Hands-On

System
Programming
with C++

Hands-On System
Programming with C++

Build performant and concurrent Unix and Linux systems with
C++17

Dr. Rian Quinn

BIRMINGHAM - MUMBAI

Hands-On System Programming with C++

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar

Content Development Editor: Tiksha Sarang
Technical Editor: Riddesh Dawne

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Arvindkumar Gupta

First published: December 2018
Production reference: 1211218

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-788-0

www.packtpub.com

http://www.packtpub.com

To my beautiful wife, Charmaine Quinn. Without her, this book would not have been possible.

— Dr. Rian Quinn

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical ebooks and videos
from over 4,000 industry professionals

e Improve your learning with skill plans designed especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Dr. Rian Quinn is a Chief Technology Officer (CTO) in the Advanced Technologies
Business Unit at Assured Information Security, Inc. focused on trusted computing,
hypervisor related technologies, machine learning/artificial intelligence, and cyber security
for more than 10 years and has 9 years of technical management and business development
experience. He holds a Ph.D. in Computer Engineering, specializations in information
assurance and computer architectures, from Binghamton University. He is the co-founder
and lead developer of the Bareflank Hypervisor, and is an active member of several open
source projects, including Microsoft's Guideline Support Library (GSL) and OpenXT.

About the reviewer

Will Brennan is a C++/Python software engineer based in London with experience of
working on high-performance image processing and machine learning applications.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: Getting Started with System Programming
Technical requirements
Understanding system calls
The anatomy of a system call
Learning about different types of system calls
Console input/output
Memory allocation
File input/output
Networking
Time
Threading and process creation
System call security risks
SYSRET
Meltdown and Spectre
Benefits of using C++ when system programming
Type safety in C++
Objects of C++
Templates used in C++
Functional programming associated with C++
Error handling mechanism in C++
APls and C++ containers in C++
Summary
Questions
Further reading

Chapter 2: Learning the C, C++17, and POSIX Standards
Technical requirements
Beginning with the C standard language
How the standard is organized
Environment
Language
Libraries
How a C program starts
All about linking
Static libraries
Dynamic libraries
Scope
Pointers and arrays
Libraries

© ~N ~

1"
1"

13
13
13
14
15
15
16
17
18
19
22
24
26
27
28
28
28

29
30
30
31
31
31
32
32
34
36
37
37
39
42

Table of Contents

Learning about the C++ standard
How the standard is organized
General conventions and concepts
Language syntax
Libraries
Linking C++ applications
Scope
Pointers versus references
Libraries
Beginning with the POSIX standard
Memory management
Filesystems
Sockets
Threading
Summary
Questions
Further reading

Chapter 3: System Types for C and C++

Technical requirements

Exploring C and C++ default types
Character types
Integer types
Floating — point numbers
Boolean

Learning standard integer types
Structure packing

Summary

Questions

Further reading

Chapter 4: C++, RAIl, and the GSL Refresher
Technical requirements
A brief overview of C++17
Language changes
Initializers in if/switch statements
Additions to compile-time facilities
Namespaces
Structured bindings
Inline variables
Changes in the library
String View
std::any, std::variant, and std::optional
Resource Acquisition Is Initialization (RAII)
The Guideline Support Library (GSL)
Pointer ownership

[ii]

Table of Contents

Pointer arithmetic

Contracts

Utilities
Summary
Questions
Further Reading

Chapter 5: Programming Linux/Unix Systems
Technical requirements
The Linux ABI
The System V ABI
The register layout
The stack frame
Function prologs and epilogs
The calling convention
Exception handling and debugging
Virtual memory layout
Executable and Linkable Format (ELF)
ELF sections
ELF segments
The Unix filesystem
Unix processes
The fork() function
The wait() function
Interprocess communication (IPC)
Unix pipes
Unix shared memory
The exec() function
Output redirection
Unix signals
Summary
Questions
Further reading

Chapter 6: Learning to Program Console Input/Output
Technical requirements
Learning about stream-based 10
The basics of stream
Advantages and disadvantages of C++ stream-based 10
Advantages of C++ stream-based 10
Disadvantages of C++ stream-based 10
Beginning with user-defined types
Safety and implicit memory management
Common debugging patterns
Performance of C++ streams
Learning about manipulators

106
108
110
112
112
112

113
114
114
114
115
116
117
120
124
129
129
131
137
140
142
143
148
151
153
157
159
164
167
170
171
171

172
172
173
173
174
175
175
175
177
179
188
189

[iii]

Table of Contents

Recreating the echo program

Understanding the Serial Echo server example
Summary

Questions

Further reading

Chapter 7: A Comprehensive Look at Memory Management

Technical requirements
Learning about the new and delete functions
The basics for writing a program
Aligning memory
nothrow
Placement of new
Overloading
Understanding smart pointers and ownership
The std::unique_ptr{} pointer
The std::shared_ptr pointer
Learning about mapping and permissions
The basics
Permissions
Smart pointers and mmap()
Shared memory
Learning importance of memory fragmentation
External fragmentation
Internal fragmentation
Internal over external fragmentation
External over internal fragmentation
Summary
Questions
Further reading

Chapter 8: Learning to Program File Input/Output
Technical requirements
Opening a file

Different ways to open a file
Modes for opening a file
Reading and writing to a file
Reading from a file
Reading by field
Reading bytes
Reading by line
Writing to a file
Writing by field
Writing bytes
Understanding file utilities
Paths

198
206
213
214
214

215
215
216
216
219
224
226
229
234
234
243
253
253
256
258
260
263
263
264
265
265
266
266
266

267
267
268
268
270
275
275
275
277
281
283
283
285
294
294

[iv]

Table of Contents

Understanding the logger example
Learning about the tail file example
Comparing C++ versus mmap benchmark
Summary

Questions

Further reading

Chapter 9: A Hands-On Approach to Allocators
Technical requirements
Introducing the C++ allocators
Learning about the basic allocator
Understanding the allocator's properties and options
Learning the properties
The value pointer type
Equality
Different allocation types
Copying equal allocators
Moving equal allocators
Exploring some optional properties
Optional functions
Studying an example of stateless, cache-aligned allocator
Compiling and testing
Studying an example of a stateful, memory—pool allocator
Compiling and testing
Summary
Questions
Further reading

Chapter 10: Programming POSIX Sockets Using C++
Technical requirements
Beginning with POSIX sockets
Beginning with APIls
The socket() API
The bind() and connect() APls
The listen() and accept() APIs
The send(), recv(), sendto(), and recvfrom() APIs
Studying an example on the UDP echo server
Server
The client logic
Compiling and testing
Studying an example on the TCP echo server
Server
The client logic
Compiling and testing
Exploring an example on TCP Logger
Server

307
310
312
316
316
317

318
319
319
320
324
324
324
325
326
330
332
334
345
346
348
349
358
359
360

360

361
361
362
362
362
364
366
367
369
369
375
380
381
381
386
389
390
390

[v]

Table of Contents

The client logic 393
Compiling and testing 396
Trying out an example for processing packets 397
The client logic 400
Compiling and testing 401
Processing an example of processing JSON 402
Server 403
The client logic 405
Compiling and testing 406
Summary 407
Questions 407
Further reading 408
Chapter 11: Time Interfaces in Unix 409
Technical requirements 409
Learning about POSIX time.h APls 410
Learning about the types of APIs 410
The time() AP 411
The ctime() typedef 412
The localtime() and gmtime() APIs 413
The asctime() function 413
The strftime() function 414
The difftime() function 416
The mktime() function 417
The clock() function 418
Exploring C++ Chrono APls 420
The system_clock() API 420
The time_point API 421
Duration 423
The steady_clock function 427
The high_resolution_clock function 428
Studying an example on the read system clock 429
Compiling and testing 430
Studying an example on high-resolution timer 431
Compiling and testing 433
Summary 434
Questions 434
Further reading 434
Chapter 12: Learning to Program POSIX and C++ Threads 435
Technical requirements 436
Understanding POSIX threads 436
The basics of POSIX threads 436
Yielding 440
Synchronization 443

[vi]

Table of Contents

Exploring C++ threads 449
The basics of C++ threads 449
Yielding 452
Synchronization 454

Studying an example on parallel computation 466
Compiling and testing 470

Studying an example on benchmarking with threads 471
Compiling and testing 473

Studying an example on thread logging 474
Compiling and testing 478

Summary 479

Questions 479

Further reading 479

Chapter 13: Error — Handling with Exceptions 480

Technical requirements 480

Error handling POSIX-style 481

Learning about set jump exceptions 488

Understanding exception support in C++ 494

Studying an example on exception benchmark 505
Compiling and testing 510

Summary 511

Questions 511

Further reading 512

Assessments 513
Other Books You May Enjoy 519
Index 522

[vii]

Preface

With this book, we aim to provide you with an understanding of Linux/Unix system
programming, a reference manual on Linux system calls, and an insider's guide to writing
smarter, faster code using C++. The book will explain the differences between POSIX
standard functions and special services offered by modern C++.

This book will also teach the reader about basic I/O operations, such as reading from, and
writing to, files, advanced I/O interfaces, memory mappings, optimization techniques,
thread concepts, multithreaded programming, POSIX threads, interfaces for allocating
memory and optimizing memory access, basic and advanced signal interfaces, and their
role on the system. This book will also explain clock management, including POSIX clocks
and high-resolution timers. Finally, this book uses modern examples and references to
provide up-to-date relevance to C++ and the wider community, including the Guideline
Support Library and its role in system programming.

Who this book is for

This book is for beginner to advanced Linux and general UNIX programmers working with
C++, or anyone looking for a general overview of Linux, C++17, and/or systems
programming with POSIX, C, and C++. Although this book covers a lot of topics on modern
C++, its focus is on system programming. It is expected that the reader already has a
general familiarity with C and C++, as both will be leveraged throughout this book.

What this book covers

Chapter 1, Getting Started with System Programming, lays the foundation for the book,
helping to define what system programming is by providing some basic examples and
explaining the benefits of system programming with C++.

Chapter 2, Learning the C, C++17, and POSIX Standards, reviews the C, C++, and POSIX
standards, providing an overview of the facilities provided by each standard with respect
to system programming, as well as a general overview of the topics that will be discussed
throughout this book.

Preface

Chapter 3, System Types for C and C++, provides a comprehensive overview of the system
types that are provided by C and C++ and how they are used when carrying out system
programming. This chapter will also discuss many of the pitfalls associated with the native
types and how to overcome them.

Chapter 4, C++, RAII, and the GSL Refresher, provides a general overview of the additions
provided by C++17. This chapter will also discuss the benefits of Resource Acquisition Is
Initialization (RAII), and how to leverage it when carrying out system programming. This
chapter will conclude with an overview of the Guideline Support Library, which is used
throughout this book to help maintain C++ core guideline compliance.

Chapter 5, Programming Linux/Unix Systems, provides a comprehensive overview of
programming on Linux /UNIX-based systems, including an overview of the System V
specification, programming Linux processes, and Linux-based signals.

Chapter 6, Learning to Program Console Input/Output, provides a complete overview of how
to leverage C++ to program console input and output, including std: : cout and

std: :cin. More advanced topics, such as how to handle custom types, will also be
discussed.

Chapter 7, A Comprehensive Look at Memory Management, provides a complete review of the
memory management facilities provided by both C and C++. In this chapter, we will review
the shortcomings of C and how modern C++ can be used to overcome many of these
shortcomings.

Chapter 8, Learning to Program File Input/Output, reviews how to read and write to files
using C++17 and compare these facilities to those provided by C. In addition, we will dive
into the std: : filesystem additions provided by C++17 for working with files and
directories on disk.

Chapter 9, A Hands-On Approach to Allocators, covers C++ allocators and how they can be
leveraged to perform system programming. Unlike most other attempts at describing C++
allocators, we will walk you through how to create multiple, real-world examples of
stateful allocators, including a memory pool allocator, and demonstrate its potential
performance benefits.

Chapter 10, Programming POSIX Sockets Using C++, provides an overview of how to
program POSIX sockets (in other words, network programming) using C++ with a series of
examples. In this chapter, we will also discuss some of the issues associated with POSIX
sockets and how they can be overcome.

[2]

Preface

Chapter 11, Time Interfaces in Unix, provides a thorough overview of the time interfaces
provided by both C and C++ and how they can be used together to deal with time while
system programming, including how to use the interface for benchmarking.

Chapter 12, Learning to Program POSIX and C++ Threads, discusses the thread programming
and synchronization facilities provided by both POSIX and C++ and how they interrelate.
We will also provide a series of examples that demonstrate how to leverage these facilities.

Chapter 13, Error - Handling with Exceptions, covers both C and C++ error handling,
including C and C++ exceptions. In this chapter, we will also walk through a series of
examples that demonstrate the benefits of leveraging C++ exceptions over traditional C
error handling.

To get the most out of this book

The reader should have a general knowledge of C and C++ and be capable of writing,
compiling, and executing C and C++ applications on Linux. In order to execute the
examples in this book, the reader should also have access to an Intel-based computer
running Ubuntu Linux 17.10 or higher. The reader should also ensure that GCC 7.0 or
higher is installed using the following;:

sudo apt—get install build-essential

Download the example code files

You can download the example code files for this book from your account at
www.packtpub. com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

[3]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-System-Programming-with-CPP/. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "For example, look at the difference between using an std: :array{} or
astd::vector{} command."

A block of code is set as follows:
int array([10];
auto rl = array + 1;

auto r2 *(array + 1);
auto r3 arrayl[1];

[4]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

int main ()

{
auto ptrl = mmap_unique_server<int> (42);
auto ptr2 = mmap_unique_client<int>();
std::cout << *ptrl << '\n';
std::cout << *ptr2 << '\n';

}

Any command-line input or output is written as follows:

> cmake -DCMAKE_BUILD_TYPE=Release ..
> make

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[5]

http://www.packtpub.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise ini
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

http://authors.packtpub.com/
https://www.packtpub.com/

Getting Started with System
Programming

In this chapter, we will discuss what system programming is (that is, the act of making
system calls to the operating system to perform an action on your behalf), and go into the
pros and cons of both system programming, and system programming with C++.

In this chapter, we will review the following:

¢ System calls, including what they are, how to execute them, and the potential
security risks associated with them

¢ The benefits of using C++ when system programming

Technical requirements

In order to follow the examples in this chapter, the reader must have:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

Getting Started with System Programming Chapter 1

Understanding system calls

An operating system is a piece of software designed to execute one or more applications
simultaneously, while also providing the resources needed for those applications

to execute. To accomplish this, the operating system must be capable of dividing hardware
resources between all the applications executing on the system at the same time.

For example, most personal computers (PCs) have a single hard disk that stores all the files
being used by the owner of the PC. On modern PCs, it's likely the user will want to execute
several applications at once—for example, a web browser and an office suite.

Both of these applications will need exclusive access to the hard disk at various times while
executing. In the case of the web browser, this might be to cache websites to disk, while in
the case of the office suite, this might be to store documents.

It's the operating system's responsibility to manage the applications and their access to the
hard disk, to ensure that both the web browser and the office suite are able to execute

properly.

To accomplish this, operating systems provide an application programming

interface (API) that applications can leverage to accomplish their tasks. Accessing the hard
disk is an example of one of these tasks. The read () and write () functions are examples
of APIs provided by POSIX-compliant operating systems for reading from and writing data
to file descriptors.

Under the hood, these APIs make calls to the operating system using an application binary
interface (ABI) called a system call. The act of making system calls to accomplish tasks
provided by the operating system is called system programming, which is the main focus
of this book.

The anatomy of a system call

For the purposes of this section, we will focus our examples on the Intel x86 architecture,
although these examples apply to most other CPU architectures.

The original x86 architecture leveraged interrupts to provide system call ABIs. The APIs
provided by the operating system would program specific registers on the CPU, and make
a call to the operating system using an interrupt.

[8]

Getting Started with System Programming Chapter 1

For example, using BIOS, an application could read data from a hard disk using int 0x13
with the following register layout:

e AH = 2

e AL: Sectors to read

e cH: Cylinder

e CL: Sector

e DH: Head

e DL: Drive

e ES:BX: Buffer address

The application author would use the read () API command to read this data, while under
the hood, read () would perform the system call using the preceding ABI. When int

0x13 executed, the application would be paused by the hardware, and the operating
system (in this case, BIOS) would execute on behalf of the application to read data from the
disk and return the result in the buffer provided by the application.

Once complete, BIOS would execute iret (interrupt return) to return to the application,
which would then have the data read from disk waiting in its buffer to be used.

With this approach, the application doesn't need to know how to physically interface with
the hard disk on that specific computer in order to read data; a task that is meant to be
handled by the operating system and its device drivers.

The application doesn't have to worry about other applications that may be executing
either. It can simply leverage the provided API (or ABI, depending on the operating
system), and the rest of the gory details are handled by the operating system.

