


Object	Oriented	Programming

Using	C++
By	Jitendra	Patel

Overview

Object	 Oriented	 Programming	 using	 C++:	 Object	 Oriented	 Programming	 using	 C++
teaches	the	generic	Object	Oriented	Programming	using	C++	programming	language	in	an
easy-to-follow	 style,	 without	 assuming	 previous	 experience	 in	 any	 other	 language.	 A
variety	of	examples	make	learning	these	Concepts	with	C++	both	fun	and	practical.	This
book	is	organized	in	such	a	manner	that	students	and	programmers	with	prior	knowledge
of	C	can	find	it	easy,	crisp	and	readable.	Each	Chapter	contains	many	example	programs
throughout	the	book,	along	with	additional	examples	for	further	practice.

KEY	FEATURES

Systematic	approach	throughout	the	book
Programming	basics	in	C++	without	requiring	previous	experience	in	another
language
Simple	language	has	been	adopted	to	make	the	topics	easy	and	clear	to	the	readers
Topics	have	been	covered	with	more	than	100	illustrations	and	C++	programs
Enough	examples	have	been	used	to	explain	various	OOPs	concepts	effectively.	This
book	also	consists	of	tested	programs	so	as	to	enable	the	readers	to	learn	the	logic	of
programming
Discusses	all	generic	concepts	of	Object	Oriented	Programming	(OOP)	concepts
such	as	Classes	and	Objects,	Inheritance,	Polymorphism	using	Function	and	Operator
Overloading	and	Virtual	Functions,	Friend	Functions	in	detail	with	aided	examples
Use	of	Various	Programming	terms	like	variables	and	expressions,	functions	are
simplified
A	number	of	diagrams	have	been	provided	to	clear	the	concepts	in	more	illustrative
way
Provides	exercises,	review	questions	and	exercises	as	the	end	of	each	chapter
equipped	with	more	than	300	questions	in	various	patterns	and	more	than	170
programming	exercises
Samples	are	presented	in	easy	to	use	way	through	Turbo	C++	3.0.		

	



	First	Edition:	2012	

Copyright
Object	Oriented	Programming	Using	C++	(Second	Edition)

Copyright	reserved	by	the	Author

All	 rights	 reserved.	 No	 part	 of	 this	 book	 shall	 be	 reproduced,	 stored	 in	 a
retrieval	 system,	 or	 transmitted	 by	 any	 means,	 electronic,	 mechanical,
photocopying,	 recording,	 or	 otherwise,	 without	 written	 permission	 from	 the
publisher.	 No	 patent	 liability	 is	 assumed	 with	 respect	 to	 the	 use	 of	 the
information	contained	herein.	Although	every	precaution	has	been	taken	in	the
preparation	of	this	book,	the	publisher	and	author	assume	no	responsibility	for
errors	or	omissions.	Nor	 is	any	 liability	assumed	for	damages	 resulting	 from
the	use	of	the	information	contained	herein.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as
possible,	but	no	warranty	or	fitness	is	implied.	The	information	provided	is	on
an	“as	is”	basis.	The	authors	and	the	publisher	shall	have	neither	liability	nor
responsibility	to	any	person	or	entity	with	respect	to	any	loss	or	damages
arising	from	the	information	contained	in	this	book.



Dedication

This	book	is	dedicated	to	my	honorable	parents	and	beloved	students	who	are
my	favorite	person	in	the	world.	



PREFACE

I	 want	 to	 thank	 a	 number	 of	 people	 for	 helping	me	writing	 the	 books	 and	 solving	 the
difficulties	of	Object	Oriented	Programming	Concepts	and	finding	the	solution	of	various
critical	problems	I	faced	during	writing	this	book.

As	 the	 reader	 of	 this	 book,	 you	 are	my	most	 important	 critic	 and	 commentator.	 I	 value
your	opinion	and	want	to	know	what	I	am	doing	right,	what	I	could	do	better,	what	areas
you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to	pass	my
way.

As	an	author	of	this	book,	I	welcome	your	comments.	You	can	email	or	write	me	directly
to	 let	me	know	what	you	did	or	didn’t	 like	about	 this	book	as	well	 as	what	 I	 can	do	 to
make	the	book	better.

When	 you	write,	 please	 be	 sure	 to	 include	 this	 book’s	 title	 and	 author	 as	well	 as	 your
name,	 email	 address,	 and	 phone	 number.	 I	will	 carefully	 review	your	 comments	 on	 the
book.





CHAPTER:1	Introduction	to	Object	Oriented	Programming
Overview	of	Principles	of	Programming

The	program	is	a	set	of	statements	(instructions)	to	perform	a	particular	task.	To	write
the	 program	 you	 must	 follow	 some	 mechanism	 and	 that	 mechanism	 is	 called	 as
programming.	Now	we	will	discuss	some	mechanism	of	programming.

The	most	common	mechanism	for	programming	are:

1.	Algorithm

2.	Pseudo	code

3.	Flow	chart

These	mechanisms	are	general	mechanism	which	computer	cannot	understand	and	we
cannot	implement	algorithm	or	flow	chart	into	the	computer.	For	implementing	flow	chart
or	 algorithm	 into	 computer	 we	 must	 use	 any	 particular	 language	 which	 computer	 can
understand.



Procedural	programming	language

A	procedural	program	is	written	as	a	list	of	instructions,	telling	the	computer,	step-by-
step,	what	to	do.

Pascal,	C,	BASIC,	COBOL,	Fortran	and	similar	traditional	programming	languages	are
procedural	 languages.	 i.e	 each	 statement	 in	 the	 language	 tells	 the	 computer	 to	 do	 some
thing.

Program	units	include	the	main	block,	subroutines,	functions,	procedures;	file	scoping;
includes/modules;	 libraries.	We	 can	 use	 English	 words	 for	 variable	 names,	 English	 for
statement	also.	Because	of	this	feature	human	being	can	read	program	easily.

[Fig:	Steps	of	procedural	language]

In	 all	 procedural	 languages	 you	 have	 to	 write	 code	 in	 English	 using	 the	 syntax	 of
language	you	understand.

The	compiler	or	interpreter	will	translate	source	code	into	object	code,	which	computer
can	understand.

When	you	run	object	code,	it	makes	executable	code	and	you	can	see	the	output	of	your
program	by	executing	the	executable	code.

All	procedural	 languages	provide	 the	feature	of	using	functions.	With	 this	 feature	we
can	divide	our	code	into	small	modules.	When	program	become	large	in	size,	a	single	list
of	instructions	becomes	unreadable.	Because	of	this	reason	functions	are	used	as	a	way	of
making	 programs	 more	 comprehensible.	 The	 functions	 are	 also	 called	 as	 subroutines,
subprograms	or	procedures.

Let	us	see	an	example	of	a	program	using	function.	Here	 is	 the	 flow	chart	of	adding
two	numbers	using	function.



[Fig:	Adding	two	numbers	using	function]

As	you	can	see	in	above	Figure	the	flow	chart	first	we	have	declared	variables	A,	B,	C
and	D	with	values	10,	20,	30	and	40	respectively.	After	that	we	have	called	the	ADD	(	)
function	with	variables	A	and	B	and	store	the	result	in	E.

When	we	call	 the	ADD	(	)	 function,	 the	pointer	will	go	 to	 that	 function	and	receives
arguments	A,	B	 as	X,	Y.	Then	 the	 addition	 of	X	 and	Y	will	 stored	 into	 variable	Z	 and
function	ADD	(	)	will	return	value	Z	to	variable	E.

In	the	same	way	we	can	add	the	value	of	C	and	D	into	the	variable	F	by	calling	ADD	(
)	function	with	arguments	C	and	D.

This	is	a	small	example	of	function	used	in	structured	languages.	If	a	program	is	very
large	 then	by	dividing	 the	program	into	 this	 type	of	 functions,	we	can	easily	understand
the	code	and	we	can	reduce	the	size	of	code.

Procedural	programming	is	fine	for	small	projects.	It	 is	the	most	natural	way	to	tell	a
computer	 what	 to	 do,	 and	 the	 computer	 processor’s	 own	 language,	 machine	 code,	 is
procedural,	so	the	translation	of	the	procedural	high-level	language	into	machine	code	is
straightforward	and	efficient.

Some	characteristics	of	procedure-oriented	programming	are	as	follows:

1.	Emphasis(Attention)	is	on	doing	things	(tasks),	i.e.	it	follows	the	algorithm.

2.	Large	programs	are	divided	into	smaller	programs	known	as	functions	or	procedures
or	subroutines.

3.	Most	of	the	functions	are	share	global	data.

4.	Data	move	openly	around	the	system	from	function	to	function.

5.	Functions	transform	data	from	one	form	to	another.



Drawbacks

As	 time	 goes,	 the	 programmers	 found	 some	 problems	 while	 developing	 projects	 in
structured	 languages.	One	of	 the	most	crucial	 reason	of	 facing	problems	with	structured
language	is	data.	As	we	have	seen	one	of	the	characteristic	of	structured	programming	is
on	 doing	 things	 anyway.	 The	 subdivision	 of	 a	 program	 into	 function	 continues	 this
emphasis.	Functions	do	thing,	just	as	single	program	statements	do.

[Fig:	Relationship	of	data	and	function	in	procedural	programming]

Data	is,	after	all,	the	reason	for	a	program’s	existence.	The	important	part	of	any	system
is	data	not	the	functions.	In	procedure	language,	data	is	considered	as	second	aspect	rather
than	first.

Most	of	the	data	are	treated	as	global	in	procedural	languages.	By	global	means	that	the
variables	 that	 constitute	 the	 data	 are	 declared	 out	 side	 of	 any	 function	 so	 they	 are
accessible	to	all	functions.	These	functions	perform	various	operations	on	the	data.	They
read	it,	update	it,	rearrange	it,	display	it,	write	it	back	to	the	disk,	and	so	on.	Where	as	in
case	of	local	variables,	they	are	hidden	within	a	single	function.	But	local	variables	are	not
useful	for	important	data	that	must	be	accessed	by	many	different	functions.	The	concept
of	local	and	global	variable	will	more	clear	from	above	figure.

Another	problem	is	that,	because	many	functions	access	the	same	data,	the	way	the	data
is	stored(type	of	data,	size	of	the	field,	range,	format	etc…)	becomes	critical.

The	procedural	 language	cannot	model	 the	 real	world	problem	very	well	because	 the
problems	are	functions	and	data	structures	of	procedural	language.

Creating	new	data	 types	 is	difficult	 using	procedural	 languages.	Computer	 languages
typically	have	 several	built	 in	data	 types	 like	 integer,	 floating	point	numbers,	 characters
etc.	 but	 if	 you	want	 to	 create	new	data	 type	 like	 complex	number,	 date,	 two	dimension
coordinate	then	it	is	difficult	create	those	new	data	types.

C	provides	 to	make	your	own	data	 type	using	 structure	but	 here	 also	 structure	has	 a



drawback	 that	 we	 cannot	 protect	 data	 of	 structure,	 anyone	 can	 access	 it.	 This	 type	 of
problem	is	called	as	data	hiding.



Object	oriented	programming.

The	fundamental	idea	behind	an	object-oriented	language	is	to	combine	both	data	and
the	functions	that	operate	on	the	data	into	a	single	unit.	Such	a	unit	is	called	an	object.

Definition:	“Object-oriented	programming	is	an	approach	of	modularizing	programs	by
creating	 classes	 for	 both	 data	 and	 functions	 that	 can	 be	 used	 as	 templates	 for	 creating
copies	of	such	objects	on	demand.”	Thus,	an	object	is	considered	to	store	data	and	set	of
operations	 that	 can	 access	 that	 data.	 The	 objects	 can	 be	 used	 in	 a	 variety	 of	 different
programs	without	modifications.

The	 fundamental	need	of	Object	Oriented	Programming	 is	data	hiding,	 reusability	of
code,	creating	your	own	data	 type	with	more	flexibility,	etc.	Data	members	of	an	object
can	be	accessed	only	by	using	the	functions	of	the	object.	You	cannot	access	the	data	of
the	 object	 directly;	 you	 can	 access	 data	 using	 functions	 of	 the	 object	 only.	 The	 outside
functions	(like	main()	function)	cannot	access	the	data	of	the	object.	Therefore,	the	data	is
hidden	and	is	safe	from	accidental	alteration.

The	 functions	 of	 an	 object	 are	 called	 the	 member	 functions.	 The	 objects	 of	 a	 C++
program	can	communicate	with	each	other	by	calling	one	another’s	member	functions.	As
you	can	see	in	following	figure	three	objects	object	1,	object	2	and	object	3	are	connected
with	 each	other	using	 their	member	 functions.	Here	data	1	 can	be	 accessed	by	member
function	1	only,	member	function	of	object	2	and	object	3	can	not	access	data	1,	so	data	1
is	hidden	for	all	the	objects	rather	than	object	1,	same	for	data	2	and	data	3.

[Fig:	Organization	of	data	and	functions	in	OOP]

C++	&	Java	are	the	examples	of	Object	Oriented	Programming	language.

In	1980	Bjarne	Stroustrup	added	several	extensions	to	C	language.	The	most	important



addition	was	the	concept	of	CLASS.	The	addition	made	were	mainly	aimed	at	extending
the	language	in	such	a	way	that	it	supports	object-oriented	programming.

Some	of	the	striking	aspects	of	Object	Oriented	Programming	are:

1.	Emphasis	is	on	data	rather	than	procedure.	i.e	how	data	is	accessed	rather	than	only
how	work	is	done.

2.	Programs	are	divides	into	what	are	known	as	objects.

3.	Data	structures	are	designed	such	that	they	characterize	the	objects.

4.	Functions	that	operate	on	the	data	of	an	object	are	tied	together	in	the	data	structure.

5.	Data	is	hidden	and	cannot	be	accessed	by	external	function	like	main()	function.

6.	Objects	may	communicate	with	each	other	through	member	functions	of	objects.

7.	New	data	and	functions	can	be	easily	added	whenever	necessary.

Features	of	Object	Oriented	Programming

The	important	features	of	OOPs	are	as	follows:

Class

The	set	of	data	and	code	of	an	object	can	be	made	a	user	defined	data	 type	with	 the
help	of	a	class.	Class	is	a	user	defines	data	type	which	contains	data	member	&	member
function.	 It	 is	 define	 by	 “class”	 keyword.	 It	 is	 an	 Important	 feature	 of	 object	 oriented
programming	 language.	 Once	 a	 class	 has	 been	 defined,	 we	 can	 create	 any	 number	 of
objects	belonging	to	that	class.	Thus	a	class	is	a	collection	of	objects	of	similar	type.	It	is
an	abstract	representation	or	blue	print	of	the	real	world	objects.

For	Example,	“fruit”	is	a	class	and	“apple”,	“mango”,	“banana”	are	its	object.

Same	way,

1.	student,	teacher	are	objects	of	class	college	and

2.	laborer,	manager	are	objects	of	class	employee	etc.

You	can	declare	an	object	student	of	class	college	in	C++	as	follows.	college	student;

Object

Objects	are	variables	of	 type(user	defined)	class.	An	object	 is	a	basic	run	time	entity.
Object	represents	a	Physical	or	real	world	entity.	An	object	is	simply	something	you	can



give	a	name.	All	the	objects	have	some	characteristics	and	behavior.	The	state	of	an	object
represents	all	the	information	held	within	it	and	behavior	of	an	object	is	the	set	of	action
that	it	can	perform	to	change	the	state	of	the	object.

All	real	world	objects	have	three	characterstics:

1.	State

Determines	or	tells	how	object	reacts	or	what	an	object	has?

2.	Behaviour

Indicates	what	we	can	do	with	this	object?

3.	Identity

Used	to	give	difference	between	one	object	to	another	object?

For	example:	Our	bike	object	has	following,

1.	State

(gear,speed,fuel)

2.	Behaviour

(changing	speed	,applying	brakes)

3.	Identity

(registration	number,engine	number)

For	example,	in	the	following	statement:

int	Num1,	Num2;

Num1,	Num2	are	two	variables	of	type	int.	Similarly,	you	can	define	many	objects	of
the	same	class	as	shown	in	following	figure:



[Fig:	Class	and	Objects	of	the	Class]

For	example,	for	a	student	class	we	can	have	following	illustrations:

[Fig:	An	example	of	an	object]

Object	may	represent	a	person,	a	place,	a	table	of	data,	a	bank	account	or	any	item	that
the	program	must	handle.

It	 is	 important	 to	 understand	 the	 distinction	 between	 a	 class	 and	 an	 object.	 The	 two
terms	 are	 often	 used	 interchangeably,	 however	 there	 are	 noteworthy	 differences.	 The
differences	are	summarized	below:

Data	abstraction

Abstraction	 is	 the	 art	 of	 representing	 the	 essential	 features	 of	 some	 thing	 without
including	 much	 detail.	 An	 abstraction	 describes	 a	 set	 of	 objects	 in	 terms	 of	 an
encapsulated	or	hidden	data	and	operations	on	that	data.This	is	the	property	in	which	only
necessary	 information	 is	extracted.	This	property	 is	 implemented	by	using	 the	classes	 in



C++.

Encapsulation

Data	encapsulation	is	the	most	striking	feature	of	a	OOP.	Combining	data	and	functions
into	a	single	class	is	known	as	encapsulation.	It	is	used	to	hide	the	data	as	well	as	for	the
binding	of	a	data	members	and	member	functions.	The	data	is	not	accessible	to	the	outside
world	 and	 only	 those	 functions	 which	 are	 wrapped	 in	 the	 class	 can	 access	 it.	 These
functions	provide	the	interface	between	the	object’s	data	and	the	program.	This	insulation
of	the	data	from	direct	access	by	the	program	is	called	data	hiding.

Inheritance

Inheritance	is	the	process	by	which	one	class	inherits	the	properties	of	another	Class.	It
is	the	process	of	creating	a	new	class,	called	the	derived	class(subclass),	from	the	existing
class,	called	the	base	class(superclass).	A	derived	class	inherits	all	attributes	and	behavior
of	a	base	class,	 i.e.,	 it	provides	access	 to	all	data	members	and	member	functions	of	 the
base	class,	and	allows	additional	members	and	member	functions	to	be	added	if	necessary.

[Fig:	Inheritance	of	a	Derived	Class	From	a	Base	Class]

For	example,	 In	 following	 figure	 the	 base	 class	 is	 named	 as	 vehicle	 and	 it	 contains
functions	named	wheel(	),	Seats(	)	and	Horn(	).	This	class	is	derived	into	classes	named
bicycle,	scooter	and	car.	So	the	functions	from	vehicle	are	common	to	all	derived	classes.
when	we	call	a	function	wheel(	)	 from	class	bicycle	 then	this	function	will	have	data	of
bicycle	 class,	 same	 for	 scooter	 and	 car.	 The	 functions	 paddle(	 ),kick(	 )	 and	 door(	 )	 are
declared	 in	 bicycle,	 scooter	 and	 car	 respectively	 and	 they	 are	 not	 derived	 from	 vehicle
class,	so	the	function	paddle(	)	cannot	be	used	by	any	classes	rather	than	bicycle,	same	for
functions	kick(	)	and	door(	).



[Fig:	Inheritance]

The	base	class	and	derived	class	have	an	“is	a”	relationship.	For	example,

1.	Baseball	(a	derived	class)	is	a	Sport	(a	base	class)

2.	Pontiac	(a	derived	class)	is	a	Car	(a	base	class)

Reusability

The	 concept	 of	 inheritance	 provides	 an	 important	 feature	 to	 the	 object-oriented
language	 called	 reusability.	 A	 programmer	 can	 take	 an	 existing	 class	 and,	 without
modifying	it,	and	additional	features	and	capabilities	to	it.	This	is	done	by	deriving	a	new
class	from	an	existing	class.

Data	hiding

Data	hiding	is	the	property	in	which	some	of	the	members	of	object	are	restricted	from
outside	access.	This	is	implemented	by	using	private	and	protected	access	specifies	while
declaring	the	class.

Polymorphism

The	word	polymorphism	 is	derived	 from	 two	Latin	words	poly	 (many)	and	morphos
(forms).	Poly	means	many	and	morphs	means	 form,	 so	polymorphism	means	one	name
multiple	form.

Polymorphism	is	 the	ability	of	different	objects	 to	 respond	differently	 to	virtually	 the
same	function.

For	example,	a	base	class	provides	a	function	to	print	the	current	contents	of	an	object.
Through	inheritance,	a	derived	class	can	use	the	same	function	without	explicitly	defining
its	own.	However,	if	the	derived	class	must	print	the	contents	of	an	object	differently	than



the	base	class,	it	can	override	the	base	class’s	function	definition	with	its	own	definition.

[Fig:	Polymorphism]

In	order	to	invoke	polymorphism,	the	function’s	return	type	and	parameter	list	must	be
identical.	Otherwise,	the	compiler	ignores	polymorphism.

There	are	two	types	of	polymorphism	:

1.	Compile	time	polymorphism

A.	Using	Function	overloading	or

B.	Using	Operator	Overloading

The	concept	of	using	operators	or	functions	in	different	ways,	depending	on	what	they
are	operating	on,	is	called	compile	time	polymorphism.

2.	Run	time	polymorphism.

A.	Using	Virtual	Functions

As	you	can	see	in	the	following	figure	by	inheritance,	every	object	will	have	the	draw	(
)	procedure	of	base	class	shape	as	well	as	its	own.	The	draw(	)	procedure	will	be	redefined
in	each	class	 that	draws	 that	particular	object.	At	 runtime,	 the	code	matching	 the	object
under	current	reference	will	be	called.	Using	the	object	of	shape	class	we	can	call	any	of
the	four	draw()	function	by	assigning	the	reference	of	related	object.



[Fig:	Polymorphism]

Dynamic	Binding

Binding	refers	to	the	linking	of	a	procedure	call	to	the	code	to	be	executed	in	response
to	the	call.	Dynamic	binding	(also	known	as	late	binding)	means	that	the	code	associated
with	 a	 given	 procedure	 call	 is	 not	 known	 until	 the	 time	 of	 the	 call	 at	 run-time.	 It	 is
associated	with	 polymorphism	 and	 inheritance.	A	 function	 call	 associated	with	 a	 object
depends	on	the	dynamic	type	of	that	reference.

[Fig:	Dynamic	Binding	of	objects	with	different	draw()	function]

E.g.	Consider	the	procedure	“draw”	in	above	figure.	By	using	inheritance,	every	object
of	all	four	classes	will	have	this	procedure.	The	draw	procedure	will	be	redefined	in	each
subclass	 that	 defines	 the	 specific	 shape	 drawing	 functionality.	 Now	 consider	 following
code,

Shape	s1;	Circle	c1;	Box	b1;



s1.draw()	//will	bind	the	draw	function	of	Shape	class

s1=&c1;

s1.draw()	//will	bind	the	draw	function	of	Circle	class

s1=&b1;

s1.draw()	//will	bind	the	draw	function	of	Box	class

Therefore	at	run-time,	which	draw	function	will	be	executed	depends	on	the	object	of
the	class	we	use.

Message	Passing

An	 object-oriented	 program	 consists	 of	 a	 set	 of	 objects	 that	 communicate	with	 each
other.	The	process	of	programming	in	an	object-oriented	language,	therefore,	involves	the
following	basic	steps:

1.	Creating	classes	that	define	objects	and	their	behavior,

2.	Creating	objects	from	class	definitions,	and

3.	Establishing	communication	among	objects.

Objects	communicate	with	one	another	by	sending	and	receiving	information	much	the
same	way	as	people	pass	messages	to	one	another.	A	message	for	an	object	is	a	request	for
execution	of	a	procedure,	and	therefore	will	invoke	a	function	(procedure)	in	the	receiving
object	that	generates	the	desired	result.	Message	passing	involves	specifying	the	name	of
the	 object,	 the	 name	 of	 the	 function	 (message)	 and	 the	 information	 to	 be	 sent.	Objects
have	 a	 life	 cycle.	They	 can	be	 created	 and	destroyed.	Communication	with	 an	object	 is
feasible	as	long	as	it	is	alive.



Advantages	or	Benefits	of	oop

1.	Development	of	secure	programs	that	cannot	be	accessed	by	code	in	other	parts	of
the	program.

2.	 Using	 OOP,	 existing	 code	 within	 an	 application	 doesn’t	 have	 to	 be	 modified	 to
accommodate	changes	in	the	implementation.

3.	Encourages	modularity	in	an	application	development.

4.	Offers	better	maintainability	of	code.

5.	Existing	code	can	be	reused	in	other	applications.

6.	 Promises	 greater	 programmer	 productivity,	 better	 quality	 of	 software	 and	 lesser
maintenance	cost.

7.	 We	 can	 build	 programs	 from	 the	 standard	 existing	 and	 working	 code	 thru
inheritance,	 rather	 than	having	 to	start	writing	 the	code	 from	scratch.	This	 leads	 to
saving	of	development	time	and	higher	productivity.

8.	Object-oriented	systems	can	be	easily	upgraded	from	small	to	large	systems.

9.	It	is	easy	to	partition	the	work	in	a	project	based	on	objects.

10.	 Message	 passing	 makes	 the	 interface	 descriptions	 with	 external	 systems	 much
simpler.

11.	The	data-centered	design	approach	enables	us	to	capture	more	details	of	a	model	in
implementable	form.

12.	With	OOP	software	complexity	can	be	easily	managed.

Applications	of	Oop

1.	Grphical	 user	 interface	 design	 such	 as	windows.	Hundreds	 of	windowing	 systems
have	been	developed,	 using	 the	OOP	 techniques.	Real-business	 systems	 are	often	much
more	complex	and	contain	many	more	objects	with	complicated	attributes	and	methods.
OOP	is	useful	in	these	types	of	applications	because	it	can	simplify	a	complex	problem.

2.	Real-time	systems

3.	Simulation	and	modeling

4.	Object-oriented	databases

5.	Hypertext,	hypermedia	and	expertext



6.	AI	and	expert	systems

7.	Neural	networks	and	Parallel	programming	Decision	support	and	office	automation
systems

8.	CIM/CAM/CAD	systems

9.	 Object-oriented	 technology	 is	 certainly	 going	 to	 change	 the	 way	 the	 software
engineers	think,	analyze,	design	and	implement	future	systems.

Difference	Between	POP	and	OOP



Exercise

1.	Which	of	the	following	is	a	feature	of	Object	oriented	programming?

a.	Data	Encapsulation.

b.	Inheritance.

c.	Polymorphism.

d.	All.

2.	Define	the	following	terms:

a.	Algorithm	b.	Flow	chart	c.	Machine	language	d.	Data	Encapsulation	e.	Inheritance

f.	Polymorphism

3.	Explain	the	drawbacks	of	Assembly	language.

4.	Explain	the	characteristics	of	Procedural	Language.

5.	Write	algorithm	and	draw	flow	chart	for	finding	maximum	of	three	numbers.

6.	Explain	various	features	of	Object	Oriented	Programming	features.

7.	Give	difference	between	POP	and	OOP.





CHAPTER:2	Fundamentals	of	C++
History	of	C++	Language

C++	 is	 an	Object	Oriented	Programming	 language.	 Initially	 named	 ‘C	with	 classes’.
C++	was	developed	by	Bjarne	Stroustrup	at	AT&T	Bell	laboratories,	USA,	in	1980	and	is
based	on	the	C	language.

[Fig:-	Table:	Evolution	of	Generation	of	Languages]

The	 first	 object-oriented	 language	 was	 Simula	 and	 SmallTalk.	 Stroustrup	 wanted	 to
combine	 the	 best	 of	 Simula	 and	 strong	 supporter	 of	 C	 languages	 and	 to	 create	 a	more
powerful	language	that	could	support	object	oriented	programming	features	and	the	result
was	C++.

C++	is	also	called	as	extension	of	C.	In	1983	the	name	was	changed	to	‘C++’	from	‘C
with	 classes’	 because	 of	 increment	 operator	 ++	 of	C.	The	 “++”	 is	 a	 syntactic	 construct
used	in	C	(to	increment	a	variable),	and	C++	is	intended	as	an	incremental	improvement
of	C	.

C++	 provides	 three	 important	 features	 of	 OOP	 namely	 classes,	 inheritance,
polymorphisms.	 These	 features	 enable	 us	 to	 create	 abstract	 data	 type,	 inherit	 properties
from	existing	data	type	and	overloading	of	functions	and	operators.	C++	implements	“data
abstraction”	using	a	concept	called	“classes”.



C++	is	a	“Better	C”

C++	 is	 a	better	C	because	C++	 retains	C	as	 a	 subset,	 it	 gains	many	of	 the	 attractive
features	of	the	C	language,	such	as	efficiency,	closeness	to	the	machine,	and	a	variety	of
built-in	types.	A	number	of	new	features	were	added	to	C++	to	make	the	language	even
more	robust,	many	of	which	are	not	used	by	novice	programmers.

Most	of	these	features	can	be	summarized	by	two	important	design	goals:

1.	Strong	compiler	type	checking	and

2.	A	user-extensible	language.

By	enforcing	stricter	type-checking,	the	C++	compiler	makes	us	actually	aware	of	data
types	in	our	expressions.	Stronger	type	checking	is	provided	through	several	mechanisms,
including:	function	argument	type	checking,	conversions,	and	a	few	other	features.

C++	also	enables	programmers	to	incorporate	new	types	into	the	language,	through	the
use	of	classes.	A	class	is	a	user-defined	type.	The	compiler	can	treat	new	types	as	if	they
are	one	of	the	built-in	types.	This	is	a	very	powerful	feature.	In	addition,	the	class	provides
the	mechanism	 for	 data	 abstraction	 and	 encapsulation,	which	 are	 key	 to	 object-oriented
programming.



Some	Additional	Features	of	C++

C++	 is	 an	 object-oriented	 programming	 (OOP)	 language.	 It	 offers	 most	 of	 the
advantages	of	OOP	by	allowing	 the	developer	 to	create	user-defined	 types	 for	modeling
real	world	situations.	However,	the	real	power	within	C++	is	contained	in	its	features.

1.	Reference	variable

Using	referene	variable	we	can	create	an	alias	to	the	variable	memory	location	in	C++.
So	the	same	memory	location	can	be	reffered	by	two	or	more	names.	Any	changes	to	the
location’s	value	will	be	reflected	for	all	 the	alias.	This	feature	was	added	to	C++	so	that
references	to	data	types	(user-defined	or	built-in)	could	be	specified.	This	allows	passing	a
complex	data	structure	as	an	argument	to	a	function	without	having	to	precede	it	with	the
address	operator.

2.	Operator	Overloading

Operator	 overloading	 allows	 the	 developer	 to	 define	 basic	 operations	 (such	 as
arithmetic	operations)	for	objects	of	user-defined	data	 types	as	 if	 they	were	built-in	data
types.	For	example,	a	conditional	expression	of	two	string	objects	such	as:

if(s1	==	s2)

{

…

}

is	much	easier	to	read	than

if(strcmp(s1.getStr(),s2.getStr())	==	0)

{

…

}

Operator	overloading	is	often	referred	to	as	“syntactic	sugar.”

3.	Generic	Programming

One	benefit	of	generic	programming	is	that	it	eliminates	code	redundancy.	Consider	the
following	function:

void	swap(int	&first,int	&second)



{

int	ts	=	second;

second	=	first;

first	=	ts;

}

This	function	is	sufficient	for	swapping	elements	of	type	int.	If	it	is	necessary	to	swap
two	 floating-point	values,	 then	 the	 same	 function	must	be	 rewritten	using	 type	 float	 for
every	instance	of	type	int.	The	basic	algorithm	is	the	same.	The	only	difference	is	the	data
type	 of	 the	 elements	 being	 swapped.	Additional	 functions	must	 be	written	 in	 the	 same
manner	to	swap	elements	of	any	other	data	type.	This	is,	of	course,	very	inefficient.	The
template	 mechanism	 was	 designed	 for	 generic	 programming	 so	 that	 we	 can	 use	 same
function	for	different	data	type.

4.	Exception	Handling

The	exception	handling	mechanism	is	a	more	robust	method	for	handling	errors	.	It	is	a
convenient	 means	 for	 handling	 the	 errors	 rather	 than	 crashing	 the	 program	 without
knowing	the	reason	for	the	crash.	In	C++	we	can	use	exception	handling	mechanism.



C++	Advantages	and	Claims

Often	 it	 is	 said	 that	 programming	 in	 C++	 leads	 to	 `better’	 programs.	 Some	 of	 the
claimed	advantages	of	C++	are:

1.	New	programs	would	be	developed	in	less	time	because	old	code	can	be	reused.

2.	Creating	and	using	new	data	types	in	C++	would	be	easier	than	in	C.

3.	 The	memory	management	 under	C++	would	 be	 easier	 and	more	 transparent	 to
use.

4.	 Programs	 would	 be	 less	 bug-prone,	 as	 C++	 uses	 a	 stricter	 syntax	 and	 type
checking.

5.	 `Data	hiding’,	 the	usage	of	data	by	one	program	part	while	other	program	parts
cannot	access	the	data,	would	be	easier	to	implement	with	C++.

C++	in	particular	(and	OOP	in	general)	is	of	course	not	the	solution	to	all	programming
problems.	However,	the	language	does	offer	various	new	and	elegant	facilities	which	are
worth	 investigating.	At	 the	 same	 time,	 the	 level	 of	 grammatical	 complexity	of	C++	has
increased	significantly	compared	to	C.	This	may	be	considered	a	serious	disadvantage	of
the	language.



Structure	of	a	C++	program

Probably	 the	 best	 way	 to	 start	 learning	 a	 programming	 language	 is	 by	 writing	 a
program.	A	typical	c++	program	would	contain	four	sections	as	shown	in	figure.

Include	files

class	declaration

Member	function	definition

main	function

It	is	common	practice	to	organize	the	program	into	3	separate	files.

1.	One	header	file	for	class	declaration

2.	Second	header	file	for	member	function	definition

3.	Third	file	for	main	function	program	which	includes	the	above	two	header	files.

This	 approach	 enables	 the	 programmer	 to	 separate	 the	 abstract	 specification	 of	 the
interface	(class	definition)	from	implementation	details	(member	function	definitions).

This	approach	is	based	on	client	server	model	as	shown	in	below	figure.

The	class	definition	including	the	member	functions	constitute	the	server	that	provides
services	 to	 the	 main	 program	 known	 as	 client.	 The	 client	 uses	 the	 server	 through	 the
public	interface	of	the	class.

Therefore,	here	is	our	first	program:

//	my	first	program	in	C++

#include	<iostream.h>

int	main	()



{

cout	<<	“Hello	World!”;

return	0;

}

It	is	one	of	the	simplest	programs	that	can	be	written	in	C++.	We	are	going	to	look	line
by	line	at	the	code	we	have	just	written:

//	my	first	program	in	C++

This	is	a	comment	line.	All	lines	beginning	with	two	slash	signs	(//)	are	considered
comments	and	do	not	have	any	effect	on	 the	behavior	of	 the	program.	The	programmer
can	use	them	to	include	short	explanations	or	observations	within	the	source	code	itself.	In
this	case,	the	line	is	a	brief	description	of	what	our	program	is.

#include	<iostream.h>

Lines	beginning	with	a	hash	sign	(#)	are	directives	for	the	preprocessor.	In	this	case
the	directive	#include	<iostream.h>	tells	the	preprocessor	to	include	the	iostream	standard
file.	 This	 specific	 file	 (iostream)	 includes	 the	 declarations	 of	 the	 basic	 standard	 input-
output	library	in	C++,	and	it	is	included	because	its	functionality	is	going	to	be	used	later
in	the	program.

int	main	()

The	 main	 function	 is	 the	 entry	 point	 for	 execution	 of	 the	 C++	 program.	 The
instructions	contained	within	this	function’s	definition	will	always	be	the	first	ones	to	be
executed	in	any	C++	program.	For	that	same	reason,	it	is	essential	that	all	C++	programs
must	have	a	main	function.	The	word	main	is	followed	in	the	code	by	a	pair	of	parentheses
(()).	That	is	because	it	is	a	function	declaration.	Optionally,	these	parentheses	may	enclose
a	 list	 of	 function	parameters.	After	 these	parentheses	we	 can	 find	 the	body	of	 the	main
function	 enclosed	 in	 braces	 ({}).	 What	 is	 contained	 within	 these	 braces	 is	 what	 the
function	does	when	it	is	executed.

cout	<<	“Hello	World”;

This	line	is	a	C++	statement.	cout	represents	the	standard	output	stream	in	C++,	and
the	meaning	of	the	entire	statement	is	to	insert	a	sequence	of	characters	(in	this	case	the
“Hello	World”	sequence	of	characters)	 into	 the	standard	output	stream	(which	usually	 is
the	screen)	to	display	onto	the	screen.	cout	is	declared	in	the	iostream	standard	file,	that’s



the	 reason	 why	 we	 need	 to	 include	 that	 file	 in	 our	 program.	 Notice	 that	 every	 C++
statement	ends	with	a	semicolon	character	(;)	as	like	C	statement.	This	character	marks	the
end	of	the	C++	statement.

return	0;

The	return	statement	causes	the	main	function	to	finish.	return	may	be	followed	by	a
return	code	(in	our	example	is	followed	by	the	return	code	0).	A	return	code	of	0	for	the
main	 function	 is	 generally	 interpreted	 as	 the	 program	worked	 as	 expected	 without	 any
errors	during	its	execution.	This	is	the	most	usual	way	to	end	a	C++	console	program.



C++	Comments

Comments	 are	 those	 statements	 of	 the	 source	 code	 ignored	 by	 the	 compiler.	 They
simply	do	nothing.	Their	purpose	is	only	to	allow	the	programmer	to	insert	explanation	of
the	code	and	additionally	date	of	creation	of	the	program	etc…	C++	supports	two	ways	to
insert	comments:

//	Single	line	comment

/*	block

comment	*/

The	first	of	them,	known	as	line	comment,	discards	everything	from	where	the	pair	of
slash	signs	(//)	is	found	up	to	the	end	of	that	same	line.

The	 second	 one,	 known	 as	 block	 comment,	 discards	 everything	 between	 the	 /*
characters	and	 the	 first	appearance	of	 the	*/	characters,	with	 the	possibility	of	 including
more	than	one	line.

We	are	going	to	add	comments	to	our	second	program:

/*	my	second	program	in	C++

with	more	comments	*/

#include	<iostream.h>

int	main	()

{

cout	<<	“Hello	World!	“;	//	prints	Hello	World!

cout	<<	“I’m	a	C++	program”;	//	prints	I’m	a	C++	program

return	0;

}

Output:

Hello	World!	I’m	a	C++	program

If	you	 include	comments	within	 the	 source	code	of	your	programs	without	using	 the
comment	characters	combinations	//,	/*	or	*/,	the	compiler	will	take	them	as	if	they	were
C++	expressions,	most	likely	causing	one	or	several	error	messages	when	you	compile	it.



Creating,	Compiling	and	Linking	C++	program
Creating

We	 can	 create	 a	 c++	 program	 using	 a	 simple	 editor	 like	 a	 notepad	 or	 a	 rich	 and
powerful	editor	of	C++	like	Turbo	C++	or	MS	VC++.

Compiling

To	 turn	your	 source	code	 into	a	program,	you	use	a	 compiler.	How	you	 invoke	your
compiler,	and	how	you	tell	it	where	to	find	your	source	code,	will	vary	from	compiler	to
compiler.

In	Borland’s	Turbo	C++	you	pick	the	RUN	menu	command	or	type

tc	<filename>

from	 the	command	 line,	where	<filename>	 is	 the	name	of	your	 source	 code	 file	 (for
example,	test.cpp).	Other	compilers	may	do	things	slightly	differently.

For	the	Borland	C++	compiler:

bcc	<filename>

For	the	Borland	C++	for	Windows	compiler:

bcc	<filename>

For	the	Borland	Turbo	C++	compiler:

tc	<filename>

For	the	Microsoft	compilers:

cl	<filename>

After	your	source	code	is	compiled,	an	object	file	is	produced.	This	file	is	often	named
with	the	extension	.OBJ.	This	is	still	not	an	executable	program,	however.	To	turn	this	into
an	executable	program,	you	must	run	your	linker.

Linking	and	executing

C++	programs	are	typically	created	by	linking	together	one	or	more	OBJ	files	with	one
or	more	libraries.	A	library	is	a	collection	of	linkable	files	with	ready	made	functionalities
like	 standard	 input	 and	output	 streams	 to	be	used	 in	program.	All	C++	compilers	 come
with	a	library	of	useful	functions	(or	procedures)	and	classes	that	you	can	include	in	your
program.



The	steps	to	create	an	executable	file	are:

1.	Create	a	source	code	file,	with	a	.CPP	extension.

2.	Compile	the	source	code	into	a	file	with	the	.OBJ	extension.

3.	Link	your	OBJ	file	with	any	needed	libraries	to	produce	an	executable	program.



How	C++	Compilation	Works

Compiling	 a	 C++	 program	 involves	 a	 number	 of	 steps	 (most	 of	 which	 are
transparent	to	the	user):

1.	 First,	 the	 C++	 preprocessor	 goes	 over	 the	 program	 text	 and	 carries	 out	 the
instructions	specified	by	the	preprocessor	directives	(e.g.,	#include).	The	result	is
a	modified	program	text	which	no	longer	contains	any	directives.

2.	Then,	the	C++	compiler	translates	the	source	program	code.	The	compiler	may	be
a	true	C++	compiler	which	generates	native	(assembly	or	machine)	code,	or	just	a
translator	which	translates	the	code	into	C.	In	the	latter	case,	the	resulting	C	code
is	then	passed	through	a	C	compiler	to	produce	native	object	code.	In	either	case,
the	outcome	may	be	 incomplete	due	 to	 the	program	referring	 to	 library	 routines
which	are	not	defined	as	a	part	of	the	program.	For	example,	<<	operator	which	is
actually	defined	in	a	separate	IO	library.

3.	Finally,	the	linker	completes	the	object	code	by	linking	it	with	the	object	code	of
any	library	modules	that	the	program	may	have	referred	to.	The	final	result	is	an
executable	file.

Following	figure	illustrates	the	above	steps	for	both	a	C++	translator	and	a	C++	native
compiler.	In	practice	all	 these	steps	are	usually	invoked	by	a	single	command	(e.g.,	CC)
and	the	user	will	not	even	see	the	intermediate	files	generated.

[Figure:C++	Compilation]



Comparison	of	C	and	C++	language



Input	and	output	operators	in	c++

In	C	Language	scanf()	and	printf()	are	used	for	input	and	output	respectively,	whereas
in	C++	Language,	cin	and	cout	operators	are	used	for	input	and	output	respectively.	C++
Language	I/O	operators	can	be	used	by	including	iostream.h	header	file	in	the	program.

Output(Insertion)	Operator

The	cout	operator	can	be	used	with	an	Insertion	Operator	or	put	to	Operator	(<<).

Syntax:

cout	<<	variable_name;

The	Insertion	Operator	inserts	the	contents	of	the	variable	on	its	right	to	the	object	of	its
left.	As	shown	in	figure.

Example:

#include<iostream.h>

#include<conio.h>

void	main()

{

char	str[]=”hello	world”;

int	integer=10;

cout<<	“C++	Language”;

cout<<	str;

cout<<	15;

cout<<	integer;

cout<<	“integer”;



getch();

}

Output:

C++	Language

hello	world

15

10

Integer

Here,	no	need	to	specify	data	types	of	any	string	or	integer	variable	(like	%d,	%s,	%c,
etc).

It	 is	 important	 to	notice	that	cout	does	not	add	a	 line	break	after	 its	output	unless	we
explicitly	indicate	it,	therefore,	the	following	statements:

cout	<<	“This	is	a	sentence.”;

cout	<<	“This	is	another	sentence.”;

will	be	shown	on	the	screen	without	any	line	break	between	them:

This	is	a	sentence.This	is	another	sentence.

even	though	we	had	written	them	in	two	different	cout.

In	 order	 to	 perform	 a	 line	 break	 on	 the	 output	 we	must	 explicitly	 insert	 a	 new-line
character	 into	cout.	 In	C++	a	new-line	character	can	be	specified	as	 \n	 (backslash,	n)	or
endl	manipulator:

cout	<<	“First	sentence.\n	“;

cout	<<	“Second	sentence.\nThird	sentence.”;

This	produces	the	following	output:

First	sentence.

Second	sentence.

Third	sentence.

Additionally,	to	add	a	new-line,	you	may	also	use	the	endl	manipulator.	For	example:

cout	<<	“First	sentence.”	<<	endl;



cout	<<	“Second	sentence.”	<<	endl;

would	print	out:

First	sentence.

Second	sentence.

The	 endl	 manipulator	 produces	 a	 newline	 character,	 exactly	 as	 the	 insertion	 of	 ‘\n’
does,	 but	 it	 also	 has	 an	 additional	 behavior	 when	 it	 is	 used	with	 buffered	 streams:	 the
buffer	 is	 flushed.	Anyway,	cout	will	be	an	unbuffered	stream	 in	most	cases,	 so	you	can
generally	use	both	the	\n	escape	character	and	the	endl	manipulator	in	order	to	specify	a
new	line	without	any	difference	in	its	behavior.

Input(Extraction)	Operator

The	cin	operator	can	be	used	with	an	Extraction	Operator	or	get	from	Operator	(<<).

Syntax:

cin	>>	variable_name;

The	 Extraction	 Operator	 extracts	 the	 value	 from	 the	 keyboard	 and	 assigns	 it	 to	 the
variable	on	its	right.	As	shown	in	figure.

Example:

#include<iostream.h>

#include<conio.h>

void	main()

{

int	integer;

cout<<	“Enter	value	:	”;

cin>>integer;



cout<<integer;

getch();

}

Output:

Enter	value	:	20

20

cin	and	strings

We	 can	 use	 cin	 to	 get	 strings	 with	 the	 extraction	 operator	 (>>)	 as	 we	 do	 with
fundamental	data	type	variables:

cin	>>	mystring;

However,	 cin	 extraction	 stops	 reading	 as	 soon	 as	 it	 finds	 any	blank	 space,	 so	 in	 this
case	we	will	be	able	to	get	just	one	word	for	each	extraction.	This	behavior	may	or	may
not	 be	 what	 we	 want;	 for	 example	 if	 we	 want	 to	 get	 a	 sentence	 from	 the	 user,	 this
extraction	 operation	 would	 not	 be	 useful.	 In	 order	 to	 get	 entire	 lines,	 we	 can	 use	 the
function	getline,	which	is	the	more	recommendable	way	to	get	user	input	with	cin:

//	cin	with	strings

#include	<iostream.h>

#include	<string>

int	main	()

{

string	mystr;

cout	<<	“What’s	your	name?	“;

getline	(cin,	mystr);

cout	<<	“Hello	”	<<	mystr	<<	“.\n”;

cout	<<	“What	is	your	favorite	game?	“;

getline	(cin,	mystr);

cout	<<	“I	like	”	<<	mystr	<<	”	too!\n”;

return	0;



}

Output:

What’s	your	name?	Jitendra	Patel

Hello	Jitendra	Patel.

What	is	your	favorite	game?	Hockey

I	like	The	Hockey	too!

Notice	how	in	both	calls	to	getline	we	used	the	same	string	identifier	(mystr).	What	the
program	does	in	the	second	call	is	simply	to	replace	the	previous	content	by	the	new	one
that	is	introduced.

Cascading	I/O	Operators

The	insertion	operator	(<<)	may	be	used	more	than	once	in	a	single	statement:

cout<<“Hello,”<<“I	am	“<<“a	C++	statement”;

This	last	statement	would	print	the	message	Hello,	I	am	a	C++	statement	on	the	screen.
The	utility	of	repeating	the	insertion	operator	(<<)	is	demonstrated	when	we	want	to	print
out	a	combination	of	variables	and	constants	or	more	than	one	variable:

cout<<“Hello,I	am”<<age<<“years	old	and	my	zipcode	is”<<	zipcode;

If	 we	 assume	 the	 age	 variable	 to	 contain	 the	 value	 29	 and	 the	 zipcode	 variable	 to
contain	384002	the	output	of	the	previous	statement	would	be:

Hello,	I	am	29	years	old	and	my	zipcode	is	384002

In	C++	the	statements

int	Total	=	5;

cout<<”The	value	of	Total	variable	is	“;

cout<<	Total;

will	display	the	output	as

The	value	of	Total	variable	is	5.

