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Preface to the Second Edition

Since the first edition of C++ for Scientists, Engineers and Mathematicians, many
things have changed. Perhaps the most important is that the ANSI C++ Standard
was approved in 1998. The first edition of this book was incompatible with some parts
of the Standard and every effort has been made to rectify this. The facilities offered
by the C++ language have also grown enormously since the first edition. It is not just
the language itself that has grown, but the ANSI Standard also defines an extensive
range of library facilities.

I have also made two changes in emphasis since the first edition. Firstly, since there
is so much important material to cover, some less important features of the language
have been removed. The second change is to try to illustrate the language by means
of complete programs, rather than code fragments. Hopefully, this will give you more
confidence in applying new techniques.

Finally, although C++- is a bigger language than it was, it is even more fun to use.
So, enjoy it!

Preface to the First Edition

Computers are being used to solve problems of ever increasing complexity in science
and engineering. Although some problems can be solved by means of “off the shelf”
packages, many applications would benefit greatly from using a sophisticated modern
programming language. Without such a language, it is difficult to develop and main-
tain complex software and the difficulties are considerably worse for multi-processor
systems. Of the many possible languages, C is being increasingly used in scientific ap-
plications, but it has some dangers and disadvantages owing to its system programming
origins. These drawbacks have largely been overcome by the introduction of C++, an
object-oriented version of C, which was developed at AT & T Bell Laboratories by
Bjarne Stroustrup.

C++ has proved to be an enormously popular language, but most of the available
books assume a prior knowledge of C. Unfortunately, most books on C (in common
with those on C++) are not specifically intended for scientists or engineers and, for
instance, often use manipulation of character strings as the basis for examples. To the

xiil



xiv STRUCTURE OF THIS BOOK

scientist struggling to solve a non-linear differential equation, rather than writing a
text editor, such examples may not be very illuminating. C programmers also seem to
revel in writing very terse code, which can be difficult for the non-expert to penetrate.

This book is specifically intended for scientists, engineers and mathematicians who
want to learn C++ from scratch by means of examples and detailed applications, rather
than a formal language definition. The examples used are deliberately numerical in
character and many other topics of possible interest (such as databases, computer
algebra and graph algorithms) are left untouched. For someone with little or no pro-
gramming experience there is much to be gained by learning C++ rather than C.
Instead of becoming a good C programmer and then converting to an object-oriented
language, the reader can progressively use those aspects of C++ that are both relevant
and accessible. For instance inline functions instead of macros, together with function
name overloading and data hiding by means of classes, are all useful programming tech-
niques that can be introduced at an early stage. Another advantage is that in many
ways C++ is a safer language than C and encourages better programming practices.

No prior knowledge of any programming language is assumed and the approach
is to learn by means of relevant examples. The mathematical techniques involved in
these examples have been kept deliberately simple and are fundamental to any serious
numerical application of computers. For any reader not familiar with a particular tech-
nique, the explanations given in the text should be sufficient and additional background
material can be found in the bibliography. This bibliography is annotated to provide
the reader with a guide to parallel reading whilst studying this book and to suggest
pathways through the literature for more advanced study. In particular, we do not
dwell on those aspects of C++ that only provide backward compatibility with C. Such
features of the language may well be important to readers wishing to integrate existing
C code into a C++ program and help can be obtained from the bibliography. Since our
approach is to learn by example, rather than by formal definition, the bibliography (in
particular [10] and [1]) should also be consulted if a precise definition of the language
is required.

Structure of this Book

It is very unlikely that any application will need every C++ feature described in this
book. However, with the exception of Chapter 18, the order in which material is pre-
sented means that you can progress as far as necessary in order to meet your particular
needs, without working through the entire book. Even if a fairly complete under-
standing of C++ is required, it is worth studying the language in deliberate stages,
interspersed with projects from your own field of interest. The following stages are
suggested:

1. Chapters 1 to 5 introduce the basics of C++, including control structures and
functions. These features are common to most languages that have found nu-
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merical application and are essential for writing any significant program. Most
applications would also need an understanding of Chapter 6, which introduces
arrays. This stage is roughly equivalent to what you would have in a language
such as FORTRAN. Most C++ programs make considerable use of pointers and,
although this topic is introduced in Chapter 6, it is developed further in the
following chapter. Here you will also find a description of strings and dynamic
memory management.

2. Classes, objects, data hiding and member functions are introduced in Chapter 8,
and Chapters 9 and 10 are devoted to operator overloading, constructors and
destructors. Although by themselves such techniques are not sufficient to consti-
tute object-oriented programming, they should enable you to write safer code for
fairly large applications. After working through these chapters you should also
be able to use C++ class libraries, such as matrix algebra, complex arithmetic,
strings etc. However, you will not be able to use inheritance to extend existing
classes to meet any special needs of your own specific applications.

3. Bitwise operations are described in Chapter 11. Such operations may not be
central to your interests and you could decide to omit this chapter. However,
an understanding of how numbers are stored in memory is very useful and you
would miss the neat application to the Sieve of Eratosthenes.

4. Chapter 12 describes single inheritance. At this stage you can truly claim to be
doing object-oriented programming with the ability to construct your own classes
and to extend existing classes.

5. Multiple inheritance is introduced in Chapter 13. Although many experts would
claim that multiple inheritance is an essential part of object-oriented program-
ming, you will probably be developing quite large applications before using such
techniques.

6. Chapters 14, 16 and 15 are about namespaces, templates and exception handling.
Namespaces are useful for avoiding potential name clashes in large projects and
templates provide a way of reusing code. FException handling provides techniques
for dealing with errors, and is particularly important for errors that are detected
by library facilities. All three chapters are prerequisites for the penultimate
chapter.

7. The ANSI C++ Standard defines an important and extensive set of library fa-
cilities. Chapter 17 provides an overview of this Standard Library. Chapter 18
describes input and output, which is actually part of the Standard Library. This
means that many details of input and output are not covered until this final chap-
ter. For example, file I/O is not introduced until this stage, although you may
have applications that lead you to consult this chapter before working through
the preceding chapters. The reason for leaving details of input and output until
Chapter 18 is that it involves classes, operator overloading, constructors, destruc-
tors, inheritance, templates, exception handling etc. In fact the I/O facilities
offered by the Standard Library employ just about every idea of the preceeding
chapters. However, don’t despair! If you do need facilities such as file I/O at an
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early stage, then you should be able to extract the necessary information without
working through the entire book!

If used as an undergraduate text, it is likely that the material contained in all
eighteen chapters would be too much for a single course of lectures. Rather it is
envisaged that Chapters 1 to 9 would be used in a first course, with the following
chapters being suitable for a subsequent course.

This book introduces some advanced features of C++ that could be omitted if a
complete knowledge of the language is not required. The following techniques are used
to identify such features:

1. Items that fit naturally into a particular chapter, but could reasonably be post-
poned until later, are marked by a single dagger (f). You would probably have to
return to such sections in order to understand later chapters and you may have to
postpone attempting some of the exercises. A typical example is Section 4.13.3
on Conditional Compilation; you will probably need to use this information some-
time, but skipping the section on a first reading will not do any harm.

2. There are two kinds of section which are sufficiently self-contained that they
can be omitted altogether without any loss of continuity and these are marked
by double daggers (1f). Some sections are only intended for reference. Other
sections will only be of importance to particular applications; for example, bitwise
operations (Chapter 11) could be crucial for a number theory application but of
no relevance to solving a differential equation.

Lack of space prevents the inclusion of a chapter on object-oriented design in the
context of numerical applications. However, this is a topic which deserves an entire
book to itself and some recompense may be obtained by consulting the bibliography

([2], [7] and [10]).
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Chapter 1

Introduction

1.1 Getting Started

Probably the most frustrating stage in learning any language is getting started. Our
first steps need to be modest and we start by simply sending a one-line message to the
output device. Very few assumptions are made in this book, but it is assumed that
you have access to a C++ compiler and that you know how to use an editor.! Suppose
the following lines of code are entered into a file by means of an editor:

// A simple C++ program:

#include <iostream>
using namespace std;

int main()

{
cout << "This is our first C++ program.\n";
return(0);

}

This complete C++ program must go through a two-stage process before it can be
run. First of all the code needs to be compiled in order to generate instructions that
can be understood by our computer and then this collection of instructions must be
linked with libraries.? The exact way in which the compilation and linking is carried
out will depend on the details of the particular system. Typically, if this first program
is in the file example.cxx, then both stages may be accomplished by entering:

g++ -0 example example.cxx

'Word processors put undesirable characters in their output files. However, those that can be
persuaded to output plain text files could also be used to edit C++ code. Alternatively, you may
have access to an IDE (Integrated Development Environment) that has an integrated editor and C++
compiler.

2A library consists of a collection of compiled code that performs tasks that are not intrinsic to the
language. Typical examples are input, output and the mathematical functions (square root, logarithm
etc.).

1
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This command is consistent with the GNU C++ compiler running under Linux.® How-
ever, it may be conventional on your system to use a different extension for source code
(such as .cc, .cpp, .Cor .c++) and the compile and link command may be different
(perhaps CC or gxx). You may also have to use <iostream.h> in place of <iostream>.
The -o example part of the compile and link command results in the executable code
being placed in a file called example. You should then be able to execute this file by
entering the command:

example

If you omit -o example from the compile and link command, then the GNU compiler
will put the executable code in the file a.out. However, with other compilers the file
in which the executable code is placed may be different; for example, on an MS-DOS
or Microsoft Windows system it may be example.exe.

If you have overcome all of the system-dependent hurdles, the following output
should appear:

This is our first C++ program.

The lines of code that produce this output require a few words of explanation.
The first line is a comment since any code following // on a line is ignored. A larger
program would normally be introduced by a more significant comment. The third
non-blank line is the start of a function definition. Every complete C++ program
must contain a function called main and in our example, main is the only function.
The function name is preceded by the type specifier, int, since main should return
an integer. Parentheses, (), follow the name and are used to indicate that main is a
function. In some circumstances these parentheses may contain variables, known as
arguments.

The function, main (), contains two statements; the end of each statement is denoted
by a semicolon, sometimes known as a statement terminator. The first statement
outputs a message and the second statement effectively returns control to the operating
system. The standard output stream (usually the screen) is known as cout and the <<
operator is used to send a string of characters to this stream, the group of characters
between the double quotes, " ", being known as a string. In our example, the string
ends with \n, which is used to denote a new line. This technique of sending character
strings to the output stream is not strictly part of the C++ language, but is part
of a library and is one of many standard functions that are available with any C++
compiler.

Since our program is compiled before it is linked to code for the output stream, we
need to supply information about the interface to cout. This information is contained
in the file, iostream, which is made available to the compiler by the instruction:

#include <iostream>

The consequence of this instruction is that the iostrean file is copied (that is included)
at this point. Files such as <iostream> are usually known as header files and are
described in more detail in Section 4.13.1. The < > notation is not part of the file

3This is the environment that was used to test the code given in this book, although the code
should work with little modification in other environments.
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name, but rather an indication that the file exists in a special place known to the
compiler.
The statement:

using namespace std;

makes certain names that belong to what is known as the Standard Library visible to
the program. The Standard Library is introduced in Chapter 17 and namespaces are
described in Chapter 14. Until Section 14.8, the above statement will appear in every
file that includes header files with the < > notation. In Section 14.8 we explain how to
avoid using the statement.

1.2 Solving a Quadratic Equation

No doubt our interests are more numerical than simply outputting lines of text, so our
second example consists of solving a quadratic equation:

ar’ +br+c¢=0

The solutions are, of course, given by:
. —b+ Vb? — 4ac
o 2a

which can be implemented by the following (not very robust) program:

// Solves the quadratic equation:
//a*xx*xx+bxx+c=0

#include <iostream>
#include <cmath> // For sqrt() function.
using namespace std;

int main()

{
double rootl, root2, a, b, c, root;
cout << "Enter the coefficients a, b, c: ";
cin >> a >> b >> c;
root = sqrt(b * b - 4.0 * a * c);
rootl = 0.5 * (root - b) / a;
root2 = - 0.5 * (root + b) / a;
cout << "The solutions are " << rootl << " and " << root2 <<
ll\nll;
return(0) ;
}

This program introduces floating point variables, which can store numbers that
include a decimal point, such as 0.5. Notice that we use 0.5 in the above code, rather
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than divide by 2.0, since multiplication is usually faster then division. The variables
rootl, root2, a, b and c are defined to be floating point numbers by virtue of the type
specifier, double.

The program first uses the cout stream to send text to the output device, instructing
the user to input three coefficients. Values for a, b, and c are read from the input
stream, cin, which is usually the keyboard. For example, you could try typing:

1 -3 2

and then hit the enter key. Having obtained the values for a, b, and ¢, the code makes
use of the assignment, =, multiplication, *, addition, +, and subtraction, -, operators
in self-evident ways.

In general, solving a quadratic equation involves finding the square root of a number.
This is achieved by invoking the sqrt () function,? which is defined for us in a system-
supplied mathematics library. Since our program is first compiled and then linked with
compiled code for the libraries, we must also include the header file, <cmath>, which
contains a function declaration for the sqrt () function, specifying the argument and
return types (in this case double). Notice that we really do mean <cmath>, rather
than <math>, since the sqrt () function was originally part of the C, rather than C++,
libraries.®

On some systems it may be necessary to specify that this example requires the
mathematics library for linking. A typical form of the compile and link command in
such cases is:

g++ —-o example example.cxx -1lm

but you may need to consult the compiler reference manual for your particular system.

1.3 An Object-oriented Example

The techniques illustrated by our examples so far have not differed much from other
languages, such as FORTRAN, BASIC or Pascal. Now consider (but don’t try to
compile) the following program, which multiplies two matrices and lists the result:

// Program to test matrix multiplication:

#include "matrix.h"
using namespace std;

int main()
{
int i, j;
matrix A(6, 4), B(4, 6), C(6, 6);

4Within the text we write a function with an empty pair of parentheses following the name. This
is to emphasize that we really do mean a function, but does not necessarily imply that the function
takes no arguments. Within a segment of code, any necessary arguments are, of course, included.

5C++ is an extension of C, a language which was invented by Kernighan and Ritchie [5] and then
adopted by ANSI (the American National Standards Institute). C++ has also been adopted by an
ANSI committee. (See [1].)
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// Assign some numbers to the elements of A:
for (i = 1; 1 <= 6; ++i)
for (j = 1; j <= 4; ++j)
A(L, j) =1 = j;

// Assign some numbers to the elements of B:
for (i = 1; i <= 4; ++i)
for (j = 1; j <= 6; ++j)
B(i, j) =1 * j;

// Multiply A and B:
C = A x B;

// Output the result:
cout << C;

return(0) ;

¥

This program uses some features of C++ to perform operations on matrices. The
statement:

matrix A(6, 4), B(4, 6), C(6, 6);

defines matrices, A, B, C, which are of order 6 x 4, 4 x 6 and 6 x 6 respectively. The
important point to notice about the next seven lines of code is that A(i, j) and
B(i, j) are used to access the ij elements of the matrices A and B. Notice that the
included file matrix.h has a .h extension and also double quotes are used rather than
the < > notation. This is the convention when such files are not provided by the system
and is covered in more detail in Section 4.13.1.

The program first assigns integers to the elements of two non-square matrices. The
statement that then multiplies these two matrices is wonderfully simple:

C=A *B;

Notice how the code closely parallels the mathematics and is not obscured by function
calls. Moreover, if we make a mistake and write:

C =B x A;

which incorrectly attempts to assign a 4 x 4 matrix to a 6 x 6 matrix, then an error
message results.

Finally, the statement:
cout << C;

is all that is required to list the matrix, C:
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30 60 90 120 150 180
60 120 180 240 300 360
90 180 270 360 450 540
120 240 360 480 600 720
150 300 450 600 750 900

180 360 540 720 900 1080

Matrices are not part of the C++ language, but are an example of a user-defined
type, or class, which can be tailored to meet the exact needs of the application.’ For
instance, some applications may be restricted to real matrix elements, whilst others may
be complex. In some circumstances bounds-checking may be an intolerable overhead,
whereas in others it may be essential. An application may even require that matrix
elements are themselves matrices. We will learn how to construct such classes. We will
also learn how to build on existing classes in order to create new classes, thus enabling
us to reuse software without understanding its detailed design.

The three matrices, A, B and C, are instances of the matrix class and are known
as objects. This example only skims the surface of object-oriented techniques, but
the essential idea is that a matrix is considered as an entity on which we perform
operations. A matrix object encapsulates details of how the data is stored, the value
of each element, the numbers of rows and columns, etc. Moreover, the matrix class
also shields the application programmer from details of how matrix operations, such
as multiplication, are implemented.

1.4 Why Object-oriented?

Solving realistic problems can require programs of ten or even a hundred thousand
lines. Such programs may be in use for many years and have been written by many
different programmers. Three key requirements are that programs are maintainable,
reusable and efficient.

A program must be maintainable because it may need modifying when hardware,
software or requirements change, or when errors in the code are inevitably discov-
ered. Developers of a program are frequently not involved in maintenance and, in any
case, the changes may be made long after the program was written. Throughout this
book you will therefore come across techniques that encourage maintainability, such as
readability, modularity, type-safe, self-documenting etc. These techniques are in turn
facilitated by object-oriented programming.

The code for a complicated application may involve many years of effort, so it
makes sense to be able to reuse as much of this work as possible. Functions can
aid re-usability to a limited extent; instead of implementing a cosine every time it is

6The phrase “user-defined” refers to a user of the C++ language as distinct from a user of a
program. Unfortunately, this potentially confusing terminology is well-entrenched in the literature.
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required, we can use a function. But a function to perform other operations may be
less straightforward. For instance, a function to invert a matrix needs information on
how the matrix is stored, its size and type. It would be much easier to reuse a matrix
inversion function if it simply operated on matrices as objects, which encapsulated
details of storage, size etc. Also, rather than simply reusing the matrix class, we may
want to modify it (perhaps to introduce bounds-checking) and ideally we should be able
to make changes without tampering with the original code. Object-oriented techniques
enable us to do all of these things.

Scientists and engineers are often working at the leading edge of what is computa-
tionally possible and are also well aware that inefficiency costs money. It might seem
that efficiency is incompatible with the requirements of maintainable and reusable
code. It is also true that object-oriented techniques usually introduce a slight run-time
overhead when compared with traditional methods. However, the key to efficiency is
identifying the appropriate objects. For example, if an application manipulates matri-
ces, then it should be written in terms of matrix objects, rather than matrix elements.
The details of matrix multiplication, addition etc. are then hidden from the application
programmer. Moreover, since the details are hidden, the implementation can be made
as efficient as possible. Such increases in efficiency far outweigh any run-time overhead
due to using object-oriented techniques.

1.5 Summary

e Every program must have one (and only one) function called main().

e Compiling and linking a program is system dependent. In this book we use the
GNU C++ compiler and the command line

g++ —o example example.cxx
gives example as the executable file. Using
g++ example.cxx

gives a.out as the executable file.
e cout << x sends the value of x to the output stream.
e cin >> i reads the value of i from the input stream.

e The object-oriented features of C++ enable us to write reusable code in a way
that is natural for the particular application.

1.6 Exercises

1. Our program to solve a quadratic equation is not very robust. Try to make the
program fail in as many different ways as possible. What would you like to do to
improve the program? (We haven’t covered the techniques required to actually
carry out the necessary improvements yet.)
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2. Using the quadratic equation program as a guide, write a short program that
reads a, b and ¢ from the keyboard and lists the results for a+b, bxc and a/c.
Again, you should be able to input data that causes your program to fail.



Chapter 2

The Lexical Basis of C++

The most basic study of any language is lexical; without knowing the rules for con-
structing words, we cannot begin to write books, or even to construct a single sentence.
Communication is impossible. Likewise, before we can write a meaningful C++ pro-
gram, we must learn the rules for constructing “words”, or more correctly tokens.

2.1 Characters and Tokens

A C++ program consists of one or more files, which contain a series of characters. The
details of how characters are represented internally are dependent on the C++ compiler,
but one byte per character is normal and one of the most popular representations, the
ASCII character set, is given in Appendix A.! The allowed characters are shown in
Table 2.1. A compiler resolves (or parses) the C++ program into a series of tokens.
There are five types of token: identifiers, keywords, constants, operators and other
separators.

upper case letters: ABCD...XYZ
lower case letters: abcd...xyz
digits: 0123456789
special characters: vr% ek () L1 L -+
=| \N<,>.2?2/ " #: ;"
non printing characters: blank, carriage return,
new line etc.

Table 2.1: Permissible characters.

LA byte is the smallest addressable element of memory and is usually eight bits. Indeed, throughout
this book a byte is assumed to be synonymous with eight bits. A bit is the smallest element of memory
and can only take the values 0 and 1. Bits and bytes are considered in more detail in Chapter 11.

9
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2.2 Comments and White Space

Comments are an essential feature of good programming practice. In C++ there are
two ways of denoting comments. Two forward slashes, //, indicate the start of a
comment that continues until the end of a line:

// This is a comment.
x = 1; // The first part of this line is not a comment.

An alternative technique is to use /* to indicate the start of a comment that continues
until */ is encountered. Such comments can continue over many lines:

/* This is a comment */
/* This

is

a

longer

comment */

The /*  */ technique may also include one or more // style of comments:

/* This is a comment. // This is a second comment
and this is a continuation. */

However, the /*  */ style of comments cannot themselves be nested:

/* /* This comment should not get past the compiler.
If it does then the compiler does not conform
with the ANSI C++ Standard.

Such extensions are best avoided. */ */

This restriction is a minor nuisance, since temporarily commenting out sections of code
by means of /* */ is very convenient, but cannot be used if the code already contains
/* %/ style comments. This is a good reason for only using the // style of comment
in new code. However, an alternative technique for making the compiler temporarily
ignore sections of code is given in Section 4.13.3.

Notice that blanks are not allowed within the tokens defining either style of com-
ment:

/ * This is not a valid comment. * /
/ / Neither is this.

and that an incomplete /* */ style of comment can lead to errors:

/* Get the coefficients of the equation:
cout << "Enter the coefficients a, b, c: ";
cin >> a > b >> ¢;

/* Now find the roots: */
root = sqrt(b * b - 4.0 * a * ¢);
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In this example, everything between the first /* and */ is taken as a comment and, as
a result, a, b and ¢ have arbitrary values.

Comments, blanks, vertical and horizontal tabs, form feeds and new lines are col-
lectively known as white space. White space is not allowed in any token, except in
character or string constants. The compiler ignores any white space that occurs be-
tween tokens. Such white space is effectively a separator.

2.3 Identifiers

An identifier is a sequence of some combination of letters, digits and the underscore
symbol, _. Both upper and lower case characters are valid and are distinct. However, it
isn’t a very good idea to rely on the case being the only distinguishing feature between
identifiers. In both C and C++ there is a tradition of using mainly lower case, except
where some special significance is being highlighted, as with a global constant. This
tradition makes for easily readable code.

The ANSI C++ Standard doesn’t impose any maximum limit on the number of
characters in an identifier. Since real computers have finite resources your computer
will have some limit, but this is very unlikely to prove a problem.

An important restriction on identifiers is that they must start with a character or
underscore rather than a digit. Some examples of valid identifiers are:

main

cout

position_1
initial_velocity

whereas invalid identifiers include:

velocity$ // $ is not a digit, letter, or _
ivelocity // Identifiers cannot start with a number.
velocity // White space is not allowed.
initial-velocity // Don’t confuse - with _.

Oxygen_level // Don’t confuse 0 with o.

Other examples of valid identifiers include those with a leading underscore:
_velocity
or embedded double underscores:
initial__velocity

Both of these combinations are best avoided, since leading underscores and embedded
double underscores are often generated internally by compilers or used in libraries.
Likewise, it is worth avoiding trailing underscores:

velocity_

Apart from these minor restrictions, it is good programming practice to employ names
that are meaningful in the context in which they are used, such as:



12 CHAPTER 2. THE LEXICAL BASIS OF C++

water_temperature
instead of:
T12

Meaningful names make the code self-documenting and avoid the need for excessive
and distracting comments. While some programmers use an underscore to distinguish
different parts of an identifier, others prefer to use an upper case letter:

waterTemperature

You will probably find that you like one particular style and loath the other.

2.4 Keywords

Keywords are special identifiers that have a significance defined by the language rather
than the programmer. A complete but, at this stage, rather impenetrable list is given
in Table 2.2. You are not expected to memorize this list, rather it is given in order to
warn you to only use these keywords in ways that are defined by the language.?

asm else new this
auto enum operator throw
bool explicit private true
break export protected try

case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile
do long struct wchar_t
double mutable switch while
dynamic_cast namespace template

Table 2.2: C++ keywords.

There are also some alternative representations of C++ operators. These are given
in Table 2.3 and should only be used as defined by the language. For reference, the
operators that they represent together with the section where they are introduced in
this book are also given.

A few other keywords that may be reserved for some compilers are:

ada fortran pascal overload
huge near far

2Not all of these keywords are described in this book.
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| Representation | Operator | Section Defined |

and && 4.2
and_eq &= 11.1.6
bitand & 11.1.2
bitor | 11.14
compl - 11.1.1

not ! 4.2
not_eq 1= 4.3

or [l 4.2
or_eq [= 11.1.6

xor - 11.1.3

xor_eq ~= 11.1.6

Table 2.3: Alternative representations of C++ operators.

and these are best avoided as user-defined identifiers in order to ensure portability.
For some compilers such keywords may have a leading underscore, as in near.
Examples of the valid use of keywords are:

int 1; // The keyword int declares i
// to be an integer variable.
char c; // The keyword char declares c

// to be a character variable.
However, the following are invalid:

int switch; // Attempts to declare switch to be
// an integer variable.

char class; // Attempts to declare class to be
// a character variable.

int i // White space is not allowed.

INT 1i; // Keywords must be lower case.

2.5 Constants

Constants, which are also known as literals, can be integer, Boolean, floating point,
character or string. More details of these four types are given in the next chapter, but
they are introduced here.

2.5.1 Integer Constants

Integer constants consist of a sequence of digits, such as:
14768

but not:
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14,768 // An embedded comma is not allowed.
14 768 // Embedded white space is not allowed.
-14768 // This is an integer expression.

Notice that a negative integer is actually an integer constant expression rather than an
integer constant. Integer constants are usually given in decimal (base ten) notation,
but octal and hexadecimal constants are also possible. Octal (base eight) constants
start with 0 and cannot include the digits 8 or 9. An example of an octal constant is:

024

Hexadecimal (base sixteen) integer constants start with 0x (or 0X) and may include
the letters a to £ (or A to F, the case is not significant) as, for example:

Ox7alf

2.5.2 Boolean Constants

There are two Boolean constants, namely true and false and these have their obvious
meanings. Further details are given in Section 3.1.10.

2.5.3 Floating Point Constants

Floating point constants include a decimal point or an exponent, or both. Some ex-
amples are:

2500.1 2.5001e3 25001E-1

where the value following e (or E) is the exponent. Negative floating point numbers,
such as

-2500.1 -2.5001e3  -25001e-1

are actually floating point constant expressions, rather than constants.

2.5.4 Character Constants

A character inside single quotes, such as:
) a) ) 1 ) ) )

is a character constant and is usually represented internally by one byte. Note that 71’
is not equal to the integer 1; for instance in the ASCII character set, 1’ is actually
represented by 49. (See Appendix A for more detail.) Notice also that a character
constant has the form ’a’, rather than ‘a’.

Certain hard to get at characters are represented by using an escape sequence,
starting with a backslash; for instance ’\n’ signifies a new line. The complete list of
all such sequences is given in Table 2.4. The generalized escape sequence consists of
up to three octal or as many hexadecimal digits as are required. For instance, ’\61°
and ’\x31’ both represent the character, ’1°.
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new line \n backslash \\
horizontal tab ~ \t question mark \?
vertical tab \v single quote \’
backspace \b double quote  \"
carriage return  \r octal number  \032
form feed \f hex. number \0x32
alert (bell) \a

Table 2.4: Escape sequences.

Exercise®

To demonstrate that both \61’ and ’>\x31’ represent the same character,
try the following simple program:

#include <iostream>
using namespace std;

int main()

{
char a, b;
a = ’\61";
b = ’\x31’;
cout << a << ’ ? << b << ’\n’;
return(0);
}

and then modify it to sound your terminal bell by means of a suitable
hexadecimal escape sequence.

2.5.5 String Constants

String constants are sequences of characters between double quotes, as in:
"Hello world"

Notice that the double quote is a single character, ", rather than, ’’, and that white
space is significant in string constants so that "Hello world" is not the same as
"Helloworld". Internally a string is represented by an array of characters. This
means that "Hello world" is actually twelve characters since the escape sequence,
'\0’, is used after the last character to denote the end of a string.* Consequently ’C’
is not the same as "C"; whereas the first consists of one character, the second consists
of two.
Adjacent string constants are concatenated, so that:

cout << "Hello" " World";

3Qccasionally we include simple, un-numbered exercises in the text. You should do these as you
come across them. You are also encouraged to attempt the exercises at the end of each chapter!
4:\0’ is sometimes known as the null character or the end-of-string character.
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produces the output:

Hello World

2.6 Operators

An operator is a language-defined token, consisting of one or more characters, that
instructs the computer to perform some well-defined action. An example is the assign-
ment operator, =, used in the following:

i=1; // Assign 1 to the memory location
// holding the value of i.

A complete list of operators is given below:

O . ] -> - typeid

—>% & * ! - dynamic_cast

++ - - / % static_cast

+ X << >> < reinterpret_cast
<= > >= == 1= const_cast

- | && [ 7: throw

= += -= *= /= new

%= <<= >>= &= c= delete

|= , sizeof

Notice that some keywords are also operators and that multi-character operators form
a single token. Once again it should be emphasized that white space is not allowed
within a token, meaning, for instance, that + = is not a valid operator, unlike +=.
However, in contrast to some languages, two operators can follow in succession; for
instance x * -1 is equivalent to x * (-1). More detail on most of these operators will
be given later in this book.

2.7 Programming Style

There is no enforced programming style in C++. White space is ignored (except within
tokens), there is no restriction to typing statements in certain columns (as in Fortran),
there is no required indentation (as in occam) and statements can flow across many
lines. Consequently it is possibly to produce code that is very difficult to read, as in:

#include <iostream>

#include <cmath>

using namespace std;int main(){double x1,x2,a,b,c,root;cout
<<"Enter the coefficients a, b, c: ";cin>>a>>b>>c;root=
sqrt (b*b-4.0%*a*c) ;x1=0.5*(root-b) /a;x2=-0.5*(root+b) /a;cout
<<"The solutions are "<<x1<<" and "<<x2<<"\n";return(0);}

However, it is up to the programmer to adopt a clear style that can easily be understood
by others. There is no unique good style, but it is worth adopting something similar
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to that used in this book. In particular it is a good idea to keep to one statement
per line (except in special circumstances) and to indent by one tab to denote blocks
of code. With this in mind, it is worth adjusting the tab on your editor to four (or
perhaps three) characters per tab position. If you don’t do this, your code will march
across the page too quickly. Further hints on style will be given when more of the C++
language has been introduced.

There is one final point that should be made in this chapter. Very occasionally there
may appear to be be an ambiguity as to how one or more lines of code are resolved
by the compiler into tokens. For instance, given that both -- and - are valid C++
operators, how should

x =y-—--z; // x=(y-)-z;orx=y- (--2);

be read? The compiler resolves this ambiguity by adopting a mazimal munch strategy;’
the parsing stage of the compilation process bites off the largest sequence of characters
that form a valid token. So the example above really does mean:

x = (y--) - z;

It is a good idea to resolve such apparent ambiguities by using white space or paren-
theses.

2.8 Summary

A C++ source file consists of a sequence of tokens that are made up of one or
more characters.

e White space (including blanks, new lines, tabs etc.) is not allowed within tokens.

e There are five types of token: identifiers, keywords, constants, operators and
other separators.

e Use meaningful names for user-defined identifiers, such as flow_rate.
o Identifiers with language-defined significance are known as keywords, examples
of which are int, class, if, etc. The significance of keywords cannot be altered

by the programmer.

e Constants can be integer, Boolean, floating point, character or string. Examples
are:

10 true 2.01 ‘a’ "Hello"

e Operators are tokens representing operations, such as assignment, =, addition, +,
multiplication, *.

5See [6].



18 CHAPTER 2. THE LEXICAL BASIS OF C++

2.9 Exercises

1. How many different types of token are there? Classify the following tokens:

new -> - >

O ; i friend
int pressure 14 *

1.4 \n’ public (]

2. What is wrong with the following statements:

(a) speed$of$light = 186000;
(b) initial velocity = 0.0;
(c) #zero = 10;
(d) 180_degrees = 3.1415926535897932;
(e) -x = 360.0;
(f) void = 0;
(g) pressure := 760.0; // in pascals.
(h) /* Perhaps this fix will work:
volume = 100.0; /* in litres. */
*/
(i) case = 2;

3. Which of the following are valid constants:

(a) 27

(b) 11,111

(c) ’Hello world’

(d) ‘a’

(e) -3.1415926535897932
(f) "\t

(2) 2514

(h) "\032’



Chapter 3

Fundamental Types and Basic
Operators

C++ is a typed language; that is the variables and constants that occur in a program
each have a type and this controls how they may be used and what storage is required.
For example, variables of the int type, which are used to represent integers, may require
two bytes of memory, and variables of the float type, which are used to represent
floating point numbers, may need four bytes. Furthermore, the float and int types
are represented in memory in entirely different ways. The language-defined types that
are used to represent integers, Booleans, characters and floating point numbers are
known as fundamental types and are the concern of this chapter.! It is also possible to
define what are known as derived types in order to manipulate objects such as matrices,
complex numbers or 3-dimensional solids.? Techniques for creating derived types are
described in later chapters.

The motivation for using a typed language is that the compiler can catch many
programming errors by performing type-checking. For example, if an object is declared
to be constant (by using the const keyword, which is explained later in this chapter)
then an attempt to assign a value to the object is a compile-time error since it has the
wrong type for such operations.

In this chapter we examine all of the fundamental types defined by the C++ lan-
guage, together with some of the basic operators. This will enable us to carry out the
usual arithmetic operations and to manipulate characters. Compared with some lan-
guages, the fundamental types are rather limited; for instance, unlike Fortran, complex
numbers are not defined. Although this may seem a bit restrictive for many applica-
tions, derived types can effectively extend the language indefinitely. For example,
complex arithmetic is part of the ANSI C++ Standard Library. (See Section 17.3.1.)

IThe fundamental types are sometimes known as built-in or standard types.
2Derived types are sometimes known as user-defined types.
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3.1 Integral Data Types

The integral data types consist of three groups: the integer, Boolean and character
types. The integer group contains the short, int and long types, all of which can
be either signed or unsigned.> The integer types are used to store and perform
arithmetic operations on “whole” numbers (0, 1, —50 etc.). Boolean variables can only
be used to store the two constants true and false. The character types are char,
signed char and unsigned char. Since characters are actually represented internally
by small integers, the character types can also be used for storing and operating on
such integers.

3.1.1 Type int

The int data type is the most important of the integral types and can hold both positive
and negative integers. For ints represented by two bytes, the maximum number that
can be represented is 32767 and the minimum is —32768. (For some compilers these
numbers may be 32768 and —32767 respectively, since sixteen bits can hold 2'¢ = 65536
different numbers, including 0.) The exact limits for all integral data types are given
in a header file, called <climits>. It is worth examining this file at some stage to
see the limits for your particular system. On a UNIX or Linux system, the header
files are usually in the directory /usr/include/g++, or something similar. You should
be aware that the <climits> notation only implies that the compiler knows where
to find the file. It does not necessarily imply that the file is actually called climits.
The contents of the C++ header file <climits> are the same as the C header file
<limits.h>, so you may find that <climits> merely includes <limits.h>. If this
is the case, then you will have to search for <limits.h>. On a UNIX or Linux system
this will probably be in the /usr/include directory.
If we wish to use the variables i, j, k, then they can be defined by:

int 1i;
int j;
int k;
It is also possible to define a list of variables:
int i, j, k;

We say “define” rather than “declare”; in C++ the distinction is both subtle and
important. Defining an object, as above, not only specifies the type, but also reserves
the appropriate amount of memory. As will be seen later, it is possible to make a
declaration, such as

extern int 1i;

without reserving any memory (which must of course be done somewhere). In a com-
plete program there must be one (and only one) definition of an object, even though
there can be many declarations. It is worth emphasizing that, although an object may
be defined in the sense of memory being allocated, its “value” can still be arbitrary.

3The integer types are signed by default. It is therefore very rare and completely redundant to
have signed int, signed long or signed short.
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An object must be defined or declared before it can be used in a program, otherwise
a compile-time error results. This is more restrictive than some other languages, but
helps to eliminate errors such as mistyped identifiers.

The operator, =, is used for integer assignment, so the following defines i, j, k and
sets them to 1, 2, 3 respectively:

int i, j, k;

i=1; // Notice that every statement
j=2; // ends with a semicolon.

k = 3;

Addition and subtraction of integers are carried out using the usual + and - oper-
ators, as in:

ORI G
[

js

i;

Notice that “=” is the assignment rather than equality operator, so the statement:
i=1+j;

means add the current values of i and j (1 and 2) and assign the result (3) to i. The
fact that “=” is the assignment operator means that expressions such as:

i+1=7; // WRONG

which look mathematically respectable, are not correct C++ statements. Conversely,
some expressions that are valid in C++, would make no sense as mathematical equa-
tions. For example, in the above code fragment, the statement:

i=1+ j;

does not imply that j is zero; in fact j is 3 in this context. It is also worth pointing
out that :=is not a valid assignment operator, nor even an operator:

i = 10; // WRONG: := is not an operator.

Our short sequence of assignment statements does not form a complete C++ pro-
gram but, following the examples in Chapter 1, we can easily rectify this situation to
produce the following code:

#include <iostream> // For cout
using namespace std;
int main()
{

int i
i=1

j=2

» J» ks

3
’
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k = 3;

i=1+ 3;

k=k - 1i;

cout << "i = " << i << " k =" << k << "\n";
return(0);

+

Notice that main() is a function that returns the int type and in this example we
return the value 0. (More discussion of this return value is given later, but in some
circumstances it may be important for the operating system to know whether or not
the program has run successfully, as indicated by 0.) We also include a statement
so that the program can actually display the result of the calculations by using the
insertion operator to send the values of i and k to the output stream. The resulting
output is:

i=3 k=0

Exercise

Enter the above program into a file on your system, making sure the file
has the appropriate extension, such as .cxx. Then compile, link and run
the program. Check that you get the expected result. Try modifying the
program to add different combinations of integers.

Since the int type occupies a fixed and finite amount of memory, only a limited
range of integers can be stored. Consequently it is possible to perform operations which
mathematically would give results above the maximum value that can be represented
or below the minimum value. Such invalid operations are known respectively as integer
overflow and integer underflow. These are demonstrated in the following program:

#include <iostream>
#include <climits>
using namespace std;
int main()

{
int i;
i = INT_MAX + 10; // Integer overflow.
cout << "i = " << i << "\n";
i = INT_MIN - 10; // Integer underflow.
cout << "i = " << i << "\n";
return(0);

}

INT_MAX and INT_MIN are the maximum and minimum values that can be stored by
the type int and are defined in the header file, <climits>. These values depend on
the particular compiler, as does the result of underflow or overflow.

Exercise

What values are given to i for these two statements on your system? Show
that your results are consistent with the values given in <climits>.
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3.1.2 Integer Multiplication

As might be expected, the token, *, is used to denote integer multiplication. The usual
rules of arithmetic are followed, as in:

#include <iostream>
using namespace std;
int main()

{
int i, j, k, m, n;
i=2;
ij=-3
k = -4;
m=1ix*j; // Assigns -6 to m.
n=jx*k; // Assigns 12 to n.
i=23%*6; // Assigns 18 to i.
cout << "m = " << m << "\nn = " << n << "\ni = " << i <<

"\Il";

return(0) ;

}

Exercise

Check that the above program gives the results you would expect on your
system.

3.1.3 Integer Division
The forward slash is used to denote the integer division operator, as in:

int k;
k =3/ 2;

which means divide 3 by 2 and put the result in k. Since 2 does not exactly divide
3, there is a potential ambiguity as to whether k is set to 1 or 2. In fact, in common
with most languages, the C++4 result is 1; integer division with both numbers positive
always truncates. The same is true when both numbers are negative, so that -3 / -2
yields 1 rather than 2. If only one number is negative, then the result depends on
the compiler: -3 / 2 could give either -1 or -2. Relying on a feature provided by a
particular compiler is not good programming practice and should be avoided if at all
possible. (In general, if you do need to use a compiler-dependent feature, then you
should have a clear comment on this in your program.)

In mathematics, dividing any non-zero number by zero gives infinity and dividing
zero by zero is undefined; in C++, any integer division by zero is undefined.

3.1.4 Integer Modulus or Remainder Operator

The % token is the modulus or remainder operator. If i and j are both positive integers,
then i % j (read as “i modulo j”) gives the remainder obtained on dividing i by j.
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For instance, 5 % 3 yields the value 2. If both i and j are negative then the result is
negative; that is -5 % -3 yields -2. If only one of i and j is negative, then the result is
again dependent on the C++ compiler, but should be consistent with the dependency
for division. That is:

A@/7 3D *xj+1%]
should give the value of i. Again, if j is zero the result of i % j is not defined and
may not be consistent with the (undefined) result of i / j. (Saying that a piece of

code is “undefined” means that the C++ language definition doesn’t say how it should
be interpreted.) Notice that 0 % j gives 0 for any (non-zero) integer, j.

Exercise

Try out the following program for various values of i and j (positive, neg-
ative and zero) and explain the output. What happens if you enter a non-
sense value, such as “accidentally” hitting the w key instead of 27 Why?

#include <iostream>
using namespace std;
int main()

{
int i, j, m, n, a, b;
cout << "enter an integer: ";
cin >> i;
cout << "enter an integer: ";
cin >> j;
m=1i/j;
n=1i1d%j;
a=m=x*xj; // G/ j)*]
b=a+n; // @/ j)*xj+i
cout << "i =" i <« " jo=" << j o< "\n\n" <<
"i/ j="<<m<<" i%j="<<n<<
"\n\nThe following result should be " << i <<
":\n" << "(1/ j)kxj+i% j="<<b << "\n";
return(0) ;
}

In this example we use the C++ input stream, cin, so that the values of i and j can
be entered from the keyboard. The expression:

cin >> i;
extracts the value of i from the input stream. The operator, >>, is known as an
extraction operator. It is possible to concatenate such operators so that the first few
lines can be replaced by:

cout << "enter two integers: ";
cin >> i >> j;

but notice that the following is not equivalent:
cin >> i, j; // WRONG!

The statement does compile, but no value is assigned to j when the program is run.
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3.1.5 Increment and Decrement Operators

The value of a variable can be changed without using the assignment operator. Instead
of:

i=1+1;
we can use:

++1i; // Prefix increment operator.
or:

i++; // Postfix increment operator.

In all three cases, i is increased by one. Whereas the prefix operator increments i by
one before the value of i is used, the postfix operator increments i after its value has
been used. Either version of the increment operator has the same effect in the above
code fragments, but note that this is not true for the following program:

#include <iostream>
using namespace std;
int main()

{
int i, j, k, m, n;
i=2;
j=1
k = 3;
m = i++ / k; // Assigns 0 to m.
n = ++j / k; // Assigns 1 to n.
cout << "m = " << m << "\nn = " << n << "\ni = " << i <<

"\nj = " << j << "\n";

return(0) ;

}

In this example, the expression for m is evaluated before i is incremented, but n is
evaluated after j is incremented.

Exercise

Modify the above program so that it reads i and k from the keyboard. Try
entering a few different values of i and k, and check that you get the results
you expect for m and n.

As might be expected, there are also prefix and postfix decrement operators so that:

are equivalent to:
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i=1i-1;

Whereas the prefix decrement operator decreases the value of i by one before it is used
in an expression, the postfix decrement operator decreases i after the value has been
used. The use of increment and decrement operators can lead to very compact code,
but it is worth exercising some restraint otherwise the code can get difficult to read.

Exercise

Replace the increment by decrement operators in your program for the
previous exercise.

It may seem obvious, but constants cannot be incremented or decremented:

++3.142; // WRONG!
10--; // WRONG!

In any case, it is difficult to imagine how such statements could be useful.

3.1.6 Associativity and Precedence of Integer Operators

Although we have only considered simple expressions so far, we have learned how to
use quite a few operators:

= + - * / % ++ -

The =, *, /, J tokens are all binary operators; that is they are defined for an operand
on each side of the operator, such as in:

k=1 * j; // Valid C++.
rather than:
k =1 %; // WRONG: where is the second operand?
The ++ and -- operators are both unary operators, that is they require a single operand:
++x; // Unary - operator takes only one operand.
The - operator can be both a binary operator, as in:
k=1-7j; // Binary - operator.
or a unary operator, as in:
k=-j; // Unary - operator takes only one operand.
The unary + operator, as in:
k = +j; // Valid but useless unary + operator.

is not expressly forbidden. However, it doesn’t serve any useful purpose and you won’t
come across the unary + operator again in this book.
In complicated expressions, such as:

k=1+3j/m*n-k;
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the two concepts of associativity and precedence are used to determine the order in
which the evaluation is carried out. Operator precedence controls which operator in
an expression is applied first; the associativity determines the order in which operators
with the same precedence are applied. That is, the compiler first uses operator prece-
dence to determine the order of evaluations in an expression and then any remaining
ambiguities are removed by using operator associativity.

The properties of the operators introduced so far are given in Table 3.1. Notice

Operator [ Associativity ] Section First Defined |

++ | postfix increment right to left 3.1.5
-- | postfix decrement right to left 3.1.5
++ prefix increment right to left 3.1.5
-- prefix decrement right to left 3.1.5
- unary minus right to left 3.1.6
* multiplication left to right 3.1.2
/ division left to right 3.1.3
% modulo left to right 3.14
+ addition left to right 3.1

- subtraction left to right 3.1

= assignment, right to left 3.1

+= add and assign right to left 3.4.3
-= | subtract and assign | right to left 3.4.3
*= | multiply and assign | right to left 3.4.3
/= | divide and assign right to left 3.4.3
%= | modulo and assign | right to left 3.4.3

Table 3.1: Common operators.

that the postfix increment and decrement operators have a higher precedence than the
prefix increment and decrement operators. All operators shown in the same group have
the same precedence and associativity, but a group higher up in the table has a higher
precedence than one further down. For example, in the expression:*

i=1-2%3+4; // * has higher precedence than - or +.

the multiplication operator has the highest precedence and is applied first, yielding:

i=1-6+ 4; // -, + have higher precedence than =.

The subtraction and addition operators have equal precedence, greater than that of
the assignment operator, so the right-hand side of the expression is evaluated left to
right, giving the result of ~1. Finally -1 is assigned to i. These rules, which are similar
to those of many other languages, do not necessarily give the results that would be
expected mathematically. For instance, due to the left to right associativity of the
divide operator, the statement:

4Throughout this book short fragments of code, which are not complete programs, are frequently
given. You should now be able to convert these code fragments into programs, by introducing main(),
the appropriate #include directives and sending results to the output stream. Indeed, you are strongly
encouraged to try out as many such programs as possible.
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i=3/4/2;
is evaluated as:
i=(3/4)/ 2
rather than:
i=(3x%2) /4
Any expression inside parentheses is evaluated first, which means that:®
i=00-2) % (3+4);
is reduced to:
i=-1=x%7;

which assigns -7 to i. If you are in doubt about the precedence of any operator, it is
always possible to use parentheses.

Exercise

Write a program to evaluate the following expressions:

i=2/3+3/2;
i=2/3/3;
i=3/2%T;
i=77%2* 3;
i=7/2%3;

Are the results what you would expect?

3.1.7 Long Integers

Long integers have the same properties as integers, except that at least the same
number of bytes must be used in their representation as are used for the int data type.
Typically four bytes are used and integers between -2147483648 and 2147483647 can
be represented, as in:

long i, j, k;

i = 2140001111; // Too big for 2 bytes.
j = -2140001111; // Too small for 2 bytes.
k=1i-j;

However, it is fairly common for a compiler to define both the int and long data types
to have the same four-byte representations. The limits for a particular compiler are
again given in the <climits> header file.

Notice that the keyword, long, is used to define (and declare) long integers. The
definition:

5When describing the four different bracket types, the common terminology employed is: paren-
theses for ( ), braces for { }, square brackets for [ ], and angle brackets for < >. Note that the various
brackets must always occur in pairs.
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long int i, j, k;

is equivalent to that given above, but is less widely used.
The suffix L (or 1) is used to distinguish a long constant:

long 1i;
i =1L;

3.1.8 Short Integers

The short type has the same properties as int, except that a particular C++ compiler
should not use more bytes to represent short than are used for int. Typically the
short type uses two bytes and has a range of —32767 to 32768. This type can be
useful for saving memory as in:

short i, j, k;

i=1; // Can easily be represented by 2 bytes.
j=2; // Can easily be represented by 2 bytes.
k=1-73;

However, if the representation is less than the natural size suggested by the hardware,
then there may be a performance penalty. It is best to avoid short integers unless there
is a very good reason to do otherwise. In any case, a compiler will often use the same
number of bytes for short as for int.

Notice that the keyword, short, is used to define short integers. The equivalent
definition:

short int i, j, k;

is again less widely used.

3.1.9 Unsigned Integers

The short, int and long types all have corresponding unsigned types. These occupy
the same amount of memory as the signed type and obey the laws of arithmetic
modulo 2™, where n is the number of bits in the representation. For instance, if n is 16
(two bytes), then numbers between 0 and 65535 (that is 216 — 1) can be represented.
Unsigned addition does not overflow and subtraction does not underflow; they simply
wrap round. This is demonstrated by the following program:

#include <iostream>
#include <climits>
using namespace std;
int main()
{
unsigned int i;
i = UINT_MAX;
i=1i+1;
cout << "UINT_MAX + 1 = " << i << "\n";
i=1-1;
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cout << nO — 1 =" << i << "\I’l";
return(0);

}

The program gets UINT_MAX (the largest unsigned appropriate for the particular com-
piler) from the header file <climits>. Adding one to UINT_MAX gives zero, and sub-
tracting one from zero gives UINT _MAX.

It is not usually worth using an unsigned rather than signed integral type just to
gain a higher upper limit on the positive integers that can be stored. An example of
the resulting possible pitfalls is given in Exercise 2 of Chapter 4; an example where
using an unsigned type is worthwhile appears in Section 11.4.1.

A U (or u) is used to denote an unsigned constant, as in:

unsigned int i;

unsigned long j;

i = 1U;

j = 1UL;
Any combination of U,u and L,1 in any order can be used for an unsigned long
constant.

3.1.10 Booleans

A Boolean can have one of two values, true or false. In C++, a Boolean is represented
by the bool data type, as in:

bool bl, b2;
bl = true;
b2 false;

We can convert between the types bool and int. By definition, true takes the value 1
on conversion to type int, and false takes the value 0. The rule for the conversion of
type int to bool is that 0 is converted to false and any non-zero integer corresponds
to true. So the output from:

#include <iostream>
using namespace std;
int main()

{
bool bl, b2;
bl = true;
b2 = false;
cout << "bl is " << bl << "\n" <<

"b2 is " << b2 << "\n";

return(0);

}

is:
bl is 1
b2 is O

The operators for Booleans are introduced in Section 4.2.
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3.1.11 Character Types

The type, char, is represented by a sufficient number of bytes to hold any charac-
ter belonging to the character set for the particular compiler. This representation is
usually one byte. Rather confusingly C++ distinguishes three character types: char,
unsigned char and signed char. The signed char and unsigned char data types
obey the same rules of arithmetic as their integer counterparts. If the type is simply
specified as char, then it is compiler-dependent as to whether or not the high order bit
is treated as a sign bit. This makes no difference when storing the standard printing
characters, but if other data is stored as type char it may appear to be negative on
one computer and positive on another. If the sign of such data is significant, then the
type should be specified as either signed or unsigned char, as appropriate. Such dis-
tinctions may seem a bit obscure to you at present, but may be relevant in the future
when you are puzzled by why your code behaves differently on different computers.

Although the char types obey the corresponding rules of integer arithmetic, they
are typically used to hold character data, as in:

#include <iostream>
using namespace std;
int main()

{
char c1, c2;
cl = °C%;
c2 = ’+7;
cout << cl << ¢c2 << ¢2 << "\n";
return(0) ;
}
Exercise

What does the above program output? Verify the answer on your system.

Since characters are represented by numbers, it is possible to make assignments
directly rather than by using the character constant notation. For instance an obscure
way of rewriting the above code, for the ASCII character set, is:

#include <iostream>
using namespace std;
int main()

{
char c1, c2, c3;
cl = 67;
c2 = 43;
c3 = 10;
cout << ¢l << c2 << ¢2 << ¢3;
// Does the output agree with the previous exercise?
// See the ASCII character set in Appendix A.
return(0);
}

but such manipulations are rarely useful in scientific programming.
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3.2 Floating Point Data Types

Floating point numbers, such as 3.142 and 2.9979 x 108, are essential to almost every
scientific calculation. In C++, there are three floating point types: float, double and
long double. The type float is typically represented by 4 bytes, a double by 8 bytes
and a long double by 10 or 12 bytes. However, all that is required is that a double
uses at least the same number of bytes as a float and a long double uses at least as
many as a double. We first consider the type double, since from many points of view
it is the standard floating point type.

3.2.1 Type double

Identifiers of type double are defined by using the double keyword, as in:

double pi, c;
pi = 3.1415926535897932;
c = 2.997925e8;

where the floating point assignment operator is denoted by the token, =. The expression
for ¢ is typical of a floating point number and may be split into three parts:

2 the integer part
997925 the fractional part
8 the exponent.

A decimal point separates the integer and fractional parts, while e (E is also valid)
separates the fractional part from the exponent. A floating point constant must contain
a decimal point or an exponent or both, since otherwise there would be nothing to
distinguish it from an integer. If there is a decimal point, then either an integer or a
fractional part must be present. If there is no decimal point, then there must be both
an integer part and an exponent (but there can be no fractional part of course). Some
examples of valid floating point assignments are:

double x, y, z;
=1.0;

=0.1;

1e10;
1.1e10;

= 11e9;
.11ell;

N < XM N< X
]

However, the following are not valid double constants:

.e9 // WRONG: no integer or fractional part.
1,000.0 // WRONG: an embedded comma is not permitted.
1 000.0 // WRONG: an embedded space is not permitted.
1000 // WRONG: this is an integer constant.

e10 // WRONG: no integer part.

Apart from the use of e or E, all of this should be straightforward to anyone familiar
with scientific notation.
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We can perform all of the usual arithmetic operations of assignment, addition,
subtraction, multiplication, division, increment, decrement and unary minus. In fact
all of the operators we introduced for integers, except for the modulus operator, are
also valid for double identifiers and constants. The following program demonstrates
these operations:

#include <iostream>
using namespace std;
int main()

{
double x, y, z;
x = 3.1416; // Assignment.
y = -X; // Unary minus.
z = -3.1416; // Unary minus.
++X; // Increment (prefix version).
v // Decrement (postfix version).
x=x - 1.0; // Subtraction.
y=y+1.0; // Addition.
Z =X *y; // Multiplication.
z =z / 3.1416; // Division.
cout << z << "\n";
return(0);
}

All of these operators have the same precedence and associativity as for the corre-
sponding integer versions. Notice that -3.1416 is actually an expression involving a
unary minus together with a double constant and that (as you might expect) floating
point division does not truncate to an integer, unlike integer division.

Exercise

What is the final result for z in the above code? Verify your answer by
running the program.

Only a finite subset of all floating point numbers can be represented by one of
the defined types, such as double. There are many ways of representing a floating
point number by a fixed number of bytes, but most C++ compilers conform to what
is known as the IEEE standard. For such compilers a double of eight bytes gives a
range of about 107398 to 103%% and an accuracy of sixteen decimal places. More details
of how floating point numbers are represented by a computer are given in Chapter 11.
For the present it is worth pointing out that in numerical calculations it is very easy to
attempt to generate a number whose absolute magnitude is too big to be represented
(causing floating point overflow) or too small (causing floating point underflow). It
is also possible to attempt to perform invalid operations, such as a divide by zero.
For a C++ compiler conforming to the IEEE standard, all such meaningless results
are flagged as NaNs (Not a Number). Once a NaN is created it propagates through
the calculation, ensuring that any meaningless final answers are also suitably flagged.
However, unless there is an appropriate compiler option, a NaN is not flagged when it
is generated. Such an option is invaluable for large numerical applications.
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Unlike some other languages, such as FORTRAN, there is no operator for raising
a number (either integer or floating point) to a power. In C++, such operations are
carried out by a function call. For small integer powers it is, in any case, usually much
faster to use repeated multiplication, as in:

velocity = 0.5 * acceleration * time * time;

3.2.2 Type float

The type float should use at least four bytes (but not more than for double) to
represent a floating point number. For compilers conforming to the IEEE standard,
four bytes gives a range of about 10738 to 103® and an accuracy of seven decimal places.
The type float has the advantage of using less memory than double and in fact four-
byte floating point arithmetic is accurate enough for many scientific and engineering
applications. Also, calculations using the float type may be significantly faster than
double. However, this will depend on the processor used in a particular machine. Older
versions of C++ only provided double implementations for the standard mathematical
functions (sine, cosine etc.). Fortunately, the C++ Standard Library provides both
float and double implementations and so it is easier for the programmer to make an
appropriate choice of floating point type.
Variables of type float are defined by the keyword, float, as in:

float pi, c;
pi = 3.142f;
c = 2.9979e8f;

A float constant is distinguished from its double counterpart by means of the suffix f
(or F). Omitting the £ does not cause an error in the above examples, as the compiler
inserts a conversion from double to float. Such omissions are quite common. Notice
that the f is appended; it does not replace the e (or E):

c = 2.9979£8; // WRONG: f is not legal.
The operators available for the types float and double are identical. The prece-

dence and associativity of the operators are also identical.

3.2.3 Type long double

The type long double is defined by means of the long double keyword, as in:

long double pi, gamma;
pi = 3.14159265358979323846L; // pi.
gamma = 0.57721566490153286061L; // Euler’s constant.

A long double constant is distinguished from double and float by means of the
suffix, L. The letter 1 is also valid, but is probably best avoided since 1 looks too
similar to 1.6 You do need to append the L (or 1) or else the constant will be read as a

5For the same reason, it is best to avoid using a single 1 as a user-defined identifier.
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double, even if it is then assigned to a long double. For an IEEE 64-bit long double,
18 decimal places are significant.

The available operators for the types float, double and long double are identical.
The C++ Standard Library provides long double implementations for the standard
mathematical functions (sine, cosine etc.), in addition to the float and double im-
plementations. However, for some C++ compilers there may be no difference between
the representations of double and long double (or even double and float).

3.3 Changing Types

The concept of type is needed in a language, such as C++, in order to be able to
distinguish the different uses we make of different bytes of memory. Having different
types can help to prevent us carrying out incompatible operations on this memory.
However, it is sometimes necessary to convert a value having one type directly into
another. This may either be done automatically (and often silently) by the compiler,
or we may have to force the change. Since to some extent types exist in order to protect
us from our own foolishness, we had better be certain of what we are doing if we force
the compiler to do a type conversion!

3.3.1 Type Promotion and Conversion

In many situations arithmetic binary operators have operands of different types, as
demonstrated by the following code fragment:

double x;
float y;
int i;
long j;
i=2;

x =1+ 3.7; // + operator has integer and double operands.
y = 3.7; // = operator has float and double operands.
j=1; // = operator has long and int operands.

Such statements can often be avoided by careful programming, but they are valid C++
since automatic conversions take place for arithmetic expressions containing mixed
types. The rules for conversions are such that binary operations involving mixed types
are performed using the type best able to handle the operands. For instance in the
expression, 1 + 3.142, the right operand is of type double and the left is of type
int, which therefore gets implicitly converted to a double. There is a hierarchy of
conversions for the operands of binary operators, with the first match in the hierarchy
being the one that is actually used. This hierarchy is complicated and you should
consult [10] and [1] if you need more detail. However, numerical applications mainly
use either the float or double types, with int typically used as an iteration counter.
As a result, mixed operand types are mostly: double and int, float and int, and
double and float.

As mentioned in Section 3.1.10, it is also possible to have a promotion from the type
bool to the type int. In this case false is converted to zero and true is converted to
one.



36 CHAPTER 3. FUNDAMENTAL TYPES AND BASIC OPERATORS

Demotions may also occur, as in:

int i, j, k;

i = 3.142; // double truncated to int.
j = -3.142; // double truncated to int.
k = 2.9979e40; // Undefined.

In the first case the double constant, is truncated and 3 is assigned to i. In the second
case the right operand is negative and the direction of truncation depends on the C++
compiler; the result could be either —3 or —4. The result in the third case is undefined
since an integer cannot hold such a large value.

Exercise

If x has type double, why do

1.0+ 1)/ 2;

"4
It

and

0.5 +1/ 2

»
]

give different results?

3.3.2 Casts

It is possible to perform an explicit conversion, known as a cast. This is a very risky
thing to do since it throws away any type checking and in most cases explicit conversions
can be avoided by careful programming. In order to provide at least a little safety,
there are four types of cast in C++. These are the static_cast, reinterpret_cast,
dynamic_cast and const_cast. In each case the target type is specified in angled
brackets and the object that is being cast from is in parentheses. An example is:

double x;
int i = 4;
X = static_cast<double>(i);

Used in this way, static_cast<double>() is actually a unary operator. In mixed
arithmetic expressions casts are unnecessary since they are automatically inserted by
the compiler. The three remaining casts are not used in this book, but if you should
need them, they are described in [10].

3.4 Some Basic Operations

In this section we introduce a few basic operations. We first consider the sizeof
operator, which is an essential part of the language. Then we go on to learn various
new assignment operators and how to make an initialization in a definition; these
features are all useful rather than fundamental.



3.4. SOME BASIC OPERATIONS 37

3.4.1 The sizeof Operator

The number of bytes used to represent the fundamental types is dependent on the C++
compiler being used. However, it is frequently necessary to know the size of these types,
for instance when copying an object between different memory locations. As an aid to
writing portable code, there is an unary sizeof operator which, as its name suggests,
gives the size of an object in bytes. To be precise, the result of the sizeof operator is
an unsigned integer of type size_t, which is specified in the header file, <cstddef>
So, if it is necessary to declare an identifier to hold the size of an object, we should
really define it be of type size_t, as in the following program:

#include <iostream>
#include <cstddef>
using namespace std;

int main()

{
size_t size;
double x, y;
int i;
cout << "\nRelative storage sizes are:\n\n";
size = sizeof (char);
cout << "char: \t\t" << size << "\n";
size = sizeof(int);
cout << "int: \t\t" << size << "\n";
size = sizeof(long int);
cout << "long int: \t" << size << "\n";
size = sizeof (bool);
cout << "bool: \t\t" << size << "\n";
size = sizeof(float);
cout << "float: \t\t" << size << "\n";
size = sizeof (double);
cout << "double: \t" << size << "\n";
size = sizeof(x * y);
cout << "(x * y): \t" << size << "\n";
size = sizeof(x * i);
cout << "(x * i): \t" << size << "\n";
return(0);

3

This subtlety is not important for the objects given here, since the compiler will insert
an implicit cast if necessary.

The sizeof operator actually gives the storage as a multiple of what is required
for the char type; that is the result of sizeof (char) is one by definition. However,
throughout this book we assume that the char type takes one byte of memory.

It is a good idea to use the sizeof operator since it is much more meaningful to see
sizeof (double) in a program, rather than 8. The sizeof operator helps to make code
portable and carries no performance overhead, since it is evaluated at compile-time.
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Exercise

Run the above program on your machine and note the sizes of the various
types.

There are actually two forms of the sizeof operator. If we want the size of a type,
then we must include the brackets, as in

size_t size;
size = sizeof (char); // 0.K.
size = sizeof char; // WRONG

If we want the size of an expression, then we don’t need to include the brackets, so the
following is valid:

size_t size;
double x;
size = sizeof x; // 0.K.

However, the sizeof operator has a higher precedence than many common operators,
such as multiplication. This can sometimes lead to unexpected results. For example,
in the following program the values assigned to size_1 and size_2 are different:

#include <iostream>
#include <cstddef>
using namespace std;
int main()

{
size_t size_1, size_2;
double x = 3.142;
int i = 10;
size_1 = sizeof x * i;
cout << size_1 << "\n";
size_2 = sizeof(x * 1i);
cout << size_2 << "\n";
return(0) ;

}

In the first case, the sizeof operator finds the size of x (typically 8) and then multiplies
the result by 10 (so that size_1 is assigned 80). In the second case, the sizeof operator
finds the size of the expression (x * i), which is the same as the size of x (typically
8). The message should be clear; in order to avoid possible mistakes, use parentheses!

3.4.2 Initialization

It is possible to combine a definition and assignment in a single statement, known as
an initialization, as in:

inti=1, j=2, k=3;
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Such initializations are also possible for other fundamental data types. Now that
the fundamental data types have been introduced, it is also worth pointing out that
identifiers only need to be defined before they are used. Since there is no requirement
to have all of the definitions at the start of a program, the following is valid:

int i = 1;
++1;
int j = 1i;

Some programmers find that code is more readable if definitions are collected in one
place. However, it is a good idea to leave the definition of an identifier until it can
be initialized, since this avoids the common error of using uninitialized variables in
expressions. In fact, in C++ it would be difficult to insist on collecting all definitions
in one place, as is done in some other languages, because the definition of objects is
often a run-time decision.

Exercise

Convert the quadratic equation program, given in Section 1.2, so that as
far as possible variables are not defined until they can be initialized.

3.4.3 Assignment Operators

It is often necessary to carry out pairs of operations, such as in the following code
fragment:

int i, j;

double x, y;
i=1+ 5;
LIS I ¥
X =X %y,
y=y /%

These pairs of operations can all be replaced by the following assignment operators:

i +=5; // Equivalent to i =i + 5
jo+=1i; // Equivalent to j = j + i
X *= y; // Equivalent to x = x * y
y /= x; // Equivalent to y =y / x

In fact, there are similar assignment operators corresponding to all arithmetic binary
operators for all of the fundamental data types; two more examples are:

X -=Y; // Equivalent to x = x -y
Js // Equivalent to i = i % j

Such assignment operators are a convenient shorthand and may help the compiler to
produce better code.
It is possible to carry out multiple assignments in one statement, as in:
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In fact, we are not introducing anything new here. An assignment is an expression
(which has a value) and as the assignment operator associates right to left, this example
is equivalent to:

k = 10;
j=k;
i=73;

Multiple assignments can lead to compact code, but it is sometimes better to avoid the
technique in order to make the code more readable.

While on the subject of assignments, it worth defining what is meant by lvalue,
since you may get cryptic compiler messages of the form “Must be lvalue”. An lvalue
is an expression referring to a named region of storage; i, x and z are all lvalues in the
following statements:

int i;
float x;
double z;

i = 20;
=1.2;
1.222333444;

z

The terminology originally referred to objects that can be the left operand of an as-
signment operator. For example, an expression of the form:

2 = 1i; // WRONG!

is incorrect because 2 is not an lvalue; we cannot assign the value of i to 2. However, as
we will see in Section 3.5, it is possible to have a named region of storage that cannot
be assigned to, and these are referred to as unmodifiable lvalues.

The analogous term, rvalue, is not used very often and originated as referring to an
expression on the right-hand side of an assignment statement. An rvalue can be read
but not assigned to. For instance, in the expression:

i=2;

we cannot cannot assign a value to 2 since it is an rvalue.

3.5 const

It is a common requirement in numerical programs to need constants, such as 2.997925 x
108 ms~! for the speed of light in a vacuum. Instead of having 2.997925e8 scattered
throughout a program, we could make the code more readable by using:

double speed_of_light = 2.9979e8;

However, there is always the possibility that we might inadvertently change the value
of speed_of_light, and this would probably have disastrous consequences. A safer
technique is to preceed the type double by the specifier const, as in:
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const double speed_of_light = 2.9979e8;

The compiler will then check to make sure that no attempt is made to change the value
of speed_of _light. Such definitions are usually placed near the start of the relevant
file, where they can be readily seen.

3.6 typedef!

The typedef specifier simply introduces a synonym for a type. For example, if we
make the declaration:

typedef double DISTANCE, TIME;
then instead of:

double x, t;
we can use:

DISTANCE x;
TIME t;

to define the variables x and t. Some programmers consistently use upper case letters
for a typedef, but this is simply a matter of style. A typedef follows the standard
rules for constructing any valid identifier and the name space is the same as for other
identifiers (apart from labels, which are introduced in Section 4.8). This means, for
example, that if we have introduced DISTANCE as a synonym for double, then:

int DISTANCE; // WRONG!

is not allowed.

It is important to realize that a typedef does not declare a new type. For example,
although x and t are instances of a different typedef, the following assignment is valid,
since there is no strong type checking:

X = t; // 0.K.
Common uses of the typedef specifier are as follows:

e A typedef can isolate compiler-dependent parts of a program. For instance,
the type used to represent a variable could be short, int or long, depending
on the number of bytes used in their representations. Examples are size_t
and ptrdiff_t, which are each declared as a typedef in the library header file,
<cstddef>. This technique has the advantage that, since the definition only
appears in one place, changes are easily made.

e A typedef can be helpful for program documentation. The declaration:
DISTANCE x;

is more meaningful than:
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double x;

Some authors (for example [2]) use this technique extensively. However, a valid
alternative is to give meaningful names to variables, as in:

double distance, time;

A typedef can clarify complicated declarations. An example is given in Sec-
tion 7.5.

A typedef can be useful as a synonym for a very long identifier. Such long
identifiers occur naturally in more advanced C++ techniques, such as templates.
(See Chapter 16.)

3.7 Summary

The integer types are short, int and long. They all have unsigned variants.
The character types are char, signed char and unsigned char.

The Boolean type is bool and can only be assigned the values true and false.
The integer, character and Boolean types are known as integral types.

See Table 3.1 for the basic operators, together with their associativity and prece-
dence.

The floating point types are float, double and long double.

An explicit cast (or conversion) can be performed. An example is the cast from
double to int provided by static_cast<int>(3.142). For mixed arithmetic
expressions, such conversions are automatically inserted by the compiler.

The sizeof operator gives the size of an object in bytes.

Use the const specifier wherever the contents of an object should not change.

3.8 Exercises

1.

Using the sizeof operator, write a program that prints the number of bytes used
to represent the char, int, short int, and long int types on your computer.
Work out the maximum and minimum values that can be represented by the
integer types. Check your answers by examining the header file, <climits>.

By examining the header file, <cfloat>, find the maximum and minimum val-
ues that can be represented by the types float and double on your system.
Check your answers by means of a program. What is the significance of the
other compiler-dependent parameters given in <cfloat>? (Since the contents of
<cfloat> are identical to the contents of the C header file <float.h>, you may
find that on your system <cfloat> simply includes <float.h>.)
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3. Write a program that prompts for the base and height of a triangle and then
outputs the area. Write one version that only uses the type int and a second
that uses the type double.

4. Using the techniques covered so far, sum the first four terms in the series:

Is the result a reasonable approximation to e?
5. The total relativistic energy, E, of a free particle is given by:

Mc?

V1—v2/c?

E =

where:
M = rest mass of the particle

¢ = speed of light = 2.99725 x 10*% cms™!
v = speed of particle

Write a program to calculate E for sufficient values of v to enable you to plot a
graph of F as a function of v, where:

0<v<e

and
M =0.910954 x 10%" g



Chapter 4

Control Structure

In our program to solve a quadratic equation in Section 1.2, the user could enter values
of a, b and ¢, which make:
b2 — dac

negative. In such cases the program would fail, but there is nothing we can do to
prevent this with the techniques we have learned so far. All of our programs have a
very simple control structure. In fact control just passes from one statement to the
next, with no alternative pathway through a program. Our next task is to introduce
iteration and branching techniques, but before we consider these control structures a
few preliminaries are needed; in particular, some new operators must be introduced.
You can find the precedence and associativity of these operators in Appendix B.

4.1 Relational Operators

There are four binary operators that can be used for comparing the values of arithmetic
expressions. They are:

< less than

<= less than or equal

>  greater than

>= greater than or equal

In each case a comparison of the left and right operands is carried out and the result
is one of the Boolean values, true or false. An example is given in the following
program where b1 is assigned either true or false, according to the results of the four
relational operators:

#include <iostream>

using namespace std;

int main()

{
bool bi;
bl =2 > 1; // Assigns true
cout << bl << "\n";
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bl = 2 < 1; // Assigns false
cout << bl << "\n";
bl = 2 >= 2; // Assigns true
cout << bl << "\n";
bl = 3.4 <= 2.4; // Assigns false
cout << bl << "\n";
return(0) ;

}

Exercise

Compile and run the above program. Do you get the expected output?

You may have been surprised to get the output 1 or 0 for the results of the previous
exercise. However, this isn’t a mistake! The point is that by default the values true
and false are printed as 1 and 0. It is possible to change this default by using the
techniques given in Section 18.5.

As pointed out in Appendix B, the relational operators associate left to right. For
example, if a, b and ¢ are of type int, then:

bool bl = a < b < c;
actually means:
bool bl = (a < b) < c;

This associativity is rarely, if ever, of any use and can lead to some very obscure code.
In the above expression, a < b evaluates to true or false, which is then compared
with c. Depending on the result of this comparison, either true or false is assigned
to bl. In general this result is different from that obtained by determining whether
or not b lies between a and c, which is what might be expected from the notation of
mathematics.

Notice that <= and >= each constitute a single token, so that the following are
invalid:

bool bl
bool b2

i>=73; // White space is not allowed.
i=<j; // =< is not a valid operator.

The operands of the relational operators can be expressions, as in the following
code fragment:

int i =1, j = 2;
bool b = (i + 1) >= (j - 72); // 2 is greater than -70, so true
// is assigned to bl.

The parentheses used here and throughout most of this chapter are purely for clarity,
since the rules for operator precedence make them unnecessary. However, if parentheses
make the code more readable, it is worth putting them in.

Exercise

What values would you expect bl and b2 to take as a result of the following
statements:
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double x = 110.0;
bool bl = x > (x / 13.0) * 13.0;
bool b2 = x < (x / 13.0) * 13.0;

Write a program to test your answer and try other values of x.

4.2 Logical Operators

In addition to the assignment operator, =, the logical operators are:

! negation
&& AND
Il OR

These operators all give a result of type bool and a value of true or false.

The logical negation operator, !, is a unary operator turning true into false, and
false into true. In the following program, false is assigned to b3 and true is assigned
to b4:

#include <iostream>
using namespace std;
int main()

{
bool bl = true, b2 = false;
bool b3 = !bi;
bool b4 = 1b2;
cout << b3 << "\n" << b4 << "\n";
return(0) ;
}

As with all unary operators, the logical negation operator associates right to left.

The logical AND operator, &&, is a binary operator. If both operands are true,
then the result is true, otherwise the result is false. The following code demonstrates
using the && operator:

#include <iostream>
using namespace std;
int main()
{
bool bl = true, b2 = false;
bool b3 = bil;
bool b4 = b2;
bool b5 = bl && b2;
bool b6 = bl && b3;
bool b7 = b2 && b4;
cout << b5 << "\n" << b6 << "\n" << b7 << "\n";
return(0) ;
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If you run this program, you will find that false is assigned to b5 and b7, and true
to b6.

The logical OR operator, ||, is also a binary operator. If either operand is true,
then the result is true, otherwise the result is false. The following code demonstrates
the || operator:

#include <iostream>
using namespace std;
int main()

{
bool bl = true, b2 = false;
bool b3 = bi;
bool b4 = b2;
bool b5 = bl || b2;
bool b6 = bl || b3;
bool b7 = b2 || b4;
cout << b5 << "\n" << b6 << "\n" << b7 << "\n";
return(0) ;
}

The output of this program shows that (as expected) true is assigned to b5 and b6,
and false is assigned to b7.

For both the &% and || operators, the evaluation is left to right. Consequently, if
either the left operand of && is false or the left operand of || is true, then the right
operand is never evaluated.

Exercise

What values are assigned to b4, b5, b6, b7 in the following statements:

bool bl = false, b2 = true, b3 = false;
bool b4 = bl || b2 && 'b3;

bool b5 = !'bl && b3 || b2;

bool b6 = (b2 || b3);

bool b7 = ! (b2 && 'b3);

Check your answers by means of a program.

4.3 Equal and Not Equal Operators

The binary operators introduced in this section are:

== equal
= not equal

Both operators are used to test operands of arithmetic type, with the result being of
type bool.

The equality operator, ==, gives a result of true if both operands are identical and
false otherwise. Some examples of using the equality operator are given below.
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#include <iostream>
using namespace std;
int main()

{
int i = 0, j = 10;
double x = 10.0, y = 3.0, z = 10.0 / 3.0;
bool bl = i == j; // Assigns false to bl.
cout << bl << "\n";
bool b2 =y == x; // Assigns false to b2.
cout << b2 << "\n";
bool b3 = z * y == x; // Assigns true or false to b3.
cout << b3 << "\n";
bool b4 =y == 3.0; // Assigns true to b4.
cout << b4 << "\n";
return(0) ;

}

The output of this program confirms that bl and b2 are both assigned false, and that
true is assigned to b4. The result for b3 could be either true or false. The reason
for this is that rounding errors mean that the result of a floating point calculation is
rarely exact. Consequently, using the equality operator in this way is dangerous and a
frequent cause of numerical application programs that fail to terminate.

Exercise

Modify the above program so that you can find out by how much z * y
differs from x.

The Boolean operations in the following statements are either invalid or don’t do
what was intended:

int i=1, j = 2;

double z = 3.0;

bool bl = (i = = j); // White space is not allowed.

bool b2 == 10; // b2 = 10 intended.

bool b3 = (z = 5.0); // Assigns 5.0 to z and true to b3.

// z == 5.0 intended.

The error in b1 is fairly straightforward, in that white space is not allowed within a
token. Also in the statement for b2, the equality operator has been used when the
assignment operator was intended. Fortunately, both of these mistakes will be caught
by the compiler. However, the error for b3 is more insidious. In this case the assignment
operator has been used when the equality operator was intended. The result is that 5.0
is assigned to z and, since this expression is non-zero, true is assigned to b3, whatever
the original value of z. In fact, z originally had the value 3.0 so false should have
been assigned to b3.

The binary not equal operator, !=, again takes arithmetic operands. The result is
false if the two operands are identical and true otherwise. Examples of using the !=
operator are given below.



50 CHAPTER 4. CONTROL STRUCTURE

#include <iostream>
using namespace std;
int main()

{
int 1 =1, j = 10;
double x = 10.0, y = 3.0, z = 10.0 / 3.0;
bool bl =i != j; // Assigns true to bil.
cout << bl << "\n";
bool b2 =y !I= x; // Assigns true to b2.
cout << b2 << "\n";
bool b3 = z * y != x; // Assigns true or false to b3.
cout << x - z * y << "\n";
cout << b3 << "\n";
bool b4 =y != 3.0; // Assigns false to b4.
cout << b4 << "\n";
return(0);

}

The output of this program shows that bl and b2 are both assigned true, and that
false is assigned to b4. The result for b3 could be either true or false. Once
again, the reason for this is floating point rounding errors. Consequently, it is usually
important to avoid using the '= operator with floating point operands.

The following statements are invalid attempts at using the not equal operator:

k=1i! = j; // White space is not allowed.

k=1i=!3j; // =! is not a valid operator. != was intended.
Exercise

What is the result of i =! j in the above code fragment?

4.4 Blocks and Scope

A pair of braces, { }, can be used to group statements, definitions and declarations
into a compound statement or block, as it is more commonly known. Any definitions
made within a block are only valid within the block and hide definitions made for the
same identifiers outside. The following program demonstrates this property:

#include <iostream>
using namespace std;
int main()

{
int x = 10; // % has type int, value 10.
// some code
{
double x; // x has type double.

// more code
x = 1.772;
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cout << x << "\n";
}
cout << x << "\n"; // x has type int, value 10.
return(0);

}

Notice that there is no semicolon after the second (terminating) brace of the block.!

Some compilers issue helpful warnings when a definition hides a previous definition.
The part of a program where a particular identifier is valid (that is where it is visible)
is known as the scope of that identifier.

Notice how the two braces in the above code have the same indentation and the
enclosed statements are all indented by one tab. This layout is not a requirement of
C++, but is generally adopted and makes the code more readable.

Blocks can be nested and a block may be followed by one or more further blocks.
The following code illustrates how definition hiding works in such circumstances:

#include <iostream>
using namespace std;
int main()

{
int i = 1;
double x = 1.111;
cout << i << " "< x <L "\n";
{
int x = 2;
double i = 2.222;
cout << i << " " x KL ll\nu;
}
cout << i << " " << x << "\n";
{
char i = ’i’;
char x = ’x’;
cout << i << " "KL o x << "\Il";
{
int x = 3;
double i = 3.333;
cout << i << " "KL x << ll\nn;
}
cout << i << " "KL x <KL "\n";
}
return(0) ;
}
Exercise

Explain the output from the above program.

1A block can be empty. An example of this is when a function needs to be defined but does not
perform any operation.
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A block can appear anywhere that a single statement is permissible and often occurs
in the context of branching and iteration, both of which are considered next.

4.5 Branch Statements

There are three branch statements: the if, if else and switch statements.

4.5.1 if Statement

The if statement takes the form:

if (condition)
statement

where the condition is any valid arithmetic expression.? The condition is evaluated
and, if it is true, the statement is executed; conversely, if the condition evaluates to
false then the statement is not executed. An example of using the if statement is
given below.

if (i == 0)
x = 100.0; // 100.0 is assigned to x if i is zero.

This code fragment can alternatively be written (perhaps more obscurely) as:

if (1i)
x = 100.0;

What happens here is that i is converted to true or false, depending on whether i
is non-zero or zero. If i is zero, then the result of the expression !i is true and 100.0
is assigned to x.

Because a block is equivalent to a single statement, it is common for an if statement
to involve a block, as shown below.

if (i ==2) {
x = 3.142; // If i equals 2, all three
y = 100.0; // statements are executed.
Z *= X

}

Notice that the closing brace has the same indentation as the if statement. The
opening brace is also on the same line as the if statement. Although not a requirement
of C++, this style is widely adopted.

It is also possible for any branch statement, such as an if, to involve the bool type
directly, as in:

if (last_entry == false)
X = pi;

2The conditions in any of the three branch statements can also involve pointers, which are intro-
duced in Chapter 6.
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The following code fragment demonstrates a common error involving the equality
operator, which is notoriously difficult to detect:

if (i

X

4)
1000.0;

The code is syntactically correct, but is equivalent to:

i = 4;
X 1000.0;

However, the programmer almost certainly meant to write:

if (i == 4)
x = 1000.0;

In general the results of the two code fragments are very different; in the first case,
4 is assigned to i, the expression always evaluates to true and hence 1000.0 is always
assigned to x. If the condition for an if statement involves a constant, then it is
possible to avoid such errors by writing the constant first, as in:

if (4 == i)
x = 1000.0;

Then if we accidentally write:

if (4
X

i) // WRONG
1000.0;

a compiler error occurs. However, care is needed to do this in every case. Some helpful
compilers issue a warning if an assignment occurs as the outermost operator in the
condition for an if statement.

Another common mistake is to omit the braces for a compound statement following
an if. The following statements:

if (11)
x = 3.142;
y = 100.0;
Z *= X;

look like (the programmer’s intention):

if (1) {
x = 3.142;
y = 100.0;
Z *= X;

}

but execute as:
if ('i)
x = 3.142;
y = 100.0;
Z *= X;
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4.5.2 if else Statement

The if else statement takes the form:

if (condition_1)
statement_1

else if (condition_2)
statement_2

// more else ifs

else
statement_n

where the conditions are arithmetic expressions. The way this statement works is
that if condition_1 is true, then statement_1 is executed and control passes beyond
statement_n. Conversely, if condition_1 is false then condition_2 is tested. The
sequence continues until one of the statements (which may be statement_n) is exe-
cuted. In fact, there is no requirement to have the final else statement; there may
be no default action to be taken, in which case it is possible for all of the conditions
to evaluate to false and for none of the statements to be executed. The following
program demonstrates using the if else statement:

#include <iostream>
using namespace std;
int main()

{
double x, y, pi = 3.142;
int i;
cout << "Enter an integer: ";
cin >> i;
if (1 == 0) {
X = pi;
y = 2.0 * pi;
}
else if (i == 1) {
x = 2.0 * pi;
y = 0.0;
}
else {
x = 0.0;
y = 0.0;
}
cout << "x = " K x K" y="Ky <K "\n";
return(0);
}
Exercise

Compile and run the above program. Try entering various integers and
verify that you get the output you would expect.
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The if else statement has one potential pitfall, known as the dangling else trap,

which is illustrated in the program below.

#include <iostream>
using namespace std;

int main()

{
int i, j;
cout << "Enter two integers: ";
cin >> i >> j;
if (i == 0)
if (j == 0)
cout << "Both i and j are zero\n";
else {
cout << "i is non-zero\n";
}
cout << "i: " << i << " ji " << j << "\n";
return(0) ;
¥

The intention of the programmer is apparent from the indentation; if i is non-zero then
the code in the braces should be executed, whatever the value of j. However, the else
is dangling; in other words there is an ambiguity as to whether it is associated with
the first or second if. In fact a dangling else is always associated with the nearest
preceeding if, so an indentation that more accurately reflects the logic of the code is:

#include <iostream>
using namespace std;

int main()

{
int i, j;
cout << "Enter two integers: ";
cin >> i >> j;
if (1 == 0)
if (j == 0)
cout << "Both i and j are zero\n";
else {
cout << "i is non-zero\n";
¥
cout << "i: " << i << " ji " << j << "\n";
return(0);
¥

This is presumably not what the programmer intended. However, such mistakes can
be very difficult to find since the indentation has a very powerful effect on how we
read code, even when the indentation is wrong! The dangling else problem can be

overcome by using pairs of braces, so the modified program becomes:
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#include <iostream>
using namespace std;

int main()
{
int i, j;
cout << "Enter two integers: ";
cin >> i >> j;
if (1 == 0) {
if (j == 0)
cout << "Both i and j are zero\n";
}
else {
cout << "i is non-zero\n";
}
cout << "i: " << i << M i " << j << "\n";
return(0);

}

As an example of the if else construct, we can now write our quadratic equation
program so that complex roots are trapped:

#include <iostream>
#include <cmath> // For sqrt().
using namespace std;
int main()
{
double a, b, c;
cout << "Enter the coefficients a, b, c: ";
cin >> a >> b >> c;
double temp =b * b - 4.0 * a * c;
if (temp > 0.0) {
double root = sqrt(temp);
double rootl = 0.5 * (root - b) / a;
double root2 = -0.5 * (root + b) / a;
cout << "There are two real solutions: " << rootl <<
" and " << root2 << "\n";
}
else if (temp < 0.0) {
double root = sqrt(-temp);
double real_part = -0.5 * b / a;
double imag_part = 0.5 * root / a;
cout << "There are two complex solutions: " << real_part <<
"+ i % " << imag_part << " and " << real_part <<
" - i x " << imag_part << "\n";
}
else {
cout << "Both solutions are: " << -0.5 * b / a << "\n";
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}
return(0) ;

}

This is our first complete program with any control structure; the if else statement
enables us to trap three possible cases resulting from values of a, b, c. Notice how
variables, such rootl and real_part, are defined in (and only have scope within)
different blocks; this enables us to use appropriate variables while keeping the scope
as restricted as possible. Notice also how there is only one return statement. It is
tempting to put a return at the end of each block, but such alternative returns, as
they are sometimes known, are best avoided if possible. The reason for this is that it
is easy to miss a return statement in some deeply embedded inner block.

Exercise

Try out our improved quadratic equation program for various values of a,
b and ¢. You should be able to cause the program to fail, in which case,
make appropriate further modifications.

4.5.3 switch Statement

Although the switch statement takes the general form:

switch (expression) {
case constant_1:
statement_1;
case constant_2:
statement_2;
// More case, statement pairs.
case constant_n:
statement_n;
default:
last_statement;

}

our discussion will be clearer if we consider a specific example. Suppose we have a
program to solve a differential equation by a variety of iterative methods and we want
to be able to choose which one to use; that is we want a menu. A program providing
a menu is shown below.?

