is properly installed in your

system. You can easily install this package for data visualization by visiting its website

(www.gnuplot.info) and downloading the required files. There are binary installation

files available for most operating systems, including Windows, Mac OS X, and Linux. Run

the installer and execute the main application. You should see something similar to the

screen displayed in Figure 6-1.

The basic application is composed of a simple shell where you can type some of

the commands Gnuplot recognizes. The most basic of such commands is plot, which

allows you to display plots on the screen. For example, you can easily create a plot for a

Figure 6-1.  Gnuplot main application running on Windows

Chapter 6 Plotting Financial Data

http://www.gnuplot.info

191

mathematical function, such as sine or cosine. The command necessary for this can be

typed at the main prompt of the application.

> plot sin(x)

You can see the results for this simple function plot in Figure 6-2.

In this plot, you supplied the mathematical function defined by sin(x), and Gnuplot

is responsible for creating a plot of the values, where the default range is from -10 to 10.

You can easily tweak the parameters used to determine the range, as well as other

attributes of the plot such as the title, the legend, and the units used in both axes.

Another way to use Gnuplot is to directly plot numeric data, instead of a

mathematical function. This is possible by referencing the name of the files that should

be imported by the plot command. Most data imported in this way is in the csv (comma-

separated values) format, although Gnuplot doesn’t mandate that the number be in

csv—any file with numeric data organized as columns will do.

Figure 6-2.  Plot of the mathematical function sin(x) using Gnuplot

Chapter 6 Plotting Financial Data

192

Consider the following data as an example. These are prices for IBM downloaded

from Yahoo! Finance.

Date,Open,High,Low,Close,Volume,Adj Close

2014-07-01,181.7,187.27,181.7,186.35,6643100,186.35

2014-06-30,181.33,181.93,180.26,181.27,4223800,181.27

2014-06-27,179.77,182.46,179.66,181.71,4575500,181.71

2014-06-26,180.87,181.37,179.27,180.37,3258500,180.37

2014-06-25,180.25,180.97,180.06,180.72,2762800,180.72

2014-06-24,181.5,183,180.65,180.88,3875400,180.88

2014-06-23,181.92,182.25,181,182.14,3231700,182.14

2014-06-20,182.59,182.67,181.4,181.55,10686800,181.55

2014-06-19,184.12,184.47,182.36,182.82,3551100,182.82

2014-06-18,182.04,183.61,181.79,183.6,3931800,183.6

2014-06-17,181.9,182.81,181.56,182.26,2445400,182.26

2014-06-16,182.4,182.71,181.24,182.35,3538700,182.35

2014-06-13,182,183,181.52,182.56,2773600,182.56

2014-06-12,182.48,182.55,180.91,181.22,4425300,181.22

2014-06-11,183.61,184.2,182.01,182.25,4061700,182.25

2014-06-10,186.2,186.22,183.82,184.29,4154900,184.29

2014-06-09,186.22,187.64,185.96,186.22,2728400,186.22

I am displaying here only the few first lines of the file that contains daily stock

prices. You can save this data in the file IBM.csv and use it as the source for a price plot

employing Gnuplot with the following commands:

gnuplot> set xdata time

gnuplot> set datafile separator ","

gnuplot> set timefmt "%Y-%m-%d"

gnuplot> plot 'IBM.csv' using 1:7 title columnhead with lines

Note  When running the previous commands, make sure that you’re in the same
directory in which you have saved the data file (IBM.csv). Another way to do
this is to use the full path for the file, for example, "c:\\testdata\\IBM.csv"
(escaped path separators are needed in the Windows platform).

Chapter 6 Plotting Financial Data

193

The first command is used to tell Gnuplot that the data in the x axis is time-oriented.

The second command defines the separator used in the file. The third command

describes the date format stored in the csv file. Finally, the last line tells Gnuplot to plot

the contents of file IBM.csv, using columns 1 and 7 (column 1 contains dates, while

column 7 has adjusted closing prices), and with the title of the time series defined by the

headers for each column of the csv file.

These commands will generate the plot displayed in Figure 6-3.

The plot in Figure 6-3 is just a sample of what Gnuplot can do. There are literally

hundreds of parameters that can be tweaked using the set command. Among these

options, you can find three-dimensional plots, different colors, and line styles, among

others.

Figure 6-3.  Plot of the adjusted prices for IBM stock, stored in a csv file using
Gnuplot

Chapter 6 Plotting Financial Data

194

To solve the problem presented in this section, you need to create a class that

receives some data in the form of vectors of doubles or strings and produces output

data suitable for consumption by Gnuplot. I have created such a class, which is called

GnuplotPlotter and is responsible for the generation of the files needed by Gnuplot.

The operation of the class depends on the determination of data for the x axis as well

as for the y axis. The class is created using a constructor that takes the output filename

as a parameter. To define the data that will be used in the plot, use the setData member

function. The parameters must be vectors for data in the x dimension and y dimension,

respectively. The following is a summary of the class:

class GnuplotPlotter {

public:

 GnuplotPlotter(const std::string &fileName);

 GnuplotPlotter(const GnuplotPlotter &p);

 ~GnuplotPlotter();

 GnuplotPlotter &operator=(const GnuplotPlotter &p);

 void generateCmds(const std::string &cmdFileName);

 void setHeaders(const std::string &xheader, const std::string &yheader);

 �void setData(const std::vector<double> &xdata, const

std::vector<double> &ydata);

 �void setData(const std::vector<std::string> &xdata, const

std::vector<double> &ydata);

 void csvWrite();

 // private variables here.

};

To access the results of the class, two member functions are available. The csvWrite

member function will write the data stored in GnuplotPlotter to the file specified in the

constructor, using the csv format. The second member function is generateCmds, which

allows one to create a command file with the necessary instructions to Gnuplot. This

way, you don’t need to worry about the exact syntax for plotting the file. The commands

are stored in a filename specified by the parameter cmdFileName.

An example for the GnuplotPlotter class is given in the main function. First, you

need to define two vectors with the desired data. In this case, you will use data generated

by the function sin, which returns the trigonometric sine of a number. Notice that we

do this only to simplify data testing. The data file, however, can have numbers generated

Chapter 6 Plotting Financial Data

195

from any source. After the content has been defined, you can call the member functions

csvWrite and generateCmds to create the files needed by Gnuplot. You can see the result

of this process in Figure 6-4.

�Complete Code
The code to generate plots and Gnuplot commands has been implemented in the class

GnuplotPlotter. You can add this class to your project and access the same member

functions to generate data plots (see Listing 6-1).

Listing 6-1.  GnuplotPlotter.h and GnuplotPlotter.cpp

//

// GnuplotPlotter.h

#ifndef __FinancialSamples__GnuplotPlotter__

#define __FinancialSamples__GnuplotPlotter__

Figure 6-4.  Plot generated using the test data created in GnuplotPlotter.cpp

Chapter 6 Plotting Financial Data

196

#include <vector>

#include <string>

class GnuplotPlotter {

public:

 GnuplotPlotter(const std::string &fileName);

 GnuplotPlotter(const GnuplotPlotter &p);

 ~GnuplotPlotter();

 GnuplotPlotter &operator=(const GnuplotPlotter &p);

 void generateCmds(const std::string &cmdFileName);

 �void setHeaders(const std::string &xheader, const std::string

&yheader);

 �void setData(const std::vector<double> &xdata, const

std::vector<double> &ydata);

 �void setData(const std::vector<std::string> &xdata, const

std::vector<double> &ydata);

 void csvWrite();

private:

 std::string m_fileName;

 std::string m_xheader;

 std::string m_yheader;

 std::vector<std::string> m_xdata;

 std::vector<double> m_ydata;

 bool m_isDate;

};

#endif /* defined(__FinancialSamples__GnuplotPlotter__) */

//

// GnuplotPlotter.cpp

#include "GnuplotPlotter.h"

#include <fstream>

#include <iostream>

#include <sstream>

#include <cmath>

Chapter 6 Plotting Financial Data

197

using std::ofstream;

using std::vector;

using std::cout;

GnuplotPlotter::GnuplotPlotter(const std::string &fileName)

: m_fileName(fileName),

 m_isDate(false)

{

}

GnuplotPlotter::GnuplotPlotter(const GnuplotPlotter &p)

: m_fileName(p.m_fileName),

 m_xheader(p.m_xheader),

 m_yheader(p.m_yheader),

 m_xdata(p.m_xdata),

 m_ydata(p.m_ydata),

 m_isDate(p.m_isDate)

{

}

GnuplotPlotter::~GnuplotPlotter()

{

}

GnuplotPlotter &GnuplotPlotter::operator=(const GnuplotPlotter &p)

{

 if (&p != this)

 {

 m_fileName = p.m_fileName;

 m_xheader = p.m_xheader;

 m_yheader = p.m_yheader;

 m_xdata = p.m_xdata;

 m_ydata = p.m_ydata;

 m_isDate = p.m_isDate;

 }

 return *this;

}

Chapter 6 Plotting Financial Data

198

void GnuplotPlotter::setData(const std::vector<std::string> &xdata,

 const std::vector<double> &ydata)

{

 m_xdata = xdata;

 m_ydata = ydata;

 m_isDate = true; // assume that x-axis is a date

}

void GnuplotPlotter::setData(const std::vector<double> &xdata, const

std::vector<double> &ydata)

{

 for (unsigned i = 0; i < xdata.size(); ++i)

 {

 std::stringstream ss;

 ss << xdata[i];

 m_xdata.push_back(ss.str());

 }

 m_ydata = ydata;

 m_isDate = false; // x-axis cannot be a date.

}

void GnuplotPlotter::setHeaders(const std::string &xheader, const

std::string &yheader)

{

 m_xheader = xheader;

 m_yheader = yheader;

}

void GnuplotPlotter::generateCmds(const std::string &cmdFileName)

{

 ofstream file;

 file.open(cmdFileName.c_str());

 if (file.fail())

 {

 cout << "failed to open file " << m_fileName << endl;

 return;

 }

Chapter 6 Plotting Financial Data

199

 if (m_isDate)

 {

 file << "set xdata time" << endl;

 file << "set timefmt \"%Y-%m-%d\" " << endl;

 }

 file << "set datafile separator \",\" " << endl;

 �file << "plot '" << m_fileName << "' u 1:7 title columnhead

w lines " << endl;

 file << "pause -1" << endl;

}

void GnuplotPlotter::csvWrite()

{

 ofstream file;

 file.open(m_fileName.c_str());

 if (file.fail())

 {

 cout << "failed to open file " << m_fileName << endl;

 return;

 }

 if (m_xdata.size() != m_ydata.size())

 {

 cout << "data has incorrect size " << endl;

 return;

 }

 file << m_xheader << "," << m_yheader << endl;

 for (unsigned i = 0; i < m_xdata.size(); ++i)

 {

 file << m_xdata[i] << "," << m_ydata[i] << endl;

 }

}

Chapter 6 Plotting Financial Data

200

int main()

{

 GnuplotPlotter plotter("test.csv");

 plotter.setHeaders("x", "sin(x)");

 vector<double> xdata;

 vector<double> ydata;

 for (int i=0; i<100; ++i)

 {

 double x = i*10/100.0;

 xdata.push_back(x);

 ydata.push_back(sin(x));

 }

 plotter.setData(xdata, ydata);

 plotter.csvWrite();

 plotter.generateCmds("testcmds.gp");

 return 0;

}

�Running the Code
The code in Listing 6-1 can be compiled using the free gcc compiler. The solution

was tested on the Mac OS X and Windows platforms. You can, for example, create an

application using the following command:

gcc –o gnuplotter gnuplotplotter.cpp

Then, you can run the program using the command line

./gnuplotter

This will generate two files, test.csv and testcmds.gp, which Gnuplot will use to

generate the desired plot. You can run Gnuplot on UNIX as follows:

cat testcmds.gp | gnuplot

Chapter 6 Plotting Financial Data

201

In the Windows platform, you can load the commands file into the Gnuplot

application in the following way:

c:> gnuplot

> load "testcmds.gp"

The plot will be displayed in a separate window, as shown in Figure 6-4.

�Plotting Data from a GUI
Create an application that can plot data using the GUI.

�Solution
Although it is great to have the ability to create charts with external packages such as

Gnuplot, sometimes it is necessary to have a larger degree of control over the output

generated by plots. If you cannot find a way to use one of the parameters in Gnuplot to

get the desired results, it becomes necessary to implement a plotting solution that runs

in C++. This section shows how to achieve this.

There are many graphical libraries available for C++ developers, and the final

decision depends mostly on your target environment. However, in this section, I use the

Qt library to implement the desired solution.

Qt is probably the easiest to use graphical programming package around. You will

see that with just a dozen lines, we are able to create a complete application. Moreover,

Qt is available for all major operating systems, so that your application can be easily

ported to other targets as necessary.

The class used is called QtPlotter, and it receives data using the setData member

function, just as we did with the GnuplotPlotter. The main part of the implementation,

however, is performed in the PlotWindow class, which is derived from QMainWindow, one

of the key classes in the Qt framework. The PlotWindow class is responsible for managing

the window and, most important, painting the plot when necessary.

The plotting functionality is implemented in the paintEvent member function. This

member function is invoked whenever the window needs to paint itself. First, it paints

the x and y axis and calculates the size of a unit on each axis, storing that information

in variables called unitX and unitY. To draw the axis, the paintEvent member function

Chapter 6 Plotting Financial Data

202

uses the painter object, which is provided by Qt. The drawLine member function is the

simplest way to draw line between the given coordinates, as shown in the following code:

// define margins

double marginX = 10;

double marginY = 10;

double lengthX = 500;

double lengthY = 400;

// define axis

int maxX = lengthX, maxY = lengthY;

painter.drawLine(marginX,marginY, marginX, lengthY+marginY);

painter.drawLine(marginX,lengthY + marginY, lengthX, lengthY + marginY);

In the next step, the function paintEvent draws the tick markers along the axis.

Finally, the code paints lines between the points given as input to the plot.

The last part of the implementation is encapsulated in the plotWindowRun member

function, which is part of the QtPlotter class, as follows:

int QtPlotter::plotWindowRun()

{

 char *arg = (char *)"plotter";

 int argc = 1;

 QApplication app(argc, &arg);

 app.setApplicationName("Qt Plotter");

 PlotWindow window;

 window.resize(600, 600);

 window.show();

 return app.exec();

}

This code does most of what is necessary to create a Qt application and display a

window on the screen. The window created is the PlotWindow class that we discussed

previously, so that the plot is displayed as desired. The QApplication object is part of the

Qt framework. It manages the workflow of a graphical application, including menus and

Chapter 6 Plotting Financial Data

203

windows. When creating a QApplication, we are able to determine the application name

with the setApplicationName member function. Finally, we resize and show the plot

window and call the exec member function to start the window display loop.

Figure 6-5 shows the results of this code.

�Complete Code
The class QtPlotter, displayed in Listing 6-2, implements the necessary functionality to

show a plot in a Qt window, as explained in the previous section. To compile this code,

you need to install the Qt libraries in your system.

Listing 6-2.  QtPlotter.h and QtPlotter.cpp

//

// QtPlotter.h

#ifndef __FinancialSamples__QtPlotter__

#define __FinancialSamples__QtPlotter__

Figure 6-5.  Plot produced by class QtPlotter

Chapter 6 Plotting Financial Data

204

#include <string>

#include <vector>

class QtPlotter {

public:

 QtPlotter();

 QtPlotter(const QtPlotter &p);

 ~QtPlotter();

 QtPlotter &operator=(const QtPlotter &p);

 �void setData(const std::vector<double> &xdata, const

std::vector<double> &ydata);

 int plotWindowRun();

private:

 std::vector<double> m_xdata;

 std::vector<double> m_ydata;

};

#endif /* defined(__FinancialSamples__QtPlotter__) */

//

// QtPlotter.cpp

#include "QtPlotter.h"

#include <QtGui/qapplication.h>

#include <QtGui/qmainwindow.h>

#include <QtGui/qpainter.h>

#include <algorithm>

#include <cmath>

#include <iostream>

using std::vector;

class PlotWindow : public QMainWindow {

public:

 PlotWindow();

 ~PlotWindow();

 void paintEvent(QPaintEvent *event);

Chapter 6 Plotting Financial Data

205

 void setData(const vector<double> &xdata, const vector<double> &ydata);

private:

 vector<double> m_xdata;

 vector<double> m_ydata;

};

PlotWindow::PlotWindow()

{

}

PlotWindow::~PlotWindow()

{

}

void PlotWindow::setData(const vector<double> &xdata, const vector<double>

&ydata)

{

 m_xdata = xdata;

 m_ydata = ydata;

}

void PlotWindow::paintEvent(QPaintEvent *event)

{

 QMainWindow::paintEvent(event);

 QPainter painter(this);

 // define margins

 double marginX = 10;

 double marginY = 10;

 double lengthX = 500;

 double lengthY = 400;

 // define axis

 int maxX = lengthX, maxY = lengthY;

 painter.drawLine(marginX,marginY, marginX, lengthY+marginY);

 �painter.drawLine(marginX,lengthY + marginY, lengthX, lengthY + marginY);

Chapter 6 Plotting Financial Data

206

 // find units

 int largeX = 0, largeY = 0;

 double largeXd = 0, largeYd = 0;

 for (unsigned i=1; i<m_xdata.size(); ++i)

 {

 if (largeXd < m_xdata[i]) largeXd = m_xdata[i];

 if (largeYd < m_ydata[i]) largeYd = m_ydata[i];

 }

 largeX = (int)largeXd + 1;

 largeY = (int)largeYd + 1;

 int unitX = maxX / largeX;

 int unitY = maxY / largeY;

 // paint ticks

 for (int i=0; i<largeY; ++i)

 {

 �painter.drawLine(marginX-5, i*unitY+marginY, marginX,

i*unitY+marginY);

 }

 for (int i=0; i<largeX; ++i)

 {

 �painter.drawLine(marginX+i*unitX, lengthY+marginY, marginX+i*unitX,

lengthY+5+marginY);

 }

 // draw plot

 for (unsigned i=1; i<m_xdata.size(); ++i)

 {

 �painter.drawLine(marginX+unitX*m_xdata[i-1], unitY*m_ydata[i-1]+

marginY,

 �marginX+unitX*m_xdata[i], unitY*m_ydata[i]+marginY);

 }

}

QtPlotter::QtPlotter()

{

}

Chapter 6 Plotting Financial Data

207

QtPlotter::~QtPlotter()

{

}

QtPlotter::QtPlotter(const QtPlotter&p)

: m_xdata(p.m_xdata),

 m_ydata(p.m_ydata)

{

}

QtPlotter &QtPlotter::operator=(const QtPlotter &p)

{

 if (&p != this)

 {

 m_xdata = p.m_xdata;

 m_ydata = p.m_ydata;

 }

 return *this;

}

void QtPlotter::setData(const std::vector<double> &xdata, const

std::vector<double> &ydata)

{

 m_xdata = xdata;

 m_ydata = ydata;

}

int QtPlotter::plotWindowRun()

{

 char *arg = (char *)"plotter";

 int argc = 1;

 QApplication app(argc, &arg);

 app.setApplicationName("Qt Plotter");

 PlotWindow window;

Chapter 6 Plotting Financial Data

208

 window.resize(600, 600);

 window.show();

 return app.exec();

}

int main()

{

 QtPlotter plotter;

 vector<double> xdata;

 vector<double> ydata;

 for (int i=0; i<100; ++i)

 {

 double x = i*10/100.0;

 xdata.push_back(x);

 ydata.push_back(sin(x)+1);

 }

 plotter.setData(xdata, ydata);

 return plotter.plotWindowRun();

}

�Running the Code
To use the QtPlotter class, you need to have the Qt4 library installed in your system.

The installation process requires you to visit the developer website (www.qt.io/

developers/), download, and run the installer application. After the installation is

complete, the libraries will be copied to a user-defined folder.

The next step is to tell your compiler or IDE (Integrated Development Environment)

where the libraries can be found. The two main parameters are the include path (used

by the compiler) and the link path (used by the linker). For example, if Qt4 was installed

in the directory /usr/local/qt4, the include path should be /usr/local/qt4/include,

and the link path should be /usr/local/qt4/lib. From the library directory, at least two

libraries are needed: libQtCore and libQtGui. You can refer to the Qt documentation for

Chapter 6 Plotting Financial Data

http://www.qt.io/developers/
http://www.qt.io/developers/

209

details on how to link to Qt libraries for specific systems, such as Windows. To compile

and link your application using gcc, for example, the following command line would

provide the necessary information:

$ gcc -o qtExample QtPlotter.cpp -I/usr/local/qt4/include –L/usr/local/qt4/

lib –lQtGui -lQtCore

�Conclusion
In this chapter, you learned a few techniques to plot financial data using C++.

Visualization is one of the factors that shouldn’t be overlooked in the creation of efficient

investment strategies. The better your visualization facilities, the easier it is to spot trends

and opportunities in the markets. While there are many free and commercial alternatives

to display stock charts, we frequently need to present data in a more flexible way.

I started the chapter with a recipe for creating numerical plots using Gnuplot.

Gnuplot is a free, widely available package for data visualization, which runs in most

operating systems, including Windows, Mac OS X, and UNIX. You have seen how to

create a class that encapsulates the information necessary to create graphs in Gnuplot.

The next section gave you another approach to create your own financial plots, using

a C++ graphical library called Qt. You can employ this type of code in multiple platforms,

taking advantage of the high portability of the underlying framework. The QtPlotter

class presented here exposes an interface that your program can use to display a single

plot based on values for the x and y axis.

Many of the algorithms in finance depend on the solution of systems of equations,

which are based on linear algebra concepts. For the developer on the financial

industry, it is very useful to have a basic knowledge of linear algebra and its software

implementations. These concepts can be viewed as the building blocks used by financial

engineers and can be easily accessed in C++. In the next chapter, you will see a few

programming examples that make use of linear algebra concepts as part of financial

applications.

Chapter 6 Plotting Financial Data

211
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_7

CHAPTER 7

Linear Algebra
Linear algebra is a fundamental set of mathematical tools that has applications in many

areas of science and engineering. Consequently, linear algebra (LA) techniques also play

an important role in the practice of financial programming, and they are frequently used

throughout the area of financial engineering. LA-based techniques are frequently used

in the development of trading strategies.

As C++ programmers, it is important to understand how the traditional methods

of linear algebra can be integrated in financial applications. With this goal in mind,

I present a few examples that show how to use some of the most common LA algorithms

along with other C++ libraries. In this chapter, you will also learn how to integrate

existing LA libraries into your code, with special attention to the uBLAS library included

with boost.

The following are some topics that we cover in this chapter:

•	 Basic operations of linear algebra: You will learn how to use the

fundamental functions of linear algebra in your code.

•	 BLAS (basic linear algebra subprograms) library overview: BLAS is

a well-known set of functions that are nowadays the standard for

LA implementations. You will learn about the three levels of BLAS

support along with their functionality.

•	 uBLAS: BLAS is function-based library, which has been used in

languages such as Fortran and C. To use the higher-level concepts of

modern C++, the boost project has created a new implementation.

You will learn how the uBLAS library implements the same concepts

present on BLAS.

•	 Computing determinants: Calculating the determinant of a matrix is one

of the most common tasks when analyzing a set of linear equations. You

will learn how to use uBLAS to perform this type of LA computation.

https://doi.org/10.1007/978-1-4842-6834-6_7#DOI

212

•	 Converting between standard types and uBLAS types: You will see

how to convert standard types such as std::vector into types that

are more appropriate for LA computations.

�Using Basic Linear Algebra Operations
Create a class that performs basic LA operations such as vector and scalar products.

�Solution
Linear algebra has been used to solve a large number of engineering and scientific

problems. As such, these concepts are frequently employed as part of financial

applications. The basic level of computational linear algebra deals with scalars and

vector and with the operations allowed on these mathematical entities.

A scalar is a quantity that is composed of a single measurement. Normally, it doesn’t

require the creation of a separate class, since it can be easily represented as an integer,

a floating point, or a double number. Such quantities are also usually stored as a single

element. Scalar numbers enjoy the associated traditional properties such as addition,

subtraction, multiplication, and division.

The use of scalars needs no special treatment in C++ implementations, although

certain classes may treat scalar parameters as a template argument, so that you can later

work with different types. For example, the following is common on numeric libraries:

template <class Scalar>

class MyNumericClass {

 void aFunction(Scalar parameter);

public:

 Scalar m_internalVar;

};

In this case, the Scalar type acts as a placeholder for one of the types supported by

C++, such as int, float, or long double. In this way, you can easily parameterize the

numeric class according to the actual type needed for the computation and avoid the

unnecessary cast between numeric types, which can introduce unexpected errors to the

computation.

Chapter 7 Linear Algebra

213

The next level of LA operations includes the combination of vectors, using vector

addition, vector product, and scalar multiplication. Initially, you may think about

employing std::vector to perform such operations; however, std::vector is a general-

purpose container that is not tuned for mathematical processing.

The traditional solution for LA implementation is using the BLAS (basic linear

algebra subprograms) library. BLAS is a popular package that was originally

implemented in Fortran but has since then become the standard for LA computation

even for other languages. The C-language version was created with the use of the f2c

converter from Fortran. Since many LA packages came to rely on the functionality

provided by BLAS, other libraries have been created to emulate it whenever necessary.

In this section, I introduce a C++ library that implements much of the functionality

of BLAS. The uBLAS library is part of boost and can be accessed by including one of the

header files such as <boost/numeric/ublas/vector.hpp>.

BLAS and similar libraries are organized according to support levels, ranging from 1

to 3. The BLAS support levels include the following:

•	 Level 1: Support for operations using scalar numbers and vectors.

At this level, the library offers support for numeric vectors in one

dimension, with common operations such as scalar multiplication

and vector product.

•	 Level 2: At the second level, BLAS-compatible libraries provide

functions to perform computations involving vectors and matrices—

for example, the common multiplication of a vector v by a matrix A,

which can be performed (with different results) as with vA or Av.

•	 Level 3: The third level of BLAS is defined for matrix-matrix

operations. It allows, for example, the multiplication of matrices.

These three levels of BLAS support have been implemented in several libraries

inspired in the original BLAS. Such implementations are mostly created to effectively

support new programming languages, architectures, and processors while still

maintaining compatibility with the many numeric algorithms that depend on BLAS. The

purpose of a boost uBLAS library is to provide the same support levels of BLAS while

taking advantage of the expressive power provided by C++ classes and templates.

In this example, you will explore a class called VectorOperations, which is

responsible for implementing level 1 BLAS operations. This means that it has to deal

Chapter 7 Linear Algebra

214

with vectors and scalar numbers, as well as the possible transformations allowed

between them. From the documentation of BLAS, we have the following categories of

operations:

•	 Swap: Switches element from the first vector to the second vector.

•	 Scale: Multiplies all elements of a vector by a single scalar number.

•	 Copy: Performs a copy of elements of a first vector into a second,

destination vector.

•	 Vector addition: Returns a vector whose components are the

element-wise additions of two input vectors.

•	 Dot product: Performs the mathematical operation of inner vector

product, which is defined for two vectors v and w using the following

formula:

	
p v w v w

i
i i,� � � �� �� 	

•	 Norm: The norm of a vector is a way to quantify the length of a vector

in a particular direction. A common norm is the two-dimensional

distance between two points.

In the implementation of VectorOperations, you will see how some of these

operations can be accessed using uBLAS. The first such operation is vector

multiplication by a scalar. The method signature is as follows:

std::vector<double> scalarMult(double scalar);

The goal of this method is to return a std::vector object where each member is a

scaled version of the elements in the original vector. The implementation shows how to

convert between these different vector types.

std::vector<double> VectorOperations::scalarMult(double scalar)

{

 using namespace boost::numeric::ublas;

 vector<double> vx;

 std::copy(m_data.begin(), m_data.end(), vx.end());

Chapter 7 Linear Algebra

215

 vector<double> res = vx * scalar;

 std::vector<double> v;

 std::copy(res.begin(), res.end(), v.end());

 return v;

}

The first step is to create a vector from the boost::numeric::ublas namespace.

Notice that this function employs the using declaration to avoid the boring sequence

of namespaces. The next step is to make a copy from the original std::vector into the

ublas vector. Finally, the scalar operation is performed using the multiplication operator.

To store the result, a new ublas vector, called res, is constructed. The last step is to copy

the result into a new vector and return the result.

The previous algorithm creates a lot of temporaries, and therefore it is not efficient

for real implementations. However, the fact that we convert from standard vectors to

ublas vectors has the advantage of bringing attention to what each vector type is capable

of doing. When implementing more complicated LA algorithms, however, we should

avoid the creation of any unnecessary temporary variables, since they can occupy a lot of

space for large vectors and matrices.

The VectorOperations class presents similar examples for other common

operations you will find on BLAS level 1, such as addVector and subtractVector,

which use the ublas operators to quickly perform these computations. The dotProduct

member function uses the inner_prod function from ublas to implement the dot

product, also known as inner product operation between vectors. Finally, we have the

example of the norm member function, which returns the length of the vector as defined

with the norm_2 function.

�Complete Code
The vector operations described in the previous section have been implemented in the

VectorOperations class, displayed in Listing 7-1. You should be able to compile the class

using any standards-compliant C++ compiler, after you install the boost libraries in your

system.

Chapter 7 Linear Algebra

216

Listing 7-1.  VectorOperations.h and VectorOperations.cpp

//

// VectorOperations.h

#ifndef __FinancialSamples__VectorOperations__

#define __FinancialSamples__VectorOperations__

#include <vector>

// performs operations on std::vector using boost ublas

class VectorOperations {

public:

 VectorOperations(const std::vector<double> &v);

 VectorOperations(const VectorOperations &p);

 ~VectorOperations();

 VectorOperations &operator=(const VectorOperations &p);

 std::vector<double> scalarMult(double scalar);

 std::vector<double> addVector(const std::vector<double> &v);

 std::vector<double> subtractVector(const std::vector<double> &v);

 double dotProd(const std::vector<double> &v);

 double norm();

private:

 std::vector<double> m_data;

};

#endif /* defined(__FinancialSamples__VectorOperations__) */

//

// VectorOperations.cpp

#include "VectorOperations.h"

#include <boost/numeric/ublas/vector.hpp>

VectorOperations::VectorOperations(const std::vector<double> &p)

: m_data(p)

{

}

Chapter 7 Linear Algebra

217

VectorOperations::VectorOperations(const VectorOperations &p)

: m_data(p.m_data)

{

}

VectorOperations::~VectorOperations()

{

}

VectorOperations &VectorOperations::operator=(const VectorOperations &p)

{

 if (this != &p)

 {

 m_data = p.m_data;

 }

 return *this;

}

std::vector<double> VectorOperations::scalarMult(double scalar)

{

 using namespace boost::numeric::ublas;

 vector<double> vx;

 std::copy(m_data.begin(), m_data.end(), vx.end());

 vector<double> res = vx * scalar;

 std::vector<double> v;

 std::copy(res.begin(), res.end(), v.end());

 return v;

}

std::vector<double> VectorOperations::addVector(const std::vector<double>

&vec)

{

 using namespace boost::numeric::ublas;

Chapter 7 Linear Algebra

218

 vector<double> v1;

 std::copy(m_data.begin(), m_data.end(), v1.end());

 vector<double> v2;

 std::copy(vec.begin(), vec.end(), v2.end());

 vector<double> v3 = v1 + v2;

 std::vector<double> v;

 std::copy(v3.begin(), v3.end(), v.end());

 return v;

}

double VectorOperations::norm()

{

 using namespace boost::numeric::ublas;

 vector<double> v1;

 std::copy(m_data.begin(), m_data.end(), v1.end());

 double res = norm_2(v1);

 return res;

}

std::vector<double> VectorOperations::subtractVector(const

std::vector<double> &vec)

{

 using namespace boost::numeric::ublas;

 vector<double> v1;

 std::copy(m_data.begin(), m_data.end(), v1.end());

 vector<double> v2;

 std::copy(vec.begin(), vec.end(), v2.end());

 vector<double> v3 = v1 - v2;

 std::vector<double> v;

 std::copy(v3.begin(), v3.end(), v.end());

 return v;

}

Chapter 7 Linear Algebra

219

double VectorOperations::dotProd(const std::vector<double> &v)

{

 using namespace boost::numeric::ublas;

 vector<double> v1;

 std::copy(m_data.begin(), m_data.end(), v1.end());

 vector<double> v2;

 std::copy(v.begin(), v.end(), v2.end());

 double res = inner_prod(v1, v2);

 return res;

}

�Using Matrix-Oriented Operations
In this section, we create a class to perform matrix operations compatible with BLAS.

�Solution
As you learned from Listing 7-1, LA functions are designed to work with linear

operators that use scalar numbers, vectors, and matrices. To support these operations,

programmers use a set of functions that are compatible with the original BLAS library.

In C++, we can have access to a few libraries that implement BLAS, including the uBLAS

library from boost, which you have been using so far.

The second level of BLAS is responsible for providing support for matrix-vector

operations. In this example, you will see how to implement functions that use this level

of BLAS. You will use boost uBLAS to access this functionality.

At level 2 of BLAS, the goal is to allow for the combination of vectors and matrices.

To make this possible, uBLAS implements a few higher-level classes that incorporate

concepts defined in the BLAS framework. The following are some of the most important

classes used:

•	 Vector: This class was already discussed in the last section, and it acts

as a general container for vector data. Some other classes implement

restrictions on the generic functionality of vector.

Chapter 7 Linear Algebra

220

•	 Sparse vector: A specialized version of a vector that allows for data

represented in a sparse way. It can be used whenever the number

of nonzero elements in a vector is small compared to the size of the

array.

•	 Matrix: This is the main class that represents a two-dimensional

arrangement of values, which is the traditional representation of a

matrix.

•	 Triangular matrix: This class is used to represent matrices in

which data is stored only on or above the main diagonal (for upper

triangular matrices). You can also create lower triangular matrices

with uBLAS.

•	 Symmetric matrix: This type of matrix has elements that are

symmetric with respect to the diagonal. This class is used to

represent this type of matrix on algorithms that take advantage of this

property.

•	 Hermitian matrix: A Hermitian matrix has the property that its

elements are complex numbers, and there is a symmetry based on

the notion of complex conjugate. That is, for each entry at position

[i,j], the corresponding elements [j,i] are its complex conjugate.

•	 Banded matrix: This class represents sparse matrices where the

nonzero elements are stored in a narrow band of elements around

the main diagonal. The size of the band can be specified when

creating the matrix.

•	 Sparse matrix: A class that represents a generic sparse matrix—that is,

a matrix where most elements are zero. By using a sparse matrix, you

can avoid the need to store in memory a large number of zero values.

Using these classes, you can easily store the data using the best representation

available for the required task. Using the right representation can also give you a great

advantage in finding the right algorithm, since uBLAS automatically provides special

versions of its operators based on the data types used. For example, if a matrix is known

to be triangular, it is possible to speed up some computations when solving a system of

equations. This means that using a TriangularMatrix instead of a generic Matrix can

result in a substantial speedup for your code.

Chapter 7 Linear Algebra

221

To explore the operations available for matrices, I introduce a class called

MatrixOperations. This class is able to convert parameters into the classes required by

uBLAS. It is also responsible for calling uBLAS operators on these converted parameters.

Using this class, you have an easy way to test several of the functions that operate on

matrix parameters.

Among the main matrix-related functions and operators in uBLAS, you will find the

following:

•	 Scalar multiplication: Multiplying a matrix by a scalar is a simple

process, since it uses the standard multiplication operator in C++.

You just need to save the result of the multiplication in a new matrix

variable.

•	 Vector multiplication: Multiplying a matrix by a vector is a common

operation. You can do this using the prod function. The product can

be performed in two ways: a pre-multiplication requires that the

vector be the first argument for the prod function. You can also post-

multiply by a vector, in which case the vector enters as the second

parameter to the prod function.

•	 Matrix multiplication: You can also multiply two matrices. This

results in a third matrix, which has a size defined by the sizes of the

two original matrices. You can perform the multiplication operation

using an overridden version of the prod function.

•	 Element-wise multiplication: This operation performs the

multiplication of each corresponding element in the matrix. That

is, given matrices A and B, the resulting matrix C is composed of

elements C[i,j] = A[i,j] + B[i,j].

•	 Transposition: The transpose of a matrix is a simple operation

where elements A[i,j] and A[j,i] are exchanged. This results in

a matrix that is the transposition of the original around the main

diagonal.

In the MatrixOperations class, you will find examples of each of these operations.

The arguments and return values for the member functions of MatrixOperations

are given in terms of standard vectors (std::vector) or Matrix objects (which you

Chapter 7 Linear Algebra

222

learned about in Chapter 5). While this kind of conversion should be avoided in high-

performance code, you can take it as an example of what is necessary to create objects of

the types declared in uBLAS. Consider, for instance, the method transpose.

Matrix MatrixOperations::transpose()

{

 using namespace ublas;

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 matrix<double> mp = trans(M);

 return fromMatrix(mp);

}

The first step is to determine the size of the matrix you need to build, which is

given by the dimensions d1 and d2. Using this information, you can create a new

ublas::matrix object. You will then initialize the matrix using the data stored in the

m_rows member variable. Finally, you can call the trans function from uBLAS, which

is responsible for doing the transpose of its argument. The last step is to convert from

the uBLAS representation to a Matrix object, which is performed by the fromMatrix

function.

�Complete Code
Listing 7-2 shows the implementation of the class MatrixOperations. The code

makes use of the Matrix class implemented in Chapter 5, so you need to add it to your

compilation line.

Chapter 7 Linear Algebra

223

Listing 7-2.  MatrixOperations.h and MatrixOperations.cpp

//

// MatrixOperations.h

#ifndef __FinancialSamples__MatrixOperations__

#define __FinancialSamples__MatrixOperations__

#include <vector>

#include "Matrix.h"

class MatrixOperations {

public:

 MatrixOperations();

 ~MatrixOperations();

 MatrixOperations(const MatrixOperations &p);

 MatrixOperations &operator=(const MatrixOperations &p);

 void addRow(const std::vector<double> &row);

 Matrix multiply(Matrix &m);

 Matrix transpose();

 Matrix elementwiseMultiply(Matrix &m);

 Matrix scalarMultiply(double scalar);

 std::vector<double> preMultiply(const std::vector<double> &v);

 std::vector<double> postMultiply(const std::vector<double> &v);

private:

 std::vector<std::vector<double> > m_rows;

};

#endif /* defined(__FinancialSamples__MatrixOperations__) */

//

// MatrixOperations.cpp

#include "MatrixOperations.h"

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/io.hpp>

#include <boost/numeric/ublas/lu.hpp>

Chapter 7 Linear Algebra

224

namespace ublas = boost::numeric::ublas;

using std::cout;

using std::endl;

MatrixOperations::MatrixOperations()

{

}

MatrixOperations::~MatrixOperations()

{

}

void MatrixOperations::addRow(const std::vector<double> &row)

{

 m_rows.push_back(row);

}

static Matrix fromMatrix(const ublas::matrix<double> &mp)

{

 using namespace ublas;

 int d1 = mp.size1();

 int d2 = mp.size2();

 Matrix res(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 res[i][j] = mp(i,j);

 }

 }

 return res;

}

Matrix MatrixOperations::elementwiseMultiply(Matrix &m)

{

 using namespace ublas;

 int d1 = m_rows.size();

Chapter 7 Linear Algebra

225

 int d2 = m_rows[0].size();

 matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 matrix<double> M2(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M2(i,j) = m[i][j];

 }

 }

 matrix<double> mp = element_prod(M, M2);

 return fromMatrix(mp);

}

Matrix MatrixOperations::transpose()

{

 using namespace ublas;

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

Chapter 7 Linear Algebra

226

 matrix<double> mp = trans(M);

 return fromMatrix(mp);

}

Matrix MatrixOperations::multiply(Matrix &m)

{

 using namespace ublas;

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 matrix<double> M2(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M2(i,j) = m[i][j];

 }

 }

 matrix<double> mp = prod(M, M2);

 return fromMatrix(mp);

}

Matrix MatrixOperations::scalarMultiply(double scalar)

{

 using namespace ublas;

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 matrix<double> M(d1, d2);

Chapter 7 Linear Algebra

227

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 matrix<double> mp = scalar * M;

 return fromMatrix(mp);

}

std::vector<double> MatrixOperations::preMultiply(const std::vector<double> &v)

{

 using namespace ublas;

 ublas::vector<double> vec;

 std::copy(v.begin(), v.end(), vec.end());

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 ublas::matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 vector<double> pv = prod(vec, M);

 std::vector<double> res;

 std::copy(pv.begin(), pv.end(), res.end());

 return res;

}

Chapter 7 Linear Algebra

228

std::vector<double> MatrixOperations::postMultiply(const

std::vector<double> &v)

{

 using namespace ublas;

 ublas::vector<double> vec;

 std::copy(v.begin(), v.end(), vec.end());

 int d1 = m_rows.size();

 int d2 = m_rows[0].size();

 ublas::matrix<double> M(d1, d2);

 for (int i = 0; i < d1; ++i)

 {

 for (int j = 0; j < d2; ++j)

 {

 M(i,j) = m_rows[i][j];

 }

 }

 vector<double> pv = prod(M, vec);

 std::vector<double> res;

 std::copy(pv.begin(), pv.end(), res.end());

 return res;

}

int main()

{

 MatrixOperations op;

 for (int i=0; i<5; ++i)

 {

 std::vector<double> row;

 for (int j=0; j<5; ++j)

 {

 row.push_back(sin((double)j+i));

 }

 op.addRow(row);

 }

Chapter 7 Linear Algebra

229

 op.transpose();

 Matrix res = op.scalarMultiply(12);

 return 0;

}

�Running the Application
The code shown in Listing 7-2 can be compiled using any standards-conforming C++

compiler. You need to have boost installed in your system to access uBLAS (I used

version 1.55, tested on Windows MingW and Mac OS X). For example, using the gcc

compiler on a UNIX system can be done with the following command:

gcc –o matrixOp matrixOperations.cpp

This will result in an application called matrixOp. You can run the resulting

application as

./matrixOp

This will run the test main function, which should print out the result of the

requested operations. In my system, I got the following results:

0 10.0977 10.9116 1.69344 -9.08163

10.0977 10.9116 1.69344 -9.08163 -11.5071

10.9116 1.69344 -9.08163 -11.5071 -3.35299

1.69344 -9.08163 -11.5071 -3.35299 7.88384

-9.08163 -11.5071 -3.35299 7.88384 11.8723

�Calculating the Determinant of a Matrix
Write C++ code to calculate the determinant of a matrix using the classes in uBLAS.

�Solution
Calculating the determinant of a matrix is one of the classic problems in LA theory.

Among other things, this value is used to determine if a system of equations (as

expressed by the matrix of coefficients) has a unique solution.

Chapter 7 Linear Algebra

230

To be able to easily compute the determinant of a matrix in C++, you can use some

of the classes and functions contained in the boost uBLAS library. These functions make

use of the matrix class, which is one of the uBLAS internal representations for matrices.

A common solution for this kind of problem uses a simple but elegant algorithm that

is taught in any course of linear algebra. The general idea is to use a recursive strategy

to calculate the determinant of small submatrices, until you find the determinant of the

complete matrix. The algorithm used by the computeDeterminant function, however,

is computationally more efficient because it uses the result of lower-upper (LU)

decomposition. LU decompositions are a way to factor a matrix into lower and upper

triangular components.

The function lu_factorize returns zero if the matrix is non-singular, which means that

it can be inverted and its corresponding linear system solved using Gaussian elimination.

The matrix is subsequently rearranged using the Gaussian elimination procedure.

Additionally, a permutation matrix is used to record the steps of the elimination procedure.

Considering this information, the algorithm for determinant computation is

encoded in the function computeDeterminant. It uses the values stored in the main

diagonal and the information in the permutation matrix to compute the corresponding

determinant for the given matrix. You can see the complete algorithm for this method in

the next section.

�Complete Code
Listing 7-3 shows you an example for the uBLAS libraries. The function

determinantSample uses some of the templates in uBLAS to calculate the determinant of

a matrix, as described in the previous section.

Listing 7-3.  Determinant.cpp

//

// Determinant.cpp

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/io.hpp>

#include <boost/numeric/ublas/lu.hpp>

namespace ublas = boost::numeric::ublas;

using std::cout;

using std::endl;

Chapter 7 Linear Algebra

231

// The sign is calculated from a given permutation.

// Just flip the sign for each change in permutation.

int getDeterminantSign(const ublas::permutation_matrix<std::size_t>& pm)

{

 int sign = 1;

 for (int i = 0; i < pm.size(); ++i)

 {

 if (i != pm(i))

 {

 sign *= -1.0;

 }

 }

 return sign;

}

// returns the value of the determinant for matrix m

//

double computeDeterminant(ublas::matrix<double>& m)

{

 ublas::permutation_matrix<std::size_t> pm(m.size1());

 double det = 1.0;

 if (ublas::lu_factorize(m,pm))

 {

 det = 0.0;

 }

 else

 {

 for(int i = 0; i < m.size1(); i++)

 {

 det *= m(i,i);

 }

 det = det * getDeterminantSign(pm);

 }

 return det;

}

Chapter 7 Linear Algebra

232

void determinantSample()

{

 ublas::matrix<double> M(3, 3);

 for (unsigned i = 0; i < M.size1() ; ++i)

 {

 for (unsigned j = 0; j < M.size2() ; ++j)

 {

 M(i,j) = sin(3 * j);

 }

 }

 double determinant = computeDeterminant(M);

 cout << " determinant value is " << determinant

 << " for matrix " << M << endl;

}

�Conclusion
This chapter includes a few programming samples for linear algebra computation in

C++. One of the goals in this presentation is to show how mathematically oriented code

can be used by financial application programmers. Linear algebra is the basis for many

of the computational techniques that will be explored in the next few chapters, such as

mathematical programming and portfolio optimization.

In this chapter, I first introduced some of the important libraries for linear algebra.

Since linear algebra is such a specialized area, the best approach for programmers is

to use code that contains well-tested components written by experts in the field. The

standard for computational mathematics in the area of basic linear algebra is the BLAS

library. Although BLAS is a Fortran and C library, its concepts have been translated into

many other languages. In this chapter, you have explored uBLAS, a component of the

boost libraries that implements the same levels of functionality supported by BLAS. It

does it, however, using modern C++ techniques such as classes and templates. This can

be viewed as an easier way to achieve the functionality of BLAS while at the same time

supporting a high-level C++ interface.

Chapter 7 Linear Algebra

233

The first example in Listing 7-1 shows how to use uBLAS to implement basic (level 1)

operations on vectors and scalars. The class VectorOperations shows how these basic

concepts can be invoked using the uBLAS framework.

More advanced operations are available for matrices. The second example

(Listing 7-2) contains information and code examples of how to interact with matrices

and vectors in uBLAS. Simple operations that can be easily performed by uBLAS

include scalar and vector multiplication of matrices, transposition, and matrix-matrix

multiplication.

Listing 7-3’s example shows how these concepts can be used together to calculate

the determinant of a matrix. To facilitate the solution of this problem, you can use the

LU factorization function provided by uBLAS. This shows how some of the sophisticated

algorithms in these LA libraries can be easily used to solve practical problems.