In other words, system calls provide a clean delineation between applications, to help the
user accomplish specific tasks, and to help the operating system whose job it is to manage
these applications and the hardware resources they require.

Interrupts are, however, slow. The hardware makes no assumptions about how the
operating system is written, or how the applications the operating system is executing are
written or organized. For this reason, interrupts must save the CPU state before the
interrupt handler is executed, and restore this state when the iret command is executed,
leading to poor performance.

As will be shown, applications make a lot of system calls when attempting to perform their
job, and this poor performance became a bottleneck on x86 architectures (as well as other
CPU architectures).

[9]

Getting Started with System Programming Chapter 1

To solve this issue, modern versions of Intel x86 CPU provided fast system call instructions.
These instructions were designed specifically to address the performance bottleneck of
interrupt-driven system calls. However, they require coordination between the CPU, the
operating system, and the applications executing on that operating system to reduce
overhead.

Specifically, the operating system must structure the memory layout of itself and the
applications it's running in a specific way, dictated by the CPU. By predefining the memory
layout of the operating system and its associated applications, the CPU no longer needs to
save and restore as much CPU state when performing a system call, reducing overhead.
How this is accomplished is different depending on whether you're executing on an Intel or
AMD x86 CPU.

The most important thing to understand with respect to how a system call is performed is
that a system call is not cheap. Even with fast system call support, a system call has to
perform a lot of work. In the case of reading data from a hard disk via the read () API, the
CPU register state must be set up and a system call instruction must be executed. CPU
control is handed off to the operating system to read data from the disk.

Since more than one application might be executing, and attempting to read data from the
disk at the same time, the operating system might have to pause the application so that it
can service another.

Once the operating system is ready to service the application, it must first figure out what
data the application is attempting to read, which ultimately determines which physical
device it needs to work with. In our example, this is a hard disk, but on a POSIX-compliant
system it could be any type of block device.

Next, the operating system must leverage one of its device drivers to read data from this
disk. This takes time, as the operating system has to physically program the hard disk to
ask for data from a specific location, over a hardware bus that almost certainly is not
executing at the same speed as the CPU itself.

Once the hard disk finally provides the operating system with the requested data, the
operating system can provide this information back to the application and return control,
restoring the CPU state to the application. All of this insanity is obscured by a single call to
read().

For this reason, system calls should be executed sparingly, and only when absolutely
needed, to prevent the poor performance of the resulting application.

[10]

Getting Started with System Programming Chapter 1

It should be noted that this type of optimization requires a deep understanding of the APIs
the application leverages, as higher-level APIs make their own system calls on the API's
behalf. For example, allocating memory, as will be discussed later, is another type of system
call.

For example, look at the difference between using an std: :array{} ora std: :vector{}
command. std: :vector{} supports resizing of the array being managed under the hood,
which requires memory allocation. This can not only lead to memory fragmentation (a topic
that will be discussed later on in this book), but also poor performance, as the memory
allocation might have to ask the operating system for more system RAM.

Learning about different types of system calls

Almost every application that executes on a POSIX-compliant operating system must make
a couple of system calls. Here, we outline some of the system call types that will be
explored in this book.

Console input/output

If you have ever executed a command-line application, you willbe familiar with the concept
of console-based input/output. This is especially true with respect to POSIX-compliant
operating systems. When outputting to the console, you can either output to stdout
(typically used for normal output) or stderr (typically used for outputting error
messages).

Outputting to stdout and stderr is accomplished by an application performing a system
that asks the operating system to deliver a character buffer to these output devices. (It
should be noted that, in this book, we typically state that we are outputting to stdout,

not printing to the console.)

The reason for this is that, on POSIX-compliant systems, your application doesn't actually
know where it is sending the text to. The application leverages an API to output to stdout.
This can be accomplished by:

e Writing to a dedicated file handle (that is, stdout)
e Using C APIs such as printf
e Using C++ APIs such as std: : cout

¢ Forking an application that outputs to stdout for you (for example, by using
echo)

[11]

Getting Started with System Programming Chapter 1

Most of these examples, when all is said and done, make a system call to the operating
system to transfer a character buffer to a device that manages stdout or stderr. In some
cases, this causes the operating system to relay the resulting character buffer to the parent
process (likely your shell), which will ultimately make another system call to display the
character buffer on the screen.

However your operating system decides to handle this, a device driver exists in the
operating system that manages the physical monitor used to display text, and the simple
APIs the application calls to output text (for example, print f and std: : cout) eventually
provide this device driver with the requested character buffer.

Although, on most systems, the text being output to stdout is usually provided to your
shell and eventually displayed on the screen, this doesn't have to be the case. Since the
application is making a system call to output the character buffer, the operating system is
free to forward this data to a serial device, log file, as input to another application, and so
on.

This flexibility is one of the reasons POSIX-compliant operating systems are so powerful,
and why learning how to properly make system calls is so important.

Memory allocation

Memory is another resource that an application must request using a system call. Most
applications are given global and stack memory resources when the application is first

executed, along with a small heap of memory that the application can use when calls to
functions such as malloc () and free () are made.

If the application only uses the memory that it is initially given in this heap, no extra
memory needs to be requested by the application. If, however, heap memory runs out, the
application's malloc () or free () engine will have to ask the operating system (via a
system call) for more memory.

To do this, the operating system will extend the end of the application by adding more
physical memory to the application. Themalloc () or free () engine is then able to make
use of this additional memory, until more is needed.

On systems with limited RAM, when a request for additional memory is made, the
operating system has to take memory from other applications that aren't currently
executing. It does this by swapping these applications to disk, an operation that is
expensive to perform.

[12]

Getting Started with System Programming Chapter 1

For this reason, on resource-constrained systems, calls tomalloc () or free () should not
be made in time-critical code, as the time it takes to execute these functions can vary
greatly.

We will go into further detail on memory management in chapter 7, A Comprehensive Look
at Memory Management.

File input/output

Reading and writing to a file is another common use case for most applications that
requires making system calls.

It should be noted that on POSIX-compliant systems, reading and writing to a file
descriptor doesn't always mean reading and writing to a file on a storage device. Instead,
the system calls you make write to character or block devices. This could be a storage device,
but could also be a console device, or even a virtual device such as /dev/random, which
provides random data when read.

In chapter 8, Learning to Program File Input/Output, we will provide more information
about file input/output system programming.

Networking

Networking is another common use case that requires making system calls. On POSIX-
compliant systems, we perform network-based system programming by working with
POSIX sockets. Sockets provide an API for programming the Network Interface Controller
(NIC), and support logic (for example, the TCP/IP stack) within the operating system.

Networking itself is an extremely complicated topic, deserving of its own book, but
thankfully, the system calls needed to perform this type of programming are simple, with
the majority of the gory details being handled by the operating system.

In chapter 10, Programming POSIX Sockets Using C++, we will go into further detail on how
to make these types of system calls using the socket API.

Time
Some readers might find it surprising to know that even performing simple tasks such as
getting the current date and time require system calls to ask the operating system for this

information. Even to this day, a dedicated chip (with a battery, in case of loss of power) is
provided on the system to maintain the current date and time.

[13]

Getting Started with System Programming Chapter 1

If this information is needed, a system call must be made to request it. When this happens,
the operating system will ask the device driver responsible for managing the chip what
date and time it is currently storing, and then this information will be returned to the
application.

It should be noted that not all time interfaces require system calls. For example, most high-
resolution timers, which are designed to compare a high-resolution number before and
after an operation has taken place, do not need the operating system to perform this action.
This is because these high-resolution timers usually exist directly in the CPU, and their
values can be extracted using a simple instruction.

The downside to these types of timers is that their values in and of themselves are usually
meaningless (that is, the difference between the values returned is what provides meaning,
not the values themselves). Essentially, these timers are usually nothing more than a
counter that increments each time the CPU ticks (that is, executes an instruction).

Since modern CPUs can dynamically change their frequency, the values these counters
store depends on how long the CPU has executed since the previous power cycle, and at
what frequency the CPU was set while it was executing.

There isn't even a guarantee that the value in one counter will be the same as the value read
in another counter on another physical core, as each physical core is capable of changing its
own frequency independently of other cores on multi-core CPUs.

The benefit of high-resolution timers is that they can be executed extremely quickly (as you
are just executing an instruction that reads a counter in the CPU). The difference between
two measured values can be used to carry out tasks such as measuring how long it takes to
execute small functions—a task that usually doesn't work with standard timers, as they
don't have enough granularity.

In chapter 11, Time Interfaces in Unix, we will go over these details and even provide an
example of how to do this yourself.

Threading and process creation

Executing multiple tasks simultaneously can be accomplished by asking the operating
system to create additional threads (or even new processes). This is a common task in
system programming, and there are numerous system calls to get the job done.

[14]

Getting Started with System Programming Chapter 1

A process is a unit of execution that has a set of resources assigned to it (for example,
memory, file descriptors, and so on.) Each application is made up of at least one process,
but they can contain more than one (for example, a shell is an application that is specifically
designed to run several child processes).

Each process is scheduled by the operating system to execute for a limited amount of time
before the next process is given access to the CPU, and this cycle continues as needed.

Threads are like processes, but they share the same resources as other threads of the same
process. Threads provide an application with an opportunity to create tasks that are
capable of executing in parallel, without the need for inter-process communication
methods. In chapter 12, Learning to Program POSIX and C++ Threads, we will learn how to
program threads using both POSIX and C++ APIs.

System call security risks

System calls are not without their security risks. Even on modern hardware, and using CPU
architectures other than Intel, executing more than one process within an operating system
with full isolation between processes is nearly impossible.

Although modern hardware and modern operating systems work hard to provide the best
possible isolation and security, it should always be assumed that other, malicious processes
executing alongside yours may be able to spy on what you're doing, including sensitive
tasks such as decrypting user data.

This is another topic that deserves its own book, but here, we will briefly discuss two
different, recent security vulnerabilities that affect system programming.

SYSRET

The fast system call interface provided by Intel and AMD was not without its issues. As
stated previously, for fast system calls to work, the hardware, operating system, and
applications must coordinate. This is to ensure that ABI information is handled properly, to
allow the operating system to execute a system call without the need for the hardware to
save the entire CPU state before execution begins.

The same applies when the system call is complete, and control must be handed back to the
application. To accomplish this, the operating system must load the application's stack, and
then execute the SYSRET instruction, which returns control to the application.

[15]

Getting Started with System Programming Chapter 1

The problem with this approach is that a non-maskable interrupt (NMI) could fire
between the operating system loading the application's stack and the execution of SYSRET.
The result of this race condition is that an NMI (which is code that executes with root
privileges) would be executed using the application's stack and not the kernel's stack,
resulting in a possible security vulnerability or corruption.

Thankfully, there are ways for modern operating systems to prevent this type of attack,
which most operating systems, such as Linux, can and do leverage.

Meltdown and Spectre

The Meltdown and Spectre attacks are a modern examples of just how complicated system
calls are to implement. To support the fast execution of system calls, the kernel's memory is
mapped into each application using a memory layout technical called the 3:1 split, which
refers to the three-to-one ratio of application memory to kernel memory.

To prevent an application from reading/writing kernel memory, which may or may not
contain highly-sensitive information such as encryption keys and passwords, modern CPU
architectures provide a mechanism to lock down the kernel portion of this memory, such
that only the kernel is capable of seeing it all. The application is only able to see its
deprivileged portion of that memory.

To improve the performance of these modern CPUs, most architectures, including Intel,
AMD, and ARM, incorporate a technology called speculative execution. For example, look
at the following code:

if (x) |
do_y () ;
}

do_z () ;

The CPU doesn't know whether x is true or false until it executes this instruction. If the
CPU assumes that x is true, it can enhance performance by saving some CPU cycles. If x
does, in fact, end up being true, the CPU saves cycles, whereas if x is actually false, the
penalty is usually worth the risk, especially if the CPU can make an educated guess as to
the likelihood of x being true instead of false (for example, if the CPU executed this
statement in the past and x was true).

This type of optimization is called speculative execution. The CPU is executing code, even
though it's possible the code may later turn out to be invalid and need to be undone.

[16]

Getting Started with System Programming Chapter 1

Speculative execution attacks such as Meltdown and Spectre exploit this process to bypass
the memory protections that protect the system call interface between an application and its
kernel. This is done by convincing the CPU to speculatively execute an instruction that
would typically cause a security violation (for example, attempting to read a password
from kernel memory).

If the CPU speculatively executes this type of instruction, there will be a gap between the
CPU loading the password into the CPU's cache, and the CPU figuring out that a security
violation has occurred. If the CPU is interrupted during this gap (using what is called a
transient instruction), the password will be left in the CPU's cache, even though the
instruction never actually completed its execution.

To recover the password from the cache, attackers leverage additional attacks on the CPU
called side-channel attacks, which are specifically designed to read the contents of a CPU's
cache without performing a direct memory operation.

The end result is that an attacker is capable of setting up an elaborate set of conditions that
will eventually allow them to recover sensitive information stored in the kernel, using
nothing more than an unprivileged application (which could be a website you happened to
click on while looking for cat videos).

If this seems complicated, that's because it is. These types of attacks are extremely
sophisticated. The goal of these examples is to provide a brief overview of why system calls
are not without their issues. Depending on the CPU and operating system you're executing
on, you might have to take special care when handling sensitive information while system
programming.

Benefits of using C++ when system
programming

Although the focus of this book is on system programming and not C++, and we do provide
a lot of examples in C, there are several benefits to system programming in C++ compared
to standard C.

Note that this section assumes some general knowledge of C++. A more complete
explanation of the C++ standard will be provided in chapter 2, Learning the C, C++17, and
POSIX Standards.

[17]

Getting Started with System Programming Chapter 1

Type safety in C++

Standard C is not a type-safe language. Type safety refers to protections put in place to
prevent one type from being confused with another type. Some languages, such as ADA,
are extremely type-safe, providing so many protections that the language, at times, can be
frustrating to work with.

Conversely, languages such as C are so type-unsafe that hard-to-find type errors occur
frequently, and often lead to instability.

C++ provides a compromise between the two approaches, encouraging reasonable type
safety by default, while providing mechanisms to circumvent this when needed.

For example, consider the following code:

/* Example: C */
int *p = malloc(sizeof (int));

// Example: C++
auto p = new int;

Allocating an integer on the heap in C requires the use of malloc (), which returns void
*, There are several issues with this code that are addressed in C++:

e C automatically converts the void * type to int *, meaning that an implicit
type conversion has occurred even though there is no connection between the
type the user stated and the type returned. The user could easily allocate short
(which is not the same thing as int, a topic we will discuss in chapter 3, System
Types for C and C++). The type conversion would still be applied, meaning that
the compiler would not have the proper context to detect that the allocation was
not large enough for the type the user was attempting to allocate.

¢ The size of the allocation must be stated by the programmer. Unlike C++, C has
no understanding of the type that is being allocated. Thus, it is unaware of the
size of the type, and so the programmer must explicitly state this. The problem
with this approach is that hard-to-find allocation bugs can be introduced. Often,
the type that is provided to sizeof () is incorrect (for example, the programmer
might provide a pointer instead of the type itself, or the programmer might
change the code later on, but forget to change the value being provided to
sizeof ()). As stated previously, there is no connection between what malloc ()
allocates and returns, and the type the user attempts to allocate, providing an
opportunity to introduce a hard-to-find logic error.

[18]

Getting Started with System Programming Chapter 1

e The type must be explicitly stated twice. malloc () returns void *, butC
implicitly converts to whatever pointer type the user states—which means a type
has been declared twice (in this case, void * and int *). In C++, the use of auto
means that the type is only declared once (in this case, int states the type is an
int *), and auto will take on whatever type is returned. The use of auto and
the removal of implicit type conversions means whatever type is declared in the
allocation is what the p variable will take on. If the code after this allocation
expects a different type to the one p takes on, the compiler will know about it at
compile time in C++, while a bug like this would likely not be caught in C until
runtime, when the program crashes (we hope this code is not controlling an
airplane!).

In addition to the preceding example of the dangers of implicit type casting, C++ also
provides run-time type information (RTTI). This information has many uses, but the most
important use case involves the dynamic_cast<> operator, which performs runtime type
checking.

Specifically, converting from one type to another can be checked during runtime, to ensure
a type error doesn't occur. This is often seen when performing the following:

e Polymorphic type conversions: In C, polymorphism is possible, but it must be
done manually, a pattern that is seen often in kernel programming. C, however,
doesn't have the ability to determine whether a pointer was allocated for a base
type or not, resulting in the potential for a type error. Conversely, C++ is capable
of determining at runtime whether a provided pointer is being cast to the proper
type, including when using polymorphism.

¢ Exception support: When catching an exception, C++ uses RTTI (essentially
dynamic_cast<>), to ensure that the exception being thrown is caught by the
proper handler.