It	can	be	written	in	single	cout	statements	as:

cout<<”The	value	of	Total	variable	is	“<<	Total;

You	can	also	use	cin	to	request	more	than	one	datum	input	from	the	user:



cin	>>	a	>>	b;

is	equivalent	to:

cin	>>	a;

cin	>>	b;

In	 both	 cases	 the	 user	 must	 give	 two	 data,	 one	 for	 variable	 a	 and	 another	 one	 for
variable	b	that	may	be	separated	by	any	valid	blank	separator:	a	space,	a	tab	character	or	a
newline.

Using	single	cin	or	cout	operator,	any	number	of	variables	can	be	read	or	write.

Example:

#include<iostream.h>

#include<conio.h>

void	main()

{

int	height,	width;

cout<<	“Enter	Height	and	Width	:	”;

cin>>	height<<	width;

cout<<”Height	=	“<<height<<”\nWidth	=	”<<width;

getch();

}

Output:

Enter	Height	and	Width	:	5	50

Height	=	5

Width	=	50



C++	Header	Files

As	previously	mentioned,	 a	 header	 is	what	 is	 used	 to	 called	 the	 type	 of	 library.	 It	 is
wrapped	between	<	>	signs.	The	following	table	lists	this	down:

IOmanip	allows	the	user	to	modify	the	display	to	the	screen	using	manipulators:

Example:

#include<iostream.h>

#include<conio.h>

#include<iomanip.h>

void	main()

{

float	value;

clrscr();



value=12.34;

cout<<	setfill(‘0’)<<setw(8)<<value<<”\n”;

cout<<	setfill(‘#’)<<setw(8)<<value<<”\n”;

value=12.34567;

cout<<	setprecision(2)<<value<<”\n”;

getch();

}

Output:

00012.34

###12.34

12.35



C++	Tokens

The	smallest	individual	units	in	a	program	are	known	as	tokens,	c++	has	the	following
tokens:

Example	of	tokens:-	}	,{,	“	“,	int

1.	Identifiers

2.	Keywords

3.	Constants

Identifier

In	 our	 everyday,	 we	 give	 names	 to	 different	 things	 so	 they	 can	 be	 referred	 easily.
Similarly,	in	C+,	we	use	identifiers	to	name	user	created	entities.	Which	may	be:

1.	Variables	e.g.	i,j,sum,avg,height,area	etc…

2.	Functions	e.g.	add(),	display()	etc…

3.	Type	e.g.	a	class

Rules	to	declare	identifiers:

1.	 An	 identifier	 can	 be	 combination	 of	 letters,	 numbers,	 and	 underscores	 with
following	restrictions:

a.	It	should	start	with	a	letter	or	underscore.	E.g.	height,	my_height,_myHeight
are	allowed	but	not	1isGod

b.	If	it	starts	with	a	underscore	then	the	first	letter	should	not	be	capital	because
such	names	are	reserved	for	implementation.	E.g.	_Height	not	allowed

2.	It	should	be	unique	in	a	program	taking	care	that	C++	is	case	sensitive.	E.g.	age
and	Age	are	different	variables

a.	A	keyword	cannot	be	used	as	an	identifier.

3.	 There	 is	 no	 restriction	 on	 length	 of	 the	 identifier.	 E.g.	 h	 and
h_represents_my_height	are	both	valid.

Besides	restrictions,	there	are	certain	guidelines	which	you	should	follow:

1.	Use	meaningful	descriptive	names.

E.g.	int	Age	is	better	than	int	a.



2.	If	description	makes	identifier	name	too	long	then	put	a	comment	before	identifier
and	make	identifier	shorter

3.	Be	consistent	in	your	naming	convention.

4.	Use	small	letters	for	single	word	identifier	name.

5.	For	multiword	identifiers,	either	use	underscore	separated	or	intercepted	notation.

E.g.	get_my_height	()	or	getMyHeight	()

6.	Use	Hungarian	notation.

E.g.	double	dFlowRate,	int	value,	bool	check.

7.	Don’t	use	similar	identifier	names	in	a	program	like	Speed,	speed,	and	Speedy

8.	Don’t	use	capitalized	version	of	a	keyword	like	Return

Keywords

Keywords	are	predefined	reserved	identifiers	that	have	special	meanings.	They	cannot
be	 used	 as	 identifiers	 in	 your	 program.	 Keyword	 is	 a	 word	 that	 the	 compiler	 already
knows,	i.e.	when	the	compiler	sees	a	keyword	somewhere	in	the	program	it	knows	what	to
do	automatically.

For	 example,	 when	 the	 compiler	 encounters	 the	 keyword	 ‘int’,	 it	 knows	 that	 ‘int’
stands	for	an	integer	type.	Or	if	the	compiler	reads	a	‘break’,	then	it	knows	that	it	should
break	out	of	the	current	loop.	Some	common	keywords	are-

Constants/Literals

As	the	name	suggests,	a	variable	is	something	whose	value	can	be	changed	throughout
the	program.	It	is	not	fixed.	On	the	other	hand,	a	constant	is	one	whose	value	remains	the
same	(constant)	throughout	the	program.	So	constants	are	expressions	with	a	fixed	value.



Literals	are	used	to	express	particular	values	within	the	source	code	of	a	program.	For
example,	when	we	write:

a	=	5;

the	5	in	this	piece	of	code	is	a	literal	constant.

Literal	 constants	 can	 be	 divided	 in	 Integer	 Numerals,	 Floating-Point	 Numerals,
Characters,	and	Strings	constants.

Integer	Numerals

Numerical	constants	identify	integer	decimal	values.	For	example:

1776

707

-273

Notice	that	to	express	a	numerical	constant	we	do	not	have	to	write	quotes	(“)	nor	any
special	 character.	 There	 is	 no	 doubt	 that	 it	 is	 a	 constant:	whenever	we	write	 1776	 in	 a
program,	we	will	be	referring	to	the	value	1776.

C++	allows	 the	 literal	 constants	of	octal	numbers	 (base	8)	and	hexadecimal	numbers
(base	 16).	 If	we	want	 to	 express	 an	 octal	 number	we	 have	 to	 precede	 it	with	 a	 0	 (zero
character).	And	in	order	to	express	a	hexadecimal	number	we	have	to	precede	it	with	the
characters	0x	(zero,	x).	For	example,	 the	following	 literal	constants	are	all	equivalent	 to
each	other:

75	//	decimal

0113	//	octal

0x4b	//	hexadecimal

All	 of	 these	 represent	 the	 same	 number:	 75	 (seventy-five)	 expressed	 as	 a	 base-10
numeral,	octal	numeral	and	hexadecimal	numeral,	respectively.

Literal	constants,	like	variables,	are	considered	to	have	a	specific	data	type.	By	default,
integer	 literals	 are	 of	 type	 int.	 However,	 we	 can	 force	 them	 to	 either	 be	 unsigned	 by
appending	the	u	character	to	it,	or	long	by	appending	l:

75	//	int

75u	//	unsigned	int



75l	//	long

75ul	//	unsigned	long

In	both	cases,	the	suffix	can	be	specified	using	either	upper	or	lowercase	letters.

Floating	Point	Numbers

They	 express	 numbers	 with	 decimals	 and/or	 exponents.	 They	 can	 include	 either	 a
decimal	 point,	 an	 e	 character	 (that	 expresses	 “by	 ten	 at	 the	Xth	 height”,	where	X	 is	 an
integer	value	that	follows	the	e	character),	or	both	a	decimal	point	and	an	e	character:

3.14159	//	3.14159

6.02s23	//	6.02	x	10^23

1.6e-19	//	1.6	x	10^-19

3.0	//	3.0

These	are	four	valid	numbers	with	decimals	expressed	in	C++.	The	first	number	is	PI,
the	second	one	is	the	number	of	Avogadro,	the	third	is	the	electric	charge	of	an	electron
(an	extremely	 small	number)	 -all	of	 them	approximated-	and	 the	 last	one	 is	 the	number
three	expressed	as	a	floating-point	numeric	literal.

The	default	type	for	floating	point	literals	is	double.	If	you	explicitly	want	to	express	a
float	or	long	double	numerical	literal,	you	can	use	the	f	or	l	suffixes	respectively:

3.14159L	//	long	double

6.02s23f	//	float

Any	of	the	letters	than	can	be	part	of	a	floating-point	numerical	constant	(e,	f,	l)	can	be
written	using	either	lower	or	uppercase	letters	without	any	difference	in	their	meanings.

Character	and	string	literals

There	also	exist	non-numerical	constants,	like:

Single	character	constants,	For	example:

‘z’

‘p’

String	literals	composed	of	several	characters.	For	example:

“Hello	world”



“How	do	you	do?”

Notice	that	to	represent	a	single	character	we	enclose	it	between	single	quotes	(‘)	and	to
express	 a	 string	 (which	 generally	 consists	 of	 more	 than	 one	 character)	 we	 enclose	 it
between	double	quotes	(“).

When	 writing	 both	 single	 character	 and	 string	 literals,	 it	 is	 necessary	 to	 put	 the
quotation	marks	surrounding	them	to	distinguish	them	from	possible	variable	identifiers	or
reserved	keywords.	Notice	the	difference	between	these	two	expressions:

x

‘x’

x	 alone	would	 refer	 to	 a	 variable	whose	 identifier	 is	 x,	whereas	 ‘x’	 (enclosed	within
single	quotation	marks)	would	refer	to	the	character	constant	‘x’.

Character	and	string	literals	have	certain	peculiarities,	like	the	escape	codes.	These	are
special	characters	that	are	difficult	or	impossible	to	express	otherwise	in	the	source	code
of	 a	program,	 like	newline	 (\n)	or	 tab	 (\t).	All	 of	 them	are	preceded	by	 a	backslash	 (\).
Here	you	have	a	list	of	some	of	such	escape	codes:

For	example:

‘\n’

‘\t’

“Left	\t	Right”

“one\ntwo\nthree”

Additionally,	you	can	express	any	character	by	its	numerical	ASCII	code	by	writing	a
backslash	 character	 (\)	 followed	 by	 the	 ASCII	 code	 expressed	 as	 an	 octal	 (base-8)	 or
hexadecimal	(base-16)	number.	In	the	first	case	(octal)	the	digits	must	immediately	follow



the	backslash	(for	example	 \23	or	 \40),	 in	 the	second	case	(hexadecimal),	an	x	character
must	be	written	before	the	digits	themselves	(for	example	\x20	or	\x4A).

String	literals	can	extend	to	more	than	a	single	line	of	code	by	putting	a	backslash	sign
(\)	at	the	end	of	each	unfinished	line.

“string	expressed	in	\

two	lines”

You	 can	 also	 concatenate	 several	 string	 constants	 separating	 them	 by	 one	 or	 several
blank	spaces,	tabulators,	newline	or	any	other	valid	blank	character:

“this	forms”	“a	single”	“string”	“of	characters”

Symbolic	Constants
Using	#define	directive

You	can	define	your	own	names	for	constants	that	you	use	very	often	without	having	to
resort	 to	 memory-consuming	 variables,	 simply	 by	 using	 the	 #define	 preprocessor
directive.	Its	format	is:

#define	identifier	value

For	example:

#define	PI	3.14159265

#define	NEWLINE	‘\n’

This	defines	two	new	constants:	PI	and	NEWLINE.	Once	they	are	defined,	you	can	use
them	in	the	rest	of	the	code	as	if	they	were	any	other	regular	constant,	for	example:

//	defined	constants:	calculate	circumference

#include	<iostream.h>

#define	PI	3.14159

#define	NEWLINE	‘\n’

int	main	()

{

double	r=5.0;	//	radius

double	circle;



circle	=	2	*	PI	*	r;

cout	<<	circle;

cout	<<	NEWLINE;

return	0;

}

Output:

31.4159

When	compiler	preprocessor	encounters	#define	directives	 it	 replaces	any	occurrence
of	their	identifier	(in	the	previous	example,	these	were	PI	and	NEWLINE)	by	the	code	to
which	they	have	been	defined	(3.14159265	and	‘\n’	respectively).

The	 #define	 directive	 is	 not	 a	 C++	 statement	 but	 a	 directive	 for	 the	 preprocessor;
therefore	it	assumes	the	entire	line	as	the	directive	and	does	not	require	a	semicolon	(;)	at
its	end.	If	you	append	a	semicolon	character	(;)	at	the	end,	it	will	also	be	appended	in	all
occurrences	within	the	body	of	the	program	that	the	preprocessor	replaces.

Using	Const	keyword

In	C++,	any	value	declared	as	const	cannot	be	modified	in	the	program.	The	syntax	of
const	is	as	follows:

const	<data	type>	<variable	name>	=	<value>;

For	example,

const	float	PI	=	3.14159;

float	area	=	PI	*	r	*	r;

Preceding	 a	 variable	 definition	 by	 the	 keyword	 const	 makes	 that	 variable	 read-only
(i.e.,	a	symbolic	constant).	A	constant	must	be	initialized	to	some	value	when	it	is	defined.
For	example:

const	int	maxSize	=	128;

const	double	pi	=	3.141592654;

Once	defined,	the	value	of	a	constant	cannot	be	changed:

maxSize	=	256;	//	illegal!



If	we	don’t	specify	data	type	while	declaring	constant,	by	default	it	takes	that	variable
as	int.

const	maxSize	=	128;	//	maxSize	is	of	type	int



Variable

A	variable	 is	 the	storage	 location	 in	memory	 that	 is	stored	by	 its	value.	A	variable	 is
identified	or	denoted	by	a	variable	name.	The	variable	name	is	a	sequence	of	one	or	more
letters,	digits	or	underscore.

Variable	decleration

A	variable	in	C++	must	be	declared	(the	type	of	variable)	and	defined	(values	assigned
to	a	variable)	before	it	can	be	used	in	a	program.	Following	example	shows	how	to	declare
a	variable.

int	a;

means	a	is	declared	as	integer	variable

Rules	of	variable	declaration

1.	A	variable	name	can	have	one	or	more	letters	or	digits	or	underscore.

2.	White	 space,	 punctuation	 symbols	 or	 other	 characters	 are	 not	 permitted	 to	 denote
variable	name.

3.	A	variable	name	must	begin	with	a	letter	or	underscore.

4.	 Variable	 names	 cannot	 be	 keywords	 or	 any	 of	 the	 reserved	 words	 of	 the	 C++
programming	language.

5.	C++	is	a	case-sensitive	language.	Variable	names	written	in	capital	letters	differ	from
variable	 names	with	 the	 same	 name	 but	written	 in	 small	 letters.	 For	 example,	 the
variable	name	CIST	is	different	from	the	variable	name	cist.

Variable	Definition	vs	Declaration

The	difference	of	declaring	variables	in	C	and	C++

In	C	and	C++,	all	the	variables	we	must	declare	before	they	are	used.	C	requires	all	the
variables	to	be	defined	at	the	beginning	of	a	scope	where	as	in	C++	whenever	we	need	a
variable	 to	 use,	 declare	 at	 that	 time	 and	 assign	 the	 values.	 Sometimes	 in	 between	 the
program	we	need	a	variable	which	we	have	not	declared	in	the	beginning	so	in	C,	first	we



have	 to	 declare	 that	 variable	 in	 the	 beginning	 and	 then	 we	 use	 it,	 where	 as	 in	 C++
wherever	we	need	a	variable,	declare	there	and	assign	a	value	to	it.	For	example,

As	you	can	see	in	C	program,	first	we	have	declared	all	the	variables	then	we	initialize
variable	sum	with	value	0,	after	for	loop	we	have	assign	the	value	of	sum	/	j	to	avg	and
printed	to	screen	that	value.	Whereas	in	C++	program	we	have	written	same	program,	we
have	declare	and	initialize	variable	sum	with	value	0	 in	single	statement,	 in	for	 loop	we
need	a	variable	j	and	we	declare	and	initialize	variable	j	with	value	1	there.	After	for	loop
we	 want	 to	 assign	 the	 value	 of	 sum	 /	 j	 to	 variable	 avg	 but	 we	 have	 not	 declared	 that
variable	in	beginning	so	we	have	declare	and	initialize	that	variable	after	for	loop.

Scope	of	variables

All	the	variables	that	we	intend	to	use	in	a	program	must	have	been	declared	with	its
type	specifier	at	an	earlier	point	in	the	code	before	we	use	them.

A	variable	can	be	either	of	global	or	local	scope.

A	global	variable	is	a	variable	declared	in	the	main	body	of	the	source	code,	outside	all
functions,	while	a	local	variable	is	one	declared	within	the	body	of	a	function	or	a	block.

Global	variables	can	be	referred	from	anywhere	in	the	code,	even	inside	functions	after
its	declaration.	The	scope	of	local	variables	is	limited	to	the	block	enclosed	in	braces	({})
where	they	are	declared.	For	example,	if	they	are	declared	at	the	beginning	of	the	body	of
a	function	(like	in	function	main)	their	scope	is	between	its	declaration	point	and	the	end
of	that	function.	For	example,	local	variables	declared	in	main	could	not	be	accessed	from
the	other	function	and	vice	versa.

Reference	Variables

References	are	a	new	type	of	variable	introduced	by	C++.	References	are	mainly	used
to	pass	parameters	to	functions	and	to	return	values	from	them.

A	reference	is	not	a	copy	of	the	variable	to	which	the	reference	is	made.	Instead,	it	is



the	same	variable,	disguised	with	a	different	name.

In	 contrast	 to	 pointers,	 once	 a	 reference	 is	 associated	 to	 a	 variable,	 that	 association
stays	permanently	(within	the	block	where	the	association	was	made).

References	are	defined	using	the	unary	operator	&

int	value	=	3000;

int	&refValue	=	value;

value++;

refValue++;

//	both,	value	and	refValue	have	3002.

The	address	of	the	memory	region	being	referenced	is	the	same	for	both	names:

cout	<<	&value	<<’	‘<<	&refValue;	//should	be	the	same

It	is	possible	to	make	one	variable	to	be	another	using	reference:

#include	<iostream.h>

int	main	()

{

double	a	=	3.1415927;

double	&b	=	a;	//	b	is	a



b	=	89;

cout	<<	“a	contains:	”	<<	a	<<	endl;	//	Displays	89.

return	0;

}

If	 you	 are	 used	 at	 pointers	 and	 absolutely	want	 to	 know	what	 happens,	 simply	 think
double	&b	=	a	 is	 translated	 to	double	*b	=	&a	and	all	subsequent	b	are	replaced	by	*b.
The	value	 of	REFERENCE	b	 cannot	 be	 changed	 after	 its	 declaration.	For	 example	 you
cannot	write,	a	few	lines	further,	&b	=	c	expecting	now	b	is	c.	It	won’t	work.	Everything	is
said	on	the	declaration	line	of	b.	Reference	b	and	variable	a	are	married	on	that	line	and
nothing	will	separate	them.

References	as	Function	Parameters

References	 can	 be	 used	 to	 pass	 arguments	 between	 functions	 in	 a	 call-by-reference
style	(by	default,	C	and	C++	pass	arguments	using	call-by-value).

Example:

References	can	be	used	to	allow	a	function	to	modify	a	calling	variable:

#include	<iostream.h>

void	change	(double	&r,	double	s)

{

r	=	100;

s	=	200;

}



int	main	()

{

double	k,	m;

k	=	3;

m	=	4;

change	(k,	m);

cout	<<	k	<<	“,	”	<<	m	<<	endl;	//	Displays	100,	4.

return	0;

}

If	you	have	used	pointers	in	C	and	wonder	how	exactly	the	program	above	works,	here
is	how	the	C++	compiler	would	translate	it	to	C:

#include	<iostream.h>

void	change	(double	*r,	double	s)

{

*r	=	100;

s	=	200;

}

int	main	()

{

double	k,	m;

k	=	3;

m	=	4;

change	(&k,	m);

cout	<<	k	<<	“,	”	<<	m	<<	endl;	//	Displays	100,	4.

return	0;

}

A	reference	can	be	used	to	let	a	function	return	a	variable:



#include	<iostream.h>

double	&biggest	(double	&r,	double	&s)

{

if	(r	>	s)	return	r;

else	return	s;

}

int	main	()

{

double	k	=	3;

double	m	=	7;

cout	<<	“k:	”	<<	k	<<	endl;	//	Displays	3

cout	<<	“m:	”	<<	m	<<	endl;	//	Displays	7

cout	<<	endl;

biggest	(k,	m)	=	10;

cout	<<	“k:	”	<<	k	<<	endl;	//	Displays	3

cout	<<	“m:	”	<<	m	<<	endl;	//	Displays	10

cout	<<	endl;

biggest	(k,	m)	++;

cout	<<	“k:	”	<<	k	<<	endl;	//	Displays	3

cout	<<	“m:	”	<<	m	<<	endl;	//	Displays	11

cout	<<	endl;

return	0;

}



C++	DATA	TYPES

[Fig:	Hierarchy	of	C++	data	types]

As	you	can	see	 in	above	figure	various	categories	of	C++	data	 types	are	shown.	The
signed,	unsigned,	long	and	short	may	be	applied	to	character	and	integer	basic	data	types.

Enumerated	Data	Type

It	 is	 a	user-defined	 type,	which	provides	a	way	 for	attaching	names	 to	numbers.	The
enum	keyword	automatically	enumerates	a	list	of	words	by	assigning	them	0,	1,	2	and	so
on.	The	syntax	of	enum	statement	is	similar	to	struct	statement.	For	example,

enum	day{Sunday,	Monday,	Tuesday,	Wednesday,	Thursday,	Friday,

Saturday	};



enum	month{January,	February,	March,	April,	May,	June,	July,August,

September,	October,	November,	December	};

enum	logical{Yes,	No};

In	C++,	the	tag	names	day,	month	and	logical	become	new	type	names.	That	means	we
can	declare	new	variables	using	this	tag	names.	For	example,

day	today;

month	currentmonth;

Like	C,	C++	does	 not	 permit	 an	 int	 value	 to	 be	 automatically	 converted	 to	 an	 enum
value.

day	today	=	Friday;	//	valid	in	C++

day	today	=	5;	//	Invalid	in	C++

day	today	=	(day)	5;	//	valid	in	C++

We	can	store	the	int	value	of	enumerated	value	in	integer	variable	as	follows:

int	d	=	Friday;	//The	value	of	d	will	be	5.

As	we	have	seen	 that	by	default,	 the	enumerators	are	assigned	integer	values	starting
with	0,	 1,	 2	 and	 so	on.	We	can	 assign	 explicitly	 integer	values	 to	 the	 enumerators.	For
example,

enum	day{Sunday,	Monday,	Tuesday	=	4,	Wednesday	=	6,Thursday,

Friday,	Saturday	=	11};

As	you	can	see	in	the	given	example,	Sunday	will	have	value	0	by	default,	Monday	will
also	have	value	1	by	default,	we	have	explicitly	assign	a	value	4	and	6	 to	Tuesday	and
Wednesday	respectively,	we	have	not	explicitly	assign	value	for	Thursday	and	Friday	so
by	 default	 it	 will	 assign	 values	 7	 and	 8	 resp.	 because	 we	 have	 assign	 value	 6	 to
Wednesday,	and	for	last	variable	Saturday	we	have	assign	11	explicitly.



Operators	of	c++

All	 the	 operators	 of	C	 are	 also	 available	 in	C++.	 In	 addition,	 there	 are	 some	 special
operators	for	special	tasks.	Operator	can	be	unary	(involve	1	operand)	,	binary(involve	2
operands),and	 ternary(involve	 3	 operands).	All	 the	C	 operators	we	 have	 seen	 in	 earlier
chapter	are	valid	in	C++	and	some	operators	included	in	C++,	which	are	as	follows:

[Table:	C++	Operators	Not	available	in	C]

Scope	Resolution	Operator

In	C,	we	 can	 declare	 two	 variables	with	 same	 name	 in	 different	 blocks	 so	 they	will
have	different	value	in	their	block;	that	means	in	one	block	we	can	not	use	a	variable	value
of	another	block	with	same	name	declared	in	that	block.	Having	local	and	global	variables
introduces	the	problem	of	defining	the	scope	of	the	variables.	The	general	rule	is	that	local
variables	have	precedence	over	global	ones.	C++	provides	a	scope	resolution	operator	::.
With	this	operator,	local	variable	names	can	be	distinguished	from	global	names.

For	example,

Here	 both	 declaration	 of	 variable	 z	will	 have	 different	memory	 locations	 containing
different	values.	The	statement	in	Block2	cannot	refer	to	variable	z	declared	in	the	Block1.
If	we	want	to	use	a	value	of	variable	z	of	Block2	in	Block1,	the	scope	resolution	operator



is	used	in	C++.	A	global	variable	can	be	accessed	even	if	another	variable	with	the	same
name	has	been	declared	inside	the	function	using	scope	resolution	operator	as	follows:

#include	<iostream.h>

double	a	=	128;

int	main	()

{

double	a	=	256;

cout	<<	“Local	a:	”	<<	a	<<	endl;

cout	<<	“Global	a:	”	<<	::a	<<	endl;

return	0;

}

Example	2:

int	g	=	9.81;	//	gravity	in	mts/sec

void	main	()

{

int	g	=	3.27;	//	gravity	at	the	moon

char	origin;

cout	<<	“Please	enter	your	origin	[E	=	Earth,	M=Moon]	“;

cin	>>	origin;

cout	<<	“The	gravity	at	your	location	is:	“;

if	(origin	==	‘M’)

cout	<<	g;	//	print	the	local	variable

else

cout	<<	::g;	//	print	the	global	variable

}

The	 need	 for	 scope	 resolution	 derived	 from	 the	 requirement	 of	 having	 name	 spaces,
used	to	recognize	function	having	synonym	names,	but	belonging	to	different	classes.



Pointer	to	member	operators

C++	provides	us	to	access	the	class	members	through	pointers.	C++	provides	a	set	of
three	pointer	to	member	operators	those	are	as	follows:

1.	::*	-	is	used	to	declare	a	pointer	to	a	member	of	a	class.

2.	.*	-	is	used	to	access	a	member	using	object	name	and	a	pointer	to	that	member.

3.	->*	-	is	used	to	access	a	member	using	a	pointer	to	the	object	and	a	pointer	to	that
member.

Memory	management	operators:	new	and	delete

We	use	dynamic	allocation	of	memory	whenever	we	don’t	know	in	advance	that	how
much	memory	space	is	needed.	In	C,	for	dynamic	allocation	of	memory	we	can	use	malloc
and	calloc	functions	and	to	release	the	memory	we	are	using	free	function.

For	 the	 same	 task	 in	C++,	C++	 introduces	 two	 additional	 operators	 for	 the	 dynamic
memory	management	they	are:	new	and	delete	operator.	These	two	operators	perform	the
task	of	allocating	and	freeing	the	memory	in	a	better	and	easier	way.	The	keywords	new
and	delete	can	be	used	to	allocate	and	deallocate	memory.	They	are	much	sweeter	than	the
functions	malloc	and	free	from	standard	C.	They	are	also	known	as	free	store	operator.

The	new	operator

The	new	operator	can	be	used	to	create	objects	of	any	type.	The	syntax	of	new	operator
is	as	follows:

pointer-variable	=	new	data	type;

Here,	 pointer	 variable	 is	 a	 pointer	 of	 type	 data-type.	 The	 new	 operator	 allocates
memory	to	hold	a	data	object	of	type	data-type	and	returns	the	address	of	the	object.	The
data-type	may	be	of	any	valid	data	type.	For	example,

int	*p;	float	*q;

p	=	new	int	;

q	=	new	float;

Here,	 p	 is	 a	 pointer	 of	 type	 int	 and	 q	 is	 a	 pointer	 of	 type	 float.	 p	 and	 q	must	 have
already	been	declared	as	pointers	of	appropriate	types	or	we	can	combine	the	declaration
of	pointers	and	their	assignments	as	follows:



int	*p	=	new	int;

float	*q	=	new	float;

*p	=	55;

*q	=	33.33;

We	can	also	initialize	the	memory	using	the	new	operator.	The	general	form	of	using
new	operator	to	initialize	memory	is	as	follows:

pointer-variable	=	new	data	type	(value);

The	given	allocation	of	memory	to	p	and	q	with	initialization	is	now	as	follows:

int	*p	=	new	int	(55);

float	*q	=	new	float	(33.33);

We	can	also	allocate	the	memory	to	the	array	using	new	operator	as	follows:

pointer-variable	=	new	data	type	[size];

For	example,

int	*p	=	new	int	[20];

The	delete	operator

When	a	data	object	is	no	longer	needed,	it	is	destroyed	to	release	the	memory	space	for
reuse	in	C++	for	performing	this	task	delete	operator	is	used.	The	general	form	of	delete
operator	is	as	follows:

delete	pointer-variable;

For	example,

delete	p;

delete	q;

If	you	want	to	release	the	memory	of	an	array,	this	task	also	can	be	performed	by	delete
operator	as	follows:

delete	[	]	p;

Advantages	of	using	new	and	delete	operator	over	malloc	and	free	function

The	new	and	delete	operators	have	several	advantages	over	the	function	malloc.



1.	It	automatically	computes	the	size	of	the	data	object.	We	need	not	use	the	operator
sizeof.

2.	It	automatically	returns	the	correct	pointer	type,	so	that	there	is	no	need	to	use	a
type	cast.

3.	It	is	possible	to	initialize	the	object	while	creating	the	memory	space.

4.	Like	any	other	operator,	new	and	delete	can	be	overloaded.

Example	using	new	and	delete	operator

#include	<iostream.h>

#include	<cstring.h>

int	main	()

{

double	*d;

d	=	new	double;	//	new	allocates	a	zone	of	memory

//	large	enough	to	contain	a	double

//	and	returns	its	address.

//	That	address	is	stored	in	d.

*d	=	45.3;	//	The	number	45.3	is	stored

//	inside	the	memory	zone

//	whose	address	is	given	by	d.

cout	<<	“Type	a	number:	“;

cin	>>	*d;

*d	=	*d	+	5;

cout	<<	“Result:	”	<<	*d	<<	endl;

delete	d;	//	delete	deallocates	the

//	zone	of	memory	whose	address

//	is	given	by	pointer	d.

//	Now	we	can	no	more	use	that	zone.



d	=	new	double[15];	//	allocates	a	zone	for	an	array

//	of	15	doubles.	Note	each	15

//	double	will	be	constructed.

//	This	is	pointless	here	but	it

//	is	vital	when	using	a	data	type

//	that	needs	its	constructor	be

//	used	for	each	instance.

d[0]	=	4456;

d[1]	=	d[0]	+	567;

cout	<<	“Content	of	d[1]:	”	<<	d[1]	<<	endl;

delete	[]	d;	//	delete	[]	will	deallocate	the

//	memory	zone.	Note	each	15

//	double	will	be	destructed.

//	This	is	pointless	here	but	it

//	is	vital	when	using	a	data	type

//	that	needs	its	destructor	be

//	used	for	each	instance	(the	~

//	method).	Using	delete	without

//	the	[]	would	deallocate	the

//	memory	zone	without	destructing

//	each	of	the	15	instances.	That

//	would	cause	memory	leakage.

int	n	=	30;

d	=	new	double[n];	//	new	can	be	used	to	allocate	an

//	array	of	random	size.

for	(int	i	=	0;	i	<	n;	i++)

{



d[i]	=	i;

}

delete	[]	d;

char	*s;

s	=	new	char[100];

strcpy	(s,	“Hello!”);

cout	<<	s	<<	endl;

delete	[]	s;

return	0;

}

Output:

Type	a	number:	123

Result:	128

Content	of	d[1]:	5023

Hello!

Precedence	of	operators

When	writing	complex	expressions	with	several	operands,	we	may	have	some	doubts
about	which	operand	is	evaluated	first	and	which	later.	For	example,	in	this	expression:

a	=	5	+	7	%	2

we	may	doubt	if	it	really	means:

a	=	5	+	(7	%	2)	//	with	a	result	of	6,	or

a	=	(5	+	7)	%	2	//	with	a	result	of	0

The	correct	answer	is	6.	There	is	an	established	order	with	the	priority	of	each	operator
of	C++.	From	greatest	to	lowest	priority,	the	priority	order	is	as	follows:



Grouping	defines	the	precedence	order	in	which	operators	are	evaluated	in	the	case	that
there	are	several	operators	of	the	same	level	in	an	expression.	All	these	precedence	levels
for	 operators	 can	 be	 manipulated	 by	 removing	 possible	 ambiguities	 using	 parentheses
signs	(	and	),	as	in	this	example:

a	=	5	+	7	%	2;

might	be	written	either	as:

a	=	5	+	(7	%	2);

or

a	=	(5	+	7)	%	2;

depending	on	the	operation	that	we	want	to	perform.

So	if	you	want	to	write	complicated	expressions	and	you	are	not	completely	sure	of	the
precedence	levels,	always	include	parentheses.	It	will	also	become	a	code	easier	to	read.

C++	Program	to	demonstrate	the	operator’s	hierarchy.



#include<iostream.h>

main	()

{

float	a,	b,	c	x,	y,	z;

a	=	9;

b	=	12;

c	=	3;

x	=	a	–	b	/	3	+	c	*	2	–	1;

y	=	a	–	b	/	(3	+	c)	*	(2	–	1);

z	=	a	–	(	b	/	(3	+	c)	*	2)	–	1;

cout<<”x	=”<<x;

cout<<”y	=”<<y;

cout<<”z	=”<<z;

}

Output

x	=	10.00

y	=	7.00

z	=	4.00



Expressions	and	implicit	conversions

An	 expression	 is	 a	 combination	 of	 operators,	 constants	 and	 variables.	 It	 may	 also
include	 function	 calls	which	 return	 values.	 Expression	may	 be	 of	 constant	 expressions,
integer	expressions,	float	expressions	and	pointer	expressions.	For	example,

20	+	5	/	2.5

x	*	y	-10

Whenever	 data-types	 are	 mixed	 in	 an	 expression,	 C++	 performs	 the	 automatic
conversion.	It	divides	the	expression	into	sub	expressions	consisting	of	one	operator	and
one	or	two	operands.	The	compiler	converts	one	of	them	to	match	with	other	using	certain
rule.	The	rule	is	that	the	smaller	type	is	converted	to	the	wider	type.	This	rule	will	be	more
clear	using	following	figure.

[Fig:	Hierarchy	of	type	conversion	]



Excesize
Short	Questions

1.	What	is	C++?	What	is	OOP?

2.	What	are	some	advantages	of	C++?

3.	Does	C++	run	on	machine	`X’	running	operating	system	`Y’?

4.	What	C++	compilers	are	available?

5.	Is	there	a	translator	that	turns	C++	code	into	C	code?

6.	Are	there	any	C++	standardization	efforts	underway?

7.	Where	can	I	ftp	a	copy	of	the	latest	ANSI-C++	draft	standard?

8.	Is	C++	backward	compatible	with	ANSI-C?

9.	Explain	the	use	of	following	terms:

a.	cin,	cout

b.	enum

c.	const

10.	Describe	the	meaning	of	sentence	“dynamic	initialization	of	variable	is	valid	in	C++”.

11.	Explain	the	memory	management	operators	in	brief.

12.	How	can	a	‘::’	operator	be	used	as	unary	operator?

13.	Explain	enumerated	data	types.	Demonstrate	the	usage	of	enumeration	constants.

14.	What	are	enumerated	data	types?	Explain	with	an	example.

15.	List	the	different	phases	of	C++	program	execution.

16.	What	is	a	variable	in	C++?	How	to	form	a	variable?

True/	False

1.	Every	C++	program	must	have	a	function	named	main.

2.	In	C++,	a	block	(compound	statement)	is	not	terminated	by	a	semicolon.

3.	If	a	program	compiles	successfully,	it	is	guaranteed	to	execute	correctly.

4.	Every	program	must	have	a	main	function



5.	A	programming	language	is	said	to	be	case-sensitive	if	it	considers	uppercase	letters	to
be	different	from	lowercase	letters.

6.	 During	 the	 compilation	 phase,	 a	 C++	 source	 program	 is	 processed	 first	 by	 the
preprocessor	program	and	then	by	the	compiler.

7.	In	C++	subprograms	are	referred	as	“functions”.

8.	In	a	C++	function,	the	statements	enclosed	by	a	{.}	pair	are	known	as	the	body	of	the
function.

9.	Some	C++	reserved	words	can	also	be	used	as	programmer-defined	identifiers.

10.	A	variable	is	a	location	in	memory,	referenced	by	an	identifier,	in	which	a	data	value
that	can	be	changed	is	stored.

11.	Any	constant	value	written	in	a	program	is	called	a	literal.

12.	An	arrangement	of	identifiers,	literals,	and	operators	that	can	be	evaluated	to	compute
a	value	of	a	given	type.

13.	The	C++	statement

alpha	/=	beta	+	25;

is	equivalent	to	the	statement

alpha	=	alpha	/	(beta	+	25);

14.	In	C++,	the	expressions	beta++	and	++beta	can	always	be	used	interchangeably.

15.	Alphanumeric	characters	are	stored	in	the	computer	as	integers.

16.	The	statement

char	someChar	=	‘'’;

stores	the	apostrophe	(single	quote)	character	into	someChar.

17.	The	code	segment

string	str	=	“HI!”;

cout	<<	str[1];

outputs	the	single	character	I.

18.	In	the	data	type	defined	by

enum	Colors	{RED,	GREEN,	BLUE};



the	enumerators	are	ordered	such	that	RED	>	GREEN	>	BLUE.

19.	Assuming	 that	 the	 internal	 representation	of	 the	 character	 ‘e’	 is	 the	 integer	101,	 the
output	of	the	following	code	fragment	is	e	101.

char	ch	=	‘e’;

cout	<<	ch	<<	‘	‘	<<	int(ch)	<<	end

20.	When	passing	an	argument	of	one	data	 type	 to	a	parameter	of	a	different	data	 type,
either	promotion	or	demotion	occur.

21.	You	are	writing	a	program	that	will	add	three	floating-point	variables	x,	y,	and	z.	Their
likely	value	ranges	are	as	follows:

x:	1.0	to	1.9

y:	2.1E-10	to	3.0E-10

z:	-3.5E-1	to	-2.2E-1

You	should	add	z	and	x,	then	add	y	to	obtain	the	most	accurate	answer.

22.	If	int	variable	someInt	contains	a	value	from	0	through	9,	then	the	statement

someChar	=	char(‘0’	+	someInt);

stores	the	corresponding	digit	character	into	someChar.

Multiple	Choice	Questions

1.	Which	of	the	following	statement	is	incorrect.

a)	A	constant	variable	must	be	initialized	at	the	time	of	its	declaration.

b)	An	escape	sequence	represents	a	single	character.

c)	A	string	literal	is	a	sequence	of	characters	surrounded	by	double	quotes.

d)	All	correct.

2.	The	multiple	use	of	input	or	output	operators	in	one	statement	is	called.

a)	multi-user

b)	Cascading

c)	Double	operator

d)	Operands



3.	Which	of	the	following	is	not	a	valid	identifier?

a)	Hi_There

b)	Top40

c)	3Blind

d)	CAPs

4.	Which	of	the	following	is	a	valid	string	assignment?

a)	“name”	=	Jones;

b)	Name	=	“Jones”	;

c)	Name	=	‘D’	+	“Jones”	;

d)	b	and	c	above

5.	Which	of	the	following	can	be	assigned	to	a	character	variable?

a)	‘t’

b)	‘2’

c)	‘$’

d)	All	of	the	above

6.	In	C++,	the	phrase	“standard	output	device”	usually	refers	to:

a)	The	keyboard

b)	A	floppy	disk	drive

c)	The	display	screen

d)	A	CD-ROM	drive

7.	What	will	be	the	output	after	the	following	program	is	executed.

#include<iostream.h>

main()

{

int	m=66,n;

n=++m;

n=m++;



cout<<m<<	“,”<<n<<endl;

return	0;

}

a)	68,	67

b)	67,	68

c)	67,67

d)	60,67

8.	Which	of	the	following	is	the	scope	resolution	operator

a)	;

b)	*

c)	->

d)	None	of	the	above

9.	C++	has	the	following	tokens

a)	Keywords

b)	Identifiers

c)	Literals

d)	Objects

Which	one	from	above	is	not	a	token.

10.	A	sequence	of	digits	starting	with	0	(digit	zero)

a)	Octal

b)	Decimal

c)	Hexadecimal

d)	Binary

11.	Which	of	the	following	is	known	as	insertion	operator?

a)	<<

b)	>>

c)	<



d)	>

12.	Which	of	the	following	is	built	in	type	in	C++?

a)	int

b)	float

c)	double

d)	All

13.	Which	of	the	following	is	right	declaration?

a)	Enum	color	{red,	blue};

b)	enum	color	(red,	blue);

c)	enum	color	{red	=	5,	blue};

d)	enum	color	{red,	blue	=	0};

14.	Which	of	the	following	is	pointer	to	member	operator?

a)	->*

b)	.*

c)	Both

d)	None	of	the	above

15.	The	declaration	for	the	object	cin,	cout,	<<	and	>>	is	in	______________	header	file.

a)	stdio.h

b)	iostream.h

c)	fstream.h

d)	conio.h

16.	main()

{

int	x=20,	y=30,	z=10,	i;

i=x<y<z;

cout<<i;

}



a)	1

b)	20

c)	30

d)	40

Predict	Output

1.	What	is	printed	by	the	following	statements?

cout	<<	“My	dog’s	name	is”	<<	”	Maggie	“;

cout	<<	“I	also	have	a	cat	named	Senatra”	<<	endl;

cout	<<	“.”;

2.	What	is	printed	by	the	following	statements?

cout	<<	“My	dog’s	name	is	”	<<	”	Maggie”	<<	endl;

cout	<<	“I	also	have	a	cat	named	Senatra”	<<	endl;

3.	Explain	the	following	expressions

a)	a	+	b	!=	c

(a+b)	NOT	=	c

b)	x	<	20	&&	x	>=	10

x<20	AND	x>=10	i.e	10<x<20

c)	sum	+=i;

sum	=	sum+i

4.	Evaluate	the	expressions

a)	Evaluate	the	expression	(x>5	&&	!(x<9)	||	x<=14)	for	x=10

For	x=10	the	expression	will	be	true	-	(T	&&	T	||	T)

b)	Evaluate	the	expression	!((a||b)	&&	(b&&b))	for	a=1	and	b=0

For	 a=1	 and	 b=0,	 the	 expression	will	 be	 true	 –Not	 ((T	 or	 T)	 and	 F)=NOT(T	 and
F)=NOT(F)=T.

Programming	Exercises

1.	Write	a	program	for	print	“ET&T	computer	education	and	 training	center”	 five	 times



using	cout.

2.	 Declare	 two	 enumerator	 type	 named	 day	 and	month	 as	 given	 in	 the	 chapter	 and	 get
input	 day	 number	 and	 month	 number	 from	 the	 user	 and	 give	 output	 day	 name	 and
month	name	using	the	enumerators.

3.	Write	a	C++	program	to	convert	ASCII	value	to	its	equivalent	character.

4.	Write	an	interactive	program	that	users	inputs	a	name	from	the	user	in	the	format	of:

last,	first	middle

The	program	should	then	output	the	name	as	follows:

last	first	middle

5.	Write	a	program	that	receives	radius	and	height	as	inputs	and	calculates

1/3	*π	*	Radius	2	*	Height

6.	Write	a	program	to	print	“Hello	World”	on	the	screen.

7.	Write	a	program	to	Program	to	read	one	number	and	display	it.	(With	messages)

8.	Write	 a	 program	 that	 will	 obtain	 the	 length	 and	width	 of	 a	 rectangle	 from	 user	 and
calculate	its	area,	perimeter	and	diagonal.

9.	The	straight	line	method	of	computing	the	yearly	depreciation	of	the	value	of	an	item	is
given	 by	 Depreciation=	 (Purchase	 Price-Salvage	 Value)/	 Years	 of	 Service.	 Write	 a
program	to	determine	 the	salvage	value	of	an	Item	when	the	purchase	price,	years	of
service	and	the	annual	depreciation	are	given

10.	Area	of	a	triangle	is	given	by	the	formula

A=sqrt(S(S-a)(S-b)(S-c))

Where	a,b	and	c	are	sides	of	the	triangle	and	2S=a+b+c.	Write	a	program	to	compute
the	area	of	the	triangle	given	the	values	of	a,b	and	c.

11.	Write	a	program	to	Convert	temperature	in	Celsius	to	Fahrenheit	/

Fahrenheit	to	Celsius.

F=	(9/5)	*C	+	32

12.	Write	a	program	to	find	the	sum	of	the	digits	of	a	3-digit	integer	constant.

13.	Write	a	program	to	interchange	the	values	of	two	variables.



14.	 Write	 a	 program	 to	 Assign	 value	 of	 one	 variable	 to	 another	 using	 post	 and	 pre
increment	operator	and	print	the	results.

15.	Write	a	program	to	Read	the	price	of	item	in	decimal	form	e.g.	12.50.	Separate	rupees
and	paisa	from	the	given	value	e.g.	12	rupees	and	50	paisa.

16.	Write	a	program	in	C++	which	read	name,	age	of	student	using	class	and	display	it.

17.	 Implement	 a	 C++	 program	 using	 scope	 resolution	 operator.	 (The	 program	 should
declare	three	variable	with	same	name,	one	should	be	global	and	the	rest	two	should	be
declared	in	two	different	blocks.)





CHAPTER:3	Control	structure

Control	structure	determines	the	flow	of	the	program	based	on	the	conditions	or	results
of	 some	expression.	We	already	have	 studied	 all	 the	 control	 structures	 in	C	 in	depth	 so
here	I	am	just	giving	overview	in	C++:



If	statement

The	 if	 statement	provides	a	selection	control	 structure	 to	execute	a	section	of	code	 if
and	only	 if	 an	 explicit	 run-time	 condition	 is	met.	The	 condition	 is	 an	 expression	which
evaluates	to	a	boolean	value,	that	is,	either	true	or	false.

Syntax:

if	(	<expression>	)

{

Statement

}

Semantics	when	using	if

1.	The	if	statement	provides	selection	control.

2.	The	expression	is	evaluated	first.

3.	If	the	expression	evaluates	to	true,	the	statement	part	of	the	if	statement	is	executed.

4.	If	the	expression	evaluates	to	false,	execution	continues	with	the	next	statement	after
the	if	statement.

5.	A	boolean	false,	an	arithmetic	0,	or	a	null	pointer	are	all	interpreted	as	false.

6.	A	boolean	true,	an	arithmetic	expression	not	equal	to	0,	or	a	non-null	pointer	are	all
interpreted	as	true.

Example:

#include<iostream.h>

#include<conio.h>

void	main()

{

int	a	;

cout<<“enter	the	no”;

cin>>a;

if(a%2==0)



cout<<“it	is	even	no.”;

getch();

}

Output:

enter	the	no12

it	is	even	no.



If	–else

In	 this	 statement,	 if	 the	 expression	 evaluated	 to	 true,the	 statement	 or	 the	 body	 of	 if
statement	 is	executed,otherwise	 the	body	of	 if	statement	 is	skipped	and	the	body	of	else
statement	is	executed.

Syntax

if	(condition)

{

statement1;

}

else

{

statement2;

}

Example:

#	include<iostream.h>

#include<conio.h>

void	main()

{

clrscr();

int	n;

cout<<“enter	the	no”;

cin>>n;

if	(n%2==0)

cout<<“it	is	even	no”;

else

cout<<“it	is	odd	no”;

getch();



}

Output:

enter	the	no13

it	is	odd	no



Switch

It	 provide	multiple	 branch	 selection	 statement	 .if	 –else	 provide	 only	 two	 choices	 for
selection	and	switch	statement	provide	multiple	choice	for	selection.

Syntax:

switch(expression)

{

case	exp1:

First	case	body;

break;

case	exp2:

Second	case	of	body:

break;

default:

Default	case	body;

}

Example:

#include<iostream.h>

#include<conio.h>

int	main()

{

int	a	;

clrscr();

cout<<“enter	the	no”;

cin>>a;

switch(a)

{

case	1:



cout<<“sunday\n”;

break;

case	2:

cout<<“monday\n”;

break;

case	3:

cout<<“tuesday\n”;

break;

case	4:

cout<<“wednesday\n”;

break;

case	5:

cout<<“thrusday\n”;

break;

case	6:

cout<<“friday\n”;

break;

case	7:

cout<<“satday\n”;

break;

default:

cout<<“wrong	option”;

}

getch();

return	0;

}

Output:



enter	the	no	4

wednesday



For	loop

In	this,	first	the	expression	or	the	variable	is	initialized	and	then	condition	is	checked.	if
the	condition	is	false	,the	loop	terminates

Syntax:-

for	(initillization;condition;increment)

Example:	program	to	print	the	no	from	1	to	100.