In the next chapter, we will continue to explore mathematical tools used in financial

applications. I will show you a few examples about interpolation, a technique that is

frequently used to find trends in data sets, including financial data. Along with other

computational techniques, interpolation is widely used in the development and analysis

of trading strategies.

Chapter 7 Linear Algebra

235
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_8

CHAPTER 8

Interpolation
Interpolation is a commonly used technique that approximates a mathematical

function, based on a set of points given as input. Fast interpolation is the secret for high-

performance algorithms in several areas of financial engineering, which will be explored

in the next chapters. This chapter shows you a few programming examples that cover

some of the most common aspects of interpolation techniques, along with their efficient

implementation in C++. You will explore the main procedures used in applications and

see examples of how they work in practice.

Here are some of the topics covered in this chapter:

•	 Interpolation examples: A brief discussion of examples that show the

effectiveness of using interpolation in financial problems.

•	 Linear Interpolation: One of the simplest interpolation techniques,

linear interpolation uses linear functions, which can be represented

as line segments. The quick nature of this technique makes it one of

the most used forms of interpolation for functions that are hard to

compute.

•	 Polynomial interpolation: If smooth transitions between different

parts of the function are required, then it is not possible to use a

linear interpolation directly. Polynomial interpolation allows the

use of a single function that approximates all of the given points

through a high-degree polynomial. You will see how to construct

this polynomial and return the desired function for each value of the

domain.

https://doi.org/10.1007/978-1-4842-6834-6_8#DOI

236

�Linear Interpolation
Write a solution, along with C++ code, for the problem of interpolating a given set of data

points using linear approximations.

�Solution
Interpolation is the process of finding a function (or set of functions) that can be used

to approximate an unknown function, as determined by a given set of points. The input

for this process is therefore the points you would like to interpolate. The result is a

general function that can be used to compute the unknown values for points outside

the input set.

For example, suppose that you are given a time series composed of a set of

observations. It is frequently desirable to find a function that generated those

points. This estimation of the unknown function may also be used to calculate the

corresponding value for a required time instant.

Interpolation has been used in several areas of science and engineering as a way to

approximate functions. This may be necessary either because the original function is

truly unknown (e.g., in the case of empirical processes) or because such a function is

very difficult to calculate exactly. In finance, interpolation also plays an important role,

frequently as part of more complex algorithms. In the case of a financial time series,

for example, interpolation allows practitioners to calculate values for a time series that

are difficult to compute while using only an approximation for the unknown function.

Moreover, in some of these applications, interpolation can also be used as a way to

forecast values, at least for short periods of time. In this role, it can also be used as a

simple forecasting component of trading algorithms.

In this section, you will see how to perform interpolation using linear functions. This

is the simplest way to provide the interpolation of a set of points, since it requires only

two points at a time in order to directly connect input values. For example, suppose that

you’re given a set of points, as displayed in Figure 8-1.

y1 = (10,0.6), y2 = (20,0.11), y3 = (30,1.1), y4 = (40,1.62), y5 = (49,1.4).

Chapter 8 Interpolation

237

The points don’t need to be evenly spaced, although that might work better when

a linear interpolation is desired. Using these points, one can visualize a simple way to

interpolate values. The strategy for creating an interpolation is to sort the input points

based on their first dimension (the x axis on Figure 8-1) and join with a line the two

points that are right before and after the desired value of x. The interpolation is then

given by the formula in Step 4 of the list following Figure 8-1.

The algorithm for the linear interpolation of a set of points can, therefore, be

summarized in the following steps:

	 1.	 Read the input values (x[i],y[i]) and the desired coordinate

value x.

	 2.	 Sort the input in increasing order of the first coordinate (x[i]).

	 3.	 Calculate the first pair of points (x[i],y[i]), (x[j],y[j]) such

that j=i+1 and x is within x[i] and x[j].

	 4.	 Use the following equation to determine the value of y

corresponding to x:

	
y x x

x x
�

�
�

1

0 1
	

You can easily implement this algorithm in C++ so that the function is computed

for each value of x. I present the LinearInterpolation as the main class responsible for

storing the necessary data as well as calculating points using this interpolation technique.

Figure 8-1.  Interpolation graph for points in the first example

Chapter 8 Interpolation

238

The constructors for this class are designed to reduce any overhead for the creation

of new objects. The class provides the setPoints member function as a way to define

the known points of the interpolation. This member function retains the values passed

as a parameter. It also makes sure that the points are stored in the order of increasing

x values. This is done using a simple algorithm that sorts the x values (the standard

function std::sort is used for this purpose).

�Complete Code
//

// LinearInterpolation.h

#ifndef __FinancialSamples__LinearInterpolation__

#define __FinancialSamples__LinearInterpolation__

#include <vector>

class LinearInterpolation {

public:

 LinearInterpolation();

 LinearInterpolation(const LinearInterpolation &p);

 ~LinearInterpolation();

 LinearInterpolation &operator=(const LinearInterpolation &p);

 �void setPoints(const std::vector<double> &xpoints, const

std::vector<double> &ypoints);

 double getValue(double x);

private:

 std::vector<double> m_x;

 std::vector<double> m_y;

};

#endif /* defined(__FinancialSamples__LinearInterpolation__) */

//

// LinearInterpolation.cpp

#include "LinearInterpolation.h"

Chapter 8 Interpolation

239

LinearInterpolation::LinearInterpolation()

: m_x(),

 m_y()

{

}

LinearInterpolation::LinearInterpolation(const LinearInterpolation &p)

: m_x(p.m_x),

 m_y(p.m_y)

{

}

LinearInterpolation::~LinearInterpolation()

{

}

LinearInterpolation &LinearInterpolation::operator=(const

LinearInterpolation &p)

{

 if (this != &p)

 {

 m_x = p.m_x;

 m_y = p.m_y;

 }

 return *this;

}

void LinearInterpolation::setPoints(const std::vector<double> &xpoints,

 const std::vector<double> &ypoints)

{

 m_x = xpoints;

 m_y = ypoints;

 // update points to become sorted on x axis.

 std::sort(m_x.begin(), m_x.end());

Chapter 8 Interpolation

240

 for (int i=0; i<m_x.size(); ++i)

 {

 for (int j=0; j<m_x.size(); ++j)

 {

 if (m_x[i] == xpoints[j])

 {

 m_y[i] = ypoints[j];

 break;

 }

 }

 }

}

double LinearInterpolation::getValue(double x)

{

 double x0=0, y0=0, x1=0, y1=0;

 if (x < m_x[0] || x > m_x[m_x.size()-1])

 {

 return 0; // outside of domain

 }

 for (int i=0; i<m_x.size(); ++i)

 {

 if (m_x[i] < x)

 {

 x0 = m_x[i];

 y0 = m_y[i];

 }

 else if (m_x[i] >= x)

 {

 x1 = m_x[i];

 y1 = m_y[i];

 break;

 }

 }

Chapter 8 Interpolation

241

 return y0 * (x-x1)/(x0-x1) + y1 * (x-x0)/(x1-x0);

}

int main()

{

 double xi = 0;

 double yi = 0;

 vector<double> xvals;

 vector<double> yvals;

 while (cin >> xi)

 {

 if (xi == -1)

 {

 break;

 }

 xvals.push_back(xi);

 cin >> yi;

 yvals.push_back(yi);

 }

 double x = 0;

 cin >> x;

 LinearInterpolation li;

 li.setPoints(xvals, yvals);

 double y = li.getValue(x);

 cout << "interpolation result for value " << x << " is " << y << endl;

 return 0;

}

�Running the Code
For example, consider again the points in the example shown in Figure 8-1. To calculate

a linear interpolation for value 27, you need to execute the application and enter the

following data:

Chapter 8 Interpolation

242

./linearInterpolation

10 0.6

20 0.11

30 1.1

40 1.62

49 1.4

-1

27

interpolation result for value 27 is 0.803

�Polynomial Interpolation
Construct a polynomial interpolation for a given set of points in C++.

�Solution
In the previous example, you saw how data points may be used to interpolate values in a

continuous interval, through the use of piecewise linear equations. However, while it is

possible to use linear interpolation in a large number of practical situations, the problem

with this type of approximation is that the resulting curve is non-smooth. This means

that it contains inflection points that mark transitions in the function, exactly at the

interception of the different lines. In mathematical terms, it is said that such functions

are non-differentiable because of this sudden transition. Such perceptible changes are

undesired in some applications, and you may want to interpolate the values in such a

way that the transition between observed points is seamless.

To avoid the described problems with the use of linear interpolation, a more

sophisticated scheme may be employed, which uses higher-degree polynomials to

smooth out the transitions. What is more important, a single polynomial found using this

method can be used to interpolate all given data points at the same time. The result of

this type of interpolation is that you just need a single polynomial equation to generate

values for any desired input.

Polynomial interpolation is based on the mathematical fact that, given a polynomial

with a high enough degree, you can find a corresponding polynomial function that

passes through the exact points that are provided as input. This is guaranteed due to

Chapter 8 Interpolation

243

some well-known algebraic properties of polynomials. For example, suppose that we’re

given the sequence of points that follow (these are the same points used in the previous

example for linear interpolation):

y1 = (10,0.6), y2 = (20,0.11), y3 = (30,1.1), y4 = (40,1.62), y5 = (49,1.4).

A polynomial interpolation algorithm would return a value based on a polynomial

defined by a set of coefficients. Using that information, you can calculate any

intermediate point or even points that are outside the given range of observations, since

polynomials are typically defined for any real number. You can also use the calculated

polynomial to plot the values of the interpolating function, as you see in Figure 8-2.

The technique used here to solve this polynomial interpolation problem is called

Lagrange’s interpolation algorithm. Using Lagrange’s interpolation method, for each

sequence of n+1 points (xi,yi), you can create a polynomial that has degree n and

passes through these points. Using the points given as input, the general formula for the

coefficients of the polynomial is given by

	
L x

x x x x x x x x x x
x x x x xk

k k n

k k

� � � �� � �� �� �� � �� �� �� �
�� � �� ��

� �0 1 1 1

0 1 kk k k k k nx x x x x�� � �� �� �� �� �1 1 	

Figure 8-2.  A polynomial function to interpolate values using a small number of
observations: notice how the polynomial function is smooth, unlike the solution in
Figure 8-1, which uses line segments

Chapter 8 Interpolation

244

Notice that this function skips the value of xk to avoid zero terms in the numerator

and denominator. Now, the complete polynomial representation for interpolating the

input values xk can be written using the coefficients Lk(x).

	 P x y L x y L xn n� � � � � � � � �0 0  	

This is a function that can be used to provide the interpolation of any value, given

the n+1 input observations (xi, yi). The proof for this formula is beyond our goals in this

section, but notice that when the input value x is one of the known xi, then it will have a

component x – xi that will result in zero in all cases, but for Li(x). In that case, however,

the numerator is the same as the denominator, which results in the value 1. Therefore,

for these values, the solution is just yi as expected.

Using this polynomial function, we can create a C++ class that implements the

interpolation mechanism through the simulation of the desired polynomial. This is

achieved using the class PolynomialInterpolation. The class has a design similar

to LinearInterpolation, storing the x and y values that are passed in the setPoints

member function. Using that information, PolynomialInterpolation is able to perform

the necessary calculations based on the initial points.

The real work is of calculating the polynomial interpolation performed in the

getValue member function, which is reproduced as follows:

double PolynomialInterpolation::getPolynomial(double x)

{

 double polynomialValue = 0;

 for (size_t i=0; i<m_x.size(); ++i)

 {

 // compute the numerator

 double num = 1;

 for (size_t j=0; j<m_x.size(); ++j)

 {

 if (j!=i)

 {

 num *= x - m_x[j];

 }

 }

Chapter 8 Interpolation

245

 // compute the denominator

 double den = 1;

 for (size_t j=0; j<m_x.size(); ++j)

 {

 if (j!=i)

 {

 den *= m_x[i] - m_x[j];

 }

 }

 // value for i-th term

 polynomialValue += m_y[i] * (num/den);

 }

 return polynomialValue;

}

The calculation is done in an iterative way, where at each step of the for loop, one

of the polynomials Lk(x) is computed and added to the local variable polynomialValue.

The internal part of the loop can be divided into three parts. In the first part, the

numerator is calculated as a result of multiplying all of the terms x – xj, something that

is not necessary when i = j. The second part is the calculation of the denominator, which

is very similar to the first step, as you can confirm looking at the original formula. The

values of the denominator are stored in the local variable den. The third step consists

of multiplying the value of y by the fraction defined by the numerator and denominator

that were computed in the previous two steps.

The complexity of the algorithm previously described is dependent on the given

input. The more input values you provide, the longer this algorithm will take. The

variation in time is quadratic with the number of input values, since for each value, we

need to perform a for loop inside a second loop, and each such loop runs a number of

times equal to the number of points used. In terms of computational complexity, this is

said to have a time complexity of O(n2).

Chapter 8 Interpolation

246

�Complete Code
//

//

// PolymonialInterpolation.h

#ifndef __FinancialSamples__PolymonialInterpolation__

#define __FinancialSamples__PolymonialInterpolation__

#include <vector>

class PolynomialInterpolation {

public:

 PolynomialInterpolation();

 PolynomialInterpolation(const PolynomialInterpolation &p);

 ~PolynomialInterpolation();

 PolynomialInterpolation &operator=(const PolynomialInterpolation &);

 �void setPoints(const std::vector<double> &x, const std::vector<double> &y);

 double getPolynomial(double x);

private:

 std::vector<double> m_x;

 std::vector<double> m_y;

};

#endif /* defined(__FinancialSamples__PolymonialInterpolation__) */

//

// PolymonialInterpolation.cpp

#include "PolymonialInterpolation.h"

PolynomialInterpolation::PolynomialInterpolation()

: m_x(),

 m_y()

{

}

Chapter 8 Interpolation

247

PolynomialInterpolation::PolynomialInterpolation(const

PolynomialInterpolation &p)

: m_y(p.m_y),

 m_x(p.m_x)

{

}

PolynomialInterpolation::~PolynomialInterpolation()

{

}

PolynomialInterpolation &PolynomialInterpolation::operator=(const

PolynomialInterpolation &p)

{

 if (this != &p)

 {

 m_x = p.m_x;

 m_y = p.m_y;

 }

 return *this;

}

void PolynomialInterpolation::setPoints(const std::vector<double> &x,

 const std::vector<double> &y)

{

 m_x = x;

 m_y = y;

}

double PolynomialInterpolation::getPolynomial(double x)

{

 double polynomialValue = 0;

 for (size_t i=0; i<m_x.size(); ++i)

 {

 // compute the numerator

 double num = 1;

Chapter 8 Interpolation

248

 for (size_t j=0; j<m_x.size(); ++j)

 {

 if (j!=i)

 {

 num *= x - m_x[j];

 }

 }

 // compute the denominator

 double den = 1;

 for (size_t j=0; j<m_x.size(); ++j)

 {

 if (j!=i)

 {

 den *= m_x[i] - m_x[j];

 }

 }

 // value for i-th term

 polynomialValue += m_y[i] * (num/den);

 }

 return polynomialValue;

}

int main()

{

 double xi = 0;

 double yi = 0;

 vector<double> xvals;

 vector<double> yvals;

 while (cin >> xi)

 {

 if (xi == -1)

 {

 break;

 }

Chapter 8 Interpolation

249

 xvals.push_back(xi);

 cin >> yi;

 yvals.push_back(yi);

 }

 double x = 0;

 cin >> x;

 PolynomialInterpolation pi;

 pi.setPoints(xvals, yvals);

 double y = pi.getPolynomial(x);

 cout << "interpolation result for value " << x << " is " << y << endl;

 return 0;

}

�Running the Code
To run the previous code, you need to first compile it using a C++ compiler such as gcc.

Then you can execute the code as follows:

./polyInterpolation

10 0.6

20 0.11

30 1.1

40 1.62

49 1.4

-1

27

interpolation result for value 27 is 0.795433

The code was executed several times using the data just displayed. Figure 8-2

presents a plot of the resulting data. Notice that the plot shows a smooth function that

passes through the set of points given as input. This demonstrates that the polynomial

calculated by the presented code is a good, smooth interpolation for the given set of

points.

Chapter 8 Interpolation

250

�Conclusion
In this chapter, you learned about interpolation, a mathematical technique used

to find reasonable approximations for a function, given a data set of known values.

Interpolation plays a role in financial data analysis since it provides a way to analyze

and simplify the calculation of complicated functions. It may also allow one to perform

a simple forecast of future price changes, as well as helping with a better understanding

of past data. You have seen a few programming examples that illustrate the use of

interpolation in the context of C++ programming.

Initially, you learned about linear interpolation, a simple method to interpolate

values when just a few points of the original function are known. This technique uses

only linear functions to perform the desired interpolation. You have seen an example

C++ class that can be used to return interpolated results for any given value in the

domain of the function.

Next, you saw how to interpolate function values using a better approximation

technique provided by the application of polynomials. Using polynomials, you have

the ability to create a smooth (differentiable) function that touches the given points

in n+1 points, where n is the degree of the polynomial. You have learned a simple

formula known as Lagrange’s method, which can be used to create such polynomial

interpolations from any given set of points. You have also learned about how to code a

C++ class that implements this algorithm. I provided a complete example of how to use

this class to generate a smooth interpolation of a given set of values.

In the next chapter, you will learn about another important mathematical skill

used in financial applications. The calculation of roots of equations is a fundamental

technique that can allow you to find solutions for many important problems in

economics and engineering. You will see how the methods for finding roots of equations

can be implemented and used in C++.

Chapter 8 Interpolation

251
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_9

CHAPTER 9

Calculating Roots
of Equations
Solving equations is one of the building blocks of many engineering and scientific

algorithms. A typical example is the calculations needed for options and derivatives

pricing, using the Black-Scholes model. As financial algorithms become more

sophisticated, there is a great need to calculate the results of equations in general. These

results are frequently used in the analysis of investments and in new trading strategies. It

is important not only to be able to solve equations but also to calculate the roots of such

equations in an efficient way.

In this chapter, you will learn some of the popular methods for calculating roots of

equations. The coding samples presented here cover different methods of calculating

equation roots, along with explanations of how they work and when they should be used.

The following are some of the topics covered in this chapter:

•	 Bisection method: A simple method that explores the change

in signal around the root of equations; this method is easy to

implement. You will learn the basics of the bisection method and

how to code it in C++.

•	 Secant method: The secant method is an improvement over the

bisection method, which tries to use the value of the function in the

given range to guide the position of the new approximation of the

root. The secant method can in many cases speed up the search for a

root.

•	 Newton’s method: This method, sometimes also called the Newton/

Raphson method, uses the derivative of a function as the guide

for the search of the root for a given equation. Since the derivative

https://doi.org/10.1007/978-1-4842-6834-6_9#DOI

252

determines the slope of the tangent to the function, its value can

be used to calculate a new approximation. Successive values may

converge to the desired solution, and an error parameter can be used

to determine when to stop the process.

�Bisection Method
Create a class implementing the bisection method to find roots of equations.

�Solution
Finding the roots of an equation is the process of determining any points for which the

corresponding function is zero. During the development of computational mathematics,

several methods have been devised to calculate roots of equations. This chapter covers a

few of the most common of these methods.

The bisection method tries to find the roots of equations by using a simple strategy:

the idea is to look at the sign of the function at different points of the domain and use

that information to decide if there is a root on that interval. For example, consider the

function

f   (x) = (x–1)3

Figure 9-1 displays the graph of this function in the interval -1 to 3.

Figure 9-1.  Function (x–1)3 in the interval -1 to 3

Chapter 9 Calculating Roots of Equations

253

This is a function that has a root for the value x=1 and has two areas that have distinct

signs: for values less than x=1, the sign is negative. For values greater than 1, the sign of

the function is positive. If you want to determine the exact place where the function is

equal to zero, you can start from an interval where the sign of the function is different

(in this case, you could use the interval -1 to 3) and look for the exact value where the

function changes sign: that must be the location of one of the roots of the function.

Note T his argument works only when the function that you’re dealing with is
continuous. That is, there is no point where the function suddenly jumps from one
point to another, which would make the foregoing argument invalid. Continuous
functions are differentiable in the range where they’re defined, so that is a way
to know if a function is continuous. Most functions in economics, physics, and
engineering have this property, so we assume that this is the case when the
bisection method is applied.

With this intuitive insight, the bisection method tries to employ a systematic

approach to determine the range tested and the location where the change of sign

occurs. Essentially, the method is to bisect the original range and determine if the

subrange still has different signs.

For example, using the same function, consider that we take the original range

between -1 and 2. The middle of this range is ½, and therefore the algorithm will check

the sign of f
1

2

1

2
1

1

2

1

2

1

8

3 3

3

�
�
�

�
�
� � ��

�
�

�
�
� � ��

�
�

�
�
� � � � � . Now, consider the sign of the two

ending points of the initial range:

•	 f(–1) = (–1–1)3 = –8, therefore with a negative sign.

•	 f(2) = (2–1)3=13 = 1, therefore with a positive sign.

This means that between the values x = –1 and x = 1

2
, the sign is identical. On the

other hand, between x = 1

2
 and x = 2, the sign changes. Therefore, the root must be in

the place where the sign changes, which is somewhere between ½ and 2.

Another iteration of this process will calculate the value of

f 5

4

5

4
1

1

4
1 4

3 3

3�
�
�

�
�
� � ��

�
�

�
�
� � �

�
�

�
�
� � / , which has a positive sign. Since f (1/2) has a negative sign

Chapter 9 Calculating Roots of Equations

254

and f (2) has a positive sign, the change in sign must happen in the interval from
1

2
 to

5

4
.

This is easily observed to be true by checking the graph in Figure 9-1.

Notice that this process will systematically reduce the size of the range where we’re

searching for a root of the equation. At each step, we’re decreasing the range by a half

and getting closer to the location of the root. After a number of iterations, you will get

a value that is as close as needed from the true root. This algorithm therefore can stop

whenever the size of the remaining range is less than the desired error. For example, if

the range is less than 0.001, and your desired error is 0.01, then stop.

Using the process we just described, we can now describe the algorithm for bisection

in the following way:

	 1.	 Define an initial range (a,b) where you want to search for one or

more roots of the equation.

	 2.	 Calculate the values of f(a) and f(b).

	 3.	 Determine the bisection point c a b
�

�
2

 for the interval (a,b) and

its corresponding function value f(c).

	 4.	 If the signs of f(a) and f(c) are different, (a,c) becomes the new range

for the algorithm. Otherwise, the new range is defined as (c,b).

	 5.	 If the new range has length less than the error (threshold) E, stop

and report c as the solution. Otherwise, continue with step 1.

The preceding algorithm works in an iterative way, where the size of the range

(a,b) is constantly reduced by half. Therefore, the number of steps it will perform is

bounded by log
2

b a
E
�� �

. There is a trade-off between number of iterations and desired

approximation, which means that if you want a very small error, more iterations will be

necessary.

The procedure described has been coded as the part of the BisectionSolver

class, which can be used to find roots of equations. The interesting characteristic of

BisectionSolver is that it is a generic solver for any continuous function. You just need

to pass the function as a parameter to the constructor of the class.

For this purpose, I created a class called MathFunction that will be useful not only

here but also for other classes that use functions as parameters. The MathFunction class

Chapter 9 Calculating Roots of Equations

255

defines what is called a function object, that is, an object that behaves like a function.

This is important for our algorithms, because it allows one to use the object as if it were a

function.

To create a functional object, you need a class that implements operator(), that is,

the operator for function invocation. Moreover, I have defined the class MathFunction

as a template class, so that you can pass the right return type when creating the concrete

implementation. For example, you may want to define a MathFunction subclass that is

defined for float values only. Or, conversely, you may have a function whose domain is

the set of integers.

Finally, I want MathFunction to be just a root class, so that only concrete

implementations can be instantiated. To make this possible, MathFunction is an abstract

class, which is defined by using the =0 notation after the declaration of operator().

Concrete subclasses of this class need to provide a concrete implementation of this

operator. The example code shows how this can be done.

class F1 : public MathFunction<double> {

public:

 virtual ~F1() {}

 virtual double operator()(double value);

};

double F1::operator ()(double x)

{

 return (x-1)*(x-1)*(x-1);

}

This is a definition for the example function f(x) = (x–1)^3.

The implementation of the function getRoot is straightforward. The function starts

with the interval given as a parameter and halves it using the criteria defined by the

bisection method.

�Complete Code
//

// MathFunction.h

#ifndef MATHFUNCTION_H_

#define MATHFUNCTION_H_

Chapter 9 Calculating Roots of Equations

256

template <class Res>

class MathFunction {

public:

 MathFunction();

 virtual ~MathFunction();

 virtual Res operator()(Res value) = 0;

};

#endif /* MATHFUNCTION_H_ */

//

// BisectionMethod.h

#ifndef BISECTIONMETHOD_H_

#define BISECTIONMETHOD_H_

template <class T>

class MathFunction;

class BisectionMethod {

public:

 BisectionMethod(MathFunction<double> &f);

 BisectionMethod(const BisectionMethod &p);

 ~BisectionMethod();

 BisectionMethod &operator=(const BisectionMethod &p);

 double getRoot(double x1, double x2);

private:

 MathFunction<double> &m_f;

 double m_error;

};

#endif /* BISECTIONMETHOD_H_ */

//

// BisectionMethod.cpp

#include "BisectionMethod.h"

Chapter 9 Calculating Roots of Equations

257

#include "MathFunction.h"

#include <iostream>

using std::cout;

using std::endl;

namespace {

const double DEFAULT_ERROR = 0.001;

}

BisectionMethod::BisectionMethod(MathFunction<double> &f)

: m_f(f),

 m_error(DEFAULT_ERROR)

{

}

BisectionMethod::BisectionMethod(const BisectionMethod &p)

: m_f(p.m_f),

 m_error(p.m_error)

{

}

BisectionMethod::~BisectionMethod()

{

}

BisectionMethod &BisectionMethod::operator =(const BisectionMethod &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_error = p.m_error;

 }

 return *this;

}

Chapter 9 Calculating Roots of Equations

258

double BisectionMethod::getRoot(double x1, double x2)

{

 double root = 0;

 while (std::abs(x1 - x2) > m_error)

 {

 double x3 = (x1 + x2) / 2;

 root = x3;

 if (m_f(x1) * m_f(x3) < 0)

 {

 x2 = x3;

 }

 else

 {

 x1 = x3;

 }

 if (m_f(x1) * m_f(x2) > 0)

 {

 cout << " function does not converge " << endl;

 break;

 }

 }

 return root;

}

 // ---- this is the implementation for an example function

namespace {

class F1 : public MathFunction<double> {

public:

 virtual ~F1();

 virtual double operator()(double value);

};

F1::~F1()

{

}

Chapter 9 Calculating Roots of Equations

259

double F1::operator ()(double x)

{

 return (x-1)*(x-1)*(x-1);

}

}

int main()

{

 F1 f;

 BisectionMethod bm(f);

 �cout << " the root of the function is " << bm.getRoot(-100, 100) <<

endl;

 return 0;

}

�Running the Code
To run the code, along with the example provided, use a compiler such as gcc to generate

the executable bisectionMethod. Then, you can run it to get results as follows:

./bisectionMethod

root is 0

root is 50

root is 25

root is 12.5

root is 6.25

root is 3.125

root is 1.5625

root is 0.78125

root is 1.17188

root is 0.976562

root is 1.07422

root is 1.02539

root is 1.00098

root is 0.98877

root is 0.994873

Chapter 9 Calculating Roots of Equations

260

root is 0.997925

root is 0.999451

root is 1.00021

the root of the function is 1.00021

This shows the result of executing the bisection method on the function f(x) = (x–1)^3,

starting with the interval -100 to 100. I showed the intermediate steps just for clarity.

�The Secant Method
Create a class to solve equations using the secant method.

�Solution
In the previous programming example, you learned about the bisection method for the

solution of equations. You can find the roots of an equation through the decomposition

of the domain into a set of ranges, each of which you can test for changes in sign. If the

sign of the function is different from the sign at the end of the interval, then it is possible

to find a point where this function changes from positive to negative, making it the root

of the equation.

While the bisection method can find solutions to a large number of equations, it is

not the fastest method for this purpose. One of the reasons is that it doesn’t use any of

the properties of the function other than the sign at the extremes of its range. On the

other hand, using additional information about the function values, for example, it

would be possible, at least in principle, to achieve a faster convergence to the root of the

function.

One of the ways to use the value of the function is contained in the algorithm called

the secant method. The general idea of the secant method is to use the function value at

the extremes of each interval as a way to approximate how close one is from the true root

of the equation. In this way, it is possible to get closer to the root and reduce the number

of iterations necessary to find the desired solution.

The secant of a function is the name given to the line connecting to points defined

by that function. For example, given the function f(x) = x2 in the range 1 to 4, the secant

to that function in the given range is the line segment connecting the points (1,1) and

(4,16), since these are the two points defined by function. We can generalize this concept

to any function that is continuous in a particular range.

Chapter 9 Calculating Roots of Equations

261

The secant method uses information derived from the secant to the function to

define the new segment to be explored. To do this, the method calculates the point of

intersection of the secant with the x-axis and uses that point to define the new segment.

This is possible whenever the sign of the points at the beginning and end of a range

is different, because in that case, the secant will intercept with the x-axis. As you may

remember from the previous section, this is similar to the criterion used by the bisection

method, with the difference that bisection uses the midpoint, instead of a point based on

the secant of the function.

As an example of how this works in practice, consider the same function used in

the section “Bisection Method”: f(x) = (x–1)3, in the range -1 to 2. In this case, we can

calculate the values of f(–1) = –8 and f(2) = 1, which have different signs. We can, based

on that information, use the secant to the function on this interval to find an intersection

with the x-axis. The line segment we want to use is, therefore, connecting the points

(–1,–8) and (2,1).

With a little of algebra, you will find that the slope of this line is

	

y y
x x
1 0

1 0

1 8

2 1

9

3
3

�
�

�
� �� �
� �� �

� �
	

And, since it is known that the point (x1,y1) = (2,1) is touched, the secant line is given by

h (x) = y1+ 3 (x–x1) = 1 + 3 (x–2)

Now, the intersection point with the x-axis can be calculated using this equation and

the fact that h(x) = 0 at the intersection (see Figure 9-2):

0=1+3x–6=–5+3x

This means that x = 5

3
 is the intersection point between the secant and the x-axis.

You can easily see, as shown in Figure 9-2, that the intersection of the secant with the

x-axis is a point (let’s call it x2) that is one step closer to the root of the equation. This

process can be repeated with the new interval defined by x0 and x2, until the root of

the equation is approximated within a small error (which can be predefined by the

algorithm).

Chapter 9 Calculating Roots of Equations

262

Generalizing the h(x)= equation shown just a bit earlier, the equation for the secant

can be denoted as

	
h x y y y

x x
x x� � � �

�
�

�� �1

1 0

1 0

1
.
	

When this equation intercepts with the line y=0, we have

	
y y y

x x
x x

1

1 0

1 0

1
0�

�
�

�� � � ,
	

which yields the result

	
x x

y x x
y y

� �
�� �
�1

1 1 0

1 0
	

With this equation, we can calculate the new point x that will be used at the next step

of the algorithm. Summarizing the steps described, the secant method for finding roots

of equations can be described in the following way:

	 1.	 Define an initial range (a,b) where you want to search for one or

more roots of the equation.

	 2.	 Calculate the values of f(a) and f(b).

Figure 9-2.  The original function (x–1)3 and its secant in the interval -1 to 2

Chapter 9 Calculating Roots of Equations

263

	 3.	 Determine the secant line using the equation

	
h x f b

f b f a
b a

x b� � � � � � � � � � �
�

�� � 	

	 4.	 Using this equation, find the intersection point

	
c b

f b b a
f b f a

� �
� � �� �
� � � � � 	

	 5.	 If the difference |c – b| has length less than the error (threshold) E,

stop and report c as the solution. Otherwise, continue with step 1.

It has been observed that for some functions, this algorithm converges to a solution

more quickly than the bisection algorithm. This happens because the secant uses

information that is already available with the function, which happens to make the

intermediate point closer to the real solution.

You can find an implementation of the algorithm discussed in the SecantSolver

class. The design of this class is similar to BisectionSolver, since the problem discussed

is the same. The main change is the use of a different middle point selection procedure,

which makes this algorithm a little different from that presented in BisectionSolver.

�Complete Code
// SecantMethod.h

//

#ifndef SECANTMETHOD_H_

#define SECANTMETHOD_H_

template <class T>

class MathFunction;

class SecantMethod {

public:

 SecantMethod(MathFunction<double> &f);

 SecantMethod(const SecantMethod &p);

 SecantMethod &operator=(const SecantMethod &p);

 ~SecantMethod();

Chapter 9 Calculating Roots of Equations

264

 double getRoot(double x1, double x2);

private:

 MathFunction<double> &m_f;

 double m_error;

};

#endif /* SECANTMETHOD_H_ */

// SecantMethod.cpp

//

#include "SecantMethod.h"

#include "MathFunction.h"

#include <iostream>

using std::cout;

using std::endl;

namespace {

const double DEFAULT_ERROR = 0.001;

}

SecantMethod::SecantMethod(MathFunction<double> &f)

: m_f(f),

 m_error(DEFAULT_ERROR)

{

}

SecantMethod::SecantMethod(const SecantMethod &p)

: m_f(p.m_f),

 m_error(p.m_error)

{

}

SecantMethod::~SecantMethod()

{

}

Chapter 9 Calculating Roots of Equations

265

SecantMethod &SecantMethod::operator=(const SecantMethod &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_error = p.m_error;

 }

 return *this;

}

double SecantMethod::getRoot(double x1, double x2)

{

 double root = 0;

 double fa = m_f(a);

 double fb = m_f(b);

 double c = 0, fc = 0;

 do

 {

 c = b - fb*(b-a)/(fb-fa);

 root = c;

 fc = m_f(c);

 �cout << "-> " << c << " " << fc << " " << endl; // this line just

for demonstration

 a = b;

 fa = fb;

 b = c;

 fb = fc;

 }

 while (std::abs(a - b) > m_error);

 return root;

}

// ---- this is the implementation for an example function

namespace {

Chapter 9 Calculating Roots of Equations

266

class F2 : public MathFunction<double> {

public:

 virtual ~F2();

 virtual double operator()(double value);

};

F2::~F2()

{

}

double F2::operator ()(double x)

{

 return (x-1)*(x-1)*(x-1);

}

}

int main()

{

 F2 f;

 SecantMethod sm(f);

 double root = sm.getRoot(-10, 10);

 cout << " the root of the function is " << root << endl;

 return 0;

}

�Running the Code
After compiling the code presented previously, you can run it and get the following

results, which show the solution for the sample equation f(x) = (x–1)3:

./secantMethod

-> 2.92233 7.10369

-> 2.85268 6.35922

-> 2.25777 1.98976

-> 1.98685 0.96108

-> 1.73375 0.395035

-> 1.5571 0.172905

Chapter 9 Calculating Roots of Equations

267

-> 1.41961 0.0738799

-> 1.31702 0.0318621

-> 1.23923 0.0136922

-> 1.18062 0.00589209

-> 1.13634 0.00253417

-> 1.10292 0.00109016

-> 1.07769 0.000468932

-> 1.05865 0.000201717

-> 1.04427 8.67704e-05

-> 1.03342 3.73252e-05

-> 1.02523 1.60558e-05

-> 1.01904 6.90655e-06

-> 1.01438 2.97092e-06

-> 1.01085 1.27797e-06

-> 1.00819 5.49731e-07

-> 1.00618 2.36472e-07

-> 1.00467 1.01721e-07

-> 1.00352 4.37562e-08

-> 1.00266 1.88221e-08

 the root of the function is 1.00266

�Newton’s Method
Create a C++ class to implement Newton’s method for calculating roots of equations.

�Solution
As you have seen in the last few sections, it is possible to find solutions for a large

number of equations by just using a bisection method. You can also try to improve

the rate of convergence using additional information from the function, in such a way

that the secant of the function is used in the desired interval. Taking this idea one step

further, you will arrive at one of the most used methods for solving equations, which is

attributed to Isaac Newton.

Chapter 9 Calculating Roots of Equations

268

Newton’s method for finding roots of equations uses the derivative of the function as

a first approximation to the location of the root. Similar to the previous two methods you

have seen, the process is iterative, and at each step, you can get closer to the real root of

the equation. At the end, you will have a solution that is within a very small error, which

can be determined before the algorithm starts.

To understand how the method works, consider again the function f(x) = (x–1)3,

which we have been using as an example. The derivative of this function can be easily

calculated, since this is a polynomial, and is given by f ’(x) = 3(x–1)2. Now, suppose

that you start with an initial guess of what the root value might be (if there is no guess,

consider a random value as the starting point). Call that initial guess x0. At that point, we

can calculate two values, f(x0) and f'(x0).

In Figure 9-3, you will find a plot of the function and its tangent at point x0 = 0 for

the example function given previously. At that point, the value of f(x0) = f(0) = –1, and

the value of f'(x0) = f'(0) = 3. Since the derivative of the function at a particular point

represents the slope of the tangent to the curve at that point, we can calculate a point

x1, which is determined by the line that is tangent with the given equation using the

following formula:

	
x x

f x
f x1 0

0

0

0
1

3

1

3
� �

� �
� �

� �
�

�
� 	

Figure 9-3.  The example function f(x) = (x–1)3 and its tangent at point x0 = 0. You

may notice that the tangent intersects the x-axis at point x
1

1

3
= . This is the first step

in finding the root for the given function using Newton's method

Chapter 9 Calculating Roots of Equations

269

Once the intersection of the x-axis and the tangent has been found, you have a new

starting point for the determination of the root for the given equation. Notice that, each

time a new point is found, the algorithm gets a little closer to the desired point, although

it may take a few iterations to achieve the desired precision. As in the previous two

cases, you can determine the precision as a parameter to the algorithm and stop the

computation once the difference between two successive approximations is less than the

given parameter. This shows that the solution is converging to a point where the root is

located.

In summary, Newton’s method works by successively finding points that are

determined by the tangent to the function. As you get closer to the root, the difference

between the intersection of the tangent with the x-axis will get smaller. The stopping

condition is that difference between the last and the current values is less than a given

parameter.

Based on the previous information, the algorithm for Newton’s method can be given

as follows:

	 1.	 Define an initial value x, from which you want to search for one or

more roots of the equation.

	 2.	 Given the input function f(x), determine the derivative of function

f'(x).

	 3.	 Calculate the values of f(x) and f'(x) for the desired value.

	 4.	 Using the value f'(x) as the slope of the tangent at the point x,

calculate a new point x1 using the following equation:

	
x x

f x
f x1

� �
� �
� ��

.

	

	 5.	 Calculate the difference between x and x1 as e = |x–x1|.

	 6.	 If the value of e is less than the input error (threshold) E, stop and

report x as the solution. Otherwise, rename x1 to x and continue

with step 1.

The fact that Newton’s method depends not only on the function but also on its

derivative can be seen as an advantage as well as a disadvantage. Sometimes, it is very

easy to compute the derivative of a function, such as for polynomial and common

Chapter 9 Calculating Roots of Equations

270

trigonometric functions, but that is not always the case. However, the greatest advantage

of Newton’s method is that, unlike the bisection and secant methods, it works even when

there is no difference in function sign.

Consider, for example, the function f(x) = (x–1)2. Its graph is shown in Figure 9-4.

Notice that, unlike other functions that you saw in this chapter, there is no place

where it changes sign. Therefore, without some changes to the bisection method, it

is not possible to find a root in this case. On the other hand, the function clearly has a

derivative, being differentiable everywhere, and this makes it possible to find the root

using Newton’s method.

A small issue that we need to consider when using Newton’s method is the

possibility that the derivative is zero at some point. If that is the case, then the next point

is undefined, since a division by zero is not permitted. This difficulty can be avoided,

however, if the algorithm adds a small value to the current point as a way to avoid

the issue. More sophisticated techniques to solve this problem exist, however, as the

reader will be able to find in one of the many existing books on the topic of numerical

algorithms.

The previous algorithm was coded in C++ in the class NewtonMethod, which provides

the necessary support for all the steps described. The design of the class is very similar

to what you saw for the bisection method. Unlike the bisection method and the secant

method, however, NewtonMethod depends not only on the function but also on its

Figure 9-4.  A continuous, quadratic function (x–1)2 that never changes sign but
has a single root at x = 1

Chapter 9 Calculating Roots of Equations

271

derivative. That’s why in the example code, you will see a reference to two functions: F3

and DF3. They are necessary so that the NewtonMethod class knows how to find the value

of the function and its derivative.

�Complete Code
//

// NewtonMethod.h

#ifndef NEWTONMETHOD_H_

#define NEWTONMETHOD_H_

template <typename T>

class MathFunction;

class NewtonMethod {

public:

 �NewtonMethod(MathFunction<double> &f, MathFunction<double>

&derivative);

 NewtonMethod(const NewtonMethod &p);

 virtual ~NewtonMethod();

 NewtonMethod &operator=(const NewtonMethod &p);

 double getRoot(double initialValue);

private:

 MathFunction<double> &m_f;

 MathFunction<double> &m_derivative;

 double m_error;

};

#endif /* NEWTONMETHOD_H_ */

//

// NewtonMethod.cpp

#include "NewtonMethod.h"

#include "MathFunction.h"

#include <iostream>

Chapter 9 Calculating Roots of Equations

272

using std::endl;

using std::cout;

namespace {

const double DEFAULT_ERROR = 0.001;

}

NewtonMethod::NewtonMethod(MathFunction<double> &f, MathFunction<double>

&derivative)

: m_f(f),

 m_derivative(derivative),

 m_error(DEFAULT_ERROR)

{

}

NewtonMethod::NewtonMethod(const NewtonMethod &p)

: m_f(p.m_f),

 m_derivative(p.m_derivative),

 m_error(p.m_error)

{

}

NewtonMethod::~NewtonMethod()

{

}

NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_derivative = p.m_derivative;

 m_error = p.m_error;

 }

 return *this;

}

Chapter 9 Calculating Roots of Equations

273

double NewtonMethod::getRoot(double x0)

{

 double x1 = x0;

 do

 {

 x0 = x1;

 �cout << " x0 is " << x0 << endl; �// this line just for

demonstration

 double d = m_derivative(x0);

 double y = m_f(x0);

 x1 = x0 - y / d;

 }

 while (std::abs(x0 - x1) > m_error);

 return x1;

}

// ---- this is the implementation for an example function and its

derivative

namespace {

class F3 : public MathFunction<double> {

public:

 virtual ~F3();

 virtual double operator()(double value);

};

F3::~F3()

{

}

double F3::operator ()(double x)

{

 return (x-1)*(x-1)*(x-1);

}

Chapter 9 Calculating Roots of Equations

274

class DF3 : public MathFunction<double> {

public:

 virtual ~DF3();

 virtual double operator()(double value);

};

// represents the derivative of F3

DF3::~DF3()

{

}

double DF3::operator ()(double x)

{

 return 3*(x-1)*(x-1);

}

}

int main()

{

 F3 f;

 DF3 df;

 NewtonMethod nm(f, df);

 cout << " the root of the function is " << nm.getRoot(100) << endl;

 return 0;

}

�Running the Code
The code can be compiled and linked using a compiler such as gcc on UNIX. To run the

resulting program and see its associated results, use the following command line:

./newtonMethod

x0 is 100

 x0 is 67

 x0 is 45

 x0 is 30.3333

 x0 is 20.5556

Chapter 9 Calculating Roots of Equations

275

 x0 is 14.037

 x0 is 9.69136

 x0 is 6.79424

 x0 is 4.86283

 x0 is 3.57522

 x0 is 2.71681

 x0 is 2.14454

 x0 is 1.76303

 x0 is 1.50868

 x0 is 1.33912

 x0 is 1.22608

 x0 is 1.15072

 x0 is 1.10048

 x0 is 1.06699

 x0 is 1.04466

 x0 is 1.02977

 x0 is 1.01985

 x0 is 1.01323

 x0 is 1.00882

 x0 is 1.00588

 x0 is 1.00392

 x0 is 1.00261

the root of the function is 1.00174

The algorithm executes the steps for Newton’s method for the function f(x) = (x–1)3.

Notice that even when starting from a distant value of 100, the algorithm converged to

the solution 1.0 within the required error.

�Conclusion
In this chapter, you have seen a few examples that deal with the search for roots of

equations. This is a topic that is frequently useful in the solutions of equations appearing

in financial engineering. Algorithms for trading and for investment analysis frequently

require the solution of equations, which makes it necessary to find efficient techniques

for the determination of equation roots.

Chapter 9 Calculating Roots of Equations

276

In this chapter, I presented some of the most common techniques for the solution of

equations that appear in finance. More specialized algorithms exist, however, and you

can use the numerical methods literature as a starting point to explore the most recent

methods.

The programming samples in this chapter show, initially, how to compute the root

solution for equations using the bisection method. With the bisection algorithm, the

desired range of the domain is divided evenly, and at each step, possible location of the

root is approximated with higher accuracy. Due to the sign of the function in each end

point of the range, it is possible to detect if a root of the equation is contained in that

range. At the end of the procedure, one can determine within a small margin of error the

location where the equation becomes zero.

Next, you have seen a programming sample for the secant method to solve

equations. The method is based on the use of the secant line to the function in the

interval that is being considered. When the secant intersects the x-axis, the new point is

usually closer to the root of the equation. Performing several iterations of this procedure,

it is possible to find the desired solution in less time than needed by the bisection

method.

You have also learned about the most popular method for the determination of

equation root, known as Newton’s method. With this algorithm, a solution can be found

through the use of the tangent to the function at a given point. Since the derivative of a

function gives the slope of the function at each point, it is possible to use the derivative

to find a reasonable approximation. As the algorithm iterates through successive points,

the approximation gets better. As with other methods, the algorithm is generally stopped

when a preset maximum error is achieved.

In the next chapter, I will talk about another important computational tool that

is heavily used in financial algorithms: numerical integration. With algorithms for

numerical integration, it is possible to find solutions for several difficult problems with

a high degree of precision. You will also see how to implement these techniques using

C++.

Chapter 9 Calculating Roots of Equations

277
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_10

CHAPTER 10

Numerical Integration
Integrating a function is a common step in many financial algorithms. For example,

some financial techniques that involve the use of differential equations depend on the

evaluation of complex integrals. Such areas include derivatives pricing, insurance, and

related algorithms.

However, when using these methods, you can find integrals that have no known

analytical solution and need to be integrated numerically. Even if an equation can be

integrated analytically, it may be more efficient to perform this task using numerical

algorithms. For this purpose, this chapter explores some of the common ways of

performing numerical integration. After reading this and the next chapters, you will have

a better understanding of how these numerical integration algorithms work in practice

and how to use them in your own projects.

We discuss programming examples that can readily be applied in the use of some

common integration methods. We also discuss their performance and the accuracy of

such numerical methods when implemented using the C++ language. The programming

examples in this chapter cover the following topics:

•	 Midpoint method: A simple method of integration that uses an

easy-to-compute approximation based on the midpoint of each

integration interval.