Objects of C++

Although C++ supports object-oriented programming with built-in constructs, object-
oriented programming is a design pattern that is often used in C as well, and in POSIX in
general. Take the following example:

/* Example: C */

struct point

{

int x;

[19]

Getting Started with System Programming Chapter 1

int vy;
bi

void translate (point *p; int wval)
{
if (p == NULL) {
return;

}

p—>x += val;
p—>y += val;
t

In the preceding example, we have a struct that stores a point { }, which contains x and y
positions. We then offer a function that is capable of translating this point{} in both the x
and y positions, using a given value (that is, a diagonal translation).

There are a couple of notes with respect to this example:

¢ Often, people will claim to dislike object-oriented programming, but then you see
this sort of thing in their code, which is, in fact, an object-oriented design. The
use of class isn't the only way to create an object-oriented design. The difference
with C++ is that the language provides additional constructs for cleanly and
safely working with objects, while with C this same functionality must be done
by hand—a process that is prone to error.

e The translate () function is only related to the point { } object because it takes
apoint{} as a parameter. As a result, the compiler has no contextual
information to understand how to manipulate a point {} struct,
without translate () being given a pointer to it as a parameter. This means that
every single public-facing function that wishes to manipulate a point{} struct
must take a pointer to it as its first parameter, and verify that the pointer is valid.
Not only is this a clunky interface, it's slow.

In C++, the preceding example can be written as the following:

// Example: C++

struct point
{
int x;
int y;

void translate (int wval)

{

p—>x += val;

[20]

Getting Started with System Programming Chapter 1

p—>y += val;
bi

In this example, a struct is still used. The only difference between a class and a struct in C++
is that all variables and functions are public by default with a struct, while they are private
by default with a class.

The difference is that the translate () function is a member of point { }, which means it
has access to the contents of its structure, and so no pointers are needed to perform the
translation. As a result, this code is safer, more deterministic, and easier to reason about, as
there is never the fear of a null dereference.

Finally, objects in C++ provide construction and destruction routines that help prevent
objects from not being properly initialized or properly deconstructed. Take the following
example:

// Example: C++

struct myfile

{
int £d{0};

~myfile () A
close (fd);
}
bi

In the preceding example, we create a custom file object that holds a file descriptor, often
seen and used when system programming with POSIX APIs.

In C, the programmer would have to remember to manually set the file descriptor to 0 on
initialization, and close the file descriptor when it is no longer in scope. In C++, using the
preceding example, both of these operations would be done for you any time you
usemyfile.

This is an example of the use of Resource Acquisition Is Initialization (RAII), a topic that
will be discussed in more detail in chapter 4, C++, RAIL and the GSL Refresher, as this
pattern is used a lot by C++. We will leverage this technique when system programming to
avoid a lot of common POSIX-style pitfalls.

[21]

Getting Started with System Programming Chapter 1

Templates used in C++

Template programming is often an undervalued, misunderstood addition to C++ that is not
given enough credit. Most programmers need to look no further than attempting to create a
generic linked list to understand why.

C++ templates provides you with the ability to define your code without having to define
type information ahead of time.

One way to create a linked list in C is to use pointers and dynamic memory allocation, as
seen in this simple example:

struct node

{
void *data;
node next;

ti
void add_data (node *n, void *val);

In the preceding example, we store data in the linked list using void *. An example of
how to use this is as follows:

node head;
add_data (&head, malloc(sizeof (int)));
* (int*)head.data = 42;

There are a few issues with this approach:

e This type of linked list is clearly not type-safe. The use of the data and the data's
allocation are completely unrelated, requiring the programmer using this linked
list to manage all of this without error.

¢ A dynamic memory allocation is needed for both the nodes and the data. As was
discussed earlier, memory allocations are slow as they require system calls.

e In general, this code is hard to read and clunky.

Another way to create a generic linked list is to use macros. There are several
implementations of these types of linked lists (and other data structures) floating around on
the internet, which provide a generic implementation of a linked list without the need for
dynamically allocating data. These macros provide the user with a way to define the data
type the linked list will manage at compile time.

[22]

Getting Started with System Programming Chapter 1

The problem with these approaches, other than reliability, is these implementations use
macros to implement template programming in a way that is far less elegant. In other
words, the solution to adding generic data structures to C is to use C's macro language to
manually implement template programming. The programmer would be better off just
using C++ templates.

In C++, a data structure like a linked list can be created without having to declare the type
the linked list is managing until it is declared, as follows:

template<typename T>
class mylinked_list

{

struct node

{
T data;
node *next;

}i

public:

private:

node m_head;
}i

In the preceding example, not only are we able to create a linked list without macros or
dynamic allocations (and all the problems that come with the use of void * pointers), but
we are also able to encapsulate the functionality, providing a cleaner implementation and
user APL

One complaint that is often made about template programming is the amount of code it
generates. Most code bloat from templates typically originates as a programming error. For
example, a programmer might not realize that integers and unsigned integers are not the
same types, resulting in code bloat when templates are used (as a definition for each type is
created).

Even aside from that issue, the use of macros would produce the same code bloat. There is
no free lunch. If you want to avoid the use of dynamic allocation and type casting while
still providing generic algorithms, you have to create an instance of your algorithm for each
type you plan to use. If reliability is your goal, allowing the compiler to generate the code
needed to ensure your program executes properly outweighs the disadvantages.

[23]

Getting Started with System Programming Chapter 1

Functional programming associated with C++

Functional programming is another addition to C++ that provides the user with compiler
assistance, in the form of lambda functions. Currently, this must be carried out by hand in
C.

In C, a functional programming construct can be achieved using a callback. For example,
consider the following code:

void
guard(void (*ptr) (int *val), int *wval)
{

lock () ;

ptr(val);

unlock () ;

}

void
inc (int *val)
{

*val++;

}

void
dec (int *val)
{

*val-—;

}

void

foo ()

{
int count = 0;
guard(inc, &count);
guard (dec, &count);

}

In the preceding code example, we create a guard function that locks a mutex, calls a
function that operates on a value, and then unlocks the mutex on exit. We then create two
functions, one that increments a value given to it, and one that decrements a value given to
it. Finally, we create a function that instantiates a count, and then increments the count and
decrements the count using the guard function.

[24]

Getting Started with System Programming Chapter 1

There are a couple of issues with this code:

e The first issue is the need for pointer logic to ensure we can manipulate the
variable we wish to operate on. We are also required to manually pass this
pointer around to keep track of it. This makes the APIs clunky, as we have a lot
of extra code that we have to write manually for such a simple example.

¢ The function signature of the helper functions is static. The guard function is a
simple one. It locks a mutex, calls a function, and then unlocks it. The problem is
that, since the parameters of the function must be known while writing the code
instead of at compile time, we cannot reuse this function for other tasks. We will
need to hand-write the same function for each function signature type we plan to
support.

The same example can be written using C++ as follows:

template<typename FUNC>
guard (FUNC f)
{

lock () ;

£0);

unlock () ;

}

void

foo ()

{
int count = 0;
guard(inc, [&]{ count++ });
guard(inc, [&]{ count—-- });

}

In the preceding example, the same functionality is provided, but without the need for
pointers. In addition, the guard function is generic and can be used for more than one case.
This is accomplished by leveraging both template programming and functional
programming.

The lambda provides the callback, but the parameters of the callback are encoded into the
lambda's function signature, which is absorbed by the use of a template function. The
compiler is capable of generating a version of the guard function for use that takes the
parameters (in this case, a reference to the count variable) and storing it in the code itself,
removing the need for users to do this by hand.

The preceding example will be used a lot in this book, especially when creating
benchmarking examples, as this pattern gives you the ability to wrap functionality in code
designed to time the execution of your callback.

[25]

Getting Started with System Programming Chapter 1

Error handling mechanism in C++

Error handling is another issue with C. The problem, at least until set jump exceptions were
added, was that the only ways to get an error code from a function were as follows:

¢ Constrain the output of a function, so that certain output values from the
function could be considered an error
¢ Get the function to return a structure, and then manually parse that structure

For example, consider the following code:

struct myoutput
{

int wval;
int error_code;

}

struct myoutput myfunc (int wval)

{
struct myoutput = {0};

if (val == 42) {
myoutput.error_code = -1;

}

myoutput.val = val;
return myoutput;

}

void
foo (void)

{
struct myoutput = myfunc(42);

if (myoutput.error_code == -1) {
printf ("yikes\n");
return;

}

The preceding example provides a simple mechanism for outputting an error from a
function without having to constrain the output of the function (for example, by assuming

that -1 is always an error).

[26]

Getting Started with System Programming Chapter 1

In C++, this can be implemented using the following C++17 logic:

std::pair<int, int>
myfunc (int val)
{
if (val == 42) {
return {0, -1};

}

return {val, 0};

}

void
foo (void)
{
if (auto [val, error_code] = myfunc(42); error_code == -1) {
printf ("yikes\n");
return;

}

In the preceding example, we were able to remove the need for a dedicated structure by
leveraging std: :pair{}, and we were able to remove the need to work

with std: :pair{} by leveraging an initializer_list{} and C++17-structured
bindings.

There is, however, an even easier method for handling errors without the need for checking
the output of every function you execute, and that is to use exceptions. C provides
exceptions through the set jump API, while C++ provides C++ exception support. Both of
these will be discussed at length in chapter 13, Error - Handling with Exceptions.

APIs and C++ containers in C++

As well as the language primitives that C++ provides, it also comes with a Standard
Template Library (STL) and associated APIs that greatly aid system programming. A good
portion of this book will focus on these APIs, and how they support system programming.

It should be noted that the focus of this book is system programming and not C++, and for
this reason, we do not cover C++ containers in any detail, but instead assume the reader has
some general knowledge of what they are and how they work. With that said, C++
containers support system programming by preventing the user from having to re-write
them manually.

[27]

Getting Started with System Programming Chapter 1

We teach students how to write their own data structures, not so that when they need a
data structure they know how to write one, but instead so that, when they need one, they
know which data structure to use and why. C++ already provides most, if not all, of the
data structures you might need when system programming.

Summary

In this chapter, we learned what system programming is. We covered the general anatomy
of a system call, different types of system calls, and some recent security issues with system
calls.

In addition, we covered the advantages of system programming with C++ instead of strictly
using standard C. In the next chapter, we will cover the C, C++, and POSIX standards in
detail and how they relate to system programming.

Questions

What is system programming?

Prior to fast system calls, how were system calls executed?

What key change was made to support fast system calls?

Does allocating memory always result in a system call?

What type of execution do the Meltdown and Spectre attacks exploit?
What is type safety?

NSk »h =

Provide at least one benefit to template programming in C++?

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[28]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

Learning the C, C++17, and
POSIX Standards

As stated in Chapter 1, Getting Started with System Programming, system programming is
the act of making system calls to perform various actions in coordination with the
underlying operating system. Each operating system has its own set of system calls, and
how these system calls are made is different.

To prevent the system programmer from having to rewrite their program for each different
operating system, several standards have been put into place that wrap the operating
system's ABI with a well-defined APIL.

In this chapter, we will discuss three standards—the C standard, the C++ standard, and the
POSIX standard. The C and POSIX standards provide the fundamental language syntax
and APIs that wrap an operating system's ABI. Specifically, the C standard defines program
linking and execution, the standard C syntax (which a number of higher-level languages,
such as C++, are based on), and the C libraries that provide the ABI-to-API wrappers.

The C libraries can be thought of as a subset of the greater POSIX standard, which defines a
much larger subset of APIs, including, but not limited to, filesystem, network,
and threading libraries.

Finally, the C++ standard defines the C++ syntax, program linking and execution, and the
C++ libraries that provide higher-level abstractions of the C and POSIX standards. The
majority of this book will revolve around these standard APIs and how to use them with
C++17.

Learning the C, C++17, and POSIX Standards Chapter 2

This chapter has the following objectives:

¢ Learning about the C, C++, and POSIX standards

¢ Understanding program linking and execution, and the differences between C
and C++

¢ Providing a brief overview of the facilities these standards provide, each of
which will be discussed in greater detail later in the book

Technical requirements

In order to follow the examples in this chapter, the reader must have:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

o GCC7+
e CMake 3.6+
¢ An internet connection

To download all the code in this chapter, including the examples and code snippets, go to
thefoﬂovvhugﬁnk:https://github.com/PacktPublishing/Handsfonfsystemf
Programming-with-CPP/tree/master/Chapter02

Beginning with the C standard language

The C programming language is one of the oldest languages available. Unlike other higher-
level languages, C is similar enough to assembly language programming, while still
providing some high-level programming abstractions, that it has become a firm favorite
among system, embedded, and kernel-level programmers alike.

Almost every major operating system is rooted in C. In addition, most higher-level
languages, including C++, build upon C to provide their higher-level constructs, and
therefore still require some of the components of the C standard.

The C standard is a huge standard that is managed by the International Organization for
Standardization (ISO). We assume the reader has some basic knowledge of the C standard
and how to write C

code: http://www.open-std.org/jtcl/sc22/wgld/www/docs/n1256.pdf.

[30]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter02
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

Learning the C, C++17, and POSIX Standards Chapter 2

For these reasons, the goal of this section is to discuss some topics that are discussed in
lesser detail in other books, as well as portions of the C standard that are relevant to this
book and system programming, but are missing from the other chapters.

For additional information on the C programming language and how to write C programes,
please see the Further reading section of this chapter.

How the standard is organized

The specification is broken up into three sections:

e Environment
e Language
e Libraries

Let's briefly discuss the purpose of each section. After that, we will discuss specific portions
of the C standard that are relevant to system programming but are not discussed elsewhere
in this book.

Environment

The Environment section of the standard provides information that is mainly needed by
compiler writers to better understand how to create a compiler for C.

It describes the minimum limitations the compiler must adhere to (such as the minimum
number of nested if () statements that must be supported), as well as how programs are
linked and started.

In this chapter, we will discuss program linking and execution to provide a better
understanding of what is required to create a C program.

Language

The Language section of the standard provides all the details associated with the C syntax,
including what a variable is, how to write a function, the difference between a for () loop
and a while () loop, and all of the operators that are supported and how they work.

This book assumes the reader has general knowledge of this section of the standard, and
only touches on system programming-specific nuances of the standard C syntax that the
reader is likely to run into (such as issues associated with pointers).

[31]

Learning the C, C++17, and POSIX Standards Chapter 2

Libraries

The Libraries section of the standard describes all of the library facilities that are provided
by the standard C language. This includes facilities such as outputting strings to stdout,
allocating memory, and working with time.

System programming largely revolves around these library facilities, and the bulk of this
book will focus on these libraries, what they provide, and how to use them.

How a C program starts

One part of the standard that is relevant to system programming, but is not as widely
discussed in literature, is how a C program starts. A common misconception is that a C
program starts with the following two entry points:

int main(void) {}
int main(int argc, char *argvl[]) {}

Although this is, in fact, the first function call that a C programmer provides, it is not the
first function called when your C program starts. It is not the first code that executes either,
nor is it the first code provided by the user that executes.

A lot of work is carried out, both by the operating system and the standard C environment,
as well as the user, prior to the main () function ever executing.

Let's look at how your compiler creates a simple Hello World\n example:
#include <stdio.h>

int main (void)
{

printf ("Hello World\n");
}

To better understand the start up process of a C program, let's look at how this simple
program is compiled:

> gcc —-v scratchpad.c; ./a.out

Using built-in specs.

COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-1inux—-gnu/7/1lto-wrapper
OFFLOAD_TARGET_NAMES=nvptx—-none

OFFLOAD_TARGET_DEFAULT=1

Target: x86_64-1linux—gnu

[32]

Learning the C, C++17, and POSIX Standards Chapter 2

Configured with:

By adding the —v option to GCC, we are able to see each step the compiler takes to compile
our simple Hello World\n program.

To start, the compiler converts the program to a format that can be processed by gnu-as:

/usr/lib/gcc/x86_64-1linux—-gnu/7/ccl -quiet -v -imultiarch x86_64-1linux-gnu
scratchpad.c —-quiet -dumpbase scratchpad.c -mtune=generic -march=x86-64 -
auxbase scratchpad -version -fstack-protector-strong -Wformat -Wformat-
security -o /tmp/ccMSWHgC.s

Not only can you see how the initial compilation is performed, but you can see the default
flags that your operating system provides.