#include<iostream.h>

#	include<conio.h>

void	main	()

{

int	i;

for(i=1;i<=100;i++)

cout<<i<<”\n”;

getch	();

}



While	loop

This	 loop	 is	 an	entry	controlled	 loop	and	 is	used	when	 the	number	of	 iteration	 to	be
performed	 are	 known	 in	 advance.	 The	 statement	 in	 the	 loop	 is	 executed	 if	 the	 test
condition	is	true	and	execution	continues	as	long	as	it	remains	true.

Syntax:-

initialization;

while	(condition)

{

statement;

increment;

}

Example:A	program	to	print	a	table.

#include<iostream.h>

#include<conio.h>

void	main	()

{

int	n	,i;

cout<<”enter	the	no	whose	table	is	to	be	printed	“;

cin>>n;

i=1;

while	(i<=10)

{

cout<<n<<”x”<<i<<”=”<<nxi<<”\n”;

i++;

}

getch();

}



Do-while

It	is	bottom	controlled	loop.	This	that	a	do-while	loop	always	execute	at	least	once.

Syntax:

initillization

do

{

statement	;

increement;

}while(condition);

Example:	A	program	to	print	the	multiplication	table	of	number.

#	include<iostream.h>

#include<conio.h>

int	main()

{

int	n,i;

clrscr();

cout<<“enter	the	no.	whose	table	is	to	be	printed:”;

cin>>n;

i=1;

do

{

cout<<n<<“x”<<i<<”=”<<n*i<<”\n”;

}while(i++<10);

getch();

return	0;

}



Output:

enter	the	no.	whose	table	is	to	be	printed:5

5x1=5

5x2=10

5x3=15

5x4=20

5x5=25

5x6=30

5x7=35

5x8=40

5x9=45

5x10=50



Break	statement

The	 term	break	means	breaking	out	of	a	block	of	code.	The	break	statement	has	 two
use,you	can	use	it	to	terminate	a	case	in	the	switch	statement,	and	you	can	also	use	it	to
force	immediate	termunation	of	loop,	bypassing	the	normal	loop	condition	test.

Example	1:-

#include<iostream.h>

#include<conio.h>

int	main()

{

int	a	;

clrscr();

cout<<“enter	the	no”;

cin>>a;

switch(a)

{

case	1:

cout<<“sunday\n”;

break;

case	2:

cout<<“monday\n”;

break;

case	3:

cout<<“tuesday\n”;

break;

case	4:

cout<<“wednesday\n”;

break;



case	5:

cout<<“thrusday\n”;

break;

case	6:

cout<<“friday\n”;

break;

case	7:

cout<<“satday\n”;

break;

default:

cout<<“wrong	option”;

}

getch();

return	0;

}

Output:

enter	the	no	4

wednesday

Example	2:

#	include<iostream.h>

#include<conio.h>

int	main()

{

int	i,j;

clrscr();

for(i=1;i<3;i++)

{



for(j=1;j<3;j++)

{

cout<<i<<”	“<<j<<”	“;

if(i==j)

break;

}

cout<<”\n”;

}

getch();

return	0;

}

Output:

1	1	1	2

2	1	2	2



Continue

The	continue	statement	causes	 the	program	to	skip	 the	 rest	of	 the	 loop	 in	 the	current
iteration	as	if	the	end	of	the	statement	block	had	been	reached,	causing	it	to	jump	to	the
start	 of	 the	 following	 iteration.	For	 example,	we	 are	 going	 to	 skip	 the	 number	 5	 in	 our
countdown:

Example

#include	<iostream.h>

#include<conio.h>

void	main	()

{

for	(int	n=10;	n>0;	n—)

{

if	(n==5)	continue;

cout	<<	n	<<	“,	“;

}

cout	<<	“fire!\n”;

getch();

}

Output-

10,	9,	8,	7,	6,	4,	3,	2,	1,	fire!

Example	2:

#	include<iostream.h>

#include<conio.h>

int	main()

{

int	i,j;

clrscr();



for(i=1;i<3;i++)

{

for(j=1;j<3;j++)

{

cout<<i<<”	“<<j<<”	“;

if(i==j)

continue;

}

cout<<”\n”;

}

getch();

return	0;

}

Output:

1	1

2	1	2	2



Exit()	Function

Exit	is	a	function	defined	in	the	stdlib	library	means	(stdlib.h).

The	purpose	of	exit	 is	 to	 terminate	 the	current	program	with	a	 specific	exit	 code.	 Its
prototype	is:

exit	(exitcode);

The	exitcode	is	used	by	some	operating	systems	and	may	be	used	by	calling	programs.
By	convention,	an	exit	code	of	0	means	that	the	program	finished	normally	and	any	other
value	means	that	some	error	or	unexpected	results	happened

Example

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

void	main	()

{

int	n;

cout<<“enter	the	no”;

cin>>n;

if	(n%2==0)

cout<<“it	is	even	no”;

else

{

cout<<“it	is	odd	no”;

exit(0);

}

getch();

}

Output:



enter	the	no	23

it	is	odd	no



Goto	statement

Goto	statement	allows	to	make	an	absolute	jump	to	another	point	in	the	program.	You
should	 use	 this	 feature	 with	 caution	 since	 its	 execution	 causes	 an	 unconditional	 jump
ignoring	 any	 type	 of	 nesting	 limitations.The	 destination	 point	 is	 identified	 by	 a	 label,
which	 is	 then	 used	 as	 an	 argument	 for	 the	 goto	 statement.	 A	 label	 is	 made	 of	 a	 valid
identifier	followed	by	a	colon	(:).

Generally	speaking,	this	instruction	has	no	concrete	use	in	structured	or	object	oriented
programming	 aside	 from	 those	 that	 low-level	 programming	 fans	 may	 find	 for	 it.	 For
example,	here	is	our	countdown	loop	using	goto:

//	goto	loop	example

#include	<iostream.h>

int	main	()

{

int	n=10;

loop:

cout	<<	n	<<	“,	“;

n—;

if	(n>0)	goto	loop;

cout	<<	“fire!\n”;

return	0;

}

Output:

10,	9,	8,	7,	6,	5,	4,	3,	2,	1,	fire!



Exercise
Short	Questions

1.	What	happens	when	you	forget	to	include	the	Break	statements	in	a	switch	statement?

2.	How	many	times	the	inner	loop	is	executed	in	the	following	nested	loop?

for	(int	x	=	1;	x	<=	10;	x++)

for	(int	y=1;	y	<=	10;	y++)

for	(int	z	=	1;	z	<=10;	z++)

cout	<<	x+y+z;

3.	Which	 looping	 statement	 would	 you	 choose	 for	 a	 problem	 in	 which	 the	 decision	 to
repeat	 an	 event	 depends	 on	 an	 event,	 and	 the	 event	 cannot	 occur	 until	 the	 process	 is
executed	at	least	once?

4.	Which	logical	operator	(op)	is	defined	by	the	following	table?	(T	and	F	denote	TRUE
and	FALSE.)

5.	Mention	the	data	types	that	are	supported	by	C++	but	not	by	c.

6.	Distinguish	between	l	value	and	r-value	of	a	variable.	Given	an	example.

7.	List	out	the	different	operates	that	are	available	in	C	+	+	along	with	its	precedence	and
associativity.

8.	What	 is	 types	 casting?	What	 is	 the	 value	 of	 result	 in	 each	 of	 cout	 statement?	 Give
reason	for	the	difference	in	value.

double	result;

int	whole-number=7;

result	=	whole-	number/2;

cout	<	<	“\n	the	result	of	this	division	is	“	<	<	result;

result	=	(double)	whole	–	number/2;

cout	<	<	“	\n	the	result	of	this	division	is	‘	<	<	result;



9.	Write	the	syntax	of	while	loop	and	Do-while	loop.	Show	the	difference	between	the	two
loops	with	examples.

10.	The	following	statement	is	written	to	check	the	condition	of	a	variable	x	to	see	if	it

was	either	0	or	1.

If	(x	=	=	0	||1)

When	 the	 program	was	 run	 the	 statement	 was	 never	 found	 to	 be	 false.	Why?	 Give
reason.	Also	give	the	correct	statement.

11.	Mention	the	syntax	of	all	the	loops	available	in	C	+	+	and	their	utility	under	different
contexts.	Explain	with	program	examples.

12.	Suggest	one	C	+	+	program	 to	 show	how	 if-else	 statement	and	conditional	operator
work	identically.

13.	We	do	not	see	the	values	of	17	and	25	a	and	b,	when	we	run	the	below	program.

True/	False

1.	Any	Switch	statement	that	has	a	break	statement	at	the	end	of	each	case	alternative	can
be	replaced	by	a	nested	If-Then-Else	structure.

2.	The	statement

switch	(n){

case	8	:	alpha++;	break;

case	3	:	beta++;	break;

default:	gamma++;	break;

}

is	equivalent	to	the	following	statement.

if	(n	==	8)

alpha++;

else	if	(n	==	3)

beta++;

else

gamma++;



3.	The	body	of	a	Do-While	loop	will	always	execute	at	least	once,	whereas	the	body	of	a
For	loop	may	never	execute.

4.	If	a	loop	containing	a	break	statement	is	nested	within	a	Switch	statement,	execution	of
that	break	statement	causes	an	exit	from	the	loop	but	not	from	the	Switch	statement.

5.	The	code	segment

cout	<<	“Do	you	wish	to	continue?	“;

cin	>>	response;

while	(response	!=	‘Y’	&&	response	!=	‘N’)

{

cout	<<	“Do	you	wish	to	continue?	“;

cin	>>	response;

}

is	equivalent	to	the	following	code	segment.

do{

cout	<<	“Do	you	wish	to	continue?	“;

cin	>>	response;

}	while	(response	!=	‘Y’	&&	response	!=	‘N’);

6.	In	the	following	code	fragment,	the	output	is	ABC.

cout	<<	‘A’;

for	(count	=	1;	count	<=	3;	count++);

cout	<<	‘B’;

cout	<<	‘C’;

7.	The	output	of	the	following	code	fragment	if	the	input	value	is	‘G’	is	5.

cin	>>	inputChar;

switch	(inputChar)

{

case	‘A’	:	cout	<<	1;	break;



case	‘Q’	:	cout	<<	2;	break;

case	‘G’	:

case	‘M’	:	cout	<<	3;	break;

default	:	cout	<<	4;

}

8.	The	output	of	the	following	code	fragment	if	the	input	value	is	4	is	19.

int	num;

int	alpha	=	10;

cin	>>	num;

switch	(num)

{

case	3	:	alpha++;

case	4	:	alpha	=	alpha	+	2;

case	8	:	alpha	=	alpha	+	3;

default	:	alpha	=	alpha	+	4;

}

cout	<<	alpha	<<	endl;

9.	An	equivalent	for	loop	for	the	following	code

count	=	-5;

while	(count	<=	15)

{

sum	=	sum	+	count;

count++;

}

is

for	(count	=	-5;	count	<=	15;	count++)

sum	=	sum	+	count;



10.	The	output	of	the	following	code	fragment	is	32.

n	=	2;

for	(loopCount	=	1;	loopCount	<=	3;	loopCount++)

do

n	=	2	*	n;

while	(n	<=	4);

cout	<<	n	<<	endl;

11.	After	the	execution	of	the	following	code,	alpha	has	33.

char	ch	=	‘D’;

int	alpha	=	3;

switch	(ch)

{

case	‘A’	:	alpha	=	alpha	+	10;	break;

case	‘B’	:	alpha	=	alpha	+	20;	break;

case	‘C’	:	alpha	=	alpha	+	30;

}

12.	A	break	statement	is	not	allowed	in	a	For	loop,	but	a	Continue	statement	is.

13.	The	code

testScore	>=90	&&	testScore	<=	100

is	a	C++	logical	expression	that	is	true	if	the	variable	testScore	is	greater	than	or	equal
to	90	and	less	than	or	equal	to	100:

14.	The	code

x	!=	5	&&	y	!=	5

is	a	C++	logical	expression	that	is	true	if	the	variable	testScore	is	greater	than	or	equal
to	90	and	less	than	or	equal	to	100:

15.	 When	 floating-point	 numbers	 are	 involved	 in	 calculations,	 errors	 occur	 in	 the
rightmost	decimal	places	because	the	representation	of	a	real	number	in	a	computer	is
not	always	exact.



16.	The	equivalent	expression	for	!(one	==	two	&&	three	>	four)	is

one	!=	two	||	three	<=	four

17.	An	example	of	a	logical	(Boolean)	expression	is	an	arithmetic	expression	followed	by
a	relational	operator	followed	by	an	arithmetic	expression.

18.	Syntactically,	 the	only	expressions	 that	can	be	assigned	 to	Boolean	variables	are	 the
literal	values	true	and	false.

19.	 If	 ch1	 contains	 the	 value	 ‘C’	 and	 ch2	 contains	 the	 value	 ‘K’,	 the	 value	 of	 the	C++
expression

ch1	<=	ch2	is	true.

20.	If	P	and	Q	are	logical	expressions,	the	expression	P	AND	Q	is	TRUE	if	either	P	or	Q	is
TRUE	or	both	are	TRUE.

21.	The	expression	!(n	<	5)	is	equivalent	to	the	expression	n	>	5.

22.	According	to	DeMorgan’s	Law,	the	expression

!(x	<=	y	||	s	>	t)

is	equivalent	to

x	<=	y	&&	s	>	t

23.	The	statement

if	(grade	==	‘A’	||	grade	==	‘B’	||	grade	==	‘C’)

cout	<<	“Fail”;

else

cout	<<	“Pass”;

prints	Pass	if	grade	is	‘A’,	‘B’,	or	‘C’	and	prints	Fail	otherwise.

24.	If	a	C++	If	statement	begins	with

if	(age	=	30)

the	If	condition	is	an	assignment	expression,	not	a	relational	expression.

25.	The	code	segment

if	(speed	<=	40)

cout	<<	“Too	slow”;



if	(speed	>	40	&&	speed	<=	55)

cout	<<	“Good	speed”;

if	(speed	>	55)

cout	<<	“Too	fast”;

could	be	written	equivalently	as

if	(speed	<=	40)

cout	<<	“Too	slow”;

else	if	(speed	<=	55)

cout	<<	“Good	speed”;

else

cout	<<	“Too	fast”;

26.	If	DeMorgan’s	Law	is	used	to	negate	the	expression

(i	<	j)	&&	(k	==	l)	then	the	result	is	(i	>=	j)	||	(k	!=	l)

27.	Given	a	Boolean	variable	isEmpty,	then	the	following	statement

isEmpty	=	!isEmpty;

is	a	valid	C++	assignment	statement?

28.	In	the	following	code,	if	the	value	of	the	input	variable	angle	is	10,	after	the	execution
of	the	code	the	value	of	the	angle	variable	is	15.

cin	>>	angle;

if	(angle	>	5)

angle	=	angle	+	5;

else	if	(angle	>	2)

angle	=	angle	+	10;

29.	In	the	following	code,	if	the	value	of	the	input	variable	angle	is	10,	after	the	execution
of	the	code	the	value	of	the	angle	variable	is	15.

cin	>>	angle;

if	(angle	>	5)



angle	=	angle	+	5;

if	(angle	>	2)

angle	=	angle	+	10;

30.	In	the	following	code,	if	the	value	of	the	input	variable	angle	is	10,	after	the	execution
of	the	code	the	value	of	the	angle	variable	is	15.

cin	>>	angle;

if	(angle	>	5)

angle	=	angle	+	5;

else	if	(angle	>	2)

angle	=	angle	+	10;

else

angle	=	angle	+	15;

31.	In	the	following	code,	if	the	value	of	the	input	variable	angle	is	0,	after	the	execution
of	the	code	the	value	of	the	angle	variable	is	15.

cin	>>	angle;

if	(angle	>	5)

angle	=	angle	+	5;

else	if	(angle	>	2)

angle	=	angle	+	10;

32.	Consider	the	following	If	statement,	which	is	syntactically	correct	but	uses	poor	style
and	indentation:

if	(x	>=	y)	if	(y	>	0)	x	=	x	*	y;	else	if	(y	<	4)	x	=	x	-	y;

Assume	 that	 x	 and	 y	 are	 int	 variables	 containing	 the	 values	 3	 and	 9,	 respectively,
before	execution	of	 the	above	statement.	After	execution	of	 the	statement,	x	contains
27.	True	or	False?	The	output	of	the	following	code	fragment	if	the	input	value	is	20	is
“Larry	Curly”.

cin	>>	someInt;

if	(someInt	>	30)



cout	<<	“Moe	“;

cout	<<	“Larry	“;

cout	<<	“Curly”;

33.	Assuming	alpha	and	beta	are	int	variables,	the	output	of	the	following	code	is	“There”.

alpha	=	3;

beta	=	2;

if	(alpha	<	2)

if	(beta	==	3)

cout	<<	“Hello”;

else

cout	<<	“There”;

34.	Given	the	following	code	segment

name1	=	“Maryanne”;

name2	=	“Mary”;

the	value	of	the	relational	expression	string1	<=	string2	is	False.

35.	Assuming	no	input	errors,	an	execution	of	the	>>	operator	leaves	the	reading	marker	at
the	character	immediately	following	the	last	data	item	read.

36.	When	working	at	the	keyboard,	the	user	generates	a	newline	character	by	pressing	the
Enter	or	Return	key.

37.	If	the	reading	marker	is	in	the	middle	of	an	input	line	of	25	characters,	execution	of	the
statement

cin.ignore(500,	‘\n’);

leaves	the	reading	marker	at	the	character	following	the	next	newline	character.

38.	The	>>	operator	skips	 leading	whitespace	characters	when	 looking	 for	 the	next	data
value	in	the	input	stream.

39.	Reading	input	from	a	file	is	considered	interactive	I/O	because	the	CPU	is	required	to
interact	with	a	disk	drive	or	other	device.

40.	Using	an	editor	program	to	edit	a	file	requires	interactive	I/O.



41.	 In	 a	 functional	 decomposition,	 a	 concrete	 step	 is	 one	 in	 which	 some	 of	 the
implementation	details	remain	unspecified.

42.	Two	methods	to	store	a	value	into	a	variable	is	by	executing	a)	an	input	statement	b)
an	assignment	statement.

43.	When	an	integer	data	value	is	read	into	a	float	variable,	the	value	is	first	converted	into
floating-point	form.

44.	Assume	the	data	in	the	following	two	lines	is	input:

A	B

CDE

‘C’	is	read	into	ch3	by	the	following	code	(All	variables	are	of

type	char.)

cin	>>	ch1	>>	ch2	>>	ch3;

45.	Assume	the	data	in	the	following	two	lines	is	input:

A	B

CDE

‘B’	is	read	into	ch3	by	the	following	code

cin.get(ch1);

cin.get(ch2);

cin.get(ch3);

46.	Given	the	two	lines	of	input	data

ABC

DEF

A	blank	character	is	read	into	ch	by	the	following	code?	(str	is	of	type	string,	and	ch	is
of	type	char.)

cin	>>	str;

cin.get(ch);

47.	Given	the	two	lines	of	input	data

ABC



DEF

A	blank	character	is	read	into	ch	by	the	following	code?	(str	is	of	type	string,	and	ch	is
of	type	char.)

getline(cin,	str);

cin.get(ch);

48.	The	C++	standard	library	defines	a	data	type	named	ifsteram	that	represents	a	stream
of	characters	coming	from	an	input	file.

49.	 In	 a	C++	 floating-point	 constant,	 a	 decimal	 point	 is	 not	 required	 if	 exponential	 (E)
notation	is	used.

50.	In	a	C++	expression,	all	additions	are	performed	before	any	subtraction.

51.	 In	a	C++	expression	without	parentheses,	all	operations	are	performed	in	order	from
left	to	right.

52.	If	someFloat	is	a	variable	of	type	float,	the	statement

someFloat	=	395;

causes	someFloat	to	contain	an	integer	rather	than	floating-point	value.

53.	In	C++,	the	expression	(a	+	b	/	c)	/	2	is	implicitly	parenthesized	as	((a	+	b)	/	c)	/	2.

54.	If	the	int	variable	someInt	contains	the	value	26,	the	statement

cout	<<	“someInt”;

outputs	the	value	26.

55.	The	setprecision	manipulator	is	used	to	increase	or	decrease	the	precision	of	floating-
point	numbers	that	are	stored	in	the	computer’s	memory	unit.

56.	The	setw	manipulator	is	used	only	for	formatting	numeric	values	and	strings,	not	char
data.

57.	If	myString	is	a	string	variable	and	the	statement

myString	=	“Harry”;

is	executed,	then	the	value	of	the	expression	myString.find(‘r’)	is	2.

58.	The	setw	manipulator	is	used	only	for	formatting	numeric	values	and	strings,	not	char
data.



59.	Among	the	C++	operators	+,	-,	*,	/,	and	%,	“+	and	–“	have	the	lowest	precedence.

60.	The	value	of	the	C++	expression	3	/	4	*	5	is	5.

61.	Assuming	all	variables	are	of	type	float,	the	C++	expression	for	(a	+	b)c	/	d	+	e	is:	(a+
b)*c/	(d	+	e).

62.	The	value	of	the	C++	expression	11	+	22	%	4	is	1.

63.	If	the	int	variables	int1	and	int2	contain	the	values	4	and	5,	respectively,	then	the	value
of	the	expression	float(int1	/	int2)	is	1.0.

64.	If	the	int	variables	int1	and	int2	contain	the	values	5	and	4,	respectively,	then	the	value
of	the	expression	float(int1	/	int2)	is	1.0.

65.	The	expression

float((int1	+	int2	+	int3)	/	3)

does	not	correctly	compute	the	mathematical	average	of	the	int	variables	int1,	int2,	and
int3.

66.	If	testScore	is	an	int	variable	containing	the	value	78,	the	following	program	fragment

cout	<<	“1234567890”	<<	endl	<<	“Score:”	<<	setw(4)	<<	testScore	<<	endl;

outputs	the	following	output:

1234567890

Score:	78

67.	plant	=	“Dandelion”;

is	executed,	then	the	value	of	the	expression	plant.find(‘d’)	is	3.

68.	If	name	is	a	string	variable,	the	output	of	the	following	code

name	=	“Marian”;

cout	<<	“Name:	”	<<	name.substr(1,	3)	+	“sta”;

is	Name:	arista

69.	The	expression	int(someFloat)	is	an	example	of	a(n)	cast	operation.

70.	In	the	statement

y	=	SomeFunc(3);

the	number	3	is	known	as	the	function’s	actual	parameter	or	argument.



Multiple	Choice	Questions

1.	What	will	be	the	output	of	the	following	program	if	your	integer	input	is	1234567

main()

{

long	m,d,n=0;

cout<<”enter	a	positive	integer”;

cin>>m;

while(m>0)

{

d=m%10;

m/=10;

n=10*n+d;

}

cout<<n<<endl;

}

a)	123564

b)	456123

c)	654321

d)	123456

2.	When	a	break	statement	is	encountered	in	a	switch	statement,	program	execution	jumps
to	the

a)	Next	line

b)	Outside	the	body	of	switch	statement.

c)	Starting	of	the	switch	statement.

d)	Jumps	to	the	main	statement.

3.	What	is	the	value	of	sum	when	you	run	the	following	piece	of	code?	Give	reason.

Sum	=	0;



For	(I	=	1	;	I	<	=	5	;	I	+	+	);

Sum	=	sum	+	I;

cout	<	<	“	value	of	sum	=	“	<	<	sum	;

Question:-

int	I,	j;

string	s;

cin	>>	I	>>	j	>>	s	>>	s	>>	I;

cout	<<	I	<<	”	”	<<	j	<<	”	”	<<	s	<<	”	”	<<	I;

Referring	 to	 the	 sample	 code	 above,	what	 is	 the	 displayed	 output	 if	 the	 input	 string
given	were:	“5	10	Sample	Word	15	20”?

a)	5	10	Sample	Word	15	20

b)	15	20	Sample	Word	15

c)	5	10	Sample	Word	15

d)	15	10	Word	15

e)	15	20	Sample	Word	20

4.	Which	 type	 of	 conditional	 expression	 is	 used	 when	 a	 developer	 wants	 to	 execute	 a
statement	only	once	when	a	given	condition	is	met?

a)	switch-case

b)	for

c)	if

d)	do-while

e)	while

5.	which	one	from	the	given	below	is	the	output	of	this	code

main()

{

int	f=1,	i=2;

do



{

f*=i;

}while(++i<5);

cout<<f;

}

a)	20

b)	24

c)	6

d)	22

6.	which	one	from	the	given	below	is	the	output	of	this	code

main()

{

int	f=1,	i=2;

while	(++i<5);

{

f*=i;

}

cout<<f;

}

a)	12

b)	6

c)	24

d)	20

Predict	Output

1.	What	is	the	output	of	the	following	code	segment?

n	=	0;



while	(n	<	5)

{

n++;

cout	<<	n	<<	‘	‘	;

}

2.	What	is	the	output	of	the	following	program	segments?

a)int	x	=	1;

while	(	x	<=	10)

{

cout	<<	“Hello\n”;

x	=	x	+	1;

}

cout	<<	x	<<	endl;	//What’s	the	value	of	x	____

b)i	=	0;

while	(	i	<	10)

{

if	(i	%	2	==	1)

cout	<<	i	<<	”	“;

++i;

}

c)num	=	0;	//	Initialization

for	(;	num	<	5;	)	{	//	Condition

cout	<<	“Num	is	”	<<	num<<	endl;

num	++;	//	update

}

3.	Given	the	input	data

5	10	20	-1



what	is	the	output	of	the	following	code	fragment?	(All	variables	are	of	type	int.)

sum	=	0;

cin	>>	number;

while	(number	!=	-1)

{

sum	=	sum	+	number;

cin	>>	number;

}

cout	<<	sum	<<	endl;

4.	What	is	the	output	of	the	following	code?

int	counter,	sum;	//	declare	loop	counter	and	sum

counter	=	1;	//	initialize	the	loop	counter

sum	=	0;	//	initialize	the	sum

while	(	counter	<	100){	//	iterate	the	loop	99	times

sum	=	sum	+	counter;	//	add	the	value	of	counter	to	the	existing

++counter;	//	increment	the	counter

}

cout	<<	“The	sum	is	”	<<	sum	<<	endl;	//	Display	the	sum

5.	Explanation:

The	following	 is	an	end-of-file-controlled	 (	generated	by	holding	Ctrl	key	and	pressing
on	D	key)	while	loop	code	segment.	The	loop	stops	when	Ctrl+D	key	are	pressed.	Read
the	 comments	 carefully	 to	 understand	 what’s	 happening	 and	 then	 answer	 the	 question
following	this	code.

float	number;	//	storage	for	the	number	read

cin	>>	number;	//	read	the	first	number	(priming	read)

while	(	cin	)	{	//	loop	until	failed	data	stream	read

//	This	happens	when	you	typed	^D	and	hit	return



cout	<<	“The	number	read	is	”	<<	number	<<	endl;	//	display	the

number	read

cin	>>	number;	//	read	next	number

}

6.	 Given	 the	 following	 input	 data	 followed	 by	 control_d	 (which	 is	 the	 end	 of	 file
character):

1	2	3	4

what	is	the	output	of	the	following	code	fragment?	(All	variables	are	of	type	int.)

sum	=	0;

cin	>>	number;

while	(cin)

{

sum	=	sum	+	number;

cin	>>	number;

}

cout	<<	sum	<<	endl;

7.	What	will	be	the	value	of	result	after	execution	of	the	following	code	segment?

a	=	5;	result=10;

while	(	a++	<	10	)	{	result	++;	}

8.	Given	the	following	code	segment,	what	is	the	value	of	the	variable	“done”	after	while
loop	exits?

sum	=	0;

done	=	false;

while	(!done)

{

cin	>>	number;

if(number	<	0)



done	=	true;

else

sum	=	sum	+	number;

}

9.	Convert	the	following	while	loop	to	a	for	loop

a	=	8;	sum=0;

while	(	a	>	0	)

{	sum	=	sum	+	a;	a=	a	-	1;	}

10.	What	is	the	output	of	the	following	code	segments?

a)	for	(int	i=1;	i	<	10;	i=i+2)

cout	<<	i	<<	endl;

b)	for	(int	n=10;	n>0;	n—)

{

cout	<<	n	<<	endl;

}

c)	for	(k=2;	k<=1024;	k	=	k	*	2)

cout	<<	k	<<	endl;

d)	for	(k=2;	k<=1024;	k	=	k	*	2);

cout	<<	k	<<	endl;

e)	for	(int	k=-5;	k<0;	k++)

cout<<	k	+	2	<<	endl;

cout<<“HELLO”;

f)	for	(len=9;	len>=1;	len—)

{

for	(num=1;	num<=len;	num++)

cout	<<	num;

cout	<<	endl;



}

11.	What	is	the	output	of	the	following	code

count	=1;

for(	;	;	count++)

if	(	count	<	3	)

cout	<<	count;

else

break;

12.	What	is	the	output	of	the	following	code?

for	(int	i=0	;	i	<	3;	i++)	{

for	(int	j=0;	j	<	4;	j++)

cout	<<	“*”	;

cout	<<	endl;

}

13.	What	is	the	output	of	the	following	code?

i	=	0;

while	(i	<	3)

{

j	=	1;

while	(j	<	3)

{

cout	<<	“i	=	”	<<	i	<<	”	j	=	”	<<	j;

j++;

}

cout	<<	endl;

i++;

}



14.	What	is	the	output	of	the	following	code	segment	if	wood	contains	‘O’?

switch(wood){

case	‘P’:	cout	<<	“Pine”	;

case	‘F’:	cout<<	“Fit”;

case	‘C’:	cout	<<	“Cedar”;

case	‘O’:	cout	<<	“Oak”;

case	‘M’:	cout	<<	“Maple”;

default	:	cout	<<	“Error”;

}

15.	What	is	the	output	of	the	following	program?

#include	<iostream>

using	namespace	std;

int	integer1	=	1;

int	integer2	=	2;

int	integer3	=	3;

int	main()

{

int	integer1	=	-1;

int	integer2	=	-2;

{

int	integer1	=	10;

cout	<<	“integer1	==	”	<<	integer1	<<	“\n”;

cout	<<	“integer2	==	”	<<	integer2	<<	“\n”;

cout	<<	“integer3	==	”	<<	integer3	<<	“\n”;

}

cout	<<	“integer1	==	”	<<	integer1	<<	“\n”;

cout	<<	“integer2	==	”	<<	integer2	<<	“\n”;

cout	<<	“integer3	==	”	<<	integer3	<<	“\n”;

return	0;

}



16.	What	is	the	output	of	the	following	code?

#include	<iostream>

using	namespace	std;

int	main(void)	{

cout	<<	“First	Loop”	<<	endl	<<	“–––-”	<<	endl;

int	x	=	3;

cout	<<	“Initial	value	of	x	(before	loop):	”	<<	x	<<	endl	<<	endl;

for	(x	=	1;	x	<	42;	x	=	x	*	2)

cout	<<	“Inside	loop,	value	of	x:	”	<<	x	<<	endl;

cout	<<	endl	<<	“Final	value	of	x	(after	loop):	”	<<	x	<<	endl	<<

endl;

cout	<<	“Second	Loop”	<<	endl	<<	“–––—”	<<	endl;

for	(int	i	=	0;	i	<	3;	i++)

for	(int	j	=	0;	j	<	3;	j	+=	1)

for	(int	k	=	0;	k	<	3;	k	=	k	+	1)

cout	<<	“[	”	<<	i	<<	”	”	<<	j	<<	”	”	<<	k	<<	”	]”	<<	endl;

return	0;

}

17.	What	is	the	output	of	the	following	program	segments?

a)int	x	=	1;

do{

cout	<<	“Hello\n”;

x	=	x	+	1;

}while	(x	<=	10);

cout	<<	x	<<	endl;	//What’s	the	value	of	x	____

b)	i	=	0;

do	{



if	(i	%	2	==	1)	{

cout	<<	i	<<	”	“;

}

++i;

}	while	(i	<	10);

c)	num	=	0;	//	Initialization

for	(;	num	<	5;	)	{	//	Condition

cout	<<	“Num	is”	<<	num<<	endl;

num	++;	//	update

}

18.	What	is	the	output	of	the	following	code

count	=1;

for(	;	;	count++)

if	(	count	<	3	)

cout	<<	count;

else

break;

19.	What	is	the	output	of	the	following	C++	code	fragment?	(Be	careful	here.)

int1	=	120;

cin	>>	int2;	//	Assume	user	types	30

if	((int1	>	100)	&&	(int2	=	50))

int3	=	int1	+	int2;

else

int3	=	int1	-	int2;

cout	<<	int1	<<	‘	‘	<<	int2	<<	‘	‘	<<	int3;

20.	Given	the	following	input	data

123.456	A	789



what	value	is	read	into	inputChar	by	the	following	code?

cin	>>	alpha	>>	inputChar	>>	beta;

21.	Given	that	x	is	a	float	variable	containing	the	value	84.7	and	num	is	an	int	variable,
what	will	num	contain	after	execution	of	the	following	statement:

num	=	x	+	2;

22.	What	is	the	output	of	the	following	program	fragment?

age	=	29;

cout	<<	“Are	you”	<<	age	<<	“years	old?”	<<	endl;

23.	The	output	of	the	following	program	fragment?	(x	is	a	float	variable.)

x	=	25.6284;	cout	<<	“**”	<<	setw(6)	<<	setprecision(1)	<<	x	<<

endl;

24.	Explain	the	following	expressions

x	<	20	&&	x	>=	10

sum	+=i;

25.	Evaluate	the	expression	(x>5	&&	!(x<9)	||	x<=14)	for	x=10

26.	Evaluate	the	expression	!((a||b)	&&	(b&&b))	for	a=1	and	b=0

27.	Consider	the	following	program	segment.	What	will	be	the	output	of	the	program	for
code=1.

if(code	!=1)

if(code	!=2)

if	(code	!=3)

printf(“Yellow	\n”);

else

printf(“White	\n”);

else

printf(“Green	\n”);

else



printf(“Red	\n”);

28.	What	will	be	the	output	of	the	program	for	i=9	and	n=10.

void	main()

{

int	i=?,	n=?,	sum=0;

do{

sum	=	sum	+	i;

i++;

}while(i<n);

cout<<“Sum	=	”	<<	sum;

}

29.	A	considerable	amount	of	time	can	be	saved	by	evaluation	of	complex	conditions.	As
an	illustration	of	the	first	benefit,	consider	the	expression	below

if	(n	!=0	&&	x<1/n)

{

y=1/n-x;

cout	<<	y;

}

Explain	what	benefit	we	get	from	the	expression	above.

30.	Explain	the	following	program	segment

for(;	;)

{

cout<<”.”;

}

31.	 Assuming	 that	 i	 and	 k	 are	 integer	 variables,	 describe	 the	 output	 produced	 by	 the
following	program	segments

int	k=4,	i=-1;



while(i<=k)

{

i+=2;

k—;

cout	<<	(i+k)	<<	“\n”;

}

Find	Error	in	the	Code

1.	What	is	wrong	with	the	following	code?

while	(	n	<=	100	)

sum	+=	n*	n;

Programming	Exercises

1.	Write	C++	program	to	sum	the	following	numbers	[notice	it	is	multiplication	of	5]:

[5,	10,	15,	20,	25,	30,	………,	490,	495,	500]

2.	Write	a	program	that	reads	and	sums	until	it	has	read	ten	data	values	or	until	a	negative
value	is	read,	whichever	comes	first.

3.	Write	a	value	returning	function	that	accepts	two	int	parameters,	base	and	exponent,	and
returns	the	value	of	base	raised	to	the	exponent	power.	Use	a	For	loop	in	your	solution.

4.	Write	a	program	that	reads	n	numbers	from	the	terminal	and	prints	the	average	of	those
numbers	(use	while	or	for	loop).

5.	Write	a	program	that	calculates	n!.	Hint:	n!	=	1	*	2	*	3*…*	n	.	For	example	if	n	is	4,	the
output	will	be	24.

6.	Write	a	program	that	reads	n	integers	and	prints	the	number	of	positive	and	number	of
negative	integers.	If	a	value	is	zero,	it	should	NOT	be	counted.

7.	Write	a	program	that	reads	n	integers	and	prints	the	number	of	positive	and	number	of
negative	integers.	If	a	value	is	zero,	it	should	NOT	be	counted.

8.	Write	a	program	that	calculates	n!	[Note	n!	=	1	*	2	*	3	*	….*(n-1)	*n	]

9.	Write	a	program	that	calculates	1+2+3	+	…	+n	for	a	given	n.

10.	Write	a	nested	loop	code	segment	that	produces	this	output:



1

1	2

1	2	3

1	2	3	4

1	2	3	4	5

11.	Write	an	algorithm	to	produce	an	n	times	multiplication	table	(	n	less	than	or	equal	to
10).	For	example,	if	n	is	equal	to	four	the	table	should	appear	as	follows:

1	2	3	4

1	1	2	3	4

2	2	4	6	8

3	3	6	9	12

4	4	8	12	16

Convert	 your	 algorithm	 into	 a	 program.	 Use	 nested	 for	 loops	 and	 pay	 attention	 to
formatting	your

output.

12.	Write	a	C++	program	to	generate	Fibonacci	series.

13.	Write	a	program	that	reads	and	sums	until	it	has	read	ten	data	values	or	until	a	negative
value	is	read,	whichever	comes	first.

14.	Write	a	value	returning	function	that	accepts	 two	int	parameters,	base	and	exponent,
and	 returns	 the	 value	 of	 base	 raised	 to	 the	 exponent	 power.	Use	 a	For	 loop	 in	 your
solution.

15.	Write	a	program	that	receives	 three	 test	scores	and	upon	calculating	the	average	test
score	determines	the	letter	grade	of	a	student	using	switch	statement:

a)	If	average	is	>	90	,	outputs	“Your	letter	grade	is	A”

b)	If	average	is	>	80	but	less	than	91	,	outputs	“Your	letter	grade	is	B”

c)	If	average	is	>	70	but	less	than	81	,	outputs	“Your	letter	grade	is	C”

d)	If	average	is	>	60	but	less	than	71	,	outputs	“Your	letter	grade	is	D”

e)	If	average	is	<	60	,	outputs	“Your	letter	grade	is	F”



16.	Write	a	program	 that	determines	College	students	 status	 (freshman,	 junior,	 senior	or
sophomore	according	to	the	following	description	using	switch	statement.

a)	If	the	student	has	less	than	or	equal	to	30	credits,	his/her	status	is	freshman,

b)	If	the	student	has	less	than	or	equal	to	60	credits,	but	more	than	30,	his/her	status	is
sophomore.

c)	If	the	student	has	less	than	90	credits,	but	more	than	60,	his/her	status	is	junior.

d)	If	the	student	has	more	than	90	credits,	his/her	status	is	senior.

17.	Write	a	nested	if-else	statement	that	will	assign	a	character	grade	to	a	percentage	mark
as	follows	-	90	or	over	A,	80-89	B,	70-79	C,	60-69	D,	less	than	60	F.

18.	 Could	 a	 switch	 statement	 be	 used	 to	 directly	 assign	 the	 appropriate	 grade	 given	 a
percentage	mark	for	question	#2?	If	not	how	could	you	do	 this?	Write	a	statement	 to
carry	out	the	assignment	of	grades.

19.	Write	a	switch	statement	to	assign	grades	as	described	in	the	previous	question.	Use
the	fact	that	mark/10	gives	the	first	digit	of	the	mark.

20.	 Write	 a	 program	 that	 receives	 three	 test	 scores	 as	 input,	 and	 upon	 calculating	 the
average	test	score	determines	the	letter	grade	of	a	student	as	following:

a)	If	average	is	>	90	,	outputs	“Your	letter	grade	is	A”

b)	If	average	is	>	80	but	less	than	91	,	outputs	“Your	letter	grade	is	B”

c)	If	average	is	>	70	but	less	than	81	,	outputs	“Your	letter	grade	is	C”

d)	If	average	is	>	60	but	less	than	71	,	outputs	“Your	letter	grade	is	D”

e)	If	average	is	<	60	,	outputs	“Your	letter	grade	is	F”

21.	Write	a	nested	if-else	statement	that	will	assign	a	character	grade	to	a	percentage	mark
as	follows	-	90	or	over	A,	80-89	B,	70-79	C,	60-69	D,	less	than	60	F.

22.	Write	a	program	that	determines	College	students’	status	(freshman,	junior,	senior	or
sophomore)	according	to	the	following	description:

a)	If	the	student	has	less	than	or	equal	to	30	credits,	his/her	status	is	freshman,

b)	If	the	student	has	less	than	or	equal	to	60	credits,	but	more	than	30,	his/her	status	is
sophomore.

c)	If	the	student	has	less	than	90	credits,	but	more	than	60,	his/her	status	is	junior.



d)	If	the	student	has	more	than	90	credits,	his/her	status	is	senior.

23.	Modify	the	program	in	2	such	that,	it	is	a	function	called	from	main	program	and	you
pass	the	credits	as	a	parameter	to	it	to	output	the	status.

24.	Write	a	program	that	implements	the	following	math	function:

F(x)	=	x	^3	-	5

25.	Write	 a	 program	 that	 has	 a	 function	which	 converts	miles	 to	 kilometers	 (	 1	mile	 is
1.609	kilometer)

26.	Write	a	program	which	can	right	justify	the	output	of	each	the	following	numbers	in	a
column	on	the	screen.	Numbers	are:	23.62	46.0	43.46443	100.1	98.98	(	use	setprecision
and	formating)

27.	Write	a	program	that	displays	the	strings,	“Good	Morning”,	“Sarah”,	and	“Sunshine”
on	each	line,	but	centered	in	fields	of	20	characters.	Do	not	use	manipulators.	Compile
and	Run	and	show	your	output

28.	Repeat	4,	using	manipulators	to	help	center	your	strings

29.	Write	a	named	string	constant	made	up	of	your	first	name	and	last	name	with	a	blank
in	between.	Write	the	statements	to	print	out	the	result	of	applying,	“length”	and	“size”
to	your	named	constant	object.

30.	Write	a	C++	program	which	reads	values	for	two	floats	and	outputs	their	sum,	product
and	quotient.	Include	a	sensible	input	prompt	and	informative	output.

31.	Write	a	program	to	convert	currency	from	UK	pounds	or	sterling	to	US	dollar.	Read
the	quantity	of	money	in	pounds	and	pence,	and	output	the	resulting	foreign	currency	in
dollar	 and	 cents.	 (There	 are	 100	 penny	 in	 a	 pound).	 Use	 a	 const	 to	 represent	 the
conversion	rate,	which	 is	$1.96	 to	£1	at	 the	 time	of	writing.	Be	sure	 to	print	suitable
headings	and	or	labels	for	the	values	to	be	output.

32.	Modify	program	9	such	that	your	program	converts	US	dollars	to	UK	pounds.

33.	Write	a	C++	program	to	calculate	average	marks	scored	by	a	student	for	3	subjects.

34.	Write	a	C++	program	to	find	the	area	and	perimeter	of	a	circle	and	rectangle.

35.	Write	a	C++	program	to	swap	two	numbers.

36.	Write	a	C++	program	to	find	largest	of	three	numbers.

37.	Write	a	C++	program	to	find	the	maximum	number	among	three	numbers.



38.	Write	 C++	 program	 to	 read	 input	 value	&	 based	 on	 its	magnitude	&	 sign,	 it	 must
output	one	of	following	messages:

The	number	is	positive	and	Even	-	The	number	is	negative	and	Even

The	number	is	positive	and	Odd	-	The	number	is	negative	and	Odd

39.	Write	C++	program	to	compute	the	FACTORIAL	of	an	integer	input	by	the	user?

[Factorial	of	N:	N!	è	1	*	2	*	3	*	4	*	…	.	..	*	N-2	*	N-1	*	N]

40.	Write	C++	program	to	compute	N	rose	to	power	M,	where	both	N	&	M	are	integers?

[N	raised	to	power	M:	NM	è	N	*	N	*	N	*	…….	*	N	{Without	using	pow(N,M)}]

41.	 Write	 C++	 program	 to	 read	 an	 integer	 and	 to	 test	 it	 if	 it	 is	 a	 prime-number	 or
composite-number.

Your	program	must	validate	the	input	number	to	be	greater	than	2	before	testing?

42.	Write	C++	program	to	test	a	quadratic	equation	if	it	has	roots,	using	the	Discriminant
(B2	–	4AC).

Based	on	that	it	must	calculate	and	print	both	roots,	or	display	a	message:	“Complex-
Roots”

43.	Using	literal	character	strings	and	cout	print	out	a	large	letter	E	as	below:

XXXXX

X

X

XXX

X

X

XXXXX

44.	 Write	 a	 program	 to	 read	 in	 four	 characters	 and	 to	 print	 them	 out,	 each	 one	 on	 a
separate	line,	enclosed	in	single	quotation	marks.

45.	Write	a	program	which	prompts	the	user	to	enter	two	integer	values	and	a	float	value
and	then	prints	out	the	three	numbers	that	are	entered	with	a	suitable	message.

46.	 Write	 a	 program	 to	 read	 marks	 from	 keyboard	 and	 your	 program	 should	 display



equivalent	grade	according	to	following	table.

Marks	Grade

100-80	Distinction

60-79	First	class

35-59	Second	class

0-34	Fail

47.	Write	a	program	for	Solution	of	quadratic	equation

48.	Make	Simple	Calculator	using	switch	and	if	…else	if

49.	Find	maximum	and	minimum	of	three	numbers	using	ternary	operator.

50.	Check	if	the	given	year	is	leap	year	or	not.	(	Use	full	condition	for	leap	year	)

51.	Convert	the	case	of	a	given	character	(	i.e.	upper	to	lower	&	vice	versa	)	(	Use	getchar
&	putchar	)

52.	Find	maximum	/	minimum	of	3	numbers	using	if	and	also	using	the	Ternary	operator.

53.	Write	a	program	to	find	out	Net	salary,	HRA,	DA,	PI	of	employee	according	to	Basic
salary.	Do	using	if	and	also	using	switch	statements.

Net	salary=Basic+HRA+DA+PI

54.	 Write	 a	 program	 that	 will	 allow	 computer	 to	 be	 used	 as	 an	 ordinary	 calculator.
Consider	only	common	arithmetic	operations.(+,	-,	*,	/	)	The	program	should	display	a
menu	 showing	 the	 different	 options	 available.	 Do	 using	 if	 and	 also	 using	 switch
statements.

55.	The	cost	of	one	type	of	mobile	service	is	Rs.	250	plus	Rs.	1.25	for	Each	call	made	over
and	above	100	calls.	Write	a	program	to	read	Customer	codes	and	calls	made	and	print
the	bill	for	each	customer.

56.	Write	a	program	to	Print	1st	N	natural	numbers	&	calculate	their	sum	&	avg.

57.	Write	a	program	to	Print	squares	 /	cubes	of	1st	N	natural	numbers	&	calculate	 their
sum	&	avg.



58.	Write	a	program	to	Print	all	numbers	between	-n	&	+n.

59.	Write	a	program	to	Print	1st	N	odd	/	even	numbers	&	calculate	their	sum	&	avg.

60.	Write	a	program	to	Print	all	numbers	between	given	two	numbers	x	&	y	including	x	&
y,	&	calculate	their	sum	&	avg.

61.	Write	 a	 program	 to	 print	 all	 odd/even	 numbers	 between	 given	 two	Numbers	 x	&	y
including	x	&	y,	&	their	sum	&	avg.

62.	Write	a	program	to	print	every	third	number	beginning	from	2	until	Number	<	100,	&
calculate	their	sum	&	avg.

63.	Write	 a	 program	 to	 print	 all	 numbers	 exactly	 divisible	 by	 5	 until	 number	<	 100,	&
calculate	their	sum	&	avg.	Use	modulus	operator	to	check	Divisibility.