•	 Trapezoid method: A more accurate method of numerical integration

that employs a trapezoidal approximation to the integrated area.

•	 Simpson’s method: A popular technique of numerical integration,

Simpson’s method provides a slightly better approximation than the

previous two methods.

•	 Graphical examples of these solution methods: We present a

graphical explanation of how these methods work, along with the

code necessary to implement them.

https://doi.org/10.1007/978-1-4842-6834-6_10#DOI

278

�The Midpoint Method
In this section, we create a C++ class to integrate functions using the midpoint method.

�Solution
Integrating a function means, in a few words, finding the area of the curve formed by

the function and the x-axis, when considering a single dimension. While the concept

is simple, there is a large amount of literature concerning the practical importance of

this problem. The most important result, also known as the fundamental theorem of

calculus, is that integration is the inverse function of the derivative. In other words,

applying the derivative to the integral of a function will lead to the original function. You

can also integrate the derivative of a function to reach the original (up to a constant).

Finding the integral of a function by algebraic means is highly dependent on

the previous definition. This means that you need to know a second function whose

derivative is the function you want to integrate. In that case, the second function is

the integral using the fundamental theorem of calculus. The problem is that it is not

always possible to find an antiderivative using such methods. This leads to the need to

determine the integral using the computational method.

There are several methods that can be used to integrate a function, but they all

include the strategy of dividing the area of the desired function into many subareas

and adding them all. The good thing about numerical integration is that most schemes

of subdividing the area as described previously are convergent. This means that the

solution for most functions can be used by any of the methods we discuss. What

make these methods different is the computational effort and possibly some better

convergence for a particular function or application.

We start our discussion with an algorithm commonly known as the midpoint

method. This method was so named because of the use of a midpoint approximation to

the desired area. Consider the function f(x)=x2+1, and try to calculate the integral for this

function in the interval 1 to 5. You can see a plot of this function in Figure 10-1.

Chapter 10 Numerical Integration

279

Of course, it would be easy to solve this problem using symbolic techniques, since

there is a well-known way to determine the integral of a polynomial function. However,

consider how the problem could be solved using a purely computational strategy.

The goal of the algorithm is to develop an approximation so that you can determine

the considered integral within a prespecified error threshold. The first step is to devise a

function that could approximate the given function in the given interval. It turns out that

the easiest function we can try is the constant function f(x)=c.

Suppose that we use the constant function to approximate the integral in the interval

1 to 5. We can take as the value of the constant the average value of f(x) in that interval, as

determined by the extreme points.

That constant value would be f 1 5

2
3 10

��
�
�

�
�
� � � � �f . Check in Figure 10-2 how this

constant function compares with the original function.

Figure 10-1.  Plot of function f(x)=x2+1 in the interval 1 to 5

Chapter 10 Numerical Integration

280

The value of the approximation can be calculated as (5–1)10 = 40. You can compare

this with the value defined by the closed calculation of the integral: the antiderivative

of f(x) = x2+1 is F x� � � �
x

x

3

3
, and using this equation as the definite integral on the

interval 1 to 5, you will find the value 45.33. From this, you see that there is a large error

between the correct value and the estimation using a single midpoint calculation.

The good news is that we can improve this approximation by considering smaller

intervals over the required function and adding these values together. This is the

basic technique you will see in this and in the next sections. Therefore, to improve the

approximation in the preceding example, we can just divide the interval 1–5 into two

intervals: 1 to 3 and 3 to 5.

Considering the average value for the constant function, you will find values

1 3

2
1 5

2��
�
�

�
�
� � � for the first half of the interval and

3 5

2
1 17

2��
�
�

�
�
� � � for the second half.

This gives us an approximation of 2 × 5 + 2 × 17 = 44. Since the exact value is 45.33, you

see that the approximation of 44 is much closer to the real value. You can see the new

approximation in Figure 10-3.

Figure 10-2.  The original function f(x) = x2+1 compared to the constant function
f(x) = c

Chapter 10 Numerical Integration

281

As you have seen, the secret of getting a great result from the midpoint method is

subdividing the desired interval in smaller units and adding them, quite similar to the

way the integral function is defined itself. While you could start with a single constant

number and then divide the interval successively, it is much easier to start with a known

large number of segments and expand the number of divisions if necessary. Using this

strategy results in the following algorithm:

Define a range (A,B) where you want to calculate the integral to the equation.

	 1.	 Subdivide the initial range into N subintervals of equal sign.

	 2.	 Initialize the integral value S to zero.

	 3.	 For each subinterval (a,b), do the following:

	 a.	 Take the values of a and b.

	 b.	 Determine the middle point value:

m a b f a b
,� � � ��

�
�

�
�
�

2
.

	 c.	 Add m(a,b) to the integral.

The implementation of this simple method can be found in the

MidpointIntegration class.

Figure 10-3.  Approximating the integral of f(x) = x2+1 using two constant values

Chapter 10 Numerical Integration

282

�Complete Code
You can find the complete code that implements the method just described in

Listing 10-1. The listing includes a header file for class MidpointIntegration

as well as an implementation file.

Listing 10-1.  Implementation for Midpoint Integration Method

//

// MidpointIntegration.h

#ifndef __FinancialSamples__MidpointIntegration__

#define __FinancialSamples__MidpointIntegration__

template <class T>

class MathFunction;

class MidpointIntegration {

public:

 MidpointIntegration(MathFunction<double> &f);

 MidpointIntegration(const MidpointIntegration &p);

 ~MidpointIntegration();

 MidpointIntegration &operator=(const MidpointIntegration &p);

 void setNumIntervals(int n);

 double getIntegral(double a, double b);

private:

 MathFunction<double> &m_f;

 int m_numIntervals;

};

#endif /* defined(__FinancialSamples__MidpointIntegration__) */

//

// MidpointIntegration.cpp

#include "MidpointIntegration.h"

#include "MathFunction.h"

#include <iostream>

Chapter 10 Numerical Integration

283

using std::cout;

using std::endl;

namespace {

 const int DEFAULT_NUM_INTERVALS = 100;

}

MidpointIntegration::MidpointIntegration(MathFunction<double> &f)

: m_f(f),

 m_numIntervals(DEFAULT_NUM_INTERVALS)

{

}

MidpointIntegration::MidpointIntegration (const MidpointIntegration &p)

: m_f(p.m_f),

 m_numIntervals(p.m_numIntervals)

{

}

MidpointIntegration::~MidpointIntegration()

{

}

MidpointIntegration &MidpointIntegration::operator=(const

MidpointIntegration &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_numIntervals = p.m_numIntervals;

 }

 return *this;

}

void MidpointIntegration::setNumIntervals(int n)

{

 m_numIntervals = n;

}

Chapter 10 Numerical Integration

284

double MidpointIntegration::getIntegral(double a, double b)

{

 double S = 0;

 double intSize = (b - a)/m_numIntervals;

 double x = a;

 for (int i=0; i<m_numIntervals; ++i)

 {

 double midpt = m_f(x+(intSize/2));

 S += intSize * midpt;

 x += intSize;

 }

 return S;

}

// Example function x^2 + 1

namespace {

class F1 : public MathFunction<double>

{

public:

 ~F1();

 double operator()(double x);

};

F1::~F1()

{

}

double F1::operator ()(double x)

{

 return x*x+1;

}

}

Chapter 10 Numerical Integration

285

int main()

{

 F1 f;

 MidpointIntegration mpi(f);

 double integral = mpi.getIntegral(1, 5);

 cout << " the integral of the function is " << integral << endl;

 mpi.setNumIntervals(200);

 integral = mpi.getIntegral(1, 5);

 �cout << " the integral of the function with 200 intervals is " <<

integral << endl;

 return 0;

}

�Running the Code
You can generate a binary executable from the source code in Listing 10-1 using any

standards-compliant compiler such as gcc. Then, you can execute the code to get sample

results such as the following, for the sample equation f(x) = x2+1:

./midpointIntegration

the integral of the function is 45.3344

the integral of the function with 200 intervals is 45.3336

Notice that the solution tests the approximation for two cases: when the number of

intervals is 100 (the default) and when the number of intervals is 200. Since the exact

value of the function is 45
1

3
+ , this shows an improvement in the result with an error

going from the third decimal place to the fourth decimal place. You can improve the

approximation for different functions or required errors by increasing the number of

intervals if necessary.

�Trapezoid Method
In this section, we create a C++ class that implements the trapezoid method for definite

integral calculation.

Chapter 10 Numerical Integration

286

�Solution
As you have seen in the last section, it is not difficult to come up with an approximation

for the integral of a function. However, in many applications, it is useful to have a faster

and more efficient way to determine the definite integral of a function. This is especially

true when the function that needs to be integrated is difficult to compute in the first

place. In those situations, it is better to use an approximation technique that might be

able to provide more accurate solutions to the integration problem.

In this coding example, I examine an alternative way to calculate the integral

of a continuous function, called the trapezoid method. As the name indicates, the

trapezoid method uses a geometric, intuitive idea to render the value under the curve

for a particular function, in such a way that the resulting approximation is closer to the

desired value.

To use the trapezoid method, we look at the integration problem using a geometric

intuition about the best way to approximate the desired curve. Consider the function

f(x) = sin(x) in the range
1

2
 to

5

2
. The desired integral is defined as the area under the

curve. A simple approach to approximate this value is to use the area of linear function

that approximates sinx between the extremes of the given interval. Using a graphical

approach, you can see the results in Figure 10-4.

Figure 10-4.  Approximating the integral of f(x)=sin(x) over the interval from 1/2
to 5/2 with the help of one iteration of the trapezoid method

Chapter 10 Numerical Integration

287

The trapezoid method applied to that interval gives a relatively poor approximation.

The real value of the indicated integral, when computed using symbolic techniques, is

cos cos
1

2

5

2
− , which is approximately 1.6787. The trapezoid method, on the other hand,

yields the value 2
1

2

5

2

1

2

1

2

5

2
1 0778� � � � � �sin sin sin sin sin . .

Although this is a poor approximation, you can do better if you divide the interval

of the desired function in two or more subareas. As you do this, the errors will become

smaller, and the resulting value will be closer to the real value of the integral. For

example, I will show how to improve the approximation of the previous function using

the two subintervals from 1/2 to 3/2 and from 3/2 to 5/2.

The values of f 1

2

1

2
0 4794

�
�
�

�
�
� � �sin . and f 3

2

3

2
0 9974

�
�
�

�
�
� � �sin . result in a trapezoid

with an area of 0.7384. The second interval, on the other hand, has value determined

by f 3

2

3

2

�
�
�

�
�
� � sin and f 5

2

5

2
0 5984

�
�
�

�
�
� � �sin . . The resulting trapezoid has area equal to

1.5364, which is closer to the exact value of 1.6787. You can see how this approximation

works graphically in Figure 10-5.

It can be proved, as shown in the previous two examples, that as the number of

subintervals is increased, the quality of the approximation gets better. As a result, you

can get as close as desired from the true value of the definite integral by increasing the

number of subintervals in the trapezoid method.

Figure 10-5.  Using the trapezoid method to approximate the area under the
function f(x)=sin x, with two intervals (1/2 to 3/2 and 3/2 to 5/2)

Chapter 10 Numerical Integration

288

I present a class, called TrapezoidIntegration, which shows how to implement

the trapezoid method for any function passed as an argument. The implementation is

made generic with the use of the MathFunction class. Passing a new object of the desired

MathFunction class, you can calculate definite integrals for different functions using the

getIntegral member function.

With the TrapezoidIntegration class, you can also determine the desired number

of intermediate intervals used, if you use the member function setNumIntervals.

This, as a result, allows you to reduce the error in the estimates of the definite integral,

if necessary. Another thing you can do using the setNumIntervals is to reduce the

computational effort necessary, by reducing the number of iterations of the algorithm. In

this way, you have complete control over the trade-off between degree of approximation

and computational efficiency.

�Complete Code
Listing 10-2 is a complete implementation for the trapezoid method for integration as

discussed in the previous section. You will find this code divided into a header file and

an implementation file. There is also a main function that presents an example for the

class TrapezoidIntegration.

Listing 10-2.  Trapezoid Integration Method

//

// TrapezoidIntegration.h

#ifndef __FinancialSamples__TrapezoidIntegration__

#define __FinancialSamples__TrapezoidIntegration__

template <class T>

class MathFunction;

class TrapezoidIntegration {

public:

 TrapezoidIntegration(MathFunction<double> &f);

 TrapezoidIntegration(const TrapezoidIntegration &p);

 ~TrapezoidIntegration();

 TrapezoidIntegration &operator=(const TrapezoidIntegration &p);

Chapter 10 Numerical Integration

289

 void setNumIntervals(int n);

 double getIntegral(double a, double b);

private:

 MathFunction<double> &m_f;

 int m_numIntervals;

};

#endif /* defined(__FinancialSamples__TrapezoidIntegration__) */

//

// TrapezoidIntegration.cpp

#include "TrapezoidIntegration.h"

#include "MathFunction.h"

#include <iostream>

#include <cmath>

using std::cout;

using std::endl;

namespace {

 const int DEFAULT_NUM_INTERVALS = 100;

}

TrapezoidIntegration::TrapezoidIntegration(MathFunction<double> &f)

: m_f(f),

 m_numIntervals(DEFAULT_NUM_INTERVALS)

{

}

TrapezoidIntegration::TrapezoidIntegration (const TrapezoidIntegration &p)

: m_f(p.m_f),

 m_numIntervals(p.m_numIntervals)

{

}

Chapter 10 Numerical Integration

290

TrapezoidIntegration::~TrapezoidIntegration()

{

}

TrapezoidIntegration &TrapezoidIntegration::operator=(const

TrapezoidIntegration &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_numIntervals = p.m_numIntervals;

 }

 return *this;

}

void TrapezoidIntegration::setNumIntervals(int n)

{

 m_numIntervals = n;

}

double TrapezoidIntegration::getIntegral(double a, double b)

{

 double S = 0;

 double intSize = (b - a)/m_numIntervals;

 double x = a;

 for (int i=0; i<m_numIntervals; ++i)

 {

 double midpt = (m_f(x) + m_f(x+intSize))/ 2;

 S += intSize * midpt;

 x += intSize;

 }

 return S;

}

// Example function

namespace {

Chapter 10 Numerical Integration

291

 class F2 : public MathFunction<double>

 {

 public:

 ~F2();

 double operator()(double x);

 };

 F2::~F2()

 {

 }

 double F2::operator()(double x)

 {

 return sin(x);

 }

}

int main()

{

 F2 f;

 TrapezoidIntegration ti(f);

 double integral = ti.getIntegral(0.5, 2.5);

 cout << " the integral of the function is " << integral << endl;

 ti.setNumIntervals(200);

 integral = ti.getIntegral(0.5, 2.5);

 �cout << " the integral of the function with 200 intervals is " <<

integral << endl;

 return 0;

}

�Running the Code
You can compile the code presented in Listing 10-2 using a standards-compliant

compiler such as gcc, Visual Studio, or llvm. After you compile the code, you can run

the resulting application to test the results. The following is a sample of the program

execution:

Chapter 10 Numerical Integration

292

./trapezoidMethod

the integral of the function is 1.67867

the integral of the function with 200 intervals is 1.67871

The program displays the value of the integral of sin(x) from 1/2 to 5/2. The

approximation is given for two different settings of the number of subintervals. The first

result is for 100 subintervals. The second result shows the approximation achieved when

that number of subintervals is doubled.

As in the previous example, it is possible to control the quality of the approximation

by increasing the number of subintervals. Also, you can reduce that number in case you

prefer to get quicker results.

�Using Simpson’s Method
Implement Simpson’s method for definite integral calculation.

�Solution
You have seen two common ways to calculate the value of the definite integral for a given

continuous function. A third method, known as Simpson’s method, is presented in this

programming example. As with any technique for numeric integration, the general idea

is to create a second function that approximates the desired function and apply it to

several subintervals of the original domain until you get a good approximation.

Simpson’s method, unlike the previous two methods that use linear approximations

to the given function, employs a second-order polynomial to achieve a better

convergence. In this way, instead of relying on a linear function to achieve the desired

result, the approximation proposed with Simpson’s method is better adapted to the

behavior of the original curve.

The way Simpson’s method work can be easily visualized with an example. Suppose

you want to integrate the function used in the previous section: f(x) = sin x. This function,

being trigonometric, has no simple finite representation as a polynomial. However, it is

possible to find very good approximations for a representation if you restrict the search

to a small part of the function.

For example, I have shown in Figure 10-6 how it is possible to use a second-order

polynomial function to approximate the value of sinx in the interval 1/2 to 5/2. Observe

Chapter 10 Numerical Integration

293

that the similarity between these two curves is good enough only in the short range

of values inside the given interval, and outside that interval, these two functions vary

widely.

The same idea is used in Simpson’s method. Since a quadratic approximation may

be so close to the desired function, the use of quadratic functions may dramatically

improve the value of the definite integral calculated in this way. In fact, experiments have

shown that Simpson’s method has better accuracy than other algorithms, such as the

midpoint method and the trapezoid method.

Note T he additional accuracy of Simpson’s method can make it possible to reduce
the number of subintervals necessary for the calculation of the definite integral.
However, since you need to use a quadratic approximation instead of a simple linear
function, the computational effort of each iteration will be higher. In the end, while
Simpson’s method produces superior results for most functions, users need to be
aware of a possible trade-off in terms of computational time per iteration.

The second-order polynomial used in Simpson’s method is defined in the following

equation, which can be used to directly implement the proposed rule:

	

b a f a f a b f b� � � � ��
�
�

�
�
� � � ��

�
�

�

�
�

6
4

2 	

Figure 10-6.  Using a second-degree polynomial to approximate the value of
f(x)=sin x in the interval 1/2 to 5/2

Chapter 10 Numerical Integration

294

Therefore, you can summarize the general algorithm as follows:

	 1.	 Define a range (A,B) where you want to calculate the integral to

the equation.

	 2.	 Subdivide the initial range into N subintervals of equal sign.

	 3.	 Initialize the integral value S to zero.

	 4.	 For each subinterval (a,b), do the following:

	 a.	 Take the values of a and b.

	 b.	 Determine the approximation to the integral in the interval (a,b) given by

the equation

m a b b a f a f a b f b,� � � � � � � ��
�
�

�
�
� � � ��

�
�

�

�
�

6
4

2

	 c.	 Add m(a,b) to the integral.

This algorithm has been implemented as part of SimpsonsIntegration class

�Complete Code
You can find the complete implementation of Simpson’s method in Listing 10-3. The

implementation presented there is later used in the main function.

Listing 10-3.  Code for Simpson’s Integration Method

//

// SimpsonsIntegration.h

#ifndef __FinancialSamples__SimpsonsIntegration__

#define __FinancialSamples__SimpsonsIntegration__

template <class T>

class MathFunction;

class SimpsonsIntegration {

public:

 SimpsonsIntegration(MathFunction<double> &f);

Chapter 10 Numerical Integration

295

 SimpsonsIntegration(const SimpsonsIntegration &p);

 ~SimpsonsIntegration();

 SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

 double getIntegral(double a, double b);

 void setNumIntervals(int n);

private:

 MathFunction<double> &m_f;

 int m_numIntervals;

};

#endif /* defined(__FinancialSamples__SimpsonsIntegration__) */

//

// SimpsonsIntegration.cpp

#include "SimpsonsIntegration.h"

#include "MathFunction.h"

#include <iostream>

#include <cmath>

using std::cout;

using std::endl;

namespace {

 const int DEFAULT_NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction<double> &f)

: m_f(f),

 m_numIntervals(DEFAULT_NUM_INTERVALS)

{

}

SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)

: m_f(p.m_f),

 m_numIntervals(p.m_numIntervals)

{

}

Chapter 10 Numerical Integration

296

SimpsonsIntegration::~SimpsonsIntegration()

{

}

SimpsonsIntegration &SimpsonsIntegration::operator=(const

SimpsonsIntegration &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_numIntervals = p.m_numIntervals;

 }

 return *this;

}

double SimpsonsIntegration::getIntegral(double a, double b)

{

 double S = 0;

 double intSize = (b - a)/m_numIntervals;

 double x = a;

 for (int i=0; i<m_numIntervals; ++i)

 {

 �S += (intSize / 6) * (m_f(x) + m_f(x+intSize) + 4* m_f ((x +

x+intSize)/2));

 x += intSize;

 }

 return S;

}

void SimpsonsIntegration::setNumIntervals(int n)

{

 m_numIntervals = n;

}

// Example function

namespace {

Chapter 10 Numerical Integration

297

 class F2 : public MathFunction<double>

 {

 public:

 ~F2();

 double operator()(double x);

 };

 F2::~F2()

 {

 }

 double F2::operator()(double x)

 {

 return sin(x);

 }

}

int main()

{

 F2 f;

 SimpsonsIntegration si(f);

 double integral = si.getIntegral(0.5, 2.5);

 cout << " the integral of the function is " << integral << endl;

 si.setNumIntervals(200);

 integral = si.getIntegral(0.5, 2.5);

 �cout << " the integral of the function with 200 intervals is " <<

integral << endl;

 return 0;

}

�Running the Code
The code displayed in Listing 10-3 was tested using the function f(x) = sin x. The

compiler used was gcc on Mac OS X and Windows. The program was tested on both

platforms, generating identical results.

Chapter 10 Numerical Integration

298

After compiling the class SimpsonsIntegration, you can run the application and

observe output similar to the following:

./simpsonsIntegration

the integral of the function is 1.67873

the integral of the function with 200 intervals is 1.67873

As you can observe from these results, the accuracy of the solution with 100 intervals

is similar to the accuracy for 200 intervals. This shows that 100 subdivisions are already

enough to get very good results for this technique.

�Conclusion
Integrating functions is one of the basic tasks in computational mathematics, due to the

great importance of integration (also known as antiderivative) as a fundamental area

of calculus. In the development of financial algorithms, there are also many situations

where it is necessary to find quick solutions to problems that involve the evaluation of

definite integrals.

In this chapter, you have learned a few C++ programming examples that explore

some of the most common techniques for numerical integration. You have seen how

integration methods such as the trapezoid and Simpson’s rule can be applied to the task

of finding the area under the curve for some preestablished functions.

The trapezoid method is the second important algorithm used to evaluate definite

integrals. Given a general function, this method uses the function value at the extremes

of the interval in order to define a trapezoid-based geometric approximation. You have

seen some examples of how this strategy works, along with working code to implement

the rule.

I have also discussed the well-known Simpson’s method for definite integration.

Here, the approximation to the curve is performed using a quadratic equation. You saw

an example of how to use polynomial equations to achieve the desired accuracy. Using

Simpson’s method, you can perform integration with very good approximations, despite

the fact that fewer subintervals may be necessary to read this accuracy.

Partial differential equations (PDEs) are another important mathematical tool for

the financial software developer. It is important to understand how they work, as well

as having tools to find solutions based on PDEs. In the next chapter, I discuss some

important PDE-related techniques and their implementation in C++.

Chapter 10 Numerical Integration

299
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_11

CHAPTER 11

Solving ODEs and PDEs
The solution of ODEs (ordinary differential equations) and PDEs (partial differential

equations) is at the heart of many techniques used in the analysis of financial markets.

Important analytical tools for derivative valuation such as the Black-Scholes model for

stock options and other derivatives can be directly represented as differential equations.

Such equations need to be regularly solved in order to determine the price of financial

instruments traded in the global markets. This creates the need for high-performance

code, capable of finding efficient solutions to these mathematical models.

Due to the large number of applications of ODEs and PDEs in science, engineering,

and finance, several methods to solve them have been developed. In addition to

the exact mathematical methods, capable of analyzing and finding the solution to

differential equations, a software engineer also has to deal with purely computational

approaches, as well as their implementation in C++.

Examples of differential equations of interest in finance include

•	 Thiele’s differential equation: Used to determine fair prices for life

insurance contracts

•	 Black-Scholes differential equation: Used to price options and related

derivatives

•	 Market reserve differential equation

•	 Dynamic variations of portfolio optimization

•	 Merton’s equations for utility optimization

•	 Along with several variations of these differential equations

Since the application of differential equations to financial problems is such a

large area, in this chapter I am able to present only an overview of the methods most

frequently used for their solution.

https://doi.org/10.1007/978-1-4842-6834-6_11#DOI

300

The programming examples discussed in this chapter cover a few particular aspects

of ODE and PDE modeling and applications. Topics that you will explore include the

following:

•	 Euler’s method for ODEs: An algorithm that is simple to implement

and can be applied directly to any first-order ODE.

•	 Runge-Kutta method: An improvement over the general ideas of

Euler’s algorithm, the Runge-Kutta method provides better stability

and accuracy for the solution to ODEs.

•	 Black-Scholes equation: A general discussion of the Black-Scholes

PDE and an overview of the forward method to solve this model.

�Solving Ordinary Differential Equations
In this section, we will create a class to solve ODEs using Euler’s method.

�Solution
I start the discussion of differential equations with some methods for the numerical

solution to ordinary differential equations. Before I can start with a first example,

however, let’s remember some of the relevant facts about ODEs.

An ordinary differential equation is an equation that includes the rate of change

(derivative) with respect to a single variable in one or more of its terms. Given a

differential equation, its order is defined as the maximum order of any of the derivatives

included in the equation. The following are a few examples of ODEs:

	
x d y

dx
x dy
dx

y x3

2

2

5� � � 	

	
x dy
dx

x y� �4
2

	

Both equations involve the derivative of the variable y with respect to x. In the first

equation, the derivative is applied twice, resulting in the term d2y/dx2, which means that

it is a second-order ODE. The second equation contains only a first-order derivative with

respect to x, making it a first-order ODE.

Chapter 11 Solving ODEs and PDEs

301

Standard equations (the ones that don’t involve derivatives) usually have solutions

that can be expressed as a single number. ODEs, however, include derivatives, and

therefore their solutions are better described as being one or more functions, which

together satisfy the conditions implied by the derivatives. For example, the following

well-known differential equation describes Newton’s law of gravity:

	
m d x

dt
mg

2

2 � � 	

The solution of such an equation is a general function describing the velocity and

acceleration of an object. To find out a numeric solution to such a particular problem,

you would need to supply one or more initial conditions that, when plugged into the

general solutions, will provide an explicit value for x in the given equation.

As you have seen from the previous example, numerically solving an ODE involves

working with initial conditions that can be substituted in the general function that solves

the equation. As a consequence, numerical methods to solve ODEs (and PDEs) require

the determination of initial conditions as a prerequisite to find their numerical solutions.

There are two main types of methods that can be used to solve differential equations.

The first kind of solution is based on symbolic methods. Such methods use algebraic

techniques, including the known rules of differentiation and integration, to simplify and

derive a closed solution to a differential equation. Symbolic methods can be performed

manually or by computers, and there is a class of software that was created specifically

to perform such symbolic manipulations. Main examples include Mathematica, Maple,

and Maxima, among others.

While symbolic methods are very useful in solving certain classes of ODEs and

PDEs, many differential equations are too complex to be solved to a closed form using

symbolic manipulation. Moreover, such symbolic techniques are very specialized and

are normally used only during the modeling and exploration phases, when the engineer

or mathematician is creating a model based on differential equations. For these reasons,

symbolic techniques are mostly confined to specialized software packages, rather than

being used as libraries for general-purpose languages.

The second class of techniques for solving differential equations is based on

numerical algorithms. These algorithms are more general in the sense that they can

be applied to any differential equation, as long as some basic requirements are met.

Moreover, many common differential equations have no known closed solutions, and in

such cases, numerical methods are the only ones available. Because numerical methods

Chapter 11 Solving ODEs and PDEs

302

for ODEs and PDEs can be implemented using standard programming techniques, they

are commonly used as part of mathematical libraries for programming languages such

as FORTRAN and C++.

�Euler’s Method
The first numerical algorithm for ODEs you will learn about is a simple technique

called Euler’s method, which is based on the successive evaluation of the desired ODE

at predetermined steps. Starting from a given initial condition, Euler’s method tries to

find the next value of the differential equation, using approximation formulas that are

applied at predetermined intervals.

The idea of Euler’s method is to correct possible errors in the evaluation of the ODE

when starting from the given initial condition. For example, suppose that you want to

evaluate an ODE at desired point c, when starting from initial condition x0. To make the

argument simpler, assume that x0 ≤ c, although the same ideas are valid in the other

direction. To solve the ODE, the idea of this algorithm is to perform the evaluation in N

steps, where N is a given parameter. As a consequence, the step size is given by

	
h c x

N
�

�
0
. 	

Let’s assume that the differential equation can be represented as a first-order ODE in

the following general form:

y’= f(x,y)

Also, the initial condition (x0,y0) is known.

In general terms, at each step (given by the value h), Euler’s algorithm will try to

determine the correct value of the solution for the ODE for that small step size. The

biggest problem, however, is that the solution to the differential equation is not known

in an explicit way, so the algorithm has to guess a particular value for each step. Since

the step size is a small interval, a possible way to guess the value of the function is to

approximate it using a straight line. If we call yt the value of the function at step t, then

this leads to the following approximation for yt:

	
y y h

f x y f x h y hf x y
t t

t t t t t� �
� � � � � � �� �

�
� � � � �

1

1 1 1 1 1

2

, , ,

	

Chapter 11 Solving ODEs and PDEs

303

In other words, the algorithm takes the mean value of the linear approximation

between the previous point and the next point, as the next approximation to the small

value between yt–1 and yt.

Euler’s algorithm is a simple example of what is known as a predictor-corrector

algorithm. Such methods work by predicting where a function might be in the

subsequent iteration, which in this case is performed using a linear approximation.

The next step is to correct this prediction, in this case by taking the average value. The

same strategy is repeated in many other algorithms, although with more complex

approximation schemes.

One of the biggest issues when using Euler’s algorithm is controlling for errors in the

result. As you have seen, the step size for Euler’s method is one of the input parameters

for its implementation and indicates the frequency with which we want to update the

results of the differential equation. The finer grained the steps we take in this evaluation

process, the closer to the real function we get. On the other hand, two problems occur

when we increase the number of steps in the ODE evaluation. First, there is the increase

in running time due to the additional calculations that become necessary. Second, and

of even more concern, is the fact that by increasing the number of steps, you might be

increasing the numeric errors that are inevitable when doing calculations on a computer.

Solving these precision problems leads to the development of other methods, as you see

in the next section.

�Complete Code
Euler’s method, as described in the previous section, is implemented in the

EulersMethod class displayed in Listing 11-1. The important method in this class is

solve(), which receives as parameters the number of steps, the initial values x0 and y0,

and the target point c.

Listing 11-1.  Implementation for Euler’s Method for Solving ODEs

//

// EulersMethod.h

#ifndef __FinancialSamples__EulersMethod__

#define __FinancialSamples__EulersMethod__

Chapter 11 Solving ODEs and PDEs

304

template <class T>

class MathFunction;

class EulersMethod {

public:

 EulersMethod(MathFunction<double> &f);

 EulersMethod(const EulersMethod &p);

 ~EulersMethod();

 EulersMethod &operator=(const EulersMethod &p);

 double solve(int n, double x0, double y0, double c);

private:

 MathFunction<double> &m_f;

};

#endif /* defined(__FinancialSamples__EulersMethod__) */

//

// EulersMethod.cpp

#include "EulersMethod.h"

#include "MathFunction.h"

#include <iostream>

using std::cout;

using std::endl;

EulersMethod::EulersMethod(MathFunction<double> &f)

: m_f(f)

{

}

EulersMethod::EulersMethod(const EulersMethod &p)

: m_f(p.m_f)

{

}

Chapter 11 Solving ODEs and PDEs

305

EulersMethod::~EulersMethod()

{

}

EulersMethod &EulersMethod::operator=(const EulersMethod &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 }

 return *this;

}

double EulersMethod::solve(int n, double x0, double y0, double c)

{

 // problem : y' = f(x,y) ; y(x0) = y0

 auto x = x0;

 auto y = y0;

 auto h = (c - x0)/n;

 cout << " h is " << h << endl;

 for (int i=0; i<n; ++i)

 {

 double F = m_f(x, y);

 auto G = m_f(x + h, y + h*F);

 cout << " F: " << F << " G: " << G << endl;

 // update values of x, y

 x += h;

 y += h * (F + G)/2;

 cout << " x: " << x << " y: " << y << endl;

 }

 return y;

}

Chapter 11 Solving ODEs and PDEs

306

/// -----

class EulerMethSampleFunc : public MathFunction<double> {

public:

 double operator()(double x) { return x; } // not used

 double operator()(double x, double y);

};

double EulerMethSampleFunc::operator()(double x, double y)

{

 return 3 * x + 2 * y + 1;

}

int main()

{

 EulerMethSampleFunc f;

 EulersMethod m(f);

 double res = m.solve (100, 0, 0.25, 2);

 cout << " result is " << res << endl;

 return 0;

}

�Running the Code
You can generate a binary executable from the source code in Listing 11-1 using any

standards-compliant compiler such as gcc. Then, you can execute the code to get sample

results such as the following for the sample equation f(x) = 3x + 2y + 1:

./eulersMethod

h is 0.02

 F: 1.5 G: 1.62 x: 0.02 y: 0.2812

 F: 1.6224 G: 1.7473 x: 0.04 y: 0.314897

 F: 1.74979 G: 1.87979 x: 0.06 y: 0.351193

 F: 1.88239 G: 2.01768 x: 0.08 y: 0.390193

 // ...

 F: 137.938 G: 143.515 x: 1.94 y: 68.4034

 F: 143.627 G: 149.432 x: 1.96 y: 71.334

Chapter 11 Solving ODEs and PDEs

307

 F: 149.548 G: 155.59 x: 1.98 y: 74.3854

 F: 155.711 G: 161.999 x: 2 y: 77.5625

result is 77.5625

Notice that the solution tests the approximation for two cases: when the number of

intervals is 100 (the default) and when necessary.

�Runge-Kutta Method for Solving ODEs
In this section, we will implement the Runge-Kutta method for solving ODEs.

�Solution
In the last section, you saw how to use Euler’s method to solve ODEs, a technique that

iterates through a series of steps while computing an approximation to the desired

differential equations. A problem with Euler’s method, however, is its slow convergence.

Due to the first-order approximation used, the method requires a large number of steps

if any accuracy is desired. On the other hand, it is also difficult to avoid error propagation

when the number of steps increases, which makes it difficult to improve the accuracy of

this method.

To reduce some of the problems inherent in Euler’s method, other strategies have

been devised. The way these methods try to overcome such limitations is to use better

approximations for each step of the algorithm. This way, it is possible to use fewer steps

overall to find the desired solution. Also, the improved approximation makes it possible

to reduce computational errors incurred during a single step.

One of the most popular of such improved algorithms for the solution of ODEs is

called the Runge-Kutta method. Compared to Euler’s method, the Runge-Kutta method

uses a different approximation scheme for each new step of the algorithm, which

guarantees higher accuracy. As a consequence, you will also have faster convergence

when using the Runge-Kutta method.

As before, assume that we are given a first-order differential equation with relation to

the x variable:

y’ = f(x,y)

Chapter 11 Solving ODEs and PDEs

308

The initial condition (x0,y0) is known, and the goal is to calculate the value of the

differential equation at some point c. If we define as N the number of steps, the step size

can be given as

	
h c x

N
�

�
0
. 	

The well-known Taylor method from calculus can be used to compute the

approximation to a function given its derivatives. The approximation found using the

second-order Taylor approximation will give a more accurate result than the linear

approximation used in Euler’s algorithm. The formulas used in the original Runge-Kutta

algorithm are the following:

	 x x ht t� � �1 	

	
y y hf x h y h f x yt t t t t t� � � � � � ��

�
�

�
�
�1

2 2
, ,

	

If you employ higher-order approximations derived using the Taylor method, you

can get even more precise results. The most common of such approximations is the

fourth-order Runge-Kutta method. In this case, the formula for yt+1 is given by

	 k hf x yt t1
� � �, 	

	
k hf x h y k

t t2

1

2 2
� � ��

�
�

�
�
�,

	

	
k hf x h y k

t t3

2

2 2
� � ��

�
�

�
�
�,

	

	 k hf x h y kt t4 3
� � �� �, 	

	
y y k k k kt t� � � � �� �1 1 2 3 4

1

6
2 2, 	

Chapter 11 Solving ODEs and PDEs

309

This method offers good results in terms of fast approximation and is appropriate to

solve most ODE problems. The implementation is relatively straightforward, as shown in

the code that follows.

The updated algorithm can be seen in the function solve, which can be written as

follows:

double RungeKuttaODEMethod::solve(int n, double x0, double y0, double c)

{

 auto x = x0;

 auto y = y0;

 auto h = (c - x0)/n;

 for (int i=0; i<n; ++i)

 {

 auto k1 = h * m_f(x, y);

 auto k2 = h * m_f(x + (h/2), y + (k1/2));

 auto k3 = h * m_f(x + (h/2), y + (k2/2));

 auto k4 = h * m_f(x + h, y + k3);

 x += h;

 y += (k1 + 2*k2 + 2*k3 + k4)/6;

 }

 return y;

}

�Complete Code
Listing 11-2 presents the Runge-Kutta method for solving ODEs. The code organization

is similar to what I used for Euler’s method in the previous section. The main difference

resides in the way the next step is defined, which uses the equations based on the Taylor

method as explained previously.

Listing 11-2.  Implementation of the Runge-Kutta Method to Solve ODEs

//

// RungeKuttaODEMethod.h

#ifndef __FinancialSamples__RungeKuttaODEMethod__

#define __FinancialSamples__RungeKuttaODEMethod__

Chapter 11 Solving ODEs and PDEs

310

template <class T>

class MathFunction;

class RungeKuttaODEMethod {

public:

 RungeKuttaODEMethod(MathFunction<double> &f);

 RungeKuttaODEMethod(const RungeKuttaODEMethod &p);

 ~RungeKuttaODEMethod();

 RungeKuttaODEMethod &operator=(const RungeKuttaODEMethod &p);

 double solve(int n, double x0, double y0, double c);

private:

 MathFunction<double> &m_f;

};

#endif /* defined(__FinancialSamples__RungeKuttaODEMethod__) */

//

// RungeKuttaODEMethod.cpp

#include "RungeKuttaODEMethod.h"

#include "MathFunction.h"

#include <iostream>

using std::cout;

using std::endl;

RungeKuttaODEMethod::RungeKuttaODEMethod(MathFunction<double> &f)

: m_f(f)

{

}

RungeKuttaODEMethod::RungeKuttaODEMethod(const RungeKuttaODEMethod &p)

: m_f(p.m_f)

{

}

RungeKuttaODEMethod::~RungeKuttaODEMethod()

{

}

Chapter 11 Solving ODEs and PDEs

311

RungeKuttaODEMethod &RungeKuttaODEMethod::operator=(const

RungeKuttaODEMethod &p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 }

 return *this;

}

double RungeKuttaODEMethod::solve(int n, double x0, double y0, double c)

{

 auto x = x0;

 auto y = y0;

 auto h = (c - x0)/n;

 for (int i=0; i<n; ++i)

 {

 auto k1 = h * m_f(x, y);

 auto k2 = h * m_f(x + (h/2), y + (k1/2));

 auto k3 = h * m_f(x + (h/2), y + (k2/2));

 auto k4 = h * m_f(x + h, y + k3);

 x += h;

 y += (k1 + 2*k2 + 2*k3 + k4)/6;

 }

 return y;

}

/// -----

class RKMethSampleFunc : public MathFunction<double> {

public:

 double operator()(double x) { return x; } // not used

 double operator()(double x, double y);

};

Chapter 11 Solving ODEs and PDEs

312

double RKMethSampleFunc::operator()(double x, double y)

{

 return 3 * x + 2 * y + 1;

}

int main()

{

 RKMethSampleFunc f;

 RungeKuttaODEMethod m(f);

 double res = m.solve (100, 0, 0.25, 2);

 cout << " result is " << res << endl;

 return 0;

}

�Running the Code
The code in Listing 11-2 was compiled and tested using gcc. It should work, however,

using any standards-compliant compiler. The test code is in the main function, which

runs the algorithm using the differential equation y’ = 3x + 2y + 1. The results can be

compared with what was achieved with Euler’s method discussed previously.

./rungeKutta

 x: 0.02 y: 0.281216

 x: 0.04 y: 0.314931

 x: 0.06 y: 0.351245

 x: 0.08 y: 0.390266

 // ...

 x: 1.9 y: 62.9518

 x: 1.92 y: 65.6582

 x: 1.94 y: 68.4763

 x: 1.96 y: 71.4107

 x: 1.98 y: 74.466

 x: 2 y: 77.6472

result is 77.6472

The sample output shows the convergence of the algorithm, with 100 iterations. You

can see the complete results displayed in Figure 11-1.

Chapter 11 Solving ODEs and PDEs

313

�Solving the Black-Scholes Equation
Create a C++ class to solve the Black-Scholes equation using the forward method.

�Solution
The Black-Scholes equation is one of the best-known methods to price derivatives. It was

developed in the 1970s to provide a better model of European-style options, but since

then, the basic model has been extended and tested on multiple derivatives markets.

While the original assumptions of the Black-Scholes equation are not exactly respected

in the real markets, the model works as an excellent analytical tool to price instruments

that present volatile behavior as observed in the stock market.

Remember that an option is a contract that allows the holder to buy (or sell) units of

a stock at a particular price in a given time in the future. For example, a call option on

MSFT at $30 for July of the next year gives its owner the right (but not the duty) to buy

MSFT for the price of $30 in July, irrespective of the real price at that date. Therefore, if

MSFT stock price is significantly higher than $30, this operation will result in a profit. At

$30 or lower prices, however, this option will result in a loss. Similarly, you can do the

same analysis for a put, which is the right to sell a stock at the given price in the future.

Figure 11-1.  Successive steps of the Runge-Kutta algorithm for the previous
example, with N=100

Chapter 11 Solving ODEs and PDEs

314

A call produces higher profits when the price for the underlying asset rises, with a fixed

maximum loss. On the other hand, a put produces higher profits when prices for the

underlying asset decrease, also with a fixed maximum loss.

The Black-Scholes model defines what should be the present value of a call option (a

similar analysis works for put options). It considers the following input values:

•	 S: The price of the underlying instrument

•	 K: The strike price for the option

•	 T: The remaining time for the option contract

•	 V: The current volatility of the underlying asset

•	 r: The current interest rate on deposits

Using this information, the Black-Scholes model concludes that the relationship

between the current price of the option and the input variables is given by a PDE, as

follows:

	

� � �
�

�
� � �

�
�

� � �
�

� � �C S t
t

rS
C S t

S
V S C S t

S
rC S t

, , ,
,

2 2 2

2
2 	

Here, the implicit function C(S,t) is the price or the derivative, which depends on the

underlying price S and the time t.

There are several ways to solve differential equations like the previous one. The one

you will use in this section is called the forward method. The general idea of solving

PDEs is not very different from what you have seen for ODEs: take small steps toward

the desired point that needs to be calculated, and evaluate the differential equation

at these intermediate points using some kind of approximation. Unlike ODEs, which

have only one dimension, however, PDEs have partial derivatives over two or more

variables. In this case, we have partial derivatives in relation to the variables t and S.

When this happens, the approximations become more complicated, because one needs

to determine the shape of the small intervals at which the PDE will be evaluated. For

example, the simplest scheme would be to divide the two-dimensional space into small

rectangles and approximate over these small elements. Depending on the class of PDE,

one can come up with more complicated and more precise ways to divide the domain

and approximate the true value of the partial equation.

The forward difference method is an extension of Euler’s method for PDEs. For the

two-dimensional case, it can be used to divide the domain into rectangular elements.

Chapter 11 Solving ODEs and PDEs

315

For this method to work, you can assume that the stock price domain (S) varies between

0 and MaxS, a constant number that is in practice much higher than the desired strike

price. The time domain varies from 0 (current date) to the future time (T) in which the

option contract expires. Using these assumptions, the next task is to derive the equations

that approximate the PDE at the next step, which can be done again using the Taylor

method discussed earlier.

The initial conditions for the forward method are derived from the gain-loss

equation at expiration. At that time, the value of an option is the positive difference

between the stock price and the strike price, that is, max(S–K,0). Therefore, the steps

of the algorithm are inverted in the time dimension, starting from time T and moving

backward to the present.

The resulting algorithm is presented in member function solve of class

BlackScholesForwardMethod. The initial part of the function calculates terms of the

equation that are unchanged over time. The three main factors are stored in the vectors

a, b, and c.

	
a nrdt nV dtn � � � �� �1

2

2

	

	 b rdt nV dtn � � � � �1
2

	

	
c nrdt nV dtn � � � �� �1

2

2

	

The next step is to initialize the process using the given initial conditions. The

calculated prices are stored in the two-dimensional vector u, which is initialized using

the prices at expiration time. Then, the algorithm proceeds to compute the values

for each of the time periods starting from expiration. At each day, starting from the

day before expiration, the price of the option is calculated for each small increase in

the underlying price. The option price for underlying value S depends on the price of

the next day for values S – dS, S, and S + dS, where dS is a small increase in price, as

determined by the parameter nx. Therefore, we have

	 u a u b u c ut n n t n n t n n t n, , , ,
� � �� �1 1 	

Chapter 11 Solving ODEs and PDEs

316

�Complete Code
Listing 11-3 displays the complete implementation for the Black-Scholes forward

method. You will find the code in class BlackScholesForwardMethod, along with a

sample of its use in function main().