#include <iostream>
using namespace std;
int main()
{
int option;
cout << "menu:\n\tl Jacobi\n\t2 Gauss-Seidel\n" <<
"\t3 Red-black Gauss-Seidel\n" <<
"Enter a number to choose the required technique.\n";

3Notice the use of \t for a horizontal tab in this program.
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cin >> option;

switch (option) {
case 1:
cout << "Starting Jacobi iterations.\n";
// Jacobi code.
break;
case 2:
cout << "Starting Gauss-Seidel iteratiomns.\n";
// Gauss-Seidel code.
break;
case 3:
cout << "Starting Red-black Gauss-Seidel iterations.\n";
// Red-black Gauss-Seidel code.
break;
default:
cout << option << " is not a valid option\n";
break;
}
return(0) ;

}

Here we have used a switch statement to provide a number of different options. No-
tice that there is no terminating semicolon following the closing brace of the switch
statement. In this example, the value of option is tested in turn against the constants
appearing after each case keyword. When one of these constants is found to be equal
to the value of option, then the subsequent code is executed. The break statement,
which we have not met before, causes control to pass to whatever follows the switch
statement. The important point to realize is that it is the break statement that alters
the flow of control, rather than the case or default statements.* If there is no break
corresponding to a particular case statement, then the flow of control is unchanged.
This drop-through behaviour has both advantages and disadvantages; it sometimes
permits elegant code, as in:

#include <iostream>
using namespace std;
int main()
{
char reply;
cout << "Do you want to continue (Y or N): ";
cin >> reply;
switch (reply) {
case ’Y’:
case ’y’:
cout << "Continuing ...\n";
// Code for Yes.

4The case and default are actually special types of statement labels that can only appear in a
switch statement. Labels are described later in this chapter.
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break;
case ’N’:
case ’'n’:
cout << "Exiting ...\n";
// Code for No.
break;
default:
cout << "‘" << reply << "’ is not a valid reply.\n";
// Code to recover from invalid reply.
break;
+;
return(0);

}

but it is easy to miss out a break, with potentially disastrous results. For instance, in
the menu example, if the first break were omitted, then entering 1 for the menu item
would cause both the Jacobi and Gauss—Seidel code to be executed. (Try it!)

If none of the constants match the switch expression, then control passes to the
statement following the default label (if there is one). It is possible for the break
before the default label to be omitted, in which circumstances the final case would
also lead to the default. This is usually the result of a mistake!

The final break statement after the default label in this example is redundant, but
is worth including as it is so easy to subsequently add another case without including
the necessary break. The keywords case and default can never appear outside of
a switch statement and there can be at most one default label for each switch
statement. The case and default labels can appear in any order, but it is better for
the default label (if any) to come after the case statements, since this reflects the
flow of control.

Exercise

By modifying the above program, demonstrate that it is indeed possible to
put the default label anywhere in a switch statement, without altering
the way in which the program executes.

For large programs, the switch statement can often be avoided by using the object-
oriented aspects of C++, resulting in code that is more elegant and maintainable. The
key concepts involved are classes, inheritance and polymorphism, which are introduced
in later chapters.

4.6 Iteration Statements

In most programs it is necessary to execute one or more statements many times. It is
tedious to repeat the statements and, in any case, it is often impossible to predict how
many times the execution should be repeated. Such circumstances are handled by the
three iteration statements: while, for and do.
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4.6.1 while Statement
The while statement takes the general form:

while (condition)
statement

and has two distinct parts, which we have called condition and statement.® A typical
example of a while statement is given in the following program:

#include <iostream>
using namespace std;
int main()

{
int n;
cout << "Enter an integer greater than 1: ";
cin >> n;
--n;
int gamma = n;
while (n > 2) {
--n;
gamma *= n;
X
cout << "gamma(" << n << ") is: " << gamma << "\n";
return(0) ;
}

The condition expression (in this case n > 2) is evaluated before each execution of
what is in this particular case a compound statement. This compound statement is
executed if the condition expression is true and then the condition expression is
tested again. If the test of the condition expression never gives a result of false,
then the iteration never terminates. This is demonstrated in the following code, but
be warned; it will carry on for ever!

#include <iostream>
using namespace std;
int main()

{

int n;

cout << "Enter an integer greater than 1: ";

cin >> n;

--n;

int gamma = n;

while (1) { // Oops! A mistake here.
--n;
gamma *= n;

¥

cout << "gamma(" << n << ") is: " << gamma << "\n";

5The condition in any of the three iteration statements can also involve pointers, which are intro-
duced in Chapter 6.
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return(0);

}

In this program, the condition expression of the while loop is 1, which always evaluates
to true. Consequently, the loop never terminates.

Notice that there is no do associated with the while (unlike some other languages)
and that there is no terminating semicolon. Both of these points are illustrated in the
following code fragment:

while (n > 2) do { // WRONG: ‘do’ is not allowed.
--n;
gamma *= n;
}; // ; is unnecessary, but does no harm here.
Exercise

Use a while loop to sum the first twenty terms in the series:

11+11
2 3 4

The result should be an approximation to In 2.

4.6.2 for Statement
The for statement has the general form:

for (initialize; condition; change)
statement

and can be seen to consist of four separate parts, which we call initialize, condition,
change and statement in order to indicate their respective roles. The initialize
statement is executed first and if condition is true, statement is executed. The
change expression is then evaluated and if condition is still true, statement is exe-
cuted again. Control continues to cycle between condition, statement and change,
until the condition expression is false. Control then passes beyond the for loop. A
typical example is given in the program below.

#include <iostream>
using namespace std;
int main()
{
int n, i;
cout << "Input a ‘small’ positive integer: ";
cin >> n;
int factorial = 1;
for (i = 1; i <= n; ++i)
factorial *= i;

cout << "factorial(" << n << ") is: " <<
factorial << "\n";
return(0);
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Notice that the initialize statement is only executed once and, as the name suggests,
it performs an initialization. It is possible for the final statement part of the for
statement not to be executed at all, as in:

n = 0;

int factorial = 1;

for (i = 1; i <= n; ++i) // 1 <=0 is false so
factorial *= i; // factorial is unchanged.

It is also possible for any (or even all) of the expressions (but not the semicolons) to
be missing. An example with no initialize statement is:

int factorial =1, i = 1;
for (; i <= n; ++1i)
factorial *= i;

The following code fragment gives an example of a for loop that has no initialize
statement and no change expression:

int factorial =1, i = 1;
for (; i <= n;)
factorial *= i++;

If the second (condition) expression is missing then it is taken as evaluating to true
and the loop continues for ever unless there is some way of breaking out. (See Sec-
tion 4.7.)

It is often convenient to define the loop variable in the initialize statement, as
in:

#include <iostream>
using namespace std;
int main()
{
int n;
cout << "Input a ‘small’ positive integer: ";
cin >> n;
int factorial = 1;
for (int i = 1; i <= n; ++i)
factorial *= i;
cout << "factorial(" << n << ") is: " <<
factorial << "\n";
return(0) ;

¥

It is important to realize that the scope of a variable defined in the initialize state-
ment only lasts until the end of the for loop. So the following code fragment is not
ANSI C++:

for (int i = 1; i <= n; ++i)
factorial *= i;
cout << "The final value of i is " << i << "\n";
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This is a significant change from early versions of C++. Code like this fragment may
compile on your current compiler (possibly with a warning message) since there is a
lot of old C++ code that would fail if this rule were strictly enforced. However, it is
better to follow the ANSI standard when writing new code.

Exercise

Convert the above code fragment into a program. If your program fails to
compile, modify it appropriately.

It is worth noting that, unlike some other languages, there is nothing special about
the variable that controls the iteration in a for statement. For instance, the controlling
variable (in this case, i) can be assigned to:

for (i = 0; i < 10; ++i) {
x *= 24.0 + pi;
if (x > 17.0)
i=9;

}
and can be of floating type:

for (double x = 0.0; x != 10.0; ++x) // Very risky.
total += x;

A test for equality of a floating type is very risky since it is likely that the finite machine
precision will mean that the condition never occurs and the iteration continues for ever.
For this reason it is very unusual to have a floating point loop counter, although it is
possible to use a relational expression, as in:

for (double x = 0.0; x < 9.5; ++x) // Safer.
total += x;

As an example of using for loops, the program given below finds some positive
integer solutions to the (Diophantine) equation:®

k2 =42 4 2
#include <iostream>
using namespace std;
int main()
{
int k_max = 40; // Change this value as required.

for (int k = 1; k < k_max; ++k) {
int k_2 = k * k;
for (int 1 = 1; i < k; ++i) {

int test k 2 -1 % 1i;
for (int j = 1; j < k; ++j) {
if (test == j * j)

6Such solutions are known as Pythagorean triples. See [12] for more details, including how to
obtain all such triples.
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cout << "A solution is: i = " <K
i< j="< i
" k=" << k << "\n";
}
}
}
return(0);
}
Exercise

Modify the above program so that it prompts for the value of k_max and
verify some of the solutions that the program provides.

This program is not very efficient since it tests values that cannot possibly
be solutions. Try to improve the efficiency of the program.

4.6.3 do Statement

The do statement has the form:

do
statement
while (condition);

where the semicolon is an essential part of the syntax. Here we label the two parts of
the do statement as statement and condition. The first thing that happens is that
statement is executed, after which there are two possibilities. If the condition expres-
sion evaluates to false, then control passes to the statement after the do loop. Alter-
natively, if the condition expression is true, then control passes back to statement
again. The control passes between condition and statement until condition be-
comes false, at which point control passes beyond the do loop. As an example, we
could change our program in Section 4.5.3 to read:

#include <iostream>
using namespace std;
int main()
{
int option;
do {
cout << "menu:\n\tl Jacobi\n\t2 Gauss-Seidel\n" <<
"\t3 Red-black Gauss-Seidel\n" <<
"Enter a number to choose the required " <<
"technique\n";
cin >> option;
} while (option < 1 || option > 3);
switch (option) {
case 1:
cout << "Starting Jacobi iterations.\n";
// Jacobi code.
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break;

case 2:
cout << "Starting Gauss-Seidel iterations.\n";
// Gauss-Seidel code.
break;

case 3:
cout << "Starting Red-black Gauss-Seidel iterations.\n";
// Red-black Gauss-Seidel code.
break;

default:
cout << option << " is not a valid option\n";
break;

}

return(0) ;

As before, the menu is sent to the output stream and the user enters an integer. If the
integer has the wrong value then the menu is repeated until a correct value is entered.

It is worth including the pair of braces in a do statement, even if a compound
statement is not required. If this isn’t done then the code may look like a while loop
with an empty statement.

With some contortions it is possible to interchangeably use any of the three iter-
ation statements; choosing the most appropriate technique depends on the particular
circumstances. In C++ programming (as in C) the for loop seems to be the most
common iteration statement. This is probably because the syntax conveniently col-
lects the initialization, loop control and increment all in one place. It is also helpful
to read the control expressions before a large block statement is encountered. The
while statement is often appropriate when initializations have been performed by the
preceding statements. The iteration counter in a while statement is often changed by
using an increment or decrement operator, resulting in very compact code, such as:

while (i < 10)
sum += i++;

The do iteration statement appears rarely in C++ (or C) programs. However, if there
is a requirement for a statement to be executed at least once (as in our menu example)
then the do statement may be appropriate, since neither the for nor while loops
have this property.

Exercise

The factorial of a positive integer n is defined to be equal to n(n — 1)(n —
2)...1. Write a program that prompts for a positive integer and then
outputs its factorial. You should write three versions of your program
using the three types of iteration statement. In each program, all iterations
should be done using the same type of iteration statement.
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4.7 break and continue Statements

The break statement can only occur inside a switch or iteration statement. We have
already met the break statement in the context where it causes control to exit from
the enclosing switch statement. The break statement can also supply a way of exiting
the three types of iteration statement, such as in the following code fragment:

int i;
while (true) {
cout << "Enter an integer > 0 and < 10 ";

cin >> 1i;
if (4 >0 && i < 10)
break;

}

In this example, the while loop could continue for ever. However, if i is greater than
zero and less than ten, then the break causes control to pass to the first statement
after the end of the while loop. Notice that, since we can only break from a single
enclosing loop, the break statement does not directly provide a way of exiting from
inside deeply nested loops. This is demonstrated by the following program:

#include <iostream>
using namespace std;

int main()

{
int test = 0;
for (int i = 0; i < 5; ++i) {
cout << "Testing i = " << i << "\n";
for (int j = 0; j < 5; ++j) {
cout << "\tTesting j = " << j << "\n";
for (int k = 0; k < 5; ++k) {
test = 10 * k;
// More code.
if (test > 20)
break;
cout << "\t\tTesting k = " << k << "\n";
} // The break leaves us inside the i and j loops.
}
}
return(0) ;
}

If you run this program, you will find that the inner loop is left when k is equal to
three. However, the remaining i and j loops run their full course (of five iterations
each).

The continue statement can only occur inside an iteration statement and causes
control to pass directly to the next iteration. For instance in the following simple
example:
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#include <iostream>
using namespace std;
int main()

{

0.0;

double x = 0.0, y
=0; 1 < 10; ++i) {

for (int i
++X;
if (i == 5)
continue;
++y;

’

A

}
cout << "x = " << x <"y =" <KLy << "\n"
return(0) ;

}

x and y are both incremented on each pass through the loop, except for when i is equal
to 5. In this case x is incremented, but then control passes directly to the next iteration
(i is equal to 6). The continue statement can play the same role in the while and do
iteration statements.

4.8 goto Statement!!

C++ even possesses the infamous goto statement. This is an unconditional jump (or
transfer of control) to a labelled statement, such as occurs in the following program:

#include <iostream>
using namespace std;
int main()

{
int i, j, k;
for (i = 0; 1 < 100; ++i) {
for (j = 0; j < 100; ++j) {
for (k = 0; k < 100; ++k) {
if (i == 5 & j == 10 && k == 15)
goto leap;
}
}
}
leap: cout << "Left loops with i = " << i <<
"j =" < j " k=" <K k<< "\n";
return(0);
¥

Here we have used the identifier, leap, as a label. When i, j and k are equal to the
values specified in the if statement, then control is transferred out of all three loops
to the output stream statement labelled by leap. Any valid identifier is acceptable as
a statement label, but the same label can only be used once in the same function, since
a label has the scope of the function in which it is declared. A label can only be used
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by a goto statement and is the only identifier whose scope is not local to the block in
which it is declared. The following demonstrate valid labels:

1abel9999: x =y + z;
labell: label2: label3: x =y + z; // Multiple labels.
a: a=y- z; // Labels have their own name space.

whereas

100error: X =y + z; // Must start with letter or _
error 100: x =y + z; // White space is not allowed.

are invalid.

Use of the goto is strongly discouraged in modern programming since it makes the
flow of control very difficult to follow and is usually a symptom of poor program design.
In the previous program, a break statement, together with an extra condition, has the
same effect, as shown below.”

#include <iostream>
using namespace std;
int main()
{
int i, j, k;
bool exit_loops = false;
for (i = 0; i < 100; ++i) {
for (j = 0; j < 100; ++j) {
for (k = 0; k < 100; ++k) {
if (i == 5 &% j == 10 && k == 15) {
exit_loops = true;
break;

}
if (exit_loops == true)
break;
}
if (exit_loops == true)
break;
}
cout << "Left loops with i = " << i << " j =" <
j<«" k=" <<k << "\n";
return(0) ;

3

However, there is clearly a trade-off between writing elegant structured code and using
the more eflicient goto.

"In this example it would be simpler to change the conditions on the loops. A more realistic
application would be calculating something like a three-dimensional integral where the number of
iterations would be unknown. Breaking out of the loops might then be governed by the integration
appearing to have converged.
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4.9 Comma Operator

The comma operator can be used to separate a sequence of two or more expressions.
The expressions are evaluated from left to right, with the result of each evaluation
being discarded before the next expression is evaluated. Consequently, the type and
value of a series of expressions, separated by comma operators, is that of the right-most
expression, although this is rarely significant.

It is important to realize that many of the commas appearing in C++ programs,
such as in definition lists and function arguments, are separators rather than operators.
For example, in Chapter 5 we introduce the idea of functions, such as

rectangle(width, height)

In this context, the comma is used to separate the function arguments rather than as
an operator and there is no requirement for width to be evaluated before height.
We have already met the comma operator in initialization statements such as

int 1 =0, j = 0;
The comma operator often occurs in for statements, as in the program given below.

#include <iostream>
using namespace std;
int main()

{
int k = 0;
for (int i = 0, j = 0; i < 10 && j < 10; ++i, ++j)
k+=1 + j;
cout << "k = " << k << "\n";
return(0);
}
In this example, the initialization is equivalent to:
i=0;
i=o0;

and the end of each pass through the loop amounts to:

++i;

’

++7j;

It is clearly possible to use the comma operator to overburden the control part of the
for statement with expressions. Therefore, it is a good idea to restrict the comma
operator to expressions closely related to loop control.

Spurious comma operators can give rise to errors that are very difficult to find. For
instance, the statement:

x =y, + 10;
is valid C++, but the programmer probably intended:
x =y + 10;
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4.10 Null Statement

The null statement consists of nothing but a semicolon. Such statements are useful if
the syntax requires a statement, but there is nothing to do. We have already met an
example of this in the code fragment:

int factorial =1, i = 1;
for (; i <= n; ++i)
factorial *= i;

In this case the initialize part of the for loop is a null statement; it does nothing.
Another example is where all the calculation occurs in the control part of for loop, as
in:

int i;
for (i = 0; i < 1; cin >> i)

3

It is worth putting the null statement on a separate line since it makes the intention
more obvious.

The null statement is often a mistake. For example the semicolon after the closing
brace of the following for loop should not be there:

for (i = 0; i < 10; ++i) {
X *= i;
y +=1i;
}; // Semicolon is a mistake, but it does nothing.

Sometimes, as here, the null statement doesn’t do any harm. However, occasionally
the result is a disaster, as in:®

while (i < 10); // This loop never ends.
sum += i++;

where the semicolon on the first line is actually a null statement. Since nothing is
evaluated in this while loop, once started it can never finish. Mistakes like this are
difficult to detect because the indentation makes the code look superficially correct. A
similar mistake can occur with the if statement:’

if (i == 0); // This statement does nothing.
X = initial_velocity; // This statement is always

// executed.

Such mistakes are unlikely if pairs of braces are used, even when they are not necessary.

8See Section 4.6.1.
9See Section 4.5.1.
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4.11 Conditional Expression Operator

The conditional expression operator, 7:, is the only ternary operator defined in C++
and takes the form:

condition 7?7 result_1 : result_2

The three operands are conveniently denoted by condition, result_1 and result_2.
The condition is evaluated first and, if true, then the whole expression evaluates to
result_1, otherwise the whole expression evaluates to result_2. For instance, in the
statement:

max = (1 > j) 7 i : j;

if i is greater than j, then i is assigned to max, otherwise j is assigned. This is
equivalent to:

if (1 > j)
max = i;

else
max = j;

which some programmers may prefer. However, the conditional expression operator
produces compact code and often avoids introducing a temporary variable, as in:

cout << "Max. pressure = " << (pl > p2 ? pl : p2);

Notice that parentheses are necessary in this statement because the precedence of <<
is higher than the conditional expression operator. (See Appendix B.)

Exercise

Write a program that prompts for pairs of floating point numbers and uses
the conditional expression operator to send true to the output stream if
2+ y2 < 1 and false otherwise.

4.12 Order of Evaluation of Operands

The order of evaluation of operands is undefined for most operators. For example, the
value of k in the expression:

k = ++i + i

is dependent on the particular C++ compiler because either operand of the binary
+ operator may be evaluated first. Since we have now met the only four operators
that are exceptions to this rule, it is worth summarizing them here. In each case the
operands are evaluated from left to right.'®

10Do not confuse the order of evaluation of operands with the precedence of operators. Whereas the
former concerns the order in which the operands of one operator are evaluated, the latter determines
the order in which several operators are applied.
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e The logical AND operator, &&, does not evaluate the right operand if the left one
evaluates to false.

e The logical OR operator, ||, does not evaluate the right operand if the left one
evaluates to true.

e Only one of the second and third operands of the (ternary) conditional expression
operator is evaluated, as detailed in the previous section.

e The left operand of the comma operator is evaluated before the right operand.

In the first two cases one of the operands may not be evaluated; in the third case
one of the operands is certainly not evaluated and in the fourth case both operands
are always evaluated.

4.13 The Preprocessor

In addition to the control statements that are recognized by the C++ compiler, there
is a control structure associated with the C++ preprocessor. Before a program is com-
piled, it is passed through a utility known as a preprocessor.!! This is capable of
performing various transformations on a C++ program, but it knows nothing about
the syntax of the language and simply makes the requested textual changes. The pre-
processor directives, or commands, are denoted by a # as the first non-blank character
in a line and this # is followed by a directive. Blanks and horizontal tabs can precede
the directive as well as the #, but more than one directive on the same line is not
allowed. The # is a preprocessor operator.'?
There are many preprocessor directives; the complete list is:

#define #else #elif #endif #error #if
#ifdef #ifndef #include #line #undef #pragma

However, not all of these directives will be described in detail; the two most important
ones are #define and #include. The #if, #elif, #else and #end are also fairly
common.

4.13.1 include Directive

We have already met the include directive in the context of standard library facilities.
The directive:

#include <iostream>

tells the preprocessor to replace the directive by the statements contained in the file
associated with iostream. For instance, the above include directive may find the file
/usr/include/g++/iostream. However, there is nothing in the ANSI C++ Standard

11 A single command usually invokes the preprocessor, compiler and linker, with special compiler
options being used in order to omit any of these stages.

12There is another preprocessor operator, ##, which is used for concatenation but is not considered
in this book.
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to say the file has to exist with the name that appears in the include directive; only
that the preprocessor must know how to find the file.

It is worth emphasizing that the more up-to-date style is for the include directive
for library files to have no suffix. This is as specified in the ANSI C++ Standard.
However, on older systems you may have to use something like

#include <iostream.h>
or
#include <iostream.hpp>

You may even find that <iostream> and <iostream.h> both work. However, the .h
file name extension for such library files is a left-over from the C programming language
and it is better to use the more up-to-date style.

White space inside the < > is important, so

#include < iostream >
will not work. However, white space after the #include is ignored, so
#include<iostream>

is correct. I prefer to leave a space after include, but I wouldn’t want to advocate any
particular style (provided it is used consistently).

There is a second form of the include directive that uses the double quotation
mark symbol, as in:!3

#include "my_file.h"

This is used to tell the preprocessor to include the file my_file.h. Such files would
not be part of the library for a C++ compiler but would typically be files written by
application programmers (such as ourselves). Files included in this way should either
be in the directory where the program is compiled, or the complete path should be
given, as in

#include "/home/fred/source/my_file.h"

As might be expected, white space within the quotes is important so

#include " my_file.h "

will not find a file called my_file.h.

Files that are copied by the #include directive are known as include files. Such
files are particularly useful for large programs that are split up into files (often known
as source files) that can be separately compiled. Consistency of any constants and
function declarations can be ensured throughout the source files by each source file
using the same include file.'* Include files that are used like this are called header files.
There is no restriction on user-defined file extensions, but it is advisable to conform to
the generally accepted convention of .h for header files, as this helps to identify the
purpose of such files.

13Notice that the double quotation mark is one character and must not be confused with two single
quotation marks.
14Function declarations are introduced in Section 5.1.3.
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4.13.2 define Directive'

We introduce the define directive mainly because it is common in library header files
that are shared with the C language, such as <cfloat> and <cmath>. The define
directive takes the form:

#define identifier tokens

and causes all subsequent occurrences of identifier to be replaced by tokens. This
directive can be used to give global constants meaningful names, as in:

#define SPEED_OF_LIGHT 2.997925e8

It is traditional to use upper case letters for constants defined in this way in order to
distinguish them from normal C++ identifiers. Notice that there is neither a semicolon
(or statement terminator) nor an assignment operator since the def ine directive simply
makes a textual substitution; it is not a statement of the C++ language itself. To some
extent the define directive is a relic of the C programming language. In C++ it is
usually much better to use the const specifier, together with an initialization, as in:

const double speed_of_light = 2.997925e8;

With the const specifier there is no run-time overhead, but this technique has the
advantage of type-checking and scoping.
The define directive can also take the form:

#tdefine identifier(identifier,..., identifier) token_string

with no space between the first identifier and the opening parenthesis. Using the
define directive in this way is a macro definition; that is, the directive acts like a
function definition, but without the associated call overhead. The preprocessor searches
subsequent lines for occurrences of the first identifier and substitutes token_string,
with the identifiers in parentheses replaced by actual arguments. An example should
make this clear. If we have

#define SQUARE(X) ((X) * (X))
then a subsequent statement of the form:
y = SQUARE(4.0);
is expanded to
y = ((4.0) *x (4.0));
This is equivalent to:
y = 4.0 % 4.0;

The use of parentheses may seem a bit excessive, but they are necessary because macros
perform purely textual substitutions and, without these parentheses, unexpected ex-
pansions may take place. For instance:

#define SQUARE(X) (X * X)
y = SQUARE(u + v);



4.13. THE PREPROCESSOR 5]

is equivalent to:
y=u+v*u+v;

which is very different from:
y=(u+v)*x (u+v);

If necessary, any preprocessor directive can be continued to the next line by a
\ followed immediately by a carriage return. It is therefore possible to write quite
complicated macros that are many lines long. Macros are only mentioned because you
may see them in header files derived from C code. You are strongly advised not to
use macros. This is because in C++ it is possible to define inline functions, which
can be inserted directly into the code by the compiler. Such functions have the same
advantages as macros, but are also type-checked and cannot give rise to unexpected
expansions. Inline functions are introduced in Chapter 5.

4.13.3 Conditional Compilation'

It is often convenient to be able to have two versions of the same program; for instance
there might be a test version, which gives diagnostic messages, and a production ver-
sion, which omits such messages. Simultaneously maintaining more than one version
of the same program is not easy; it is much better to be able to compile the same
program in different ways. Such conditional compilation can be achieved by means of
the following sequence of directives:

#if condition_1

// First code segment goes here.
#elif condition_2

// Second code segment goes here.
#else

// Third code segment goes here.
#endif

The interpretation of these directives is similar to the if else statement given in
Section 4.5.2. The constant expression, condition_1, following the if directive is
checked to determine whether it evaluates to zero; if it does not then the first code
segment is included. If condition_1 does evaluate to zero, then the constant expression
following the elif (standing for “else if”) directive is evaluated and, if it is non-zero,
the second code segment is included. If all of the constant expressions are zero, then
none of the code is included. The endif directive signifies the end of a sequence of
conditional directives, although there may be many sequences in one program. In a
given sequence there cannot be more than one else directive (there may be none),
although there may be any number (including zero) of elif directives. There are some
restrictions on the constant expressions; they must evaluate to an integral type and
cannot contain a cast, sizeof () or enumeration constant.

So far we have not really considered programs of sufficient length to justify the use
of conditional compilation, but as an example we might modify our quadratic equation
solver of Section 1.2 as shown below.
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// Solves the quadratic equation:
// a*xx *x+b*xx+c=0

#include <iostream>
#include <cmath> // For sqrt() function.
using namespace std;

#define TEST 1

int main()

{
double rootl, root2, a, b, c, root;
cout << "Enter the coefficients a, b, c: ";
cin >> a >> b > c;
#if TEST
double temp = b * b - 4.0 * a * c;
cout << "temp = " << temp << "\n";
root = sqrt(temp);
cout << "square root of temp = " << sqrt(temp) << "\n";

#else // TEST

root = sqrt(b * b - 4.0 * a * c);
#endif // TEST

rootl = 0.5 * (root - b) / a;

root2 = - 0.5 * (root + b) / a;

cout << "The solutions are " << rootl << " and " << root2 <<
Il\nll;

return(0);

3

The test version of this program could be used to discover why incorrect results are
obtained for certain values of a, b, ¢. Because the preprocessor merely makes textual
changes, this is a situation where it is essential to use #define. The const specifier,
asin :

const int TEST = 1; // Not useful for preprocessing.

is not appropriate in this context. Notice that it is useful to include comments to
indicate which #if directive goes with each #else or #endif. Moreover, it is worth
trying to keep conditional compilation simple since the dangling else trap is always
waiting for the careless programmer.

In Section 2.2 we mentioned that the /* */ style of comments cannot be used to
comment out segments of code that already contain such comments. The #if directive
provides a solution to this problem. If we surround the unwanted code with #if 0 and
#endif, as in:

#if O
for (int i = 1; i < 10; ++i) {
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sum_1 += i; // Evaluates sum_1.

sum_2 += i * i; /* Evaluates sum_2 */
} // 0.K. so far.
#endif // O

then it is excluded by the preprocessor.

4.14 Enumerations'

An enumeration is a distinct integral type with a set of named constants. The constants
are named by means of an enumeration declaration, which consists of the keyword,
enum, followed by a list of the constants, as in:

enum day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday};

In this example, day is the enumeration type and Sunday has the value 0, Monday has
the value 1, etc. An individual member of the list (such as Tuesday) is known as an
enumerator.

Identifiers in an enumeration list can be assigned a particular value, in which case
subsequent identifiers increase by one, going from left to right. In the enumeration:

enum traffic_light {red = 1, amber, green};

amber and green have the values 2 and 3 respectively.
It is also possible for two or more enumerators to have the same numerical value,
as in:

enum day {Saturday, Sunday = O, Monday, Tuesday, Wednesday,
Thursday, Friday};

An equivalent but better technique is to use the statement:

enum day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday = Sunday};

since this clearly indicates that Saturday is equivalent to Sunday without distracting
us with numerical detail. In both cases, Saturday and Sunday have the value 0 and
Monday, Tuesday, Wednesday, . ..have the values 1, 2, 3, ....

The motivation for introducing enumerations is that they provide a way of using
meaningful names in place of integral constants, as the following program demonstrates:

#include <iostream>
using namespace std;
int main()
{
enum colour {red, amber, green};
cout << "Enter an integer from " << red << " to " << green <<

". ".
. ’

int choice;
cin >> choice;
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switch (choice) {

case red:
cout << "The signal is red.\n";
break;

case amber:
cout << "The signal is amber.\n";
break;

case green:
cout << "The signal is green.\n";
break;

default:
cout << "Not a valid colour.\n";
break;

}

return(0);

}

Although it is necessary to enter an integer in order to choose a colour, once this
has been done, the switch can be performed by using meaningful colours in place of
numbers.

It is possible to define enumeration variables, as in:

enum colour {red, amber, green};
colour choice;

In this code fragment, choice is an enumeration variable. The only valid operation
that is defined on an enumeration variable is assignment. For any other operation (such
as equality) the enumeration variables and constants are converted to integers and an
integer operation performed. This implies that operations, such as:

colour choice;
choice = amber;
if (choice == 1)
cout << "Colour is amber.\n";

are valid. But mixed operations, as in:

colour choice;
choice++; // WRONG!
choice = 2; // WRONG!

are not defined.!®
There is no need to actually provide a name for the enumeration. For example, the
statement:

enum {red, amber, green} colour;

15Since an enumeration is a user-defined type, it is possible to define an operator (such as ++) for
the type by using the techniques of Chapter 9.
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defines colour to be an enumeration variable that can take the values red, amber
or green, but does not define an enumeration type. Of course, this technique does
not enable us to subsequently define more enumeration variables of the same type,
although the original statement can define a list of such variables. For example, the
code fragment given below defines colour and another_colour to be enumeration
variables.

enun {red, amber, green} colour, another_colour;

Also, an unnamed enumeration restricts how we can use the enumeration. An example
is the following program, where the choice of colour is made within the code instead of
by entering a value:

#include <iostream>
using namespace std;
int main()
{
enum {red, amber, green} colour;
colour = amber;
switch (colour) {
case red:
cout << "The signal is red.\n";
break;
case amber:
cout << "The signal is amber.\n";
break;
case green:
cout << "The signal is green.\n";
break;
default:
cout << "Not a valid colour.\n";
break;
}

return(0) ;
}
Exercise

Define an enumeration for the months of the year. Given a month enu-
meration variable, what methods could you use to “increment” it to the
following month? Try out your ideas in a short program.

4.15 Summary

e The relational operators are: <, <=, >, >=. They are binary operators, returning
true or false.

e The negation operator, !, returns true if the operand is false, and false if the
operand is true.
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The logical AND operator, &&, returns true if both operands are true, otherwise
the operator returns false.

The logical OR operator, | |, returns false if both operands are false, otherwise
the operator returns true.

The equality operator, ==, returns true if both operands are equal and false
otherwise.

The not equal operator, !=, returns false if both operands are equal and true
otherwise.

A compound statement, or block, is denoted by a pair of braces, { }.
There are three branch statements: if, if else and switch.
Watch out for the dangling else trap.

The three iteration statements are: while, for and do. Use whichever statement
is most natural for a particular problem.

The break statement is used to exit from an iteration.
The continue statement causes control to pass to the next iteration.

The comma operator separates a sequence of expressions and is mainly used in
initialization and for statements.

The conditional expression operator, 7:, is the only ternary operator and is useful
for writing compact code. If the first operand is true, the operator evaluates to
the second operand, otherwise it evaluates to the third operand.

Files can be included by using the #include preprocessor directive:

#include <filename> // For system filenames.
#include "filename" // For user-defined filenames.

Avoid using the #define preprocessor directive to give constants meaningful
names:

#define SPEED_OF_LIGHT 2.997925e8
Instead use the const specifier:
const double speed_of_light = 2.997925e8;

An enumeration declares a distinct integral type and can be used to give mean-
ingful names to integral constants:

enum colour {red, amber, green};
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4.16 Exercises

1. 7 can be calculated from the series:
o0

> 1/k* =7/90

n=1

Write a program that uses the first five terms of this series to obtain an ap-
proximation for m. Compare your result with that given in a standard table of
mathematical constants. See how accurate you can make your result by increasing
the number of terms in the series.

2. Which of the iterations in the following code segments may never terminate?
Justify your conclusions.

(a) int sum = 1;
for (unsigned i = 10; i >= 0; --i)
sum *= 2 * i + 1;
(b) double i = 10, sum = 1;

while (i !'= 0)
sum *= 2 *x i-- + 1;

(c) int i = 0;
double sum = 1.0;
while (1) {
sum *= 2 * i++ + 1;
if (i = 10)
break;
}
3. Consider the sequence of integers: wup,us,us,..., where u; = 1l,us = 1 and

Uy = Up_1 + Up—o for n > 3. These integers constitute what is known as the
Fibonacci sequence. Write a program that prompts for a positive integer, n,
and lists the first n members of the sequence. Notice how u, increases very
rapidly with n and soon exceeds the largest integer that can be represented as a
fundamental type on your computer.

Verify your results by modifying the program to check that:

(a) up +us+ -+ up =uUpyo— 1
(b) u?, — Up—1Un41 = (-1)”'1'
(If you want to learn what all this has to do with rabbits and number theory, it
is well worth consulting [12].)
4. If we define f(z) = z" — ¢, then solving f(z) = 0 is equivalent to finding ¢'/™ for
n > 0. Given an approximate value of x, the Newton—Raphson method consists
of calculating a new approximation, Zyew, by using:®

_ . f@
xIleW = f/<:l/‘) N

16See (14]
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In our case, this reduces to:

(n—1)z c

Tnew =
n nxn—!

Write a program to find ¢'/™ for positive n and ¢. The program should prompt

for n (as a positive integer), the initial value of = (as a positive double) and
¢ (also a positive double). Incorrect entries should be trapped and a prompt
for a new value issued. Use the above formula for z,., to iterate towards an
approximate value of z and hence ¢'/®. The program should terminate if the
number of iterations exceeds a reasonable limit or the difference between two
successive iterations is in some sense small. For instance, you might try a limit
of twenty iterations and a difference between two successive iterations that is
close to the machine precision. Try different values of n and ¢, and list the
approximations to each root.

5. A very simple way of numerically integrating a function in one dimension is the
trapezoidal formula, which splits the integration region into strips, as shown in
Figure 4.1.17 The sum of the areas is an approximation to the integral, as given

Figure 4.1: Numerical integration using the trapezoidal formula.

by the following formula:

/ " ) de ~ hlfo/2 4 fi 4t fes + Fnf2]

where
h = (m —xp)/m

7For a description of better methods, again see [14].
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Write a program that uses the trapezoidal formula, with m = 20, to evaluate:

T
/ sinx dr
0

and compare your result with the exact answer. Experiment with different values
of m and also try to evaluate different integrals.



Chapter 5

Functions

5.1 Introducing Functions

In the previous chapter we introduced the control structures of C++. Although these
structures enable us to write very powerful programs, they do not give us a means
of controlling this power, nor do they encourage reusable code. The introduction of
functions is an essential first step in the writing of modular, maintainable and reusable
code. In particular, testing can be carried out on each function in isolation, rather than
on the whole program. This is important because the number of different pathways
through even a modest program is often very large indeed. Functions provide a way of
encapsulating relatively self-contained segments of code. A function typically carries
out some well-defined action, such as returning a random number, performing numerical
integration or inverting a matrix.

5.1.1 Defining and Calling Functions
In general, a function definition takes the form:

return_type function_name(type argument,..., type argument)
{

// Function body.
+

However, it is more instructive to start by considering a simple example. The following
code defines a function:

int factorial(int n) // Calculates n*(n-1)*(n-2)*...*1
{
int result = 1;
if (m > 0) {
do {
result *= n;
--n;

} while (n > 1);
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else if (n < 0) {
cout << "Error in factorial function:\targument = " <<
n << "\Il";
}

return result;

}

This function calculates the factorial function (n(n —1)...1 or n! in the usual math-
ematical notation) and its structure is shown in Figure 5.1. Notice that there is no

return type l argument type

int factorial(int n)

{ T l formal argument I

// Code to implement function.

return result;

} ‘[ value returned
T JI no semicolon

Figure 5.1: Structure of a typical function.

terminating semicolon. The first line, sometimes known as the function header, de-
clares that the function returns the type int and defines the name of the function
to be factorial, which is the identifier used to invoke this particular function. The
identifier, n, is known as a formal argument and is again declared to be of type int.
A function can have any number of formal arguments, including zero, and these argu-
ments can be a mixture of types. The arguments in a list are separated by commas.
In this context the comma is a separator, rather than an operator (in contrast to
Section 4.9).

The outermost set of braces contains what is known as the function body; it is here
that we find all of the code that implements the function. The body of the function
contains a return statement, which terminates the function. In this particular case
the statement also causes a value to be returned to the calling environment. The value
being returned can optionally be enclosed by parentheses, as in:

return(result) ;

Some programmers like to leave a space before the parentheses in a return statement,
as in:

return (result);



5.1. INTRODUCING FUNCTIONS 87

others prefer not to. If the result of evaluating an expression is returned directly,
parentheses can help to make the statement more readable. For example, compare:

return(a * a + b *x b + ¢ * c);
with:
return a * a + b x b + ¢ *x c;

A function is called (invoked or executed) by including its name, together with ap-
propriate arguments within parentheses, in a statement.! The following code fragment
gives an example of calling the factorial function:

sum = 0.0;
for (i = 0; 1 < 10; ++1i)
sum += 1.0 / factorial(i);

The arguments to the function being called are known as actual arguments, distinguish-
ing them from the formal arguments of the function definition. The identifiers used
in both cases may or may not be the same; this has no significance since the values
of the actual arguments are copied to the formal arguments. The scope of the formal
arguments is limited to the function body and changes made to these arguments are
not propagated back to the calling program. For instance, in the body of our factorial
function, the formal argument, n, is decremented, but this has no effect on the actual
argument, i. This process of copying the value of the actual argument to the formal
argument is known as pass by value. Some languages use pass by reference, in which
case any changes to a formal argument that are made by a function are indeed prop-
agated back to the calling environment. As we will see in Chapter 7, C++ functions
can also use pass by reference, but pass by value is the usual technique. The reason for
this is that pass by value encourages more modular, safer code and helps to prevent
unexpected changes in the value of variables.

It is worth pointing out that although function arguments can be expressions, as
in:

int j = factorial(2 * i + 1);

the order of evaluation of expressions in argument lists is not defined. Therefore a
function call of the form:

double x = too_clever_by_half(++i, (i+5));

is likely to give different results with different compilers.
An example of using a function is given in the following program:

#include <iostream>
using namespace std;

int factorial(int n) // Calculates n*x(n-1)*(n-2)...1
{

int result = 1;

IThe pair of parentheses in the function call should be regarded as an operator.
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if (n > 0) {
do {
result *= n;
--n;
} while (n > 1);
}
else if (n < 0) {
cout << "Error in factorial function:\targument = " <<
n << “\Il";
}
return result;

3

int main()
{
double value = 0.0;
for (int loop = 0; loop <= 10; ++ loop)
value += 1.0 / factorial(loop);
cout << "The value of e is: " << value << "\n";
return(0);

}

The program uses the factorial function to calculate an approximation to the math-
ematical constant, e.

5.1.2 Return Type

The return statement causes a function to terminate, but in many cases the statement
also causes a value to be passed back to the calling environment. The type returned
by a function must agree with that specified in the function header. Any attempt to
return a type differing from that declared should be trapped by the compiler. However,
implicit type conversions are allowed so the return in the following code fragment is
valid:

double sum(int n)

{
int result = 0;
for (int i = 1; i <= n; ++i)
result += i * i;
return result;
}

In the above return statement, result is of type int and is converted to a double.
But the following is not valid since the first return does not return a value:

double sum(int n)

{
int result = 0;
if (n < 0)
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return; // WRONG!
for (int i = 1; 1 <= n; ++i)
result += 1 * 1i;
return result;

}

In this example the compiler prevents an arbitrary value being returned as an appar-
ently valid result. We should, of course, replace the incorrect return statement by some
action that recognizes that if n is less than zero then an error has occurred. Something
should also be done to limit the consequences of the error; one possible course of action
is suggested later in this chapter (in Section 5.8).

It is quite common for there to be no requirement for a function to return a value,
in which case a special type, called void, should be used to specify the return type in
the function header. For example, the following function simply sends a message to
cout and does not return a value:

void print_welcome()

{
cout << "Welcome to the interactive C++ tutorial.\n";
return; // This statement can be omitted.

}

If no value is returned by a function (as above) then the return statement at the end
of the function body can be omitted.

ANSI C++ (unlike earlier versions) does not allow us to omit the return type in
the function header, so the following function is incorrect and gives a compiler error:

print_welcome() // WRONG: must specify return type.
{
cout << "Welcome to the interactive C++ tutorial.\n";

}

If a function has no arguments, then void may be used, as in:

int rand(void)
{
// Return a pseudo-random integer.

}

The use of void is preferable to empty parentheses, since it emphasizes that the pro-
grammer intends the function to take no arguments. Apart from this equivalence to an
empty argument list, void cannot be used as an argument type, nor can an identifier
of type void be declared:

int factorial(int n, void) // WRONG: void is not valid here.
{
void empty; // WRONG: cannot declare a variable
// to have type void.
// Function body
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It is also invalid to have void as the operand of the sizeof operator.
Notice that even if a function takes no arguments, the calling program must use
parentheses, as in:

print_welcome();
rather than:
print_welcome; // This does nothing useful.

Although the statement does not produce a compiler error, using the function name
without parentheses does nothing useful in this context.

5.1.3 Function Declarations

A function can be declared without specifying how it is implemented. A function
declaration for the factorial function is given below.

int factorial(int n);

Such a statement is known as a function declaration. Notice that, unlike a function
definition, a function declaration must end with a semicolon and has no function body.
A function with an empty body is not a declaration, but instead defines a function
which does nothing, as in:

int lazy_function(int n) { }

Any argument names given in the declaration are ignored by the compiler, but including
these names is a useful documentation technique. For complicated programs, possibly
involving use of the same functions in different source files, function declarations are
a considerable help in program maintenance and modularity. This is because the
code implementing a function may be compiled independently to code using it. Such
declarations are often collected together in a header file and since a function is only
known to the compiler after it has been declared, it makes sense to include the header
file at the start of all files that either use functions or implement them. As we will
see when we come to the specifically object-oriented aspects of C++, declarations
have a fundamental role to play in defining classes and therefore objects. In fact, C++
requires either that a function is declared or else its definition is seen before the function
is invoked.

5.1.4 Functions Cannot Declare Functions

In some languages, such as Pascal, it is possible to declare functions within other
functions. It is important to realize that this feature is not available in C++. So a
program to print out the first ten factorials is:

#include <iostream>
using namespace std;

int factorial(int n)

{
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int result = 1;
if (@ > 0) {
do {
result *= n;
--n;
} while (n > 1);
}
else if (n < 0) {
cout << "Error in factorial function\targument = " <<
n << "\n";
}

return result;

int main()
{
for (int i = 0; i < 10; ++i)
cout << i << "l = " << factorial(i) << "\n";
return 0O;

}
rather than:

#include <iostream>
using namespace std;

int main()

{
int factorial(int n) // WRONG: cannot declare function here.
{
// Body of function as in previous example.
}
for (int i = 0; i < 10; ++i)
cout << i << "! = " << factorial(i) << "\n";
return O;
}

Since every program must have a function called main() and a function cannot be
defined inside another function, the general structure of a program is a list of function
definitions. We might expect the relationship between the functions to look like a
tree with the function main() as the root. Unfortunately programs can be much
more complicated than this, being general graphs, complete with cycles. For some
problems, functions are a very effective way of controlling complexity. However, for
really complicated problems it becomes difficult to control the relationships between
functions and more powerful techniques are needed. It is by encapsulating related
functions and the data on which they operate into a single class, that C++ can bring
some order to these more complicated problems. You are probably wondering why we
don’t go directly to these more powerful methods. There are really two reasons: firstly,
many small problems can be solved most appropriately without introducing classes;
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secondly, classes at their most fundamental level are partly built from functions and
so we do need a good understanding of how to use functions before we can progress to
object-oriented techniques.

5.1.5 Unused Arguments'

There is no requirement for all of the formal arguments in a function declaration to
be used, in which case an identifier does not have to be specified. An example of a
function definition with an unused argument is given below.

void print_error(int)
{
cout << "An error has occurred.\n";

3

However, the function cannot be called without an argument, even though the argument
is not used. So in the following code fragment, the first statement is correct, even
though the constant argument has no significance:

print_error(1); // 0.K.
print_error(); // WRONG: incorrect number of arguments.

Unused arguments may serve to reserve a place in the argument list for future use. For
instance, in the previous example we might want to have a list of the various possible
errors, as in:

void print_error(int error_number)

{
cout << "An error has occurred:\n";
switch (error_number) {
case 1:
cout << "\tThe matrix is too large for " <<
"the available memory.\n";
break;
case 2:
cout << "\tThe matrix is singular.\n";
break;
case 3:
cout <<"\tThe iteration is not converging.\n";
break;
default:
cout << "\tUnknown error.\n";
break;
}
// Perhaps some code to handle the error.
}

An argument type without an identifier can also be useful when an argument has been
made redundant by a changed function implementation, but the calling functions have
not yet been brought up to date.
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5.1.6 Default Arguments

A function declaration can specify values that are to be used as the defaults for one or
more arguments. For instance, if we define a function to return the area of a rectangle,
with defaults for the height and width, as in:

double rectangle(double height = 1.0, double width = 2.0)

{
return(height * width);
}

then we could make the function calls given in the following code fragment:

areal = rectangle(); // 1.0 * 2.0 = 2.0 assigned.
area2 = rectangle(3.0); // 3.0 * 2.0 = 6.0 assigned.
area3 = rectangle(2.0, 4.0); // 2.0 * 4.0 = 8.0 assigned.

Notice that it is the trailing arguments that are assumed to be missing, which means
that default arguments must be supplied right to left in the declaration. For instance,
we can make the declaration:

double rectangle(double height, double width = 2.0);
but not:
double rectangle(double height = 2.0, double width);

According to the ANSI C++ Standard, a default argument cannot be redefined by a
subsequent declaration, not even to the same value. A common error is to give the
same default arguments in a function definition, as in the corresponding declaration:

double rectangle(double height = 1.0, double width = 2.0);
// Perhaps some other code.
// The following function header is WRONG:
double rectangle(double height = 1.0, double width = 2.0)
{

return(height * width);
}

This condition is not enforced by all compilers. Nevertheless, since default argument
values are a feature of the function interface, rather than the implementation, the
defaults should be in the header (.h) file rather than the source (.cxx) file.

However, a subsequent declaration can introduce one or more additional default
arguments, as demonstrated in the following program:

#include <iostream>

using namespace std;

const double PI = 3.142;

double disc_area(double radius);
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// Some other code.

double disc_area(double radius = 10.0)

{
return(PI * radius * radius);
}
int main()
{
cout << disc_area() << "\n";
return(0);
}

It is worth emphasizing that default arguments must be provided for any arguments
that are omitted in the function call, as demonstrated by the following code fragment:

double rectangle(double height, double width = 2.0)

{
return height * width;
}
int main()
{
double rectl = rectangle(5.0); // 0.K.
// Default width = 2.0
double rect2 = rectangle(); // WRONG: insufficient
// function arguments.
// More code.
}

Since default arguments do not need to be named in a function declaration, we
could use the following for the rectangle function:

double rectangle(double, double = 2.0);

However, omitting argument names it not a good idea since they are a valuable method
of documenting code. Also, notice the distinction between declarations and definitions;
argument names cannot be omitted from function definitions, even if they do have
default values. This is illustrated by the following function where width is not defined:

double rectangle(double height, double = 10.0) // WRONG!
{

return height * width; // width is not defined.
}

Exercise

Implement and test a function that has the base and height of a triangle
as arguments and returns the area. If the function is called with a single
argument, then the value of the base should default to 1.0. In the case of
no arguments, the function should return a result of 1.0.
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5.1.7 Ignoring the Return Value

The calling function can ignore the value returned by a function. For instance, consider
a function mkdir (charx) that creates a file system directory. In general it is important
to know whether a directory is successfully created or not, so such a function could
return true to indicate success and false to indicate failure. A program might contain
the following:

bool status = mkdir("test"); // Creates directory "test".
if (status)

cout << "Directory ‘test’ created.\n";
else

cout << "Failed to create directory ‘test’.\n";

However, we may be willing to ignore the risk that the directory creation could fail and
to simply use:

mkdir ("test"); // Return status is ignored.

In general it is safer to program defensively; assume that anything which may fail is
worth testing, at least in the development phase.

5.2 Recursion

A function can call another function, as in:

double binomial_coef(int n, int k)
// calculates binomial coefficient: n!/ (k! (n-k)!)
{
return(factorial(n) / static_cast<double>(factorial(k) =*
factorial(n - k)));
}

(The cast to double in this function is necessary to force floating point rather than
integer division; otherwise integer truncation would occur.)

A function can also call itself and this is known as recursion. For example, we could
rewrite our factorial function as shown in the program below.

#include <iostream>
using namespace std;
int factorial(int n)
{
int result;
if (m==1 1] n ==0)
result = 1;
else if (n < 0)
cout << "Error in factorial function: argument = " <<
n << "\n";
else
result = n * factorial(n - 1);
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return result;

}
int main()
{
int j;
cout << "Enter an integer: ";
cin >> j;
for (int i = 0; i < j; ++i)
cout << i << "!' = " << factorial(i) << "\n";
return(0);
}

A recursive function invariably follows the same pattern; it has a base case and always
calls itself. In this example the base case occurs when n is one or zero; the function
then returns without calling itself. When the function does call itself, then the value
of the argument is different and must in some sense be changing in the direction of the
base case. Care should be taken to trap any possible call errors (such as n less than
zero in this example) otherwise the function may call itself for ever. It is also possible
to have a set of mutually recursive functions. We don’t consider mutually recursive
functions in this book, but the general ideas are the same as given here.

Recursion should be used with care; it is sometimes a very effective way of solving
problems that are otherwise difficult. However, every use of a function carries a call
overhead and if the recursion depth is large and little calculation is done on each call,
then recursion can be very inefficient. Another disadvantage is that each function call
makes temporary use of a fixed quantity of memory, known as the stack.? If the depth
of a recursive function call is large, it is possible to use up all of this memory, in which
case the program will fail.

Exercise

Implement a function, with the declaration:
double u(int n);

to recursively generate the Fibonacci sequence defined in Exercise 3 of
Chapter 4. Check that the results given by the two exercises are consistent.

5.3 Inline Functions

It is often desirable to write short functions in order to improve the readability of a
program, but the call overhead may not justify the use of a function definition. In such
cases it is possible to define inline functions by means of the inline keyword:
inline int min(int i, int j)
{
return((i < j) 71 : j); // Returns the minimum of i and j.

}

2We will describe stacks in more detail in Section 10.3.1.
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The inline keyword is a suggestion to the compiler that the body of the function
should be substituted directly in the code, instead of the program making a run-time
function call. The suggestion may be ignored and probably will be if the function
is complicated. A recursive function could be declared inline, but even a simple
function would not be completely expanded, since the recursion depth is not known at
compile-time.

Inline functions usually (but not always) increase the size of the generated code
and decrease the execution time. For most functions, the call overhead is insignificant
compared with the time taken to execute the body of the function and these functions
should not be declared inline. In general it is only very short functions, consisting of
one or two statements, that are worth declaring inline. Such functions are common
when implementing the data-hiding techniques associated with classes, as described in
Chapter 8.

Functions declared inline should be defined in a header file, rather than a .cxx
file, since the definition (in contrast to the declaration) must be seen before every use
of the function. This is particularly important when a program is split into separately
compiled source files, as each file using an inline function needs the definition and
files #include the .h (not the .cxx) file.

Exercise

Try changing some of your previous programs to declare inline functions
(for example, any programs using the factorial () function).

5.4 More on Scope Rules

Now that we have introduced functions, it is worth considering the concept of scope
in more detail. There are three kinds of scope: local, class and file. Classes will not
be introduced until Chapter 8, but for the moment we can state that any member of
a class has class scope.

A variable defined within a function has local scope and each function has a distinct
scope. Such variables hide definitions made outside of the function. (In fact, as we
noted in Section 4.4, the same is true of any block.) For instance, in the program
given below we define a function to calculate the sum of the squares of the first n
integers and this function is called from main(). The two declarations of i (and the
two declarations of result) in the functions are hidden from each other. This is true
whatever the relative positions of the functions within a single file.

#include <iostream>
using namespace std;

int sum(int n)
{
int result = 0;
for (int 1 = 1; i <= n; ++1i)
result += i * i;
return result;
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}
int main()
{
int result;
for (int i = 1; i <= 10; ++i) {
result = sum(i);
cout << "sum of the first " << i << " squares is " <<
result << "\n";
}
return(0) ;
}

Reuse of the same identifier in different scopes in the same file should not be over-
done as it can lead to programs that are very difficult to read. The reuse of nondescript
identifiers such as i (which may typically be used as a generic loop counter) is quite
acceptable. But consider a file using square matrices and suppose the file contains
identifiers called matrix_size. In one function it could mean the number of rows (or
columns) of a matrix; in another, the total number of elements in a matrix and in a
third, the total number of bytes needed to store a matrix. The possibility of errors
would be greatly reduced if we used three different and more descriptive identifiers.

Any object not having local or class scope has file (or global) scope and is visible
throughout the file. Although this visibility is useful, it is also dangerous, which means
that global variables should be kept to a minimum. Since any function has access to a
variable with file scope, it is well worth using the const specifier if at all possible. A
simple example of file scope is given in the following program:

#include <iostream>
using namespace std;

const int i_max = 10; // i_max has file scope.

int main()

{
int sum = O;
for (int i = 1; i <= i_max; ++i) {
sum += i;
cout << "sum of the first " << i << " numbers is " <<
sum << "\n";
}
return(0);
}

If a local variable and a global variable have the same name, then the local variable
hides the global variable. However, the global variable can be accessed by prefixing the
name with what is known as the scope resolution operator. This is a single token, con-
sisting of two colons, as in : :x. We will make more use of the scope resolution operator
later, but the following program demonstrates its use in this situation. However, this
shouldn’t be taken as encouragement for the use of global variables.



5.5. STORAGE CLASS STATIC 99

#include <iostream>
using namespace std;

double x = 2.7183;

int main()

{
cout << "x = " << x << "\n";
double x = 0.6931;
cout << "x = " << x << "\n";
cout << "::x = " << ::x << "\n";
return(0) ;

}

The first statement in function main() sends the value of the global variable to the out-
put stream. The second statement hides the global variable, and so the third statement
in main() sends 0.6931 to the output stream. The fourth statement demonstrates that
use of the scope resolution operator accesses the global variable.

5.5 Storage Class static'
In the following simple function:

int sum(int n)

{
int result = 0;
for (int i = 1; i <= n; ++i)
result += i * i;
return result;
}

the variables i, result and n are all automatic. That is each time control passes to
the body of this function, memory is allocated for these variables and then deallocated
when control leaves the function. There is no guarantee that the same memory will be
allocated each time control passes to the function body and that the memory won’t be
used to store something else when control passes elsewhere. All local initializations are
performed each time control passes to a block; in this example result is set to zero
each time the function is invoked.

If no explicit initialization is performed, then the value of an automatic variable is
initially arbitrary:

int sum(int n)
{
int result;
for (int 1 = 1; i <= n; ++i)
result += 1 * i;
return result; // WRONG: result is arbitrary.
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Identifiers that are local to a block (which includes a function body) have automatic
storage by default.

Sometimes it is convenient to have a variable that retains its value when control
leaves the block where the variable is defined; this can be achieved by declaring the
storage class to be static. An example of declaring static storage is given in the
following program:

#include <iostream>
using namespace std;

int sum(int n)

{
static int grand_total;
int result = 0;
for (int i = 1; i <= n; ++i)
result += 1 * i;
grand_total += result;
cout << "Total so far = " << grand_total << "\n";
return result;
}
int main()
{
cout << "First sum = " << sum(2) << "\n\n";
cout << "Second sum = " << sum(2) << "\n\n";
cout << "Third sum = " << sum(3) << "\n";
return(0) ;
}

In this example the static variable, grand_total, accumulates the values returned
by sum().? This is because a static variable retains its value even when it goes out of
scope. Notice that we didn’t need to initialize grand_total since, by default, a static
object is initialized to zero. This initialization is only performed once. Any explicit
initialization is also only performed once, so in the following example grand_total
correctly accumulates the values returned by sum:

int sum(int n)

{
static int grand_total = O; // Initialized once.
int result = 0;
for (int i = 1; i <= n; ++i)
result += i * i;
grand_total += result;
cout << "Total so far = " << grand_total << "\t";
return result;
}

3Within the text we often refer to a function by its name followed by a pair of empty parentheses.
The parentheses are included to emphasize that we are dealing with a function and the fact that they
are empty is not meant to imply that the function doesn’t take any arguments.
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An initializer for a static variable does not need to be a constant expression and can
involve any previously declared variables and functions:

static int grand_total = total_for_last_week *
weighting factor(current_week);

It is a good idea to keep such initializers simple since the order in which initializations
are performed may not be obvious; a local static variable is initialized when the
function is first invoked and a static variable with file scope is initialized before any
functions or objects are used.

Global variables (that is variables having file scope) have static storage by default
and are therefore initialized to zero, unless an explicit initializer is given:

#include <iostream>
using namespace std;
int grand_total; // Static variable, initialized to zero.

int sum(int n)

{
int result = 0;
for (int i = 1; i <= n; ++i)
result += i * i;
grand_total += result;
return result;
}
int main()
{
for (int i = 1; i <= 10; ++i)
cout << "sum of the first " << i << " squares is " <<
sum(i) << "\n";
cout << "The sum of the sum of the first 10 squares is " <<
grand_total << "\n";
return(0);
}
Exercise

Why is the use of grand_total in the above program considered to be bad
style? How could you improve the program?

5.6 Overloading Function Names

In C++ it is possible to use the same function name for functions that actually have
different function bodies. This is known as function overloading. The functions must
be distinguished by having different numbers of arguments or different argument types,
such as:
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double norm(double a, double b, double c)
{
return sqrt(a * a + b * b + c * ¢);
} // Returns the norm of a 3-dimensional vector.

double norm(double a, double b)
{
return sqrt(a * a + b * b);
} // Returns the norm of a 2-dimensional vector.

float norm(float a, float b)

{
return(a * a + b * b);
} // Correct but confusing. See below.
but not:

float norm(double a, double b, double c) // WRONG!
{
return(a * a + b * b + ¢ * c);

}

The fourth function does not correctly overload the first, since functions must be dis-
tinguished by their argument types and not by their return types. The third function
is correct, but confusing; the square root has been omitted and therefore what the
function actually does is different from the first two examples. It would be better to
give the third function a different name instead of using function overloading.

Remember that floating constants are of type double by default, so the first and
second definitions of the norm function would give the following (distinct) function
calls:

double norm2 = norm(3.0, 4.0); // norm2 is 5.0
double norm3 = norm(3.0f, 4.0f); // norm3 is 25.0

It is clearly possible to write very confusing code by overloading the same function
name with functions that perform completely different actions. This should certainly
be avoided. However, there are circumstances in which overloaded functions are very
useful. For instance we might want to have both float and double versions of the
mathematical functions, such as sine, cosine, square root etc. The float version would
be used where speed is more important than accuracy. We could then have function
declarations of the form:

float log(float x);
double log(double x);
float sin(float x);
double sin(double x);

Typically these functions are approximated by power series expansions and so the
float version would use fewer terms in the series. In fact, the C++ Standard Library
implements overloaded versions of the common mathematical functions. For each func-
tion there is a float, double and long double version, declared in <cmath>. Once
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again, don't forget that constants are double by default so, for instance, to invoke the
float version of log we need:

float x = log(4.0f);
rather than:

float x = log(4.0);

Exercise

Implement overloaded functions to calculate an approximation to:
=z
x e —
€= Z n!
n=0

One version should have an argument and return type of double and a
second version should use the float type. The number of terms used in
each function should be appropriate for the type. Test the functions either
against the library function, exp(), which is declared in <cmath>, or by
calculating ee™* — 1. Check that the test program really does invoke the
two different functions.

5.6.1 Ambiguity Resolution'’

The rules used by a C++ compiler to resolve which overloaded function is invoked
by a particular function call are quite complicated. The resolution is done entirely
by comparing the type of each argument in the function call with the corresponding
argument in the function declarations that have the same function name. Functions
with default arguments can be considered as a set of overloaded functions, so that:

double rectangle(double height = 1.0, double width = 10.0);
is equivalent to:

double rectangle(double, double);
double rectangle(double);
double rectangle(void);

The compiler constructs the intersection of the sets of functions that “best” match
each argument (that is the match is done on an argument-by-argument basis). In
order that the function overloading is resolved, this intersection must have one (and
only one) member. It is the interpretation of the adjective, “best”, which gives rise
to some complication. A good description of the rules is given in [10], but briefly, the
fewer promotions and conversions that are needed to achieve a match, the better. As
a very simple example, suppose we have the following function declarations:

void f(float x);
void f(double x);

Then the statement:
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£(2.01);

invokes the first, rather than the second function; there is an exact match for the first
function whereas the second requires a promotion from float to double. However,
the statement:

£(2);

is ambiguous since an int could be promoted to either float or double.

5.7 Function main()

We first encountered the function main() in Chapter 1, but now that we have intro-
duced the general features of functions it is worth making some further comments. As
far as the programmer is concerned, this function is where the program actually starts.
There are some restrictions on what we can do with main(); in particular main()
cannot be declared inline, cannot be overloaded and cannot call itself. Every C++
program must have one and only one function called main(). The body of main() is
entirely defined by the programmer, but an ANSI compliant C++ compiler must allow
a definition of the form:

int main()
{

// code
}

where the return value is used to indicate the termination status of the program.
There is a second form of main(), involving function arguments, and this is consid-
ered in Chapter 7.

5.8 Standard Library

Many numerical application programs make frequent use of mathematical functions,
such as sine, cosine, square root etc. These functions are not part of the language as
such, but are provided by any ANSI C++ implementation as part of a standard library.
The available functions extend far beyond the obvious mathematical ones and it is not
intended to describe the functions in any detail; entire books have been written on the
ANSI C++ Standard Library. Rather, a brief description of what is available is given,
in order to encourage you to look through the function manual for your own system
and to indicate the extent of the Library. Some of the functions will be introduced
during the course of this book.

It must be emphasized that in this subsection we only describe those parts of the
Library that have been acquired from the C library. The headers for these parts of the
Library are distinguished by having the letter “c” as the first part of their name. For
example, the standard mathematical functions are declared in <cmath>. Some parts of
the C++ Standard Library will only be relevant when we have learned more advanced
techniques (such as templates) so we will revisit the Standard Library in Chapter 17.

All library functions require the inclusion of a header file, which typically contains
function declarations and constant definitions. The header is normally included near
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the top of the file in which the function is used, as demonstrated by the following
program:

#include <cmath> // For sqrt()
#include <cstdlib> // For EXIT_SUCCESS
#include <iostream> // For cout

using namespace std;

int main()

{
for (int i = 1; i <= 20; ++i) {
cout << "square root of " << i << " is " <<
sqrt (double(i)) << "\n";
}
return(EXIT_SUCCESS) ;
}

In this example <cmath> is required for the sqrt() function and <cstdlib> is re-
quired for the definition of the EXIT_SUCCESS constant. This constant is used to tell
the operating system that the program has terminated normally. There is another con-
stant, EXIT_FAILURE, that can be used to indicate that an error has occurred. Rather
than returning 0 or 1, it is more meaningful to use named global constants (such as
EXIT_SUCCESS and EXIT_FAILURE). Using names rather than numbers also helps to
avoid the mistake of using the wrong constant.

As a further example, <cstdlib> also contains a declaration for the exit () func-
tion. Invoking this function terminates a program and returns control to the operating
system, after first doing any necessary tidying up (flushing output buffers etc.). The
exit () function takes an int argument that can be used to indicate how a program has
terminated. By convention, either EXIT_SUCCESS or EXIT_FAILURE (as appropriate) is
used for this argument.

We can use exit () to improve our factorial () function in Section 5.1.1, as shown
below.

int factorial(int n) // calculates nx(n-1)*...*1
{
int result=1;
if (@ > 0) {
do {
result *= n;
--n;
} while (n > 1);
}
else if (n < 0) {
cout << "Error in factorial function: " <<
"argument = " << n << "\n";
exit (EXIT_FAILURE);
}

return result;
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Now if we call the factorial function with a negative argument, the program termi-
nates cleanly, rather than continuing an invalid calculation.

The exit () function can also be used to improve our function to sum squares in
Section 5.4:

double sum(int n)

{
int result = 0;
if (n < 0) {
cout << "Error: sum(n) called with n = " << n << "\n";
exit (EXIT_FAILURE);
}
for (int i = 1; i <= n; ++i)
result += i * i;
return result;
}

This modified function terminates the program if we call sum() with a negative ar-
gument since there would not be much purpose in continuing with an invalid return
value.

The same header file is often required for different but related functions in the
Standard Library; for instance <cmath> is needed for the trigonometric, hyperbolic,
square root, logarithmic and many other mathematical functions. For this reason it
is convenient to group the functions by their header files. The more useful groups of
standard functions are briefly described below.

cctype These functions are used to determine the type of a single character. For
example, there are functions to determine whether a character is upper or lower
case, a digit, a letter etc. and to convert between upper and lower case.

cfloat This file contains definitions of constants that give the compiler-dependent lim-
its of the floating point types.

climits This file contains definitions of constants that give the compiler-dependent
limits of the integer types.

cmath Here are the common mathematical functions that are provided by the Stan-
dard Library, including trigonometric, hyperbolic, logarithmic and exponential
functions. There are also useful mathematical constants, such as 7, e and log, 2
(represented by M_PI, M_E and M_LN2).

cstddef The main use of this header file is for the definition of size_t, which is the
type returned by the sizeof operator.

cstdlib A few types, such as size_t (which is also defined in <cstddef>) are defined
in this file, together with declarations for many commonly used functions, such
as exit (), rand() (an integer random number generator), system() (to call a
system function) etc.

cstring The declarations for many useful functions that manipulate strings and mem-
ory are contained here. These functions can copy, concatenate, compare and
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determine the length of strings. They can also copy, compare and search areas
of memory. The strings in this part of the Library are taken over from the C
language strings, and are not to be confused with the C++ string template class,
described in Chapter 17.

ctime The functions associated with this header are all connected with time; for ex-
ample it is possible to get the current time.

All the above groups of functions are directly taken over from C in order to provide
compatibility. The more advanced aspects of C++ mean it is an excellent language for
writing library functions. Apart from the ANSI Standard Library functions described
in Chapter 17, there are many commercially available libraries.*

Exercise

What mathematical functions are declared in <cmath>? Write a program
that evaluates:
cosh?z —sinh® z — 1

for 1000 different values of . Explain any unexpected results.

5.9 Using Functions

Now that we have introduced functions in some detail, we can use them to write more
interesting programs.

5.9.1 A Benchmark

There have been a large number of attempts to find programs that can be used to
compare the performance of different computers. Such programs are commonly called
benchmarks. One of these programs, called the Savage benchmark (after its author),
tests the speed and accuracy of the common mathematical functions.®> A version of the
test is given below and you should try it on whatever systems you have access to.

// The Savage benchmark: tests the speed and accuracy
// of some common mathematical functions.

#include <iostream> // For cout

#include <cmath> // For tan(), atan(), exp(), log(), sqrt()
#include <ctime> // For clock(), CLOCKS_PER_SEC

#include <cstdlib> // For EXIT_SUCCESS

using namespace std;

int main()

{
int loops;
for (5;) {

4A description of useful packages for scientists and engineers is contained in [9].
5See: B. Savage, Dr. Dobb’s Journal, 120, September 1983.
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cout << "Input a positive integer: ";
cin >> loops;
if (loops > 0)
break;
}
double test = 1.0;
clock_t start_time = clock();
for (int i = 1; i < loops; ++i)
test = tan(atan(exp(log(sqrt(test * test))))) + 1.0;
clock_t stop_time = clock();

cout << "test = " << test << "\n";
cout << loops << " - test = " << loops - test << "\n'";
cout << "Time taken = " <<

static_cast<double>(stop_time - start_time) /
CLOCKS_PER_SEC << " secs.\n";
return (EXIT_SUCCESS) ;
}

The program starts with a simple comment about what it actually does. As far
as possible it is better if code can be made self-documenting by using well-chosen
identifiers since too many comments are distracting. Of course, a balance should be kept
between too few and too many comments, since either extreme can lead to unreadable
code. Typical circumstances in which comments are useful are:

e giving references to books, algorithms and maintenance manuals:
// See Press et al., Numerical Recipes in C, page 255.

e explaining the purpose of a function where the function name is insufficient:
// Finds roots of a polynomial using Newton-Raphson.

e drawing attention to any compiler-dependent or particularly tricky segment of
code:

// Assumes the int type is at least 32 bits.

The required header files follow the comment. These are all files supplied by the
system so the names appear inside < > pairs. We have noted which of the constants
and functions, declared in these files, are used in this program. It is not usual to include
such comments, but you may find them helpful until you are familiar with the contents
of the Standard Library. Also, although the only requirement is that the include
directive must appear before the associated functions or constants are first used, it is
normal practice to collect all such directives at the start of the file.

In this program there are no user-declared functions; if there were, then the ap-
propriate function definitions would follow the include directives.® Inside the body

61f all functions are declared first, then no restriction is placed on the order in which functions are
defined.
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of main() we define variables as they are first used. The type clock_t is defined in
<ctime> and its use avoids needing to know the type returned by the clock() function
for a particular compiler. Likewise, use of the CLOCKS_PER_SEC constant, to convert
the result of clock() to seconds, hides compiler-dependent details. It is important to
realize that on a time-sharing operating system, such as UNIX or Linux, the elapsed
time may not be the same as the time measured by the number of CPU ticks. Conse-
quently, for benchmarking purposes it is important to use the clock() function rather
than time (), since the latter returns the calendar time.

The program tests for speed and accuracy by making repeated calls to the tangent,
inverse tangent, exponential, natural logarithm and square root functions. In fact, it
is easy to show that the final result would be 2500 for infinite precision arithmetic.
Notice how the function calls can be nested quite deeply.

Our final statement returns a normal termination flag. This may not be necessary
on some systems, but others may actually care whether a program fails or not! Again,
the EXIT_SUCCESS constant avoids having to know the numerical value of the flag.

5.9.2 Root Finding by Bisection

We now have sufficient experience to make it worthwhile examining a more complicated
example of using functions. A frequent requirement in numerical analysis is to find the
roots of a function of a single real variable; specifically to solve:

flx) =0

for x in the interval:
) <r <1

If f(21) and f(x2) have opposite signs, then at least one zero or singularity must lie
between these limits, as shown in Figure 5.2. The method of bisection consists of finding
the value of f(x) at the midpoint of the interval. The segment of the interval for which
f(x) changes sign again brackets a zero (or singularity) and this interval can again be
bisected. The procedure continues until the zero is known to be within a sufficiently
small interval. What constitutes a sufficiently small interval can be quite subtle, but
in the example given below this stopping criterion is kept deliberately simple. If you
do need a more detailed discussion of when to stop the procedure, then see [14].

It is necessary to distinguish a zero from a singularity. This can be done by evalu-
ating the function at the midpoint of the final interval. The method of bisection is not
the fastest technique for finding a root, but it does have the advantage of simplicity.

Recursion is clearly a natural way to implement the bisection algorithm and this is
done in the program listed below.

#include <iostream>

#include <cmath> // For exp(), pow(), cos()
#include <cstdlib> // For exit()

using namespace std;

// Function declarations:
double f(double x);
double root(double x1, double x2, double f1, double f2);
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Figure 5.2: Root finding using bisection.

double find_root(double x1, double x2);

double f(double x) // A solution of f(x) = 0 is required.
{
return(exp(x) + pow(2.0, -x) + 2.0 * cos(x) - 6.0);

double root(double x1, double x2, double f1, double £2)
// Finds a root of f(x) = 0 using bisection.
// Assumes that x2 >= x1 and f1 * f2 < 0.0
{
const int max_depth = 50;
const double x_limit = le-5;
static int depth;
double estimated_root;
double x_mid = 0.5 * (x1 + x2);
if (x2 - x1 <= x_limit) {
cout << "Root found at recursion depth = " << depth <<
"\n";
estimated_root = x_mid;
1
else if (++depth > max_depth) {
cout << "WARNING: maximum limit of " << max_depth <<
" bisections reached\n";
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estimated_root = x_mid;

¥
else {
double f_mid = f(x_mid);
if (f_mid == 0.0) {
// Zero at x_mid.
estimated_root = x_mid;
+
else if (f(x1) * f_mid < 0.0) {
// Zero in first segment.
estimated_root = root(xl, x_mid, f1, f_mid);
}
else {
// Zero in second segment.
estimated_root = root(x_mid, x2, f_mid, £2);
}
+
return estimated_root;
+
double find_root(double x1, double x2)
{
double f1 = f(x1);
double f2 = f(x2);
if (f1 * £2 > 0.0) {
cout << "Error in find_root(): " <<
"endpoints have same sign\n";
exit (EXIT_FAILURE);
}
if (x2 - x1 > 0.0)
return root(xl, x2, f1, £f2);
else
return root(x2, x1, f2, f1);
}
int main()
{
double x = find_root(1.0, 2.0);
cout << "Root is " << x << "\nf(x) at root = " << f(x) << "\n";
return (EXIT_SUCCESS);
}

The overhead incurred by using recursion for this algorithm is probably small since for
most functions, f (x), the program will be dominated by the evaluations of f (x) itself.

In this example, we use bisection to search for a zero of f(z), where

flx)=€e"+27"+2cosz—6
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in the range
1<zr<2

The function, f(z), is implemented by the first function in our program. Three library
functions are used, which are all declared in the header file <cmath>. The exp()
and cos() functions are self-explanatory; pow(x,y) returns z¥. (Unlike some other
languages, C++ has no built-in operator that raises a number to a power.)

The analysis of the remainder of this program starts at the function main(). As
can be seen, main() is kept very simple and calls the function find_root (), which
returns the calculated value of the root. This value is assigned to x.

The function, find_root(), takes as its arguments the interval limits and the max-
imum recursion depth. It would be useful if we could specify f (x) as a fourth argument
to find_root (), in order to facilitate root finding for other functions. However, we
must wait until Chapter 7 to learn how to do this.

Examining the body of find_root (), we see that the current depth is set to zero
and the maximum recursion depth is set to the user-defined value. If find_root were
called with only two arguments, then the maximum recursion depth would be set to a
default value (in this case 100). The function, find_root () also checks that f (x) has
opposite signs at the two endpoints.

The function root () has the declaration:

double root(double x1, double x2, double f1, double f2);

where x1, x2 are the endpoints of the interval and £1, £2 are the corresponding values
of £ (x). The implementation of root () assumes that x2 is not less than x1 and that f1
and £2 have opposite signs. Both of these assumptions are enforced by find_root ().
The function, root (), first finds x_mid, the midpoint of the interval. If (x2 - x1) is
less than the required accuracy, or the maximum recursion depth has been reached,
then the value x_mid is returned. Next, f_mid, the value of £ (x) at the midpoint, is
evaluated. If f_mid is zero, a root has been found and x_mid is returned. Finally, if
none of the previous cases has occurred, then the value of root () is returned for the
segment of the interval that shows a sign change for £ (x). It is this call of the root ()
function that constitutes recursion.

It is worth pointing out that this program can only find the root of a single function
since there is no way of resetting the value of depth. This restriction is removed in
Section 7.5.

5.10 Summary

e A function definition implements the function:

double f(int n)
{

// Code implementing function.

}

e Functions are executed (called or invoked) by statements such as:

x = f(m);
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or
f(m);

If a function is declared to return a value it must do so:

double f(int n)
{

// Code.

return; // WRONG!
}

The order of evaluation of expressions in argument lists is not defined:
x = f(++i, (1 + 5)); // Compiler-dependent.

A function declaration defines the function interface:

double f(int n);

A function cannot be declared inside another function:

int main()

{
int f(int n); // WRONG!
// Code.

}

Functions can have default arguments. These are supplied right to left, as in:
double rectangle(double height, double width = 10.0);

which can be called by either:

z = rectangle(x);

or

z = rectangle(x, y);
e Simple functions may be worth declaring inline:

inline int theta(int i)

{
return((i > 0) 7 1 : 0);
}

e Function names can be overloaded:

float sqrt(float x);
double sqrt(double x);

e Consult the Standard Library; it may have the function you are about to write!

x = cosh(y); // Returns hyperbolic cosine of y.
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5.11 Exercises

1. Using a suitable function from the Standard Library supplied with your system,
write a program that measures how long it takes to evaluate the factorial function.
Use various function arguments and compare the times for both the recursive and
iterative versions of the function. It is worth using at least four-byte integers for
this example, since the factorial function grows rapidly with the magnitude of its
argument. (On a very fast computer you may find it difficult to get a non-zero
elapsed time with a sensible value for the factorial function argument. In this
case you should time the same calculation carried out many times.)

2. Repeat the previous exercise for both recursive and iterative functions that sum
the first n positive integers.

3. Write a function that converts degrees Celsius to degrees Fahrenheit and a second
function that converts degrees Fahrenheit to Celsius. Both functions should take
a float argument and return a float. They should also trap impossible values
of the arguments.

Check your functions by listing some temperatures using both scales. Also try
one function with the other as its argument; do you get the original temperature?
4. Use the power series expansion:

R R L

for |z| < oo to implement a sine function with the declaration:
float sin(float x);

(You should truncate the series and only consider arguments satisfying |z| < 7/2.)

Compare the accuracy and time taken to evaluate sin(x) with the Standard
Library function in <cmath> for |z| < 7/2. Make sure that you really do invoke
the two overloaded sin() functions. (Beware of implicit conversions!)

Try to make your version of sin(x) as accurate and efficient as possible. For
instance:

(a) Don’t evaluate unnecessary terms in the power series.

(b) Instead of evaluating the factorials for every function call, use pre-calculated
values for the inverses. In fact, for a truncated power series, more accurate
values of the coefficients are given in standard mathematical tables such as
[11].

(c¢) Reduce the number of multiplications by using nested parentheses (Horner’s
method) as in:

sinz = ((((agz? + ag)z? + aq)r* + a2)z® + 1)z

5. Rewrite our root finding by bisection program (Section 5.9.2) so that an itera-
tive, rather than recursive technique, is used. Compare the time taken for both
methods.
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. The Monte Carlo technique is often used to evaluate multi-dimensional integrals.

As an illustrative example, we can generate random points in the region of the
-y plane given by 0 <2 <1 and 0 <y < 1. If we count those points satisfying
22 4+ y? < 1 as “hits”, then the hits divided by the total number of points should
be an approximation to the area of a quadrant of a disc with unit radius. Since the
total area of such a disc is 7, this gives us a (rather inefficient) way of calculating
.

The random number generator, rand (), declared in <cstdlib>, returns random
integers in the range 0 to RAND_MAX, which is also given in <cstdlib>. Use
this library function to write a Monte Carlo program that calculates = and lists
deviations from the tabulated value as the number of points increases. (For
example, give the deviation for every 1000 points.) Try to explain any pattern you
find in the deviations. (The constant, M_PI, is conveniently defined in <cmath>.)

7

Write a function that tests whether a positive integer is prime.” The function

should have the declaration:
bool test_prime(unsigned n)

where n is the integer to be tested and the function returns true if n is prime
and false if n is not prime.

Write a second function, with the declaration:
void list_primes(unsigned m)

that uses test_prime() to list all prime numbers up to m. Write a program,
using the test_prime () and list_prime () functions, that prompts for a positive
integer and then lists all primes less than or equal to this integer. Check your
results against a table of prime numbers.

Calculation shows that f(i), given by:
(i) =i +i+41

generates prime numbers for i = 0,1, 2, 3,4, 5,6. Write a simple function that im-
plements f(i) and use test_prime () from the previous exercise to check whether
or not primes are generated for larger values of 7.

The Jy(z) Bessel function is given to at least seven decimal places by:8
Jo(x) = 1—ai(x/3)*+ ax(x/3)* + as(x/3)® + as(z/3)®
+as(z/3)"" + ag(x/3)"
where:

a; = 2.2499997 a4 = 0.0444479
ap = 1.2656208 a5 = 0.0039444
a3z = 0.3163866 ag = 0.0002100

"Straightforward division by successive integers is sufficient for this exercise.
8See [11].
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and:
lz| <3

Write a function that returns Jo(x) and show that Jy(x) changes sign for 0 <
T <3.

Modify the bisection program given in Section 5.9.2 to find a solution of:
Jo (.”L‘) =0

within the stated range of . You should check your result by directly evaluating
the function.

Legendre polynomials, P,(x), can be defined by:

L (—1)k(2n — 2k)lan -2k
- 27kl (n — 2k)Y(n — k)!

Pn(x) =

where n is an integer, with:

n>0
-1<z<1
and: o
o ={ 02 sz it el

Write a function, taking n and x as arguments, that returns the value of P, (x).

Legendre polynomials satisfy many identities, including the so-called pure recur-
siton relation:

(2n+ 1)zPy(z) = (n+ 1)Ppi1(z) + nPr_1(x)

forn=1,2,3,...

Use this relation to write another function that tests your Legendre polynomial
function. (Notice that if we were given Py(z) and P;(z), then this relation could
be used to recursively generate P,(z).) You may come across two problems
in this example; the factorial function given earlier in this chapter suffers from
integer overflow for values of n which are not very large and, secondly, you may
encounter rather large rounding errors for x close to zero. You could solve the
first problem by converting the factorial function to return a double and the
second by ignoring it, once you have convinced yourself that the cause really is
rounding error!

The logistic map, defined by
Tny1 = cxn(l — )

where
0<z, <1
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and
0<e<4

can be used to model a simple biological population at successive time intervals.
Zn is the population, normalized so that the maximum sustainable population
is one. The motivation for the equation is that as x, is increased from zero,
the next generation will be larger since there are more parents. However, as the
normalized population approaches one, survival is less likely and the size of the
next generation actually decreases. The variable, ¢, is the control parameter for
both of these effects.

Starting from some initial population, the logistic map can be used to generate
successive populations. Write a function that implements the logistic map. The
function should have ¢ and x as its arguments and return the value of x after a
large number of generations, such as 150.

Write a function that has ¢ as its argument and uses the first function to list the
final values of x for a selection of initial values of x. Using these two functions,
write a program that continues to prompt for a value of ¢ and then lists a number
of final populations.

For ¢ between 1 and 3 you should find that the population tends to a single
value. In fact, if you plot these fized points against the values of ¢ you should get
a smooth curve. (It would be convenient if a C++ program could plot the curve,
but this is beyond the techniques that we have covered so far.)

Study of the logistic map has given rise to an enormous number of research
papers. If you investigate successive iterations for the two regions

3 < ¢ < 3.449499

and
3.449499 < ¢ < 3.544090

you should get a glimpse of the complex structure that arises from this simple
9
map.

9There is a large literature on the logistic map. A good start is [13].



Chapter 6

Pointers and Arrays

It is difficult to imagine performing many scientific calculations without the ability to
manipulate arrays of one or more dimensions. Arrays are needed for vectors, matrices
and the convenient storage of related data. In this chapter we introduce a simple
picture of the way memory is organized, together with powerful methods for using
contiguous areas of memory.

6.1 Memory, Addressing and Pointers

The memory of a computer can be regarded as a collection of labelled storage locations,
as shown in Figure 6.1. In our discussions we assume that we can access these memory
locations in any order, and we visualize memory as a linear sequence of storage loca-
tions, one byte in size, which are labelled 1, 2, 3 ... etc. A particular label is known
as the address of the corresponding memory element. The two operations of interest
are to read what is stored at a particular address and to write data to the memory
labelled by an address.

;
4
3 100
2 148
1 124
Address Values in memory

Figure 6.1: Labelled storage locations.
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6.1.1 Address-of Operator

In C++ the address of any variable can always be found by preceding the variable with
the address-of operator, denoted by & The address-of operator has the same prece-
dence and right to left associativity as other unary operators (apart from the postfix
increment and decrement operators). Several new operators are defined during the
course of this chapter, and their precedence and associativity are given in Appendix B.
In the present context, the & operator simply means “return the address of the vari-
able to the right”. The following program illustrates the difference between the values
stored by variables of various types and their corresponding addresses:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
int i = 1;
double x = 3.0;
float z = 4.0;
cout << "Address of i is " << &i <K<
" Value of i is " << i << "\n";
cout << "Address of x is " << &x <<
" Value of x is " << x << "\n";
cout << "Address of z is " << &z <<
" Value of z is " << z << "\n";
return(EXIT_SUCCESS) ;
}

When you run this program you will probably find that the addresses are given in
hexadecimal format, but this depends on the compiler. You may also notice that the
addresses differ by the size of the various types. However, whether or not this occurs
depends on how the compiler allocates storage.

There are a few things that we cannot do with the address-of operator. It is illegal
to take the address of a constant, as in:

&10; // WRONG: cannot take address of a constant.
&3.142; // WRONG: cannot take address of a constant.

It is also illegal to take the address of an expression, as in:

float x = 302.8;
&(x + 73.6); // WRONG: cannot take the address of an expression.

6.1.2 Dereferencing or Indirection Operator

Given an address, there is an operator, known as the dereferencing operator, denoted
by *, which returns the value stored at that particular address. The phrase, indirection
operator, is often used in place of dereferencing operator. In some sense the address-of
and indirection operators are inverses of each other; if j is a variable of type int, then
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&j is the address in memory where that variable is stored. The value stored at the
memory location, &j, is given by, *&j; in other words, j:

int i, j = 1;
i= *x&j; // This is an over-complicated way of writing:
i=7j;

Notice that the address-of and indirection operators are only inverses in a limited sense;
for example, &*j would be meaningless in this context since j is not an address and so
cannot be dereferenced.

The indirection operator, *, should not be confused with the multiplication oper-
ator, *. Whereas indirection is a unary operator, multiplication is a binary operator;
their meanings are completely unrelated. Both the compiler and human reader can
unambiguously distinguish these operators by their context.