Next, the compiler converts the output to an object file, as follows:

/usr/bin/x86_64-linux-gnu-as -v —--64 -o /tmp/cc9ocaJWV.o /tmp/ccMSWHgC.s

Finally, the last step links the resulting object files into a single executable using the
collect?2 utility, which is a wrapper around the linker:

/usr/lib/gcc/x86_64-1linux—gnu/7/collect?2 —-plugin /usr/lib/gcc/x86_64-1linux-—
gnu/7/1liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-1linux—gnu/7/1to—
wrapper -plugin-opt=-fresolution=/tmp/ccWQB2Gf.res -plugin-opt=-pass-—
through=-1gcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-
lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s —-
sysroot=/ —-build-id --eh-frame-hdr -m elf_x86_64 —-hash-style=gnu —--as-
needed —-dynamic-linker /1ib64/1d-linux-x86-64.s0.2 -pie -z now -z relro
/usr/lib/gcc/x86_64-1linux—-gnu/7/../../../x86_64-1linux—gnu/Scrtl.o
/usr/lib/gcc/x86_64-1linux-gnu/7/../../../x86_64-1linux—gnu/crti.o
/usr/lib/gcc/x86_64-1linux—gnu/7/crtbeginS.o -L/usr/lib/gcc/x86_64—-1linux-—
gnu/7 -L/usr/lib/gcc/x86_64-1inux-gnu/7/../../../x86_64-1inux—-gnu —
L/usr/lib/gcc/x86_64-1linux-gnu/7/../../../../1lib -L/1ib/x86_64-1linux-gnu -
L/lib/../1lib -L/usr/1ib/x86_64-1linux—-gnu -L/usr/lib/../lib -
L/usr/lib/gcc/x86_64-1linux—-gnu/7/../../.. /tmp/cc9oadWV.o -lgcc —-push-
state ——as—needed -lgcc_s —-pop-state -lc -lgcc —-—-push-state —-—-as—needed -
lgcc_s —-pop-state /usr/lib/gcc/x86_64-1inux—gnu/7/crtendS.o
/usr/lib/gcc/x86_64-1linux—-gnu/7/../../../x86_64-1linux—gnu/crtn.o

[33]

Learning the C, C++17, and POSIX Standards Chapter 2

There are a couple of important things to take note of here with respect to how the program
is linked:

e —1c: The use of this flag tells the linker to link in 1ibc. Like the rest of the
libraries being discussed here, we didn't tell the compiler to link against 1ibc. By
default, GCC links 1ibc for us.

e —lgcc_s: Thisis a static library that is linked automatically by GCC to provide
support for compiler-specific operations including 64-bit operations on a 32-bit
CPU, and facilities such as exception unwinding (a topic that will be discussed in
Chapter 13, Error - Handling with Exceptions).

® Scrtl.o,crti.o, crtbeginS.o, crtendS.o, and crtn.o: These libraries
provide the code needed to start and stop your application.

Specifically, the C run-time libraries (CRT) libraries are the libraries of interest here. These
libraries provide the code that is needed to bootstrap the application, including;:

¢ Executing global constructors and destructors (as GCC supports constructors and
destructors in C, even though this is not a standard C facility).

e Setting up unwinding to support exception supporting. Although this is mainly
needed for C++ exceptions, which are not needed in a standard C-only
application, they are still needed for linking in the set jump exception logic, a
topic that will be explained in chapter 13, Error - Handling with Exceptions.

e Providing the _start function, which is the actual entry point to any C-based
application using a default GCC compiler.

Finally, all these libraries are responsible for providing the main () function with the
arguments that are passed to it, as well as intercepting the return value of the main ()
function, and executing the exit () function on your behalf, as needed.

The most important takeaway here is that the first piece of code to execute in your program
is not the main () function, and if you register a global constructor, it is not the first piece of
code that you provide that executes either. While system programming, if you experience
issues with the initialization of your program, this is where to look first.

All about linking

Linking is an extremely complex topic that varies from operating system to operating
system. For example, Windows links programs quite differently to Linux. For this reason,
we will limit our discussion to Linux.

[34]

Learning the C, C++17, and POSIX Standards Chapter 2

When a C source file is compiled, it is compiled into what is called an object file, which
contains the compiled source code with each function that is defined in the program in a
binary format, as follows:

> gcc —-c scratchpad.c; objdump -d scratchpad.o

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp, $rbp
4: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # b <main+0xb>
b: €8 00 00 00 00 callg 10 <main+0x10>
10: b8 00 00 00 00 mov $0x0,%eax
15: 5d pop %rbp
16: c3 retqg

As shown here, the compiler creates an object file, which contains the compiler (that is,
binary) version of the source code. An important note here is that that the main () function
is labeled main, in plain text.

Let's expand this example to include another function:
int test (void)

return 0;

int main (void)

return test();

Compiling this source, we get the following:

> gcc —-c scratchpad.c; objdump -d scratchpad.o

0000000000000000 <test>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp, $rbp
4: b8 00 00 00 00 mov $0x0, %eax
9: 5d pop S%rbp
a: c3 retqg

000000000000000b <main>:
b: 55 push %rbp

[35]

Learning the C, C++17, and POSIX Standards Chapter 2

c: 48 89 e5 mov %rsp, $rbp

f: €8 00 00 00 00 callg 14 <main+0x9>
14: 5d pop S%rbp

15: c3 retqg

As shown here, each function that is compiled is labeled using the same name as the
function. That is, the name of each function is not mangled (unlike in C++). Name mangling
will be explained in further detail in the next section, as well as why this is important with
respect to linking.

Going beyond a simple source file, a C program is split into groups of source files that are
compiled and linked together. Specifically, an executable is the combination of object files
and libraries. Libraries are a combination of additional object files, divided into two
different types:

e Static libraries: libraries that are linked at compile time
¢ Dynamic libraries: libraries that are linked at load time

Static libraries

Static libraries are a collection of object files that are linked at compile time. In Linux (and
most UNIX-based systems), static libraries are nothing more than an archive of object files.
You can easily take an existing static library and use the AR tool to extract the original object
files.

Unlike object files that are linked as part of your program, object files that are linked as part
of a static library only include the source code needed by that static library, providing
optimization that removes unused code from your program, ultimately reducing the total
size of your program.

The downside to this approach is that the order in which a program is linked using static
libraries matters. If a library is linked before the code that needs the library is provided (on
the command line, that is), a link error will occur, as the code from the static library will be
optimized out.

Libraries provided by the operating system usually do not support static linking either,
and, typically, static linking of operating system libraries is not needed as those libraries are
likely to have been loaded into memory by your operating system.

[36]

Learning the C, C++17, and POSIX Standards Chapter 2

Dynamic libraries

Dynamic libraries are libraries that are linked at load time. Dynamic libraries are more like
executables without an entry point. They contain code needed by your program, and the
load-time linker is responsible for providing the location of each required function to your
program while your program is being loaded.

It is also possible for your program to link itself while it executes during runtime as an
optimization, only linking functions that are needed (a process known as lazy loading).

Most of the libraries provided by the operating system are dynamic libraries. To see which
dynamic libraries are needed by your program, you can use the LDD tool, as follows:

> 1dd a.out
linux-vdso.so.1 (0x00007ffdc5bfd000)
libc.so.6 => /1ib/x86_64-1linux—gnu/libc.so.6 (0x00007£92878a0000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£9287e93000)

In this example, we used the LDD tool to list the dynamic libraries needed by our simple
Hello World\n example. As shown, the following libraries are needed:

¢ vdso: a library provided by the operating system to speed up the process of
making system calls

e libc: the standard C library

® 1d-linux-x86-64: the dynamic linker itself, responsible for lazy-loading

Scope

One addition to the C language that distinguishes it dramatically from assembly language
programming is the use of scope. In assembly, a function prefix and postfix must be hand-

coded, and the process for doing this depends entirely on the instruction set architecture

(ISA) your CPU provides, and the ABI the programmer decides to use.

In C, the scope of a function is defined automatically for you using the { } syntax. For
example:

#include <stdio.h>

int main (void)
{

printf ("Hello World\n");
}

[371]

Learning the C, C++17, and POSIX Standards Chapter 2

In our simple Hello World\n example, scope is used to define the start and end of our
main () function. The scope of other primitives can also be defined using the {} syntax. For
example:

#include <stdio.h>

int main (void)
{

int 1i;

for (i = 0; i < 10; 1i++) |
printf ("Hello World: %d\n", 1);
}
}

In the previous example, we define the scope of both our main () function and our for ()
loop.

The {} syntax can also be used to create scope for anything. For example:

#include <stdio.h>

int main (void)
{
{

int i;

int i;

}

In the previous example, we are able to use the i variable twice without accidentally
redefining it, because we wrapped the definition of i in a { }. Not only does this tell the
compiler the scope of i, it also tells the compiler to automatically create a prefix and postfix
for us if they are needed (as optimizations can remove the need for a prefix and postfix).

Scope is also used to define what the compiler exposes with respect to linking. In standard
C, the static keyword tells the compiler that a variable is only visible (that is, scoped) to

the object file it is being compiled to, providing not only an optimization to the linker, but

also preventing two global variables or functions from colliding with each other.

[38]

Learning the C, C++17, and POSIX Standards Chapter 2

For this reason, if a function is not intended to be called by another source file (or library), it
should be labeled static.

In the context of system programming, scope is important because system programming
typically requires the acquisition of system-level resources. As will be seen in Chapter 4,
C++, RAII, and the GSL Refresher, C++ provides the ability to create objects whose life can be
scoped using standard C { } syntax, providing a safe mechanism for resource acquisition
and release.

Pointers and arrays

In school, I had a teacher who once told me:
"No matter how experienced you are, nobody truly understands pointers completely.”

No statement could be truer. In standard C, a pointer is a variable whose value points to a
location in memory. The problem with standard C is that this location in memory is not
associated with a particular type. Instead, the pointer type itself defines the type of memory
the pointer is pointing to, as in the following example:

int main (void)
{
int 1i;
int *p = &i;

}
// > gcc scratchpad.c; ./a.out

In the previous example, we created an integer, and then created a pointer and pointed it at
the previously-defined integer. We could, however, do the following:

int main(void)
{
int 1i;
void *p = &i;
int *int_p = p;
float *float_p = p;
}

// > gcc scratchpad.c; ./a.out

[39]

Learning the C, C++17, and POSIX Standards Chapter 2

In this program, we create a pointer to an integer, but we define the pointer type as void *,
which tells the compiler we are creating a pointer with no type. We then create two
additional pointers—a pointer to an integer, and a pointer to a floating point number. Both
of these additional pointers are initialized using the void * pointer we created earlier.

The problem with this example is that the standard C compiler is performing automatic
type casting, changing a void * into both an integer pointer and a floating point number
pointer. If both of these pointers were used, corruption would occur in a couple of ways:

¢ Depending on the architecture, a buffer overflow could occur, as an integer could
be larger than a float and vice versa. It depends on the CPU being used; a topic
that will be discussed in more detail in chapter 3, System Types for C and C++.

e Under the hood, an integer and a floating point number are stored differently in
the same memory, meaning any attempt to set one value would corrupt the
other.

Thankfully, modern C compilers have flags that are capable of detecting this type of type
casting error, but these warnings must be enabled as they are not on by default, as shown
previously.

The obvious issue with pointers is not just that they can point to anything in memory and
redefine that memory's meaning, but that they can also take on a null value. In other words,
pointers are considered optional. They either optionally contain a valid value and point to
memory, or they are null.

For this reason, pointers should not be used until their value is determined to be valid, as
follows:

#include <stdio.h>

int main (void)

{
int 1 = 42;
int *p = &i;

if (p) |
printf ("The answer is: %d\n", *p);
}
}

// > gcc scratchpad.c; ./a.out
// The answer is: 42

[40]

Learning the C, C++17, and POSIX Standards Chapter 2

In the previous example, we create a pointer to an integer that is initialized with the
location of a previously-defined integer with an initial value of 42. We check to make sure
p is not a null pointer, and then output its value to stdout.

The addition of the i f () statement is not only cumbersome—it isn't performant. For this
reason, most programmers would leave out the i f () statement, knowing that, in this
example, p is never a null pointer.

The problem with this is, at some point, the programmer could add code to this simple
example that contradicts this assumption, while simultaneously forgetting to add the i £ ()
statement, resulting in code that has the potential to generate a hard-to-find segmentation
fault.

As will be shown in the next section, the C++ standard addresses this issue by introducing
the notion of a reference, which is a non-optional pointer, meaning it is a pointer that must
always point to a valid, typed, memory location. To address this issue in standard C, null
pointer checks are usually (although not always) checked by public-facing APIs. Private
APIs typically do not check for null pointers to improve performance, making the
assumption, that so long as the public-facing API cannot accept a null pointer, it's likely the
private API will never see an invalid pointer.

Standard C arrays are similar to pointers. The only difference is that a C array leverages a
syntax capable of indexing into the memory pointed to by a pointer, as in the following
example:

#include <stdio.h>

int main (void)

{

int i[2] = {42, 43};
int *p = 1i;
if (p) |
// method #1
printf ("The answer is: %d and %d\n", i[0], pl[0]);
printf ("The answer is: %d and %d\n", i[1], pl[1]1);
// method #2
printf ("The answer is: %d and %d\n", *(i + 0), *(p + 0));
printf ("The answer is: %d and %d\n", *(i + 1), *(p + 1));

}

// > gcc scratchpad.c;
// The answer is:

./a.out

42 and 42

[41]

Learning the C, C++17, and POSIX Standards Chapter 2

// The answer is: 43 and 43
// The answer is: 42 and 42
// The answer is: 43 and 43

In the previous example, we create an array of integers with 2 elements initialized to the
values 42 and 43. We then create a pointer that points to the array. Note that the & is no
longer needed. This is because the array is a pointer, thus, we are simply setting one pointer
to the value of another (instead of having to extract a pointer from an existing memory
location).

Finally, we print the value of each element in the array using both the array itself and the
pointer to the array using pointer arithmetic.

As will be discussed in chapter 4, C++, RAIL and the GSL Refresher, there is little difference
between an array and a pointer. Both perform what is known as pointer arithmetic when
an attempt is being made to access an element in an array.

With respect to system programming, pointers are used extensively. Examples include the
following;:

e Since standard C doesn't contain the notion of a reference as C++ does, system
APIs that must be passed by a reference because they are too large to be passed
by a value, or must be modified by the API, must be passed by a pointer,
resulting in the heavy use of pointers when making system calls.

¢ System programming often involves interacting with pointers to a location in
memory, designed to define the layout of that memory. Pointers provide a
convenient way to accomplish this.

Libraries

Standard C not only defines a syntax, the environment, and how programs are linked, it
also provides a set of libraries that may be leveraged by a programmer to perform system
programming. Some of these libraries are as follows:

e errno.h: Provides the code needed for working with errors. This library will be
discussed in further detail in chapter 13, Error - Handling with Exceptions.

® inttypes.h: Provides type information, which will be discussed in chapter
3, System Types for C and C++.

e limits.h: Provides information about the limits of each type, which will be
discussed in chapter 3, System Types for C and C++.

[42]

Learning the C, C++17, and POSIX Standards Chapter 2

e setjump.h: Provides the APIs for C-style exception handling, which will be
discussed in chapter 13, Error - Handling with Exceptions.

e signal.h: Provides APIs for handling signals sent from the system to your
program, which will be discussed in chapter 5, Programming Linux/Unix Systems.

e stdbool.h: Provides type information, which will be discussed in chapter 3,
System Types for C and C++.

e stddef.h: Provides type information, which will be discussed in Chapter 3,
System Types for C and C++.

e stdint.h: Provides type information, which will be discussed in Chapter 3,
System Types for C and C++.

e stdio.h: Provides functions for working with input and output while system
programming, which will be discussed in chapter 6, Learning to Program Console
Input/Output, and chapter 8, Learning to Program File Input/Output.

e stdlib.h: Provides various utilities, including dynamic memory allocation
APIs, which will be discussed in chapter 7, A Comprehensive Look at Memory
Management.

e time.h: Provides facilities for working with clocks, which will be discussed in
Chapter 11, Time Interfaces in Unix.

As stated previously, the bulk of this book will focus on these facilities and how they
support system programming.

Learning about the C++ standard

The C++ programming language (originally called C with Classes) was designed
specifically to provide higher-level facilities than C, including better type safety and object-
oriented programming, with system programming in mind. Specifically, C++ aims to
provide the performance and efficiency of C programs, while still providing the features of
higher-level languages.

Today, C++ is one of the most popular programming languages in the world, used in
everything from avionics to banking.

Like the C standard, the C++ standard is huge and is managed by the ISO. We assume the
reader has some basic knowledge of the C++ standard and how to write C
code: nttp://www.open-std.org/jtcl/sc22/wg21l/docs/papers/2017/n4713.pdf.

[43]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Learning the C, C++17, and POSIX Standards Chapter 2

For these reasons, the goal of this section is to discuss some topics that are discussed in
lesser detail in other books, as well as portions of the C++ standard that are relevant to this
book and system programming but are missing from the other chapters. Please see the
Further reading section of this chapter for additional information on the C++ programming
language, and how to write C++ programs.

How the standard is organized

Like the C standard specification, the C++ specification is broken up into three major
groups of sections:

¢ General conventions and concepts
e Language syntax
e Libraries

It should be noted that the C++ standard is considerably larger than the C standard.

General conventions and concepts

The first four sections in the standard are dedicated to conventions and concepts. They
define types, program start-up and shutdown, memory, and linking. They also outline all
of the definitions and keywords that are needed to understand the rest of the specification.