Listing 11-3.  Black-Scholes Forward Method Implementation

//

// BlackScholesForwardMethod.h

#ifndef __FinancialSamples__BlackScholesForwardMethod__

#define __FinancialSamples__BlackScholesForwardMethod__

#include <vector>

class BlackScholesForwardMethod {

public:

 �BlackScholesForwardMethod(double expiration, double maxPrice, double

strike, double intRate);

 BlackScholesForwardMethod(const BlackScholesForwardMethod &p);

 ~BlackScholesForwardMethod();

 �BlackScholesForwardMethod &operator=(const BlackScholesForwardMethod &p);

 std::vector<double> solve(double volatility, int nx, int timeSteps);

private:

 double m_expiration;

 double m_maxPrice;

 double m_strike;

 double m_intRate;

};

#endif /* defined(__FinancialSamples__BlackScholesForwardMethod__) */

//

// BlackScholesForwardMethod.cpp

#include "BlackScholesForwardMethod.h"

Chapter 11 Solving ODEs and PDEs

317

#include <cmath>

#include <algorithm>

#include <vector>

#include <iostream>

#include <iomanip>

using std::vector;

using std::cout;

using std::endl;

using std::setw;

BlackScholesForwardMethod::BlackScholesForwardMethod(double expiration,

double maxPrice,

 �double strike, double

intRate)

: m_expiration(expiration),

 m_maxPrice(maxPrice),

 m_strike(strike),

 m_intRate(intRate)

{

}

BlackScholesForwardMethod::BlackScholesForwardMethod(const

BlackScholesForwardMethod &p)

: m_expiration(p.m_expiration),

 m_maxPrice(p.m_maxPrice),

 m_strike(p.m_strike),

 m_intRate(p.m_intRate)

{

}

BlackScholesForwardMethod::~BlackScholesForwardMethod()

{

}

BlackScholesForwardMethod &BlackScholesForwardMethod::operator=(const

BlackScholesForwardMethod &p)

{

Chapter 11 Solving ODEs and PDEs

318

 if (this != &p)

 {

 m_expiration = p.m_expiration;

 m_maxPrice = p.m_maxPrice;

 m_strike = p.m_strike;

 m_intRate = p.m_intRate;

 }

 return *this;

}

vector<double> BlackScholesForwardMethod::solve(double volatility, int nx,

int timeSteps)

{

 double dt = m_expiration /(double)timeSteps;

 double dx = m_maxPrice /(double)nx;

 vector<double> a(nx-1);

 vector<double> b(nx-1);

 vector<double> c(nx-1);

 int i;

 for (i = 0; i < nx - 1; i++)

 {

 b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);

 }

 for (i = 0; i < nx - 2; i++)

 {

 �c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate

* (i+1);

 }

 for (i = 1; i < nx - 1; i++)

 {

 �a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate

* (i+1);

 }

 vector<double> u((nx-1)*(timeSteps+1));

Chapter 11 Solving ODEs and PDEs

319

 double u0 = 0.0;

 for (i = 0; i < nx - 1; i++)

 {

 u0 += dx;

 u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);

 }

 for (int j = 0; j < timeSteps; j++)

 {

 double t = (double)(j) * m_expiration /(double)timeSteps;

 �double p = 0.5 * dt * (nx - 1) * (volatility*volatility * (nx-1) +

m_intRate)

 * (m_maxPrice-m_strike * exp(-m_intRate*t));

 for (i = 0; i < nx - 1; i++)

 {

 u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];

 }

 for (i = 0; i < nx - 2; i++)

 {

 u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];

 }

 for (i = 1; i < nx - 1; i++)

 {

 u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];

 }

 u[nx-2+(j+1)*(nx-1)] += p;

 }

 return u;

}

int main()

{

 auto strike = 5.0;

 auto intRate = 0.03;

 auto sigma = 0.50;

Chapter 11 Solving ODEs and PDEs

320

 auto t1 = 1.0;

 auto numSteps = 11;

 auto numDays = 29;

 auto maxPrice = 10.0;

 BlackScholesForwardMethod bsfm(t1, maxPrice, strike, intRate);

 vector<double> u = bsfm.solve(sigma, numSteps, numDays);

 double minPrice = .0;

 for (int i=0; i < numSteps-1; i++)

 {

 �double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)/ (double)

(numSteps-1);

 cout << " " << s << " " << u[i+numDays*(numSteps-1)] << endl;

 }

 return 0;

}

�Running the Code
To test the code displayed in Listing 11-3, you can build it using any standards-compliant

compiler. I run this code using the llvm C++ compiler, with the following results:

./blackScholes

 1 0.000452875

 2 0.0148578

 3 0.109172

 4 0.361706

 5 0.784941

 6 1.34918

 7 2.016

 8 2.75175

 9 3.53055

 10 4.33362

Chapter 11 Solving ODEs and PDEs

321

This result means, for example, that 29 days from expiration, a call option with strike

price $5 and volatility 0.5 would be valued at $1.3 when the price of the underlying is $6.

Notice that you can use this code to calculate prices for each price level ranging from $1

up to $10. You can also modify the code to compute option prices for more expensive

stocks.

�Conclusion
Solving differential equations is a big part of financial analysis techniques. Such

techniques are used in many areas where the price of assets is determined by complex

differential equations such as the Black-Scholes model, which is the main technique

used by banks to price equity derivatives and related investments.

In this chapter, I introduced you to the topic of numerical solutions of differential

equations. Although this is a large area that cannot be easily covered in a single chapter,

it is useful to understand the basic techniques and how they are employed in the field of

financial programming.

Euler’s method for ODEs is the first method discussed. Its main idea is to perform

several steps, where each step approximates the result of the differential equation. The

second method, the Runge-Kutta algorithm, is an improvement on this general strategy,

using higher-order Taylor approximations that make the algorithm more accurate and

avoid some of the weaknesses of Euler’s method. You have seen how to implement both

algorithms in C++, with test data that demonstrates their convergence.

The Black-Scholes equation is one of the most important mathematical models in

modern finance. While there are several robust and efficient algorithms for its solution,

I present a simple method based on forward differences. You have seen how the general

solution strategy works and how it can be efficiently implemented in C++.

Finding solutions to equations that model market behavior as viewed in this

chapter is generally the beginning of a process of data analysis. Another step is to find

the best solution that meets a particular investment goal. For this purpose, a number

of optimization techniques have been developed. In the next chapter, I present some

general optimization methods that have been successfully used in the analysis of

financial investments, along with their implementation in C++.

Chapter 11 Solving ODEs and PDEs

323
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_12

CHAPTER 12

Optimization
Optimization is a wide area that covers a large set of techniques used to find

the minimum or maximum of a function over a predefined group of conditions.

Optimization strategies are frequently employed in several areas of financial engineering

such as portfolio optimization and as such should be part of the basic skill set of financial

developers.

In this chapter, we discuss programming examples that explore a few of the

implement aspects of optimization algorithms. We start with a concise explanation of

some techniques and how they are typically implemented in C++. Topics covered in this

chapter include the following:

•	 Optimization concepts: Basic concepts on optimization and how it is

used as a common step of algorithms for financial applications.

•	 Linear programming models: The basics of linear optimization

models, with common assumptions and how the results can be

interpreted. You will also learn how to create linear programming

models for common problems.

•	 Solving linear models: You will learn about techniques and

algorithms commonly used to solve linear programming models.

In particular, you will learn how to employ a popular open source

library to solve linear programming problems.

•	 Solving mixed-integer programming models: A common extension of

linear programming is to require that one or more decision variables

assume only integer values. This type of problem, called an integer

programming problem, is frequently used whenever mutually

exclusive choices are part of a linear model. You will also learn how

to extend the linear programming class to solve such mixed-integer

programming models.

https://doi.org/10.1007/978-1-4842-6834-6_12#DOI

324

�Interfacing with a Linear Programming Solver
In this section, we create a generic class to solve a linear programming problem, given

the objective function and constraints in matrix form.

�Solution
Optimization is a mathematical technique used to find the maximum or minimum of

a given function over a set of constraints. The methods currently used in optimization

have started as a set of simple results from calculus, where a single function is subject to

minimization or maximization. Nowadays, these techniques include complex models

involving multiple linear and nonlinear components.

In financial engineering and economics, optimization is a tool used for purposes

such as designing an optimal asset portfolio allocation or more widely to determine

the best investment decision from a large set of asset classes. Due to its origins in the

analysis of scarce resources and their optimum use, linear programming has been a

favorite tool for economists and financial analysts—which shows why optimization is

such a common technique in financial programming. Effectively, every time we need

to make a decision on asset allocation given a large number of scenarios, optimization

becomes a useful tool to help select the best decision.

In the code example in the section “Using LP Solver Libraries,” we consider how to

interface with existing libraries that can be used to solve a large class of optimization

problems. To keep the discussion well contained, I employ an open source library

called GLPK (Gnu Linear Programming Kit), which will be also used as a basis for future

examples. GLPK is simple to use, but it is a C-based library only. This means that it

provides no direct support for C++ high-level concepts such as classes, templates, and

containers. Therefore, as part of the discussion, I will show you how to create a class that

provides a basic C++ interface to GLPK and other solvers.

First, however, I give you some preliminary information about the kinds of problems

that can be solved with an optimization engine, starting with linear programming. Then,

I present some code that can be used to translate simple linear models into calls to the

solver application programming interface (API).

Chapter 12 Optimization

325

�Linear Programming Concepts
The first case of optimization that you will learn about is characterized by an objective

represented as a linear function. This objective is then optimized over a set of linear

functions, also called constraints. Such optimization problems are called linear

programming (LP) problems, and they constitute an important class of mathematical

models that have been widely used in disciplines such as financial analysis and

economics.

Using a more formal (mathematical) definition, LP is the area of optimization that

deals with the determination of the minimum or maximum value of a linear function

over a set of linear constraints. Each constraint is of the form

	 j

n

j j n ia x a a b
�
� � ��� �

1

1
.

	

Similarly, the function that you want to optimize over (also known as objective

function) is a linear function. This results in a problem that can be denoted in the

following way:

	
minimize c x

j

n

j j
�
�

1 	

	
subject to a x b for i m

j

n

ij j i

�
� � � �� �

1

1

	

	
x for j nj � � �� �0 1 	

In these equations, xj is a variable, and ai j , bi, and cj are constant values. These

parameters are frequently provided as matrix A and two vectors, b and c. Due to its

generic characteristics, this type of problem can assume several forms, depending

on the exact value for the given coefficients, as well as if they are zero or nonzero.

Also, variations of the problem involve the change of the ≤ relation to ≥ or = in one or

more equations. Finally, the problem can require the maximization, rather than the

minimization, of the objective function. All these variants can be easily shown to be

equivalent to each other, in the sense that it is possible to convert them to a particular

form and use the same algorithm in their solution.

Chapter 12 Optimization

326

Solving an LP problem can be done with the help of a method called simplex

algorithm. The basic approach of the simplex algorithm is to consider the geometric

region defined by the constraints in a multidimensional space and start to visit the

corners of this object in a well-defined way—until an optimal solution is found.

In essence, the mechanics of solving an LP problem are not very different from

solving a sequence of linear systems, and a few strategies have been devised using this

general strategy. The simplex algorithm, which is still the most common technique to

solve LP problems, proceeds by defining a sequence of modified linear systems that are

shown to be equivalent to the original while at the same time improving the value of the

objective function. One of the advantages of the simplex algorithm is that its properties

are well known—mathematical analyses of the simplex algorithm throughout the years

have considered several important questions such as its convergence and performance.

While the operation of the simplex algorithm is not difficult to describe, the

implementation of such an algorithm contains a lot of intricate edge cases. To avoid such

issues, most frequently, you will be using an LP solver library, which has been especially

designed to hide the complexities of the implementation. Essentially, a solver provides

just a simple API so that users can call the algorithms, provide necessary data, and

retrieve the results.

�Using LP Solver Libraries
There are several commercial and free libraries that implement the simplex algorithm

(and even a few more efficient algorithms for this problem). In this section, to give

a flavor of how the process of modeling and LP works, we use a simple but well-

maintained open source library called GLPK. With GLPK, it is possible to solve from

medium- to relatively large-size LP problems (as well as a few other model variants such

as mixed-integer programs).

To start using GLPK from C++, the first step is to download and compile the source

code. You will find a version of this software in the Gnu website (at the time I checked,

the URL was www.gnu.org/software/glpk). Unlike many math open source libraries,

GLPK is very easy to compile and install. You need to decompress the file and build

the library using the configure and make commands (these instructions work on UNIX

systems, but you can download software such as Cygwin that will allow you to perform

the same commands in Windows).

Chapter 12 Optimization

http://www.gnu.org/software/glpk

327

Once GLPK is installed, you can link to its library, libglpk.a, and make use of

the functions that are exported by its API. On Windows systems, you can use the

precompiled binary dll and lib files available on the GLPK website. You can also use the

MingWin compiler for gcc on Windows. I present a class called LPSolver that is able to

interface with the GLPK API. The following is the public part of the class declaration:

class LPSolver {

public:

 �LPSolver(Matrix &m, const std::vector<double> &b, const

std::vector<double> &c);

 LPSolver(const LPSolver &p);

 ~LPSolver();

 LPSolver &operator=(const LPSolver &p);

 enum ResultType {

 INFEASIBLE,

 FEASIBLE,

 ERROR

 };

 void setName(const std::string &s);

 bool isValid();

 void setMaximization();

 void setMinimization();

 ResultType solve(std::vector<double> &result, double &objValue);

// ...

};

First, an object of LPSolver type can be created if you pass a matrix A, a vector b, and

a vector c to the constructor. These parameters are interpreted as the coefficients of the

objective function as well as the constraints of the LP.

You can also give a descriptive name to the problem using the setName member

function. Its implementation shows how a simple function in the GLPK looks.

void LPSolver::setName(const std::string &s)

{

 glp_set_prob_name(m_lp, s.c_str());

}

Chapter 12 Optimization

328

The API function is called glp_set_prob_name. The first parameter, as for most other

functions in GLPK, is a pointer to the LP data structure. The second parameter, a string,

is unique for this API call.

The isValid member function checks if the object has been properly initialized. The

setMaximization and setMinimization member functions can be used to define the

direction of the optimization.

Finally, the solve member function performs the optimization algorithm. This is

done with a call to GLPK, where the glp_simplex function is used to do the hard work.

After the optimization is finished, the algorithm collects the result of the objective

function and the value of each variable for this optimal solution.

LPSolver::ResultType LPSolver::solve(std::vector<double> &result, double

&objValue)

{

 glp_simplex(m_lp, NULL);

 result.resize(m_M, 0);

 objValue = glp_get_obj_val(m_lp);

 for (int i=0; i<m_M; ++i)

 {

 result[i] = glp_get_col_prim(m_lp, i+1);

 }

 return LPSolver::FEASIBLE;

}

Finally, an example LP is used to test the LPSolver class. In this example, I

provided objective function coefficients equal to 10, 6, and 4. The right-hand side of the

constraints is also provided as a vector. Finally, the constraints of the problem are given

in the form of Matrix object A.

�Complete Code
Listing 12-1 displays the complete listing for the LP solver described in the previous

section. An example of the class LPSolver is given in the main function at the end of the

listing.

Chapter 12 Optimization

329

Listing 12-1.  Class LPSolver Header and Implementation

//

// LPSolver.h

#ifndef __FinancialSamples__Glpk__

#define __FinancialSamples__Glpk__

#include <vector>

#include <string>

#include "Matrix.h"

struct glp_prob;

class LPSolver {

public:

 LPSolver(Matrix &A, const std::vector<double> &b,

 const std::vector<double> &c);

 LPSolver(Matrix &A, const std::vector<double> &b,

 const std::vector<double> &c,

 const std::string &probname);

 LPSolver(const LPSolver &p);

 ~LPSolver();

 LPSolver &operator=(const LPSolver &p);

 enum ResultType {

 INFEASIBLE,

 FEASIBLE,

 ERROR

 };

 �virtual ResultType solve(std::vector<double> &result, double

&objValue);

 void setName(const std::string &s);

 bool isValid();

 void setMaximization();

 void setMinimization();

Chapter 12 Optimization

330

private:

 size_t m_M;

 size_t m_N;

 std::vector<double> m_c;

 std::vector<double> m_b;

 Matrix m_A;

 glp_prob *m_lp;

 void initProblem(size_t M, size_t N);

 void setRowBounds();

 void setColumnCoefs();

protected:

 glp_prob *getLP();

 int getNumCols();

 int getNumRows();

};

#endif /* defined(__FinancialSamples__Glpk__) */

//

// LPSolver.cpp

#include "LPSolver.h"

#include <glpk.h>

#include <iostream>

using std::vector;

using std::string;

using std::cout;

using std::endl;

LPSolver::LPSolver(Matrix &m, const vector<double> &b, const vector<double> &c)

: m_M(m.numRows()),

 m_N(m[0].size()),

 m_c(c),

 m_b(b),

 m_A(m),

Chapter 12 Optimization

331

 m_lp(glp_create_prob())

{

 initProblem(m_M, m_N);

}

LPSolver::LPSolver(Matrix &m, const std::vector<double> &b,

 const std::vector<double> &c,

 const std::string &probname)

: m_M(m.numRows()),

 m_N(m[0].size()),

 m_c(c),

 m_b(b),

 m_A(m),

 m_lp(glp_create_prob())

{

 initProblem(m_M, m_N);

 glp_set_prob_name(m_lp, probname.c_str());

}

LPSolver::LPSolver(const LPSolver &p)

: m_M(p.m_M),

 m_N(p.m_N),

 m_c(p.m_c),

 m_b(p.m_b),

 m_A(p.m_A),

 m_lp(glp_create_prob())

{

 initProblem(m_M, m_N);

}

// performs necessary initialization of the given values

void LPSolver::initProblem(size_t M, size_t N)

{

 if (!m_lp) return;

 setRowBounds();

 setColumnCoefs();

Chapter 12 Optimization

332

 vector<int> I, J;

 vector<double> V;

 // indices in GLPK start on 1

 I.push_back(0);

 J.push_back(0);

 V.push_back(0);

 for (int i=0; i<M; ++i)

 {

 for (int j=0; j<N; ++j)

 {

 I.push_back(i+1);

 J.push_back(j+1);

 V.push_back(m_A[i][j]);

 }

 }

 glp_load_matrix(m_lp, (int)(m_M * m_N), &I[0], &J[0], &V[0]);

}

LPSolver::~LPSolver()

{

 glp_delete_prob(m_lp);

}

LPSolver &LPSolver::operator=(const LPSolver &p)

{

 if (this != &p)

 {

 m_M = p.m_M;

 m_N = p.m_N;

 m_c = p.m_c;

 m_b = p.m_b;

 m_A = p.m_A;

 m_lp = glp_create_prob();

 initProblem(m_M, m_N);

 }

Chapter 12 Optimization

333

 return *this;

}

void LPSolver::setName(const std::string &s)

{

 glp_set_prob_name(m_lp, s.c_str());

}

bool LPSolver::isValid()

{

 return m_lp != NULL;

}

void LPSolver::setMaximization()

{

 glp_set_obj_dir(m_lp, GLP_MAX);

}

void LPSolver::setMinimization()

{

 glp_set_obj_dir(m_lp, GLP_MIN);

}

void LPSolver::setRowBounds()

{

 glp_add_rows(m_lp, (int)m_M);

 for (int i=0; i<m_M; ++i)

 {

 glp_set_row_bnds(m_lp, i+1, GLP_UP, 0.0, m_b[i]);

 }

}

void LPSolver::setColumnCoefs()

{

 glp_add_cols(m_lp, (int)m_N);

 for (int j=0; j<m_N; ++j)

 {

 glp_set_col_bnds(m_lp, j+1, GLP_LO, 0.0, 0.0);

Chapter 12 Optimization

334

 glp_set_obj_coef(m_lp, j+1, m_c[j]);

 }

}

LPSolver::ResultType LPSolver::solve(std::vector<double> &result, double

&objValue)

{

 glp_simplex(m_lp, NULL);

 result.resize(m_N, 0);

 objValue = glp_get_obj_val(m_lp);

 for (int j=0; j<m_N; ++j)

 {

 result[j] = glp_get_col_prim(m_lp, j+1);

 }

 return LPSolver::FEASIBLE;

}

glp_prob *LPSolver::getLP()

{

 return m_lp;

}

int LPSolver::getNumCols()

{

 return (int)m_N;

}

int LPSolver::getNumRows()

{

 return (int)m_M;

}

int main_lps()

{

 Matrix A(3);

 A[0][0] = 1; A[0][1] = 1; A[0][2] = 1;

 A[1][0] = 10; A[1][1] = 2; A[1][2] = 4;

 A[2][0] = 2; A[2][1] = 5; A[2][2] = 6;

Chapter 12 Optimization

335

 vector<double> c = { 10, 6, 4 };

 vector<double> b = { 100, 600, 300 };

 LPSolver solver(A, b, c);

 solver.setMaximization();

 vector<double> results;

 double objVal;

 solver.solve(results, objVal);

 for (int i=0; i<results.size(); ++i)

 {

 cout << " x" << i << ": " << results[i];

 }

 cout << " max: " << objVal << endl;

 return 0;

}

�Running the Code
The code presented in Listing 12-1 can be compiled with a standards-compliant

compiler, such as gcc or Visual Studio. Remember to add the GLPK library to the

link step (in gcc, this is done with the -L and –l switches). The result of the program

execution should be similar to the following:

./lpSolver

GLPK Simplex Optimizer, v4.54

3 rows, 3 columns, 9 non-zeros

* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)

* 2: obj = 7.565217391e+02 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

 x0: 52.1739 x1: 39.1304 x2: 0 max: 756.522

Here, you see the first output of GLPK. By default, GLPK displays the best solutions

and the number of iterations it has taken to achieve the results. You can see that after two

iterations of the simplex algorithm, GLPK found a solution with an objective value equal

to 756.

Chapter 12 Optimization

336

�Solving Two-Dimensional Investment Problems
In this section, we use LP techniques to model and solve a financial product allocation

decision problem for two investments with known returns.

�Solution
One of the main uses of optimization techniques is in the support of investment

decisions. In this respect, there are several concepts that can be optimized based on the

known properties of investment classes. For a few types of investments, such as bonds,

it is easier to determine the returns of the investment, as well as some basic information

about the risk for that class of investments. This knowledge translates into more accurate

models, particularly the ones that can be employed to optimize profits for the investor.

This section presents a very simple version of a decision support system modeled

using linear programming. This problem shows the basic geometric process that is used

to solve LPs (even the most complicated ones).

Consider the process of introducing two new financial products to the market in

a large bank. The process is usually defined by a number of practical constraints on

resources necessary for these investments. Suppose that the bank wants to add two

classes of new products to the market: new bond-based products and new mortgage-

backed derivatives products. The question is how many hours should be spent on the

development of these new products. Let’s call these two variables x and y. Since the bank

unit receives payment from its clients based on the number of hours spent on these

tasks, the goal is to maximize the amount paid per hours. For bonds, the cost is $5.3K per

hour spent on that activity, while the price is $7.1K for derivatives.

In terms of constraints, the bank unit has to consider research expenditures costs.

The cost of working with bonds is negative because its costs can be offset by other

activities in that area. For derivatives, the full cost of research is considered. The

maximum cost spent on marketing for these financial products is prorated by working

hours too. Thus, it depends on the values of x and y. It is known that there is a constant

of $3K for working hours on bond-related products, while the multiplier for derivatives

work is $1K.

Finally, there is a limit on the amount of human resources available for these two

tasks. While there are only six units of human resources allocated to these tasks, each

hour of bond-related work is eight times more demanding than for derivatives. Notice

also that the two variables in this example are clearly non-negative.

Chapter 12 Optimization

337

The result of these assumptions can be readily translated into the following LP

model, which tries to maximize the expected return (profit) for the considered unit of the

investment bank.

max 5.3x + 7.1y (maximize department results)

–2.1x + y ≤ 3.4 (maximum research expenditure)

3.1x + y ≤ 4.3 (maximum marketing expenditure)

7.9x + y ≤ 6 (maximum number of employees needed)

x, y ≥ 0 (working hours are always positive)

The model described previously has only two unknowns, x and y, and therefore can

be readily plotted as seen in Figure 12-1. Being an inequality, each constraint results in

a half-space that is defined by the equality line. For example, 3x + y ≤ 4 is the half-space

defined by all points under the line 3x + y = 4.

To find a solution for a two-dimensional LP model like the one described previously,

you can concentrate on the intersections of all half-spaces defined by the constraints.

The intersection is, by definition of the problem, contained in the first quadrant of the

plot because it is known that x ≥ 0 and y ≥ 0. It is possible then to recognize the area

contained in the intersection of all other half-spaces. The result is a polygonal area,

whose border is defined by a set of lines derived from the given constraints.

Figure 12-1.  Feasible set for the LP defined by inequalities shown earlier

Chapter 12 Optimization

338

To find a solution for such an LP, you just need to calculate the value of the objective

function at each of the corners of the area defined by the constraints. The corner that

gives the best value of the objective function is, by definition of the linear objective

function, the best that can be found for the problem.

While the process described previously is easy to perform for two-dimensional

problems, it becomes quite difficult to accomplish for higher dimensions. As the number

of dimensions and constraints increases, the number of corners grows exponentially.

It takes a more sophisticated algorithm (such as the simplex algorithm) to find the best

corner of the multidimensional space that defines the optimum solution for the given LP.

To demonstrate how the problem is solved in practice, I show you the

C++ implementation of the proposed two-dimensional LP. The class, called

TwoDimensionalLPSolver, is a blueprint of how such a problem can be implemented

using the LPSolver described in the previous section.

First, you need to create the model, which is described using a matrix A, a vector b

(the right-hand side of the constraints), and a vector c (the cost vector). The necessary

data is provided in the main function. Once the data is available, it can be used to

create an object of class LPSolver. The solve() function in the LPSolver class will then

perform any necessary data conversion and call the GLPK library to find the optimum

solution.

�Complete Code
Listing 12-2 gives the complete implementation for the two-dimensional LP solver.

Function main() presents a sample use of the class TwoDimensionalLPSolver.

Listing 12-2.  Header File and Implementation for the Class

TwoDimensionalLPSolver

//

// TwoDimensionalLPSolver.h

#ifndef __FinancialSamples__TwoDimensionalLPSolver__

#define __FinancialSamples__TwoDimensionalLPSolver__

#include <vector>

Chapter 12 Optimization

339

class TwoDimensionalLPSolver {

public:

 using Vector = std::vector<double>;

 �TwoDimensionalLPSolver(const Vector &c, const Vector &A1, const Vector

&A2, const Vector &b);

 TwoDimensionalLPSolver(const TwoDimensionalLPSolver &p);

 ~TwoDimensionalLPSolver();

 TwoDimensionalLPSolver &operator=(const TwoDimensionalLPSolver &p);

 bool solveProblem(Vector &results, double &objVal);

private:

 std::vector<double> m_c;

 std::vector<double> m_A1;

 std::vector<double> m_A2;

 std::vector<double> m_b;

};

#endif /* defined(__FinancialSamples__TwoDimensionalLPSolver__) */

//

// TwoDimensionalLPSolver.cpp

#include "TwoDimensionalLPSolver.h"

#include "Matrix.h"

#include "LPSolver.h"

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

TwoDimensionalLPSolver::TwoDimensionalLPSolver(const Vector &c, const

Vector &A1,

 �const Vector &A2, const

Vector &b)

: m_c(c),

 m_A1(A1),

Chapter 12 Optimization

340

 m_A2(A2),

 m_b(b)

{

}

TwoDimensionalLPSolver::TwoDimensionalLPSolver(const TwoDimensionalLPSolver &p)

: m_c(p.m_c),

 m_A1(p.m_A1),

 m_A2(p.m_A2),

 m_b(p.m_b)

{

}

TwoDimensionalLPSolver::~TwoDimensionalLPSolver()

{

}

TwoDimensionalLPSolver &TwoDimensionalLPSolver::operator=(const

TwoDimensionalLPSolver &p)

{

 if (this != &p)

 {

 m_c = p.m_c;

 m_A1 = p.m_A1;

 m_A2 = p.m_A2;

 m_b = p.m_b;

 }

 return *this;

}

bool TwoDimensionalLPSolver::solveProblem(Vector &res, double &objVal)

{

 int size = m_b.size();

 Matrix A(size, 2);

 for (int j=0; j<size; ++j)

 {

 A[j][0] = m_A1[j];

Chapter 12 Optimization

341

 A[j][1] = m_A2[j];

 }

 LPSolver solver(A, m_b, m_c);

 solver.setMaximization();

 return solver.solve(res, objVal) == LPSolver::ResultType::FEASIBLE;

}

int main()

{

 vector<double> A1 = { -2.1, 3.1, 7.9};

 vector<double> A2 = { 1, 1, 1 };

 vector<double> c = { 5.3, 7.1 };

 vector<double> b = { 3.4, 4.3, 6 };

 TwoDimensionalLPSolver solver(c, A1, A2, b);

 vector<double> results;

 double objVal;

 solver.solveProblem(results, objVal);

 cout << "objVal : " << objVal << endl;

 for (int i=0; i<results.size(); ++i)

 {

 cout << " x" << i << ": " << results[i];

 }

 cout << endl;

 return 0;

}

�Running the Code
You can compile and run the provided code with your preferred standards-compliant

compiler. I tested the code using gcc and GLPK optimizer version 4.54. The results are as

follows:

./twoDimSolver

GLPK Simplex Optimizer, v4.54

3 rows, 2 columns, 6 non-zeros

Chapter 12 Optimization

342

* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)

* 2: obj = 2.763788462e+01 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

objVal : 27.6379

 x0: 0.173077 x1: 3.76346

Program ended with exit code: 0

From the output listed in the example, you can see that the optimal solution was

achieved at the vertex (0.173, 3.763), which corresponds to the intersection of equations

 –2.1x + y = 3.4 and 3.1x + y ≤ 4. At that point, the objective function has a value of 27.63,

which can be interpreted as the profit achieved by the department in spending the given

number of hours in the two financial products that were discussed earlier.

�Creating Mixed-Integer Programming Models
Extend the LPSolver class so that it can deal with mixed-integer programming (MIP)

problems, that is, LP problems where one or more variables are restricted to be integers.

�Solution
After continuous LP problems, MIP problems are probably the most common type of

optimization problem that practitioners need to deal with. In terms of modeling, the

biggest difference between LP and MIP is that such problems have one or more decision

variables that are required to be integer numbers—unlike LP problems, where all

decision variables are continuous (normally real numbers).

Integer variables are ideal for cases where you need to make decisions that are

exclusive within a small- to medium-size set. Moreover, these decision variables may be

applicable to resources that are not divisible. For example, you can use such variables

to decide on the number of local branches for a commercial bank or on the number of

different stocks included in a portfolio. These are common examples of resources that

can only be used in integer quantities.

A special type of integer variable is a binary decision variable, also called a 0–1

decision variable. These are variables that can assume only a 0 or 1 (all-or-nothing)

value. They are the purest form of integer variable, because they allow one to decide

between only two alternative choices. As you can expect, many MIP problems make use

of binary variables as their primary way to reach an optimal decision.

Chapter 12 Optimization

343

In terms of techniques for problem solving, MIP problems are a lot more

complicated than LP problems. While there are very efficient algorithms available to

solve LP formulations, not all MIP problems are readily solvable by current computer

algorithms. As a short explanation, this occurs because when a decision variable is an

integer, it creates “jumps” in the objective function that make it much harder to search

for the optimum solution. So, unlike LP problems where the optimal vertex of the set of

feasible solutions can be quickly determined, MIP solvers need to spend much more

time generating possible solutions and testing if they are optimal. This exponential

explosion of options is the main reason why MIP problems are much more difficult to

solve than LP problems.

Most LP libraries have been extended to deal with at least some forms of MIP. GLPK

implements a generic algorithm for MIP solving, called branch-and-cut. With this

algorithm, it is possible to solve small- to moderate-size MIPs to optimality. More

complicated MIP problems, however, may not be solvable using this technique,

depending on the structure of the required problem.

In this coding example, you will see how to extend the LPSolver class to deal with

MIP problems, in addition to classical LP problems. In the next section, you will see an

example of how to use the LPSolver class to model and solve a MIP problem.

The main reason I decided to inherit from LPSolver, instead of creating a new

unrelated class, is that in terms of modeling, MIP problems are very close to LP

problems. The only additional thing you need to do in the latter case is to tell which

variables are integer or binary and call the right version of the function that solves and

retrieves values found by GLPK.

In the MIPSolver class, this is implemented in the following way. First, there are

two new member functions called setColBinary and setColInteger. These member

functions can be used to tell GLPK that the variable in a given column is either integer

or binary, respectively. Their implementations are straightforward and simply call the

related C function in GLPK. For example:

void MIPSolver::setColBinary(int colNum)

{

 glp_set_col_kind(getLP(), colNum+1, GLP_BV);

}

Chapter 12 Optimization

344

The other part of the puzzle is to implement a new version of the solve member

function. The new version supersedes the original version in LPSolver and calls specific

functions for MIP, such as glp_mip_obj_val. One of the differences is that, for MIP

problems, you are required to solve the corresponding LP problem first, as a way to

create an initial feasible solution for the continuous problem. After that, you can call the

MIP solver, which will create the solution-search algorithm based on a tree of possible

integer values.

�Complete Code
Listing 12-3 displays the complete code for the MIP solver described in the previous

section. You can test the MIPSolver class using the sample code in the main function at

the end of Listing 12-3.

Listing 12-3.  MIPSolver Class

//

// MIPSolver.h

#ifndef __FinancialSamples__MIPSolver__

#define __FinancialSamples__MIPSolver__

#include "LPSolver.h"

class MIPSolver : public LPSolver {

public:

 �MIPSolver(Matrix &A, const std::vector<double> &b, const

std::vector<double> &c);

 MIPSolver(const MIPSolver &p);

 ~MIPSolver();

 MIPSolver &operator=(const MIPSolver &p);

 void setColInteger(int colNum);

 void setColBinary(int colNum);

 �virtual ResultType solve(std::vector<double> &result, double

&objValue);

};

#endif /* defined(__FinancialSamples__MIPSolver__) */

Chapter 12 Optimization

345

//

// MIPSolver.cpp

#include "MIPSolver.h"

#include "Matrix.h"

#include <glpk.h>

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

MIPSolver::MIPSolver(Matrix &A, const std::vector<double> &b, const

std::vector<double> &c)

: LPSolver(A, b, c)

{

}

MIPSolver::MIPSolver(const MIPSolver &p)

: LPSolver(p)

{

}

MIPSolver::~MIPSolver()

{

}

MIPSolver &MIPSolver::operator=(const MIPSolver &p)

{

 return *this;

}

void MIPSolver::setColInteger(int colNum)

{

 glp_set_col_kind(getLP(), colNum+1, GLP_IV);

}

Chapter 12 Optimization

346

void MIPSolver::setColBinary(int colNum)

{

 glp_set_col_kind(getLP(), colNum+1, GLP_BV);

}

LPSolver::ResultType MIPSolver::solve(vector<double> &result, double

&objValue)

{

 glp_simplex(getLP(), NULL);

 int res = glp_intopt(getLP(), NULL);

 if (res != 0)

 {

 cout << "res = " << res << " \n";

 }

 result.resize(getNumCols(), 0);

 objValue = glp_mip_obj_val(getLP());

 for (int i=0; i<getNumCols(); ++i)

 {

 result[i] = glp_mip_col_val(getLP(), i+1);

 }

 return LPSolver::FEASIBLE;

}

int main()

{

 Matrix A(2,2);

 vector<double> b = { 2, 3 };

 vector<double> c = { 1, 1 };

 A[0][0] = 1;

 A[0][1] = 2;

 A[1][0] = 3;

 A[1][1] = 4;

 MIPSolver solver(A, b, c);

 solver.setMaximization();

 solver.setColInteger(0);

Chapter 12 Optimization

347

 vector<double> result;

 double objVal;

 solver.solve(result, objVal);

 cout << "optimum: " << objVal << endl;

 cout << " x0: " << result[0] << " x1: " << result[1] << endl;

 return 0;

}

�Running the Code
After compiling the code in Listing 12-3 with your favorite compiler, you should have

a binary program, which I will call mipSolver. The following is the output of the

application after it is executed:

./mipSolver

GLPK Simplex Optimizer, v4.54

2 rows, 2 columns, 4 non-zeros

* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)

* 1: obj = 1.000000000e+00 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

GLPK Integer Optimizer, v4.54

2 rows, 2 columns, 4 non-zeros

1 integer variable, none of which are binary

Integer optimization begins...

+ 1: mip = not found yet <= +inf (1; 0)

+ 1: >>>>> 1.000000000e+00 <= 1.000000000e+00 0.0% (1; 0)

+ 1: mip = 1.000000000e+00 <= tree is empty 0.0% (0; 1)

INTEGER OPTIMAL SOLUTION FOUND

optimum: 1

 x0: 1 x1: 0

Notice that the main function has a very simple MIP model as part of the test code.

The previous output just shows how the data is printed by default by GLPK. At each step

of the process, it shows the current solution found and its objective cost.

Chapter 12 Optimization

348

�Conclusion
Optimization is a set of mathematical techniques that can be used to find the maximum

or minimum of a function under certain conditions. Since many problems in finance can

be described as maximizing certain outcomes (such as investment return), optimization

tools play an important role in the analysis of investments.

You have learned in this chapter how to use C++ to model and solve common

optimization problems. In the first section, I showed how to use GLPK, a popular

optimization library that is used to solve a large class of LP models. While other libraries

such as cplex and gurobi use more sophisticated algorithms, GLPK is able to solve a

surprisingly large number of models for LP and MIP. The example presented in the first

section shows how to create a C++ interface to interact with the C-based API supported

by GLPK. You have learned the main components of an LP problem and how the solver

uses these components to determine the optimal solution. The example also provided

some test code, which shows how the LPSolver class can be used to solve a simple LP

model.

The next section provided a substantial example of LP model, targeted at finding

the best resource allocation in a big investment bank. The model tries to find the best

way to develop two financial products while maximizing the department profits. The

constraints considered in the model have to do with resource limitations at the bank

unit. Solving this LP problem using the LPSolver class shows how to model such

problems in C++ and interpret the results of the optimization process returned by GLPK.

MIP is another important class of linear models that can be solved using

optimization techniques. In an MIP, some or all decision variables are restricted to

contain only integer values. This makes it possible to model situations where it is

necessary to decide between two or more scenarios in a mutually exclusive way. While

MIP models may be much harder to solve than LP models, the mechanics of setting up

the problem and using a solver are very similar. You learned how to interface with an

MIP solver by inheriting from the LPSolver class. The new class MIPSolver uses most of

the modeling mechanisms provided by LPSolver, but it adds the ability to define integer

and binary decision variables, as well as to solve the problem and retrieve the optimal

integer values. Finally, you have seen a small example of how such models work.

Chapter 13 provides more examples.

Chapter 12 Optimization

349

You have so far learned some of the basic concepts of optimization and

mathematical programming models. In the next chapter, you will explore how these LP

and MIP optimization models can be applied to investment management problems.

Since one of the main applications of optimization theory is in the area of finance,

many common problems such as portfolio management have well-known optimization

models. You will learn how such modeling concepts work, as well as how these models

can be implemented with the C++ programming language.

Chapter 12 Optimization

351
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_13

CHAPTER 13

Asset and Portfolio
Optimization
Portfolio managers have to face several investment issues such as rebalancing a

portfolio for optimal performance or adjusting a new set of investments depending on

their client’s predefined long-term goals. Optimization-based techniques have been

developed over the years to deal with these as well as some other common portfolio

construction problems.

In this chapter, you will explore programming algorithms for asset and portfolio

optimization using C++ as a modeling language. You will be able to create such financial

models based on well-known mathematical programming formulations. You will also

see how to improve the performance of such optimization code in order to get results

that are as fast and accurate as possible.

The following are some of the topics that will be covered in the C++ examples

contained in this chapter:

•	 Allocating capital: One of the great problems faced by companies

and banks is how to allocate capital to a set of possible investments.

You will see how to use optimization models to perform capital

allocation.

•	 Creating a portfolio by target return: You can use optimization

models to design a portfolio of stocks or other investments, based on

the desired return. The goal of such optimal portfolios is to achieve

the best return with minimum volatility.

•	 Linear and quadratic models: You will learn the advantages of

quadratic and linear optimization models for portfolio optimization.

https://doi.org/10.1007/978-1-4842-6834-6_13#DOI

352

�Financial Resource Allocation
In this section, we write a linear programming (LP) model in C++ to determine an

optimal allocation of resources for a given set of projects and their respective costs

during a 10-year horizon.

�Solution
Resource allocation is one of the most common problems faced by individual and

institutional investors. Since capital is a limited resource, it makes sense to try to

improve its utilization, so that one can achieve the optimal allocation of funds to

valuable activities. Even though investment outcomes, such as stock prices, may not be

totally predictable, it is still possible to use a general forecast for the purpose of decision

making.

Linear programming offers a framework for financial allocation decisions, as you

will see in this section. In the first place, you need to determine the form of the linear

program that can be best used to model the resource allocation problem.

To work with a concrete allocation example, suppose that a company needs to

decide among a set of five different active investments. These investments may include

buying new manufacturing equipment, hiring new workers for a business, or making

improvements on a logistic software package. All of these options have a specific cost,

which can be calculated for each of the next 5 years. Moreover, the payoff of each

investment project is known in advance. For example, if the money is invested in buying

new equipment, it is known that a certain amount of profits will be generated as a result.

As a financial developer for this company, your tasks would be to implement a model

to solve the required financial allocation problem. This can be done as an LP model,

which will later be implemented in C++. So, first, let’s consider the variables, constraints,

and objective function of the LP model.

The decision variable in this case is a choice on the possible investment. That is, if

there are n possible investments, then we have variables xj = 1, for j ∈ {1,..,n}, whenever

capital is allocated to project j. If the return for each investment is denoted by rj, then we

can write the objective function of this LP as

	
max .

j

n

j jr x
�
�

1 	

Chapter 13 Asset and Portfolio Optimization

353

The constraints are related to the amount of money that investors want to use

each year for the next 5 years. Since the cost of each investment is known for any of

the m periods, let’s name such costs cij, for i ∈ {1...m} and j ∈ {1...n}. For each year, the

investment is limited by the value Ci, the amount of capital available at time period i.

Then, for each time period (where each period corresponds to 1 year), the constraint can

be written as

	 i

n

ij j ic x C for i m� � � �� �; .1
	

Finally, we defined each variable xj as a one-or-nothing decision. That is, the variable

can only assume values 1 or 0, indicating that the project will be pursued or not.

xj ∈ {0,1}, for j ∈ {1,...,n}.

Because the problem described previously has a linear objective function and linear

constraints, it is a linear optimization problem. However, the last constraint makes the

problem a 0–1 integer LP problem, which can be considerably more difficult to solve

than a standard LP problem.

�Implementation
To implement the problem described previously, I will take advantage of the MIPSolver

class defined in the previous chapter. Remember that the input for any mixed integer-

programming problem can be represented using a matrix of constraints, a vector

or right-hand side values, and a vector of costs. Thus, we need to define these three

elements when defining the desired capital allocation problem.

To give a clear demonstration of how this process works, I created a simple example

that can be viewed in the member function solveProblem, which is part of the class

ResourceAlloc. First, this method defines a matrix of project costs for a period of 5 years.

We also have five projects, so this results in a square matrix—notice, however, that a

square matrix is not necessary for this formulation to work.

The next few lines of the method solveProblem define the investment returns and

annual budgets. An important part of this process is to use the setBinary member

function, which says that each variable must have a binary value. Finally, you need to call

the function solve in the MIPSolver class, which will call the Gnu Linear Programming

Kit (GLPK) solver and determine the optimum values.

Chapter 13 Asset and Portfolio Optimization

354

�Complete Code
The complete code for the resource allocation problem described in the previous section

can be viewed in Listing 13-1. The main function at the end of the listing will instantiate

the ResourceAlloc class and solve the example problem.

Listing 13-1.  Cass ResourceAlloc

//

// ResourceAlloc.h

#ifndef __FinancialSamples__ResourceAlloc__

#define __FinancialSamples__ResourceAlloc__

#include <vector>

class ResourceAlloc {

public:

 ResourceAlloc(std::vector<double> &result, double &objVal);

 ResourceAlloc(const ResourceAlloc &p);

 ~ResourceAlloc();

 ResourceAlloc &operator=(const ResourceAlloc &p);

 void solveProblem();

private:

 std::vector<double> &m_results;

 double &m_objVal;

};

#endif /* defined(__FinancialSamples__ResourceAlloc__) */

//

// ResourceAlloc.cpp

#include "ResourceAlloc.h"

#include "LPSolver.h"

#include "Matrix.h"

Chapter 13 Asset and Portfolio Optimization

355

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

ResourceAlloc::ResourceAlloc(vector<double> &result, double &objVal)

: m_results(result),

 m_objVal(objVal)

{

}

ResourceAlloc::ResourceAlloc(const ResourceAlloc &p)

: m_results(p.m_results),

 m_objVal(p.m_objVal)

{

}

ResourceAlloc::~ResourceAlloc()

{

}

ResourceAlloc &ResourceAlloc::operator=(const ResourceAlloc &p)

{

 if (this != &p)

 {

 m_results = p.m_results;

 m_objVal = p.m_objVal;

 }

 return *this;

}

void ResourceAlloc::solveProblem()

{

 static const double cost_array[][5] = {

 // Years:

 // 1 2 3 4 5

 {1.81, 2.4, 2.5, 0.97, 1.5}, // proj 1

 {1.29, 1.8, 2.3, 0.56, 0.5}, // proj 2

Chapter 13 Asset and Portfolio Optimization

356

 {1.22, 1.2, 0.1, 0.48, 0 }, // proj 3

 {1.43, 1.4, 1.2, 1.2, 1.2}, // proj 4

 {1.62, 1.9, 2.5, 2.0, 1.8}, // proj 5

 };

 Matrix costs(5,5); // cost matrix

 for (int i=0; i<5; ++i) {

 for (int j=0; j<5; ++j) {

 costs[j][i] = cost_array[i][j];

 }

 }

 �vector<double> returns = {12.13, 3.95, 7.2, 4.21, 11.39};

// investment returns

 �vector<double> budgets = {5.1, 6.4, 6.84, 4.5, 3.8}; �// annual

budgets

 MIPSolver solver(costs, budgets, returns);

 solver.setMaximization();

 for (int i=0; i<5; ++i)

 {

 solver.setColBinary(i);

 }

 // --- solve the problem

 solver.solve(m_results, m_objVal);

}

int main()

{

 vector<double> result;

 double objVal;

 ResourceAlloc ra(result, objVal);

 ra.solveProblem();

 cout << " optimum: " << objVal ;

Chapter 13 Asset and Portfolio Optimization

357

 for (int i=0; i<result.size(); ++i)

 {

 cout << " x" << i << ": " << result[i];

 }

 cout << endl;

 return 0;

}

�Running the Code
To run the code presented in Listing 13-1, you need to first compile it using a standards-

compliant compiler such as gcc or Visual Studio. Then, you can run the resulting

executable to view the results of the optimization process.

./investAllocSolver

GLPK Simplex Optimizer, v4.54

5 rows, 5 columns, 24 non-zeros

* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)

* 5: obj = 3.209790698e+01 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

GLPK Integer Optimizer, v4.54

5 rows, 5 columns, 24 non-zeros

5 integer variables, all of which are binary

Integer optimization begins...

+ 5: mip = not found yet <= +inf (1; 0)

Solution found by heuristic: 30.72

+ 6: mip = 3.072000000e+01 <= tree is empty 0.0% (0; 1)

INTEGER OPTIMAL SOLUTION FOUND

 optimum: 30.72 x0: 1 x1: 0 x2: 1 x3: 0 x4: 1

Program ended with exit code: 0

�Portfolio Optimization
Create a C++ class that can be used to define an optimal portfolio according to an LP

variation of the capital asset pricing model.

Chapter 13 Asset and Portfolio Optimization

358

�Solution
One of the main uses of optimization models in finance is in the determination of

investment portfolios. While there are several techniques to create balanced portfolios,

the mathematical theory developed by Nobel Prize winner Harry Markowitz is the

standard way to define an optimal portfolio, which is used by most financial institutions

when analyzing groups of investments. In this section, you will learn about the definition

of portfolio optimization models using this technique of analysis, commonly referred to

as modern portfolio theory.

The main goal of portfolio optimization is to create portfolios of financial assets that

can provide the required investment return with a minimum of risk. For example, if the

goal is to have a small return but very low risk, one can buy high-grade investments such

as US treasury bills. For higher returns, one can invest in foreign or company bonds. For

even higher returns, you can use stocks and exotic derivatives.