6.1.3 Pointers

So far we have come across many different types of variable. In general, the value of a
particular variable in one of our programs is held at a location in memory with some
specific address. It is the starting address that is significant; the actual number of bytes
used varies with the variable type and the C++ compiler. For instance a char may be
stored in one byte and a double in eight bytes. It is useful to have variables that can
hold the address of a storage location. For instance we may have many large contiguous
areas of memory, each one storing a large amount of data concerning observations on
galaxies. If we know the addresses of these areas of memory, we can efficiently sort
the data by manipulating addresses rather than copying the data itself. Variables
for storing memory addresses are known as pointers. There is a special pointer type
corresponding to each variable type. The different pointer types are needed because it
is usually necessary to know how much memory is being pointed to for each type of
data and how the bits stored in memory are to be interpreted.
Examples of pointer declarations are given below.

int *pil; // pl is a pointer to the type int.
double *p2; // p2 is a pointer to the type double.
float *p3; // p3 is a pointer to the type float.

The notation for pointer declarations may seem peculiar, but it can be understood by
recalling that * is the dereferencing operator. This operator returns the value stored
at the address held by its (right) operand. Since the dereferencing operator acting on
pl gives an int type, pl must have the correct type for storing the address of an int;
that is p1 is a pointer to an int. Remember that white space is ignored so the above
could be rewritten as:

int*pl;
or
int * pi;

or
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int* pi;

but all of these variations are unusual. Similar remarks apply to the declarations for
p2 and p3.
In order to declare a number of integer pointers we might be tempted to use:

int *pl, p2, p3; // WRONG: p2, p3 are not pointers.

However, the indirection operator, like all unary operators binds to the right, not the
left. In the above case the indirection operator binds only to p1, leaving p2 and p3
defined as having type int. To correctly implement our intention we need to use the
following declaration:

int *pl, *p2, *p3;

If we do indeed wish to use a single statement to simultaneously declare both
identifiers of a type and pointers to that type, then we can do so and the order of the
declarations is not significant. For example, in the following declaration x, y are both
of type int, and pt_x and pt_y are both pointers to the type int:

int x, y, *pt_x, *pt_y; // pt_x and pt_y are pointers.

However, it is best to avoid mixing declarations like this, since it is so easy to make
mistakes.

Dereferenced pointers can be used anywhere that an identifier of the corresponding
type would be valid. The following program demonstrates how dereferenced pointers
can be used to make an assignment to an object and to perform operations (in this
case addition) on objects:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
int i, j, k;
int *pt_i, *pt_j;
pt_i = &i; // Assigns address of i to pt_i.
pt_j = &j; // Assigns address of j to pt_j.
i=1;
Jj=2;
k = *pt_i + *pt_j; // 3 is assigned to k.
*pt_i = 10; // 10 is assigned to i.
cout << "k = " << k << "\ni = " << i << "\n";
return (EXIT_SUCCESS) ;
}

Notice that a dereferenced pointer can appear on the left of the assignment operator;
that is assignments can be made to the object that the pointer points to. As stated
in Appendix B, the indirection operator has a higher precedence than either the as-
signment or addition operator. Therefore the assignment to k in the above program is
equivalent to:



6.1. MEMORY, ADDRESSING AND POINTERS

k = (xpt_i) + (*pt_j);

In this example pt_i and pt_j are assigned the addresses of the memory where i and
j are stored. The values stored in these memory locations can then be accessed by
using 1 and j or *pt_i and *pt_j, as shown in Figure 6.2. (The addresses are decimal
and do not refer to any particular computer.) Again, recall that white space is ignored

so that:

pt_i =

&i;

could equivalently be written as:

pt_i =

& i;

although this style is quite unusual.

Exercise

Rewrite the quadratic equation program, given in Section 1.2, so that as
many operations as possible are performed by using dereferenced pointers.
Since there is considerable scope for mistakes, you may find it worthwhile
to work in stages, modifying a small part of the original program at a time.
(Note that this is purely an exercise and is certainly not advocated as a

style of programming.)

A pointer can point to a const type, but the pointer definition must also include

the const specifier:

const int w = 100;
const int *pt_c;

int *pt_i;

pt_c = &w; // 0.K.

++pt_c; // 0.K.

pt_i = &w; // WRONG: a non-const pointer cannot point to const.

The fact that it is illegal to assign the address of a const type to an unqualified pointer
prevents us from using a dereferenced pointer to attempt to modify a const object.

802 | | 802 :
800 E i 800 "phd

402 | | 402 : |
400 Pt 400 bt

pti = &i *pti = 10

Figure 6.2: The address-of and dereferencing operators.
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Notice that, although we cannot take the address of a constant (such as 3.142), we can
take the address of a const type. Also, it is essential to distinguish between a pointer
to a const type (described above) and a const pointer, an example of which is given
in the following code fragment:

double x = 127;

double *const pt = &x;

+4+ipt ; // 0.K: x is not constant.
++pt; // WRONG: pt is constant.

Although a const pointer is initialized to an address that cannot be changed, the data
stored in the memory corresponding to this address can be changed. Notice that a
const pointer must be initialized, since it cannot be assigned to.

A pointer is simply a variable that is used to hold the address of another variable, so
it is also possible to store the address of a pointer. A variable used to store the address
of a pointer is known as a pointer to a pointer. The following program illustrates using
a pointer to a pointer, although it should be emphasized that the program is given for
demonstration purposes only:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
double x; // Memory defined to store a double.
double *pt; // Memory defined to store the
// address of a double.
double **pt_pt; // Memory defined to store the address
// of a pointer to a double.
pt = &x;
pt_pt = &pt;
x = 11.11;
// Try dereferencing pt_pt to access x:
cout << "x = " << *x*pt_pt << "\n";
return (EXIT_SUCCESS) ;
}

Although the value stored by pt can be accessed by dereferencing pt_pt, to access x
we need to dereference pt_pt twice. The relation between the three storage locations
is shown in Figure 6.3. In numerical applications, pointers to pointers usually occur
when we have multi-dimensional arrays. The chain of pointing can continue indefinitely
(pointer to pointer to pointer to ...). This is one effective way of implementing linked
lists, although it is rare to see explicit multiple dereferencing of the form ***pt.

Exercise

Try out the above code on your system. Modify it to multiply two numbers
using pointers to pointers and check that you get the correct result.



6.1. MEMORY, ADDRESSING AND POINTERS 125
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Figure 6.3: Pointer to a pointer.

6.1.4 Pointers Do Not Declare Memory

We make considerable use of pointers throughout this book and you will come to
appreciate that pointers are an extremely powerful tool. However, like most powerful
tools, pointers can also be abused. One problem is that you may make a programming
error so that an incorrect address is dereferenced. For instance, suppose we made an
error in the example on page 122, resulting in the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
int i, j, k;
int *pt_i, *pt_j;
// Forget to assign &i to pt_i here.
pt_j = &j;
i=1;
j=2
k = *pt_i + *pt_j; // WRONG: pt_i is arbitrary.
*pt_i = 10; // WRONG: pt_i is arbitrary.
cout << "k should be 3, it is: " << k << "\n";
cout << "spt_i should be 10, it is: " << *pt_i << "\n";
return(EXIT_SUCCESS) ;
}

Here, we have not assigned the address of i to pt_i and hence pt_i stores some
arbitrary address, not necessarily zero. When we use *pt_i in the statement:

k = *xpt_i + *pt_j;

an integer is read from whatever area of memory pt_i happens to point to. The
memory may not be storing an int; it could be a double or, on some systems, even
part of an executable program or part of the operating system. Nevertheless the bit
pattern will be interpreted and returned by *pt_i as an integer. A mistake of this kind
may well be fatal to your program, but is no worse than many typical programming
errors in C++ or other languages.

The real disaster is the final statement:

*pt_i = 10;

Since we don’t know where pt_i points, some arbitrary area of memory gets assigned
the value 10. This may mean that your program fails at some apparently unrelated
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statement and the cause of the error may be very difficult to find. You may even
attempt to write to an area of memory which doesn’t exist. On some computers you
may actually write over the operating system, causing the entire system to “crash”.!

A related and quite common error is to forget to allocate any memory for the pointer
to point to. For instance, consider the two statements:

int *pt_k;
*pt_k = 10; // WRONG: pt_k is arbitrary.

In this example pt_k is again the address of some arbitrary area of memory, to which
we attempt to assign the value 10. Here the mistake is readily apparent, but analogous
mistakes are often made in complicated programs; typically the indirection takes place
in a function that may be several nested function calls removed from where the memory
should have been defined.

Exercise

Try running the above code, which manipulates i, j and k, on your system.
You should output the values of k and *pt_i so that the results can be
checked. If, by good fortune, no disaster occurs, try incrementing the value
of pt_i before it is used; you should be able to produce something like a
“memory error” message. Now modify the code so that it runs and gives
the correct results.

6.1.5 Null Pointer

There is a special constant pointer, known as the null pointer, that is guaranteed not
to be a valid memory address. If we assign zero to a pointer, then the zero is converted
to the null pointer. This pointer may not have the same bit pattern as 0, but this isn’t
of any significance.? Since the null pointer cannot be a valid address, we have a very
useful way of signalling certain error conditions involving memory locations.

Some programmers make a habit of initializing all pointers to zero (if the pointers
can’t be initialized by anything else) and assigning zero to any pointer when its current
value is no longer of any use. For example, in the following program we have forgotten
to assign the address of i to pt_i. However, since we have initialized all pointers to
zero, the attempt to calculate the value of k by dereferencing pt_i results in a run-time
error. So instead of the program giving an invalid result for k, the program terminates
with an appropriate error message, such as “Segmentation fault”.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

1On most modern computers, using a modern operating system, attempts by a program to access
memory not allocated to it are likely to be trapped by the operating system. The program will termi-
nate with an error message (such as “segmentation error”). Nevertheless, it cannot be overemphasized
that when using pointers you must make certain you get them right!

2 Any integer, floating point or pointer type can be assigned 0. An appropriate zero will be assigned,
which typically, but not necessarily, has all bits set zero.
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{
int i, j, k;
int *pt_i = 0, *pt_j = 0;
// Forget to assign &i to pt_i here.
pt_j = &j;
i=1;
j=2
k = xpt_i + *pt_j;
cout << "k should be 3, it is: " << k << "\n";
return(EXIT_SUCCESS) ;
b

In C and pre-ANSI versions of C++ it was popular to define the null pointer by
using NULL, given in <stddef.h>. This is best avoided when writing new code or else
you may run into problems with the better type checking of modern C++. Simply use
the technique described here and set a pointer to zero to get the null pointer.

6.2 One-dimensional Arrays

One-dimensional arrays use a single integral parameter to access contiguous areas of
memory. A square bracket pair is used to declare a one-dimensional array. Some
examples of declarations of one-dimensional arrays are given below.

int i[10]; // Defines an array of 10 ints.
double x[100]; // Defines an array of 100 doubles.
char c[80]; // Defines an array of 80 chars.

In this code fragment, ten contiguous memory locations, each large enough to hold
one int, are allocated for the array named i. The individual values that are stored in
the memory are known as elements. The array named i has 10 elements, x has 100
elements and ¢ has 80 elements. The number of elements in an array is known as the
size of the array. The array size can be specified by a constant expression; that is an
expression that evaluates to an integral constant at compile-time, as in:

const int MAX_DATA = 100;
double datal[3 * MAX_DATA];

but not:

int MAX_DATA = 100;
double data[3 * MAX_DATA]; // WRONG!

The array elements can be accessed (that is assigned to and read from) by specifying
an index (also known as a subscript). The same square bracket notation (the sub-
scripting operator) is used, but the context is slightly different. The following program
demonstrates assigning a value to an element and accessing the value assigned:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;
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int main()

{
int i[10]; // Defines an array of 10 ints.
int j;
i[6] = 24; // Assigns 24 to the element with index 6.
j =1il6]; // Assigns i[6] (that is 24) to j.
cout << "j = " << j << "\n";
return(EXIT_SUCCESS) ;
}

The array index must be of integral type (apart from a rather bizarre exception
demonstrated in Section 6.2.1). For example, the following code fragment is not correct
because x in y[x] has type double:

double x, y[20];

x = 10;
y[x] = 42.0; // WRONG: x is not of integral type.

In contrast to some languages, such as FORTRAN, the indexing starts from zero,
so that the array defined by i[10] has elements i[0], i[1], i[2], ..., i[9]. A very
common mistake is assigning to an element with an index equal to the size of the
array. For instance, in the following code fragment, we declare an array of size ten
and then attempt to assign 24 to an area of memory just beyond that used for storing
the array. In fact the memory accessed by i[10] may very well be assigned to store
another variable (possibly of a different type). Since there is no array bounds checking
in C++, the results of the assignment are unpredictable.

int i[10];
i[10] = 24; // WRONG: i[10] is not in the array.

This type of error often occurs in a for statement that attempts to use indices going
from one up to the size of the array, as demonstrated in the following code fragment:

double x[5];
for (int i = 0; i <= 5; ++i) // WRONG: x[5] is not in the array.
x[i] = double(i);

The result of such mistakes is exactly the same as assigning to a dereferenced pointer
that points to an arbitrary address. The results are likely to be unpredictable and
erratic, with the cause difficult to trace.

One-dimensional arrays have many obvious uses in engineering and science. For
instance:

double pressure[1000];

could be used to store pressure measurements at 1000 different time intervals and the
array defined by:

double velocity[3];
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could be used to hold the components of a 3-dimensional velocity vector. However, you
should realize that the C++ definition of an array is simply a sequence of contiguous
memory locations; there is no concept of adding or multiplying arrays, unlike the
vectors of mathematics. As we will see later, this is not much of a limitation since
C++ allows us to define our own types. This means that it is possible to impose more
structure on the idea of an array and to create types closer to what we want in our own
applications. We return to this theme in Chapter 8, but for the present, if an array
represents a vector, then vector operations must be performed element by element.
An example demonstrating vector addition, followed by calculating a scalar product is
given in the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cmath> // For sqrt()

using namespace std;

int main()

{
double velocity_1[3], velocity_2[3], total_velocity[3];
// Assign values:
for (int i = 0; i < 3; ++1i) {
velocity_1[i] = i + 1.0;
velocity_2[i] = 2.0 * i + 2.0;
}
// Vector addition:
for (int i = 0; i < 3; ++1i)
total_velocity[i] = velocity_1[i] + velocity_2[i];
// Calculate speed:
double temp = 0.0;
for (int i = 0; i < 3; ++i)
temp += total_velocity[i] * total_velocityl[i];
double velocity_norm = sqrt(temp);
cout << "The total speed is: " << velocity_norm << "\n";
return (EXIT_SUCCESS) ;
}
Exercise

Run the above code on your system. Check the value of velocity_norm
for various assignments to the arrays, velocity_1[] and velocity_2[].

(Note that in order to emphasize that we are dealing with an array, we
place a pair of empty square brackets after an array name appearing in the
text, as in velocity_1[].)

6.2.1 Pointers and One-dimensional Arrays

The concept of an array in C++ is very primitive and directly related to pointers. If
we define an array by:
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int a[20];
then a[i] means:
*(&a[0] + 1)

and nothing more. Let’s explain this in more detail. The expression &a[0] is the base
address of the array, so (&a[0] + i) is the address of the element i locations up from
the base address. However, the element i locations up from the base element is simply
a[i]. Therefore, (&a[0] + i) is the address of a[i]. Applying the dereferencing
operator, we get that *(&a[0] + i) is equivalent to a[i].

In C++ it is possible to perform arithmetic on pointers. The arithmetic that can
be done is often very useful even though it is restricted to the following operations:

1. Addition of a pointer and an integral type or subtraction of a pointer
and an integral type

This is demonstrated in the following code fragment:

double *pt;

double al10];

pt = &al[0]; // pt points to element O.
++pt; // pt points to element 1.
pt += 4; // pt points to element 5.
pt = pt - 2; // pt points to element 3.
Exercise

Use the standard subscripting notation to assign the values 1, 2, 3 ...
to the elements of a[] in the above code. By adding integers to the
pointer, pt, list these elements. Also list the elements in reverse order
by subtracting integers from pt.

Notice that the above expressions don’t involve the number of bytes used to
represent a double; pt is declared to be a pointer to double and the compiler
does the necessary calculations to ensure that when using pointer arithmetic,
appropriate allowance is made for the storage requirements of the different types.
Essentially, if pt is a pointer to an element of an array, then pt+1 is a pointer to
the next element in the array.

All of our operations on pointers are only valid provided we stay within the
memory allocated to the array. In the following code fragment, we attempt to
point to memory outside of that allocated to the array:

double *pt;

double a[10];

pt = &al[0];

pt += 100; // WRONG: attempts to point outside of the array.

Pointing outside of the array is undefined, even if we don’t attempt to access the
memory location. One obvious way in which such operations may fail is if a small
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number of bytes are used to store pointers; going beyond the end of an array may
cause the value of the pointer to wrap round.

There is one important case when it ¢s permissible to point to memory outside of
that allocated to an array. It is permissible to point the element one step beyond
the high end of the array. However, it is still incorrect to dereference such a
pointer, as demonstrated by the following code fragment:

double *pt;

double a[10];

pt = &al[0];

pt += 10; // 0.K.: points to element one step beyond a[9].
*pt = 3.14; // WRONG: cannot dereference this address.

The memory outside of an array may well be allocated for some specific purpose
and the result would be the usual symptoms of a pointer error.

2. Subtraction of two pointers of the same type

The type of the result of a subtraction of pointers is dependent on the C-++
compiler, but is defined as ptrdiff_t in the header file <cstddef>. The result is
a signed integer representing the number of elements separating the two pointers,
as illustrated by the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstddef> // For ptrdiff_t
using namespace std;

int main()

{
double *pt_1, *pt_2;
double a[10];
ptrdiff_t diff;

&al1l;

pt_2 = &a[4];

diff = pt_2 - pt_1; // Assigns 3 to diff.
cout << "Difference is " << diff << "\n";

diff = pt_1 - pt_2; // Assigns -3 to diff.
cout << "Difference is " << diff << "\n";

pt_1

return (EXIT_SUCCESS) ;
}

The result of subtracting pointers is undefined if the pointers do not point to
elements within the same array. It is also undefined if the result does not point
to an element of the array, except that it is again permissible to point to the
element one step beyond the high end of the array. These features are illustrated
in the following program:
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#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstddef> // For ptrdiff_t
using namespace std;

int main()

{
double *pt_1, *pt_2;
double a[10], b[20];
ptrdiff_t diff;

pt_1 = &a[0] + 10;

pt_2 = &a[0] + 9;

diff = pt_1 - pt_2; // Correctly assigns 1.
cout << "Difference is " << diff << "\n";

pt_1 = &b[19];

diff = pt_1 - pt_2; // WRONG: undefined.
cout << "Difference is " << diff << "\n";

return(EXIT_SUCCESS);
}

In this example we attempt to find the difference between pointers to elements
of different arrays. The result is “undefined” and may therefore depends on the
compiler and the particular computer on which the program is run.

3. Relational operations

It is possible to compare pointers, but the elements pointed to must again be in
the same array. Once again, it is legal to point to the element one step beyond
the high end of the array. Some examples of relational operations on pointers are
given in the following program:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
double *pt_1, *pt_2;
double a[10];

pt_1 = &a[10];
pt_2 = & a[5];
cout << "pt_1: " << pt_1 << "\mpt_2: " << pt_2 << "\n";
if (pt_2 > pt_1)
cout << "pt_2 > pt_1\n";
else
cout << "pt_2 <= pt_1\n";



6.2. ONE-DIMENSIONAL ARRAYS 133

if (pt_1 !'= pt_2)
cout << "pt_1 != pt_2\n";
if (pt_1 == pt_2)
cout << "pt_1
else
cout << "pt_1

= pt_2\n";

= pt_2 is false\n";

return(EXIT_SUCCESS) ;
}

All other arithmetic pointer operations are illegal; for instance multiplying, adding
and dividing two pointers are not allowed. In any case, such operations would not be
particularly useful!

One consequence of the relationship between pointers and arrays is that operations
on arrays can always be rewritten directly in terms of pointer arithmetic. For instance,
if we have an array of size ten and type double, then the following code fragment would
provide the sum of the values stored by the array:?

double sum = 0.0, x[10];
// Assignments to x[i] would go in here.

for (int i = 0; i < 10; ++i)
sum += x[i];

This summation can be rewritten in terms of pointers as:

double sum = 0.0, x[10];
double *pt, *pt_end;

// Assignments to x[i] would go in here.

pt = &x[0];
pt_end = pt + 10; // Points one element beyond the array.
while (pt < pt_end)

sum += *pt++;

which is more efficient, since incrementing i and performing an address calculation is
replaced by the single pointer operation.* This code also demonstrates why the pointer
one element beyond the high end of an array is defined, even though the pointer cannot
be dereferenced. The pointer is needed for comparison in a loop termination condition.

Exercise

Using the above code, assign the values 10, 20, 30 ... to the elements of
x[] and check that the correct value of sum is calculated.

3Notice once again that the terminating condition is i < 10. A common error is to write i <= 10,
which uses the value held in memory after the high end of the array.

4In simple situations a good modern compiler will probably produce executable code for a program
written in terms of array elements that is as fast as for a program written in terms of pointers. Since
programming errors are more likely when using pointers, it is better to restrict their use to situations
where it really makes a difference to the execution time.
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For an array, x [ARRAY_SIZE], a notational convenience is that x is defined to be
the base address of the array. So we could sum the elements of an array by using the
program given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS

using namespace std;

int main()

{
double sum = 0.0, x[10];
double *pt, *pt_end;
for (int i = 0; i < 10; ++i)
x[i] = 1.0 + 1i;
pt = x;
pt_end = pt + 10;
while (pt < pt_end)
sum += *pt++;
cout << "Sum is: " << sum << "\n";
return (EXIT_SUCCESS) ;
}

This notation is one that we employ frequently. Notice that, since x is an unmodifiable
lvalue, we cannot do anything that attempts to change its value. Two examples of
invalid attempts to modify x are given in the following code fragment:>

double x[10], y[10];
double **pt;
X =y; // WRONG: cannot assign to a constant.

+4+X; // WRONG: cannot increment a constant.

There is an interesting curiosity which results from the fact that an array, such as
double x[10];
can be accessed by x[i], which is directly equivalent to:
*(x+1)
Since the order of x and i is irrelevant in this expression (addition commutes), x [i]
can be validly written as i [x]. The latter looks like an array of integers that is indexed

by the value of a double. This bizarre expression will be correctly interpreted by the
compiler, but seems to serve no useful purpose for human readers!

5Recall that an lvalue is an expression referring to an object or function. An lvalue is unmodifiable
if it is an array or function name or if it is declared const.
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6.3 Type voidx

Suppose we want to store a memory address, but we don’t know what type of object
will be stored at that address. In such cases the type void* should be used as a generic
pointer type. As was emphasized in Chapter 5, an object cannot be declared to be
of type void. (One reason is that the compiler would not know how many bytes to
allocate for such an object.) However, a pointer can be declared to be of type voidx,
as illustrated by the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
int i, al10];
double v[20];
void *pt;
pt = &i;
cout << "Address of i = " << pt << "\n";
pt = a;
cout << "Address of a[0] = " << pt << "\n";
pt = v;
cout << "Address of v[0] = " << pt << "\n";
return (EXIT_SUCCESS) ;
}

The address of any type can be assigned to a pointer of type void*, but arithmetic
operations are not allowed on such pointers, as demonstrated by the following code
fragment:

void *pt;

double a[10];

pt = a;

++pt; // WRONG: cannot increment a pointer to void.

This restriction is perfectly reasonable. Since pt simply holds an address, the compiler
has no information on the type of object stored at that address and therefore has no
way of calculating the address of the next element in the array.

6.4 Pointer Conversions

A pointer of any type can be assigned to a pointer of type void*, but the converse is
not true, as illustrated by the following code fragment:

int a[10];

int *pt_i;

void *pt;

pt = a; // 0.K.
pt_i = pt; // WRONG!
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Such prohibitions are for our own protection. If pt holds an address and we don’t know
what type of object may be stored there, then assigning that address to a pointer to a
type other than void would be risky; we might, for instance, dereference that pointer.
If it is necessary to get round these prohibitions, then we can use an explicit cast, but
we had better understand what we are doing. The following program shows what can
go wrong. Initially the address of a[1] is assigned to pt, which means we have lost any
information about what sort of object is pointed to by pt. A static cast is then used
to assign this address to pt_i. Since pt_i is an integer pointer we may reasonably
expect to use the memory at this address is to store the integer 3. So far this is a valid
if rather convoluted way of storing an integer. The next thing that happens is that the
address of a[0] is assigned to pt. Again, at this point we have lost any information
about what sort of object is pointed to by pt. A static cast is then used to assign this
address to pt_d. Since pt_d is a pointer to a double we may reasonably expect to use
the memory at this address to store 3.142, which is a double. This is not a good thing
to do since it writes over the integer we have stored at a[1], as the output obtained
from the program shows. Of course, this simple program is only meant to illustrate
what can go wrong. In a larger, more realistic program it may be much harder to spot
the error.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;
int main()
{
int al[2];
int *pt_i;
double *pt_d;
void *pt;
pt = a + 1;
pt_i = static_cast<int*>(pt);
*pt_i = 3; // 0.K.
cout << "a[i1] = " << a[1] << "\n";
pt = a;
pt_d = static_cast<doublex*>(pt);
*xpt_d = 3.142; // Very risky!
cout << "xpt_d = " << *pt_d << "\n";
cout << "a[1] = " << a[1] << "\n";
return (EXIT_SUCCESS) ;
}

In general, it is better to avoid making casts from void* to other pointer types since
such casts are inherently risky. Moreover, they are also often a consequence of poor
program design.

6.5 Multi-dimensional Arrays

C++ also supports multi-dimensional arrays, which are defined by repeated square
brackets. The following code fragment gives some examples of how to declare multi-
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dimensional arrays:

double x[3][5]; // Defines a 3 x 5 array of doubles.

float y[2][3][4]; // Defines a 2 x 3 x 4 array of floats.

Notations typical of some other languages, such as:

double x[3, 5]; // WRONG!
float y(2, 3, 6); // WRONG!

are not valid.
The definition of a multi-dimensional array, such as:

int af4][2];
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allocates sufficient contiguous memory to store the array. In this example, eight values
of type int could be stored. Each array index runs from zero to one less than the
size specified for that index. The following code fragment demonstrates both valid and

invalid array access:

int a[4][5];

al0ol[0] = 1; // Low end of the array.
a[3][4] = 25; // High end of the array.
al4][5] = 100; // WRONG: outside of the allocated memory.

For a two-dimensional array, it is conventional to regard the first index as labelling
rows and the second as labelling columns; this is consistent with the standard notation

for matrices.

Multi-dimensional arrays can be used to represent matrices and tensors, but arith-
metic operations must be done element by element. For example, adding two 4 x 5

matrices A and B is expressed mathematically in terms of elements as:
Cij = Aij + Bij
The equivalent C++ statements are given below.

double A[4][5], B[4]([5], C[4][5];
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 5; ++j)
Cli1[3j]1 = A[i1[3] + BLil[jl;

For another example, consider the multiplication of a 4 x 5 matrix, X, by a 5 x 6 matrix,

Y. This is expressed mathematically as:
k=5
Zij = ZXik X Yij
k=0

The equivalent C++ code fragment is as follows:
double X[4]([5], Y[5]1[6], Z[4][6];
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 6; ++j) {
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double temp = 0.0;
for (int k = 0; k < 5; ++k)
temp += X[i] [k] * Y[k](j];
z[i1[j] = temp;
}

In terms of matrices, the equivalent mathematical equations are much simpler. The
addition is given by
C=A+B

and the multiplication by
Z=XxY

However, it is only by introducing overloaded operators (in Chapter 9) that we can
truly manipulate matrices, rather than matrix components, as objects.

Exercise

By assigning appropriately chosen integers to the elements of A[] [1, B[] [J,
X[1[] and Y[] [, check the correctness of matrix addition and multiplica-
tion as implemented above. You should display the calculated matrices as
two-dimensional arrays.

Since a memory location is specified by a single address, the two or more dimensions
of a multi-dimensional array must be mapped into the linear address space of physical
memory. This mapping is often known as a storage map. In C++, two-dimensional
arrays are stored by rows and a typical storage map is shown in Figure 6.4, where the
symbol zg represents the array element &x[0] [0].

~— row 0 row 1
element: x[0][0] x[0][1] x[0][2] x[1][0] x[1][1] x[1][2]
address: Zo o+ 1 xo + 2 o+ 3 o+ 4 o+ 5

Figure 6.4: Storage map for x[2] [3].

6.5.1 Pointers and Multi-dimensional Arrays'

An array defined by:
int x[2]1[3];

is accessed via x[i] [j], which is equivalent to:
*(&x[0][0] + 3 * i + j)

In fact, two-dimensional arrays have no more significance than this equivalence. In this
example, x[0] [0] is the element at the low end of the array and therefore &x [0] [0]
is the base address of the array.

Great care should be exercised when using pointers to access multi-dimensional
arrays. The constant, x, is also the base address of this array, but
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*(x + 3 % 1+ 3)

is not equivalent to x[i] [j] since (x + i) is actually the base address of row i; for
instance, (x + 1) is the base address of the row 1. A correct way of using x, rather
than &x[0] [0], to access an element of the two-dimensional array is to use:

(e(x + 1)) [3]

The outer parentheses are required because [] binds tighter than the dereferencing
operator. In fact, by studying the above expression, we can see how the notation for
two-dimensional arrays arises. The expression, *(x+1i), is the same as x[i], the base
address of row 1, so the whole expression is directly equivalent to x[i] [j]. There are
two other, equally devious, ways of rewriting x[1] [j]; these are

*((x(x + 1)) + §)
and
*(x[1] + J)

It is worth convincing yourself that these expressions really are equivalent to x[i] [j],
although in practice it is best to stick to the more obvious notation.

Exercise

You have now encountered four different non-standard ways of accessing a
two-dimensional array by using pointers. Write a program that uses each
of these four techniques to write numbers to a 2 x 3 array of type int. Use
the standard way of accessing the array to demonstrate that the correct
values are assigned in each case.

For arrays of three dimensions and higher, the storage map is a straightforward
extension of the two-dimensional case. For instance, if we make the definition:

float y[2]1[3][4];
then an element, y[i] [j] [k], can equivalently be accessed by:
*(&y[0J[01[0] + 3 % 4 x i + 4 x j + k);

Needless to say, there are devious ways of rewriting this expression in terms of y rather
than &y [0] [0] [0].

We don’t need to know how arrays are stored in order to use them, but doing so
can help us to understand (and even reduce) the overhead caused by indexing into
multi-dimensional arrays. For instance, if a calculation involves going down columns,
one step at a time, then it may be faster to rearrange the code so that the stepping
is done along rows. In Section 7.3.2 we show how knowledge of the array storage map
can speed up a typical numerical application.

It is worth emphasizing that in many situations it is better to keep to the standard
array notation since a small increase in efficiency is not worth the risk of making
a mistake with the pointer arithmetic. However, in situations where using pointer
arithmetic would lead to a worthwhile increase in speed, then the more advanced
techniques of C++ should be used to encapsulate the pointer arithmetic in isolated
pieces of code that can be carefully checked.
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6.6 Imitializing Arrays

One-dimensional arrays can be initialized by a comma-separated list between a pair of
braces, known as an initialization list, as in:

int x[1 = {1, 2, 3};
float y[4] = {1.1, 2.2};

If the array size is not specified, then it is taken as the number of elements between
the braces. In this example, x[] can store three elements and the initialization of x []
is equivalent to:

x[0] = 1;
x[1] = 2;
x[2] = 3;

If the size specified is greater than the number of values given, then the low end of the
array is initialized with these values and the remaining elements are set to zero (of an
appropriate type). The initialization of y[] is therefore equivalent to:

y[0] =
y[1]
y[2] =
y[3]

»

»

|
O O N -
O O N =

»

It is illegal to have more members in the list than the specified array size, so the
following code fragment is incorrect:

double z[2] = {1.1, 2.2, 3.3}; // WRONG: size specified is too
// small.

Multi-dimensional arrays can be initialized by comma-separated, nested, braces, as
demonstrated by:

int w(4]([3] = {{1, 2, 3}, {4, 5, 6}};

This two-dimensional array is initialized row-wise, with the last two rows being filled
with zeros; that is, the initialization is equivalent to:

wl0][0] = 1; w(0][1] = 2; w[0][2] = 3;
wl1]J[0] = 4; w([1]1[1] = 5; w[1][2] = 6;
w[2][0] = 0; w([2][1] = 0; w[2][2] = O;
w(3][0] = 0; w[3][1] = 0; w[3][2] = O;

As discussed in the previous section, two-dimensional arrays are actually stored row-
wise, so the above initialization can also be written as:

int wl[4][3] = {1, 2, 3, 4, 5, 6};

Incomplete rows of multi-dimensional arrays can also be initialized by means of coma-
separated, nested, braces, as shown in the following code fragment:

int w[2][3] = {{1}, {2, 3}};



6.7. SIZE OF ARRAYS 141

Since the low ends of the rows are initialized first (with any remaining elements being
filled with zeros) this is equivalent to:

w[0] [0]
w(1] [0]

1; wlo][1]
2; wl1][1]

0; w(loll2] = 0
3; wli1][2] = ©;

Nested, comma-separated braces can also be used to initialize arrays of more than two
dimensions in a completely analogous way.

Exercise

Verify the initialization of the 2 x 3 array, w[] []. Achieve the same ini-
tialization by using a single, rather than nested, comma-separated list.

It should be noted that there is no array assignment analogous to an initialization
list. So although

int x[2] = {4, 8};
is legal, the following is not:

int x[2];
x[2] = {4, 8}; // WRONG: an assignment list is illegal.

6.7 Size of Arrays!

So far we have used the sizeof operator to determine the size of fundamental types,
such as int, double, char etc. This operator can also give the size of an array, but we
must make a clear distinction between the size of one element in an array and the size
of the entire array. If we specify a particular element, then, as expected, we obtain the
size of just a single element, as demonstrated by the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
double x[10], y[5][10];
cout << "The size of a single element of x[10] is " <<
sizeof (x[0]) << "\n";
cout << "The size of a single element of y[5][10] " <<
"is " << sizeof(y[0][0]) << "\n";
cout << "For comparison, the size of a double is " <<
sizeof (double) << "\n";
return(EXIT_SUCCESS);
}

Notice that in general the size of a type can be obtained by using the type name, rather
than a specific variable.

Specifying the name of the array as the argument of the sizeof operator gives
the size of the entire array. This is demonstrated by the following program. (Notice
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that there is a minor inconsistency here, since in most circumstances x and y are the
(unmodifiable) base addresses of the arrays x[] and y[][].)

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
double x[10], y[5][10];
cout << "The size of the array x[10] is " << sizeof(x) << "\n";
cout << "The size of the array y[5][10] is " << sizeof(y) <<
n \n " ;
cout << "The size of an element of the array y[5] is " <<
sizeof (y[0]) << "\n";
cout << "For comparison:\n\tThe size of a pointer to " <<
"a double is " << sizeof (double*) <<
"\n\tThe size of a double is " << sizeof (double) << "\n";
return (EXIT_SUCCESS) ;
}
Exercise

What sizes are given by running the above code on your system? Check
that they are what you would expect.

On a particular computer we obtain the following output:

The size of the array x[10] is 80
The size of the array y[5][10] is 400
The size of an element of the array y[5] is 80
For comparison:
The size of a pointer to a double is 4
The size of a double is 8

Notice that sizeof (x) gives the size of the entire array, x[10], and not the size
of a pointer to an element of x; the meaning of the array name when used as an
argument to the sizeof operator is not the same as when the array name is used in
pointer arithmetic. Similarly, sizeof (y) gives the size of the entire 5 x 10 array and
sizeof (y[0]) gives the size of row 0, that is 10 x sizeof (double).

6.8 Arrays of Pointers

It is possible to define arrays of pointers. Two examples are given in the following code
fragment:

double *pt_a[5];
float *pt_b[4][10];

Since the array index operator, (], has higher precedence than the indirection operator,
*, the two statements do indeed each define an array of pointers, rather than a pointer
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to an array (which will be discussed shortly). The first statement defines an array of
size 5, which can store the addresses of objects of type double. The second statement
defines a 4 x 10 array, which can store 40 addresses of objects of type float. It must be
clearly understood that these arrays can only store addresses. They do not themselves
define any memory for storing values of type double or float. Such memory must be
defined separately. In the following code fragment, the memory to store two objects of
type double is allocated by the first statement; the array of pointers is only used to
point to this memory.

double a, b;
double *pt[2];
pt[0] = &a;
pt[1] = &b;

The distinction between an array of pointers and a pointer to an array is worth
emphasizing. In the definitions:

double *p_d[3];
int (*p_1)[3];

p_dis an array of three pointers to type double and can therefore store three addresses,
as demonstrated by the following code fragment:

double x, y, Z;

p-dlo0] = &x;
p-dl1] = &y;
p-dl2] = &z;

However, p_i is a pointer to an array of three integers and can therefore only store one
address, as in the code fragment given below.

int (*p_1i) [3];
int a[2][3];
p-i = a;

Defining a pointer to an array is sometimes useful because pointer arithmetic automat-
ically allows for the size of the array. In this particular case, p_i points to the base
address of row 0 of the array and therefore (p_i+1) points to row 1.

The following program demonstrates the use of an array of pointers, in addition to
pointers to pointers:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()
{
double x, y, zZ;
double *pt[3], **p, **p_end;
pt[0] = &x;
ptl1] = &y;
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ptl2] = &z;
x =1.11;
y = 2.22;
z = 3.33;
p = pt;

p-end = p + 3;
while (p < p_end)
cout << "data = " << x¥p++ << "\n";
return(EXIT_SUCCESS) ;
}

As shown in Figure 6.5, x, y, z are stored in some arbitrary memory locations and it
should not be assumed that these locations are either contiguous or ordered in any
particular way. The addresses of x, y and z are stored in pt[0], pt[1] and pt[2]
respectively and these array elements must therefore be declared to be of type pointer
to double. The address of the element one step beyond pt[2] is stored in p_end and p
scans the addresses of the array, pt [1; both p_end and p are of type pointer to pointer
to double. Dereferencing p twice gives the data stored in x, y or z. In this simple
example, using pointers to pointers is not an improvement on manipulating the array
elements directly, but such techniques are useful for manipulating large amounts of
data, where copying the data would be very inefficient.

/ p-end
” : i

pt[2]
y pt[1]
/ pt[0]

X o \ p

Figure 6.5: Array of pointers.

6.9 Using Pointers and Arrays

In this section we consider two examples that employ some of the techniques introduced
in this chapter. The first example uses one-dimensional arrays, rather than explicit
pointers, and highlights some of the deficiencies with the techniques learned so far. In
the second example we use an array of pointers to construct a ragged two-dimensional
array.
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6.9.1 Fitting Data to a Straight Line

A common task in science and engineering is to fit a set of data points to a straight
line. More specifically, if we are given data z; and y;, where i = 1,2,...,n, then we
want to find a and b such that:

y=a+bx

We suppose that the x; are known exactly, but that there is a error, o;, associated
with each measurement, y;. It can be shown that a and b are given by the following
definitions and equations:®

1 Se
ti = — i
N
Stt = Zt?
i=1
N
1 iy
b= —
St ; o;
Sy — Syb
a=——F—

A program that prompts for data points and then computes the values of a and b is
given below.

// source: fit.cxx
// use: Does straight line fitting.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()
{
const int max_points = 100;
int points;
double x[max_points], y[max_points], sigma[max_points];
do {

5We use ezactly the same notation as [14] so that background reading for this example is readily
accessible.
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cout << "How many points (less than " << max_points <<
") do you want to fit?\n";

cin >> points;

} while (points < 1 || points > max_points);

cout << "\nEnter " << points << " data points in the form:" <<
"\n x coordinate y coordinate error:\n\n";

for (int i = 0; i < points; ++i) {
cin >> x[i] >> y[i] >> sigmal[i];

}

double s = 0.

for (int i =
double temp
s += temp;
S_x += temp * x[i];
s_y += temp * y[i];

_x =0.0, s_y = 0.0;
< points ; ++i) {
1.0 / (sigmalil] * sigmalil);

0,
0;

= w0

}

double s_x_s = s_x / s;

double s_tt = 0.0, b = 0.0;

for (int i = 0; i < points ; ++i) {
double t = (x[i] - s_x_s) / sigmalil;
s_tt +=t * t;
b += t * y[i] / sigma[il;

}
b /= s_tt;
double a = (s_y - s_x * b) / s;
cout << "The " << points << " points fit the equation: " <<
"y = a + b * x\nwith: a="<<a<<"b="<<b < "\n";
return(EXIT_SUCCESS) ;
}
Exercise

Try this program with your own data.

This line-fitting program exposes a number of limitations with the techniques
learned so far:

e The maximum points that the program can handle is fixed at compile-time and
can only be altered by editing and recompiling. Techniques for removing this
difficulty are given in the next chapter.

e The data must be entered directly in response to a program prompt, rather than
read from a file. This is particularly tedious with large data sets and infuriating
if you make a typing mistake! Chapter 18 explains how to read data from a file.

e Since we do not know how to pass arrays as function arguments, the entire
program consists of the single function, main (). This makes it difficult to reuse
our line-fitting code as part of a larger program. Passing arrays as function
arguments is introduced in the next chapter.



6.9. USING POINTERS AND ARRAYS 147

6.9.2 Ragged Arrays

One use of an array of pointers is to define a ragged array, in which the rows have
different lengths. For instance, suppose we make some astronomical observations on
seven different nights. One night is very cloudy and we only manage 5 observations, but
another is exceptionally clear and we carry out 2000 observations. On the remaining
nights we make various numbers of observations between these two extremes. We could
define a 7 x 2000 two-dimensional array to store the data. However, a more efficient
approach is to use a ragged array as shown in the following code fragment:”

// Define arrays of just sufficient size to
// store the observations made each night:
double Sunday[500];

double Monday[100];

double Tuesday[10];

double Wednesday[1000];

double Thursday[20];

double Friday[5];

double Saturday[2000];

// Define an array of pointers to the data arrays:
double *datal7];

data[0] = Sunday;

data[1] = Monday;

data[2] = Tuesday;

data[3] = Wednesday;

data[4] = Thursday;

data[5] = Friday;

data[6] = Saturday;

// Suppose data are entered in each array here.

// Average element one of each array:

double average = 0.0;

for (int i = 0; i < 7; ++i)
average += datal[il[1];

average /= 7;

cout << "Seven day average of data element 1 = " << average <<
" \nll ;

The observations for each night are stored in a one-dimensional array of the appropriate
length, named Sunday, Monday etc. An array of pointers, data[], then stores the base
address of each array holding the observations. The result is a ragged array as shown
in Figure 6.6. With care, we can now use data as if it were the name of a two-
dimensional array. As a simple example we have averaged the second observation (that
is element one) for the seven nights. Of course, it is entirely our responsibility to avoid
attempting to access elements beyond the end of a defined row. In practice, an integer

“Sunday, Monday ... mean the nights of Sunday—Monday, Monday—Tuesday . ..
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Saturday] |

data[6] / Friday] ]
data[5] /
p— P Thursday| |
data/[3] Wednesday] |
datal[2
==
data0] s Monday] |

Sunday] |

Figure 6.6: Ragged array.

array holding the length of each row would help to prevent such disasters. Notice that
in our interpretation of data as the name of a (ragged) array, the first index does indeed
label rows and the second index labels columns. The essential step in understanding
datali] [j] is to recall that the array subscripting operator, [, associates left to right,
so that data[i] [j] is equivalent to (data[i]) [j]. For example, since data[2] is the
base address of the array Tuesday [1, data[2] [j] reduces to the one-dimensional array,
Tuesday [j], which is accessed in the usual way. There is, of course, no equivalence to
a storage map:

*(&data[0] [0] + row_length * 2 + j)

as described in Section 6.5.1, since memory for the entire array is not necessarily
contiguous and the rows have different lengths.

Exercise

Make this ragged array example into a complete program. You should
define an array that stores the length of each row and test the program by
generating random data and finding the average for each night.

6.10 Summary

e A pointer is a variable that can be used to store an address:

double *pt;
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The address of an object can be found by using the address-of operator, & The
data stored at a particular address is accessed by means of the dereferencing or
indirection operator, *, as in:

double x;
double *pt = &x;

It is illegal to take the address of a constant:

&10; // WRONG!
or an expression:

&(x + 3.142); // WRONG!
Memory must be defined for a pointer to point to:

double *pt;
*pt = 3.1415926535897932; // WRONG!

The null pointer (obtained by assigning zero to any pointer) is guaranteed to be
an invalid address.

One-dimensional arrays are defined as in:
double x[10];

Individual elements are accessed by specifying an index:
double y = x[5];

Notice that this array starts at x[0], has 10 elements and that the element, x[10],
is undefined.

Pointer arithmetic is only valid for restricted operations, such as:

++pt_x;

pt_z = pt_x - pt_y;

if (pt_x < pt_y) { ... %}
For a one-dimensional array, an element ali] is equivalent to *(&a[0]+1i).
The generic pointer type is void*:

void *pt;

The address of any type can be assigned to this pointer:

double x[100];
pt = x;



150

CHAPTER 6. POINTERS AND ARRAYS

but pointer arithmetic on pt is illegal:
++pt; // WRONG!
as is assigning pt to a pointer to a fundamental type:
double *pt_x = pt; // WRONG!
Multi-dimensional arrays are defined as in:

double x[2][4];
int i[2][5] [4];

Indices are used to access such arrays:

y = x[0]1[1];
This means nothing more than successive applications of the subscripting op-
erator and implies that two-dimensional arrays are stored by rows; an element,
x[1] [j], is equivalent to:

*(&x[0]J[0] + 4 * i + j)
Arrays can be initialized by comma-separated lists:

int i[] = {4, 5, 6};

double x[4] = {10.1, 10.5};

If an array is defined by:
double a[10];

then sizeof (a) gives the size of the entire array. However, the expression
sizeof (a[1]) gives the size of a single element.

The statement:
double *pt_a(5];

defines an array of pointers, but:
double (*pt_a)[5];

defines a pointer to an array.

e The precedence and associativity of all C++ operators are given in Appendix B.
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6.11 Exercises

1. Given a set of real numbers, 21,2, ..., 2y, the mean, Z, is defined by:

and the variance, Var, by:

Var(ry...xn) = —— Z(mz - z)?

and the standard deviation, o, by:

o(xy...xy)=+/Var(z;...xN)

Write a program that calculates these three values from a list of numbers stored
as a one-dimensional array. For test purposes you can use the rand() function,
declared in <cstdlib>, to generate the list. (You should find that the mean is
approximately 0.5.) Try lists of increasing length. Is there any point in generating

more than RAND_MAX random numbers?

2. A x? test is often used to check the validity of binned data and consists of

evaluating:

. (Nz — ni)z
X = Z T

where N; is the number of observed items in bin ¢ and n; is the number of items
expected in bin 7. Write a program that has an integer array representing ten
bins and uses the library function, rand(), to generate a sequence of random
numbers in the range 0 to 999. If the generated number is in the range 0 to 99,
then increment bin 1, if the number is in the range 100 to 199, then increment
bin 2, and so on. Your program should send the value of x? and the total number

of items to the output stream.®

3. P and @Q are polynomials in z and y, given by:

3 3
P=>Y pjz'y and Q=) gy

1,j=0 i,7=0

where p;; and g;; are integers. Use two-dimensional arrays to add P and @ for
various values of p;; and ¢;;. The output should be given in terms of a polynomial,

rather than a list of coefficients.

4. Write a program that initializes the int array a[2] [3] [4], with values corre-

sponding to:
aijk = (1 =)(2 = j)(3 = k)

by using nested, comma-separated lists. Elements that have the value zero should
be initialized by default and not explicitly. Check your program by comparing

the initialization actually achieved with the expected values of a[i] [j] [k].

8 An introduction to the x? test is given in [14].
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The following exercises require an understanding of Section 6.5.1:
5. The results of an experiment are stored in a five-dimensional array:
float data[SIZE_1] [SIZE_2] [SIZE_3] [SIZE_4] [SIZE_5];
One requirement is to find the average of all elements. Write two programs

to calculate this average; one version should use the standard array notation,
whereas the other should use a pointer. Compare the times taken by the two

programs for various values of SIZE_1, ..., SIZE_5. Can you make the pointer
version any faster? (See the comment on program timing given in Exercise 1 of
Chapter 5.)

6. Use nested, comma-separated lists to initialize the array, a[2] [3] [4], so that it
corresponds to:

1 2 3 4
Apij; = 5 6 7 8
9 10 11 12
and
13 14 15 16
A145 = 17 18 19 20
21 22 23 24

Using only pointer arithmetic and the array name (that is a, but not a[0] [0] [0]
or a[i] [j] [k]), list the array elements and hence verify your method of access.

The following exercise requires an understanding of Sections 6.5.1 and 6.7, which you
may have decided to omit:

7. If the definition of an array is:
double y[2][3][4];

what is the type of y[2]? Verify your answer by assigning y[2] to a suitable
pointer. What is the result of sizeof (y[2])7



Chapter 7

Further Pointer Techniques

Pointers are fundamental to many aspects of C++. In this chapter we introduce a
number of more advanced topics concerning pointers. In particular, we consider strings,
pointers as function arguments, pointers to functions, dynamic memory allocation and
reference arguments. It should be emphasized that in this chapter we are not concerned
with the more sophisticated string defined as a C++4 template. We consider such
“strings” in Chapter 17.

7.1 Strings

The basic idea of a string in C++ is the same as in C. A string is simply a one-
dimensional array of type char, with the character constant >\0’, indicating the end
of the string.! This string terminator is the crucial feature that distinguishes a string
from a general char array; if the terminator is omitted, functions that manipulate
strings usually fail disastrously. The disaster occurs through attempting to interpret a
perfectly valid char array, such as char c[3] = {’°C’, ’+’, ’+’}, as a string. The
absence of a string terminator causes string manipulation functions to access memory
beyond the end of the array.

The idea of a string constant (or string literal) was introduced in Section 2.5.5. A
string constant consists of a sequence of characters enclosed by double quotes, as in:

"This is a string constant (or string literal)."

There is a special way of initializing a char array with a string constant. This takes
the form:

char message[] = "Hello world";
and avoids the equivalent, but more tedious alternative:

char messagel[] = {"H’, ’e’, ’1’, ’1’, ’0’, 7 7,
’W’, ’0’, ’I", ’l’, ’d’, ;\O)};

1570 is the null character and is represented by zero in the ASCII character set. The null character
differs, of course, from the character *0’.
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As can be seen, this array actually has 12 elements, since the last element is *\0’. The
empty pair of square brackets tells the compiler to allocate an array of sufficient length
to store the given string constant, together with the >\0’ terminator. An alternative
strategy is to define a char array of sufficient size to hold at least the required number
of characters, as in:

char message[80] = "Hello world";

Notice that the array need not be initialized with the maximum number of characters.

Once again, you must be careful to distinguish between initialization and assign-
ment. Suppose we now want to assign a new string to message[]. It is tempting to
use:

message = "Hello"; // WRONG!

However, we cannot assign anything to message since it is an unmodifiable lvalue
(the base address of the array). In order to assign a string to an array we have to
assign characters to individual elements of the array, as demonstrated in the following
program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
char message[20] = "0123456789123456789" ;
message[0] = ’H’;
message[1] = ’e’;
message[2] = '1’;
message[3] = ’1’;
message[4] = 0’
message[5] = ’\0’;
cout << message << "\n";
return (EXIT_SUCCESS) ;

}

Notice how cout recognizes the >\0’ string terminator and simply sends the first five
characters to the screen, even though the array can hold up to 80 characters.

Exercise

Try running the above program and find out what happens if:

(a) the array is initialized with 20, rather than 19, characters;
(b) the statement:
message[5] = ’\0’;

is omitted.

The role of the string terminator cannot be over-emphasized. As an example, suppose
we didn’t initialize the message [20] array and we accidentally omitted to assign the
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’\0’ string terminator to message[5]. Then cout would extract whatever characters
happened to be stored in memory until it encountered something that could be inter-
preted as a string terminator. This could very well be outside the memory allocated
to message [20].

The above example shows us a lot about the structure of strings, but a much easier
technique is to use an appropriate string manipulation function, declared in <cstring>.
The function, strcpy(), has the declaration:

char *strcpy(char *stringl, const char *string2);

and copies a string (including the terminator) from string?2 to stringl. (Notice the
direction in which the copy is made. It may not be what you might have expected!) The
function, strcpy (), also returns the destination address of the string (that is stringl).
As usual, it is up to the programmer to ensure that stringl is the address of sufficient
allocated memory to hold the required characters, together with the *\0’ terminator.
The penalty for failure is to write over some arbitrary, but possibly important, area of
memory.

We can now assign values to the array, message[], as demonstrated in the following
program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For strcpy()
using namespace std;

int main()

{
char message[80];
strcpy (message, "Hello");
cout << message << "\n";
return(EXIT_SUCCESS) ;

}

Again notice that we don’t add the >\0’ terminator, since it is part of the double
quotes or string constant syntax.
There are many functions in the <cstring> group. For instance:

char *strcat(char *stringl, const char *string2);

appends string?2 to the end of stringl. The following program shows the strcpy and
strcat () functions in use:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For strcpy(), strcat()
using namespace std;
int main()
{

char message[80];

strcpy(message, "Hello");

strcat (message, " world.");
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strcat (message, "\nHave a nice day.");
cout << message << "\n";
return (EXIT_SUCCESS) ;

}

The contents of the char array are initially arbitrary and don’t necessarily have the
string terminator as the first element. For this reason it is important that "Hello"
is copied to message rather than concatenated. Once message contains a string,
the strcat() function can be used to append first the string " world." and then
"\nHave a nice day.". Again strcat() takes care of any subtleties involving the
’\0’ terminators and the result is:

Hello world.
Have a nice day.

Now consider the following code fragment:

char *pt;
pt = "Hello world.";

or, equivalently:

char *pt = "Hello world.";
and compare it with:

char pt[] = "Hello world.";

It is tempting to think that the *pt and pt[] definitions are equivalent. However, in
the first case memory is allocated to hold the string constant, a pointer is declared and
the base address of this string is assigned to the pointer. The only new assignment
that we can make is to change the address held by the pointer, since we cannot make
an assignment to the string constant, "Hello world.". In the second case, we have
an array of just sufficient length to hold the given string and this array is initialized to
that string. It is possible to copy another string (provided it is not too long) to this
array, just as we have done previously.

Any temptation to use a pointer assignment to a string constant as if it were an
array definition should be resisted. Suppose we had the following:

char *stringl = "Hello world";
char *string2 = "world";

then a clever compiler could simply make string?2 point to the appropriate place in
the "Hello world" string. A programmer making assignments to the memory pointed
to by stringl or string2 would be rather surprised by the result.

Scientists, engineers and mathematicians don’t usually spend a lot of their time
performing complicated string manipulations; they are more interested in inverting
matrices than writing word processing programs. The places where you are likely to
want to use strings are creating filenames for various storage media and annotating
output. Moreover, with more advanced C++ techniques it is possible to implement a
string class with the advantages of safer and more natural string manipulations. (See
Sections 9.6.2 and 17.2.4.)
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7.2 Pointers as Function Arguments

As we discussed in Chapter 5, function arguments in C++ are normally passed by
value; the function makes a copy of the value of each argument and then manipulates
these copies. The return value of a function can be used to change a single variable in
the calling environment, but often we want to change several or even many variables.
For instance, suppose we need to write a function that swaps two integers. One way of
doing this is to use function arguments to pass the addresses of the integers, since once
a function has the addresses, it can directly manipulate the values stored in memory.
Of course, this is just the kind of potentially disastrous situation that we discussed
previously, so we must be careful to get such pointer manipulations exactly right.
The implementation of a possible swap() function using pointers is contained in the
following program:?

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

void swap(int *pt_x, int *pt_y)

{
int temp;
temp = *pt_x;
*pt_x = *pt_y;
*pt_y = temp;
}
int main()
{
int i = 10, j = 20;
swap(&i, &j);
cout << "i = " << j << " J = " << J << ll\nn;
return(EXIT_SUCCESS) ;
}

In this example pt_x and pt_y are of type pointer to int; in other words they can
store the addresses of variables of type int. The two arguments of the swap () function
in the calling environment must also be the addresses of objects of type int. The way
in which the swap() function works is that the addresses of i and j are passed as
arguments. The value stored at the address of i (that is 10) is assigned to temp. The
value currently stored at the address of j (that is 20) is then assigned to the memory
location of i. The final statement in the swap function assigns 10 (the value of temp)
to the memory location of j. Hence the values stored in i and j are interchanged.
Notice that the statement:

*pt_x = *pt_y;

has a totally different effect from:

2Now that you understand more about strings, you may wish to use *\n’ rather than "\n". However,
the space saved is very slight.
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pt_x = pt_y;

The latter is valid C++, but simply assigns one pointer to another. In this context,
the address of j (which bears no relation to 10) would be assigned to pt_x. Since the
scope of pt_x is limited to the function body and nothing further is done with pt_x,
this syntactically correct statement would achieve nothing.

The technique of using pointer arguments to change values in the calling environ-
ment can clearly be extended to more complicated situations than simply swapping
two numbers. The main disadvantage is that function modularity is eroded. Once the
address of a variable is passed to a function, then that variable may be changed in
a way that can only be discerned by examining the function body. For this reason,
pointers should only be used as function arguments when it is really necessary. No pur-
pose is served by using pointers as function arguments just to save trivial quantities of
memory.

Exercise

Write a program that stores 10 different integers as an array of type int.
Use the swap() function, as implemented in this section, to reverse the
order of the numbers held in the array.

7.3 Passing Arrays as Function Arguments

As has already been pointed out, arrays are of vital importance in many numerical
applications and functions are an essential technique for controlling the complexity of
programs. It should therefore come as no surprise to learn that functions frequently
need to access the elements of arrays.

7.3.1 One-dimensional Arrays

It is straightforward to pass one-dimensional arrays as function arguments. The basic
point to keep in mind is that accessing an element of a one-dimensional array simply
involves dereferencing a pointer. The array size is only needed for the array definition
so that the compiler can allocate the appropriate memory. Once the memory has been
allocated, it is entirely the programmer’s responsibility to ensure that a pointer really
does point to the allocated memory. Therefore, to pass a one-dimensional array as a
function argument, it is only necessary to pass an address, since the array size is not
relevant for accessing array elements, although it may be necessary in order to ensure
that an element really is a member of the array.

Suppose we want to write a function to return the sum of a sequence of elements
of an array. A suitable function is given below.

double sum(double pt[], int n)
{
double temp = 0.0;
for (int i = 0; i < n; ++i)
temp += pt[il;
return temp;
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The argument, n, in the function declaration is the number of elements that we want
to sum. This does not need to be the same as the total number of elements in the
array. The following illustrates using the sum() function to find the total value of all
elements of an array:

double height[100], total_height;
// Assignment of values to height[] goes here.
total_height = sum(height, 100);

However, there is no need to start the summation at the low end of the array, as the
following code fragment demonstrates:

double height[100], total_height;
// Assignment of values to height[] goes here.
total_height = sum(&height[10], 24);

This example sums 24 elements of the height[] array, starting with the element
height [10]. Notice that we must pass an address as the first argument to sum;
height [10] would merely pass a double precision floating point number, which would
tell sum() nothing about where the array is stored (and would also be a compile-time
error).

Exercise

Assign 1, 2, 3 ... to the elements of the height [] array and then verify that
total_height has the expected value. Do this for both of the previous code
fragments.

In the function declaration for sum() we omitted the size of the one-dimensional
array, and even if we did insert the size it would be ignored by the compiler. It is worth
remarking that we can only omit the array size in a function header or declaration;
elsewhere a compile-time error occurs. For example, the following declaration is not
valid:

double height[]; // WRONG: array size not specified.

It is also important to understand that, although in the above example we can access
pt as if it were an array, it is actually a pointer, rather than an array name. In fact
we could simply use a pointer in the function declaration, as in:

double sum(double *pt, int n);

We can even assign an address to pt, as shown in the version of the sum() function
given below.

double sum(double pt[], int n)
{
double temp = 0.0, *pt_end;
pt_end = pt + n;
while (pt < pt_end)
temp += *pt++; // Increments pt.
return temp;
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Exercise

Replace the sum() function used in the previous exercise by this pointer
version. Does your program give the same results for total_height as you
obtained previously?

Using the array notation for function arguments can lead to confusion, as in:

double sum(double pt[1000])

{
double temp = 0.0;
int n = sizeof(pt) / sizeof(double); // WRONG!
for (int i = 0; i < n; ++i)
temp += pt[i];
return temp;
}

In this attempt at a sum() function the idea was to work out the number of elements,
n, in the array by dividing the size of the array by the size of the type double. What
actually happens is that n is assigned the size of a pointer to a double divided by the
size of a double. This is very different to what was intended!

Exercise

Replace the sum() function used in the previous exercise by this incorrect
version. Does your program give the same results for total_height as
obtained in the previous exercise? Find out what value is assigned to n.

7.3.2 Multi-dimensional Arrays
An Introduction

Passing multi-dimensional arrays as function arguments is fairly straightforward. The
only feature to note is that a function needs access to the values of all sizes associated
with the array indices, apart from the first. This is necessary so that the compiler
can generate the correct storage map. Details of storage maps for multi-dimensional
arrays were given in Section 6.5.1, which you may have decided to skip for the moment.
The essential idea is that a multi-dimensional array is mapped by the compiler into a
one-dimensional array corresponding to the computer memory. In order to generate
this mapping, the compiler must have available the sizes corresponding to all array
indices apart from the first. For instance, in the case of a two-dimensional array, a
function needs the number of columns in order to index into the correct row. As an
example, the following program shows a function that returns the trace of a 5 x 5
matrix (represented here as a two-dimensional array):

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

double trace(double y[][5])
{
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double sum = 0.0;

for (dnt i = 0; i < 5; ++i)
sum += y[i] [i];

return sum;

+
int main()
{
double x[5][5];
for (int i = 0; i < 5; ++i)
for (int j = 0; j < 5; ++j)

x[11[3] = (4 + 1) * (§ +1);
cout << "Trace = " << trace(x) << "\n";
return(EXIT_SUCCESS) ;

}

Notice that it is the base address of the array that is passed as the argument to trace().
We cannot use:

cout << "Trace = " << trace(&x[0][0]) << "\n";

since this would attempt to pass the address of a double to a function that has an
argument type double [][5]. Neither can we use:

cout << "Trace = " << trace(x[0][0]) << "\n"; // WRONG!

since x [0] [0] is of type double.

More Advanced Features'

The declaration in the trace() function header given above could equivalently be
written as:

double trace(double (ky)[5]);

This declaration implies that y is a pointer to an array of 5 doubles but is probably
more obscure and there is the danger of writing:

double trace(double *y[5]);

Since the square brackets have a higher precedence than the dereferencing operator,
this declares an array of 5 pointers to the type double, which is not what is required
in the trace() function header.

We could alternatively define a trace() function with the header:

double trace(double *pt);
rather than:
double trace(double (*y)[5]);

We would then have to replace the function call by:
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trace (&x[0] [0]);

The advantage of the original function header is that within the function body we can
use the standard array-subscripting notation. Since y points to an object with size 5 x
sizeof (double), array subscripting automatically does the correct pointer arithmetic.
For instance, (y+1) is the base address of row 1 of the array, rather than element 1 of
row 0.

Sometimes, knowledge of how arrays are stored can considerably improve the speed
of calculations. As an simple example, suppose we want to sum two matrices repre-
sented by 100 x 100 arrays. We could imagine having something like the following in
our program:

double a[100] [100], b[100] [100], c[100] [100];
// Assignments to a[i][j] and b[i][j] go in here.
sum(a, b, c);

A possible sum() function is given below.

void sum(double a[][100], double b[][100], double c[][100])
{
for (int i = 0; 1 < 100; ++i)
for(int j = 0; j < 100; ++j)
cl[il[j] = alil[j] + vl[il[j];

}
The disadvantage of this implementation is that a considerable amount of unnecessary
arithmetic is done in calculating the address of each element since, for matrix addition,

there is no advantage in scanning over rows and columns. A faster, but more devious,
implementation is given by the following sum() function:

void sum(double *pt_a, double *pt_b, double *pt_c)

{
double *pt_end = pt_c + 100 * 100;
while (pt_c < pt_end)
*pt_c++ = *pt_a++ + *xpt_b++;
}

This version simply steps from one element in memory to the next. Notice that the
argument types in the two versions are different. The second version of the function
expects arguments that are pointers to double so it should be called as in the code
fragment given below.

double a[100] [100], b[100][100], c[100][100];
// Assignments to ali][j] and b[i] [j] go in here.
sum(&a[0] [0], &b[0][0], &c[0][0]);

For very large matrices, the increase in speed obtainable through using such techniques
can be significant.
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Exercise

Write a program that assigns values to the elements of b[] [] and <[] []
and then verifies the result given by the sum() function.?

7.4 Arguments to main()

It is fairly common for a program to require the user to input values for parameters.
For instance, we may want to write a program to list all primes up to some maximum,
with the largest value to be tested being entered by the user. So far our programs have
all prompted the user to enter any necessary values. However, an alternative would be
to have a command line argument, so that we could enter the required values at the
same time as typing the program name. For example:

prime 100

could generate all prime numbers less than 100. This technique can be achieved by
using arguments to main().

It is part of the C++ language that the function main() can take the following
form:

int main(int argc, char *argv([])
{
// Code goes in here.

}

Since the two arguments are formal arguments, they could be given any names, but
argc and argv[] are established conventions. The number of command line arguments,
including the program name, is given by argc. For our prime example, argc would be
2. The second argument, *argv [], is an array of char pointers. These pointers actually
point to strings, terminated in the usual way by >\0’. The first element of the array
is special since argv[0] points to the program name as a string. For instance, in the
above example the string would be "prime". Subsequent elements of the argv array
point to the command line arguments; argv [1] is the first command line parameter as
a string, argv [2] is the second and so on. In this example argv[1] points to the string
"100". The following program does no more than print the command line arguments.
Try it for different arguments.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main(int argc, char *argv([])

{
cout << "The program name is: " << argv[0] << "\n\n";
cout << "There are " << argc << " arguments\n\n";

3As for one-dimensional arrays, we place the appropriate pairs of empty square brackets after an
array name appearing in the text, as in b[] [J. This is to emphasize that we are dealing with an array,
but does not imply that this is a valid syntax within code.
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for (int i = 0; i < argc; ++i)
cout << "Argument " << i << " is " << argv[i] << "\n\n";
return(EXIT_SUCCESS) ;
}

Notice that the arguments are strings rather than integers. As a consequence, our
prime example must convert the string, "100", to the integer, 100. Fortunately, a
library function exists that converts a string to an integer. The function declaration is
in <cstdlib> and is:

int atoi(const char *pt);

If we supply a string as the argument to this function, then the corresponding integer
is returned.

Exercise

Try running the following program:

#include <iostream>

#include <cstdlib> // For atoi()
using namespace std;

int main()

{
int i = atoi("12345");
cout << "The integer is " << i << "\n";
return (EXIT_SUCCESS) ;

}

What happens if the string is replaced by "123x5"7.

Using the answer to Exercise 7 in Chapter 5, we can now write a prime program to
take a command line argument. An example of such a program is given below.

#include <iostream>

#include <cmath> // For sqrt()
#include <cstdlib> // For exit(), atoi()
using namespace std;

bool test_prime(long n);
void list_primes(long n);

bool test_prime(long n)
{
bool prime;
if (n == 0L || n == 1L)
prime = false;
else if (n == 2L)
prime = true;
else if (!(n % 2L))
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prime = false;
else {
// add 0.5 to ensure round up:
long i_end = static_cast<long>( 0.5 + sqrt(n));
prime = true;
for (long i = 3L; i <= i_end; i += 2L) {
if (0% i) Ao

prime = false;

break;
¥
¥
}
return prime;
}
void list_primes(long n)
{
cout << "Primes up to " << n << " are:\n\n";
if (n >= 2)
cout << "2\n";
for (long i = 3L; i <= n; i += 2L)
if (test_prime(i))
cout << i << "\n";
}
int main(int argc, char *argv([])
{
if (argc '= 2) {
cout << "Usage: prime <max>\n";
exit (EXIT_FAILURE);
}
long n = atoi(argv(i]l);
list_primes(n);
return (EXIT_SUCCESS) ;
}

If, after compiling and linking this program, the executable file is prime then, to list
all primes up to 100 you would enter the command:

prime 100
Exercise

(a) Run the prime program with various values for the command line
parameter. Does test_prime() deal appropriately with all possible
arguments? If not, make suitable modifications.

(b) Modify the prime program so that it only lists the primes between
two numbers specified by two command line arguments. For example,
typing:
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prime 100 300

would list all prime numbers between 100 and 300. You should include
code that traps alternative inputs, such as:

prime 300 100

and takes appropriate action.

7.5 Pointers to Functions

It is fairly common to want to pass a function as an argument to another function.
For instance, suppose we want to write a function, called sum(), that sums the first n
values of another function. We could use something like the following:

double f(int m)

{
// Definition of f() goes here.
}
double sum(int n)
{
double temp = 0.0;
for (int i = 0; i < nj; ++i)
temp += f(n);
return temp;
}
This approach does work, but now suppose we want to do the summation for a number
of different functions, £(), g0, h() .... We would have to write a different sum()
function for each of the £(), g(), h() ... functions we wanted to sum. This could be
avoided if we could specify the function as an argument to sum(), rather than have
each £(), g(), hO ... function embedded in its own sum(). We now explain how to

achieve this.
In C++ it is possible to have a pointer to a function. As an example, a pointer to
a function that takes no arguments and returns a double is defined by:

double (*g) ();

The slightly bizarre notation is necessary because the function operator, (), binds
tighter than the indirection operator, *. (See Appendix B.) So if we wrote:

double *g();

this would actually be a declaration for a function that takes no arguments and returns
a pointer to a double. Apart from the fact that this declaration is not our intention,
the compiler would not allow us to do this inside a function body; we cannot declare a
function inside another function.

So our modified sum() function could be written as:
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double sum(double (*g)(int m), int n)

{
double temp = 0.0;
for (int = 0; i < n; ++i)
temp += (xg) (i);
return temp;
}

In the header for this function, g is declared to be a pointer to a function that takes
an argument of type int. (The identifier, m, could be omitted.) Notice that since g is
a pointer it must be dereferenced when it is used in the body of sum(). However, the
usual function notation, as in:

temp += g(i);

is also permitted in this situation as the two forms are defined to be equivalent. This
is consistent with the name of a function being that function’s address.

A complete program in which the sum() function invokes two different functions is
given below.

#include <iostream>

#include <cmath> // For pow()
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

double f2(int i);
double f4(int i);
double sum(double (*g)(int m), int n);

double f2(int i)

{
return 1.0 / (i * i);
}
double f4(int i)
{
double temp = i * 1ij;
return 1.0 / (temp * temp);
}
double sum(double (*g)(int m), int n)
{
double temp = 0.0;
for (int 1 = 1; i < n; ++i)
temp += (xg)(i);
return temp;
}

int main()
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{
cout << "Approximations to the Riemann Zeta " <<
"functions are:\n\n";
cout << "Zeta(2) = " << sum(f2, 20) <<
"\nA better approx. is " << M_PI * M_PI / 6.0 << "\n\n";
cout << "Zeta(4) = " << sum(f4, 20) <<
"\nA better approx. is " << pow(M_PI, 4) / 90.0 << "\n\n";
return (EXIT_SUCCESS) ;
}

We have already come across the pow() library function in Section 5.9.2. It returns
the value of x raised to the power y. Notice that in the above program we need to pass
the address of the appropriate function as the first argument to sum(). We do this by
using £2 and £4 without the usual function call operator, (). This syntax is analogous
to x being the base address of an array, x[].

Exercise

(a) Compile and run this program (which evaluates the Riemann Zeta
function, {(n), for n = 2 and 4).4

(b) Replace £2() by a function that calculates 1/i!, and £4 () by a function
that calculates —(—1)!/i. Hence, use sum() to calculate the well-
known constants e and In2. Check these constants against M_E and
M_LN2 defined in <cmath>.

We can now use the pointer to a function technique to improve our root program,
given in Section 5.9.2. The modified program is given below.

#include <iostream>

#include <cmath> // For exp(), pow(), cos()
#include <cstdlib> // For exit()

using namespace std;

// Function declarations:

double f(double x);

double root(double x1, double x2, double f1, double f2,
int &depth);

double find_root(double (*g)(double), double x1, double x2,
int &depth);

double f(double x) // A solution of f(x) = 0 is required.
{

return (exp(x) + pow(2.0, -x) + 2.0 * cos(x) - 6.0);
}

double root(double x1, double x2, double f1, double f2,

4The Riemann Zeta function is defined by ¢(s) = S -  k~5. See [11] for further details.
k=1
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int &depth)
// Finds a root of f(x) = 0 using bisection.
// Assumes that x2 >= x1 and f1 * £2 < 0.0

{
const int max_depth = 50;
const double x_limit = 1le-5;
double estimated_root;
double x_mid = 0.5 * (x1 + x2);
if (x2 - x1 <= x_limit)
estimated_root = x_mid;
else if (++depth > max_depth) {
cout << "WARNING: maximum limit of " << max_depth <<
" bisections reached.\n";
estimated_root = x_mid;
}
else {
double f_mid = f(x_mid);
if (f_mid == 0.0) {
// Zero at x_mid.
estimated_root = x_mid;
}
else if (f(x1) * f_mid < 0.0) {
// Zero in first segment.
estimated_root = root(xl, x_mid, f1, f_mid,
depth);
}
else {
// Zero in second segment.
estimated_root = root(x_mid, x2, f_mid, f2,
depth);
}
}
return estimated_root;
}

double find_root(double (*g)(double), double x1, double x2,
int &depth)
{
double f1 = g(x1);
double f2 = g(x2);
if (£1 * £2 > 0.0) {
cout << "Error in find_root(): " <<
"end-points have same sign\n";
exit (EXIT_FAILURE) ;
}
else if (x2 - x1 > 0.0)
return root(xl, x2, f1, £2, depth);
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else
return root(x2, x1, f2, f1, depth);
}
int main()
{
int depth = O;
double x = find_root(f, 1.0, 2.0, depth);
cout << "Root is " << x << " recursion depth = " <<
depth << "\n";
cout << "f(x) at root = " << f(x) << "\n";
return(EXIT_SUCCESS) ;
}

The function for which we want to find a root is passed as an argument to find_root (),
rather than being embedded in the body of find_root (). This means that it is now
straightforward to implement root finding for a number of different functions. A further
improvement on the original program is that since depth is defined in main() (rather
than as a static within the body of root ()) its value can be reset to zero. This would
enable a single program to use the root() and find_root() functions to discover
multiple roots.

Exercise
Compile and run this root-finding program for a variety of different func-
tions. Some suggestions are:
(a) fla) = e —2—2
(b) g(z) = 1000z —x — 1
(c) v(r) = (5.67 x 10%)e=21-5(r/?) —1.08(2)% where o = 4.64.
(v(r) is an approximation to the potential energy between two helium
atoms.)

Declarations involving pointers to functions often look quite complicated, as in:

double f(double (*p1)(double), double (*p2)(double),
double (*p2) (double));

but a typedef can provide some simplification. For instance, we could declare a typedef
for a pointer to a function taking a single double argument and returning a double
by using the following statement:

typedef double (¥PT_FUNC) (double);
This would enable us to write the declaration for £() as:

double f(PT_FUNC p1, PT_FUNC p2, PT_FUNC p2);

Exercise

Modify the root-finding program on page 168 by declaring a typedef for
a pointer to a function taking a single double argument and returning
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a double. Use this typedef in place of double (*p1)(double) in the
function arguments. Verify that your modified program gives the same
result as the original version.

After working through this section you should understand our remark in Chapter 5,
that to invoke a function, the syntax is:

£0O;
rather than:
f;

The latter statement, without any parentheses, achieves nothing since f is the address
of the function; an analogous error for an array, x[], is:

X5

7.6 Dynamic Memory Management

At the time of writing a program, the size of an array may not be known. For instance,
the size might depend on how much data we manage to collect or how much memory
is available on the particular computer running our program. One way of coping with
these situations is to define array sizes by means of global constants, such as:

const int MAX_DATA_POINTS = 100;

double pressure[MAX_DATA_POINTS];
double height [MAX_DATA_POINTS];
double temperature[MAX_DATA_POINTS];
double humidity[MAX_DATA_POINTS];

If the complete program consists of more than one source file, then the array size
definition is best placed in a header file so that modifying the header file automati-
cally adjusts the array size throughout the files. However, each change necessitates
re-compiling and re-linking the program, both of which can be very time-consuming
processes. Also, it may not be clear whether an array is needed until the program is
actually running. A further difficulty is that the useful lifetime of an array within a
program may not be obvious at compile-time.

Fortunately, in C++ it is possible to allocate and deallocate memory while a pro-
gram is running; such techniques are often known as dynamic memory management.
A C++ program has access to an area of memory, commonly known as the heap or the
free store. Requests can be made to allocate contiguous portions of this memory and,
when no longer required, the memory can be returned to the free store. The operators
that allocate and deallocate memory are called new and delete respectively. These
operators hide the necessary book-keeping associated with dynamic memory manage-
ment. For example, it is not necessary to calculate the number of bytes of memory
required to store a particular object, nor it is necessary to keep a record of what areas
of memory remain unallocated.
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7.6.1 Allocating Memory

The new operator returns the address of sufficient memory to store the specified fun-
damental or derived type. If we want to allocate memory to store a single object, then
the syntax is as demonstrated in the examples given below.

int *pt_i = new int; // *pt_i can store an int.
float *pt_f = new float; // *pt_f can store a float.
double *pt_d = new double; // *pt_d can store a double.

We could, of course, define the pointer and invoke the new operator in two separate
statements, as in:

double *pt;
pt = new double;

Accessing dynamically allocated objects is straightforward, except that since we have
a pointer to an address, we need to dereference the pointer, as demonstrated by the
following code fragment:

float *pt = new float;

*pt = 100.14; // 0.K. Assigns 100.14 to *pt.
cout << "*pt =" << *pt << "\11";
float x = pt; // WRONG: pt is a pointer not a float;

In the above examples, the new operator allocates memory, but does no initializa-
tion. It is possible to allocate and initialize with the same statement by enclosing the
initializing expression in parentheses, as illustrated below.

float *pt_pi = new float(3.14); // 3.14 assigned to *pt_pi.

Notice that pt_pi stores the address of the allocated memory, so it is the memory
pointed to by pt_pi that is initialized, rather than pt_pi itself. It is possible for the
initializing expression to be missing; this is equivalent to omitting the parentheses and
consequently the memory stores an arbitrary initial value, as shown below.

float *sum = new float(); // 0.K.
for (int i = 0; 1 < 10; ++i)
*sum += 1i; // WRONG: the initial value of
// *sum may not be zero.

It is not meaningful to use the new operator to allocate memory for a function, but
memory for a pointer to a function can be allocated. In Section 7.5 it was explained
that:

double (*g) (void);
or
double (*xg) ();

defines a pointer to a function, having no arguments and returning a double. The
following statement allocates memory for such a pointer:
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double (¥*g) () = new(double (*)());
Notice that we have used a function-like syntax for new. The statement:
double (*¥*g) () = new double (*)(); // WRONG!

is incorrect because operator precedence (see Appendix B) implies that this is actually
equivalent to:

double (x*g) () = (new double) (*) (); // WRONG!

which is not what was intended.
The need to dereference g twice, together with the multiple parentheses may be a
bit hard to follow. However, the following program should clarify the ideas involved:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

double f()

{
return 3.142;

}

int mainQ)

{
double (¥*g) () = new(double (*)());
*g = f;
cout << "pi = " <L (**g)() << ll\nu;
return(EXIT_SUCCESS) ;

}

The (trivial) function f () takes no arguments and returns a double. The first state-
ment in main() allocates memory for a pointer to a function taking no arguments
and returning a double. Consequently, g is a pointer to a pointer to a function. The
second statement in main() then assigns the address of the function £() to the dy-
namically allocated memory. Finally, in order to invoke the function f () by means of
the dynamically allocated memory, we need to dereference g twice; hence the (**g) ()
syntax.

If a program is doing a lot of dynamic memory management, it may run out of free
store, in which case the new operator will not be able to allocate the required memory.
Since this would be disastrous for any program, we need some way of detecting a
memory allocation failure. The old method (in pre-ANSI C++) was for new to return
a null pointer. Since it is guaranteed that the null pointer does not point to valid
memory, a test for the null pointer is a test for memory allocation failure. The following
code fragment demonstrates this idea:

float *pt = new float(3.1415926);

if (pt == 0) {
cout << "Failed to allocate memory for pt.\n";
exit (EXIT_FAILURE);
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However, in ANSI C++ a memory allocation error “throws an exception”, which is then
“caught” by a Standard Library function. The result is that if a memory allocation
fails, then the program terminates with a system-supplied error message.® From now
on we will assume we are using an ANSI compliant C++ compiler and that any failure
of dynamic memory allocation will throw an exception. If this is so, there is no point
in testing for a null pointer because the program will terminate before the test can be
made.

For fundamental types, such as int, float, double etc., there is usually little, if
anything, to be gained by using the new operator to allocate memory for single objects.
But derived types, such as arrays and class objects, may require a lot of memory and
then the new operator can prove to be very useful. A class is a rather special derived
type that will be described in Chapter 8. Here we consider dynamic memory allocation
for arrays of the fundamental types.

The syntax for dynamically allocating memory for an array of objects is a bit
different from that used for a single object. Instead of using new, the new [] operator
is used to allocate memory for an array, as demonstrated by the following statements:

int *pt_i = new int[10]; // Array of 10 ints.
double *pt_d = new double[100]; // Array of 100 doubles.
char *pt_c = new char[10]; // Array of 10 chars.
int *pt = new(int[10]); // Alternative syntax.

In each case, the base address of the array is assigned to a pointer. To access the array
we can either explicitly dereference or, equivalently, use the standard array-subscripting
notation, as illustrated by the following code fragment:

int *m = new int[10];
*(m+2) = 4; // Assigns 4 to element m[2].
m[9] = m[2]; // Assigns 4 to element m[9].

Notice that square brackets are used to enclose the expression specifying the number of
elements required in an array. For example, the following statement does not allocate
an array of ten elements; instead it allocates memory for a single int and then initializes
that memory by storing the value 10:

int *pt = new int(10); // Initializes *pt to 10, instead of
// requesting an array of 10 ints.

The new [] operator can also be used to allocate an array of pointers. In the
following statement, the base address of memory, sufficient to store twenty pointers to
type double, is assigned to pt:

double **pt = new(double *[20]);

Notice that pt is a pointer to a pointer to double. One advantage of dynamic memory
allocation is that there is no need to know how much memory is required when the
program is compiled. This is illustrated by the following code fragment:

int 1i;

// Assignment to i goes in here.

float **pf = new(float *[i]);

5A detailed description of exception handling is given in Chapter 15.
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In this example, the new [] operator dynamically allocates memory to store i pointers
to type float, using the run-time value of 1.

Exercise

Modify the program that used ragged arrays (in Section 6.9.2) so that all
arrays are allocated dynamically.

Multi-dimensional arrays can also be allocated dynamically. The following code
fragment illustrates the syntax:

int i;
// Assignment to i goes here.
float (*x)[10][20] = new float[i] [10][20];

This example allocates memory for an i x 10 x 20 three-dimensional array of type
float. The sizes associated with all array indices, apart from the first, must be positive
constants since the compiler needs to create a storage map, but the value of i need
only be known at run-time. A dynamically allocated multi-dimensional array can
be accessed by means of the standard notation (in this case x[i] [j] [k]), since x is
actually a pointer to an array.’

Memory can also be dynamically allocated for an array of pointers to functions.
The following statement assigns to g the base address of an array of ten pointers to
functions, where each function returns a float and takes no arguments:

float (x*g)() = new(float(x[10])());

Now that we have introduced the idea of dynamically allocated arrays, it is worth
noting some important features:

e If, for example, we define an array by:
int m[10];

then m is an unmodifiable lvalue and we cannot assign to m. Consequently the
following code is incorrect:

int m[10], *pt;
// Assignment to pt goes here.
m = pt; // WRONG: cannot assign to a constant.

However, if the array is dynamically allocated, then m is of type pointer to int
and can be used to hold any int address:

int *m, *pt;

m = new int[10];

// Assignment to pt goes here.

m = pt; // 0.K. (but probably unwise).

SNotice that x is not an array of pointers, but rather a pointer to an array. See Section 6.8.
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e Dynamically allocated memory remains allocated even when control passes out
of the function where the new operator was invoked. To illustrate this, consider
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Such assignments are often the result of a mistake since the base address of
a dynamically allocated array is a valuable piece of information; without this

information we cannot access or deallocate the array.

the following program:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

double *f(void)

{
double *x;
x = new double[20]; // Allocates memory.
for (int i = 0; i < 20; ++i)
x[i] = i; // Assigns to elements.
return x; // Returns base address of array.
} // x goes out of scope.

void g(void)

{
double *pt;
pt = £0O; // Assigns base address of allocated
// array to pt. (x is not in scope.)
for (int i = 0; i < 20; ++i)
cout << "x["<< i << "] = " << pt[i] << "\n";
}
int main()
{
g0;
return(EXIT_SUCCESS);
}

The function f() dynamically allocates memory for an array of 20 elements of
type double. The base address for this memory is assigned to the pointer x. After
assigning numbers to the elements of x[], this function returns the value of the
base address of the dynamically allocated memory. At this point, the variable
x goes out of scope and the memory allocated to x may well be used to store
another object of a different type. However, the dynamically allocated memory
persists, as is demonstrated by the fact that we can successfully list the integers

stored in this memory.

When the new [] operator is used to allocate an array, initializers cannot be

specified. Consequently, the following statement is not correct:

int *pt = new int(3]1(1, 7, 2); // WRONG
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Attempts at variations on the array initialization syntax of Section 6.6 are also
invalid. For example, the following statement will not compile:

int *pt = new int[3]{1, 7, 2}; // WRONG

e The elements of dynamically allocated arrays have arbitrary initial values. Conse-
quently, the following code fragment will compile but may give the wrong results:

float *velocity
for (int i = 0; < 10; ++i)
velocity[i] = 3.142 * i;
float *total_velocity = new float[10];
for (int i = 0; i < 10; ++i)
total_velocity[i] +=
velocity[i]; // WRONG: total_velocity[i] may
// not be initially zero.

new float[10];

([t

One minor restriction on the new and new [] operators is that the type cannot
include the const specifier. Consequently, the following statement is not valid:

const int *pt_i = new comnst int[10]; // WRONG: const not allowed.

This is perfectly reasonable because pt_i simply stores whatever address is allocated
at run-time.

7.6.2 Deallocating Memory

Once memory is allocated dynamically, then unless the memory is explicitly deallo-
cated, the allocation is valid until the program terminates. The delete operator is
used to perform this deallocation for single objects and the syntax is demonstrated by
the following code fragment:

float *pt_f = new float;

int *pt_i = new int;

// Code accessing *pt_f and *pt_i.
delete pt_f£;

delete pt_i;

A different notation is used for deleting arrays. Arrays are deallocated by using the
delete[] operator, as shown below.

int *pt_i = new int[10];

double *pt_d = new double[100];

// Code accessing pt_i[i] and pt_d[i].
delete[] pt_i;

delete[] pt_d;

Notice that we don’t specify the number of elements to be deleted since the the compiler
keeps track of the array size.
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It is important to use the correct version of the delete operator when deallocating
memory. Using delete to deallocate an array, or using delete[] to deallocate a single
object, will have unpredictable and possibly disastrous consequences. Examples of
what not to do are given below.

int *pt = new int;

int *pt_array = new int[10];

// Code accessing pt and pt_array goes in here.
delete[] pt; // WRONG: should use delete.
delete pt_array; // WRONG: should use delete[].

In general, incorrect attempts to use the delete or delete[] operators may not
be detected by the compiler. If you are lucky, you may get a run-time error message.
At worst, the consequences of a bad deletion will only show up at some later point in
the program execution and the cause of the failure will be difficult to locate. Typical
errors, some of which will be trapped by a good compiler, are:

e Deleting memory that was not allocated by new is undefined, as in:

int a[10];
// Code accessing a[i] goes here.
delete[] a; // WRONG: a[10] was not allocated by new.

e Since a const object cannot be allocated by new, such objects cannot be deleted.
An example is given below.

const int a[4] = {100, 200, 300, 400};
// Code accessing a[i] goes here.
delete[] a; // WRONG: a[] was not allocated by new.

e Deleting memory that has already been deallocated has undefined consequences,
as in:

int *p = new int[10];
// Code accessing int[i].

delete[] p; // 0.K.
// More code.
deletel] p; // WRONG: memory already deallocated.