64.	Write	a	program	to	Print	the	following	series:	-15,	-10,	-5,	0,	5,	10,	15.

65.	Write	a	program	to	Print	the	value	of	the	following	series	:	-1,	x,	-x2,	x3,	-x4,	…..

66.	Write	a	program	to	Print	 the	value	of	 the	following	series	 :	 sinx,	sin2x,sin3x,	sin4x,
……..sin	nx.

67.	Write	 a	 program	 to	Print	 the	multiplication	 table	 of	 given	 number	X	until	 n,	 in	 the
Following	format:	X	x	1	=	X

68.	Write	a	program	To	calculate	the	power	of	a	number	i.e.	xy	or	xn	without	using	pow()
function

69.	Write	a	program	to	Calculate	the	factorial	of	a	number.

70.	Write	a	program	to	Print	all	letters	of	the	alphabet	in	upper	&	lower	case.

71.	Write	a	program	to	Print	all	characters	between	given	2	numbers	x	&	y.

72.	Write	a	program	to	Print	1st	N	numbers	of	the	Fibonacci	series.

73.	Write	a	program	to	Check	if	the	given	number	is	prime	or	not.

74.	Write	a	program	for	1-x+x2/2!-x3/3!	+x4/4!…xn/n!	terms.

75.	Write	a	“C	”	program	for	following	Pattern..

1

1	2

1	2	3



12	3	4

1

2	2

3	3	3

4	4	4	4

1

1	2	1

1	2	3	2	1

1	2	3	4	3	2	1

G	H	I	J

D	E	F

B	C

A

1

0	1

0	1	0

1	0	1	0



CHAPTER:4	Array

It	is	a	collection	of	similar	type	of	data	which	may	be	int	type,	char	type,	float	type	or
user-defined	type	such	as	structure	or	class.	The	significance	of	an	array	is	that	each	array
element	is	stored	in	consecutive	memory	locations	and	the	array	elements	are	accessed	by
their	index	value,	which	is	also	called	subscript	value.

General	format	of	array:

data	type	array	name[size];



Single	dimensional	array

In	this	type	of	array	only	one	sub-script(index)	is	used	in	the	program.

Syntax:

data	type	array	name	[size];

Example:	Single	dimensional	array

#include<iostream.h>

#include<conio.h>

int	main()

{

clrscr();

int	a[10],i;

for(i=1;i<=5;i++)

{

cout<<”enter	the	no:”;

cin>>a[i];

}

cout<<”Array	elements	are	as	follows:\n”;

for(i=1;i<=5;i++)

{

cout<<a[i]<<”	“;

}

getch();

return	0;

}

Output:

enter	the	no:12



enter	the	no:34

enter	the	no:44

enter	the	no:55

enter	the	no:66

Array	elements	are	as	follows:

12	34	44	55	66



Multidimensional	array

In	this	type	of	array	more	than	two	subscript	is	used	in	the	program.	it	is	also	known	as
array	of	array.

Syntax-

data	type	array	name	[row][column];

Example:	A	program	two	add	two	matrix

#include<iostream.h>

#include<conio.h>

void	main()

{

int	a[3][4],b[3][4],x[3][4];

int	r,c;

//	read	value	in	matrices

cout<<“enter	the	first	matrix	row	wise	\n”;

for	(r=0;r<3;r++)

{

for(c=0;c<4;c++)

{

cin>>a[r][c];

}

}

cout<<“enter	the	second	matrix	row	wise\n”;

for	(r=0;r<3;r++)

{

for	(c=0;c<4;c++)

{

cin>>b[r][c];



}

}

//addition	of	two	matrix

for	(r=0;r<3;r++)

{

for	(c=0;c<4;c++)

{

x[r][c]=	a[r][c]+b[r][c];

}

}

//display	the	matrix

for	(r=0;r<3;r++)

{

for	(c=0;c<4;c++)

{

cout<<x[r][c]<<”\t”;

}

cout<<”\n”;

}

getch();

}

Output:

enter	the	first	matrix	row	wise

1	2	3	4

5	6	7	8

1	2	3	4

enter	the	second	matrix	row	wise



1	2	3	4

5	6	7	8

1	2	3	4

2	4	6	8

10	12	14	16

2	4	6	8



Anonymous	unions

In	C++	we	have	the	option	to	declare	anonymous	unions.	If	we	declare	a	union	without
any	name,	the	union	will	be	anonymous	and	we	will	be	able	to	access	its	members	directly
by	their	member	names.	For	example,	look	at	the	difference	between	these	two	structure
declarations:

The	 only	 difference	 between	 the	 two	 pieces	 of	 code	 is	 that	 in	 the	 first	 one	we	 have
given	a	name	 to	 the	union	 (price)	and	 in	 the	second	one	we	have	not.	The	difference	 is
seen	when	we	access	the	members	dollars	and	yens	of	an	object	of	this	type.	For	an	object
of	the	first	type,	it	would	be:

book.price.dollars

book.price.yens

whereas	for	an	object	of	the	second	type,	it	would	be:

book.dollars

book.yens

Once	again	I	remind	you	that	because	it	is	a	union	and	not	a	struct,	the	members	dollars
and	yens	occupy	the	same	physical	space	in	the	memory	so	they	cannot	be	used	to	store
two	different	values	simultaneously.	You	can	set	a	value	for	price	in	dollars	or	in	yens,	but
not	in	both.



Exercise
Short	Questions

1.	Given	the	declaration

char	letter[3][3]	={

{‘a’,	‘b’,	‘c’},

{‘d’,	‘e’,	‘f’},

{‘g’,	‘h’,	‘i’}

};

which	character	is	stored	in	letter[1][2]?	____________________

2.	If	an	array	has	a	100	elements	what	is	the	allowable	range	of	subscripts?

3.	What	is	the	difference	between	the	expressions	a4	and	a[4]?

4.	Write	a	declaration	for	a	100	element	array	of	floats.	Include	an	initialisation	of	the	first
four	elements	to	1.0,	2.0,	3.0	and	4.0.

5.	An	array	day	is	declared	as	follows:

int	day[]	=	{mon,	tue,	wed,	thu,	fri};

How	many	elements	has	the	array	day?	If	the	declaration	is	changed	to

int	day[7]	=	{mon,	tue,	wed,	thu,	fri};

how	many	elements	does	day	have?

True/	False

1.	The	components	of	an	array	are	all	of	the	same	data	type.

2.	The	size	of	an	array	is	established	at	compile	time	rather	than	at	execution	time.

3.	In	C++,	an	array	can	be	passed	as	a	parameter	by	reference.

4.	C++	does	not	check	for	out-of-bounds	array	indices	while	a	program	is	running.

5.	The	array	declared	as

float	angle[10][25];

has	10	rows	and	25	columns.

The	array	declared	as



int	bowlingScore[6][12];

contains	72	int	components.

6.	the	computer’s	memory,	C++	stores	two-dimensional	arrays	in	row	order.

7.	The	components	of	an	array	are	all	of	the	same	data	type.

8.	The	size	of	an	array	is	established	at	compile	time	rather	than	at	execution	time.

9.	In	C++,	an	array	can	be	passed	as	a	parameter	by	reference.

10.	If	a	program	has	the	declarations

enum	WeatherType	{SUNNY,	CLOUDY,	FOGGY,	WINDY};

int	frequency[4];

then	the	statement

cout	<<	frequency[CLOUDY];

is	syntactically	valid.

11.	C++	does	not	check	for	out-of-bounds	array	indices	while	a	program	is	running.

12.	The	function	heading

void	SomeFunc(	float	x[]	)

causes	a	compile-time	error	because	the	size	of	the	array	is	missing.

13.	The	statement

frequency[‘G’]++;

is	an	example	of	the	use	of	an	array	index	with	semantic	content.

14.	The	array	declared	as

float	angle[10][25];

has	10	rows	and	25	columns.

15.	The	array	declared	as

int	bowlingScore[6][12];

contains	72	int	components.

16.	If	a	program	contains	the	declaration

int	salePrice[100][100];



then	the	statement

cout	<<	salePrice[3];

outputs	all	the	values	in	row	3	of	the	array.

17.	In	the	computer’s	memory,	C++	stores	two-dimensional	arrays	in	row	order.

18.	When	a	 two-dimensional	array	is	declared	as	a	parameter,	 the	C++	compiler	 ignores
the	sizes	of	both	dimensions.

19.	When	you	declare	a	two-dimensional	array	as	a	parameter,	you	can	omit	the	size	of	the
first	dimension	but	not	the	second.

20.	When	a	two-dimensional	array	is	passed	as	a	parameter,	the	number	of	columns	in	the
parameter	must	be	identical	to	the	number	of	columns	in	the	argument.

21.	When	 a	 two-dimensional	 array	 is	 passed	 as	 a	 parameter,	 the	number	of	 rows	 in	 the
parameter	must	be	identical	to	the	number	of	rows	in	the	argument.

22.	If	an	array	has	a	100	elements	what	is	the	allowable	range	of	subscripts?

23.	What	is	the	difference	between	the	expressions	a4	and	a[4]?

24.	Write	a	declaration	 for	a	100	element	array	of	 floats.	 Include	an	 initialization	of	 the
first	four	elements	to	1.0,	2.0,	3.0	and	4.0.

25.	An	array	day	is	declared	as	follows:

int	day[]	=	{mon,	tue,	wed,	thu,	fri};

How	many	elements	have	the	array	day?	If	the	declaration	is	changed	to

int	day[7]	=	{mon,	tue,	wed,	thu,	fri};

how	many	elements	does	day	have?

Multiple	Choice	Questions

1.	 Which	 of	 the	 following	 could	 be	 used	 to	 declare	 an	 array	 alpha	 and	 initialize	 its
components	to	10,	20,	and	30?

a)	int	alpha[3]	=	{10,	20,	30};

b)	int	alpha[]	=	{10,	20,	30};

c)	int	alpha[3]	=	{10	20	30};

d)	a	and	b	above



e)	a,	b,	and	c	above

2.	Given	the	declarations

int	status[10];

int	i;

which	of	the	following	loops	correctly	zeros	out	the	status	array?

a)	for	(i	=	0;	i	<=	10;	i++)	status[i]	=	0;

b)	for	(i	=	0;	i	<	10;	i++)	status[i]	=	0;

c)	for	(i	=	1;	i	<=	10;	i++)	status[i]	=	0;

d)	for	(i	=	1;	i	<	10;	i++)	status[i]	=	0;

e)	for	(i	=	1;	i	<=	11;	i++)	status[i]	=	0;

3.	What	is	the	output	of	the	following	program	fragment?

int	alpha[5]	=	{100,	200,	300,	400,	500};

int	i;

for	(i	=	4;	i	>	0;	i—)

cout	<<	alpha[i]	<<	‘	‘;

a)	400	300	200	100

b)	500	400	300	200	100

c)	500	400	300	200

d)	It	cannot	be	answered	from	the	information	given.

4.	What	is	the	output	of	the	following	program	fragment?

int	alpha[5]	=	{100,	200,	300,	400,	500};

int	i;

for	(i	=	4;	i	>=	0;	i—)

cout	<<	alpha[i]	<<	‘	‘;

a)	400	300	200	100	0

b)	500	400	300	200	100

c)	500	400	300	200



d)	It	cannot	be	answered	from	the	information	given.

5.	Given	a	5000-element	array	beta,	which	of	the	code	fragments	below	could	be	used	to
print	out	the	values	of	beta[0],	beta[2],	beta[4],	and	so	forth?	(All	variables	are	of	type
int.)

a)	for	(i	=	0;	i	<	5000;	i	=	i	+	2)

cout	<<	beta[i]	<<	endl;

b)	for	(i	=	0;	i	<	2500;	i++)

cout	<<	beta[2*i]	<<	endl;

c)	for	(i	=	0;	i	<	2500;	i++)

cout	<<	beta[i]*2	<<	endl;

d)	a	and	b	above

6.	Which	of	the	following	statements	about	passing	C++	arrays	as	parameters	is	false?

a)	It	is	impossible	to	pass	an	array	by	value.

b)	When	declaring	an	array	as	a	formal	parameter,	you	do	not	attach	an	ampersand	(&)
to	the	name	of	the	component	type.

c)	When	 declaring	 an	 array	 as	 a	 parameter,	 you	must	 include	 its	 size	within	 square
brackets.

d)	At	run	time,	the	base	address	of	the	argument	is	passed	to	the	function.

7.	Given	the	declaration

char	table[7][9];

which	of	the	following	stores	the	character	‘B’	into	the	fifth	row	and	second	column	of
the	array?

a)	table[4][1]	=	‘B’;

b)	table[1][4]	=	‘B’;

c)	table[5][2]	=	‘B’;

d)	table[2][5]	=	‘B’;

e)	table[5]	=	‘B’;

8.	The	following	program	fragment	is	intended	to	zero	out	a	two-dimensional	array:



int	table[10][20];

int	i,	j;

for	(i	=	0;	i	<	10;	i++)

for	(j	=	0;	j	<	20;	j++)

//	Statement	is	missing	here

What	is	the	missing	statement?

a)	table[i][j]	=	0;

b)	table[j][i]	=	0;

c)	table[i+1][j+1]	=	0;

d)	table[j+1][i+1]	=	0;

e)	table[i-1][j-1]	=	0;

9.	Given	the	nested	For	loops

for	(i	=	0;	i	<	M;	i++)

for	(j	=	0;	j	<	N;	j++)

cout	<<	table[i][j];

what	is	the	appropriate	declaration	for	table?

a)	int	table[M][N];

b)	int	table[N][M];

c)	int	table[M+N];

d)	int	table[M+1][N+1];

e)	int	table[N+1][M+1];

10.	Given	the	declarations

float	alpha[5][50];

float	sum	=	0.0;

which	of	the	following	computes	the	sum	of	the	elements	in	row	2	of	alpha?

a)	for	(i	=	0;	i	<	5;	i++)

sum	=	sum	+	alpha[i][2];



b)	for	(i	=	0;	i	<	50;	i++)

sum	=	sum	+	alpha[i][2];

c)	for	(i	=	0;	i	<	5;	i++)

sum	=	sum	+	alpha[2][i];

d)	for	(i	=	0;	i	<	50;	i++)

sum	=	sum	+	alpha[2][i];

11.	Given	the	declaration

int	score[5][8];

which	of	the	following	outputs	the	array	components	in	row	order?

a)	for	(j	=	0;	j	<	8;	j++)

for	(i	=	0;	i	<	5;	i++)

cout	<<	score[i][j];

b)	for	(i	=	0;	i	<	8;	i++)

for	(j	=	0;	j	<	5;	j++)

cout	<<	score[i][j];

c)	for	(i	=	0;	i	<	5;	i++)

for	(j	=	0;	j	<	8;	j++)

cout	<<	score[i][j];

d)	for	(j	=	0;	j	<	5;	j++)

for	(i	=	0;	i	<	8;	i++)

cout	<<	score[i][j];

e)	for	(i	=	0;	i	<	8;	i++)

for	(j	=	0;	j	<	5;	j++)

cout	<<	score[j][i];

12.	After	execution	of	the	program	fragment

int	table[3][3];

int	i,	j;



for	(i	=	0;	i	<	3;	i++)

for	(j	=	0;	j	<	3;	j++)

table[i][j]	=	i	+	2*j;

what	are	the	contents	of	the	table	array?

a)	2	4	0	5	0	6	2	6	8

b)	0	2	4	1	3	5	2	4	6

c)	1	3	5	1	3	5	2	4	6

d)	0	2	4	1	3	6	2	4	6

13.	After	execution	of	the	program	fragment

int	table[3][3];

int	i,	j;

for	(i	=	0;	i	<	3;	i++)

for	(j	=	0;	j	<	3;	j++)

table[j][i]	=	i	+	2*j;

what	are	the	contents	of	the	table	array?

a)	0	2	4	1	3	5	2	4	6

b)	0	1	2	2	3	4	4	5	6

c)	0	2	4	1	3	5	0	0	0

d)	0	1	0	2	3	0	5	0	0

14.	Your	manager	has	 asked	you	 to	 integrate	 an	existing	project	with	 an	external	 timer.
Her	requirements	include	adding	a	global	variable	whose	contents	can	be	only	read	by
the	software	but	whose	value	will	be	continuously	updated	by	the	hardware	clock.

Referring	 to	 the	 above	 scenario,	 which	 one	 of	 the	 following	 variable	 declarations
satisfies	all	the	requirements?

a)	extern	volatile	clock;

b)	extern	const	volatile	long	clock;

c)	extern	long	clock;



d)	extern	const	mutable	long	clock;

e)	extern	mutable	long	clock;

15.	Which	set	of	preprocessor	directives	is	used	to	prevent	multiple	inclusions	of	header
files?

a)	#ifndef,	#define	and	#endif

b)	#ifdefined	and	#enddefine

c)	#define	and	#endif	only

d)	#$if	and	#endif

e)	#if	and	#define

16.	char	s[]	=	{‘a’,‘b’,‘c’,0,‘d’,‘e’,‘f’,0};

int	I	=	sizeof(s);

Referring	to	the	sample	code	above,	what	value	does	I	contain?

a)	3

b)	6

c)	7

d)	8

e)	9

17.	Sample	Code

class	HasStatic

{

static	int	I;

};

Referring	 to	 the	 sample	 code	 above,	what	 is	 the	 appropriate	method	 of	 defining	 the
member	variable	“I”,	and	assigning	it	the	value	10,	outside	of	the	class	declaration?

a)	int	static	I	=	10;

b)	int	HasStatic::I	=	10;

c)	HasStatic	I	=	10;



d)	static	I(10);

e)	static	I	=	10;

18.	Which	of	the	following	statements	about	C++	arrays	is	true?

a)	Array	components	cannot	be	of	floating	point	types.

b)	The	index	type	of	an	array	can	be	any	data	type.

c)	An	array	component	can	be	treated	the	same	as	a	simple	variable	of	its	component
type.

d)	a	and	b	above

e)	a,	b,	and	c	above

19.	 Which	 of	 the	 following	 could	 be	 used	 to	 declare	 an	 array	 alpha	 and	 initialize	 its
components	to	10,	20,	and	30?

a)	int	alpha[3]	=	{10,	20,	30};

b)	int	alpha[]	=	{10,	20,	30};

c)	int	alpha[3]	=	{10	20	30};

d)	a	and	b	above

e)	a,	b,	and	c	above

20.	The	following	code	fragment	invokes	a	function	named	InitToZero:

int	alpha[10][20];

InitToZero(alpha);

Which	of	the	following	is	a	valid	function	heading	for	InitToZero?

a)	void	InitToZero(	int	beta[][]	)

b)	void	InitToZero(	int	beta[10][20]	)

c)	void	InitToZero(	int	beta[10][]	)

d)	void	InitToZero(	int	beta[][20]	)

e)	b	and	d	above

Predict	Output

1.	What	is	the	output	of	the	following	program	fragment?



int	gamma[3]	=	{5,	10,	15};

int	i;

for	(i	=	0;	i	<=	3;	i++)

cout	<<	gamma[i]	<<	‘	‘;

2.	After	execution	of	the	code	fragment

int	arr[5];

int	i;

for	(i	=	0;	i	<	5;	i++){

arr[i]	=	i	+	2;

if	(i	>=	3)

arr[i-1]	=	arr[i]	+	3;

}

what	is	contained	in	arr[1]	and	arr[3]?

3.	What	is	the	contents	of	array	arr	after	the	for	loop?

int	j	=	0;

for	(i	=	0;	i	<	5;	i++){

arr[i]	=	i+j;

j	=	j	+	1;

}

4.	What	would	be	output	by	the	following	section	of	C++?

int	A[5]	=	{1	,	2,	3,	4};

int	i;

for	(i=0;	i<5;	i++)

{

A[i]	=	2*A[i];

cout	<<	A[i]	<<	”	“;

}



5.	What	is	the	output	of	the	following	program	fragment?

int	gamma[3]	=	{5,	10,	15};

int	i;

for	(i	=	0;	i	<	3;	i++)

cout	<<	gamma[i]	<<	‘	‘;

6.	After	execution	of	the	code	fragment

int	arr[5];

int	i;

for	(i	=	0;	i	<	5;	i++){

arr[i]	=	i	+	2;

if	(i	>=	3)

arr[i-1]	=	arr[i]	+	3;

}

what	is	contained	in	arr[1]	and	arr[3]?

7.	What	is	the	contents	of	array	arr	after	the	for	loop?

int	j	=	0;

for	(i	=	0;	i	<	5;	i++)

{

arr[i]	=	i+j;

j	=	j	+	1;

}

8.	Given	the	declaration

char	letter[3][3]	=

{

{‘a’,	‘b’,	‘c’},

{‘d’,	‘e’,	‘f’},

{‘g’,	‘h’,	‘i’}



};

which	character	is	stored	in	letter[1][2]?

9.	What	would	be	output	by	the	following	section	of	C++?

int	A[5]	=	{1	,	2,	3,	4};

int	i;

for	(i=0;	i<5;	i++)

{A[i]	=	2*A[i];

cout	<<	A[i]	<<	”	“;}

Find	Error	in	the	Code

1.	What	is	wrong	with	the	following	section	of	program?

int	A[10],	i;

for	(i=1;	i<=10;	i++)

cin	>>	A[i];

2.	What	is	wrong	with	the	following	section	of	program?

int	A[10],	i;

for	(i=1;	i<=10;	i++)

cin	>>	A[i];

Programming	Exercises

1.	To	familiarize	yourself	with	using	arrays	write	a	program	that	declares	two	float	arrays,
say	with	5	elements	each,	and	carries	out	the	following:

a)	Input	some	data	from	the	user	into	the	two	arrays.

b)	Output	the	sum	of	the	elements	in	each	of	the	two	arrays.

c)	 Output	 the	 inner	 product	 of	 the	 two	 arrays	 -	 that	 is	 the	 sum	 of	 the	 products	 of
corresponding	elements	A[0]*B[0]	+	A[1]*B[1]+	….etc.

d)	Produce	an	estimate	of	how	different	the	values	in	the	two	arrays	are	by	evaluating
the	 sum	 of	 squares	 of	 the	 differences	 between	 corresponding	 elements	 of	 the	 two
arrays	divided	by	the	number	of	elements.



Start	by	only	entering	and	printing	the	values	in	the	arrays	to	ensure	you	are	capturing
the	data	correctly.	Then	add	each	of	the	facilities	above	in	turn.

2.	Write	a	program	that	uses	cin	method	to	read	a	number	of	positive	integers	and	stores	it
in	an	 integer	array,	until	 a	 -1	 is	 read.	The	program	 then	outputs	 the	array	elements	 in
reverse	order	and	the	average	of	the	values	along	with	the	number	of	elements	it	read.

3.	Statistics	provide	a	way	to	characterize	a	data	set.	This	exercise	uses	an	array	to	store
data	 for	 analysis.	 Read	n	 from	 the	 console	 where	n	 is	 the	 number	 of	 data	 values	 to
analyze.	Generate	n	elements	whose	value	is	between	0-99	using	srand()	placing	these
elements	in	a	data	array.	Then	compute:

a)	minimum	and	maximum	elements

b)	average	( 	).

c)	Standard	deviation

4.	To	familiarize	yourself	with	using	arrays	write	a	program	that	declares	two	float	arrays,
say	with	5	elements	each,	and	carries	out	the	following:

a)	Input	some	data	from	the	user	into	the	two	arrays.

b)	Output	the	sum	of	the	elements	in	each	of	the	two	arrays.

c)	 Output	 the	 inner	 product	 of	 the	 two	 arrays	 -	 that	 is	 the	 sum	 of	 the	 products	 of
corresponding	elements	A[0]*B[0]	+	A[1]*B[1]+	….etc.

d)	Produce	an	estimate	of	how	different	the	values	in	the	two	arrays	are	by	evaluating
the	 sum	 of	 squares	 of	 the	 differences	 between	 corresponding	 elements	 of	 the	 two
arrays	divided	by	the	number	of	elements.

Start	by	only	entering	and	printing	the	values	in	the	arrays	to	ensure	you	are	capturing
the	data	correctly.	Then	add	each	of	the	facilities	above	in	turn.

5.	A	popular	method	of	displaying	data	is	in	a	Histogram.	A	histogram	counts	how	many
items	of	data	 fall	 in	each	of	n	equally	sized	 intervals	and	displays	 the	results	as	a	bar
chart	in	which	each	bar	is	proportional	in	length	to	the	number	of	data	items	falling	in
that	interval.

6.	Write	 a	 program	 that	 generates	 n	 random	 integers	 in	 the	 range	 0-99	 and	 produces	 a
Histogram	from	the	data.	Assume	that	we	wish	to	count	the	number	of	numbers	that	lie
in	each	of	the	intervals	0-9,	10-19,	20-29,	………,	90-99.	This	requires	that	we	hold	10
counts,	use	an	array	to	hold	the	10	counts.	While	it	would	be	possible	to	check	which



range	a	value	x	lies	in	by	using	if-else	statements	this	would	be	pretty	tedious.	A	much
better	way	is	to	note	that	the	value	of	x/10	returns	the	index	of	the	count	array	element
to	increment.	Having	calculated	the	interval	counts	draw	the	Histogram	by	printing	each
bar	of	the	Histogram	as	an	appropriately	sized	line	of	X’s	across	the	screen	as	below

a)	0	-	9	16	XXXXXXXXXXXXXXXX

b)	10	-	19	13	XXXXXXXXXXXXX

c)	20	-	29	17	XXXXXXXXXXXXXXXXX

d)	etc.

7.	In	question	1	above	you	should	have	written	C++	statements	to	enter	numbers	into	an
array.	Convert	 these	 statements	 into	 a	 general	 function	 for	 array	 input.	Your	 function
should	 indicate	 the	 number	 of	 elements	 to	 be	 entered	 and	 should	 signal	 an	 error
situation	 if	 this	 is	 greater	 than	 the	 size	 of	 the	 array—think	 about	 the	 required
parameters.	Also	write	a	function	to	output	n	elements	of	a	given	array	five	to	a	line.

8.	 Write	 a	 driver	 program	 to	 test	 these	 functions	 and	 once	 you	 are	 satisfied	 they	 are
working	correctly	write	functions:

a)	To	return	the	minimum	element	in	the	first	n	elements	of	an	array.

b)	To	return	a	count	of	the	number	of	corresponding	elements	which	differ	in	the	first	n
elements	of	two	arrays	of	the	same	size.

c)	Which	searches	the	first	n	elements	of	an	array	for	an	element	with	a	given	value.	If
the	value	is	found	then	the	function	should	return	true	and	also	return	the	index	of
the	element	in	the	array.	If	not	found	then	the	function	should	return	false.

In	 these	 functions	 incorporate	error	 testing	 for	a	number	of	elements	greater	 than	 the
array	size.

9.	Write	a	program	to	play	a	game	in	which	you	try	to	sink	a	fleet	of	five	navy	vessels	by
guessing	their	 locations	on	a	grid.	The	ships	are	different	 length	and	are	positioned	as
follows:

Frigate:	2	locations,	located	between	(2,	4)	and	(2,	6).

Tender:	2	locations,	located	between	(4,	6)	and	(4,	8).

Destroyer:	3	locations,	located	between	(8,	7)	and	(8,	10).

Cruiser:	3	locations,	located	between	(9,	1)	and	(9,	4).



Carrier:	4	locations,	located	between	(11,	4)	and	(11,	8).

Your	program	will	displace	the	ships	on	a	12	x	12	grid	initially.	The	user	will	enter	the
coordinates	in	the	range	of	1	to	12	for	rows	and	columns.	Your	program	will	check	and
report	if	this	is	a	hit	or	a	miss.	If	it	is	a	hit,	your	program	should	report	it	is	a	hit	and
that	ship	will	be	reported	sunk.

The	user	will	be	given	10	shots.	If	he	sunk	all	the	ships	in	less	than	11	shots,	user	will
be	the	winner,	else	loser.

10.	In	this	assignment	you	are	asked	to	write	a	program	that	reads	in	two	n	x	n	matrix	and
after	multiplying	 the	matrices	 to	 output	 the	 resulting	matrix.	Recall	 that	 if	 the	 n	 x	 n
matrices	are	A	and	B,	the	resulting	matrix	would	be	C	of	size	n	x	n.	Find	out	a	general
solution	for	the	multiplication	of	two-dimensional	matrices.

11.	Write	a	C++	program	to	perform	string	manipulation.

12.	Find	the	length	of	a	string.	Compare	two	strings,	Concatenate	two	strings,	Reverse	a
string,	Copy	a	string	to	another	location.

13.	Write	a	C++	program	to	find	quotient	and	remainder	of	2	numbers.

14.	Write	a	function	to	find	the	smallest	element	of	the	matrix	A.

15.	Write	the	declaration	statement	for	a	one-dimensional	array	named	alpha	whose	index
values	range	from	0	through	99	and	whose	component	type	is	float:

16.	 Write	 the	 declaration	 statement	 for	 a	 25-element	 one-dimensional	 array	 named
letterGrade	whose	component	type	is	char:

17.	Given	the	enumeration	type

enum	FlagColors	{RED,	WHITE,	BLUE};

write	 the	 declaration	 statement	 for	 a	 one-dimensional	 array	 named	 flagArray	 whose
index	values	range	from	0	through	50	and	whose	component	type	is	FlagColors:

18.	Given	the	enumeration	type

enum	Grades	{A,	B,	C,	D,	F,	AU,	W};

write	the	declaration	statement	for	a	one-dimensional	array	named	gradeCount	whose
index	values	are	of	type	Grades	and	whose	component	type	is	int:

19.	Given	the	declaration

char	charArray[15];



20.	write	an	assignment	statement	that	stores	the	value	‘X’	into	the	sixth	component	of	the
array:

21.	Given	the	declarations

enum	Colors	{RED,	ORANGE,	YELLOW,	GREEN,	BLUE};

float	waveLength[5];	//	To	be	indexed	by	values	of	type	Colors

write	a	statement	to	print	the	third	component	of	the	waveLength	array:

22.	Write	a	C	+	+	program	 to	ask	 the	user	 to	enter	a	character	 string	and	 then	print	 the
Characters	in	th12e	reverse	order.

23.	Write	a	C	+	+	program	to	find	the	minimum	and	maximum	of	an	array	of	n	numbers.

24.	Read	the	value	of	n	and	the	n	numbers	from	user.

25.	 To	 familiarize	 yourself	 with	 using	 arrays	 write	 a	 program	 that	 declares	 two	 float
arrays,	say	with	5	elements	each,	and	carries	out	the	following:

a)	Input	some	data	from	the	user	into	the	two	arrays.

b)	Output	the	sum	of	the	elements	in	each	of	the	two	arrays.

C)	 Output	 the	 inner	 product	 of	 the	 two	 arrays	 -	 that	 is	 the	 sum	 of	 the	 products	 of
corresponding	elements	A[0]*B[0]	+	A[1]*B[1]+	….etc.

d)	Produce	an	estimate	of	how	different	the	values	in	the	two	arrays	are	by	evaluating
the	 sum	 of	 squares	 of	 the	 differences	 between	 corresponding	 elements	 of	 the	 two
arrays	divided	by	the	number	of	elements.

e)	 Start	 by	 only	 entering	 and	 printing	 the	 values	 in	 the	 arrays	 to	 ensure	 you	 are
capturing	the	data	correctly.	Then	add	each	of	the	facilities	above	in	turn.

26.	A	popular	method	of	displaying	data	is	in	a	Histogram.	A	histogram	counts	how	many
items	of	data	fall	in	each	of	n	equally	sized	intervals	and	displays	the	results	as	a	bar
chart	in	which	each	bar	is	proportional	in	length	to	the	number	of	data	items	falling	in
that	interval.

Write	 a	 program	 that	 generates	 n	 random	 integers	 in	 the	 range	 0-99	 and	 produces	 a
Histogram	from	the	data.	Assume	that	we	wish	to	count	the	number	of	numbers	that	lie
in	each	of	the	intervals	0-9,	10-19,	20-29,	………,	90-99.	This	requires	that	we	hold	10
counts,	use	an	array	to	hold	the	10	counts.	While	it	would	be	possible	to	check	which
range	a	value	x	lies	in	by	using	if-else	statements	this	would	be	pretty	tedious.	A	much



better	way	is	to	note	that	the	value	of	x/10	returns	the	index	of	the	count	array	element
to	 increment.	 Having	 calculated	 the	 interval	 counts	 draw	 the	 Histogram	 by	 printing
each	 bar	 of	 the	Histogram	 as	 an	 appropriately	 sized	 line	 of	X’s	 across	 the	 screen	 as
below

a)	0	-	9	16	XXXXXXXXXXXXXXXX

b)	10	-	19	13	XXXXXXXXXXXXX

c)	20	-	29	17	XXXXXXXXXXXXXXXXX

d)	etc.

27.	In	question	1	above	you	should	have	written	C++	statements	to	enter	numbers	into	an
array.	Convert	 these	statements	 into	a	general	 function	 for	array	 input.	Your	 function
should	 indicate	 the	 number	 of	 elements	 to	 be	 entered	 and	 should	 signal	 an	 error
situation	 if	 this	 is	 greater	 than	 the	 size	 of	 the	 array—think	 about	 the	 required
parameters.	Also	write	a	function	to	output	n	elements	of	a	given	array	five	to	a	line.

a)	Write	 a	 driver	 program	 to	 test	 these	 functions	 and	once	you	 are	 satisfied	 they	 are
working	correctly	write	functions:

b)	To	return	the	minimum	element	in	the	first	n	elements	of	an	array.

c)	To	return	a	count	of	the	number	of	corresponding	elements	which	differ	in	the	first	n
elements	of	two	arrays	of	the	same	size.

d)	Which	searches	the	first	n	elements	of	an	array	for	an	element	with	a	given	value.	If
the	value	is	found	then	the	function	should	return	true	and	also	return	the	index	of
the	element	in	the	array.	If	not	found	then	the	function	should	return	false.

e)	In	these	functions	incorporate	error	testing	for	a	number	of	elements	greater	than	the
array	size.

28.	Write	a	C++	program	to	generate	Prime	numbers	between	1	and	50.

29.	Write	a	C++	program	to	perform	matrix	addition	and	multiplication.

30.	Write	a	C++	program	to	check	whether	the	given	matrix	is	a	sparse	matrix	or	not.

31.	Write	a	C++	program	to	overload	unary	minus	operator.

32.	Write	a	C++	program	to	calculate	total	sales	and	average	sales	made	by	a	salesman.

33.	Write	a	program	to	read	N	integers	and	print	N	integers	Using	an	array.

34.	Write	a	program	to	find	the	smallest	and	largest	number	in	an	array	of	N	integers.



35.	Write	a	program	to	arrange	an	array	of	N	elements	into	ascending	order.

36.	Write	 a	 program	 to	 read	 the	marks	 of	 one	 subject	 of	 20	 students	 and	 compute	 the
number	of	students	in	categories	FAIL,	PASS,	FIRST	CLASS	and	DISTINCTION.

37.	Write	 a	 program	 to	 insert	 value	 at	 ith	 location	 or	 value	 entered	 by	 user	 using	 one
dimensional	array.

38.	Write	 a	 program	 to	 delete	 value	 at	 ith	 location	 or	 value	 entered	 by	 user	 using	 one
dimensional	array.

39.	Write	 a	 program	 to	 add	 two	 3*3	matrices,	 if	 A	 and	 B	 both	 are	 3*3	matrices	 then
resultant	matrix	C=A+B	where	Cij=Aij+Bij	using	Two-dimensional	array.

40.	Write	a	program	to	check	whether	given	3*3	matrix	is	magic	square	or	not.

Note	:	A	square	matrix	is	called	magic	square	if	the	sum	of	its	all	rows,	columns	and
diagonal	are	equal.

41.	Write	a	program	to	read	string	from	user	and	print	the	lenght	of	the	string

42.	Write	a	Program	to	reverse	a	string

43.	Write	a	program	to	check	whether	given	string	is	palindrome	string	or	not

44.	Write	 a	 program	 to	 read	 your	 name	 and	 ouput	 the	 ascii	 code	 of	 the	 first	 character
representing	your	name

45.	Write	a	program	to	print	each	word	of	the	given	string	into	seperate	line

46.	Write	a	program	to	count	number	of	words	in	a	given	string

47.	write	a	program	to	count	number	of	occurence	of	a	given	character	in	a	given	string.





CHAPTER:5	Functions	in	C++

A	function	groups	a	number	of	program	statements	 into	a	unit	and	give	 them	a	name
which	can	then	be	invoked	from	other	parts	of	the	program.

Dividing	 a	 program	 into	 functions	 is	 one	 of	 the	 major	 principles	 of	 structured
programming.

Another	reason	to	use	functions	is	to	reduce	program	size.

Any	sequence	of	instructions	that	appears	in	a	program	more	than	once	is	a	candidate
for	being	made	into	a	function.	The	function’s	code	is	stored	in	only	one	place	in	memory,
even	though	the	function	is	executed	many	times	in	the	program.

There	are	two	types	of	function:

a)	Library	function

b)	User	define	function



Library	function

The	 function	 which	 are	 already	 defines	 or	 predefines	 in	 the	 language	 is	 known	 as
library	function.



User	defines	function

The	functions	which	are	designed	by	user	on	the	basis	of	requirement	of	a	programmer
are	known	as	user	defines	function.

In	c++	three	terms	always	associated	with	the	function	are:

a)	Function	Prototype(declaration)(	use	semicolon;)

b)	Function	calling	(use	semicolon;)

c)	Function	definition

Function	prototyping

The	 function	 prototype	 describes	 the	 function	 interface	 to	 the	 compiler	 by	 giving
details	 such	 as	 the	 number	 and	 type	 of	 arguments	 and	 type	 of	 return	 values.	 When	 a
function	 is	 a	 called,	 the	 compiler	 uses	 the	 function	 prototype	 to	 ensure	 that	 proper
arguments	are	passed	and	the	return	value	is	treated	correctly.

The	standard	form	of	declaring	function	is	as	follows:

return-type	function-name	(arg1,	arg2,	…..,	arg	n);

For	example,

float	area	(float,	float);

Already	we	have	seen	different	categories	of	functions	in	C.:

1.	Function	with	no	argument	and	no	return	value.

2.	Function	with	no	argument	and	return	value.

3.	Function	with	arguments	and	no	return	value.

4.	Function	with	arguments	and	return	value.

Example	function:

double	square	(double	side)

{

return	side*side;

}

main()



{

double	a=square(5.6);

}

[Terminologies	related	to	‘function’	chapter]

For	example:	Area	of	rectangle	using	function

#include	<iostream.h>

#include	<conio.h>

int	main(void)

{

float	area(	float,	float);

clrscr();

cout<<”Enter	length	of	rectangle”<<endl;

float	length;

cin>>	length;

cout<<”Enter	width	of	rectangle”<<endl;

float	width;

cin>>width;

float	rect_area	=	area(length,	width);

cout	<<	“Area	of	rectangle	is	“<<rect_area;

getch();

}

float	area(	float	len,	float	wid)

{



return(len	*	wid);

}

Output:

Enter	length	of	rectangle

11

Enter	width	of	rectangle

12

Area	of	rectangle	is	132

As	you	can	see	in	the	program	we	have	declared	main	function	with	return	type	integer
because	in	C++	the	main	function	always	returns	0	or	1	to	the	compiler.

In	main	function	first	we	have	declared	a	function	named	area	with	two	float	arguments
and	a	float	return	type.	Then	we	have	inputted	from	the	user	the	value	of	variables	length
and	width.	Then	we	have	declared	a	variable	named	rect_area	and	initialize	it’s	value	by
calling	function	area	with	arguments	length	and	width.	Here	the	pointer	of	compiler	will
go	to	the	function	area	and	return	the	multiplication	of	length	and	width	to	the	rect_area.

For	example:	Simple	program	of	addition	with	function:

#include<iostream.h>

#include<conio.h>

void	main()

{

clrscr();

int	a,b,c;

int	add	(int	a,int	b);	//	function	decleration

cout<<“enter	two	nos”;

cin>>a>>b;

c=add(a,b);	//	function	calling

cout<<“Addition	is:”<<c;

getch();



}

int	add	(int	x,int	y)	//	function	definition

{

int	z;

z=x+y;

return	z;

}

Output:

enter	two	nos	12	32

Addition	is:44

Types	of	function	parameters

There	are	two	types	of	parameters	associated	with	functions.	they	are:

1)	Actual	parameter:

The	parameters	associated	with	function	call	are	called	actual	parameters.

2)	Formal	parameter:

The	 parameters	 associated	 with	 the	 function	 definition	 are	 called	 formal
parameters.

Function	calling
Calling	function	by	reference

Up	to	this	we	were	calling	a	function	with	call	by	value	that	means	the	called	function
create	a	new	set	of	variables	and	copies	the	value	of	arguments	into	them	the	function	dose
not	have	the	access	to	the	actual	variables	in	the	calling	program.	We	can	provide	access
to	the	variables	of	calling	function	in	program	by	using	“call	by	reference	“	feature.

In	call	by	reference	technique	we	will	pass	the	address	of	variables	instead	of	the	value
of	variables.

Example:	Use	of	call	by	reference

#include	<iostream.h>

#include	<conio.h>



int	main(void)

{

int	first,	second;

void	interchange(int	&,	int	&);

clrscr();

cout	<<	“Enter	first	number”;

cin>>	first;

cout<<	“Enter	second	number”;

cin>>	second;

interchange(first,	second);

cout<<	“After	Interchange”<<endl;

cout<<”First	number=	“<<first	<<	endl;

cout<<”Second	number	=	“<<second;

getch();

return(0);

}

void	interchange	(int	&var1,	int	&var2)

{

int	ts;

ts	=	var1;

var1	=	var2;

var2	=	ts;

}

Output:

Enter	first	number	12

Enter	second	number	24

After	Interchange



First	number	=	24

Second	number	=	12

As	 you	 can	 see	 in	 above	 program	 first	 we	 have	 declared	 the	 function	 named
interchange()	with	two	integer	reference	arguments.	Then	we	have	inputted	two	variable’s
value	from	the	user.	Now	call	the	function	interchange()	with	two	arguments	named	first
and	 second.	Here	we	 are	 passing	 the	 addresses	 of	 first	 and	 second	 not	 values	 therefore
when	we	called	the	interchange()	function,	the	function	will	receive	the	addresses	of	first
and	second	with	name	var1	and	var2.	In	that	function	we	are	interchanging	the	values	of
var1	and	var2	and	we	are	not	returning	any	values	to	the	main	function	then	also	when	we
printed	the	values	of	first	and	second,	their	values	were	changed.	This	shows	that	when	we
pass	 the	 addresses	 of	 variables	 and	 in	 function	 we	 receives	 their	 addresses	 in	 another
variables,	then	corresponding	variables	will	points	to	same	address.	In	given	program	first
and	var1	will	points	to	same	address	and	second	and	var2	will	points	same	address.

Example:	Manually	using	a	call-by-reference	using	a	pointer.

#include	<iostream.h>

#include	<conio.h>

void	neg(int	*i);

int	main()

{

clrscr();

int	x;

x	=	10;

cout	<<	x	<<	”	negated	is	“;

neg(&x);

cout	<<	x	<<	“\n”;

getch();

return	0;

}

void	neg(int	*i)



{

*i	=	-*i;

}

Output:

10	negated	is	-10

In	the	above	program,	neg()	takes	as	a	parameter	a	pointer	to	the	integer	whose	sign	it
will	 reverse.	 Therefore,	 neg()	 must	 be	 explicitly	 called	 with	 the	 address	 of	 x.	 Further,
inside	neg()	the	*	operator	must	be	used	to	access	the	variable	pointed	to	by	i.	This	is	how
you	generate	a	“manual”	call-by-reference	in	C++,	and	it	is	the	only	way	to	obtain	a	call-
by-reference	 using	 the	 C	 subset.	 Fortunately,	 in	 C++	 you	 can	 automate	 this	 feature	 by
using	a	reference	parameter.

To	create	a	reference	parameter,	precede	the	parameter’s	name	with	an	&.	For	example,
here	is	how	to	declare	neg()	with	i	declared	as	a	reference	parameter:

void	neg(int	&i);

For	all	practical	purposes,	this	causes	i	to	become	another	name	for	whatever	argument
neg()	 is	 called	 with.	 Any	 operations	 that	 are	 applied	 to	 i	 actually	 affect	 the	 calling
argument.	 In	 technical	 terms,	 i	 is	 an	 implicit	 pointer	 that	 automatically	 refers	 to	 the
argument	used	in	the	call	to	neg().	Once	i	has	been	made	into	a	reference,	it	is	no	longer
necessary	 (or	 even	 legal)	 to	 apply	 the	 *	 operator.	 Instead,	 each	 time	 i	 is	 used,	 it	 is
implicitly	 a	 reference	 to	 the	 argument	 and	 any	 changes	made	 to	 i	 affect	 the	 argument.
Further,	when	calling	neg(),	it	is	no	longer	necessary	(or	legal)	to	precede	the	argument’s
name	with	the	&	operator.	Instead,	the	compiler	does	this	automatically.

For	example:	Here	is	the	reference	version	of	the	preceding	program:

//	Use	a	reference	parameter.

#include	<iostream.h>

#include	<conio.h>

//void	neg(int	&i);	//	i	now	a	reference

void	neg(int	&i)

{

i	=	-i;	//	i	is	now	a	reference,	don’t	need	*



}

int	main()

{

int	x;

x	=	10;

cout	<<	x	<<	”	negated	is	“;

neg(x);	//	no	longer	need	the	&	operator

cout	<<	x	<<	“\n”;

return	0;

}

Swapping	of	two	numbers	by	call	by	value

For	example:

#include<iostream.h>

#include<conio.h>

void	swap(int	n1,int	n2)

{

int	ts;

ts=n1;

n1=n2;

n2=ts;

cout<<”\n”<<n1<<”\n”<<n2<<”\n”;

}

void	main()

{

int	m1=10,m2=20;

clrscr();



cout<<”\n	Values	before	invoking	swap”<<m1<<”\t”<<m2;

cout<<”\n	Calling	swap…………”;

swap(m1,m2);

cout<<”\n	Back	to	main……values	are….”<<m1<<”\t”<<m2;

getch();

}

Output:

Values	before	invoking	swap10	20

Calling	swap…………

20

10

Back	to	main……values	are….10	20

Swapping	of	two	numbers	by	call	by	reference	using	pointer

For	example:

#include<iostream.h>

#include<conio.h>

void	swap(int	*a,int	*b)

{

int	c;

c=*a;

*a=*b;

*b=c;

cout<<“The	swap	function	is:”<<*a<<”\n”<<*b;

}

void	main()

{



int	a,b;

clrscr();

cout<<“Enter	the	two	numbers:”;

cin>>a>>b;

swap(&a,&b);

getch();

}

Output:

Enter	the	two	numbers:33

41

The	swap	function	is:41

33

Swapping	of	numbers	using	call	by	references	only

For	example:

#include<iostream.h>

#include<conio.h>

void	swap(int	&a,int	&b)

{

int	c;

c=a;

a=b;

b=c;

cout<<”\n	In	a	swap	function:”<<a<<”\n”<<b;

}

void	main()

{



int	a,b;

clrscr();

cout<<“Enter	the	two	numbers”;

cin>>a>>b;

swap(a,	b);

getch();

}

Output:

Enter	the	two	numbers33

41

In	a	swap	function:41

33



Return	by	reference

Up	to	now	we	have	seen	that	we	are	returning	values	from	the	calling	function.	In	C++
you	can	also	return	the	reference	of	variable	from	the	calling	function.

For	example:	Let’s	see	an	example	of	return	by	reference.

#include<iostream.h>

#include<conio.h>

int	main(void)

{

int	&	min(int	&,	int	&);

int	val1,	val2;

clrscr();

cout<<	“Enter	value-1	“;

cin>>val1;

cout<<	“Enter	value-2	“;

cin>>val2;

min(val1,	val2)	=	0;

cout<<	“After	calling	min()	function”<<endl;

cout<<	“The	value	of	val1	is:	”	<<	val1	<<endl;

cout<<	“The	value	of	val2	is:	”	<<	val2;

getch();

return(0);

}

int	&	min(int	&var1,	int	&var2)

{

if(var1<var2)

return	var1;

else



return	var2;

}

Output:

Enter	value-1	12

Enter	value-2	25

After	calling	min()	function

The	value	of	val1	is:	0

The	value	of	val2	is:	25

As	you	can	 see	 in	above	program	first	we	have	declared	a	 function	with	 two	 integer
reference	variables	and	a	return	type	of	integer	reference.	Then	we	got	input	of	values	of
variables	 val1	 and	 val2	 from	 the	 user.	 Then	 we	 call	 the	 function	 min	 ()	 with	 integer
reference	 variable	 val1	 and	 val2	 and	 that	 function	 will	 return	 the	 integer	 reference	 of
variable	val1	or	val2	according	to	minimum	value.	Note	that	in	return	by	reference	when
we	 call	 the	 function	 the	 function	 will	 appear	 on	 the	 left	 hand	 side	 of	 an	 assignment
statement.	In	given	program

min(	val1,	val2)	=	0;

The	function	min	()	will	return	the	address	of	val1	or	val2.	If	min	()	returns	val1	then
the	value	of	val1	will	be	assign	to	0	and	if	min	()	returns	val2	then	the	value	of	val2	will
be	assign	 to	0.	By	seeing	 the	output	 the	 idea	will	be	more	clear.	We	have	assigned	 two
values	12	and	25	to	variables	val1	and	val2	respectively.	After	calling	min	()	function	we
have	printed	the	values	of	both	variables.	As	you	can	see	in	the	output	the	value	of	val1	is
0	 that	 means	 before	 calling	 min	 ()	 function	 the	 value	 of	 val1	 was	 less	 than	 val2	 and
therefore	min	()	function	has	returned	the	address	of	val1.