Faced with these options, and depending on an investor profile, a portfolio manager

can create one or more portfolios that address the perceived client needs. For example, a

more aggressive investor may request a portfolio with a larger number of high-volatility

stocks, expecting therefore a higher return. Another, more conservative investor may prefer

to hold bonds and stocks with lower volatility but also lower expected returns. It is also

possible to combine different portfolios to achieve a mix of high- and low-return assets.

This type of portfolio construction strategy was studied and formalized at the end

of the 1950s and became known as the capital asset pricing (CAP) model. The ideas,

developed by Markowitz, used classical optimization theory to characterize the optimal

solutions for such portfolio construction problems. While there is a difference between

finding an optimal allocation and really achieving the desired return in the financial

markets, the CAP is a very important tool for portfolio managers. It can be used, for

example, to define an initial portfolio that matches a particular person’s profile, or

to create financial products that target a defined long-term return (e.g., retirement

portfolios for pension funds).

The mathematical formulation of the CAP can be summarized in the following way.

Considering that there are n stocks and other assets in a portfolio, let xi for i ∈ {1..n} be

the percentage of the portfolio held at investment i. Then it is clear that the sum of all

such values needs to add to 1.

	 i

n

ix
�
� �

1

1
	

Chapter 13 Asset and Portfolio Optimization

359

Also, suppose that for each investment i, we have a target return ri (e.g., you can use

past information as a baseline forecast). If the target return for the whole portfolio is R,

then we have the following constraint:

	 i

n

i ir x R� � .
	

Now, in the CAP model, we assume that we know the variance of each asset as well

as the covariance of pairs of assets in the same portfolio. Variance is a classical measure

of volatility of investments (i.e., the higher the variance, the higher the volatility). Thus,

we can use the available individual volatility information to try to minimize the volatility

of the whole portfolio. Since variance is a quadratic function, the objective function

will also be quadratic, with individual terms depending on the individual variance of

individual stocks (cii) and on the covariance of pairs of stocks (cij). The resulting problem

can be described as follows:

	
min

i

n

j

n

ij i jc x x
� �
��

1 1 	

	 i

n

ix
�
� �

1

1
	

	 i

n

i ir x R� � .
	

	 x for all i ni � � �� �0 1 . 	

During the last few decades, many people have studied this optimization

problem and its variations. The formulation employs an objective function that is

quadratic (nonlinear)—that is, there are terms in the objective function that involve a

multiplication of two variables. The general solution of this problem, considering this

nonlinear structure, forms what is called an efficient frontier: a set of results for different

combinations of portfolios, where the volatility of the target portfolio is minimized. You

can see an example of efficient frontier in Figure 13-1, which shows a plot of volatility

against target return. The plot is created by, at each time, fixing a desired return and

Chapter 13 Asset and Portfolio Optimization

360

then using the quadratic optimization model to find the minimum associated volatility.

As you see in Figure 13-1, the plot shows that the relationship assumes the shape of a

parabolic curve.

Although the quadratic model for CAP is widely used, a difficulty with it is the fact

that you need a quadratic optimization solver to get results for a particular portfolio.

Although several packages provide direct solutions to quadratic problems (using, for

example, an interior point algorithm), GLPK is not able to solve quadratic optimization

models directly. Therefore, in this section, you will deal with a linearization of the

original problem, which can be readily calculated using LP solvers.

This linearization was proposed in Konno and Yamazaki’s article titled “Mean-

Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock

Market” (Management Science, vol. 37, pp. 519–529, 1991). The linearization is a

modified form of the original problem that contains only linear terms in the objective

function. While this is just an approximation of the original problem, in many cases

it can work well enough (it might not work, however, when the computational effort

needed to linearize the constraints becomes too costly). More important, a linearized

version of the problem may be solved more quickly than the quadratic version, which

may be an important consideration in some cases.

Figure 13-1.  A small portion of the efficient frontier for a portfolio optimization
problem

Chapter 13 Asset and Portfolio Optimization

361

Consider the additional variables yi ∈ {1...T}, where T is the number of periods for the

proposed investment. Then, a linear model can be described as the following:

	
min

1

1T
y

t

T

t
�
� 	

	 j

n

jt j j tr r x y for t T
�
� �� � � � �� �

1

1,

	

	
� �� � � � �� �

�
�
j

n

jt j j tr r x y for t T
1

1,

	

	 i

n

ix
�
� �

1

1
	

	 i

n

i ir x R� � .
	

	 x for all i ni � � �� �0 1 	

In these equations, you don’t need directly the covariance cij; instead, you use the

expected returns rit or investment i for period t. In other words, the idea of the model is

to divide the total periods into small segments and linearize the model during that small

period, taking the minimum over the complete time horizon.

With the model, which is linear, you can now create code in C++ using the LPSolver

class described in the previous chapter. The new class is called ModifiedCAP and is

displayed in the next section, “The Code.” The main difficulty in creating the model is

defining the required input data for LPSolver, in the form of matrix A and vectors b and

c. You can see how this is done in the code for member function solveModel.

The first part of the algorithm consists of setting up the required data. The vector c

that defines the objective function can be easily created, since all coefficients are equal

to 1.

Chapter 13 Asset and Portfolio Optimization

362

// objective function

for (int i=m_N; i<m_N+m_T; ++i)

{

 c[i] = 1;

}

Next, the right-hand side coefficients are also simple to set up. This is true because

you can move all variables yt to the left side of the inequality. Thus, most of the

coefficients are zero, except for the last three.

// right-hand side vector

vector<double> b(2*m_T + 2 + 1, 0);

b[2*m_T] = 1;

b[2*m_T+1] = -1;

b[2*m_T+2] = -m_R;

Matrix A is a little more involved but is not difficult to set up either. The main

transformation you need to make is in the equality constraints. Since the problems that

LPSolver considers have inequalities only, the equality
i

n

ix
�
� �

1

1 is handled by converting

it into two inequalities.

	 i

n

i
i

n

ix and x
� �
� �� � � �

1 1

1 1
	

This makes it possible to continue to use the same simple input form used by the

LPSolver (GLPK can also handle equalities directly, and you could modify the LPSolver

class to do this automatically). Therefore, the following code can be used to define the

input matrix A:

// matrix A

Matrix A(2*m_T + 2 + 1, m_T + m_N);

for (int i=0; i<m_T; ++i)

{

 for (int j=0; j<m_N; ++j)

 {

 A[i][j] = m_retMatrix[j][i] - m_assetRet[j];

 }

Chapter 13 Asset and Portfolio Optimization

363

 A[i][m_N+i] = -1;

}

for (int i=m_T; i<2*m_T; ++i)

{

 for (int j=m_N; j<2*m_N; ++j)

 {

 A[i][j] = - m_retMatrix[j-m_N][i-m_T] + m_assetRet[j-m_N];

 }

 A[i][m_N+i-m_T] = -1;

}

for (int j=0; j<m_N; ++j)

{

 A[2*m_T][j] = 1;

 A[2*m_T+1][j] = -1;

 A[2*m_T+2][j] = - m_assetRet[j];

}

The remainder of the code is just to handle constructing the LPSolver class and

calling the required member functions to solve the model.

Finally, I provide a simple example of how this class could be called in practice. The

sample data has four assets and five time periods. The associated expected returns are

given by the following matrix, which you will find in the test main function:

// sample problem: 4 assets and 5 periods

// build the expected return matrix

double val[][5] = {

 {0.051, 0.050, 0.049, 0.051, 0.05},

 {0.10, 0.099, 0.102, 0.100, 0.101},

 {0.073, 0.077, 0.076, 0.075, 0.076},

 {0.061, 0.06, 0.059, 0.061, 0.062},

};

Chapter 13 Asset and Portfolio Optimization

364

�Complete Code
You can view the complete code for the modified CAP in Listing 13-2. The listing

contains a header and an implementation file.

Listing 13-2.  Modified CAP Implementation

//

// ModifiedCAP.h

#ifndef __FinancialSamples__ModifiedCAP__

#define __FinancialSamples__ModifiedCAP__

#include "Matrix.h"

// a modified (linearized) model for Capital Asset Pricing

class ModifiedCAP {

public:

 �ModifiedCAP(int N, int T, double R, Matrix &retMatrix, const

std::vector<double> &ret);

 ModifiedCAP(const ModifiedCAP &p);

 ~ModifiedCAP();

 ModifiedCAP &operator=(const ModifiedCAP &p);

 void solveModel(std::vector<double> &results, double &objVal);

private:

 int m_N; // number of investment

 int m_T; // number of periods

 double m_R; // desired return

 Matrix m_retMatrix;

 std::vector<double> m_assetRet; // single returns

};

#endif /* defined(__FinancialSamples__ModifiedCAP__) */

//

// ModifiedCAP.cpp

#include "ModifiedCAP.h"

Chapter 13 Asset and Portfolio Optimization

365

#include "LPSolver.h"

#include <iostream>

#include <vector>

using std::vector;

using std::cout;

using std::endl;

ModifiedCAP::ModifiedCAP(int N, int T, double R, Matrix &expectedRet, const

vector<double> &ret)

: m_N(N),

 m_T(T),

 m_R(R),

 m_retMatrix(expectedRet),

 m_assetRet(ret)

{

}

ModifiedCAP::ModifiedCAP(const ModifiedCAP &p)

: m_N(p.m_N),

 m_T(p.m_T),

 m_R(p.m_R),

 m_retMatrix(p.m_retMatrix),

 m_assetRet(p.m_assetRet)

{

}

ModifiedCAP::~ModifiedCAP()

{

}

ModifiedCAP &ModifiedCAP::operator=(const ModifiedCAP &p)

{

 if (this != &p)

 {

 m_N = p.m_N;

 m_T = p.m_T;

Chapter 13 Asset and Portfolio Optimization

366

 m_R = p.m_R;

 m_retMatrix = p.m_retMatrix;

 m_assetRet = p.m_assetRet;

 }

 return *this;

}

void ModifiedCAP::solveModel(std::vector<double> &results, double &objVal)

{

 Matrix A(2*m_T + 2 + 1, m_T + m_N);

 vector<double> c(m_T + m_N, 0);

 // objective function

 for (int i=m_N; i<m_N+m_T; ++i)

 {

 c[i] = 1;

 }

 // right-hand side vector

 vector<double> b(2*m_T + 2 + 1, 0);

 b[2*m_T] = 1;

 b[2*m_T+1] = -1;

 b[2*m_T+2] = -m_R;

 // matrix A

 for (int i=0; i<m_T; ++i)

 {

 for (int j=0; j<m_N; ++j)

 {

 A[i][j] = m_retMatrix[j][i] - m_assetRet[j];

 }

 A[i][m_N+i] = -1;

 }

 for (int i=m_T; i<2*m_T; ++i)

 {

 for (int j=m_N; j<2*m_N; ++j)

Chapter 13 Asset and Portfolio Optimization

367

 {

 A[i][j] = - m_retMatrix[j-m_N][i-m_T] + m_assetRet[j-m_N];

 }

 A[i][m_N+i-m_T] = -1;

 }

 for (int j=0; j<m_N; ++j)

 {

 A[2*m_T][j] = 1;

 A[2*m_T+1][j] = -1;

 A[2*m_T+2][j] = - m_assetRet[j];

 }

 LPSolver solver(A, b, c);

 solver.setMinimization();

 solver.solve(results, objVal);

}

int main()

{

 // sample problem: 4 assets and 5 periods

 // build the expected return matrix

 double val[][5] = {

 {0.051, 0.050, 0.049, 0.051, 0.05},

 {0.10, 0.099, 0.102, 0.100, 0.101},

 {0.073, 0.077, 0.076, 0.075, 0.076},

 {0.061, 0.06, 0.059, 0.061, 0.062},

 };

 Matrix retMatrix(4, 5);

 for (int i=0; i<4; ++i)

 {

 for (int j=0; j<5; ++j)

 {

 retMatrix[i][j] = val[i][j];

 }

 }

Chapter 13 Asset and Portfolio Optimization

368

 vector<double> assetReturns = {0.05, 0.10, 0.075, 0.06};

 ModifiedCAP mc(4, 5, 0.08, retMatrix, assetReturns);

 vector<double> results;

 double objVal;

 mc.solveModel(results, objVal);

 cout << "obj value: " << objVal/5 << endl;

 for (int i=0; i<results.size(); ++i)

 {

 cout << " x" << i << ": " << results[i];

 }

 cout << endl;

}

�Running the Code
The ModifiedCAP class presented in Listing 13-2 can be compiled using any standards-

compliant C++ compiler. The main class depends on other classes presented before, such

as LPSolver and Matrix. The code also depends on the GLPK library, which you can

download for free as described in the previous chapter. After building this class into the

executable ModifiedCap, you can run the test main function and see results similar to

what is shown in the following code:

GLPK Simplex Optimizer, v4.54

13 rows, 9 columns, 46 non-zeros

 0: obj = 0.000000000e+00 infeas = 1.080e+00 (0)

* 8: obj = 3.380952381e-03 infeas = 0.000e+00 (0)

* 10: obj = 1.881151309e-03 infeas = 1.110e-16 (0)

OPTIMAL LP SOLUTION FOUND

obj value: 0.00037623

 x0: 0.320288 x1: 0.520288 x2: 0.159424 x3: 0 x4: 1.43914e-06 x5: 0 x6:

0.000879712 x7: 0.000320288 x8: 0.000679712

Program ended with exit code: 0

Looking at the output, the result shows nine LP variables. From the formulation,

you will see that the first four variables correspond to the original CAP variables, while

Chapter 13 Asset and Portfolio Optimization

369

the last five are related to the time periods and therefore not used in the portfolio

construction. These results tell the portfolio manager that only the first three assets

should be considered in the portfolio, with percentages equal to 32%, 52%, and 15%,

respectively.

To improve these results, you can modify the model accordingly to your goals. For

example, you can try a different return and see how the portfolio will change based on

the additional information.

�Extensions to Modified CAP
In this section, we create extensions to the modified CAP model so that no asset is

assigned more than 30% of the portfolio. Also, add a rule that asset classes gold and

treasury bills compose at least 15% of the portfolio.

�Solution
In the section “Portfolio Optimization,” you saw how to create an optimization model to

determine the optimal allocation of capital to a specified portfolio so that the required

target return is achieved while minimizing the volatility of the resulting portfolio. The

given formulation is a modification of the original method proposed in CAP, which is a

quadratic optimization model. Despite this, you can achieve quite fast results using a

linear programming version of the model.

Although this model is able to cover the basis of a portfolio construction strategy, you

can try other useful variations. For example, a common modification of the LP model

presented previously consists of adding the minimum and maximum requirement for

each asset type.

For example, suppose that you may want to increase the diversification of your

portfolio by enforcing a limit on the percentage held of each asset. The main idea here is

to avoid big losses that result from a portfolio concentrated in a small number of assets.

Such a requirement could be easily added to the model with the following constraint:

xj ≤ M, for each j ∈ {1...n}

Here, M is the desired percentage limit. When run, the LP solver will guarantee using

this constraint that each percentage is not greater than the given amount M.

Chapter 13 Asset and Portfolio Optimization

370

Similarly, you can also define a minimum amount held for each asset. In this case, it

is frequently useful to have separate minimum values for each possible investment. For

example, you may want to have a portfolio where treasury bills will be at least 5% at any

time. If we denote the minimum required allocation by Kj, this would lead to a constraint

of the type

xj ≥ Kj, for each j ∈ {1...n}

In general, similar modifications can also be done for combinations of assets, such

as treasury bills and gold. This would also work for larger groups of assets, such as

adding a minimum threshold for the total number of all growth stocks in a portfolio. If

you have a group of stocks L and an associated limit KL, then this general constraint can

be denoted by

	 j L
j Lx K

�
� � .

	

Finally, you can also use the idea of groups of assets to define an upper bound of the

percentage held in these investments. For example, if you want to limit the percentage of

a portfolio exposed to technology stocks, you can denote the group by U and the limit by

KU, resulting in the following constraint:

	 j U
j Ux K

�
� � .

	

For the benefit of simplicity, I have provided an alternative version of the

ModifiedCAP class, where we have an alternative rule for diversification (at 37% level)

and a minimum of 15% for the combined assets 1 and 2 (gold and treasury bills). The

new code is implemented in the function solveExtendedModel, defined as

void solveExtendedModel(std::vector<double> &results, double &objVal);

The remaining parts of the class remain unchanged in this coding example.

�Complete Code
You can find the code to solve the extended version of the CAP model in Listing 13-3. In

the header file, I show the complete class declaration, which is similar to the previous

Chapter 13 Asset and Portfolio Optimization

371

listing except for the added function, solveExtendedModel. The implementation file

shows only the new member function, along with a test main function.

Listing 13-3.  Extended Model for the CAP

//

// ModifiedCAP.h

#ifndef __FinancialSamples__ModifiedCAP__

#define __FinancialSamples__ModifiedCAP__

#include "Matrix.h"

// a modified (linearized) model for Capital Asset Pricing

class ModifiedCAP {

public:

 �ModifiedCAP(int N, int T, double R, Matrix &retMatrix, const

std::vector<double> &ret);

 ModifiedCAP(const ModifiedCAP &p);

 ~ModifiedCAP();

 ModifiedCAP &operator=(const ModifiedCAP &p);

 void solveModel(std::vector<double> &results, double &objVal);

 void solveExtendedModel(std::vector<double> &results, double &objVal);

private:

 int m_N; // number of investment

 int m_T; // number of periods

 double m_R; // desired return

 Matrix m_retMatrix;

 std::vector<double> m_assetRet; // single returns

};

#endif /* defined(__FinancialSamples__ModifiedCAP__) */

//

// ModifiedCAP.cpp

#include "ModifiedCAP.h"

#include "LPSolver.h"

Chapter 13 Asset and Portfolio Optimization

372

#include <iostream>

#include <vector>

//

// ... just like code list displayed on previous section

//

void ModifiedCAP::solveExtendedModel(std::vector<double> &results, double

&objVal)

{

 vector<double> c(m_T + m_N, 0);

 // objective function

 for (int i=m_N; i<m_N+m_T; ++i)

 {

 c[i] = 1;

 }

 const double M = 0.37; // maximum of each asset

 const double K_L = 0.15; // minimum of combined assets 1 and 2

 // right-hand side vector

 vector<double> b(2*m_T + 2 + 1 + m_N + 1 , 0);

 b[2*m_T] = 1;

 b[2*m_T+1] = -1;

 b[2*m_T+2] = -m_R;

 for (int i=2*m_T+3; i<2*m_T + 3 + m_N; ++i)

 {

 b[i] = M;

 }

 b[2*m_T + 3 + m_N] = -K_L;

 // matrix A

 Matrix A(2*m_T + 2 + 1 + m_N + 1, m_T + m_N);

 for (int i=0; i<m_T; ++i)

 {

Chapter 13 Asset and Portfolio Optimization

373

 for (int j=0; j<m_N; ++j)

 {

 A[i][j] = m_retMatrix[j][i] - m_assetRet[j];

 }

 A[i][m_N+i] = -1;

 }

 for (int i=m_T; i<2*m_T; ++i)

 {

 for (int j=m_N; j<2*m_N; ++j)

 {

 A[i][j] = - m_retMatrix[j-m_N][i-m_T] + m_assetRet[j-m_N];

 }

 A[i][m_N+i-m_T] = -1;

 }

 for (int j=0; j<m_N; ++j)

 {

 A[2*m_T][j] = 1;

 A[2*m_T+1][j] = -1;

 A[2*m_T+2][j] = - m_assetRet[j];

 }

 // constraints for percentage limit

 for (int i=2*m_T+3; i<2*m_T+3+m_N; ++i)

 {

 A[i][i-(2*m_T+3)] = 1;

 }

 // constraints for assets 1 and 2

 A[2*m_T+3+m_N][0] = -1;

 A[2*m_T+3+m_N][1] = -1;

 LPSolver solver(A, b, c);

 solver.setMinimization();

 solver.solve(results, objVal);

}

Chapter 13 Asset and Portfolio Optimization

374

int main()

{

 // sample problem: 4 assets and 5 periods

 // build the expected return matrix

 double val[][5] = {

 {0.051, 0.050, 0.049, 0.051, 0.05},

 {0.10, 0.099, 0.102, 0.100, 0.101},

 {0.073, 0.077, 0.076, 0.075, 0.076},

 {0.061, 0.06, 0.059, 0.061, 0.062},

 };

 Matrix retMatrix(4, 5);

 for (int i=0; i<4; ++i)

 {

 for (int j=0; j<5; ++j)

 {

 retMatrix[i][j] = val[i][j];

 }

 }

 vector<double> assetReturns = {0.05, 0.10, 0.075, 0.06};

 ModifiedCAP mc(4, 5, 0.08, retMatrix, assetReturns);

 vector<double> results;

 double objVal;

 mc.solveExtendedModel(results, objVal);

 cout << "obj value: " << objVal/5 << endl;

 for (int i=0; i<results.size(); ++i)

 {

 cout << " x" << i << ": " << results[i];

 }

 cout << endl;

 return 0;

}

Chapter 13 Asset and Portfolio Optimization

375

�Running the Code
After compiling the class described in Listing 13-3, you will be able to find the modified

results of the optimized portfolio. The following is a sample output of what I achieved by

adding the constraints explained previously:

./extendedModifiedCAP

GLPK Simplex Optimizer, v4.54

18 rows, 9 columns, 52 non-zeros

 0: obj = 0.000000000e+00 infeas = 1.230e+00 (0)

* 14: obj = 2.671440000e-03 infeas = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

obj value: 0.000534288

 x0: 0.035 x1: 0.37 x2: 0.37 x3: 0.225 x4: 1.44e-06 x5: 0.00037 x6: 0.00085

x7: 0.00026 x8: 0.00119

Program ended with exit code: 0

The solution found by the optimizer shows that the optimum allocation for the four

asset classes would be 3.5%, 37%, 37%, and 22%, respectively.

�Conclusion
Portfolio optimization is a tool frequently used by portfolio managers to help define a

suitable capital allocation depending on the desired goals of their clients. Therefore, it is

important for financial C++ programmers to be able to devise efficient solutions for such

portfolio allocation problems.

In this chapter, you have learned a few mathematical programming models that have

been successfully used by financial institutions to create and manage portfolios as well

as other financial allocation problems. In the first section, you have seen how mixed-

integer programming (MIP) can be used to model some financial allocation problems.

You learned about some of the differences between MIP and LP models and how they

can be solved with the help of the MIPSolver class.

In the next section, the focus was on the CAP model, where the main goal is to

determine the percentages of each investment that need to be held in a portfolio,

in order to achieve the desired outcome while at the same time minimizing the

associated volatility of the investments. You have seen that although this is a quadratic

Chapter 13 Asset and Portfolio Optimization

376

programming problem, it is possible to achieve good results with a linearization of the

mathematical formulation. An alternative formulation was presented and implemented

in C++ using the AlternativeCAP class.

Finally, I discussed a few extensions of the basic model and how the optimization

results can be understood in the context of the required portfolio. Such extensions to the

basic CAP model are common, and they help in developing portfolios that are subject to

real-world constraints for asset allocation.

In the next chapter, you will become acquainted with another key technique in

financial engineering: Monte Carlo simulation methods. You will see a few C++ examples

of how such techniques can be quickly implemented and how the results of such

methods can be interpreted.

Chapter 13 Asset and Portfolio Optimization

377
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_14

CHAPTER 14

Monte Carlo Methods
Among other programming techniques for equity markets, Monte Carlo simulation has a

special place due to its wide applicability and relatively easy implementation compared

to exact, non-stochastic methods. These algorithms can be used in many applications

such as price forecasting and the validation of certain buying strategies, for example.

In this chapter, we provide C++ programming code that can be used either directly or

as part of simulation-based algorithms. These examples will introduce some of the most

important concepts used in the development of stochastic methods. The following is a

quick summary of topics discussed in this chapter:

•	 Determining definite integrals: Random sampling is a powerful way

to calculate complicated functions with a minimum of computational

effort. You will see how to use stochastic techniques to determine

definite integrals.

•	 Forecasting prices: Being a common technique to simulate random

price fluctuations, Monte Carlo methods have been frequently

used as a way to forecast prices. The ability to repeat the simulation

process is a key feature of this method.

•	 Calculating options prices: Among other methods for option pricing

forecasting, Monte Carlo techniques have been widely used due to

its simplicity. Unlike other mathematical methods, simulations can

be quickly coded and generally perform well compared to exact

techniques for option price forecasting.

�Monte Carlo-Based Integral Computation
Create a class to estimate the integral of a generic function using a Monte Carlo strategy.

https://doi.org/10.1007/978-1-4842-6834-6_14#DOI

378

�Solution
The main concept of Monte Carlo methods is to use a random process to find solutions for

a complex problem. While a random solution may not be useful for the problem at hand,

it has the important property that it can be repeated with different results. The information

that you can gather by looking at a large number of such Monte Carlo results is the secret of

such techniques.

A classic example of using Monte Carlo methods is determining the area defined

by a curve with random sampling. For example, to find the area of a circle, you can

draw several random points and check if they are part of the circle. The area is then

determined by the percentage of points inside the circle. As the number of points

increase, you will get better approximations for the required area.

An extension of the general idea described previously is the basis for a Monte Carlo

strategy for integration. The advantage of using such Monte Carlo methods to integrate

functions is that you just need to generate random points in the given range. The

simplicity of the strategy makes it possible to estimate the integral of very complicated

functions with a minimum of code.

You can see an implementation of this method in the MonteCarloIntegration class.

The structure of the class is similar to the examples you saw in Chapter 10, which covers

integration. However, the algorithm used involves the generation of random samples, in

order to determine the percentage of area under the given function.

To generate uniformly distributed random numbers, we use the uniform_real_

distribution class, part of boost::random. This simplifies the generation of samples,

avoiding numerical accuracy issues that are common when using other sources of

random numbers.

The main part of the implementation can be viewed in the getIntegral member

function.

double MonteCarloIntegration::getIntegral(double a, double b)

The code initially determines the maximum and minimum values observed. It uses

these numbers to define the total area of sampling. Then, the function generates random

numbers and checks if they are inside the curve defined by the function or outside it. At

the end, the percentage calculated with this procedure is used to compute the total area

of the integral. This process is repeated for the positive and negative parts of the given

mathematical function, using the member function integrateRegion. The total value of

the integral is then calculated as the positive minus the negative area.

Chapter 14 Monte Carlo Methods

379

�Complete Code
You will find the complete code to integrate a function using the Monte Carlo methods

in Listing 14-1. The code is divided into a header and an implementation file. A sample

main function is included to show how the class MonteCarloIntegration can be used.

Listing 14-1.  Monte Carlo Integration Method

//

// MonteCarloIntegration.h

#ifndef __FinancialSamples__MONTECARLOINTEGRATION_H_

#define __FinancialSamples__MONTECARLOINTEGRATION_H_

template <class T>

class MathFunction;

class MonteCarloIntegration {

public:

 MonteCarloIntegration(MathFunction<double> &f);

 MonteCarloIntegration(MathFunction<double> &f, int num_samples);

 MonteCarloIntegration(const MonteCarloIntegration &p);

 ~MonteCarloIntegration();

 MonteCarloIntegration &operator=(const MonteCarloIntegration &p);

 void setNumSamples(int n);

 double getIntegral(double a, double b);

 double integrateRegion(double a, double b, double min, double max);

private:

 MathFunction<double> &m_f;

 int m_numSamples;

};

#endif /* MONTECARLOINTEGRATION_H_ */

//

// MonteCarloIntegration.cpp

#include "MonteCarloIntegration.h"

Chapter 14 Monte Carlo Methods

380

#include <cmath>

#include <cstdlib>

#include <iostream>

#include "MathFunction.h"

#include <random>

static std::default_random_engine random_generator;

using std::cout;

using std::endl;

namespace {

 const int DEFAULT_NUM_SAMPLES = 1000;

}

MonteCarloIntegration::MonteCarloIntegration(MathFunction<double>& f)

: m_f(f),

 m_numSamples(DEFAULT_NUM_SAMPLES)

{

}

MonteCarloIntegration::MonteCarloIntegration(MathFunction<double>& f, int

num_samples)

: m_f(f),

 m_numSamples(num_samples)

{

}

MonteCarloIntegration::MonteCarloIntegration(const MonteCarloIntegration&

p)

: m_f(p.m_f),

 m_numSamples(p.m_numSamples)

{

}

MonteCarloIntegration::~MonteCarloIntegration()

{

}

Chapter 14 Monte Carlo Methods

381

MonteCarloIntegration& MonteCarloIntegration::operator =(const

MonteCarloIntegration& p)

{

 if (this != &p)

 {

 m_f = p.m_f;

 m_numSamples = p.m_numSamples;

 }

 return *this;

}

void MonteCarloIntegration::setNumSamples(int n)

{

 m_numSamples = n;

}

double MonteCarloIntegration::integrateRegion(double a, double b, double

min, double max)

{

 std::uniform_real_distribution<> xDistrib(a, b);

 std::uniform_real_distribution<> yDistrib(min, max);

 int pointsIn = 0;

 int pointsOut = 0;

 bool positive = max > 0;

 for (int i = 0; i < m_numSamples; ++i)

 {

 double x = xDistrib(random_generator);

 double y = m_f(x);

 double ry = yDistrib(random_generator);

 if (positive && min <= ry && ry <= y)

 {

 pointsIn++;

 }

 else if (!positive && y <= ry && ry <= max)

 {

Chapter 14 Monte Carlo Methods

382

 pointsIn++;

 }

 else

 {

 pointsOut++;

 }

 }

 double percentageArea = 0;

 if (pointsIn+pointsOut > 0)

 {

 percentageArea = pointsIn / double(pointsIn + pointsOut);

 }

 if (percentageArea > 0)

 {

 return (b-a) * (max-min) * percentageArea;

 }

 return 0;

}

double MonteCarloIntegration::getIntegral(double a, double b)

{

 std::uniform_real_distribution<> distrib(a, b);

 double max = 0;

 double min = 0;

 for (int i = 0; i < m_numSamples; ++i)

 {

 double x = distrib(random_generator);

 double y = m_f(x);

 if (y > max)

 {

 max = y;

 }

 if (y < min)

Chapter 14 Monte Carlo Methods

383

 {

 min = y;

 }

 }

 double positiveIntg = max > 0 ? integrateRegion(a, b, 0, max) : 0;

 double negativeIntg = min < 0 ? integrateRegion(a, b, min, 0) : 0;

 return positiveIntg - negativeIntg;

}

// Example function

namespace {

 class FSin : public MathFunction<double>

 {

 public:

 ~FSin();

 double operator()(double x);

 };

 FSin::~FSin()

 {

 }

 double FSin::operator()(double x)

 {

 return sin(x);

 }

}

int main()

{

 cout << "starting" << endl;

 FSin f;

 MonteCarloIntegration mci(f);

 double integral = mci.getIntegral(0.5, 4.9);

Chapter 14 Monte Carlo Methods

384

 cout << " the integral of the function is " << integral << endl;

 mci.setNumSamples(200000);

 integral = mci.getIntegral(0.5, 4.9);

 �cout << " the integral of the function with 20000 intervals is

" << integral << endl;

 return 0;

}

�Running the Code
You can compile the files presented in Listing 14-1 using gcc or any other standards-

compliant C++ compiler. The result for the sample code in the main function is the

following, assuming that you named the executable as monteCarloIntegration:

$./monteCarloIntegration

 the integral of the function is 1.74

 the integral of the function with 20000 intervals is 1.6702

Notice that this can change depending on the random source used by the

implementation. However, the values should approach the correct value as the number

of samples used by the Monte Carlo method increase.

�Simulating Asset Prices
Create a C++ class to mimic the price fluctuations of equities in the stock market using a

random walk simulation process.

�Solution
If there is an area in investment where it is difficult to find closed solutions, that area is

financial forecasting. Although there are well-known economic models, any complex

system such as the stock market is subject to wild fluctuations that result from so many

factors, including wars, natural disasters, and personal choices of important players,

among others. Due to the big difficulty of estimating such disparate events, a large part

of market forecasting models assume that some form of random process is the source of

price fluctuations. In this scenario, Monte Carlo techniques prove to be very useful in the

simulation of future market conditions.

Chapter 14 Monte Carlo Methods

385

In this section, I present a very simple Monte Carlo model that can be used for

forecasting purposes. To start the presentation, I introduce a first version of this method

using a set of very simple simulation rules. Then, you will see a more complex version of

this same principle, using a Gaussian distribution, in the next C++ coding example.

The basic strategy used in price forecasting is to simulate price movements using a

“random walk.” A random walk process is a stochastic technique in which the next state

of the system is defined only by its previous state (a known price) and the probability

distribution for the next possible moves. In the example presented in this C++ class,

there are three next states, each of them having the same probability. As a result, at each

moment in time, the price can go up, go down, or stay flat.

To simplify the example of random walk given in this section, we will assume that

the prices of the underlying asset are moving according to a uniform distribution. In

other words, price changes are generated in such a way that the average jump is received

as a parameter. Also, the increase or decrease in price is defined using a uniformly

distributed random variable, with values determined by the known average.

The code necessary to create this simulation is encapsulated in the RandomWalk class.

The class is needed to store the information about parameters for the process: among

these parameters are the number of steps (samples) in the Monte Carlo simulation, the

initial asset price, and the average step used in the process.

Using these parameters, the getWalk member function runs the simulation and

returns a vector of prices generated using this strategy. Figure 14-1 displays a sample result

of this random process. Once you store the prices generated by getWalk, your code can

perform additional processing, as needed. A common example where this may be useful is

during the test of new trading strategies and for determination of their profitability.

Figure 14-1.  Results of the random walk generated by RandomWalk class

Chapter 14 Monte Carlo Methods

386

The algorithm for random walk used in the RandomWalk class can be tweaked in a

number of ways, depending on the demands of your simulation.

•	 For example, you may want to have the price of the underlying

instrument changing more frequently. This can be achieved with the

removal of the third branching rule (which allows the price to stay in

the same level) and therefore forcing moves either up or down.

•	 Another variation of the random walk is to have different

probabilities for up and high prices—in this way, it is possible to

simulate a “bull” or “bear” market.

•	 For a similar purpose as previously, it is possible to change the

amount of the price jump (up or down), so that up moves may be

bigger than down moves. This would be another way to simulate a

directional market, where prices are going up faster than usual.

�Complete Code
Listing 14-2 contains the complete code for the RandomWalk class. You will find the

implementation in a header file and a cpp file, followed by a sample main function.

Listing 14-2.  Implementation for RandomWalk Class

//

// RandonWalk.h

#ifndef __FinancialSamples__RandonWalk__

#define __FinancialSamples__RandonWalk__

#include <vector>

// Simple random walk for price simulation

class RandomWalk {

public:

 RandomWalk(int size, double start, double step);

 RandomWalk(const RandomWalk &p);

 ~RandomWalk();

 RandomWalk &operator=(const RandomWalk &p);

Chapter 14 Monte Carlo Methods

387

 std::vector<double> getWalk();

private:

 int m_size; // number of steps

 double m_step; // size of each step (in percentage)

 double m_start; // starting price

};

#endif /* defined(__FinancialSamples__RandonWalk__) */

//

// RandonWalk.cpp

#include "RandonWalk.h"

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

RandomWalk::RandomWalk(int size, double start, double step)

: m_size(size),

 m_step(step),

 m_start(start)

{

}

RandomWalk::RandomWalk(const RandomWalk &p)

: m_size(p.m_size),

 m_step(p.m_step),

 m_start(p.m_start)

{

}

RandomWalk::~RandomWalk()

{

}

RandomWalk &RandomWalk::operator=(const RandomWalk &p)

Chapter 14 Monte Carlo Methods

388

{

 if (this != &p)

 {

 m_size = p.m_size;

 m_step = p.m_step;

 m_start = p.m_start;

 }

 return *this;

}

std::vector<double> RandomWalk::getWalk()

{

 vector<double> walk;

 double prev = m_start;

 for (int i=0; i<m_size; ++i)

 {

 int r = rand() % 3;

 double val = prev;

 if (r == 0) val += (m_step * val);

 else if (r == 1) val -= (m_step * val);

 walk.push_back(val);

 prev = val;

 }

 return walk;

}

int main()

{

 RandomWalk rw(100, 30, 0.01);

 vector<double> walk = rw.getWalk();

 for (int i=0; i<walk.size(); ++i)

 {

 cout << ", " << i << ", " << walk[i];

 }

 cout << endl;

 return 0;

}

Chapter 14 Monte Carlo Methods

389

�Running the Code
To run the code presented in Listing 14-2, first you need to compile it using a standards-

compliant compiler such as gcc or Visual Studio. Here are the first few lines of the

random walk using the given parameters: initial price of $30, step of 1%, and 100 steps.

./randomWalk

, 0, 29.7, 1, 29.403, 2, 29.403, 3, 29.403, 4, 29.109, 5, 29.109, 6,

29.4001, 7, 29.4001, 8, 29.4001, 9, 29.1061, 10, 29.3971, 11, 29.3971, 12,

29.6911, 13, 29.6911, 14, 29.988, 15, 29.988, 16, 29.6881, 17, 29.3912, 18,

29.0973, 19, 28.8064, 20, 29.0944, 21, 28.8035, 22, 29.0915, 23, 29.0915,

24, 28.8006, 25, 29.0886, 26, 29.3795, 27, 29.6733, 28, 29.6733, 29,

29.3765, 30, 29.0828, 31, 29.0828, 32, 29.0828, 33, 28.792, 34, 28.792, 35,

29.0799, 36, 28.7891, 37, 28.5012, 38, 28.7862, 39, 29.0741, 40, 28.7833,

41, 28.7833, 42, 28.4955, 43, 28.7804, 44, 28.7804, 45, 28.7804, 46,

28.7804, 47, 28.4926, 48, 28.7776, 49, 28.4898, 50, 28.4898, 51, 28.4898,

52, 28.2049, 53, 27.9228, 54, 27.6436, 55, 27.6436, 56, 27.92, 57, 27.92,

58, 28.1992, 59, 27.9173,

Figure 14-1 displays a plot of the random walk generated by one execution of the

sample code. Notice how prices start near the $30 mark and display a behavior similar to

real variations observed on the stock market.

�Calculating Option Probabilities
In this section, we will implement a C++ solution to computing European options

probabilities for events such as finishing above the strike price, finishing below the strike

price, or finishing between two given prices.

�Solution
Options are a very popular type of equity derivatives, which can be bought in most retail

investment accounts. With options, you pay a price for the privilege of buying or selling

a stock for a particular price during a limited period of time, hence the designation

“option,” since you have the option, not the obligation, of performing the transaction.

Chapter 14 Monte Carlo Methods

390

A call option gives the right to buy at a particular price, while a put option gives the

right to sell at a particular price. The exercise price is called the strike. Depending on the

relationship between the current price of the stock and the strike price, an option can be

classified into one of the three categories:

•	 In the money (ITM): The strike price is lower than the current price of

the stock, for call options. For put options, the strike price should be

above the current stock price.

•	 Out of the money (OTM): The strike price is higher than the current

price of the stock, for call options. For put options, the strike price

should be below the current stock price.

•	 At the money (ATM): The strike price is close to the current price of

the underlying stock.

These different relationships between strike price and stock price determine

different probabilities of an option to become profitable, as we will see in the remainder

of this section.

To achieve profitability, a call option needs the stock price to rise above the strike

price. When this happens, the price for the position is given by the difference between

the strike price and the stock price, plus whatever time value the option might still have.

For put options this is reversed, and the option becomes profitable when the stock prices

decrease in comparison to the strike price.

Another concept in options is the style of exercise (i.e., buying or selling the

underlying stock). European-style options allow the exercising of the option only at the

end of its target period. American-style options, on the other hand, allow exercising to

happen at any moment in time. In this section I consider European options only, since

the analysis considers only the price of the stock at the option expiration. It is not hard,

however, to extend the techniques explained to handle American-style options.

Figure 14-2 shows the profit profile for an option contract. The data assumes that

the contract costs $5, with a strike price of $90. In this case, for any final price of the

underlying stock that is below $90, the full loss of the option price is realized. On the

other hand, the loss is capped, and the investor will not suffer any losses other than the

price of the contract. When the underlying asset price achieves the strike price of $90,

the loss of the position starts to decrease, getting to an even point at $95. From that point

on, any additional price increase represents additional profit for the option position, and

gains are unlimited to the upside.

Chapter 14 Monte Carlo Methods

391

�Determining Profit Probabilities
In this section, you will learn how to use Monte Carlo techniques to determine profit

probabilities for equity options. As you have seen previously, all that is necessary to find

the profit for a call option is to calculate the price of the underlying asset at expiration

and check if the final price is above the strike price. For put options, the process is the

same, but instead you need to check if the final price is below the strike price.

The first step in creating a Monte Carlo simulation for this problem is to define the

parameters of the random process. The pricing of options is defined by what is called

the Black-Scholes model, where prices are assumed to be normally distributed. For this

reason, you will use a random walk with Gaussian distribution for price changes. At

each step, only two possibilities are available in this random process: prices either go

up or go down with 50% of chance. The price change is then determined by the normal

distribution with variance that is given as an input parameter. Figure 14-3 presents

an example of Gaussian random walk. Notice how similar this looks to actual price

fluctuations, when compared to real data for stocks.

Figure 14-2.  Profit potential for an option call contract

Chapter 14 Monte Carlo Methods

392

Once the random walk is generated, one can start to use the data for forecasting and

related price analysis. In this case, you would like to estimate the probabilities of some

events, such as finishing above a certain price level. To answer these questions, you just

need to use the standard Monte Carlo procedure: repeat the random walk and store

the results. After this process is performed several times, it is possible to analyze the

distribution of results in which the final price was above a certain target.

For example, suppose you want to answer the question: what is the probability of the

price finishing above the strike price? To do this, perform the random walk for a large

number of tests, and calculate the percentage of these tests in which the price finished

above the strike. The same approach can be used to collect related information, such as

the probability of finishing below the strike price, or the probability of finishing between

two given prices.

The implementation is given in the OptionsProbabilities class. The important

member functions are the following:

double probFinishAboveStrike();

double probFinishBelowStrike();

double probFinalPriceBetweenPrices(double lowPrice, double highPrice);

std::vector<double> getWalk();

The three first member functions calculate the desired probabilities. The last

member function, getWalk, returns a vector that stores a sample random walk for further

analysis. The OptionsProbabilities class internally uses the getLastPriceOfWalk

member function, which returns the last observed price observed in a Gaussian walk.

This price is the one stored as input to the probability calculations.

Figure 14-3.  Example of price movement created using a Gaussian random walk

Chapter 14 Monte Carlo Methods

393

Finally, price changes are computed using the Gaussian distribution. Random values

according to this distribution are generated using the gaussianValue member function:

double OptionsProbabilities::gaussianValue(double mean, double sigma)

{

 std::normal_distribution<> distrib(mean, sigma);

 return distrib(random_generator);

}

To see how these functions are used together, consider the implementation of

probFinishAboveStrike:

double OptionsProbabilities::probFinishAboveStrike()

{

 int nAbove = 0;

 for (int i=0; i<m_numIterations; ++i)

 {

 double val = getLastPriceOfWalk();

 if (val >= m_strike)

 {

 nAbove++;

 }

 }

 return nAbove/(double)m_numIterations;

}

The algorithm repeats as many iterations as are defined by the member variable

m_numIterations. At each iteration, you request a new Gaussian random walk and

store the last observed value. If the value satisfies the required property (in this case

finishing above the strike price), then it is counted as an occurrence of the event. Finally,

the member function returns the empirical probability defined by the percentage of

favorable cases.

Chapter 14 Monte Carlo Methods

394

�Complete Code
Listing 14-3 presents the random walk method to evaluate option probabilities. A sample

main function is given at the end of the listing, showing how the OptionsProbabilities

class can be invoked.

Listing 14-3.  Class OptionsProbabilities

//

// OptionsProbabilities.h

#ifndef __FinancialSamples__OptionsProbabilities__

#define __FinancialSamples__OptionsProbabilities__

#include <vector>

class OptionsProbabilities {

public:

 �OptionsProbabilities(double initialPrice, double strike, double

avgStep, int nDays);

 OptionsProbabilities(const OptionsProbabilities &p);

 ~OptionsProbabilities();

 OptionsProbabilities &operator=(const OptionsProbabilities &p);

 void setNumIterations(int n);

 double probFinishAboveStrike();

 double probFinishBelowStrike();

 double probFinalPriceBetweenPrices(double lowPrice, double highPrice);

 std::vector<double> getWalk();

private:

 double m_initialPrice;

 double m_strike;

 double m_avgStep;

 int m_numDays;

 int m_numIterations;

 double gaussianValue(double mean, double sigma);

 double getLastPriceOfWalk();

};

Chapter 14 Monte Carlo Methods

395

#endif /* defined(__FinancialSamples__OptionsProbabilities__) */

//

// OptionsProbabilities.cpp

#include "OptionsProbabilities.h"

#include <random>

+#include <iostream>

using std::vector;

using std::cout;

using std::endl;

static std::default_random_engine random_generator;

namespace {

 const int NUM_ITERATIONS = 1000;

}

OptionsProbabilities::OptionsProbabilities(double initialPrice,

 �double strike, double avgStep,

int nDays)

: m_initialPrice(initialPrice),

 m_strike(strike),

 m_avgStep(avgStep),

 m_numDays(nDays),

 m_numIterations(NUM_ITERATIONS)

{

}

OptionsProbabilities::OptionsProbabilities(const OptionsProbabilities &p)

: m_initialPrice(p.m_initialPrice),

 m_strike(p.m_strike),

 m_avgStep(p.m_avgStep),

 m_numDays(p.m_numDays),

 m_numIterations(p.m_numIterations)

{

}

Chapter 14 Monte Carlo Methods

396

OptionsProbabilities::~OptionsProbabilities()

{

}

OptionsProbabilities &OptionsProbabilities::operator=(const

OptionsProbabilities &p)

{

 if (this != &p)

 {

 m_initialPrice = p.m_initialPrice;

 m_strike = p.m_strike;

 m_avgStep = p.m_avgStep;

 m_numDays = p.m_numDays;

 m_numIterations = p.m_numIterations;

 }

 return *this;

}

void OptionsProbabilities::setNumIterations(int n)

{

 m_numIterations = n;

}

double OptionsProbabilities::probFinishAboveStrike()

{

 int nAbove = 0;

 for (int i=0; i<m_numIterations; ++i)

 {

 double val = getLastPriceOfWalk();

 if (val >= m_strike)

 {

 nAbove++;

 }

 }

 return nAbove/(double)m_numIterations;

}

Chapter 14 Monte Carlo Methods

397

double OptionsProbabilities::probFinishBelowStrike()

{

 int nBelow = 0;

 for (int i=0; i<m_numIterations; ++i)

 {

 double val = getLastPriceOfWalk();

 if (val <= m_strike)

 {

 nBellow++;

 }

 }

 return nBelow/(double)m_numIterations;

}

double OptionsProbabilities::probFinalPriceBetweenPrices(double lowPrice,

double highPrice)

{

 int nBetween = 0;

 for (int i=0; i<m_numIterations; ++i)

 {

 double val = getLastPriceOfWalk();

 if (lowPrice <= val && val <= highPrice)

 {

 nBetween++;

 }

 }

 return nBetween/(double)m_numIterations;

}

double OptionsProbabilities::gaussianValue(double mean, double sigma)

{

 std::normal_distribution<> distrib(mean, sigma);

 return distrib(random_generator);

}

double OptionsProbabilities::getLastPriceOfWalk()

Chapter 14 Monte Carlo Methods

398

{

 double prev = m_initialPrice;

 for (int i=0; i<m_numDays; ++i)

 {

 double stepSize = gaussianValue(0, m_avgStep);

 int r = rand() % 2;

 double val = prev;

 if (r == 0) val += (stepSize * val);

 else val -= (stepSize * val);

 prev = val;

 }

 return prev;

}

std::vector<double> OptionsProbabilities::getWalk()

{

 vector<double> walk;

 double prev = m_initialPrice;

 for (int i=0; i<m_numDays; ++i)

 {

 double stepSize = gaussianValue(0, m_avgStep);

 int r = rand() % 2;

 double val = prev;

 if (r == 0) val += (stepSize * val);

 else val -= (stepSize * val);

 walk.push_back(val);

 prev = val;

 }

 return walk;

}

int main()

{

 OptionsProbabilities optP(30, 35, 0.01, 100);

 cout << " above strike prob: "

Chapter 14 Monte Carlo Methods

399

 << optP.probFinishAboveStrike() << endl;

 cout << " below strike prob: "

 << optP.probFinishBelowStrike() << endl;

 cout << " between 28 and 32 prob: "

 << optP.probFinalPriceBetweenPrices(28, 32) << endl;

 return 0;

}

�Running the Code
To run the code in Listing 14-3, you can use any standards-compliant C++ compiler such

as gcc, llvm, or Visual C++. Once you compile the code and generate an executable file,

the application can be run with the following results (exact numbers can vary depending

on the random numbers used):

above strike prob: 0.055

below strike prob: 0.946

between 28 and 32 prob: 0.512

As you can see, the application is able to determine with good precision the

probability that the price will finish above or below the strike. This is confirmed by the

fact that the two first values add up to close to 100%. The approximation can still be

improved by increasing the number of simulated random walks.