However, applying either the delete or delete[] operator to the null pointer
does nothing since the null pointer is guaranteed not to point to a valid address.
For this reason, some programmers always set a pointer to null after the mem-
ory associated with that pointer has been deallocated. This ensures that any
subsequent accidental attempt to deallocate the same memory is harmless, as
illustrated by the following:

int *p = new int[10];
// Code accessing int[i].
delete[] p; // 0.K.
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p = 0;
// More code.
deletel] p; // Harmless attempt to deallocate

// memory already deallocated.

e Once the dynamically allocated memory has been deallocated, that same memory
may get allocated for some other object or the values stored in memory may even
have been changed by the deletion. Consequently, memory must not be accessed
once it has been deallocated and the following is incorrect:

int *p = new int[20];
// Code accessing plil.
delete[] p;
cout << "p[0] = " <<
*p << "\n"; // WRONG: memory deallocated.

Exercise

Use the delete operator to deallocate memory in the ragged array program
developed for the exercise on page 175.

7.7 Pass by Reference and Reference Variables

7.7.1 Reference Arguments

In Chapter 5 it was emphasized that function arguments in C++ are normally passed
by value; that is the function makes a copy of the value of each argument and then
manipulates these copies. However, sometimes a function needs to make changes in the
calling environment. One way of doing this was given in Section 7.2 where the swap ()
function used the dereferenced variables *pt_x and *pt_y. This use of pointer argu-
ments to change values in the calling environment is notationally rather cumbersome
and it is possible to overcome this inconvenience by specifying that some or all of the
function arguments are to be passed by reference. The syntax used to denote reference
arguments, as they are known, is demonstrated below.

void swap(int &x, int &y)

{
int temp;
temp = x;
X =Y;
y = temp;
}

In this context the token, &, is known as the reference declarator and simply means that
the function arguments are to be passed by reference.” There is no direct connection
with the address-of operator and in no sense does taking the address of x give the int

"Notice that in this context the & token is not an operator but rather is used in the declaration of
a type.
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type. The way in which our new swap () function is invoked is rather different from and
certainly more convenient than using the pointer notation. As the following program
demonstrates, a call by reference looks just like an ordinary function call:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

void swap(int &x, int &y)

{
int temp = X;
X =y;
y = temp;
}
int main()
{
int i = 10, j = 20;
swap(i, j);
cout << "i =" << i <" j =" << j << "\n";
return(EXIT_SUCCESS) ;
¥

As with pointers, pass by reference erodes the modularity of functions since in order
to find out how variables are changed in the calling environment, we need to examine
the function body. There is even more chance of unexpected changes because in the
calling environment there is no indication that the arguments are actually passed by
reference. Consider the code fragment given below.

int sum = 0;
for (int i = 0; i < 10; ++i)
sum += dark_sheep_function(i);

The dark_sheep_function() may actually have very unpleasant side-effects. For ex-
ample, the following definition of the function would cause the above loop to continue
for ever:

int dark_sheep_function(int &i)
{

__i;

return i * i;

}

Due to the possibility of such effects, it is only worth using pass by reference when it
is really necessary, such as when a function needs to access a large quantity of memory
or to change variables in the calling environment.

One restriction on functions that use pass by reference is that they cannot be
invoked with a temporary as an argument. For example, the following statement is
illegal for our swap () function:
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swap (10, 20);

In this case swapping 10 and 20 is clearly futile, but even a function that does not
modify the value of a reference argument cannot be invoked with a temporary as an
argument.

If a function argument that is passed by reference does not get modified by that
function, then it is worth using the const specifier. For example, the following declares
a function that uses pass by reference but doesn’t change its argument:®

void f(const float &x);

You will find that you are forced to be consistent and to introduce the specifier at a
lower level. For instance, the following code segment does not compile:

void g(float &x);
void h(float *pt);

void f(const float &x)

{
g(x); // WRONG!
h{&x) ; // WRONG!
float *pt = &x; // WRONG!
// Use pt here.

}

This is because the function g() uses pass by reference and the function h() has a
pointer as an argument. Either of these functions could attempt to modify x. Moreover,
assigning the address of x to the pointer pt would open up the possibility of changing
the value of x by subsequently dereferencing pt. However, we can tell the compiler
that none of these possibilities can happen by using the following code:’

void g(const float &x);
void h(const float *pt);

void f(const float &x)

{
g(x);
h(&x);
const float *pt = &x;
// Use pt here.
}

One advantage of the const specifier for functions using pass by reference is that
invoking such functions with a temporary as an argument s legal; for instance:

£(1.414);

8This example is only for illustration since it is not actually worth using pass by reference for
a const fundamental type. More realistic examples involve class objects, which are introduced in
Chapter 8.

9You would of course need to supply function definitions for g() and h() somewhere.
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is valid with the above declaration for £ ().

Exercise

Use pass by reference to implement and test a function that interchanges
the values of three variables, x, y and z, so that z < y < z. The three
variables should have the type double.

7.7.2 Reference Return Values

It is also possible for functions to return a reference. For instance:

double &component (double *vector, int i)

{

return vector[i];

}

returns the reference, vector[i]. The fact that the function returns a reference is
specified by the & in the function header. However, the way in which such a function
is invoked is no different from our previous use of functions. For instance, an example
of invoking the component () function is given below.

double x[10], y;
x[4] = 72.3;
y = component(x, 4); // Assigns 72.3 to y.

What is new is that we can also put the component () function on the left-hand side
of an assignment, as demonstrated by the following statement:

component (x, 5) = 34.7; // Assigns 34.7 to x[5]

This is something we can only do by returning a reference.
So far, our component () function is too much like the C++ array element to be
useful, but suppose we define the function as follows.

double &component(double *vector, int i)

{
return vector[i-1];

}

We can now access the components by indexing from 1 rather than 0, as demonstrated
below.

double x[10], y;
component (x, 10) = 72.3; // Assigns 72.3 to x[9].
y = component(x, 10); // Assigns value of x[9] to y.

By using more advanced techniques, it is possible to write a version of component ()
that uses a less cumbersome notation. Such techniques are introduced in Chapter 9.
Exercise

Write a simple program to verify that it really is x[9] that gets assigned
the value 72.3 in the above code fragment.
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You must be careful when returning a reference, since effectively an address is
passed back to the calling environment. This means that you must return something
that has scope outside the function. It is no good returning a reference to an object
that is defined inside the function, since that memory may well be reused when control
leaves the function. For instance, consider the two functions given below.

double &square(double x)

{
double temp = X * X;
return temp; // WRONG: temp goes out of scope outside
// the function body.
}
double &new_component (double *p, int i)
{
return(2 * p[il); // WRONG: cannot return a reference
// to an expression.
}

In the square() function, the temp variable goes out of scope when control is passed
back to the calling environment. The memory used by temp may then be used for
something completely different. The error in the new_component () function is very
similar since an implicit temporary variable is created for the expression. Such mistakes
in using reference returns are similar to returning a pointer to a local array, as in the
following code fragment:

double *array(int i)

{
double x[10];
// Assignments to x[] go here.
return &x[i]; // WRONG! x[] goes out of scope outside
// the function body.
}

However, this type of error is probably more obvious.

7.7.3 Reference Variables

Use of the reference declarator is not restricted to functions. Consider the following
code fragment:

int x;

int &y = x;

x = 10;

cout << "y = " <<y << "\n";

In this example, y is known as a reference variable. The statement:

int &y = x;
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means, in effect, that y is an alias for x. There is a single memory location that is
allocated by the statement:

int x;

The value for x and y is held in this same memory location and changing the value of
one changes the other, as demonstrated in the following program. (Try it!)

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
int x;
int &y = x;
x = 10;
cout << "y = " <<y << "\n";
y = 200;
cout << "x = " << x << "\n";
return (EXIT_SUCCESS) ;
}

This use of the reference declarator is consistent with its use in function arguments. In
our swap() function example on page 180, x and y are reference variables or aliases for
the actual variables supplied when the function is called (i and j in the example given).
However, in the above example, the way in which changing the value of x changes y
(and vice versa) is confusing; it would be far better to remove the redundant variable.
Indeed, there does not seem to be much purpose in having reference variables, except
in the context of function arguments and return statements.

Two restrictions on reference variables are that they must be initialized at the time
of declaration and that a reference variable cannot subsequently be changed to refer to
a different object. The following code fragment demonstrates both of these errors:

int x, y;

int &a = x; // 0.K.

int &b; // WRONG: no initializer.

&a = y; // WRONG: attempt to re-initialize reference.

7.8 Using Pointers, Arrays and Strings

In this section, we develop two programs that demonstrate most of the ideas intro-
duced in this chapter. The first program implements matrix addition and the second
implements an alphabetic sort.
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7.8.1 Matrix Addition

Suppose we want to add two m X n matrices, A and B, whose elements are real numbers.
Mathematically we would write this as:

C=A+B
where the elements of C are given by:
Cij = Qqj + bij

In C++ it would be natural to store the matrices as two-dimensional arrays, as in the
following declarations:

double a[MAX_ROWS] [MAX_COLS];
double b[MAX_ROWS] [MAX_COLS];
double c[MAX_ROWS] [MAX_COLS];

However, with this approach we are forced to decide on the maximum sizes of the
matrices before the program is compiled.

Another point worth bearing in mind, it that we might be tempted to implement
matrix addition by something like the following:

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
clil [j]1 = alil[j] + blil(j];

However, this is an inefficient implementation since each access of a two-dimensional
array, a[i] [j], implicitly uses pointer arithmetic of the form:

*(&a[0] [0] + i * MAX_COLS + j)

It would be more efficient to use pointers to scan directly through the memory used to
store the matrices.
Finally, it is also worth noting that array indices in C++ take the values 0, 1, 2
.., rather than 1, 2, 3 ..., as is often more natural for scientific applications.
So our project is to write a program to try out matrix addition. A possible program
is given below.

#include <iostream>
#include <cstdlib> // For exit()
using namespace std;

// Function declarations:

double *create_matrix(int rows, int columns);

double &element(double *pt_matrix, int columns, int row,
int column);

void add_matrices(double *pt_result_matrix, double *pt_matrix_a,
double *pt_matrix_b, int rows, int columns);

void print_matrix(double *pt_matrix, int rows, int columns);
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double *create_matrix(int rows, int columns)
// Dynamically allocates matrix.
{
double *pt = new double[rows * columns];
return pt;

double &element(double *pt_matrix, int columns, int row,
int column)

{

return *(pt_matrix + (row - 1) * columns + column - 1);

void add_matrices(double *pt_result_matrix, double
xpt_matrix_a, double *pt_matrix_b, int rows, int columns)

{
double *pt_end = pt_result_matrix + rows * columns;
while (pt_result_matrix < pt_end)
*pt_result_matrix++ = *pt_matrix_a++ + *pt_matrix_b++;
X

void print_matrix(double *pt_matrix, int rows, int columns)
{
for (int i = 1; i <= rows; ++i) {
for (int j = 1; j < columns; ++j) {
cout << element(pt_matrix, columns, i, j) << " ";

}
if (columns != 1)
cout << element(pt_matrix, columns, i, columns)
<< Il\nll ;

}
cout << "\n";

}

int main(int argc, char *argv[])
{
if (arge '= 3) {
cout << "Usage: mult <rows> <columns>\n";
exit (EXIT_FAILURE) ;
}
int rows = atoi(argv{1]);
if (rows < 1) {
cout << "Rows in matrix = " << rows <<
" \nMust have: 0 < rows.\n";
exit (EXIT_FAILURE);
}

int columns = atoi(argv[2]);
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if (columns < 1) {
cout << "Columns in matrix A = " << columns <<
".\nMust have: O < columns.\n";
exit (EXIT_FAILURE) ;
}

// Create matrices:

double *pt_a = create_matrix(rows, columns);
double *pt_b = create_matrix(rows, columns);
double *pt_c = create_matrix(rows, columns);

// Fill matrices:
for (int i = 1; i <= rows; ++i) {
for (int j = 1; j <= columns; ++j)
element (pt_a, columns, i, j) =

{
ix (3 +1);
element (pt_b, columns, i, j) = (

i+2) % (§+ 3);

// Print matrices:

cout << "Matrix A:\n";
print_matrix(pt_a, rows, columns);
cout << "Matrix B:\n";
print_matrix(pt_b, rows, columns);

// Add matrices:
add_matrices(pt_c, pt_a, pt_b, rows, columns);

// Print results:
cout << "Result of adding matrices:\n";
print_matrix(pt_c, rows, columns);

return (EXIT_SUCCESS) ;
}

The way this program works is that command line parameters are passed to main()
by using the function arguments. If the compiled program is in a file called add (or
whatever is required on your system) then:'%

add <rows> <columns>

causes the program to start executing. For example, if we entered the following at the
command line prompt, then the program would test addition for 4 x 5 matrices:

add 4 5

The first thing that main() does is to check that argc is equal to three; if it is not,
then the correct syntax has not been used and there is no point in proceeding further.

0Throughout this book, command parameters are delimited by <>. This should not be confused
with the notation for templates, introduced in Chapter 16.
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If argc is correct, the C++ library function, atoi(), is used to convert the argv[]
strings to integers, which are then checked to ensure they have appropriate values.!!
Next, we dynamically allocate three contiguous areas of memory with sufficient size to
store data for the three matrices. In order to test addition, two matrices are filled with
data corresponding to:

ai; =i(j+1)

and:
bij =(t+2)(j+3)

by using the element () function. The elements of these matrices are then sent to the
output stream. Finally, the matrices are added and the result is also sent to the output
stream.

Having given an overall picture of what the program actually does, we can now
look at the remaining functions. The create_matrix() function returns the address
of dynamically allocated memory for a rows x columns matrix. The element () func-
tion uses a reference return statement so that assignments can be made to matrix
data. Notice that indices (called row and column in the element () function) take the
values 1, 2, 3 ..., rather than 0, 1, 2 .... Next, have a look at the add_matrices()
function. Notice that it uses pointers rather than array indices and that it scans the
one-dimensional memory space rather than the two-dimensional space of matrix rows
and columns. Finally, the print_matrix() function makes straightforward use of the
element () function to print the matrix data.

There are many improvements that could be made to this program by using tech-
niques that are introduced in subsequent chapters. Such improvements include:

o defining a matrix by the statement:
matrix a(rows, columns);
e assignment to the ¢jth matrix element by statements such as:
a(i, j) =i * (j + 1):
e printing a matrix, a, by:
cout << a;
e adding matrices by:
c =a+ b;

Exercise

Compile and link the program described in this section. Check that the
correct answers are given for various rows and columns. Also check the
answers when other values are assigned to the matrix elements.

11We have already met the atoi() function in Section 7.4.
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7.8.2 An Alphabetic Sort

Earlier in this chapter, we remarked that engineers and scientists don’t usually spend
much time manipulating strings. However, just as an exercise, let’s assume we want to
write a program that will produce an ordered list of words. The input to our program
is to be a list of words, each entered on a separate line. We will assume that the words
must be converted to lower case and listed alphabetically. We will also impose the
condition that we don’t want the program to be restricted in either the number or
length of the words. The number of words in the list is to be entered as a command
line argument.
As an example, of what we expect the program to do, if we enter:

Inheritance
new

delete
class
object
overload
address
Constructor
inline
private

then the result should be:

address
class
constructor
delete
inheritance
inline

new

object
overload
private

The complete program for this project is given below.

#include <iostream>

#include <cstdlib> // For exit(), atoi()
#include <cstring> // For strlen(), strcmp(), memcpy()
#include <cctype> // For tolower()

using namespace std;

// Function declarations:

void get_words(char *xpt_words, int words);

void list_words(char **pt_words, int words);

void words_to_lower_case(char **pt_words, int words);
void word_to_lower_case(char *word);

void bubble_sort(char **pt_data, int elements,
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void (*order) (char*x*));
void order_strings(char **pt);

void get_words(char **pt_words, int words)

{
char buffer[128];
for (int entry = 0; entry < words; ++entry) {
cin >> buffer;
int length = 1 + strlen(buffer);
pt_words[entry] = new char[length];
memcpy (pt_words [entry], buffer, length);
¥
}
void list_words(char **pt_words, int words)
{
cout << "\n";
for (int i = 0; i < words; ++i)
cout << pt_words[i] << "\n";
}

void words_to_lower_case(char **pt_words, int words)
{
for (int i = 0; i < words; ++i)
word_to_lower_case(pt_words[i]);

}
void word_to_lower_case(char *pt)
{
while (xpt) {
*pt = tolower (xpt);
++pt;
}
}

void bubble_sort(char **pt_data, int elements,
void (*order) (charx*x))

{
int n = elements - 1;
for (int i = 0; i < n; ++i)
for (int j =mn; j > i; --j)
order (pt_data + j - 1);
}

void order_strings(char **pt)
{

char *temp;
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if (stremp(pt[0], ptl[1]l) > 0) {
temp = pt[0];
pt[0] = pt[1];
pt[1] = temp;

int main(int argc, char xargv([])
{
if (arge '= 2) {
cout << "Usage: my_sort <number of words>\n";
exit (EXIT_FAILURE);
}
int words = atoi(argv[1]);
if (words < 1) {
cout << "Cannot enter " << words << " words\n";
exit (EXIT_FAILURE);
}

char **pt_words = new char *[words];

get_words(pt_words, words);
cout << "\nOriginal list:\n";
list_words(pt_words, words);

words_to_lower_case(pt_words, words);
cout << "\nLower case list:\n";
list_words (pt_words, words) ;

bubble_sort(pt_words, words, order_strings);
cout << "\nOrdered lower case list:\n";
list_words(pt_words, words);

return (EXIT_SUCCESS) ;
}

As a first step in understanding this program, have a look at the function main().
After checking the command line parameters, main() finds the number of words to be
sorted by converting argv[1] from a string to an integer by using the library function
atoi().'? The function main() next gets the words from the input stream, lists the
words, converts them to lower case and lists them again. Then the list is sorted using
a bubble sort and the sorted list is displayed.

Next consider the get_words () function.!® In order to allow for an arbitrary num-
ber of arbitrary length words, we store the characters in a ragged array. (See Sec-
tion 6.9.2.) The new operator is used to allocate an array of pointers, just sufficient to

128ee Section 7.4.

13This implementation is not very robust since it does not properly handle cases where the value of
words is inconsistent with the number of words actually in the list. Techniques for overcoming such
limitations are considered in Chapter 18.
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store all of the base addresses of strings, which in turn store the entered words. Each
word is first copied into a temporary buffer, which can store a word of up to 127 charac-
ters. (Although this wouldn’t cope with arbitrary length words, 127 characters should
be more than sufficient for any genuine word.) The C++ library function, strlen(),
declared in <cstring> as:

size_t strlen(const char *string);

returns the length of a string, excluding the >\0’ terminator, and knowing this length
enables us to dynamically allocate sufficient memory for the string. We then copy the
string from the buffer into this memory, using the library function, memcpy (). This
function is declared as:

void *memcpy(void *pt_1, const void *pt_2, size_t count);

and copies the number of characters specified by count from the memory pointed to
by pt_2 to that pointed to by pt_1. The function returns pt_1.

The list_words() function is very straightforward and shouldn’t need any fur-
ther explanation. The words_to_lower_case() function simply invokes the func-
tion, word_to_lower_case(). This function uses the library function, tolower (),
to convert any upper case character to lower case. This library function is declared in
<cctype> as:

int tolower(int c);

and returns the value corresponding to a lower case character for a value of ¢ corre-
sponding to a character of any case. Notice how word_to_lower_case () uses a pointer
instead of an index to step through the characters of a string. Also, notice that the
while loop terminates when the end-of-string character, ’\0’, is reached.

We use a bubble sort to arrange the words in alphabetical order. A bubble sort
sweeps through an array, comparing successive pairs of elements. If a pair is out of
order, then the elements are swapped. Here we use a pointer to a function (called
order) to do the comparison and reordering. This would allow us to invoke different
functions for different data types, ensuring that we could reuse the bubble_sort ()
function in other programs. To be sure of getting all of the elements in the correct
order, we must sweep through the array n times, where n is one less than the number
of elements. As a result, a bubble sort is very inefficient, the time taken being O(n?).

In the main() function, bubble_sort() is invoked with the address of a function
called order_strings() as the third argument. Notice how order_strings() uses
the library function, strcmp(), to compare two adjacent words and returns a value
greater than zero if the words are out of order. The amount of copying is reduced by
swapping the addresses of the strings within the pt_words[] array, rather than the
strings themselves. The argument of order_strings() is the address of the element
in pt_words[] that gives the address of the first word of the pair to be sorted. The
strcmp() function is declared in <cstring> as:

int strcmp(const char *string_1, const char *string_2)

and compares two strings, character by character. The function returns zero if the two
strings are identical.
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If the compiled program is in a file called my_sort, then we can run the program
by typing:!*

my_sort 10

at the system prompt, and then entering the ten words that we want to sort (one per
line). Having to type in the word list every time we want to run the program isn’t
very convenient. It would be much better if we could read the data from a file, and we
will learn how to do this in Chapter 18. In the meantime, depending on your system,
you may be able to use input and output indirection. Using an editor (not a word
processor) put your ten words (one per line) in a file called unsorted. Then try typing
the following at the system prompt:

my_sort 10 < unsorted > sorted

The < symbol implies that the input is to be taken from the unsorted file and the >
symbol similarly means that the output is to be placed in the sorted file. You can
then look at the contents of sorted by using a text editor. Of course, you are not
limited to ten words, so try the program with other inputs.

Exercise

A bubble sort is so-called because elements of an array are “bubbled” into
the correct order. Modify the above program so that you can observe this
happening as the sort proceeds, by sending the partially sorted lists to the
output stream.

7.9 Summary

e A string is a one-dimensional array of type char and is terminated by the ’\0’
character. A char array can be initialized by a string constant (a sequence of
characters inside double quotes), as in:

char message[] = "Hello world";
char another_message[80] = "Hello";

Notice the difference between a string constant and an array of type char.

e Use the string functions, declared in <cstring>, to carry out manipulations such
as string copying:

strcpy(another_message, "Bye");

but make sure that you allocate enough memory. In particular, don’t forget to
allow for the >\0’ end-of-string terminator.

e Declaring functions with pointer arguments, as in:

147t isn’t a good idea to call your program “sort”. This is because for some systems, such as UNIX,
there already exists a command with this name.
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void swap(int *pt_x, int *pt_y);

enables a function to change values in the calling environment. This is both
useful and potentially dangerous.

e Arrays can be passed as function arguments. Examples are:

double sum(double a[l, int n);
double trace(double al]l[5]);

All array sizes, apart from the first, must be known at compile-time.

e Command line arguments are implemented by using arguments to the function
main(), as in:

int main(int argc, char *argv[]) { // ... }
e For a function, £(), f is the address of the function. It is possible to define
a pointer to a function. For example, a pointer to a function that takes no
arguments and returns a double is defined by:

int (*pt) Q;

e Memory for a single object is dynamically allocated by using the new operator,
as in:

int *pt_i = new int;
and deallocated by the delete operator:
delete pt_i;

e Memory for an array of objects is dynamically allocated by using the new []
operator, as in:

int *pt_i = new int[10];
and deallocated by the delete[] operator, as in:
delete[] pt_i;

e The reference declarator, &, has three related uses:

— A function can change variables in the calling environment by using pass by
reference, as in:

void swap(int &x, int &y);
— Returning a reference, such as:

double &component(double *vector, int i);
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enables a function to be the left operand of an assignment operator. For
example:

component (x, 5) = 550.0;
— Reference variables create aliases to the same storage location:

double x;
double &y = x;

but such aliases are confusing and it is better to avoid them.

7.10 Exercises

1.

Modify the program developed in Section 7.8.1 so that it implements and tests a
matrix multiplication function.

Implement a function to transpose a matrix. The transposition should overwrite
the original matrix.

Modify the sort program so that it sorts a list of integers into ascending order.

The bubble sort in Section 7.8.2 continues comparing values even if an array is
in order after the first few passes. Write a version without this inefficiency.

Write a program that accepts a single word as a command line parameter and
then searches a list of lower case words. The program should print:

<n> OCCURRENCES OF <word>
or
NO OCCURRENCES OF <word>

depending on the result of the search. (You may wish to write a function that
generates a list of words for test purposes. In practice, the list would be read
from a file.)

Modify your program so that the list is sorted before being searched and the
search is terminated as soon as possible.

. A bubble sort is very inefficient. A much better method, invented by C. A. R.

Hoare, is known as Quicksort, the time taken being typically O(nlogn) rather
than O(n?).'® Quicksort is part of the ANSI C++ Library, where it is imple-
mented by a function called gsort (). (This function is declared in <cstdlib>.)
Use gsort () to sort a list of random integers. Compare the time taken to sort
the same list, using both a bubble sort and Quicksort. Do the times have the
expected dependency on the list size? (In order to be able to measure the times
on a modern computer you will either have to use very long lists or do the sort
many times.)

5The method is too complicated to describe in an exercise, but an explanation is given in [14].
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7. The Newton—Raphson technique was described in Exercise 4 of Chapter 4, but

now that we have introduced pointers to functions, we can implement a more
general version. Recall that given a function, f(z), the technique attempts to
find a zero of the function by successive iterations of the form:

f(xi)
f(@:)

Write a function to implement this technique. The function should have the
declaration:

Tit1 = Ti —

double newton(double x_lower, double x_upper,
double accuracy, void (*f_pt)(double *f_value,
double *f_derivative, double x));

where x_lower and x_upper are the lower and upper limits of an interval within
which a root is known to occur. f_pt is a pointer to a function that, given
z, calculates f(x) and f’(z), corresponding to *f_value and *f_derivative
respectively. The function, newton(), returns a root of f(x) when | f(z)]| is within
the specified accuracy.

For some functions, the Newton—-Raphson technique is very powerful, since it
converges quadratically to the root. However, because the method can go badly
wrong, you should include code to check whether the iteration has jumped out of
the specified interval and also put an upper bound on the number of iterations.

Try your Newton—-Raphson implementation for the functions:

(a) f(x) =€ +27%+2cosz — 6 in the range 1 <z < 2.

(b) f(z) =x — cosx in the range 0 < z < 7/2.
In each case, try various values for the accuracy parameter and list successive
approximations to the roots. How does the speed of convergence compare with

the bisection method described in Section 5.9.2?7 Try both methods for other
functions.



Chapter 8

Classes

Classes are an essential feature of object-oriented programming techniques and can
help to control the complexity of application programs. A class is a user-defined type
(sometimes called an abstract data type) that has its own collection of data, functions
and operators.! Various levels of data hiding are provided and these help to create an
interface to the class, hiding its implementation.

8.1 Declaring Classes

The basic syntax for a class declaration is:

class class_name {
// Class body goes here.
};

Notice the terminating semicolon. The class keyword introduces the class declaration
and class_name is the user-defined name for the class. The class body within the
braces can consist of variable declarations, together with function definitions and dec-
larations. Variables, functions etc. declared within a class body are known as members
of the class. More specifically, variables declared within a class are often called data
members and functions are known as member functions. It is also possible, by means
of overloading, to give operators a special meaning within the context of a class. We
leave any discussion of operator overloading until the following chapter.

As a particular example, let us suppose that we are working on a project that uses
spheres of various sizes and radii. The project may well use a variety of other shapes
but, in order to concentrate on the C++ language aspects of our project, we will just
consider spheres for most of this chapter. We start with the following declaration of a
sphere class:

class sphere {
double x_centre, y_centre, z_centre, radius;

};

IMore accurately, a class is an implementation of an abstract data type. A good discussion of this
distinction is given in [7].
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This gives us a user-defined type, analogous to the fundamental types, such as int,
double etc. However, we know that the type int does not itself allocate memory for
any int objects; this is done by defining instances of the type, as in the following
statement:

int i, j, k;

In exactly the same way, the sphere class does not allocate memory, but rather it
declares a type. However, we can define instances of the class and these do allocate
memory. For example, the following statement defines spherel, sphere2 and sphere3:

sphere spherel, sphere2, sphere3;

Such instances of a class are known as objects. These are the objects of object-oriented
programming. In this example, each object stores its own radius, together with the
Cartesian coordinates of its centre.

It is possible to define objects by means of the same statement as the class decla-
ration, as in:

class sphere {
double x_centre, y_centre, z_centre, radius;
} spherel, sphere2, sphere2;

However, it is usually worth keeping all the class declarations together (in a header
file) and separate from objects. The class declaration is an extremely valuable self-
documenting feature of C++ and, as such, is best kept as uncluttered as possible.

As well as defining single objects, it is straightforward to define arrays of objects.
Two examples of arrays of objects are given below.

sphere small_array[10], big_array[100] [100];

Of course, the information contained in each of these arrays of objects could be stored
without defining a sphere class. For instance, the big_array[] [] data could be stored
in four separate arrays defined by the statements:

double x_centre[100] [100];
double y_centre[100] [100];
double z_centre[100] [100];
double radius[100] [100];

This approach has two disadvantages compared with using classes. Firstly, we have to
invent different names for all four variables associated with spherel, sphere2, sphere3,
small_array[][], big_array[][] .... This point may seem trivial, but choosing
good names helps to make programs more readable and therefore helps with program
maintenance. Secondly, this approach forces us to think in terms of the details of
the particular implementation, rather than in terms of broad concepts. Instead of
thinking in terms of an array of spheres, we would be considering a collection of arrays
of coordinates and radii.
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8.2 Class Access Specifiers

Our current definition of the sphere class has one fundamental problem; we cannot
assign values to members of this class. By default, all members of a class are private
and private members can only be accessed by member functions of the same class. Our
declaration of the sphere class is equivalent to using the private keyword, as in:

class sphere {
private:
double x_centre, y_centre, z_centre, radius;

};

However, if all members of the class are private, the class forms an isolated system.
This would serve no useful purpose since there would be no way to access the members.

The keyword, public, designates all subsequent members of the class to be public.
In the following declaration, the four data members can all be freely accessed:

class sphere {
public:
double x_centre, y_centre, z_centre, radius;

};

Members that are declared public can be accessed by both member and non-member
functions. The keywords, public and private, are known as class access specifiers.
A class access specifier is valid until either another class access specifier, or the end of
the class, is reached. For instance, a class could have the following sequence of access
specifiers:

class my_class {

public:

// Public members go here.
private:

// Private members go here.
public:

// More public members could go here, but it is unusual
// to repeat access specifiers like this.

};

The public and private keywords can be given in any order within the class body.
Some C++ programmers consistently put the public members first and there is some
motivation for doing this since it is the public members that constitute the class
interface. It is certainly normal practice to group together all members with the same
access specifier. For this reason you will rarely see the access specifier repeated in a
single class declaration.

8.3 Accessing Members

With our present definition of the sphere class (including the public keyword) we
can directly access individual members of the class by using the class member access
operator, which is a single dot, as demonstrated below.
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spherel.x_centre = 2.2; // Assigns 2.2 to the x_centre
// member of the spherel object.
spherel.radius = 10.4; // Assigns 10.4 to the radius
// member of the spherel object.
double x = spherel.x_centre; // 2.2 is assigned to x.

Members of arrays of objects can also be accessed. The following assigns a value to
x_centre for element 5 in a sphere array:

sphere many_spheres[10];
many_spheres[5] .x_centre = 4.5;

Notice that we first find the sphere and then find the required member; that is the
syntax is:

many_spheres[5] .x_centre = 4.5; // 0.K.
rather than:
many_spheres.x_centre[5] = 4.5; // WRONG!
A complete, but very simple, program accessing data members is given below.

#include <iostream>
#include <cstdlib> // For exit()
using namespace std;

class sphere {
public:
double x_centre, y_centre, z_centre, radius;

};

int main()
{

sphere s;

s.x_centre
s.y_centre
s.z_centre
s.radius = 5.

]
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++s.radius;
s.x_centre += 3.4;

cout << "x_centre = " << s.x_centre << "\ny_centre = " <<
s.y_centre << "\nz_centre = " << s.z_centre << "\n" <<
"radius = " << s.radius << "\n";

return(EXIT_SUCCESS) ;
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This program defines a single sphere object, known as s, and assigns numbers to all
four data members. The radius of s is incremented by one and the value of x_centre
is increased by 3.4. The data for this sphere object is then sent to the output stream.
The program demonstrates that, by using the class member access operator, we can
manipulate public data members in a similar way to instances of the fundamental
types.

It is also possible to dynamically allocate objects. The following code fragment
allocates memory for a single sphere object and memory for an array of 100 sphere
objects:

sphere *a_sphere = new sphere;
sphere *array_of_spheres = new sphere[100];

Class objects are deallocated in the same way as for the fundamental types. So the
objects allocated by the above statements are deallocated by using:

delete a_sphere;
delete[] array_of_spheres;

Once again, it is essential that objects allocated by new are only deallocated by delete,
and objects allocated by new [] are only deallocated by delete[]. The results of using
the wrong version of the delete operator are undefined.

Exercise

Compile and run the program (on page 200) accessing data members of
a sphere object. Modify the program to dynamically allocate an array
of three spheres and assign different values to all data members of these
objects. You should check the assignments by listing the data members
and also delete the array before the program terminates.

8.4 Assigning Objects

We can assign an object to another object in the same way as with instances of the
fundamental types, as demonstrated by the following code fragment:

sphere spherel, sphere2;

spherel.x_centre =
spherel.y_centre
spherel.z_centre
spherel.radius = 5.

.1;
.2;
.3;

’

I
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sphere2 = spherel;

This assignment copies whatever is stored by the data members of spherel to the
members of sphere2. However, the default assignment operator may not be what is
actually needed. For instance, the data members could include a pointer to an area
of memory used to store data associated with spherel, as shown in Figure 8.1.2 In

2In Figure 8.1 the numbers outside boxes denote memory addresses and the numbers within boxes
represent data stored in memory. (Also see Figure 6.1.)
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Figure 8.1: Default assignment.
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this case the pt member of each sphere object stores the address of the same data
object. Consequently, changing the values stored in data changes the values for both
sphere objects. It most cases it would be better if the pointer for sphere2 pointed
to a different area of memory, containing a separate copy of the data values stored in
the data object. As we will see later, it is possible to overload operators, such as the
assignment operator, in order to meet our specific requirements.

Exercise

Verify that the data stored by spherel is copied to sphere2 by the default

assignment operator.

8.5 Functions and Classes

Functions can access the public members of a class by using the class access operator.
For instance, a function to return the volume of a sphere could be implemented as
follows. (You would need to #include <cmath> in order to have the declaration of

pow() and the definition of M_PI.)

double volume(sphere s)

{

return 4.0 * M_PI * pow(s.radius, 3) / 3.0;

¥

This function accesses the radius member of s as s.radius.
The following short program demonstrates how to use the volume function:



8.5. FUNCTIONS AND CLASSES 203

#include <iostream>

#include <cmath> // For pow(), M_PI
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:
double x_centre, y_centre, z_centre, radius;

s
double volume(sphere s)
{
return 4.0 * M_PI * pow(s.radius, 3) / 3.0;
}
int main()
{
sphere s;
s.radius = 2.0;
cout << "Volume of sphere is " << volume(s) << "\n";
return (EXIT_SUCCESS) ;
}

Since the volume () function is intimately connected with objects that are spheres,
it would be sensible to make the function part of the sphere class. To do this, we
include the function in the class declaration. This modified class declaration is given
below.

class sphere {
public:

double x_centre, y_centre, z_centre, radius;

double volume(void) {return 4.0 * M_PI * pow(radius, 3) / 3.0;}
};

The function, volume (), is now a member function, with direct access to data members
of the object for which it is invoked. For this reason the function does not take any
argument and the function body uses the variable radius, rather than s.radius.
Indeed, s.radius would be incorrect because, within the class definition, the volume ()
function has no access to an object named s. Notice that, in order to avoid over-
emphasizing member function definitions, we allow a condensed layout style within the
class body.

Including complicated function definitions within a class definition would drastically
reduce the usefulness of a class as a self-documenting interface. However, the function
declaration can be given within the class body and the function definition outside. This
is demonstrated below.

class sphere {
public:
double x_centre, y_centre, z_centre, radius;
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double volume(void);

};
double sphere::volume(void)
{
return 4.0 * M_PI * pow(radius, 3) / 3.0;
}

The double colon in the function header is a single token, known as the scope resolution
operator. This operator signifies that volume() is a member of the sphere class.
Outside the class body, the function header must use the class_name: : function syntax.
Now that volume () is a member function, the way it is invoked is different. A function
that is a class member, is accessed in the same manner as a data member; by using
the class member access operator. If we have a sphere object called s, then instead of
using volume (s) we use s.volume (). This is demonstrated in the following program:

#include <iostream>
#include <cmath> // For pow(), M_PI
#include <cstdlib> // For EXIT_SUCCESS

using namespace std;

class sphere {
public:
double x_centre, y_centre, z_centre, radius;
double volume(void) {return 4.0 * M_PI * pow(radius, 3) / 3.0;}

};
int main()
{
sphere s;
s.radius = 2.0;
cout << "volume of sphere is " << s.volume() << "\n";
return (EXIT_SUCCESS) ;
}

All functions defined (in contrast to declared) within a class are implicitly inline.
A member function defined outside of the class body is not implicitly inline, but the
inline keyword can be added if we want to suggest that the function is made inline.
This is illustrated below.?

class sphere {

public:
double x_centre, y_centre, z_centre, radius;
double volume(void);

};

3For the volume() function given here there may not be a lot to be gained by making it inline
due to the amount of computation involved.
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inline double sphere::volume(void)
{

return 4.0 * M_PI * pow(radius, 3) / 3.0;
}

It is optional as to whether or not the inline specification is included in the func-
tion declaration within the class declaration. Although safer, it could be argued that
the inline specifier is an implementation detail and so shouldn’t be in a class dec-
laration. This approach, which we adopt, is valid provided that the inline function
implementation occurs before the function is invoked. As always, an inline func-
tion implementation belongs in a header (.h) rather than source (.cxx) file. (See
Section 5.3.)
A function defined outside any class, such as:

double volume(sphere s)
{

return 4.0 * M_PI * pow(s.radius, 3) / 3.0;
}

is a valid function definition, but not a class member. It is possible to have both a class
definition of volume () (using the scope resolution operator) and a non-class definition.
Indeed, it is possible to have functions with the same name belonging to a number of
different classes, as in:

double sphere: :volume(void)

{
return 4.0 * M_PI * pow(radius, 3) / 3.0;
}
double cube: :volume(void)
{
return pow(side, 3);
}

Such functions are not overloaded since class members have class scope. However, if
a class has member functions with the same name then the name is overloaded, just
as with non-member functions. In the following code fragment, the sphere class has
both member and non-member volume functions, and the cube class also has a volume
function:

class sphere {

public:
double x_centre, y_centre, z_centre, radius;
double volume(void);

};

double sphere::volume(void)

{
return 4.0 * M_PI * pow(radius, 3) / 3.0;
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double volume(sphere s)

{
return 4.0 * M_PI * pow(s.radius, 3) / 3.0;

class cube {

public:
double x_centre, y_centre, z_centre, side;
double volume(void);

}s;
double cube: :volume(void)
{

return pow(side, 3);
}

The following code fragment demonstrates how to invoke the three different volume ()
functions:

sphere spherel, sphere2;
cube cubel;

// Assignments to data members of spherel, sphere2, cubel go here.

double voll = spherel.volume();
double vol2 = volume(sphere2);
double vol3 = cubel.volume();

Exercise

Make the code fragment given above into a complete program that imple-
ments the cube and sphere classes. Assign values to the data members of
spherel, sphere2 and cubel, and check that voll, vol2 and vol3 give
the expected results.

8.6 Data Hiding

So far, using our sphere class has just been a convenient way of collecting related
data. However, we now introduce data hiding, which is one of the central concepts of
object-oriented programming. The idea is that we should deal with objects, such as
spheres, rather than their explicit representation, such as Cartesian coordinates; the
data associated with an object should only be accessible by means of function calls
that hide details of the class implementation.

In fact we already know how to hide the sphere data; what we need are some func-
tions to access that data. The following code fragment gives a sphere class declaration
that involves data hiding, together with member functions accessing that data:
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class sphere {
public:
void assign_centre(double x, double y, double z);
double get_x_coordinate(void);
double get_y_coordinate(void);
double get_z_coordinate(voi);
void assign_radius(double r);
double get_radius(void);
double volume(void);
private:
double x_centre, y_centre, z_centre, radius;

};

Notice how the public functions provide the class interface and hide details of the
class implementation. (In fact, we could store the centre in terms of polar coordinates,
r, § and ¢, without this change being discernible through the interface provided by
the public functions.) A program with implementations for the sphere class member
functions is given below. The program assigns data to an instance of the sphere class,
and then uses the member functions to give the coordinates and volume of the object.

#include <iostream>

#include <cmath> // For pow()
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:
void assign_centre(double x, double y, double z);
double get_x_coordinate(void);
double get_y_coordinate(void);
double get_z_coordinate(void);
void assign_radius(double r);
double get_radius(void);
double volume(void);
private:
double x_centre, y_centre, z_centre, radius;

};
inline void sphere::assign_centre(double x, double y,
double z)
{
Xx_centre = Xx;
y_centre = y;
z_centre = z;
}

inline double sphere::get_x_coordinate(void)
1
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return x_centre;

inline double sphere::get_y_coordinate(void)

{
}

return y_centre;

inline double sphere::get_z_coordinate(void)

{
}

return z_centre;

inline void sphere::assign_radius(double r)

{
}

radius = r;

inline double sphere::get_radius(void)

{

return radius;

double sphere::volume(void)

{
}

return 4.0 * M_PI * pow(radius, 3) / 3.0;

int main()

{

}

sphere s;

s.assign_centre(10, 24, 36);

s.assign_radius(2.0);

cout << "Volume is " << s.volume() << "\nCentre is " <<

CLASSES

s.get_x_coordinate() << ", " << s.get_y_coordinate() <<

", " << s.get_z_coordinate() << "\n";
return(EXIT_SUCCESS) ;

In the context of some object-oriented languages (such as Smalltalk), member func-
tions are referred to as methods, which send messages to objects. An object has a state
and the effect of the methods is to access this state. Such terminology is not emphasized
in this book, although it is used by some C++ programmers.

It is worth emphasizing again that memory for an object is not defined by the class
declaration, but by the object definition itself. For example, the statement:

sphere s;

not only declares s to be of type sphere, but also assigns sufficient memory to s for
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storing the values of x_centre etc. When we invoke a member function, as in:

double voll = s.volume();
s.assign_centre(10, 24, 36);

it is the specific memory associated with s that is accessed. Moreover, there may be
many sphere objects, each with its own memory for storing data and access to the
single copy of the member functions.

Exercise

Implement a cube class, analogous to this new sphere class. Declare an
instance of the cube class, and assign data to it for the coordinates of the
centre and the side length. Use member functions to list the coordinates of
the centre, the side length, and the volume.

8.7 Returning an Object

Previously, we have made frequent use of functions that return a fundamental type; for
instance, the volume () functions defined in this chapter all return the type double. It
is also straightforward for a function to return an instance of a derived type. Suppose
we need a function to return a new sphere, with the same radius as an existing sphere,
but a translated centre. A suitable implementation of such a function, which should
be made a public member of the sphere class, is given below.

sphere sphere::translated_sphere(double d_x, double d_y,

double d_z)

{
sphere new_sphere;
new_sphere.x_centre = x_centre + d_x;
new_sphere.y_centre = y_centre + d_y;
new_sphere.z_centre = z_centre + d_z;
new_sphere.radius = radius;
return new_sphere;

b

We can invoke this translated_sphere() function as follows:

sphere si;
// Assign values to sl here.
sphere s2 = si.translated_sphere(i.1, 2.2, 3.3);

Notice that the translated_sphere() function is used to assign values to another
sphere object; the function does not translate the original object. We could achieve
translation of the origin of a sphere by using the sphere class member function given
below.

void sphere::translate(double d_x, double d_y, double d_z)
{

X_centre += d_x;
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y_centre += d_y;
z_centre += d_z;

}

An example of how this function would be invoked for a sphere object s is given in
the following statement:

s.translate(1.1, 2.2, 3.3);

Exercise

(a) Modify the program implementing the sphere class given on page 207
so that it includes the translated_sphere() and the translate()
member functions.

(b) In addition to the object s, define a second sphere object, ss, and use
the translated_sphere() function with suitable arguments so that
ss is a copy of s, but with its centre shifted by (1,2,3). By using
appropriate member functions, send the data for ss to the output
stream.

(¢) Use the translate() member function to translate the coordinates of
the s object by (2,4,6), and then send the data for s to the output
stream.

It is worth having a look at the translated_sphere() function in more detail. The
object called new_sphere is defined within the function and does not exist outside of
the function body. This means a statement such as:

s2 = sl.translated_sphere(1.1, 2.2, 3.3);

creates at least one temporary copy of the new_sphere object. Creating these tempo-
rary objects is inefficient since only the s1 and s2 objects need exist. This would be
particularly important for objects with large data members.

In order to overcome this problem of temporary copies, we might be tempted to
return a reference object, as in the following function definition:

sphere &sphere::translated_sphere(double d_x, double d_y,

double d_z)
{
sphere new_sphere;
new_sphere.x_centre = x_centre + d_x;
new_sphere.y_centre = y_centre + d_y;
new_sphere.z_centre = z_centre + d_z;
new_sphere.radius = radius;
return new_sphere; // WRONG: cannot return a reference
// to a local object.
}

However, any variation on this theme will fail since new_sphere only exists within the
scope of the function body and so we cannot return a reference to this object.
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Exercise

In the previous exercise on page 210 you included an implementation of the
translated_sphere() function. What happens if you replace the correct
version of that function by this invalid version that attempts to return a
local object?

8.8 Reference Arguments

A valid way of defining a translated_sphere() function that does not introduce
spurious copies is by means of a sphere reference argument. This uses the same &
token (the reference declarator) as in Section 7.7.1. An implementation of a function
using this technique is given below.

void sphere::translated_sphere(sphere &s, double d_x,
double d_y, double d_z)

{
s.x_centre = x_centre + d_x;
S.y_centre = y_centre + d_y;
s.z_centre = z_centre + d_z;
s.radius = radius;

}

Notice that a member of a reference to an object is accessed in the same way as a
member of an object. The formal argument, s, is a reference to a sphere object
and hence no copy of this object is made by the translated_sphere() function. An
example of how to invoke this function is given below.

sphere s1, s2;
// Assignments to si.
sl.translated_sphere(s2, 1.1, 2.2, 3.3);

The only sphere objects are s1 and s2. No temporary copies are made since the
function works directly with s2.
Exercise

Modify the program you wrote for the exercise on page 210 so that it uses
reference arguments to avoid unnecessary temporary copies of a sphere
object.

8.9 Pointers to Members

An alternative to the reference argument technique, given in the previous section, is to
use a pointer to a sphere object, as demonstrated by the following function:
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void sphere::translated_sphere(sphere *pt, double d_x,
double d_y, double d_z)

{
(*pt) .x_centre = x_centre + d_x;
(*pt) .y_centre = y_centre + d_y;
(*pt) .z_centre = z_centre + d_z;
(*pt) .radius = radius;

}

In this implementation, pt is a pointer to the sphere type; in other words it is a variable
that can store the address of any object of type sphere. When the function is invoked,
the address of a sphere object is passed. An example of how the translated_sphere()
function is invoked is given below.

sphere s1, s2;
// Assignments to si.
sl.translated_sphere(&s2, 1.1, 2.2, 3.3);

Within the function body, *pt is the dereferenced address and hence the object, s2.
The class member access operator, with *pt and x_centre as operands, therefore
modifies the x coordinate of the centre of the sphere, s2. Notice that the parentheses
enclosing *pt are necessary because the class member access operator binds tighter
than the dereferencing operator.*

Since accessing a member of an object pointed to by a pointer is a very common
requirement, there is a special operator for this purpose. This operator is represented
by a right-pointing arrow and, rather confusingly, it is also known as the class mem-
ber access operator. The following statement illustrates how the class member access
operator is used:

pt->x_centre = x_centre + d_x;
which is exactly equivalent to:
(*pt) .x_centre = x_centre + d_x;

The arrow, which is a single token, consists of the minus sign followed by the greater
than sign. The translated_sphere() function could therefore be written as shown
below.

void sphere::translated_sphere(sphere *pt, double d_x,
double d_y, double d_z)

{
pt->x_centre = x_centre + d_x;
pt->y_centre = y_centre + d_y;
pt->z_centre = z_centre + d_z;
pt->radius = radius;

}

4Don’t forget that Appendix B contains a list giving the precedence and associativity of all opera-
tors, including those introduced in this chapter.
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Using the -> operator, rather than the original pointer dereference and first class
member access operator, is simply a notational convenience and has no effect on the
way the translated_sphere() function is invoked. It is worth emphasizing that, since
the class member access operator is a single token, the following statement is illegal:

pt - > x_centre = x_centre + d_x; // WRONG!

Exercise

Change the program for the previous exercise on page 211 so that instead
of using pass by reference, pointers are used for the function arguments.

8.10 Pointer-to-Member Operators'!

Throughout this section and purely for the purpose of demonstration, we consider a
simplified sphere class in which the only data member is public. The declaration for
this sphere class is given below.

class sphere {

public:
void assign_radius(double r) { radius = r; }
double radius;

};

There are two fundamental ways in which we can specify an object; we can either use
the object itself or else dereference a pointer to an object. For example, in our sphere
class we can define a sphere object, s, and a pointer to a sphere object, pt_s, as
shown below.

sphere s;
sphere *pt_s;
pt_s = &s; // Address of object assigned to pt_s.

There are also two ways in which we can refer to members of a class. The obvious
method is to use the member directly, such as assign_radius(10.0) (for a member
function) or radius (for a data member). However, we can also dereference a pointer
to class members. Such a pointer must be restricted to a particular class and can only
point to a particular type of member function or data member. The scope resolution
operator, : :, is used to specify the class. For instance:

double sphere: :*pt;
defines a pointer, pt, that can point to a data member, of type double, belonging to
the sphere class. In the class defined above, pt can only point to the radius data

member, as in:

pt = &sphere::radius;
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However, in some classes there may be many different members that could be pointed
to by the same pointer. The combination, ::*, is sometimes known as a pointer-to-
member declarator.

Don’t forget that, since defining a class does not allocate memory, pt does not point
to any memory suitable for storing a value for the radius; pt is a pointer to a member
of a class and not to a member of a class object. Statements such as the following are
illegal:

*pt = 10.0; // WRONG: incompatible types.

It is also possible to point to member functions. The following statement defines a
sphere class pointer, pt_£, that returns the type, void, and has an argument of type,
double:

void (sphere::*pt_f) (double);

The first parentheses are necessary because the function call operator, (), has a higher
precedence than the dereferencing operator, *. Once again, since our current sphere
class is rather limited, pt_f can only point to the assign_radius() function, as illus-
trated by the following statement:

pt_f = &sphere::assign_radius;
This assignment can also be written without using the address operator, as in:
pt_f = sphere::assign_radius;

This is consistent with the idea that if £() is a function then f is the address of that
function. (See page 168.) Some compilers (such as the GNU g++ compiler) may issue a
warning that they are assuming that the address operator acts on the function name.

We now have two ways of specifying a sphere object (s and *pt_s). We also
have two ways of specifying a class member (typically radius and *pt for data, or
assign_radius() and *pt_f for functions). There are therefore four different ways
of accessing object members and each of these methods has its own special binary
operator. If we make the definitions:

sphere s;

sphere *pt_s;

double sphere::*pt;

void (sphere::*pt_f) (double);

pt_s = &s;
pt = &sphere::radius;
pt_f = &sphere::assign_radius;

then the four methods that can be used to access members of the object, s, are as
given below.

1. The class member access operator (a single dot) is used when the operands are
an object and a member, as in:

s.radius = 100.0; // Access data member.
s.assign_radius(10.0); // Access member function.
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This operator was introduced in Section 8.3.

The second class member access operator (a right pointing arrow, ->) is used
when the operands are a pointer to an object and an object member, as in:

pt_s->radius = 200.0; // Access data member.
pt_s->assign_radius(20.0); // Access member function.

We introduced this operator in the previous section.

A pointer-to-member operator, denoted, .*, is used when the operands are an
object and a pointer to a class member, as in:

s.*pt = 300.0; // Access data member.
(s.xpt_£)(30.0); // Access member function.

Notice that the first parentheses in the second statement are necessary because
the function call operator, (), has a higher precedence than the .* operator.

This is the first place that we have used the pointer-to-member operator. It is a
single token, consisting of a dot followed by an asterisk. As always, white space
is not allowed within the token, as illustrated by the following code fragment:

s .* pt = 30.0; // 0.K.

s.*pt = 30.0; // 0.K. Probably the usual style.

s. *pt = 30.0; // WRONG: White space is not allowed
// within a token.

The same notation is used to access members of a reference to an object, as shown
below.

sphere &ss = s;
ss.*pt = 400.0; // Access data member.
(ss.*pt_f) (40.0); // Access member function.

A second pointer-to-member operator, denoted ->*, is used if the operands are
a pointer to an object and a pointer to a class member. Use of this operator is
illustrated below.

pt_s—->*pt = 40.0; // Access data member.
(pt_s—->*pt_£) (40.0); // Access member function.

Again, the parentheses are necessary because the function call operator, (), has
a higher precedence than the pointer-to-member operator, ->*. This is the first
place that we have used this pointer-to-member operator; it is a single token,
consisting of a minus sign, a greater than sign and an asterisk.”

5Notice that the usual names given to the four operators considered in this section are a bit
confusing. There are two class member access operators and two pointer-to-member operators.
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The following program shows the use of all four operators considered above. The
program assigns different values to radius and then prints the values stored:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:

};

void assign_radius(double r) { radius = r; }
double radius;

int main()

{

sphere s;

sphere *pt_s;

double sphere::*pt;

void (sphere::*pt_f) (double);

pt_s = &s;
pt = &sphere::radius;
pt_f = &sphere::assign_radius;

s.radius = 100.0; // Access data member.
cout << "Radius is " << s.radius << "\n";
s.assign_radius(10.0); // Access member function.

cout << "Radius is " << s.radius << "\n";

pt_s->radius = 200.0; // Access data member.
cout << "Radius is " << s.radius << "\n";
pt_s->assign_radius(20.0); // Access member function.
cout << "Radius is " << s.radius << "\n";

s.*pt = 300.0; // Access data member.
cout << "Radius is " << s.radius << "\n";
(s.*pt_£) (30.0); // Access member function.

cout << "Radius is " << s.radius << "\n";

sphere &r = s;

r.*pt = 400.0; // Access data member.
cout << "Radius is " << s.radius << "\n";
(r.*pt_£) (40.0); // Access member function.

cout << "Radius is " << s.radius << "\n";

pt_s->*pt = 500.0; // Access data member.
cout << "Radius is " << s.radius << "\n";
(pt_s->*pt_£) (50.0); // Access member function.
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cout << "Radius is " << s.radius << "\n";
return(EXIT_SUCCESS) ;
}

Whereas the two class member access operators, . and ->, are used extensively in
typical C++ applications, the two pointer-to-member operators, .* and ->*, are less
common. It is worth noting that these four operators do not override class protection,
which is why we have made the radius data member public for this section.

8.11 Scope and Data Protection

We have already seen in Section 8.5 that functions declared within a class are not
visible outside that class, unless the scope resolution operator is used. The same is
true for both public and private data members. Consider the following modified
version of the program on page 207:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:
void assign_centre(double x, double y, double z);
double get_x_coordinate(void) ;
double get_y_coordinate(void) ;
double get_z_coordinate(void) ;
void assign_radius(double r);
double get_radius(void);
private:
double x_centre, y_centre, z_centre, radius;

};

inline void sphere::assign_centre(double x, double y, double z)
{

X_centre = X;

y_centre =y,

z_centre = z;
}
inline double sphere::get_x_coordinate(void)
{
return X_centre;
¥

inline double sphere::get_y_coordinate(void)
{

return y_centre;
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inline double sphere::get_z_coordinate(void)

{
return z_centre;
}
inline void sphere::assign_radius(double r)
{
radius = r;
}
inline double sphere::get_radius(void)
{
return radius;
}
int main()
{
sphere s;
s.assign_centre(1.1, 2.2, 3.3);
s.assign_radius(101.1);
double x_centre = 0.0;
double y_centre = 0.0;
double z_centre = 0.0;
double radius = 0.0;
X_centre = s.get_x_coordinate();
y_centre = s.get_y_coordinate();
z_centre = s.get_z_coordinate();
radius = s.get_radius();
cout << "x_centre = " << x_centre <<
"\ny_centre = " << y_centre <<
"\nz_centre = " << z_centre <<
"\nradius = " << radius << "\n";
// The results show that the body of main() does
// not have visibility of private class members.
return(EXIT_SUCCESS) ;
}

This program demonstrates that although names, such as x_centre, are used as mem-
bers of the sphere class, there is no visibility of these names within the body of the
function main (), where they can safely be reused. In fact a class provides the third kind
of scope, the other two being file scope and block scope, as described in Section 5.4.
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It is worth pointing out that the concept of private class members is intended
to encourage safer programming techniques. The private access specifier does not
provide either secrecy or protection against malicious programming. Once we have the
address of an object, a cast to a pointer of a different type would enable us to probe
supposedly private regions of memory. Of course, there is little purpose in using a
sophisticated programming language if the programmer intends to use such subversive
techniques.

8.12 Static Members

Each class object has its own set of class data members. For example, every object
belonging to our sphere class has its own radius together with coordinates for its
centre. However, in some circumstances we may want a data member to be common to
all objects of a class. For instance, we may want to keep track of the total number of
spheres. Updating multiple copies of this number every time we defined a new sphere
object would clearly be wasteful and likely to introduce errors. A static data member
is useful in this situation since there is only one such member for a class, irrespective
of the number of objects. The appropriate way of accessing such data is to use a static
member function. We now consider these two concepts in more detail.

8.12.1 Static Data Members

As an example of a static data member, consider the following suitably modified
sphere class:®

#include <iostream>
#include <cstdlib>
using namespace std;

class sphere {

public:
void increment_spheres(int new_spheres);
int total_spheres(void) { return total; }
// Other public members go here.

private:
static int total;

3
inline void sphere::increment_spheres(int new_spheres)

{

total += new_spheres;

int sphere::total;

61t would be more satisfactory if total were incremented with the creation of each sphere object.
The techniques for achieving this will be introduced in Section 8.13.
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int main()
{
sphere s1, s2;
sl.increment_spheres(2);
cout << "Total number of spheres known to sl = " <<
sl.total_spheres() <<
"\nTotal number of spheres known to s2 = " <<
s2.total_spheres() << "\n";
return(EXIT_SUCCESS) ;
}

We can access a static data member in the same way as any other data member, by
using a single dot (one of the class member access operators) with an object as the
left operand. The significant difference is that the same static data is seen by all ob-
jects. When you run the above program, you will find that the increment_spheres ()
function gives the same result for any sphere object.

The static key word in the statement:

static int total;

within the class declaration, declares total to be static. However, it is important to
realize that this statement does not allocate any memory for the variable total. Such
memory has to be allocated somewhere and this is done by means of the statement:

int sphere::total;

This statement is not placed in the function main () since this would be a re-declaration
of the variable sphere: :total.

Notice that we did not initialize total. This is because total is static and is
therefore initialized to zero by default. We could initialize total if we wanted to. For
example, if we wanted the initial value to be ten (even though no spheres had yet been
created!) this would be achieved by the following statement:

int sphere::total = 10;

This initialization is allowed even if (as here) total is declared private. It should be
emphasized that this statement is not an assignment. We cannot make an assignment
to a private static member (except within a class member function or friend).”
Hence, the following attempt at an assignment is incorrect:

sphere::total = 10; // WRONG: total is private.

A common error is attempting to initialize static data within a class declaration.
This is illegal, as illustrated below.

class sphere {
public:
void increment_spheres(int new_spheres);
int total_spheres(void) { return total; }
private:
static int total = 0; // WRONG!
3

"The idea of a friend of a class will be introduced in Section 8.15.
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This is entirely consistent with the idea that a class declaration only defines a type and
does not allocate memory for objects of that type.

The allocation of memory for a static data member, together with an initialization
(if required) can only be performed once within a single program. Consequently, the
statement allocating memory for a static data member should be placed in the .cxx
file that implements the non-inline member functions, rather than in the class header
file. An example illustrating the initialization of a static data member is given in
Section 8.17.

We could, of course, declare total to be a global variable instead of making it a
member of the sphere class. However, the total number of spheres is a property of the
class and clearly belongs in the class declaration.

Public static data members can be accessed directly by means of the class name
and the scope resolution operator (::). There is no need for objects of the class to
exist since there is always one (and only one) copy of a static data member. For
the same reason such members can be accessed by pointers to the appropriate type,
and these pointers can be defined without using the class name and scope resolution
syntax. An example in which we declare total to be a public member of the sphere
class is given below.

#include <iostream>
#include <cstdlib>
using namespace std;

class sphere {
public:
static int total;
// Other members go here.

};
int sphere::total;

int main()

{
sphere::total = 10;
cout << sphere::total << "\n";
sphere::total = 20;
int *pt = &sphere::total;
cout << *pt << "\n";
return(EXIT_SUCCESS) ;

}

Of course, this example is given simply as an illustration. Exposing the data member
of a class in this way isn’t a good idea, since it means that the data can be manipulated
in ways that aren’t clear from the class declaration.

8.12.2 Static Member Functions

In the program given on page 219, the increment_spheres() and total_spheres()
functions need to be invoked for a sphere object. This situation is not very satisfac-
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tory, since the total number of spheres is a property of the collection of all such objects,
rather than any particular instance of the class. In particular, it would be nice if an
appropriate total_spheres() function could give the number of spheres (presumably
zero) even if there were no instances of the sphere class. This can be achieved by
declaring increment_spheres() and total_spheres() to be static member func-
tions. Static member functions are special in that they can only access static data
members and need not be invoked by a class object, as demonstrated by the program
given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:
static void increment_spheres(int new_spheres);
static int total_spheres(void) { return total; }
private:
static int total;

};
void sphere::increment_spheres(int new_spheres)
{
total += new_spheres;
}

int sphere::total;

int main()
{
cout << "Initial number of spheres = " <<
sphere: :total_spheres() << "\n";
sphere s1, s2;
sphere: :increment_spheres(2) ;
cout << "Total number of spheres = " <<
sphere: :total_spheres() << "\n";
return(EXIT_SUCCESS) ;

In this version of our sphere class, the way in which we keep a tally of the total number
of spheres does not depend on accessing a particular instance of the class.

It is also possible to invoke static member functions for particular objects, as
in s1.total_spheres(). However, the sphere: :total_spheres() notation is better
because it emphasizes that the number of spheres is a feature of the class rather rather
than a particular instance of the class.
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8.13 Constructor Functions

As with variables of the fundamental types, it is safer to initialize objects rather than
to define them with arbitrary values. A class that only has public data members
can be initialized by a comma-separated list. This is illustrated by the program given
below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class coordinate {
public:
double x, y, Z;

};
int main()
{
coordinate w = {1.0, 2.0, 0.0};
cout << "Coordinates are " << w.x << ", " KL y.y << ", " <KL
w.z << "\n";
return(EXIT_SUCCESS) ;
}

However, classes like this are unusual.

As a change from our sphere class, we now introduce a complex arithmetic class
with data members, re and im, representing the real and imaginary parts of an instance
of this complex class. Initializers cannot be included in a class declaration, so we cannot
initialize the data for this class by something like the following declaration:

class complex {

private:
double re = 0.0; // WRONG!
double im = 0.0; // WRONG!
};

Once again, this is consistent with the idea that a class declaration only defines a type
and does not allocate memory for objects of that type. However, there is a special kind
of function, known as a constructor function (or, more simply, a constructor) that is
specifically designed for initializing objects. A constructor is declared by giving the
class name to a member function, as in the declaration of the complex class given
below.

class complex {
public:

complex(double x, double y) { re = x; im = y; }
private:

double re, im;

};
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Notice that the constructor function, complex(), does not have a return type; con-
structors are special functions in that they cannot return a type (not even void). By
using this constructor, objects that are members of the complex class can be initialized,
as demonstrated by the following statements:

complex u = complex(1l.1, 2.2); // Initializes u.
complex v(1.1, 2.2); // Initializes v.

In both examples, the constructor function initializes the real part of the object with
the value 1.1 and the imaginary part with the value 2.2. Notice that the syntax in the
second statement does not signify that v is a function: rather v is an object, implicitly
invoking the constructor function with arguments 1.1 and 2.2.

Since the only constructor defined for the complex class takes two arguments, we
cannot declare an uninitialized complex object. Consequently, the following statement
is incorrect:

complex z; // WRONG: no suitable constructor defined.

However, the constructor function can be modified to provide default initializations, as
in the class declaration given below.®

class complex {
public:
complex(double x = 0.0, double y = 0.0) {
re = x; im = y; }
private:
double re, im;

};
If we now have the statement:
complex z;

then the real and imaginary parts of z are initialized to zero. In order to demonstrate
this, we need to introduce some way of listing the values of the private data members
of the complex class. This is done in the following program by introducing the print ()
function:®

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
public:
complex(double x = 0.0, double y = 0.0) {
re = x; im = y; }
void print(void);

8The default initializations are supplied right to left just as for the default arguments in Sec-
tion 5.1.6.

91t would be better if this could be accomplished with something like cout << z. We will learn
how to achieve this in Section 18.9.



8.13. CONSTRUCTOR FUNCTIONS 225

private:
double re, im;

};

void complex::print(void)

{

cout << "(" << re << ", " << im << ")",

int main()
{
complex u; // Default initialization.
u.print();
cout << "\n";
complex v(2.0, 3.0); // Initialized by 2.0 and 3.0.
v.print();
cout << "\n";
complex w =
complex (3.0, 4.0); // Initialized by 3.0 and 4.0.
w.print();
cout << "\n";
complex z(2.0); // Initialized by 2.0 and 0.0.
z.print();
cout << "\n";
complex q = complex(3.0); // Initialized by 3.0 and 0.0.
q.print();
cout << "\n";
return (EXIT_SUCCESS) ;
}

A common error is to attempt to define an object, initialized with default values,
by:

complex u(); // WRONG: this is a function declaration.

In fact, this declares a function, which takes no arguments and returns the complex
type. However, the following statement does define (rather verbosely) a complex object
with the default initialization:

complex u = complex();

We can overload the constructor function by having more than one member function
with the same name as the class name, provided that the function arguments differ. As
an example, we may want to initialize a complex object with another object belonging
to the same class. This is achieved by introducing a constructor with the declaration:

complex: :complex(const complex &z);

Both types of constructors are used in the program given below.



226 CHAPTER 8. CLASSES

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {

public:
complex(double x=0.0, double y=0.0) { re=x; im=y;}
complex(const complex &z) { re=z.re; im=z.im; }
void print(void);

private:
double re, im;

I
void complex: :print(void)
{
cout << u(u << re << u’ " << im << u)u;
}
int main()
{
complex u(24.5, 17.6);
complex v(u);
v.print();
cout << "\n";
return (EXIT_SUCCESS) ;
}

In the first statement in main(), the real and imaginary parts of u are initialized to
24.5 and 17.6 respectively. In the second statement, the real and imaginary parts of u
are themselves used to initialize v.

The second type of constructor function introduced for the complex class has a
single argument of a reference to the class type. This type of constructor is very
common and is known as a copy constructor. Notice the emphasis on reference; a
constructor with the declaration:

class_x::class_x(class_x);
is illegal, but:

class_x::class_x(const class_x &);
as in:

complex: :complex(const complex &z);

is both legal and common.

Exercise

Implement a constructor for the sphere class described in Sections 8.12.1
and 8.12.2. The total number of spheres (that is the static variable, total)
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should be incremented each time the constructor is invoked. Create various
numbers of spheres and check that the static total_spheres() function
gives the correct result.

(Note that you won’t need the increment_spheres () member function any
more. In fact, this function is very undesirable since it can be used to make
the value of the total data member inconsistent with the actual number
of sphere objects.)
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Our complex class is now sufficiently developed for us to try a simple test program.
Since this class might be of use in more than one program, we put both the class
definition and the implementation of inline functions in a header file, which is given

below.

// source: complex.h
// use: Defines complex arithmetic class.

#ifndef COMPLEX_H
#define COMPLEX_H

class complex {
public:
complex(double x = 0.0, double y = 0.0);
complex(const complex &z);
double real(void);
double imag(void);
void print(void);
private:
double re, im;

Y
inline complex::complex(double x, double y)
{
re = X;
im = y;
X
inline complex::complex(const complex &z)
{
re = z.re;
im = z.im;
}
inline double complex::real(void)
{
return re;
}

inline double complex::imag(void)
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return im;

#endif // COMPLEX_H
It is worth making a brief diversion to explain why we have:

#ifndef COMPLEX_H
#define COMPLEX_H

// Code in here.
#endif // COMPLEX_H

in the complex.h file. This sequence of preprocessor commands is known as an inclu-
sion guard and is an important method of preventing multiple inclusions of the same
file. The way inclusion guards work is that if COMPLEX_H is not defined, then all of the
file is processed and COMPLEX_H is consequently defined. Whenever the preprocessor
meets another copy of the include file, all of the code between the #ifndef and #endif
directives will be omitted. If inclusion guards are not used, then an example of what
can go wrong is that after a program has been through the preprocessor it may contain
multiple declarations of the same class. This would be a compile-time error. It is tra-
ditional to use the capitalized header file name (with an underscore replacing the dot)
for an inclusion guard. Although this is not a language requirement, it helps to avoid
having the same guard in different header files. You should avoid using identifiers for
inclusion guards with leading and trailing double underscores since identifiers like these
are used in library header files and by the linker. Inclusion guards can also be used to
avoid multiple definitions in different files. For instance, if filel.h and file2.h both
contain the statement:

const double 1n_pi = 1.14472988584940017;

then a source file that included both header files would give rise to a compile-time
error.
Returning now to our complex class, the following program tests our current version
of the class by setting:
z =245+ 17.61

and printing the real and imaginary parts of z.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "complex.h"
using namespace std;

int main()

{
complex z(24.5, 17.6);
cout << "Real part = " << z.real() <<
" Imaginary part = " << z.imag() << "\n";

return(EXIT_SUCCESS) ;
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Exercise

Compile and run the above program. Make modifications so that the copy
constructor is also tested.

8.14 Accessing const Class Objects

In order to access the data of complex objects, we could introduce public member
functions, real () and imag(), that return the real and imaginary parts of a complex
object. This is demonstrated in the following class declaration:

class complex {
public:
complex(double x = 0.0, double y = 0.0);
complex(const complex &z);
double real(void) { return re;}
double imag(void) { return im; }
private:
double re, im;

};

We have previously emphasized the desirability of using the const specifier to
indicate to the compiler that an instance of a fundamental type should not change.
Such remarks also apply to instances of classes. For example, we could define:

const complex 1(0.0, 1.0);

A problem now arises if (for example) we try to access the real part of i, using the
real () member function, as illustrated by the following statement:

cout << "Real part of i = " << i.real();

This statement is rejected by the compiler since there is no way of telling from the
function declaration whether or not real () modifies i. Member functions that do not
modify any data member can include the const specifier at the end of the function
declaration, as illustrated by the class declaration given below.!?

class complex {
public:
complex(double x = 0.0, double y = 0.0);
complex(const complex &z);
double real(void) const;
double imag(void) const;
private:
double re, im;
};
10This const notation is only possible for member functions and cannot be used for friend functions,

which are introduced in the next section. This is because only member functions have a hidden pointer,
called this. The special this pointer is introduced in Section 9.1.2.
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However, if this is done, then the const specifier must also be placed before the body
of the function implementation. So to be consistent with the function declaration given
above, the function definition must be:

inline double complex::real(void) const
{
return re;

}

Any attempt by a const member function to modify member data would be flagged as
an error by the compiler. This technique of placing const at the end of the function
declaration solves the problem, described above, of invoking i.real(). The following
program illustrates this technique:'!

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS

using namespace std;

class complex {
public:
complex(double x = 0.0, double y = 0.0);
complex(const complex &z);
double real(void) const;
double imag(void) const;
private:
double re, im;

I
inline complex::complex(double x, double y)
{
re = x;
im = y;
}
inline complex::complex(const complex &z)
{
re = z.re;
im = z.im;
}
inline double complex::real(void) const
{
return re;
}

!1Since this restricted complex class is only given to illustrate a particular technique, there is no
point in introducing a complex.h header file.
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inline double complex::imag(void) const

{
return im;
}
int main()
{
complex z(24.5, 17.6);
cout << "Real part = " << z.real() <<
" Imaginary part = " << z.imag() << "\n";
const complex 1(0.0, 1.0);
cout << "Real part of i = " << i.real() <<
"\nImaginary part of i = " << i.imag() << "\n";
return (EXIT_SUCCESS) ;
}

It may be necessary to declare a member function as both const and non-const. In
this case the function is overloaded and which function is actually invoked depends on
whether or not the object is defined with the const specifier.

8.15 Friend Functions

Our complex class is defined to have private data (re and im) and in general this data
cannot be accessed by non-member functions. However, a friend of a class has access
to the data members and member functions of that class, irrespective of any access
specifiers. For example, an alternative method for obtaining the real and imaginary
parts of a complex object is to define friend functions. This is achieved by including
the friend keyword in the function declaration given within the class declaration:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z) ;
friend double imag(const complex &z);
public:
complex(double x = 0.0, double y = 0.0);
// More class declarations go in here.
private:
double re, im;

I
inline complex::complex(double x, double y)
{

re = X;

im = y;
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inline double real(const complex &z)

{
return z.re;
}
inline double imag(const complex &z)
{
return z.im;
}
int main()
{
complex z(24.5, 17.6);
cout << "Real part = " << real(z) <<
" Imaginary part = " << imag(z) << "\n";
return (EXIT_SUCCESS) ;
}

The functions real() and imag() are now friends of the complex class, rather than
members. For this reason, they are invoked by real(z) and imag(z), instead of
z.real() and z.imag().

Both member and non-member functions provide equally satisfactory techniques
for accessing the real and imaginary parts of a complex object, although it could be
argued that real(z) is a more natural syntax than z.real() in this case. In fact, it
is possible to have both definitions in the same class implementation.

Notice that since these functions are relatively simple, it is worth making them
inline in order to avoid relatively high function call overheads. It is also worth using
reference variables, to reduce the call overhead still further, and the const keyword,
to provide some protection for the member data.

The friend keyword indicates that a function has access to the private members
(data and functions) of a class, but is not a member of that class. A function can be a
friend of more then one class, or even a member of one class and a friend of many
classes. Notice that friendship is granted by the class whose private members are
accessed. One of the special features of constructor functions is that they cannot be
declared friends of a class.

So far, we have only considered friend functions. However, it is also possible to
declare an entire class to be a friend of another class. The statement:

class node {

friend class list;

// Other declarations.
};

declares 1ist to be a friend of the node class and gives 1ist access to all members of
any node object. Both friend classes and functions are not affected by access specifiers,
such as public and private, and can be placed anywhere within a class declaration.
However, a good convention is to place any friend declarations immediately after the
class header and before any explicit access specifiers.
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Friendship is not transferred to a friend of a friend; that is, friendship is not
transitive. In the following code fragment, the print() function has access to the
private members of a complex_vector object, but not to the private members of
any complex object. If this restriction did not exist, then granting friendship to one
class would open up the entire class implementation to a whole hierarchy of unknown
classes and functions.

class complex {
friend class complex_vector;
// Other declarations go here.
private:
double re, im;

};

class complex_vector {
friend void print(const complex_vector &v);
// Other declarations go here.

private:
complex x, y, Z;

¥

void print(const complex_vector &v)

{
cout << v.x.re; // WRONG: re is private.
// etc.

}

8.16 Program Structure and Style

Now that we have introduced many of the basic ideas of C++, it is worth making a brief
diversion to consider how programs should be structured. The simplest C++ program
consists of one file, containing a single function, called main (). More realistic programs
often contain many thousand lines of code and must be split up into separate files in
order to control the complexity. Unlike some languages, C++ does little to enforce any
structure on these files, but there are well-established conventions that it is sensible to
follow.

8.16.1 Separate Compilation

A large program should be split up into a number of source files (with a .cxx or
equivalent extension), each of which can be compiled independently. Each source file
usually consists of a number of related function definitions and may use functions
defined in other source files. For example, a source file may implement all of the
non-inline functions for a particular class, or collection of related classes.

Before a source file can be compiled, it is passed through the preprocessor to produce
what is known as a translation unit. The compiler then works on the translation unit
to produce object code. In order to produce a file that can be executed, the object
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code must be linked, both with object code derived from other source files provided
by the programmer and with the compiled system-provided library functions. This is
carried out by means of a special program, known as a linker. Linking, preprocessing
and compilation are usually invoked by a single command, with options available to
inhibit one or more of these processes.

In C++, the existence of function overloading makes it particularly important for
the argument types of the compiled functions to be known. For this reason, type-safe
linking is used. The compiler mangles (that is it modifies) function names in a well-
defined way in order to encode information on the number of function arguments and
their types. In the case of a member function, the class name is also encoded. Name
mangling gives the same unique name to a function that may be declared in many
different translation units.!? This means that overloaded functions are resolved on
linking rather than on compiling.

In general, names can either have internal linkage (the visibility of their names is re-
stricted to one translation unit) or external linkage (their names are visible throughout
the program). The following have internal linkage:

e typedef names (see Appendix C)
e enumerations

inline functions

objects declared const.
External linkage occurs for:
e static class members
e non-inline functions
e global (file scope) objects that are not declared const.

If the functions in different translation units have the same names and argument
types, then the names will clash on linking. This can be overcome by using different
namespaces. Namespaces are introduced in Chapter 14.

Changing linkage using extern

The keyword, extern, is a specifier that may be used to declare an object without
defining it, as illustrated by the following code fragment:

extern double pi;
extern sphere s;
extern int &velocity;

In such cases the name and type of the variable is known to the translation unit, but
the definition, which allocates memory, is elsewhere.

It is possible to use the extern specifier in a function declaration, as in the following
statement:

12A function may only be defined once in a program, but it may be used (and therefore declared)
in many translation units.
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extern double sqrt(double z);

However, this is redundant since the function is necessarily defined “elsewhere”.

An initialized object that is declared extern is in fact a definition. The motivation
for definitions like this is that although a const object has internal linkage by default,
the extern specifier makes the object visible to other translation units. This following
statement provides an example:

extern const double h = 6.6262e-27; // Planck’s constant.

8.16.2 Header Files

The proper use of header files can do a lot to ensure the consistency of classes and
functions across translation units. Once again C++ does not enforce a particular
style, but there are well-established conventions and these are worth following. C++
header files usually have a .h (or equivalent) extension. A header file is included (by
means of the #include directive) in the source files for which it is relevant. A large
program may have many header files, some of which #include other header files and
controlling this hierarchy can be a significant task. The complex class in Section 8.13
provides an example of how to use the #ifndef directive to avoid the possibility of
multiple copies of included files.
In general, header files can and should contain the following:'?

e (Class declarations, such as:
class sphere {
public:
void assign_radius(double r) { radius = r; }
void get_radius(double &r) { r = radius; }
double radius;
}
e Function declarations, as in:
double sqrt(double);
e Inline function definitions, such as:
inline void sphere::increment_spheres(int new_spheres)

{

total += new_spheres;

e Variable declarations, as in:

extern double pi;

3Note the important distinction between “define” and “declare” for both variables and functions.
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e Constant definitions, as in:

const double 1n_pi = 1.14472988584940017;
e Enumerations, such as:

enum colour {RED, GREEN, BLUE};
e Other header files, such as:

#include <cstdlib>

In addition, header files can contain the following (which we haven’t covered yet):
e Named namespaces. (See Section 14.2.)

e Template declarations. (See Sections 16.1 and 16.2.)

e Template definitions. (See Sections 16.1 and 16.2.)

By contrast, header files should not include the following;:

e Variable definitions, such as:
double relative_velocity;
e Non-inline function definitions, as in:

int max(int a, int b)
{
return a >=b 7?7 a : b;

}

e Constant array definitions, such as:

const float table[] = {0.0, 1.0, 2.0};

8.17 Using Classes

Many of the objects that occur in mathematics are obvious candidates for making into
classes; the possibilities are endless: vectors, matrices, complex numbers, geometri-
cal objects, quaternions, arbitrary length integer arithmetic and many more. Most
of these classes would benefit considerably from more advanced techniques that are
introduced in Chapters 9 and 10. However, in this section we consider a self-checking,
self-describing one-dimensional array class, which illustrates most of the ideas intro-
duced in this chapter.!* Let us suppose that this array class has the following design
requirements:

14The exceptions are the two pointer-to-member operators since these are rarely used. (See Sec-
tion 8.10.)
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The array must store n values of type double, where n is set at run-time.

The elements of the array are labelled 1 to n, rather than 0 to n — 1.

An array object has a record of its own size and any attempt to access an element
outside the array bounds is flagged as a run-time error.

A tally is kept of the number of initialized array objects.
A suitable class declaration is:

// source: array.h
// use: Defines array class.

#ifndef ARRAY_H
#define ARRAY_H

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class array {
public:

array(int size);

int get_size(void);

double &element(int i);

static int number_of_arrays(void);
private:

int elements;

static int total;

double *pt;
};
inline int array::get_size(void)
{
return elements;
}
inline double &array::element(int i)
{
if (1 <1 || i > elements) {
cout << "Array index " << i << " out of bounds\n";
exit (EXIT_FAILURE);
b
return pt[i - 1];
}

#endif // ARRAY_H
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Most of this class declaration is self-documenting. The pointer, pt, is the base address
of a dynamically allocated array, of sufficient size to store n values of type double. The
static variable, total, is the total number of arrays that have been initialized. No-
tice that the entire member data are private and only accessible through the member
functions. (This is an example of data hiding.) Also of interest is that the function,
element (), returns a reference and can therefore appear on the left-hand side of as-
signment statements. A class definition is usually placed in a separate header file and
in this case the file is called array.h.

Those member functions of the array class that are declared inline are imple-
mented in the array.h header file. Suitable implementations of the other member
functions are in a file called array.cxx, which is given below.

// source: array.cxx
// use: Implements array class.

#include "array.h"

int array::total = 0; // Included to demonstrate technique.
// (Default is 0)

array::array(int size)

{
elements = size;
pt = new double[elements];
++total;
}
int array::number_of_arrays(void)
{
return total;
}

Observe that the only way of accessing an array object is through the member function,
element (), which checks the validity of the array index.
A program that tries out this class is given below.®

// source: my_test.cxx
// use: Tests array class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "array.h"

using namespace std;

int main()

{

15 A5 on page 193, avoid calling the program test.cxx because it is likely there is already a command
with the name test on your system.
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}

USING CLASSES

int array_size = 20;

// Define an object:
array x(array_size);

// Access the array size:
cout << "The array size is " << x.get_size() << "\n\n";

// Store some data:
for (int i = 1; i <= array_size; ++i)
x.element(i) = 1 * 25.0;

// Retrieve some data:
for (int i = 1; i1 <= array_size; ++i)
cout << x.element(i) << "\n";

// Define another object:
array y(array_size);

// Now repeat the above, using a pointer to an object:
array *p = &y;

// Use static member function to get number of objects:
cout << "\nNumber of arrays initialized is " <<
array: :number_of _arrays() << "\n";

// Access the array size:
cout << "The array size is " << p->get_size() <<

" \n\n n ;

// Store some data:
for (int i = 1; i <= array_size; ++i)
p—>element(i) = i x 250.0;

// Retrieve some data:
for (int i = 1; i <= array_size; ++i)

cout << p->element(i) << "\n";

// Try to go outside of the array bounds:
p—>element (array_size + 1) = 3.142;

return(EXIT_SUCCESS) ;

239

To test the array class, the file, array.cxx, is first compiled to give an object file,
such as array.o, and then my_test.c should be compiled and linked with array.o.
You will have to consult your C++ compiler documentation in order to discover the
exact commands required. They will probably be something like:
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g++ -C array.cxx
g++ my_test.cxx array.o

Most systems will have something resembling the UNIX make utility and this can
be used to simplify program maintenance. For the present example, a file (typically
called makefile) is created with the following contents:!

my_test: my_test.cxx array.o array.h
g+t+ my_test.cxx array.o -o my_test
array.o: array.cxx array.h
g+tt+ -C array.cxx

The first line implies that the file my_test (which is the executable file that we wish to
create) depends on the three files my_test.cxx, array.o (the object file) and array.h
(the header file). If any of these three files is more recent than my_test (or array.o
doesn’t exist), then my_test is created again. The second line is a rule stating how
to create my_test and is just what we would type at the system prompt. It is the
instruction to compile the file my_test.cxx and link it with the file array. o to produce
the output file my_test. The third line states that array.o depends on array.cxx and
array.h, so if any of these is more recent than array.o (or array.o doesn’t exist),
then array.o should be created again. The rule for creating array.o is given in the
fourth line. Again, this line is what we would type at the system prompt and states
that we should compile array.cxx. The -c flag indicates that the object code (which
by default is a file called array.o in this case) should be produced but not linked. It is
important to note that in lines 2 and 4 there is a tab character before the g++ command.
This is an essential part of the syntax and replacing the tab by the equivalent number of
spaces will not work. Typing make is all that is necessary to keep my_test up to date.
It is worth emphasizing that using such a utility is almost essential for anything but
the simplest program, especially as C++ together with modern programming practice
strongly encourages the use of separate compilation units for unrelated functions or
classes. The make utility has a rich language of its own and this can be used to control
the compilation and linking of large numbers of source and header files. Have a look
at your system documentation in order to get a feel for what is available.

Our array class still has some weaknesses, all of which can be solved by more
advanced techniques:

e The default assignment operator, as in:
array x, y;

x.set_size(10);
y = x;

performs a simple copy operation, which is probably not very useful. In this
example, y.pt points to the same memory as x.pt, so that making assignments
to the elements of y will also change the x array.

e The notation:

161t is worth pointing out that some programmers consistently use the filename Makefile instead of
makefile so that it appears near the start of a directory listing. (This only works on certain operating
systems.)
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x.elements(i) = 10.0;
is rather clumsy. Something like:
x[i] = 10.0;

would be much better.

e If an array object goes out of scope, the memory is not reclaimed.

8.18 Summary

e A class is a user-defined data type, complete with its own data, functions and
operatorsﬂ7

class circle {
double x_centre, y_centre;
double area(void);

+;
e An object is an instance of a class:
circle one_circle, many_circles[100];

e The default assignment operator is a simple copy operator, which may inappro-
priately copy addresses (or other data):

circle new_circle = one_circle;

e Access to members of a class can be declared to be private (the default) or
public:

class circle {
public:
double area(void);
void set_centre(double x, double y);
void set_radius(double radius) { r = radius; }
double give_radius(void);

private:
double x_centre, y_centre;
double r;

}s

The data members, x_centre, y_centre and r are examples of data hiding.

17User-defined or, more correctly, overloaded operators are introduced in Chapter 9.
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e A function defined within a class, such as set_radius(), is implicitly declared
inline. The scope resolution operator, ::, is used to define a member function
outside the class definition:

double circle::give_radius(void) { return r; }

Functions defined in this way are not implicitly inline.

e Reference arguments eliminate unnecessary temporary copies:

void circle::translate_circle(circle &c, double d_x,

double d_y)

{
c.x_centre = x_centre + d_x;
c.y_centre = y_centre + d_y;
c.radius = radius;

}

e There are two fundamental ways of specifying an object:

circle c; // An object.
circle *pt_object; // A pointer to an object.

and two ways of specifying a class member:

radius = 10.0; // A class member.
double circle::*pt_member; // A pointer to a member.