For	example:	Second	example	of	return	by	reference.

#include	<iostream.h>

#include	<conio.h>

char	&replace(int	i);	//	return	a	reference

char	s[80]	=	“Hello	There”;

int	main()

{



clrscr();

replace(5)	=	‘X’;	//	assign	X	to	space	after	Hello

cout	<<	s;

getch();

return	0;

}

char	&replace(int	i)

{

return	s[i];

}

Differences	between	Pointers	and	References



Static	VS	Dynamic	Memory	Allocation

Engineering	problems	normally	require	large	arrays	to	store	data	for	some	applications.
For	 system	 of	 limited	memory,	 having	 to	 specify	 the	 size	 of	 all	 arrays	 to	 be	 used	 and
allocating	 enough	 memory	 space	 for	 them	 prior	 to	 program	 execution	 could	 lead	 to
insufficient	memory	to	run	the	program.	Hence,	dynamic	memory	allocation	is	a	used	to
prevent	 such	 problem.	 In	 other	words,	 with	 dynamic	memory	 allocation	whenever	 you
need	the	variables,	you	will	create	them	and	free	the	memory	at	any	time	in	your	program
when	you	think	you	don’t	need	them	anymore.

In	C,	you	use	malloc()	and	free()	for	such	a	purpose,	but	for	C++,	you	will	use	new	and
delete	operators.

Table	 below	 summarizes	 the	 differences	 between	 static	 and	 dynamic	 memory
allocation.

In	 using	 dynamic	 memory	 allocation,	 ‘memory	 leak’	 problem	 might	 occur	 that	 can
cause	poor	memory	utilization	problem.	It	occurs	when	you	fail	to	return	the	memory	to
the	free	store	when	it	is	no	longer	in	use.	Have	a	look	at	the	example	given	below:

float*	ptr=new	float;

*ptr=7.9;

ptr=new	float;

*ptr=5.1;

For	this	example,	in	line	1	and	2,	you	have	allocated	memory	space	of	type	float	with
value	 of	 7.9	 to	 ptr.	 Thus	 ptr	 holds	 the	 address	 of	 this	 block	 of	 memory.	 But	 without
releasing	the	memory,	you	reallocate	another	space	of	type	float	with	value	of	5.1	(as	seen
in	line	3	and	4).	The	first	memory	block	is	not	deleted,	however	the	address	is	lost	since
ptr	now	contains	the	address	of	the	second	block.	Hence,	the	program	will	not	be	able	to



use	the	first	block	eventhough	it	still	occupies	some	memory	space.

Hence,	 the	 solution	 to	 this	 problem	 is	 to	 always	 free	 the	 memory	 that	 it	 has	 been
allocated	(by	using	delete	operator)	before	you	need	to	allocate	new	value	to	the	pointer.



Inline	functions

Inline	 functions	 are	 those	 functions	where	when	 the	 call	 is	made	 to	 them,	 the	 actual
code	 of	 the	 function	 gets	 placed	 in	 the	 calling	 program.	We	 know	 that	 functions	 save
memory	space	because	all	 the	calls	 to	 the	 function	cause	same	code	 to	be	executed,	 the
function	body	need	not	be	duplicated	in	memory.	When	the	compiler	sees	a	function	call,
it	normally	generates	a	jump	to	the	function.	At	the	end	of	function	it	jumps	back	to	the
instruction	following	the	call.	While	this	sequence	of	events	may	save	memory	space,	but
it	takes	some	extra	time	for	following:

a)	There	must	be	an	instruction	for	the	jump	to	the	function,

b)	Instructions	for	saving	registers,

c)	 Instructions	 for	 pushing	 arguments	 on	 to	 the	 stack	 in	 the	 calling	 program	 and
removing	them	from	the	stack	in	the	function,

d)	Instructions	for	restoring	the	register	and

e)	An	instruction	to	return	to	the	calling	program.

This	would	be	expensive	particularly	when	the	called	function	body	is	small.

In	such	cases	one	solution	is	that	you	could	simply	repeat	the	necessary	code	in	your
program,	inserting	the	same	group	of	statements	wherever	it	 is	needed.	The	trouble	with
repeatedly	 inserting	 the	same	code	 is	 that	you	 lose	 the	benefits	of	program	organization
and	clarity	with	using	functions.	The	program	may	run	faster	but	 it	 takes	more	space	of
code	and	it	increases	the	complexity	of	code.

To	save	execution	time	and	reduce	the	complexity	of	code,	in	short	functions	you	may
elect	 to	 put	 the	 code	 of	 the	 function	 body	 directly	 in	 line	 with	 the	 code	 in	 the	 calling
program.	That	is,	each	time	there	is	a	function	call	in	the	source	file,	the	actual	code	from
the	function	is	inserted,	instead	of	a	jump	to	the	function.

The	idea	of	in	line	functions	will	be	more	clear	through	the	following	figure.



[Figure:	Functions	versus	Inline	Function]

As	you	can	see	 in	above	figure	 that	you	can	place	 the	 functions	as	 inline.	The	 inline
function	 behave	 like	 a	 normal	 function	 in	 the	 source	 file	 but	 compiles	 into	 inline	 code
instead	of	into	a	function.	Thus,	the	source	file	remains	well	organized	and	easy	to	read.
Whenever	you	want	 to	declare	 a	 function	 as	 inline	you	have	 to	 just	 put	 inline	keyword
before	a	function	name.	The	standard	form	of	inline	function	is	as	follows:

inline	function-name(arg1,	arg2,	….,	arg	n)

{

statements

}

All	 inline	 functions	 must	 be	 defined	 before	 they	 are	 called.	 We	 should	 use	 inline
functions	whenever	 there	 are	 two	or	 three	 statements	 in	 the	 function	 because	 the	 speed
benefits	of	inline	function	diminish	as	the	function	grows	in	size.	Also	we	cannot	use	loop
structure	in	inline	function.	The	inline	keyword	merely	sends	a	request,	not	a	command,	to
the	compiler.	The	compiler	may	ignore	this	request	if	the	function	definition	is	too	long	or
too	complicated	and	compile	the	function	as	a	normal	function.	There	are	some	cases	or
situations	where	inline	may	not	work,	those	are	as	follows.

a)	For	functions	returning	values,	if	a	loop,	a	switch	or	a	goto	exists.

b)	For	functions	not	returning	values,	if	return	statement	exists.

c)	If	functions	contain	static	variables.

d)	If	inline	functions	are	recursive.



Whenever	you	declare	a	function	as	inline	consider	these	four	conditions,	let’s	see	an
example	of	inline	function.

Example	:	To	find	maximum	of	two	values	using	inline	function.

#include	<iostream.h>

#include	<conio.h>

inline	int	max(int	a,int	b)

{

return(a>b	?	a:b);

}

int	main(void)

{

int	p=5,q=6,r;

clrscr();

r=max(p,q);

cout<<“p=	“<<p<<”,	q	=	”	<<q<<”,	r=	“<<r<<endl;

r=max(—p,—q);

cout<<“p=	“<<p<<”,	q	=	”	<<q<<”,	r=	“<<r<<endl;

getch();

return(0);

}

Output:

p=	5,	q=	6,	r=	6

p=	4,	q=	5,	r=	5

Use	of	inline	function

Example	:	Program	of	addition	of	two	values	with	inline	function.

#	include<iostream>

#include<conio.h>



inline	int	add	(int	a,int	b);	//	function	decleration	with	keyword

inline.

void	main()

{

clrscr();

int	a,b,c;

cout<<”enter	the	no”;

cin>>a>>b;

c=add(a,b);	//	function	calling

cout<<c;

getch();

}

int	add	(int	x,int	y)	//	function	definition

{

return	x+y;

}

Example	2:

#include<iostream.h>

#include<conio.h>

inline	float	mul(float	x,float	y)

{

return	(x*y);

}

inline	double	div(double	p,double	q)

{

return(p/q);

}



void	main()

{

clrscr();

float	a=12.34;

float	b=3.4;

cout<<mul(a,b)<<”\n”;

cout<<div(a,b)<<”\n”;

getch();

}

Reason	for	the	need	of	Inline	Function

Normally,	a	function	call	transfers	the	control	from	the	calling	program	to	the	function
and	after	the	execution	of	the	program	returns	the	control	back	to	the	calling	program	after
the	function	call.	These	concepts	of	function	saved	program	space	and	memory	space	are
used	 because	 the	 function	 is	 stored	 only	 in	 one	 place	 and	 is	 only	 executed	 when	 it	 is
called.	This	concept	of	function	execution	may	be	time	consuming	since	the	registers	and
other	processes	must	be	saved	before	the	function	gets	called.	The	extra	time	needed	and
the	process	of	saving	is	valid	for	larger	functions.	If	the	function	is	short,	the	programmer
may	wish	 to	 place	 the	 code	 of	 the	 function	 in	 the	 calling	 program	 in	 order	 for	 it	 to	 be
executed	 faster.	 This	 type	 of	 function	 is	 best	 handled	 by	 the	 inline	 function.	 In	 this
situation,	 the	 programmer	may	 be	wondering	 “why	 not	write	 the	 short	 code	 repeatedly
inside	the	program	wherever	needed	instead	of	going	for	inline	function?”	Although	this
could	 accomplish	 the	 task,	 the	problem	 lies	 in	 the	 loss	 of	 clarity	 of	 the	program.	 If	 the
programmer	 repeats	 the	 same	 code	 many	 times,	 there	 will	 be	 a	 loss	 of	 clarity	 in	 the
program.	 The	 alternative	 approach	 is	 to	 allow	 inline	 functions	 to	 achieve	 the	 same
purpose,	with	the	concept	of	functions.



Default	arguments

Whenever	 you	 declare	 a	 function	 with	 some	 arguments,	 you	 call	 the	 function	 with
appropriate	 variables.	 But	 C++	 allows	 us	 to	 call	 the	 functions	 without	 passing	 the
arguments,	 this	 is	 done	 by	 use	 of	 default	 arguments	 while	 declaring	 a	 function.	 For
example,

float	area_rect(float	height	=	5,	float	width	=	6.5);

As	you	can	see	in	the	given	example	when	you	call	the	function	area_rect()	without	any
arguments	then	it	will	consider	height	as	5	and	width	as	6.5	by	default.

Default	arguments	are	useful	in	situations	where	some	arguments	always	have	the	same
value.

For	example,	bank	interest	may	remain	same	for	all	costumers	for	a	particular	period
of	deposit.

Let’s	see	a	program	of	default	arguments.

#include	<iostream.h>

double	test	(double	a,	double	b	=	7)

{

return	a	-	b;

}

int	main	()

{

cout	<<	test	(14,	5)	<<	endl;	//	Displays	14	–	5

cout	<<	test	(14)	<<	endl;	//	Displays	14	–	7

return	0;

}

Let’s	see	one	more	program	of	default	arguments.

#include	<iostream.h>

#include	<conio.h>

#include	<math.h>



int	main(void)

{

int	is_triangle(float	x	=	5,	float	y	=	6,	float	z	=	7);

float	area(float	x	=	5,	float	y	=	6,	float	z	=	7);

float	x,	y,	z;

clrscr();

if	(is_triangle())

cout<<“Area	=	“<<	area()	<<	endl;

else

cout<<“Sorry,	No	triangle	with	those	sides…”;

x=8,	y=9,	z=10;

if	(is_triangle(x,	y,	z))	//all	arguments	are	passed

cout<<“Area	=	“<<	area(x,	y,	z)	<<	endl;

else

cout<<“Sorry,	No	triangle	with	those	sides…”;

if	(is_triangle(11))	//	only	one	argument	is	passed

cout<<“Area	=	“<<	area(11)	<<	endl;

else

cout<<“Sorry,	No	triangle	with	those	sides…”;

if	(is_triangle(11,	12))	//only	two	arguments	are	passed.

cout<<“Area	=	“<<	area(11,	12)	<<	endl;

else

cout<<“Sorry,	No	triangle	with	those	sides…”;

getch();

return(0);

}

int	is_triangle(float	a,	float	b,	float	c)



{

cout<<“Sides	are:	”	<<	a	<<	“,	“<<	b	<<”,	“<<	c	<<”	“;

if	((a	+	b	>	c)	&&	(b	+	c	>	a)	&&	(a	+	c	>	b))

return	1;

else

return	0;

}

float	area(float	a,	float	b,	float	c)

{

float	Area,s;

s	=	(a	+	b	+	c)	/	2;

Area	=	sqrt(s	*	(s	-	a)	*	(s	-	b)	*	(s	-	c));

return	Area;

}

Output:

Sides	are:	5,	6,	7	Area	=	14.6969

Sides	are:	8,	9,	10	Area	=	34.197

Sides	are:	11,	6,	7	Area	=	18.9737

Sides	are:	11,	12,	7	Area	=	37.9473

Use	of	default	arguments

It	is	not	necessary	for	all	the	parameters	in	a	function’s	prototype	to	be	assigned	default
values.	But	it	is	necessary	that	all	parameter	which	are	supplied	default	values	are	placed
to	the	right	of	those	that	are	not.	For	example,	the	following	are	erroneous	prototypes	for
the	function	is_triangle().

int	is_triangle(	float	x	=	5,	float	y,	float	z);

int	is_triangle(	float	x	,	float	y	=	6,	float	z);

These	two	declarations	can	be	corrected	as	follows:



int	is_triangle(	float	z,	float	y,	float	x	=	5);

int	is_triangle(	float	x,	float	z,	float	y	=	6);



Function	overloading

As	we	can	declare	two	variables	with	same	name	in	different	blocks,	we	can	also	define
two	 functions	 with	 same	 name	 in	 a	 program	 but	 with	 different	 no	 and/or	 type	 of
arguments.	This	mechanism	is	called	function	overloading	and	the	functions,	which	have
same	names,	are	called	as	overloaded	functions.	In	C++,	you	can	give	the	same	name	to
more	 than	one	function	 if	 they	have	either	a	different	number	of	parameters	or	different
types	in	their	parameters.	When	an	overloaded	function	is	called,	the	C++	compiler	selects
the	proper	function	by	examining	the	number,	types	and	order	of	the	arguments	in	the	call.
Function	overloading	is	one	way	in	which	the	C++	language	implements	polymorphism.
Function	overloading	is	commonly	used	to	create	several	functions	of	the	same	name	that
perform	similar	tasks	but	on	different	data	types	or	arguments.

For	example:	//	overloaded	function

#include	<iostream.h>

int	operate	(int	a,	int	b)

{

return	(a*b);

}

float	operate	(float	a,	float	b)

{

return	(a/b);

}

int	main	()

{

int	x=5,y=2;

cout	<<	operate	(x,y);

cout	<<	“\n”;

float	n=5.0,m=2.0;

cout	<<	operate	(n,m);

cout	<<	“\n”;



return	0;

}

Output:

10

2.5

In	 this	 case	we	have	defined	 two	 functions	with	 the	 same	name,	 operate,	 but	 one	of
them	accepts	two	parameters	of	type	int	and	the	other	one	accepts	them	of	type	float.	The
compiler	 knows	 which	 one	 to	 call	 in	 each	 case	 by	 examining	 the	 types	 passed	 as
arguments	when	the	function	is	called.	If	it	is	called	with	two	ints	as	its	arguments	it	calls
to	the	function	that	has	two	int	parameters	in	its	prototype	and	if	it	is	called	with	two	floats
it	will	call	to	the	one	which	has	two	float	parameters	in	its	prototype.

In	 the	 first	 call	 to	 operate	 the	 two	 arguments	 passed	 are	 of	 type	 int,	 therefore,	 the
function	with	the	first	prototype	is	called;	This	function	returns	the	result	of	multiplying
both	parameters.	While	the	second	call	passes	two	arguments	of	type	float,	so	the	function
with	 the	 second	 prototype	 is	 called.	 This	 one	 has	 a	 different	 behavior:	 it	 divides	 one
parameter	 by	 the	 other.	 So	 the	 behavior	 of	 a	 call	 to	 operate	 depends	on	 the	 type	of	 the
arguments	passed	because	the	function	has	been	overloaded.

Notice	that	a	function	cannot	be	overloaded	only	by	its	return	type.	At	least	one	of	its
parameters	 must	 have	 a	 different	 type.	 Different	 functions	 can	 have	 the	 same	 name
provided	 something	 allows	 to	 distinguish	 between	 them:	 number	 of	 parameters,	 type	 of
parameters…

Example	2:

#include<iostream.h>

#include<conio.h>

int	volume(int);

float	volume(float	,	int);

long	int	volume(long	int,int,int);

void	main(	)

{

cout<<”volume	of	cube”<<volume	(10);



cout<<”volume	of	cylinder”<<volume	(4.5,	5);

cout<<”volume	of	rectangular	box”<<volume	(8,	7,	3);

getch	(	);

}

int	volume(int	a)

{

return(a*a*a);

}

float	volume(float	r,int	h)

{

return	(3.14	*	r	*	r	*	h);

}

long	int	volume(long	int	l,	int	b,	int	h);

{

return(l*b*h);

}

Output:

Volume	of	cube	(when	all	the	sides	are	same)	is:	3350

Volume	of	block	(when	height	and	width	are	same)	is:	10100.25

Volume	of	block	(when	all	sides	are	different)	is:	1057.875

A	 function	 call	 first	 matches	 the	 prototype	 having	 the	 same	 number	 and	 type	 of
arguments	and	then	calls	the	appropriate	functions	for	executions.	The	function	selection
involves	the	following	steps:

1.	 The	 compiler	 first	 tries	 to	 find	 an	 exact	 match	 in	 which	 the	 types	 of	 actual
arguments	are	the	same	and	use	that	function.

2.	 If	 an	 exact	 match	 not	 found,	 the	 compiler	 uses	 the	 integral	 promotions	 to	 the
actual	arguments.	For	example,	char	to	int	or	float	to	double,	etc.

3.	When	either	of	them	fails,	the	compiler	tries	to	use	the	built	in	conversions	to	the



actual	 arguments	 and	 then	 uses	 the	 function	 whose	 match	 is	 unique.	 If	 the
conversion	is	possible	 to	have	multiple	matches,	 then	the	compiler	will	generate
an	error	message.	Consider	the	following	two	functions:

long	absolute(long	a)

double	absolute	(double	b)

4.	When	you	call	a	function	absolute	(10),	the	compiler	will	give	error	because	int
argument	 can	 be	 converted	 to	 either	 long	 or	 double,	 thereby	 creating	 and
ambiguous	situation	as	to	which	version	absolute	should	be	used.

5.	If	all	of	the	steps	fail,	then	the	compiler	will	try	the	user	defined	conversions	in
combination	with	 integral	 promotions	 and	 built	 in	 conversions	 to	 find	 a	 unique
match.

Restrictions	on	Function	overloading	in	C++

You	 cannot	 overload	 the	 following	 function	 declarations	 if	 they	 appear	 in	 the	 same
scope.	Note	that	this	list	applies	only	to	explicitly	declared	functions	and	those	that	have
been	introduced	through	using	declarations.

Function	declarations	that	differ	only	by	return	type.	For	example,	you	cannot	use	the
following	declarations:

int	f();

float	f();

Member	function	declarations	that	have	the	same	name	and	the	same	parameter	types,
but	 one	of	 these	declarations	 is	 a	 static	member	 function	declaration.	For	 example,	 you
cannot	declare	the	following	two	member	function	declarations	of	f():

struct	A

{

static	int	f();

int	f();

};

Function	declarations	with	parameters	that	differ	only	by	the	use	of	typedef	names	that
represent	the	same	type.	Note	that	a	typedef	is	a	synonym	for	another	type,	not	a	separate
type.	 For	 example,	 the	 following	 two	 declarations	 of	 f()	 are	 declarations	 of	 the	 same



function:

typedef	int	I;

void	f(float,	int);

void	f(float,	I);

Function	declarations	with	parameters	that	differ	only	because	one	is	a	pointer	and	the
other	is	an	array.	For	example,	the	following	are	declarations	of	the	same	function:

f(char*);

f(char[10]);

Function	declarations	with	parameters	that	differ	only	because	their	default	arguments
differ.	For	example,	the	following	are	declarations	of	the	same	function:

void	f(int);

void	f(int	i	=	10);

There	are	some	other	cases	but	this	information	regarding	to	overloading	is	enough	for
the	time	being.

1.	 If	 parameter	 lists	 of	 two	 functions	 match	 exactly	 but	 return	 types	 differ,	 then
second	 definition	 is	 treated	 as	 erroneous	 redeclaration	 of	 first	 and	 is	 flagged	 as
compile	time	error.

unsigned	int	max(int,	int);

int	max(int,	int);	//redeclaration

2.	 If	 parameter	 lists	 of	 two	 functions	 differ	 only	 in	 their	 default	 arguments,	 the
second	declaration	is	treated	as	a	redeclaration	of	the	first.

int	max(int*	ia,	int	size);

int	max(int*,	int	=	10);	//	redeclaration.

3.	The	const	or	volatile	qualifiers	are	not	taken	into	account.

void	f(int);

void	f(const	int);	//redeclaration

4.	 But	 if	 const	 or	 volatile	 qualifiers	 appy	 to	 type	which	 is	 a	 pointer	 or	 reference
parameter,	 then	 the	 const	 or	 volatile	 qualifier	 is	 taken	 into	 account	 when
declaration	of	different	functions	are	identified.



void	f(int*);

void	f(const	int*);	//overloaded

void	f(int&);

void	f(const	int&);	//overloaded



Recursivity

Recursivity	is	the	property	that	functions	have	to	be	called	by	themselves.	It	is	useful
for	many	tasks,	like	sorting	or	calculate	the	factorial	of	numbers.	For	example,	to	obtain
the	factorial	of	a	number	(n!)	the	mathematical	formula	would	be:

n!	=	n	*	(n-1)	*	(n-2)	*	(n-3)	…	*	1

more	concretely,	5!	(factorial	of	5)	would	be:

5!	=	5	*	4	*	3	*	2	*	1	=	120

For	example:	and	a	recursive	function	to	calculate	this	in	C++	could	be:

//	factorial	calculator

#include	<iostream.h>

long	factorial	(long	a)

{

if	(a	>	1)

return	(a	*	factorial	(a-1));

else

return	(1);

}

int	main	()

{

long	number;

cout	<<	“Please	type	a	number:	“;

cin	>>	number;

cout	<<	number	<<	“!	=	”	<<	factorial	(number);

return	0;

}

Output:

Please	type	a	number:	9



9!	=	362880

Notice	how	in	function	factorial	we	included	a	call	 to	 itself,	but	only	 if	 the	argument
passed	 was	 greater	 than	 1,	 since	 otherwise	 the	 function	 would	 perform	 an	 infinite
recursive	 loop	 in	 which	 once	 it	 arrived	 to	 0	 it	 would	 continue	 multiplying	 by	 all	 the
negative	numbers	(probably	provoking	a	stack	overflow	error	on	runtime).

This	function	has	a	limitation	because	of	the	data	type	we	used	in	its	design	(long)	for
more	simplicity.	The	 results	given	will	not	be	valid	 for	values	much	greater	 than	10!	or
15!,	depending	on	the	system	you	compile	it.

Some	of	the	useful	library	functions:



Exercise
Short	Question

1.	Consider	the	function	definition

void	Demo(	int	intVal,	float&	floatVal	)

{

intVal	=	intVal	*	2;

floatVal	=	float(intVal)	+	3.5;

}

Suppose	that	the	caller	has	variables	myInt	and	myFloat	whose	values	are	20	and	4.8,
respectively.	What	are	the	values	of	myInt	and	myFloat	after	return	from	the	following
function	call?

Demo(myInt,	myFloat);

2.	What	would	the	following	function	do?

void	example(int	n)

{

int	i;

for	(i=0;	i<n;	i++)

cout	<<	‘*’;

cout	<<	endl;

}

3.	What	is	the	life	time	of	each	of	the	following	functions?

a)	A	global	variable

b)	A	local	variable	in	a	function

c)	A	local,	static	variable	in	a	function

4.	If	a	local,	static	variable	is	initialized	in	its	declaration	within	a	function	when	does	the
variable	get	initialized?

5.	What	 is	 the	 scope	of	 a	namespace	 that	 is	 specified	 in	a	using	directive	outside	of	 all
functions?



6.	What	is	the	scope	of	the	std	namespace	in	the	following	code?

//	include	directives	and	function	prototypes	here

int	main()

{

using	namespace	std;

//	rest	of	main	body	is	here

}

//	Function	definitions	here

7.	Given	the	function	definition

void	Twist(	int	a,	int&	b	)

{

int	c;

c	=	a	+	2;

a	=	a	*	3;

b	=	c	+	a;

}

what	is	the	output	of	the	following	code	fragment	that	invokes	Twist?	(All	variables	are
of	type	int.)

r	=	1;

s	=	2;

t	=	3;

Twist(t,	s);

cout	<<	r	<<	‘	‘	<<	s	<<	‘	‘	<<	t	<<	endl;

8.	How	is	information	supplied	as	input	to	a	function?	How	can	information	be	conveyed
back	to	the	calling	program?

9.	What	would	the	following	function	do?

void	example(int	n)



{

int	i;

for	(i=0;	i<n;	i++)

cout	<<	‘*’;

cout	<<	endl;

}

How	would	you	call	 this	function	in	a	program?	How	would	you	use	this	function	in
producing	the	following	output	on	the	screen?

*

**

***

****

10.	Explain	the	use	of	following	terms:

a)	inline	function

b)	return	by	reference

11.	Explain	the	difference	between	call	by	value	and	call	by	reference.

12.	Write	a	short	note	on	default	arguments.

13.	Explain,	“The	function	overloading	is	feature	of	polymorphism”.

14.	Explain	the	call	–	by	–	value	and	call	–	by	-	reference	parameter	passing	methods	with
an	example	to	each.

True/	False

1.	The	function	heading

void	SomeFunc(	float	x[]	)

causes	a	compile-time	error	because	the	size	of	the	array	is	missing.

2.	When	a	two-dimensional	array	is	passed	as	a	parameter,	the	number	of	columns	in	the
parameter	must	be	identical	to	the	number	of	columns	in	the	argument.

3.	When	 a	 two-dimensional	 array	 is	 passed	 as	 a	 parameter,	 the	 number	 of	 rows	 in	 the



parameter	must	be	identical	to	the	number	of	rows	in	the	argument.

4.	 True	 or	 False?	 If	 a	 variable	 alpha	 is	 accessible	 only	within	 function	 F,	 then	 alpha	 is
either	a	local	variable	within	F	or	a	parameter	of	F.

5.	True	or	False?	Suppose	the	first	few	lines	of	a	function	are	as	follows:

void	Calc(	/*	in	*/	float	beta	){

alpha	=	3.8	*	beta;

Then	the	variable	alpha	must	be	a	local	variable.

6.	 True	 or	 false?	 In	 the	 following	 function,	 the	 declaration	 of	 beta	 includes	 an
initialization.

void	SomeFunc(	int	alpha	)

{

static	int	beta	=	25;

…

}

beta	is	initialized	once	only,	the	first	time	the	function	is	called.

7.	True	or	False?	When	the	following	value-returning	function	is	executed

float	Average	(int,	int,	int)

{

int	x,	y=2;

x=	2	*	y;

return;

}

When	the	function	is	called	with	the	statement

average	(alpha,	34,	beta)	;

The	function	is	executed,	and	the	function	input	values	are	discarded.

8.	True	or	False?	Using	a	pass	by	reference,	passing	an	int	argument	to	a	float	parameter	is
acceptable	to	the	compiler	but	may	produce	incorrect	results.



9.	True	or	False?	With	argument	passage	by	reference,	the	address	of	the	caller’s	argument
is	sent	to	the	function.

10.	True	or	False?	If	there	are	several	items	in	a	parameter	list,	the	compiler	matches	the
parameters	 and	 arguments	 by	 their	 relative	 positions	 in	 the	 parameter	 and	 argument
lists.

11.	 True	 or	 False?	When	 an	 argument	 is	 passed	 by	 reference,	 the	 argument	 can	 be	 any
expression.

12.	True	or	False?	Given	the	function	prototype

void	Fix(	int&,	float	);

Fix(24,	6.85);	is	an	appropriate	function	call?

13.	True	or	False?	Given	the	function	heading

void	GetNums(int	howMany,	float&	alpha,	float&	beta	)

both	void	GetNums(	int	howMany,	float&	alpha,	float&	beta	);

and	void	GetNums(	int,	float&,	float&	);

are	valid	function	prototype	for	GetNums?

14.	A	function	that	does	not	return	anything	has	return	type	void.

15.	When	arguments	are	passed	by	value,	the	function	works	with	the	original	arguments
in	the	calling	program.

16.	A	function	can	return	a	value	by	reference.

17.	It	is	not	necessary	to	specify	the	variable	name	in	the	function	prototype.

18.	If	function	is	recursive	then	we	cannot	use	that	function	as	inline	function.

19.	How	are	strings	handled	in	C	+	+	?	Discus	with	appropriate	examples.

20.	 What	 are	 the	 benefits	 of	 using	 functions?	 Define	 function	 definition,	 function
Declaration	and	function	parameters	with	an	example.

Multiple	Choice	Questions

1.	The	following	code	fragment	invokes	a	function	named	InitToZero:

int	alpha[10][20];

InitToZero(alpha);



Which	of	the	following	is	a	valid	function	heading	for	InitToZero?

a)	void	InitToZero(	int	beta[][]	)

b)	void	InitToZero(	int	beta[10][20]	)

c)	void	InitToZero(	int	beta[10][]	)

d)	void	InitToZero(	int	beta[][20]	)

e)	b	and	d	above

2.	Given	the	program	fragment

char	alpha[200];

char	beta[200];

…

Copy(alpha,	beta,	200);	//	Copy	all	components	of	beta	into	alpha

which	of	the	following	is	the	best	function	heading	for	the	Copy	function?

a)	void	Copy(/*out*/char	arr1[],	/*in*/char	arr2[],	/*in*/int	length)

b)	void	Copy(/*out*/const	char	arr1[],	/*in*/char	arr2[],	/*in*/int

length)

c)	void	Copy(/*out*/char	arr1[],	/*in*/const	char	arr2[],	/*in*/int	length)

d)	void	Copy(/*out*/const	char	arr1[],	/*in*/const	char	arr2[],	/*in*/	int	length)

3.	A	function	can	also	call	itself.	This	process	is	called

a)	Calling	of	function

b)	Recursion

c)	Function	prototype

d)	Function	declaration

4.	Local	variables	are	always	declared	inside	a	particulars	function,	which	of	the	following
are	true?

I)	They	cannot	be	accessed	from	outside	that	function

II)	They	are	accessed	from	the	point	of	declaration	to	the	end	of	the	block.

III)	They	are	visible	throughout	the	program.



IV)	They	are	visible	in	subsequent	block.

a)	I,	II,	III	b)	I,	II	c)	I,	II,	IV	d)	All

5.	A	few	examples	of	function	declaration	with	default	value	are

int	dhoni(int	b	=	a,	int	b	=	10,	int	c	=	12);

int	dhoni(int	b	=	20,	int	c);

int	dhoni(int	a	=	2,	int	b	=	10,	int	c);

int	dhoni	(int	a,	int	b,	int	c	=	30);

which	one	is	wrong	default	declaration.

6.	A	function’s	single	most	important	role	is	to…

a)	Give	a	name	to	a	block	of	code

b)	Reduce	program	size

c)	Accept	arguments	and	provide	a	return	value

d)	Help	organize	a	program	into	conceptual	units.

7.	A	function	argument	is	…

a)	A	variable	in	the	function	that	receives	a	value	from	the	calling	program.

b)	A	way	that	functions	resist	accepting	the	calling	program’s	values.

c)	A	value	sent	to	the	function	by	the	calling	program.

d)	A	value	return	by	the	function	to	the	calling	program.

8.	which	one	from	the	given	below	is	the	output	of	this	code

int	global=10;

void	func(int	&x,	int	y)

{

x=x-y;

y=x*10;

cout<<x<<	‘,’<<y<<endl;

}

void	main()



{

int	global=7;

func(::global,global);

cout<<global<<	‘,’<<::global<<endl;

}

a)	3,	30

7,	3

b)	–3,	30

-3,	7

c)	7,	3

3,	30

d)	3,	7

3,	30

9.	main()

{

int	val=5;

if(val++==6)

cout<<“six”;

else

if(—val==5)

cout<<“five”;

else

if(++	val==5)

cout<<	“still	five”;

}

a)	five

b)	six



c)	stillfive

d)	fivestillfive

10.	void	main()

{

int	num=20,	result=0;

do

{

result=10;

int	digit=num%10;

result+=digit;

num/=10;

}

while(num);

cout<<	result;

}

a)	12

b)	13

c)	14

d)	10

11.	int	func	(int	&x,	int	y=10)

{

if	(x%y==0)

return	++x;

else

return	y—;

}

void	main()



{

int	p=20,q=23;

q=func(p,q);

cout<<p<<’,’<<q;

}

a)	20,23

b)	20,20

c)	20,22

d)	19,20

12.	void	main()

{

int	f,s,t;

f=0;

s=1;

for(int	i=2;	i<10;	i++)

{

t=f+s;

f=s;

s=t;

}

cout<<t;

}

a)	34

b)	36

c)	21

d)	40

13.	int	a=3;



void	demo(int	x,int	y,	int	&z)

{

a+=x+y;

z=a+y;

y+=x;

cout<<x<<’,’<<y<<’,’<<z<<endl;

}

void	main()

{

int	a=2,	b=5;

demo(::a,a,b);

cout<<::a<<’,’<<a<<’,’<<b	<<endl;

}

a)	3,5,10

8,2,10

b)	8,2,10

3,5,10

c)	3,5,12

8,2,10

d)	3,2,10

8,2,10

14.	main()

{

int	x=3,y,z;

z=y=x;

z*=y=x*x;

cout<<x<<’,’<<y<<’,’<<z;



}

a)	3,9,7

b)	3,9,9

c)	3,3,3

d)	9,3,3

Predict	Output

1.	Given	the	function	definition

void	Twist(	int	a,	int&	b	)

{

int	c;

c	=	a	+	2;

a	=	a	*	3;

b	=	c	+	a;

}

what	is	the	output	of	the	following	code	fragment	that	invokes	Twist?	(All	variables	are
of	type	int.)

r	=	1;

s	=	2;

t	=	3;

Twist(t,	s);

cout	<<	r	<<	‘	‘	<<	s	<<	‘	‘	<<	t	<<	endl;

2.	What	would	be	the	output	from	the	following	programs?

a)	void	change(void)

{

int	x;

x	=	1;

}



void	main()

{

int	x;

x	=	0;

change();

cout	<<	x	<<	endl;

}

b)	void	change(int	x)

{

x	=	1;

}

void	main()

{

int	x;

x	=	0;

change(x);

cout	<<	x	<<	endl;

}

Programming	Exercises

1.	Write	 a	 function	 heading	 for	 a	 function	which	will	 double	 the	 first	 n	 elements	 of	 an
array.	If	the	function	was	amended	so	that	it	would	return	false	if	n	was	larger	than	the
size	of	the	array	how	should	the	function	heading	be	written?	If	the	function	was	to	be
changed	so	that	a	new	array	was	produced	each	of	whose	elements	were	double	those	of
the	input	array	how	would	the	heading	be	written?

2.	Write	 a	 function	prototype	 for	 a	 function	 that	 takes	 two	parameters	of	 type	 float	 and
returns	 true	 (1)	 if	 the	 first	 parameter	 is	 greater	 than	 the	 second	 and	otherwise	 returns
false	(0).

3.	Write	 a	 function	 prototype	 for	 a	 function	 that	 takes	 two	 parameters	 of	 type	 int	 and



returns	 true	 if	 these	 two	 integers	are	a	valid	value	 for	a	sum	of	money	 in	pounds	and
pence.	If	not	valid	then	false	should	be	returned.

4.	A	function	named	ex1	has	a	local	variable	named	i	and	another	function	ex2	has	a	local
variable	named	i.	These	two	functions	are	used	together	with	a	main	program	which	has
a	 variable	 named	 i.	 Assuming	 that	 there	 are	 no	 other	 errors	 in	 the	 program	will	 this
program	compile	correctly?	Will	it	execute	correctly	without	any	run-time	errors?

5.	Write	a	function	which	draws	a	line	of	n	asterisks,	n	being	passed	as	a	parameter	to	the
function.	Write	a	driver	program	(a	program	that	calls	and	tests	the	function)	which	uses
the	function	to	output	an	m	x	n	block	of	asterisks,	m	and	n	entered	by	the	user.

6.	Extend	the	function	of	the	previous	exercise	so	that	it	prints	a	line	of	n	asterisks	starting
in	column	m.	It	should	take	two	parameters	m	and	n.	If	the	values	of	m	and	n	are	such
that	the	line	of	asterisks	would	extend	beyond	column	80	then	the	function	should	return
false	and	print	nothing,	otherwise	 it	 should	output	 true	and	print	 the	 line	of	 asterisks.
Amend	 your	 driver	 program	 so	 that	 it	 uses	 the	 function	 return	 value	 to	 terminate
execution	with	an	error	message	if	m	and	n	are	such	that	there	would	be	line	overflow.

Think	carefully	about	the	test	data	you	would	use	to	test	the	function.

7.	Write	a	 function	which	converts	a	 sum	of	money	given	as	an	 integer	number	of	cent
into	a	floating	point	value	representing	 the	equivalent	number	of	dollars.	For	example
365	cent	would	be	3.65	dollars.

8.	Write	a	function	named	Min	that	returns	the	smallest	of	its	three	integer	parameters.

9.	Write	a	function	named	Max	that	returns	the	largest	of	its	three	integer	parameters.

10.	Write	 a	 function	 named	Min_Max	 that	 returns	 the	 smallest	 and	 the	 largest	 of	 three
input	values,	using	the	paramaters	min	and	max	via	call	by	reference.

11.	Write	a	function	that	returns	the	fifth	power	of	its	float	parameter	using	the	parameter
fifthpow	via	call	by	reference.

12.	Write	a	function	which	converts	a	sum	of	money	given	as	an	integer	number	of	cent
into	a	floating	point	value	representing	the	equivalent	number	of	dollars.	For	example
365	 cent	 would	 be	 3.65	 dollars.	 Cents	 are	 input	 as	 a	 parameter	 while	 dollars	 are
returned	to	calling	function	using	return	statement.

13.	Write	a	function

void	floattopp(float	q,	int&	L,	int&	P)



which	converts	the	sum	of	money	q	in	dollars	into	L	dollars	and	P	cent	where	the

cents	are	correctly	rounded.	Thus	if	q	was	24.5678	then	L	should	be	set	to	24	and	P

should	be	set	to	57.	Remember	that	when	assigning	a	real	to	an	integer	the	real	is

truncated.	Thus	to	round	a	real	to	the	nearest	integer	add	0.5	before	assigning	to	the

integer.

Write	a	simple	driver	program	to	test	the	function.	Think	carefully	about	the

boundary	conditions.

14.	Modify	 the	program	 in	6,	 such	 that	 using	 “substr”	 function,	 you	 can	print	 your	 last
name	first,	followed	by	a	comma,	and	finally	your	first	name.

15.	Write	a	C++	program	to	overload	a	function	to	calculate	volume	of	cube,	cylinder	and
rectangular	box.

16.	 Write	 a	 library	 of	 integer	 array	 functions	 with	 a	 header	 file	 “IntegerArray.h”	 and
implementation	file	“IntegerArray.cpp”,	which	contains	the	following	functions:

a)	A	 function	“input_array(a,n)”	which	allows	 the	user	 to	 input	values	 for	 the	 first	n
elements	of	the	array	a.

b)	A	function	“display_array(a,n)”	which	displays	the	values	of	the	first	n	elements	of
the	array	a	on	the	screen.

c)	 A	 function	 “copy_array(a1,a2,n)”	 which	 copies	 the	 first	 n	 elements	 of	 a2	 to	 the
respective	first	n	elements	in	a1.

d)	Test	the	functions	in	a	suitably	defined	main	program.

17.	Write	a	program	to	play	a	game	in	which	you	try	to	sink	a	fleet	of	five	navy	vessels	by
guessing	their	locations	on	a	grid.	The	ships	are	different	length	and	are	positioned	as
follows:

Frigate:	2	locations,	located	between	(2,	4)	and	(2,	6).

Tender:	2	locations,	located	between	(4,	6)	and	(4,	8).

Destroyer:	3	locations,	located	between	(8,	7)	and	(8,	10).

Cruiser:	3	locations,	located	between	(9,	1)	and	(9,	4).

Carrier:	4	locations,	located	between	(11,	4)	and	(11,	8).

Your	program	will	displace	the	ships	on	a	12	x	12	grid	initially.	The	user	will	enter	the



coordinates	in	the	range	of	1	to	12	for	rows	and	columns.	Your	program	will	check	and
report	if	this	is	a	hit	or	a	miss.	If	it	is	a	hit,	your	program	should	report	it	is	a	hit	and
that	ship	will	be	reported	sunk.

The	user	will	be	given	10	shots.	If	he	sunk	all	the	ships	in	less	than	11	shots,	user	will
be	the	winner,	else	loser.

18.	Let .	F	is	to	be	calculated	for	different	values	of	a,	b	and	c.	Write	a
function	which	calculates	F	and	displays	it	i.e.	define	a	function	with	formal	parameters
with	no	return	value.	Call	the	function	for	a=3,	b=4,	and	c=5	from	the	main	program.

19.	 Let	 the	 area	 of	 triangle	 is	 defined	 by ,	where	 s	 is	 defined	 as

	and	a,	b	and	c	are	the	lengths	of	the	sides.	Write	a	function	that	returns	its
area,	i.e.	define	a	function	with	formal	parameters	with	return	value.

20.	Write	inline	functions	to	….

a)	Convert	Celsius	temperature	to	Fahrenheit

b)	Convert	Fahrenheit	temperature	to	Celsius

c)	Convert	miles	to	kilometers

d)	Convert	kilometers	to	miles

e)	Compute	the	area	and	volume	of	a	sphere	of	radius	r.

f)	Compute	of	area	and	volume	of	a	cone	of	base	radius	r	and	height	h.

21.	Write	 a	 function	 quad(a,	 b,	 c)	with	 default	 arguments	 for	 a,	 b	 and	 c.	Your	 function
should	return	the	roots	(if	any)	of	the	quadratic:

ax2	+	bx	+	c	=	0

take	care	to	distinguish	between	the	several	possible	types	of	roots.

22.	Write	 a	 program	 to	 print	 prime	 numbers	 less	 than	 or	 equal	 to	 the	 value	 of	 variable
limit,	in	a	loop	check	whether	a	number	is	less	than	limit	or	not	and	if	yes	then	call	the
function	prime()	to	check	whether	the	number	is	prime	or	not.

23.	 Write	 a	 C	 +	 +	 program	 where	 you	 are	 passing	 an	 array	 to	 function	 to	 find	 the
Maximum	among	n	numbers.

24.	 Write	 C	 ++	 program	 to	 swap	 the	 contents	 of	 two	 variables	 a	 and	 b	 using	 call	 by
Address	and	call	by	reference.



25.	area	of	a	regular	octagon	is

Area-	Octagon=	4.828a2

Where	a	is	the	length	of	one	side?	Write	a	complete	C++	program	that	asks	the	user	to
enter	 the	size	of	 the	Octagon	(side),	and	calculate	and	print	 the	area	 to	 three	decimal
Places	of	accuracy.	Use	a	#	define	statement	for	the	multiplicative	constant	and	the	pow
function	to	find	side-squared	value.

26.	Write	a	program	to	find	number	is	odd	or	not.

27.	Write	a	program	to	find	out	factorial	of	given	number	using	function.

28.	Write	a	program	to	generate	series	x,x2,x3……..xn

29.	Write	a	program	to	find	maximum	of	three	numbers.

30.	Let	the	vector	x	be	x=[1	3	4	2	5	6	7	9	2	].	Calculates	the	sum	of	the	elements	of	x.	Use
pointers	to	manipulate	elements	in	arrays.

31.	Write	a	C	+	+	program	to	declare	4	integers	a,	b,	c	and	d.	use	only	the	address	of	b	and
concepts	 of	 pointers	 to	 assign	 values	 to	 all	 the	 declared	 variables	 and	 print	 out	 the
values	 of	 all	 the	 variables	 both	 using	 the	 variable	 name	 as	 well	 as	 their	 address.
(assume	1byte	required	to	store	an	integer)

32.	Write	a	C++	program	to	display	the	student	details	using	pointers.

33.	Write	 a	program	 to	print	 the	 address	of	 a	different	datatype	variables	 along	with	 its
value.

34.	Write	a	program	using	pointer	to	read	in	a	array	of	integers	and	print	its	elements	in
reverse	order

35.	Write	a	program	that	compares	two	integer	arrays	to	see	whether	they	are	identical.

36.	Write	a	program	to	sort	the	array	in	ascending/descending	order	using	pointers

Find	Error	in	the	Code

1.	What	is	wrong	with	the	program?	Give	the	correct	program.

void	main	(	)

{	int	a,	b;

int	*a_ptr,	*b_ptr;

*a_ptr	=	17;	*b_ptr	=25;



count	<<	“	\	n	a	=”	<<	a;	count	<<	“	\	nb	=”<<	b;

}



CHAPTER:6	Classes	and	objects

We	can	create	our	own	data	type	in	both	C	and	C++.	In	C	we	can	create	our	own	data
type	using	structure	and	in	C++	we	can	create	our	own	data	type	using	either	structure	or
class.	A	class	is	an	extension	of	structure	of	C.	The	structure	of	C	and	C++	have	different
capabilities.	 In	C,	 structures	can	not	have	 functions	as	members	but	 in	C++	we	can	aso
have	functions	as	members	of	sturcures.	We	have	already	seen	structures	in	C	and	all	the
drawbacks	 of	 structure	 are	 resolved	 by	 the	 class	 in	 C++.	 A	 class	 of	 C++	 provides	 to
include	 both	 data	 and	 functions	 (that	 operate	 on	 the	 data)	 in	 the	 class.	 To	 declare	 a
structure	a	keyword	struct	is	used	same	for	declaring	a	class,	a	keyword	class	is	used.	A
class	provides	the	facility	of	data	hiding	using	private	keyword.	By	declaring	the	data	as
private,	only	function	of	that	class	can	access	the	data.

Like	other	built	in	types,	we	cannot	operate	on	two	variables	of	user-defined	type.	For
example,

struct	complex

{

float	x;

float	y;

}	c1,	c2,	c3;

Here	the	complex	numbers	c1,	c2	and	c3	can	easily	be	assigned	values	using	the	dot	(.)
operator.	But	we	 cannot	 add	or	 subtract	 two	 complex	 numbers	 one	 from	 the	 other.	For
example,

c3	=	c1	+	c2;

Now	let’s	see	how	C++	resolve	this	problems.	C++	has	expanded	its	capabilities	further
to	suit	its	OOP	philosophy.	It	attempts	to	bring	the	user-defined	types	as	close	as	possible
to	the	built	in	data	types.	C++	provides	user-defined	type	known	as	class.



Structures	versus	classes

Syntactically,	classes	are	similar	to	structures.	We	may	say	that	variables	can	be	seen	as
instantiations	of	structures	while	objects	can	be	considered	as	instantiations	of	classes.

There	are	several	differences	between	structures	and	classes.



Class

Class	is	an	important	feature	of	object	oriented	programming	language.	Class	is	a	user
defines	data	type	which	contains	members	as	data	&	functions.	It	is	collection	of	various
kind	of	objects.	A	class	is	an	expanded	concept	of	a	data	structure:	instead	of	holding	only
data,	it	can	hold	both	data	and	functions.	It	is	define	by	the	class	keyword.