�Conclusion
Monte Carlo methods are a general approach to problem solving that use randomization

as a way to compute solutions that would be otherwise very difficult to find exactly. Due

to the inherent randomness of financial markets, Monte Carlo methods appear as an

important tool in the hands of the financial engineer and software developer.

You have seen in this chapter that such simulation techniques can be used to find

quick solutions to diverse problems in the area of finance. For example, a common way

to use Monte Carlo simulations is to forecast possible economic scenarios dictated by

price variations. While this is a difficult task for traditional mathematical methods, one

can easily design efficient algorithms such as a random walk. Such algorithms offer the

ability to forecast prices using just a few input parameters based on past behavior.

Chapter 14 Monte Carlo Methods

400

In the first coding example, in Listing 14-1, we used a Monte Carlo technique to

calculate the definite integral of a general function. While there are efficient ways to

solve this problem with deterministic numeric algorithms, this problem shows the basic

features of Monte Carlo methods and how their results can be interpreted and improved.

In Listing 14-2, you saw how to create a very simple random walk, which is one of the

basic tools available for price simulation using Monte Carlo methods. You saw how to

implement a version of random walk where price changes are uniformly distributed. You

also saw a few common variations of the standard method, which are frequently used in

applications.

Next, you learned about the use of Monte Carlo methods to calculate profit

probabilities for options. The C++ class in Listing 14-3 illustrated a scheme that is easy to

implement and can be used to analyze options and their possible profit scenarios. You

have seen that using simulation and a few assumptions about price changes, one can

easily determine the probability that a given stock will be in a certain price range within

a number of days.

This chapter completes the discussion of the major mathematical tools used in

financial software. In the next chapter, you will start to explore additional programming

technologies that can be employed to support the creation and maintenance of such

financial applications. You will see a number of examples that show how to integrate

existing C++ code with other popular scripting languages, such as Python and Lua.

Chapter 14 Monte Carlo Methods

401
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_15

CHAPTER 15

Extending Financial
Libraries
C++ is an expressive language that can be used to develop some of the most

sophisticated software, including the high-performance applications that are routinely

used in banks and other financial institutions. However, it is sometimes beneficial to

combine and extend C++ libraries using interpreted languages that can simplify the

creation of prototypes and other noncritical applications. A number of such interpreted

languages are used for the purpose of connecting pre-compiled libraries. Among them,

Python and Lua are among the most common interpreted languages employed in the

financial industry.

In this chapter, I show how to use popular scripting and extension languages such as

Lua and Python to interact with C++ libraries. The solutions and algorithms discussed in

the next few sections allow you to reuse many of the same C++ components presented in

previous chapters as part of applications developed in other languages. In some cases,

you will also be able to use code that has been created in external languages in your own

C++ applications.

The following are some of the topics discussed in this chapter:

•	 Extending C++ with Python: The Python language offers great

features for the development of server-side applications. If you want

to use C++ libraries as part of other services, Python might be the best

way to integrate different libraries.

•	 Extending C++ with Lua: Lua is a relatively new language that is

outstanding in its simple implementation of dynamic features. It is

also used as an extension language that can be embedded into your

own larger C++ applications.

https://doi.org/10.1007/978-1-4842-6834-6_15#DOI

402

�Exporting C++ Stock Handling Code to Python
Generate code that provides the ability to export to Python a C++ stock handing class.

�Solution
Python is a popular language that has been used in several domains, including web

applications, scientific data exploration, and finance. One of the greatest strengths of

Python is its ability to cleanly bring together large collections of programming libraries.

A very important reason for that interoperability is the simple mechanism used by

Python to interface with different languages, especially C and C++.

In this section, you will learn about the extension mechanism of Python and how

it can be accessed from your C++ code. I have provided a financial example for this

process, where you will give access to a Stock class originally designed and implemented

in C++.

Python is available as open source on most operating systems. The main website

where you can find the source code and binaries for most operating systems is http://

python.org. You will also find Python pre-installed on many UNIX-like operating

systems, such as Linux and Mac OS X. The main mechanism for library extension in

Python is the module. A module is used to export data and code to Python source files

or other modules. The keyword import can be used to load an existing module into

memory. For example:

import sys

This is a command used to load the sys module, which gives access to system-

dependent functions. While modules can be created in Python itself, as C++

programmers our main interest is in creating modules using C++. This is possible with

the Python module creating API (application programming interface), which is available

for C and C++ and included with most Python installations.

Since the extension mechanism is written in C (for compatibility with existing C

libraries for Python), it is necessary to create a number of C functions that encapsulate

your original C++ classes in order to achieve interoperability with the Python

environment.

As an example of how this process works, consider the Stock class, which can be

used to model a single stock. Listing 15-1 shows the public interface for this class.

Chapter 15 Extending Financial Libraries

http://python.org
http://python.org

403

Listing 15-1.  Interface for Stock Class

class Stock {

public:

 Stock(const std::string &ticker, double price, double div);

 Stock(const Stock &p);

 ~Stock();

 Stock &operator=(const Stock &p);

 std::string ticker();

 double price();

 void setPrice(double price);

 double dividend();

 void setDividend(double div);

 double dividendYield();

}

The extension API for Python is a set of header files and libraries that expose the

Python environment to other applications written in C or C++. To export a class such

as Stock to Python using the extension API, we need to create a few functions that will

receive and return the requests sent by the Python interpreter. This is done in the Stock_

Py.cpp file, which contains a list of functions that deal with each member of the Stock

class. The first function of interest is the stock_create function, which is defined in the

following way:

PyObject *stock_create(PyObject *self, PyObject *args)

It is common for functions called directly from Python to have a signature where two

Python objects are received and a Python object is returned. The first argument to such

a function is the Python object that is the target of the call (similar to the this pointer

in C++) whenever the call is made using the syntax object.function(). The second

parameter is a Python list that stores all the arguments passed to the function.

The first thing this function does is to retrieve the parameters passed as arguments.

This can be done in the Python API by calling the function PyArg_ParseTuple, which

is responsible for checking the arguments and copying their values into data objects.

The first parameter of this function is the object representing the list of arguments. The

second parameter is a string that defines the types of each data element in the argument

list. Finally, the remaining arguments are pointers to the locations where the data should

be stored.

Chapter 15 Extending Financial Libraries

404

if (!PyArg_ParseTuple(args, "sdd", &ticker, &price, ÷nd))

 return NULL;

If this function is not successful, it will return false, which causes the stock_create

to return NULL. Returning NULL indicates to the interpreter that the called function failed

for some reason.

Once the input data has been validated, the next step is to create an object of class

Stock and initialize it properly. The result is stored in a Python capsule object that is

created with the function PyCapsule_New. This function call takes as the last parameter

the name of a destructor function, which in this case is just stock_destructor, a

function that calls the destructor for the Stock object. After the Python capsule has been

created, the new Python object is then returned as the result of the function.

For an example of a function that just returns a single data object, consider stock_

ticker, the function that gives access to the Stock::ticker() member function:

PyObject *stock_ticker(PyObject *self, PyObject *args)

{

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!", &PyCapsule_Type, &obj))

 return NULL;

 Stock *stock = getStock(obj);

 return Py_BuildValue("s", stock->ticker().c_str());

}

In this function, the first step is to validate the input arguments, which uses the

PyArg_ParseTuple function. The PyArg_ParseTuple function receives as arguments the

container of the data and a string that determines the type of each argument, followed

by pointers to variables where the data will be stored. The object to be retrieved in this

case is of type PyCapsule, as defined in the remaining arguments (which give the object

type and a pointer to an object variable). Once the argument is retrieved, you can use the

getStock function to fetch the Stock pointer. Finally, the ticker() member function is

called. To return the data to the Python interpreter, you need to convert the result into

a Python object. This is done with the Py_BuildValue function, which uses a format

string to determine the type of its remaining argument. Other functions are similar, and

their main work is to retrieve data from the argument list and to convert the results into

Python objects.

Chapter 15 Extending Financial Libraries

405

Note E ven if a function that is exposed to Python returns no result, you’re still
required to return a valid Python object. In that case, you can use Py_None, which
represents a standard Python object that means “no data.”

Finally, we have the initstock function. It calls the Py_InitModule function from

the Python API to determine the functions exposed in this module. The Py_InitModule

function receives as parameters the name of the module and an array that contains

a list of all functions (called stockMethods), their names, and descriptions. When

this information is passed to the Python interpreter, it becomes available to Python

developers whenever the stock module is imported.

�Complete Code
Listing 15-2 shows the complete code for the Stock class and its associated Python glue

code.

Listing 15-2.  Class Stock Interface and Implementation

//

// Stock.h

#ifndef __FinancialSamples__Stock__

#define __FinancialSamples__Stock__

#include <string>

class Stock {

public:

 Stock(const std::string &ticker, double price, double div);

 Stock(const Stock &p);

 ~Stock();

 Stock &operator=(const Stock &p);

 std::string ticker();

 double price();

 void setPrice(double price);

 double dividend();

Chapter 15 Extending Financial Libraries

406

 void setDividend(double div);

 double dividendYield();

private:

 std::string m_ticker;

 double m_currentPrice;

 double m_dividend;

};

#endif /* defined(__FinancialSamples__Stock__) */

//

// Stock.cpp

#include "Stock.h"

Stock::Stock(const std::string &ticker, double price, double div)

: m_ticker(ticker),

m_currentPrice(price),

m_dividend(div)

{

}

Stock::Stock(const Stock &p)

: m_ticker(p.m_ticker),

m_currentPrice(p.m_currentPrice),

m_dividend(p.m_dividend)

{

}

Stock::~Stock()

{

}

Stock &Stock::operator=(const Stock &p)

{

 if (this != &p)

 {

 m_ticker = p.m_ticker;

Chapter 15 Extending Financial Libraries

407

 m_currentPrice = p.m_currentPrice;

 m_dividend = p.m_dividend;

 }

 return *this;

}

double Stock::price()

{

 return m_currentPrice;

}

void Stock::setPrice(double price)

{

 m_currentPrice = price;

}

double Stock::dividend()

{

 return m_dividend;

}

void Stock::setDividend(double div)

{

 m_dividend = div;

}

double Stock::dividendYield()

{

 return m_dividend / m_currentPrice;

}

std::string Stock::ticker()

{

 return m_ticker;

}

//

// Stock_Py.cpp

Chapter 15 Extending Financial Libraries

408

#include "Stock_Py.h"

#include "Stock.h"

#include <Python.h>

#include <pycapsule.h>

#include <stdio.h>

namespace {

void stock_destructor(PyObject *capsule)

{

 printf("calling destructor\n");

 �Stock *stock = reinterpret_cast<Stock*>(PyCapsule_GetPointer(capsule,

NULL));

 delete stock;

}

PyObject *stock_create(PyObject *self, PyObject *args)

{

 char *ticker;

 double price;

 double dividend;

 if (!PyArg_ParseTuple(args, "sdd", &ticker, &price, ÷nd))

 return NULL;

 �printf("ticker: %s, price: %lf, dividend: %lf\n", ticker, price,

dividend);

 Stock *stock = new Stock(ticker, price, dividend);

 PyObject* stockObj = PyCapsule_New(stock, NULL, stock_destructor);

 return stockObj;

}

Stock *getStock(PyObject *obj)

{

 if (!PyCapsule_CheckExact(obj))

 printf("error: not a stock object\n");

Chapter 15 Extending Financial Libraries

409

 fflush(stdout);

 return reinterpret_cast<Stock*>(PyCapsule_GetPointer(obj, NULL));

}

PyObject *returnNone()

{

 Py_INCREF(Py_None);

 return Py_None;

}

PyObject *stock_ticker(PyObject *self, PyObject *args)

{

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!", &PyCapsule_Type, &obj))

 return NULL;

 Stock *stock = getStock(obj);

 return Py_BuildValue("s", stock->ticker().c_str());

}

PyObject *stock_price(PyObject *self, PyObject *args)

{

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!", &PyCapsule_Type, &obj))

 return NULL;

 Stock *stock = getStock(obj);

 return Py_BuildValue("d", stock->price());

}

PyObject *stock_setPrice(PyObject *self, PyObject *args)

{

 double price;

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!d", &PyCapsule_Type, &obj, &price))

 return NULL;

 Stock *stock = getStock(obj);

 if (!stock)

Chapter 15 Extending Financial Libraries

410

 return NULL;

 stock->setPrice(price);

 return returnNone();

}

PyObject *stock_dividend(PyObject *self, PyObject *args)

{

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!", &PyCapsule_Type, &obj))

 return NULL;

 Stock *stock = getStock(obj);

 if (!stock)

 return NULL;

 return Py_BuildValue("d", stock->dividend());

}

PyObject *stock_setDividend(PyObject *self, PyObject *args)

{

 double dividend;

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!d", &PyCapsule_Type, &obj, ÷nd))

 return NULL;

 Stock *stock = getStock(obj);

 stock->setDividend(dividend);

 return returnNone();

}

PyObject *stock_dividendYield(PyObject *self, PyObject *args)

{

 PyObject *obj;

 if (!PyArg_ParseTuple(args, "O!", &PyCapsule_Type, &obj))

 return NULL;

 Stock *stock = getStock(obj);

 return Py_BuildValue("d", stock->dividendYield());

}

Chapter 15 Extending Financial Libraries

411

PyMethodDef stockMethods[] = {

 {"new", stock_create, METH_VARARGS, "Create a new stock object."},

 �{"ticker", stock_ticker, METH_VARARGS, "get ticker for a stock object."},

 {"price", stock_price, METH_VARARGS, "get price for stock."},

 �{"setPrice", stock_setPrice, METH_VARARGS, "set price for a stock object."},

 {"dividend", stock_dividend, METH_VARARGS, "get dividend for stock."},

 �{"setDividend", stock_setDividend, METH_VARARGS, "set dividend for a

stock object."},

 �{"dividendYield", stock_dividendYield, METH_VARARGS, "get dividend

yield for stock."},

 {NULL, NULL, 0, NULL}

};

}

PyMODINIT_FUNC initstock()

{

 Py_InitModule("stock", stockMethods);

}

#

stock-setup.py

from distutils.core import setup, Extension

setup(name="stock", version="1.0",

 ext_modules=[Extension("stock", ["Stock.cpp", "Stock_Py.cpp"])])

�Running the Code
The process of building a Python extension module is a little different from what

you did for other C++ applications described in this book. The process requires the

creation of a loadable module, which has a different form in each platform, such as a

dll (on Windows) or shared object file on many UNIX systems. To simplify this process,

the Python developers created a tool that uses a setup.py file to perform the build

Chapter 15 Extending Financial Libraries

412

automatically. Using setup.py, you don’t need to figure out particular build information

such as including directories and linking libraries. As you can see in Listing 15-1, the

file stock-setup.py describes the extension, with the source files necessary to build

the module. The building process (executed on a Mac OS X system) is shown as follows.

As seen in the listing, the C++ building is generated automatically by Python using the

build_ext option.

$ python stock-setup.py build_ext -i

running build_ext

building 'stock' extension

cc -fno-strict-aliasing -fno-common -dynamic -arch x86_64 -arch i386 -g -Os

 -pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG

 -Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall

 -Wstrict-prototypes -DENABLE_DTRACE -arch x86_64 -arch i386 -pipe -I/

System/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7

 -c Stock.cpp -o build/temp.macosx-10.9-intel-2.7/Stock.o

cc -fno-strict-aliasing -fno-common -dynamic -arch x86_64 -arch i386 -g -Os

 -pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG

 -Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall

 -Wstrict-prototypes -DENABLE_DTRACE -arch x86_64 -arch i386 -pipe -I/

System/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7

 -c Stock_Py.cpp -o build/temp.macosx-10.9-intel-2.7/Stock_Py.o

c++ -bundle -undefined dynamic_lookup -arch x86_64 -arch i386 -Wl,-F.

build/temp.macosx-10.9-intel-2.7/Stock.o build/temp.macosx-10.9-intel-2.7/

Stock_Py.o -o /Users/carlosoliveira/code/FinancialSamples/FinancialSamples/

stock.so

Once the module is compiled, it can be easily loaded into a Python script or iterative

session. The following is a transcript of a sample use of the stock module:

$ python

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Chapter 15 Extending Financial Libraries

413

Type "help", "copyright", "credits" or "license" for more information.

>>> import stock

>>> a = stock.new('IBM',1,1)

ticker: IBM, price: 1.000000, dividend: 1.000000

>>> stock.setPrice(a, 105)

>>> stock.price(a)

105.0

>>> stock.setDividend(a, 2.2)

>>> stock.dividend(a)

2.2

>>> stock.dividendYield(a)

0.020952380952380955

�Exporting C++ Classes Directly to Python
Write C++ code to export existing classes into Python applications.

�Solution
In the section “Exporting C++Stock Handling Code to Python,” you saw how C++ code

can be exported to Python using the module mechanism. Through the external Python

API, it is possible to expose functions and classes that were previously created using C++.

However, the external API also imposes the creation of glue code that is not only a boring

task but also an error-prone job, which could be better done by a computer.

To simplify some of the issues raised by the external Python API, a new boost

library was developed. The boost::python library uses a template-based mechanism

to automatically create the integration code required by Python. In this way, developers

can more easily expose classes, variables, and function using a set of C++ templates

while avoiding repetitive tasks such as converting data from and to Python objects. The

following are a few advantages of using boost to export C++ code to Python:

•	 Avoid boilerplate: A lot of the code necessary to export C++ classes

into Python modules is simple and repetitive. Using a template

solution makes it easy to reduce or totally remove much of the

boilerplate code needed by the Python external API.

Chapter 15 Extending Financial Libraries

414

•	 Provide type safety: In Python, objects have all the same type

PyObject. While there is runtime checking for the correct type in

Python, you should be able to use C++ compile-time checking

whenever possible. With boost::python, C++ types are used, and

conversion into Python is done automatically and only when needed.

•	 Reduce programming effort: Using the boost library, you can

leverage a lot of code that has been developed to solve the specific

problem of exporting C++ classes to Python. By using the Python API

directly, you may encounter problems that have already been solved

in boost::python. As in other areas of C++ programming, the ideal

is to reuse good libraries and designs instead of reinventing existing

solutions.

Despite the advantages of boost::python, there are also some reasons why you may

want to avoid it and use the Python API directly:

•	 Size of the project: Sometimes, you need it to export only a single

class or function to Python for a special use. In that case, it may be

just as easy to stick to the Python API and skip boost::python.

•	 Boost integration: If your project doesn’t use boost, or if you’re not

allowed to incorporate other boost libraries into your code, then it

would be difficult to use this solution for Python integration.

•	 Special needs of the project: While the templates in boost::python

are very flexible, you may have some additional requirements for

the types you’re exporting. In that case, only the underlying Python

extension API may provide the flexibility needed by your project.

Using the boost::python library is straightforward, and you just need to look at

some examples and its reference to understand how to quickly export classes. In the

code presented in Listing 15-3, I will show how to do this for a single example, the Matrix

class from Chapter 5.

The boost::python library is installed along with other boost libraries, so if boost

is already installed in your system, you should be ready to use it. The main header file

for the library is <boost/python.hpp>, which gives access to all macros and templates

necessary to export C++ classes.

Chapter 15 Extending Financial Libraries

415

The main macro in the library is BOOST_PYTHON_MODULE. This macro is needed to

generate the boilerplate code that the Python runtime expects. In the scope that follows

the macro, you can declare the classes, functions, and other types that will be visible

from Python.

To export C++ classes, the main facility provided is the class_ template. As you

would expect, this template is used to perform the hard work of defining types and

their properties using the underlying Python API. The template parameter for class_

is the class name. The constructor requires a name to be used by Python and a default

constructor. Constructors are defined using the init template, with the parameters

added as template parameters.

Attached to the main class_ template, you will find calls to the def member

function, which is used to define new members to the class. Every time you call def, the

class_ template generates additional code to handle calls from Python code into a given

member function. So, for example, you have the following definition:

def("subtract", &MatrixP::subtract)

Here, the subtract member function is defined with the name listed as the first

argument and the destination of the call listed as the second argument.

�Complete Code
You can see the complete code for the Matrix module in Listing 15-3. The setup.py file at

the end of the listing can be used to build the module.

Listing 15-3.  Matrix Module and Associated setup.py File

//

// Matrix_Py.h

#ifndef __FinancialSamples__Matrix_Py__

#define __FinancialSamples__Matrix_Py__

#include <iostream>

#include "Matrix.h"

class MatrixP : public Matrix {

public:

Chapter 15 Extending Financial Libraries

416

 MatrixP(int a);

 MatrixP(int a, int b);

 MatrixP(const MatrixP &p);

 ~MatrixP();

 void set(int a, int b, double v);

 double get(int a, int b);

};

#endif /* defined(__FinancialSamples__Matrix_Py__) */

//

// Matrix_Py.cpp

#include "Matrix_Py.h"

// include this header file for access to boost::python templates and macros

#include <boost/python.hpp>

// add the using clause to reduce namespace clutter

using namespace boost::python;

MatrixP::MatrixP(int a)

: Matrix(a)

{

}

MatrixP::MatrixP(int a, int b)

: Matrix(a, b)

{

}

MatrixP::MatrixP(const MatrixP &p)

: Matrix(p)

{

}

Chapter 15 Extending Financial Libraries

417

MatrixP::~MatrixP()

{

}

void MatrixP::set(int a, int b, double v)

{

 (*this)[a][b] = v;

}

double MatrixP::get(int a, int b)

{

 return (*this)[a][b];

}

// this macro generates all the boilerplate required by the Python API

BOOST_PYTHON_MODULE(matrix)

{

 // defines a new class to be exported

 class_<MatrixP>("Matrix",

 init<int>()) // the init form defines a constructor

 // another constructor with two int parameters

 .def(init<int, int>())

 �// here are some standard functions (name first, member function

second)

 .def("add", &MatrixP::add)

 .def("subtract", &MatrixP::subtract)

 .def("multiply", &MatrixP::multiply)

 .def("numRows", &MatrixP::numRows)

 .def("trace", &MatrixP::trace)

 .def("transpose", &MatrixP::transpose)

 .def("set", &MatrixP::set)

 .def("get", &MatrixP::get)

 ;

}

#

Chapter 15 Extending Financial Libraries

418

matrix-setup.py

#

python code to build the matrix module

from distutils.core import setup, Extension

you need to include include and library paths for the boost::python

library

setup(name="matrix", version="1.0",

 ext_modules=[Extension("matrix", ["Matrix.cpp", "matrix_Py.cpp"],

 include_dirs=["/opt/local/include/"],

 library_dirs=["/opt/local/lib/"],

 libraries=["boost_python-mt"])])

�Running the Code
To compile the code, you can follow a procedure similar to the one described in the

previous section. This means that you can use the Python build system to compile the

extension (usually into a .so or .dll format). To do this, you need to create a setup

file, which in our case is listed as matrix-setup.py. Notice that the libraries key is

also listed in the matrix-setup.py file. This key tells the build system to link against

the boost_python-mt library. You may also need to change the include_dirs and the

library_dirs keys to the location where boost is installed in your system. The following

is the result of running the setup file through Python:

$ python matrix-setup.py build_ext -i

running build_ext

building 'matrix' extension

cc -fno-strict-aliasing -fno-common -dynamic -arch x86_64 -arch i386 -g -Os

 -pipe

-fno-common -fno-strict-aliasing -fwrapv -DENABLE_DTRACE -DMACOSX -DNDEBUG

 -Wall

-Wstrict-prototypes -Wshorten-64-to-32 -DNDEBUG -g -fwrapv -Os -Wall

 -Wstrict-prototypes -DENABLE_DTRACE -arch x86_64 -arch i386 -pipe -I/opt/

local/include/ -I/System/Library/Frameworks/Python.framework/Versions/2.7/

include/python2.7 -c Matrix.cpp -o build/temp.macosx-10.9-intel-2.7/

Matrix.o

Chapter 15 Extending Financial Libraries

419

c++ -bundle -undefined dynamic_lookup -arch x86_64 -arch i386 -Wl,-F.

build/temp.macosx-10.9-intel-2.7/Matrix.o build/temp.macosx-10.9-intel-2.7/

matrix_Py.o -L/opt/local/lib/ -lboost_python-mt -o /Users/carlosoliveira/

code/FinancialSamples/FinancialSamples/matrix.so

After this process is finished, you should have a file called matrix.so (or matrix.dll,

if you’re building on a Windows system). You can load it with an import statement like

the following:

$ python

Python 2.7.5 (default, Mar 9 2014, 22:15:05)

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import matrix

>>> m = matrix.Matrix(5,5)

>>> m.set(2,2,4)

>>> m.get(2,2)

4.0

�Using Lua as an Extension Language
Use Lua as an extension library for classes written in C++.

�Solution
Lua is a scripting language that was designed to provide extension mechanisms for

C and C++ code and to work as an embedded language for other applications. In this

respect, it has been very successful, with a large number of software products that

currently use Lua to implement extension modules based on existing C and C++ class

libraries. Examples of such uses can be found in computer games, image-processing

packages, and software for the financial industry.

The success of Lua is linked to its simple system, which tries to mix as closely as

possible with the C and C++ environment. With this goal in mind, Lua offers only

the basic mechanisms necessary to build a dynamic, garbage-collected runtime

system. These features of the language have made it an easy choice for the creation of

programmatic extensions to large-scale application code bases.

Chapter 15 Extending Financial Libraries

420

You can download Lua in its source form from the main website http://lua.org.

The easiest way to integrate Lua into a C++ project is to add the source files directly. You

can also decide to create a separate library containing the Lua interpreter and link it to

your application, using information made available in the Lua documentation. To use

Lua as an extension language, the first step is to import and initialize the Lua runtime

engine. This can be done using the Lua C API, which is part of the standard installation

of the language. The main header file, lua.h, gives developers access to the main

features of the runtime engine, as well as to Lua’s standard library.

The following is the main function for the example application, where you can see

the sequence of operations necessary to load Lua into your program:

int main (void) {

 char buff[256];

 lua_State *L = luaL_newstate();

 int error;

 // load some of the (C) libraries included with Lua

 luaopen_base(L);

 luaopen_table(L);

 luaopen_io(L);

 luaopen_string(L);

 luaopen_math(L);

 // load LuaOption object

 LuaWrapper<LuaOption>::Register(L);

 while (fgets(buff, sizeof(buff), stdin) != NULL) {

 error = luaL_loadbuffer(L, buff, strlen(buff), "line") ||

 lua_pcall(L, 0, 0, 0);

 if (error) {

 cerr << lua_tostring(L, -1) << endl;

 lua_pop(L, 1); // remove error from Lua stack

 }

 lua_close(L);

 return 0;

}

Chapter 15 Extending Financial Libraries

http://lua.org

421

Most of the functions in this API use the lua_State structure as a parameter. As you

can see in the aforementioned example, you can create a new lua_State object using

the luaL_newstate function. Once this initialization step has been completed, you can

load some of the libraries included with the Lua runtime. It is possible to choose subsets

of the library using functions such as luaopen_string and luaopen_math, which load

Lua functions to handle strings and math operations, respectively.

The next step is to load any user-defined libraries that you might need into Lua data

tables. The Lua language is organized in such a way that its dynamic information is

stored in a stack, that is, a first-in/first-out data structure. There is a global stack, where

the equivalent of global variables is stored. You can use this stack to store new tables as

necessary. To store individual values, you push them into the stack using functions such

as lua_pushstring, lua_pushnumber, or lua_pushclosure (for functions). You can read

data from the top of the stack using functions such as lua_tonumber.

Another thing that can be done with the Lua runtime is to directly call one of the Lua

functions. To call a function, you need to push the name of the function you want to call

into the stack, followed by the required parameters. Next, you need to call the function

lua_pcall, which performs the call. You can see an example for lua_pcall at the end

of the main function presented previously. Finally, you can access the results of the

function, which on return are stored at the top of the stack.

While this initially seems to be a lot of work, it can be done easily because of the

generic nature of the Lua extension API. I provide an example of how to access a C++

class from Lua code using the Option class, which contains just two data members:

a ticker (string) and the strike price (double). The original class is accessed from Lua

using the class LuaOption. The reason this is necessary has to do with the fact that

Lua can interact only with functions that receive a parameter of type lua_State. Each

method of LuaOption retrieves the data from the stack, calls the corresponding method

in the Option class, and returns the results in the stack. Finally, the LuaOption class is

registered with the help of the template LuaWrap.

�Complete Code
The example in Listing 15-4 shows how to use the Lua API to embed an extension

language into your application. The only class exposed in this example is the Option

class. The class LuaOption is a simple wrapper for Option, and it is responsible for

converting parameters from and to Lua types. The main function has the ability of

loading a Lua file and calling any functions contained in it.

Chapter 15 Extending Financial Libraries

422

Listing 15-4.  Class Option and Its Lua Wrapper LuaOption

//

// Option.h

#ifndef __FinancialSamples__Option__

#define __FinancialSamples__Option__

#include <string>

class Option {

public:

 Option(const std::string &ticker, double strike);

 Option(const Option &p);

 ~Option();

 Option &operator=(const Option &p);

 std::string ticker();

 double strike();

 void setTicker(const std::string &);

 void setStrike(double);

private:

 std::string m_ticker;

 double m_strike;

};

#endif /* defined(__FinancialSamples__Option__) */

//

// Option.cpp

#include "Option.h"

Option::Option(const std::string &ticker, double strike)

: m_ticker(ticker),

 m_strike(strike)

{

}

Chapter 15 Extending Financial Libraries

423

Option::Option(const Option &p)

: m_ticker(p.m_ticker),

 m_strike(p.m_strike)

{

}

Option::~Option()

{

}

.

Option &Option::operator=(const Option &p)

{

 if (this != &p)

 {

 m_ticker = p.m_ticker;

 m_strike = p.m_strike;

 }

 return *this;

}

std::string Option::ticker()

{

 return m_ticker;

}

double Option::strike()

{

 return m_strike;

}

void Option::setTicker(const std::string &s)

{

 m_ticker = s;

}

void Option::setStrike(double val)

{

 m_strike = val;

}

Chapter 15 Extending Financial Libraries

424

//

// LuaOption.h

#ifndef __FinancialSamples__LuaOption__

#define __FinancialSamples__LuaOption__

#include "LuaWrap.h"

class Option;

#include <string>

class LuaOption {

public:

 LuaOption(lua_State *l);

 void setObject(lua_State *l);

.

 static const char className[];

 static LuaWrapper<LuaOption>::RegType methods[];

 // Lua functions should receive lua_State and return int

 int ticker(lua_State *l);

 int strike(lua_State *l);

 int setTicker(lua_State *l);

 int setStrike(lua_State *l);

private:

 Option *m_option;

};

#endif /* defined(__FinancialSamples__LuaOption__) */

//

// LuaOption.cpp

#include "LuaOption.h"

#include "Option.h"

#include <lauxlib.h>

const char LuaOption::className[] = "Option";

Chapter 15 Extending Financial Libraries

425

LuaOption::LuaOption(lua_State *L)

{

 m_option = (Option*)lua_touserdata(L, 1);

}

void LuaOption::setObject(lua_State *L)

{

 m_option = (Option*)lua_touserdata(L, 1);

}

int LuaOption::ticker(lua_State *L)

{

 lua_pushstring(L, m_option->ticker().c_str());

 return 1;

}

int LuaOption::strike(lua_State *L)

{

 lua_pushnumber(L, m_option->strike());

 return 1;

}

int LuaOption::setTicker(lua_State *L)

{

 m_option->setTicker((const char*)luaL_checkstring(L, 1));

 return 0;

}

.

int LuaOption::setStrike(lua_State *L)

{

 m_option->setStrike((double)luaL_checknumber(L, 1));

 return 0;

}

#define method(class, name) {#name, &class::name}

LuaWrapper<LuaOption>::RegType LuaOption::methods[] = {

 method(LuaOption, ticker),

 method(LuaOption, strike),

Chapter 15 Extending Financial Libraries

426

 method(LuaOption, setTicker),

 method(LuaOption, setStrike),

 {0,0}

};

//

// LuaWrapper.h

// original code from luna wrapper example (from http://lua-users.org/wiki/

LunaWrapper)

#ifndef __FinancialSamples__Luna__

#define __FinancialSamples__Luna__

#include <lua.h>

template<class T> class LuaWrapper {

public:

 static void Register(lua_State *L) {

 lua_pushcfunction(L, &LuaWrapper<T>::constructor);

 lua_setglobal(L, T::className);

 luaL_newmetatable(L, T::className);

 lua_pushstring(L, "__gc");

 lua_pushcfunction(L, &LuaWrapper<T>::gc_obj);

 lua_settable(L, -3);

 }

 static int constructor(lua_State *L) {

 T* obj = new T(L);

 lua_newtable(L);

 lua_pushnumber(L, 0);

 T** a = (T**)lua_newuserdata(L, sizeof(T*));

 *a = obj;

 luaL_getmetatable(L, T::className);

 lua_setmetatable(L, -2);

 lua_settable(L, -3); // table[0] = obj;

 for (int i = 0; T::methods[i].name; i++) {

Chapter 15 Extending Financial Libraries

427

 lua_pushstring(L, T::methods[i].name);

 lua_pushnumber(L, i);

 lua_pushcclosure(L, &LuaWrapper<T>::thunk, 1);

 lua_settable(L, -3);

 }

 return 1;

 }.

 static int thunk(lua_State *L) {

 int i = (int)lua_tonumber(L, lua_upvalueindex(1));

 lua_pushnumber(L, 0);

 lua_gettable(L, 1);

 T** obj = static_cast<T**>(luaL_checkudata(L, -1, T::className));

 lua_remove(L, -1);

 return ((*obj)->*(T::methods[i].mfunc))(L);

 }

 static int gc_obj(lua_State *L) {

 T** obj = static_cast<T**>(luaL_checkudata(L, -1, T::className));

 delete (*obj);

 return 0;

 }

 struct RegType {

 const char *name;

 int(T::*mfunc)(lua_State*);

 };

};

#endif /* defined(__FinancialSamples__LuaWrapper__) */

//

// LuaMain.cpp

#include "LuaMain.h"

#include <iostream>

.

Chapter 15 Extending Financial Libraries

428

#include <string.h>

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>

using std::cout;

using std::cerr;

using std::endl;

int main (void) {

 char buff[256];

 lua_State *L = luaL_newstate();

 int error;

 // load some of the (C) libraries included with Lua

 luaopen_base(L);

 luaopen_table(L);

 luaopen_io(L);

 luaopen_string(L);

 luaopen_math(L);

 // load LuaOption object

 LuaWrapper<LuaOption>::Register(L);

 while (fgets(buff, sizeof(buff), stdin) != NULL) {

 error = luaL_loadbuffer(L, buff, strlen(buff), "line") ||

 lua_pcall(L, 0, 0, 0);

 if (error) {

 cerr << lua_tostring(L, -1) << endl;

 lua_pop(L, 1); // remove error from Lua stack

 }

 }

 lua_close(L);

 return 0;

}.

Chapter 15 Extending Financial Libraries

429

�Running the Code
.You can build the code in Listing 15-4 using any standards-compliant C++ compiler. The

only additional step is that you will have to add the path for the Lua including files and

libraries in the compiler configuration. For example, in my system, I compiled the Lua

files in the directory /code/lua-5.2.3/src/, so this code can be built as follows:

$ c++ -o luatest Option.cpp LuaOption.cpp LuaMain.cpp -I/Users/code/lua-

5.2.3/src \

 -L/Users /code/lua-5.2.3/src/ -llua

�Conclusion
Extension languages such as Python and Lua have become very popular in the last few

years. They provide the ability to quickly develop applications that are composed of

existing components. Thanks to C++ flexibility, however, as you have seen, it is possible

to create C++ libraries that can be easily integrated with these languages.

Initially, you have seen how to use Python as an extension language for C++ classes.

The class presented as an example can be accessed directly from Python code by simply

using the Python external API. You have seen how to convert data from and into the data

structures maintained by Python. In a second coding example, you learned how to use

the boost::python library, which provides a more concise way to export C++ data types

to Python. I have discussed some of the advantages and disadvantages of each method.

Lua is another language that has grown in popularity in the last few years. With

its small footprint, Lua is an ideal candidate for the position of extension language for

libraries written in C++. Due to its simplicity and modularity, you can easily embed the

Lua interpreter in a C++ application. In this chapter, you saw a C++ coding technique

that shows how to easily integrate Lua into your applications.

Using your C++ code as an external library is one of the many ways you can connect

with other tools and environments. Another option is to integrate your financial C++

code into existing scientific programming tools. Two of the most often used scientific

tools for data analysis are R and Maxima. In Chapter 16, you will learn more about these

tools and how to integrate C++ into the workflow provided by these applications.

Chapter 15 Extending Financial Libraries

431
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_16

CHAPTER 16

Using C++ with R and
Maxima
One of the advantages of code implemented in C++ is that it can be used as part of

native libraries or stand-alone applications and also integrated as a component of other

development and modeling environments. In the financial industry, for instance, it is

common to have lower-level modules implemented in C++, with high-level analysis

being performed in more user-oriented environments such as Excel, Mathematica,

Matlab, Maxima, R, and Octave.

When using a high-level data analysis environment, it is crucial to have numeric

results that are identical to the ones achieved in native code and to access the same

underlying libraries that are already coded in C++. For this reason, an important skill for

programmers working in the financial industry is to be able to integrate existing code

with one or more of the analytical applications used by analysts and mathematicians.

In this chapter, we show you how to incorporate financial libraries developed in C++

into two well-known simulation and modeling environments for financial analysis: R

and Maxima. These are open source applications that are freely available on multiple

platforms. However, the examples you see in this chapter demonstrate principles

that can be applied to other commercial tools in the areas of statistics, simulation,

engineering, and mathematics.

The following are a few topics that you will learn about in this chapter:

•	 Integrating C++ with R: Users of the R language have created a rich

ecosystem of statistical libraries and applications. However, it is

sometimes necessary to integrate C++ code as part of the analysis

performed in R. You will see in this chapter how to easily embed C++

classes into this system, both for increased performance as well as for

consistency with other applications deployed in C++.

https://doi.org/10.1007/978-1-4842-6834-6_16#DOI

432

•	 Integrating C++ with Maxima: The Maxima Computer Algebra

System is used to develop precise mathematical models with a

simple, high-level language. It is also used for its visualization

facilities. You can easily integrate existing C++ libraries into Maxima

using the shared library mechanism supported by the language.

�Integrating C++ with R
Create a C++ class to calculate the present value of a set of payments and that can be

called from the R interpreter.

�Solution
R is a programming environment that was created to perform statistical analysis of large

data sets. Due to its easy-to-use and advanced statistical abilities, R has become the most

used environment for data analysis and is the de facto standard in some areas such as

data mining. A growing number of statisticians and engineers use R daily to study the

properties of large data sets.

R is available for the most common operating systems and computer architectures.

You can download it for free from the official website at www.r-project.org. After

running the required installation method for your operating system, you will be able to

start the iterative interpreter for the language. The standard R environment is able to run

R scripts and single commands. You can use these tools to perform quick data analysis

and create plots based on existing data. You can see in Figure 16-1 what the main

application window for the R console looks like.

Chapter 16 Using C++ with R and Maxima

http://www.r-project.org

433

R is typically used to perform a large range of mathematical algorithms and data

analysis tasks. For example, a common use of R is to run standard statistical procedures,

such as mean squared error and other types of statistical regression. R has also been

used to implement statistical tests tailored for financial data sets. As a consequence, it

can be very useful to be able to load C++ code into the dynamic environment provided in

the R console.

To make it possible to use C++ classes in R, you need to employ the R extension

application programming interface (API). The extension API consists of a set of C-based

functions that interact with the R runtime. For example, you can use the API to retrieve

and convert values from R. Similarly, you can use the API for common tasks such as

calling mathematical functions and random number generators, among others.

To create C++ functions and classes that access the R extension library, you need to

include the header file R.h. This header is the main C file that coordinates access to the

many API declarations exported by the R runtime.

Figure 16-1.  R console window on Mac OS X

Chapter 16 Using C++ with R and Maxima

434

For example, suppose that you need a fast way to determine the present value of a

set of future payments. You can do this by creating your own C++ solution and using the

R extension mechanism to export this solution to R. To understand the general idea of

present-value calculations, you can refer to Chapter 1, where I discussed tools for fixed

income analysis.

The main functionality is encoded in the RExtension class. The two main methods

in this class are addCashPayment, which can be used to add a new cash flow that will be

later considered by the algorithm, and presentValue, which calculates the present value

of all cash payments added up to this point. The calculation of present value uses the

following formula:

	 i

N
i

T

V
R i

�
�

�� �1 1 	

In this equation, Vi is the value of the i-th cash flow, Ti is the time of the i-th cash

flow, and R is the interest rate.

The real entry point for the R interpreter is the presentValue function, which is

declared in the following way:

extern "C" {

void presentValue(int *, double *, int *, double *, double *);

}

The reason for the extern "C" statement in this declaration is to avoid the normal

mangling of function names that is performed by the C++ compiler. Only the name of

the function is affected, and the contents of the function can use most C++ features. By

declaring the function in such a way, the presentValue name will be maintained in the

library without modifications, so that the R interpreter can view and access it.

The definition of the presentValue function is not unusual. The only difference to

normal C++ code is that all parameters are passed as pointers. This is the way in which

the R runtime allows data to be shared between the interpreter and the C++ code.

Using pointers, the called function can both read and modify the passed arguments,

if necessary. The implementation of the function uses the information passed in the

parameters, which include the number of elements in the cash flow vector, the interest

rate, then a vector with time indication, followed by a vector of cash flows. The last

parameter is a pointer to the result value.

Chapter 16 Using C++ with R and Maxima

435

�Complete Code
Listing 16-1 shows the implementation of class RExtension. The main parts are the

definition of the class, which contains the functionality to calculate the present value of

a set of cash flows, and the presentValue function, which can be directly accessed from

the R runtime.

Listing 16-1.  Code for the R Extension Library

//

// RExtension.h

#ifndef __FinancialSamples__RExtension__

#define __FinancialSamples__RExtension__

#include <vector>

class RExtension {

public:

 RExtension(double rate);

 RExtension(const RExtension &p);

 ~RExtension();

 RExtension &operator=(const RExtension &p);

 void addCashPayment(double value, int timePeriod);

 double presentValue();

private:

 std::vector<double> m_cashPayments;

 std::vector<int> m_timePeriods;

 double m_rate;

 double presentValue(double futureValue, int timePeriod);

};

#endif /* defined(__FinancialSamples__RExtension__) */

//

// RExtension.cpp

#include "RExtension.h"

Chapter 16 Using C++ with R and Maxima

436

#include <iostream>

#include <cmath>

using std::cout;

using std::endl;

extern "C" {

void presentValue(int *, double *, int *, double *, double *);

}

void presentValue(int *numPayments, double *intRate,

 int *timePeriods, double *payments, double *result)

{

 int n = *numPayments;

 RExtension re(*intRate);

 for (int i=0; i<n; ++i)

 {

 re.addCashPayment(payments[i], timePeriods[i]);

 }

 *result = re.presentValue();

}

RExtension::RExtension(double rate)

: m_rate(rate)

{

}

RExtension::RExtension(const RExtension &v)

: m_rate(v.m_rate)

{

}

RExtension::~RExtension()

{

}

RExtension &RExtension::operator =(const RExtension &v)

Chapter 16 Using C++ with R and Maxima

437

{

 if (this != &v)

 {

 this->m_cashPayments = v.m_cashPayments;

 this->m_timePeriods = v.m_timePeriods;

 this->m_rate = v.m_rate;

 }

 return *this;

}

void RExtension::addCashPayment(double value, int timePeriod)

{

 m_cashPayments.push_back(value);

 m_timePeriods.push_back(timePeriod);

}

double RExtension::presentValue(double futureValue, int timePeriod)

{

 double pValue = futureValue / pow(1+m_rate, timePeriod);

 cout << " value " << pValue << endl;

 return pValue;

}

double RExtension::presentValue()

{

 double total = 0;

 for (unsigned i=0; i<m_cashPayments.size(); ++i)

 {

 total += presentValue(m_cashPayments[i], m_timePeriods[i]);

 }

 return total;

}

Chapter 16 Using C++ with R and Maxima

438

�Running the Code
The code presented in the previous section can be built using any standards-compliant

C++ compiler. However, the R interpreter makes it very easy to create an extension

library using the CMD option of the R command. This build technique allows you to

quickly create a shared object file that contains all the necessary C++ code, in a way that

can be readily imported into the R runtime. Using the CMD option of the R interpreter,

you also don’t need to worry about the correct compiler, the right location of header

files, and link libraries, as well as other common compilation parameters.

Here is how I generated a binary object from the given source file (this was run on a

Mac OS X system, but the result should be similar in other platforms). The compilation

command is automatically generated by R using the SHLIB option, so you don’t need to

worry about the locations of libraries.