Hence, four different operators can be used to access class members:!8

1. A class member access operator:
c.radius = 10.0;
2. A second class member access operator:
pt_object->radius = 10;
3. A pointer-to-member operator:
c.*xpt_member = 10.0;
4. A second pointer-to-member operator:
pt_object->*pt_member = 10.0;
e There is only one copy of a static data member, which is declared as in:
class circle {

/...

static int total;
};

18 These examples assume that radius is a public member.
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The declaration of a static data member of a class does not allocate memory.
This is done by a statement such as:

int circle::total;
All instances of a class have access to this one copy:

circle c1, c2;
++cl.total;
++c2.total;

e A static data member is initialized to zero by default, but can be initialized
explicitly:

int circle::total = 24;

e A static member function can only access static data and need not be invoked
by an instance of a class:

class circle {
// ...
static int total_circles(void) { return total; }
//

static int total;

+;
int number_of_circles = circle::total_circles();

e A constructor is a member function with the same name as its class. A constructor
cannot return a type but can be overloaded:

class complex {

// ...
complex (double x, double y);
complex (const complex &z);

};

For a class, X, a constructor with the declaration, X: :X(const X&), is known as
a copy constructor.

e If we want to use const class objects, then we must define appropriate const
member functions:

inline double complex::real(void) const
{

return re;
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e A function or class specified to be a friend of a class has access to all of the
member functions and data members, irrespective of any access specifiers:

class complex {

/...
friend double real(const complex &z);
friend class complex_matrix;

private:
double re, im;

};

8.19 Exercises

1. Implement and test a cylinder class. The class should have private data mem-
bers for storing the radius, height, position of the centre of the cylinder, and
number of cylinders created. The public members should include a contructor,
copy constructor and volume functions, together with functions to return values
for the private data members. You should also implement a static member
function that gives the number of cylinders created.

2. Improve the array class given in Section 8.17 by adding a copy constructor.
Memory should be dynamically allocated for the new array and the original data
elements copied into this memory.

3. Extend the array class, which we discussed in Section 8.17, to classes for two-
dimensional and three-dimensional arrays. In each case write a program to test
the new class.



Chapter 9

Operator Overloading

We already know how to overload functions. As was pointed out in Section 5.6, a
function is overloaded if there is more than one function with the same name, but
the functions have different numbers of arguments or different argument types. Using
similar techniques, we can overload the built-in operators (such as assignment, addi-
tion, multiplication etc.) so that they perform user-defined operations. This chapter is
concerned with the details of how to implement overloaded operators.

9.1 Introducing Overloaded Operators

Operators are overloaded in most languages; that is the meaning of an operator depends
on its context. For instance, the operations performed by the binary plus operator, +,
on the bits representing two floating point numbers are very different from those for
two integers. However, the crucial feature of C++ is that most operators can be given
a user-defined meaning. The only operators that cannot be overloaded are:

Lk S 7 sizeof

and the preprocessor operators, # and ##.
In order to prevent operator overloading getting out of control, there are a number
of restrictions:

e An operator can only be overloaded if its operands include at least one class type,
or it is a member function. This restriction is necessary so that a non-overloaded
operator can be distinguished from its overloaded variant. As a consequence we
cannot change the way operators work for the fundamental types; that is we
cannot make something like:

i =10 + 20;
really mean:
i =20 - 10;
245
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Such redefinitions of built-in operators would make programs almost impossible
to understand.

e The associativity and precedence of an operator, together with the number of
operands, cannot be changed by overloading. Again, if these restrictions were
removed, then programs could easily become incomprehensible.

e We cannot introduce new operators (such as ** for exponentiation).
e If we want to overload any of the operators:
= (O 1 -

then the overloaded operator must be implemented as a non-static member func-
tion.

9.1.1 Overloading the Assignment Operator

The assignment operator is rather special in that if we don’t define an overloaded as-
signment operator for a class, then a default definition is provided by the compiler.
This default operator simply does a copy of the data members of one object to an-
other. Consequently, we are able to make assignments using the simple complex class
introduced in the previous chapter, even though no assignment operator was defined.
This is illustrated below.

complex u(24.5, 17.6), v;
v = u;

Exercise

Write a program to demonstrate that the values 24.5 and 17.6 are indeed
assigned to the real and imaginary parts of v.

We can explicitly overload the assignment operator by making the following modi-
fication to the declaration of the complex class:

class complex {
public:
void operator=(const complex &z);
// More class declarations go in here.

3
inline void complex::operator=(const complex &z)
{
re = z.re;
im = z.im;
}

// More class implementations go in here.

This example illustrates the general syntax for overloading operators. In the declara-
tion:
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void operator=(const complex &z);

the operator keyword is followed by the operator itself and then parentheses containing
the operand (or operands). The assignment operator is a binary operator, but only
one operand (the second) is given explicitly, since the first operand is implicit. If we
have the statement:

v = u;

for complex objects v and u, then the second operand is u. The expressions z.re and
z.im, in the operator implementation, correspond to u.re and u.im respectively. The
expressions re and im (without the class member operator) are the data members of v.
In other words, because the operator is a member function, it has direct access to the
member data. Don’t forget that, since white space is ignored, the following overloaded
operator declarations are all equivalent:

void operator = (const complex &z);
void operator=(const complex &z);
void operator= (const complex &z);

However, the second version is more usual.

The type that appears as the left-most part of the operator declaration (in this case
void) is not the type of the left operand, but rather the type returned by the operator.
Even expressions such as:

vV =1u

can return a type. In the above implementation we have chosen the return type to be
void, but this does not mimic the normal situation for assignment of the fundamental
types, as we now demonstrate.

9.1.2 The this Pointer

Consider the following statement for i and j of type int:

The assignment operator associates right to left, so that the first expression to be
evaluated is:

j=1

the result of which is of type int and value 1. It is not just j that has the value 1,
but also the expression itself. The value of this expression is then assigned to i. An
analogous situation does not exist for our current definition of the complex assignment
operator, as can be seen by trying:

complex u, v, z(24.5, 17.6);
u=v =2z; // WRONG for current assignment operator.

However, we can mimic the assignment operator for the fundamental types by using
the definition of the member function given below.
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class complex {

public:
complex &operator=(const complex &z);
// More class declarations go in here.

};

inline complex &complex::operator=(const complex &z)
{

re = z.re;

im = z.im;

return *this;

¥

// More class implementations go in here.

In fact, this is equivalent to the default operator. In the last statement of the operator
function body, we return a dereferenced pointer called this. The pointer, this, is a
keyword, which is used by the C++ compiler to point to the object that the function
was invoked on.! In the expression:

u=v
this points to u and:
return *this;

in fact returns u. Notice that we return a reference, which is permissible here since the
reference is to something defined outside the operator function body.

The this pointer can only appear inside the body of a class member function and
it is rare to use the pointer explicitly. Since the this pointer is a constant, it cannot be
assigned to. The pointer is necessary because, although every instance of a class has its
own data, there is only one copy of each member function. However, each non-static
member function has its own this pointer, which holds the address of the object that
the function was invoked on. Static member functions do not have a this pointer since
they can only access static data members and there is only one instance of each such
data member.

Exercise

Test the new assignment operator for the complex class. In particular,
check that the operator behaves correctly for statements such as:

u=vs=w-=2;

and demonstrate that it is the explicitly defined assignment operator that
is being used.

1Since overloaded operators are actually implemented by function calls, remarks concerning func-
tions also apply to operators. (See Section 9.3 for more details.)
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9.1.3 Overloading the Addition Operator

We would like to be able to write expressions involving the addition of complex objects
in a similar way to integer and floating point expressions. For example, it would be
useful to able to write the following expression for complex objects z, u and v:

zZ=u+v;
This is easily achieved by overloading the binary + operator, as shown below.

class complex {
friend complex operator+(const complex &z,
const complex &w) ;
// More class declarations go in here.

};

inline complex operator+(const complex &z,
const complex &w)

{
return complex(z.re + w.re, z.im + w.im);

}

Notice that the operator is implemented as a friend function, rather than a member
function. It therefore takes two arguments with the left and right operands correspond-
ing to z and w respectively. We can test this overloaded operator by examining the
results of the following program:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z);
friend double imag(const complex &z);
friend complex operator+(const complex &z,
const complex &w);
public:
complex &operator=(const complex &z) ;
complex(double x = 0.0, double y = 0.0);
private:
double re, im;

};

inline complex &complex::operator=(const complex &z)
{

re = z.re;

im = z.im;

return *this;
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inline complex::complex(double x, double y)

{
re = x;
im = y;
}
inline double real(const complex &z)
{
return z.re;
}
inline double imag(const complex &z)
{
return z.im;
}

inline complex operator+(const complex &z,
const complex &w)

{
return complex(z.re + w.re, z.im + w.im);
}
int main()
{
complex u(1.1, 2.2), v(10.0, 20.0), w;
W=u+ v
cout << "Real part of w = " << real(w) <<
" Imaginary part of w = " << imag(w) << "\n";
return(EXIT_SUCCESS) ;
}

Other binary operators, such as -, *, / etc. can be implemented in a similar manner.

Exercise

Implement and test overloaded binary operators for multiplication, *, and
equality, ==, for the complex class.

The addition operator for the fundamental types has two significant features:

e The operator is symmetric with respect to its operands; that is (u + v) is equiv-
alent to (v + u).

e The operands are not required to be lvalues. This is because the expression
(u + v) does not assign a value to either u or v.

In order to avoid confusion, an overloaded addition operator should also possess these
features.
The member function implementation of the complex addition operator:
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class complex {

public:
complex operator+(const complex &v);
/...

}

inline complex complex::operator+(const complex &v)
{
return complex(re + v.re, im + v.im);

¥

has the disadvantage that it is not symmetric with respect to the operands. For in-
stance, the expression:

u+v)

would be equivalent to:?
u.operator+(v)

This means that although an expression such as:
u + 10

would be valid, the apparently equivalent:
10 + u

would fail to compile since it is actually:
10.operator+(v) // WRONG!

Consequently, the overloaded complex addition operator should be implemented as a
friend function rather than a member function. Similar considerations apply to other
binary operators, such as -, *, /, && etc.

Overloaded operators that are defined as non-member functions are usually declared
friends. This friendship is not directly connected with operator overloading, but
is required whenever the non-member function implementing an overloaded operator
needs to access private class data.

9.1.4 Overloading the Unary Minus Operator

The minus operator, -, in the context:

complex u, v(10.0, 20.0);
u = -v;

is a (prefix) unary, rather than binary, operator. For the complex class this operator
can be implemented by the following member function:

2More detail on this operator function call notation is given in Section 9.3.
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class complex {
public:
complex operator-( ) const;
// More class declarations go in here.

3
inline complex complex::operator-( ) const
{
return complex(-re, -im);
}

Here, the unary minus operator is defined as a class member operator, rather than
a friend. For this reason the operator takes no explicit arguments (the parentheses
are empty) and the only “argument” is the hidden this pointer. The const at the
end of the function declaration for the overloaded unary minus operator has a similar
significance to const in the context of an ordinary member function; an object that
invokes the operator cannot be changed by it.> In the above case an expression such
as -v cannot change the values stored by v. A complete program demonstrating this
implementation of the unary minus operator is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z);
friend double imag(const complex &z);
public:
complex &operator=(const complex &z);
complex(double x = 0.0, double y = 0.0);
complex operator-( ) const;
private:
double re, im;

};

inline complex &complex::operator=(const complex &z)

{

re = z.re;
im = z.im;
return *this;
}
inline complex::complex(double x, double y)
{
re = X;
im = y;
X

3See Section 8.14.
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inline complex complex::operator-( ) const

{
return complex(-re, -im);
}
inline double real(const complex &z)
{
return z.re;
}
inline double imag(const complex &z)
{
return z.im;
}
int main()
{
complex u, v(10.0, 20.0);
u = -v;
cout << "Real part of u = " << real(u) <<
" Imaginary part of u = " << imag(u) << "\n";
return(EXIT_SUCCESS) ;
}

An alternative way to implement the unary minus operator is as a friend function,
as shown below.

class complex {
friend complex operator-(const complex &z) ;
// More class declarations go in here.

s
inline complex operator-(const complex &z)
{
return complex(-z.re, -z.im);
}

In contrast to binary operators, both member and non-member functions are acceptable
ways of overloading the unary minus operator.

Exercise

Test the above definition of the unary minus operator implemented as a
friend of the complex class.

9.2 User-defined Conversions

The fundamental data types have built-in conversions, which may be either implicit or
explicit. As an example of an implicit cast, consider the following statement:
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double x = 10;

In this case, the compiler supplies a cast that converts 10, of type int, to a double. A
cast is explicit when it is supplied by the programmer, as demonstrated below.

int i, j;
// Assignments to i and j go in here.
double x = static_cast<double>(i) / static_cast<double>(j);

Such conversions are not just a cosmetic change of type; the bit pattern representing 10
is very different from that representing 10.0. Moreover, the built-in conversions are an
essential simplification, without which the compiler would have to provide a different
implementation of every binary operator for each legal combination of the fundamental
types.

It is also possible to perform conversions from a class or fundamental data type
to a class. Again, such conversions may be either implicit or explicit, but we must
supply functions that specify how the conversions are to be made. There are two ways
in which conversions involving classes can be performed: by constructors accepting
a single argument and by conversion functions. Before we continue our discussion of
operator overloading, we examine these conversions in more detail.

9.2.1 Conversion by Constructors

A constructor accepting a single argument, not of the class type, converts that argument
to the class type. Such conversions are relatively common. For instance, an example
of a constructor that accepts a single argument is given below.

class complex {

public:
// Additional constructor:
complex(double x) { re = x; im = 0.0; }
// More class declarations go in here.

};

This constructor would apply implicit and explicit conversions from the type double to
complex. However, the various versions of our complex class considered in this chapter
have a constructor (originally defined in Section 8.13) with the declaration:

complex: :complex(double x = 0.0, double y = 0.0);

Because default arguments are supplied right to left, this implies that we have already
implemented a constructor taking a single argument of type double. Moreover, it would
be an error to supply another such constructor since this would introduce ambiguous
function overloading. Consequently, the complex class as already defined will perform
the conversions given below.

complex u, v, Zz;

v = complex(3.6); // Explicit conversion by constructor.
u=1.2; // Implicit conversion by constructor.
zZ=u+ 3+ v; // Implicit conversion by constructor.
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The assignment to v clearly involves an explicit conversion by the complex constructor.
In the statement assigning 1.2 to u, the constructor is implicitly used to perform a
conversion. Moreover, z is evaluated correctly, even if we have only declared:

friend complex operator+(const complex &z, const complex &w);

and have not given versions for operands of type double. This is because 3 is im-
plicitly converted to double, which is in turn implicitly converted to complex by the
constructor function. These conversions are demonstrated in the program given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z);
friend double imag(const complex &z) ;
friend complex operator+(const complex &z, const complex &w) ;
friend complex operator-(const complex &z);
public:
complex &operator=(const complex &z) ;
complex(double x = 0.0, double y = 0.0);
private:
double re, im;

};

inline complex &complex::operator=(const complex &z)
{

re = z.re;

im = z.im;

return *this;

¥
inline complex::complex(double x, double y)
{
re = Xx;
im = y;
}
inline double real(const complex &z)
{
return z.re;
}

inline double imag(const complex &z)
{

return z.im;
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inline complex operator+(const complex &z, const complex &w)

{
return complex(z.re + w.re, z.im + w.im);
}
inline complex operator-(const complex &z)
{
return complex(-z.re, -z.im);
}
int main()
{
complex u, v, z;
v = complex(3.6); // Explicit conversion by constructor.
cout << "Real part of v = " << real(v) <<
" Imaginary part of v = " << imag(v) << "\n";
u=1.2; // Implicit conversion by constructor.
cout << "Real part of u = " << real(u) <<
" Imaginary part of u = " << imag(u) << "\n";
z =u+ 3; // Implicit conversion by comnstructor.
cout << "Real part of z = " << real(z) <<
" Imaginary part of z = " << imag(z) << "\n";
return(EXIT_SUCCESS) ;
}

9.2.2 Conversion Functions'!

A constructor accepting a single argument can only convert to its own class and this

has two consequences:

e A constructor cannot convert to one of the fundamental types.

e Suppose class Y has been implemented and we define a new class, X. A class X
constructor can convert from Y to X, but we must modify class Y in order that
a class Y constructor can convert from X to Y. However, changing the source of

class Y may not be an option.

The solution to both of these problems is to use a conversion function.
A conversion function is a class member declared as in:

class my_class {
public:
operator type (O);

// More class declarations go in here.

};

where type is the type returned, which could be either a fundamental type (or a simple
derivation, such as a pointer to a fundamental type) or else a class. For example, if
we need a conversion from my_class to int, then the appropriate conversion function
declaration is given in the following class declaration:
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class my_class {
public:
operator int ();
// More class declarations go in here.

+;
As demonstrated below, it is illegal to specify an argument for a conversion function.

class my_class {

public:
operator int(int); // WRONG: cannot specify argument.
// More class declarations go in here.

};

Moreover, since the return type is already part of the function name, you cannot repeat
the return type in an attempt to follow the usual syntax for a function. Consequently,
the following code fragment is not valid:

class my_class {

public:
int operator int(); // WRONG: cannot specify return type.
// More class declarations go in here.

};

Another restriction is that since conversion functions do not take arguments they can-
not be overloaded.

A conversion function is a user-defined cast operator and can be used in two distinct
ways:

1. Conversion From a Class to a Fundamental Type

Suppose we define a time class, which stores the time in hours, minutes and
seconds. We can define a conversion function that converts a time object into
the int type, corresponding to seconds. This is demonstrated below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class time {
public:
// Define a constructor:
time(int h, int m, int s) { hours = h; minutes = m;
seconds = s; }
// Define a conversion function:
operator int() { return(seconds + 60 * (minutes +
60 * hours)); }
private:
int hours, minutes, seconds;

};
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int main()

{
time t(16, 21, 35); // 16 hours 21 mins. 35 secs.
int s;
s = int(t); // Time in seconds.
cout << "Time in seconds is " << s << "\n";
return(EXIT_SUCCESS) ;

}

Exercise

Try running the above program and check the result that you obtain.
What happens if you comment out the conversion function definition?

2. Conversion Between Classes

It is also possible to provide conversion functions that convert between classes.
As an example, suppose we define an array class for objects with three elements
as shown below.

class array3 {
public:
array3(){ datal[0] = data[1] = data[2] = 0.0; }
array3(double x, double y, double z);
array3 &operator=(const array3 &a);
void list_data(void);
private:
double datal3];

}
array3::array3(double x, double y, double z)
{
datal[0] = x;
datal[1] = y;
datal[2] = z;
}
array3 &array3::operator=(const array3 &a)
{
data[0] = a.datal[0];
datal[1] = a.datal1];
datal[2] = a.datal2];
return *this;
}

void array3::list_data(void)
{

cout << "(" << datal[0] << ", " << data[1] << ", " <<
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datal2] << ")";
}

An array class, array2, for objects with two elements can provide a conversion
function from array2 to array3, as shown in the following code:

class array2 {
public:
array2(double x, double y);
array2 &operator=(const array2 &a);
operator array3();
void list_data(void);
private:
double datal2];

3
array?2::array2(double x, double y)
{
data[0] = x;
datal1) = y;
}
array2 &array2::operator=(const array2 &a)
{
data[0] = a.data[0];
datal1] = a.datal1];
return *this;
}

// Define a conversion function:
array2::operator array3()

{
return array3(data[0], data[1], 1.0);
}
void array2::list_data(void)
{
cout << "(" << data[0] << ", " << data[l] << ")";
}

If we define an object of the array?2 class, as in:
array2 a2(10.0, 20.0);

then we can make an explicit conversion to the array3 class, as demonstrated
below.

array3 a3 = array3(a2);
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Exercise

Verify that this conversion gives the expected result and then change
the initialization statement for a3 so that an implicit conversion is
performed.

9.2.3 Implicit Conversions'!

User-defined conversions should be kept simple since they are usually applied implicitly
and it may not be obvious which conversions are used. Conversions are typically applied
implicitly in the following circumstances:*

1. Function Arguments

A function declared as:
complex f(complex z);
may be invoked by:
complex w = £(2.4);

The function argument, 2.4, is implicitly converted to a complex object and the
statement is equivalent to:

complex w = f(complex(2.4));

2. Function Return Values

The body of the £() function, declared above, could correctly include the state-
ment:

return(x);
where x has type double. This return statement would then be equivalent to:
return(complex(x));

3. Operands

If we declare:
friend complex operator*(const complex &u, const complex &v);

then we do not need to declare versions of the * operator with a double operand,
such as:

friend complex operator*(const double &x, const complex &v);

4Notice that in all three examples the required conversion is from double to complex and therefore
must be performed by a constructor rather than a conversion function. However, in other circumstances
a conversion function may be appropriate.
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For example, the expression:
complex z = 2.0 * v;

has an implicit conversion from double to complex.

In principle, it is possible to define a constructor and a conversion function, both
of which perform a conversion between the same two types. However, any attempt to
perform an implicit conversion between the two types would be ambiguous and would
therefore fail.

Not more than one implicit user-defined conversion is applied in any one instance.
For example, we could extend the example of the previous section to include a class
for objects with four elements:

class array4 {
public:
array4(){data[0] = data[1l] = data[2] = data[3] = 0.0;}
array4(double w, double x, double y, double z);
array4 &operator=(const array4 &a);
void list_data(void);
private:
double datal4];
I

and introduce a new conversion function into the array3 class with the implementation:

array3::operator array4()

{
return array4(datal0], data[1l], datal[2], 1.0);
}

We now have the following user-defined conversions:

array2 —— array3d
array3 —— array4

Given objects, a2, a3 and a4, for the classes, array2, array3 and array4, implicit
conversions occur for the following statements:

a3 = a2;
a4 = a3;

However, the statement:
ad = a2; // WRONG: needs two implicit conversions.

is invalid since only one user-defined conversion can be performed implicitly. If this
were not so then conversions could get completely out of control.

Exercise

Verify by means of a short program that although single implicit conversions
are applied from a2 to a3, and from a3 to a4, a double implicit conversion
is not applied from a2 to a4.
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9.3 Operator Function Calls

So far, we have introduced operator overloading in the context of the complex class
and described user-defined conversion in some detail. We are now ready to return to a
more thorough treatment of the subject of operator overloading.

Operator overloading is actually implemented by an operator function call. A non-
member operator, such as:

friend complex operator+(const complex &u, const complex &v);

is a function with the name “operator+”, taking two complex arguments and returning
the complex type. An expression of the form:

zZ=u+ v;
where z, u and v are all instances of the complex class, is directly equivalent to:
z.operator=(operator+(u, v));

Exercise

Verify the equivalence between the operator and function call notations by
listing the real and imaginary parts of z for explicit (complex) u and v
in the above expression. Are the outermost parentheses significant in the
operator function call? Can white space be inserted around the = or +?

It is very rare for operator function calls to be invoked explicitly, since the resulting
expressions are more cumbersome and less intuitive than their operator counterparts.
However, the ability to rewrite expressions in terms of operator function calls (as above)
leads to an understanding of how overloaded operators really work and this comes in
useful when actually defining such operators.

Most overloaded operators can be implemented by both non-static member func-
tions and non-member functions (which are usually friends). One set of exceptions
consists of the new, new[], delete and delete[] operators. However, since the over-
loading of these operators is only likely to be useful in advanced applications, we do
not consider them any further in this chapter. The other exceptions consists of the
assignment, function call, subscripting and class member access operators:

= @) (1] ->
which can only be overloaded by non-static member functions. The overloaded class

member access operator, ->, has the additional unique feature in that it is considered
to be a unary operator; that is:

pt->x
is interpreted as:
(pt.operator->())->x

Consequently, pt.operator->() must return something that can be used as a pointer.

It is worth emphasizing that the overloading of composite operators, such as +=,
is independent of other overloaded operators. For instance, if we have defined the
assignment and binary plus operators for the complex class, then if we want to use
the += operator we still need to define it. For the fundamental types, such as int, the
statement:
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k += 10;
has exactly the same meaning as:
k =k + 10;

We don’t actually need to overload an operator like the += operator in a way that
mimics its meaning for the fundamental types. However, it would certainly be sensible
to do so.

9.3.1 Binary Operators
A binary operator is invoked by the expression:
A Q@B

where A and B are the two operands, and the @ symbol is used to denote a generic
operator. The expression A @ B is equivalent to:

A.operator@(B)
for a non-static member function and:
operator@(A, B)

for a non-member function implementation. Whereas the member function has one
explicit argument and the hidden this pointer, the non-member function has two
arguments and no this pointer.

As an example, suppose z and w are instances of the complex class, then:

Z += W;
is equivalent to:
z.operator+=(w) ;
for the member function, and:
operator+=(z, w);
for the non-member function. The member function would be declared as:

class complex {

public:
complex &operator+=(const complex &z);
// More class declarations go in here.

};

Assuming the data members of the complex class are private, then the non-member
function must be declared a friend of the class, as shown below.

class complex {

public:
friend operator+=(const complex &u, const complex &v);
// More class declarations go in here.

};
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A significant difference between non-member and member binary operators is that
whereas user-defined conversions may be applied to both operands for non-member im-
plementations, user-defined conversions are not applied to the first operand for member
implementations. For example, suppose we declare an (incomplete) complex class as:

class complex {
friend double real(const complex &z);
friend double imag(const complex &z);
public:
complex(double x = 0.0, double y = 0.0);
complex operator+(const complex &z);
complex &operator=(const complex &z);
private:
double re, im;

};
and initialize variables, u and x by:

complex u(1.0, 2.0);
double x = 5.0;

Then, if z is declared complex, the statement:
zZ =1u + X;

is valid because the constructor with the default imaginary argument converts the ex-
plicit argument of the operator+ function from double to complex. However, because
the user-defined conversion is not applied to the dereferenced hidden this pointer, the
following statement does not compile:

Z =X + u;

This explains why Section 9.1.3 emphasized that the complex addition operator should
be implemented as a friend function rather than as a member function.

Exercise

(a) Implement the complex class defined above and verify the claims
made.

(b) Modify the matrix class introduced in Section 7.8.1 so that two ma-
trices can be added by using the overloaded binary plus operator.

9.3.2 Prefix Unary Operators
A prefix unary member operator @ is invoked by the expression:®
Q A

where A is the single operand. This expression is equivalent to:

5Don’t forget that we use the @ symbol to stand for a generic operator.
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A.operator@()
for a non-static member function and:
operator@(A)

for a non-member function implementation. Whereas the member function has the
hidden this pointer and no explicit argument, the non-member implementation has
no this pointer and a single argument.

As an example, if z is an instance of the complex class, then:®

++z;

is actually invoked by:
z.operator++() ;
for the member implementation, and:
operator++(z);
for the non-member implementation. The member function would be declared as:

complex class {
public:
complex operator++();
// More class declarations go in here.

};
and the non-member function as:

complex class {
public:
friend complex operator++(complex &z);
// More class declarations go in here.
};

A program demonstrating the member function implementation is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z);
friend double imag(const complex &z);
public:
complex(double x = 0.0, double y = 0.0);
complex operator++();
private:

61t is not clear that we would want to overload the increment operator for the complex class. For
the purpose of illustration, we could suppose that ++ increments the real part of complex objects.
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double re, im;

}
inline complex::complex(double x, double y)
{
re = x;
im = y;
}

// Member function implementation of prefix unary operator:
inline complex complex::operator++()

{
return complex(++re, im);
}
inline double real(const complex &z)
{
return z.re;
}
inline double imag(const complex &z)
{
return z.im;
}
int main()
{
complex z(3.0, 2.0);
++z;
cout << "Real part of z = " << real(z) <<
" Imaginary part of z = " << imag(z) << "\n";
z.operator++();
cout << "Real part of z = " << real(z) <<
" Imaginary part of z = " << imag(z) << "\n";
return(EXIT_SUCCESS) ;
}

Of course, in real code we would invoke the member function by using ++z rather than
z.operator++().

Exercise
(a) Check that the output from the above program is what you would
expect.

(b) Modify the program so that it uses the non-member implementation
of the prefix ++ operator.
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9.3.3 Postfix Unary Operators

The increment and decrement operators have postfix, as well as prefix, variants. These
postfix operators can be either non-member functions or non-static class members,
and in both cases are distinguished from their prefix versions by having an extra argu-
ment of type int.

In the case of a member function implementation, an expression of the form:

AQ
where @ is either ++ or --, is equivalent to:
A.operator@(0)

Notice that the function is invoked with an argument of value zero and it is this that
distinguishes the postfix from the prefix operators. If z is an instance of the complex
class, then:

Z++;
is invoked by:

z.operator++(0); // Postfix operator.
However, the statement:

4z
corresponds to:

z.operator++(); // Prefix operator.

For the complex class, the postfix ++ member operator would be declared as:

class complex {
public:
complex operator++(int);
// More class declarations go in here.

};
In the case of a non-member implementation, the expression:
AQ
is equivalent to:
operator@(A, 0)

The function is invoked with two arguments, the second of which has the value zero.
If z is a complex object, then z++ is invoked by:

operator++(z, 0); // Postfix operator.

However, ++z corresponds to:”

7Once again, in real code we wouldn’t invoke the operators by using operator++(z, 0) or
operator++(z); we would simply use z++.
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operator++(z) ; // Prefix operator.
The postfix ++ non-member operator would be declared as:

class complex {

public:
complex complex::operator++(complex &z, int);
// More class declarations go in here.

};

A program demonstrating the non-member version of the postfix ++ operator is given
below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class complex {
friend double real(const complex &z);
friend double imag(const complex &z);
friend complex operator++(complex &z, int);

public:
complex(double x = 0.0, double y = 0.0);
private:
double re, im;
s
inline complex::complex(double x, double y)
{
re = x;
im = y;
}
inline double real(const complex &z)
{
return z.re;
}
inline double imag(const complex &z)
{
return z.im;
}

// Non-member function implementation of postfix unary operator:
inline complex operator++(complex &z, int)
{

return complex(++z.re, z.im);

}
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int main()

{
complex z(3.0, 2.0);
Z++;
cout << "Real part of z = " << real(z) <<
" Imaginary part of z = " << imag(z) << "\n";
operator++(z, 0);
cout << "Real part of z = " << real(z) <<
" Imaginary part of z = " << imag(z) << "\n";
return(EXIT_SUCCESS) ;
}
Exercise

(a) Check that the above program gives the output that you would expect.

(b) Modify the program so that it uses the member function implementa-
tion of the postfix -- operator.

9.4 Some Special Binary Operators

There are three special binary operators that can only be overloaded by non-static
member functions.® These are the assignment, subscripting and function call operators.
Since we have already considered the assignment operator in some detail, we now turn
our attention to the subscripting and function call operators.

9.4.1 Overloading the Subscripting Operator

As we have already mentioned, the built-in concept of an array in C++ is very primi-
tive. An array element, a[i], means nothing more than *(a+i) and multi-dimensional
arrays, such as b[i] [j] [k], are merely successive left to right applications of the sub-
scripting operator, [J. Moreover, indexing goes from zero up to one less than the
number of elements and no checking is done to ensure that a program keeps to this
range.

The overloaded subscripting operator has the form A[B], where A must be a class
object and B can have any type. In the function call notation, the expression, A[B], is
equivalent to:”

A.operator[] (B)

There is no necessity for the overloaded operator to have any connection with the
concept of an array; we simply have a function, with the name “operator[]”. The
function has two arguments; the first is the hidden this pointer and the second is B,
which is not limited to the integral or even fundamental types. In spite of this freedom
of definition, it is advisable to make the overloaded subscripting operator have some
connection with its built-in counterpart. As a simple example, suppose we need objects

8Since they are overloaded by non-static member functions, their first operands are lvalues.
9 Any white space inserted within the square brackets of operator[] is ignored.
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that are one-dimensional arrays with the index going from 1 to 3. Also assume that
we want any array access to be checked, in case the index goes out of bounds. The
following class implements these features:

class array {

public:
double &operator[] (int i);
private:
double datal3];
3
double &array::operator[](int i)
{
if <1 111i>3 Ao
cout << "Index = " << i << " out of range\n";
exit (EXIT_FAILURE);
}
return datali-1];
}

Notice that we return a reference for operator[] (). This enables us to have array
objects on the left-hand side as well as the right-hand side of assignment statements,
as the program given below demonstrates.

#include <iostream>
#include <cstdlib> // For exit()
using namespace std;

class array {

public:
double &operator[] (int i);
private:
double datal3];
I
double &array::operator[](int i)
{
it G<1|11>3)A
cout << "Index = " << i << " is out of range.\n";
exit (EXIT_FAILURE);
}
return datali-1];
}

int main()

{
array x;
// Assign values to elements of the array:
for (int i = 1; i <= 3; ++i)
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x[i] = 10.0 * i;
// Test assignment:
for (int i = 1; i <= 3; ++i)

cout << "x[" << i << "] = " << x[i] << "\n";
// Try setting the index out of range:
x[0] = 3.142;
return (EXIT_SUCCESS) ;
}
Exercise

The array class introduced in Section 8.17 used the element () function to
access elements of an array object. Replace this function by the subscript-
ing operator so that statements such as

x[i] = 10.0;

are valid (where x is an array object).

9.4.2 Overloading the Function Call Operator

The function call operator can also be overloaded. An expression such as A(x, y, z)
is equivalent to:

A.operator() (x, y, 2z)

where A must be a class object, but x, y and z can be of any type. There is no
restriction on the number of arguments. For a single argument, the overloaded function
call operator can play the same role as the overloaded subscripting operator. The
function call operator could also be used to access the elements of a multi-dimensional
array class. Suppose we want to extend our example in the previous section to two-
dimensional arrays, with the data stored by columns, rather than rows. A suitable
class implementing this idea is as follows.

class array {

public:

double &operator() (int i, int j);
private:

double datal3][3];
s
double &array::operator()(int i, int j)
{

if @<t j<1 il i>3113>3) A

cout << "Index out of range: i =" << i <" j =" <KL
j <<"\n";

exit (EXIT_FAILURE) ;
+
return datalj-1][i-1];
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Notice that the indices are reversed in the return statement for operator () in order
to implement storage by columns.
A simple test program for this class is given below.

#include <iostream>
#include <cstdlib> // For exit()
using namespace std;

class array {

public:
double &operator() (int i, int j);
private:
double datal[3][3];
};
double &array::operator() (int i, int j)
{
if @<t Il j<111i>3113>3{
cout << "Index out of range: i =" << i <K< " j ="x<
j << "\n";
exit (EXIT_FAILURE);
}
return data[j-1] [i-1];
}
int main()
{
array x;
// Assign values to elements of the array:
for (int i = 1; i <= 3; ++i)
for (int j = 1; j <= 3; ++j)
x(i, j) = 10.0 * i * j;
// Test assignment:
for (int i = 1; i <= 3; ++i)
for (int j = 1; j <= 3; ++j)
cout << "x(" << i << ", "< j M) ="
x(1, j) << "\n";
// Try setting the index out of range:
x(0, 2) = 3.142;
return(EXIT_SUCCESS) ;
}
Exercise

(a) Compile and run the above program. Modify both the class and test
program to handle three-dimensional arrays.

(b) In the matrix class introduced in Section 7.8.1, an element of a matrix
was accessed by means of the element () function. Use the overloaded
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function call operator to modify this class so that an element a;; of a
matrix is accessed with the notation A(i, j) instead of the element ()
function.

9.5 Defining Overloaded Operators

There are some general guidelines that are worth following when defining overloaded
operators:

e Overloaded operators should mimic their built-in counterparts; for example:
z=1u+ v;

should in some sense correspond to addition for whatever class (or classes) z, u
and v belong.

e Operators that have related meanings for fundamental types should continue to
do so for their overloaded counterparts. For instance:

z += u;
should be completely equivalent to:
z =2z + u;

e In general, overloaded operators can be defined as either member functions or
non-member functions (usually friends). The exceptions are that:

= () [1] ->

must be non-static member functions. (The operators new, new[], delete
and delete[] are also exceptions, but the overloading of these operators is not
considered in this chapter.)

e If a binary operator for a fundamental type requires an lvalue for the left operand,
then the overloaded operator should be declared as a member function. For
example, the += operator for the complex class should be declared as:

class complex {

public:
complex &operator+=(const complex &u);
// More class declarations go in here.

};
rather than:

class complex {

public:
friend void operator+=(complex &u, const complex &v);
// More class declarations go in here.

};
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In the second case, counter-intuitive statements of the form:
1.4 += z; // WRONG

would be accepted by the compiler.

When the operator does not require an Ivalue for a fundamental type, the operator
should be a non-member function, rather than a class member. For instance, as
discussed in Section 9.1.3, the + operator for the complex class should be declared
as:

class complex {
public:
friend complex operator+(const complex &u,
const complex &v);
// More class declarations go in here.

};
rather than:

class complex {
public:
complex operator+(const complex &v);

};

In contrast to binary operators, member and non-member implementations of
unary operators are often equally acceptable. However, as noted previously, one
feature distinguishing member and non-member functions is that user-defined
conversions are not applied to an argument which is effectively the dereferenced
hidden this pointer.

9.6 Using Overloaded Operators

9.6.1 Complex Arithmetic

In this section we outline the implementation of a complex arithmetic class; it is left
as an exercise to complete the project. The header file for the class is given below.

// source: complex.h
// use: Defines complex arithmetic class.
// Implements inline functions.

#ifndef COMPLEX_H
#define COMPLEX_H

#include <cmath> // For sqrt(), cos(), sin(), exp()
using namespace std;
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class complex {
friend complex operator+(double x, const complex &v);
friend complex operator+(const complex &u, double X);
friend complex operator+(const complex &u, const complex &v);
friend double real(const complex &z);
friend double imag(const complex &z);
friend double mod(const complex &z);
friend complex conj(const complex &z);
friend complex exp(const complex &z);
public:
double &real(void);
double &imag(void) ;
complex(void) { }
complex(double r, double i);
complex(const complex &z);
complex &operator=(double x) ;
complex &operator=(const complex &z);
complex &operator+=(double x);
complex &operator+=(const complex &z);
complex operator-() const;
private:
double re, im;

};

// friend functions:
inline complex operator+(double x, const complex &v)
{

return complex(x + v.re, v.im);

inline complex operator+(const complex &u, double x)
{
return complex(u.re + x, u.im);

}

inline complex operator+(const complex &u, const complex &v)

{

return complex(u.re + v.re, u.im + v.im);

}
inline double real(const complex &z)
{
return z.re;
}

inline double imag(const complex &z)

{
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return z.im;

inline double mod(const complex &z)
// Modulus of z.
{

return(sqrt(z.re * z.re + z.im * z.im));

inline complex conj(const complex &z)
// Complex conjugate of z.
{

return complex(z.re, -z.im);

}

inline complex exp(const complex &z)
// Exponential function for complex argument.

{
double temp = exp(z.re);
return complex(temp * cos(z.im), temp * sin(z.im));

// Member functions and operators:
inline double &complex::real(void)

{
return re;
}
inline double &complex::imag(void)
{
return im;
}
inline complex::complex(double r, double i)
{
re = r;
im = i;
}
inline complex::complex(const complex &z)
{
re = z.re;
im = z.im;
}

inline complex &complex::operator=(double x)
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{
re = x;
im = 0.0;
return *this;
}

inline complex &complex::operator=(const complex &z)

re = z.re;
im = z.im;
return *this;
}
inline complex &complex::operator+=(double x)
{
re += x;
return *this;
X

inline complex &complex::operator+=(const complex &z)
re += z.re;
im += z.im;
return *this;

}
inline complex complex::operator-() const
{
return complex(—re, -im);
}

#endif // COMPLEX_H

Notice how complex arguments are passed as const complex &z wherever possible.
This is in order to improve efficiency. However, the double arguments are passed
by value since using reference arguments would not be any quicker. Also notice that
the library header, <cmath>, provides declarations for many common mathematical
functions, such as sqrt (), cos(), sin() and exp(). Finally, it is worth pointing out
that there are two different exp() functions. One is declared in <cmath> as:

double exp(double x);
The second exp() function is a friend of the complex class and is declared as:
complex exp(const complex &z);

These overloaded functions are distinguished by their arguments.'®

10Don’t forget that the potential ambiguity in overloaded functions is not resolved by different return
types, but by their arguments. (See Section 5.6.1.)
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Since all functions are inline, there is no complex.cxx file, although it could
reasonably be argued that mod() and exp() should not be inline, as they involve
non-trivial computation. A short program testing this class is given below.

// source: my_test.cxx
// use: Tests complex arithmetic class.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "complex.h"
using namespace std;

void print(const complex &z)
{

cout << real(z) << " + i * (" << imag(z) << ")\n";

int main()

{
complex z1(1, 2), z2(3, 3), z3;
const complex i(0, 1);

cout << "z1 = ";
print(z1);
cout << "z2 = ";
print(z2);
cout << "i =",
print(i);

z3 = z1 + z2;
cout << "z1 + z2 = ";
print(z3);

cout << "1.0 + z1 ",
print(1.0 + z1);
cout << "z1 + 1.0 "
print(zl + 1.0);

z3.real() = 3.4;

z3.imag() = 4.5;

cout << "Real and imaginary parts assigned: ";
print(z3);

cout << "mod(zl) = " << mod(zl) << "\n";

cout << "COIlj(Zl) =",
print(conj(z1));
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cout << "exp(zl) = ";
print (exp(z1));

return(EXIT_SUCCESS) ;
}

There is one feature of C++ that would improve this class. We have used:
print(z);

to print a complex number, but it would be better if this statement could be replaced
by:

cout << z;
Techniques for achieving this are described in Chapter 18.

Exercise

Extend the complex class by implementing and testing overloaded == and
I'= operators. The meaning of these operators should mimic the equal and
not equal operators for the fundamental types.

9.6.2 Strings

The idea of a string that C++ inherits from C simply consists of a char array with a
string terminator, >\0’. Manipulation of such strings is prone to error. For example,
a common mistake is to forget that the library function, strlen(), does not count the
terminator when returning the length of a string. However, by implementing a string
class we can provide both a safer and a more natural way of manipulating strings.!!
A suitable class declaration, together with the inline function definitions, is given

below.!?
// source: string.h
// use: Defines self-describing string class.

#ifndef SELF_DESCRIBING_STRING_H
#define SELF_DESCRIBING_STRING_H

#include <cstring> // For memcmp ()
using namespace std;

class string {

friend string operator+(const string &sl,const string &s2);
friend bool operator==(const string &si, const string &s2);
friend bool operator!=(const string &si, const string &s2);
public:

HThe class described here is not the same as the class of the same name that is part of the Standard
Library, described in Chapter 17.
12Do not confuse string.h with <cstring> (or <string.h> in pre-ANSI versions of C++).
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string(void) { characters = 0; pt = NULL; }
string(const string &s);
string(char *s);
string &operator=(const string &s);
char *char_array (void) const;
int length(void) const { return characters; }
void print(void);
private:
string(int set_length);
int characters;
char *pt;
I

inline bool operator==(const string &sl, const string &s2)
{
if (sl.characters == s2.characters &&
'memcmp(sl.pt, s2.pt, sl.characters))
return true;
else
return false;

}

inline bool operator!=(const string &sl1, const string &s2)
{
if (sl.characters == s2.characters &&
'memcmp(s1.pt, s2.pt, sl.characters))
return false;
else
return true;

#endif // SELF_DESCRIBING_STRING_H

A string object consists of a char array (without a string terminator) together with the
number of characters in the string, stored by the variable called characters. Functions
are provided to concatenate string objects, test for equality and inequality, and to
perform assignment. The char_array() function returns a pointer to an array that
stores a copy of the string object, s, as a standard C++ null terminated string. This
function avoids exposing details of the string implementation in circumstances where
a ordinary null terminated string is required. Notice the use of the memcmp () function,
declared in <cstring> as:

int memcmp(void *pt_1, void *pt_2, size_t count);

This function compares each successive byte pointed to by pt_1 with the corresponding
byte pointed to by pt_2 until either they do not have the same value or the number
of bytes specified by count have been compared. The function returns an integer less
than, equal to, or greater than zero, depending of whether the last comparison done
for the byte pointed to by pt_1 is less than, equal to, or greater than the byte pointed
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to by pt_2. Consequently, if the value returned by memcmp() in the above code is
non-zero, we know that the strings are not equal.
The non-inline members of the string class can be implemented as shown below.

// source: string.cxx
// use: Implements string class.

#include <iostream>
#include "string.h"

using namespace std;

string::string(const string &s)

{
characters = s. characters;
pt = new char[characters];
memcpy(pt, s.pt, characters);
}
string::string(char *s)
{
characters = strlen(s);
pt = new char[characters];
memcpy(pt, s, characters);
}
string &string::operator=(const string &s)
{
delete pt;
characters = s. characters;
pt = new char[characters];
memcpy(pt, s.pt, characters);
return *this;
}
char *string::char_array(void) const
{
char *buffer = new char[1 + characters];
memcpy (buffer, pt, characters);
buffer [characters] = >\0’;
return buffer;
}

string::string(int set_length)
{
characters = set_length;
pt = new char[characters];
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void string::print(void)
{
for (int i = 0; i < characters; ++i)
cout << ptl[il;

// friend function implementation:
string operator+(const string &sl1, const string &s2)

{

int s1_length = sl.length();

int s2_length = s2.length();

string new_string(si_length + s2_length);

memcpy (new_string.pt, sl.pt, sl_length);

memcpy (new_string.pt + sl_length, s2.pt, s2_length);
return new_string;

}

Notice that this code uses the memcpy () and strlen() functions, both of which are
declared in <cstring>. These functions are described in Section 7.8.2.
A simple program to try out this string class is given below.

// source: my_test.cxx
// use: Tests string class.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "string.h"
using namespace std;

string f(string s)

{
string ss;
ss = s;
return ss;
}

int main()

// Test string::string(char *s):
string s1("My first string");

// Test void string::print(void):
s1.print();
cout << "\n";

// Test int string::length(void):
cout << "String length: " << sl.length() << "\n";
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// Test string::string(void):
string s2;

// Test string &string::operator=(const string &s):
string s3 = si;

cout << "Copied string is: ";

s3.print();

cout << "\nWith string length: " << s3.length() << "\n";

// Test string::string(const string &s):

string s4 = £(s3);

cout << "String copied by function is: ";

s4.print();

cout << "\nWith string length: " << s4.length() << "\n";

// Test string operator+(const string &sl, const string &s2)
// and string::string(int set_length):

string s5(" and this is my second");

string s6 = sl + sb;

cout << "Adding two strings using +: ";

s6.print () ;
cout << "\nThis new string has length: " << s6.length() <<
" \nll ;

// Test char *string::char_array(const string &s):

char *pt = sl.char_array();

cout << "Assigning a ‘string’ to a char* gives: " << pt <<
ll\nll ;

// Test bool operator==(const string &sl, const string &s2):
cout << "Does string: ‘";
s3.print ) ;
cout << "’ == ‘",
s4.print();
cout << "’7?\n";
if (83 == s4)

cout << "Yes\n";
else

cout << "No\n";
cout << "Does string: ‘";
s3.print();
cout << "’ == ‘",
s6.print();
cout << "’7\n";
if (83 == s6)

cout << "Yes\n";
else
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cout << "No\n";

// Test bool operator!=(const string &sl, const string &s2):
cout << "Does string: ‘";
s3.print();
cout << "2 I= fn.
s4.print();
cout << "’?\n";
if (s3 != s4)

cout << "Yes\n";
else

cout << "No\n";
cout << "Does string: ‘";
s3.print ) ;
cout << "2 1= ¢fn.
s6.print ) ;
cout << "’7?\n";
if (s3 != s6)

cout << "Yes\n";
else

cout << "No\n";

return (EXIT_SUCCESS) ;
}

The current implementation of the string class has three unsatisfactory features:

e A string object is sent to the output stream by using the print() function,
rather than the << operator. The techniques of Chapter 18 enable the print ()
function to be replaced by an insertion operator.

e No function is provided for directly reading a string object from the input
stream. This deficiency can also be overcome by using the techniques of Chap-
ter 18.

e Memory for a string is not reclaimed when the object goes out a scope. It is
straightforward to correct this feature by means of a destructor function. De-
structor functions are introduced in Section 10.2.

9.7 Summary

e All of the built-in C++ operators can be overloaded, with the exception of:
O HH 7 sizeof
and the preprocessor operators, # and ##.

e The associativity, precedence and number of operands of an overloaded operator
cannot be changed by overloading:
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z=u! v; // WRONG!

e With few exceptions, an overloaded operator can be either a non-member function
(usually a friend):™

class X {
friend X operator+(const X &u, const X &v);
// More class declarations go in here.

+s;
or a member function:

class complex {
complex &operator+=(const complex &u);
// More class declarations go in here.

}s;

e Overloaded operators, when implemented as member functions, can use the const
specifier, as in:

class complex {
complex operator-() const;
// More class declarations go in here.

I
to indicate that an object invoking the operator cannot be changed by it.

e A constructor accepting a single argument, not of the class type, performs a
conversion to the class:

class complex {
complex(const double &x);
// More class declarations go in here.

3
complex z = 1.414; // Implicit conversion.
complex w = complex(0.707); // Explicit conversion.

e A conversion function takes the form:

class complex {
operator double();
// More class declarations go in here.

I
Neither a return type nor an argument can be specified.

e Operator overloading is implemented by an operator function. Member functions
have an implicit argument, which is the hidden this pointer. The relationship
between an operator and the corresponding function call notation is summarized
in Table 9.1, where @ stands for a generic operator.

13The exceptions are described in Section 9.3.
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[ Operator Function call

Member | Non-member
A @B | A.operator@(B) | operator@(A, B)
QA A.operator@( ) operator@(A)
Ao A.operator@(0) | operator@(4, 0)

Table 9.1: Operator function calls.

9.8 Exercises

1. Describe the difficulties you would encounter in trying to implement a class for

two-dimensional arrays by overloading the subscripting, rather than function call,
operator.

. Further improve our array class (originally given in Section 8.17) by adding an

overloaded assignment operator. Memory should be dynamically allocated for
the new elements and the original data copied to this memory.

. Extend the complex arithmetic class, described in Section 9.6.1, as far as you

can. Some of the many omissions are subtraction, multiplication and division,
together with the elementary mathematical functions for complex arguments.

In the complex arithmetic class, implemented in Section 9.6.1, there is neither a
constructor accepting a single argument nor a conversion function. Consequently,
explicit operators must be defined for each possible operation performing mixed
arithmetic. Implement the alternative technique of only defining operators for
complex arguments and relying on implicit conversion. Write a program that
tests the modified class as thoroughly as you can. What are the relative merits
of the two techniques?
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Constructors and Destructors

In this chapter we consolidate our knowledge of constructor functions and introduce
destructor functions. Constructors and destructors are class member functions. A con-
structor is invoked whenever an object is created and a destructor is invoked whenever
an object is destroyed. Constructors are often invoked by the compiler, rather than
as an explicit part of a statement supplied by a user of the class. Destructors are
also often invoked by the compiler and almost never as an explicit part of a statement
supplied by a user of the class.

Constructors are necessary because objects can be created throughout a program,
often implicitly and with their initial data unknown at compile-time. A constructor can
initialize object data and this may include storing the address of dynamically allocated
memory. Constructors are also often used to open files.

If there is no user-defined constructor, then a simple public default that takes
no arguments is supplied by the compiler. If at least one constructor is defined for a
class, but all the constructors must take arguments, then objects of this class cannot
be defined without being initialized. Such a class prevents the otherwise common error
of using objects that have not been initialized.

Constructors are usually public. However, if all constructors for a particular class
are private, then only member functions and friends can create objects of the class.
A class which has no public constructors is known as a private class and can be useful
if objects of one class are only ever used as clients of another. In order to ensure there
are no public constructors, a private copy constructor must be defined or else the
compiler will provide a public default.

A destructor is called when an object goes out of scope, or a program terminates
normally, and is used to tidy up before an object is destroyed. Often there is no
need for an explicit destructor to be supplied for a class since the default is perfectly
adequate. However, if a constructor dynamically allocates memory, then a destructor
should be defined in order that this memory can be returned to the “free store” when
the memory is no longer required. Another common use of a destructor is to close a
file that has been opened by a constructor. Since destructors are invoked implicitly
by the compiler, such a file is usually closed as its associated object goes out of scope,
rather than as a result of a statement supplied by a user of the class.
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10.1 More on Constructor Functions

10.1.1 Dynamic Memory Management

In many cases, the storage needed by an object is not known until run-time. For
example, we may have a matrix class, which could include functions to perform the
usual multiply, add and inversion operations. Instead of assigning sufficient memory
for matrices up to a certain size when we write the code, the matrix class could have
a constructor that uses the new operator to dynamically allocate precisely the required
amount of memory. We have already met the idea of dynamically assigning memory
for a matrix in Section 7.8.1, but this can now be improved by introducing classes and
constructor functions. An outline matrix class putting together these ideas might have
the following header file:

// source: matrix.h

class matrix {

public:
matrix(matrix &a);
matrix(int rows, int columns);
double &operator() (int i, int j);

private:
double *p; // Address of data.
int m, n; // m x n matrix.

};

Function definitions for the member functions are given below.

// source: matrix.cxx

#include <iostream>
#include <cstring> // For memcpy ()
#include "matrix.h"
using namespace std;

matrix::matrix(matrix &a)

{

m=a.m;

n = a.n;

p = new double[m * n];

memncpy(p, a.p, m * n * sizeof(double));
}
matrix::matrix(int rows, int columns)
{

L = rows;

n = columns;

p = new double[m * n];
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double &matrix::operator() (int i, int j)
{

return pli - 1 +m * (j - 1]
}

Notice that the constructor assigns the address of dynamically allocated memory to the
pointer, p. That is the constructor does not dynamically allocate the matrix object
(whose data members are m, n and p) but rather initializes the object after memory
for m, n and p has been allocated.

The following code provides a simple test program:

// source: my_test.cxx

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "matrix.h"
using namespace std;

int main()

{
int rows, columns;
cout << "Enter number of rows: ";
cin >> rows;
cout << "Enter number of columns: ";
cin >> columns;
// Create matrix:
matrix m(rows, columns);
// Assign values to elements of the matrix:
for (int i = 1; i <= rows; ++i)
for (int j = 1; j <= columns; ++j)
m(i, j) = 10.0 * i * j;
// Test assignment:
for (int i = 1; i <= rows; ++i)
for (int j = 1; j <= columns; ++j)
cout << "m(" << i << ", " L j << " =" <<
m(i, J) << "\l’l";
return(EXIT_SUCCESS) ;
}

A suitable makefile for this project is given below.

my_test: my_test.cxx matrix.o matrix.h
g++ my_test.cxx matrix.o -o my_test
matrix.o: matrix.cxx matrix.h
g++ -c matrix.cxx
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Exercise

(a) Compile and test the above matrix class.

(b) Implement overloaded assignment and addition operators for the ma-
trix class by using the ideas in Sections 7.8.1, 9.1.1 and 9.1.3.

(¢) Check by supplying suitable data that for m x n matrices A, B, C the
statement:

A =B+ C;

gives the expected results. You should try different values of m and
n, so that you test both square and non-square matrices.

10.1.2 Assignment and Initialization

In C++ it is important to distinguish between assignment and initialization since
they are implemented by different functions. An assignment is implemented by an
assignment operator. An initialization is performed by a constructor. In either case
the compiler supplies defaults if necessary.

Assignment implies that an object already exists and its data members are changed
through an assignment statement, as illustrated in the following code fragment:

int x;

x = 10; // 10 is assigned to x.
complex u, v(1.1, 2.2);

u=v; // Assignment to u.

An assignment is a copy operation which, with one exception, takes place whenever we
use the = symbol. The exception is that use of the = symbol within a declaration is an
initialization.

An initialization can occur in the following circumstances:

e when an object is declared, as in the statements:

complex z(1.1, 2.2);
double x = 2.7183;
complex w = 1.1;

int i = 10;

e when an object is passed by value as a function argument. For instance, if a
function:

void f(complex z)

{
// function body.

}

is invoked by:
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f(u);

then z is initialized rather than assigned to.

e when an object is returned by value from a function:

complex f (complex z)

{

complex u;

// More code goes in here.

return u;

// Implicit temporary is initialized by return statement.
}

If an object is passed by reference in a function argument or return value, then there is
no assignment. For many objects, such as large matrices, this is important since large
(and unnecessary) copying operations may be avoided by using pass by reference.!

Exercise

To illustrate the difference between assignment and initialization, imple-
ment functions for the following version of the complex class:

class complex {

friend complex operator+(const complex &u,
const complex &v);

public:
complex(double x = 0.0, double y = 0.0);
complex(const complex &z);
complex &operator=(const complex &z);
double re, im;

};

As each function is invoked, it should insert an identifying message in the
output stream. Use these implementations to write a program that enables
you to distinguish initializations from assignments in the code fragment:

complex u;

u = complex(2.0, 3.0);
complex v(1.0, 7.0);
complex z;

zZ=u+ v,

LHowever, remember that it is not possible to return a reference to a local non-static object.
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10.1.3 Member Objects with Constructors

The data members of a class are not restricted to the fundamental types; members
can themselves be instances of another class. This is illustrated in the following code
fragment:

class data {
public:
data(const complex &z1, const complex &z2);
// More class declarations go in here.
private:
complex u, v;

};

In this example, the member objects have constructors that take no arguments. Since
the complex () constructors are called before the data() constructor, this means that
the member objects may be first initialized to zero and then be assigned the values z1
and z2. For instance, the constructors may take the form:

complex: :complex(void)

{
re = 0.0;
im = 0.0;
}
data::data(const complex &z1, const complex &z2)
{
u = zl;
v = z2;
}

This sequence of initialization followed immediately by assignment is not very efficient,
particularly for large or much used data structures. However, if we have a constructor
taking arguments for the member objects, such as:

complex: :complex(const complex &=z)

{
re = z.re;
im = z.im;
}

then an alternative syntax for the data() constructor is:

data::data(const complex &z1, const complex &z2) : u(zl), v(z2)
{
// The constructor body goes in here, but it may be empty.

}

This directly calls the copy constructor for u and v, and the complex(void) constructor
is not invoked. In general, the colon is followed by a comma-separated list of construc-
tors taking arguments. This list, which is followed by the constructor body, can only
occur in a constructor definition and not a declaration:
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data::data(const complex &zl, const complex &z2) : u(zl), v(z2);
// WRONG: a declaration can’t have a constructor list.

The order in which the constructors are invoked is not influenced by this list since the
rule is that the constructors for member objects are invoked first, in the order in which
they are declared within the class, and then the constructor for the class is invoked.?

Exercise
Modify the complex() and data() constructors so that they insert iden-

tifying messages in the output stream when they are called. Write short
programs to demonstrate that:

(a) If the (unmodified) data() constructor has the definition:

data::data(const complex &z1, const complex &z2)
{

u = z1;

v = z2;

¥

then u and v are first initialized to zero and then assigned the values
of z1 and z2.

(b) The (modified) data() constructor with the declaration:

data::data(const complex &z1, const complex &z2)

:u(zl), v(z2) {}

does not first initialize u and v to zero, but rather invokes the copy
constructor for the complex class.

10.2 Destructor Functions

A destructor is a class member function with the name ~X, where X is the name of the
class. An example of a destructor function is given in the following header file for a
matrix class:

// source: matrix.h

class matrix {
public:
matrix(matrix &a);
matrix(int rows, int columns);

“matrix(); // Declares destructor function.
double &operator() (int i, int j);
private:
double *p;
int m, n;

};

2Destructors, which are introduced in the next section, are called in the reverse order.
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There is often no need to declare a destructor. The complex class is a typical example;
memory is allocated when a complex object is defined and deallocated when the object
goes out of scope. This is illustrated in the following function:

complex f(void)

{

complex z; // Memory allocated for z.

// More code goes in here.

return z; // z goes out of scope; memory is deallocated.
}

However, our matrix class is very different. Each time either of the two constructors
is invoked, the new operator allocates sufficient memory to store amatrix object. When
the object goes out of scope this memory is not deallocated, resulting in a gradual loss
of the available memory. This is known as memory leakage and can cause unnecessary
exhaustion of the available free store. Eventually this could cause your computer to
run more and more slowly, and may result in it stopping altogether! The solution to
this problem is to define a destructor that uses the delete operator to release memory
back to the free store. The definition of an appropriate destructor for the matrix class
is the following simple function:

inline matrix::“matrix() { delete p; }

Notice that the destructor deletes the memory whose address is stored by the pointer,
p; the constructor does not actually delete the matrix object, since this consists of the
three data members, m, n and p. Memory used by these data members would in any
case be available for reuse when the matrix object went out of scope.

Destructors are rather special functions; a destructor takes no arguments, does not
have a return type (not even void) and cannot be declared static.? Since a destructor
cannot have any arguments, it cannot be overloaded. Destructors are called implicitly,
as in:

matrix f(void)

{

matrix m(5, 6);

// More code goes in here.

return m; // "matrix() called implicitly
} // as m goes out of scope.

It is usually unnecessary and even a bad idea for a programmer to explicitly invoke a
destructor; doing so typically results in an attempt to delete memory that has already
been deleted and this has undefined consequences, as pointed out in Section 7.6.2.
One of the few cases where it may be necessary to explicitly invoke a destructor is
when an object has been placed at a specific address by means of the new operator.
The implementation of such cases is not straightforward due to the fact that ~ is the
unary bitwise complement operator, which is introduced in Chapter 11, and examples
demonstrating how to explicitly invoke destructors are given in [3].

3The fact that a destructor takes no arguments can of course be indicated by using a void argument.
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10.3 Using Constructors and Destructors

A common requirement in many applications is the manipulation of lists. The amount
of data stored in an item of a list is frequently large and the number of data items
is often not known until run-time. Moreover, the number of items may even change
during program execution. An array is not an appropriate data structure for such
problems, but a suitable alternative is a linked list. Linked lists are good examples of
constructors and destructors in use.

10.3.1 Singly Linked Lists

For simplicity we first consider a singly linked list. This consists of a number of nodes,
with each node storing a data item and the address of the next node in the list. The
address of the first node is known as the head of the list. A typical list is shown in
Figure 10.1.

head &—| data next —— | data next —— | data 0

Figure 10.1: Singly linked list.

It is convenient to have separate classes for the nodes and lists. These are declared
in the following header file:

// source: slist.h
// use: Defines singly linked list and node classes.

#ifndef SLIST_H
#tdefine SLIST_H

typedef int DATA_TYPE;

class node {

friend class list;
public:

DATA_TYPE data;
private:

node *next;

};

class list {
public:
list (void);
~“list();
void push(DATA_TYPE new_data);
void pop(DATA_TYPE &old_data);
bool is_not_empty(void);
private:
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node *head;

};
inline bool list::is_not_empty(void)
{
if (head == 0)
return false;
else
return true;
}

#endif // SLIST_H

The following points are worth noting for the node class:

e The node class declares the entire 1ist class (not just a single function) to be a

friend. This means that the 1ist functions have access to all member functions
of the node class and to all data members of node objects.

For simplicity, the data stored by a node object is a single int. In practice, this
would be replaced by a large data structure, perhaps the data on some experimen-
tal observation or a standard component for an engineering project. Each time
we change DATA_TYPE, the node and 1list classes must be recompiled, which is
contrary to the spirit of code re-usability in object-oriented programming. How-
ever, using class templates would overcome this problem. Class templates are
introduced in Chapter 16.

The data member, called next, stores the address of the next node. Notice that
it is legal to declare a pointer to node within the node class declaration, but it is
not legal to declare another node object within the node class. For instance, the
following code fragment would be invalid:

class node {
node another_node; // WRONG!
// More class declarations go in here.

};

This is because within a class definition the class is considered to be declared,
but not defined.

The node class has no user-defined constructors or destructor. This is because
node objects do not dynamically allocate memory, initialize other objects or open
files.

The following comments concern the 1list class:

e The 1list class uses the notation of a stack; that is we can add data to the head

of the list (push()) and remove data from the head (pop()), very much like a
stack of plates. There is no way of accessing data further down the stack, except
by popping the entire stack. A stack is a “last in first out” (LIFO) list and is
traditionally drawn vertically, as shown in Figure 10.2. (In fact this is the only
difference between Figures 10.1 and 10.2.)
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e The list class has a user-defined constructor and destructor. The constructor is
needed because we want the head of an empty list to be set to 0. A destructor is
required so that the dynamically allocated memory is returned to the free store
when a 1ist object goes out of scope.

head e——| data

next

data

next

data

next

data

Figure 10.2: A stack.

Suitable implementations for the non-inline member functions are given below.

// source: slist.cxx
// use: Implements singly linked list class.

#include "slist.h"

list::1list(void)
{
head = 0;

list::"1ist()
{
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while (head '= 0) {
node *pt = head;
head = head->next;

delete pt;
}
}
void list::push(DATA_TYPE new_data)
{
node *pt = new node;
pt->next = head;
head = pt;
pt->data = new_data;
}
void list::pop(DATA_TYPE &old_data)
{
if (head !'= 0) {
old_data = head->data;
node *pt = head;
head = head->next;
delete pt;
}
}

The following program provides a simple test of the singly linked list class by pushing
values onto the stack and then printing the results obtained by popping the stack:

// source: my_test.cxx
// use: Tries out singly linked list class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "slist.h"

using namespace std;

int main()

{
list s;
DATA_TYPE §;

for (dnt i = 1; i <= 5; ++i)
s.push(10 * 1i);

while (s.is_not_empty()) {
s.pop(j);
cout << j << "\n";
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return(EXIT_SUCCESS) ;
}

A suitable makefile for this project is similar to previous makefiles and is given below.

my_test: my_test.cxx slist.o slist.h
g++ my_test.cxx slist.o -o my_test
slist.o: slist.cxx slist.h
g++ —c slist.cxx

Notice that we do not pop the stack by doing something like:

for (int i = 1; i <= 5; ++i) {
s.pop(j);
cout << j << "\n";

}

The list, s, has a state (either it is empty or it is not) so the best technique is to obtain
the object’s state from the object itself.

Looking at our test program, we might be tempted to replace the loop that prints
the contents of the stack by the function call:

print(s);
where the print () function is defined by:

void print(list t)

{
DATA_TYPE j;
while (t.is_not_empty()) {
t.pop(j);
cout << j << "\n";
}
}

This is a disaster. The problem is that, since the t in the function header:
void print(list t)

is a formal argument, a default copy constructor, which perform a simple copy of
the original list, is invoked. Unfortunately both lists contain the address of the same
dynamically allocated memory. As an item of the list is popped, the memory is deal-
located. This is of no consequence as we return from print (), since t is empty but,
when s goes out of scope, the destructor attempts to deallocate memory that is already
deallocated. The result is an error message such as “Corrupted Heap” or “Segmenta-
tion Fault”, depending on the operating system. Setting the pointers in list: :pop()
and 1ist::"1ist () to zero after memory deletions is of no help here since the original
list contains copies of the pointers.

A possible solution to the above problem is to define print () with a reference
argument since this involves no copying:*

4Notice that the data is discarded as it is printed. This is a feature of any stack and can be
overcome by introducing a function that traverses a list rather than popping the stack.
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void print(list &t)
{
// Same function body as before.

}

However, this does not prevent us from inadvertently implementing other functions
that lead to similar disasters due to the lack of a suitable copy constructor. The lesson
to be drawn is that when designing a class we should provide all functions for which
inappropriate defaults could be supplied, even if we do not envisage using them. For
an arbitrary class, X, there are three such functions:

X::X(const X &) copy constructor
X::operator= (const &X) assignment operator
X:: 7X() destructor

In some circumstances, invoking the copy constructor or assignment operator may
actually constitute an error if, for example, only one instance of a class is supposed to
exist. Such errors can be trapped by suitable implementations of these functions, as
illustrated below for the assignment operator.

X &X::operator=(const X &x)

{
cout << "No assignment implemented for class X\n";
exit (EXIT_FAILURE) ;
return *this;

}

This function should be a private member of the class, X, so that as many errors as
possible are trapped at compile-time.

Exercise

Implement an appropriate copy constructor and assignment operator for
the 1list class.

10.3.2 Doubly Linked Lists

Singly linked lists are a bit restricted since they can only be scanned efficiently in one
direction. By contrast, doubly linked lists can be scanned in either direction with equal
efficiency and only require the extra overhead of one additional pointer for each node.
The following header file declares simple node and doubly linked lists classes:

// source: dlist.h
// use: Declares doubly linked list and node classes.

#ifndef DLIST_H
#define DLIST_H

#include <cstdlib> // For exit()
using namespace std;
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typedef int DATA_TYPE;

class node {

friend class dlist;
public:

DATA_TYPE data;
private:

node *next, *last;

}s

class dlist {
public:
dlist(void);
~dlist();
void add_head();
void delete_head(void);
node *forward(void);
node *backward(void);
void set_cursor_head(void);
void set_cursor_tail(void);
node *cursor_position(void);
private:
node *head, *tail, *cursor;

}
inline node *dlist::forward(void)
{
node *pt = cursor;
if (cursor '= 0)
cursor = cursor->next;
return pt;
}
inline node *dlist::backward(void)
{
node *pt = cursor;
if (cursor != 0)
cursor = cursor->last;
return pt;
}

inline void dlist::set_cursor_head(void)
{

cursor = head;
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inline void dlist::set_cursor_tail(void)

{

}

cursor = tail;

inline node *dlist::cursor_position(void)

{

}

return cursor;

#endif // DLIST_H

Each node has a pointer to the next node (next) and a pointer to the previous node
(last), as shown in Figure 10.3. The list has a pointer to head and tail, in addition
to a cursor. The cursor is useful for list manipulations, such as sorting, and can be
moved backwards (backward()) and forwards (forward()) along the list. These last
two functions also return the position of the cursor (that is the address of the node)
before the cursor was moved. There are two other functions that manipulate the cursor
position (set_cursor_head (), set_cursor_tail())and a function to give the current
position (cursor_position()).

e—| data

head

next +—

next

next

data

data

data

0 |~—r

last

— last

- last

Figure 10.3: Doubly linked list.

tail

The dlist class implementation, for those functions that are not inline, is given

below.

// source:

// use:

dlist.cxx

#include "dlist.h"

dlist::dlist(void)

{

}

head =
tail
cursor

]
N o o

dlist::~dlist()

{

while (head != 0) {

node *pt = head;

Implements doubly linked list class.
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head = head->next;
delete pt;

¥

void dlist::add_head(void)
{
node *pt = new node;
if (head == 0) {
tail = pt;
}
else
head->last = pt;
pt—>next = head;
pt—>last = 0;
head = pt;
cursor = pt;

void dlist::delete_head(void)
{
if (head == 0)
return;
node *pt = head;
head = head->next;
if (head != 0)
head->last = 0;
cursor = head;
delete pt;
}

These functions are straightforward generalizations of those for singly linked lists. No-
tice that we have had to make a choice as to where the cursor points after some of
these operations.

A simple test program is given below.

// source: test.cxx
// use: Tests doubly linked list class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "dlist.h"

using namespace std;

void print_forward(dlist &s)
{
node *pt;
s.set_cursor_head();
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cout << "Forward list: ";

if ((pt = s.forward()) != 0)
cout << pt->data;

else
cout << "empty";

while ((pt = s.forward()) !'= 0)
cout << " -> " << pt->data;

cout << "\n";

void print_backward(dlist &s)

{

int

node *pt;

s.set_cursor_tail();

cout << "Backward list: ";

if ((pt = s.backward()) '= 0)
cout << pt->data;

else
cout << "empty";

while ((pt = s.backward()) !'= 0) {
cout << " -> " << pt->data;

}

cout << "\n";

main()

// Create an empty list:
dlist s;

// Print the list forwards and backwards:
print_forward(s);
print_backward(s);

// Put some items in the list:

for (int i = 1; i <= 5; ++i) {
s.add_head();
(s.cursor_position())->data = 10 * i;

// Print the list forwards and backwards:
print_forward(s);
print_backward(s);

// Delete an item:
s.delete_head();
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// Print the new first item:
cout << "Head of list is now " <<
(s.cursor_position())->data << "\n";

// Print the list forwards and backwards:
print_forward(s);
print_backward(s);

return(EXIT_SUCCESS) ;
}

A suitable makefile for this project is similar to the one given for the singly linked
list. As with the singly linked list example, changing &s to s in the function headers
for print_forward() and print_backward() invokes an inappropriate default copy
constructor.

Exercise

Modify the copy constructor and assignment operator that you provided
for the 1ist class so that they are suitable for the d1ist class.

10.4 Summary

e A constructor is invoked whenever an object is created. A class typically requires
a user-defined constructor or destructor when there is initialization, dynamic
memory allocation or file manipulation.

e A destructor is a class member function with the name of the class, prefixed by
the tilde symbol:

class matrix {
"matrix();
// More class declarations go in here.

};
e A destructor cannot have an argument, return a type or be declared static.

e It is very rare to explicitly invoke a destructor.

10.5 Exercises

1. Provide a destructor for the string class described in Section 9.6.2.

2. Replace the function header for print_forward(dlist &s) in Section 10.3.2 by
the following (inappropriate) version:

void print_forward(dlist s)
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and add statements to the relevant dlist functions so that the addresses of node
objects are printed as they are created and destroyed. Run the test program for
dlist and work out exactly where node objects are created and destroyed. Use
this information to work out how this print_forward(dlist s) function goes
wrong.

3. Modify the d1ist class (given in Section 10.3.2) to include the following functions:

e Add or delete a node at the tail:

void add_tail(void);
void delete_tail(void);

e Add a node before or after the current cursor position:

void add_before(void);
void add_after(void);

e Delete the node at the current cursor position:

void delete_node(void);
(You will have to decide where the cursor should be placed after these operations.)

4. Implement a sorting algorithm (either a bubble sort or a more efficient technique)
using your modified dlist class of the previous exercise.’

5. An instructive, but complicated, application of linked lists occurs in the imple-
mentation of a sparse matrix class. A much simpler, but related, problem is a
sparse vector class. Use the d1ist class to design and implement a sparse vector
class. Each node should store the index of a component of a vector, together
with the component itself, as a double. The list should be sorted on the basis of
the index.

Use overloaded operators to access individual vector components and to imple-
ment the addition of two vectors. You should also write a function that returns
the dot product of two vectors.

5Almost any sorting algorithm is better than a bubble sort. For example, try a merge sort as
described in [15].
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Bitwise OperatiomsTJr

In this chapter we are concerned with the manipulation of single bits, each one of which
can only store a value of zero or one. Explicit bitwise operations are not common in
numerical applications, but such operations are sometimes used to reduce memory
requirements. It is also important to understand how the fundamental data types are
represented in terms of bits, and what restrictions these representations impose on our
calculations.

Bitwise operations are part of the techniques that C++ inherited from C. We have
delayed introducing bitwise operations until this stage since we can now demonstrate
how the C++ concept of a class can be used to hide some of the details of such
operations.

11.1 Bitwise Operators

There are six bitwise operators, as shown in Table 11.1, and these operators only
operate on integral types. The precedence and associativity of the bitwise operators
are given in Appendix B. The complement operator, ~, is unary, but all the other
operators are binary.

| Logical operators

bitwise complement | ~ | Shift operators l
bitwise AND & left shift | <<

bitwise exclusive OR | ~ right shift | >>
bitwise OR |

Table 11.1: Bitwise operators.

It must be understood that some features of bit operations are compiler-dependent.
Also the way in which the “sign bit” is handled for some bitwise operations can depend
on the particular compiler, so it is safer to use the unsigned types for such operations
where possible.
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11.1.1 Bitwise Complement

The bitwise complement (or one’s complement) operator, ~, changes all of the ones
in the operand to zero and all of the zeros to ones. For example, if x stores the bit
pattern:!

1011110000001111
then ~x corresponds to:
0100001111110000

Notice that ~“x is an expression and consequently the value of x itself remains un-
changed.

11.1.2 Bitwise AND

The bitwise AND operator, &, compares the two operands bit by bit. If both bits are
set, the result is 1, otherwise the result is 0. For example, if x stores the bit pattern:

1011110000001111
and y stores:

1111000011101010
then x & y corresponds to:

1011000000001010

Notice that it is important not to confuse & with &&. The expression, x && y, gives
the integer one if at least one bit in each of x and y is set. So for the given bit patterns
for x and y, x && y would give:

0000000000000001

which is very different from the result for x & y obtained above.

11.1.3 Bitwise Exclusive OR

The bitwise exclusive OR operator, ~, compares the two operands bit by bit. If either,
but not both, bits are set, then the result is 1, otherwise it is 0. If x stores the bit
pattern:

1011110000001111
and y stores:
1111000011101010

then x = y corresponds to:

0100110011100101

n order to reduce the number of bits we need to consider, some of the examples given in this
chapter are for 16-bit integers.
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11.1.4 Bitwise Inclusive OR

The bitwise inclusive OR operator, |, compares the two operands bit by bit. If either
bit is set, then the result is 1, otherwise it is 0. If x stores the bit pattern:

1011110000001 111
and y stores:

1111000011101010
then x | y corresponds to:

1111110011101 111

Be careful not to confuse | with ||. The expression, x || y, gives the integer one if
any bit of x or y is set. So for the given bit patterns for x and y, x || y would give:

0000000000000O001

which is very different from the result for x | y obtained above.

11.1.5 Shift Operators

The left shift operator, <<, shifts the bits in the left operand to the left by the number
of bits specified in the right operand. If x has the bit pattern:

1011110000001 111
then x << 3 is:
1110000001111000

The vacated bits are always filled with zeros.

The right shift operator, >>, shifts the bits in the left operand to the right by the
number of bits specified in the right operand. If the left operand has an unsigned type
or is not negative, then the vacated bits are filled with zeros, otherwise the way they
are filled is dependent on the compiler. If x is an unsigned type, with the bit pattern:

1011110000001 111
then x >> 3 1is:
0001011110000001

Notice that both x >> 3 and x << 3 are expressions; the value of x (or equivalently,
the bit pattern) does not change. To shift the bits in x, we must make an assignment,
as in:

X = X > 3;
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At this stage, you may be worried that these shift operators are the same as those
used by the iostream library. But the fundamental operators, as defined by both the
C and C++ languages, are actually the left and right shift operators. These operators
are simply overloaded by the iostream library. In fact, we have been using overloaded
operators from our very first C4++ program! The only consequence of this overloading
is that the iostream operators must have the same associativity and precedence as the
left and right shift operators. This is why, for example, successive items can be sent to
the output stream:

cout << "Qutput " << "More output " << "Yet more output";

and occasionally parentheses are needed to overcome the built-in precedence or asso-
ciativity:

cout << (x && y);

11.1.6 Bitwise Assignment Operators

All of the bitwise operators, with the exception of the bitwise complement, have an
associated assignment operator:

<<= >>= &= ~= =
For instance, the statement:
i <<= 4;
is equivalent to:
i=1 << 4;

These operators introduce nothing new and are simply shorthand for a bitwise oper-
ation on a variable, followed by an assignment to the same variable. However, don’t
forget that if we overload an operator, then the corresponding assignment operator is
not necessarily defined. For example, we have made much use of the overloaded left
shift operator to insert objects in the output stream, as in:

cout << "The answer to everything is " << 47;

but the iostream library does not overload the <<= operator.

11.2 Bit-fields

A bit-field is a class member with a width specified in bits, as in:

class packed {
public:
int bl:4;
int b2:8;
int b3:20;
s
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where each statement of the form:

int bl:4;
is a field declaration. In this example a bit-field of 4 bits is declared for b1. Bit-fields
can be accessed by using the usual class member access operator (a single dot), as

illustrated below.

packed p;
p.b2 = ’\0’;

For the class declared above, the bit-fields may be packed into a single 32-bit word,

as shown in Figure 11.1.2 However, such details are dependent on the compiler and
the assumptions underlying any use of bit-fields should be carefully documented.

msb Isb

b3 b2 bl

31 12 11 4 3 0

Figure 11.1: Example of bit-fields.

Bit-fields are sometimes used to access particular, system-dependent, memory lo-
cations, such as for memory mapped I/O drivers, or to save on storage. However,
using bit-fields to reduce storage requirements is often misguided. Different compilers
pack the bit-fields into words in different ways and this may even result in a waste of
space. Moreover, there is usually a performance overhead in accessing bit-fields, so it
is possible to end up with a slower program that uses more memory!

Bit-fields can be of any integral type. The main restrictions are:

e The address-of operator cannot be applied to bit-fields:

packed p;
&p.bl; // WRONG: cannot use &.

e Pointers to bit-fields are not legal.
e References to bit-fields are not allowed.

These restrictions are all very reasonable, since memory is addressable in bytes rather
than bits.

Having introduced bit-fields, we won’t meet them again in this book; they are best
forgotten until you need to implement something like a memory mapped I/O driver.

2We use the convention that the least significant bit (Isb) is shown on the right and the most
significant bit (msb) is on the left. The bits are labelled upwards from zero (corresponding to the least
significant bit in a word).
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11.3 Unions

A union is a special class in which the data members have overlapping memory loca-
tions. The following statement defines the identifier U to be a union:

union U {
char c;
int i;
float f;
double d;
};

A possible storage scheme for this union is given in Figure 11.2. (Assumptions have
been made about the number of bits required to store the different data types.)

d

63 31 15 7 0

Figure 11.2: Example of a union.

One motivation for defining a union is to reduce memory requirements. For exam-
ple, if you need to store an int and a float in the same application and are certain
that you don’t need to store them at the same time, then the union defined below will
save memory.

union int_float {
int 1i;
float f;

};

The members of a union are accessed in the same way as other class members, by
using the member access operator (a single dot). This is demonstrated by the following
program:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

union int_float {
int i;
float f;

}s;
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int main()

{
int_float x;
x.1i = 10;
cout << x.i << "\n";
cout << x.f << "\n";
x.f = 3.142;
cout << x.f << "\n";
cout << x.i << "\n";
return (EXIT_SUCCESS) ;
}

Notice that there is no conversion between the two data types; the bits are interpreted
as an int for x.i and as a float for x.f. Also, members of a union are public by
default. Members of a union can be declared private, but this is not particularly
useful.

Our simple int_float example doesn’t save much memory, but if we have large
objects, such as large arrays, then the saving can be significant. Unlike bit-fields,
accessing the members of a union in this situation does not incur high overheads.

It is not necessary for a union to be named; an anonymous union is a union without
a name, as illustrated by the following code fragment:

union {
int i;
float f;
}

An anonymous union simply makes the members occupy the same memory and member
names must be used directly, without a member access operator. Anonymous unions
cannot have member functions and, if global, must be declared static. A program
demonstrating an anonymous union is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
union {
int i;
float f;
};
i = 10;

cout << i << "\n";
cout << f << "\n";

f = 3.142;

cout << i << "\n";
cout << f << "\n";
return (EXIT_SUCCESS) ;
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Notice how the value of one member of the union is changed by changing the value of
the other member. A more significant application of an anonymous union is given in
Section 11.4.4.

A named union can have member functions, including constructors and destructors.
The union in the following program has two constructors, one taking an int argument
and the other taking a float argument:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

union int_float {
int i;
float f;
int_float(int j) {1 = j; }

int_float(float x) { f = x; }

};

int main()

{
int_float x(10); // x.i =10
cout << x.i << "\n";
cout << x.f << "\n";
int_float y(3.142f); // y.f = 3.142
cout << y.f << "\n";
cout << y.i << "\n";
return(EXIT_SUCCESS);

}

Once again, notice how the value of one member of the union is changed by changing
the value of the other member.

There are many restrictions on unions, including the following:

e A virtual function is not allowed as a member of a union.
e A union cannot be a base class.
e A union cannot be a derived class.

Data members cannot be static.

If a data member is an instance of a class, then that class must not have con-
structors, destructors or a user-defined assignment operator.

These restrictions do not detract from the fundamental idea of a union as a low-level
construct for saving memory.
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11.4 Using Bitwise Operators
11.4.1 A Bit Array Class

A fairly common requirement is to store a large array of data, each element of which
can only have the value zero or one. An obvious space-saving device is to store each
data item as a single bit. However, accessing a data item by using bitwise operators is
not very convenient and in fact is sufficiently cumbersome that care is needed to avoid
programming errors. It would be much better if we could use an array-like notation,
and this can be achieved by means of a bit array class, as described in this section.
The header file for a bit array class is given below.

// source: b_array.h
// use: Declares bit array class.

#ifndef BIT_ARRAY_H
#define BIT_ARRAY_H

class bit_array {
public:
bit_array(unsigned max_length);
“bit_array() { delete data; }
void set(unsigned position);
void clear(unsigned position);
void set(void);
void clear(void);
void display(void);
bool operator[] (unsigned position);
unsigned length(void) { return max_bits; }
private:
unsigned *data;
unsigned max_bits;
static unsigned bits_per_word;
unsigned max_words(void) const;
unsigned max_bytes(void) const;

}
inline unsigned bit_array::max_bytes(void) const
{
return(max_words() * sizeof (xdata));
}

#endif // BIT_ARRAY_H

Objects of the bit_array class store data items as single bits. Individual bits can be

set (set (unsigned)) or cleared (clear (unsigned)) and the subscripting operator, [1,

is overloaded to return true or false, depending on whether or not a bit is set. The

number of bits that can be stored by an object is given by the length() function.
The following file gives an implementation of the bit_array class:
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// source: b_array.cxx
// use: Implements bit array class.

#include <iostream>

#include <cstdlib> // For exit(), system()
#include <climits> // For CHAR_BIT
#include <cstring> // For memset()

#include "b_array.h"
using namespace std;

const unsigned BIT_MASK = 1;
unsigned bit_array::bits_per_word = CHAR_BIT * sizeof (unsigned);

bit_array::bit_array(unsigned max_length)

{
max_bits = max_length;
data = new unsigned{max_words()];
}
void bit_array::set(unsigned position)
{
if (position >= max_bits) {
cerr << "bit_array set(" << position << ") out of range\n";
exit (EXIT_FAILURE) ;
}
unsigned word = position / bits_per_word;
unsigned bit = position % bits_per_word;
datal[word] |= (BIT_MASK << bit);
}
void bit_array::clear(unsigned position)
{
if (position >= max_bits) {
cerr << "bit_array clear(" << position <<
") out of range\n";
exit (EXIT_FAILURE);
}
unsigned word = position / bits_per_word;
unsigned bit = position % bits_per_word;
datal[word] &= ~(BIT_MASK << bit);
}

void bit_array: :set(void)
{

memset(data, ~0, max_bytes());
}
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void bit_array::clear(void)

{
memset (data, 0, max_bytes());
}
void bit_array::display(void)
{
const unsigned display_width = 80;
for (unsigned i = 0; i < max_bits; ++i) {
if (!(i % display_width))
cout <<"\n";
if (operator([](i))
cout << "x";
else
cout << ".";
}
cout << "\n";
}
bool bit_array::operator[] (unsigned position)
{
if (position >= max_bits) {
cerr << "bit_array [" << position << "] out of range\n";
exit (EXIT_FAILURE) ;
}
unsigned word = position / bits_per_word;
unsigned bit = position % bits_per_word;
if (datalword] & (BIT_MASK << bit))
return true;
else
return false;
}
unsigned bit_array::max_words(void) const
{
unsigned result = max_bits / bits_per_word;
if (max_bits % bits_per_word)
++result;
return result;
}

Notice that the static variable, bit_array::bits_per_word, is initialized (not as-
signed to) in this file. The constant, CHAR_BIT, which is defined in <climits>, is the
number of bits for a char type. Since the sizeof operator gives the size of an ob-
ject in units of char (that is, sizeof (char) is defined to be one), the expression for
bits_per_word is entirely independent of the particular compiler being used. In the
context of the bit_array class, we define a word to be the basic unit of storage for the
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unsigned type.

Looking at the constructor function, we can see that it dynamically allocates enough
memory to store max_length number of bits. The number of words of memory required
is calculated by the max_words () function. Notice that max_bits is set to max_length,
and is not rounded up to fill an integral number of words.

Turning now to the set(unsigned) function, the variable called word gives the
element of the array of type unsigned that stores a particular data item and bit gives
the position within that word, as shown in Figure 11.3. The BIT_MASK constant has
the single lowest bit set. A mask is an object that can be used to pick out particular
bits from another object. In the set (unsigned) function we want to extract a single
bit from an unsigned object. This can be achieved by left shifting BIT_MASK and
taking the inclusive bitwise OR of the result with the unsigned object. An example is
given in Figure 11.4. Notice that the left-shift operator doesn’t actually shift the bits
of BIT_MASK itself, which is in any case declared const. It is the expression resulting
from BIT_MASK << bit that is left-shifted.

position —

1001101110001101 1111001110101100 0101101000011101

<— bit — word —

Figure 11.3: Accessing an element of a bit_array object.

1001001110001101 l 0000100000000000 — 1001101110001101

data[word] BIT_MASK<<11 data[word]

Figure 11.4: Using BIT_-MASK to set a bit.