As in the standard C specification, there are a lot of things defined in these sections that are
important to system programmers, as they define what the compiler will output when a
program is compiled, and how that program will be executed.

Language syntax

The next 12 sections in the specification define the C++ language syntax itself. This includes
C++ features such as classes, overloading, templates, and exception handling. There are
entire books written on just these sections of the specification.

We assume the reader has a general understanding of C++ and we do not go over this part
of the specification in the book, except the C++17-specific modifications in chapter 4, C++,
RAII, and the GSL Refresher.

[44]

Learning the C, C++17, and POSIX Standards Chapter 2

Libraries

The remaining 14 sections in the specification define the libraries that C++ provides as part
of the specification. It should be noted that the bulk of this book revolves around this part
of the specification.

Specifically, we discuss in great detail the facilities that C++ provides for system
programmers, and how to use those facilities in practice.

Linking C++ applications

As in C, C++ applications typically start from amain () function with the same signatures
that C already provides. Also, as in C programs, the actual entry point of the code is
actually the _start function.

Unlike in C, however, C++ is far more complicated, including a lot more code for a simple
example. To demonstrate this, let's look at a simple Hello World\n example:

#include <iostream>

int main (void)
{

std::cout << "Hello World\n";
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

First and foremost, the C++ application example is slightly longer than the equivalent C
example from the previous section:

> gcc scratchpad.c -o c_example

> gt+ scratchpad.cpp -o cpp_example
> stat -c "%s %n" *

8352 c_example

8768 cpp_example

If we look at the symbols in our example, we get the following;:

> nm —-gC cpp_example
U _ cxa_atexit@@EGLIBC_2.2.5
w _ cxa_finalize@@GLIBC_2.2.5
00000000000008f4 T _fini
0000000000000688 T _init
00000000000007fa T main

[45]

Learning the C, C++17, and POSIX Standards Chapter 2

00000000000006£f0 T _start

U std::ios_base::Init::Init () @RGLIBCXX_3.4

U std::ios_base::Init::~Init ()Q@EGLIBCXX_ 3.4
0000000000201020 B std::cout@@GLIBCXX_3.4

U std::basic_ostream<char, std::char_traits<char> >&
std: :operator<< <std::char_traits<char> >(std::basic_ostream<char,
std::char_traits<char> >&, char const*)@Q@GLIBCXX_3.4

As previously stated, our program contains amain () function and a _start () function.
The _start () function is the actual entry point of the application, while the main ()
function is called by the _start () function after initialization has completed.

The _init () and _fini () functions are responsible for global construction and
destruction. In the case of our example, the _init () function creates the code needed by
the C++ library to support std: : cout, while the _fini () function is responsible for
destroying these global objects. To do this, the global objects register with

the _cxa_atexit () function, and are eventually destroyed using

the __cxa_finalize () function.

The rest of the symbols make up the code for std: : cout, including references to
ios_base{} and basic_ostream{}.

The important thing to note here is that, as in C, there is a lot of code that executes both
before and after the main () function, and using global objects in C++ only adds to the
complexity of starting and stopping your application.

In the preceding example, we use the _C option to demangle our function names. Let's look
at the same output with this option:

> nm —-gC cpp_example

U _ cxa_atexit@@EGLIBC_2.2.5

w _ _cxa_finalize@@GLIBC_2.2.5
00000000000008f4 T _fini
0000000000000688 T _init
00000000000007fa T main
00000000000006£f0 T _start

U _ZNSt8ios_based4dInitCIlEV@RGLIBCXX_3.4

U _ZNSt8ios_based4dInitDIEV@RGLIBCXX_3.4
0000000000201020 B _ZSt4cout@@GLIBCXX_3.4

U
_7ZStlsIStllchar_traitsIcEERStl13basic_ostreamIcT_ES5_PKc@EGLIBCXX_ 3.4

[46]

Learning the C, C++17, and POSIX Standards Chapter 2

As shown, some of these functions are still readable, while others are not. Specifically, the
C++ specification dictates that certain support functions are linked using C linkage,
preventing mangling. In our example, this includes the ___cxa_xxx () functions, _init (),
_fini(),main (), and _start ().

The C++ library functions that support std: : cout, however, are managed with an almost
unreadable syntax. On most POSIX-compliant systems, these mangled names can be
demangled using the C++£ilt command, as follows:

> c++filt _ZSt4cout
std::cout

These names are mangled because they contain the entire function signature in their name,
including the arguments and specializations (for example, the noexcept keyword). To
demonstrate this, let's create two function overloads:

void test (void) {}
void test (bool b) {}

int main (void)
{

test ();

test (false);
)3

// > g++ scratchpad.cpp; ./a.out

In the previous example, we created two functions with the same name, but with different
function signatures, a process known as function overloading, which is specific to C++.

Now let's look at the symbols in our test application:

> nm —g a.out

0000000000000601 T _Z4testb
00000000000005fa T _Z4testv

[47]

Learning the C, C++17, and POSIX Standards Chapter 2

There are a couple of reasons why function names are mangled in C++:

¢ Encoding function arguments in the function's name means functions can be
overloaded, and the compiler and the linker will know which function does
what. Without name mangling, two functions with the same name but different
arguments would look identical to the linker, and errors would occur.

¢ By encoding this type of information in the function name, the linker is able to
identify whether a function for a library was compiled using a different
signature. Without this information, it would be possible for the linker to link, for
example, a library compiled with a different signature (and therefore a different
implementation) to the same function name, which would lead to a hard-to-find
error, and likely corruption.

The biggest issue with C++ name mangling is that small changes to a public-facing API
result in a library no longer being able to link with already-existing code.

There are many ways to overcome this problem, but, in general, it's simply important to
understand that C++ encodes a lot of information about how you write your code in a
function's name, making it imperative that public-facing APIs do not change unless a
version change is expected.

Scope

One major difference between C and C++ is how the construction and destruction of an
object is handled. Let's take the following example:

#include <iostream>

struct mystruct {
int datal{42};
int data2{42};
}i

int main (void)
{

mystruct s;

std::cout << s.datal << '\n';
}

// > g++ scratchpad.cpp; ./a.out
// 42

[48]

Learning the C, C++17, and POSIX Standards Chapter 2

Unlike in C, in C++ we are able to use the { } operator to define how we would like the data
values of the structure to be initialized. This is possible because, in C++, objects (both
structures and classes) contain constructors and destructors that define how the object is
initialized on construction and destroyed on destruction.

When system programming, this scheme will be used extensively, and the idea of the
construction and destruction of objects will be leveraged throughout this book when
handling system resources. Specifically, a scope will be leveraged to define the lifetime of
an object, and thus the system resource that the object owns, using a concept called
Resource Acquisition is Initialization (RAII).

Pointers versus references

In the previous section, we discussed pointers in length, including how pointers can take
on two values—valid or null (assuming corruption is not part of the equation).

The problem with this is that the user must check whether the pointer is valid or not. This is
normally not an issue when using pointers to define the contents of memory (for example,
laying out memory using a data structure), but often, pointers in C must be used simply to
reduce the overhead of passing a large object to a function, as in the following example:

struct mystruct {
int datal{};
int dataz{};
int data3{};
int datad{};
int datab5{};
int data6{};
int data7{};
int data8{};

bi

void test (mystruct *s)
{
}

int main (void)
{
mystruct s;
test (&s);
t

// > g++ scratchpad.cpp; ./a.out

[49]

Learning the C, C++17, and POSIX Standards Chapter 2

In the previous example, we create a structure that has eight variables in it. Passing this
type of structure with a value would result in the use of the stack (that is, several memory
accesses). It is far more efficient to pass this structure with a pointer in C to reduce the cost
of passing the structure to a single register, likely removing all memory accesses entirely.

The problem is that, now, the test function must check to make sure the pointer is valid
before it can use it. Therefore, the function trades a set of memory accesses for a branch
statement and possible pipeline flush in the CPU, when all we are trying to do is reduce the
cost of passing a large object to a function.

As stated in the previous section, the solution is to simply not verify the validity of the
pointer. In C++, however, we have another option, and that is to pass the structure with a
reference, as follows:

struct mystruct {
int datal{};
int dataz{};
int data3{};
int datad{};
int datab5{};
int data6{};
int data7{};
int data8{};

bi

vold test (mystruct &s)
{
t

int main (void)
{
mystruct s;
test (s);
t

// > g++ scratchpad.cpp; ./a.out

In the previous example, our test () function takes a reference to mystruct{} instead of a
pointer. When we call the test () function, there is no need to get the address of the
structure, as we are not using a pointer.

C++ references will be leveraged heavily throughout this book, as they greatly increase both
the performance and stability of a program, especially while system programming, where
resources, performance, and stability are critical.

[50]

Learning the C, C++17, and POSIX Standards Chapter 2

Libraries

C++ not only defines the basic environment and language syntax—it also provides a set of
libraries that may be leveraged by a programmer to perform system programming. These
include the following:

¢ Console input/output libraries: These include the iostream, iomanip, and
string libraries, which provide the ability to work with strings, format them,
and output them (or grab input from the user). We will discuss most of these
libraries in Chapter 6, Learning to Program Console Input/Output.

¢ Memory management libraries: These include the memory library, which
contains memory management utilities that help to prevent dangling pointers.
They will be discussed in chapter 7, A Comprehensive Look at Memory
Management.

e File input/output libraries: These include the fstreamand filesystem (new to
C++17) libraries, which will be discussed in chapter 8, Learning to Program File
Input/Output.

¢ Time libraries: These include the chrono library, which will be discussed in
Chapter 11, Time Interfaces in Unix.

¢ Threading libraries: These include the thread, mutex, and
conditional_variable libraries, which will be discussed in chapter 12, Learn
to Program POSIX and C++ Threads.

¢ Error-handling libraries: These include the exception support libraries, which
will be discussed in chapter 13, Error - Handling with Exceptions

Beginning with the POSIX standard

The POSIX standard defines all of the functionality a POSIX-compliant operating system
must implement. With respect to system programming, the POSIX standard defines the
system call interface (that is, the APIs, not the ABIs) that the operating system must
support.

Under the hood, most of the system-level APIs that C and C++ provide actually execute
POSIX functions, or are POSIX functions themselves (as is this case with a lot of C library
APIs). In fact, 1ibc is generally considered to be a subset of the greater POSIX standard,
while C++ leverages 1ibc and POSIX to implement its higher-level APIs such as threading,
memory management, error handling, file operations, and input/output. For more
information, refer to https://ieeexplore.ieee.org/document /8277153/.

[51]

https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/
https://ieeexplore.ieee.org/document/8277153/

Learning the C, C++17, and POSIX Standards Chapter 2

In this section, we will discuss some components of the POSIX standard that are relevant to
system programming. All of these topics will be discussed in further detail in later
chapters.

Memory management

All of the memory management functions that 1ibc provides are considered POSIX APIs
as well. In addition, there are some POSIX-specific memory management functions that
libc doesn't provide, such as aligned memory.

For example, the following demonstrates how to allocate aligned dynamic (heap) memory
using POSIX:

#include <iostream>

int main ()

{

void *ptr;

if (posix_memalign (&ptr, 0x1000, 42 * sizeof (int))) {
std::clog << "ERROR: unable to allocate aligned memory\n";
::exit (EXIT_FAILURE) ;

}

std::cout << ptr << '\n';
free (ptr);
}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x55¢c5d31d1000

In this example, we use the posix_memalign () function to allocate an array of 42 integers,
which is aligned to a page. This is a POSIX-specific function.

In addition, we leverage the std: :clog () function to output an error to stderr, which,
under the hood, leverages POSIX-specific functions for outputting character strings to
stderr. We also use : :exit (), whichis a 1ibc and POSIX function for exiting an
application.

Finally, we leverage both the std: :cout () and free () functions. std: : cout () uses
POSIX functions to output character strings to stdout, while free () is both a 1ibc and
POSIX-specific function for freeing up memory.

[52]

Learning the C, C++17, and POSIX Standards Chapter 2

In this simple example, we are leveraging several C, C++, and POSIX-specific functionalities
to perform system programming. Throughout this book, we will discuss how to leverage
POSIX heavily to program the system to accomplish specific tasks.

Filesystems

POSIX not only defines how to read and write a file from a POSIX-compliant operating
system, it also defines where files should be located on the filesystem. In chapter s,
Learning to Program File Input/Output, we will go into great detail about how to read and
write to a filesystem using C, C++, and POSIX.

With respect to the layout of the filesystem, POSIX defines where files should be located,
including common folders such as the following:

e /bin: for binaries used by all users

e /boot: for files needed to boot the operating system

e /dev: for physical and virtual devices

e /etc: for configuration files needed by the operating system
¢ /home: for user-specific files

e /1lib: for libraries needed by executables

e /mnt and /media:used as temporary mount points

e /sbin: for system-specific binaries

e /tmp: for files that are deleted on reboot

e /usr: for user-specific versions of the preceding folders

Sockets

To perform networking on a POSIX-compliant operating system, you need to leverage the
POSIX sockets API. The socket programming interface provided by POSIX is a good
example of a set of APIs that is provided by neither C nor C++, but is needed for
networking on POSIX-compliant operating systems.

In chapter 10, Programming POSIX Sockets Using C++, we will discuss how to perform
networking using the POSIX sockets API, while leveraging C++. Specifically, we will show
how C++ can be leveraged to simplify the implementation of socket-based networking, and
provide several examples of how to perform networking.

[53]

Learning the C, C++17, and POSIX Standards Chapter 2

Threading

Threads provide a system programmer with a means to perform parallel execution.
Specifically, a thread is a unit of execution that the operating system schedules when it
deems appropriate. Both C++ and POSIX provide APIs for working with threads, with the
C++ APIs arguably being easier to work with.

It should be noted that, under the hood, C++ leverages the POSIX threads library
(pthreads)—so, even though C++ provides a set of APIs for working with threads, in the
end, POSIX threads are responsible for threading in all cases.

The reason for this is simple. POSIX defines the interface a program leverages to talk to the
operating system. In this case, if you wish to tell the operating system to create a thread,
you must do so by leveraging the APIs defined by the operating system. If the operating
system is POSIX-compliant, those interfaces are POSIX, regardless of any abstractions that
might be put in place to make working with the APIs easier.

Summary

In this chapter, we learned about three different standards: C, C++, and POSIX. The C
standard defines the popular C syntax, C-style program linking and execution, and the
standard C libraries that provide cross-platform APIs to wrap an operating system's ABIs.

We also learned about the C++ standard, and how it defines the C++ syntax, program
linking and execution, and the high-level C++ APIs that wrap underlying C and POSIX
APIs to C++.

Finally, we saw how the POSIX standard provides additional APIs that go beyond C. These
APIs include (but are not limited to) memory management, networking, and threading. In
general, the POSIX standard defines all the standards needed for an application to perform
its functions in a cross-platform way on any POSIX-compliant operating system.

The remainder of this book will focus on the APIs defined in these standards, and how they
can be used to perform system programming in C++17. In the next chapter specifically, we
will cover the system types provided by C, C++, and POSIX, and how they affect system
programming.

[54]

Learning the C, C++17, and POSIX Standards Chapter 2

Questions

1.

NN

Is the C standard part of the POSIX standard? If so, name an API that is common
to both standards.

What is the difference between the _start () and main () functions?
List one of the responsibilities of the C runtime?

Are global constructors executed before or after the main () function?
What is C++ name mangling, and why is it needed?

Name one difference between C and C++ program linking.

What is the difference between a pointer and a reference?

Further reading

® https://www.packtpub.com/application—-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-

programming-video

[551]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

System Types for C and C++

With a system program, simple things, such as integer types, become complicated. This
entire chapter is devoted toward common problems that arise when performing system
programming, especially when performing system programming for multiple CPU
architectures, operating systems, and user space/kernel communications, such as system
calls.

This chapter consists of the following topics:

¢ An explanation of the default types that C and C++ provide, including types that
most programmers are familiar with, such as char and int

¢ A review of some of the standard integer types provided by stdint .h to
address limitations with the default types

e Structure packing and the complications associated with optimizations and type
conversions

Technical requirements

To compile and execute the examples in this chapter, the reader must have the following:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

To download all of the code in this chapter, including the examples and code snippets,
please go to the following link: https://github.com/PacktPublishing/Hands-On-System—-
Programming-with-CPP/tree/master/Chapter03.