$ R CMD SHLIB code/FinancialSamples/FinancialSamples/RExtension.cpp

g++ -arch x86_64 -I/Library/Frameworks/R.framework/Resources/include

 -DNDEBUG

-I/usr/local/include -fPIC -mtune=core2 -g -O2 -c

code/FinancialSamples/FinancialSamples/RExtension.cpp -o

code/FinancialSamples/FinancialSamples/RExtension.o

g++ -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined

dynamic_lookup -single_module -multiply_defined suppress -L/usr/local/lib

 -L/usr/local/lib -o

code/FinancialSamples/FinancialSamples/RExtension.so

code/FinancialSamples/FinancialSamples/RExtension.o -F/Library/

Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation

Once the shared object has been created (this is a file with a .so extension on UNIX

or .dll extension on Windows), you can load it into the R interpreter using the dyn.

load function with the name of the file as the single parameter. After that, you just need

to use the .C function to call the compiled C or C++ function. For this to work, you need

to provide the function name as the first argument, followed by the arguments to the

function. You need to ensure, however, that the values passed to the function are marked

with the right parameter types (using functions such as as.integer and as.double).

After the .C function is executed, the resulting values are printed in the interpreter

window. Here is a sample session, where I import and use the RExtension module.

Chapter 16 Using C++ with R and Maxima

439

$ R

> dyn.load("RExtension.so")

> .C("presentValue", n=as.integer(4), r=as.double(0.05), t=as.

integer(c(1,2,3,4)), p=as.double(c(3,4,5,6)), res=as.double(0))

 value 2.85714

 value 3.62812

 value 4.31919

 value 4.93621

$n

[1] 4

$r

[1] 0.05

$t

[1] 1 2 3 4

$p

[1] 3 4 5 6

$res

[1] 15.74066

>

The desired result is printed as the content of the variable res, which in this case is

15.74066.

�Integrating with the Maxima CAS
Implement a class to compute option probabilities that can be accessed using the

Maxima computer algebra system.

Chapter 16 Using C++ with R and Maxima

440

�Solution
The R environment is an example of a successful application that has been used in

the statistical analysis of data sets. Another class of mathematical applications that is

commonly employed in data analysis is a computer algebra system (CAS). Financial

analysts use such applications to perform algebraic transformations on mathematical

functions and expressions. For example, such systems can be used to perform tasks such

as solving equations, finding derivatives and integrals, or factoring polynomials. Well-

known applications in this category include Mathematica, Maple, and Maxima.

In this section, you will learn how to interact with Maxima, an open source CAS

that can be used to assist in the development of mathematical models in finance. You

will also understand how to incorporate new or existing C++ code into Maxima, so that

you can run iterative experiments with the code while using the Maxima interpreter for

visualization purposes.

The Maxima CAS is an open source application that can be freely downloaded and

installed from its Internet repository. The main website for the project is located at

http://maxima.sourceforge.net. Once installed, Maxima can be run using one of the

existing front ends that are installed by default. The most commonly used front end to

Maxima is wxMaxima, a cross-platform application available for the Windows, Mac OS

X, and Linux operating systems. You can also download wxMaxima for free: the latest

version is available on the developer’s website at http://wxmaxima.sourceforge.net/.

Figure 16-2 shows the main window of the wxMaxima application.

Chapter 16 Using C++ with R and Maxima

http://maxima.sourceforge.net
http://wxmaxima.sourceforge.net/

441

The wxMaxima application is an ideal environment for loading data and performing

data analysis, including graphs, summary tables, and simple charts. This functionality

can be used to perform quick studies on financial data, based on the results of

algorithms such as the ones we discussed in the previous chapters. To integrate existing

C++ code with the Maxima environment, you need to create a library that is compatible

with the conventions stated on Maxima documentation. In this section, you will learn

how to do so with a sample class that calculates options probabilities.

The first step in integrating C++ with Maxima is to create a shared object library

that can be loaded by the application. Creating such a library can be easily done with

most compilers and integrated development environments (IDEs). I will show how

this can be done in Windows with the MingW gcc compiler. Other environments have

similar features and most of these instructions will be similar, but you need to check the

documentation in Maxima’s website.

Figure 16-2.  Main window for the wxMaxima application, a front end for the
Maxima CAS

Chapter 16 Using C++ with R and Maxima

442

In Windows, the gcc compiler can be used to create dll files from C++ code. The

contents of the dll will include the class OptionsProbabilities, which was explained

in Chapter 14. For ease of reference, I include the header file for the class in Listing 16-2.

The main operations of the class OptionsProbabilities are used to calculate specific

probabilities, such as the probability that an option will be above or below the strike

price, as calculated with probFinishAboveStrike and probFinishBelowStrike. You can

also compute the probability of finishing between prices using the member function

probFinalPriceBetweenPrices. Then, it is necessary to create the glue code in file

OptionProbabilityExportedFunctions.cpp. This file declares functions that can be

viewed by clients that import the dll.

Consider, for example, the function optionProbFinishAboveStrike. The extern

"C" part of the declaration says the function name should not be modified by the

C++ compiler, so that it can be found at runtime. The __declspec(dllexport)

declaration tells the compiler and linker that this function should be exported in the

resulting dll. Everything else is normal C++ code that instantiates an object of class

OptionsProbabilities and calls the desired function.

The next part of the problem that you need to solve is how to tell Maxima to find

these external functions. This is done using a simple lisp file that can be loaded by

Maxima. Lisp is the internal programming language used by Maxima to implement all

its functionality. To extend Maxima using lower-level code, you frequently have to create

some lisp functions. In this case, however, we will use only two lisp functions that create

all the necessary C++ code connecting to the dll created earlier.

The lisp file is named optionProbabilities.l and is shown in Listing 16-2. There

are two parts in this file: the first part is a clines function that contains C code that will

be compiled and used by Maxima. The second part is a set of lisp declarations for the

desired functions. The code inside clines has to be between quotes, and for this reason,

it needs to escape any quotes (and backslash characters) using a backslash. Other than

that, you can type any normal C statement. You will find that there are four functions that

load the desired code from the dll.

The first function in optionProbabilities.l, loadLibrary, is responsible for

loading the dll if this has not been done already. This is done using two Windows API

functions: LoadLibraryA and GetProcAddress. The function LoadLibraryA takes the

name of the library as parameter and returns a reference to it, if the load was successful.

The function GetProcAddress, on the other hand, retrieves a pointer to the function

Chapter 16 Using C++ with R and Maxima

443

named as in its second parameter. Once loadLibrary has completed its work, you will

have pointers to the three functions exported in the file optprob.dll.

The next three functions in optionProbabilities.l are then used to call each of

the desired functions in the dll. The file ends with three declarations that tell Maxima to

accept these functions as top-level operations, along with the desired types.

�Complete Code
In Listing 16-2, you can find the complete code for using the OptionsProbabilities

class from the Maxima CAS. After the C++ code, you can also see the lines of lisp code

necessary to import the class into the Maxima environment.

Listing 16-2.  Class OptionsProbabilities and Associated Maxima Code

//

// OptionsProbabilities.h

#ifndef __FinancialSamples__OptionsProbabilities__

#define __FinancialSamples__OptionsProbabilities__

#include <vector>

class OptionsProbabilities {

public:

 �OptionsProbabilities(double initialPrice, double strike, double

avgStep, int nDays);

 OptionsProbabilities(const OptionsProbabilities &p);

 ~OptionsProbabilities();

 OptionsProbabilities &operator=(const OptionsProbabilities &p);

 void setNumIterations(int n);

 double probFinishAboveStrike();

 double probFinishBelowStrike();

 double probFinalPriceBetweenPrices(double lowPrice, double highPrice);

 std::vector<double> getWalk();

Chapter 16 Using C++ with R and Maxima

444

private:

 double m_initialPrice;

 double m_strike;

 double m_avgStep;

 int m_numDays;

 int m_numIterations;

 double gaussianValue(double mean, double sigma);

 double getLastPriceOfWalk();

};

#endif /* defined(__FinancialSamples__OptionsProbabilities__) */

//

// OptionProbabilityExportedFunctions.cpp

#include "OptionsProbabilities.h"

extern "C" double __declspec(dllexport) optionProbFinishAboveStri

ke(double initialPrice, double strike, double avgStep, int nDays)

{ OptionsProbabilities optP(initialPrice, strike, avgStep, nDays);

 return optP.probFinishAboveStrike();

}

extern "C" double __declspec(dllexport) optionProbFinishBelowStri

ke(double initialPrice, double strike, double avgStep, int nDays)

{ OptionsProbabilities optP(initialPrice, strike, avgStep, nDays);

return optP.probFinishBelowStrike();

}

extern "C" double __declspec(dllexport) optionProbFinishBetweenPrices

(double initialPrice, double strike, double avgStep, int nDays, double

lowPrice, double highPrice) { OptionsProbabilities optP(initialPrice,

strike, avgStep, nDays); return optP.probFinalPriceBetweenPrices(lowPrice,

highPrice);

}

Chapter 16 Using C++ with R and Maxima

445

;;

;; file optionProbabilities.l

;;

(lisp:clines "

static double (*optionProbFinishAboveStrike_)(double,double,double,int) =

NULL;

static double (*optionProbFinishBelowStrike_)(double,double,double,int) =

NULL;

 �static double (*optionProbFinishBetweenPrices_)(double,double,double,int,

double,double) = NULL;

__declspec (dllimport) void *__stdcall LoadLibraryA(const char *);

void *__stdcall GetProcAddress(void *,const char *);

__declspec (dllimport) unsigned int __stdcall GetLastError(void);

static int libraryLoaded = 0;

static const char *libName = \"optprob.dll\";

static int loadLibrary() {

 void *lib = LoadLibraryA(libName);

 if (!lib) return 0;

 �optionProbFinishAboveStrike_ = GetProcAddress(lib,

\"optionProbFinishAboveStrike\");

 �optionProbFinishBelowStrike_ = GetProcAddress(lib,

\"optionProbFinishBellowStrike\");

 �optionProbFinishBetweenPrices_ = GetProcAddress(lib,

\"optionProbFinishBetweenPrices\");

 libraryLoaded = 1;

 return 1;

}

double l_optionProbFinishAboveStrike(double a,double b,double c,int d) {

 if (!libraryLoaded && !loadLibrary()) return -1; /* error code */

 if (!optionProbFinishAboveStrike_) return -2;

 return optionProbFinishAboveStrike_(a, b, c, d);

}

Chapter 16 Using C++ with R and Maxima

446

double l_optionProbFinishBelowStrike(double a,double b,double c,int d) {

 if (!libraryLoaded && !loadLibrary()) return -1; /* error code */

 return optionProbFinishAboveStrike_(a, b, c, d);

}

double l_optionProbFinishBetweenPrices(double a,double b,double c,int

d,double e,double f) {

 if (!libraryLoaded && !loadLibrary()) return -1; /* error code */

 return optionProbFinishBetweenPrices_(a, b, c, d, e, f);

}

")

(lisp:defentry $optionProbFinishAboveStrike (lisp:double lisp:double

lisp:double lisp:int)

 (lisp:double "l_optionProbFinishAboveStrike"))

(lisp:defentry $optionProbFinishBelowStrike (lisp:double lisp:double

lisp:double lisp:int)

 (lisp:double "l_optionProbFinishBelowStrike"))

(lisp:defentry $optionProbFinishBetweenPrices(lisp:double lisp:double

lisp:double lisp:int lisp:double lisp:double)

 (lisp:double "l_optionProbFinishBetweenPrices"))

�Running the Code
Once you have created the code described in Listing 16-2, the next step is to build and

run it using the Maxima CAS. First, you need to create the dll using the MingW gcc

compiler. Here is the command line I used (you may need to adjust this to use the library

paths in your system).

g++ "-IC:\\bin\\boost_1_55_0\\" -O0 -g3 -Wall -c -fmessage-length=0 -o \

"src\\OptionProbabilityExportedFunctions.o" "..\\src\\

OptionProbabilityExportedFunctions.cpp"

g++ "-IC:\\bin\\boost_1_55_0\\" -O0 -g3 -Wall -c -fmessage-length=0 -o \

"src\\OptionsProbabilities.o" "..\\src\\OptionsProbabilities.cpp"

g++ -shared -o optprob.dll "src\\TestClass.o" "src\\OptionsProbabilities.o"

\ "src\\OptionProbabilityExportedFunctions.o"

Chapter 16 Using C++ with R and Maxima

447

Once the dll has been created, you can now use Maxima to load it. For these

instructions to work, you need to make sure that Maxima is using GCL (Gnu Common

Lisp) as the underlying lisp engine (you can determine this when downloading or

building Maxima). The following lines tell you this information when Maxima is started:

Maxima 5.31.2 http://maxima.sourceforge.net

using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL)

Distributed under the GNU Public License. See the file COPYING.

The following is a transcript of a session with Maxima that shows how this works:

/* [wxMaxima: input start] */

(%i28) :lisp (compile-file

 "c:/MaximaCode/optionProbabilities.l" :c-file t :h-file t)

(%o28) Compiling c:/MaximaCode/optionProbabilities.l.

End of Pass 1.

End of Pass 2.

OPTIMIZE levels: Safety=2, Space=3, Speed=3

Finished compiling c:/MaximaCode/optionProbabilities.l.

#pc:/MaximaCode/optionProbabilities.o

(%i29) :lisp (load "c:/MaximaCode/optionProbabilities.o");

(%o29) OK

(%i30) optionprobfinishbellowstrike(30.0, 35.0, 0.01, 800);

(%o30) 0.246

In this example, the first command starting with :lisp is used to compile the lisp file

displayed. Once this is done, the combination of lisp and C code is saved as an object

file, which is then named optionProbabilities.o. The second command starting with

:lisp is used to load the resulting object file into the system. After this is finished, the

functions typed in optionProbabilities.l will become available to Maxima.

The last step shows how to invoke the desired functions. For example, you can call

the function optionprobfinishbelowstrike with a set of parameters that define the

price of the underlying, the strike, the volatility, and the number of time periods.

Chapter 16 Using C++ with R and Maxima

448

�Conclusion
This chapter contains programming examples that show how to integrate existing C++

classes with two open source mathematical applications: R and Maxima. The number of

users for environments like these is growing due to the ease of programming with such

a dynamic language, along with the ability to see immediate results from computations.

Although these mathematical applications already contain a lot of functionality, most

financial developers also need to access existing C++ code when making more complex

analyses.

The examples in this chapter show you how to interface your C++ code with these

two popular open source mathematical applications. First, you learned how C++

integration can be achieved with the R programming environment. You have seen an

example where a set of payments are received as input, and the code calculates the

present value of these payments.

The second C++ example shows how to export an existing class to the Maxima

CAS. With Maxima, you have access to a large number of mathematical tools to analyze

and display data. The process of exporting C++ libraries to Maxima involves the creation

of a dll and the use of some glue code written in C. Once you have these tools, it is

possible to access any C++ code from Maxima.

One of the secrets of creating useful financial software is to employ computational

resources as efficiently as possible. In this way, it is possible to learn even more from

existing investment data while making faster and more accurate decisions. In the next

chapter, you will learn about multithreading, a programming technique that is frequently

used to improve the performance of numerical and networking code used in financial

applications. Because of the growing use of multicore processors in servers and even

desktop machines, the use of multithreading has become a necessity for modern code

written in C++. You can access such multiprocessing features from C++ using a few

standard libraries, as you will see in Chapter 17.

Chapter 16 Using C++ with R and Maxima

449
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6_17

CHAPTER 17

Multithreading
C++20 applications are used in contexts where computational performance has great

importance. The need for performance is even more prominent in financial applications

such as high-frequency trading, where the difference between profit and loss may be

just a few microseconds away. In such cases where performance is a requirement, it

is very important to take advantage of the resources made available in modern CPUs

(central processing units). In particular, multicore processing is one of the main features

provided by new CPUs, with the number of available cores constantly increasing along

with the complexity of chips.

To benefit from multicore processors, however, C++ programmers need to learn

a few parallel programming techniques that have rapidly become part of the C++

repertoire during the last decades. Using multiple processes is a possible way to explore

this computational power. Multithreading, a method used to run several concurrent

tasks inside the same process, is another technique that has the potential to take

advantage of two or more cores at the same time.

In this chapter, you will see a few examples that explore multithreading strategies for

C++ programmers. With the knowledge provided in this chapter, you will be able to take

full advantage of existing multicore systems on your applications. While multithreading

is a useful strategy to employ in today’s applications, it will become even more important

in the future, as desktop and server manufacturers are expected to continue to add more

cores to their processors.

In the traditional approach for multithreading, C++ programmers used libraries

created to facilitate the access to the multithreading facilities provided by the operating

system. A popular example is the pthreads library. However, the current standard C++20

provides another approach, whereby the use of threading is directly supported by the

language, through templates in the <thread> header file. In this chapter, you will learn

both ways. This is important because much of the existing multithreading code uses

nonstandard libraries. However, new code should preferably use the templates provided

by the standard library.

https://doi.org/10.1007/978-1-4842-6834-6_17#DOI

450

The following are some of the topics discussed in this chapter:

•	 Using the pthreads library: pthreads is a standard library that can be

used to create and maintain multiple threads in the same process.

In a multicore machine, creating threads is one of the most common

ways to explore the parallel abilities of current architectures. You will

learn how to create applications that employ the pthreads library to

achieve parallel computation.

•	 Running algorithms in parallel threads: You will see how to

decompose problems in separate threads and combine their results

into a new solution. As an example, I present a modified parallel

algorithm for the calculation of options probabilities.

•	 Thread synchronization: The use of multiple threads introduces

the problem of synchronizing resources. You will learn how to

use synchronization primitives such as mutexes to guarantee that

resources are accessed and modified by only one thread at each time.

•	 STL threads: The new multithreading classes and templates provided

by the latest releases of the C++ standard.

�Creating Threads with the Pthreads Library
Create a C++ class that distributes its work through several processing threads using the

standard pthreads library.

�Solution
Multithreading is one of the software solutions that have been created to support

parallel computation. A thread is a unit of processing that can be performed in parallel

along with other parts of a program, so that two or more segments of a program can

be executed concurrently. In a multicore machine, this means that the same program

may efficiently use two or more cores to perform additional work. Depending on how

the code is organized, the careful use of multithreading techniques provides a good

opportunity to improve the throughput of the whole algorithm.

Chapter 17 Multithreading

451

To use multithreading, however, support from the operating system is necessary.

Since each operating system implements multithreading internally in its own way,

it used to be the case that a multithreading application would be dependent on the

operating system and architecture used. To avoid this problem, a standard pthreads

(POSIX threads) library was proposed and adopted as part of POSIX. The pthreads

library is available for multiple operating systems, including UNIX, Mac OS X, and

even Windows (e.g., you can use the Cygwin libraries to access pthreads on Windows).

Table 17-1 provides a quick summary of functions in the pthreads API (application

programming interface) that are available for application developers.

Table 17-1.  List of Commonly Used Functions in the Pthreads Library

Function name Description

pthread_create Creates a new thread

pthread_exit Finishes an existing thread

pthread_join Joins an existing thread, returning only after the thread exits

pthread_detach Detaches from a thread

pthread_attr_init Initializes an attribute data structure

pthread_attr_destroy Destroys an attribute data structure

pthread_attr_

setstacksize

Sets the size of the stack for a new thread

pthread_cancel Cancels the thread execution

pthread_mutex_init Initializes a mutex synchronization primitive

pthread_mutex_destroy Destroys a mutex

pthread_mutex_lock Locks a mutex

pthread_mutex_unlock Unlocks an existing mutex

sem_init Initializes a semaphore synchronization primitive

sem_destroy Destroys a semaphore

sem_wait Waits on a semaphore

Chapter 17 Multithreading

452

While the pthreads library is written for compatibility with pure C programs, it can

easily be used as part of C++ applications. It is simple to create a wrapper around threads

created with pthreads so that they can be more easily accessible from C++ code. In this

section, you will see a C++ code example for creating a simple multithreaded application

using pthreads. The techniques used as well as the general concept of thread creation

and synchronization can be used in your own programs.

To create a separate thread of execution within a program, you need to use the

pthread_create function. It receives as parameters an identifier (integer value), a

pointer to an attribute structure (which can be null if not used), a pointer to a function

that will be executed by the thread, and a pointer to the arguments to the thread

function. The function returns zero if no error happened; otherwise, it returns an integer

error identifier.

After the pthread_create function is executed, the program starts another thread

from the specified function. That thread is independent of the original program and

may run in the same or in a separate core, if there is one available in the host machine

as determined by the operating system’s thread scheduler. A thread can be terminated

either by reaching the end of the thread function or by explicitly calling the pthread_

exit function.

In this section, I show how to access the functionality provided by the pthreads

library from a C++ class. For this purpose, I introduce the Thread class, which

encapsulates the concept of a running thread. The goal of this class is to become a base

class for concrete thread classes. The only member function that is required in each new

subclass of Thread is run(), which determines the code that will be executed by the new

thread.

Notable methods in the Thread class are the following:

•	 start: Needs to be called to start the execution of the thread.

•	 endThread: Can be called to terminate the current thread.

•	 setJoinable: Determines if the thread can be joined by other

threads.

•	 join: Allows a caller to join this thread, in such a way that the caller

will continue its execution only after the thread has terminated.

•	 run: This member function needs to be implemented in each

subclass and defines the code that will run in its own thread.

Chapter 17 Multithreading

453

The Thread class uses a C function called thread_function and is defined in the

Thread.cpp file:

void *thread_function(void *data)

{

 Thread *t = reinterpret_cast<Thread*>(data);

 t->run();

 return nullptr;

}

The signature of this function is determined in the pthreads library. The function

is called as soon as a new thread is created. The main idea is that the data pointer

passed to the function is in fact a pointer to a Thread object. Once it is retrieved using

the reinterpret_cast operator, the object can be used to perform the run member

function. Depending on the concrete subclass of Thread, the run method may do any

task desired by the creator of the subclass. This is enough to guarantee that the code will

run as a parallel thread.

Note R emember that the reinterpret_cast operator can be used to convert
between any two types in C++. Therefore, it is important to be careful when using
this operator, since there is no type checking performed by the compiler once it is
applied.

Other than that, the start() and endThread() functions use the corresponding

pthread API functions to perform the creation of a new thread and to exit from an

existing thread, respectively. This is how these functions are implemented:

void Thread::start()

{

 �pthread_create(&m_data->m_thread, &m_data->m_attr, thread_function,

this);

}

void Thread::endThread()

{

 pthread_exit(nullptr);

}

Chapter 17 Multithreading

454

�Complete Code
You can find the complete implementation for the Thread class in Listing 17-1.

Listing 17-1.  Thread Class and a Sample Implementation

//

// Thread.h

#ifndef __FinancialSamples__Thread__

#define __FinancialSamples__Thread__

struct ThreadData;

class Thread {

public:

 Thread();

 virtual ~Thread();

private:

 Thread(const Thread &p); // no copy allowed

 Thread &operator=(const Thread &p); // no assignment allowed

public:

 virtual void run() = 0;

 void start();

 void endThread();

 void setJoinable(bool yes);

 void join();

private:

 ThreadData *m_data;

 bool m_joinable;

};

#endif /* defined(__FinancialSamples__Thread__) */

//

// Thread.cpp

#include "Thread.h"

Chapter 17 Multithreading

455

#include <pthread.h>

#include <iostream>

using std::cout;

using std::endl;

struct ThreadData {

 pthread_t m_thread;

 pthread_attr_t m_attr;

};

namespace {

 void *thread_function(void *data)

 {

 Thread *t = reinterpret_cast<Thread*>(data);

 t->run();

 return nullptr;

 }

}

Thread::Thread()

: m_data(new ThreadData),

 m_joinable(false)

{

 pthread_attr_init(&m_data->m_attr);

}

Thread::~Thread()

{

 if (m_data)

 {

 delete m_data;

 }

}

Chapter 17 Multithreading

456

void Thread::start()

{

 �pthread_create(&m_data->m_thread, &m_data->m_attr, thread_function, this);

}

void Thread::endThread()

{

 pthread_exit(nullptr);

}

void Thread::setJoinable(bool yes)

{

 �pthread_attr_setdetachstate(&m_data->m_attr, yes ? PTHREAD_CREATE_

JOINABLE : PTHREAD_CREATE_DETACHED);

 m_joinable = yes;

}

void Thread::run()

{

 cout << " no concrete implementation provided " << endl;

}

void Thread::join()

{

 if (!m_joinable)

 {

 cout << " thread cannot be joined " << endl;

 }

 else

 {

 void *result;

 pthread_join(m_data->m_thread, &result);

 }

}

// --- sample implementation

Chapter 17 Multithreading

457

class TestThread : public Thread {

public:

 virtual void run();

};

void TestThread::run()

{

 cout << " this is a test implementation " << endl;

 endThread();

}

int main()

{

 Thread *myThread = new TestThread;

 myThread->setJoinable(true);

 myThread->start();

 myThread->join();

 return 0;

}

�Running the Code
The code displayed in Listing 17-1 can be built using any standards-compliant compiler,

such as gcc, llvm, or Visual Studio. Just remember to add a link line including the

pthreads library. The following is a command line used to build the sample application

(tested on Mac OS X):

$ gcc –o threadTest Thread.cpp -lpthreads

$./threadTest

 this is a test implementation

�Calculating Options Probabilities in Parallel
Create a multiprocessing version of the class that calculates options probabilities. Use

the pthreads library to distribute work among several threads.

Chapter 17 Multithreading

458

�Solution
The use of parallel processing techniques is highly indicated for problems that require

massive amounts of computation. This is especially true when the problem can be easily

decomposed, in which case it becomes a matter of distributing the right amount of work

to each thread and waiting for the results.

A good example of such a process is a Monte Carlo-based algorithm. The simulation

process can run in any number of threads, and their results can be combined easily into

a single number. This is the case, for example, of calculating options probabilities. As you

saw in Chapter 14, Monte Carlo techniques are effective for the simulation of options

probabilities. At each step, you just need to simulate a new random walk and use that

information to improve the current estimate of the probability.

To adapt the Monte Carlo algorithm to the determination of options probabilities, the

first step is to correctly define the way in which the problem will be decomposed. This is

easy to do here, because each loop of the computation is independent of the other. In this

case, you can do this by telling each thread to run a certain number of iterations of the

Monte Carlo method. At the end, you can combine the results found by each thread and

calculate the final result as the average of the values returned by all threads.

The algorithm just described is implemented in the ParallelOptionsProbabilities

class. The class is an outer shell that invokes several threads to run the desired algorithm.

The real work is done in a class derived from Thread, and called RandomWalkThread. As

any other subclass of Thread, it needs to implement the run() member function, which

is called from the separate thread. Inside RandomWalkThread, you will find a member

variable, m_result, which stores the output of the Monte Carlo process. After the

thread is finished, this member variable can be used to retrieve the final value of the

computation.

The run member function is very similar to the code you already saw in the

OptionsProbabilities class. The main difference is that the output is stored in the m_

result member variable. The work of RandomWalkThread objects is orchestrated inside

the ParallelOptionsProbabilities class. The important member function for the job is

probFinishAboveStrike.

double ParallelOptionsProbabilities::probFinishAboveStrike()

{

 const int numThreads = 20;

 vector<RandomWalkThread*> threads(numThreads);

Chapter 17 Multithreading

459

 for (int i=0; i<numThreads; ++i)

 {

 �threads[i] = new RandomWalkThread(m_numSteps, m_step,

m_strikePrice);

 threads[i]->setJoinable(true);

 threads[i]->start();

 }

 for (int i=0; i<numThreads; ++i)

 {

 threads[i]->join();

 }

 double nAbove = 0;

 for (int i=0; i<numThreads; ++i)

 {

 nAbove += threads[i]->result();

 delete threads[i];

 }

 return nAbove/(double)(numThreads);

}

At the beginning of the member function, several threads are created and added to the

threads vector. You need to define these threads as joinable, so that it is possible to wait

on the result of each thread. The next step is to start the threads so that each of them can

perform the desired computations. Then, the second loop is used to join the already created

threads. By doing this, the main thread can wait while the computation is being performed

in parallel. When all threads are finished, the main thread will be resumed as a result of the

call to join(). Finally, you can store the data returned by each thread using the result()

member function. The thread objects may be deleted at this time to avoid memory leaks.

In the last line of the probFinishAboveStrike member function, you can see how the

calculated data can be combined. In this case, it is enough to return the sum of values above

the strike prices and divide that value by the number of threads used.

Chapter 17 Multithreading

460

�Complete Code
Listing 17-2 displays the ParallelRandomWalk class. There is a sample main() function

that can be used for testing, as can be seen at the end of the listing.

Listing 17-2.  Class ParallelRandomWalk

//

//

// ParallelRandomWalk.h

#ifndef __FinancialSamples__ParallelRandomWalk__

#define __FinancialSamples__ParallelRandomWalk__

class ParallelOptionsProbabilities {

public:

 ParallelOptionsProbabilities(int size, double strike, double sigma);

 ParallelOptionsProbabilities(const ParallelOptionsProbabilities &p);

 ~ParallelOptionsProbabilities();

 �ParallelOptionsProbabilities &operator=(const

ParallelOptionsProbabilities &p);

 double probFinishAboveStrike();

private:

 int m_numSteps; // number of steps

 double m_step; // size of each step (in percentage)

 double m_strikePrice; // starting price

};

#endif /* defined(__FinancialSamples__ParallelRandomWalk__) */

//

// ParallelOptionsProbabilities.cpp

#include "ParallelOptionsProbabilities.h"

#include "Thread.h"

#include <pthread.h>

#include <cstdlib>

Chapter 17 Multithreading

461

#include <vector>

#include <boost/random/normal_distribution.hpp>

#include <boost/random.hpp>

using std::vector;

using std::cout;

using std::endl;

static boost::rand48 random_generator;

using std::vector;

/// ---

class RandomWalkThread : public Thread {

public:

 RandomWalkThread(int num_steps, double sigma, double startPrice);

 ~RandomWalkThread();

 virtual void run();

 double gaussianValue(double mean, double sigma);

 double getLastPriceOfWalk();

 double result();

private:

 int m_numberOfSteps; // number of steps

 double m_sigma; // size of each step (in percentage)

 double m_startingPrice; // starting price

 double m_result;

};

RandomWalkThread::RandomWalkThread(int numSteps, double sigma, double

startingPrice)

: m_numberOfSteps(numSteps),

 m_sigma(sigma),

 m_startingPrice(startingPrice)

{

}

Chapter 17 Multithreading

462

RandomWalkThread::~RandomWalkThread()

{

}

double RandomWalkThread::gaussianValue(double mean, double sigma)

{

 boost::random::normal_distribution<> distrib(mean, sigma);

 return distrib(random_generator);

}

double RandomWalkThread::result()

{

 return m_result;

}

double RandomWalkThread::getLastPriceOfWalk()

{

 double prev = m_startingPrice;

 for (int i=0; i<m_numberOfSteps; ++i)

 {

 double stepSize = gaussianValue(0, m_sigma);

 int r = rand() % 2;

 double val = prev;

 if (r == 0) val += (stepSize * val);

 else val -= (stepSize * val);

 prev = val;

 }

 return prev;

}

void RandomWalkThread::run()

{

 cout << " running thread " << endl;

 int nAbove = 0;

 for (int i=0; i<m_numberOfSteps; ++i)

Chapter 17 Multithreading

463

 {

 double val = getLastPriceOfWalk();

 if (val >= m_startingPrice)

 {

 nAbove++;

 }

 }

 m_result = nAbove/(double)m_numberOfSteps;

}

// ---

ParallelOptionsProbabilities::ParallelOptionsProbabilities(int size, double

start, double step)

: m_numSteps(size),

 m_strikePrice(start),

 m_step(step)

{

}

ParallelOptionsProbabilities::ParallelOptionsProbabilities(const

ParallelOptionsProbabilities &p)

: m_numSteps(p.m_numSteps),

 m_strikePrice(p.m_strikePrice),

 m_step(p.m_step)

{

}

ParallelOptionsProbabilities::~ParallelOptionsProbabilities()

{

}

ParallelOptionsProbabilities &ParallelOptionsProbabilities::operator=(const

ParallelOptionsProbabilities &p)

{

Chapter 17 Multithreading

464

 if (this != &p)

 {

 m_numSteps = p.m_numSteps;

 m_strikePrice = p.m_strikePrice;

 m_step = p.m_step;

 }

 return *this;

}

double ParallelOptionsProbabilities::probFinishAboveStrike()

{

 const int numThreads = 20;

 vector<RandomWalkThread*> threads(numThreads);

 for (int i=0; i<numThreads; ++i)

 {

 �threads[i] = new RandomWalkThread(m_numSteps, m_step,

m_strikePrice);

 threads[i]->setJoinable(true);

 threads[i]->start();

 }

 for (int i=0; i<numThreads; ++i)

 {

 threads[i]->join();

 }

 double nAbove = 0;

 for (int i=0; i<numThreads; ++i)

 {

 nAbove += threads[i]->result();

 delete threads[i];

 }

 return nAbove/(double)(numThreads);

}

Chapter 17 Multithreading

465

int main()

{

 ParallelOptionsProbabilities rw(100, 50.0, 52.0);

 double r = rw.probFinishAboveStrike();

 cout << " result is " << r << endl;

 return 0;

}

�Running the Code
I have compiled and executed the code displayed in Listing 17-2 using the gcc compiler

on a Mac OS X machine. Any standards-compliant compiler can be used for this

purpose. The following is a sample of the expected output:

./parallelOptProb

 running thread

 running thread

 ...

 running thread

result is 0.487

�Using Mutexes to Prevent Unsynchronized Access
In this section, we will write a C++ class that implements a parallel algorithm where

mutexes are used to synchronize shared data.

�Solution
Multithreading is a convenient way to distribute computational work into two or more

processor cores, which can lead to an increase in performance for the whole application.

However, while multithreading has numerous advantages, it also adds to the complexity

of the software design. For example, one of the problems that need to be solved in

multithreading architectures is the access to resources shared between threads. If a

variable in memory is used in two or more threads, its access needs to be synchronized

so that separate threads will not try to change values concurrently, for example.

Chapter 17 Multithreading

466

Once a new thread has been created, it is necessary to manage it, using mechanisms

provided by the pthread library. In the simplest case, the new thread is independent and

does not need to be synchronized with the original (parent) thread. More commonly,

however, it is necessary to perform synchronization between separate threads that use

the same data. The greater the need for synchronization, the greater the amount of work

spent on managing the shared data.

A section of code where two or more threads can access a shared resource is called

a critical section. The critical sections are the areas of the code where shared resources

need to be protected, in order to avoid conflicts.

To avoid the conflicts inherent to the existence of critical sections, most

multithreading APIs provide primitives that can be used to implement synchronized

operations. Such operations have proved effective in enabling resource sharing between

threads. There are a number of such primitives, such as semaphores, mutexes, and

messages, among others. The pthreads library provides direct support for some of the

most common of such mechanisms, including mutexes, which can be used to guarantee

that only one thread is able to access a particular critical section.

A mutex is a synchronization mechanism that can be used to coordinate the work

of two or more threads. The mutex state is used to determine if a thread has permission

to operate on a particular resource, such as a variable in memory. When a thread tries

to access the value of the mutex, two things can happen: if the mutex state indicates

that the critical section is available, then the thread can directly proceed to the critical

section. However, if the mutex state indicates a busy state, the thread making the

request stops its execution and is sent to a waiting area created by the operating system.

Operation will resume only when the resource has been made available by other threads.

All this waiting and resuming activity is coordinated by the operating system.

Mutexes are implemented in the pthreads API and have the type thread_mutex_t.

A new mutex can be created using the function pthread_mutex_init and destroyed

using the function pthread_mutex_destroy.

A mutex needs to be acquired and locked when a shared resource is about to be

used. This guarantees that the mutex will be available for only one thread at a time.

This is done using the function pthread_mutex_lock. This function will automatically

interrupt the thread if the mutex is not available and force the thread to wait until the

mutex has been released. You can also try to access the mutex without a forced wait

using pthread_mutex_trylock. This will return an error code in case the mutex is

currently not available, and you will be free to try it later. Finally, once a mutex has been

Chapter 17 Multithreading

467

acquired, you need to unlock the mutex at the end of the synchronized operation. This

is necessary to make sure that other threads can enter the critical section and use the

recently released resource. You can unlock a mutex using the function pthread_mutex_

unlock.

While theoretical proof of the effectiveness of the mutex can be complex, its use is

very simple. In the coding example in Listing 17-3, you will have a class called Mutex that

encapsulates the concept of a mutex synchronization operation. There are two main

functions provided by this class: lock and unlock. The first member function is called at

the beginning of a critical section. The second important member function in the class

is unlock, which should be called at the end of a critical section. The Mutex class is also

responsible for initializing the pthread mutex at the constructor with pthread_mutex_

init and destroying it at the destructor with pthread_mutex_destroy.

The second class used to encapsulate the mutex concept is MutexAccess. This class is

responsible for guaranteeing that each access to the mutex is composed of a pair of calls

to the lock() and unlock() member functions of Mutex. The lock() member function is

directly called in the constructor, and unlock() is automatically called in the destructor

of MutexAccess. Therefore, if the critical section ends right at the end of the scope where

the MutexAccess object is declared, you don’t need to worry about unlocking it, since

the RAII idiom guarantees that the mutex will be automatically unlocked when the

destructor is called.

In the MutexTestThread, we have an example of using the Mutex class inside a

thread. The task demonstrated is really simple, but it illustrates how the mutex can

be used to provide synchronization of access to shared resources. Here, the shared

resource is the variable result, of double type. This variable is used to hold the desired

calculation; however, it is being accessed in all threads in the application. In order to

synchronize access to this variable, you need to use a mutex. An object of the class

MutexAccess can be instantiated, resulting in the mutex (named m_globalMutex) being

locked. After the lock has been acquired, you can now safely check the value and make

changes to the reference variable. Finally, at the end of the run() member function, the

lock will be released automatically.

�Complete Code
You can view the complete code for the Mutex and MutexAccess classes in Listing 17-3.

An example of their use is also shown in class MutexTestThread.

Chapter 17 Multithreading

468

Listing 17-3.  The Mutex Class

//

// Mutex.h

#ifndef __FinancialSamples__Mutex__

#define __FinancialSamples__Mutex__

struct MutexData;

class Mutex {

public:

 Mutex();

 ~Mutex();

 void lock();

 void unlock();

private:

 Mutex(const Mutex &p); // copy not allowed

 Mutex &operator=(const Mutex &p); // assignment not allowed

 MutexData *m_data;

};

class MutexAccess {

public:

 MutexAccess(Mutex &m);

 ~MutexAccess();

private:

 MutexAccess &operator=(const MutexAccess &p);

 MutexAccess(const MutexAccess &p);

 Mutex &m_mutex;

};

#endif /* defined(__FinancialSamples__Mutex__) */

//

// Mutex.cpp

Chapter 17 Multithreading

469

#include "Mutex.h"

#include "Thread.h"

#include <pthread.h>

#include <cstdlib>

#include <vector>

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

struct MutexData {

 pthread_mutex_t m_mutex;

};

Mutex::Mutex()

: m_data(new MutexData)

{

 pthread_mutex_init(&m_data->m_mutex, NULL);

}

Mutex::~Mutex()

{

 if (m_data)

 {

 pthread_mutex_destroy(&m_data->m_mutex);

 delete m_data;

 }

}

void Mutex::lock()

{

 pthread_mutex_lock(&m_data->m_mutex);

}

void Mutex::unlock()

Chapter 17 Multithreading

470

{

 pthread_mutex_unlock(&m_data->m_mutex);

}

/// ----

MutexAccess::MutexAccess(Mutex &m)

: m_mutex(m)

{

 m_mutex.lock();

}

MutexAccess::~MutexAccess()

{

 m_mutex.unlock();

}

/// ----

class MutexTestThread : public Thread {

public:

 MutexTestThread(double &result, double incVal);

 ~MutexTestThread();

 void run();

private:

 double &m_result;

 double m_incValue;

 static Mutex m_globalMutex;

};

Mutex MutexTestThread::m_globalMutex; // global mutex is static

MutexTestThread::MutexTestThread(double &result, double incVal)

: m_result(result),

 m_incValue(incVal)

Chapter 17 Multithreading

471

{

}

MutexTestThread::~MutexTestThread()

{

}

void MutexTestThread::run()

{

 MutexAccess maccess(m_globalMutex); // mutex is locked here

 cout << " accessing data " << endl; cout.flush();

 if (m_result > m_incValue)

 {

 m_result -= m_incValue;

 }

 else

 {

 m_incValue += m_incValue;

 }

 // mutex is automatically unlocked

}

int main()

{

 int nThreads = 10;

 vector<Thread*> threads(nThreads);

 double price = rand() % 25;

 for (int i=0; i<nThreads; ++i)

 {

 threads[i] = new MutexTestThread(price, (double)(rand() % 10));

 threads[i]->setJoinable(true);

 threads[i]->start();

 }

 for (int i=0; i<nThreads; ++i)

Chapter 17 Multithreading

472

 {

 threads[i]->join();

 }

 cout << " final price is " << price << endl;

 return 0;

}

�Running the Code
You can compile this code using any standard C++ compiler. I performed the test on a

machine running the Mac OS X operating system. The following is a display of sample

results:

accessing data

accessing data ...

accessing data

accessing data

accessing data

final price is 2

�Creating Threads Using the Standard Library
In the previous section, you learned how to create multithreaded programs using the

pthreads library. In C++20, it is also possible to create multithreaded code using the

standard library. The support is provided through the <thread> header file.

To make simple multithreaded programs using the STL, it is not necessary to

create new classes or objects. The class std::thread already has the ability to perform

multithreaded operations using as input a function, a lambda, or a functional object.

Consider the following example:

#include <thread>

#include <iostream>

#include <vector>

Chapter 17 Multithreading

473

void compute_max(const std::vector<double> &values)

{

 auto total = 0.0;

 for (auto v : values)

 {

 total += v;

 }

 std::cout << " total: " << total << std::endl;

}

int main()

{

 std::vector<double> v = {0, 5, 3, 2, 5, 3};

 std::thread first_tread(compute_max, v);

 first_tread.join();

 return 0;

}

Here, we define a simple function called compute_max, which receives as parameter a

vector of double numbers. This function could be any type of operation that takes a long

time and that we would like to move to a separate thread. To create a new thread using

this function, we just need to use the std::thread class in the <thread> header file.

The std::thread class takes as parameters the name of the function (or functional

object) you want to use, along with zero or more parameters that will be passed to that

function. In the previous example, we have the vector named v as the single parameter.

This could be expanded to other parameters if required by the function compute_max.

Finally, the first_thread object calls the join() method, to indicate that the main

function will join the execution of that thread, until it is complete. If we didn’t want to

stop until the thread is completed, we could have used instead the detach() method,

which allows the thread to run independently while the current function continues its

operation.

Chapter 17 Multithreading

474

�Conclusion
The constant development of multicore processors and architectures has greatly expanded

the computational capacity of modern machines. However, to explore such multicore

architectures, it is necessary to change the way you program. Modern high-performance

programming has an increased focus on multiprocessing techniques, which allow

applications to access more than one core and as result improve the performance of the

system.

Multithreading is a programming technique that allows more than one thread of

execution per process. If the machine has more than one processor, multithreading

allows you to access these processing cores to perform additional work. In this chapter,

you learned how to create, terminate, and manage threads using the standard pthreads

library.

In the first programming example, you learned about the pthreads library and how

it can be used to create new threads. You saw how to design a C++ class to encapsulate

the pthreads function calls. Using pthreads, you can simplify your multithreading

applications, as it abstracts away system-dependent APIs for multithreading.

Next, you learned how to apply pthreads to a common problem on options. You saw

that, for some problems, it is easy to distribute the necessary work into separate units of

computation. Using C++, you can encapsulate such code segments into different objects.

In the next section, you learned about synchronization primitives and how they

are implemented using the pthreads library. I introduced a class that can be used to

model the operation of a mutex. You can readily apply the Mutex class to other financial

programming projects.

Finally, I also explained how the new C++ standard C++20 provides direct support

for threads without the use of a separate library like pthreads. Thus, for new code, it is

possible to simplify the applications and rely on the STL. While much of the existing

multithreading code still uses libraries like pthread, it is important to learn how to do

this using the standard and use it in new projects.

With this chapter, I have completed a general presentation of technical tools used to

create high-performance financial applications in C++. I hope you have enjoyed learning

about the features of C++ and how they can be applied to the solution of common

problems in the financial industry.

Chapter 17 Multithreading

475
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6

�APPENDIX A

Features of C++20
C++ is a language in constant evolution. Since its first release in the 1980s, new concepts

and techniques that started as research topics became an integral part of the language.

The latest revision of the C++ standard is C++20, which is itself a major addition to

previous standards such as C++11, C++14, and C++17. These updates to C++ are already

part of major compilers, so it is important to understand what these modifications bring

for developers.

In this appendix, I will provide a summary of the most important changes introduced

in these recent C++ standards. You will learn about the following topics:

•	 auto-typed variables: A syntax that allows automatic type detection

•	 Lambdas: Creating functions in place and sharing variables from a

local environment

•	 User-defined literals: Creating literals with user-define behavior

•	 Range-based for: A new form of the for loop which simplifies

container manipulation

•	 Rvalue references: A new technique to implement move semantics

into user-defined types

•	 New function declarator syntax: A syntax for function where the

return type is automatically detected

•	 Delegating constructors: How to delegate class initialization to a

single constructor

•	 Inheriting constructors: Directly using constructors defined in a

parent class

•	 Generalized attributes: How to declare attributes for C++ elements

using a unified syntax

https://doi.org/10.1007/978-1-4842-6834-6#DOI

476

•	 Generalized constant expressions: Defining expressions that can be

used at compilation time by other expression, including templates

•	 Null pointer constant: A new constant that uniquely defines a null

pointer

•	 Right angle brackets: A simplification of template syntax, avoiding

common confusions with the shift operator

•	 Initializer lists: A general way to perform initialization of C++

variables

�Automatic Type Detection
One of the main features of C++ is the use of types to check the program during

compilation time. This feature, known as strong type checking, allows programmers to

rely on the compiler to find many bugs that would take a lot of time to remove otherwise.

It is generally accepted that static checking is a useful feature, especially for large-scale

projects, where hundreds or even thousands of classes can be made available. With

static type checking, programmers are relieved from the task of checking manually if the

correct types are used.

Although type checking is so important for C++ practitioners, the need of naming

types at each variable and function declaration has become too burdensome for some

programmers. After all, every expression in C++ has a type, and with the introduction

of containers and other templates, it becomes sometimes difficult to write the proper

type of an expression. To avoid this problem, the C++ committee decided to use the auto

keyword to allow for automatic type detection in C++ expressions. This feature was fist

introduced in C++11 but has been progressively extended through each standard until

C++20.

Automatic type deduction frees programmers from the need to indicate the type

of each variable when declaring it. The type deduction system works through the use

of information that is already available to the compiler at the moment an expression is

being parsed. For example, if a variable is created from a known constant, the compiler

can easily determine its type. On the other hand, if a variable is initialized to the result

of an expression, the compiler can also determine the type of the result and use it for the

variable. Here are some simple examples:

Appendix A Features of C++20

477

void autoExample()

{

 auto i = 1; // this is an integer

 auto d = 2.0; // this is a float

 auto d2 = d + 1; // this is also a float

 auto str = "hello"; // this is a char *

 cout << "integer : " << i << " float: "

 << d2 << " string " << str << endl;

}

Here, the first, second, and fourth variables are initialized using constants, so the

type is immediate. The third variable has its type determined through the result of the

expression given as initializer.