An	 object	 is	 an	 instantiation	 of	 a	 class.	 As	 an	 analogy,	 in	 terms	 of	 data	 type	 and
variables,	a	class	would	be	the	type	and	an	object	would	be	the	variable.	For	example,	fruit
is	a	class	and	apple,	mango,	banana	are	its	objects.

The	class	is	a	specially	introduced	data	type	in	C++.	The	class	declaration	is	similar	to
a	struct	declaration.The	general	form	of	class	declaration	is	as	follows:

class	class_name

{

private:

variable	declarations;

function	declarations	or	definitions;

public:

variable	declarations;

function	declarations	or	definitions;

};

The	keyword	class	 specifies	 that	you	are	declaring	your	own	data	 type	and	 that	data
type	is	“class_name”.	The	class	is	declared	within	curly	braces	({})	and	after	curly	braces
there	must	be	a	semicolon	(;).

A	class	definition	consists	of	two	parts:	header	and	body.	The	class	header	specifies	the
class	name.	The	class	body	defines	the	class	members.	All	the	variables	declared	in	class
are	known	as	data	members	and	all	the	functions	declared	in	class	are	known	as	member
functions.

a)	Data	members	specify	the	representation/properties/characteristics	of	class	objects.

b)	Member	functions	specify	the	class	operations,	also	called	the	class	interface.

The	 keywords	 private	 and	 public	 are	 known	 as	 access	 specifier	 used	 for	 data	 hiding



mechanism	and	these	keywords	are	followed	by	a	colon	(:).	All	class	members	fall	under
one	of	the	following	three	access	specifiers:

There	are	such	three	types	of	data	members	used	in	class:

a)	Public:

Public	 members	 are	 accessible	 by	 all	 class	 users.	 Data	 members	 and	 member
function	declared	as	public	are	accessible	outside	the	class.

b)	Private:

The	keyword	private	indicates	that	the	declaration	is	private	and	private	members	are
only	 accessible	 by	 the	 class	members	 or	 friend	 functions	 of	 the	 class.	 Private	 data
members	and	member	functions	are	not	accessible	outside	the	class.	The	data	hiding
concept	of	OOP	is	covered	by	private	declaration	of	data	in	the	class.	The	keyword
private	is	optional	because	by	default	the	members	of	a	class	are	treated	as	private.
Once	you	make	a	member	variable	private	there	is	no	way	to	change	its	value	except
by	 using	 one	 of	 the	 member	 functions.	 In	 fact	 the	 only	 place	 private	 member
variables	are	used	is	in	member	functions.	So	the	implementation	of	the	private	data
is	hidden.

c)	Protected:

Protected	 data	members	 and	member	 functions	 are	 only	 available	 to	 derived	 class
members(concept	of	inheritance).

If	no	keyword	“private,	public	or	protected”	is	written	when	declaring	class	members
then	 all	 the	 members	 will	 be	 treated	 as	 private.	 Normal	 good	 programming	 practice
requires	that	all	member	variables	be	private	and	that	most	member	functions	be	public.

Now	let’s	see	an	example	of	class	declaration.

class	student

{

int	rollno;

char	name[20];

float	percent;

public:

void	getdata(int,	char,	float);



void	putdata(void);

};

Here	student	is	class	name,	which	contains	three	data	members(rollno,	name,	percent)
and	two	member	functions.	Note	that	we	have	not	specify	any	keyword	before	declaring
data	 members	 so	 all	 three	 data	 members	 will	 be	 treated	 as	 private	 and	 two	 member
functions	are	declared	as	public.	The	member	functions	can	be	defined	within	a	class	or
outside	the	class.	You	can	define	a	member	function	of	class	outside	the	class	using	scope
resolution	operator(::).	Let’s	see	an	example…

class	student

{

int	rollno;

char	name[20];

float	percent;

public:

void	getdata(int	id,	char	n[20],	float	p)//inline	definition

{

rollno	=	id;

strcpy(name,	n);

percent=	p;

}

void	putdata(void);

};

void	student::	putdata(void)	//member	function	defined	outside

class

{

cout<<”student	id	is:	“	<<	rollno;

cout<<”student	name	is:	”	<<	name;

cout<<”student	percent	is:	“	<<percent;



}

As	we	have	seen	that	the	member	functions	can	be	defined	inside	the	class	and	outside
the	class.	In	given	class	student,	the	member	function	getdata	()	is	defined	within	a	class
and	a	member	function	putdata	()	is	defined	outside	the	class.	When	you	define	a	member
function	 outside	 the	 class	 first	 you	write	 the	 return	 type	 of	 that	 function	 then	 the	 class
name	and	then	scope	resolution	operator	(::)	and	then	function	name	with	body	enclosed
inside	{}.

To	 incorporate	 the	 data	 and	 functions	 in	 a	 class	 is	 called	 as	 encapsulation.	 The
encapsulation	will	be	more	clear	through	following	figure.

[Figure:Data	hiding	mechanism	in	class]

As	you	 can	 see	 in	 above	 figure	 the	 statements	 outside	 the	 class	 can	 access	 to	public
data	members	and	public	member	 functions	and	 through	 those	public	member	 functions
the	 statements	 outside	 the	 class	 can	 access	 private	 data	 members	 and	 private	 member
functions.	Note	that	the	statements	outside	the	class	cannot	access	private	data	members	or
private	member	functions	directly.

Figure:	Class	encapsulates	data	members	as	well	as	member	functions.	Public	member
functions	 acts	 as	 interface	 between	 class	 and	 user/client	 of	 that	 class,	 providing	 some
communication	between	these	two	entities	by	enabling	the	user	to	retrieve	and	modify	the
private	data	members



Objects

After	defining	a	user	defined	data	type,	when	you	want	to	create	a	variable	of	that	data
type	the	variable	is	called	as	object.	An	object	is	also	called	as	an	instance	of	a	class.	Here
is	the	syntax	of	declaring	objects:

classname	object1,object2,….objectn

For	example,

student	s1,	s2;

The	 declaration	 of	 an	 object	 is	 similar	 to	 that	 of	 a	 variable	 of	 any	 basic	 type.	Here
student	is	a	class	and	s1	and	s2	are	objects	of	class	student.	Objects	can	also	be	defined	by
placing	their	name	immediately	after	the	closing	brace,	as	we	do	in	case	of	structures	as
follows:

class	student

{

………

………

………

}	s1,	s2;

Remember	that	all	the	public	member	functions	can	be	used	with	an	object	of	that
class.The	 standard	 form	 of	 calling	 member	 function	 using	 an	 object	 of	 the	 class	 is	 as
follows:

object-name.member-function-name(arguments);

Note	 that	 after	 object	 name,	 to	 access	member	 function	 dot	 (.)	 operator	 is	 used.	 For
example,	 consider	 the	 student	 class,	 which	 has	 an	 object	 s1.	 The	 member	 function
getdata()	can	be	called	as	follows:

s1.getdata(111,	“Jitendra”,	60.07);

Here	111	will	be	assigned	to	rollno,	“Jitendra”	will	be	assigned	to	name	and	30000	will
be	assigned	 to	percent.	The	following	statement	will	be	 illegal	 in	C++	because	rollno	 is
private	data	member	of	the	class.

s1.rollno	=	111;



The	member	functions	of	the	class	have	some	characteristics,	those	are	as	follows:

a)	More	than	one	class	can	have	function	with	same	name.

b)	Member	 functions	 can	access	 the	private	data	of	 the	 class	which	non-	member
function	cannot.

c)	A	member	function	can	call	another	member	function	directly,	without	using	the
dot	(.)	operator.

Considering	all	 the	 features	we	have	discussed	up	 to	now,	we	will	 see	a	 simple	C++
program	to	read	and	display	student	details	using	class.

#include<iostream.h>

#include<conio.h>

class	student

{

int	rollno;

char	name[10];

float	percent;	//data	members	will	be	treated	as	private	by	default

public:

void	getdata(void)	//member	function	getdata	declared	and	defined

{

cout<<“enter	the	student	number:”;

cin>>rollno;

cout<<“enter	the	name	of	student:”;

cin>>name;

cout<<“enter	the	percent:”;

cin>>percent;

}

void	putdata(void)	//member	function	putdata	declared	and	defined

{



cout	<<”\nstudent	number	is:\t”<<rollno;

cout<<”\nstudent	name	is:\t”<<name;

cout	<<”\npercent	is:\t”<<percent;

}

};//	end	of	class

void	main()

{

clrscr();

student	s;	//s	is	declared	as	an	object	of	class	student

s.getdata();//getdata	function	is	called	through	s	object

s.putdata();//putdata	function	is	called	through	s	object

getch();

}

Output:

enter	the	student	number:1

enter	the	name	of	student:abc

enter	the	percent:88.88

student	number	is:	1

student	name	is:	abc

percent	is:	88.88

The	above	example	is	changed	some	way	to	use	two	objects	and	the	putdata	member
function	is	defined	outside	the	class.

#include	<iostream.h>

#include	<conio.h>

#include	<string.h>

class	student

{



//data	members	will	be	treated	as	private	by	default

int	rollno;

char	name[20];

float	percent;

public:

//member	function	getdata	declared	and	defined

void	getdata(int	id,	char	n[],	float	p)

{

rollno	=	id;

strcpy(name,	n);

percent	=	p;

}

//member	function	putdata	declared

void	putdata(void);

};	//	end	of	class	declaration

//member	function	putdata	defined

void	student	::	putdata(void)

{

cout<<“student	id	is:	“<<	rollno	<<	endl;

cout<<“student	name	is:	“<<	name	<<	endl;

cout<<“student	percent	is:	“<<	percent	<<	endl;

}

int	main(void)

{

//s1	and	s2	objects	of	class	student	are	created

student	s1,	s2;

clrscr();



//getdata	function	is	called	through	s1	object

s1.getdata(101,	“ABC”,	66.77);

//getdata	function	is	called	through	s2	object

s2.getdata(102,	“XYZ”,	77.66);

cout<<“The	value	of	data	members	using	s1	object	\n”;

s1.putdata();

cout<<”\nThe	value	of	data	members	using	s2	object\n”;

s2.putdata();

getch();

return(0);

}	//	end	of	main

Output:

The	value	of	data	members	using	s1	object

student	id	is:	101

student	name	is:	ABC

student	percent	is:	66.76

The	value	of	data	members	using	s2	object

student	id	is:	102

student	name	is:	XYZ

student	percent	is:	77.66

In	 the	given	program,	we	have	declared	a	class	 student.	 In	main()	 function	we	declared
two	 objects	 s1	 and	 s2	 of	 type	 student.	 Remember	 when	 we	 define	 an	 object	 of	 class,
necessary	memory	space	is	allocated	to	an	object.	Then	we	have	called	getdata()	function
through	 both	 objects	 s1	 and	 s2	 with	 arguments.	When	 getdata()	 function	 is	 called,	 the
arguments	will	 be	 stored	 in	data	members	of	 the	 class.	Then	 to	print	 the	values	of	data
members	we	have	called	putdata()	function	through	both	objects	s1	and	s2.

To	make	outside	member	functions	as	inline

As	we	have	 seen	 that	we	 can	define	 a	member	 function	outside	 the	 class	 and	 if	 that



function	is	very	small	then	C++	provides	a	feature	of	making	that	function	inline.	To	make
member	function	as	inline,	just	put	the	keyword	inline	before	defining	that	function.	For
example,

class	student

{

int	rollno;

char	name[20];

float	percent;

public:

void	getdata(int,	char	[],	float);

};

inline	void	student	::	getdata(int	id,	char	n[],	float	p)

{

rollno	=	id;

strcpy(name,	n);

percent	=	p;

}



Public	data	members

Up	to	now	we	have	seen	that	normally	we	declare	data	members	as	private	in	the	class.
It	 doesnot	 means	 that	 we	 cannot	 declare	 data	 member	 as	 public.	We	 can	 declare	 data
members	 as	 public	 and	 those	 members	 can	 be	 accessed	 directly	 by	 the	 objects	 of	 that
class.	For	example,

class	abc

{

private:

int	a;

public:

int	b;

int	c;

};

main()

{

abc	x;

x.b	=	10;	//	valid	statement

x.c	=	15;	//	valid	statement

x.a=10;	//	invalid	statement	because	a	is	private

}



Nested	member	functions

Up	to	now	we	have	seen	that	all	the	public	member	functions	can	be	called	through	the
objects	of	that	class.	But	that	is	not	the	case,	you	can	also	call	a	public	member	function
from	another	public	member	function.	This	is	called	as	nesting	of	member	functions.	The
following	program	will	illustrate	this	feature:

#include	<iostream.h>

#include	<conio.h>

class	factorial

{

private:

int	x;

int	facto;

public:

void	fact(void)

{

facto=1;

for	(int	i=1;	i<=x;	++i)

facto	*=	i;

}

void	calculate_fact(int	val1)

{

x	=	val1;

fact();//member	function	called	inside	other	member

function

}

void	show_fact(void)

{



cout<<”\nFactorial	of	”	<<	x	<<	”	is:	”	<<	facto;

}

};

int	main(void)

{

factorial	f1,	f2;

clrscr();

f1.calculate_fact(5);

f2.calculate_fact(7);

f1.show_fact();

f2.show_fact();

getch();

return(0);

}

Output:

Factorial	of	5	is	120

Factorial	of	7	is	5040

The	 above	 program	 is	 of	 calculating	 factorial	 of	 data	member.	We	have	 defined	 two
objects	 f1	 and	 f2	 of	 type	 factorial	 in	main()	 function.	Then	we	 call	 a	member	 function
calculate_fact()	with	 arguments	5	 and	7	 through	objects	 f1	 and	 f2	 respectively.	When	 a
member	function	calculate_fact	is	called,	it	will	store	the	argument	in	data	member	x	and
call	 another	 member	 function	 fact()	 from	 that	 member	 function.	 So	 this	 feature	 or
technique	is	called	as	nesting	of	member	functions.



Private	member	functions	and	public	data	members

As	 we	 can	 declare	 data	 members	 as	 both	 private	 and	 public,	 we	 can	 also	 declare
member	 functions	 as	 both	 private	 and	 public.	 When	 we	 declare	 member	 functions	 as
private	 then	 you	 cannot	 define	 it	 outside	 the	 class	 and	 you	 cannot	 access	 that	member
functions	 through	 objects	 of	 that	 class.	 The	 private	member	 functions	 can	 be	 called	 in
public	member	functions	only.	For	example,

#include	<iostream.h>

#include	<conio.h>

class	maximum

{

private:

int	x,	y;

int	max(void)	//private	member	function

{

return(x	>	y	?	x	:	y);

}

public:

int	z;	//	public	data	member

void	calculate_max(int	val1,	int	val2)

{

x	=	val1;

y	=	val2;

z=max();	//call	private	member	function	and	store

//return	value	in	public	data	member

}

};

int	main(void)



{

maximum	m1,	m2;

clrscr();

m1.calculate_max(25,	34);

m2.calculate_max(10,	7);

cout<<“Maximum	using	object	m1:	”	<<	m1.z	<<	endl;

cout<<“Maximum	using	object	m2:	”	<<	m2.z;

//print	the	value	of	z	directly	through	m1	object

getch();

return(0);

}

Output:

Maximum	using	object	m1:	34

Maximum	using	object	m2:	10

As	given	in	the	above	program	we	have	declared	one	member	function	as	private	and
one	 data	 member	 as	 public.	 First	 we	 have	 created	 two	 objects	 m1	 and	 m2	 of	 type
maximum.	 Then	 we	 have	 called	 a	 public	 member	 function	 calculate_max	 with	 two
arguments	25	and	34	through	m1	object.	When	public	member	function	calculate_max()	is
called	 it	 will	 assign	 arguments	 (25	 and	 34)	 to	 the	 x	 and	 y	 respectively.	 Then	we	 have
called	a	private	member	function	max()	and	return	value	of	that	function	will	be	stored	in
pubic	data	member	z.

Note	 that	 if	 you	write	 a	 statement	 like	m1.max()	 then	 it	will	 cause	 an	 error	 by	C++
compiler	because	max()	function	is	private	to	the	class.	Then	we	have	called	and	printed
the	value	of	public	data	member	z	directly	through	an	object	of	the	class	because	variable
z	is	public	data	member	of	class	maximum.



Array	as	data	member	of	a	class

We	can	also	declare	an	array	as	data	member	of	a	class.	One	more	feature	is	added	to
C++	that	at	the	time	of	declaration	of	an	array,	you	need	not	to	specify	the	size	of	an	array.
At	 runtime	you	can	 specify	or	you	can	 allocate	 the	value	of	 any	variable	 as	 size	of	 the
array.	For	example,

#include	<iostream.h>

#include	<conio.h>

class	sort_array

{

private:

int	size;

int	*arr;	//a	pointer	to	array	as	data	member

public:

void	getdata(int);

void	sort(void);

void	show_array(void);

};

void	sort_array	::	getdata(int	n)

{

size=n;

arr	=	new	int[size];//dynamic	initialization	of	an	array	ofsize

for(int	i=0;	i<size;	++i)

{

cout	<<	“Enter	value-“<<	i+1	<<”	“;

cin	>>arr[i];

}

}



void	sort_array	::	sort(void)

{

for(	int	i=0;	i<size;	++i)

for(int	j=0;	j<size;	++j)

if(arr[i]	<	arr[j])

{

arr[i]+=arr[j];	//	if	condition	is	true	then

arr[j]=arr[i]-arr[j];	//	swap	out	the	values	of

arr[i]-=arr[j];	//	arr[i]	and	arr[j]

}

}

void	sort_array	::	show_array()

{

for(int	i=0;i<size;	++i)

cout<<	arr[i]	<<	”	“;

}

int	main(void)

{

sort_array	s1;

clrscr();

s1.getdata(10);

s1.sort();

s1.show_array();

getch();

return(0);

}

Output:



Enter	value-1	10

Enter	value-2	20

Enter	value-3	31

Enter	value-4	3

Enter	value-5	-25

Enter	value-6	89

Enter	value-7	45

Enter	value-8	17

Enter	value-9	34

Enter	value-10	12

-25	3	10	12	17	20	31	34	45	89

In	 the	 above	 given	 program	we	 have	 declared	 a	 pointer	 to	 integer	 as	 arr	 in	 private
section	of	class	sort_array.	We	have	not	specified	the	size	of	an	array.

In	main()	function	we	have	created	an	object	s1	of	type	sort_array.	Then	we	have	called
a	 function	 getdata()	 with	 argument	 10	 through	 s1	 object.	When	 a	 function	 getdata()	 is
called	the	argument	10	will	be	assigned	to	data	member	size	and	at	runtime	an	array	arr	of
size	size	declared	using	new	operator.	After	that	we	got	input	of	10	values	from	the	user,
these	values	will	be	stored	in	an	array	arr.	Then	we	have	called	a	member	function	sort()
through	s1	object.	And	then	we	have	called	a	member	function	show_array()	through	s1
object	to	show	the	values	of	an	array	arr.



Memory	allocation	for	objects

The	memory	space	for	objects	is	allocated	when	objects	are	created,	not	when	class	is
created.	Memory	space	 for	member	 functions	will	be	allocated	only	once	at	 the	 time	of
class	 creation.	Memory	 space	 for	 data	members	will	 be	 allocated	 at	 the	 time	 of	 object
creation.	 Each	 object	will	 have	 its	 own	 data	members	 so	 for	 all	 data	members	 of	 each
object	will	have	separate	memory	space.

[Figure:	Memory	allocation	of	objects]

As	you	can	see	in	above	figure	the	memory	for	data	members	of	each	objects	will	be
created	when	objects	are	defined	and	memory	for	member	functions	for	all	objects	will	be
created	when	functions	are	defined	at	the	creation	of	class.



Static	data	members	and	member	functions

A	class	can	contain	static	members,	either	data	or	functions.	Static	data	members	of	a
class	are	also	known	as	“class	variables”,	because	there	is	only	one	unique	value	for	all	the
objects	of	 that	same	class.	Their	content	 is	not	different	 from	one	object	of	 this	class	 to
another.	Both	data	and	function	members	of	a	class	can	be	declared	static.

Static	data	members

A	class’	variable	can	be	declared	static.	When	data	members	of	a	class	is	declared	static
they	are	defined	once	and	shared	between	all	objects.	A	static	member	variable	has	some
special	characteristics,	which	are	as	follows:

a)	 If	a	member	of	a	class	 is	declared	as	static	 then	when	an	object	of	 that	class	 is
created,	the	member	variable	will	be	initialized	to	zero	(0).	No	other	initialization
is	permitted.

b)	It	must	be	initialised	outside	the	class	declaration	using	scope	resolution	operator.

c)	Only	one	copy	of	a	static	data	member	is	created	for	the	entire	class	and	is	shared
by	all	the	objects	of	that	class.

d)	It	is	visible	only	within	a	class	but	its	lifetime	is	the	entire	program.

The	 lifetime	 of	 a	 class’s	 static	member	 variable	 is	 the	 lifetime	 of	 the	 program.	This
means	that	a	class’s	static	member	variables	come	into	existence	before	any	instances	of
the	class	are	created.

For	Example:

#include	<iostream.h>

#include	<conio.h>

class	shared

{

public:

static	int	a;

}	;

int	shared::a;	//	define	a

int	main()



{

//	initialize	a	before	creating	any	objects

clrscr();

shared::a	=	99;//	assigning	value	to	a	using	class	name

cout	<<	“This	is	initial	value	of	a:	”	<<	shared::a;

cout	<<	“\n”;

shared	x;

cout	<<	“This	is	x.a:	”	<<	x.a;

getch();

return	0;

}

Output:

This	is	initial	value	of	a:	99

This	is	x.a:	99

Static	variables	are	normally	used	to	maintain	values	common	to	the	entire	class.	Note
that	static	member	declaration	is	in	class	but	a	static	member	must	be	define	outside	the
class	 using	 scope	 resolution	 operator	 (::)	 because	 the	 static	 data	 members	 are	 stored
separately	rather	than	as	a	part	of	an	object.	It	can	be	accessed	separately	without	use	of
any	object.	Here	is	an	example	to	count	for	the	objects	created	out	of	Counter	class.

Example:	Private	static	variable

#include	<iostream.h>

#include	<conio.h>

class	Counter

{

private:

static	int	count;

public:

void	countobject()



{

count++;

}

void	Counter::display()

{

cout<<count;

}

};

int	Counter::count;

void	main(void)

{

clrscr();

Counter	o1,o2,o3,o4;

cout	<<	“Objects	in	existence:	“;

o1.countobject();

o2.countobject();

o3.countobject();

o4.countobject();

o1.display();

o2.display();

o3.display();

o4.display();

getch();

}

Output:

Objects	in	existence:	4

Objects	in	existence:	4



Objects	in	existence:	4

Objects	in	existence:	4

You	can	notice	the	output	of	the	above	program	that	all	four	objects	display	the	same
value	for	the	static	variable	count.	Also	notice	that	the	static	variable	is	inside	the	private
section	 so	 it	 can	 only	 be	 read	 by	 the	 class	 name.	Below	 is	 an	 example	 in	which	 static
variable	is	in	public	section	and	accessible	by	the	objects	also.

Example:	Public	static	variable

#include	<iostream.h>

#include	<conio.h>

class	vector

{

public:

int	x,y;

static	int	count;

void	countvector	()

{

x=y=0;

x++;

y++;

count++;

}

};

int	vector::count	=	0;

int	main	()

{

clrscr();

cout<<“Initially	number	of	vector	objects:”<<vector::count<<endl;



vector	a;

a.countvector();

cout<<“Vector	Count	after	creating	first	object:”<<a.count<<endl;

cout	<<	“Data	of	vector	a:”	<<	a.x	<<”	”	<<a.y<<	endl;

vector	b;

b.countvector();

cout<<	“Vector	Count	after	creating	second	object:”	<<	b.count	<<	endl;

cout	<<	“Data	of	vector	b:”	<<	b.x	<<”	”	<<b.y<<	endl;

cout	<<	“Total	number	of	vector	objects:”	<<	vector::count<<endl;

return	0;

}

Output:

Initially	number	of	vector	objects:0

Vector	Count	after	creating	first	object:1

Data	of	vector	a:1	1

Vector	Count	after	creating	second	object:2

Data	of	vector	b:1	1

Total	number	of	vector	objects:2

In	above	example	output	we	can	notice	 that	only	 static	variable	value	 (like	 count)	 is
shared	between	objects	but	not	 the	non-static	variable	values	 (like	x	and	y).	So	count	 is
incremented	twice	while	x	and	y	remains	1	both	objects.

[Memory	allocation	for	static	members	of	objects]



Initializating	static	data	members

You	 cannot	 initialize	 static	 data	 member	 in	 the	 member	 functions,	 or	 constructors.
Hence,	write	the	initialization	outside	of	the	class	definition.

Notice	that	the	word	static	is	not	used	in	initialization,	like	the	following	statement:

int	vector::count	=	0;

In	fact,	static	members	have	the	same	properties	as	global	variables	but	their	scope	is
limited	within	the	class.	For	that	reason,	and	to	avoid	them	to	be	declared	several	times,
we	 can	 only	 include	 the	 prototype	 (its	 declaration)	 in	 the	 class	 declaration	 but	 not	 its
definition	(its	initialization).	In	order	to	initialize	a	static	data-member	we	must	include	a
formal	definition	outside	the	class,	in	the	global	scope,	as	in	the	previous	example.

Because	 it	 is	 a	 unique	 variable	 value	 for	 all	 the	 objects	 of	 the	 same	 class,	 it	 can	 be
referred	to	as	a	member	of	any	object	of	that	class	or	even	directly	by	the	class	name	(of
course	this	is	only	valid	for	static	members).

Static	member	functions

We	 can	 also	 declare	 member	 functions	 as	 static	 like	 data	 members.	 To	 declare	 a
member	 function	 as	 static	 you	 have	 to	 consider	 following	 properties	 of	 static	 member
function.

a)	 A	 static	 member	 function	 can	 access	 only	 other	 static	 data	 members	 or	 static
member	functions	declared	in	the	same	class.

b)	A	static	member	function	can	be	called	using	the	class	name	not	the	object	name
of	that	class.

Syntax	for	declaring	static	member	functions:

static	<return	type><function	name>(<parameter	list>);

Let’s	see	an	example	of	how	to	use	static	data	members	and	static	member	functions	in
C++.

#include	<iostream.h>

#include	<conio.h>

class	counter

{



private:

int	obj_no;

static	int	count;

public:

void	set_obj_no(void);

void	show_obj_no(void);

static	void	show_count(void);

};

int	counter	::	count;

void	counter	::	set_obj_no(void)

{

obj_no	=	++count;

}

void	counter	::	show_obj_no(void)

{

cout<<“Object	number	is	“<<	obj_no	<<	endl;

}

void	counter	::	show_count(void)

{

cout<<“The	value	of	count	is	“<<	count	<<	endl;

}

int	main(void)

{

counter	c1,	c2;

clrscr();

cout<<“Value	of	count	before	initialization”<<	endl;

counter	::	show_count();



c1.set_obj_no();

c2.set_obj_no();

cout<<“Value	of	count	after	setting	two	object	no.”<<	endl;

counter	::	show_count();

counter	c3;

c3.set_obj_no();

cout<<“Value	of	count	after	setting	third	object	no.”<<endl;

counter	::	show_count();

cout<<	endl;

cout<<“The	value	of	all	obj_no….”<<	endl;

c1.show_obj_no();

c2.show_obj_no();

c3.show_obj_no();

getch();

return(0);

}

Output:

Value	of	count	before	initialization

The	value	of	count	is	0

Value	of	count	after	setting	two	object	no.

The	value	of	count	is	2

Value	of	count	after	setting	third	object	no.

The	value	of	count	is	3

The	value	of	all	obj_no….

Object	number	is	1

Object	number	is	2

Object	number	is	3



As	given	in	the	above	program	first	we	have	declared	a	data	member	count	as	static	in
class	counter	declaration,	and	a	member	function	show_count()	as	static	in	class	counter.
The	data	member	count	is	declared	as	private	and	a	member	function

[Figure:	Sharing	of	a	static	data	member]

show_count()	 is	declared	as	public	 in	class	counter.	Note	 that	we	have	defined	count
outside	 the	 class	 using	 scope	 resolution	 operator	 (::).	 In	 main	 function	 first	 we	 have
declared	 two	objects	 c1	and	c2	of	 type	counter.	When	we	defined	a	 static	data	member
count,	 the	 value	 of	 count	 will	 be	 automatically	 initialize	 to	 zero	 (0).	 A	 static	 member
function	 can	 access	 only	 static	 data	members	 and	 static	member	 functions.	 So	 in	 static
member	functions	show_count()	we	can	access	only	count	data	because	in	the	class	count
is	only	a	static	data.	We	cannot	access	obj_no	in	show_count()	function.	Note	that	we	can
access	static	member	function	directly	with	the	class	name	instead	of	object	name	of
that	class.	When	you	use	a	static	member	function	with	class	name,	you	have	to	use	scope
resolution	operator	 instead	of	dot	(.)	operator.	As	you	can	see	in	the	output,	 the	variable
count	will	use	single	memory	space	for	all	the	objects.

The	static	member	functions	of	a	class	are	callable	before	any	instances	of	the	class	are
created.	This	means	that	the	static	member	functions	of	a	class	can	access	the	class’s	static
member	variables	before	any	instances	of	the	class	are	defined	in	memory.	This	gives	you
the	ability	to	create	very	specialized	setup	routines	for	class	objects.



Array	of	objects

As	we	have	seen	that	we	can	declare	an	array	of	any	built	in	type	but	in	C++	you	can
also	declare	an	array	of	variables(i.e.	objects)	of	type	class.	This	array	of	variables	called
as	an	array	of	objects.	For	example,	consider	the	student	class,

class	student

{

int	rollno;

char	name[20];

float	percent;

public:

void	getdata(int	id,	char	n[20],	float	p);

void	putdata(void);

};

Here	 the	 identifier	 student	 is	 user	 defined	 data	 type	 and	 we	 can	 create	 an	 array	 of
objects	of	type	student	as	follows:

student	s[4];

Here	we	have	created	four	objects	s[0],	s[1],	s[2]	and	s[3]	of	 type	student.	Now	if
you	want	to	access	any	member	function	through	object	as	given	below,

s[0].putdata();

Now	let’s	see	a	program	of	an	array	of	objects.

#include	<iostream.h>

#include	<conio.h>

#include	<string.h>

class	student

{

private:

int	rollno;



char	name[20];

float	percent;

public:

void	getdata(void);

void	putdata(void);

};

void	student	::	getdata(void)

{

cout<<“Enter	student	id	“;

cin>>	rollno;

cout<<“Enter	student	name	“;

cin>>	name;

cout<<“Enter	student	percent	“;

cin>>	percent;

}

void	student	::	putdata(void)

{

cout<<“student	id	is:	“<<	rollno	<<	endl;

cout<<“student	name	is:	“<<	name	<<	endl;

cout<<“student	percent	is:	“<<	percent	<<	endl;

}

int	main(void)

{

student	s[3];

clrscr();

cout<<”	Input	data	of	three	students”	<<	endl;

for(int	i=0;i<3;	++i)



{

s[i].getdata();

cout<<	endl;

}

cout<<”	Information	of	three	students”	<<	endl;

for(i=0;i<3;	++i)

{

s[i].putdata();

cout<<endl;

}

getch();

return(0);

}

Output:

Input	data	of	three	students

Enter	student	id	11

Enter	student	name	John

Enter	student	percent	5000

Enter	student	id	12

Enter	student	name	Adams

Enter	student	percent	7000

Enter	student	id	13

Enter	student	name	Jack

Enter	student	percent	10000

Information	of	three	students

student	id	is:	11

student	name	is:	John



student	percent	is:	5000

student	id	is:	12

student	name	is:	Adams

student	percent	is:	7000

student	id	is:	13

student	name	is:	Jack

student	percent	is:	10000

As	you	can	see	in	the	above	program	we	have	defined	an	array	of	three	objects	named
s[0],	s[1]	and	s[2]	of	type	student.	We	access	getdata()	function	through	these	three	objects
in	for	loop	and	then	we	access	putdata()	function	to	print	all	the	data	of	these	three	objects
in	another	for	loop.

Example:	Arrays	of	objects	of	person	class

class	person

{

char	name[30];

int	account;

float	balance;

public:

void	getdata(void);

void	display(void);

};

void	person::getdata(void)

{

cout	<<	“Enter	name:	“;

cin	>>	name;

cout	<<	“Enter	account	no:	“;

cin	>>	account;



cout	<<	“Enter	balance	amount:	“;

cin	>>	balance;

}

void	person::display(void)

{

cout	<<	“\nName:	”	<<	name;

cout	<<	“\nAccount:	”	<<	account;

cout	<<	“\nBalance:	”	<<	balance;

}

main()

{

person	p[3];	//array	of	object	of	type	person

for(int	i=0;i<3;i++)

{

cout	<<	“\nGet	details	of	person	”	<<	(i+1)	<<	“:	\n”;

p[i].getdata();

}

cout<<”\n”;

for(int	i=0;i<3;i++)

{

cout	<<	“\nDetails	of	person	”	<<	(i+1)	<<	“:	\n”;

p[i].display();

}

cout<<”\n”;

getch();

}



Passing	objects	as	function	arguments

You	can	pass	the	objects	as	arguments	and	return	object	from	the	called	function.

As	we	have	seen	that	the	arguments	can	be	passed	in	two	ways	one	is	call	by	value	and
another	 is	 call	 by	 reference.	 In	 case	of	objects,	 similarly	we	can	pass	 arguments	 in	 two
ways.	Let’s	see	an	example	of	passing	objects	as	argument	and	returning	objects	from	the
function.

#include	<iostream.h>

#include	<conio.h>

class	distance

{

private:

int	feet;

float	inches;

public:

void	get_distance(int,	float);

distance	add_distance(distance);

void	put_distance(void);

};

void	distance	::	get_distance(int	f,	float	i)

{

feet	=	f;

inches	=	i;

}

distance	distance	::	add_distance(distance	d2)

{

distance	d;

d.feet	=	feet	+	d2.feet;	//	feet	is	data	of	object	d1.



d.inches	=	inches	+	d2.inches;	//	inches	is	data	of	object	d1.

if(d.inches	>=	12.0)

{

d.inches	-=	12.0;

d.feet++;

}

return	d;	//Return	type	of	function	is	object	of	distance	class

}

void	distance	::	put_distance(void)

{

cout<<“Feet	“<<	feet	<<”	-inches	”	<<	inches	<<	endl;

}

int	main(void)

{

distance	d1,d2,d3;

clrscr();

d1.get_distance(11,	9.5);

d2.get_distance(5,	4.5);

d3	=d1.add_distance(d2);

d1.put_distance();

d2.put_distance();

d3.put_distance();

getch();

return(0);

}

Output:

Feet	11	–	inches	9.5



Feet	5	–	inches	4.5

Feet	17	–	inches	2

As	 given	 in	 the	 above	 program	 first	 we	 have	 declared	 a	 member	 functions
add_distance()	with	an	argument	of	object	of	type	distance	and	that	function	will	return	an
object	of	type	distance.	In	main()	function	first	we	created	three	objects	d1,	d2	and	d3	of
type	distance.	Then	we	called	get_distance()	with	arguments	 through	d1	and	d2	objects.
Then	we	have	called	add_distance()	function	through	d1	object	with	argument	d2	and	that
function	will	return	an	object	of	type	distance,	that	will	be	stored	in	object	d3.	When	the
function	add_distance()	will	be	called,	 in	 that	function	we	are	adding	two	data	members
feet	of	objects	d1	and	d2	and	two	data	members	inches	of	objects	d1	and	d2	into	another
data	members	feet	and	inches	of	object	d.	Note	that	this	function	we	have	called	through
d1	object	so	there	is	no	need	of	specifying	object	name	(d1)	in	prefix	of	feet	and	inches
data	members.	We	have	passed	d2	object	so	to	access	the	members	of	d2	we	must	write
object	name	(d2)	 in	 front	of	data	members.	The	addition	of	data	members	of	d1	and	d2
objects	will	be	stored	in	the	data	members	of	object	d.	And	then	that	function	will	return
object	 d	 that	 will	 be	 assigned	 to	 object	 d3.	 Then	 in	 main()	 function	 we	 have	 called
put_distance()	function	through	all	three	objects	d1,	d2	and	d3	to	print	the	data	members
of	all	three	objects.

There	is	another	way	to	solve	or	to	do	the	given	program	with	more	flexibility	that	is
there	 is	 no	 need	 of	 defining	 object	 of	 type	 distance	 which	 we	 have	 defined	 in
add_distance()	 function	 with	 name	 d.	 this	 can	 be	 done	 with	 some	 changes	 in	 defining
add_distance()	 function	 in	 the	 given	 program.	 The	 function	 add_distance()	 should	 be
defined	as	follows:

void	distance	::	add_distance(distance	d1,	distance	d2)

{

feet	=	d1.feet	+	d2.feet;

inches	=	d1.inches	+	d2.inches;

if(inches	>=	12.0)

{

inches	-=	12.0;

feet++;



}

}

Note	that	here	we	are	passing	two	objects	d1	and	d2	as	arguments.	And	we	are	calling
this	function	as	follows	from	main()	function:

d3.add_distance(d1,	d2);

Instead	of

d3	=d1.add_distance(d2);

Here	we	are	calling	add_distance()	function	through	d3	object	with	two	arguments	d1
and	d2	so	in	the	function	we	can	access	data	members	of	d3	object,	so	the	addition	of	data
members	of	d1	and	d2	will	be	stored	directly	to	the	data	members	of	d3	object.	The	idea	of
this	function	will	be	more	clear	through	the	following	figure.

[Figure:	The	idea	of	add_distance()	function]



Objects	as	return	type

A	function	can	not	only	receive	objects	as	arguments	but	can	also	return	objects.	The
example	below	shows	how	a	function	returns	objects	to	another	function.

//	Returning	objects	from	a	function.

#include	<iostream.h>

#include	<conio.h>

class	myclass

{

int	i;

public:

void	set_i(int	n)	{	i=n;	}

int	get_i()	{	return	i;	}

};

myclass	f();	//	Funciton	Declaration,	function	f()	returns	object	of

type	myclass

int	main()

{

myclass	o;

o	=	f();	//Function	call

cout	<<	o.get_i()	<<	“\n”;

return	0;

}

myclass	f()//	Funciton	Definition

{

myclass	x;

x.set_i(1);

return	x;



}

Output:

1



Friend	functions

In	 the	 real	 life	 the	 friend	member	means	a	member	who	 is	close	 to	you	but	not	your
family	member.	In	same	way	we	can	also	define	a	function	as	friend	in	the	class,	which
will	not	be	the	member	of	that	particular	class	but	that	function	can	access	even	the	private
members	of	the	class.

Up	 to	 now	we	have	 seen	 that	 a	 non-member	 function	 cannot	 access	 the	 private	 data
members	 of	 that	 class	 but	 in	 some	 situation	we	 need	 to	 give	 access	 to	 the	 private	 data
member	 to	 the	 outside	 functions	 (or	 non-member	 functions).	 For	 this	 situation	 C++
provides	the	feature	of	friend	function.	A	friend	function	can	be	friend	of	more	than	one
class.	 To	 define	 a	 function	 as	 friend	 function	 of	 the	 class	 we	 have	 to	 write	 keyword
“friend”	 in	 before	 function	 name	 at	 the	 time	 of	 declaration.	The	 general	 form	of	 friend
function	declaration	is	as	follows:

class	<class	name>

{

private:

……

……

public:

……

friend	<return	type>	<function	name>	(arguments);

};

Once	a	function	is	declared	as	friend	in	the	class	that	function	must	be	defined	outside
the	 class,	 at	 the	 time	 of	 defining	 a	 friend	 function,	 we	 can	 not	 use	 scope	 resolution
operator	(::).	A	friend	function	can	be	declared	in	any	number	of	classes.

Friend	function	characteristics:

a)	Friend	function	is	non-member	function	for	the	class.

b)	It	is	not	in	the	scope	of	the	class	to	which	it	has	been	declared	as	friend.

c)	Since	it	is	not	in	the	scope	of	the	class,	it	cannot	be	called	using	the	object	of	that
class.	It	can	be	invoked	like	a	normal	function	without	the	help	of	any	object.



d)	Unlike	member	function,	it	cannot	access	the	member	names	directly	and	has	to
use	an	object	name	and	dot	membership	operator	with	each	member	name.

e)	It	can	be	declared	as	private	or	public	in	the	class	without	affecting	its	meaning.

f)	Usually,	it	has	the	objects	as	arguments.

Example	1:	Friend	Function	demo

#include<iostream.h>

#include<conio.h>

class	myclass

{

int	a,	b;	//	note:	by	default	a	and	b	are	private	public:

public:

void	read(int	i,	int	j)

{

a=i;	b=j;

}

friend	int	sum(myclass	x);

//	Note:	sum()	is	not	a	member	function	of	any	class.

};

int	sum(myclass	x)

{	/*	Because	sum()	is	a	friend	of	myclass,	it	can	directly	access

a	and	b.	*/

return	x.a	+	x.b;

}

int	main()

{

myclass	n;

clrscr();



n.read(3,	4);

cout	<<	“The	addition	of	two	nos:	“<<sum(n);

//call	to	friend	function

return	0;

}

Output:

The	addition	of	two	nos:	7

Example	2:	Now	let’s	see	a	real	life	example	of	friend	function.

#include	<iostream.h>

#include	<conio.h>

class	student

{

private:

int	rollno;

char	name[20];

float	percent;

public:

void	getdata(void);

friend	void	putdata(student);

};

void	student	::	getdata(void)

{

cout<<“Enter	student	id	“;

cin>>rollno;

cout<<“Enter	student	name	“;

cin>>name;

cout<<“Enter	student	percent	“;



cin>>percent;

}

void	putdata(student	s)

{

cout<<“student	id	“<<	s.rollno	<<	endl;

cout<<“student	name	“<<	s.name	<<	endl;

cout<<“student	percent	“<<	s.percent	<<	endl;

}

int	main(void)

{

student	s1;

clrscr();

s1.getdata();

cout<<”\nCall	friend	function	putdata()	to	show	members	of

s1\n\n”;

putdata(s1);

getch();

return(0);

}

Output:

Enter	student	id	1

Enter	student	name	Jack

Enter	student	percent	10000

Call	friend	function	putdata()	to	show	members	of	s1

student	id	1

student	name	Jack

student	percent	10000



As	given	in	the	program	we	have	define	a	member	function	putdata()	as	friend	in	class
student.	When	we	 define	 that	 function	 outside	 the	 class,	 there	 is	 no	 need	 of	 specifying
class	name	and	scope	resolution	operator	(::).	When	you	call	the	friend	function	putdata()
from	the	main	function,	there	is	no	need	of	specifying	any	object	name	or	dot	(.)	operator.
You	can	call	putdata()	function	directly	with	its	name.	Now	let’s	see	how	a	friend	function
is	friend	of	two	classes.	To	understand	this	concept	let’s	take	an	example	of	earlier	class
student	with	two	more	classes	manager	and	worker.

Example	3:	Use	of	friend	function	in	more	than	one	class

#include	<iostream.h>

#include	<conio.h>

#include	<string.h>

class	principal;

class	professor;

class	employee

{

private:

int	id;

char	name[20];

int	experience;

public:

void	getdata(void)

{

cout<<“Enter	employee	id	“;

cin>>id;

cout<<“Enter	employee	name	“;

cin>>name;

cout<<“Enter	employee	salary	“;

cin>>experience;



}

friend	void	compare(employee,	principal,	professor);

};

class	principal

{

private:

int	id;

char	name[20];

int	experience;

public:

friend	void	compare(employee,	principal,	professor);

};

class	professor

{

private:

int	id;

char	name[20];

int	experience;

public:

friend	void	compare(employee,	principal,professor);

};

void	compare(employee	e,	principal	pl,	professor	pr)

{

if(e.experience	>=15)

{

pl.id	=	e.id;

strcpy(pl.name,	e.name);



pl.experience	=	e.experience;

cout<<”\nThe	employee	is	Principal	\n”;

cout<<“Principal	id:	“<<	pl.id	<<	endl;

cout<<“Principal	name:	“<<	pl.name	<<	endl;

cout<<“Principal	experience:”<<	pl.experience	<<	endl;

}

Else

{

pr.id	=	e.id;

strcpy(pr.name,	e.name);

pr.experience	=	e.experience;

cout<<”\nThe	employee	is	Professor	\n”;

cout<<“Professor	id:	“<<	pr.id	<<	endl;

cout<<“Professor	name:	“<<	pr.name	<<	endl;

cout<<“Professor	experience:”<<	pr.experience	<<	endl;

}

}

int	main(void)

{

employee	e1,	e2;

principal	p1;

professor	pr1;

clrscr();

e1.getdata();

cout<<	endl;

e2.getdata();

compare	(e1,	p1,	pr1);



compare	(e2,	p1,	pr1);

getch();

return(0);

}

Output:

Enter	employee	id	1

Enter	employee	name	RSah

Enter	employee	salary	23

Enter	employee	id	2

Enter	employee	name	HGRajput

Enter	employee	salary	12

The	employee	is	Principal

Principal	id:	1

Principal	name:	RSah

Principal	experience:23

The	employee	is	Professor

Professor	id:	2

Professor	name:	HGRajput

Professor	experience:12

As	 you	 can	 see	 in	 above	 program	 first	 we	 have	 declared	 two	 classes	 professor	 and
principal	as	 forward	declaration	 this	means	 that	both	classes	will	be	defined	afterwards.
Then	 we	 have	 defined	 student	 class	 with	 a	 member	 function	 compare()	 as	 friend	 with
three	arguments	as	an	object	of	student,	an	object	of	principal	and	an	object	of	professor.
In	any	firm	everybody	are	student	of	that	firm,	we	can	differentiate	between	principal	and
professor	 through	 their	 salaries.	 So	 through	 a	 friend	 function	 compare()	 we	 can
differentiate	that	whether	the	student	is	principal	or	professor.

In	 declaration	 of	 class	 principal	 and	 professor	 we	 have	 defined	 same	 compare()
function	with	same	arguments	as	friend	so	this	friend	function	can	access	any	private	data
of	all	the	three	classes.



As	we	have	discussed	earlier	that	there	is	no	need	of	scope	resolution	operator	or	any
class	name	at	the	time	of	defining	friend	function,	this	you	can	see	in	the	program	that	a
compare()	 function	 need	 not	 scope	 resolution	 operator	 (::)	 or	 any	 class	 name,	 it	 can	 be
defined	as	normal	function.	When	you	call	a	friend	function	from	main	function,	there	is
no	need	of	 any	object	name	or	 a	dot	operator,	we	can	call	 a	 friend	 functions	 as	normal
functions.

A	complex	number	consists	of	 two	parts	–	 real	part	and	an	 imaginary	part	written	as
x+ij,	where	x	and	y	are	 real	values.	 j	 is	 imaginary	quantity	 .We	can	make	use	of	 friend
function	for	the	arithmetic	operations	with	complex	numbers	as	given	below:

Example	4:	Using	friend	function	for	the	addition	of	two	complex	numbers

/*	Friend	functions*/

class	complex	//a+jb

{

float	a;

float	b;

public:

void	input(float	real,	float	img)

{

a=real;

b=img;

}

friend	complex	sum(complex,	complex);

void	display(complex);

};

complex	sum(complex	c1,	complex	c2)

{

complex	c3;

c3.a=c1.a+c2.a;



c3.b=c1.b+c2.b;

return	(c3);

}

void	complex::display(complex	c)

{

cout	<<	c.a	<<	“+j”	<<	c.b	<<”\n”;

}

main()

{

complex	A,B,C;

//object	of	type	complex

A.input(3.0,5.5);

B.input(2.5,1.0);

C=sum(A,B);

cout	<<	“\n	A	=	“;	A.display(A);

cout	<<	“\n	B	=	“;	B.display(B);

cout	<<	“\n	C	=	“;	C.display(C);

cout<<”\n”;

getche();

}

Output:

A	=	3+j5.5

B	=	2.5+j1

C	=	5.5+j6.5



Friend	Class

We	can	also	declare	all	the	member	functions	as	friend	of	another	class	then	that	class
will	be	called	as	friend	class.	The	friend	class	can	be	declared	as	follows:

class	a

{

private:

……

……

public:

……

friend	class	b;

};

Here	all	 the	member	functions	of	class	b	are	friend	of	class	a.	A	member	function	of
one	class	can	be	friend	function	of	more	than	one	class,	in	such	case	a	member	function
should	be	defined	using	the	scope	resolution	operator	(::)	in	another	classes.For	example,

class	a

{

private:

……

……

public:

……

void	abc();

};

class	b

{

private:



……

……

public:

……

friend	void	a	::	abc();	//	abc()	is	friend	of	class	b.