Implementation of the clear (unsigned) function is similar to the implementation
of set(unsigned). The complement of the left-shifted BIT_MASK gives a mask that
is all ones, except for a single zero in the required position. A bitwise AND then
clears (sets to zero) the corresponding bit in an element of the data array, as shown in
Figure 11.5.

1001101110001101 | & | 1111011111111111 — 1001001110001101

data[word] ~BIT MASK<<11 data[word]

Figure 11.5: Using BIT_-MASK to clear a bit.

Two functions, set(void) and clear(void), are provided to set and clear all the
bits of a bit_array object. These functions make use of the memset () library function,
which is declared in <cstring> as:
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void *memset(void *pt, int val, size_t count);

The memset () function sets the first count characters pointed to by pt to the value
specified by val. The function returns the pointer, pt.

The display () function shows the current state of a bit_array object. An x marks
a set bit and a dot is used to denote a cleared bit. Since display () is a class member,
the function notation can be used to invoke the bit_array operator as:

operator[] (i)

Equally valid (but probably more obscure) alternative notations are:
this->operator[] (i)

and:
(*this) [i]

A particular bit in a bit_array object can be accessed by using the overloaded sub-
scripting operator, which is implemented by the operator [] () function. This function
calculates the position of the bit within a word in a similar way to the set (unsigned)
and clear (unsigned) functions. The bitwise AND operator, &, is then used to test
whether or not the appropriate bit of the appropriate element of the data[] array is
set.

The program given below demonstrates the bit_array class by storing an alter-
nating series of bit_array elements and then displaying the data.

// source: my_test.cxx
// use: Tries out bit_array class.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS, atoi()
#include "b_array.h"
using namespace std;

void wait(void)

{
cout << "\nHit <Enter> to continue." << "\n";
cin.get();

}

int main(int argc, char *argvl[])
{
if (argc '= 2) {
cerr << "Usage: my_test <length in bits>\n";
exit (EXIT_FAILURE) ;
}
unsigned bits = atoi(argv[1i]);
bit_array b(bits);
for (unsigned i = 0; i < bits; ++i)
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if (4% 2)
b.set(i);
else
b.clear(i);
cout << "bit array set\n" << "Array length available = " <<
b.length() << "\n";
wait();
b.display();
wait();
b.clear();
b.display();
wait();
b.set();
b.display();
wait();
return (EXIT_SUCCESS) ;
}

The function wait (), defined above, pauses the output until the user hits the Enter
key. This function uses the get () library function, which is declared in <iostream>
and extracts a single character from the input stream.

Exercise

Try modifying this program so that more interesting bit data is stored, such
as data that appears as a disc when the display() function is invoked.

11.4.2 The Sieve of Eratosthenes

An interesting application of the bit_array class is to implement the Sieve of Eratos-
thenes, which finds all primes up to some specified maximum. Suppose we want to
find the primes up to 20. The technique consists of writing down all the integers from
2 to 20 and striking out every second integer after 2. We then strike out every third
integer after 3, every fourth integer after 4 and so on. This procedure is illustrated in
Figure 11.6 where a dot indicates the start of a sweep through the integers and a cross
marks integers that are struck out. Those integers that are not struck out are prime.
Of course, in practice we would probably be interested in very large prime numbers
and would need to use a more efficient technique.

The following program uses the bit_array class to implement the Sieve of Eratos-
thenes:

// source: primes.cxx
// use: Implements the Sieve of Eratosthenes using the
// bit_array class.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS, atoi()
#include <cmath> // For sqrt()
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Figure 11.6: Sieve of Eratosthenes.

#include "b_array.h"
using namespace std;

// function declarations:
void wait(void);
void list_primes(bit_array &b);

void wait(void)

{
cout << "\nHit <Enter> to continue." << "\n";
cin.get();

}

void list_primes(bit_array &b)
{
const unsigned display_height = 24;
unsigned primes_displayed = 1;
unsigned i_max = b.length();
for (unsigned i = 0; i < i_max; ++i) {
if (b[i]) {
cout << 2 * i + 3 << "\n";
if (primes_displayed % display_height)
++primes_displayed;
else {
primes_displayed = 1;
cout.flush();
wait(Q);

¥

int main(int argc, char *argv[])

{
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if (arge '= 2) {
cerr << "Usage: primes <largest integer>\n";
exit (EXIT_FAILURE);
X
unsigned max_int = atoi(argv[1]);
// Only store odd numbers:
unsigned bits = (max_int - 1) / 2;
bit_array b(bits);
b.set();
unsigned max_m = static_cast<unsigned>(sqrt(max_int));

// These 2 loops are the Sieve of Eratosthenes:
for (unsigned m = 3; m <= max_m; m += 2) {
unsigned max_n = max_int / m;
for (unsigned n = m; n <= max_n; n += 2)
b.clear(m *n / 2 - 1);
}

cout << "Bit array set for primes:\n";
b.display();
wait();
cout << "Primes between 3 and " << max_int << ":\n";
list_primes(b);
wait();
return(EXIT_SUCCESS) ;
}

The performance of the two loops in main() corresponding to the Sieve could be
improved, but the version given here makes it easier to understand the algorithm. In
any case, a number of techniques have already been used to speed up the program.
These include the following:

e Only odd integers are stored since we know that no even integer (apart from two)
is prime.

e If we are searching for all primes up to m, then we know that integers greater
than /m cannot divide m, and so there is no need to test for such integers.

e If, on a given sweep through the integers, we are striking out all those divisible
by n, then we only need to start at n? because smaller multiples of n will already
have been struck out.

In order to compile the program that tests the bit array class (on page 319) and
the program to find primes, you may want to place all the relevant files in the same
directory. You can then use the makefile given below. Notice that the first line states
that both my_test and primes are targets for the make utility.

all: my_test primes
my_test: my_test.cxx b_array.o
g++ my_test.cxx b_array.o -o my_test
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primes: primes.cxx b_array.o

g++ primes.cxx b_array.o -o primes
b_array.o: b_array.cxx b_array.h

g++ -c b_array.cxx

Exercise

Compile and run the primes program. Use the program to list primes less
than 100, and check that these are consistent with a standard table of
primes.

11.4.3 Bit Representation of Integral Types

Bitwise operations enable us to investigate how the basic data types are stored on
different systems. The following program gives the bit pattern for the unsigned type:

// source: bits.cxx
// use: Prints representation in bits for the unsigned type.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <climits> // For CHAR_BIT
using namespace std;

void print_bits(unsigned i)

{
unsigned bit_mask = 1U << (CHAR_BIT * sizeof(unsigned) - 1);
for (int j = 0; j < sizeof(unsigned); ++j) {
for (int k = 0; k < CHAR_BIT; ++k) {
if (i & bit_mask)
cout << "1';
else
cout << "0";
bit_mask >>= 1;
}
cout << " "y
}
cout << "\n";
}

int main()

{
print_bits(0);
print_bits(1);
print_bits(-1);
print_bits(2000000000) ;
print_bits(-2000000000) ;
return(EXIT_SUCCESS) ;
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The print_bits() function constructs a mask with only the most significant (left-
most) bit initially non-zero. A bitwise AND of the mask and the function argument
detects whether or not the left-most bit of i (the argument of print_bits()) is set.
Progressively right-shifting the mask enables us to test the remaining bits of i.

The print_bits(unsigned) function also works for signed int if a two’s comple-
ment representation is used, since conversion occurs with no change in the bit pattern.
To understand this comment a brief diversion must be made to consider what is meant
by a two’s complement representation.

There are several ways of representing signed integers and two’s complement is one
of the most popular. For a positive integer, n, the most significant bit is 0 and the
other bits take the expected form for a positive integer. To represent —n we do the
following:

e Find the binary representation of n.
e Take the bitwise complement.
e Add 1.

The consequence of these operations is that the most significant bit is always 1 for a
negative integer. As an example consider —59 where, for the three stages listed above
and assuming a 32-bit representation, we get the bit patterns given below.
Binary representation: 0000 0000 0000 0000 0000 0000 0011 1011
Bitwise complement: 1111 1111 1111 1111 1111 1111 1100 0100
Result of adding 1: 1111 1111 1111 1111 1111 1111 1100 0101
Typical bit patterns obtained on a particular system (using 32 bits to represent the

unsigned type) are given in Table 11.2. Notice how all of the bits are set for —1; this
is because two’s complement, arithmetic is being used.

| Decimal number | Bit pattern |
0 00000000 00000000 00000000 00000000
1 00000000 00000000 00000000 00000001
-1 11111111 11111111 11111111 11111111

2000000000 01110111 00110101 10010100 00000000
—2000000000 10001000 11001010 01101100 00000000

Table 11.2: Bit patterns given by print_bits(unsigned).

Exercise

Write a program that prompts for an integer and uses the print_bits()
function to give the bit pattern for the integer. Use your program to display
the bit patterns for the largest and smallest integers that can be represented
on your system by the unsigned and int types.
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11.4.4 Bit Representation of Floating Point Types

The way in which floating point numbers are represented varies between compilers and
processors. However, many systems use what is known as the “IEEE Standard for
Binary Floating Point Arithmetic”.? The following discussion is restricted to systems
conforming to the IEEE Standard, and with the float type represented by 32 bits and
double by 64 bits.

A floating point number can be written in binary form as:*

x = (=1)*28(bo.byba...bp_1)

where the significance of the symbols is explained below. To be definite, we start by
restricting our discussion to the float type, where p has the value of 24. The way
in which such numbers are stored in terms of bits is shown in Figure 11.7, where we
adopt the convention of showing the least significant bits on the right.

1 bit—+ < & bits 23 bits
S e f
31 0

Figure 11.7: Bit structure for a float.

There are three distinct parts to the binary representation of a floating point num-
ber:

The sign bit

The parameter, s, is a single bit, known as the sign bit. A floating point number is
positive or negative, depending on whether s takes the value 0 or 1.

The exponent

Rather than storing the exponent, E, a biased exponent is used. That is, the exponent
is shifted by a constant, known as the bias, so that the value actually stored is not
negative. For the representation being considered here, the exponent is stored as 8
bits. Consequently, the biased exponent, e, is defined by:

e=F+127.

and the bias is 127.

3ANSI/IEEE Std 745-1985, published by the Institute of Electrical and Electronics Engineers, Inc.

41t is a worth remembering that there is an infinity of floating point numbers that cannot be
represented on any computer. This is because the sequence b1ba ...bp_1 is finite and the range of E
is limited.
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The significand

The b; are single bits, which can take the values 0 and 1. The sequence of b; is known
as the significand and consists of by followed by a binary point and a fractional part
(b1 to beg), which we will label as f. The value of by is implicit, which means that only
s, e and f are stored, as shown in Figure 11.7.

Combinations of the values of e and f are used to store five different types of
information:

1. If 0 < e < 255 then what is known as a normalized number is stored and this has
the value given by:®
x = (=1)%2¢7127(1.f)

Notice that by is implicitly 1 and that f may or may not be zero.

2. If e =0 and f # 0, then what is known as a denormalized number is stored and
this has the value given by:

= (=1)°27125(0.1)

Notice that in this case by is implicitly O, rather than 1, and that 2 is raised
to a fixed power. Denormalized numbers extend downwards the magnitude of a
number that can be stored by a fixed length word. However, as the magnitude
of the number gets smaller, f fills from the left with zeros and the precision
decreases; in the limiting case only one bit is significant.

3. If e=0 and f = 0, then zero is stored:
x=(-1)°0

4. If e = 255 and f = 0, then signed infinity is stored:
x=(-1)%0

A signed infinity is generated if a floating point number is either too big or too
small to be represented by the particular type.

5. If e = 255 and f # 0, then what is known as a NaN (Not a Number) is stored.
A NaN is the result of an invalid floating point operation, such as 0 x co or 0+ 0.
Once created, NaNs propagate through a computation and may appear in your
(incorrect) final results.

It would be nice to be able to print bit patterns for the floating types. This is
slightly complicated by the fact that bitwise operators only act on the integral types.
However, an anonymous union enables us to store a float and then to treat it as an
unsigned int.® The following program implements a function to print the bit pattern
for an argument of type float, and then uses this function to list the bit patterns for
several numbers:

5In this discussion, a number written as (1.f) or (0.f) is in binary notation.
6This assumes that an unsigned int has the same number of bits as a float. If this is not true
on your system, then you should make the necessary simple modifications to print_bits(float).
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#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <climits> // For CHAR_BIT
using namespace std;

void print_bits(const float &x)

{
union {
unsigned int i;
float y;
};
y=x
unsigned int bit_mask = 1U <<
(CHAR_BIT * sizeof (unsigned int) - 1);
// Find sign bit:
if (i & bit_mask)
cout << "1 ";
else
cout << "Q0 ";
bit_mask >>= 1;
// Find bits in exponent:
for (int j = 1; j <= 8; ++j) {
if (i & bit_mask)
cout << "1";
else
cout << "0";
bit_mask >>= 1;
}
cout << " ";
// Find bits in significand:
const int total_bits = CHAR_BIT * sizeof (unsigned int);
for (int j = 9; j < total_bits; ++j) {
if (i & bit_mask)
cout << "1";
else
cout << "Q";
bit_mask >>= 1;
}
cout << "\n";
}

int main()

print_bits(0.0f);
print_bits(1.0f);
print_bits(2.0f);
print_bits(le-7f);
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print_bits(-10.0f);
return(EXIT_SUCCESS) ;
}

The results of this program are given in Table 11.3. Notice that spaces are put between
the bit patterns for the s, e and f terms.

| Floating point number | Bit pattern |
0.0 0 00000000 00000000000000000000000
1.0 001111111 00000000000000000000000
2.0 0 10000000 00000000000000000000000
1x 1077 001100111 10101101011111110010101
—-10.0 1 10000010 01000000000000000000000

Table 11.3: Bit patterns given by print_bits(float).

Exercise

(a) Show mathematically that the bit patterns given in Table 11.3 are
correct.

(b) Modify the program so that it prompts for a floating point number and
then displays the corresponding bit pattern. Try out your program
with various numbers.

The representation of the type double is very similar to float, except that e
and f are assigned additional bits, as shown in Figure 11.8. The biased exponent is
represented by 11 bits, with a bias of 1023. Consequently, the biased exponent, e, is
given in terms of the exponent, F, by:

e=F+1023

The fractional part has 52 bits. Clearly a 64-bit double has a much greater range and
precision than a 32-bit float.

1 bitﬁ <— 11 bits 52 bits
S e f
63 0

Figure 11.8: Bit structure for a double.

11.5 Summary

e The bitwise logical operators are ~, &, ~ and |.

e Don’t confuse & with &&, or | with ||.
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e The left shift operator is denoted by, <<, and the right shift operator by, >>.

e A bit-field is a class member with a specified width in bits. Bit-fields are very
compiler-dependent and their use often carries a high performance penalty.

e A union is a class in which data members have overlapping memory locations:

union int_float {
int i;
float f;

};

11.6 Exercises

1. Implement a copy constructor, assignment operator and != operator for the bit-
array class (Section 11.4.1).

2. Modify the Sieve of Eratosthenes program (Section 11.4.2) to make it perform as
fast as you are able. (You should get some ideas from [12] and Figure 11.6.) Your
changes could also include removing range checking from the bit_array class.

3. (a) Find out what bit pattern is used to represent the float type on your
system, and then calculate the maximum and minimum normalized numbers
that can be represented by this type. Verify your answers by using the
print_bits(float) function.

(b) How many decimal places are significant for a normalized float and what
is the smallest denormalized float on your system? Again, calculate these
numbers and then verify them by using print_bits(float). (You should
also be able to verify your answers to this question by looking at the file
<cfloat> on your system.)

4. Implement a function, print_bits(double), that prints the bit patterns for the
three parts of the double type. Repeat Exercise 3 for this type.



Chapter 12

Single Inheritance

12.1 Derived Classes

One of the fundamental techniques in object-oriented programming is the use of in-
heritance. Inheritance is a way of creating new classes that extend the facilities of
existing classes by including new member data and functions, as well as (in certain
circumstances) changing existing functions. The class that is extended is known as the
base class and the result of an extension is known as the derived class. The derived
class inherits the data and function members of the base class.! Inheritance allows a
class to be extended rather than modified. For a well-designed base class, only the base
class interface rather than the implementation need be known. This avoids recompiling
the base class and even means that a class can be extended without the source for its
implementation being available. Moreover, both the base and derived classes can be
used by a program. Without inheritance, the source for the original class would have
to be modified. Consequently, either the original class would no longer be available,
or else there would be code for two separate classes with the associated problem of
maintaining consistency.

Inheritance also facilitates having consistent interfaces for a whole hierarchy of
related classes. The same function interface may be used by objects of different classes,
with the implementation of the function depending on the type of object by which it
is invoked. In effect, this is a switch that depends on the object type. However,
the switch is implemented automatically by the compiler, rather than by complicated
control statements in the code.

Any class can be a base class. As an example, suppose we have a project involving
general two-dimensional shapes, such as discs, squares, triangles etc. A shape class
might take the form:

class shape {
public:
int i_d;
float x, y;

1Some authors use superclass and subclass (which are taken from the language, Simula) instead
of base class and derived class. Other authors find the terms confusing and they are not used in this
book.
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material _type material;

};

where i_d is an identifying number for a particular shape and x and y are its position
coordinates. The shape could be manufactured from various substances, which are
defined by the following enumeration:?

enum material_type {WO0D, STEEL, ALUMINIUM, PLASTIC};

The syntax for defining a class, disc, which is derived from shape, is illustrated by
the following code:

class disc : public shape {
public:
float radius(void) { return disc_radius; }
private:
float disc_radius;
|5
Other classes, such as square and triangle can be derived from shape in a similar
manner to disc. The relationship between such classes is often clarified by a directed
acyclic graph (or DAG),® as shown in Figure 12.1. A common convention, followed

o]

disc

Figure 12.1: Classes derived from shape.

here, is to place the base class at the top of the diagram, with the arrows flowing
from the derived classes towards the base class. Notice that a derived class possesses
a “kind of” relationship with respect to its base class; that is a disc object is a “kind
of” shape. Therefore it is both meaningful and useful to assign a derived class object
to an instance of the base class, since this corresponds to a truncation of data. (See
Figure 12.2.) An example of such an assignment is given below.

shape s;
disc d;
s = d;

However, the assignment, without an explicit cast, of a base class object to an instance
of a derived class is illegal since in general some data members will have no base class
counterparts.

2Don’t forget that the enumeration must come before the class declaration.
3A DAG is a graph in which the arcs have a direction, but there are no closed loops.
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shape disc
a
id id
b'e b'e
— << —
material L material
disc_radius

Figure 12.2: Assigning data for a disc object to a shape object.

The single colon in the first line of the disc class declaration is used to separate the
derived class, disc, from the base class, shape. The derived class possesses all of the
member functions and data specified in its own class definition, together with all those
of the base class; inheritance therefore adds attributes to a base class. By default, all
members of a base class are private in the derived class, but this can be overridden
by putting an access specifier before the base class in the derived class declaration; in
this example we have specified public. It is a useful piece of defensive programming to
always include the access specifier, since a common error is to forget that the default
is private. Member access privileges are considered in more detail in Section 12.6.
However, it is important to realize that placing public before the base class in a class
declaration does not permit a derived class to access the private members of a base
class.

It is usually desirable that names given to members (particularly data members) of
a derived class are different from those of a base class. However, in some cases there
may be duplication of names and, in such situations, the concept of dominance often
resolves any potential ambiguity.? If a class member name (either function or data)
occurs in both a derived class and a base class, then the derived class name dominates.
For instance, if we declare:

class disc : public shape {
public:
int i_d;

};
with the shape class declaration given on page 331, then the following is not ambiguous:

disc d;

4Duplication of names is particularly likely in a complicated class hierarchy where the classes may
be the work of different programmers. (See Section 12.4 and Chapter 13.)
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d.i_d = 100; // Derived class member accessed.

In the above example, it is the derived class member of the disc object that is accessed.
In order to access the base class member, we need to use the scope resolution operator,
: 1, together with the base class name, as in:

d.shape::i_d = 10; // Base class member accessed.

We can verify that dominance does indeed resolve the potential access ambiguity
for the two variables, i_d, by running the following simple program:>

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

enum material_type {WOOD, STEEL, ALUMINIUM, PLASTIC};

class shape {

public:
int i_d;
float x, y;
material_type material;

3

class disc : public shape {

public:
int i_d;

I

int main()

{
disc d;
d.i_d = 100; // Derived class member accessed.
d.shape::i_d = 10; // Base class member accessed.
cout << "Derived class i_d: " << d.i_d << "\n";
cout << "Base class i_d: " << d.shape::i_d << "\n";
return(EXIT_SUCCESS) ;

}

Exercise

Compile and run the above program. Why does your output demonstrate
that two different data members are accessed?

It is quite common for a derived class to provide its own implementation of a base class
function. Dominance then ensures that the derived class function is called for derived

5For the current shape and disc classes, the members are all public. Don’t forget that these classes
are given to illustrate ideas. Realistic classes would make use of data hiding.
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class objects. The base class function is hidden rather than overloaded, even if the
argument types differ. For example, consider the following program in which we we
define a base class, shape, and a derived class, disc:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class shape {

public:
float give_area(void) { return area; }
float area;

};

class disc : public shape {
public:
float give_area(float radius) { return(3.142*radius*radius); }

};
int main()
{
disc d;
d.area = 1.0;
cout << d.give_area(10.0) // 0.K.: uses function defined in
<< "\n"; // derived class.
cout << d.give_area() // WRONG: attempts to use function
<< "\n"; // defined in base class.
return(EXIT_SUCCESS) ;
}

It might be supposed that give_area() is overloaded and that the d.give_area() ex-
pression (with no argument) invokes the base class function. What actually happens is
that the derived class function hides the base class version. Invoking d.give_area()
is therefore a compile-time error since the function has the wrong number of argu-
ments. It is not the class definitions that are in error, but rather the attempt to invoke
the base class function. This can be corrected by replacing the statement involving
d.give_area() with the following statement:

cout << d.shape::give_area() // Uses function defined in base
<< "\n"; // class.

Now that we have introduced inheritance, we can distinguish the three ways in
which a class is able to use other classes:

1. An object may contain objects that are instances of other classes. For example,
the following data class has members u and v that are instances of the complex
class:

class data {
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public:
data(const complex &zl, const complex &z2);
// More class declarations go in here.
private:
complex u, v;

};

A data object is said to be a client of the complex class; it is not a “kind of”
complex object.

2. A class may use a pointer to an object of the same or another class. For example,
a node class object has a pointer to a node object:

class node {

friend class list;
public:

DATA_TYPE data;
private:

node *next;

};

A node object does not contain another node, which is in any case illegal, but
rather accesses the data of another node.

3. A class may be derived from another class. For example, an instance of the disc
class is a “kind of” shape:

class disc : public shape {
public:

float radius(void) { return disc_radius; }
private:

float disc_radius;

};

However, in no sense does a disc object use a shape object.

12.2 virtual Functions

It is often desirable for objects corresponding to different derived classes to respond
differently to the same function call. This behaviour is known as polymorphism and we
have already seen how it may be achieved through a derived class that provides its own
implementation of a base class function. However, the exact kind of object on which a
function acts may not be known at compile-time. For example, we may want to have
an array of various derived shape objects, such as squares, discs, triangles etc.,
with the elements of the array being chosen at run-time. It would then be convenient
if we could invoke different give_area() functions for the different kinds of elements
in the array. All this can be achieved by using virtual functions.

A function is declared virtual by including the virtual keyword in the class dec-
laration. This is illustrated by the give_area() function in the following declaration:
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class shape {

public:
virtual float give_area(void);
float area;

};

A virtual function must be a non-static class member and the virtual specifier
can only occur within a class body. A common error is to attempt to define a virtual
function by including the virtual keyword, as shown in the following statement:®

virtual float shape::give_area(void) { return area; } // WRONG!
This function is correctly defined as:
float shape::give_area(void) { return area; } // 0.X.

since it is sufficient to declare a function virtual in the base class for it to be virtual
everywhere.

The virtual specifier in the shape class has no effect unless a derived class also
defines a give_area() function, as in the following definition of a disc class:

class disc : public shape {

public:
virtual float give_area(void) { return(3.142*radius*radius); }
float radius;

};

Notice that both the return type and function arguments are identical in the two
versions of give_area(). However, the situation here is subtly different from the
duplication of names discussed in Section 12.1. To appreciate this distinction and to
see the true significance of virtual functions, consider the following program:’

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class shape {

public:
virtual float give_area(void);
float area;

I
inline float shape::give_area(void) { return area; }

class disc : public shape {
public:
virtual float give_area(void);
float radius;

5Don’t forget the distinction between define and declare.
"Notice that, as here, it is possible for a function to be both inline and virtual.
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};
float disc::give_area(void)
{
return(3.142 * radius * radius);
}
int main()
{
shape *pt;
shape s;
s.area = 1.0;
disc d;
d.radius = 2.0;
d.area = 3.0;
pt = &s;
cout << pt->give_area() << "\n";
pt = &d;
cout << pt->give_area() << "\n";
return (EXIT_SUCCESS) ;
}

The first point to notice is that a base class pointer can store the address of a derived
class object. In this case, pt is first used to store the address of a shape object and then
a disc object. The second point is that the statements that output the areas of the
different kinds of object are identical. This is because if a virtual function is invoked
through a pointer, then which of the functions is actually called depends on the class
of the object pointed to. Consequently, the first statement involving give_area()
calls the shape function, and the second statement calls the disc version. This is
how virtual functions can be used to implement polymorphism and is an important
feature of object-oriented programming in C++.8 The role of virtual functions in
polymorphism is crucial; for non-virtual functions, the base class pointer in the above
program would invoke the same shape version of the give_area() function in both
statements.

Exercise

Run the program given above and deduce which version of the give_area()
function is invoked by each of the:

cout << pt->give_area()

statements. What happens if the virtual specifier is removed from either
one or both class declarations?

In the program given above, there was no need to include the virtual specifier in
the derived disc class declaration and we could use the following alternative declara-
tion:

8Some authors, such as [3], describe the effect of virtual functions by saying that the derived class
function overrides the base class version. However, you should understand that overriding is not the
same as dominance; there is more to virtual functions than the mere hiding of base class names!
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class disc : public shape {
public:
float give_area(void);
float radius;

};

This is because the give_area() function is implicitly virtual due to the declaration
within the shape class. However, including the keyword in the derived class may be
useful since it clearly indicates, without examining the base class, that the function is
virtual.

One subtlety involving virtual functions is that a function declared in a derived
class and a base class cannot differ only by the return type if the base class function
is virtual. In order to understand this, have a look at the following classes:

class shape {

public:
virtual float give_area(void);
area;
I
class disc : public shape {
public:
double give_area(void); // WRONG!

float radius;

};

We can see that the second declaration of give_area() cannot hide the first, since
only the return types differ. However, neither can the second declaration be virtual
since the return types do differ. As a result, the two declarations are inconsistent and
there is a compile-time error.

Another subtlety is that if a virtual function is invoked through a pointer, then
the access level is determined by the function declaration in the class corresponding
to the pointer and not to the function actually invoked. This is illustrated by the
following program. (Notice that, in contrast to previous classes in this chapter, the
member data are now private.)

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class shape {
public:

void set_area(float a) {area = a; }

virtual float give_area(void) { return area; }
private:

float area;

};

class disc : public shape {
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public:
void set_radius(float r) { radius = r; }

private:
virtual float give_area(void) { return(3.142*radius*radius); }
float radius;

}s;

int main()

{
disc d;
d.set_area(1.0);
d.set_radius(2.0);
shape *pt = &d;
cout << pt->give_area() << "\n";
return(EXIT_SUCCESS) ;

}

In the statement:
cout << pt->give_area() << "\n";

the pointer successfully invokes disc: :give_area(),even though the latter is private.
This is because pt is of type pointer to shape and the function, shape::give_area(),
1s public. This may appear to be a minor hole in the access protection mechanism, but
it is consistent with the fact that which virtual function is actually invoked through
a pointer is a run-time decision.

Exercise

(a) Run the above program and deduce which version of the give_area()
function is invoked by the statement:

cout << pt->give_area() << "\n";

(b) What happens if the statement initializing pt in the above program is
replaced by:

disc *pt = &d;

12.3 Abstract Classes

Suppose we have a project involving solids such as cubes, spheres, cones etc. Corre-
sponding to each type of solid there is an appropriate equation for the volume and
surface area. Moreover, suppose that we want to consider a collection of different
kinds of solids and to perform calculations such as summing their volumes and surface
areas. This project is an obvious candidate for inheritance; that is we could have a
solid base class with derived cone, sphere and cube classes, as shown in Figure 12.3.
Furthermore, if the solid class has virtual member functions for calculating the vol-
ume and surface area, then polymorphism can be used to find the total area and volume
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solid
[_sphere |

sphere

Figure 12.3: Classes derived from solid.

for a collection of solid objects. As an example, we can consider the class definitions
given below.”

class solid {

public:
virtual double volume(void);
virtual double surface(void);

};

class sphere : public solid {
public:
double volume(void) { return(4.0 * M. PI * r x r *xr / 3.0); }
double surface(void) { return(4.0 * M_PI * r * r); }
void set_radius(double radius) { r = radius; }
private:
double r;

};

class cube : public solid {
public:

double volume(void) { return(side * side * side); }

double surface(void) { return(6.0 * side * side); }

void set_side(double length_of_side) { side = length_of_side; }
private:

double side;

};

Notice that we have implemented member functions for the sphere and cube classes
but not for the solid class. The problem is that the two member functions must
return a value of type double, but without knowing the particular kind of solid it is
not possible to calculate what this value should be. Returning an arbitrary volume and
surface area is not very satisfactory; it would be much better if solid were an abstract
class. In other words, we want the solid class to be used as a base class without

9The constant M_PI, which represents 7, is defined in <cmath>.
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implementing every member function. Moreover, we don’t want it to be possible to
have instances of the class since some functions would be undefined.

An abstract class is declared by including at least one member that is a pure virtual
function. The way in which such a function is declared is illustrated by the following
class declaration:

class X {

public:
virtual void f(int i) = 0; // A pure virtual function.
// More class declarations go in here.

};

A pure virtual function is declared by using the strange “f() = 0” notation. This
does not indicate that the function is numerically zero, but rather that it is not defined.
A class that contains a pure virtual function is known as an abstract class. For example,
the following declares an abstract solid class with two pure virtual functions:

class solid {

public:
virtual double volume(void) = 0;
virtual double surface(void) = 0;

}s

Since the volume () and surface() functions are undefined, this class avoids the prob-
lem of how to implement these functions for an unknown solid.

The following program demonstrates the idea of an abstract class within the context
of the sphere and cube classes:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cmath> // For M_PI

using namespace std;

class solid {

public:
virtual double volume(void)=0;
virtual double surface(void)=0;

};

class sphere : public solid {
public:
sphere(double radius) { r = radius; }
double volume(void) { return(4.0 * M_.PI * r *x r x r / 3.0); }
double surface(void) { return(4.0 * M_PI * r x r); }
private:
double r;

};

class cube : public solid {
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public:
cube(double side_length) {side = side_length; }
double volume(void) { return(side * side * side); }
double surface(void) { return(6.0 * side * side); }
private:
double side;

3

int main()

{
sphere s(2.0);
cout << "Volume of sphere = " << s.volume() << "\n";
cout << "Area of sphere = " << s.surface() << "\n";
cube ¢(3.0);
cout << "Volume of cube = " << c.volume() << "\n";
cout << "Area of cube = " << c.surface() << "\n";
return(EXIT_SUCCESS);

}

Notice how the volume () and surface functions are not defined for the solid class.

Exercise

Run the above program and check that the values given for the areas and
volumes are correct. What happens if you modify the program to include
the declaration of a solid object in the function main()?

There a few restrictions on abstract classes:

e It is not possible to have an instance of an abstract class:

solid s; // WRONG: solid is an abstract class.
e An abstract class cannot be an argument type:

void f(solid s); // WRONG!
e An abstract class cannot be a function return type:

solid f(void); // WRONG!

All of these restrictions are very reasonable since an abstract class has at least one
undefined function. However, a pointer to an abstract class is legal, as in:

solid *pt; // 0.K.
A reference to an abstract class is also valid, as illustrated by the following statement:

double f(solid &s); // 0.K.
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The reason why these statements are both legal and potentially useful is that a pointer
to an abstract class can point to an instance of a derived class.

As an example of references to an abstract class, suppose we want to write a function
that returns the total volume of two objects derived from the solid class. These objects
may be instances of either the sphere or cube class, or even other classes (derived
from solid) that we have not yet considered. A possible implementation using solid
reference arguments is given below.

double volume_of_two_solids(solid &s1, solid &s2)
{
return (sil.volume() + s2.volume());

}

This implementation should be contrasted with using non-reference arguments, which
would necessitate four separate overloaded functions for just the sphere and cube
classes. Also notice that we wouldn’t have to modify (or even recompile) this function
if we introduced new classes derived from the solid base class.

Another function of possible interest is one that returns the volume of a list of
solid objects. Such a function is defined below.

double total_volume(solid *pt[], int solids)

{
double vol = 0.0;
for (int i = 0; i < solids; ++i)
vol += pt[i]->volume();
return vol;
}

The first argument in this function is an array of pointers to solid objects. This is
perfectly legal, even though it is not possible to actually define a solid object. Notice
that within the function body, the volume() function appropriate to the particular
object is invoked. This is another example of polymorphism at work.

The following program demonstrates using the two functions defined above:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cmath> // For M_PI

using namespace std;

class solid {

public:
virtual double volume(void)=0;
virtual double surface(void)=0;

}s;

class sphere : public solid {

public:
double volume(void) { return(4.0 * M_PI *x r * r * r / 3.0); }
double surface(void) { return(4.0 * M_PI *x r * r); }
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void set_radius(double radius) { r = radius; }

private:

};

double r;

class cube : public solid {
public:

};

double volume(void) { return(side * side * side); }
double surface(void) { return(6.0 * side * side); }
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void set_side(double length_of_side) { side = length_of_side; }
private:

double side;

double volume_of_two_solids(solid &s1, solid &s2)

{

return (sl.volume() + s2.volume());

double total_volume(solid *pt[], int solids)

{

int

double vol 0.0;

for (int i 0; i < solids; ++i)
vol += pt[i]->volume();

return vol;

main()

cube c;

c.set_side(2.0);

sphere s;

s.set_radius(3.0);

cout << "Volume of 2 solids = " <<
volume_of_two_solids(c, s) << "\n";

cube c1, c2;

cl.set_side(2.0);

c2.set_side(4.0);

sphere si, s2;

sl.set_radius(3.0);

s2.set_radius(5.0);

solid *pt[4];

pt[0] = &si1;
ptl1] = &s2;
ptl2]= &ci;
pt[3] = &c2;

cout << "Total volume = " << total_volume(pt, 4) << "\n";
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return (EXIT_SUCCESS) ;
}

Notice how in the statement:

cout << "Volume of 2 solids = " <<
volume_of_two_solids(c, s) << "\n";

one reference argument is a sphere and the other is a cube. Also notice how the
pt [1 array can store the addresses of different kinds of objects and how the volume ()
function appropriate to the particular object is invoked automatically.

Exercise

Run the above program and check that the values given for the volumes
are correct.

A pure virtual function is inherited as a pure virtual function. As an example,
if we use the solid base class defined on page 342 to define a cone class:

class cone : public solid {
public:
double volume(void) { return(M_PI * r * r x h / 3.0); }
void set_radius(double radius) { r = radius; }
void set_height(double height) { h = height; }
private:
double r, h;
};

then cone: :surface() is a pure virtual function. This is because surface() is a
pure virtual member function of the solid base class and is not defined by the cone
class. Consequently, this derived class is also an abstract class.

Exercise

Modify the cone class to include a definition of the surface () function and
then let the previously defined total_volume() function act on a list of
sphere, cube and cone objects. Likewise, implement and test an analogous
total_surface() function.

12.4 Class Hierarchies

A derived class can be the base class for another class. For instance, we could use the
sphere class, which was derived from the solid class, as a base class for a class of
coloured spheres (c_sphere). The following declares a coloured sphere class:

enum colour {red, orange, yellow, green, blue, indigo, violet};
class c_sphere : public sphere {

public:
void set_colour(const colour &col) { ¢ = col; }
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void print_colour(void);
private:
colour c;

};

The program given below defines the print_colour() function for the c_sphere
class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cmath> // For M_PI

using namespace std;

class solid {

public:
virtual double volume(void)=0;
virtual double surface(void)=0;

};

class sphere : public solid {
public:
double volume(void) { return(4.0 * M PI * r *x r xr / 3.0); }
double surface(void) { return(4.0 * M_PI * r * r); }
void set_radius(double radius) { r = radius; }
private:
double r;

};
enum colour {red, orange, yellow, green, blue, indigo, violet};

class c_sphere : public sphere {

public:
void set_colour(const colour &col) { ¢ = col; }
void print_colour(void);

private:
colour c;

};

void c_sphere: :print_colour(void)
{
switch (¢) {
case red:
cout << "red\n";
break;
case orange:
cout << "orange\n";
break;
case yellow:
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cout << "yellow\n";
break;

case green:
cout << "green\n";
break;

case blue:
cout << "blue\n";
break;

case indigo:
cout << "indigo\n";
break;

case violet:
cout << "violet\n";
break;

default:
cout << "Invalid colour\n";
exit (EXIT_FAILURE);

int main()
{
c_sphere s[7];
for (int i = 0; i < 7; ++i) {
s[i] .set_radius(i + 10.0);
}
s[0] .set_colour(red);
s[1].set_colour(orange);
s[2] .set_colour(yellow);
s[3].set_colour(green) ;
s[4] .set_colour(blue);
s[5] .set_colour(indigo);
s[6] .set_colour(violet);
for (int i = 0; i < 7; ++i) {
cout << "Sphere " << i << " has colour ";
s[i].print_colour();
cout << "The volume is " << s[i].volume() <<
"\n\n";
}
return(EXIT_SUCCESS) ;

The solid class is known as an indirect base class of the c_sphere class and the
resulting class hierarchy is shown in Figure 12.4. Notice that volume () is declared as a
pure virtual function in the solid class, with the appropriate definition for the special
case of a sphere being given in the sphere class. The set_radius() and set_colour()
functions are defined in the sphere class and c_sphere classes respectively.
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solid

sphere

c_sphere

Figure 12.4: A simple class hierarchy.

The enum colour statement could alternatively be placed inside the class declara-
tion, as shown below.

class c_sphere : public sphere {
public:
enum colour {red, orange, yellow, green, blue, indigo, violet};
void set_colour(const colour &col) { ¢ = col; }
void print_colour(void);
private:
colour c;

};

Enumerations defined within a class have the scope of that class and are only accessible
outside of this scope by using the explicitly qualified name, as in:

c_sphere s;
s.set_colour(c_sphere::red);

Such enumerations obey the same access rules as other class members; in this particular
case colour is public. Placing an enumeration within a class declaration is consistent
with the idea of data hiding and means that we can use the same enumeration names
for different classes.

Exercise

Modify the above program so that the enum colour statement is defined
within the c_sphere class. Verify that your program gives the same results
as for the unmodified version.

The print_colour () function in the above program illustrates one of the main
problems with conventional procedural languages. The function has a switch state-
ment that depends crucially on the allowed colours. If we decide to add another colour
to the enumeration, then we must change the switch statement. For the current exam-
ple this change is simple, but in a complicated program there may be many functions
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containing similar switch statements, all of which need modifying when the permissi-
ble data changes. The distributed nature of these changes can make maintaining such
code a huge problem for conventional languages. However, maintenance can be made
much easier if we use object-oriented techniques. As a straightforward example, we
could define a pure abstract coloured_sphere class and use this to derive red_sphere
and blue_sphere classes. Defining a pointer to the coloured_sphere base class would
enable us to store the address of the derived class objects. This pointer could then be
used to select the print_colour() function appropriate to the type of object being
pointed to. These ideas are put together in the program given below.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cmath> // For M_PI

using namespace std;

class solid {

public:
virtual double volume(void)=0;
virtual double surface(void)=0;

};

class sphere : public solid {
public:
double volume(void) { return(4.0 * M_.PI x r *x r x r / 3.0); }
double surface(void) { return(4.0 * M_PI * r *x r); }
void set_radius(double radius) { r = radius; }
private:
double r;

};

class coloured_sphere : public sphere {
public:
virtual void print_colour(void) = 0;

};

class red_sphere : public coloured_sphere {
public:
void print_colour(void) { cout << "red\n"; }

};

class blue_sphere : public coloured_sphere {
public:
void print_colour(void) { cout << "blue\n"; }

};

int main()
{

red_sphere r_s;
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blue_sphere b_s;
coloured_sphere *pt = &r_s;
pt->print_colour();
pt = &b_s;
pt->print_colour();
return(EXIT_SUCCESS) ;

}

Notice that which function is actually called is determined by the type of object that
the function is invoked on, rather than by a switch statement. In fact the type may
not even be known until run-time. Type resolution of this form is called dynamic
or late binding and is one the major contributions of object-oriented programming.'®
The significant feature is that extending an existing data type only involves defining
an extra class, as in:

class green_sphere : public coloured_sphere {
public:
void print_colour(void) { cout << "green\n"; }

};

rather than modifying switch statements in what may be a large number of functions.
The changes are all in one place and manifest, rather than scattered and buried.

Exercise

Modify the program given on page 347 so that it uses the idea of a pure
abstract coloured_sphere class in place of the switch statement. Verify
that your program gives the same results as for the unmodified version.

Since any class may be the base class for any number of derived classes, class
hierarchies can get very complicated. We can get a glimpse of the possible complication
by adding a class for heavy spheres (an h_sphere class), as given below.

class h_sphere : public sphere {

public:
void set_mass(double mass) { m = mass; }
double mass(void) { return m; }

private:
double m;

};
The resulting class hierarchy is shown in Figure 12.5.

Exercise

In Figure 12.5, replace c_sphere by our coloured_sphere class, which
avoids using the switch statement, and construct the appropriate class
hierarchy diagram.

10Which non-virtual function should be invoked is known at compile-time. This is called static or
early binding. Dynamic binding should not be confused with polymorphism. Polymorphism means
that the same function interface can perform different actions on different objects. Polymorphism may
indeed be implemented by means of dynamic binding but in some circumstances the compiler may be
able to decide which function to invoke (that is the binding may be static).



352 CHAPTER 12. SINGLE INHERITANCE

solid
/ \
| sphere |

sphere

Figure 12.5: A more complicated class hierarchy.

12.5 Constructors and Destructors

Constructors are rather special member functions and, in particular, constructors are
not inherited and cannot be declared virtual. The compiler may generate a default
or a constructor may be defined by the programmer, in which case it must call the
direct base class constructor. This is achieved by a constructor definition containing a
colon followed by the base class constructor immediately before the constructor body.!!
The syntax is demonstrated by the coloured_sphere and red_sphere classes in the
program given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class sphere {
public:

sphere(double radius) { r = radius; }
private:

double r;

};

class coloured_sphere : public sphere {

public:
virtual void print_colour(void) = 0;
coloured_sphere(double radius) : sphere(radius){ }

};

class red_sphere : public coloured_sphere {

public:
void print_colour(void) { cout << "red\n"; }
red_sphere(double radius) : coloured_sphere(radius){ }

1 This is the same syntax as described in Section 10.1.3 for member objects with constructors.



12.5. CONSTRUCTORS AND DESTRUCTORS 353

I
int main()
{
red_sphere s(2.0);
cout << "Sphere colour: ";
s.print_colour();
return (EXIT_SUCCESS);
}

Notice the empty constructor bodies and that a constructor is required for the abstract
coloured_sphere class, even though there can be no instances of the class. In general,
the base class constructor may well do something useful and the general rule is that
the base class constructor is invoked before that of the derived class.

It is important to realize that it is the constructor function definition (not declara-
tion) that invokes the base class constructor. For example, the following code defines
the red_sphere constructor outside the class declaration:

class red_sphere : public coloured_sphere {
public:
void print_colour(void) { cout << "red\n"; }
red_sphere(double radius);

};

red_sphere: :red_sphere(double radius) : coloured_sphere(radius){ }

Notice how the red_sphere constructor function declaration within the class differs
from that given in the above program.

Destructors are also not inherited but, unlike constructors, they can be declared
virtual and it is often useful to do so. The following program illustrates what can go
wrong when a base class destructor is not declared virtual:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class data {
public:

data(int m);

~“data();
private:

double *pil;
};

class more_data : public data {
public:
more_data(int m, int n);
“more_data();
private:
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double *p2;
}s;
data::data(int m)
{
pl = new double[m];
cout << "data allocated: " << pl << "\n";
}
data::~data()
{
cout << "data deleting: " << pl << "\n";
delete pi;
}
more_data: :more_data(int m, int n) : data(m)
{
p2 = new double[n];
cout << "more_data allocated: " << p2 << "\n";
}
more_data:: “more_data()
{
cout << "more_data deleting: " << p2 << "\n";
delete p2;
}
int main()
{
data *pt = new more_data(10, 20);
delete pt;
return(EXIT_SUCCESS) ;
}

The output on my computer is:

data allocated: 0x8049cf8
more_data allocated: 0x8049d50
data deleting: 0x8049cf8

As we can see, memory is allocated by the data and more_data constructor functions,
but only deallocated by the base class destructor. Declaring “data() to be virtual
ensures that the derived and base class destructors are both invoked. As a general rule
it is usually worth declaring a base class destructor virtual.

Exercise

(a) Run the above program and check that you obtain similar output to
that given.
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(b) Modify the program so that the base class destructor is declared
virtual. In what order are the data and more_data constructors
and destructors invoked?

12.6 Member Access and Inheritance

All of the derived classes considered so far can access the public (but not the private)
base class members. For many applications this “all or nothing” approach is very
appropriate. However, C++ has techniques for fine tuning the access privilege and it
is to these techniques that we now turn.

12.6.1 Access Specifiers'

The members of a class can have three levels of access: public, protected and
private:

class A {
public:
int a;
private:
int b;
protected:
int c;

};

We have already made use of the public and private specifiers. The reason we have
not previously met the protected access specifier is that it is only relevant when we
have a derived class.

The effect of the protected access specifier, used in the declaration of class A, is
intermediate between the public and private specifiers. A protected member can
be accessed by member functions and friends of the class, as well as by certain derived
classes. In general, a derived class can be specified to have a public, protected or
private base class so the effect of access_specifier in:

class X : access_specifier A {
// Declarations go in here.

+
is as follows:
o If access_specifieris public:

public members of A are public members of X.
protected members of A are protected members of X.
private members of A are private members of X.

e If access_specifieris protected:
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public members of A are protected members of X.
protected members of A are protected members of X.
private members of A are private members of X.

e If access_specifieris private:

public members of A are private members of X.
protected members of A are private members of X.
private members of A are private members of X.

Notice that private members of a base class remain private and are not accessible
to members of a derived class. This restriction is necessary since otherwise a derived
class would be a trivial way of evading class access restrictions.

As an example, suppose we modify our shape class (as given on page 331) so that
the members have the following access privileges:'?

class shape {
public:
int i_d;
protected:
float x, y;
private:
material_type material;

};

Then with the same disc class as on page 332, the following demonstrates the various
ways in which we can attempt to access data members:

shape s;

s.i_d = 204; // 0.K.

s.material = WOOD; // WRONG: material is private.

s.x = 54.37; // WRONG: x is protected;

disc d;

d.i_d = 100; // 0.K.

d.material = STEEL; // WRONG: material is private.

d.y = -71.3; // WRONG: y is protected.

cout << d.x_coord(); // 0.K. function has access to
// protected member, x.

Exercise

Make the code fragment given above into a short program and verify the
stated access privileges.

As mentioned previously, constructors and destructors are usually declared public,
but they can also be private. In fact they can also be declared protected. Instances
of a class with all constructors protected can only be created by friends, members and

12This class declaration is only for illustration since there is no way of accessing the material data
member.
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derived classes; such classes are therefore useful when we don’t want clients to construct
objects. Analogous restrictions apply to classes with a protected destructor.

As a general rule, data in a base class should be private since protected data
could be modified in unintended ways by derived classes. Moreover, it would be difficult
to restructure protected data since the way in which the data may be used cannot be
deduced from the base class; it would be necessary to examine all derived classes. In a
large project this could lead to a big software maintenance headache.

12.6.2 Friendship and Derivation

In Section 8.15 we introduced the idea of an entire class being a friend of another class.
A friend class and a derived class both have special privileges to access members of
another class. However, friendship should not be confused with derivation. A friend
class has access to all members of the class that has granted friendship. In the example:

class node {

friend class list;

// Other members go here.
private:

node *next;

};

class list {
// Members go here.
I

the 1ist class has access to the private member, called next. By contrast, the
coloured_sphere class has no access to the private member, r, of the sphere class
in the following code fragment:

class sphere {
public:
sphere(double radius) { r = radius; }
protected:
static int spheres;
private:
double r;
I

class coloured_sphere : public sphere {

public:
virtual void print_colour(void) = 0;
coloured_sphere(double radius) : sphere(radius){ }

};

However, the coloured_sphere class does have access to the protected and public
members.

As pointed out in Section 8.15, friendship is not transitive. Moreover, neither is
friendship inherited. For example, suppose we have the following class declarations:
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class node {

friend class list;
public:

DATA_TYPE data;
private:

node *next;

};

class list {
// Members go here.
};

class superlist : public list {
// Members go here.
I

Then superlist would have no access to any private or protected members of the
node class. If this restriction did not exist, then granting friendship to one class would
open up the entire class implementation to an arbitrary hierarchy of derived classes.
As a general rule, if classes need access to the members of an indirect base class then
protected access rather than friendship is the appropriate technique.

12.7 Using Single Inheritance
12.7.1 A Bounds Checked Array Class

In Section 8.17 we implemented a primitive self-describing, self-checking array class.
This class was improved in subsequent exercises and further improvements can now be
made by introducing destructors and virtual functions. The most fundamental change
that we make is to remove the bounds checking from the array class and to introduce
a derived class, called checked_array, that takes over this role. The modified header
file is given below.

// source: array.h
// use: Defines array class.

#ifndef ARRAY_H
#define ARRAY_H

#include <iostream>
#include <cstdlib> // For exit()
using namespace std;

class array {
public:
array(int size);
array(const array &x);
virtual ~array() { delete pt; }
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array &operator=(const array &x);
virtual double &operator[] (int index);
int get_size(void);

protected:
int n;
double *pt;
s

class checked_array : public array {

public:
checked_array(int size) : array(size) { }
double &operator[] (int index);

private:
void check_bounds(int index);

I
// inline array class implementations:

inline int array::get_size(void)

{
return n;
}
inline double &array::operator[](int index)
{
return ptlindex - 1];
}

// inline checked_array class implementations:

inline double &checked_array::operator[](int index)
{

check_bounds (index) ;

return array::operator[] (index);

}
inline void checked_array::check_bounds(int index)
{
if (index < 1 || index > n) {
cout << "Array index " << index << " out of bounds\n";
exit (EXIT_FAILURE);
}
}

#endif // ARRAY_H
The improvements made to the original array class can be summarized as follows:

e An assignment operator and copy constructor are supplied since otherwise de-
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faults would be generated by the compiler. Because an array object has a pointer
to dynamically allocated memory, these defaults would not be appropriate.

e A destructor is introduced to delete the dynamically allocated memory.

e Instead of the element () function we overload the subscripting operator, which
is declared virtual so that dynamic binding can be invoked. Overloading the
function call operator would provide an equally natural interface.

The checked_array class, which is derived from the array class, has the following
features:

e A constructor must be defined since constructors are not inherited. The new
constructor simply calls the base class constructor and has an empty body.

e A new subscripting operator is defined. This operator invokes the base class
function, which is safer than having two independent implementations.

e A function such as check_bounds () is sometimes called a helper function since
it is only used internally by the checked_array class.

For efficiency, some of the smaller and much used functions are implemented inline.
Implementations of the remaining functions are given in the following file:

// source: array.cxx
// use: Implements array class.

#include <cstring> // For memcpy()
#include "array.h"

using namespace std;

array::array(int size)

{
n = size;
pt = new doublel[n];
}
array::array(const array &x)
{
n = x.n;
pt = new doublel[n];
memcpy (pt, x.pt, n * sizeof(double));
}
array &array::operator=(const array &x)
{
delete pt;
n = x.n;

pt = new double[n];
memcpy(pt, x.pt, n * sizeof(double));
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return *this;

}
The program given below tries out the array and checked_array classes.

// source: my_test.cxx
// use: Tests array class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "array.h"

using namespace std;

double sum(array &a, int first_index, int last_index)
{
double result = a[first_index];
for (int i = first_index + 1; i <= last_index; ++i)
result += ali];
return result;

int main()
{

const int n = 10;

// Define an object:
checked_array x(n);

// Access the array size:
cout << "The array x has " << x.get_size() << " elements.\n";

// Store some data.
// Also find the total directly
// so it can be used for comparison.
double total = 0.0;
for (int i = 1; i <= n; ++i) {
x[i] = i * 25.0;
total += i * 25.0;

// Retrieve some data:
cout << "The data stored in x are:\n";
for (int i = 1; i <= n; ++i)
cout << x[i] << "\n";
cout << "\n";

// Define another object using copy constructor:
checked_array y = x;
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// Check the array size:
cout << "The array y has " << y.get_size() << " elements.\n" <<
"y was created by the copy constructor.\n\n";

// Check that the copy is identical:
int errors = 0;
for (dnt i = 1; i <= n; ++i)
if (x[i] '= y[i]) {
cout << "x[" << i << "] t= y[" << i << "]\n";
++errors;
}
if (errors)
cout << errors << " elements of the arrays x " <<
"and y differ in their data.\n";
else
cout << "Arrays x and y have identical data.\n\n";

// Define another object with half the size but no bounds
// checking:
array z(n/2);

// Check the array size:
cout << "The array z has " << z.get_size() << " elements.\n\n";

// Try out the assignment operator:
z = Xx;

// Check the array size:
cout << "After assignment of x to z, the array z has " <<
z.get_size() << " elements.\n\n";

errors = 0;
// Check that the copy is identical:
for (int i = 1; i <= n; ++i)
if (z[i] t= x[1i]) {
cout << "z[" << i << "] 1= x[" << i << "]\n\n";
++errors;
}
if (errors)
cout << errors << " elements of the arrays x and z " <<
"differ in their data.\n";
else
cout << "Arrays x and z have identical data.\n\n";

// Find sum for z[i], going out of bounds. If you get the
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// correct result, try changing the third argument in sum()

// to something else greater than n:

cout << "The sum of the data in z is " << sum(z, 1, 2 * n) <<
".\nThe sum should be " << total << ".\n\n";

// Find sum for x[i], going out of bounds:
cout << "The sum of the data in x is " << sum(x, 1, 2 * n) <<
".\nThe sum should be " << total << ".\n\n";

return (EXIT_SUCCESS) ;
}

Have a look at the sum() function in this program. Since this function accepts a
reference to an array object, the function body can manipulate both derived and base
class objects. The type of object that is passed as the function argument determines
which overloaded subscripting operator is invoked. Putting the bounds check in a
derived class has the advantage that we can choose to either have checked or unchecked
arrays. We could also achieve this by having two distinct classes rather than using
inheritance. However, this would complicate program maintenance, in addition to
making it more difficult to mix checked and unchecked arrays.®

Exercise

Compile and run the above test program. Describe and explain what hap-
pens in the following circumstances:

(a) The virtual specifier is omitted from the base class declaration for
the subscripting operator.

(b) The sum() function is changed so that the array argument is passed
by value.

12.7.2 A Menu Class

A common method of “driving” a program is to use a menu. In this section we develop
a general menu class. Typically a user initiates a program that displays a list of options,
as shown below.

Options
0 Exit menu
1 Jacobi iteration
2  Weighted Jacobi iteration
3  Gauss-Seidel iteration
Select option:

A menu consists of a number of items, which we call options. An option may either be
a menu, which itself has a list of options, or an action. An action does some specific
task, such as setting the value of a parameter, running another program, opening a

131t could be argued that it is the client that should provide error checking rather than the class.
A detailed discussion of this point is given in [7].
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file, etc. When an action is completed, it may either invoke a menu or perform some
other task, such as return to the operating system. This discussion leads naturally to
the idea of having three classes, as shown in Figure 12.6.

option
menu action

Figure 12.6: Classes for menus.

Suitable declarations for the three classes are given in the following header file:

// source: menu.h
// use: Defines menu classes.

#ifndef MENU_H
#define MENU_H

#include "string.h"

class option {
public:
option(const string &option_label) { label = option_label; }
virtual void activate(void) = 0;
void print_label(void) { label.print(); }
private:
string label;
I

class menu : public option {
public:
menu (const string &menu_label, int max_number_of_options);
virtual “menu();
void set_option(option *op_pt);
void activate(void);
private:
option **option_list;
int options, max_options;

};

class action : public option {
public:
action(const string &action_label, void (*function_pt) (void),
option *option_pt = 0);
void activate(void);
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private:
void (xf_pt) (void);
option *op_pt;

}

#endif // MENU_H

Notice how use is made of the string class, introduced in Section 9.6.2.1% The option
class is an abstract base class and, as such, we cannot define instances of the class.
However, the two derived classes inherit the properties of this base class. Consequently,
all three classes have an activate() function and a “label”. The derived classes also
add their own data and member functions in addition to those provided by the base
class.

The option_list data member of the menu class is used to store the address of a
dynamically allocated array of option pointers. The class also has data members to
hold the size of this array (max_options) and the number of options set (options).
The set_option() member function is used to assign an option address to an element
of the array.

The action class has a pointer to the function that invokes the action (f_pt) and
a pointer to an option (op_pt), which may be invoked after the action has completed.

Suitable class implementations are given below.

// source: menu.cxx
// use: Implements menu classes.

#include <iostream>
#include <cstdlib> // For exit()
#include "menu.h"

using namespace std;

menu: :menu(const string &menu_label, int max_number_of_options)
option(menu_label)

{
max_options = max_number_of_options;
if (max_options <= 0) {
cout << "Error in menu(): options = " << max_options <<
"\n";
exit (EXIT_FAILURE);
}
else {
option_list = new option *[max_options];
¥
options = 0;
}

14The #include directive for string.h in menu.h assumes that both header files are in the same
directory. If this is not true then you will have to give the complete path in the #include directive.
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menu: : “menu()

{
delete option_list;
}
void menu::set_option(option *op_pt)
{
if (options < max_options) {
option_list[options] = op_pt;
++options;
}
else {
cerr << "Attempt to set " << options + 1 <<
" menu options\nOnly " << max_options <<
" options are allowed.\n";
exit (EXIT_FAILURE);
}
}
void menu::activate(void)
{
int i, choice;
do {
cout << "\n";
print_label();
cout << "\n";
for (i = 0; i < optiomns; ++i) {
cout << i << "\t";
option_list[i]->print_label();
cout << "\n";
}
cout << "Select option: ";
cin >> choice;
} while (choice < 0 || choice >= options);
option_list([choice]->activate();
+

action::action(const string &action_label,
void (*function_pt)(void), option *option_pt)
option(action_label)

f_pt = function_pt;
op_pt = option_pt;
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void action::activate(void)
{
£ ptQ;
op_pt->activate();
}

The menu constructor initializes the option_list pointer to sufficient dynamically
allocated memory to store addresses for the maximum number of options and also
initializes the current number of options to zero. Notice the way in which the base
class, option(), constructor is called.

Initialization of the action data members, f_pt and op_pt, is carried out by the
action constructor, which also invokes the base class constructor. The value stored
by op_pt is the address of either an action or a menu object.

The menu: :activate() function lists the menu items, accepts a menu choice and
activates that particular option. Since the option_list[] array holds addresses of
both action and menu objects, which activate() function is invoked depends on the
object type. This is a run-time decision and another example of dynamic binding. It
is:

option_list[choice]->activate();

in the menu: :activate () function that replaces the switch statement.

The action::activate() function is very simple. Since no choice is involved,
the appropriate function for the particular action is first invoked and then the option
pointed to by op_pt is activated; it is this that allows us to do something after the
action has terminated, such as going to a menu or exiting to the operating system.

The following program demonstrates how to use the menu class:

// source: my_test.cxx
// use: Tests menu.

#include <iostream>
#include <cstdlib> // For exit()
#include "menu.h"

using namespace std;

void to_system(void);

void create_multi_grid(void);
void run_V_cycle(void);

void run_W_cycle(void);

void delete_multi_grid(void);

void to_system(void)

{
cout << "\nReturning to system.\n";
exit (EXIT_SUCCESS) ;
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void create_multi_grid(void)

{
cout << "\nMulti-grid created.\n";
}
void delete_multi_grid(void)
{
cout << "\nMulti-grid has been deleted.\n";
}
void run_V_cycle(void)
{
cout << "\nA single V-cycle has been run.\n";
}
void run_W_cycle(void)
{
cout << "\nA single W-cycle has been run.\n";
}
int main()
{
const int top_menu_options = 2;
const int grid_menu_options = 3;
// Define menus:
menu top_menu("Top menu", top_menu_options);
menu grid_menu("Multi-grid menu", grid_menu_options);
// Set options for top menu:
top_menu.set_option(new action("Return to system",
to_system));
top_menu.set_option(new action("Create multi-grid",
&create_multi_grid, &grid_menu));
// Set options for multi-grid menu:
grid_menu.set_option(new action("Delete multi-grid",
delete_multi_grid, &top_menu));
grid_menu.set_option(new action(
"Run V-cycle multi-grid",run_V_cycle, &grid_menu));
grid_menu.set_option(new action(
"Run W-cycle multi-grid",run_W_cycle, &grid_menu));
// Start the menu system:
top_menu.activate();
return EXIT_SUCCESS;
}

For simplicity the functions do not actually do very much; they only send messages
to the output stream declaring which action they should have performed. A typical
session is shown below; bold face type represents entries typed in by the user and italics
are used for the results of a particular action:
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Top menu
0 Return to system
1 Create multi-grid

Select option: 1
Multi-grid created.

Multi-grid menu

0 Delete multi-grid
1 Run V-cycle multi-grid
2 Run W-cycle multi-grid

Select option: 1
A single V-cycle has been run.

Multi-grid menu

0 Delete multi-grid
1 Run V-cycle multi-grid
2 Run W-cycle multi-grid

Select option: 2
A single W-cycle has been run.

Multi-grid menu

0 Delete multi-grid
1 Run V-cycle multi-grid
2 Run W-cycle multi-grid

Select option: O

The multi-grid has been deleted.

Top menu
0 Return to system
1 Create multi-grid

Select option: O

Returning to system.

The action of this menu system is shown in Figure 12.7. The ovals contain de-
scriptions of particular options that can be activated. The two boxes represent menus
that are presented to the user. The arrows represent the flow of control. Execu-
tion of the program causes top_menu to be activated and a list of options to be dis-
played. In the above example the user chooses option 1, which in turn invokes the
create_multi_grid() function and then causes the grid_menu options to be pre-
sented. The user next chooses option 1 again. This invokes the run_V_cycle() func-
tion and then returns to the same grid_menu. Eventually option 0 of top_menu is
chosen and the program terminates.
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Activate
top menu

Return
to system

Top menu

Create Delete

multi-grid

multi-grid

e
T
e

Multi-grid
menu

=& &

Figure 12.7: A typical menu session.

It is possible to build a complicated system of many sub-menus and options by
simply adding more statements to the function, main(). It is dynamic binding that
causes either a menu or an action object to be activated as a result of a run-time

decision by the user; the member functions for the option, action and menu classes
remain unchanged.

Exercise

Compile and run the above program using a menu. An appropriate makefile
is given below.

my_test: my_test.cxx menu.o string.o

g++ my_test.cxx menu.o string.o -o my_test
menu.o: menu.cxx menu.h

g++ -C menu.cCXX
string.o: string.cxx string.h

g++ —c string.cxx
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Try adding more sub-menus with different options.

12.8 Summary
o A class, X, is declared to be derived from a base class, A, by the statement:

class X : public A {
public:

int x;
private:

int y;
protected:

int z;

};

The public access specifier before the base class, A, overrides the private de-
fault. Protected members of a class may be accessed by a derived class, whereas
private members can never be accessed by a derived class.

e A derived class has the members given in its declaration, in addition to all of the
members of the base class. (However, note that the latter members may not be
accessible.)

e The scope resolution operator, ::, can be used to access a member declared in
the base class:

class A {
public:
int v;

};

class X : public A {
public:
int v;

};

; // Access v declared in class X.
v o= 2; // Access v declared in class A.

VEEVIRV
=<
o

-

e The particular virtual function that is invoked through a pointer or reference
is determined by the type of object:

class A {
public:
virtual void f(void) { cout << "Class A\n"; }

};
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class X : public A {
public:

void f(void) { cout << "Class X\n"; }
};

A a;

X x;

A *pt = &a;

pt—>£0; // Invokes A::f()
pt = &x;

pt—>£Q0); // Invokes X::f()

e The declaration of an abstract class must contain a pure virtual function:

class solid {
public:
virtual double volume(void) = O;

};

A reference or pointer to an abstract class is allowed but an instance of an abstract
class is illegal.

e A derived class can be the base class for another derived class:

class A {
// Declarations go in here.

};

class B : public A {
// Declarations go in here.

};

class C : public B {
// Declarations go in here.

};

Class A is an indirect base class of C. Class B is a direct base class of C.

e An enumeration defined within a class has the scope of that class:

class coloured_cone : cone {
public:
enum colour {red, yellow, blue};

};

e Constructors cannot be declared virtual and are not inherited. A derived class

should define its own constructor and call the base class constructor if necessary:
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class checked_array : public array {
public:
checked_array(int size) : array(size){ }

};

e Destructors are not inherited, but it is usually a good idea to declare them
virtual.

12.9 Exercises

1. Use the menu class to drive a test program for one of the previous classes that
we have developed. Suitable examples are the complex arithmetic (Section 9.6.1)
and string (Section 9.6.2) classes.

2. Implement an overloaded != operator for the array class that we developed in
Section 12.7.1. If x and y are arrays, then x != y must return true or false,
as appropriate. You should provide both an unchecked virtual function for the
array class and a bounds checked function for the checked_array class.

3. Use the doubly linked list of Section 10.3.2 as the base class for a sparse vector
class providing the same member functions as Exercise 5 of Chapter 10.



Chapter 13

Multiple Inheritance

As has already been emphasized, inheritance is a natural technique to use when we
have a “kind of” relationship; for instance, a cube is a “kind of” solid and a triangle
is a “kind of” shape. Sometimes, we would like to construct a derived class with more
than one base class. Simple examples abound in the natural world. For instance, if
we classify animals into carnivores and herbivores, then we will probably also need an
omnivores class, which is derived from both of these, as shown in Figure 13.1. In fact

herbivore

carnivore

omnivore

Figure 13.1: Multiple inheritance.

many hierarchical classification systems lead to this type of relationship. The ability
to have a derived class with more than one base class is known as multiple inheritance
and is the subject of this chapter.

13.1 Derived Classes

In Chapter 12 we introduced the idea of a derived class, such as disc, depending on a
single base class:

class shape {
// Members go in here.

};

class disc : public shape {
// Members go in here.

};
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Multiple inheritance consists, syntactically, of replacing the base class by a list of base
classes, known as a derivation list. ~ As an example, suppose we are working on a
communications project. We could reasonably decide that we needed a transmitter
class and a receiver class, as shown below.

class transmitter {
// Members go in here.

};

class receiver {
// Members go in here.

};

However, our project might involve devices that both transmit and receive. Such
devices could be relevant in a variety of situations, ranging from an RS232 interface
to communication with an interplanetary probe. A device that can both transmit and
receive (which we will call a transceiver) is a kind of transmitter and a kind of receiver.
We can represent a transceiver as an instance of a transceiver class, which we declare
as follows:

class transceiver : public transmitter, public receiver {
// Members go in here.

};
In this example, the derivation list is:
public transmitter, public receiver

The transceiver class illustrates the idea of multiple inheritance; the class inherits all
data and member functions of the transmitter and receiver classes. The relationship
between these classes is shown in Figure 13.2. As is the case for single inheritance, the
arrows in the diagram point to the base classes.

transmitter receiver

transceiver

Figure 13.2: Derivation of a transceiver class.

The access restrictions on a derived class are the same for multiple inheritance as
for single inheritance. Notice that in order for both transmitter and receiver to be
public base classes, the public specifier must be repeated. A common mistake is to
write the derivation list as:

public transmitter, receiver
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with the assumption that public also applies to receiver. However, since no access
specifier is given for receiver, the access for this class defaults to private. Even if a
private base class is intended, it is standard practice to include the access specifier.

In order to give a demonstration of inheritance, we could suppose that transmitter
and receiver objects each store their frequency, together with a flag to indicate
whether or not they are currently transmitting or receiving data. A program to demon-
strate the transceiver class is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class transmitter {
public:
void set_tx_frequency(double frequency);
void set_tx_active(bool active);
void list_tx_state(void);
private:
double tx_f;
bool tx_active;

}s;

inline void transmitter::set_tx_frequency(double frequency)
{

tx_f = frequency;

}
inline void transmitter::set_tx_active(bool active)
{
tx_active = active;
}
void transmitter::list_tx_state(void)
{
cout << "Transmitter state:\n\tfrequency: " << tx_f <<
"\n\tactive: ",
if (tx_active)
cout << "true\n";
else
cout << "false\n";
}

class receiver {

public:
void set_rx_frequency(double frequency);
void set_rx_active(bool active);
void list_rx_state(void);

private:
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double rx_f;
bool rx_active;

};

inline void receiver::set_rx_frequency(double frequency)
{

rx_f = frequency;

}
inline void receiver::set_rx_active(bool active)
{
rx_active = active;
}
void receiver::list_rx_state(void)
{
cout << "Receiver state:\n\tfrequency: " << rx_f <<
"\n\tactive: ",
if (rx_active)
cout << "true\n";
else
cout << "false\n";
¥

class transceiver : public transmitter, public receiver {
// Other members go in here.

};

int main()

{
transceiver trx;
trx.set_tx_frequency(412.75);
trx.set_tx_active(true);
trx.set_rx_frequency(422.75);
trx.set_rx_active(false);
trx.list_tx_state();
trx.list_rx_state();
return(EXIT_SUCCESS);

¥

Notice how the state of the transceiver can be set and accessed by using member
functions from the transmitter and receiver classes.

Exercise

Implement the classes shown in Figure 13.1. The data for each base class
should include a list of typical items that are eaten, with items chosen from
two enumerations corresponding to the two base classes. Provide functions
to list what is eaten by a particular animal. Is there any difficulty in having
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a data member to store the name of the particular species of carnivore,
herbivore or omnivore?

Now suppose we have a two-channel receiver and that we want to develop a corre-
sponding two_channel_rx class. We might be tempted to make the following declara-
tion:

class two_channel_rx : public receiver, public receiver {
// Members go in here.
}; // WRONG: repeated base classes are not allowed.

However, this declaration is incorrect because we are not allowed to have a repeated
base class in a derivation list. The reason for this restriction is that there would be no
way of distinguishing members of the repeated class. The way to avoid this problem
is by having multiple base classes, each of which has the same base class. This is
demonstrated by the following code fragment and Figure 13.3.

class rx_1 : public receiver {
// More members may go in here.

};

class rx_2 : public receiver {
// More members may go in here.

};

class two_channel_rx : public rx_1, public rx_2 {
// More members may go in here.

};

As explained in Section 12.4, a base class of another base class is known as an in-
direct base class. In this example, receiver is a repeated indirect base class of
two_channel_rx. The inheritance diagram (Figure 13.3) shows one class (rx_1 or
rx_2) between two_channel_rx and each repetition of the receiver class. As is the
case for single inheritance, there is no limit on the possible number of classes between an

receiver receiver

rx_1 rx_2

two_channel_rx

Figure 13.3: Repeated indirect base class.
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indirect base class and a derived class. A program to demonstrate the two_channel_rx
class is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class receiver {
public:
void set_rx_frequency(double frequency);
void set_rx_active(bool active);
void list_rx_state(void);
private:
double rx_f;
bool rx_active;

};

inline void receiver::set_rx_frequency(double frequency)

{

rx_f = frequency;

}
inline void receiver::set_rx_active(bool active)
{
rx_active = active;
}
void receiver::list_rx_state(void)
{
cout << "Receiver state:\n\tfrequency: " << rx_f <<
"\n\tactive: ",
if (rx_active)
cout << "true\n";
else
cout << "false\n";
}

class rx_1 : public receiver {

};

class rx_2 : public receiver {

};

class two_channel_rx : public rx_1, public rx_2 {

};

int main()

{
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two_channel_rx two_rXx;
two_rx.rx_1::set_rx_frequency(412.75);
two_rx.rx_2::set_rx_frequency(422.75);
two_rx.rx_1::set_rx_active(true);
two_rx.rx_2::set_rx_active(false);
cout << "Receiver channel 1 state:\n";
two_rx.rx_1::1list_rx_state();
cout << "Receiver channel 2 state:\n";
two_rx.rx_2::list_rx_state();
return(EXIT_SUCCESS) ;

}

The member functions of the two_channel_rx class belong to the repeated (indirect)
receiver base class. Consequently, invoking these functions is ambiguous, unless we
specify the direct base class, as in the above program. Notice that the member access
operator (a single dot) is used between a class and a derived class. The scope resolution
operator (two semicolons) is used between a class and a member function. Also notice
that when invoking member functions, it is only necessary to give sufficient classes to
resolve any ambiguities. In this example there is no need to give the receiver indirect
base class because specifying rx_1 or rx_2 is sufficient to resolve any ambiguity.

Exercise

Extend the above program to a transceiver class that has two receive and
two transmit channels.

13.2 Virtual Base Classes

If we have a repeated indirect base class, then the derived class will have two or
more copies of the base class. This may not always be appropriate. For example,
suppose we are considering solids of various shapes and materials. We may want to
have a general solid class with sphere and plastic_solid as derived classes. A
plastic_sphere class could then be derived from the sphere and plastic_solid
classes. However, it would clearly be inappropriate for a plastic_sphere object to
have two copies of the solid data member. For instance, if a solid object had an
associated identifier (perhaps called id) then we wouldn’t want a plastic_sphere
object to inherit two (possibly different) identifiers. Such multiple copies can be avoided
by using the virtual specifier before the indirect base class, as illustrated below.

class solid {
public:
int id;
I
class sphere : virtual public solid {
// More members may go in here.

};

class plastic_solid : virtual public solid {
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// More members may go in here.

};

class plastic_sphere : public sphere, public plastic_solid{
// More members may go in here.

};

The class hierarchy is shown in Figure 13.4. There is only one copy of the id data

plastic_solid

plastic_sphere

Figure 13.4: Virtual base class.

member of the solid class, which can therefore be accessed unambiguously, as in:

plastic_sphere s;
s.id = 1;

Notice that the indirect base class, solid, is an ordinary class, with the virtual
specifier only occurring at the next level.! Also, specifying virtual has no effect on
the sphere and plastic_solid classes.

A simple program demonstrating how to access a plastic_sphere object is given

below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class solid {

public:
void set_id(int identifier) {id = identifier;}
int get_id(void) {return id;}

private:
int id;

};

1The virtual keyword, used in the context of an indirect base class, is rather different from the
idea of a virtual function; the solid class could also contain virtual functions. The relative order
of virtual and public is of no consequence.
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class sphere : virtual public solid {

public:
void set_radius(double radius) { r = radius; }
double get_radius(void) { return r; }

private:
double r;

};

class plastic_solid : virtual public solid {

public:
void set_density(double density) { rho = density; }
double get_density(void) { return rho; }

private:
double rho; // This is the density.

I

class plastic_sphere : public sphere, public plastic_solid{
public:
void list_properties(void);

I
void plastic_sphere::1list_properties(void)
{
cout << "\tIdentifier:\t" << get_id() << "\n\tDensity:\t" <<
get_density() << "\n\tRadius:\t\t" << get_radius() <<
"\n";
¥
int main()
{
plastic_sphere s;
s.set_id(1);
s.set_density(6.5);
s.set_radius(10.7);
cout << "Properties of sphere:\n";
s.list_properties();
return (EXIT_SUCCESS) ;
}

Notice how there is no ambiguity in accessing the id data member of the virtual base
class.

An indirect base class can be both virtual and non-virtual, as in:

class A {
// Members go in here.

};

class W : public A {
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// More members may go in here.

};

class X : virtual public A {
// More members may go in here.

};

class Y : virtual public A {
// More members may go in here.

};

class Z : public A {
// More members may go in here.

};

class P : public W, public X, public Y, public Z {
// More members may go in here.

};

Figure 13.5: Indirect base class that is both virtual and non-virtual.

The class hierarchy for the declarations given above is shown in Figure 13.5. Notice
that:

o If the derived class is to have public access to each base class, then the public
access specifier must be repeated for each base class.

e The order of classes in a derivation list is not important. The order may ef-
fect such things as the storage layout, but this is compiler-dependent and as
programmers we shouldn’t need to worry about such things.

e There is no virtual keyword in the declaration of the class P; this keyword only
occurs at the next level, in the declarations of the X and Y classes.

e There are three, rather than four, copies of the data members of class A.
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Exercise

Implement the classes shown in Figure 13.5. The class A should have a single
integer private data member, together with public functions to access this
data. Write a program that sets the data members of a P object and then
list the data stored by a P object. Demonstrate that there are only three
items of data associated with a single P object.

13.3 Constructors and Destructors
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As we remarked in Section 12.5, constructors and destructors are not inherited and
the derived class constructor usually calls the base class constructor. The additional
feature with multiple inheritance is that the derived class constructor can call a list
of base class constructors. Only the direct base classes (as distinct from the indirect
base classes) can normally be members of this list. The one exception is that virtual
indirect base classes can be included. The classes forming the hierarchy shown in
Figure 13.4 provide an illustration of this feature. The program given on page 382 can

be modified to use constructor functions to initialize the data, as shown below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

class solid {

public:
solid(int identifier) { id = identifier; }
int get_id(void) {return id;}

private:
int id;

};

class sphere : virtual public solid {
public:
sphere(int identifier, double radius)
solid(identifier) { r = radius; }
double get_radius(void) { return r; }
private:
double r;

};

class plastic_solid : virtual public solid {
public:
plastic_solid(int identifier, double density)
solid(identifier) { rho = density; }
double get_density(void) { return rho; }
private:
double rho; // This is the density.
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};

class plastic_sphere : public sphere, public plastic_solid{
public:
plastic_sphere(int identifier, double density, double radius)
solid(identifier), sphere(identifier, radius),
plastic_solid(identifier, density) { }
void list_properties(void);

I
void plastic_sphere::list_properties(void)
{
cout << "\tIdentifier:\t" << get_id() << "\n\tDensity:\t" <<
get_density() << "\n\tRadius:\t\t" << get_radius() <<
|I\nll ;
}
int main()
{
plastic_sphere s(1, 6.5, 10.7);
cout << "Properties of sphere:\n";
s.list_properties();
return(EXIT_SUCCESS);
}

Notice how the solid indirect base class is included in the initialization list for the
plastic_sphere constructor. If we didn’t do this, then the sphere and plastic_solid
constructors would both attempt to initialize the solid base class. However, including
solid in the initialization list overcomes this problem because a virtual base class is
initialized by its most derived class (in this case, plastic_sphere).

13.4 Member Access Ambiguities

Part of the motivation for multiple inheritance is to reuse existing classes. However,
the base classes may well have members with the same names. As in the case of single
inheritance, potential ambiguities are often resolved by the concept of dominance;
that is names in the derived class dominate those of the base classes. For example,
the transceiver, transmitter and receiver classes could all use functions called
list_state() to output the present state of the particular device. However, if we
invoke a 1ist_state() function for a transceiver object then it is the transceiver
version that is invoked. We can illustrate this by modifying the program given on
page 377 so that all three classes have a 1list_state() function. This is done in the
program shown below, where we also implement constructor functions.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;
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class transmitter {

public:
transmitter (double frequency);
void set_tx_active(bool active){ tx_active = active; }
void list_state(void);

private:
double tx_f;
bool tx_active;
};
inline transmitter::transmitter(double frequency)
{
tx_f = frequency;
tx_active = false;
}
void transmitter::list_state(void)
{
cout << "Transmitter state:\n\tfrequency: " << tx_f <<
"\n\tactive: ",
if (tx_active)
cout << "true\n";
else
cout << "false\n";
}

class receiver {
public:
receiver(double frequency);
void set_rx_active(bool active){ rx_active = active; }
void list_state(void);
private:
double rx_f£;
bool rx_active;

};

receiver: :receiver(double frequency){
rx_f = frequency;
rx_active = false;

}
void receiver::list_state(void)
{
cout << "Receiver state:\n\tfrequency: " << rx_f <<
"\n\tactive: .

if (rx_active)
cout << "true\n";
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else
cout << "false\n";

class transceiver : public transmitter, public receiver {
public:
transceiver (double tx_frequency, double. rx_frequency)
transmitter (tx_frequency), receiver(rx_frequency){ }
void list_state(void);

};

void transceiver::list_state(void)

{
transmitter::list_state();
receiver::list_state();

}

int main()

{
transceiver trx(412.75, 422.75);
trx.set_tx_active(true);
trx.list_state();
return(EXIT_SUCCESS) ;

}

If we actually want to access the members that are dominated by the derived class
members then we need to specify the explicit base classes. We have already used
this technique in the program demonstrating the two_channel_rx class on page 380.
Examples for the transceiver class are given in the following code fragment:

cout << "Access transmitter base function:\n";
trx.transmitter::list_state();

cout << "Access receiver base function:\n";
trx.receiver::list_state();

Data members with duplicate names can be accessed in a similar manner to member
functions.

Exercise

Modify the program demonstrating the transceiver class to include the
code fragment given above. By compiling and running your modified pro-
gram, demonstrate that the base class list_state() functions are ac-
cessed.

Use of a virtual base class is another way in which potential ambiguities are
resolved since there is only one instance of that base class within a derived class object.
The plastic_sphere class, which we discussed in Section 13.2, is an example of this.
However, for virtual base classes there is also a potential access privilege ambiguity.
As an example, we could modify the program on page 385 so that solid is a private
base class of the plastic_solid class, as shown below.
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class plastic_solid : virtual private solid {
public:
plastic_solid(int identifier, double density)
solid(identifier) { rho = demsity; }
double get_density(void) { return rho; 1}
private:
double rho; // This is the density.
I

There is now an apparent ambiguity since the plastic_sphere class can access the
public members of solid via sphere, but not via plastic_solid. This ambiguity is
resolved by the rule that the public access path always dominates.

13.5 Using Multiple Inheritance

One of the primary reasons for introducing multiple inheritance is to control the com-
plexity that occurs in very large applications. This makes it difficult to find realistic
examples that can be explained within a few pages; a description of carnivore, herbi-
vore and omnivore classes is unlikely to convince an engineer of the true power of C++.
What follows is a semi-realistic example, but you will only come to really appreciate
multiple inheritance when writing large applications.

In this section we consider a set of controller classes. A controller base class is
given below.

// source: control.h
// use: Defines controller class.

#ifndef CONTROLLER_H
#define CONTROLLER_H

#include "string.h"

class controller {
public:
virtual void input(double set_data) { }
virtual void output(double &give_data) { }
virtual void display(void);
protected:
controller(double set_max_data,const string &set_label,
int set_scale_length);
int cursor, scale_length;
double max_data, data;
string label;
};

#endif // CONTROLLER_H

The basic idea is that an object of an appropriate class derived from this controller
class accepts a controlling value via the input() function, displays this value using
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the display () function and produces a controlled output by means of the output ()
function. Such a controller could be used for anything from an audio system to a power
station. All three controller functions could take many different forms. For example,
the volume control on an audio system might accept inputs from 0 to 100 (in some
arbitrary units), but inputs from —50 to 450 would be more appropriate for the stereo
balance control. The output may be any function of the input; two obvious examples
are linear and logarithmic outputs.

For some applications there may be many different types of controller but, rather
than design each controller from scratch, we can use multiple inheritance to mix and
match the various controller classes, as shown in Figure 13.6. The controller base

linear

left_zero ‘ | logarithmic ‘ ’ centre_zero

<

Figure 13.6: Controller classes.

class ensures a uniform interface, but it is not intended that we should be able to
create instances of this class. A number of derived classes, such as left_zero and
centre_zero, implement specific input () functions, corresponding to the various kinds
of input that may be appropriate for a particular project. A number of other classes,
such as log and linear, implement different versions of the output () function. Again,
it is not intended that objects of any of these classes can be created. However, one
class from each of the sets of input and output classes can be used as bases for the
required controller classes; left_log and centre_linear are the examples shown in
Figure 13.6. Instances of such classes can indeed be created.

The controller class header file has already been listed. The main points worth
noting are:

e The input() and output() functions are declared to be virtual rather than
pure virtual since no derived class provides implementations for both of them.

e The one and only constructor has protected access, ensuring that a controller
object cannot be created. This is a necessary restriction since the class does not
provide satisfactory implementations for the input () and output () functions.
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e Use is made of the string class, initially described in Section 9.6.2 and improved
in Exercise 1 of Chapter 10.

The controller class implementation is straightforward and is given below.

// source: control.cxx
// use: Implements controller class.

#include <iostream>
#include <cstdlib> // For exit()
#include "control.h"
using namespace std;

controller::controller(double set_max_data,
const string &set_label, int set_scale_length)
{
if (set_max_data <= 0.0) {
cerr << "Maximum input to a controller " <<
"must be positive.\n";
exit (EXIT_FAILURE) ;
¥
max_data = set_max_data;
label = set_label;
scale_length = set_scale_length;
data = 0.0; // Default initial value.

// The following function displays the value of data on an
// analogue scale. The cursor is set by the input()
// function:
//
4 Sttty
// | * |
A Sttt
// label
//
void controller::display(void)
{
cout << "\n";
// Draw upper edge:

int i;
for (i =- 2; i <= scale_length; ++i)
cout << "-";

// Draw left edge:

cout << "\n|";

// Step to cursor position:

for (i = 0; i < cursor; ++i)
cout << " ",
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// Draw cursor:
cout << "x";
// Step to right edge:
while (i++ < scale_length)
cout << " "y
// Draw right edge:
cout << "|\n";
// Draw lower edge:
for (i =- 2; i <= scale_length; ++i)
cout << "-=";
cout << "\n";
// Shift label to centre of display:
int offset = (scale_length + 3 - label.length()) / 2;
if (offset < 0)
offset = 0;
for (i = 0; i < offset; ++i)
cout << " ",
label.print();
cout << "\n";

One way in which the above code could be improved is by replacing the statement:

label.print();

by:

cout << label;

Since label is a string object, this would require the techniques of Chapter 18.
The class declaration for a controller accepting values from zero up to a positive
maximum (called max_data in the controller base class) is given below.

// source: left.h
// use: Defines left_zero controller class.

#ifndef LEFT_ZERO_H
#define LEFT_ZERO_H

#include "control.h"

class left_zero : virtual public controller {
public:

void input(double set_data);

protected:

};

left_zero(double set_max_data, const string &set_label,
int set_scale_length)
controller(set_max_data, set_label, set_scale_length) { }

#endif // LEFT_ZERO_H
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The following file gives the implementation of the left_zero controller class:

// source: left.cxx
// use: Implements left_zero controller class.

#include "left.h"

void left_zero::input(double set_data)
{
if (set_data <= 0.0)
data = 0.0;
else if (set_data >= max_data)
data = max_data;
else
data = set_data;
// Calculate cursor position (0.5 ensures rounding):
cursor = static_cast<int>((data * scale_length) / max_data +
0.5);
}

Note the following:

e The controller base class of the left_zero class is virtual. This is be-
cause left_log objects should only have one copy of the data members of the
controller class, as shown in Figure 13.6.

e The constructor is protected so that left_zero objects cannot be created. The
base class constructor is specifically invoked since constructors are not inherited.

e The input() function ensures that only valid values are stored by the data
variable, no matter what numbers are actually input.

The class declaration for a controller accepting input values between 4+max_data
and —max_data is given in the following file and is similar to the left_zero class:

// source: centre.h
// use: Defines centre_zero controller class.

#ifndef CENTRE_ZERO_H
#define CENTRE_ZERO_H

#include "control.h"

class centre_zero : virtual public controller {
public:
void input(double set_data);
protected:
centre_zero(double set_max_data, const string &set_label,
int set_scale_length)
controller(set_max_data, set_label, set_scale_length) { }
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};
#endif // CENTRE_ZERO_H
The centre_zero class can be implemented as shown below.