Another area where auto variables are very useful is when working with templates.

Many templates generate complex types, which are difficult to type and to remember.

It is very useful to be able to avoid typing these types with the help of the auto keyword.

Here is an example using an iterator to an STL container:

void autoTemporaryExample()

{

 std::vector<std::pair<int,std::string>> myVector;

 // without auto

 for (std::vector< std::pair<int,std::string>>::iterator

 it = myVector.begin();

 it != myVector.end(); ++it)

 {

 // do something here

 }

 // with auto

 for (auto it = myVector.begin(); it != myVector.end(); ++it)

 {

 // same thing here

 }

}

Appendix A Features of C++20

478

The first loop shows the type of the iterator used to visit all members of the container.

It is even harder to type than the original template name. The second loop shows how to

express the same thing using the auto keyword. Here, it is possible to avoid the name of

the template, which makes it much easier to understand what the code is doing.

Another way in which the auto keyword is used is to determine parameter types for

template functions. This is a more recent use of auto, added in the C++20 standard, but

it follows the same pattern: the type of the parameter is determined by the compiler as it

determines this information from the actual parameters. Here is an example:

auto add_args(auto x, auto y) {

 return x + y;

}

int main() {

 int a = 10;

 double b = 20;

 auto res = add_args(a, b);

 return 0;

}

Notice that without the help of the auto operator, this would be declared in the

following way:

template <class A, class B>

A add_args2(A x, B y) {

 return x + y;

}

int main() {

 int a = 10;

 double b = 20;

 int res = add_args2(a,b);

 return 0;

}

Appendix A Features of C++20

479

�Lambdas
A lambda is a function that can be created on the spot, without the need for a separate

top-level declaration. Lambda functions can, additionally, be allowed to retain

references to variables that exist at the same level in which they are introduced. A

lambda function can be saved in variables and passed to other functions, where they can

be used as needed. The variables that have been saved in the context can be used even

after the original block has finished. Here is a very simple example:

void lambdaExample()

{

 auto avg = [](int a, int b) { return (a + b) / 2; };

 cout << "the average of 3 and 5 is " << avg(3, 5) << endl;

}

The syntax for lambda functions starts with an angle bracket. The return type doesn’t

need to be specified, and it is deduced from the variable or expression in the return

keyword. Here is an example where there is local variable capture:

void lambdaExample2()

{

 double factor = 2.5;

 auto scaledAvg = [&factor](int a, int b) {

 return factor * (a + b) / 2;

 };

 auto modifiedAvg = [&](int a, int b) { return scaledAvg(a, b); };

 cout << "the scaled average of 3 and 5 is "

 << scaledAvg(3, 5) << endl;

 cout << "this should be the same "

 << modifiedAvg(3, 5) << endl;

}

The example shows two lambda functions where there is variable capture. In the

first function, the factor variable is captured and becomes available to be used inside the

lambda function. The second example shows a lambda function where all local variables

are captured (indicated by the [&] notation). In this case, any local variable can be used,

including the scaledAvg variable.

Appendix A Features of C++20

480

�User-Defined Literals
You are familiar with literals for standard types such as int, float, or char. These literal

values allow one to initialize new variables as needed. C++11 introduces user-defined

literals, where a literal can be manipulated to perform any kind of preprocessing. This is

useful in the case that scalar numbers need to go though some kind of conversion before

they are used as initializers.

The syntax used for user-defined literals is similar to other operators. The operator

“ ” keyword is used to introduce the new literal format. Consider an example where you

wish to define numeric literals that return the price in Euros. This can be defined in the

following way:

long double operator "" _eu(long double val)

{

 return val / 1.24;

}

Notice the signature that contains the name operator “ ”, followed by the suffix _eu.

In this case, you’ll be using a fixed conversion value, but in general, you could have a

more complex scheme for conversion from dollars to euros. Finally, you can use this

user-defined literal in the following way:

void showUserDefinedLiterals()

{

 double price = 300; // price in dollars

 long double priceInEU = 300.0_eu;

 cout << " price in dollars: " << price

 << " price in Euros: " << priceInEU << endl;

 }

Here, you first define a price without any conversion (in dollars). Then you create

a second variable that corresponds to the same quantity, but using the user-defined

suffix _eu. Using this suffix, you will have a converted price in the priceInEU variable, as

printed at the end of the showUserDefinedLiterals function.

Appendix A Features of C++20

481

�Range-Based for
STL containers are some of the most used templates in any C++ system. These

containers are versatile and can be used to perform a large nuber of operations to its

components. In the previous versions of C++, it was possible to iterate through the

components of a container using an auxiliary iterator variable. For example:

void loopExample1()

{

 std::vector<std::pair<double,std::string>> v;

 // without auto

 �for (std::vector<std::pair<double,std::string>>::iterator it =

v.begin();

 it != v.end(); ++it)

 {

 // do something here

 }

}

Or you can use an auto variable to simplify the code above a little. Still, there is a lot

of code necessary just to iterate over the elements of the container. The C++11 standard

introduces a simpler way to do this, with the container-oriented for loop. The syntax

for this special case is simplified, so you don’t need to write the boundary conditions

(begin() and end()) for the container. Here is the preceding example, modified to use the

new for loop.

void forLoopExample()

{

 std::vector<std::pair<double,std::string>> vectorOfPairs;

 for (auto &i : vectorOfPairs)

 {

 cout << " values are "

 << i.first << " and "

 << i.second << endl;

 }

}

Appendix A Features of C++20

482

Notice how the vectorOfPairs variable is now used only once in the second part of

the loop statement. The auto variable declaration avoids the need for a long template

declaration, which helps to keep the notation easy to read.

�Rvalue References
One of the common performance issues with the use of containers and strings in C++ is

the fact that temporary variables need to be created in so many places:

•	 When moving elements between two containers, it is frequently

necessary to perform a copy and then delete the old elements.

•	 When implementing operators, it is often necessary to return new

objects each time an operation is performed, since the argument to

an operator (such as <<) may very well be a temporary object.

•	 When returning objects from functions, it becomes necessary to copy

the return object to a temporary, since it belonged to a function that

is finishing. If this temporary object is immediately assigned to a new

variable, then the temporary object is not used.

To help developers tackle these issues, C++ designers decided to introduce a

notation for variables that are not named and that cannot be assigned outside of the

current context. Such variables are known as rvalues, because in any expression, they

can only appear in the right side of the assignment. Examples of rvalues are immediate

values passed as parameters to functions and temporaries created during the evaluation

of expressions, among others.

The syntax for rvalues is similar to references, but with the && sign used instead of a

single & sign. Such declarations are useful mainly in the list of arguments for a function,

as well as in the return. Here are some examples of their use:

#include <string>

using std::string

void rvalExamp(string &&s)

{

 cout << " string is " << s << endl;

}

Appendix A Features of C++20

483

void rvalExamp(string &s)

{

 cout << " string lvalue: " << s << endl;

}

int main()

{

 rvalExamp("a test string"); // calls rval version

 string a = "string a ";

 string b = "string b ";

 rvalExamp(a + b); // calls rval version

 string c = "another example";

 rvalExamp(c); // calls lval version

 return 0;

}

In this example, any string (including temporary values) can be passed to the

function rvalExamp. The rvalue may be used with the knowledge that its temporary

value will be destroyed at the end of the function. On the other hand, you can also have

a version of the function that receives a standard lvalue reference. This version of the

function is called only when a lvalue is used as parameter (in this case, it happens when

the parameter is a named variable).

An important case where rvalues may be useful is in the assignment operator. If the

parameter to the operator is a rvalue, then it is usually possible to optimize it by reducing

the number of allocations. This is shown in the following example:

#include <vector>

using std::vector;

class RValTest {

public:

 RValTest(int n);

 RValTest(const RValTest &x);

 ~RValTest();

 RValTest &operator=(RValTest &&p); // this is for RVAL

 RValTest &operator=(RValTest &p); // this is for LVAL

Appendix A Features of C++20

484

private:

 vector<int> data;

};

RValTest::RValTest(int n)

: data(n, 0)

{

}

RValTest::RValTest(const RValTest &p)

: data(p.data)

{

}

RValTest::~RValTest()

{

}

RValTest &RValTest::operator=(RValTest &&p)

{

 data.swap(p.data);

 cout << " calling rval assignment " << endl;

 return *this;

}

RValTest &RValTest::operator=(RValTest &p)

{

 if (this != &p)

 {

 data = p.data;

 }

 cout << " calling normal assignment " << endl;

 return *this;

}

Appendix A Features of C++20

485

void useRValTest()

{

 RValTest test(3);

 RValTest test2(4);

 test2 = test; // use standard assignment

 test = RValTest(5); // use rval assignment

}

The class RValTest knows when the assignment operator is called with a temporary.

In this case, you can just swap the elements of the data array, instead of performing

expensive data copy.

�New Function Declarator Syntax and decltype
You have seen that the keyword auto was repurposed to allow for automatic type

deduction or variables. However, once this change has been made to how variables

are declared, soon you will also need to return such values. For example, consider the

following function:

void autoFunctExample1(vector<int> &x)

{

 auto iterator = x.begin();

 // do something with iterator

}

This works fine, and you don’t need to know the exact template type returned

by begin() to use it. However, a big problem arises if you need to return the variable

iterator. In that case, you need to somehow determine the type of iterator just to declare

the function, since the return type must be part of the signature.

To help solve this problem, C++11 introduced a new form of function declaration,

which uses auto instead of the name of the type. Still, do maintain the type checking

system the compiler needs to determine the type of a function. This is where the

decltype keyword comes in. The decltype operator returns the type of any expression

that is given as a parameter. Similarly to how sizeof returns information from a type,

decltype returns the type for a variable or other general expression.

Appendix A Features of C++20

486

Using decltype, you can now add a return type declaration to a function after the ->

operator, which may only appear right after the list of arguments to the function. Since at

this point the type of the arguments to the function are known, you can use them along

with decltype to define the return type. Here is an example based on the code presented

previously:

auto autoFuncExample(vector<int> &x) -> decltype(x.begin())

{

 auto iterator = x.begin();

 // do something with iterator

 return iterator;

}

Now you can return the iterator without knowing its exact type, since it is

automatically calculated during compilation time.

The decltype operator is not restricted to appear in the declaration of a return type.
You can use it anywhere a type may be required, although many times, it can be
substituted by the auto keyword. For example, the variable declaration auto x = 1
is equivalent to decltype(1) x = 1. But decltype can be used in other contexts,
such as sizeof(decltype(x.begin())), to determine the size of a deduced
type, where auto would not work.

�Delegating Constructors
In older versions of C++, the problem of creating and maintaining initializers along with

constructors was well known. For example, you needed to initialize all scalar variables

in the same order that it appears in the class declaration. C++11 avoids this issue by

delegating the task of data initializing to other constructors.

A delegating constructor is simply one that can be used by other constructors,

so to avoid the repetition of data initialization statements. For example, suppose you

have a class Dimensions with three member variables. You can have three different

constructors, each one accepting a different number of components for this dimension

Appendix A Features of C++20

487

object. To avoid repeating yourself during the initialization part, you can create a single

initializer constructor and call this constructor from the others. Here is a possible

implementation using C++11:

class Dimensions {

public:

 Dimensions();

 Dimensions(double x);

 Dimensions(double x, double y);

 Dimensions(double x, double y, double z);

private:

 double m_x;

 double m_y;

 double m_z;

};

Dimensions::Dimensions()

: Dimensions(0, 0, 0)

{

}

Dimensions::Dimensions(double x)

: Dimensions(x, 0, 0)

{

}

Dimensions::Dimensions(double x, double y)

: Dimensions(x, y, 0)

{

}

Dimensions::Dimensions(double x, double y, double z)

: m_x(x),

 m_y(y),

 m_z(z)

{

}

Appendix A Features of C++20

488

The constructor Dimensions (double x, double y, double z) is the only one that

can access the member variables directly, while the others are only using it to perform

indirect initialization.

�Inheriting Constructors
Another common problem in earlier versions of C++ was the handling of constructors in

derived classes. Sometimes, a constructor derived from a class has constructors that are

identical to the constructors in the superclass. In this case, it was necessary to replicate

all constructors in the subclass so that it would become available to clients. It seems

clear that this is an undesirable code replication, and it was addressed by the C++11

standard. Now, it is possible to employ the using keyword to introduce the constructors

existing in the base class. Here is an example, using the Dimensions class as its base.

class DimensionsDerived : public Dimensions {

public:

 using Dimensions::Dimensions;

};

int main()

{

 DimensionsDerived(1, 2, 4);

}

The new class can be created using the same constructors as the parent, since it

contains the using declaration for the base constructor.

�Generalized Attributes
Attributes provide a standard syntax for the addition of annotations to elements

contained in C++ code. Most compilers use nonstandard mechanisms to determine

the attributes of certain elements. For example, if a function can be exported or not is

defined by attributes, which varied for each compiler vendor.

Appendix A Features of C++20

489

C++14 introduced a new syntax for attributes that can be used by any compiler

vendor. The attributes are introduced inside double brackets and contain annotation for

the element that is syntactically next to the attribute. Here is an example:

struct [[exported]] AttribSample

{

 int memberA;

 [[gnu::aligned (16)]]

 double memberB;

};

Note T he list of available attributes is specific to each compiler. However, at
least for gcc, it is possible to write custom plugins that are able to process these
attributes. For example, suppose that you create a plug-in to process GUI-based
classes in your code base. Running gcc with that plug-in will let you perform
actions for each GUI class, such as generating additional code, creating resources
files to be used during run time, and other related tasks.

�Generalized Constant Expressions
In modern C++, we have a great emphasis on the use of templates and related compile-

time programming techniques. The STL and many other well-known libraries, such

as boost, depend heavily on templates. However, since template-based operations

are compile-time by definition, they introduce the need for constant, compile-time

evaluated expressions. Such expressions have in common the fact that they evaluate to

constant values, so that all the results will be available at compilation time.

While normal C++ code can involve both runtime and compilation-time expressions,

it is useful to guarantee that the value in a particular function is completely evaluated at

compilation time. This cannot be guaranteed with traditional function, however, which

motivated the standards committee to introduce constant expressions as a compiler-

enforced concept.

Appendix A Features of C++20

490

To guarantee that a function will evaluate only to constants that are available at

compiler time, you should use the new constexpr keyword. When this keyword is

added before a function declaration, the compiler will force its evaluation and emit an

error if the included expressions cannot be calculated at compile time. Here is a simple

example:

struct TestStruct {

 int a;

 char b;

 double c;

};

template <class T>

constexpr int testDataSize(T)

{

 return sizeof(T);

}

constexpr int minTestSize()

{

 return 2 * testDataSize(TestStruct()) + 1;

}

The testDataSize function just shows how easy it is to create a compile-time

function. The return value calculated in the first function is the size of a test data

structure, which can later be used by other constant calculations. The second function

just calculates what is considered the minimum size for the test data in the application.

Results such as the ones presented previously can be freely used on templates, as a way

to perform more complex calculations.

�Null Pointer Constant
A null pointer is a pointer that doesn’t correspond to any valid address in the target

machine. Traditionally, null pointer values have been used to indicate that a pointer is

not in use. For functions returning values, this usually means that the desired pointer is

invalid, among other possible uses.

Appendix A Features of C++20

491

C++ inherited from C the idea that null pointers are equivalent to the constant

zero, since this is an invalid pointer value in most computer architectures. In fact, the

preprocessor macro NULL is defined in previous versions of C and C++ as 0. The fact

that the 0 value can be confused with NULL in a numeric context, however, is one of the

problems inherent to this definition. To simplify the rules concerning null pointers, the C++

committee decided to introduce a new keyword, nullptr, which can only be interpreted as

a pointer and not an integer or any other type that is related to the 0 constant.

void *testNull()

{

 int *pi = new int;

 if (pi == nullptr)

 {

 return nullptr;

 }

 // *pi = 1 + nullptr; // this doesn't work, nullptr is not an integer

 return pi;

}

The preceding code checks if a newly allocated variable is null. Notice that the

nullptr value cannot be used to simultaneously initialize an integer variable: it can only

be used in a pointer context.

�Defaulted and Deleted Member Functions
Another new feature in C++ is the ability to clearly determine if a class will use or

disallow any of the default member functions provided by the compiler. Remember that

there are four member functions automatically provided when a class is created:

•	 The default constructor

•	 The copy constructor

•	 The move copy constructor (because of new move semantics)

•	 The destructor

•	 The assignment operator

•	 The move assignment operator (because of new move semantics)

Appendix A Features of C++20

492

Standard practice indicates that you should define these functions for every new

type, as you can see in the examples presented in this book. However, C++ gives another

option: you can use the default and delete keywords to determine which of these

member functions can be used by default (with the version created by the compiler) and

which versions should be discarded. For example:

class TestDefaults {

public:

 TestDefaults() = default;

 TestDefaults(int arg);

 TestDefaults(const TestDefaults &) = delete;

 // other member functions here

};

This class uses a default constructor, whose definition is written automatically

by the compiler, even though it has a non-default constructor that receives a single

integer argument. This was not possible in previous versions of C++, where you could

either accept the default constructor or write it again in case you wanted two or more

constructors. Notice that you can, at the same time, reject the default copy constructor.

Therefore, the previous declaration directly indicates that the type cannot be copied.

Another useful feature of default member functions is that you can introduce virtual

destructors without the need to write one. Remember that classes that include virtual

member functions also require virtual destructors in order to clean up resources in

each of the levels of the class hierarchy. The standard way of doing this is introducing

an empty virtual destructor, in order to allow for virtual destructors in the subclasses. In

C++11, you can use the default keyword to provide a default, virtual destructor. In the

previous example, this could be added in the following way:

class TestDefaults {

public:

 TestDefaults() = default;

 TestDefaults(int arg);

 virtual ~TestDefaults() = default;

 TestDefaults(const TestDefaults &) = delete;

 // other member functions here

};

Appendix A Features of C++20

493

Notice that you don’t need to explicitly write the destructor, since it will use the

default implementation. The derived classes, however, will enjoy the use of a virtual

destructor due to the definition in the base class.

�Initializer Lists
One of the confusing aspects of C++ syntax is initialization. Different objects, such as

integers, structures, classes, and arrays, have slightly different ways to be initialized.

C++11, while maintaining the previous methods for variable initialization, introduces a

new way to perform initialization that is much more regular and can be applied to any

object in the language.

The syntax for initialization lists uses braces to surround one or more constants

or variables. These elements are then applied to the new variable and interpreted

according to its type. Here are a few examples:

void initializationTest()

{

 int x {}; // equivalent to int x = 0;

 int y { 0 }; // same as above

 const char *s { "var" };

 double d { 2.4 };

 struct StrTest {

 int a;

 double d;

 char c;

 };

 StrTest structVal { 2, 4.2, 'f' };

 cout << " values are " << x << " " << y << " " << s

 << " " << d << " " << structVal.a << endl;

Appendix A Features of C++20

494

 class AClass {

 public:

 AClass(int v) : m_val(v) {}

 int m_val;

 };

 AClass obj = { 3 } ;

}

Notice that all these values can be easily initialized using the brace notation. Among

the advantages of this strategy is the fact that you can also initialize containers (such as

vectors) using lists of values enclosed in braces. Here is an example of this feature:

#include <map>

#include <vector>

Using std::vector;

using std::map;

void containerInitialization()

{

 vector<int> vi = { 1, 3, 5, 7, 9, 11 };

 for (auto &v : vi)

 {

 cout << v << " ";

 }

 map<int,double> m = { { 2, 3.0}, {4, 5.0} };

 for (auto &v : m)

 {

 cout << v.first << " " << v.second << " ";

 }

}

Appendix A Features of C++20

495

You can see from the previous example how initialization lists can be effectively

used to pass data to standard containers found in the STL. Most containers in C++11

have one or more constructors that can receive initialization lists. Finally, you can also

create classes that receive lists of parameters, using the class std::initializer_list. The

compiler will automatically fill the initializer_list container with the values passed to the

constructor.

class MyClass {

public:

 MyClass(std::initializer_list<int> args);

 vector<int> m_vector;

};

MyClass::MyClass(std::initializer_list<int> args)

{

 m_vector.insert(m_vector.begin(), args.begin(), args.end());

}

void useClassInitializer()

{

 MyClass myClass = { 2, 5, 6, 22, 34, 25 };

 for (auto &v : myClass.m_vector)

 {

 cout << v << " ";

 }

}

Appendix A Features of C++20

497
© Carlos Oliveira 2021
C. Oliveira, Practical C++20 Financial Programming, https://doi.org/10.1007/978-1-4842-6834-6

Index

A
addVector, 215
Algebraic transformations, 440
Allocating capital, 351
Analyst recommendations

definitions and implementation,
119–124

equity investments, 114
institutional investor, 115
STL vectors and maps, 115–119
Wall Street ecosystem, 114

Application programming interface
(API), 433

Asset prices simulation process
getWalk member function, 385
implementation for RandomWalk

Class, 386–388
RandomWalk class, 385
random walk process, 385

Assignment operator, 483
At the money (ATM), 390
Auto keyword, 98, 99
Automatic argument deduction, 76
Automatic type detection, 476, 478

B
Backslash, 442
Banded matrix, 220

Basic linear algebra
subprograms(BLAS), 213

bisectionMethod, 259
Bisection method, 252–260
BisectionSolver, 254, 263
Black-Scholes equation

forward method implementation,
316–320

solution, 313–315
BLAS-compatible libraries, 213
Bonds, 3

annual interest rate, 28
BondCalculator class, 29–31
cash investments, 28
declaration, 28
interestRate method, 29
investor deposits, 28
preferred shell, 32

Book value, 65
Boost libraries, 132–137
boost::math identifier, 179
boost::math namespace, 178, 181
boost::python library, 413, 414, 429
boost::ratio, 172, 174
Boost repository, 171
Brokerage companies, 37

C
C++20 features, 75

https://doi.org/10.1007/978-1-4842-6834-6#DOI

498

C++20 standards
automatic type detection, 476, 478
defaulted and deleted member

functions, 491–493
delegating constructors, 486, 488
generalized attributes, 488
generalized constant

expressions, 489, 490
inheriting constructors, 488
initializer lists, 493–495
lambda, 479
new function declarator

syntax, 475, 485
null pointer constant, 490, 491
range-based for, 481, 482
Rvalue references, 482, 483, 485
user-defined literals, 480

C++ programming techniques
collecting transaction data, 100–102
credit ratings, 93–99
features, 75
financial statement objects, 84–93
interest rates for investment

instruments, 76–84
vector operations, 106–111

C++ stock handing class
access, 402
build_ext option, 412
extension API, 403
extension mechanism, 402
implementation, 405–411
interface, 403
module, 402, 405, 412
Py_InitModule function, 405
sys module, 402
object, 404

Calmar ratio
CalmarRatioBPS, 174

CalmarRatioType, 173
definition, 170
execution, 176
getDrawDown member

function, 173
implementation code, 174–176

CalmarRatio type, 172
CalmarRatioBPS, 173, 176
CalmarRatioPerc, 173, 176
Capital asset pricing (CAP)

model, 358
Cash flows

addCashPayment method, 21
calculating present value, 21
CashFlowCalculator class, 21–27
entities, 19
fixed income investments, 20
foregoing formula, 22
present value, 19, 20
program execution, 27
STL containers, 22, 23
time period–payment value, 27

Certificates of deposit, 3
Chi-squared distribution, 177
ChoiceNumber class template, 167
cmdFileName, 194
Compile-time calculations, 164
Compile-time computations, 167
Compound interest

arguments, 19
CompoundIntRateCalculator

class, 16–18
continuousCompounding, 14
custom versions, 16
discrete/continuous process, 14
mathematical functions, 15
multiplePeriod, 14
principal value, 14

Index

499

computeDeterminant function, 230
Computer algebra system (CAS), 440
Constant expression, 163, 164
ConstantExpressionDependingOnN, 164
Constant function, 279
Constants, 171
constexpr keyword, 170
Constraints, 325
Constructors, 155, 194, 238, 415
Copy, 214
Coupon value, 28
Credit risk ratings

agencies, 93
auto keyword, 98, 99
coding, 95–98
defined, 93
risk-averse investors, 93
shared pointers, 93, 94

Critical sections, 466
csvWrite member function, 194, 195

D
Data mining, 432
Decision variables, 342, 352
Definite integrals, 377
Delegating constructor, 486
Determinant.cpp, 230–232
Determinant of matrix calculation,

229–232
determinantSample, 230
Differential equations, 299
Direct memory access, 85
Direct stock ownership, 36
DistributionData class, 180
dotProduct member function, 215
Dot product, 214
drawLine member function, 202

E
Exception handling, 100, 101
Earnings before interest, taxes,

depreciation and amortization
(EBITDA), 65

Efficient frontier, 359
Element-wise multiplication, 221
EMA (see Exponential moving

average (EMA))
Enumeration, 163
Equities market

computational techniques, 35
computing instrument

correlation, 56–64
derivatives, 35
fundamental indicators, 64–72
moving average calculation, 38–48
participants, 36–38
volatility, 48–56

Equity-based investments, 56
Equity trading, 73
Euler’s method, 302, 303
Exchange-traded funds (ETFs), 35
Exponential moving average (EMA), 41, 42
Exporting C++ classes to Python

advantages, 413
boost::python library, 414
constructors, 415
matrix-setup.py, 418
matrix module and setup.py file,

415–418
Extension API for Python, 403

F
f2c converter, 213
Factorial template, 166

Index

500

Factorials calculation, 166
ChoiceNumber class template, 167
compile and run, 169
constexpr keyword, 170
FactorialTemplate.h header file, 168, 169
implementation code, 167
recurring expression, 165
showFactorial function, 166

Fast interpolation, 235
Financial data

gnuplot
application running on Windows, 190
code execution, 200
commands, 192
GnuplotPlotter.cpp, 195, 197–199
GnuplotPlotter.h, 195, 197–199
installation, 190
mathematical function sin(x), 191
set command, 193

GUI
QtPlotter class, 202, 203
QtPlotter.cpp, 203–209
QtPlotter.h, 203–209

Financial engineering techniques, 32
Financial resource allocation

coding, 354–357
decision variable, 352
implementation, 353
linear programming, 352

Financial software development, 75
Financial statement objects

coding, 88–91
memory leaks, 84
pitfalls of unique pointers, 92, 93
smart pointers, 85, 86
transferring ownership, 91
unique pointers, 86–88

First-order ODE, 300

Fixed income investment
advantages, 1
bonds, 28–32
cash flows, 19–27
cash flow valuations, 1
coding examples, 2
compound interest, 13–19
computational problems

existing libraries, 6
high-level features, 6
multi-paradigm language, 6
performance, 5
standards compliance, 5

concepts, 4
defined, 2
equity and derivatives market, 33
goal, 1
high-quality libraries, 7
institutional funds, 1
pension funds, 1
risks, 3
simple interest rates, 7–13
vs. stock market, 3
tasks, 3
types, 2

for loop, 245
Forecasting prices, 377
Fortran, 213
Forward method, 314
Forward P/E, 66
Fundamental theorem of calculus, 278

G
Gamma distribution, 181
Gaussian-distributed data, 180
Gaussian distribution, 177, 393
Gaussian random walk, 392

Index

501

gaussianValue member function, 393
gcc compiler, 176
Generalized attributes, 488
Generalized constant expressions, 489, 490
generateCmds, 194, 195
Generic functions, 76
getDrawDown member function, 173
getIntegral member function, 288
getStock function, 404
getValue member function, 244
getWalk member function, 385
Gnu Common Lisp (GCL), 447
Gnu Linear Programming Kit (GLPK)

solver, 324, 353
Gnuplot

application running on Windows, 190
code execution, 200
commands, 192
GnuplotPlotter.cpp, 195, 197–199
GnuplotPlotter.h, 195, 197–199
installation, 190
mathematical function sin(x), 191
set command, 193

GnuplotPlotter, 194, 195
Graphical libraries, 201
Gregorian calendar, 144
GUI

QtPlotter class, 202, 203
QtPlotter.cpp, 203–209
QtPlotter.h, 203–209

H
Handling dates

command line, 150
Date class, 143
date_time library, 144
equity analysis, 142

getDayOfWeek, 144
implementation, 145–149
isLeapYear method, 144
time-and date-related functions, 143

Hedge funds, 37
Hermitian matrix, 220
High-frequency trading funds, 37
High-performance software

development, 113

I, J, K
IBM.csv, 193
Inheriting constructors, 488
Initializer lists, 493–495
initstock function, 405
Instrument correlation, 56–64
int value, 163
Integer variables, 342
Integrated development environments

(IDEs), 441
Integrating C++ with R

API, 433
code running, 438, 439
extension library, code, 435–439
present-value calculations, 434
presentValue function, 434
statistical analysis, 432

Interest rate calculation
BondInstrument class, 77
class hierarchies, 76
command line, 84
fixed income investors, 76
generic functions, 76
getAnnualIntRate method, 77
implementation, 78–83
templates, 76, 77
traditional compilation steps, 76

Index

502

Interpolation, 236
graph, 237
linear, 236, 238–241
polynomial, 242–249

In the money (ITM), 390
IntRateCalculator class, 7, 8, 10
IntRateEngine class, 77
Investment banks, 37
Investment portfolios, 358
Investments, 33
Investment Science, 32
Investor profile, 358
Issuer, 29
isValid member function, 328
Iteration, 164

L
Lagrange’s interpolation algorithm, 243
Lambda, 479
Library

analyst recommendations, 114–124
components, 113
copying transaction files, 132–142
handling dates, 142–150
time-series transformations, 125–132

Linear algebra (LA), 211
BLAS, 213
determinant of matrix, 229–231
matrix-oriented operations, 219–229
scalars, 212
VectorOperations, 214
VectorOperations.cpp, 216–219
VectorOperations.h, 216–219

Linear and quadratic models, 351
Linear constraints, 353
Linear interpolation

algorithm, 237

code implementation, 238–241
constructors, 238

Linearization, 360
Linear objective function, 353
Linear programming models, 323
Linear programming solver

constraints, 325
header and implementation, 329–335
libraries, 326–328
objective function, 325
simplex algorithm, 326

lock() member function, 467
Logical comparisons, 172
Log-normal distribution, 181
Lower-upper (LU) decomposition, 230
LPSolver class, 343, 362
Lua, extending C++

class LuaOption, 422–428
extension modules, 419
functions, 421
interpreter, 420
scripting language, 419
standard library, 420
user-defined libraries, 421

luaL_newstate function, 421
LuaOption, 421
lua_State structure, 421
lu_factorize, 230

M
Market makers, 36
Market participants, 36–38
Mathematics for Finance, 33
MathFunction class, 254, 255, 288
Matrix class, 154

constructors, 155
implementation code, 157

Index

503

implementation code, 157–162
multiplication, 156, 157
operator *, 157
swap function, 157
trace operation, 155, 156
transposition operation, 155
typedef, 155

Matrix, 220
Matrix-matrix operations, 213
Matrix module, 415–418
Matrix multiplication, 221
matrixOp, 229
MatrixOperations, 221, 222
MatrixOperations.cpp, 223–229
MatrixOperations.h, 223–229
matrix-setup.py file, 418
Matrix-vector operations, 219
Maxima computer algebra system

OptionsProbabilities class, 443–446
clines function, 442
GetProcAddress, 442
lisp functions, 442
MingW gcc compiler, 446
open source application, 440
OptionsProbabilities, 442
shared object library, 441
wxMaxima application, 441

Mean-absolute deviation portfolio
optimization model, 360

MidpointIntegration class, 281
Midpoint method

algorithm, 281
code implementation, 282–285
constant function, 279, 281

MIPSolver class, 344–347, 353
Mixed-integer programming (MIP)

problems
branch-and-cut, 343

decision variable, 343
integer variables, 342
LPSolver class, 343
MIPSolver Class, 344–347
output, 347

Modern portfolio theory, 358
Modified CAP

asset classes, 375
constraint, 370
extended model, coding, 371–374
ModifiedCAP class, 370

Module, 402
Money market funds, 2
Monte Carlo-based algorithm, 458
Monte Carlo integration method, 379–386
Monte Carlo methods

integral computation
implementation, 379, 380, 382–384
getIntegral member function, 378

random process, 378
Moving average calculation

addPriceQuote member
function, 39

closing prices, 38
daily prices of Apple, 39
EMA, 41, 42
gcc compiler, 47
implementation, 42, 44–46
MACalculator class, 40
N-element sequence, 41
price/volume-based strategies, 38
program execution, 47
self-reinforcing, 38
supply/demand methods, 38
support and resistance values, 38

Multicore processing, 449
Multiple linear and nonlinear

components, 324

Index

504

Multithreading
advantages, 465
computational work, 465
operating system, 451
pthreads library (see pthreads library)
software solutions, 450
traditional approach, 449

Mutex, 466
MutexAccess, 467
Mutexes

critical sections, 466
lock() and unlock() member

functions, 467
Mutex and MutexAccess classes,

coding, 467–472
MutexAccess, 467
pthread_mutex_lock, 466
pthread_mutex_unlock, 467
pthreads API, 466
synchronization mechanism, 466

Mutex synchronization operation, 467
MutexTestThread, 467
Mutual funds, 37

N
Newton’s method, 267, 269, 272–275
Norm, 214
Normal distribution, 179
Null pointer constant, 490, 491
Numerical classes

Calmar ratio, 170–174, 176
factorials, 162, 163, 165–167, 169, 170
matrix, 154–162
probability distributions, 178–186
statistical data, 177, 178, 180

Numerical integration
midpoint method

algorithm, 281
code implementation, 282–285
constant function, 279, 281

Simpson’s method
algorithm, 294
code, 294–298
second-order polynomial, 292, 293

trapezoid method
code execution, 291
code implementation, 288–291
graphical approach, 286
symbolic techniques, 287

Numeric libraries, 212

O
object.function(), 403
Objective function, 325, 360
operator *, 157
Operator overloading, 75, 106–108
Optimization

concepts, 323
LP (see Linear programming solver)
maximum/minimum finding, 324
MIP (see Mixed-integer programming

(MIP) problems)
optimal asset portfolio allocation, 324

Option class, 421
Option contract, 390
optionProbFinishAboveStrike, 442
Options prices, 377
Options probabilities, 442

categories, 390
European-style options, 390
OptionsProbabilities class, 394–399
profit potential, 391
profit probabilities, 391–393
strike price and stock price, 390

Index

505

style of exercise, 390
OptionsProbabilities class, 392
Options probabilities in parallel

gcc compiler, run coding, 465
member function, 458
Monte Carlo algorithm, 458
ParallelOptionsProbabilities class, 458
ParallelRandomWalk class, 460–465
result() member function, 459
simulation process, 458

Out of the money (OTM), 390

P
paintEvent member function, 201
Parallel computation, 450
ParallelOptionsProbabilities class, 458
Parallel processing techniques, 458
ParallelRandomWalk class, 460–465
Parameters, 163
Pension funds, 37
Piecewise linear equations, 242
PlotWindow class, 201, 202
plotWindowRun member function, 202
Polynomial interpolation

code implementation, 246–249
getValue member function, 244

polynomialValue, 245
Portfolio construction problems, 358
Portfolio construction strategy, 358
Portfolio manager, 358
Portfolio optimization

CAP model, 359
definition, 358
efficient frontier, 360
financial assets, 358
linearization, 360

LPSolver class, 362, 363
main function, 363
modified CAP implementation,

364–368
objective function, 359
portfolio construction strategy, 358
quadratic optimization model, 360
right-hand side coefficients, 362

Predictor-corrector algorithm, 303
presentValue function, 434, 435
Present-value calculations, 434
Price-earnings ratio (P/E), 65
Price-earnings to growth (PEG), 65
Price-to-book ratio (P/B), 65
Probability distribution functions

(PDF), 178
Probability distributions, 178, 180

code execution, 186
code implementation, 186
implementation code, 182–184, 186

Profit probabilities, 391–393
pthread_create function, 452
pthread_mutex_lock, 466
pthread_mutex_unlock, 467
pthreads library, 449, 472

functions, 451
pthread_create function, 452
start() and endThread() functions, 453
Thread class, 452
Thread Class implementation, 454–457
thread creation and

synchronization, 452
thread_function, 453

PyArg_ParseTuple function, 404
Py_BuildValue function, 404
Py_InitModule function, 405
Python, 402

Index

506

Q
QApplication object, 202
QMainWindow, 201
Qt, 201
QtPlotter, 201
Quadratic function (x–1)2, 270
Quadratic optimization model, 360, 369
Quadratic optimization solver, 360

R
Random number generators, 177
Random values, 393
RandomWalk class, 385
Random walk process, 385
Random walk simulation process, 384
Ratio template, 171
R console window, 433
RecommendationProcessor class, 118
Recursion, 164, 167
Reference counting mechanism, 94
reinterpret_cast operator, 453
Resource Acquisition Is Initialization

(RAII), 86
Resource allocation, 352
Retail investors, 37
Return on equity (ROE), 66
RExtension, 434, 435
R Extension library, 435–439
Risk-averse investors, 93
Roots of equations

bisection method, 252–259
Newton’s method, 267–275
secant method, 260–266

run() member function, 467
Runge-Kutta method, solving ODEs,

307–313
Rvalue references, 482, 483, 485

S
Scalar multiplication, 221
Scalars, 212
Scale, 214
Secant method, 260–262, 264–266
SecantSolver class, 263
Second-order polynomial, 292
Securities and Exchange Commission, 64
setApplicationName member

function, 203
setData member function, 194, 201
setNumIntervals, 288
setPoints member function, 238
setup.py file, 411, 415–418
Shared object library, 441
Shared pointers, 75, 86, 93, 94
showFactorial function, 166
Simple interest rates

assignment operator, 9
calculation, 7
cash deposit, 7
coding, 11, 12
copy constructor, 9
default constructor, 9
destructor, 9
inline, 10
IntRateCalculator class, 7, 8
moving constructor, 9
results, 13
singlePeriod member function, 10

Simplex algorithm, 326
Simpson’s method

algorithm, 294
code, 294–298
second-order polynomial, 292, 293

Single-vendor libraries, 133
sin(x), 191
Smart pointers, 85, 86

Index

507

solve() function, 338
solve member function, 344
Solving linear models, 323
Solving mixed-integer programming

models, 323
Solving ODEs

Euler’s method, 302, 303
implementation, Euler’s method, 303,

305, 306
numerical algorithms, 301
numerical solution, 300–302
Runge-Kutta method

approximation, 309
implementation, 309–311
results, 312
solution, 307–309

symbolic methods, 301
Sparse matrix, 220
Sparse vector, 220
Standard templates library (STL), 6, 39,

113, 154
Statistical distributions, 177
Stock pointer, 404
Stock market, 35, 36
stock-setup.py, 412
Stock::ticker() member function, 404
subtractVector, 215
Swap function, 157, 214
Symbolic methods, 301
Symbolic techniques, 279
Symmetric matrix, 220
Syntactic analysis, 76

T
Tangent, 268
Taylor method, 308
Technical analysis (TA), 38

Template, 76
Template-based class, 162
Template-based computation, 163
Template-based operations, 172
Template-based recursion, 165
Templates, 75
Template specialization, 165
Thread class, 452
Thread object, 453
thread_function, 453
Threads, creation, 472
Thread synchronization, 466
ticker() member function, 404
Time series, 57
Time-series transformations

advantages, 126
command line, 132
data filtering, 125
functions, 125, 126
implementation, 128–131
sorting and selection algorithms, 125
STL algorithms, 127, 128

Trace operation, 155, 156
Transaction data

coding, 102
exception handling, 100, 101
try/catch/throw mechanism, 100

Transaction data, coding, 103–106
Transaction files

boost libraries, 132–137
command line, 142
definitions and implementation,

137–142
file operations, 132
traditional C interfaces, 132

TransactionHandler class, 100
Transferring ownership, 91
transpose method, 222

Index

508

Transposition, 221
Transposition operation, 155
TrapezoidIntegration, 288
Trapezoid method

code execution, 291
code implementation, 288–291
graphical approach, 286
symbolic techniques, 287

TriangularMatrix, 220
Two-dimensional investment

problems
constraints, 336
decision support system

modeled, 336
feasible set, inequalities, 337
header file and implementation,

338–341
optimization techniques, 336
results, 341
solution, 338

TwoDimensionalLPSolver, 338–341
typedef, 155

U
ublas vector, 215
uBLAS

determinant of matrix calculation,
229–232

library, 213
matrix-related functions, 221
operators, 221

ublas::matrix object, 222
Unique pointers, 86–88, 92, 93
unitX, 201

unitY, 201
unlock() member functions, 467
User-defined literals, 480

V
Variance, 359
Vector, 219
Vector addition, 214
Vector multiplication, 221
Vector operations

implementation, 108–111
operator overloading, 106–108
programming technique, 106

VectorOperations, 213, 214
VectorOperations.cpp, 216–219
VectorOperations.h, 216–219
Vector resizing, 115
Vector types, 214
Volatility

coding, 51–53, 55
concept, 48
definition, 55
equity instrument, 48
implementation, 49
price variations, 48
rate of change, 49
single-1 value, 55
standard deviation, 50
stocks characteristics, 48
strategies, 51

W, X, Y, Z
wxMaxima application, 441

Index

	Table of Contents
	About the Author
	Introduction
	Chapter 1: The Fixed Income Market
	Fixed Income Overview
	Why Use C++
	Calculating Simple Interest Rates
	Problem
	Solution
	How It Works
	Complete Code
	Sample Use

	Compound Interest
	Problem
	Solution
	How It Works
	Complete Code
	Sample Use

	Modeling Cash Flows
	Problem
	Solution
	Calculating Present Value
	Calculating Present Value in C++
	Using STL Containers

	Complete Code
	Running the Code

	Modeling Bonds
	Problem
	Solution
	Complete Code
	Running the Code

	Further Reference
	Conclusion

	Chapter 2: The Equities Market
	Equities Market Concepts
	Market Participants

	Moving Average Calculation
	Problem
	Solution
	Complete Code
	Running the Code

	Calculating Volatility
	Problem
	Solution
	Complete Code
	Running the Code

	Computing Instrument Correlation
	Problem
	Solution
	Complete Code
	Running the Code

	Calculating Fundamental Indicators
	Problem
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 3: C++ Programming Techniques in Finance
	Calculating Interest Rates for Investment Instruments
	Solution
	Complete Code
	Running the Code

	Creating Financial Statement Objects
	Solution
	Smart Pointers
	Using Unique Pointers
	Complete Code
	Transferring Ownership
	Pitfalls of Unique Pointers

	Determining Credit Ratings
	Solution
	Using Shared Pointers
	Complete Code
	Using the auto Keyword

	Collecting Transaction Data
	Solution
	Exception Handling
	Complete Code

	Implementing Vector Operations
	Solution
	Operator Overloading
	Complete Code

	Conclusion

	Chapter 4: Common Libraries for Financial Applications
	Handling Analyst Recommendations
	Solution
	More About STL Vectors and Maps
	Complete Code

	Performing Time-Series Transformations
	Solution
	Using STL Algorithms
	Complete Code
	Running the Code

	Copying Transaction Files
	Solution
	Boost Libraries
	Complete Code
	Running the Code

	Handling Dates
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 5: Designing Numerical Classes
	Representing Matrices in C++
	Solution
	Complete Code

	Using Templates to Calculate Factorials
	Solution
	Complete Code
	Running the Code
	Using C++20 Features to Compute Factorial

	Representing Calmar Ratios at Compile Time
	Solution
	Representing Calmar Ratios
	Complete Code
	Running the Code

	Generating Statistical Data
	Solution
	Probability Distributions
	Complete Code
	Running the Code

	Conclusion

	Chapter 6: Plotting Financial Data
	Plotting with Gnuplot
	Solution
	Complete Code
	Running the Code

	Plotting Data from a GUI
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 7: Linear Algebra
	Using Basic Linear Algebra Operations
	Solution
	Complete Code

	Using Matrix-Oriented Operations
	Solution
	Complete Code
	Running the Application

	Calculating the Determinant of a Matrix
	Solution
	Complete Code

	Conclusion

	Chapter 8: Interpolation
	Linear Interpolation
	Solution
	Complete Code
	Running the Code

	Polynomial Interpolation
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 9: Calculating Roots of Equations
	Bisection Method
	Solution
	Complete Code
	Running the Code

	The Secant Method
	Solution
	Complete Code
	Running the Code

	Newton’s Method
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 10: Numerical Integration
	The Midpoint Method
	Solution
	Complete Code
	Running the Code

	Trapezoid Method
	Solution
	Complete Code
	Running the Code

	Using Simpson’s Method
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 11: Solving ODEs and PDEs
	Solving Ordinary Differential Equations
	Solution
	Euler’s Method
	Complete Code
	Running the Code

	Runge-Kutta Method for Solving ODEs
	Solution
	Complete Code
	Running the Code

	Solving the Black-Scholes Equation
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 12: Optimization
	Interfacing with a Linear Programming Solver
	Solution
	Linear Programming Concepts
	Using LP Solver Libraries
	Complete Code
	Running the Code

	Solving Two-Dimensional Investment Problems
	Solution
	Complete Code
	Running the Code

	Creating Mixed-Integer Programming Models
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 13: Asset and Portfolio Optimization
	Financial Resource Allocation
	Solution
	Implementation
	Complete Code
	Running the Code

	Portfolio Optimization
	Solution
	Complete Code
	Running the Code

	Extensions to Modified CAP
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 14: Monte Carlo Methods
	Monte Carlo-Based Integral Computation
	Solution
	Complete Code
	Running the Code

	Simulating Asset Prices
	Solution
	Complete Code
	Running the Code

	Calculating Option Probabilities
	Solution
	Determining Profit Probabilities
	Complete Code
	Running the Code

	Conclusion

	Chapter 15: Extending Financial Libraries
	Exporting C++ Stock Handling Code to Python
	Solution
	Complete Code
	Running the Code

	Exporting C++ Classes Directly to Python
	Solution
	Complete Code
	Running the Code

	Using Lua as an Extension Language
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 16: Using C++ with R and Maxima
	Integrating C++ with R
	Solution
	Complete Code
	Running the Code

	Integrating with the Maxima CAS
	Solution
	Complete Code
	Running the Code

	Conclusion

	Chapter 17: Multithreading
	Creating Threads with the Pthreads Library
	Solution
	Complete Code
	Running the Code

	Calculating Options Probabilities in Parallel
	Solution
	Complete Code
	Running the Code

	Using Mutexes to Prevent Unsynchronized Access
	Solution
	Complete Code
	Running the Code

	Creating Threads Using the Standard Library
	Conclusion

	Appendix A: Features of C++20
	Automatic Type Detection
	Lambdas
	User-Defined Literals
	Range-Based for
	Rvalue References
	New Function Declarator Syntax and decltype
	Delegating Constructors

	Inheriting Constructors
	Generalized Attributes
	Generalized Constant Expressions
	Null Pointer Constant
	Defaulted and Deleted Member Functions
	Initializer Lists

	Index