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter03

System Types for C and C++ Chapter 3

Exploring C and C++ default types

The C and C++ languages come with several built-in types that come with the language,
without the need for additional header files or language features. In this section, we will be
discussing the following:

e char, wchar_t

e short int, int, long int

e float,double, long double
bool (C++ only)

Character types

The most basic type in C and C++ is the following character type:

#include <iostream>

int main (void)

{
char ¢ = 0x42;
std::cout << ¢ << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// B

A char is an integer type that, on most platforms, is 8 bits in size, and must be capable of
taking on the value range of [0, 255] for unsigned, and [-127, 127] for signed. The
difference between a char and the other integer types is that a char has a special meaning,
corresponding with the American Standard Code for Information Interchange (ASCII). In
the preceding example, the uppercase letter B is represented by the 8-bit value 0x42. It
should be noted that although a char can be used to simply represent an 8-bit integer type,
its default meaning is a character type; that's why it has a special meaning. For example,
consider the following code:

#include <iostream>

int main (void)

{
int 1 = 0x42;
char ¢ = 0x42;

std::cout << 1 << '\n';

[571

System Types for C and C++ Chapter 3

std::cout << c << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// 66
// B

In the previous example, we represented the same integer type, 0x42, using both an int (to
be explained later) and a char. These two values are, however, output to stdout in two
different ways. The integer is output as an integer while, using the same APIs, the char is
output as its ASCII representation. In addition, arrays of char types are considered to be an
ASCII string type in both C and C++, which also has a special meaning. The following code
shows this:

#include <iostream>

int main (void)

{
const char *str = "Hello World\n";
std::cout << str;

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

From the preceding example, we understand the following. We define an ASCII string
using a char pointer (an unbounded array type would also work in this case); std: : cout
understands how to handle this type by default, and a char array has a special meaning.
Changing the array type to an int would not compile, as the compiler would not know
how to convert the string to an array on integers, and std: : cout would not know, by
default, how to handle the array of integers, even though, on some platforms, an int and a
char might actually be the same type.

Like a bool and short int, the character type is not always the most efficient type to use
when representing an 8-bit integer, and as alluded to in the previous code, on some
platforms, it is possible for a char to actually be larger than 8 bits, a topic that will be
discussed in further detail when we discuss integers.

To further investigate the char type, as well as the other types being discussed in this
section, let's leverage the std: :numeric_limits{} class. This class provides a simple
wrapper around limits.h, which provides us with a means to query how a type is
implemented on a given platform in real time using a collection of static member functions.

[581]

System Types for C and C++ Chapter 3
For example, consider the following code:
#include <iostream>
int main (void)
{
auto num_bytes_signed = sizeof (signed char);
auto min_signed = std::numeric_limits<signed char>().min();
auto max_signed = std::numeric_limits<signed char> () .max();
auto num_bytes_unsigned = sizeof (unsigned char);
auto min_unsigned = std::numeric_limits<unsigned char>() .min();
auto max_unsigned = std::numeric_limits<unsigned char> () .max();
std::cout << "num bytes (signed): " << num_bytes_signed << '\n';
std::cout << "min value (signed): " << +4min_signed << '\n';
std::cout << "max value (signed): " << +4max_signed << '\n';
std::cout << '\n';
std::cout << "num bytes (unsigned): " << num_bytes_unsigned << '\n';
std::cout << "min value (unsigned): " << +min_unsigned << '\n';
std::cout << "max value (unsigned): " << +max_unsigned << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes (signed): 1

// min value (signed): -128

// max value (signed): 127

// num bytes (unsigned): 1
// min value (unsigned): 0
// max value (unsigned): 255

In the preceding example, we leverage std: :numeric_limits{} to tell us the min and
max value for both a signed and unsigned char (it should be noted that all examples in this
book were performed on a standard Intel 64-bit CPU, and it is assumed that these same
examples can, in fact, be executed on different platforms for which the values being
returned might be different). The std: :numeric_limits{} class can provide real-time

information about a type, including the following;:

e Signed or unsigned

e Conversion limits, such as rounding and the total number of digits needed to

represent the type
e Min and max information

[591]

System Types for C and C++ Chapter 3

As shown in the preceding example, a char on a 64-bit Intel CPU is 1 byte in size (that is, 8
bits), and takes on the values [0, 255] for an unsigned char and [-127, 127] for a signed
char, as stated by the specification. Let's look at a wide char or wchar_t:

#include <iostream>

int main (void)

{
auto num_bytes_signed = sizeof (signed wchar_t);
auto min_signed = std::numeric_limits<signed wchar_t>().min();
auto max_signed = std::numeric_limits<signed wchar_t> () .max();
auto num_bytes_unsigned = sizeof (unsigned wchar_t);
auto min_unsigned = std::numeric_limits<unsigned wchar_t> () .min();
auto max_unsigned = std::numeric_limits<unsigned wchar_t> () .max();
std::cout << "num bytes (signed): " << num_bytes_signed << '\n';
std::cout << "min value (signed): " << +min_signed << '\n';
std::cout << "max value (signed): " << +max_signed << '\n';
std::cout << '\n';
std::cout << "num bytes (unsigned): " << num_bytes_unsigned << '\n';
std::cout << "min value (unsigned): " << +min_unsigned << '\n';
std::cout << "max value (unsigned): " << +max_unsigned << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes (signed): 4

// min value (signed): -2147483648
// max value (signed): 2147483647

// num bytes (unsigned): 4
// min value (unsigned): 0
// max value (unsigned): 4294967295

A wchar_t represents Unicode characters and its size depends on the operating system. On
most Unix-based systems, a wchar_t is 4 bytes, and can represent a UTF-32 character type,
as shown in the previous example, while on Windows, a wchar_t is 2 bytes in size, and can
represent a UTF-16 character type. Executing the previous example on either of these
operating systems will result in a different output.

[60]

System Types for C and C++ Chapter 3

This is extremely important, and this issue defines the fundamental theme of this entire
chapter; the default types that C and C++ provide are different depending on the CPU
architecture, the operating system, and in some cases, if the application is running in user
space or in the kernel (for example, when a 32-bit application is executing on a 64-bit
kernel). Never assume, while system programming, that when interfacing with a system
call, that your application's definition of a specific type is the same as the type the API
assumes. Quite often, this assumption will prove to be invalid.

Integer types

To further explain how the default C and C++ types are defined by their environment, and
not by their size, let's look at the integer types. There are three main integer types—short
int, int, and long int (excluding long long int, which on Windows is actually a
long int).

A short int is typically smaller than an int, and on most platforms, represents 2 bytes.
For example, go through the following code:

#include <iostream>

int main (void)

{
auto num_bytes_signed = sizeof (signed short int);
auto min_signed = std::numeric_limits<signed short int> () .min();
auto max_signed std::numeric_limits<signed short int> () .max();

auto num_bytes_unsigned = sizeof (unsigned short int);

auto min_unsigned = std::numeric_limits<unsigned short int> () .min();
auto max_unsigned = std::numeric_limits<unsigned short int> () .max();
std::cout << "num bytes (signed): " << num_bytes_signed << '\n';
std::cout << "min value (signed): " << min_signed << '\n';

std::cout << "max value (signed): " << max_signed << '\n';

std::cout << '\n';

std::cout << "num bytes (unsigned): " << num_bytes_unsigned << '\n';
std::cout << "min value (unsigned): " << min_unsigned << '\n';
std::cout << "max value (unsigned): " << max_unsigned << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes (signed): 2
// min value (signed): -32768

[61]

System Types for C and C++ Chapter 3

// max value (signed): 32767

// num bytes (unsigned): 2
// min value (unsigned): 0
// max value (unsigned): 65535

As shown in the previous example, the code gets the min, max, and size of both a signed
short int and an unsigned short int. The results of this code demonstrates that on an
Intel 64-bit CPU running Ubuntu, a short int, whether it is signed or unsigned, returns a
2 byte representation.

Intel CPUs provide an interesting advantage over other CPU architectures, as an Intel CPU
is known as a complex instruction set computer (CISC), meaning that the Intel instruction
set architecture (ISA) provides a long list of complicated instructions, designed to provide
both compilers and by-hand authors of Intel assembly with advanced features. Among
these features is the ability for an Intel processor to perform arithmetic logic unit (ALU)
operations (including memory-based operations) at the byte level, even though most Intel
CPUs are either 32-bit or 64-bit. Not all CPU architectures provide this same level of
granularity.

To explain this better, let's look at the following example involving a short int:

#include <iostream>

int main (void)
{
short int s = 42;

std::cout << s << '\n';
s++;
std::cout << s << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// 42
// 43

In the previous example, we take a short int, set it to the value 42, output this value to
stdout using std: : cout, increment the short int by 1, and then output the result to
stdout using std: : cout again. This is a simple example, but under the hood, a lot is
occurring. In this case, a 2 byte value, executing on a system that contains 8 byte (that is, 64
bit) registers must be initialized to 42, stored in memory, incremented, and then stored in
memory again to be output to stdout. All of these operations must involve CPU registers
to perform these actions.

[62]

System Types for C and C++ Chapter 3

On an Intel-based CPU (either 32-bit or 64-bit), these operations likely involve the use of the
2 byte versions of the CPU's registers. Specifically, Intel's CPUs might be 32-bit or 64-bit,
but they provide registers that are 1, 2, 4, and 8 bytes in size (specifically on 64-bit CPUs). In
the previous example, this means that the CPU loads a 2 byte register with 42, stores this
value to memory (using a 2 byte memory operation), increments the 2 byte register by 1,
and then stores the 2 byte register back into memory again.

On a reduced instruction set computer (RISC), this same operation might be far more
complicated, as 2 byte registers do not exist. To load, store, increment, and store again only
2 bytes of data would require the use of additional instructions. Specifically, on a 32 bit
CPU, a 32 bit value would have to be loaded into a register, and when this value is stored in
memory, the upper 32 bit (or lower, depending on alignment) would have to be saved and
restored to ensure that only 2 bytes of memory were actually being affected. The additional
alignment checks, that is, memory reading, masking, and storing, would result in a
substantial performance impact if a lot of operations were taking place.

For this reason, C and C++ provide the default int type, which typically represents a CPU
register. That is, if the architecture is 32 bit, an int is 32 bit and vice versa (with the
exception of 64 bit, which will be explained shortly). It should be noted that CISC
architectures, such as Intel, are free to implement ALU operations with granularity smaller
than the CPU's register size however they wish, which means that under the hood, the
same alignment checks and masking operations could still be taking place. The take home
point is that unless you have a very specific reason to use a short int (for which there are
a few reasons to do so; a topic we will discuss at the end of this chapter), instead of an int,
an int type is, in most cases, more efficient than using a smaller type; even if you don't
need a full 4 or 8 bytes, it's still faster.

Let's look at the int type:
#include <iostream>
int main (void)

{

auto num_bytes_signed = sizeof (signed int);

auto min_signed = std::numeric_limits<signed int> () .min();

auto max_signed = std::numeric_limits<signed int> () .max();

auto num_bytes_unsigned = sizeof (unsigned int);

auto min_unsigned = std::numeric_limits<unsigned int> () .min();
auto max_unsigned = std::numeric_limits<unsigned int> () .max();
std::cout << "num bytes (signed): " << num_bytes_signed << '\n';
std::cout << "min value (signed): " << min_signed << '\n';
std::cout << "max value (signed): " << max_signed << '\n';

[63]

System Types for C and C++ Chapter 3

std::cout << '\n';

std::cout << "num bytes (unsigned): " << num_bytes_unsigned << '\n';
std::cout << "min value (unsigned): " << min_unsigned << '\n';
std::cout << "max value (unsigned): " << max_unsigned << '\n';

// > g++ scratchpad.cpp; ./a.out
// num bytes (signed): 4

// min value (signed): -2147483648
// max value (signed): 2147483647

// num bytes (unsigned): 4
// min value (unsigned): 0
// max value (unsigned): 4294967295

In the previous example, an int is showing as 4 bytes on a 64 bit Intel CPU. The reason for
this is backward compatibility, meaning that on some RISC architectures, the default
register size, resulting in the most efficient processing, might not be an int but rather a
long int.The problem is that to determine this in real time is painful (as the instructions
being used are done so at compile-time). Let's look at the 1ong int to explain this further:

#include <iostream>

int main (void)

{
auto num_bytes_signed = sizeof (signed long int);
auto min_signed = std::numeric_limits<signed long int> () .min();
auto max_signed = std::numeric_limits<signed long int> () .max();
auto num_bytes_unsigned = sizeof (unsigned long int);
auto min_unsigned = std::numeric_limits<unsigned long int> () .min();
auto max_unsigned = std::numeric_limits<unsigned long int> () .max();
std::cout << "num bytes (signed): " << num_bytes_signed << '\n';
std::cout << "min value (signed): " << min_signed << '\n';
std::cout << "max value (signed): " << max_signed << '\n';
std::cout << '\n';
std::cout << "num bytes (unsigned): " << num_bytes_unsigned << '\n';
std::cout << "min value (unsigned): " << min_unsigned << '\n';
std::cout << "max value (unsigned): " << max_unsigned << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes (signed): 8

[64]

System Types for C and C++ Chapter 3

// min value (signed): -9223372036854775808
// max value (signed): 9223372036854775807

// num bytes (unsigned): 8
// min value (unsigned): 0
// max value (unsigned): 18446744073709551615

As shown in the preceding code, on a 64 bit Intel CPU running on Ubuntu, the 1ong int is
an 8 byte value. This is not true on Windows, which represents a 1ong int as 32 bit, with
the long long int being 64 bits (once again for backward compatibility).

When system programming, the size of the data you are working with is usually extremely
important, and as shown in this section, unless you know exactly what CPU, operating
system, and mode your application will be running on, it's nearly impossible to know the
size of your integer types when using the default types provided by C and C++. Most of
these types should not be used when system programming with the exception of int,
which almost always represents a data type with the same bit width as the registers on your
CPU, or at a minimum, a data type that doesn't require additional alignment checks and
masking to perform simple arithmetic operations. In the next section, we will discuss
additional types that overcome these size issues, and we will discuss their pros and cons.

Floating — point numbers

When system programming, floating point numbers are rarely used, but we will briefly
discuss them here for reference. Floating point numbers increase the size of the possible
value that can be stored by reducing the accuracy. For example, with a floating point
number, it is possible to store a number that represents 1.79769e+308, which is simply not
possible with an integer value, even with a 1ong long int.To accomplish this, however,
it is not possible to subtract this value by 1 and see a difference in the number's value, and
the floating point number cannot represent such a large value while still maintaining the
same granularity as an integer value. Another benefit of floating point numbers is their
ability to represent sub-integer numbers, which is useful when dealing with more
complicated, mathematical calculations (a task that is rarely needed for system
programming, as most kernels don't work with floating point numbers to prevent floating
point errors from occurring within the kernel, ultimately resulting in a lack of system calls
that take floating point values).

[65]

System Types for C and C++ Chapter 3

There are mainly three different types of floating point numbers—float, double, and
long double. For example, consider the following code:

#include <iostream>

int main (void)

{
auto num_bytes = sizeof (float);
auto min = std::numeric_limits<float> () .min();
auto max = std::numeric_limits<float> () .max();
std::cout << "num bytes: " << num_bytes << '\n';
std::cout << "min value: " << min << '\n';
std::cout << "max value: " << max << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes: 4

// min value: 1.17549e-38

// max value: 3.40282e+38

In the previous example, we leverage std: :numeric_limits to examine the float type,
which on an Intel 64 bit CPU is a 4 byte value. The double is as follows:

#include <iostream>

int main (void)

{
auto num_bytes = sizeof (double);
auto min = std::numeric_limits<double> () .min();
auto max = std::numeric_limits<double> () .max();
std::cout << "num bytes: " << num_bytes << '\n';
std::cout << "min value: " << min << '\n';
std::cout << "max value: " << max << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes: 8

// min value: 2.22507e-308

// max value: 1.79769e+308

With the 1ong double, the code is as follows:

#include <iostream>

int main (void)

{

[66]

System Types for C and C++ Chapter 3

auto num_bytes = sizeof (long double);

auto min = std::numeric_limits<long double> () .min();
auto max = std::numeric_limits<long double> () .max();
std::cout << "num bytes: " << num_bytes << '\n';
std::cout << "min value: " << min << '\n';

std::cout << "max value: " << max << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// num bytes: 16

// min value: 3.3621e-4932

// max value: 1.18973e+4932

As shown in the previous code, on an Intel 64 bit CPU, the 1ong double is a 16 byte value
(or 128 bits), which can store an absolutely massive number.

Boolean

The standard C language doesn't define a Boolean type natively. C++, however, does, and is
defined using the bool keyword. When writing in C, a Boolean can be represented using
any integer type, with false typically representing 0, and t rue typically representing 1.
As an interesting side note, some CPUs are capable of comparing a register or memory
location to 0 faster than 1, meaning that on some CPUs, it's actually faster for Boolean
arithmetic and branching to result in false in the typical case.