};

A	function	abc()	is	declared	in	class	a	and	if	you	want	to	declare	or	use	that	function	in
class	b	then	declare	that	function	as	friend	in	class	b	using	scope	resolution	operator	(::)	as
shown	in	the	given	example.

Example:	Implementation	of	friend	class

#include<iostream.h>

#include<conio.h>

class	A

{

int	n1,n2;

public:

void	setA(int	a,int	b)

{

n1=a;

n2=b;

}

friend	class	B;//means	all	functions	of	B	class	can	use	n1	and	n2

};

class	B

{

public:

int	add(A	a)	//add	is	now	frined	function	of	A



{

return	a.n1+a.n2;

}

};

void	main()

{

clrscr();

A	objA;

B	objB;

objA.setA(23,23);

cout<<”\nsum	of	numbers	in	A	is:”<<objB.add(objA);

getch();

}

Output:

sum	of	numbers	in	A	is:46



Pointers	to	Objects

We	know	that	pointers	can	be	used	to	access	data.	Since	a	class	is	also	a	data	type,	a
pointer	can	point	to	an	object	created	by	a	class.	The	general	form	will	be

class_name	*pointer;

Object	pointers	are	useful	in	creating	objects	at	run	time.	The	pointers	can	then	be	used
to	access	the	public	members	of	an	object.	The	general	form	is	as	follows:

pointer->memberFunction()

where	memberFunction()	is	a	method/function	in	the	class.

Example:

#include<iostream.h>

class	item

{

int	code;

float	price;

public:

void	getdata(int	a,	int	b)

{

code=a;

price=b;

}

void	show(void)

{

cout<<“Code:”	<<	code<<”\n”<<“Price:”	<<	price<<”\n”;

}

};

main()

{



item	A;	//object	created

item	*Ptr=&A;	//	ptr	declared	and	initialised	with	address	of	A

Ptr->getdata(11,	2.99);

Ptr->show();

//	This	is	same	as

//	A.getedata(11,2.99);

//	A.show();

return	0;

}

Output:

Code:11

Price:2

It	is	to	be	noted	from	this	example	that	*ptr	is	an	alias	of	object	A.

Objects	can	also	be	created	using	pointers	and	new	operator	as	follows

class_name	*Ptr=	new	class_name

e.g.

item	*Ptr=	new	item;

This	 statement	 allocates	 enough	 memory	 space	 for	 the	 data	 members	 in	 the	 object
structure	and	assigns	the	address	of	the	memory	space	to	Ptr.	Ptr	can	now	be	used	to	refer
to	the	members,	e.g.

Ptr->show();

If	 the	 class	 has	 a	 constructor	 with	 parameters,	 then	 parameters	 should	 be	 provided
when	 creating	 the	 object.	 An	 array	 of	 objects	 can	 also	 be	 created	 using	 pointers.	 The
following	example	creates	an	array	of	10	objects	of	item.

item	*Ptr=	new	item[10];

Example:	Pointer	to	Array	of	objects

#include<iostream.h>

class	item



{

int	code;

float	price;

public:

void	getdata(int	a,	int	b)

{

code=a;

price=b;

}

void	show(void)

{

cout<<“Code:”	<<	code<<”\n”<<“Price:”	<<	price<<”\n”;

}

};

const	int	size	=	2;

main()

{

item	*Ptr=	new	item[size];

item	*d	=	Ptr;

int	i,x;

float	y;

for(i=0;	i<size;	i++)

{

cout<<“Input	code	and	price	for	item”	<<	i+1;

cin>>x>>y;

Ptr->getdata(x,y);

Ptr++;



}

for(i=0;	i<size;	i++)

{

cout<<“Item:	”	<<	i+1	<<”\n”;

d->show();

d++;

}

return	0;

}

Output:

Input	code	and	price	for	item11

22

Input	code	and	price	for	item22

33

Item:	1

Code:1

Price:22

Item:	2

Code:2

Price:33



Pointer	to	members	of	class

We	 can	 use	 the	 members	 of	 a	 class	 through	 pointer	 in	 C++.	 C++	 provides	 three
operators	to	declare	and	access	a	pointer	to	a	member	those	are	as	follows:

::*

.*

->*

These	three	operators	are	also	called	as	dereferencing	operators.	The	idea	of	these	three
operators	will	be	more	clear	through	the	following	program.

#include	<iostream.h>

#include	<conio.h>

class	complex

{

private:

float	x;

float	y;

public:

void	getdata(float	x1,	float	y1)

{

x	=	x1;

y	=	y1;

}

complex	add(complex	com2)

{

complex	ts;

float	complex	::*	ptr_x	=	&complex	::	x;

//ptr_x	is	pointer	to	member	x

float	complex	::*	ptr_y	=	&complex	::	y;



//ptr_y	is	pointer	to	member	y

complex	*ptr_obj	=	&com2;

//*ptr_obj	is	pointer	to	object	com2

ts.x	=	x	+	com2.*ptr_x;

//Accessing	value	of	x	using	pointer	to	member	and	.*	operator

ts.y	=	y	+	ptr_obj->*ptr_y;

//Accessing	value	of	y	using	pointer	to	object	and	->*	operator

return	ts;

}

void	putdata(void)

{

cout<<	x	<<”	+	i”<<	y	<<	endl;

}

};

int	main(void)

{

complex	c1,	c2,	c3;

clrscr();

void	(complex	::	*ptr_fun)(float,	float)	=	&complex	::	getdata;

//	creating	pointer	to	member	function	getdata	of	class	complex

(c1.*ptr_fun)(5.2,	3.7);

//	calling	the	function	thru	function	pointer	using	object	c1

complex	*ptr_obj	=	&c2;

(ptr_obj->*ptr_fun)(3.9,	7.5);

//	calling	the	function	thru	pointer	to	object

c3	=	c1.add(c2);

cout<<“First	complex	number:	“;



c1.putdata();

cout<<“Second	complex	number:	“;

c2.putdata();

cout<<”\nAddition	of	two	complex	numbers:	“;

c3.putdata();

getch();

return(0);

}

Output:

First	complex	number:	5.2	+	i3.7

Second	complex	number:	3.9	+	i7.5

Addition	of	two	complex	numbers:	9.1	+	i11.2

As	you	can	see	in	the	above	program	first	we	have	declared	a	class	named	complex,	in
that	 class	 we	 have	 declared	 two	 private	 data	members	 x	 and	 y	 of	 type	 float	 and	 three
public	member	 functions	 getdata(),	 putdata()	 and	 add().	 For	 tsorary	 don’t	 consider	 how
these	 functions	 works	 we	 will	 see	 those	 functions	 when	 they	 will	 called	 in	 main()
function.

In	main()	function	first	we	have	declared	three	objects	c1,	c2	and	c3	of	type	complex.
Then	we	have	written	following	statement	in	main()	function.

void	(complex	::	*ptr_fun)(float,	float)	=	&complex	::	getdata;

In	 this	 statement	we	 have	 defined	 a	 pointer	 to	 a	member	 function	 getdata()	 of	 class
complex	using	pointer	to	member	function	operator	(::*).	A	pointer	to	a	member	function
getdata()	is	declared	as	ptr_fun.	So	wherever	you	want	to	call	getdata()	function,	you	can
also	call	with	pointer	to	a	member	function	ptr_fun.

(c1.*ptr_fun)(5.2,	3.7);

In	 the	above	 statement	of	main()	 function	we	are	calling	a	member	 function	 through
pointer	 to	 member	 function	 with	 object	 c1.	 In	 that	 function	 we	 have	 passed	 two
parameters	with	 values	 5.2	 and	 3.7.	 In	 this	 statement	we	 have	 called	 getdata()	 function
with	5.2	and	3.7	parameters	to	store	these	parameters	in	data	members	of	object	c1.	This
concept	is	of	how	to	use	pointer	to	member	function	(.*).



complex	*ptr_obj	=	&c2;

The	above	statement	shows	you	that	you	can	also	use	pointer	to	object	(->*)	instead	of
object	name.	Here	in	the	given	statement	we	have	define	a	pointer	ptr_obj	of	type	complex
and	assigned	 the	address	of	object	 c2	 to	 the	ptr_obj.	So	now	wherever	you	want	 to	use
object	 c2	 you	 can	 also	 use	 ptr_obj	 with	 pointer	 to	 object	 operator	 (->*).	 The	 next
statement	is	an	example	of	how	to	use	pointer	to	object	operator.

(ptr_obj->*ptr_fun)(3.9,	7.5);

Here	 note	 that	 we	 are	 calling	 getdata()	 function	 through	 its	 pointer	 ptr_fun	 with
arguments	3.9	and	7.5.	Earlier	we	have	called	this	function	with	object	c1	here	we	want	to
call	with	c2.	Already	we	have	declared	a	pointer	to	object	ptr_obj	which	points	to	object
c2	so	we	can	use	ptr_obj	as	an	object	to	call	getdata()	function	instead	of	c2.

c3	=	c1.add(c2);

In	the	above	statement	we	have	called	add()	function	with	arguments	as	object	c2	and
that	function	will	return	the	addition	of	data	members	of	objects	c1	and	c2	and	that	object
will	be	stored	in	object	c3.	Now	lets	see	how	this	add()	function	works.	In	add()	function
we	have	stored	the	argument	object	c2	as	object	com2.	We	have	declared	another	tsorary
object	ts	of	type	complex.	Already	we	have	seen	that	how	to	define	pointer	to	a	member
function.	 In	 the	same	way	we	can	also	define	a	pointer	 to	data	members.	The	following
two	statements	in	add()	function	we	have	defined	two	pointers	named	ptr_x	and	ptr_y	to
the	data	members	x	and	y	respectively.

float	complex	::*	ptr_x	=	&complex	::	x;

float	complex	::*	ptr_y	=	&complex	::	y;

Now	wherever	you	want	to	use	the	value	of	data	member	x	and	y	we	can	also	use	ptr_x
and	ptr_y	respectively.	In	the	next	statement	of	add()	function	is	declaration	of	pointer	to
an	 object	 com2	 as	 ptr_obj	 which	 already	 we	 have	 seen	 in	 main()	 function.The	 add()
function	we	 have	 called	with	 c1	 object	 in	main()	 function	 so	 in	 add()	 function	we	 can
access	the	data	member	of	object	c1	directly	without	using	dot	(.)	operator.

ts.x	=	x	+	com2.*ptr_x;	//statement	1

ts.y	=	y	+	ptr_obj->*ptr_y;	//statement	2

In	the	above	two	statements	of	add()	function,	we	are	adding	data	member	x	of	objects
c1	and	com2	to	the	data	member	x	of	object	ts	and	same	for	data	member	y.



Here	we	can	access	the	pointer	to	data	members	of	object	with	object	name	and	pointer
to	member	operator	(.*)	as	given	in	statement	1	and	we	can	also	access	the	pointer	to	data
members	of	object	with	pointer	to	that	object	name	and	pointer	to	member	operator	(->*)
as	given	in	statement	2.

Next	you	have	a	summary	on	how	can	you	read	some	pointer	and	class	operators	(*,	&,
.,	->,	[	])	that	appear	in	the	previous	example:



Exercise
True	or	False.

1.	State	that	the	following	statement	is	True/False.

a)	Structure	struct	provides	data	hiding	facility.

b)	By	default	the	data	members	of	class	are	private.

c)	A	function	that	outside	the	class	can	access	public	member	of	class	only.

d)	A	function	that	outside	the	class	can	access	private	member	of	class.

e)	A	public	member	function	can	access	private	member	and	public	member	of	class.

f)	We	cannot	define	a	member	function	outside	the	class.

g)	We	cannot	call	a	member	function	of	a	class	from	another	member	function	of	same
class.

h)	Each	object	of	a	class	will	have	separate	memory	for	member	functions	of	that	class.

i)	A	static	member	function	can	access	only	static	data	members	of	the	class.

j)We	can	pass	objects	as	arguments	in	member	functions	and	also	return	an	object.

k)There	 is	 no	 need	 of	 specifying	 object	 name	 or	 dot	 operator	 to	 access	 a	 friend
function.

l)	.*	and	->*	both	are	pointer	to	member	operators.

Find	Errors

2.	Find	out	error	in	following	statements	(if	any):

a)	student	::	putdata(void)

b)	void	inline	student	::	putdata(void)

c)	int	arr	=	new	int[size];

d)	static	void	counter(void)

e)	time	t[5]	(time	is	class	name)

Short	Questions

3.	Explain	the	use	of	following	terms:

a)	class



b)	object

c)	private	and	public

d)	inline

e)	friend

4.	Explain	public	data	member	with	any	example.

5.	Explain	characteristic	for	the	static	data	members.

Programming	Exercises

6.	 Write	 a	 program	 for	 class	 student	 with	 variable	 roll_no,	 name,	 sub1,	 sub2	 and
total_marks	 and	member	 function	 getdata()	 for	 take	 input	 from	 user	 and	 putdata()	 to
print	data	member	of	that	object.

7.	Write	 above	 program	 using	 inline	 keyword	 for	 total()	 member	 function,	 which	 will
return	addition	of	sub1	and	sub2	and	store	this	total	into	data	member	total_marks.

8.	Write	program	explain	in	example	6	as	array	of	ten	students.

9.	Write	a	program	of	class	time	with	data	members	hour	and	minute	and	member	function
gettime(),	 showtime()	 and	 addtime().	 In	 which	 member	 function	 addtime()	 with	 two
arguments	 as	object	 and	 return	 type	void	which	add	 time	of	 two	object	 and	assign	 in
third	object.

10.	Write	a	program	of	class	time	explains	in	above	in	which	member	function	addtime()
with	one	argument	of	type	object	and	object	as	return	type.

11.	 Create	 two	 classes	 DM	 and	 DB,	 which	 store	 the	 value	 of	 distances.	 DM	 stores
distances	in	meter	and	centimeters	and	DB	in	feet	and	inches.	Write	a	program	that	can
read	values	for	the	class	objects	and	add	one	object	of	DM	with	another	object	of	DB.
The	add()	function	must	be	a	friend	function.	The	object	that	stores	the	results	may	be	a
DM	object	or	DB	object,	depending	on	the	units	in	which	the	results	are	required.

12.	Write	a	C++	program	 to	manipulate	 the	class	account	using	classes	and	 function.	A
user	should	be	able	to	perform	the	following	functions.	a.	Deposit	money.	b.	Withdraw
money,	c.	Calculate	the	interest	d.	Check	the	total	balance	in	his	account.

13.	Write	a	C++	program	to	create	a	class	template	to	find	the	maximum	of	two	numbers.

14.	Write	a	program	in	c++	to	calculate	the	area	of	triangle	using	inline	function.

15.	Write	a	program	in	c++	to	calculate	the	volume	of	cube,	cylinder,	and	rectangle	using



function	overloading.

16.	Write	a	program	in	c++	to	calculate	factorial	using	friend	function.



CHAPTER:7	Constructors	and	destructors

Up	 to	now	we	have	seen	 that	 in	 the	class	mostly	we	declared	a	getdata()	 function	 to
assign	values	to	the	data	members	of	that	class.	In	this	case	when	we	declare	an	object	of
the	class	the	data	members	are	not	initialized	but	when	we	call	getdata()	function	with	that
object	the	data	members	will	be	initialized	with	the	arguments	of	getdata()	function	C++
provides	 a	 facility	 of	 initializing	 the	 data	 members	 of	 an	 object	 at	 the	 time	 of	 object
creation.	 This	 mechanism	 is	 called	 as	 automatic	 initialization	 of	 objects.	 In	 this
mechanism	a	special	type	of	member	function	we	have	to	define	in	the	class.	That	member
function	will	have	same	name	as	of	the	class	name.	This	function	is	called	as	constructor.
C++	provides	another	member	function	called	destructor,	which	destroys	the	objects	when
they	are	no	longer	required.



Constructors

C++	provides	a	special	member	function	called	the	constructor	which	enables	an	object
to	initialize	itself	when	it	 is	created.	The	task	of	constructor	is	to	initialize	the	objects	at
the	time	of	declaration.	To	initialize	the	objects	at	the	time	of	creation,	we	must	define	a
constructor	 in	 the	 class.	 The	 constructor	 is	 invoked	 whenever	 an	 object	 of	 its	 class	 is
created.	 It	 is	 called	 constructor	 because	 it	 construct	 the	 values	 of	 data	members	 of	 the
class’	object.	It	is	special	in	the	sense	that	its	name	is	same	as	the	class	name.

A	constructor	is	declared	and	defined	as	follows

class	class_name

{

private	data	and	functions

public:

public	data	and	functions

class_name	();	//constructor	declared

……

……

};

class_name	::	class_name	()	//constructor	defined

{

Initialization	of	private	data;

}

There	are	some	special	characteristics	of	constructor,	which	are	as	follows:

a)	Constructors	should	be	declared	in	public	section.

b)	When	objects	are	created,	constructor	is	invoked(called)	automatically.

c)	Constructors	don’t	have	any	return	types,	not	even	void	and	therefore	they	cannot
return	values.

d)	Like	other	C++	functions,	constructors	can	have	default	arguments.

e)	We	cannot	refer	to	constructors’	addresses.



f)	They	make	implicit	calls	to	the	operators	new	and	delete	when	memory	allocation
is	required.

There	 are	 two	more	 characteristics,	 which	 are	 as	 follows	 and	 we	 will	 discuss	 these
characteristics	later.

a)	Constructors	cannot	be	 inherited,	 though	a	derived	class	can	call	 the	base	class
constructor.

b)	Constructors	cannot	be	virtual.

There	are	mainly	3	types	of	constructor:

a)	Default	constructor

I)	Default	constructor	is	without	arguments	inside	its	parenthesis.

II)	 It	 is	 called	 when	 creating	 objects	 without	 passing	 any	 arguments,	 for
example:

NewClass	N;	//Default	constructor	invoked	implicitly

b)	Argument	Constructor

I)	Argument	Constructor	accepts	arguments	inside	its	parenthesis.

II)	It	is	called	when	creating	objects	by	passing	some	arguments,	for	example:

NewClass	N(5);	//Argument	constructor	invoked	explicitly

c)	Copy	constructor

I)	Copy	constructor	is	used	to	make	copy	of	one	object(all	data	members)	into
another	object(all	data	members).

II)	This	constructor	is	invoked	when:



Passing	object	as	an	argument	to	a	function,	for	example:

void	foo(NewClass	n);//n	is	an	object	of	NewClass	passed	a	sarg

Return	object	from	a	function,	for	example:

NewClass	foo();//foo()	returns	an	object	of	NewClass

Initializing	an	object	with	another	object	in	a	declaration	statement

NewClass	n2;	//call	default	constructor

NewClass	n1(n2);	//call	copy	constructor

NewClass	n3=n2;	//call	copy	constructor

Now	let’s	study	the	use	of	all	the	above	three	constructors	in	detail	with	examples.

Default	constructor

No	object	can	be	constructed	without	constructor.	If	we	donot	provide	the	constructor
the	compiler	calls	the	implicit	default	constructor	for	the	construction(initialization)	of	the
object.

The	default	constructor	 is	a	constructor	 that	 takes	no	arguments	or	 takes	only	default
arguments.	The	default	constructor	for	a	class	X	can	heve	either	of	the	following	forms:

X::X()

Or

X::X(const	int	x=0)

Default	constructors	allow	objects	to	be	created	without	passing	any	parameters	to	the
constructor.	For	example,	the	declaration

Student	s;

results	in	a	Student	object	“s”	that	does	not	yet	have	a	value;	it	is	an	empty	object.

The	default	constructor	usually	creates	an	object	that	represents	a	“null”	instance	of	the
particular	type	the	class	denotes.

It	 is	better	to	provide	a	constructor	with	default	arguments	that	can	serve	as	a	default
constructor	or	as	a	constructor	that	takes	the	arguments	it	specifies.	If	you	do	not	declare
any	 constructors	 in	 a	 class	 definition,	 the	 compiler	 assumes	 the	 class	 to	 have	 a	 default
constructor	with	no	arguments.	Therefore,	after	declaring	a	class	like	this	one:



#include	<iostream.h>

#include	<conio.h>

class	Rectangle

{

public:

int	l,b,a;

void	findarea	(int	n,	int	m)

{

l=n;

b=m;

a=l*b;

}

};

int	main	()

{

clrscr();

Rectangle	r;	//r	created	implicitly	by	default	constructor

r.findarea(2,3);

cout<<“The	area	is:”<<r.a;

return	0;

}

Output:

The	area	is:6

The	 compiler	 assumes	 that	 above	 class	 has	 a	 default	 constructor,	 so	 you	 can	 declare
objects	of	this	class	by	simply	declaring	them	without	any	arguments:

Rectangle	r;

In	above	example	object	declaration,	eventhough	no	explicit	constructor	is	defined	the



compiler	invokes	the	default	constructor	for	the	construction	of	the	object	r.

The	compiler	not	only	creates	a	default	constructor	for	you	if	you	do	not	specify	your
own,	 it	provides	 three	special	member	functions	which	are	 implicitly	declared	 if	you	do
not	declare	your	own	constructor.	These	are	the:

a)	copy	constructor,

b)	the	copy	assignment	operator,	and

c)	the	default	destructor.

The	copy	constructor	and	the	copy	assignment	operator	copy	all	the	data	contained	in
another	object	to	the	data	members	of	the	current	object.

Therefore,	the	two	following	object	declarations	would	be	correct:

Rectangle	r	(2,3);

Rectangle	r2	(r);//	copy	constructor	(data	copied	from	r)

Above	program	can	be	modified	as	follows:

#include	<iostream.h>

#include	<conio.h>

class	Rectangle

{

public:

int	l,b,a;

void	findarea	(int	n,	int	m)

{

l=n;

b=m;

a=l*b;

}

};

int	main	()



{

clrscr();

Rectangle	r1;

r1.findarea(2,3);

Rectangle	r2(r1);	//	invokes	implicit	copy	constructor

r2.findarea(2,3);

cout<<“The	area	for	object	r1	is:”<<r1.a;

cout<<”\nThe	area	for	object	r2	is:”<<r2.a;

return	0;

}

Output:

The	area	for	object	r1	is:6

The	area	for	object	r2	is:6

As	 you	 can	 see	 the	 output	 for	 both	 object	 are	 same	 because	 object	 r2	 is	 created
implicitly	by	copying	all	the	data	members	of	the	object	r1.

Parameterized	constructors

We	can	also	pass	arguments	 in	 the	constructor	as	 like	normal	member	 function.	This
type	of	constructors	is	called	as	parameterized	constructors.	In	practice,	it	is	necessary	to
initialize	 various	 data	 elements	 of	 different	 objects	with	 different	 values	when	 they	 are
created.	C++	allows	to	achieve	this	by	passing	arguments	to	the	constructor	function	when
objects	are	created.	These	constructors	are	called	parameterized	constructors.	The	general
form	is	shown	below:

class	class_name

{

private	data	and	functions

public:

public	data	and	functions

class_name	(parameter	list);	//constructor	declared



……

……

};

class_name	::	class_name	(parameter	list)	//constructor	defined

{

Initialization	of	private	data;

}

If	parameterized	constructors	is	declared	in	the	class	then	when	we	create	an	object	we
have	to	pass	the	arguments	with	that	object.

As	 soon	 as	 you	 declare	 your	 own	 constructor	 for	 a	 class,	 the	 compiler	 no	 longer
provides	an	 implicit	default	constructor.	Explicit	constructor	defined	by	 the	programmer
can	be	argument(or	Parameterised)	constructor	or	no	argument	constructor.	So	you	have	to
declare	all	objects	of	that	class	according	to	the	constructor	prototypes	you	have	defined
for	the	class,	for	example:

#include	<iostream.h>

#include	<conio.h>

class	Rectangle

{

public:

int	l,b,a;

Rectangle	()	//No	argument	constructor

{

l=b=1;

}

Rectangle	(int	n,	int	m)//Argument(or	Parameterised)	constructor

{

l=n;

b=m;



}

void	findarea	()

{

a=l*b;

}

};

int	main	()

{

clrscr();

Rectangle	r1;	//invokes	no	argument	constructor

Rectangle	r2(2,3);	//invokes	the	parameterised	constructor

//	or	Rectangle	r2=Rectangle(2,3);

r1.findarea();

r2.findarea();

cout<<“The	area	for	r1	is:”<<r1.a;

cout<<”\nThe	area	for	r2	is:”<<r2.a;

return	0;

}

Output:

The	area	for	r1	is:1

The	area	for	r2	is:6

Here	we	have	declared	two	explicit	constructors:

1.	No	argument	constructor

Rectangle	()

{

l=1;

b=1;



}

Is	no	argument	constructor	and	takes	no	argument	as	name	suggests	and	initialize	the
members	to	value	1.	And	this	constructor	is	invoked	at	the	time	of	the	creation	of	object	r1
as	follows:

Rectangle	r1;//invokes	no	argument	constructor	and	initalise	l=b=1;

2.	Argument	constructor(or	Parameterised	constructor)

Rectangle	(int	n,	int	m)	//invokes	Argument	constructor	and

initalise	l=n=2,	b=m=3;

{

l=n;

b=m;

}

takes	two	parameters	of	type	int.	Therefore	the	following	object	declaration	would	be
correct:

Rectangle	r(2,3);//invokes	the	parameterised	constructor	and

initialize	r.

We	can	pass	the	arguments	with	an	object	in	two	ways.

Call	the	constructor	explicitly.

Rectangle	r2=Rectangle(2,3);

Call	the	constructor	implicitly.

Rectangle	r2(2,3);

The	implicit	call	is	smaller	and	easier	then	explicit	call.

Copy	Constructor

The	 sets	 of	 values	 of	 one	 object	 can	 be	 copied	 into	 the	 corresponding	 elements	 of
another	object.	A	copy	constructor	 is	a	special	constructor	 that	can	be	called	 to	copy	an
object.	Such	a	constructor	is	called	copy	constructor.	Copy	constructor	is:

a)	a	constructor	function	with	the	same	name	as	the	class

b)	used	to	make	deep	copy(member	to	member	copy)	of	objects.



There	are	3	important	places	where	a	copy	constructor	is	called.

a)	When	an	object	is	created	from	another	object	of	the	same	type

b)	When	an	object	is	passed	by	value	as	a	parameter	to	a	function

c)	When	an	object	is	returned	from	a	function

The	copy	constructor	for	class	X	has	the	form:

X::X(const	X&)

You	 can	 pass	 an	 object	 of	 a	 class	 in	 constructor	 of	 same	 class.	When	we	 copy	 one
object	with	copy	constructor	then	compiler	creates	a	second	object	with	all	the	data	of	the
first	object.

Example:

#include	<iostream.h>

#include	<conio.h>

class	Rectangle

{

public:

int	l,b,a;

Rectangle	()	//No	argument	constructor

{

l=b=1;

}

Rectangle	(int	n,	int	m)//Argument(or	Parameterised)constructor

{

l=n;

b=m;

}

Rectangle	(Rectangle	&r)	//Copy	Constructor

{



l=r.l;

b=r.b;

}

void	findarea	()

{

a=l*b;

}

};

int	main	()

{

clrscr();

Rectangle	r1;	//invokes	no	argument	constructor

Rectangle	r2(2,3);	//invokes	the	parameterised	constructor

Rectangle	r3=r1;	//invokes	the	(explicit)copy	constructor

Rectangle	r4=r2;	//invokes	the	(explicit)copy	constructor

r1.findarea();

r2.findarea();

r3.findarea();

r4.findarea();

cout<<“The	area	for	r1	is:”<<r1.a;

cout<<”\nThe	area	for	r2	is:”<<r2.a;

cout<<”\nThe	area	for	r3	is:”<<r3.a;

cout<<”\nThe	area	for	r4	is:”<<r4.a;

return	0;

}

Output:

The	area	for	r1	is:1



The	area	for	r2	is:6

The	area	for	r3	is:1

The	area	for	r4	is:6

The	 copy	 constructor	 is	 called	more	 often	 behind	 the	 scenes	whenever	 the	 compiler
needs	a	copy	of	an	object.	These	objects,	appropriately	called	temporaries,	are	created	and
destroyed	 as	 they	 are	 needed	 by	 the	 compiler.	 The	 most	 common	 place	 this	 occurs	 is
during	 function	 calls,	 so	 that	 the	 semantics	 of	 call-by-value	 can	 be	 preserved.	 For
example,	here	is	a	function	that	takes	a	String	argument:

Always	provide	a	copy	constructor	for	your	classes.	Do	not	let	the	compiler	generate	it
for	you.	If	your	class	has	pointer	data	members,	you	must	provide	the	copy	constructor.

If	 you	 do	 not	 provide	 a	 copy	 constructor,	 the	 compiler	 will	 generate	 one	 for	 you
automatically.	 This	 generated	 copy	 constructor	 simply	 performs	 a	 member-wise
assignment	 of	 all	 of	 the	 data	members	 of	 a	 class.	 This	 is	 fine	 for	 a	 class	 that	 does	 not
contain	any	pointer	variables.	It	is	a	good	idea	to	get	in	the	habit	of	always	providing	the
copy	constructor	for	your	classes.

If	a	copy	constructor	is	not	defined	in	a	class,	the	compiler	itself	defines	one.	This	will
ensure	 a	 shallow	 copy.	 If	 the	 class	 does	 not	 have	 pointer	 variables	 with	 dynamically
allocated	memory,	 then	one	need	not	worry	about	defining	a	copy	constructor.	 It	can	be
left	to	the	compiler’s	discretion.

Constructor	Overloading:	Multiple	constructors	in	a	class

Like	 normal	 member	 function,	 we	 can	 also	 declare	 more	 than	 one	 constructor	 with
same	name	in	a	class.	This	mechanism	is	called	as	constructor	overloading.	The	concept	is
very	similar	to	function	overloading	the	difference	is	in	function	overloading	all	functions
share	 same	 name	with	 different	 arguments	 and	 different	 class	 name	whereas	 in	 case	 of
constructor,	all	the	constructors	and	class	share	same	name	with	different	arguments.	Now
lets	see	an	example	of	constructor	overloading.

Example	:	Constructor	overloading

#include	<iostream.h>

class	Rectangle

{

int	l,	b;



public:

Rectangle	();

Rectangle	(int,int);

int	findarea	(void)	{return	(l*b);}

};

Rectangle	::Rectangle	()	//No	argument	constructor

{

l	=	5;

b	=	5;

}

Rectangle	::Rectangle	(int	a,	int	b)	//Parameterized	constructor

{

l	=	a;

b	=	b;

}

int	main	()

{

Rectangle	r1	(3,4);	//Invokes	parameterized	constructor

Rectangle	rb;	//Invokes	No	argument	constructor

cout	<<	“r1	area:	”	<<	r1.findarea()	<<	endl;

cout	<<	“r2	area:	”	<<	r2.findarea()	<<	endl;

return	0;

}

Output:

r1	area:	12

r2	area:	25

In	this	case,	r2	was	declared	without	any	arguments,	so	it	has	been	initialized	with	the



constructor	that	has	no	parameters,	which	initializes	both	l	and	b	with	a	value	of	5.

If	we	want	to	use	its	default	constructor	(the	one	without	parameters),	we	do	not	have
to	include	parentheses	():

Rectangle	r2;	//	right	declaration,	calls	default	constructor

Rectangle	r2();	//	wrong!	declaration

Constructors	with	default	arguments

Like	 normal	 member	 function,	 we	 can	 also	 declare	 constructors	 with	 default
arguments.

Example:

#include	<iostream.h>

#include	<conio.h>

class	Rectangle

{

public:

int	l,b,a;

Rectangle	()	//No	argument	constructor

{

l=b=1;

}

Rectangle	(int	n=1,	int	m=1)	//Default	Argument	constructor

{

l=n;

b=m;

}

void	findarea	()

{

a=l*b;



}

};

int	main	()

{

clrscr();

Rectangle	r1;	//invokes	no	argument	constructor

Rectangle	r2(2,3);	//invokes	the	parameterised	constructor

//	or	Rectangle	r2=Rectangle(2,3);

r1.findarea();

r2.findarea();

cout<<“The	area	for	r1	is:”<<r1.a;

cout<<”\nThe	area	for	r2	is:”<<r2.a;

return	0;

}

Output:

When	we	compile	the	above	program	it	generates	a	compiler	error	as	follows:

Ambiguity	between	‘Rectangle::Rectangle()’	and	‘Rectangle::Rectangle(int,int)’

This	 is	 because	 when	 we	 declare	 all	 arguments	 to	 be	 default	 then	 that	 constructor
becomes	 the	same	as	 the	first	constructor	with	no	argument	and	creates	above	ambugity
for	 the	 compiler.	 So	 the	 solution	 is	 to	 remove	 the	 first	 constructor	 and	 then	 run	 the
program	to	get	the	following	output.

The	area	for	r1	is:1

The	area	for	r2	is:6

Dynamic	initializaton	of	objects

The	 process	 of	 initializing	 the	 an	 object	 during	 run-time	 is	 called	 dynamic
initialization.	 That	 means	 we	 can	 initialize	 the	 data	 members	 of	 object	 at	 run	 time.
Dynamic	initialization	is	done	using	overloaded	constructors.	It	provides	the	flexibility	of
using	different	format	of	data	at	run	time.



Example:	Dynamic	Initialization	of	objects

#include	<stdio.h>

#include	<iostream.h>

#include	<conio.h>

#include	<math.h>

#include	<stdlib.h>

class	point

{

int	x;

int	y;

public:

point()	{}

point(int	a,	int	b)	//constructor	declaration

{	//constructor	definition

x=a;

y=b;

}

void	display(void);

};

void	point::display(void)

{

cout<<”(x,y)=(“<<x<<”,”<<y<<”)\n”;

}

main()

{

//	point	p1,p2;	//can	be	done	here

int	x1,y1;



cout<<“Enter	x	value:	“;

cin>>x1;

cout<<“Enter	y	value:	“;

cin>>y1;

point	p1=point(x1,y1);	//dynamic	initialization

point	p2=p1;	//copying	object	p1	into	p2

cout<<“Object	p1”;

p1.display();

cout<<“Object	p2”;

p2.display();

getch();

return	0;

}

Output:

Enter	x	value:	23

Enter	y	value:	34

Object	p1(x,y)=(23,34)

Object	p2(x,y)=(23,34)

Dynamic	initialization	is	done	by	using	an	empty	constructor,	e.g.	point()	{	}	and	then
defining	the	constructor	with	parameters,	e.g.

point(int	a,	int	b)

{

x=a;

y=b;

}

And	then	call	the	constructor	with	actual	parameters,	e.g.

int	p1=point(x1,y1);



The	advantage	of	dynamic	 initialization	 is	 that	we	can	provide	various	 initializations
formats	using	overloaded	constructors.	The	idea	of	dynamic	initialization	of	objects	will
be	more	clear	through	following	example:

#include	<iostream.h>

#include	<string.h>

#include	<conio.h>

class	book

{

private:

char	name[20];

float	price;

float	discount;

float	mrkt_price;

public:

book()	{	}

book(char[],	float,	float	dis	=	0.15);

book(char[],	float,	int);

void	putdata(void);

};

book	::	book	(char	n[],	float	p,	float	d)

{

strcpy(name,	n);

price	=	p;

discount	=	d;

mrkt_price	=	price	-	price	*	discount;

}

book	::	book	(char	n[],	float	p,	int	d)



{

strcpy(name,	n);

price	=	p;

discount	=	float	(d)/100;

mrkt_price	=	price	-	price	*	discount;

}

void	book	::	putdata(void)

{

cout<<“Book	name:	“<<	name	<<	endl;

cout<<“Book	price:	“<<	price	<<	endl;

cout<<“Discount	on	book:	“<<	discount	<<	endl;

cout<<“Market	price	of	book:	“<<	mrkt_price	<<	“\n\n”;

}

int	main(void)

{

clrscr();

book	b1,	b2,	b3;

char	nm[20];

float	pr,	di;

int	Di;

cout<<“Enter	book	name,	price	and	discount	(in	percentage)\n”;

cin>>	nm	>>	pr	>>	Di;

b1	=	book(nm,	pr,	Di);	//dynamically	initialize	the	object	b1

cout<<”\nEnter	book	name,	price	and	discount”	<<	endl;

cin>>	nm	>>	pr	>>	di;

b2	=	book(nm,	pr,	di);	//dynamically	initialize	the	object	b2

cout<<”\nEnter	book	name	and	price	“<<	endl;



cin>>	nm	>>	pr;

b3	=	book(nm,	pr);	//dynamically	initialize	the	object	b3

cout<<	“Book	1	“<<	endl;

b1.putdata();

cout<<	“Book	2	“<<	endl;

b2.putdata();

cout<<	“Book	3	“<<	endl;

b3.putdata();

getch();

return(0);

}

Output:

Enter	book	name,	price	and	discount	(in	percentage)

TurboC++	349.99	10

Enter	book	name,	price	and	discount

VisualBasic	450.00	0.10

Enter	book	name	and	price

Java2	399.95

Book	1

Book	name:	TurboC++

Book	price:	349.99

Discount	on	book:	0.1

Market	price	of	book:	314.99

Book	2

Book	name:	VisualBasic

Book	price:	450.00

Discount	on	book:	0.1



Market	price	of	book:	405

Book	3

Book	name:	Java2

Book	price:	399.95

Discount	on	book:	0.15

Market	price	of	book:	339.95

As	you	can	see	in	above	program	we	have	declared	a	class	book	with	three	constructors
one	 is	 void	 constructor,	 second	 is	 with	 three	 arguments	 (book	 name,	 book	 price	 and
discount	on	book	in	decimal	format	with	default	value	0.15)	and	third	constructor	is	also
with	three	arguments	(book	name,	book	price	and	discount	on	book	in	percentage	format).

In	main()	function	first	we	have	created	three	objects	b1,	b2	and	b3	of	type	book.	Here
when	you	 create	 the	 objects	 b1,	 b2	 and	b3	 a	 void	 constructor	will	 be	 called	with	 those
objects	then	we	have	inputted	three	values	from	the	user	to	call	a	constructor	with	discount
in	percentage	format	for	b1	object.	Then	we	have	inputted	three	values	from	the	user	again
to	call	constructor	with	discount	in	decimal	format	for	object	b2	and	we	have	inputted	two
values	 from	 the	 user	 to	 call	 a	 constructor	 with	 default	 value	 of	 discount	 0.15	 with	 b3
object.

Dynamic	constructors

As	we	have	seen	in	C	language	that	when	we	declare	two	variables	of	type	integer	then
both	 variables	 a	 and	 b	will	 be	 allocated	 same	 amount	 of	memory	 space	 (2	 bytes).	C++
provides	 the	 facility	 that	 the	 objects	 of	 a	 class	 can	 have	 different	 amount	 of	 memory
spaces	as	per	the	requirement.	This	can	be	done	by	implementing	dynamic	constructors	in
the	class.

Constructors	 can	also	be	used	 to	 allocate	memory	while	 creating	objects.	Memory	 is
allocated	with	the	use	of	new	operator.	Dynamic	constructors	enable	the	system	to	allocate
the	right	amount	of	memory	for	each	object	when	the	objects	are	of	different	size,	thus	we
can	 save	 the	 memory.	 This	 type	 of	 allocation	 of	 memory	 is	 known	 as	 dynamic
construction	of	objects.	Now	lets	see	a	program	for	dynamic	constructors.

#include	<iostream.h>

#include	<string.h>

#include	<conio.h>



class	name

{

private:

char	*nm;	//	object	size	will	vary	by	this	member

int	length;

public:

name()

{

length	=	0;

nm	=	new	char[length	+	1]	;

nm[0]	=	‘\0’;

}

name(char	*s)

{

length	=	strlen(s);

nm	=	new	char[length	+	1];

strcpy(nm,	s);

}

void	join(name	&);

void	putdata(void);

};

void	name	::	join(name	&n)

{

char	*temp;

length	+=	n.length;

strcpy(temp,	nm);

strcat(temp,	n.nm);



delete	nm;

nm	=	new	char[length	+	1];

strcpy(nm,	temp);

}

void	name	::	putdata(void)

{

cout<<	nm	<<	endl;

}

int	main(void)

{

name	first_name(“Jitendra”),	middle_name(“B”);

name	last_name(“Patel”),	full_name;

clrscr();

full_name.join(first_name);

full_name.join(middle_name);

full_name.join(last_name);

cout<<”First	name	is:	“;

first_name.putdata();

cout<<”Middle	name	is:	“;

middle_name.putdata();

cout<<”Last	name	is:	“;

last_name.putdata();

cout<<”\n	Full	name	is:	“;

full_name.putdata();

getch();

return(0);

}



Output:

First	name	is:	Jitendra

Middle	name	is:	B

Last	name	is:	Patel

Full	name	is:	JitendraBPatel

As	given	in	above	program	that	we	have	declared	a	class	name	with	two	constructors	in
which	 dynamically	 we	 are	 initializing	 the	 values	 of	 data	 members	 length	 and	 nm
according	 to	 parameters	 passed	 in	 constructor	 from	main()	 function.	 Thus	 the	memory
allocated	 to	 the	objects	of	class	name	will	be	according	 to	 the	 length	of	character	string
nm.

In	 given	 example	we	 have	 created	 four	 objects	 first_name,	middle_name,	 last_name
and	full_name.	At	the	time	of	creating	these	four	objects,	a	void	constructor	will	be	call
and	all	objects	will	have	 same	amount	of	memory	 space.	But	when	we	explicitly	 call	 a
constructor	 with	 a	 character	 string	 parameter	 for	 objects	 first_name,	 middle_name	 and
last_name,	all	 these	three	objects	will	have	different	amount	of	memory	space.	Then	we
have	 called	 join	member	 function	 three	 times	with	 the	 addresses	 of	 these	 three	 objects
through	full_name	object.	Thus,	the	memory	of	object	full_name	is	increased	three	times
when	 we	 called	 join()	 function	 with	 that	 object.	 The	 idea	 will	 be	 more	 clear	 through
output	of	 the	given	program.	As	you	can	 see	 in	 the	output,	 the	memory	allocated	 to	all
four	objects	is	different.



Destructors

As	its	name	implies,	the	destructor	is	used	to	destroy	the	objects	that	have	been	created
by	 constructor,	 which	 no	 longer	 needed.	 A	 destructor	 is	 a	 member	 function	 that	 is
automatically	called	to	destroy	an	object	when	it	is	no	longer	required	or	when	the	object
is	out	of	scope.	In	the	same	way	that	a	constructor	is	called	when	the	object	is	created,	the
destructor	 is	 automatically	 called	 when	 the	 object	 is	 destroyed.	 Destructor	 is	 a	 also	 a
member	 function	of	a	class	as	 like	constructor	 is.	Like	constructor,	destructor	also	have
same	name	of	class	name	but	in	prefix	of	destructor	we	have	to	specify	a	tilde	(~)	symbol.
A	destructor	never	 takes	any	arguments	nor	does	 it	 return	any	value.	It	will	be	executed
implicitly	 by	 the	 compiler	 when	 the	 program	 is	 terminated.	 It	 will	 clear	 the	 memory
allocated	to	objects	which	are	no	longer	accessible.	It	is	better	way	of	programming	that
wherever	you	define	constructors	in	the	class,	you	define	destructor	also.	In	the	same	way
that	a	constructor	sets	things	up	when	an	object	is	created,	a	destructor	performs	shutdown
procedures	 when	 an	 object	 is	 destroyed.Whenever	 an	 object	 goes	 out	 of	 scope	 it	 is
destroyed	 and	 the	 memory	 used	 by	 that	 object	 is	 reclaimed.	 Just	 before	 the	 object	 is
destroyed,	 an	 object’s	 destructor	 is	 called	 to	 allow	 any	 clean-up	 to	 be	 performed.	 A
destructor	 for	 class	 X	 has	 the	 form	 X::~X().The	 destructor	 must	 release	 any	 resources
obtained	 by	 an	 object	 during	 its	 lifetime,	 not	 just	 those	 that	 were	 obtained	 during
construction.

Typically,	 some	 data	 members	 for	 an	 object	 are	 allocated	 during	 construction.
However,	some	objects	may	allocate	memory	or	use	other	resources	in	response	to	certain
operations	performed	on	the	object.	When	implementing	your	destructors,	make	sure	you
release	all	of	the	resources	that	have	been	obtained	by	the	object,	not	just	those	obtained
by	the	constructors.Always	provide	a	destructor	for	your	classes.	Do	not	let	the	compiler
generate	it	for	you.if	you	want	to	be	in	complete	control	of	how	your	class	operates.	Do
not	let	the	compiler	generate	any	of	your	code.

Example:

//	This	program	demonstrates	a	constructor	and	destructor.

#include	<iostream.h>

class	Demo

{

public:



Demo();	//	Constructor

~Demo();	//	Destructor

};

Demo::Demo()

{

cout	<<	“Welcome	to	the	constructor!\n”;

}

Demo::~Demo()

{

cout	<<	“The	destructor	is	now	running.\n”;

}

void	main()

{

Demo	DemoObj;	//	Declare	a	Demo	object;

cout	<<	“This	program	demonstrates	an	object\n”;

cout	<<	“with	a	constructor	and	destructor.\n”;

}

Output:

Welcome	to	the	constructor!

This	program	demonstrates	an	object

with	a	constructor	and	destructor.	//	program	ends,	destructor	is	called

The	destructor	is	now	running.

Example	2:

#include<iostream.h>

#include<conio.h>

class	Abd

{



public:

Abd()

{

cout<<“This	is	from	the	constructor.”<<endl;

}

~Abd()

{

cout<<“This	is	from	the	destructor.”<<endl;

}

};

void	main()

{

clrscr();

Abd	ob;	//object	will	be	destroyed	when	main()	ends

{

Abd	ob1;	//object	will	be	destroyed	when	block	ends

Abd	ob2;	//object	will	be	destroyed	when	block	ends

}

Abd	ob3;	//object	will	be	destroyed	when	main()	ends

getch();

}

Output:

This	is	from	the	constructor.

This	is	from	the	constructor.

This	is	from	the	constructor.

This	is	from	the	destructor.

This	is	from	the	destructor.



Guidelines	for	constructors	and	destructors

There	are	some	guidelines	that	apply	to	both	constructors	and	destructors.

Avoid	calls	to	virtual	functions	in	constructors	and	destructors.

You	 may	 call	 other	 member	 functions	 from	 constructors	 and	 destructors.	 Calling	 a
virtual	function	will	result	in	a	call	to	the	one	defined	in	the	constructor’s	(or	destructor’s)
own	 class	 or	 its	 bases,	 but	 not	 any	 function	 overriding	 it	 in	 a	 derived	 class.	 This	 will
guarantee	 that	unconstructed	derived	objects	will	not	be	accessed	during	construction	or
destruction.

Also,	 calling	 a	 pure	 virtual	 function	 directly	 or	 indirectly	 for	 the	 object	 being
constructed	or	destroyed	is	undefined.	The	only	time	it	is	valid	is	if	you	explicitly	call	the
pure	virtual	function.	For	example,	if	class	A	has	pure	virtual	function	p(),	then:	A::p()	is
an	explicit	call.	The	reason	this	is	works	is	because	explicit	qualification	circumvents	the
virtual	calling	mechanism.

Any	 data	which	 is	 declared	 private	 inside	 a	 class	 is	 not	 accessible	 from	 outside	 the
class.	A	function	which	is	not	a	member	or	an	external	class	can	never	access	such	private
data.	 But	 there	may	 be	 some	 cases,	 where	 a	 programmer	will	 need	 need	 access	 to	 the
private	data	from	non-member	functions	and	external	C++	offers	some	exceptions	in	such
cases.

A	 class	 can	 allow	 non-member	 functions	 and	 other	 classes	 to	 access	 its	 own	 private
data,	by	making	them	as	friends.