// source: centre.cxx
// use: Implements centre_zero controller class.

#include "centre.h"

void centre_zero: :input(double set_data)
{
if (set_data <= -max_data)
data = -max_data;
else if (set_data >= max_data)
data = max_data;
else
data = set_data;
// Calculate cursor position (0.5 ensures rounding):
cursor = static_cast<int>(0.5 * (data + max_data) *
scale_length / max_data + 0.5);
}

Note that:

e The controller base class is virtual so that each centre_linear object only
has one copy of the data members of controller

e The constructor is protected and this ensures that no centre_zero objects can
be created. Since constructors are not inherited, the base class constructor is
explicitly invoked.

e The input() function ensures that only values lying between —max_data and
+max_data are stored by the data variable.

The class for a controller giving a linear output is completely defined by the following
header file:

// source: 1linear.h
// use: Defines linear controller output class.

#ifndef LINEAR_H
#define LINEAR_H

#include "control.h"
class linear : virtual public controller {

public:
void output(double &give_data) { give_data = data; }
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protected:
linear(double set_max_data, const string &set_label,
int set_scale_length)
controller(set_max_data, set_label, set_scale_length) { }

};
#endif // LINEAR_H

Observe that:

e As for the centre_zero class, the controller base class is virtual and the
protected constructor invokes the base class constructor.

e In order to avoid a comparatively large function call overhead, the output ()
function is implemented inline.

A controller class giving a logarithmic output is likewise very simple and is given
below.

// source: log.h
// use: Defines log controller output class.

#ifndef LOG_H
#define LOG_H

#include <cmath> // For log()
#include "control.h"
using namespace std;

class logarithmic : virtual public controller {
public:
void output(double &give_data) { give_data = log(1.0 + data); }
protected:
logarithmic(double set_max_data, const string &set_label,
int set_scale_length)
controller(set_max_data, set_label, set_scale_length) { }
I
#endif // LOG_H

From these four base classes we could construct four derived classes. Two of these
classes are shown in the inheritance diagram given in Figure 13.6. The left_log class
is defined in the following file:

// source: left_log.h
// use: Defines controller class with left-zero display and
// logarithmic output.

#ifndef LEFT_LOG_H
#define LEFT_LOG_H
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#include "left.h"
#include "log.h"

class left_log : public left_zero, public logarithmic {
public:
left_log(double set_max_data, const string &set_label,
int set_scale_length)
left_zero(set_max_data, set_label, set_scale_length),
logarithmic(set_max_data, set_label, set_scale_length),
controller(set_max_data, set_label, set_scale_length) { }

};
#endif // LEFT_LOG_H

The file given below defines the centre_linear class.

// source: centre_linear.h
// use: Defines controller class with centre-zero display and
// linear output.

#ifndef CENTRE_LINEAR_H
#define CENTRE_LINEAR_H

#include "centre.h"
#include "linear.h"

class centre_linear : public centre_zero, public linear {
public:
centre_linear (double set_max_data, const string &set_label,
int set_scale_length)
centre_zero(set_max_data, set_label, set_scale_length),
linear (set_max_data, set_label, set_scale_length),
controller(set_max_data, set_label, set_scale_length) { }

};
#endif // CENTRE_LINEAR_H

Notice that for both of these derived classes the public constructors invoke the direct
and indirect base classes, although in fact the controller data is only initialized once.
(See Section 13.3.) Since the constructors are public, we can create left_log and
centre_linear objects.

The following program demonstrates how to use the controller classes:

// source: my_test.cxx
// use: Tests controller classes.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "left_log.h"
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#include "centre_linear.h"
using namespace std;

int main()

{
double x, y, z;

left_log controller_1(100, "volume", 10);

cout << "\n";

centre_linear controller_2(100, "balance", 10);
cout << "\n";

cout << "Input value to be displayed: ";
cin >> x;

controller_1.input(x);
controller_2.input (x);

controller_1.display();
controller_2.display();

controller_1.output(y);

controller_2.output(z);

cout << "controller_1 output = " << y <<
"\ncontroller_2 output = " << z << "\n";

return(EXIT_SUCCESS) ;
}

Since we have more files than in previous projects, it is worth introducing some
new makefile features. The files can be compiled and linked by using the following
makefile:?

objects=control.o left.o centre.o string.o
my_test: my_test.cxx $(objects)
g++ my_test.cxx $(objects) -o my_test
control.o: control.cxx control.h
g++ -c control.cxx
left.o: left.cxx left.h
g++ -c left.cxx
centre.o: centre.cxx centre.h
g++ -Cc centre.cxx
string.o: string.cxx string.h
g++ -c string.cxx
clean:
rm my_test $(objects)

New makefile features are:

2Don’t forget that the string.cxx and string.h files are given in Section 9.6.2 and modified in
Exercise 1 of Chapter 10.
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e Since the list of object files (those files ending with .o) occurs several times, it
is worth defining a “variable” to represent all of them. This is done on line 1 of
the makefile. The traditional name for a variable used in this context is objects.
(Another tradition is to use 0BJECTS.) One advantage of defining objects is that
if we want to add a new file name to the list, we only have to do so in one place.
This reduces the risk of introducing errors into the makefile.

e Having defined the objects variable, we can use the $ (objects) syntax whenever
we would otherwise use the list of object files, as in line 2 of the makefile.

e Having tested our code, we may want to clean up the directory by removing
executable and object files. The final two lines of the makefile define a rule for
doing this. This rule has no effect if we simply type “make”. However, typing
“make clean” results in the required clean up.

Of course, this discussion of controller classes uses some very powerful language features
to implement what are really very simple requirements. However, in a real application
area, such as chemical engineering or power generation, object-oriented techniques
would help to reduce software complexity and to increase maintainability.

13.6 Summary

e A class is declared to depend on multiple base classes by using a derivation list:

class X : public A, public B, public C {
// More members may go in here.

};
e A direct base class cannot be repeated:

class X : public A, public A { }; // WRONG!
e An indirect base class can be repeated:

class A : public P {

// More members may go in here.
s
class B : public P {

// More members may go in here.
};
class X : public A, public B {

// More members may go in here.

}
e A derived class has only one copy of a virtual indirect base class:

class A : virtual public P {
// More members may go in here.



13.7. EXERCISES

3

class B : virtual public P {
// More members may go in here.

I

class X : public A, public B {
X(int i, int j, int k) : P(i), A(j), B(k) { }
// More members may go in here.

};
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An indirect base class constructor can only appear in an initialization list if the

indirect base class is virtual, as demonstrated by the X class constructor.

e If the same member name occurs in multiple base classes, or in a base class
and a derived class, then the derived class dominates. In such cases, the base
class names can be accessed by using the member access and scope resolution

operators. For example, given the classes:

class T {
public:

double f;
};

class R {
public:

double f;
};

class TR : public T, public R {
public:

double f£f;
3

then the following code fragment demonstrates member access:

TR x;

x.f = 412.75; // Accesses TR member.
x.T::f = 422.75; // Accesses T member.
x.R::f = 432.75; // Accesses R member.

13.7 Exercises

1. Our controller classes do not define copy constructors or overloaded assignment
operators. Define and test suitable copy constructors and overloaded assignment

operators.

2. By developing the controller classes, described in Section 13.5, create treble,
base, volume and balance controllers for an audio system. Should the system
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have its own class? If so, would it be better for this audio class to be derived
from the controller classes or to be a client of them?

(Your audio system should have an array of controller pointers and dynamically
create objects for the specific derived classes.)

Suppose we now decide to upgrade the audio system, built in the previous ex-
ercise, so that it has a remote controller. This controller can only issue %1 to
indicate whether a particular parameter should be increased or decreased. Make
whatever changes are necessary to the input () functions, and use the + and -
keys to issue “increase” or “decrease” commands.
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Namespaces

A namespace is a way of grouping together logically related functions and data. In this
sense a namespace resembles a class, but it is a weaker concept than a class. In fact,
a namespace is simply a named scope. Namespaces are a recent addition to the C++
language, so if you have an older compiler, you may find that it doesn’t support this
feature.

14.1 Name Clashes

Imagine the following situation. You have access to a header file, called met_office.h:

// source: met_office.h

void temperature(void) ;
void pressure(void);

and another header file, called weather_station.h:

// source: weather_station.h

void temperature(void);
void pressure(void);

You also have access to the corresponding object code (which we might refer to as
met_office.o and weather_station.o). Although the function interfaces in the two
files are the same, the functions might do different things, as in the implementations:!

// source: met_office.cxx

#include <iostream>
#include "met_office.h"
using namespace std;

'In general, if functions do different things it is a good idea to give them different names. However,
this is not always possible; for example the functions could be from different software libraries written
by different programmers.
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void temperature(void)

{
cout << "Temperature (K) is:\n";
// etc.

}

void pressure(void)

{
cout << "Pressure (mb) is:\n";
// etc.

}

and:

// source: weather_station.cxx
#include <iostream>
#include "weather_station.h"

using namespace std;

void temperature(void)

{
cout << "Temperature (C) is:\n";
// etc.

}

void pressure(void)

{
cout << "Pressure (mmHg) is:\n";
// etc.

}

Moreover, suppose your program needs to use the temperature() function imple-
mented in met_office.cxx together with the pressure() function implemented in
weather_station.cxx. However, you are not allowed to edit the files met_office.cxx
and weather_station.cxx. Of course, for the simple functions given here, you could
easily type in your own versions, but for real code this may not be possible. This could
be because the source code belongs to different software companies and they won’t
release it to you, or it could be because changing the source would break too much
other code. You could attempt to do something similar to the program given below.

// source: my_test.cxx

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "met_office.h"

#include "weather_station.h"

using namespace std;
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int main()

{
temperature();
pressure();
return(EXIT_SUCCESS);
}

Unfortunately, this doesn’t work as can be shown by using the following makefile:

my_test: my_test.cxx met_office.o weather_station.o

g++ my_test.cxx met_office.o weather_station.o -o my_test
met_office.o: met_office.cxx met_office.h

g++ -c met_office.cxx
weather_station.o: weather_station.cxx weather_station.h

g++ -c weather_station.cxx

The two source files compile without any error, but the linker complains of multiple
definitions of the functions temperature() and pressure().

Software projects often involve very large amounts of code, written by many dif-
ferent programmers. Moreover, even if you are only writing a very modest program,
you are likely to want to use libraries written by other programmers. Therefore name
clashes, with the consequent multiple definitions of functions, classes etc., are fairly
common. This potential problem can be resolved by the use of namespaces.

14.2 Creating a Namespace

The syntax for creating a namespace uses the namespace keyword and is illustrated
below.

namespace weather_station
{
void temperature(void);
void pressure(void) ;

}

This declaration creates a namespace with the name weather_station. Notice that
there is no semicolon following the closing brace. In the example given in the previous
section, the duplicate names would have been avoided if the two different source files
had used two different namespaces. For example, the header files:?

// source: met_office.h

namespace met_office

{
void temperature(void);
void pressure(void);

}

2There is no need for the name appearing in the namespace to be the same as the header file, but
often a good name for a header file is a good name for a namespace.
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and:

// source: weather_station.h

namespace weather_station
{
void temperature(void);
void pressure(void);

}

would avoid duplicate names.

CHAPTER 14.

14.3 Accessing Namespace Members

NAMESPACES

One way of accessing namespace members is by using the name of the appropriate
namespace, together with the scope resolution operator. Using this technique, the two
source files could have been written as:

and:

// source: met_office.cxx

#include <iostream>
#include "met_office.h"
using namespace std;

void met_office::temperature(void)

{
cout << "Temperature (K) is:\n";
// etc.

}

void met_office::pressure(void)

{
cout << "Pressure (mb) is:\n";
// etc.

// source: weather_station.cxx

#include <iostream>
#include "weather_station.h"
using namespace std;

void weather_station::temperature(void)

{

cout << "Temperature (C) is:\n";
// etc.
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void weather_station: :pressure(void)
{
cout << "Pressure (mmHg) is:\n";
// etc.
}

We can demonstrate the benefit of namespaces by means of the following program:
// source: my_test.cxx
#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "met_office.h"

#include "weather_station.h"
using namespace std;

int main()

{
met_office::temperature();
weather_station: :pressure();
return (EXIT_SUCCESS) ;

}

Exercise

You should try compiling and linking this program. When you run my_test
you will find that the messages demonstrate that the functions invoked are
the temperature() function, defined in met_office.cxx, together with
the pressure () function, defined in weather_station.cxx.

It is possible to put almost anything in a namespace (apart from the function
main()). However, it is always a good idea to keep the interface distinct from the
implementation. Consequently, the function implementations should be in a .cxx
source file. The namespace should be declared in a header file and should contain
things like class and function declarations (not definitions).

14.4 More on Creating Namespaces

Unlike a class, a namespace is “open”; that is we can declare new members and these
need not be in the same translation unit as the original namespace. This is done by
using the namespace syntax. For example, we could add a humidity () function to the
previously defined met_office namespace by means of:

// source: humidity.h

namespace met_office
{

void humidity(void);
X
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The humidity.h header file would have its own corresponding source code in a file such
as humidity.cxx:

// source: humidity.cxx
#include <iostream>

#include "humidity.h"
using namespace std;

void met_office::humidity(void)

{
cout << "Humidity is: 98%\n";

}

It is also possible to nest namespaces, as in:

namespace environment

{
namespace met_office
{
void temperature(void);
void pressure(void) ;
}
namespace weather_station
{
void temperature(void);
void pressure(void);
}
}

In order to access members of the environment namespace, we need to use the
scope resolution operator together with all of the namespace names in the order in
which they appear in the namespace declaration, as in:

environment: :met_office: :temperature();

Exercise

Verify the above statement concerning the use of the scope resolution op-
erator by using an appropriate environment.h header file and modifying
the code in my_test.cxx.

14.5 Namespace Aliases

It is worth using a fairly long name when declaring a namespace since this reduces the
risk of it clashing with the name used by another programmer. However, using long
names gets very tedious and (even worse) can make the code very difficult to read. A
useful feature is the namespace alias which has the syntax:

namespace alias_name = namespace_name;
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For example, the namespace aliases:

namespace E = environment;
namespace M = met_office;

enable us to invoke the environment: :met_office: :temperature() function with:
E::M::temperature();

rather than:
environment: :met_office: :temperature();

Of course, overuse of this feature can make code very difficult to read and also increases
the likelihood of name clashes. However, if a name clash does occur, it is relatively
easy to declare a new namespace alias.

14.6 The using Directive

We can avoid using the scope resolution operator by employing the using directive. An
example of the using directive is:

using namespace met_office;

This statement makes all of the names in met_office visible and accessible without
qualification with the namespace name. The scope of a using directive starts at the
directive and ends at the end of the current scope.

It is worth clarifying the application of the using directive by considering a detailed
example. Suppose we have the two header files:

// source: met_office.h

namespace met_office

{
void temperature(void);
void pressure(void);

and:

// source: weather_station.h

namespace weather_station

{
void temperature(void);
void pressure(void);

}

You might imagine that we could have the using directive within each .cxx file, as in:
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// source: met_office.cxx
#include <iostream>
#include "met_office.h"
using namespace std;

using namespace met_office;

void temperature(void)

{
cout << "Temperature (K) is:\n";
// etc.

}

void pressure(void)

{
cout << "Pressure (mb) is:\n";
// etc.

}

and:
// source: weather_station.cxx
#include <iostream>
#include "weather_station.h"
using namespace std;

using namespace weather_station;

void temperature(void)

{
cout << "Temperature (C) is:\n";
// etc.

}

void pressure(void)

{
cout << "Pressure (mmHg) is:\n";
// etc.

}

and then pick out the appropriate function in my_test . cxx by using the explicit names-
pace together with the scope resolution operator. However, what happens is that both
of the source files compile correctly, but the linker complains about a multiple defini-
tion of “temperature(void)” and a multiple definition of “pressure(void)”. The lesson
to be learned from this is that the using directive doesn’t just open up the namespace
to the file in which it appears; its effect is almost as if the namespace had never been
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declared. Consequently, the using directive is a way of avoiding namespaces rather
than a way of avoiding name clashes.
Exercise

Demonstrate that compiling and linking the following code with the ver-
sion of met_office.cxx given above, does correctly invoke the met_office
versions of the temperature() and pressure() functions.

//source: my_test.cxx
#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS

using namespace std;

void temperature(void);
void pressure(void);

int main()

{
temperature() ;
pressure();
return(EXIT_SUCCESS);
}

What happens if you #include "met_office.h" instead of explicitly giv-
ing the function declarations in the my_test.cxx file?

14.7 The using Declaration

If we don’t need to have access to all members of a namespace, then the using decla-
ration is a better way of gaining access than the using directive. The statement:

using met_office::temperature;

is a using declaration and makes the temperature() function in the met_office
namespace visible within the current scope. This means that we can access the
temperature () function without using the namespace name. The scope of a using
declaration starts at the declaration and ends at the end of the current scope. Notice
that visibility of a function name is not the same as a function declaration and that
we still need to include the appropriate header files.

Examples of the using directive are contained in the following file:

// source: my_test.cxx

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "met_office.h"
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#include "weather_station.h"
using namespace std;

using met_office::temperature;
using weather_station::pressure;

int main()

{
temperature() ;
pressure();
return (EXIT_SUCCESS) ;
}

The statement:
using met_office::temperature;

makes the temperature() function in the namespace met_office visible within the
file. We can therefore access the temperature () function without using the namespace
name. In a similar manner, the statement:

using weather_station::pressure;

makes the pressure () function in the namespace weather_station visible, and we can
access the pressure() function without using the namespace name. However, as we
learned in the previous section, the met_office.cxx and weather_station.cxx files
should use the explicit namespace name together with the scope resolution operator.

Exercise

Compile and link the above code for my_test.cxx. Verify that the correct
versions of the temperature() and pressure() functions are invoked.

It is worth emphasizing that the using directive does not provide a way out of using
the namespace name and scope resolution operator in the file in which the namespace
functions are defined. As an example, suppose we are only interested in the met_office
version of the temperature() and pressure() functions. Then the following attempt
at a source file for these functions fails to compile:

// source: met_office.cxx

#include <iostream>
#include "met_office.h"
using namespace std;

using met_office::temperature;
using met_office::pressure;

void temperature(void)

{

cout << "Temperature (K) is:\n";



14.8. THE STANDARD LIBRARY 411

// etc.

}

void pressure(void)

{
cout << "Pressure (mb) is:\n";
// etc.

;

14.8 The Standard Library

All C++ header files for the Standard Library add all of their function names etc. to
a namespace called std.? For example, the <cmath> header file will contain something
like:

namespace std

{
double exp(double x);
double pow(double x, double y);
double cos(double x);
double sqrt(double x);
// etc.
;

This explains why all of our programs so far have contained the statement:
using namespace std;

In general, it isn’t a good idea to do this since it makes the entire namespace of the
Standard Library visible and it is highly unlikely that we really want to use everything
in the Library. Of course, this is precisely what we have done so far in this book! Our
excuse is that we wanted to keep our examples as short and uncomplicated as possible,
and occasionally we will continue to use this technique. Moreover, making the entire
std namespace visible is unlikely to cause any problems in small programs; namespaces
really become important for large projects, probably involving many programmers.

As example of one way of accessing the std namespace, we can modify our program
on page 105, so that we avoid the using directive with the help of the explicit namespace
and the scope resolution operator:*

#include <cmath> // For sqrt()
#include <cstdlib> // For EXIT_SUCCESS
#include <iostream>

int main()

{

3See Chapters 17 and 18.
4Note that since the preprocessor replaces EXIT_SUCCESS by 0, using std: :EXIT_SUCCESS does not
work.
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for (int i = 1; i <= 20; ++i) {
std::cout << "square root of " << i << " is " <<
std: :sqrt(double(i)) << "\n";
}
return(EXIT_SUCCESS) ;
}

However, for large programs this can get tedious and the using declaration allows us
to have:

#include <iostream>
#include <cmath>
#include <cstdlib>
using std::cout;
using std::sqrt;

int main()

{
for (int i = 1; i <= 20; ++i) {
cout << "square root of " << i << " is " <<
sqrt (double(i)) << "\n";
}
return(EXIT_SUCCESS) ;
}

14.9 Unnamed Namespaces

If the name for a namespace is omitted then we have what is known as an unnamed
namespace, as in:

// source: filel.cxx

#include <iostream>
#include "filel.h"

namespace {

int flag;
}
void set(void)
{

flag = 10;
}

void list(void)
{
std::cout << flag << "\n";

}



14.10. USING NAMESPACES 413

Within the translation unit, we can refer directly to members of the namespace. In
this sense it is as if we had written:’

// source: filel.cxx

#include <iostream>
#include "filel.h"

namespace XXX{
int flag;
}

using namespace XXX;

void set(void)

{
flag = 10;
}
void list(void)
{
std::cout << flag << "\n";
}

For instance, the 1ist () function accesses flag without any qualification within the
translation unit. However, we don’t have any knowledge of the name that goes in place
of XXX and this name is unique to the translation unit. The important consequence
of this is that members of an unnamed namespace are not accessible outside of the
translation unit.® So in the above example, flag is not visible to the rest of the
program.

14.10 Using Namespaces

Our aim in this section is to modify the singly linked list code, given in Section 10.3.1,
so that the relevant declarations are given within a namespace. This can be achieved
by modifying the header file, as shown below.

// source: slist.h
// use: Defines singly linked list class.

#ifndef SLIST_H
#define SLIST_H

namespace slist

5Notice that in this discussion the using directive appears in the same translation unit as the using
declaration.

6Using an unnamed namespace replaces one of the uses of the C keyword static. Although this use
of static is currently available in C++, its use is not encouraged by the ANSI Standard committee
and may be removed from future versions of the Standard.
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{
typedef int DATA_TYPE;
class node {
friend class list;
public:
DATA_TYPE data;
private:
node *next;
};
class list {
public:
list(void);
virtual ~“list();
void push(DATA_TYPE new_data);
void pop(DATA_TYPE &old_data);
bool is_not_empty(void);
private:
node *head;
};
inline bool list::is_not_empty(void)
{
if (head == 0)
return false;
else
return true;
}
}

#endif // SLIST_H

The non-inline functions are defined in the modified source file, slist.cxx. Within this
file, the functions are accessed by using the slist namespace name, together with the
scope resolution operator. Because these functions are also members of the 1ist class,
the function names are a bit cumbersome, as can be seen by examining the following
file:

// source: slist.cxx
// use: Implements singly linked list class.

#include "slist.h"

slist::1list::1list(void)
{

head = 0;
}
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slist::1list:: " 1ist()

{
while (head !'= 0) {
node *pt = head;
head = head->next;
delete pt;
}
}
void slist::list::push(DATA_TYPE new_data)
{
node *pt = new node;
pt->next = head;
head = pt;
pt->data = new_data;
}
void slist::1list::pop(DATA_TYPE &old_data)
{
if (head '= 0) {
old_data = head->data;
node *pt = head;
head = head->next;
delete pt;
}
}

We now have to modify the test program in order to gain access to the relevant
members of the slist namespace. There are three distinct ways in which this can be
done.

1. The easiest way of accessing the namespace is by means of the using directive,
as demonstrated below, but this has the disadvantage of opening up the entire
slist namespace.

// source: my_test.cxx
// use: Tries out singly linked list class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "slist.h"

using namespace slist;

using namespace std;

int main()

{

list s;
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DATA_TYPE j;

for (int i = 1; i <= 5; ++i)
s.push(10 * 1i);

while (s.is_not_empty()) {
s.pop(j);
cout << j << "\n";

}

return (EXIT_SUCCESS) ;

2. Another way of accessing the slist namespace is by giving the full names of all
functions and data. This has been done in the following file:

// source: my_test.cxx
// use: Tries out singly linked list class.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "slist.h"

int main()
{
slist::1list s;
slist::DATA_TYPE j;
for (int 1 = 1; i <= 5; ++i)
s.push(10 * i);
while (s.is_not_empty()) {
s.pop(j);
std::cout << j << "\n";
}
return(EXIT_SUCCESS);
}

This technique is useful for avoiding name clashes, but can result in code that is
fairly cluttered. Notice that it is only when we want to define objects, such as
s and j, that we need to use the full name. When a function is invoked for an
object, as in

s.pop(j);

the type of object is known and therefore the compiler can work out which func-
tion to call.

3. In general, the best way of accessing a namespace is by means of a using decla-
ration, as shown in the following modified test program:

// source: my_test.cxx
// use: Tries out singly linked list class.
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#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include "slist.h"

using slist::DATA_TYPE;
using slist::list;
using std::cout;

int main()
{
list s;
DATA_TYPE j;
for (int i = 1; i <= 5; ++1i)
s.push(10 * i);
while (s.is_not_empty()) {
s.pop(j);
cout << j << "\n";
}
return(EXIT_SUCCESS) ;
}

This puts all the namespace information near the beginning of the file and leaves
the body of the function main() looking uncluttered. However, in some circum-
stances, we would have to use the previous technique in order to avoid name
clashes.

14.11 Summary

e A namespace is created by using the namespace keyword followed by declarations
within a pair of braces:

namespace weather_station
{
void temperature(void) ;

3

e Members of a namespace can be accessed by using the name of the appropriate
namespace, together with the scope resolution operator:

void met_office: :temperature(void)

{
cout << "Temperature (K) is:\n";
// etc.

}

e A namespace is “open”. New members can be declared by using the namespace
syntax:
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namespace met_office
{
void humidity(void) ;

The new members do not need to be in the same translation unit as the original
namespace.

e Namespaces can be nested:

namespace environment

{
namespace met_office
{
void temperature(void);
}
namespace weather_station
{
void temperature(void) ;
}
}

In order to access members of a nested namespace, use the scope resolution
operator together with all of the namespace names in the order in which they
appear in the namespace declaration:
environment: :met_office::temperature();
e A namespace alias is declared as in:
namespace M = met_office;
and enables us to use:
M: :temperature();
in place of:
met_office: :temperature();
e The using directive is:

using namespace met_office;

This statement makes all the names in met_office visible and accessible without
qualification with the namespace name.

e The using declaration:
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using met_office::temperature;

makes the temperature () function in the namespace met_office visible within
the file. We can access the temperature () function without using the namespace
name.

e All C++ header files for the Standard Library add all of their function names
etc. to a namespace called std.

e If the name for a namespace is omitted then we have an unnamed namespace, as
in:

namespace {
int flag;
¥

Within the translation unit, we can refer directly to members of the namespace.
Members of an unnamed namespace are not accessible outside of the translation
unit.

14.12 Exercises

1. For each of the following projects, modify the header file so that the classes are
declared within a namespace. Also modify the other files associated with the
project so that they have access to the namespace members. (You should not
achieve this by means of using directives.)

(a) The doubly linked list of Section 10.3.2.
(b) The bit array class, described in Section 11.4.1.

2. Repeat the above exercise for the following projects:

(a) The menu class, described in Section 12.7.2.

(b) The controller classes of Section 13.5.

For the derived classes, you should experiment with making them members of
the base class namespace and with defining separate namespaces.



Chapter 15

Exception Handling

Almost any non-trivial program will contain errors, but one of the aims of a good pro-
grammer is to minimize the number and severity of errors, and to provide some method
of recovery when errors do occur. Writing code to trap errors can be a difficult task and
this chapter doesn’t claim to be any more than an introduction.! Also, it should be
emphasized that many of the examples given in this chapter are very small programs
that are only for demonstration purposes. The benefit of the techniques introduced
here for dealing with errors will only really become apparent for large programs, or
programs using certain library facilities.

15.1 Errors

Errors can be of many types, including:
1. Mistakes in the syntax
A typical example is:
int i
int j;

Errors of this type should be caught by the compiler. However, don’t forget that
if you do something like:

if (flag = 5) {
do_something();
}

when you really mean:

if (flag == 5) {
do_something();
}

!Further details are given in Chapters 8 and 14 of [10].
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then the syntax is valid, even if it isn’t what you intend.

2. Logic errors

For this type of error, the program runs but doesn’t perform as you expect. For
example, you may have written some code to invert a matrix, but you haven’t
allowed for the fact that your particular matrix is close to being singular. So you
get a result, but it isn’t mathematically correct. The big danger here is that your
program may run correctly most of the time and that you won’t notice when it
does give wrong results.

3. Exceptions due to predictable problems

Examples of this type of error are when a program attempts to open a file that
doesn’t exist or attempts to dynamically allocate memory that isn’t available.
This is the type of error with which we are concerned in this chapter.

Whenever possible, errors should be handled locally, where they occur. For example,
suppose a program asks the user to input the maximum number of iterations. We could
try something like the following:

int iterations;
cout << "Input the number of iteratioms: ";
cin >> iterations;

This may be fine for a simple program that is only going to be used by the programmer.
However, there are several things that could go wrong and it is worth anticipating these
possibilities and trapping them. For instance, the user could:

e enter a negative number (or zero);

e enter a number that is so large that the program would take years to run to
completion;

e enter some nonsensical answer like “half a dozen”.

We can trap errors like these where they occur. Consequently, in such cases we don’t
need to introduce the exception handling procedures that we will meet later in this
chapter. Something like the following would suffice:

int iterations = -1;
const int max_iterations = 10000;
while (true) {
cout << "Input the number of iterations.\n" <<
"This must greater than 0 and less than " <<
max_iterations + 1 << ".\n";
cin >> iterations;
if (iterations > 0 && iterations <= max_iterations)
break;
cin.clear();
cin.ignore(1024, ’\n’);
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Here we have used the functions clear() and ignore() from the streams library.
(See Chapter 18.) The clear() function is needed to reset the condition of cin after
the read failure. The ignore() function throws away up to the specified number of
characters in the stream unless it gets to the termination character, in which case it
throws away all characters up to and including the termination character. In this code,
the termination character is >\n’.

Exercise

Make the above code fragment into a program that outputs the value of
iterations. Try to find some invalid input that the program does not
handle correctly. (For example, you could try entering “half a dozen”.)
Make appropriate changes to the code in order to make it as robust as you
can.

15.2 Introducing throw, try and catch

The way in which errors are handled for large programs needs special consideration.
This is because the C++ language encourages the reuse of code and, in particular,
the use of libraries. Consequently, an error can occur in a library due to an error in
the code using the library. In general, the programmer who wrote the library won’t
have any knowledge of the program that uses it. Conversely, the programmer using the
library may not have access to the library code. As an example, a library may supply
a bounds checked array class. Suppose the user code has an error that causes an array
to go out of bounds. It is the library code that detects the error, but the user code
must decide what to do about it. This is a difficult situation since the way the error
must be dealt with is non-local.

In order to deal with errors of this type, the C++ language provides an exception
handling mechanism, with the keywords throw, try and catch. The basic idea is
to put code that is likely to cause an error within a try-block, which is immediately
followed by a catch-block. A test for an error condition is made within the try-block
(usually within a function that is called from the try-block). If an error is found, then
an object is thrown and caught by the following catch-block. This is what is meant by
saying that an exception is thrown. The syntax should become clearer if you examine
the following example in detail:

#include <iostream>
#tinclude <cstdlib> // For EXIT_SUCCESS

using std::cout;
using std::cin;
using std::exit;

class dimension_error {
public:
dimension_error() { }

};
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void set_array_dimension(void)

{

int

}

const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw dimension_error();
cout << "Array dimension entered 0.K.\n";
// Do something more here.

main()

try {
set_array_dimension();

}

catch(dimension_error) {
cout << "The array dimension is too big.\n";
exit (EXIT_FAILURE);

}

cout << "No errors so far.\n";

// Do something more here.

return(EXIT_SUCCESS) ;

Here we define a dimension_error class so that we can create dimension_error ob-
jects, even though they don’t store any data. We also define a set_array_dimension()

function.

This returns the number entered by the user provided this number is less

than or equal to max_elements. If the number entered is greater than max_elements
then instead of the function giving the message “Array dimension entered O.K.”, a
dimension_error object is thrown. This is caught by the catch-block, which then
issues a suitable error message. Notice that if an exception is thrown and successfully
handled by the exception handler, then the code following the catch-block is executed,
and not the code following the throw.

Exercise

Compile and run the above code. See what happens when you input differ-
ent numbers. What happens if you do the following (one at a time):

(a) delete:

if (elements > max_elements)
throw dimension_error;

from the code;

(b) leave out the try keyword;

(c) leave out the catch keyword,;

(d) insert some code between the try-block and the catch-block.
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The above example is deliberately kept simple since it is only meant to demonstrate
the ideas involved in throwing an exception. In a more realistic program, the scene
may be set for an error in one part of a program, which then calls a function, which
calls another function, which calls another function, and so on. This can result in
the function that detects an error, and hence throws an exception, being many nested
function calls away from the code that actually caused the error. The function calls
are stored on a stack and, when an exception is.thrown, the stack is unwound until
the initial call is reached. This is known as stack unwinding and is a one-way process;
once the stack is unwound it is gone. As the stack is unwound, the destructors for local
objects are invoked and the objects are destroyed.

At the other extreme, it is possible for the throw to occur directly in a try-block,
rather than in a function called from within a try-block, as in the following example:

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class dimension_error {
public:
dimension_error() { }

}s
int main()
{
try {
const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw dimension_error();
cout << "Array dimension entered 0.K.\n";
// Do something more here.
}
catch(dimension_error) {
cout << "The array dimension is too big.\n";
exit (EXIT_FAILURE);
}
cout << "No errors so far.\n";
// Do something more here.
return(EXIT_SUCCESS) ;
}

Using throw and catch in this way is very unusual since the code would be simpler
if we replaced the throw by the error message. It is better to reserve the exception
handling techniques of C++ for the more complicated non-local situations outlined at
the start of this section.
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15.3 Throwing a Fundamental Type

It isn’t necessary to define a class in order to throw an object; it is possible to throw
an instance of a fundamental type. In the following example the object thrown is of
type const charx*:

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

void set_array_dimension(void)

{

}

const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw "You have too many elements.\n";
cout << "Array dimension entered 0.K.\n";
// Do something more here.

int main()

{

}

try {
set_array_dimension() ;
}
catch(const char* pt) {
cout << pt;
exit (EXIT_FAILURE);
}
cout << "No errors so far.\n";
// Do something more here.
return(EXIT_SUCCESS) ;

Although this is a straightforward way of catching an error message, any object of type
const char* will be caught. For this reason it is more usual to throw an object of a
specifically defined error class.

Exercise

Modify the root-finding program, given in Section 5.9.2, so that if an error
occurs in the find_root() function, an exception consisting of an error
message is thrown. Suitable exception handling should be introduced in
the function main () so that this string is caught and the message is sent to
the output stream.
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15.4 Extracting Information from a catch

In many circumstances it would be useful if the object that got thrown stored data to
help us diagnose the cause of the error. To do this we need to define a constructor
for our error class such that the constructor takes one or more arguments. This is
illustrated in the following program where if the value entered for element is greater
than max_elements, then a dimension_error object gets thrown from the try-block

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class dimension_error {
public:
dimension_error(int number_of_elements) {
elements = number_of_elements;
}
int elements;

};

void set_array_dimension(void)
{
const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw dimension_error(elements);
cout << "Array dimension entered 0.K.\n";
// Do something more here.

int main()
{
try {
set_array_dimension() ;
}
catch(dimension_error x) {
cout << "The array dimension is too big.\nYou have " <<
x.elements << " elements.\n";
exit (EXIT_FAILURE);
}
cout << "No errors so far.\n";
// Do something more here.
return(EXIT_SUCCESS);
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Notice that if we want to refer to the dimension_error object when it gets caught then
we must give the object a name in the argument of the catch-block. This is exactly
the same syntax as for a function argument. In this case the object that gets caught
is given the name x. It is worth emphasizing that x is the object, not the value stored
in the object. Consequently, we need to use x.elements in order to access the value
stored by x.

Although only one object gets thrown, the object is not limited to storing one item
of data, as the following example shows:

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class dimension_error {
public:
dimension_error(int number_of_rows,
int number_of_columns) {
r = number_of_rows;
¢ = number_of_columns;
}
int r, c;

};

void set_array_dimensions(void)
{
const int max_rows = 10;
const int max_columns = 10;
int rows, columns;
cout << "Enter rows: ";
cin >> rows;
cout << "Enter columns: ";
cin >> columns;
if ((rows > max_rows) || (columns > max_columns))
throw dimension_error(rows, columns);
cout << "Array dimensions entered 0.K.\n";
// Do something more here.

int main()
{
try {
set_array_dimensions();
}
catch(dimension_error x) {
cout << "One or both of the array dimensions are too " <<
"big.\nYou have " << x.r << " rows and " << x.c <<
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" columns\n";

exit (EXIT_FAILURE);
}
cout << "No errors so far.\n";
// Do something more here.
return(EXIT_SUCCESS) ;
}

In this program, the dimension_error object that is thrown from the try-block has
two data members. The name of the object that is caught is x, and the data members
are accessed as x.r and x.c.

Since there are two different types of error in the above example, an alternative
technique is to have two different objects. Which object gets thrown could then depend
on the type of error and this approach leads to the code given below.

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class row_error {
public:
row_error (int number_of_rows) {
r = number_of_rows;
}
int r;

};

class column_error {
public:
column_error (int number_of_columns) {
¢ = number_of_columns;
}
int c;

};

void set_array_dimensions(void)
{
const int max_rows = 10;
const int max_columns = 10;
int rows, columns;
cout << "Enter rows: ";
cin >> rows;
if (rows > max_rows)
throw row_error(rows);
cout << "Enter columns: ";
cin >> columns;



430 CHAPTER 15. EXCEPTION HANDLING

if (columns > max_columns)

throw column_error (columns) ;
cout << "Array dimensions entered 0.K.\n";
// Do something more here.

}
int main()
{
try {
set_array_dimensions();
}
catch(row_error x) {
cout << "You have " << x.r << " rows.\n" <<
"This is too many.\n";
exit (EXIT_FAILURE);
}
catch(column_error x) {
cout << "You have " << x.c << " columns." <<
"\nThis is too many.\n";
exit (EXIT_FAILURE);
}
cout << "No errors so far.\n";
// Do something more here.
return (EXIT_SUCCESS) ;
}

Here we have two separate error classes, row_error and column_error. When the
set_array_dimension() function detects an error, it throws an instance of one of
these error classes from the try-block. The object is then caught by one the catch-
blocks. There can be any number of catch-blocks following the try, and in this case
there are two. The succession of catch-blocks is superficially like a switch statement;
the object that is thrown drops through the catch-blocks until it is caught by a catch
with an argument of the appropriate type. If there isn’t an appropriate catch, then the
object is not caught.

Exercise

Write a function to find the real roots of a quadratic equation. Implement
error classes with constructor functions taking arguments so that if complex
roots or division by zero occur then appropriate exceptions are thrown. The
exception handing in the function main() should send the data contained
in the different error objects that can be caught to the output stream.

15.5 Catching Everything

A catch of the form catch(...) traps any throw that hasn’t already been caught, but
it does not provide access to any error data. This form of the catch is demonstrated
by the following program:
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#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class row_error {
public:
row_error(int number_of_rows) {
r = number_of_rows;
}
int r;

};

class column_error {
public:
column_error (int number_of_columns) {
¢ = number_of_columns;
}
int c;

};

class negative_error {
public:
negative_error() { }

};

void set_array_dimensions(void)
{
const int max_rows = 10;
const int max_columns = 10;
int rows, columns;
cout << "Enter rows: ";
cin >> rows;
if (rows > max_rows)
throw row_error(rows);
if (rows < 0)
throw negative_error();
cout << "Enter columns: ";
cin >> columns;
if (columns > max_columns)
throw column_error{(columns);
if (columns < 0)
throw negative_error();
cout << "Array dimensions entered 0.K.\n";
// Do something more here.
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int main()

{

try {
set_array_dimensions();

}

catch(row_error x) {
cout << "You have " << x.r <<

" rows.\nThis is too many.\n";

exit (EXIT_FAILURE) ;

}

catch(column_error x) {
cout << "You have " << x.c <<

" columns.\nThis is too many.\n";

exit (EXIT_FAILURE);

}

catch(...) {
cout << "Some error has occurred.\n";
exit (EXIT_FAILURE);

}

cout << "No errors so far.\n";

// Do something more here.

return (EXIT_SUCCESS) ;

}

In this example, if the number of rows specified is greater than the maximum allowed,
then a row_error is thrown and caught. Similarly, if the number of columns specified
is greater than the maximum allowed, then a column_error is thrown and caught.
However, if a negative number of rows or columns is specified, then a negative_error
is thrown, for which there is no specific catch. Consequently, a negative_error is
caught by the catch(...). Notice that the order of the catch-blocks is important
since the catches are attempted in the order in which they occur. This means that a
catch(...) should always be the final catch-block, since any following catch-blocks
could never be executed.

Exercise

Modify your program for the quadratic equation exercise given on page 430
so that all exceptions are caught by a catch(...).

15.6 Derived Error Classes

It is quite common for there to be a hierarchy of exceptions so that it may be worth
using inheritance to construct a hierarchy of exception classes. This is illustrated by
the following program:

#include <iostream>
#include <cstdlib> // For exit()
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using std::cout;
using std::cin;
using std::exit;

class dimension_error {
public:
dimension_error() { }
virtual void print_error(void) { }

};

class too_small : public dimension_error {

public:
too_small() { }
void print_error(void)

{

cout << "Number of elements is negative.\n";

}
};

class too_big : public dimension_error {

public:
too_big() { }
void print_error(void)

{

cout << "There are too many elements.\n";

}
};

void set_array_dimension(void)
{
const int max_elements = 10;
int elements;
cout << "Enter number of elements:
cin >> elements;
if (elements > max_elements)
throw too_big();
else if (elements < 0)
throw too_small();
cout << "Array dimension 0.K.\n";
// Do something more here.

int main()
{
try {
set_array_dimension() ;

¥

433
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catch(dimension_error &x) {
x.print_error();
exit (EXIT_FAILURE);
}
cout << "No fatal errors so far.\n";
// Do something more here.
return(EXIT_SUCCESS) ;
}

In this example, dimension_error is a virtual base class, from which the too_small
and too_big classes are derived. Notice how a reference to a dimension_error object
is caught and that this allows the correct error message to be given in the two cases,
even though there is only a single catch. The exception handling in this program
therefore provides another demonstration of polymorphism.

Exercise

Modify the program you wrote to find the real roots of a quadratic equation
(in answer to the exercise on page 430) so that it uses a virtual base class,
together with derived classes, to implement exception handling. There
should only be a single catch block and polymorphism should be used to
distinguish the different types of error.

15.7 Exception Specifications

It is possible to have what is known as an exception specification as part of a func-
tion declaration, in which case the same specification must be made in the function
definition.? The advantage of this is that only the throws specified in the function
declaration can be caught. The idea of an exception specification can be illustrated by
modifying our previous program so that an array with zero elements is an error that
throws an exception.

#include <iostream>

#include <cstdlib> // For exit()
using std::cout;

using std::cin;

using std::exit;

class dimension_error {
public:
dimension_error() { }
virtual void print_error(void) { }

};

class too_small : public dimension_error {
public:

2There are subtleties for exception specifications involving overloaded functions. See [10] and [1]
for more details.
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too_small() { }
void print_error(void)
{

cout << "Number of elements is negative.\n";
+;

class too_big : public dimension_error {
public:
too_big() { }
void print_error(void)
{
cout << "There are too many elements.\n";
X
I

// This is how an exception specification is declared:
void set_array_dimension(void) throw(too_big, too_small);

// This is a definition of a function with an exception
// specification:
void set_array_dimension(void) throw(too_big, too_small)
{
const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw too_big();
else if (elements < 0)
throw too_small();
else if (elements == 0)
throw "There are zero elements.\n";
cout << "Array dimension 0.K.\n";
// Do something more here.

int main()

try {
set_array_dimension();

}

catch(dimension_error &x) {
x.print_error();
exit (EXIT_FAILURE);

}

// The following catch-block is never entered.
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catch(const char* pt) {
cout << pt;
exit (EXIT_FAILURE);
}
cout << "No fatal errors so far.\n";
// Do something more here.
return (EXIT_SUCCESS) ;
}

In this case, if we specify the array dimension to be zero then a string is thrown, which
we attempt to catch with the catch(const char* pt) error handler. Although this
technique worked for the example on page 426, it fails here because this throw is not
part of the function declaration. Consequently, for zero elements the attempt to throw
and catch an exception results in a call of std: :unexpected().

15.8 Uncaught Exceptions

If an exception is not caught, then the std: :unexpected() library function is called,
which in turn calls abort (). For a small program that is only going to be used by the
programmer this may well be an appropriate course of action. However, in general it
is better to avoid calls to unexpected(). If this can’t be done, then the programmer
can still catch the calls by providing an unexpected () function. This is illustrated by
the exercise given below.

Exercise

(a) Compile and run the program in the previous section. Try various
array sizes and, in particular, note what error message you get for an
array size of zero.

(b) Insert the following function definition in the previous program:

void unexpected(void)

{
cout << "An unexpected error has occurred.\n";
// Perhaps do some clearing up here.
exit (EXIT_FAILURE);

X

By observing the error message generated for the case of zero ele-
ments, demonstrate that it is the above function that is called and not
std: :unexpected().

15.9 Dynamic Memory Allocation

In Section 7.6.1 we introduced the idea of dynamically allocating memory by means
of the new operator. However, the resources of any system are finite and so there
is always the possibility of a memory allocation failing. It is now part of the ANSI
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C++ Standard that if the new operator fails to dynamically allocate memory, then a
bad_alloc exception is thrown. If this isn’t caught by an exception handler in the code,
then it is caught by the default unexpected() function and the program terminates.
Consequently, if we want to provide a different solution to the resource failure, such
as deallocating some memory, then we must catch the bad_alloc exception. The
following program illustrates how this is achieved. Notice that the <new> include file
is needed.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <new>

using std::cout;

using std::bad_alloc;

int main()

{
const int max_arrays = 100000;
const int elements = 10000;
double *pt[max_arrays];
int i;
try {
for (i = 0; i < max_arrays; ++i)
pt[i] = new double([elements];
}
catch(bad_alloc) {
cout << "Memory exhausted.\n" << i <<
" arrays allocated successfully.\n";
delete ptl[i - 17;
cout << "We have given up one array.\n";
}
cout << "Now we can carry on and do some more work.\n";
return (EXIT_SUCCESS) ;
}

In this program, we attempt to allocate memory for a large number of large arrays.
The amount of memory available will vary from system to system, so you may have to
adjust the number or size of the arrays. In particular, the available memory is likely
to be very large for systems with virtual memory.? Assuming the dynamic memory
allocation fails, a bad_alloc exception is thrown and this is caught by our own error
handler. The error handler deletes one of the arrays and we are then able to carry on
and do some useful work. This scenario should be contrasted with what happens if
we don’t provide our own exception handler. The program would terminate without
giving us the opportunity to continue.

Exercise

Suppose a programmer attempts to dynamically allocate memory for an
array of type double by means of the statement:

3You should exercise some care in running this program since it could result in a lot of disc activity
on a virtual memory system.
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pt = new double[elements];

but by mistake has assigned -10 to elements. Provide exception handling
to catch the bad_alloc exception that is thrown and send the value of the
pointer pt to the output stream. What is significant about this value? (See
the discussion on page 173.)

15.10 Using Exception Handling

In Section 12.7.1 we implemented a bounds checked array class. Any attempt to access
a member of this class for an index outside of its valid range gave an error message
and terminated the program. In some circumstances this action would be too drastic
and in any case is certainly too inflexible. Although it is the checked_array class that
detects an out-of-bounds error, the choice of how the error is handled should be up
to the user of this code. This can be achieved by using the C++ exception handling
mechanism.

As in Section 12.7.1, we have the header file array.h, and source files array.cxx
and my_test . cxx, together with a makefile. We can introduce exception handling by
changing the array.h file to the following:

// source: array.h
// use: Defines array class.

#ifndef ARRAY_H
#define ARRAY_H

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For memcpy ()
using std::cout;

using std::memcpy;

class array {

public:
array(int size);
array(const array &x);
virtual “array() { delete pt; }
array &operator=(const array &x);
virtual double &operator[] (int index);
int get_size(void);

protected:
int n;
double *pt;
3

class checked_array : public array {
public:
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: array(size) { }

double &operator[] (int index);

private:

void check_bounds(int index);

};

class index_error {
public:
index_error (int index) {

i = index; }

virtual void print_error(void) { }

protected:
int 1i;

};

class index_too_high
public:
index_too_high(int index)

: public index_error {

: index_error(index) { }

virtual “index_too_high() { }

void print_error(void)
{

cout << "The index "
}s;

class index_too_low :

public:
index_too_low(int index)
virtual ~“index_too_low()
void print_error(void)

{

public

cout << "The index "

};

<< i << " is too high.\n";

index_error {

: index_error(index) { }

{1}

<< i << " is less than 1.\n";

// inline array class implementations:

inline int array::get_size(void)

{
return n;
}
inline double &array::operator[](int index)
{
return ptl[index - 1];
}

// inline checked_array class implementations:

439
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inline double &checked_array: :operator[] (int index)

{
check_bounds (index) ;
return array::operator [] (index) ;
}
inline void checked_array::check_bounds(int index)
{
if (index < 1)
throw index_too_low(index);
if (index > n)
throw index_too_high(index);
}

#endif // ARRAY_H

The index_too_high and index_too_low classes both have index_array as a virtual
base class. If the index is out of range in the check_bounds () function, then an error
is thrown. The use of inheritance in the error classes, together with a virtual base
class, allows us to leave the correct choice of error message to polymorphism, as in
Section 15.6.

The modified array. cxx file is shown below.

// source: array.cxx
// use: Implements array class.

#include <iostream>

#include <cstdlib> // For exit()
#include <new> // For bad_alloc
#include "array.h"

using std::cout;

using std::exit;

using std::bad_alloc;

using std::memcpy;

array::array(int size)
{
n = size;
try {
pt = new double[n];
}
catch(bad_alloc) {
cout << "Failed to allocate array.\n";
exit (EXIT_FAILURE) ;
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array::array(const array &x)

{
n = x.n;
try {
pt = new double[n];
}
catch(bad_alloc) {
cout << "Failed to allocate array.\n";
exit (EXIT_FAILURE);
}
memcpy (pt, x.pt, n * sizeof(double));
}
array &array::operator=(const array &x)
{
delete pt;
n = x.n;
try {
pt = new double[n];
}
catch(bad_alloc) {
cout << "Failed to allocate array.\n";
exit (EXIT_FAILURE);
}
memcpy (pt, x.pt, n * sizeof(double));
return *this;
}

441

The only change to this file is that we have used the C++ exception handling mecha-

nism to catch the exhaustion of dynamically allocated memory.
Finally, the my_test.cxx file is modified to:

// source: my_test.cxx
// use: Tests array class.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "array.h"

using std::cout;

double sum(array &a, int first_index, int last_index)
{
double result = al[first_index];
for (int i = first_index + 1; i <= last_index; ++i)
result += af[i];
return result;
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int main()

{

const int n = 10;

// Define an object:
checked_array x(n);

// Access the array size:
cout << "The array x has " << x.get_size() << " elements.\n";

// Store some data. Also find the total directly so it can be
// used for comparison:
double total = 0.0;
for (int i = 1; i <= n; ++i) {
x[i] = i * 25.0;
total += i * 25.0;
}

// Retrieve some data:
cout << "The data stored in x are:\n";
for (int i = 1; i <= n; ++i)
cout << x[i] << "\n";
cout << "\n";

// Define another object using copy constructor:
checked_array y = x;

// Check the array size:
cout << "The array y has " << y.get_size() << " elements.\n" <<
"y was created by the copy constructor.\n\n";

// Check that the copy is identical:
int errors = 0;
for (int i = 1; i <= n; ++i)
if (x[i] !'= y[iD)
cout << "x[" << i << "] I=y[" << i << "J\n";
if (errors)
cout << errors << " elements of the arrays x and y " <<
"differ in their data.\n";
else
cout << "Arrays x and y have identical data.\n\n";

// Define an object with half the size but no bounds checking:
array z(n/2);

// Check the array size:
cout << "The array z has " << z.get_size() << " elements.\n\n";
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// Try out the assignment operator:
z = X;

// Check the array size:
cout << "After assignment of x to z, the array z has " <<
z.get_size() << " elements.\n\n";

errors = 0;
// Check that the copy is identical:
for (int i = 1; i <= n; ++i)
if (z[i] t= x[i])
cout << "z[" << i << "] 1= x[" << i << "]J\n\n";
if (errors)
cout << errors << " elements of the arrays x and z " <<
"differ in their data.\n";
else
cout << "Arrays x and z have identical data.\n\n";

// Find sum for z[i], going out of bounds. If you get the

// correct result, try changing the third argument in sum()

// to some other value greater than n:

cout << "The sum of the data in z is " << sum(z, 1, 2 * n) <<
".\nThe sum should be " << total << ".\n\n";

// Find sum for x[i], going out of bounds (too high):
try {
cout << "The sum of the data in x is " <<
sum(x, 1, 2 * n) << ".\nThe sum should be " <<
total << ".\n\n";
}
catch(index_error &error_object) {
error_object.print_error();

¥

// Find sum for x[i], going out of bounds (too low):
try {
cout << "The sum of the data in x is " <<
sum(x, -10, n) << ".\nThe sum should be " <<
total << ".\n\n";
}
catch(index_error &error_object) {
error_object.print_error();

}

return(EXIT_SUCCESS) ;

443
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The changes here are the introduction of try and catch blocks, together with an
example of attempting to access an array with a negative index.
The makefile remains unchanged as:

my_test: my_test.cxx array.o

g++ my_test.cxx array.o -o my_test
array.o: array.cxx array.h

g++ -c array.cxx

Exercise

(a) Compile and run my_test.

(b) Change the initialization of n in main() from 10 to -10. Explain what
happens when you run this modified my_test.

15.11 Summary

e If dimension_error() is the constructor for a dimension_error class, then an
exception is thrown by:

if (elements > max_elements)
throw dimension_error();

The exception is handled by:

try {
set_array_dimension();

}

catch(dimension_error) {

cout << "The array dimension is too big.\n";
exit (EXIT_FAILURE);
}

where set_array_dimension() is the function from which the error is thrown.
Any catch blocks must immediately follow the try block.

e It is possible to throw a fundamental type:

void set_array_dimension(void)

{
// Some code goes in here.
if (elements > max_elements)
throw "You have too many elements.\n";
// Do something more here.
}

This could be handled by:
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try {
set_array_dimension();

}

catch(const char* pt) {
cout << pt;
exit (EXIT_FAILURE) ;

}

e If the object thrown has a constructor that takes an argument, as in:

class dimension_error {
public:
dimension_error(int number_of_elements) {
elements = number_of_elements;
}
int elements;

};
then the object thrown can contain data, perhaps giving the cause of the error:

void set_array_dimension(void)

{
// Code goes in here.
if (elements > max_elements)
throw dimension_error (elements);
// Do something more here.
}

The catch can extract information on the cause of the exception:

try {
set_array_dimension();

¥

catch(dimension_error x) {
cout << "You have " << x.elements << "elements.\n";
exit (EXIT_FAILURE);

}

e There may be a number of different objects that can be thrown:

void set_array_dimensions(void)
{
// Code goes in here.
if (rows > max_rows)
throw row_error(rows);
if (columns > max_columns)
throw column_error(columns);
// Do something more here.
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and these can be caught by a number of catch blocks following a single try block:

try {
set_array_dimensions() ;

}

catch(row_error x) {
cout << "You have " << x.r << " rows.\n";
exit (EXIT_FAILURE);

}

catch(column_error x) {
cout << "You have " << x.c << " columns.\n";
exit (EXIT_FAILURE);

}

e A catch of the form catch(. . .) traps any throw that hasn’t already been caught,
but it does not provide access to any error data. A catch(...) should always
be the final catch-block:

try {
set_array_dimensions();

}

catch(row_error x) {
cout << "You have " << x.r << " rows.\n";
exit (EXIT_FAILURE);

}

catch(column_error x) {
cout << "You have " << x.c << " columns.\n";
exit (EXIT_FAILURE);

}

catch(...) {
cout << "Some error has occurred.\n";
exit (EXIT_FAILURE);

}

e If there is a hierarchy of exceptions then it may be worth using inheritance to
construct a hierarchy of exception classes:

class dimension_error {
public:
dimension_error() { }
virtual void print_error(void) { }

};

class too_small : public dimension_error {
public:

too_small() { }

void print_error(void)

{
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cout << "Number of elements is negative.\n";
3

class too_big : public dimension_error {
public:

too_big() { }

void print_error(void)

{

cout << "There are too many elements.\n";
I
Different derived class objects can be thrown depending on the error:

void set_array_dimension(void)
{
const int max_elements = 10;
int elements;
cout << "Enter number of elements: ";
cin >> elements;
if (elements > max_elements)
throw too_big();
else if (elements < 0)
throw too_small();
cout << "Array dimension 0.K.\n";
// Do something more here.

}

If a virtual base class is used then only a single catch statement is needed and
polymorphism results in the appropriate object being caught.

A function declaration can have an exception specification, in which case the
same specification must be made in the function definition:

void set_dimension(void) throw(too_big, too_small);

void set_dimension(void) throw(too_big, too_small)
{
// Code goes in here.
if (elements > max_elements)
throw too_big();
else if (elements < 0)
throw too_small();
// Do something more here.

Only throws specified in the function declaration can be caught.
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e If an exception is not caught, then the std: :unexpected() library function is
called, which in turn calls abort (). Such calls can also be caught if the program-
mer provides an unexpected() function.

e If the new operator does not succeed in dynamically allocating memory, then a
bad_alloc exception is thrown. The default is that this exception is caught by
the std: :unexpected() function and the program terminates. Alternatively, the
exception can be caught by an exception handler provided by the programmer:

try {
for (i = 0; i < max_arrays; ++i)
pt[i] = new double[elements];
}
catch(std: :bad_alloc) {
cout << "Memory exhausted.\n";
delete pt[i - 1];
cout << "We have given up one array.\n";

}

The <new> include file is needed with this approach.

15.12 Exercises

1. Modify and test the menu class, described in Section 12.7.2, so that it uses the
techniques introduced in this chapter to deal with errors. You should try modi-
fying both the original class and also the result of Exercise 2a on page 419.

2. Modify the bit array class, described in Section 11.4.1, so that the errors are
dealt with by using the C++ exception handling techniques. You should define
an error class with constructors that take arguments so that error data can be
accessed in the function main() of the my_test.cxx file.



Chapter 16

Templates

Templates (also known as parameterized types) are an important part of the C++
language. They provide a tool for constructing generic classes and functions that are
valid for different data types. Templates are intrinsic to the Standard Template Library
(also known as the STL), which contains the templates for many useful classes. (See
Chapter 17.) Templates can be provided for both functions and classes.

16.1 Function Templates

In order to introduce the idea of templates, we start with a very simple example.
Consider the following function that returns the maximum of two integers.

int max(int a, int b)
{
return(a > b ? a : b);

¥

A straightforward substitution of double for int would produce a function suitable
for arguments of type double. Similar substitutions could be performed for any other
fundamental or derived type for which a greater than operator is defined. It would be
tedious to implement a large number of such closely related functions; what is needed
is a function for a generic type and this can be achieved by using a template.

The general syntax for a template definition is:

template<template_argument_list> definition;

where definition may refer to either a function or a class. It is important to realize
that throughout this chapter the angle bracket pair, < >, is an essential part of the
template syntax. As an example, a function template returning the maximum of two
values is:

template<class T> T max(T a, T b)
{

return(a > b ? a : b);
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In this definition, the parameterized type T represents any fundamental or user-defined
type for which the greater than operator is defined. The scope of T is limited to the
template definition. Any valid identifier could be used to represent the parameterized
type; we are not restricted to using T. It is important to realize that although the
notationis “class T”, T is not restricted to being a class. A straightforward illustration
of using the max () function template is provided by the types int and double in the
following program:!

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template<class T> T max(T a, T b)

{
return(a > b ? a : b);
}
int main()
{
int 1 = 2, j = 4;
double x = 6.7, y = 3.4;
cout << "The maximum of " << i << " and " << j << " ig " <<
max(i, j) << "\n";
cout << "The maximum of " << x << " and " << y << " ig " <<
max(x, y) << "\n";
return(EXIT_SUCCESS) ;
}

The template doesn’t actually define a function, rather it provides a recipe for con-
structing functions. For instance, invoking the max (i, j) function causes the function
appropriate for arguments of type int to be constructed. This process is known as
template instantiation (or simply, instantiation). The individual function is known as
an instantiation of the function template.

As with ordinary functions, we may want to declare a function template and define
it somewhere else, in which case we simply omit the function body. The general syntax
for a template declaration is:

template<template_argument_list> declaration;

where declaration may refer to either a function or a class.
As an example, the declaration for the max () function defined above, would be:

template<class T> T max(T a, T b);

There is no need to use the same identifier to represent the parameterized type in the
template definition and declaration. However, it would be a bit perverse not to do so
and would make the code more difficult to understand.

There must be an exact match between argument types for the functions invoked
and the functions that can be generated from the template, so that the program:

n order to keep things simple we have placed the function template in the same file as main().
Generally we wouldn’t do this for a more realistic program.
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FUNCTION TEMPLATES

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template<class T> T max(T a, T b)

{

return(a > b ? a : b);

int main()

{

}

int 1 = 2;

double x = 6.7;

cout << "The maximum of " << x << " and " << i << " is " <<
max(i, x) << "\n";

return(EXIT_SUCCESS) ;
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fails to compile. This is very reasonable since there is no way for the compiler to know
whether T is supposed to be of type int or double. Consequently, the return type for
the max () function is ambiguous.

One way of overcoming this problem is to use specialization, that is we specify
which class we want to replace the parameterized type. The way in which this is done
is similar to the syntax for a function template declaration. For example, if we want

to invoke the max () function with T replaced by the type double, then we need a
statement of the form:

max<double>(x, j);

Hence a correct version of the previous program is as follows:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template <class T> T max(T a, T b)

{

return(a > b ? a : b);

int main()

{

int i = 2;

double x = 6.7;

cout << "The maximum of " << x << " and " << i << " ig " K
max<double>(i, x) << "\n";

return(EXIT_SUCCESS) ;
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Although the second argument of the template specialization is of type int, the com-
piler performs an implicit cast to double.

The max() function is very simple. However, a more complicated example of the
use of function templates is provided by the bubble sort that we implemented in Sec-
tion 7.8.2. The code can easily be modified so that it applies to any data type for
which the greater than operator is meaningful. This has been done for the following
program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

using std::cin;

template<class T> void bubble_sort(T *data, int elements)
{
int n = elements - 1;
for (int i = 0; i < n; ++i)
for (int j =n; j > i; --j)
if (datalj - 1] > dataljl) {
T temp = datal[j - 1];
datalj - 1] = datalj];
datalj] = temp;

}

int main()

{

int elements;

// Perform bubble sort on integers:
cout << "How many integers do you want to enter: ";
cin >> elements;
int *integer_data = new int[elements];
cout << "Enter " << elements << " integers.\n";
for (int i = 0; i < elements; ++i)

cin >> integer_datalil;
bubble_sort(integer_data, elements);
cout << "The ordered list of your input is:\n";
for (int i = 0; i < elements; ++i)

cout << integer_datal[i] << " ";
cout << "\n";

// Perform bubble sort on floats:

cout << "How many floating point numbers do you want to " <<
"enter: ";

cin >> elements;

double *double_data = new double[elements];

cout << "Enter " << elements << " floating point numbers.\n";
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for (int i = 0; i < elements; ++i)

cin >> double_datalil;
bubble_sort(double_data, elements);
cout << "The ordered list of your input is:\n";
for (int i = 0; i < elements; ++i)

cout << double_datal[i] << " ";
cout << "\n";

return(EXIT_SUCCESS) ;
}

In this program there is one function template for a bubble sort, but two different data
types. In each case, the compiler constructs the appropriate function according to the
data type of the function arguments.

Exercise

(a) Try the above program with your own data.

(b) Modify the alphabetic sort program, given in Section 7.8.2, so that it
uses the function template version of a bubble sort.

16.2 Class Templates

Now consider the following declaration for a one-dimensional array class:

class array {

public:
array(int size);
array(const array &a);
virtual “array() { delete pt; }
double &operator[] (int index);
array &operator=(const array &a);

private:
int n;
double *pt;
I

This class is suitable for storing elements of type double. However, simple changes
would make the class equally suitable for storing many other types, such as int,
complex, list, matrix, etc. Rather than declaring (and implementing) a separate
class for each of these cases, a class template can be used to specify how an array class
is to be constructed from a template that has elements of a parameterized type. The
syntax is similar to the function template, so that the array class template becomes:

template<class T> class array {
public:
array(int size);
array(const array &x);
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virtual “array() { delete pt; }
array &operator=(const array &x);
T &operator (] (int index);

private:
int n;
T *pt;
}s

As in the case of the function template, any valid identifier could be used for the
parameterized type, T. Furthermore, T does not have to be the name of a user-defined
class; it can also be the name of a fundamental type. Notice that a class template
does not actually declare a class; a compiler can only generate a class declaration if
the template is used with the parameter, T, replaced by a known type, as in:

array<double> x(20);
array<complex> z(10);

In this case the compiler would generate two classes with the names array<double>
and array<complex>. This process is again known as template instantiation (or simply,
instantiation). The individual class (such as array<double>) is known as an instanti-
ation of the class template. Examples of using this array class template are given in
the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For memcpy ()
using std::cout;

using std::memcpy;

template<class T> class array {
public:
array(int size);
array(const array &x);
virtual ~array() { delete pt; }
array &operator=(const array &x);
T &operator[] (int index);

private:
int n;
T *pt;
I
template<class T> array<T>::array(int size)
{
n = size;
pt = new T[n];
}

template<class T> array<T>::array(const array &x)

{
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n = x.n;
pt = new T[n];
memcpy (pt, X.pt, n * sizeof(T));

template<class T> array<T> &array<T>::operator=(const array &x)
{

delete pt;

n = Xx.n;

pt = new T[n];

memcpy(pt, X.pt, n * sizeof(T));

return *this;

}

template<class T> T &array<T>::operator[] (int index)
{

return ptlindex - 1];

}
int main()
{
const int n = 10;
array<double> x(n);
array<double> y(n);
for (int i = 1; i <= n; ++i)
x[i] = 2 * i + 1;
y = x;
for (int i = 1; i <= n; ++i)
cout << "y[" << i << "] = " << y[i] << "\n";
return(EXIT_SUCCESS) ;
}

Notice that within the template declarations and definitions, the class can be referred
to without qualification (in this case as array rather than array<T>). However, if
a member function is defined outside of the template declaration, then we need to
prefix the definition by template<class T> so that T is known to be a template. Also,
we need to use the parameterized type in the function name. (See, for instance, the
definition of the copy constructor.) In the function main(), the objects x and y are
instantiations of the array<T> template. Once these objects have been defined, they
are referred to simply by their names, x and y.

Exercise

Use the array<T> template given in this section, together with the complex
class (described in Section 9.6.1 and extended by Exercise 3 on page 286),
to implement a complex array class.
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16.3 Static Members

A class template can have static data members, in which case each instantiation has
its own static data. For example, we might want to know how many arrays have
been created for our array<T> class template. This could be achieved by means of
a static int total data member of the template. Since each instantiation has its
own data, we can keep separate tallies of the number of integer and double arrays
that are created. The member function that returns the total number of array<T>
objects (for each parameterized type T) should also be declared static so that the
function doesn’t need to be invoked for a particular object. This is demonstrated in
the following program:

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For memcpy()
using std::cout;

using std::memcpy;

template<class T> class array {
public:

array(int size);

array(const array &x);

virtual ~array() { delete pt; 1}

array &operator=(const array &x);

T &operator[] (int index);

static int number_of_arrays(void) { return total; }
private:

int n;

T *pt;

static int total;

I
template<class T> int array<T>::total;

template<class T> array<T>::array(int size)

{
n = size;
pt = new T[n];
++total;

}

template<class T> array<T>::array(const array &x)
{

n = x.n;

pt = new T[n];

memcpy (pt, x.pt, n * sizeof(T));

++total;
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template<class T> array<T> &array<T>::operator=(const array &x)

{

template<class T> T &array<T>::operator[] (int

{

int

}

delete pt;
n = x.n;
pt = new T[n];

memcpy (pt, x.pt, n *
return *this;

return ptlindex - 1];

main()

const int n = 10;
cout << "There are "
" arrays of type
cout << "There are "
" arrays of type
array<double> x(n);
array<double> y(n);
cout << "There are "
" arrays of type
array<int> a(n);
cout << "There are "
" arrays of type
return(EXIT_SUCCESS);

sizeof (T));

index)

<< array<double>: :number_of_arrays() <<
double.\n";

<< array<int>::number_of_arrays() <<
int.\n";

<< array<double>: :number_of_arrays() <<
double.\n";

<< array<int>::number_of_arrays() <<
int.\n";
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Notice that although total is declared in the template, it must be separately defined
by means of the statement:

template<class T> int array<T>::total;

This is consistent with the situation for static members of non-template classes.

Exercise

The destructor for the above program doesn’t decrement total when an
array object is destroyed. Remedy this defect and test your modified class
template.

16.4 Class Templates and Functions

It isn’t possible to pass a template as a function argument. If, for instance, we try to
declare a function f () that takes our array<T> template as an argument, as in:
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void f(array<T> x); // WRONG.
then we get a compiler error since there cannot be an array<T> object. The declaration:
void f(array x); // WRONG.

also fails to compile since in this context array is not a class. However, it is possible
to pass an object that is an instantiation of a class template as a function argument.
The declaration:

void f(array<int> x); // 0.K.

is valid since in this case x is an instance of a genuine class, array<int>.
If we want to declare a function with an argument that is a class template, then we
need to use a function template, as in:

template<class T> void f(array<T> x);
This idea is illustrated in the program given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template<class T> class X {

public:
T t;
}s;
template<class T> T sum(X<T> x1, X<T> x2)
{
return (x1.t + x2.t);
}
int main()
{
X<int> a, b;
a.t = 12;
b.t = 15;
cout << a.t << " + " << b.t << " = " << sum(a, b) << "\n";
return (EXIT_SUCCESS) ;
}

The class X has a single public data member. An instantiation of the function template
sum() returns an object that is the sum of the data members of its two arguments.
Because we want sum() to apply to any instantiation of the X class template, we are
forced to make sum() a function template.

Exercise

Modify the above program so that it also defines two X<double> objects.
Assign constants of type double to these objects and verify that the correct
sum is returned.
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16.5 Function Template Arguments

A function template may take any number of arguments, and the arguments may be a
mixture of class templates, instantiations of templates, and fundamental types. This
is illustrated by the following program:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template<class T> class X {

public:
T t;
};
template<class T> class Y {
public:
T t;
};
template<class T> T f(X<T> x1, Y<int> i1, int i2)
{
return (xi.t / il.t + i2);
}
int main()
{
X<double> a;
Y<int> b;
a.t = 2.468;
b.t = 2;
int i = 3;
cout << a.t << "/ " KL b.t << "4+ " Ki KK ="K
f(a, b, i) << "\n";
return(EXIT_SUCCESS) ;
}

Notice how the function template, £ (), takes three arguments of type: class template,
class template specialization, and int.

16.6 Template Parameters

The parameters in a class template can be of any type and there can be more than
one parameter. These parameters could be a mixture of user-defined and fundamental
types. The following program demonstrates these features:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
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using std::cout;

template<class T1, class T2, int i> class array_pair {

public:
T1 x[i];
T2 y[il;
};
int main()
{
const int dimension = 10;
array_pair<double, int, dimension> data;
for (int j = 0; j < dimension; ++j) {
data.x[j] = 1.1 * j;
data.y[j] = 2 * j + 1;
}
for (int j = 0; j < dimension; ++j)
cout << "data.x[" << j << "] = " << data.x[j] <«
"\tdata.y[" << j << "] = " << data.y[j] << "\n";
return(EXIT_SUCCESS) ;
}

This class template may give the impression that memory for the x and y arrays is
dynamically allocated. However, this impression is not correct since although the value
of i is not known in the class template, it is known when the template is instantiated.

Exercise

What is the consequence of leaving out the const qualifier from the function
main() in the above program?

16.7 Templates and Friends

Class templates can declare friends and, in general, there are three possible ways in
which a class template can declare classes and functions to be friends. A friend of a
class template can be:

e a function or class template;
e a specialization of a function or class template;
e an ordinary (non-template) function or class.

In the following program, the equality operator provides an example of a. friend function
in a class template:

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
#include <cstring> // For memcpy()
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using std::cout;
using std::memcpy;

template<class T> class array {
public:
array(int size);
array(const array &x);
virtual “array() { delete pt; }
array &operator=(const array &x);
T &operator[] (int index);
friend bool operator==<>(const array &x1, const array &x2);

private:
int n;
T *pt;
I
template<class T> array<T>::array(int size)
{
n = size;
pt = new T[n];
¥
template<class T> array<T>::array(const array &x)
{
n = x.n;
pt = new T[n];
memcpy(pt, x.pt, n * sizeof(T));
¥

template<class T> array<T> &array<T>::operator=(const array &x)
{

delete pt;

n = x.n;

pt = new T[n];

memcpy(pt, x.pt, n * sizeof(T));

return *this;

template<class T> T &array<T>::operator[] (int index)
{

return pt[index - 1];

template<class T> bool operator==(const array<T> &x1,
const array<T> &x2)
{

for (int i = 0; i < x1.n; ++1i)
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if (x1.pt(i] !'= x2.pt[i])
return false;
return true;

}
int main()
{
const int n = 10;
array<double> u(n), v(n);
for (int i = 1; i <= n; ++i) {
uli] = 2.2 * i + 1.1;
v[i] = 2.2 * i + 1.1;
}
if (u == v)
cout << "u == v\n";
else
cout << "u != v\n";
ul[5] = 3.7;
if (u == v)
cout << "u == v\n";
else
cout << "u != v\n";
return(EXIT_SUCCESS) ;
}

Here we have added the function:

friend bool operator==<>(const array &xl, const array &x2);

to the array<T> class declaration.? This function returns true if the arrays x1 and

x2 are equal; otherwise it returns false. Both properties are tested in the function
main(), where we define two arrays of type double. These arrays are filled with the
same numbers and tested for equality. Element u[5] is then changed and the test for
equality is repeated.

Exercise

Modify the program given above so that it defines two arrays of type
array<complex> and assigns the same complex numbers to both arrays.
Test the equality operator in a similar way to the original program.

16.8 Specialized Templates

If a template is defined for a parameterized type T, then a template instantiation simply
replaces every occurrence of T by the specified type. However, in some situations there

2Notice that the <> appearing in the function declaration is required by some compilers.
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may be a requirement for one instantiation of a template to behave differently to most
other instantiations of the template. For example, we might want an array<int> class
to initialize all the class data to one.? Such an initialization would not be appropriate
in general so we need to give alternative classes. We could do this by using a different
name for the integer array, but C++ provides a better technique. If the general array
is declared by:

template<class T> class array {
public:
array(int size);
virtual “array() { delete pt; }
T &operator[](int index);

private:
int n;
T *pt;
1

then we can declare a specialization by:

template<> class array<int> {
public:
array(int size);
virtual “array() { delete pt; }
int &operator[] (int index);

private:
int n;
int *pt;
I

The template<> prefix denotes that what follows is a specialization. A complete
program demonstrating template specialization in action is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS

using std::cout;

template<class T> class array {
public:
array(int size);
virtual “array() { delete pt; }
T &operator[] (int index);

private:
int n;
T *pt;
};

3In practice, it is more likely that we would want to initialize the elements of an integer array to
zero, but a non-zero value makes it easier to be certain that initialization has indeed taken place.
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template<class T> array<T>::array(int size)
{

n = size;

pt = new T[n];

template<class T> T &array<T>::operator[] (int index)
{

return ptlindex - 1];

template<> class array<int> {
public:
array(int size);
virtual ~“array() { delete pt; }
int &operator[] (int index);

private:
int n;
int *pt;
3
array<int>::array(int size)
{
n = size;
pt = new int([n];
for (int i = 0; i < n; ++i)
ptli] = 1;
}
int &array<int>::operator[] (int index)
{
return ptlindex - 1];
}
int main()
{
const int n = 10;
array<int> x(n);
cout << "Integer array initialized to:\n";
for (int i = 1; i <= n; ++i)
cout << x[i] << "\n";
return(EXIT_SUCCESS);
}

TEMPLATES

Notice that the way in which the array<int> function definitions are given is different
from the template definitions. For example, instead of:



16.9. MEMBER FUNCTION SPECIALIZATION 465

template<class T> array<T>::array(int size)

{
// Body goes here.
}

we have:

array<int>::array(int size)

{

// Body goes here.
}
Exercise

Since the body of the specialization:
int &array<int>::operator[] (int index)

is the same as for the template version of the function, it might be thought
that this specialization could be omitted. What happens if you do this?

16.9 Member Function Specialization

In the example of specializing the array template to array<int>, we provided specific
integer versions of all the class member functions even though only the constructor
functions differed. In this type of situation it is easier to use a member function
specialization. This is achieved by prefixing template<> to the function definition that
provides the specialization. The modified program using this technique is given below.

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;

template<class T> class array {
public:
array(int size);
virtual “array() { delete pt; }
T &operator[] (int index);

private:
int n;
T *pt;
3

template<class T> array<T>::array(int size)
{

n = size;

pt = new T[n];
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template<class T> T &array<T>::operator[] (int index)
{
return pt[index - 1];

}

// Member function specialization:
template<> array<int>::array(int size)

{
n = size;
pt = new int[n];
for (int i = 0; i < n; ++1i)
ptli]l = 1;
}
int main()
{
const int n = 10;
array<int> x(n);
cout << "Integer array initialized to:\n";
for (int i = 1; i <= n; ++i)
cout << x[i] << "\n";
return(EXIT_SUCCESS) ;
}

Notice that there are two versions of the constructor, but only one version of all the
other functions. This demonstrates that in many cases using member function special-
ization is much simpler than the corresponding class template specialization.

Exercise

Implement a member function that calculates the magnitude of each el-
ement of an array<T> class template and returns the element with the
maximum magnitude. Provide a specialization for the case when T is the
complex class.

16.10 Program Structure

In the examples given in this chapter, the template declarations and definitions have
all been in the same file as the function main(). This contrasts with our previous
emphasis on using individual header files and source files for each related set of classes,
and keeping code that uses the classes separate from these files. However, having all of
the code in one file has enabled us to keep this introduction to templates as simple as
possible. Since a template only provides a recipe for constructing a class (or function)
and is not actually a class (or function), you might wonder whether a template should
go in a .h or a .cxx file. The simplest approach at this stage is to put templates in
.h files. An alternative approach is given in Section 13.7 of [10], but involves using the
export directive, which currently isn’t implemented by all C++ compilers.
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16.11 Using Templates

An obvious candidate for using templates is the linked list class introduced in Sec-
tion 10.3.1. Instead of using a typedef to change the type of data stored, we can use
class templates. The modified header file is given below.

// source: slist.h
// use: Singly linked list and node class templates.

template<class T> class list;

template<class T> class node {
friend class 1ist<T>;
public:
T data;
private:
node *next;

};

template<class T> class list {
public:

list(void);

virtual “1ist();

void push(T new_data);

void pop(T &old_data);

bool is_not_empty(void);
private:

node<T> *head;

};
template<class T> bool 1list<T>::is_not_empty(void)
{
if (head == 0)
return false;
else
return true;
}
template<class T> 1list<T>::list(void)
{
head = 0;
}

template<class T> list<T>::"1list()
{
while (head !'= 0) {
node<T> *pt = head;
head = head->next;
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delete pt;
}
}
template<class T> void 1list<T>::push(T new_data)
{
node<T> *pt = new node<T>;
pt->next = head;
head = pt;
pt->data = new_data;
}
template<class T> void list<T>::pop(T &old_data)
{
if (head !'= 0) {
old_data = head->data;
node<T> *pt = head;
head = head->next;
delete pt;
}
+

One important change from Section 10.3.1 is that we need to make a forward declaration
of the 1ist class with the statement:

template<class T> class list;

This is so that the compiler realizes that 1ist in the friend class declaration is in fact
a class template.
The modified test program, which can be compiled with:

gt+ my_test.cxx -o my_test
is as follows:

// source: my_test.cxx
// use: Tests singly linked list class template.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS
#include "slist.h"

using std::cout;

int main()
{
list<int> s;
int j;
for (int i = 1; i <= 5; ++i)
s.push(10 * i);
while (s.is_not_empty()) {
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s.pop(j);
cout << j << "\n";
}
return (EXIT_SUCCESS) ;
}

Notice that it is not entirely trivial to convert non-template classes to templates, but
it is certainly much easier if fully tested implementations of the non-template classes
already exist. It is easy to make errors if you try to implement a template from scratch,
so the best approach is to first design and test a class without using templates, and
then turn it into a class template. Even the experts do this!

16.12 Summary
e The general syntax for declaring a template is:

template<template_argument_list> declaration;

A function template is declared by:
template<class T> T max(T a, T b);

where the parameterized type T is any fundamental or user-defined type.

A function template is defined as in:

template<class T> T max(T a, T b)
{
return(a > b ? a : b);

}

A function template definition does not actually define a function. The template
is instantiated (i.e. an instantiation of the template is generated) when the
function is invoked.

A function specialization is obtained by using the < > syntax:

max<double>(x, j);

A class template is declared by:

template<class T> class array {
public:
array(const array &x);
T &operator(] (int index);
// etc.
private:
T *pt;
};
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e Class template member function definitions made outside of the template decla-
ration need to have the template prefix:

template<class T>array<T> &array<T>::operator=(const array &x)

{
// Template body goes here.

}
e A class template is instantiated by using the < > syntax:
array<double> x(20);

e Each instantiation of a class template has its own copy of any static data mem-
bers.

e An ordinary function cannot have a class template as an argument. However, an
instantiation of a class template can be in a function argument list:

void f(array<int> x);
e A function template can have a template in its argument list, as in:
template<class T> void f(array<T> x);

The parameterized type in the function argument must also appear in the tem-
plate argument.

e A template can take any number of arguments and the arguments may be a
mixture of class templates, instantiations of templates, and fundamental types,
as in:

template<class T> T f(X<T> x1, Y<int> il, int i2);
and:

template<class T1, class T2, int i> class array_pair {
// etc.
;

e A class template can declare friends and these may be either functions or classes:

template<class T> class array {
public:
friend bool operator==<>(const array &x1,
const array & x2);
// etc.
s

e A specialization of a class template can be declared by means of the template<>
prefix:
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template<> class array<int> {
public:
array(const array &x);
int &operator[] (int index);
// etc.
private:
int *pt;
iy

e A class template member function specialization can be declared by using the
template<> prefix:

template<> array<int>::array(int size)

{
n = size;
pt = new int[n];
for (int i = 0; i < n; ++1i)
ptlil = 1;
+

e When designing a class template, the standard approach is to first design and
test a non-template version of the class.

16.13 Exercises

1. Modify the doubly linked list class of Section 10.3.2 so that it is a class template
with the data being a parameterized type instead of a typedef. Test the template
for data of type int and for the string class of Section 9.6.2.

2. Modify the array class of Section 12.7.1 so that it is a class template with the

data being a parameterized type. Test the template for data of type double and
the complex class of Section 9.6.1.



Chapter 17

Standard Library

17.1 Introduction

In addition to the C++ language itself, the ANSI Standard defines an extensive Stan-
dard Library (which we will often abbreviate to “the Library”). It is worth emphasizing
the distinction between the language and the Library. The language defines such things
as the meaning of operations on the fundamental types. For example, the language
defines what is meant by:

int 1 = 4;

and there is no way in which we can change the language so that this statement means
something different. The Library defines things like useful classes and functions. For
example, the float sqrt(float) function, declared in the header file <cmath>, returns
the square root of a number of type float. If we really want to, we can omit to include
the header file and define our own sqrt () function.

The Library makes considerable use of the techniques introduced in previous chap-
ters. In particular, a significant part of the Library is based on the use of templates
and is sometimes known as the Standard Template Library or STL. In fact, there are
books devoted entirely to the STL. (See, for instance, [8].) However, it is the facilities
offered by the Library that are important, rather than the techniques on which they are
based. Consequently, the STL is not singled out for special treatment in this chapter
(nor in the ANSI Standard).

All of the facilities offered by the Library require header files and they all add names
to the std namespace. The entire std namespace can be made visible by means of the
statement:

using namespace std;

and in small projects this may be the most convenient approach. However, in order to
avoid potential name clashes it is preferable to have a using declaration, as in:

using std::sqrt;
or to use the full name:
473
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std::cout << "Square root of 2 is: " << std::sqrt(2.0) << "\n";

The ANSI Standard divides the Library into ten different categories and we follow
the same division in this chapter. The categories are given in Table 17.1. Each of these
categories requires a number of header files and each of these header files declares
various functions, classes, templates etc. The only part of the Library that we consider
in any detail is Input and Output. This topic is so important that Chapter 18 is
devoted to a description of input and output streams. To describe the remainder in
similar detail would take another book. Consequently, we don’t attempt to do any
more than outline what is available. This will at least ensure you don’t reinvent what
is already in the Library. When you do need to use part of the Library in earnest, then
you should consult more detailed documentation. Your compiler may have specific
documentation on the Standard Library. Other sources of information include various
books ([8], [10]), together with the ANSI Standard ([1]). You can also learn a lot by
looking at the header file for the part of the Library that you wish to use.

Within a category, the facilities offered by the Library can generally be labelled by
the header files that are required. As mentioned previously, some of these are derived
from C header files and are easily distinguished from the newer C++ header files. If
a C header file is included by <X.h>, then the C++ version is included by <cX>. For
example, the C header file <stddef.h> becomes <cstddef>. Some of these files are
needed for more than one category of the Library. This is because different function
declarations from one of the original C header files may fit naturally into different
categories of the Library.

You should be careful when using the Library since it is here that compilers show
the greatest divergence from the ANSI Standard. What we present in this chapter (and
the next) attempts to follow the Standard rather than any particular compiler.

[ Category [ Section or Chapter 1
Language Support Section 17.2.1
Diagnostics Section 17.2.2
General Utilities Section 17.2.3
Strings Section 17.2.4
Localization Section 17.2.5
Containers Section 17.2.6
Iterators Section 17.2.7
Algorithms Section 17.2.8
Numerics Section 17.2.9
Input and Output Chapter 18

Table 17.1: Library categories.

17.2 Library Categories

In each of the following subsections, we give an outline of one of the categories listed
in Table 17.1. Input and Output are covered in Chapter 18.
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17.2.1 Language Support

The Library facilities described here are designed to support the C++ language in
some way. The header files associated with these facilities are given in Table 17.2 and,
as you can see, many of them are derived from C header files. The <cstddef> header
defines size_t and ptrdiff_t. These are the types returned by sizeof () and the
result of a pointer subtraction, respectively. The <climits> and <cfloat> files give
the limits on the integral and floating point types. For example, INT_MAX is the largest
number of type int that can be represented on a particular computer. The <1limits>
header is concerned with the same kind of information, but in terms of classes, tem-
plates and specializations. The <cstdlib> header defines values for EXIT_SUCCESS
and EXIT_FAILURE, together with declarations for the abort (), atexit() and exit ()
functions. The <new> header supports dynamic memory allocation; for example, it is
needed if you want to catch an exception thrown by a failed memory allocation. The
<exception> header defines classes and functions for handling exceptions. In particu-
lar, these facilities are used by the Library. The <typeinfo>, <cstdarg>, <csetjmp>
and <csignal> header files are all connected with facilities that you are unlikely to
need, except in advanced applications.

| Header | Purpose |
<cstddef> ptrdiff_t and size_t
<limits> templates for limits of integral and floating types
<climits> C-style limits for integral types
<cfloat> C-style limits for floating types
<new> dynamic memory allocation

<typeinfo> | run-time type identification
<exception> | exception handling

<cstdarg> variable-length function argument lists
<csetjmp> stack unwinding

<csignal> signal handling

<cstdlib> program termination

Table 17.2: Language support header files.