Let's look at a bool using the following code:
#include <iostream>

int main (void)

{

auto num_bytes = sizeof (bool);

auto min = std::numeric_limits<bool> () .min();
auto max = std::numeric_limits<bool> () .max();
std::cout << "num bytes: " << num_bytes << '\n';
std::cout << "min value: " << min << '\n';
std::cout << "max value: " << max << '\n';

// > g++ scratchpad.cpp; ./a.out
// num bytes: 1
// min value: 0
// max value: 1

[671]

System Types for C and C++ Chapter 3

As shown in the preceding code, a Boolean using C++ on a 64 bit Intel CPU is 1 byte in size,
and can take on a value of 0 or 1. It should be noted, for the same reasons as already
identified, a Boolean could be 32-bits or even 64-bits, depending on the CPU architecture.
On an Intel CPU, which is capable of supporting register sizes of 8 bits (that is, 1 byte), a
Boolean only needs to be 1 byte in size.

The total size of a Boolean is important to note, with respect to storing Booleans in a file on
disk. A Boolean technically only needs a single bit to store its value, but rarely (if any) CPU
architectures support bit-style register and memory access, meaning a Boolean typically
consumes more than a single bit, and in some cases could consume as many as 64 bits. If the
size of your resulting file is important, storing a Boolean using the built-in Boolean type
may not be preferred (ultimately resulting in the need for bit masking).

Learning standard integer types

To address the uncertainty of the default types provided by C and C++, both provide the
standard integer types, which are accessible from the stdint .h header file. This header
defines the following types:

e int8_t,uint8_t

e intl6_t,uintl6_t
e int32_t,uint32_t
e int64_t,uint64_t

In addition, stdint .h provides both least and fast versions of the aforementioned types,
and a max type and integer pointer type, which is all out-of-scope for this book. The
previous types do exactly what you would expect; they define the width of integer types
with a specific number of bits. For example, an int8_t is a signed 8 bit integer. No matter
what the CPU architecture, operating system, or mode is, these types are always the same
(with the only thing not being defined is their endianness, which is usually only needed
when working with networking and external devices).

In general, if the size of the data type you are working with is important, use the standard
integer types instead of the default types provided by the language. Although the standard
types do solve a lot of the problems already identified, they do have their own issues.
Specifically, stdint .h is a compiler provided header file, with a different header being
defined for each CPU architecture and operating system combination possible. The types
defined in this file are typically represented using the default types under the hood. This
can be done because the compiler knows if an int32_t is an int, ora long int.To
demonstrate this, let's create an application that's capable of comparing integer types.

[68]

System Types for C and C++ Chapter 3

We will start with the following headers:

#include <typeinfo>
#include <iostream>

#include <string>
#include <cstdint>
#include <cstdlib>
#include <cxxabi.h>

The typeinfo header will provide us with C++ supported type information, which will
ultimately provide us with the root type for a specific integer type. The problem is

that typeinfo provides us with the mangled versions of this type information. To
demang]le this information, we will need the cxxabi . h header, which provides access to
the demangler built into C++ itself:

template<typename T>
std::string type_name ()

{

}

int status;
std::string name = typeid(T) .name () ;

auto demangled_name =

abi::___cxa_demangle (name.c_str(), nullptr, nullptr, &status);
if (status == 0) {
name = demangled_name;

std::free (demangled_name) ;

return name;

The previous function returns the root name for a provided type T. This is done by first
getting the type's name from C++, and then using the demangler to convert the mangled
type information into its human-readable form. Finally, the resulting name is returned:

template<typename T1l, typename T2>

void

are_equal ()

{

#define red "\033[1;31m"
#define reset "\033[0m"

std::cout << type_name<Tl>() << " vs "
<< type_name<T2>() << '\n';

[69]

System Types for C and C++ Chapter 3
if (sizeof (Tl) == sizeof (T2)) {
std::cout << " - size: both == " << sizeof (T1l) << '\n';
t
else {
std::cout << red " - size: "
<< sizeof (T1)
<< M oI=m
<< sizeof (T2)
<< reset "\n";
t
if (type_name<T1l> () == type_name<T2>()) {
std::cout << " - name: both == " << type_name<T1>() << '\n';
t
else {
std::cout << red " - name: "
<< type_name<T1> ()
<< "= m

<< type_name<T2> ()
<< reset "\n";

}

The previous function checks to see if both the name and size of the type are the same, as
they do not need to be the same (for example, the size could be the same, but the type's root
might not be). It should be noted that we add some strange characters to the output of this
function (which outputs to stdout). These strange characters tell the console to output in

the color red in the event that a match was not found, providing a simple means to
which types are the same, and which types are not the same:

int main ()

{
are_equal<uint8_t, int8_t>();
are_equal<uint8_t, uint32_t>();

are_equal<signed char, int8_t>();
are_equal<unsigned char, uint8_t>();

are_equal<signed short int, intlé_t>();
are_equal<unsigned short int, uintl6_t>();
are_equal<signed int, int32_t>();
are_equal<unsigned int, uint32_t>();
are_equal<signed long int, int64_t>();
are_equal<unsigned long int, uint64_t>();
are_equal<signed long long int, int64_t>();
are_equal<unsigned long long int, uint64_t>();

see

[70]

System Types for C and C++

Finally, we will compare each standard integer type with the expected (or more
appropriately stated, typical) default type to see if the types are in fact the same on any
given architecture. This example can be run on any architecture to see what the differences
are between the default types and the standard integer types so that we can look for
discrepancies if this information is needed when system programming.

The results are as follow (for an Intel-based 64 bit CPU on Ubuntu) for a uint8_t:

are_equal<uint8_t, int8_t>();
are_equal<uint8_t, uint32_t>();

// unsigned char vs signed char
// — size: both == 1
// — name: unsigned char != signed char

// unsigned char vs unsigned int
// - size: 1 1= 4
// — name: unsigned char != unsigned int

The following shows the results of a char:

are_equal<signed char, int8_t>();
are_equal<unsigned char, uint8_t>();

// signed char vs signed char
// - size: both ==
// — name: both == signed char

// unsigned char vs unsigned char
// - size: both ==
// — name: both == unsigned char

Finally, the following code shows the results for the remaining int types:

are_equal<signed short int, intlé6_t>();
are_equal<unsigned short int, uintl6_t>();
are_equal<signed int, int32_t>();
are_equal<unsigned int, uint32_t>();
are_equal<signed long int, int64_t>();
are_equal<unsigned long int, uint64_t>();
are_equal<signed long long int, int64_t>();

are_equal<unsigned long long int, uint64_t>();

// short vs short
// — size: both ==
// — name: both == short

// unsigned short vs unsigned short

[71]

System Types for C and C++ Chapter 3

//
//

//
//
//

//
//
//

//
//
//

//
//
//

//
//
//

//
//
//

- size: both ==
— name: both == unsigned short

int vs int
— size: both
— name: both

4
int

unsigned int
— size: both
— name: both

<
[}

unsigned int
=4
unsigned int

long vs long
— size: both
- name: both =

8
long

unsigned long vs unsigned long
- size: both ==
— name: both == unsigned long

long long vs long
- size: both ==
— name: long long != long

unsigned long long vs unsigned long
- size: both ==
— name: unsigned long long != unsigned long

All of the types are the same, with some notable exceptions:

e The first two tests were provided specifically to ensure that an error would, in
fact, be detected.

e On Ubuntu, an int64_t is implemented using long and not a long long,
which means that on Ubuntu, a 1ong and a long long mean the same thing.
This is not the case with Windows.

The most important thing to recognize with this demonstration is that the output doesn't
include the standard integer type names, but instead only contains the default type names.
This is because, as previously demonstrated, the compiler implements an int32_t on an
Intel 64 bit CPU on Ubuntu using an int, and to the compiler, these types are one and the
same. The difference is, on another CPU architecture and operating system, an int32_t
might be implemented using a long int.

[72]

System Types for C and C++ Chapter 3

If you care about the size of an integer type, use a standard integer type, and let the header
file pick which default type to use for you. If you don't care about the size of the integer
type, or an API dictates the type, leverage the default type instead. In the next section, we
will show you how even standard integer types do not guarantee a specific size, and the
rules just described can break down using a common system programming pattern.

Structure packing

The standard integers provide a compiler-supported method for dictating the size of an
integer type at compile time. Specifically, they map bit widths to default types so that the
coder doesn't have to do this manually. The standard types, however, do not always
guarantee the width of a type, and structures are a good example of this. To better
understand this issue, let's look at a simple example of a structure with some data in it:

#include <iostream>

struct mystruct {
uinte64_t datal;
uint64_t data2;
ti

int main ()
{
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 16

In the previous example, we created a structure with two 64 bit integers in it. We then,
using the sizeof () function, output the size of the structure to stdout using std: : cout.
As expected, the total size, in bytes, of the structure is 16. It should be noted that, like the
rest of this book, the examples in this section are all being executed on a 64 bit Intel CPU.

Now, let's look at the same example, but with one of the data types being changed to a 16
bit integer instead of a 64 bit integer, as follows:

#include <iostream>

struct mystruct {
uint64_t datal;
uintl6_t data2;
}i

[73]

System Types for C and C++ Chapter 3

int main ()

{

std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 16

As shown in the preceding example, we have a structure that has two data types, but they
do not match. We then output the size of the data structure to stdout using std: : cout,
and the reported size is 16 bytes. The problem is that we expect 10 bytes, as we defined the
structure as being the combination of a 64-bit (8 bytes) and a 16-bit (2 bytes) integer.

Under the hood, the compiler is replacing the 16 bit integer with a 64 bit integer. The reason
for this is the base type for C and C++is an int, and the compiler is allowed to change a
type smaller than an int with an int, even though we explicitly declared the second
integer as a 16 bit integer. To explain this in other words, the use of unit16_t does not
demand the use of a 16 bit integer, but rather it is a typedef for short int on a 64 bit
Intel-based CPU running Ubuntu, and based on the C and C++ specifications, the compiler
is allowed to change a short int toan int at will.

The order in which we specify our integers also does not matter:

#include <iostream>

struct mystruct {
uintl6_t datal;
uint64_t data2;
bi

int main ()

{

std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 16

[74]

System Types for C and C++ Chapter 3

As seen in the previous example, the compiler once again states that the total size of the
structure is 16 bytes when, in fact, we expect 10. In this example, the compiler is even more
likely to make this type of substitution because it is capable of identifying that there is an
alignment issue. Specifically, the CPU this code was compiled on was a 64 bit CPU, which
means that replacing the uint16_t with a unit64_t could possibly improve memory
caching, and align data2 on a 64 bit boundary instead of a 16 bit boundary, which would
span two 64 bit memory locations if the structure is properly aligned in memory.

Structures are not the only way to reproduce this type of substitution. Let's examine the
following example:

#include <iostream>

int main ()
{
intle_t s = 42;
auto result = s + 42;
std::cout << "size: " << sizeof(result) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 4

In the previous example, we created a 16-bit integer and set it to 42. We then created
another integer and set it to our 16-bit integer plus 42. The value 42 can be represented as
an 8-bit integer, but it's not. Instead, the compiler represents 42 as an int, which in this
case means that the system this code was compiled on is 4 bytes in size.

The compiler represents 42 as an int, and int plus an int16_t, which results in an int,
as that is the higher width type. In the previous example, we define our result variable
using auto, which ensures that the resulting type reflects the type the compiler created as a
consequence of this arithmetic. We could have defined result as another int16_t, which
would have worked unless we turned on integer type conversion warnings. Doing so
would have resulted in a conversion warning as the compiler constructs an int as a
consequence of adding s plus 42, and then would have to automatically convert the
resulting int back to an int16_t, which would be performing a narrowing conversion,
which could result in an overflow (hence the warning).

All of these issues are a consequence of the compiler's ability to perform type conversions
from a smaller width type to a higher width type in order to optimize performance to
reduce the possibility of overflows. In this case, a numeric value is always an int unless the
value requires more storage (for example, replace 42 with OxFFFFFFFF00000000).

[75]

System Types for C and C++ Chapter 3

This type of conversion is not always guaranteed. Consider the following example:

#include <iostream>

struct mystruct {
uintl6_t datal;
uintl6_t data2;
ti

int main ()

{
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 4

In the previous example, we have a structure with two 16 bit integers. The total size of the
structure is reported as 4 bytes, which is exactly what we would expect. In this case, the
compiler doesn't see a benefit to changing the size of either of the integers and thus leaves
them alone.

Bit fields also do not change the compiler's ability to perform this type of conversion, as
shown in the following example:

#include <iostream>

struct mystruct {
uintl6_t datal : 2, data2 : 14;
uint64_t data3;

}i

int main ()
{
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 16

In the previous example, we created a structure with two integers (a 16-bit integer and a 64-
bit integer), but instead of just defining the 16-bit integer, we also defined bit fields, giving
us direct access to specific bits within the integer (a practice that should be avoided when
system programming for reasons that are about to be explained). Defining these bit fields

does not prevent the compiler from changing the total size of the first integer from 16 bits to
64 bits.

[76]

System Types for C and C++ Chapter 3

The problem with the previous example is that bit fields are often a pattern used by system
programmers when interfacing directly with hardware. In the previous example, the
second 64-bit integer is expected to be at 2 bytes from the top of the structure. In this case,
however, the second 64-bit integer is actually 8 bytes from the top of the structure. If we
used this structure to interface directly with hardware, a hard to find logic bug would be
the result.

The way to overcome this problem is to pack the structure. The following example
demonstrates how to do this:

#include <iostream>

#pragma pack (push, 1)

struct mystruct {
uinte64_t datal;
uintl6_t data2;

ti

#pragma pack (pop)

int main ()

{
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 10

The previous example is similar to the first example in this section. A structure was created
with a 64 bit integer and a 16 bit integer. In the previous example, the resulting size of the
structure was 16 bytes, as the compiler replaced the 16 bit integer with a 64 bit integer
instead. In the previous example, to fix this issue, we wrap the structure with the #pragma
pack and #pragma pop macros. These macros tell the compiler (since we passed a 1 to the
macro, which indicates a byte) to pack the structure using a byte granularity, telling the
compiler it is not allowed to make a substitution optimization.

Using this method, changing the order of the variables to the more likely scenario for which
the compiler would attempt this type of optimization still results in a structure that is not
converted, as shown in the following example:

#include <iostream>

#pragma pack (push, 1)
struct mystruct {
uintl6_t datal;
uint64_t data2;
}i

[77]

System Types for C and C++ Chapter 3

#pragma pack (pop)

int main ()

{
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 10

As seen in the previous example, the size of the structure is still 10 bytes, regardless of the
order of the integers.

Combining structure packing with the standard integer types is sufficient (assuming
endianness is not an issue) to directly interface with the hardware, but this type of pattern
is still discouraged in favor of building accessors and leveraging bit masks that provide the
user with a means to ensure that direct access to hardware registers is occurring in a
controlled manner without the compiler getting in the way, or optimizations producing
undesired results.

To explain why packed structures and bit fields should be avoided, let's look at an
alignment issue with the following example:

#include <iostream>

#pragma pack (push, 1)

struct mystruct {
uintl6_t datal;
uint64_t data2;

bi

#pragma pack (pop)

int main ()
{
mystruct s;
std::cout << "addr: " << &s << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// addr: O0x7fffd11069cf

[78]

System Types for C and C++ Chapter 3

In the previous example, we created a structure with a 16 bit integer and a 64-bit integer,
and then packed the structure to ensure the total size of the structure is 10 bytes, and each
data field is properly aligned. The total alignment of the structure is, however, not cache
aligned, which is demonstrated in the previous example by creating an instance of the
structure on the stack and then outputting the structure's address to stdout using

std: :cout. As shown, the address is byte aligned, not cache aligned.

To cache align the structure, we will leverage the alignas () function, which will be
explained in chapter 7, A Comprehensive Look at Memory Management:

#include <iostream>

#pragma pack (push, 1)

struct alignas(16) mystruct {
uintl6_t datal;
uint64_t data2;

Fi

#pragma pack (pop)

int main ()
{
mystruct s;
std::cout << "addr: " << &s << '\n';
std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// addr: Ox7fffd44ee3f40
// size: 16

In the previous example, we added the alignas () function to the definition of the
structure, which cache aligns the structure on the stack. We also output the total size of the
structure as with previous examples, and as shown, the structure is no longer packed. In
other words, the use of #pragma pack# does not guarantee the structure will, in fact, be
packed. As in all cases, the compiler is free to make changes as needed, and even the
#pragma pack macro is a hint, not a requirement.

In the previous case, it should be noted that the compiler actually adds additional memory
to the end of the structure, meaning that the data members in the structure are still in their
correct locations, as follows:

#include <iostream>

#pragma pack (push, 1)
struct alignas(16) mystruct {
uintl6_t datal;

[79]

System Types for C and C++ Chapter 3

uint64_t data2;
i
#pragma pack (pop)

int main ()

{
mystruct s;
std::cout << "addr datal: " << &s.datal << '\n';
std::cout << "addr data2: " << &s.data2 << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// addr datal: 0x7ffc45dd8c90
// addr data2: 0x7ffc45dd8c92

In the previous example, the address of each data member is output to stdout, and as
expected, the first data member is aligned to 0, and the second data member is 2 bytes from
the top of the structure, even though the total size of the structure is 16 bytes, meaning that
the compiler is getting the extra 6 bytes by adding addition integers to the bottom of the
structure. Although this might seem benign if an array of these structures were created, and
it was assumed the structures were 10 bytes in size due to the use of #pragma pack, a hard
to find logic bug would be introduced.