Once	a	non-member	function	 is	declared	as	a	friend,	 it	can	access	 the	private	data	of
the	class

similarly	when	a	class	 is	declared	as	a	 friend,	 the	 friend	class	can	have	access	 to	 the
private	data	of	the	class	which	made	this	a	friend

this	pointer

C++	uses	a	unique	keyword	called	“this”	to	represent	an	object	that	invokes	a	member
function.	 ‘this’	 is	 a	 pointer	 to	 object	 for	 which	 ‘this’	 function	 was	 called.	 This	 unique
pointer	is	automatically	passed	to	a	member	function	when	it	is	called.	The	pointer	“this”
acts	 as	 an	 implicit	 parameter	 to	 all	 the	member	 functions.	 If	 we	 have	 to	 reference	 the
object	 itself	 in	 a	 member	 function,	 we	 can	 do	 it	 through	 an	 implicit	 pointer	 this.	 One
important	application	of	the	pointer	this	is	to	return	the	object	it	points	to,	e.g.



return	*this;

This	 statement	 assumes	 importance	 when	 we	 want	 to	 compare	 two	 or	 more	 objects
inside	a	member	function	and	return	the	invoking	object	as	a	result,	e.g.

person	&	person	::	greater(person	&	x)

{

If	(x.age>age)

return	x

else

return	*this;

}

Suppose	we	invoke	this	function	by	the	call

C=A.greater(B);

The	function	will	return	the	object	B	if	the	age	of	the	person	B	is	greater	than	that	of	A,
otherwise,	it	will	return	the	object	A	using	the	pointer	this.

Example:

class	person

{

char	name[20];

float	age;

public:

person	(char	*s,	float	a)

{

strcpy(name,	s);

age=a;

}

person	&	person	::	greater(person	&	x)

{



if(x.age>=age)

return	x;

else

return	*this;

}

void	display(void)

{

cout<<	“Name:	“	<<	name	<<	“\n”;

<<	“Age:	”	<<	age	<<	“\n”;

}

};

main()

{

person	P1(“Paula”,	37),	P2(“Abdul”,	23),	P3(“Lutz”,	40);

person	P(‘\0’,	0);

P=P1.greater(P3);

cout<<“The	elder	person	is:	\n”;

P.display();

P=P1.greater(P2);

cout<<“The	elder	person	is:	\n”;

P.display();

}



Exercise
True	or	False

1.	State	that	the	following	statement	is	True/False.

a)	A	constructor	is	not	a	member	of	a	class.

b)	A	constructor	must	have	same	name	of	class	name.

c)	A	constructor	can	return	value.

d)	In	a	constructor	we	can	pass	more	than	one	arguments.

e)	A	constructor	cannot	have	default	arguments.

f)	We	cannot	define	a	constructor	as	inline.

g)	We	cannot	overload	constructors	in	the	program.

h)	We	cannot	pass	an	object	of	same	class	in	a	constructor.

i)	We	 cannot	 initialize	 the	 objects	 dynamically	 without	 use	 of	 new	 and	 delete
operator.

j)	A	 destructor	 can	 be	 declared	whether	 a	 constructor	 is	 declared	 or	 not	 in	 the
class.

Short	Questions

1.	Explain	the	following	terms:

a)	Constructor

b)	Copy	constructor

c)	void	constructor

d)	Default	constructor

e)	Parameterized	constructor

f)	Destructor

2.	What	is	Destructor?	Give	an	example	of	a	destructor.

3.	Explain	the	characteristics	of	constructors.

4.	What	are	the	similarities	and	differences	between	constructor	and	destructor?

5.	Explain	the	difference	between	the	copy	constructor	and	the	assignment	operator.



7.	Is	there	a	limit	on	number	of	constructor	functions	in	a	class?

8.	How	many	destructor	functions	can	a	class	have?

9.	Which	member	functions	are	created	automatically	by	 the	compiler	 if	 they	are	not
included	in	the	class	definition?

10.	Explain	the	ambiguity	of	default	arguments	in	constructors.

11.	Explain	how	the	constructor	overloading	is	possible	in	C++.

12.	Explain	how	a	‘=’	operator	is	useful	in	copy	constructor.

13.	Write	a	short	note	on	dynamic	constructor.

Programming	Exercises

1.	Write	a	program	for	creating	a	class	employee	with	void	constructor	 that	 initialize
the	values	of	data	members,	parameterized	constructor	which	declared	with	default
arguments	(default	salary	=	10000)	in	the	class.

2.	Write	a	program	of	class	complex	for	addition	of	two	same	complex	number	using
copy	constructor.

3.	Write	a	program,	which	illustrates	the	concept	of	dynamic	constructor.





CHAPTER:8	Inheritance

Inheritance	is	the	process	of	creating	new	classes,	called	derived	classes,	from	existing
classes	or	base	classes.	A	class	that	is	inherited	is	called	a	base	class	or	superclass.	A	class
which	is	inheriting	another	class	is	called	a	derived	class	or	subclass.	When	a	class	inherits
another	class,	members	of	 the	base	class	become	the	members	of	 the	derived	class.	The
derived	class	inherits	most	of	the	capabilities	(except	private)	of	the	base	class,	the	derived
class	 can	 also	 add	 its	 own	 features,	 data	 etc.,	 It	 can	 also	 override	 some	 of	 the	 features
(functions)	of	the	base	class.

C++	inheritance	is	very	similar	to	a	parent-child	relationship.	When	a	class	is	inherited
all	 the	 functions	 and	 data	 member	 are	 inherited,	 although	 not	 all	 of	 them(like	 private
members)	will	be	accessible	by	the	member	functions	of	the	derived	class.

The	general	form	of	inheritance	is:-

class	derived_name	:	access_specifier	base_name

{

};

The	derived_name	is	the	name	of	the	derived	class.	The	base_name	is	the	name	of	the
base	class.	The	access_specifier	can	be	private,	public	or	protected.

Example:	A	C++	program	to	explain	the	concepts	of	inheritance

#include<iostream.h>

class	test

{

public:

test(void)	{	x=0;	}

void	f(int	n1)

{

x=	n1*5;

}

void	output(void)	{	cout<<x;	}

private:



int	x;

};

class	sample:	public	test

{

public:

sample(void)	{	s1=0;	}

void	f1(int	n1)

{

s1=n1*10;

}

void	output(void)

{

test::output();

cout	<<	s1;

}

private:

int	s1;

};

int	main(void)

{

sample	s;

s.f(10);

s.output();

s.f1(20);

s.output();

}

The	output	of	the	above	program	is



50
200

The	access_specifier	can	be	private,	public	or	protected.

If	 the	access_specifier	 is	public	 then	all	public	members	of	 the	base	class	become
public	members	of	the	derived	class	and	protected	members	of	the	base	class	become
the	protected	members	of	the	derived	class.

If	the	access_specifier	is	private	then	all	public	and	protected	members	of	the	base	class
will	become	private	members	of	the	derived	class.

If	the	access_specifier	is	protected	then	the	public	and	protected	members	of	the	base



class	 become	 the	 protected	 members	 of	 the	 derived	 class.	 Whether	 access_specifier	 is
public,	private	or	protected,	private	members	of	the	base	class	will	not	be	accessed	by	the
members	of	the	derived	class.

The	 access_specifier	 protected	 provides	more	 flexibility	 in	 terms	 of	 inheritance.	The
private	members	of	the	base	class	cannot	be	accessed	by	the	members	of	the	derived	class.
The	protected	members	of	the	base	class	remain	private	to	their	class	but	can	be	accessed
and	 inherited	by	 the	derived	class.	The	protected	members	of	 the	base	class	will	 remain
private	to	the	other	elements	of	the	program.

As	you	 can	 observe	 from	above	 figure,	 different	 types	 of	 inheritances	 have	 different
effect	on	how	members	of	the	base	class	can	be	accessed	from	the	derived	classes.

We	 can	 summarize	 the	 different	 access	 types	 for	 derived	 class	 according	 to	 which
members	can	be	accessed:



Where	 “non	 members”	 represent	 any	 access	 from	 outside	 the	 class,	 such	 as	 from
main(),	from	another	class	or	from	a	function.



What	is	inherited	from	the	base	class?

In	principle,	a	derived	class	inherits	every	member	of	a	base	class	except:

a)	its	constructor	and	its	destructor

b)	its	operator=()	members

c)	its	friends

Although	 the	 constructors	 and	 destructors	 of	 the	 base	 class	 are	 not	 inherited
themselves,	 its	 default	 constructor	 (i.e.,	 its	 constructor	 with	 no	 parameters)	 and	 its
destructor	are	always	called	when	a	new	object	of	a	derived	class	is	created	or	destroyed.

If	the	base	class	has	no	default	constructor	or	you	want	that	an	overloaded	constructor
is	 called	 when	 a	 new	 derived	 object	 is	 created,	 you	 can	 specify	 it	 in	 each	 constructor
definition	of	the	derived	class:

derived_constructor_name(parameters):base_constructor_name(parameters)

{…}

Here	is	a	program	which	illustrates	the	features	of	inheritance.

#include<iostream.h>

class	shape

{

private	:

double	length;

protected:

double	breadth;

public	:

double	len()

{

return(length);

}

shape(double	length1,double	breadth1)



{

length=length1;

breadth=breadth1;

}

//shape()	{	}

};

class	shape1

{

public:

double	height;

shape1(double	height1)

{

height=height1;

}

//shape1()	{	}

};

class	cuboid	:	public	shape,	private	shape1

{

public:

cuboid(double	length1,double	breadth1,double
height1):shape(length1,breadth1),shape1(height1)

{

cout	<<	”	A	constructor	is	called	”	<<	endl;

}

double	volume()

{

return(height*breadth*len());



}

double	bre()

{

return(breadth);

}

double	ht()

{

return(height);

}

};

int	main()

{

cuboid	c1(2.4,3.5,6.7);

cout	<<	“The	length	of	the	cuboid	is	:	”	<<	c1.len()<<endl;

cout	<<	“The	breadth	of	the	cuboid	is	:	”	<<	c1.bre()<<endl;

cout	<<	“The	height	of	the	cuboid	is	:	”	<<	c1.ht()<<	endl;

cout	<<	“The	volume	of	the	cuboid	is	:	”	<<	c1.volume()<<endl;

return(0);

}

The	result	of	the	program	is:-

The	 program	 has	 two	 base	 classes	 shape	 and	 shape1	 and	 one	 derived	 class	 called
cuboid	which	 inherits	 shape	 as	 public	 and	 shape1	 as	 private.	 The	 public	 and	 protected
members	 of	 shape	 become	 pubic	 and	 protected	 members	 of	 derived	 class	 cuboid.	 The
private	members	of	shape	remain	private	to	the	class	shape.	The	members	of	shape1	class



become	the	private	members	of	the	derived	class	cuboid.

The	statement

class	cuboid	:	public	shape,	private	shape1

states	that	class	cuboid	inherits	class	shape	as	public	and	class	shape1	as	private.	The
statement

cuboid(double	length1,double	breadth1,double	height1):

shape(length1,breadth1),shape1(height1)

{

cout	<<	”	A	constructor	is	called	”	<<	endl;

}

declares	the	constructor	of	the	class	cuboid.	When	constructor	of	class	cuboid	is	called
first	constructor	of	shape	is	executed	and	then	constructor	of	shape1	is	executed	and	after
that	the	constructor	of	cuboid	is	executed.	The	statements

double	volume()

{

return(height*breadth*len());

}

calculate	 the	 volume	 of	 the	 cuboid.	 The	 class	 cuboid	 cannot	 access	 the	 private	 data
member	length	of	the	shape	class.	It	access	the	length	by	calling	the	function	len()	which
returns	the	private	data	member	length.	The	data	member	breadth	becomes	the	protected
member	of	the	class	cuboid.	The	height	which	is	public	member	of	shape1	class	becomes
the	 private	member	 of	 the	 class	 cuboid	 as	 it	 inherits	 the	 shape	 1	 class	 as	 private.	 The
statements

double	bre()

{

return(breadth);

}

returns	 the	breadth	of	 the	cuboid	as	data	member	breadth	cannot	be	accessed	outside
the	class	as	it	is	protected	member	of	cuboid.	The	statement



double	ht()

{

return(height);

}

returns	the	height	of	the	cuboid	as	data	member	height	cannot	be	accessed	outside	the
class	as	height	is	the	private	data	member	of	the	class	cuboid.	The	statement

cuboid	c1(2.4,3.5,6.7);

creates	an	object	c1	of	type	cuboid.	The	constructor	is	called	to	initialize	the	values	of
the	 cuboid.	 The	 constructor	 of	 shape	 is	 executed	 and	 then	 constructor	 of	 shape1	 is
executed	and	then	finally	constructor	of	cuboid	is	executed.	The	statement

cout	<<	“The	length	of	the	cuboid	is	:	”	<<	c1.len()	<<	endl;

displays	 the	 length	 of	 the	 cuboid	 as	 c1.len()	 calls	 the	 len()	 function	 of	 class	 shape
which	is	also	the	public	member	function	of	cuboid.	The	statement

cout	<<	“The	breadth	of	the	cuboid	is	:	”	<<	c1.bre()	<<	endl;

displays	 the	 breadth	 of	 the	 cuboid.	 As	 the	 data	member	 breadth	 cannot	 be	 accessed
directly	 as	 it	 is	 protected	member	 of	 the	 class	 cuboid	 so	 the	 function	 bre()	 returns	 the
breadth	of	the	cuboid.	The	statement

cout	<<	“The	height	of	the	cuboid	is	:	”	<<	c1.ht()	<<	endl;

displays	the	height	of	the	cuboid.	The	data	member	height	cannot	be	accessed	directly
as	 it	 is	private	member	of	class	cuboid	so	 it	 is	accessed	 through	the	function	ht()	which
returns	height.

Types	of	Inheritance

Depending	 on	 the	 number	 of	 superclass	 and	 subclass	 used	 in	 the	 derivation	we	 can
have	different	types	as	follows:

a)	Single	Inheritance

b)	Multiple	Inheritance

c)	Hierarchical	Inheritance

d)	Multilevel	Inheritance

e)	Hybrid	Inheritance



Single	Inheritance

A	derived	class	with	only	one	base	class	is	called	Single	Inheritance.	When	one	class	is
derived	only	from	one	base	class	then	such	inheritance	is	called	single-level	 inheritance.
The	single-level	inheritance	is	shown	below.

General	syntax	for	single	inheritance:

Derived_class_name	:	type_of_inheritance	Base_class_name{};

Example:	implementation	of	single	inheritance

#include<iostream.h>

#include<conio.h>

class	base

{

int	a;

public:

int	b;

void	get_ab(void);

int	get_a(void);

void	show(void);

};

class	derived:private	base

{

int	c;

public:

void	mul(void);

void	display(void);

};



void	base::get_ab(void)

{

cout<<“get”;

a=5;

b=6;

}

int	base::get_a(void)

{

return	a;

}

void	base::show()

{

cout<<“value	of	a	is	\n”<<a<<”\n”;

}

void	derived::mul(void)

{

get_ab();

c=b*get_a();

}

void	derived::display(void)

{

show();

cout<<b<<”\n”;

cout<<c<<”\n”;

}

void	main()

{



clrscr();

/*base	b;

b.get_ab();

b.show();*/

derived	d;

//d.get_ab();

//d.show();

d.mul();

d.display();

getch();

}

Multiple	Inheritance

A	derived	class	with	 several	base	classes	 is	 called	Multiple	 Inheritance.	When	single
class	 inherits	 the	 properties	 from	 more	 than	 one	 base	 class,	 it	 is	 called	 the	 multiple
inheritances.	In	other	words	we	can	say	that	multiple	inheritances	mean	that	one	class	can
have	more	than	one	base	class.	It	allows	us	to	combine	features	of	several	existing	classes
into	a	single	class	as	shown	below:

General	syntax	for	multiple	inheritance:

Derived_class_name:type_of_inheritance1

Base_class_name1,type_of_inheritance2	Base_class_name2,…{};

Example:	implementation	of	multiple	inheritance

#include<iostream.h>

#include<conio.h>

class	detail

{

protected:



int	sno;

char	name[10];

public:

void	get(void)

{

cout<<“enter	the	serialno”;

cin>>sno;

cout<<“enter	the	name”;

cin>>name;

}

};

class	level

{

protected:

char	sname;

char	course[10];

public:

void	read(void)

{

cout<<“enter	whether	student	his	UG(U)	\	PG(P)”;

cin>>sname;

cout<<“enter	course	in	UG”;

cin>>course;

}

};

class	office:public	detail,public	level



{

public:

void	getdata(void)

{

if(sname==‘U’)

cout<<name<<”\tis	doing	his/her	graduation

with”<<course;

if(sname==‘P’)

cout<<name<<”\t	is	completed	his/her	graduation

with”<<course;

}

};

void	main()

{

clrscr();

office	o;

o.get();

o.read();

o.getdata();

getch();

}

Hierarchical	Inheritance

When	 many	 subclasses	 inherit	 properties	 from	 a	 single	 base	 class,	 it	 is	 called	 as
hierarchical	 inheritance.	 The	 base	 class	 contains	 the	 features	 that	 are	 common	 to	 the
subclass	and	a	subclass	can	inherit	all	or	some	of	the	features	from	the	base	class	as	shown
below:



Example:	implementation	of	hierarchical	inheritance.

#include<iostream.h>

#include<conio.h>

class	student

{

protected:

int	sid;

char	name[20];

public:

void	getdata(void)

{

cout<<“enter	student	ID”;

cin>>sid;

cout<<“enter	student	name”;

cin>>name;

}

void	putdata(void)

{

cout<<“student	name\t”<<name<<”\n”;

cout<<“ID\t”<<sid<<”\n”;

}

};

class	arts:public	student

{



protected:

char	sub[10];

public:

void	subject(void)

{

cout<<“enter	subject	in	arts”;

cin>>sub;

}

void	print(void)

{

cout<<“name	\t”<<name;

cout<<”\n	sid\t”<<sid;

cout<<”\n	subject	in	arts\t”<<sub;

}

};

class	science:public	student

{

protected:

char	sub1[10];

public:

void	subj(void)

{

cout<<“enter	group	in	science	“;

cin>>sub1;

}

void	put(void)

{



cout<<“name	\t”<<name;

cout<<”\n	sid\t”<<sid;

cout<<”\n	group\t”<<sub1;

}

};

void	main()

{

clrscr();

arts	a;

a.getdata();

a.putdata();

a.subject();

a.print();

science	s;

s.getdata();

s.putdata();

s.subj();

s.put();

getch();

}

Multilevel	Inheritance

The	mechanism	of	deriving	class	from	another	“derived	class”	is	known	as	Multilevel
Inheritance.

Example:	implementation	of	multilevel	inheritance



#include<iostream.h>

#include<conio.h>

class	student

{

protected:

int	rollno;

public:

void	get(int	a)

{

rollno=a;

}

void	put(void)

{

cout<<”\nROLLNO	\t”<<rollno<<”\n”;

}

};

class	test:public	student

{

protected:

float	sub1;

float	sub2;

public:

void	get_marks(float	x,float	y)

{

sub1=x;

sub2=y;

}



void	put_marks(void)

{

cout<<”\nmarks	in	sub1\t”<<sub1;

cout<<”\nmarks	in	sub2\t”<<sub2;

}

};

class	result:public	test

{

float	total;

public:

void	display(void)

{

total=sub1+sub2;

cout<<”\ntotal	marks\t”<<total;

}

};

void	main()

{

clrscr();

result	r;

int	roll;

float	s1,s2;

cout<<“enter	the	rollno”;

cin>>roll;

r.get(roll);

cout<<“enter	marks	for	subject1	and	subject2\n”;

cin>>s1>>s2;



r.get_marks(s1,s2);

r.put_marks();

r.display();

r.put();

getch();

}

Hybrid	Inheritance

It	 is	 a	 combination	 of	 multiple	 inheritances	 and	 the	 hybrid	 inheritance.	 In	 hybrid
Inheritance	a	class	 inherits	from	a	multiple	base	class	which	itself	 inherits	from	a	single
base	class.	This	form	of	inheritance	is	known	as	hybrid	inheritance.	It	is	shown	below:

Example:	implementation	of	hybrid	inheritance

#include<iostream.h>

#include<conio.h>

class	student

{

protected:

int	rno;

char	name[20],course[6];

public:

void	read(void)

{

cout<<“enter	rollno”;

cin>>rno;

cout<<“enter	name”;



cin>>name;

cout<<“enter	course”;

cin>>course;

}

};

class	internals:public	student

{

protected:

float	in1,in2;

public:

void	get(void)

{

cout<<“enter	1st	internal	marks”;

cin>>in1;

cout<<“enter	2nd	internal	marks”;

cin>>in2;

}

};

class	externals

{

protected:

float	a;

public:

void	score(void)

{

cout<<“enter	external	marks	secured”;

cin>>a;



}

};

class	result:public	internals,public	externals

{

float	total;

public:

void	display(void)

{

total=in1+in2+a;

cout<<“student	name	is”<<	name<<”	with	rollno	“<<rno<<”	and	“;

cout<<“total	marks	secured	is”<<total;

}

};

void	main()

{

clrscr();

result	r;

r.read();

r.get();

r.score();

r.display();

getch();

}

Example:	implementation	of	virtual	base	class

#include<iostream.h>

#include<conio.h>

class	student



{

protected:

int	admno,year;

char	stid[10],name[20];

public:

void	getdata(void)

{

cout<<“enter	admission	number”;

cin>>admno;

cout<<“enter	student	ID”;

cin>>stid;

cout<<“enter	name”;

cin>>name;

cout<<“enter	year”;

cin>>year;

}

};

class	botany:virtual	public	student

{

protected:

int	marksb;

public:

void	get(void)

{

cout<<“enter	marks	in	botany”;

cin>>marksb;

}



};

class	zoology:public	virtual	student

{

protected:

int	marksz;

public:

void	gets(void)

{

cout<<“enter	marks	in	zoology”;

cin>>marksz;

}

};

class	science:public	botany,public	zoology

{

int	total;

public:

void	bdisplay(void)

{

total=marksb+marksz;

cout<<”\nadmission	number\t”;

cout<<admno;

cout<<”\nstudent	ID\t”;

cout<<stid;

cout<<”\nname\t”;

cout<<name;

cout<<”\nyear\t”;

cout<<year;



cout<<”\ntotal	marks	in	biology\t”<<total;

}

};

void	main()

{

clrscr();

science	s;

s.getdata();

s.get();

s.gets();

s.bdisplay();

getch();

}

A	derived	class	can	inherit	one	or	more	base	classes.	A	constructor	of	the	base	class	is
executed	first	and	then	the	constructor	of	derived	class	is	executed.	A	destructor	of	derived
class	 is	 called	 before	 the	 destructor	 of	 base	 class.	 The	 arguments	 to	 the	 base	 class
constructor	can	be	passed	as	follows:-

derived_constructor	(argument	list):	base1	(arg_list)	base2(arg_list1)

baseN(arg_list)

The	derived_constructor	is	the	name	of	the	derived	class.	The	argument	list	is	list	of	the
data	members	of	the	derived	class.	The	base1	is	name	of	the	base	class.	The	arg_list	is	the
list	of	the	members	of	the	base	class.

Example:	implementation	of	constructor	in	derived	class

#include<iostream.h>

#include<conio.h>

class	base1

{

int	x;



public:

base1(int	i)

{

x=i;

}

void	show(void)

{

cout<<“base	1	X	value	is\t”<<x<<”\n”;

}

};

class	base2

{

float	y;

public:

base2(float	j)

{

y=j;

}

void	show1(void)

{

cout<<“base2	Y	value	is\t”<<y<<”\n”;

}

};

class	derive:public	base1,public	base2

{

int	m,n;

public:



derive(int	a,float	b,int	c,int	d):

base1(a),base2(b)

{

m=c;

n=d;

cout<<“derived	class	conatructor\n”;

}

void	show2()

{

cout<<“m	value”<<m;

cout<<”\n	n	value”<<n;

}

};

void	main()

{

derive	d(5,1.1,7,9);

d.show();

d.show1();

d.show2();

}



Exercise
Short	Questions
1)	Define	Inheritance.
2)	Explain	various	types	of	inheritance	with	example.





CHAPTER:9	Polymorphism

“Poly”	means	“many”	and	“morph”	means	“form”.	Polymorphism	is	the	ability	of	an
object	(or	reference)	to	assume	(be	replaced	by)	or	become	many	different	forms	of	object.

There	are	two	types	of	polymorphism	one	is	compile	time	polymorphism	and	the	other
is	 run	 time	 polymorphism.	 Compile	 time	 polymorphism	 is	 functions	 and	 operators
overloading.	Runtime	time	polymorphism	is	done	using	inheritance	and	virtual	functions.

Function	overloading

C++	 enables	 several	 functions	 of	 the	 same	 name	 to	 be	 defined,	 as	 long	 as	 these
functions	have	different	 sets	of	parameters	 (at	 least	as	 far	as	 their	 types	are	concerned).
This	capability	is	called	function	overloading.	When	an	overloaded	function	is	called,	the
C++	compiler	selects	the	proper	function	by	examining	the	number,	types	and	order	of	the
arguments	in	the	call.	Function	overloading	is	commonly	used	to	create	several	functions
of	the	same	name	that	perform	similar	tasks	but	on	different	data	types.

Operator	overloading

Operator	overloading	allows	existing	C++	operators	to	be	redefined	so	that	they	work
on	objects	of	user-defined	classes.	Overloaded	operators	are	syntactic	sugar	for	equivalent
function	calls.	They	form	a	pleasant	facade	that	doesn’t	add	anything	fundamental	to	the
language	(but	they	can	improve	understandability	and	reduce	maintenance	costs).



Function	Overloading

A	program	can	 consist	 of	 two	 functions	where	one	 can	perform	 integer	 addition	 and
other	can	perform	addition	of	floating	point	numbers	but	the	name	of	the	functions	can	be
same	such	as	add.	The	function	add()	is	said	to	be	overloaded.	Two	or	more	functions	can
have	same	name	but	their	parameter	list	should	be	different	either	in	terms	of	parameters
or	 their	 data	 types.	 The	 functions	 which	 differ	 only	 in	 their	 return	 types	 cannot	 be
overloaded.	 The	 compiler	 will	 select	 the	 right	 function	 depending	 on	 the	 type	 of
parameters	passed.	 In	 cases	of	 classes	 constructors	 could	be	overloaded	as	 there	 can	be
both	initialized	and	unintialized	objects.

Let’s	see	an	example	of	overloading	function.	We	will	see	the	example	of	calculating
volume	of	block	(it’s	all	sides	may	be	same,	it’s	height	and	width	may	be	same	and	length
may	 be	 different,	 or	 all	 three	 sides	 may	 be	 different).	 So	 here	 we	 will	 declare	 three
functions	with	same	name	but	with	different	arguments.

Example

#include	<iostream.h>

#include	<conio.h>

float	volume(int);

float	volume(float,	float);

float	volume(float,	float,	float);

int	main(void)

{

float	height,	width,	length;

clrscr();

int	h=15;

float	vol	=	volume(h);

cout<<“Volume	of	cube	(when	all	the	sides	are	same)	is:”<<vol<<endl;

height	=	width	=	20.10;

length	=	25;

vol	=	volume(height,	length);



cout<<“Volume	of	block	(when	height	and	width	are	same)	is:”<<vol	<<

endl;

height	=	10.50;

width	=	20.15;

length	=	5;

vol=	volume(height,	width,	length);

cout<<“Volume	of	block(when	all	sides	are	different)	is:”<<vol<<ndl;

getch();

return(0);

}

float	volume	(int	h)

{

return(h	*	h	*	h);

}

float	volume	(float	h,	float	l)

{

return(h	*	h	*	l);

}

float	volume	(float	h,	float	w,	float	l)

{

return(h	*	w	*	l);

}

Output

Volume	of	cube	(when	all	the	sides	are	same)	is:	3350

Volume	of	block	(when	height	and	width	are	same)	is:	10100.25

Volume	of	block	(when	all	sides	are	different)	is:	1057.875

A	 function	 call	 first	 matches	 the	 prototype	 having	 the	 same	 number	 and	 type	 of



arguments	and	then	calls	the	appropriate	functions	for	executions.	The	function	selection
involves	the	following	steps:

The	compiler	first	tries	to	find	an	exact	match	in	which	the	types	of	actual	arguments
are	the	same	and	use	that	function.

If	 an	 exact	match	 not	 found,	 the	 compiler	 uses	 the	 integral	 promotions	 to	 the	 actual
arguments.	For	example,	char	to	int	or	float	to	double,	etc.

When	either	of	them	fails,	the	compiler	tries	to	use	the	built	in	conversions	to	the	actual
arguments	and	then	uses	the	function	whose	match	is	unique.	If	the	conversion	is	possible
to	have	multiple	matches,	then	the	compiler	will	generate	an	error	message.	Consider	the
following	two	functions:

long	absolute(long	a)

double	absolute	(double	b)

When	 you	 call	 a	 function	 absolute	 (10),	 the	 compiler	 will	 give	 error	 because	 int
argument	 can	 be	 converted	 to	 either	 long	 or	 double,	 thereby	 creating	 and	 ambiguous
situation	as	to	which	version	absolute	should	be	used.

If	 all	 of	 the	 steps	 fail,	 then	 the	 compiler	 will	 try	 the	 user	 defined	 conversions	 in
combination	with	integral	promotions	and	built	in	conversions	to	find	a	unique	match.



Operator	Overloading

An	operator	 is	 similar	 to	a	 function:	 it	 takes	an	argument	or	arguments	and	 returns	a
value	 as	 its	 result.	However,	 the	way	 in	which	 operators	 are	 used	 differs	 from	 the	way
functions	 are	 used.	 For	 example,	 if	 we	 were	 to	 write	 a	 normal	 C++	 function	 plus	 to
perform	addition,	it	would	have	to	be	used	as	follows:

x	=	plus	(y,	2);

However,	 using	 the	 built-in	 addition	 operator,	 we	 can	 perform	 the	 same	 function	 as
follows:

x	=	y	+	2;

In	 other	 words,	 the	 operator	 symbol	 appears	 between	 the	 two	 arguments,	 instead	 of
before	them.

The	+,	-,	*	and	/	operators	are	all	binary	operators.	Binary	operators	take	two	arguments
and	 return	a	 single	value.	The	++	and	—	operators	are	unary	operators:	 this	means	 that
they	take	a	single	argument	and	return	a	single	value.

The	built-in	operators	in	C++	are	defined	only	for	the	simple	data	types,	i.e.	int,	char,
float,	 long	 int,	 short,	 double.	 This	 means	 that	 if	 we	 define	 a	 new	 class,	 it	 will	 not	 be
possible	 to	use	 these	operators	with	objects	of	our	new	class.	For	example,	 suppose	we
define	a	new	class	called	Rational,	to	store	and	perform	calculations	with	rational	numbers
(i.e.	numbers	that	can	be	written	as	the	ratio	of	two	integers,	for	example	3/7).	It	would	be
nice	 if	 we	 could	 make	 use	 of	 the	 built-in	 arithmetic	 operators	 to	 perform	 these
calculations,	as	in	the	following	code:

Rational	r1	(2,	5);	//define	rational	number	2/5

Rational	r2	(5,	7);	//define	rational	number	5/7

Rational	r3;

r3	=	r1	*	r2;	//use	built-in	multiply	operator

However,	since	the	built-in	operators	are	only	defined	for	the	built-in	simple	data	types,
this	is	not	possible.Programmer	can	redefine	the	meaning	of	operator	symbols	like	+,	-,	…
to	make	operators	work	on	different	data	types.	For	example:

a)	“+”	is	used	to	add	two	int	or	float	data	types.

b)	But	cannot	be	used	to	add	arrays	aor	complex	(a	+	ib)	numbers.



Operator	overloading	is	a	way	of	allowing	the	use	of	built-in	operators	for	classes	that
you	have	written	yourself.

Why	do	we	need	operator	overloading?

Before	we	proceed	further,	you	ought	to	know	the	reason	we	do	operator	overloading.
Do	we	really	need	it?	For	instance,	compare	the	following	syntaxes	to	perform	addition	of
two	objects	a	and	b	of	a	user	defined	class	fraction	(assume	class	fraction	has	a	member
function	called	add()	which	adds	two	fraction	objects):

c=a.add(b);

c=a+b;

Which	one	is	easier	to	use,	line	1	or	2?

If	 your	 answer	 is	 the	 first	 statement,	 then	 our	 discussion	 ends	 right	 here.	 But,	 we
assume	 that	 you	 are	 obliged	 to	 choose	 the	 second	 one.	Only	 then	we	 can	 continue	 our
discussion.

Operator	 overloading	 is	 needed	 to	 make	 operation	 with	 user	 defined	 data	 type,	 i.e.,
classes,	can	be	performed	concisely.	 If	you	do	not	provide	 the	mechanism	of	how	these
operators	 are	 going	 to	 perform	 with	 the	 objects	 of	 our	 class,	 you	 will	 get	 this	 error
message	again	and	again.

Operator	Function

How	to	define	the	behaviour	of	operators	in	our	class?	It	is	like	creating	a	function	that
describes	 its	behaviours.	 In	C++,	an	operator	 is	 just	one	form	of	function	with	a	special
naming	convention.	As	such,	it	can	have	return	value	as	well	as	having	some	arguments	or
parameters.	Recall	the	general	format	of	a	function	prototype:

return_type	function_name(type_arg1,	type_arg2,	…)

An	operator	function	definition	is	done	similarly,	with	an	exception	that	an	operator’s
function	name	must	 take	 the	 form	of	operatorX,	where	X	 is	 the	symbol	 for	an	operator,
e.g.	+,-,	/,	etc.	For	an	instance,	to	declare	multiplication	operator	*,	the	function	prototype
would	look	like

return_type	operator*(	type	arg1,	type	arg2)

Operators	are	overloaded	by	creating	operator	functions.	The	keyword	operator	is	used
to	 define	 operator	 function.	Operator	 overloading	 doesn’t	 allow	 creating	 new	operators.
The	general	form	of	operator	function	is:-



return_type	operator	#(arg_list)

{

}

return_type	is	the	data	type	of	the	value	returned	from	the	function.	The	arg_list	is	the
list	 of	 the	 arguments	 to	 the	 function.	 The	 operator	 comes	 after	 the	 keyword	 operator.
Instead	of	#	there	will	be	an	operator.

Rules	for	Operator	Overloading

Although	C++	 allows	 us	 to	 overload	 operators,	 it	 also	 imposes	 restrictions	 to	 ensure
that	operator	overloading	serves	its	purpose	to	enhance	the	programming	language	itself,
without	compromising	the	existing	entity.	The	followings	are	the	restrictions:

a)	Can	not	change	the	original	behavior	of	the	operator	with	built	in	data	types.

b)	Can	not	create	new	operator

c)	Operators	=,	[],	()	and	->	can	only	be	defined	as	members	of	a	class	and	not	as	global
functions

d)	The	arity	or	number	of	operands	for	an	operator	may	not	be	changed.	For	example,
addition,	+,	may	not	be	defined	to	take	other	than	two	arguments	regardless	of	data	type.

e)	The	precedence	of	the	operator	is	preserved,	i.e.,	does	not	change,	with	overloading

Operator	 overloading	 can	 be	 a	 very	 useful	 tool	when	 you	 are	 developing	 reasonably
complex	classes	in	C++.	You	can	overload	(almost)	any	of	the	built-in	operators	in	C++.

a)	Operators	that	can	be	overloaded:

b)	Operators	that	can	not	be	overloaded:

Most	overloaded	operators	should	be	defined	outside	of	the	class,	i.e.	they	should	not
be	member	functions	of	the	class.	However,	remember	that	if	the	data	members	they	need



to	access	are	protected	or	private	they	should	be	made	friends	of	the	class	to	gain	access	to
the	required	data	members.	Also,	the	following	operators	must	always	be	made	members
of	the	class:

=	()	[]	->

In	 addition,	 operators	 that	 change	 the	 values	 of	 one	 of	 their	 arguments	 are	 normally
made	member	functions	of	the	class,	e.g.

+=	-=	*=	/=	++	—

Following	table	summarises	the	function	prototypes	necessary	to	overload	some	of	the
more	common	operators.

[Table:	Overloaded	function	prototypes	for	common	operators]

When	 overloading	 operators,	 you	 can	 never	 change	 the	 unary/binary	 nature	 of	 the
operator.	 For	 example,	 the	 <	 operator	 is	 a	 binary	 operator	 (it	 takes	 two	 arguments).
Therefore	if	you	overload	the	<	operator	you	must	define	it	as	a	binary	operator.	However,
remember	that	the	+	and	–	operators	have	both	unary	and	binary	forms,	e.g.	the	following
statements	are	all	valid	in	C++:

x	=	y	+	2;	//binary	addition	operator

x	=	+2;	//unary	addition	operator

x	=	y	–	2;	//binary	subtraction	operator



x	=	-y;	//unary	subtraction	operator

Finally,	recall	that	there	are	built-in	rules	for	operator	precedence	in	C++:	for	example
the	*	operator	will	always	be	evaluated	before	the	+	or	–	operators.	Remember	that	 it	 is
never	possible	to	override	these	predefined	operator	precedence	rules.

Overloading	unary	operator

The	 prefix	 ++	 operator	 can	 be	 overloaded	 as	 such,	without	 any	 change.	Look	 at	 the
function/operator	definition.

class	Test

{

int	i;

public:

void	operator	++()

{

++i;

}

};

The	 post	 fix	 ++	 operator	 will	 be	 overloaded	 with	 a	 dummy	 integer	 parameter	 as
follows.

class	Test

{

int	i;

public:

void	operator	++(int)

{

i++;

}

};



Similar	method	of	overloading	is	used	for	the	—	post/prefix	operators	also.

#include<iostream.h>

#include<conio.h>

class	over

int	a;

public:

void	set()

{

cout<<“Enter	one	number”;

cin>>a;

}

void	display()

{

cout<<“The	number	is”<<a;

}

friend	void	operator—(over	&);

friend	void	operator++(over	&);

};

void	operator—(over	&A)

{

A.a—;

}

void	operator++(over	&A)

{

A.a++;

}

void	main()



{

over	A,B;

A.set();

A.display();

cout<<“AfterA—”;

—A;

A.display();

B.set();

B.display();

cout<<“After++”;

++B;

B.display();

}

Output:

Enter	one	number5

The	number	is5

AfterA—

The	number	is4

Enter	one	number

Overloading	Binary	Operators

Here	is	a	program	to	show	binary	operator	overloading.

#include<iostream.h>

class	rectangle

{

public:

int	length;



int	breadth;

rectangle(int	length1,int	breadth1)

{

length=length1;

breadth=breadth1;

}

int	operator+(rectangle	r1)

{

return(r1.length+length);

}

};

int	main	()

{

rectangle	r1(10,20);

rectangle	r2(40,60);

int	len;

len=r1+r2;

cout	<<“The	total	length	of	the	two	rectangles	is:”<<

len	<<	endl;

return(0);

}

The	result	of	the	program	is:-

The	 program	 consists	 of	 operator	 +	 function	which	 is	 overloaded.	 The	 +	 operator	 is
used	to	perform	addition	of	the	length	of	the	objects.	The	statements

int	operator+(rectangle	r1)



{

return(r1.length+length);

}

define	the	operator	function	whose	return	type	is	integer.	The	operator	+	is	overloaded.
The	function	is	used	to	add	the	lengths	of	the	two	objects.	The	parameter	list	consists	of
one	object	of	type	rectangle.	The	operator()+	takes	only	one	parameter	as	the	operand	on
the	left	side	of	the	operator	+	is	passed	implicitly	to	the	function	through	the	this	operator.
The	statement

len=r1+r2;

calls	the	operator()+	function	to	calculate	the	length	of	the	two	objects.	The	return	type
is	of	integer.	The	variable	len	will	contain	the	total	of	length	of	the	objects.



Advantages	of	Polymorphism

a)	It	allows	objects	to	be	more	independent,	though	belong	to	the	same	family

b)	New	classes	can	be	added	to	the	family	without	changing	the	existing	ones	and	they
will	have	the	basic	same	structure	with/without	added	extra	feature

c)	 It	 allows	 system	 to	 evolve	 over	 time,	 meeting	 the	 needs	 of	 a	 ever-changing
application

d)	 ‘Polymorphism’	 is	 an	 object	 oriented	 term.	 Polymorphism	may	 be	 defined	 as	 the
ability	 of	 related	 objects	 to	 respond	 to	 the	 same	 message	 with	 different,	 but
appropriate	 actions.	 In	 other	 words,	 polymorphism	 means	 taking	 more	 than	 one
form.	Polymorphism	leads	to	two	important	aspects	in	Object	Oriented	terminology	-
Function	 Overloading	 and	 Function	 Overriding.	 Overloading	 is	 the	 practice	 of
supplying	more	than	one	definition	for	a	given	function	name	in	the	same	scope.	The
compiler	is	left	to	pick	the	appropriate	version	of	the	function	or	operator	based	on
the	arguments	with	which	it	is	called.	Overriding	refers	to	the	modifications	made	in
the	sub	class	to	the	inherited	methods	from	the	base	class	to	change	their	behavior.



Exercise
Short	Questions

1.	Explain	polymorphism	with	an	example.

2.	Explain	operator	overloading	with	an	example.

3.	Explain	function	overloading	with	an	example.

Programming	Exercise

1.	Let	us	consider	an	example	of	an	inventory	of	products	in	a	store.	One	way	of	recording
the	details	of	the	products	is	to	record	their	names,	code	number,	total	items	in	the	stock
and	the	price	of	each	item.

product_name

product_code

Unit_Price

(i)	Define	 a	 class	 called	 ‘product’	with	 data	 items	 product_name,	 product_code,	 and
Unit_price.	Save	the	class	as	a	header	file,	i.e.	**.h.

(ii)	Define	a	constructor	with	parameter	for	dynamic	initialization.

(iii)	Define	a	method	for	displaying	prices	of	products.

(iv)	Write	a	main	program	to	test	the	product	system.	Use	the	header	file	for	the	class
defined	in	(i).

The	above	system	has	to	be	upgraded	by	adding	a	sales	system.	The	sales	information
such	as

Order_no

Product_code

Quantity

Total_price

should	be	included.

(v)	Define	a	derived	class	called	‘Order’	which	will	have	the	above	members.

(vi)	Define	a	method	for	displaying	an	invoice	of	an	order	as	follows

––––––––––––––––––



|	ABC	Company	Invoice	Date:	|

––––––––––––––––––

|	Order	no	|	|

|	Product	code	|	|

|	Quantity	@	price	|	|

––––––––––––––––––

|	Total	price	|	***	|

––––––––––––––––––

(vii)	Write	a	main	program	to	test	the	product	system.	Use	the	header	file	for	the	class
defined	in	(v).

2.	How	many	times	is	the	copy	constructor	called	in	the	following	code:

Widget	f	(Widget	u)

{

Widget	v(u);

Widget	w=v;

return	w;

}

void	main()

{

Widget	x;

Widget	y	=	f(f(x));

}

3.	 Write	 a	 SimpleCircle	 class	 declaration	 (only)	 with	 one	 member	 variable:	 itsRadius.
Include	a	default	constructor,	a	destructor,	and	accessor	methods	for	itsRadius.

4.	 Using	 the	 class	 you	 created	 in	 Exercise	 3,	 write	 the	 implementation	 of	 the	 default
constructor,	initializing	itsRadius	with	the	value	5.

5.	Using	the	same	class,	add	a	second	constructor	that	takes	a	value	as	its	parameter	and
assigns	that	value	to	itsRadius.



6.	 Create	 a	 prefix	 and	 postfix	 increment	 operator	 for	 your	 SimpleCircle	 class	 that
increments	itsRadius.

7.	 Change	 SimpleCircle	 to	 store	 itsRadius	 on	 the	 free	 store,	 and	 fix	 the	 existing
methods.

8.	Provide	a	copy	constructor	for	SimpleCircle.

9.	Provide	an	operator=	for	SimpleCircle.

10.	Write	a	program	that	creates	two	SimpleCircle	objects.	Use	the	default	constructor	on
one	and	 instantiate	 the	other	with	 the	value	9.	Call	increment	 on	 each	and	 then	print
their	values.	Finally,	assign	the	second	to	the	first	and	print	its	values.


	Object Oriented Programming
	Using C++
	CHAPTER:1 Introduction to Object Oriented Programming
	Overview of Principles of Programming
	Procedural programming language
	Drawbacks

	Object oriented programming.
	Features of Object Oriented Programming
	Class
	Object
	Data abstraction
	Encapsulation
	Inheritance
	Reusability
	Data hiding
	Polymorphism
	Dynamic Binding
	Message Passing


	Advantages or Benefits of oop
	Applications of Oop

	Exercise

	CHAPTER:2 Fundamentals of C++
	History of C++ Language
	C++ is a “Better C”
	Some Additional Features of C++
	1. Reference variable
	2. Operator Overloading
	3. Generic Programming
	4. Exception Handling

	C++ Advantages and Claims
	Structure of a C++ program
	C++ Comments
	Creating, Compiling and Linking C++ program
	Creating
	Compiling
	Linking and executing

	How C++ Compilation Works
	Comparison of C and C++ language
	Input and output operators in c++
	Output(Insertion) Operator
	Input(Extraction) Operator
	cin and strings

	Cascading I/O Operators

	C++ Header Files
	C++ Tokens
	Identifier
	Keywords
	Constants/Literals
	Integer Numerals
	Floating Point Numbers
	Character and string literals
	Symbolic Constants
	Using #define directive
	Using Const keyword


	Variable
	Variable decleration
	Rules of variable declaration
	Variable Definition vs Declaration
	The difference of declaring variables in C and C++
	Scope of variables
	Reference Variables
	References as Function Parameters

	C++ DATA TYPES
	Enumerated Data Type

	Operators of c++
	Scope Resolution Operator
	Pointer to member operators
	Memory management operators: new and delete
	The new operator
	The delete operator
	Advantages of using new and delete operator over malloc and free function

	Precedence of operators

	Expressions and implicit conversions
	Excesize
	Short Questions
	True/ False
	Multiple Choice Questions
	Predict Output
	Programming Exercises


	CHAPTER:3 Control structure
	If statement
	Semantics when using if

	If –else
	Switch
	For loop
	While loop
	Do-while
	Break statement
	Continue
	Exit() Function
	Goto statement
	Exercise
	Short Questions
	True/ False
	Multiple Choice Questions
	Predict Output
	Find Error in the Code
	Programming Exercises


	CHAPTER:4 Array
	Single dimensional array
	Multidimensional array
	Anonymous unions
	Exercise
	Short Questions
	True/ False
	Multiple Choice Questions
	Predict Output
	Find Error in the Code
	Programming Exercises


	CHAPTER:5 Functions in C++
	Library function
	User defines function
	Function prototyping
	Types of function parameters

	Function calling
	Calling function by reference
	Swapping of two numbers by call by value
	Swapping of two numbers by call by reference using pointer
	Swapping of numbers using call by references only


	Return by reference
	Differences between Pointers and References

	Static VS Dynamic Memory Allocation
	Inline functions
	Use of inline function
	Reason for the need of Inline Function

	Default arguments
	Use of default arguments

	Function overloading
	Restrictions on Function overloading in C++

	Recursivity
	Exercise
	Short Question
	True/ False
	Multiple Choice Questions
	Predict Output
	Programming Exercises
	Find Error in the Code


	CHAPTER:6 Classes and objects
	Structures versus classes
	Class
	Objects
	To make outside member functions as inline

	Public data members
	Nested member functions
	Private member functions and public data members
	Array as data member of a class
	Memory allocation for objects
	Static data members and member functions
	Static data members
	Initializating static data members

	Static member functions

	Array of objects
	Passing objects as function arguments
	Objects as return type
	Friend functions
	Friend Class
	Pointers to Objects
	Pointer to members of class
	Exercise
	True or False.
	Find Errors
	Short Questions
	Programming Exercises


	CHAPTER:7 Constructors and destructors
	Constructors
	Default constructor
	Parameterized constructors
	Copy Constructor
	Constructor Overloading: Multiple constructors in a class
	Constructors with default arguments
	Dynamic initializaton of objects
	Dynamic constructors

	Destructors
	Guidelines for constructors and destructors
	this pointer

	Exercise
	True or False
	Short Questions
	Programming Exercises


	CHAPTER:8 Inheritance
	What is inherited from the base class?
	Types of Inheritance
	Single Inheritance
	Multiple Inheritance
	Hierarchical Inheritance
	Multilevel Inheritance
	Hybrid Inheritance


	Exercise
	Short Questions


	CHAPTER:9 Polymorphism
	Function Overloading
	Operator Overloading
	Operator Function
	Rules for Operator Overloading
	Overloading unary operator
	Overloading Binary Operators

	Advantages of Polymorphism
	Exercise
	Short Questions
	Programming Exercise