17.2.2 Diagnostics

The facilities described here can be used to detect and report error conditions. The
associated header files are given in Table 17.3. The <stdexcept> header declares a
comprehensive range of classes for reporting different kinds of error. By contrast, the
<cassert> and <cerrno> headers contain a few macros, derived from the C headers.

| Header | Purpose |
<stdexcept> | exceptions
<cassert> assert macro
<cerrno> C-style error handling

Table 17.3: Diagnostics header files.
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17.2.3 General Utilities

The facilities described here are general utilities that are either required by other
components of the Library or are of general use in C++ programs. The relevant headers
are given in Table 17.4. The facilities associated with the <utility> header are basic
template functions and classes that are used by other components of the Library. The
<functional> header deals with function objects, that is objects with an operator ()
defined. These are important for the algorithms component of the Library, outlined in
Section 17.2.8. The <memory> header is concerned with what are known as allocators.
An allocator is used by other parts of the Library to allocate and deallocate memory.
The <cstring> header declares some functions that are useful for copying, setting
and comparing memory. For example, in this book we frequently use the memcpy ()
function to copy the bit pattern from one area of memory to another. (See, for instance,
Sections 7.8.2, 9.6.2, 10.1.1 and 12.7.1.) The <ctime> header declares many useful
functions connected with time. For example, the ctime () function converts calendar
time to local time.

| Header | Purpose |
<utility> operators used by other parts of Library
<functional> | function objects
<memory> allocators for containers
<cstring> operations on raw memory
<ctime> C-style time and date

Table 17.4: General utilities header files.

17.2.4 Strings

The facilities described here are all connected with handling strings of characters. The
<string> header defines a string class template. This should be used in preference
to the string class that we developed in Section 9.6.2 since the Library version is far
more sophisticated. In general, if satisfactory software already exists, there is no point
in reinventing it. The reuse of software is one of the main benefits of object-oriented
languages, such as C++.

As can be seen from Table 17.5, the remainder of the facilities are derived from the
equivalent C header files. The headers <cwctype> and <cwchar> are to do with what
are known as wide characters. These are characters (such as Unicode) that are outside

| Header | Purpose |

<string> | string template

<cctype> | character classification
<cwctype> | wide-character classification
<cstring> | C-style string functions
<cwchar> | C-style wide-string functions
<cstdlib> | C-style string functions

Table 17.5: String header files.
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those normally stored by the type char and are only relevant for rather specialized
applications. The <cctype> header declares functions for deciding whether or not a
particular character is a digit, upper case etc. It also has functions to convert between
upper and lower case. We have already met the <cstring> header in the previous
section, where we were concerned with functions that manipulated raw memory, with-
out regard to the significance of the stored data. However, the header also declares
functions for handling null-terminated C-style strings. For instance, there are functions
to compare, concatenate and copy such strings. However, in many applications it is
better to use a string class. The <cstdlib> header declares more functions that act on
null-terminated C-style strings. For example, the atoi() function converts the string
pointed to by its argument to an integer.

17.2.5 Localization

The headers connected with this part of the Library are given in Table 17.6. They are
both concerned with encapsulating cultural and language differences, such as money
and date or time formatting. Whereas the <locale> header contains an extensive
collection of class templates for dealing with such things, <clocale> is derived from
the C header and contains a few functions and macros.

| Header | Purpose |

<locale> | cultural and language differences
<clocale> | C-style cultural and language differences

Table 17.6: Localization header files.

17.2.6 Containers

This part of the Library is concerned with what are known as containers; these are
objects that store other objects. As can be seen from Table 17.7, none of the headers
are derived from equivalent C header files. In fact, this part of the Library makes
extensive use of the purely C++ concepts of classes and templates. The first five
headers of Table 17.7 are concerned with sequences; these are containers that organize,
in a linear fashion, a finite set of objects of the same type.

| Header | Purpose |

<deque> | double-ended queue
<list> doubly-linked list
<queue> queue

<stack> | stack

<vector> | one-dimensional array
<map> associative array
<set> set

<bitset> | set of Booleans

Table 17.7: Container header files.
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A 1list is a doubly linked list, similar in idea to the d1ist class that we implemented
in Section 10.3.2. Now that our d1ist class has served its purpose, you should abandon
it in favour of the more sophisticated Library facility given in <1ist>. Lists are useful
if you want to do large numbers of insertions and deletions at any point in the sequence.

The <vector> header does not provide what a mathematician would think of as
a vector. For instance, there is no concept of a scalar product. The vector class
template can be used to provide a container in which objects are accessed by an index.
This implies that a vector object is like a sophisticated array.

A queue is a container that allows objects to be inserted at one end and extracted
from the other. Consequently, objects in a queue emerge in the order in which they
are inserted. A deque is a double-ended queue; that is operations can be carried out
at either end.

A stack is a sequence container for which objects can only be inserted or deleted
at one end. We have already met the idea of a stack in Section 10.3.1.

The map and set class templates deal with associative containers; these are con-
tainers that are concerned with pairs of values. Given one value, known as a key, we
can access another value, known as the mapped value. A map is a sequence of pairs,
with at most one value for each key. A set is a map for which only the keys are relevant.

The <bitset> header contains the class template for an array of single bits, much
like our bit_array class of Section 11.4.1.

17.2.7 Iterators

The facilities of this part of the Library are associated with the single header file,
<iterator>. An iterator is a generalization of a pointer and is used to move between
elements of a container. An iterator points to a current element and has the ability
to change so that it points to the next element. The ANSI Standard distinguishes five
different types of iterator: input, output, forward, bidirectional and random. Iterators
are an important way of moving between objects in containers. (See, for instance,
Chapter 19 of [10] and Chapter 2 of [8].)

17.2.8 Algorithms

The two header files associated with this part of the Library are given in Table 17.8. The
<cstdlib> is derived from the <stdlib.h> C header file and declares two functions:
bsearch() and gsort (). The bsearch() function performs a binary search of a sorted
array. The gsort () function is an implementation of the quick-sort algorithm.

The <algorithm> header defines an extensive collection of operations on containers.
The operations include counting, copying, swapping, shuffling, sorting, searching etc.

|  Header | Purpose ]

<algorithm> | algorithms on sequences
<cstdlib> bsearch() and gsort ()

Table 17.8: Algorithm header files.
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17.2.9 Numerics

The header files associated with this part of the Library are given in Table 17.9. The
<cmath> header is derived from <math.h> and has declarations for many common
mathematical functions, such as cos(), sin(), 1log(), exp(), sqrt () etc. The func-
tions are overloaded so that there are float, double, and long double versions. The
<cstdlib> header is derived from <stdlib.h>. It is concerned with the generation
of random numbers, and finding the quotient and remainder that results from integer
division.

[ Header | Purpose |

<complex> | complex arithmetic

<valarray> | efficient operations on one-dimensional numerical arrays
<numeric> numerical operations

<cmath> standard mathematical functions

<cstdlib> | random numbers, quotient, remainder

Table 17.9: Numerics header files.

The <complex> header declares a class template for complex numbers. This should
be used in preference to our own complex class that was introduced in Section 9.6.1.
The template has all the usual complex arithmetic operations and comes with special-
izations in which the ordered pair of real numbers that constitute a complex number
are of type float, double, or long double.

The core of many numerical calculations consists of relatively simple operations on
one-dimensional arrays. Such calculations are important in many areas of science and
engineering, and consequently some machine architectures are optimized for operations
on one-dimensional numerical arrays. The <valarray> header declares class templates
for operations on one-dimensional numerical arrays. It was designed for efficiency
rather than ease of use, but is likely to be important to many scientists and engineers.

The <numeric> part of the Library implements a few numerical algorithms, analo-
gous to <algorithm>. The available operations are:

e accumulating the results of an operation on a sequence;

e accumulating the results of an operation on two sequences;
e generating a sequence by an operation on two sequences;

e generating a sequence by an operation on one sequence.

Calculating the inner product of two vectors is an example of what can be achieved
here.

17.3 Using the Standard Library

17.3.1 Complex Arithmetic

It is difficult to give a very substantial program demonstrating the use of complex arith-
metic without getting fairly involved in a specific application. However, the following
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program should give some idea of what is available through using the class templates
in <complex>:

#include <iostream>
#include <complex>
#include <cstdlib> // For EXIT_SUCCESS
using std::cout;
using std::cin;
using std::complex;
using std::real;
using std::imag;
using std::conj;
using std::abs;
using std::sqrt;
using std::polar;
using std::pow;
using std::cos;
using std::sin;

int main()

{
// Define z = 3 + 4 i:
complex<double> z(3, 4);
cout << "z = " << z << "\n";

// Give real and imaginary parts:
cout << "real part of z = " << real(z) << "\n";
cout << "imaginary part of z = " << imag(z) << "\n";

// Initialize with complex conjugate:
complex<double> z_conj = conj(z);
cout << "complex conjugate of z = " << z_conj << "\n";

// Find magnitude:
cout << "magnitude of z = " << abs(z) << "\n";

// Define i:
const complex<double> i(0.0, 1.0);

// Make assignment using polar form:
double theta = 0.25 * M_PI;
z = sqrt(2.0) * polar(1.0, theta);

// Check de Moivre’s theorem:
cout << "\nCheck de Moivres’s theorem for z = " << z << "\n";
complex<double> z1, z2;
for (dint m = 0; m < 10; ++m) {
z1 = pow(z, m);
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z2 = pow(sqrt(2.0), m) * (cos(m * theta) + i *
sin(m * theta));
cout << "zl = " << z1 << "\nz2 = " << z2 << "\n";

}

// Do an impedance type calculation:
z=(2.0+1i) / (1.0 - 1);

complex<double> impedance = z + 1.0 / z;

cout << "\nimpedance = " << impedance << "\n";

// Check we can input a number:

cout << "\nEnter a complex number as (x,y): ";
cin >> z;

cout << "z = " << z << "\n";

return(EXIT_SUCCESS) ;
}

It its worth highlighting following features:

The program initializes z to 3 + 4¢ by using the complex constructor function.
Notice that we must specify the type of the ordered pair of real numbers that
constitute a complex number. In this case the type is double.

The real and imaginary parts of z are given by real(z) and imag(z) respectively.
Notice how a complex number is inserted in the output stream by the << operator.
The way in which this is achieved is explained in Chapter 18.

The complex conjugate of z (written mathematically as Z or z*) is given by the
conj(z) function, and the result is used to initialize z_conj.

The magnitude of z (written mathematically as |z]) is given by abs(z).

The imaginary constant ¢ is initialized by means of the complex constructor.
Engineers may want to replace i by j.

The sqrt() and polar() functions are used to assign v/2e?™/4 to z. We then
evaluate:
z1 = 2"

and:
29 = (v/2)™ (cos(mb) + isin(mb))

According to de Moivre’s theorem, we should get z; = 25. When you run this
program you will probably find slight discrepancies due to the finite precision of
floating point arithmetic on a real computer.

We calculate: )
z+ -
z

where:
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This is typical of an impedance calculation in an AC circuit, and also demon-
strates complex division. (The exact result for this calculation is (7 + 9¢)/10.)

e Finally, we demonstrate that it is possible to read complex numbers from the
input stream by means of the >> operator.

17.3.2 Boolean Arrays

In this section we revisit the bitwise operations of Sections 11.4.1 and 11.4.2. Instead
of using our own bit_array class, we make use of the vector<bool> specialization
from the Standard Library. The modified my_test.cxx program is given below.

// source: my_test.cxx
// use: Tries out the vector<bool>
// template specialization.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS, atoi()
#include <vector>

using std::cin;

using std::cout;

using std::get;

using std::exit;

using std::vector;

using std::atoi;

// Function declarations:

void wait(void);

void display_bits(vector<bool> &b);
void set_bits(vector<bool> &b);
void clear_bits(vector<bool> &b);

void wait(void)

{
cout << "\nHit <Enter> to continue." << "\n";
cin.get();

void display_bits(vector<bool> &b)
{
int bits = b.size();
const int display_width = 80;
for (int i = 0; i < bits; ++i) {
if (1(i % display_width))
cout <<"\n";
if (b[i])
cout << "x";
else
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}

cout << ".";

}

cout << "\n";

void set_bits(vector<bool> &b)

{

int bits = b.size();

for (int i = 0; i < bits; ++i) {
b[i] = true;

}

void clear_bits(vector<bool> &b)

{

int

int bits = b.size();

for (int i = 0; i < bits; ++i) {
b[i] = false;

}

main(int argc, char *argv[])

if (arge !'=2) {
cout << "Usage: my_test <length>\n";
exit (EXIT_FAILURE) ;

}

int bits = atoi(argv([1]);

vector<bool> b(bits);

cout << "max_size = " << b.max_size() << "\nsize = " <<
b.size() << "\ncapacity = " << b.capacity() << "\n";
for (int i = 0; i < bits; ++1i)
if (1 % 2)
bli] = true;
else

b[i] = false;
display_bits(b);
wait () ;
clear_bits(b);
display_bits(b);
wait();
set_bits(b);
display_bits(b);
wait();
return (EXIT_SUCCESS) ;
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As can be seen, it is a lot easier to use a pre-existing class than to develop our own.
Since the vector<bool> template specialization is part of the Standard Library, the
following command is all that is needed to compile and link the program, producing
an executable file called my_test:

gt+ my_test.cxx -o my_test

In this program we make use of three vector<bool> member functions to provide
some interesting information about the object b. The max_size() function gives the
largest Boolean array that can be created. This is likely to be very large indeed,
and only limited by the amount of memory available. The size () function gives the
number of elements in the b object, and for this program the number should be what
is typed in at the system prompt. The capacity() function gives the total number of
elements that are available without resizing the array. This is a multiple of the natural
size of memory blocks on the computer being used. For instance, if I enter my_test 19
on my computer, then the program gives the capacity as 32.

The remainder of the program follows the code given in Section 11.4.1. Notice
that display_bits(), clear_bits(), and set_bits() are not member functions, but
instead have a vector<bool> argument. It is particularly important that these are
reference arguments since we don’t want to do unnecessary copying of potentially large
arrays.

Having demonstrated the bit_array class in Section 11.4.1, we used it in Sec-
tion 11.4.2 to generate a list of prime numbers by implementing the Sieve of Eratos-
thenes. We can now modify this program to use the vector<bool> template special-
ization. The modified program is given below.

// source: primes.cxx
// use: Implements the Sieve of Eratosthenes using
// the vector<bool> template specialization.

#include <iostream>

#include <cstdlib> // For EXIT_SUCCESS, atoi()
#include <cmath> // For sqrt()

#include <vector>

using std::cin;
using std::cout;
using std::flush;
using std::exit;
using std::vector;
using std::atoi;
using std::sqrt;

// function declarations:

void wait(void);

void list_primes(vector<bool> &b);
void display_bits(vector<bool> &b);
void set_bits(vector<bool> &b);
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void wait(void)

{
cout << "\nHit <Enter> to continue.\n";
cin.get();
}
void list_primes(vector<bool> &b)
{
const int display_height = 24;
int primes_displayed = 1;
int bits = b.size();
for (int 1 = 0; i < bits; ++i) {
if (blil) {
cout << 2 * i + 3 << "\n";
if (primes_displayed % display_height)
++primes_displayed;
else {
primes_displayed = 1;
cout.flush();
wait () ;
}
}
}
}
void display_bits(vector<bool> &b)
{
int bits = b.size();
const int display_width = 80;
for (int 1 = 0; i < bits; ++i) {
if (1(i % display_width))
cout <<"\n";
if (b[il)
cout << "x";
else
cout << ".";
}
cout << "\n";
}
void set_bits(vector<bool> &b)
{
int bits = b.size();
for (int i = 0; i < bits; ++i) {
b[i] = true;
}
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int main(int argc, char *argv([])

{

¥

if (argc '=2) {
cout << "Usage: primes <largest integer>\n";
exit (EXIT_FAILURE);

}

int max_int = atoi(argv[1]);

// Only store odd numbers:
int bits = (max_int - 1) / 2;
vector<bool> b(bits);

// Set all bits:
set_bits(b);
int max_m = static_cast<unsigned>(sqrt(max_int));

// These 2 loops are the Sieve of Eratosthenes:
for (int m = 3; m <= max_m; m += 2) {
int max_n = max_int / m;
for (int n = m; n <= max_n; n += 2)
blm *xn / 2 - 1] = false;
}

cout << "Bit array set for primes:\n";
display_bits(b);

wait () ;

cout << "Primes between 3 and " << max_int << ":\n";
list_primes(b);

wait () ;

return(EXIT_SUCCESS);

Again notice how much easier it is to use the template specialization provided in the
Standard Library than to implement our own class.

17.4 Summary

This chapter is effectively summarized by its tables. The library facilities are divided
into categories, as given in Table 17.1. The header files for each of these categories are
then given in Tables 17.2 to 17.9, and Table 18.1.

17.5 Exercises

1.

(a) Implement the Sieve of Eratosthenes, described in Section 11.4.2, by using

the bitset class template outlined in Section 17.2.6.
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(b) You now have three different implementations of the Sieve of Eratosthenes.
Modify each program so that there are two command line parameters. These
parameters should specify the lower and upper limits of the primes that are
to be displayed. Time all three programs when they are used to find a range
of very large primes.

Use the Standard Library to implement a program that sorts a list of strings into
alphabetical order.

. Instantiations of the vector class template in the Standard Library would be

called arrays by mathematicians. Use the Standard Library to implement a
true vector class. Your class should define such operations as the addition, dot
product, and cross product of two vectors.

(a) Suppose you have a list of data pairs; the first element of the pair is of type
double and the second element is a string (as in <string>). For instance,
the data could represent the distance of a star from the Earth and the name
of the star. Use the Standard Library to produce a list that is sorted by
increasing distance.

(b) Suppose you have two sorted lists of data pairs. Use the merge sort function
provided by the Standard Library to produce a merged and sorted list of
both sets of data.



Chapter 18

Input and Output

18.1 Introduction

Input and output (I/O) are not part of the C++ language, but are part of the ANSI
C++ Standard Library. The I/O library provides a strongly typed and very safe system
for performing input and output operations; errors either get trapped at compile-time
or they set error flags associated with I/O library objects. This library uses many
of the more advanced techniques of C++, such as classes, templates, inheritance and
exception handling. It is clearly better to have some understanding of such techniques
before using the I/O library. However, even without this background, it should be
possible to use this chapter to perform such tasks as formatting your I/O or writing to
and reading from files.

The basic idea behind the I/O library is that information flows to or from a program
as a “stream” of data. For example, data may stream from a program to a computer
screen, or from the keyboard to a program.

It isn’t possible to cover every detail of the I/O library here, but additional sources
of information are [1] and [10], together with the documentation for your compiler. It
is also worth looking at the relevant header files on your system. As is the case for
those parts of the Standard Library presented in Chapter 17, you may find that your
compiler is not entirely compatible with the ANSI Standard. In this chapter, we follow
the Standard rather than any particular compiler.

18.2 Input and Output Classes

The class hierarchy is shown in Figure 18.1, but you should be able to use a lot of the
features of the I/O library without knowing details of the class structure. Apart from
ios_base, all the classes shown are actually templates and they have a basic_ prefix.
The basic_ios class is a virtual base class of the basic_istream and basic_ostream
classes. Fortunately, typedefs are provided for most of the template specializations;
for example, instead of basic_ofstream<char> we can use ofstream when opening
a file for output. There are ten header files that are associated with this library and
these are shown in Table 18.1. The headers contain declarations for various classes,
templates, functions, typedefs etc. associated with the I/O library. However, due to
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10s_base

’ istream ’ I ostream ‘

istringstream‘ I ifstream I ‘ iostream ’ I ofstream l |Ostringstream—‘

lifstream ’ rstringstream I

Figure 18.1: Hierarchy diagram for the I/O library classes.

the hierarchical nature of the library, it is usually only necessary to include one or two
of these headers in a file, since any other relevant files are automatically included. For
instance, so far we have only needed to include the <iostream> header.

The <iosfwd> header contains typedefs and declarations of stream I/0O classes and
templates so that they can be referred to but cannot be used to perform operations.
You are unlikely to need to include this header.

The <iostream> header declares the following important objects:

e cinisan instance of the istream class and is the standard input stream (typically
the keyboard).

,7 Header ' Purpose —I
<iosfwd> forward declarations
<iostream> | standard iostream objects
<ios> iostreams base classes
<streambuf> | stream buffers
<istream> input stream template
<ostream> output stream template
<iomanip> formatting and manipulators
<sstream> string streams
<fstream> file streams
<cstdio> C-style I/0O

Table 18.1: I/O library header files.
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e cout is an instance of the ostream class and is the standard output stream
(typically the screen).

e cerr is an instance of the ostream class. It is the standard error stream (typically
the screen) and is effectively unbuffered.

o A buffered version of cerr, called clog, is also defined. Although this error
stream is also typically the screen, the output is often redirected to a file. One
way to achieve this is to use stream assignment, as described in Section 18.7.

The header file also defines wide-character versions of these four streams.

The <ios> header declares the I/O base classes. It contains important declara-
tions of manipulators (such as io_base: :hex) and flags (such as ios_base: :badbit).
Manipulators and flags are described in Section 18.5.

The <streambuf> header declares a basic_streambuf class template that is used
to provide various stream buffers. The class template does not appear in Figure 18.1
because it is not a base class for any of the classes shown.

The <istream> header declares the basic buffered input stream template class,
basic_istream. The <ostream> header declares the basic buffered output stream
template class, basic_ostream.

The <iomanip> header declares functions that enable inserters and extractors to be
used to alter the state of an I/O class. For example, the setw() manipulator can be
used to set the width for the next output operation. This header is only needed if you
want to use manipulators that take arguments.

The <sstream> header defines template classes that allow us to associate stream
buffers with the string class in the Standard Library. Include this header if you want
to insert and extract C++ strings (rather than C strings).

The <fstream> header defines template classes that associate stream buffers with
a file. This enables us to read from and write to files.

The <cstdio> header contains macros and function declarations for C-style 1/O. It
does not use the concept of streams and should be avoided if at all possible. C-style
I/O is not described in this chapter, but if you do need to use it then [5] is a good
source of information.

All of the facilities offered by the I/O library add names to the std namespace. As
has already been pointed out, the entire std namespace can be made visible by means
of the statement:

using namespace std;

In small projects this may be the most convenient approach and we generally assume
that this statement is included in any programs containing the code fragments given
in this chapter. Alternatively, potential name clashes can be avoided by a using
declaration, as in:

using std::cin;
or by giving the full name:

std::cout << "Welcome to the world of C++!\n";
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18.3 Output

Data is inserted in an output stream by using the binary insertion operator,<< (also
known as an inserter). We have used this technique throughout this book. For instance,
the following sends a string and the value of x to the output stream:

cout << "The value of x is " << x;

This operator is overloaded for all of the fundamental types; as a simple example we
can list the addresses of elements of an array:

double x[10];
for (int i = 0; i < 10; ++i)
cout << "Address of element " << i << " is " << (x + i) <<
Il\nll ;

Notice that insertions can be concatenated. This is because the expression:
cout << "Address of element "

returns an ostream object (as does cout << i etc.). An alternative for long strings is
to use the fact that adjacent string constants are concatenated, as in:

cout << "This long sentence demonstrates how to continue "
"long strings by using concatenation";

However, repeating the insertion operator will probably make your intention more
obvious, especially if you put the operator at the end of the line that is to be continued.

The ostream object, cout, provides buffered output. This is usually more effi-
cient than unbuffered output, but may sometimes be inconvenient. For instance, if we
are trying to debug a program, we might attempt to send the values of some crucial
variables to cout. However, if the messages are still stuck in a buffer when disaster
strikes, then we may not get any output. The flush() function overcomes this prob-
lem, by flushing data from the appropriate stream buffer. This is demonstrated by the
following code fragment:

double max_error;

// Suppose we forget to set max_error.
// Put in a debug statement:

cout << "max_error: " << max_error;
cout.flush();

The flush() function is unnecessary (but harmless) in the following situation:

cout << "Input the start time: ";
cout.flush();
cin >> t;

This is because cout is tied to cin; that is the cout buffer is automatically flushed
before any attempt is made to extract data from cin.

The object, cerr, is similar to cout, except that it is the standard error stream
(usually the screen) and this is flushed after each insertion. The flushing has the
advantage that critical error messages cannot get stuck in a buffer:
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if (n !'= m)
cerr << "Cannot invert matrix: matrix is not square\n";

There are a few features of the insertion operator that could initially cause some
confusion. Consider the code fragment:

char array[] = "A message.";

char *string = "Another message.";

cout << "Base address of char array is: " << array <<
"\nValue of char pointer is: " << string << "\n";

The result is:

Base address of char array is: A message.
Value of char pointer is: Another message.

In contrast to the other fundamental types, if the right operand of an insertion operator
has the type char*, then a string, rather than the value of an address, is inserted. A
cast to void* produces the address stored by the pointer and:

char array[] = "A message.";
char *string = "Another message.";
cout << "Base address of char array is: " <<
static_cast<void *>(array) << "\nValue of char pointer is: " <<

static_cast<void *>(string) << "\n";
typically gives the (hexadecimal) result:

OXbff££7£0
0X80487cb

Another feature of the insertion operator is that the parentheses in the following code
fragment are not redundant since without them the code fails to compile:

bool bl = true, b2 = false;
cout << "bl || b2 is: " << (bl || b2) << "\n";

This is because the insertion operator has a higher precedence than the logical OR
operator. (See Chapter 11 and Appendix B.) Insertion expressions involving other
low-precedence operators also need parentheses and analogous remarks apply to the
extraction operator.

18.3.1 Unformatted Output

Single characters can be inserted in an output stream by means of the put () library
function:

cout.put(’C’);

The put () function can be concatenated, as can any function that returns a reference
to an appropriate class object:

cout.put(°C’) .put(’+’) .put(’+’) .put(’\n’);
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but statements of this form are cumbersome and usually unnecessary.

There is also a write() function that takes two arguments. The first argument is
a pointer to a buffer and the second argument is the maximum number of characters
to be written to the stream. The following code fragment illustrates both the action
of this function and what can go wrong if it isn’t used carefully:

char buffer[3] = {’C’, ’+’, *+’};
for (int i = 1; i < 8; ++i) {
cout.write(buffer, i);
cout << "\n";

}

The output on my computer is:

C
c+
C++
C++y
C++;8
C++;8¢
C++;8gy

Notice that the first three lines of output correspond to the contents of buffer, but then
increasing amounts of garbage are appended to C++ as the write () function accesses
memory beyond that assigned to buffer. Even if there is a newline character in buffer,
the write () function will attempt to insert the specified number of characters in the
stream, as running the following code will demonstrate:

char buffer[4] = {’C’, ’+’, ’+’, ’\n’};
for (int i = 1; i < 8; ++i) {
cout.write(buffer, i);
cout << "\n";

}

So the message is that if you really must use a function that accesses raw memory,
such as write (), then you need to pay special attention to the number of characters
stored.

Exercise

Make the above code fragment into a program and try running it on your
computer. Try increasing the maximum number of characters sent to the
output stream.

18.4 Input

Data is removed from an input stream by means of the binary extraction operator, >>,
also known as an extractor. For instance:

cin >> 1i;
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extracts the value of i from the input stream, cin. Extractions can be concatenated;
the expression:

cin >> i >> j >> k;

extracts i, then j, then k, from cin. This is because the expression cin >> i returns
an istream object and this is then used as the first argument of the next inserter
function.! Since white space is ignored, typing:

1 2 3

or:

3
assigns the same values to i, j and k. Notice that statements such as:
cin > i, j, k; // WRONG!

superficially look alright and even compile, but do not have the desired effect since
only i is assigned to.

The extraction operator is overloaded for all of the fundamental types. For example,
it is straightforward to extract a string, as illustrated by the following code fragment:

char buffer[128];

cout << "Input a string:\n";

cin >> buffer;

cout << "You input: " << buffer << "\n";

When extracting a string, the “end of string” character, *\0’, is automatically ap-
pended so it is necessary to make certain that the buffer is large enough to hold this
additional character. Failure to do so may result in a run-time error. Note that charac-
ters are extracted from the cin stream until white space is encountered, so that input
of the form:

This is a message.
results in the output:
This

It is straightforward to overcome this problem by using techniques associated with
unformatted input.

18.4.1 Unformatted Input

We can use the functions get() and getline() to extract data from an input stream
without regard as to what the data represents. There are three different get () func-
tions.

The expression cin.get (), with no arguments, returns the value of the character
extracted as an integer. Consequently, the following code fragment outputs the ASCII
code of whatever character is input. (Try it!)

1Don’t forget that all binary operators, apart from assignment, are left-associative.
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cout << "Input one character:\n";
int i = cin.get();
cout << "You input: " << i << "\n";

In order to output the actual character, we need to do a cast to a char. This occurs
implicitly in the following code fragment:

cout << "Input a string:\n";
char ¢ = cin.get();
if (¢ '= ’\n’) {
cout << "Your string contains the characters:\n" << ¢ << "\n";
while ((c=cin.get()) != ’\n’)
cout << ¢ << "\n";

}

Notice that it is not possible to use the extraction operator with this form of the get ()
function, so expressions such as cin.get () >> i do not compile.

The second form of the get () function takes a reference char argument and again
reads a single character. Since this function does return an istream object, concate-
nation is possible, as in:

char a, b, c;

cout << "Input a string of three characters:\n";
cin.get(a).get(b) .get(c);

cout << "You input: " << a << b << ¢ << "\n";

It is also possible to use the extraction operator, as in:

char a, b, c;

cout << "Input a string of three characters:\n";
cin.get(a) > b >> c; // Note use of >>.
cout << "You input: " << a << b << ¢ << "\n";

However, don’t forget that whereas get (a) extracts any character, the insertion oper-
ator ignores white space. Consequently, the behaviour of the previous two fragments
of code will differ if you input white space.

The third form of the get () function takes three arguments. The first argument
is a pointer to a char buffer, the second is the maximum number of characters to
be extracted, and the third is the character that terminates the extraction. If this
termination character (also known as a delimiter) is omitted, then it defaults to the
newline character. Suppose we have the statement:

cin.get (buffer, length, ’#’);

This get () function reads length - 1 characters into buffer and then appends the
end-of-string character. If the termination character, #, is reached before length - 1
characters are extracted, then the extraction stops and the end-of-string character is
appended to the characters that have been placed in buffer. There are two features
that may trap the unwary:

1. It is length - 1 characters that are extracted rather than length. This is to
allow one position in the buffer for the end-of-string character.
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2. The delimiter character is not extracted.

A code fragment demonstrating the use of this form of the get () function with ’x’ as
the delimiter, together with an illustration of what can go wrong, is given below.

const int buffer_length = 128;
char buffer[buffer_length];
cout << "Input a string including the character x: ";
cin.get(buffer, buffer_length, ’x’);
cout << "You input: " << buffer << "\n" <<
"Input a string including the character x: ";
cin.get(buffer, buffer_length, ’x’);
cout << "You input: " << buffer << "\n";

The result might typically be as follows:

Input a string including the character ’x’: abcxyz
You input: abc
Input a string including the character ’x’: You input:

The first three characters entered at the keyboard are extracted, stored in buffer,
and the end-of-string character is appended. However, since the delimiter, *x’, is not
extracted, we are never given the opportunity to enter a second set of characters.

Exercise

Make the above code fragment into a program and try running it with
various inputs. Include examples where several lines are input before there
is a line containing the >x’ character.

The moral to be learned from this exercise is that you should never call this three-
argument form of the get () function twice without extracting the delimiter. This can
be achieved as follows:

const int buffer_length = 128;

char buffer[buffer_length];

cout << "Input a string including the character x: ";
cin.get(buffer, buffer_length, ’x’);

cout << "You input: " << buffer << "\n";

cin.get();

cout << "Input a string including the character x: ";
cin.get(buffer, buffer_length, ’x’);

cout << "You input: " << buffer << "\n";

This discussion assumes that the first extraction from the input stream terminates
because the delimiter is reached, rather than because the specified number of charac-
ters have been extracted. More robust code would test for this possibility and take
appropriate action.

Another useful function is getline (). This function takes the same parameters as
the three-argument version of get(). It also behaves in a similar way to the three-
argument version of get (). except that it does extract the termination character, as
the following code fragment demonstrates:
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const int buffer_length = 128;
char buffer[buffer_length];
cout << "Input a string including the character x: ";
cin.getline(buffer, buffer_length, ’x’);
cout << "You input: " << buffer << "\n" <<
"Input a string including the character x: ";
cin.getline(buffer, buffer_length, ’x’);
cout << "You input: " << buffer << "\n";

Exercise

Make the above code fragment into a program and try running it with
various inputs. Explain the output that you obtain.

Notice that although the delimiter is extracted, it is not put in the buffer; it is simply
discarded.

Another useful function is gcount (). This function takes no arguments, and returns
the number of characters that have been extracted by any of the unformatted input
functions. The following code fragment illustrates the use of gcount ():

const int buffer_length = 128;

char buffer[buffer_length];

cout << "Input a string:\n";

cin.getline(buffer, buffer_length);

cout << "You input:\n" << buffer << "\n";

int chars_input = cin.gcount();

cout << chars_input << " characters were extracted.\n" <<
"Input another string:\n";

cin.get(buffer, buffer_length);

cout << "You input:\n" << buffer << "\n";

chars_input = cin.gcount();

cout << chars_input << " characters were extracted.\n";

Exercise

Try out the above code. In particular, try inputting the same string twice.

As you will have observed in this exercise, gcount () includes the delimiter when
getline() is invoked because in this case the delimiter is extracted.

The read () function (which is the counterpart of the ostream function, write())
takes two arguments. The first argument is the address of the buffer where the extracted
characters are to be stored, and the second is the number of characters to be extracted.
This function does not attempt to find a delimiter, nor does it append an end-of-
string character to the buffer. If necessary, we have to explicitly add the end-of-string
character to the buffer, as the following program illustrates:

const int buffer_length = 128;

char buffer[buffer_length];

cout << "Input a string of at least 20 characters.\n" <<
"You should include some white space:\n";
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cin.read(buffer, 20);
buffer[20] = ’\0’;
cout << "You input:\n" << buffer << "\n";

Sometimes we may want to simply remove characters from the input stream and
then discard them. The ignore () function serves this purpose. It takes two arguments;
the first is the maximum number of characters to be extracted (which defaults to one)
and the second is a delimiter (which defaults to end-of-file).? As with getline(), the
delimiter is extracted (assuming it is reached).

As an example of unformatted input, a common requirement is for a program to
prompt the user to answer a question, such as:

char c;

do {
cout << "Do you want to continue? (Enter Y or N) ";
cin >> c;

} while (c != ’Y’ && c !'= ’N’);

Unfortunately, incorrect replies of the form, “perhaps”, send us spinning many times
round the do while loop. Our program should remove all of the incorrect characters
for each attempted reply and the following code achieves this:

char c;

do {
cout << "Do you want to continue? (Enter Y or N) ";
cin >> c;
cin.ignore(1280, ’\n’);

} while (c !'= Y’ && c '= "N’);

The value of 1280 in the first argument of ignore () is just an arbitrarily large integer
that a user is unlikely to exceed by inputting incorrect characters. An alternative
approach is:

const int length = 128;

char buff[length];

do {
cout << "Do you want to continue? (Enter Y or N) ";
cin.getline(buff, length, ’\n’);

} while (buff[0] !'= ’Y’ && buff[0] != ’N’);

Exercise

Both code fragments given above are not completely satisfactory since they
also accept input, such as “Newton-Raphson” or “Y-chromosome”, as cor-
rect. Modify the second version so that only sensible inputs, such as “YES”,
“Y7, “Yes”, “NO”, “N” and “No” are accepted.

2Notice that the delimiter is end-of-file, not end-of-line.
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18.5 Flags, Manipulators and Formatting

A stream has an associated state that is held as a set of flags. These flags (and hence the
state of the stream) can be manipulated directly by means of functions. For instance,
we have already used the flush() function to empty the output stream buffer, as in:

cout.flush();

This statement effectively changes the state of the buffer associated with cout from
not empty to empty. A large number of flags hold the state of an I/O stream and these
are members of the ios_base class. For example, the ios_base: : showpos flag is used
to signal whether or not an output stream should show a + sign in front of non-negative
numbers.?

A flag can be set by using the setf () function. The following program demonstrates
how to set the output to show a + sign in front of a non-negative number. It also
demonstrates how to ensure that scientific notation is used for the output of floating
point numbers.*

#include <iostream>
#include <cstdlib> // For EXIT_SUCCESS
using namespace std;

int main()

{
const double deg = 0.01745;
cout << deg << "\t\t(default floating point format)\n";
cout.setf (ios_base: :showpos) ;
cout << deg << "\t(show + for non-negative number)\n";
cout.setf(ios_base::scientific, ios_base::floatfield);
cout << deg << "\t(also use scientific notation)\n";
return(EXIT_SUCCESS) ;

}

The formatting flags are implemented as bit-masks and the effect of the first invocation
of setf () is to take the bitwise OR of i0s_base: : showpos with the stream state. This
only works when a single bit controls a feature. Consequently, the second invocation
of the setf () function has two arguments. This ensures that there are no side effects
and that the only change is to the way in which floating point numbers are printed.

Changing the formatting state by using a function notation to set and unset bits is
not very convenient and is also very error-prone. Fortunately, there is a better way of
achieving the same objective. The insertion operator is overloaded so that we can use
it to change the state of an output stream. For instance, to flush the stream we can
use the following statement:

cout << flush;

3A complete list of the many I/O flags is not given here since it is generally better to use manipu-
lators, which are introduced shortly. If you do want to use flags, then [1] and [10] are good sources of
information.

4If your compiler does not conform to the ANSI Standard then you may have to change ios_base
to ios.
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i Manipulator l Effect |
boolalpha insert and extract bool in alphabetic form (e.g. true)
noboolalpha | insert and extract bool in default form (e.g. 1)
showbase prefix integer output to show base (i.e. 0 for octal and 0x for

hexidecimal)
noshowbase | do no prefix integer output to show base
showpoint add trailing zeros in floating point output as required by

precision (e.g. 2.400)
noshowpoint | do not add trailing zeros in floating point output
showpos show a + sign for non-negative numeric output
noshowpos do not show a + sign for non-negative output
skipws ignore leading white before certain input operations
noskipws do not ignore leading white before input operations
uppercase use X and E rather than x and e
nouppercase | use x and e rather than X and E
unitbuf flush after each output operation
nounitbuf do not flush after each output operation
internal add fill characters between sign and value
left add fill characters to right of output
right add fill characters to left of output
dec I/O in decimal form
hex I/O in hexadecimal base (e.g. 1f3ab)
oct I/0O in octal base (e.g. 377)
fixed output in fixed-point notation (e.g. 12.5)
scientific | output in scientific notation (e.g. 1.25e1)
WS eat white space in input stream
endl insert *\n’ and flush
ends insert >\0’ and flush
flush flush stream

Table 18.2: Manipulators not taking arguments.

In this context, flush is known as a manipulator since it manipulates an I/O state
flag. The statement implicitly invokes the flush() function and has the advantage
that we can concatenate insertions, as in:

cout << i << flush << j << flush;

This is an important reason for preferring manipulators to functions. Many manipu-
lators can be used with input as well as output streams, although a few of them are
only appropriate for one type of stream or the other. A list of I/O manipulators that
don’t take arguments is given in Table 18.2.

Some manipulators take arguments, and for such manipulators we must include the
<iomanip> header file. For instance:

cout << setprecision(4) << M_PI;

prints the value of M_PI with four digits after the decimal point. Notice that manip-
ulators that do not take arguments must not be given with empty parentheses. For
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example, the following does not compile:
cout << i << flush(); // WRONG: no parentheses.

There are also manipulators that insert data in addition to changing the state of a
stream. For instance, endl inserts a new line and flushes the buffer, as in:

cout << "The value of t is " << t << endl;

A list of I/O manipulators taking arguments (and therefore requiring the header
<iomanip>) is given in Table 18.3. Most manipulators set the state of a stream until it
is reset in some way. The notable exception is setw(n) since this sets the field width
for the next operation only.

f Manipulator | Effect |
setfill(d) sets fill to character represented by i
setprecision(n) | use n digits after the decimal point
setw(n) field width for next operation is n

Table 18.3: Formatting manipulators that take arguments.

Before leaving this section, it is worth pointing out that we have introduced a
number of different ideas concerning the format state of an I/O stream and we should
be careful to distinguish between:

e flags, such as ios_base: :scientific;
e functions that change flags, as in cout.flush();
e manipulators, as in cout << flush;

e manipulators taking arguments, as in cout << setprecision(10).

Exercise

Write a program that demonstrates the effect of each manipulator in Ta-
bles 18.2 and 18.3.

18.6 File Input and Output

This section describes how to perform input and output on a file. Such files are typically
stored on a disc and are often crucial to numerical applications that process very large
amounts of experimental data or produce complicated simulations.

The I/0 library class used for output from a program to a file is of stream, so to
open a file for output only, we must define an ofstream object, as in:

ofstream my_file("example.dat");
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In the above statement, example.dat is the name of the file. If the complete path
name isn’t given then the name refers to a file in the directory in which the program is
run. The <fstream> header file (which in turn includes <iostream>) must be included
for all operators and functions concerned with file input and output.

You should be aware of a potential source of confusion with file I/O. Opening a file
for output means output from the application program; that is input to the file! The
compiler will reject any attempt to perform an extraction from a file only “open for
output”.

Before attempting to use a file, it is always worth testing whether or not the file
has been opened successfully. The way this is done is illustrated in the following code
fragment:

if (I'my_file) {
cerr << "Failed to open my_file.\n";
exit (EXIT_FAILURE);

}

Having opened a file for output, data can subsequently be inserted in the stream
by using the insertion operator, as in:

my_file << "This is an example file.\n" <<
"The approximate value of pi is " << 3.142 << "\n";

When the of stream object goes out of scope, a destructor flushes the buffer and closes
the file. The file can also be closed explicitly by the statement:

my_file.close();

in which case any necessary flushing is done automatically.

To open a file for input to the program, we need to create an ifstream object. The
following program demonstrates how to open a file for output, write some data, close
the file, open the file for input, and finally read the data:

#include <fstream>
#include <cstdlib> // For exit()
using namespace std;

int main()
{
ofstream my_file("example.dat");
if (‘my_file) {
cerr << "Failed to open my_file.\n";
exit (EXIT_FAILURE);
}
my_file << "This is an example file.\n" <<
"The approximate value of pi is " << 3.142 << "\n";
my_file.close();
ifstream file("example.dat");
if (1file) {
cerr << "Failed to open file.\n";
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exit (EXIT_FAILURE);
}
const int length = 128;
char buffer[length];
file.getline(buffer, length, ’\n’);
cout << "The first string is:\n\t" << buffer << "\n";
file.getline(buffer, length, ’\n’);
cout << "The second string is:\n\t" << buffer << "\n";
return (EXIT_SUCCESS) ;
}

Running the above code gives the result:

The first string is:
This is an example file.

The second string is:
The approximate value of pi is 3.142

Exercise

Check that the above output is produced by your system. Also check that
the file example.dat is created on your system and use an editor to look
at its contents.

The ifstream and ofstream constructors each have a second argument and this
controls the mode in which the stream is to be opened. Default values are provided for
this second argument. For instance, in the case of the ofstream constructor the value
defaults to:

ios_base::outl|ios_base::trunc

This indicates that the stream is to be opened for output and that if the file already
exists then the contents should be discarded (i.e. truncated). Notice that the second
argument is obtained by taking the bitwise OR of certain constants. These constants
are members of ios_base and a complete list is given in Table 18.4. The options are
selected with the bitwise OR operator because they are implemented as bit-masks.

| Option | Effect if set |
app seek to the end before each write (i.e. append)
ate open and seek to end
binary | perform I/O in binary mode
in open for input
out open for output
trunc truncate an existing stream on opening

Table 18.4: Open mode options.

5The effect of the binary option will depend on your system. In UNIX and Linux, all files are
treated as binary and it is up to the programmer to know how to handle the data.
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Creating an fstream object, opens a file for both input and output. The following
program writes data to a file and then reads from the file. Notice that no flush() is
needed before reading from the file.

#include <fstream>
#include <cstdlib> // For exit()
using namespace std;

int main()
{
fstream file("temp.dat", ios_base::in|ios_base: :out);
if (Mfile) {
cerr << "Failed to open file.\n";
exit (EXIT_FAILURE);
}
const int items = 10;
for (int i = 0; i < items; ++i)
file << (100.0 * i) << " ";
// Perhaps do some work here.
// Go to start of file:
file.seekg(0);
double x;
for (int i = 0; i < items; ++i) {
file >> x;
// Check what was stored:
cout << x << " ",
}
cout << endl;
return(EXIT_SUCCESS) ;
}

The second argument of the fstream constructor in the above code is the bitwise OR of
(ios_base::in) and (ios_base: :out), indicating that the stream is to be opened for
both input and output. There is no default for the second argument of fstream() so
we have to specify the mode of opening the file whenever we use this constructor. This
is the first time that we have come across the seekg() function and it requires some
explanation. The file has an associated pointer that points to the position from which
the next byte can be obtained. The relative position of the pointer can be changed by
means of the seekg () function and, as in this example, seekg (0) positions the pointer
at the start of the file. The g in seekg stands for get. A corresponding seekp()
function exists for insertion operations, where the p stands for put.

The previous examples use formatted input and output. (Try examining the files,
example.dat and temp.dat, with an editor.) However, if data only needs to be read
by a subsequent program (rather than displayed on a terminal for instance) it is much
more efficient to use unformatted file 1/O; the file stream classes are the same, but
we use different functions, namely the read () and write() that we have already met.
For example, we could use unformatted I/O for a file that is open for both input and
output:
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#include <fstream>
#include <cstdlib> // For exit()
using namespace std;

int main()
{
fstream file("scratch.dat",ios_base::in|ios_base::out);
if (1file) {
cerr <<"Failed to open file.\n";
exit (EXIT_FAILURE);
}
const int items = 20;
double buffer_1[items];
double buffer_2[items];
// Create some data:
for (int i = 0; i < items; ++i)
buffer_1[i] = 100.0 * i;
file.write(buffer_1, items * sizeof (double));
// Perhaps do some work here.
// Go to start of file:
file.seekg(0);
file.read(buffer_2, items * sizeof (double));
// Check what was stored:
for (int i = 0; i < items; ++i) {
cout << buffer_2[i] << "\n";
}
return (EXIT_SUCCESS) ;
}

Now try examining the file, scratch.dat, with an editor.

18.7 Assigning Streams

Although data inserted in the cout, cerr and clog streams is often sent to the screen
by default, it may be more convenient to send one or other of the streams to a separate
disc file. Fortunately it is possible to make assignments to the cout, cin, cerr and
clog streams. For example, the following program sends all subsequent error messages
to the error.dat file:

#include <fstream>
#include <cstdlib> // For exit()
using namespace std;

int main()
{
ofstream error_file("error.dat");
if (lerror_file) {
cerr << "Failed to open error_file.\n";
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exit (EXIT_FAILURE);
X
cerr = error_file;
cerr << "This is an example error file.\n";
return (EXIT_SUCCESS) ;
}

Exercise

Try running the above program and use an editor to check what has been
written to the file error.dat.

18.8 Stream Condition

Each I/O stream has an associated condition state, indicating whether or not an error
has occurred. There are four possible states:

good No error has occurred.

eof No more data could be inserted or extracted because the end-of-
file has been reached.

fail An error has occurred, but the stream is probably usable if the
error state is cleared.

bad A serious error has occurred and the stream is probably not usable.

There are also four functions that test for these states:

good() Returns true if no errors have occurred.

eof() Returns true if an end-of-file was encountered.

fail() Returns true if an operation has failed. This includes an eof
or bad error.

bad() Returns true if there has been a serious failure.

The logical NOT operator is overloaded so that, if we have a file called my_file,
then 'my_file gives the same result as my_file.fail(). We have already used this
notation to test for successful opening of a file.

The error state can be reset to good by invoking the clear () function, as in:

my_file.clear();

but this would probably not be useful if the condition was bad.

Exercise

In order to demonstrate the various possible condition states, edit a file
called, input.dat, so that it contains the single floating point number,
1el. Now compile and run the following program:

#include <fstream>
#include <cstdlib> // For exit()
using namespace std;
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int mainQ)

{

ifstream file("input.dat");

if (1file) {
cerr << "Failed to open file.\n";
exit (EXIT_FAILURE);

}

double x;

file.seekg(1024);

cout << "\nThe condition states are:\n" <<
"\tgood is " << file.good() <<
"\teof is " << file.eof() <<
"\tfail is " << file.fail() <<
"\tbad is " << file.bad() << "\n\n";

file >> x;

cout << "Data read was " << x <<
"\nThe condition states are:\n" <<
"\tgood is " << file.good() <<
"\teof is " << file.eof() <<
"\tfail is " << file.fail() <<
"\tbad is " << file.bad() << "\n\n";

file.clear();

file >> x;

cout << "Data read was " << x <<
"\nThe condition states are:\n" <<
"\tgood is " << file.good() <<
"\teof is " << file.eof() <<
"\tfail is " << file.fail() <<
"\tbad is " << file.bad() << "\n\n";

return (EXIT_SUCCESS) ;

}

Notice that attempting to read beyond the end of the file sets the eof and
fail conditions to true and that any attempt to clear the file stream is
futile.

Now delete the file.seekg(1024) statement, which attempts to position
the get pointer past the end-of-file marker, and try running the program
with different data in input.dat. Suggestions are: 1el, 1e500, lelf, 2.4,
Z, etc. You could also try changing x from double to other types.
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18.9 User-defined Types

As an example of input and output with a user-defined type, consider the complex
class, defined in Section 9.6.1. Overloaded insertion and extraction operators can be
defined by:

ostream &operator<<(ostream &os, const complex &z)
{
0s << 7(? << z.re << ’,’ <KL z.im << ?)’;
return o0s;

istream &operator>>(istream &is, complex &z)
{
char ¢ = 0;
is >> c;
if (c == () {
is >> z.re;
is >> c;
if (c == 7,7) {
is >> z.im;
is >> c;
}
else
z.im = 0.0;
}
else {
is.putback(c);
is >> z.re;
z.im = 0.0;
}
return is;

}

Notice that both operators must be declared friends of the complex class and that the
operators also return the appropriate class object, making operator concatenation pos-
sible. More sophisticated implementations would carry out error checking and ensure
that formatting states of the streams are appropriately set. Our implementation of
the extraction operator uses the putback () function. This puts the specified character
back into the input stream and allows us to handle the extraction of a real number,
such as 3.142.

Exercise

Try out our insertion and extraction operators for the complex class by
means of a short program that requests a complex number and then outputs
the number entered. You should test for the three valid forms of input, such
as: 3.142, (3.142) and (3.142, 2.718). Also find out what happens if
you input other types of data, such as integers and characters.
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18.10 Using Input and Output

There are a lot of features in the I/O part of the Standard Library, so we don’t intend
to cover all of them in this section. We present three programs in order to simulate
the role of I/O in processing data. The first program creates some data by writing
two columns of numbers to a file. The numbers are formatted and the columns are
separated by a # character. The second program reads the formatted data from the
file, and outputs each column as a separate unformatted file. The third program reads
the two files of unformatted data and sends them to the screen as two columns.
The first program is given below.

// source: programl.cxx
// use: Writes initial data to file.

#include <fstream>

#include <cstdlib> // For exit()
using std::cout;

using std::cerr;

using std::exit;

using std::ofstream;

using std::endl;

int main(int argc, char *argv[])

{
if (argec !'= 2) {
cout << "Usage: programl <file name>\n";
exit (EXIT_FAILURE);
}
ofstream output_file(argv([1i]);
if (loutput_file) {
cerr << "Failed to open file\n";
exit (EXIT_FAILURE);
}
cout << "Number of lines of data required: ";
int lines;
cin >> lines;
for (int i = 0; i < lines; ++i) {
output_file << 2.222 *x 1 << " # ",
if (1% 2)
output_file << 6.66 * i << endl;
else
output_file << -6.66 * i << endl;
}
return(EXIT_SUCCESS) ;
}

This program takes a single argument, which is a user-supplied file name. For instance,
for an output file £1.dat, the user would type:
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programl f1.dat

The file name is given by the string argv[1] and this is used as the argument to the
of stream constructor. The program then generates two lots of data and this is sent to
the output stream. There is no need to explicitly close the output file, since this will
be done by the ofstream destructor when the program terminates. Since the data is
formatted, you can look at the output file with an editor. The motivation behind the
program is that the two columns of data simulate what you might have entered as the
result of an experiment.
The second program is shown below.

// source: program2.cxx
// use: Processes initial data.

#include <fstream>
#include <cstdlib> // For exit()
using std::cout;
using std::cerr;
using std::exit;
using std::ifstream;
using std::ignore;
using std::clear;
using std::seekg;
using std::open;
using std::close;
using std::ofstream;
using std::write;

int main(int argc, char *argvl[])
{
if (arge !'= 4) {
cout << "Usage: program2 <input file> " <<
"<output file 1> <output file 2>\n";
exit (EXIT_FAILURE) ;
}
ifstream input_file(argv[i]);
if (!input_file) {
cerr << "Failed to open input file: " << argv[1l] << endl;
exit (EXIT_FAILURE);
¥
int lines = O0;
while (input_file.ignore(1280, ’\n’))
++]lines;
input_file.clear();
input_file.seekg(0);
cout << "There are " << lines << " lines of data.\n";
double *data_1l = new double[lines];
double *data_2 = new double[lines];
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for (int i = 0; i < lines; ++i) {
input_file >> data_1[i];
input_file.ignore(80, ’#’);
input_file >> data_2[(i];
}
input_file.close();
ofstream output_file(argv[2]);
if (loutput_file) {
cerr << "Failed to open output file: " << argv[2] << endl;
exit (EXIT_FAILURE) ;
}
output_file.write(&lines, sizeof(lines));
output_file.write(data_1, lines * sizeof (data_1[0]));
output_file.close();
output_file.open(argv([3]);
if (loutput_file) {
cerr << "Failed to open output file: " << argv[3] << endl;
exit (EXIT_FAILURE) ;
}
output_file.write(&lines, sizeof(lines));
output_file.write(data_2, lines * sizeof (data_2[0]));
output_file.close();
return(EXIT_SUCCESS) ;
}

This program takes three command line arguments, and these are the names of one
input and two output files. For instance, the user might enter:

program2 fi.dat f2.dat f£3.dat

The input file name is given by the string argv[1] and this is taken as the argument
to the ifstream constructor. The ignore () function is used to find out the number of
lines of data in the input file. The seekg() function puts the get pointer at the start
of the file, but notice that we must first use the clear() function. This is because
the while loop containing the ignore() function only terminates when the end-of-
file is reached. Knowing the number of data points in the input file, we dynamically
allocate memory for the arrays data_1[] and data_2[], and then read in the data.
The ignore () function is used to discard the # symbol. When we have finished with
the input file, we close it by means of the close() function. The total number of files
that can be open at any one time is limited (although usually fairly large) so it is a
good idea to close files that are no longer needed. The write() function is used to
send unformatted output to the two output files. In each case, the first piece of data is
the number of data points. This is then followed by the data itself. Notice that instead
of using the ofstream constructor twice, we close the first output file and then use the
open() function to open the second output file with the same ofstream object.
The third program is as follows:

// source: program3.cxx
// use: Displays data files.
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#include <fstream>

#include <cstdlib> // For exit()
#include <iomanip> // For setw()
using std::cout;

using std::cerr;

using std::exit;

using std::ifstream;

using std::read;

using std::open;

using std::close;

using std::setw;

using std::endl;

int main(int argc, char *argv[])

{

if (arge '= 3) {
cout << "Usage: program3 <input file 1> " <<
"<input file 2>\n";
exit (EXIT_FAILURE) ;
}
ifstream input_file(argv([1]);
if (!input_file) {
cerr << "Failed to open input file: " << argv[1] << endl;
exit (EXIT_FAILURE);
}
int data_points_1;
input_file.read(&data_points_1, sizeof(data_points_1));
cout << "There are " << data_points_1 <<
" data points in file: " << argv[1] << endl;
double *data_1 = new double[data_points_1];
input_file.read(data_1, data_points_1 * sizeof (data_1[0]));
input_file.close();
input_file.open(argv([2]);
if (!input_file) {
cerr << "Failed to open input file: " << argv[2] << endl;
exit (EXIT_FAILURE);
}
int data_points_2;
input_file.read(&data_points_2, sizeof (data_points_2));
cout << "There are " << data_points_2 <<

" data points in file: " << argv[2] << endl;
if (data_points_1 != data_points_2) {
cout << "Inconsistent data in files: " << argv[1] <<

" and " << argv[2] << endl;
exit (EXIT_FAILURE) ;

513
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double *data_2 = new double[data_points_2];
input_file.read(data_2, data_points_2 * sizeof (data_2[0]));
input_file.close();
cout << " data file 1 data file 2\n";
for (int i = 0; i < data_points_1; ++i)

cout << setw(10) << data_1[i] << " " << setw(10) <<

data_2[i] << endl;

return(EXIT_SUCCESS) ;

}

This program takes two command line arguments. For example, the user might enter:

program3 f2.dat f3.dat

The program extracts the unformatted data from the input files by means of the read ()
function. The data is then sent to the screen as two columns. Notice the use of
setw(10) in an attempt to line up the columns.

Exercise

Compile and run the above programs, and then make the following im-
provements:

(a) The three programs do not carry out a lot of checking. For instance,
the first program simply counts the number of lines of input and
doesn’t allow for the possibility of the final input line being blank.
Modify the program so that it recovers gracefully from such an error.

(b) The third program doesn’t line up the data properly in two columns,
due to the varying number of digits in a number. Modify the code so
that the decimal points are lined up in each column.

18.11 Summary

Input and output streams are declared in the header file, <iostream>.
The standard input stream, cin, is a predefined istream object.

The standard output, cout, and standard error, cerr, streams are predefined
ostream objects. The cerr stream is effectively unbuffered. There is also a
standard buffered error stream, clog, which is an ostream object.

The inserter or insertion operator, <<, is used to insert data into an output
stream.

The extractor or extraction operator, >>, is used to extract data from an input
stream.

The flush () function is used for flushing a buffered output stream, such as cout:

cout.flush();
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e The functions, put () and write(), are used for unformatted insertion into an
output stream:

cout.put(’C’);
cout.write(buffer, 3);

o The functions, get () and getline(), are used for unformatted extraction from
an input stream. There are three different versions of the get () function:

int a = cin.get();

cin.get(b);

cin.get(buffer, length, ’#’);
The default delimiter for the three-argument version of get() is the newline
character. Never invoke the three-argument version of get () twice, unless the
delimiter is removed. A better alternative is to use getline (), which does remove
the delimiter:

cin.getline(buffer, length, ’#’);

e The gcount () function returns the number of characters extracted by an unfor-
matted extraction:

int chars_extracted = cin.gcount();

e The read() function extracts characters from a stream without regard for their
meaning:

cin.read(buffer, 20);

e The ignore() function discards characters in an input stream:
cin.ignore(20, #’);

e Use manipulators to change the state of a stream:
cout << flush;

Some manipulators take arguments, but don’t forget to include the <iomanip>
header file:

cout << setprecision(4);

Manipulators are listed in Tables 18.2 and 18.3, and are particularly important
for formatting.

e File I/O uses the classes declared in <fstream>. To open a file for output from
a program, use the of stream constructor:
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ofstream output_file("file.dat");
To open a file for input fo a program, use the ifstream constructor:
ifstream input_file("file.dat");
To open a file for both input and output use the fstream constructor:
fstream file("file.dat", ios_base::inlios_base::out);
All three constructors have second arguments that determine the mode in which

the file is opened. (See Table 18.4.) The ofstream and ifstream constructors
have defaults for these arguments.

Always check that a file has been successfully opened:

if (loutput_file)
cerr << "Failed to open file.\n";

Use close () to explicitly close a file:
output_£file.close();

The function, seekg(), changes the position of the get pointer, associated with
a file open for input:

input_file.seekg(0);

The function, seekp(), changes the position of the put pointer, associated with
a file open for output:

output_file.seekp(0);
Streams can be assigned:

ofstream error_file("error.dat");
cerr = error_£file;

In this example, insertions are sent to the error.dat file instead of the screen.
The condition of a stream can be good, eof, fail or bad.

The error state of a stream is tested by the good(), eof (), fail () and bad()
functions:

if (my_file.good())
cout << "Condition state is good.\n";

The error state can be reset to good by using the clear() function:
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my_file.clear();

e The insertion operator, <<, can be overloaded for a user-defined class, X, by a
friend function with the declaration:

ostream &operator<<(ostream &os, const X &obj);

e The extraction operator, >>, can be overloaded for a user-defined class, X, by a
friend function with the declaration:

istream &operator>>(istream &is, X &obj);

e For details of the I/O Library that are not discussed in this chapter consult [1]
and [10], together with the reference manual for your particular system.

18.12 Exercises

1. Explain what the result of the following code would be:

double x = 128.0;
cout.write(&x, sizeof (x));

2. Using the techniques learned in this chapter, modify the activate () function for
the menu class discussed in Section 12.7.2 so that the function handles incorrect
user-supplied values for choice, such as “which one?”.

3. By assigning cin and cout, modify the alphabetic sort program, developed in
Section 7.8.2, so that it reads the data from a file and writes the results to a
different file.

4. Implement insertion and extraction operators for the string class, described in
Section 9.6.2.

5. For the 1ist class (developed in Section 10.3.1) replace the print () function by
an inserter.

6. Implement an inserter for a two-dimensional self-describing array class. (See
Chapter 8.) For small arrays, your operator should produce output in the style:

1 4 7
2 30
9 1 5

For large arrays the required style is:

row O:

row 1:
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Ensure that the output is appropriately formatted, irrespective of the initial
format setting for the output stream.

7. Design and implement a class so that objects can store an arbitrary length, signed
integer. Implement an appropriate inserter and extractor.

8. Use the I/0 library to output a neatly formatted calendar of the form:

January February
Sun 5 12 19 26 2 9 16 23
Mon 6 13 20 27 3 10 17 24
Tue 7T 14 21 28 4 11 18 25
Wed 1 8 15 22 29 5 12 19 26
Thu 2 9 16 23 30 6 13 20 27
Fri 3 10 17 24 31 7T 14 21 28
Sat 4 11 18 25 1 8 15 22 29



Appendix A

The ASCII Character Codes

[ Decimal Octal Hex. Meaning | [ Decimal Octal Hex. Meaning |
0 0 0 null 26 32 la SUB
1 1 1 SOH 27 33 1b escape
2 2 2 STX 28 34 le FS
3 3 3 ETX 29 35 1d GS
4 4 4 EOT 30 36 le RS
5 5 5 ENQ 31 37 1f Us
6 6 6 ACK 32 40 20 space
7 7 7 bell 33 41 21 !

8 10 8 backspace 34 42 22 "
9 11 9 horizontal tab 35 43 23 #
10 12 a new line 36 44 24 $
11 13 b vertical tab 37 45 25 %
12 14 c form feed 38 46 26 &
13 15 d carriage return 39 47 27 ’
14 16 e SO 40 50 28 (
15 17 £ SI 41 51 29 )
16 20 10 DLE 42 52 2a *
17 21 11 DC1 43 53 2b +
18 22 12 DC2 44 54 2c ,
19 23 13 DC3 45 55 2d -
20 24 14 DC4 46 56 2e .
21 25 15 NAK 47 57 2f /
22 26 16 SYN 48 60 30 0
23 27 17 ETB 49 61 31 1
24 30 18 CAN 50 62 32 2
25 31 19 EM 51 63 33 3

Table A.1: ASCII character codes.
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| Decimal Octal Hex. Meaning | | Decimal Octal Hex. Meaning |

52 64 34 4 90 132 5a, Z
53 65 35 5 91 133 5b

54 66 36 6 92 134 5¢ \
55 67 37 7 93 135 5d ]
56 70 38 8 94 136 5e -
57 71 39 9 95 137 5f -
58 72 3a, : 96 140 60 ¢
59 73 3b ; 97 141 61 a
60 74 3c < 98 142 62 b
61 75 3d = 99 143 63 (¢
62 76 3e > 100 144 64 d
63 77 3f ? 101 145 65 e
64 100 40 @] 102 146 66 f
65 101 41 A 103 147 67 g
66 102 42 B 104 150 68 h
67 103 43 C 105 151 69 i
68 104 44 D 106 152 6a j
69 105 45 E 107 153 6b k
70 106 46 F 108 154 6¢ 1
71 107 47 G 109 155 6d m
72 110 48 H 110 156 6e n
73 111 49 I 111 157 6f 0
74 112 4a J 112 160 70 P
75 113 4b K 113 161 71 q
76 114 4c L 114 162 72 r
77 115 4d M 115 163 73 S
78 116 4e N 116 164 74 t
79 117 4f O 117 165 75 u
80 120 50 P 118 166 76 \s
81 121 51 Q 119 167 77 \4
82 122 52 R 120 170 78 X
83 123 53 S 121 171 79 y
84 124 54 T 122 172 Ta Z
85 125 55 U 123 173 b {
86 126 56 A% 124 174 Tc |
87 127 57 w 125 175 7d }
88 130 58 X 126 176 Te -
89 131 59 Y 127 177 7t delete

Table A.2: Table A.1: ASCII character codes—continued.
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Operators

Table B.1 lists the available C++ operators. This table also gives the sections where
the operators are first introduced since this should allow you to easily look up what an
operator does. (If there is no section number, the operator is not used in this book.)
All of the operators within a group in this table have the same precedence. A group of
operators higher up in the table has a higher precedence than a group further down the
table. All binary operators, except for the assignment operators, are left associative.
The assignment operators and unary operators are right associative. Note that it is
not true that all operators in the same group have the same associativity.

Within an expression, operators with the higher precedence are evaluated first. If
the resulting expression contains operators with the same precedence, then these are
evaluated right to left, or left to right, according to their associativity. For instance,
in the expression:

6 +3*x4/3+2

the * and / operators have the same highest precedence. Since they are not unary
or assignment operators, they also have the same left to right associativity. Therefore
3 * 4 is evaluated first, giving 4 for the expression 3 * 4 / 3. The whole expression
then reduces to:

6 +4+ 2

which is evaluated, left to right, giving the final result of 12.

It is not worth learning the precedence of every operator; for the less well used
operators either consult Table B.1 or else use parentheses. In any case, if you are
uncertain about how an expression is evaluated according to operator precedence and
associativity, then using parentheses will probably make it much more readable.
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Operator Section
scope resolution 8.5, 14.3
global scope resolution 5.4
. member selection 8.3
-> member selection 8.9
(] subscripting 6.2
O function call 5.1
++ postfix increment 3.1.5
- postfix decrement 3.1.5
typeid type identification
typeid run-time type identification
dynamic_cast<>() run-time conversion 3.3.2
static_cast<>() compile-time conversion 3.3.2
reinterpret_cast<>() unchecked conversion 3.3.2
const_cast<>() const conversion 3.3.2
sizeof size of object 3.4.1
sizeof size of type 3.4.1
++ prefix increment 3.1.5
-= prefix decrement 3.1.5
- unary minus 3.1.6
O C-style cast Appendix C
! logical negation 4.2
address-of 6.1.1
* dereference 6.1.2
new allocate 7.6.1
new [] allocate 7.6.1
delete deallocate 7.6.2
deletel[] deallocate 7.6.2
- one’s complement 11.1.1
=>% member selection 8.10
Lk member selection 8.10
* multiplication 3.1.2
/ division 3.1.3
% modulo (remainder) 3.1.4
<< left shift 11.1.5
>> right shift 11.1.5
> greater than 4.1
>= greater than or equal to 4.1
< less than 4.1
<= less than or equal to 4.1

Table B.1: Operator precedence.
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Operator [ Section |
+ addition 3.1
- subtraction 3.1
== equal 4.3
1= not equal 4.3
& bitwise AND 11.1.2
- bitwise XOR 11.1.3
| bitwise OR 11.1.4
&& logical AND 4.2
|l logical OR, 4.2
= assignment 3.1
+= add and assign 3.4.3
-= subtract and assign 3.4.3
*= multiply and assign 3.4.3
/= divide and assign 3.4.3
%= modulo and assign 3.4.3
<<= left shift and assign 11.1.6
>>= right shift and assign 11.1.6
&= AND and assign 11.1.6
~= exclusive OR and assign 11.1.6
= inclusive OR and assign 11.1.6
7 conditional operator 4.11
throw throw exception 15.2
, comma 4.9

Table B.2: Table B.1: Operator precedence—continued.



Appendix C

Differences between C and

C

The basic premiss underlying this book is that C+4 can be learned from scratch,
rather than as an adjunct to C. However, you may have to reuse existing code written
in C.! The aim of this Appendix is to highlight some of the differences between the two
languages. There are also some differences between the original, 1978, edition of [5]
and the ANSI C Standard; these differences are discussed in many references, including
[5]. In fact, many improvements to the C language are features that were originally
part of C++. However, a further complication is that the ANSI C++ Standard differs
from earlier versions of C++. Here we concentrate on the major differences between
ANSI C and C++. Since the assumption is that you will mainly program in C++
rather than C, this Appendix only highlights the major differences. A more complete
discussion is given in Appendix B of [10].

Features only available in C++

Many features that are available in C++ are not available in C. The following is a brief
summary of features that are only available in C++4-:

e Support is provided for object-oriented programming. Classes can be declared
and these can have data hiding, member functions, virtual functions, overloaded
operators, derived classes, friend functions and classes, constructors, destructors
etc. (See Chapters 8 to 18 for numerous examples.)

e Function and class templates can be declared.

e Function names can be overloaded:

int square(int i);
double square(double x);

e The inline specifier can be used to suggest that the compiler directly substitutes
the function body:

LIf you do need information specifically on C, rather than C++, then consult [4], [5] and [6].
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inline int square(int i) { return i * i; }
The new and delete operators perform dynamic memory management:

double *pt = new double[1000];
/...
delete pt;

Objects can be declared anywhere within a block:

int length;
length = 1000;
vector v(length);

Declarations can occur in for statement initializers and conditions:

for (int i = 0; i < i_max; ++i)
sum += f(i);

This is a significant departure from earlier versions of C++-.
An explicit type conversion can be made by a casts of the form:

dynamic_cast<>() static_cast<>()
const_cast<>() reinterpret_cast<>()

These replace the C-style casts:

x = double(i); // C-style cast.
y = (double)j; // Older C-style cast.

which are still available in C++, but should be avoided.

There is a distinct Boolean type, bool, together with the defined keywords true
and false.

Comments can be denoted by //:
// This is a comment.
The standard iostream library overloads operators to perform type-safe 1/0:

cout << "Enter dimension: " << flush;
cin >> dim;

Errors can be trapped by means of exception handling, which introduces the
C++ keywords, throw and catch.
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Unemphasized features common to C and C++

There are some features, common to C and C++4, which have not been described in
detail because they have been superseded by features available in C++:

e The #define preprocessor directive is often used in C programs to implement
complicated macros and examples occur in many of the header files for the stan-
dard C libraries. The C++ technique of declaring inline functions provides a
safer alternative.

e Structures are widely used in C and are like very restricted classes that can only
have public data members:

struct complex {
double re, im;

};

struct complex z;
z.re = 11.11;
z.im = -2.13;

Structures have not been introduced since classes give a uniform notation.

e Dynamic memory management is performed in C by library functions (such as
malloc()) rather than the new and delete operators. The C++ operators are
safer and more convenient.

e Input and output can be carried out by library functions, such as scanf () and
printf (). The C++ iostream library provides a safer, more convenient and
object-oriented technique.

e Using the ellipsis in a function declaration, as in:
void results(...);

indicates that the function has an unknown number of arguments. Since any type
checking is lost it is best to avoid defining such functions if it is at all possible.

Some incompatibilities between C and C++

There are some very minor differences of interpretation between statements that are
valid C and C++:

e Whereas in C++ ’x’ has the type char, in C it has the type int. As a con-
sequence, sizeof (’x’) is equal to sizeof (char) in C++ and sizeof (int) in

C.

e Whereas in C++ an empty argument list in a function declaration means that
there are no arguments (as does void), in C it indicates unknown arguments.
Although interpreting an empty argument list in this way is now obsolescent in
C, you may still come across it.
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e A C++ structure, struct, is a synonym for a class in which all of the members
are public by default. Since a C++ structure can have function members, it is
a significant extension of the C construct.

e The default linkage of an identifier, preceded by the const specifier, is extern in

C. This is not true in C++ and it must either be initialized or explicitly declared
extern.

e A C++ compiler “mangles” function names (in a well-defined way) in order
to provide type-safe linkage. This means that object code resulting from a C
compiler will not link with code from a C++ compiler. The simplest solution
may be to recompile the C source files using the same C++ compiler. The
alternative is to use a linkage directive in the C++ code:

extern "C" double o0ld_C_function(double x);

which prevents name mangling for this particular function. There is an alternative
form of the linkage directive for more than one function:

extern "C" {
double 0ld_C_function(double x);
int ancient_C_function(char *pt);
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function 85-117
argument
actual, 87
default, 93-94
empty list, 89
pointer, 157-158
reference, 179-182, 211
type conversion, 260
void, 89
body, 86
call, 87
operator, 522

operator overloaded, 262, 271-273

constructor, 223-227

declaration, 4, 90

declaring function, 90

definition, 85-88

formal argument, 86
unused, 92

friend, 231-233

header, 86

helper, 360

inline, 96-97, 204, 525, 527

invoking, 85-88

main(), 104

mathematical, 106

member, 197, 203

overloading, 101-104, 525
ambiguity resolution, 103

pointer to, 166-171

pure virtual, 342

return type conversion, 260

template, 449-453, 457458,
argument, 459
specialization, 451

virtual, 336-340
overriding of, 338

<functional> 476
fundamental type 19-35

G

generic pointer type 135
get () 495
getline() 495, 497, 498
global
object initialization, 101
scope, 98
GNU C++ compiler 2
good condition 507
good() 507
goto 12, 6768
greater than
operator, 45, 522
or equal operator, 45, 522

H
header file 2, 73, 90, 106, 235-236
heap 171
helper function 360
hex 501
hexadecimal constant 14, 15
horizontal tab 15, 519
Horner’s method 114
huge 12

I
I/O library 526
IDE 1
identifier 11-12
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525

IEEE floating point standard 33, 325

#if 72
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if 12, 52-53 overflow, 22
if else 54-57 part, 32
#ifdef 72 subtraction, 21
#ifndef 72, 228 underflow, 22
ifstream class 503 integral type 20-31
ignore() 423, 499 bit representation, 323-324
implicit conversion 260261 Boolean, 20
#include 72-73 character, 20
include file see header file integer, 20
inclusive OR and assign operator 310, 523 Integrated Development Environment 1
increment operator 25-26, 33 internal 501
index of array 127 internal linkage 234
indirect base class 348, 379, 381 <iomanip> 490
indirection operator 120-121 ios 500
inequality operator 48-50, 523 <ios> 490
infinity, signed 326 ios_base 500
inheritance 331 <iosfwd> 490
and error class, 432-434 <iostream> 2, 490
multiple, 375-400 <istream> 490
derivation list, 376 istream class 494-499
single, 331-373 iteration statements 59-65
initialization 38-39 J
list, 140 Jackson, E. Atlee 530
of array, 140-141
of global objects, 101 K

of member object having a
constructor, 292

of public data members, 223

of static objects, 100

static data member, 220

Kelly, Al 529

Kernighan, Brian W. 529
keyword 12-13

Koenig, Andrew 529

inline 12, 205 L
function, 96-97, 204, 234, 525, 527 | see long; long double
input label
for files, 502-507 case, 58
for user-defined types, 509 default, 58
stream, 4, 24 late binding 351
unformatted, 495-499 least significant bit 311
inserter 492 left 501
insertion operator 2, 22, 492 left shift
instantiation 450, 454 and assign operator, 310, 523
int 12, 20-22 operator, 309, 522
INT_MAX 22 Legendre polynomial 116
INT_MIN 22 less than
integer operator, 45, 522
addition, 21 or equal operator, 45, 522
assignment, 21 lexical basis of C++ 9-18
constant, 13-14 Library see Standard Library
division, 23 library 1
by zero, 23 <limits> 475
truncation, 23 #line 72

multiplication, 23 linkage
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C and C++, 528
changing using extern, 234
external, 234
internal, 234
type-safe, 234, 528
linked list
double, 300-306, 373
single, 295-300
linker 234
linking C++ code 1
Linux 2, 20, 109, 504
list
LIFO, 296
stack, 296
<list> 477
list class 517
literal 13-16
<locale> 477
logical
AND operator, 47-48, 523
negation operator, 4748, 522
OR operator, 47-48, 523
logistic map 116
long 12, 28-29
double, 32, 34-35
int, 28-29
Ivalue 40
unmodifiable, 40, 134, 154

M
M_PI 115
macro 74
main() 2, 104
arguments to, 163-166
make utility 240
malloc() 527
manipulator 501
boolalpha, 501
dec, 501
endl, 501, 502
ends, 501
fixed, 501
flush, 501
hex, 501
internal, 501
left, 501
noboolalpha, 501
noshowbase, 501
noshowpoint, 501
noshowpos, 501
noskipws, 501
nounitbuf, 501
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nouppercase, 501
oct, 501
right, 501
scientific, 501
setfill(), 502
setprecision(), 502
setw(), 502
showbase, 501
showpoint, 501
showpos, 501
skipws, 501
unitbuf, 501
uppercase, 501
ws, 501
<map> 477
Martin, Robert 529
mathematical functions 106, 479
matrix
addition, 185-188
class, 288
multiplication, 4
maximal munch 17
member 197
access
ambiguities, 386
operator, 204, 214
data, 197
static, 219-221
function, 197, 203
const, 229-231
static, 221-222
object
selector, 215
with constructor, 292
pointer selector, 215
selection operator, 522
memcpy 192
memory
addressing, 119
leakage, 294
<memory> 476
menu class 363-371, 517
messages 208
methods 208
Meyer, Bertrand 529
modulo and assign operator 39, 523
modulo arithmetic 29
modulus operator 23-24, 33, 522
Monte Carlo technique 115
most significant bit 311
multi-dimensional array 136139



INDEX

and pointers, 138-139
multiple
assignments, 39
inheritance, 375-400
derivation list, 376
multiplication
integer, 23
operator, 33, 522
floating point, 33
multiply and assign operator 39, 523
mutable 12

N
name

clashes, 401-403
mangling, 234, 528
namespace 401-419
accessing member, 404-405
alias, 406—407
creating, 403-406
nested, 406
std, 411-412
unnamed, 412-413
using declaration, 409-411
using directive, 407-409
NaN 33, 326
far 12
nested comments 10
alternative to, 76
<new> 475
new 12, 171-179, 522, 526, 527
exception handling, and, 437
new line 15, 519
Newkirk, James 529
Newton—Raphson 81, 196
noboolalpha 501
normalized number 326
noshowbase 501
noshowpoint 501
noshowpos 501
noskipws 501
not 13
Not a Number 33, 326
not equal operator 48-50, 523
not_eq 13
nounitbuf 501
nouppercase 501
NULL 127
null 519
character, 15
pointer, 126, 173
statement, 70

<numeric> 479
numerical integration 82

O
object 198
-oriented, xv, 6, 92
code, 233
initialization
auto, 99
static, 100
oct 501
octal constant 14, 15
ofstream class 502
one’s complement operator 308, 522
one-dimensional array 127-129
open mode options 504
operands
order of evaluation of, 71-72
type conversion, 260
operator 16
addition, 33
address-of, 120
alternative representation of, 13
assignment, 39-40
associativity, 521
binary, 26
bitwise, 307-310
AND, 308
assignment, 310
complement, 308
exclusive OR, 308
inclusive OR, 309
class member access, 199, 215
comma, 69
conditional expression, 71
const, 252
decrement, 25-26, 33
postfix, 25
prefix, 25
delete, 262, 526, 527
dereferencing, 120-121
division, 33
equality, 48-50
extraction, 24
function, 262-269
explicit call, 262
greater than, 45
or equal, 45
increment, 25-26, 33
postfix, 25
prefix, 25
indirection, 120-121
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insertion, 2, 22
left shift, 309
less than, 45
or equal, 45
logical
AND, 47-48
negation, 47-48
OR, 47-48
member access, 204, 214
modulus, 23-24, 33
multiplication, 33
new, 262, 526, 527
not be overloaded, 245
not equal, 48-50
one’s complement, 308
overloading, 245-286
general guidelines, 273, 274
restriction to non-static
members, 262, 273
restriction to static members,
262, 273
restrictions, 245
pointer-to-member, 213-217
precedence, 521
relational, 45—47
remainder, 23-24
right shift, 309
scope resolution, 204, 213, 404
sizeof, 36-38
subscripting, 127
overloaded, 360
subtraction, 33
throw, 423-425
unary, 26
minus, 26, 33
plus, 26
operator 12
or 13
or_eq 13
<ostream> 490
ostream class 492-494
output
for files, 502-507
for user-defined types, 509
unformatted, 493-494
overload 12
overloaded
assignment operator, 246247, 262
default, 246
binary operator, 263-264
class member access operator, 262
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constructors, 225
delete operator, 262
function, 101-104, 525
ambiguity resolution, 103
call operator, 262, 271-273
new operator, 262
operators, 245-286
general guidelines, 273, 274
restriction to non-static
members, 262, 273
restriction to static members,
262, 273
restrictions, 245
subscripting operator, 262, 269-271,
360
unary operator
postfix, 267-269
prefix, 264-266
overriding of virtual function 338

P

parameterized type 449
parentheses 28, 87, 90, 171
parse 9
Pascal 90
pascal 12
pass
by reference, 87, 179
by value, 87
Pohl, Ira 529
pointer 121-124
-to-member
declarator, 214
operator, 213-217
and arrays, 129-134
and multi-dimensional arrays,
138-139
arithmetic, 130-133
addition, 130
relational operation, 132
subtraction, 131
as function argument, 157-158
conversion, 135-136
to an array, 143
to const type, 123
to function, 166-171
to member, 211-213
to pointer, 124
to undeclared memory, 125-126
polymorphism 336, 351
postfix
++ operator, 25, 522
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overloaded, 267-269
—— operator, 25, 522
overloaded, 267269
pow() 112, 168
#pragma 72
precedence of operators 521
floating point, 33
integer, 2628
prefix
++ operator, 25, 522
overloaded, 264-266
—— operator, 25, 522
overloaded, 264-266
preprocessor 72-77
directive, 72
elif, 75
else, 75
endif, 75, 228
if, 75
ifndef, 228
operator, 72
Press, William H. 530
prime numbers 115, 164, 320, 329,
484-486
printf() 527
private 12, 199, 355
class, 287
programming style 16-17, 233-236
protected 12, 355
ptrdiff_t 41, 131
public 12, 199, 355, 389
pure virtual function 342
put ) 493

Q

quadratic equation 3, 45, 56, 57, 75
question mark 15

<queue> 477

Quicksort 195

R
ragged array 147-148, 179
rand() 106, 115, 151
RAND_MAX 115, 151
read() 498
recursion 95-96, 109
Redfern, E.J. 530
reference
argument, 179-182, 211
declarator, 179, 182-184
pass by, 179
return, 182-183
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variable, 183184
register 12
reinterpret_cast 12
relational operators 45—47
remainder operator 23-24
return 12, 86
for an object, 209-211
omission of type, 89
reference, 182-183, 210
type, 88-90
value, 95
Riemann ¢ function 168
right 501
right shift
and assign operator, 310, 523
operator, 309, 522
Ritchie, Dennis M. 529
Robson, Robert 530
root finding
by bisection, 109-112, 114, 168, 196
Newton—Raphson, 81, 196
run-time
conversion operator, 522, 526
type identification operator, 522, 526
rvalue 40

S

Savage benchmark 107-109
scanf () 527
scientific 501
scope 50-52, 97-99
and data protection, 217-219
class, 97, 205, 218
file, 98
global, 98
resolution operator, 98, 204, 213,
404, 522
Sedgewick, Robert 530
seekg() 505
seekp() 505
Segun, Irene A. 530
separate compilation 233-235
separator 11
<set> 477
setf () 500
setfill() 502
setprecision() 502
setw() 502
shape class 331, 356
shift operators 309-310
short 12, 29
int, 29
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showbase 501 Standard Library 104-107, 473-487
showpoint 501 algorithms, 478
showpos 501 and namespace std, 411412
Sieve of Eratosthenes 320-323, 329, categories, 474-479
484-486 complex class, 479-482
sign bit 325 containers, 477-478
signed 12 diagnostics, 475
char, 31 general utilities, 476
signed infinity 326 iterators, 478
significand 326 language support, 475
Simula 331 localization, 477
single inheritance 331-373 mathematical functions, 106, 479
single quote 14, 15 numerics, 479
singly linked list 295-300 rand (), 106
and namespaces, 413-417 strings, 107, 476477
and template, 467-469 system(), 106
size of array 127 timing functions, 107
size_t 37, 41, 106 statement 2
sizeof 12, 36-38, 522 label, 67
array, 141-142 terminator, 2
sizeof (char) in C 527 static
skipws 501 binding, 351
Smalltalk 208 member
Smith, James T. 530 class template, 456-457
sort 195 static 413
alphabetic, 189-193 static 12, 528
bubble, 192, 195, 306 class member, 234
source file 73 data member, 219-221
sparse vector class 306, 373 initialization of, 101
specialized template 462-465 member
specifier function, 221-222
class access, 199 storage, 99-101
private, 199 static_cast 12
protected, 355 std 3, 411412
public, 199 <stdexcept> 475
const, 40-41 storage map 138
inline, 205 strcat() 155
static, 99-101 stremp () 192
sphere class 197 strcpy O 155
sqrt () 4 stream
square assignment, 506-507
brackets, 28, 127, 137, 154 condition, 507-508
root, 4 bad, 507
<sstream> 490 bad (), 507
stack 96, 296 eof, 507
unwinding, 425 eof (), 507
<stack> 477 fail, 507
standard fail(), 507
functions, 104-107 good, 507
output stream, 2 good (), 507

types, 19 <streambuf> 490
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string 2, 153-156
constant, 15-16
concatenation, 15
end of, 15
functions, 107
terminator, 153
<string> 476
string class 279-284, 305, 373, 517
strlen() 192
Stroustrup, Bjarne xiii, 529, 530
struct 12, 527, 528
structure see struct
subclass 331
subscript of array 127
subscripting
operator, 127, 522
overloaded, 262, 269-271, 360
subtract and assign operator 39, 523
subtraction
integer, 21
operator, 33, 523
floating point, 33
superclass 331
switch 12, 57-59, 351
disadvantage of, 349
system() 106

T

template 449471
and friend, 460-462
declaration, 450
definition, 449
in bubble sort, 452
in singly linked list, 467-469
instantiation, 450, 454
member function specialization,

465-466

parameter, 459-460
specialized, 462-465

template 12

Teukolsky, Saul A. 530

this 12, 247-248

throw 12, 423-425, 523
fundamental type, 426

tied streams 492

token 9

translation unit 233

trapezoidal rule 82

true 12, 30, 45, 46, 526

try 12, 423-425

two’s complement arithmetic 324

type 19
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-safe linking, 234, 528

bool, 30

built-in, 19

character, 31

checking, 19

conversion, 35

demotion, 36

derived, 19

floating point, 32-35

identification, 522

int, 20-22

promotion, 35

standard, 19

user-defined, 19, 197
typedef 12, 41-42, 170, 234

typeid 12

<typeinfo> 475
typename 12

U

u see unsigned
unary operator 26
minus, 26, 33, 522
plus, 26
postfix, 25
overloaded, 267-269
prefix, 25
overloaded, 264-266
uncaught exception 436
unchecked conversion operator 522, 526
#undef 72

unexpected() 436

unformatted
input, 495-499
output, 493-494

union 12, 312-314

anonymous, 313

unitbuf 501

UNIX 20, 109, 193, 504
make utility, 240

unmodifiable lvalue 40

unnamed namespace 412-413

unsigned 12, 29-30

addition, 29
bit representation, 323
char, 31
subtraction, 29
unused formal argument of function 92

uppercase 501

user-defined type 19

using 12

declaration, 409-411
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directive, 407-409
<utility> 476

v

<valarray> 479
<vector> 477
vector<bool> 482-486
vertical tab 15, 519
Vetterling, William T. 530
virtual 12
base class, 381-385, 388
function, 336—-340
overriding of, 338
void 12, 89
voidx* 135
volatile 12

W
wchar_t 12
while 12, 60-61
white space 10, 11
write() 494
ws 501

X

xor 13
xor_eq 13

Z

zero 126
divide by, 23, 33
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