To conclude this chapter, a note about pointers should be provided with respect to their
size. Specifically, the size of a pointer depends entirely on the CPU architecture, operating
system, and mode the application is running in. Let's examine the following example:

#include <iostream>

#pragma pack (push, 1)

struct mystruct {
uintl6_t *datal;
uint64_t data2;

ti

#pragma pack (pop)

int main ()

{

std::cout << "size: " << sizeof (mystruct) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// size: 16

[80]

System Types for C and C++ Chapter 3

In the previous example, we stored a pointer and an integer and output the total size of the
structure to stdout using std: : cout. The resulting size of this structure is 16 bytes on a
64-bit Intel CPU running Ubuntu. The total size of this structure on a 32-bit Inte]l CPU
running Ubuntu would be 12 bytes, as the pointer would only be 4 bytes in size. Worse, if
the application were compiled as a 32-bit application, but executed on a 64-bit kernel, the
application would see this structure as 12 bytes, and the kernel would see this structure as
16 bytes. Attempting to pass this structure to the kernel would result in a bug, as the
application and kernel would see the structure differently.

Summary

In this chapter, we reviewed the different integer types (and briefly reviewed the floating
point types) that are provided by C and C++ for system programming. We started with a
discussion on the default types provided by C and C++ and the pros and cons associated
with these types, including the common int type, explaining what it is, and how it is used.
Next, we discussed the standard integer types provided by stdint .h and how they
address some of the issues with the default types. Finally, we concluded this chapter with a
discussion on structure packing and the issues associated with type conversions and
optimizations that the compiler can make in different scenarios.

In the next chapter, we will cover changes made by C++17, a C++ specific technique called
Resource Acquisition Is Initialization (RAII) and provide an overview of the Guideline
Support Library (GSL).

Questions

What is the difference between a short int and an int?
What is the size of an int?

Is the size of a signed int and anunsigned int different?
What is the difference between an int32_t and an int?

Is an int16_t guaranteed to be 16 bits?

What does #pragma pack do?

NSk N

Is it possible to guarantee structure packing in all cases?

[81]

System Types for C and C++ Chapter 3

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-
programming-video

[82]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

C++, RAIl, and the GSL
Refresher

In this chapter, we will provide an overview of some of the recent advancements of C++
that are leveraged in this book. We will start by providing an overview of the changes
made to C++ in the C++17 specification. We will then briefly cover a C++ design pattern
called Resource Acquisition Is Initialization (RAII), how it is used by C++, and why it is so
important to not only C++ but many other languages that leverage the same design pattern.
This chapter will conclude with an introduction to the Guideline Support Library (GSL)
and how it can help to increase the reliability and stability of system programming by
helping to adhere to the C++ Core Guidelines.

In this chapter, we will cover the following topics:

¢ Discussing the advancements made in C++17
e QOutlining RAII
e Introducing the GSL

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

GCC 7+
CMake 3.6+
An internet connection

C++, RAII, and the GSL Refresher Chapter 4

To download all of the code in this chapter, including the examples and code snippets, go
to the following link: https://github.com/PacktPublishing/Hands-On-System-
Programming-with—-CPP/tree/master/Chapter04.

A brief overview of C++17

The goal of this section is to provide a brief overview of C++17 and the features added to
C++. For a more comprehensive and in-depth look at C++17, please see the Further reading
section of this chapter, which list additional books from Packt Publishing on the topic.

Language changes

There were several changes made to the C++17 language and syntax. The following are
some examples.

Initializers in if/switch statements

In C++17, it is now possible to define a variable and initialize it in the definition of an i f
and switch statement, as follows:

#include <iostream>

int main (void)
{
if (auto 1 = 42; i > 0) {
std::cout << "Hello World\n";
}
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

In the preceding example, the i variable is defined and initialized inside the if statement
using a semicolon (;) inside the branch itself. This is especially useful for C- and POSIX-
style functions that return error codes, as the variable that stores the error code can be
defined in the proper context.

What makes this feature so important and useful is that the variable is only defined when
the condition is met. That is, in the preceding example, i only exists if i is greater than 0.

[84]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter04

C++, RAII, and the GSL Refresher Chapter 4

This is extremely helpful in ensuring that variables are available when they are valid,
helping to reduce the likelihood of working with an invalid variable.

The same type of initialization can occur with switch statements as follows:

#include <iostream>

int main (void)
{
switch (auto i = 42) {
case 42:
std::cout << "Hello World\n";
break;

default:
break;

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

In the preceding example, the i variable is created only in the context of the switch
statement. Unlike the i f statement, the i variable exists for all cases, meaning the
i variable is available in the default state, which could represent the invalid state.

Additions to compile-time facilities

With C++11, constexpr was added as a statement to the compiler that a variable, function,
and so on, can be evaluated at compile time and optimized, reducing the complexity of the
code at runtime and improving performance overall. In some cases, the compiler was smart
enough to extend constexpr statements to other components, including branch
statements, for example:

#include <iostream>
constexpr const auto val = true;

int main (void)
{
if (val) |
std::cout << "Hello World\n";
t

[85]

C++, RAII, and the GSL Refresher Chapter 4

In this example, we have created a constexpr variable, and we only output Hello
World to stdout if constexpr is true. Since, in this example, it's always true, the
compiler will remove the branch from the code entirely, as shown here:

push %rbp

mov %rsp, $rbp

lea 0x100(%rip),%rsi
lea 0x200814 (%rip), %rdi
callg 6c0 <...cout...>
mov $0x0, $eax

pop %rbp
retg

As you can see, the code loads a couple of registers and calls std: : cout without checking
whether val is true, since the compiler completely removed the code from the resulting
binary. The issue with C++11 was that the author could assume that this type of
optimization was taking place, when in fact it might not be.

To prevent this type of error, C++17 adds a constexpr if statement, which tells the
compiler to specifically optimize the branch at compile time. If the compiler cannot
optimize the if statement, an explicit compile-time error will occur, telling the user that
optimization could not be done, providing the user with an opportunity to fix the issue
(instead of assuming the optimization was taking place when in fact it might not be), for
example:

#include <iostream>

int main (void)
{
if constexpr (constexpr const auto i = 42; i > 0) {
std::cout << "Hello World\n";
}
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

[86]

C++, RAII, and the GSL Refresher Chapter 4

In the preceding example, we have a more complicated if statement that leverages both a
compile-time constexpr optimization as well as an i f statement initializer. The resulting
binary is as follows:

push %rbp

mov %rsp, $rbp

sub $0x10, $rsp

movl $0x2a,-0x4 (%$rbp)
lea 0x104 (%rip),%rsi
lea 0x200809 (%rip), %rdi
callg 6c0 <...cout...>
mov $0x0, $eax

leaveq

retg

As you can see, the branch has been removed from the resulting binary, and more
specifically, if the expression was not a constant, the compiler would have thrown an error
stating that this code could not be compiled as stated.

It should be noted that this result is not the same binary as previously as one might expect.
It would appear that GCC 7.3 has some additional improvements to make in its
optimization engine, as the constexpr i variable that was defined and initialized inside
the binary was not removed (as stack space was allocated for i in this code when it didn't
need to be).

Another compile-time change was a different version of the static_assert compile-time
function. In C++11, the following was added:

#include <iostream>

int main (void)
{
static_assert (42 == 42, "the answer");

}

// > g++ scratchpad.cpp; ./a.out
//

[871]

C++, RAII, and the GSL Refresher Chapter 4

The goal of the static_assert function is to ensure that certain compile-time
assumptions are true. This is especially helpful when programming a system to do things
such as making sure a structure is a specific size in bytes, or that a certain code path is
taken, depending on the system you're compiling for. The problem with this assert was that
it required the addition of a description that would be output during compile time, which
likely just describes the assertion in English without providing any additional information.
In C++17, another version of this assert was added, which removed the need for the
description, as follows:

#include <iostream>

int main (void)
{

static_assert (42 == 42);
}

// > g++ scratchpad.cpp; ./a.out
//

Namespaces

A welcome change to C++17 is the addition of nested namespaces. Prior to C++17, nested
namespaces had to be defined on different lines, as follows:

#include <iostream>

namespace X
{
namespace Y
{
namespace 2
{
auto msg = "Hello World\n";
}
}
}

int main (void)
{

std::cout << X::Y::Z::msg;
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

[881]

C++, RAII, and the GSL Refresher Chapter 4

In the preceding example, we define a message that is output to stdout in a nested
namespace. The problem with this syntax is obvious—it takes up a lot of space. In C++17,
this limitation was removed by giving us the ability to declare nested namespaces on the
same line, as follows:

#include <iostream>

namespace X::Y::Z
{
auto msg = "Hello World\n";

}

int main (void)
{

std::cout << X::Y::Z::msg;
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

In the preceding example, we are able to define a nested namespace without the need for
separate lines.

Structured bindings

My favorite addition to C++17 is something called structured bindings. Prior to C++17,
complex structures, such as a struct or std: : pair, could be used to return more than one
value as the output of a function, but the syntax was cumbersome, for example:

#include <utility>
#include <iostream>

std::pair<const char *, int>
give_me_a_pair ()
{

return {"The answer is: ", 42};

}

int main (void)
{

auto p = give_me_a_pair();

std::cout << std::get<0>(p) << std::get<l>(p) << '\n';
}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42

[891]

C++, RAII, and the GSL Refresher Chapter 4

In the preceding example, the give_me_a_pair () function returns std: :pair with a The
answer is: string and an integer of 42. The result of this function is stored in a variable
named p in the main function, and std: :get () is needed to get the first and second
portion of std: :pair. This code is both cumbersome and inefficient without aggressive
optimizations, as additional function calls are needed to retrieve the results

of give_me_a_pair ().

In C++17, structured bindings provide us with a means to retrieve individual fields of a
struct or std: :pair, as follows:

#include <iostream>

std::pair<const char *, int>
give_me_a_pair ()
{

return {"The answer is: ", 42};

}

int main (void)

{
auto [msg, answer] = give_me_a_pair();
std::cout << msg << answer << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42

In the preceding example, the give_me_a_pair () function returns the same std: :pair
as before, but this time, we retrieve the results of give_me_a_pair () using structured
bindings. The msg and answer variables are initialized to the results of std: :pair,
providing us with direct access to the results without the need for std: :get ().

The same is also possible with structures, as follows:

#include <iostream>

struct mystruct

{
const char *msg;
int answer;

}i

mystruct
give_me_a_struct ()
{

return {"The answer is: ", 42};

[90]

C++, RAII, and the GSL Refresher Chapter 4

}

int main (void)

{
auto [msg, answer] = give_me_a_struct();
std::cout << msg << answer << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42

In the preceding example, we create a structure that is returned by give_me_a_struct ().
The results of this function are acquired using structured bindings instead of std: : get ().

Inline variables

A more controversial addition to C++17 is the inclusion of inline variables. As time
progresses, more and more header-only libraries are being developed by various members
of the C++ community. These libraries offer the ability to provide complex functionality to
C++ without the need to install and link against the library (simply include the library and
you're done). The issue with these types of libraries is that they have to play fancy tricks to
include global variables in the library itself.

Inline variables remove this issue, as follows:

#include <iostream>
inline auto msg = "Hello World\n";

int main (void)
{
std::cout << msg;

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

In the preceding example, the msg variable is declared as inline. This type of variable can
be defined in a header (that is, a . h file) and included several times without multiple
definitions being defined during linking. It should be noted that inline variables also
remove the need for the following;:

extern const char *msg;

[91]

C++, RAII, and the GSL Refresher Chapter 4

Often, a global variable is needed by multiple source files and the preceding pattern is used
to expose the variable to all of these source files. The preceding code is added to a header
file that is included by all of the source files and then one source file actually defines the
variable, for example:

const char *msg = "Hello World\n";

Although this works, this approach is cumbersome and it's not always clear which source
file should actually define the variable. Using inline variables removes this issue, as the
header both defines the variable and exposes the symbol to all of the source files that need
it, removing the ambiguity.

Changes in the library

In addition to changes to the language's syntax, some library changes were also made. The
following are some of the notable changes.

String View

As will be discussed in the GSL section of this chapter, there is a push within the C++
community to remove direct access to both pointers and arrays. Most segfaults and
vulnerabilities discovered in applications can be attributed to the mishandling of pointers
and arrays. As programs become more and more complex, and modified by multiple
people without a complete picture of the application and how it uses each and every
pointer and/or array, the likelihood of an error being introduced increases.

To address this, the C++ community has adopted the C++ Core Guidelines: https://
github.com/isocpp/CppCoreGuidelines.

The goal of the C++ Core Guidelines is to define a set of best practices that help to prevent
common mistakes that are made when programming with C++, to limit the total number of
errors that are introduced into a program. C++ has been around for years and, although it
has a lot of facilities to prevent mistakes, it still maintains backward-compatibility, allowing
old programs to coexist with new ones. The C++ Core Guidelines helps new and expert
users navigate the many features that are available to help create safer and more robust
applications.

[92]

https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines

C++, RAII, and the GSL Refresher Chapter 4

One of the features that was added to C++17 in support of this effort is the
std::string_view{} class. std::string_view is a wrapper around a character array,
similar to std: :array, that helps to make working with basic C strings safer and easier,
for example:

#include <iostream>
#include <string_view>

int main (void)

{
std::string_view str("Hello World\n");
std::cout << str;

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

In the preceding example, we create std: : string_view{} and initialize it to an ASCII C
string. We then output the string to stdout using std: : cout. Like std: :array,
std::string_view{} provides accessors to the underlying array, as follows:

#include <iostream>
#include <string_view>

int main (void)
{
std::string_view str("Hello World");

std::cout << str.front() << '\n';
std::cout << str.back() << '\n';
std::cout << str.at(l) << '\n';

std::cout << str.data() << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// H

// d

// e

// Hello World

In the preceding example, the front () and back () functions can be used to get the first
and last character in the string, while the at () function can be used to get any character in
the string; if the index is out of range (that is, the index provided to at () is longer than the
string itself), an std: :out_of_range{} exception is thrown. Finally, the data () function
can be used to get direct access to the underlying array. Although, this function should be
used with care, as its use negates the safety benefits of std: :string_view{}.

[93]

C++, RAII, and the GSL Refresher

Chapter 4

In addition to the accessors, the std: :string_view{} class provides information about
the size of the string;:

#include <iostream>
#include <string_view>

int main (void)

{

std:

std:
std:
std:

}

:string_view

rcout << str
rcout << str
rcout << str

str("Hello World");

.size () << !
.max_size()
.empty () <<

// > g++ scratchpad.cpp; ./a.out

// 11

// 4611686018427387899

// 0

\n';
<< '"\n';
'\nl;

In the preceding example, the size () function returns the total number of characters in the

string, while the empty () function returns true if size ()

0 and false otherwise.

The max_size () function defines the maximum size std: :string_view{} can hold,
which in most cases is unattainable or realistic. In the preceding example, the maximum
string size is more than a million terabytes in size.

Unlike a std: :array, the std: :string_view{} provides the ability to reduce the size of
the view of the string by removing characters from the front or back of the string, as

follows:

#include <iostream>
#include <string_view>

int main (void)

{

std::string_view str("Hello World");

str.remove_prefix (1);
str.remove_suffix(1);
std::cout << str << '\n';

}

// > g++ scratchpad.cpp;

// ello Worl

./a.out

[94]

C++, RAII, and the GSL Refresher Chapter 4

In the preceding example, the remove_prefix () and remove_suffix () functions are
used to remove one character from both the front and back of the string, resulting in e11o
Worl being outputted to stdout. It should be noted that this simply changes the starting
character and repositions the ending null character pointer without having to reallocate
memory. For more advanced functionality, std: : string{} should be used, but it comes
with the resulting performance hits of additional memory allocations.

It is also possible to access substrings, as follows:

#include <iostream>
#include <string_view>

int main (void)

{
std::string_view str("Hello World");
std::cout << str.substr(0, 5) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// Hello

In the preceding example, we access the Hel1lo substring using the substr () function.

It is also possible to compare strings:

#if SNIPPET13

#include <iostream>
#include <string_view>

int main (void)
{
std::string_view str("Hello World");

if (str.compare("Hello World") == 0) {
std::cout << "Hello World\n";

std::cout << str.compare ("Hello") << '\n';
std::cout << str.compare ("World") << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

// 6

// =1

[95]

C++, RAII, and the GSL Refresher Chapter 4

Like the strcmp () function, the compare function returns 0 when the two strings are
compared, and a difference when they do not.

Finally, search functions are provided as follows:

#include <iostream>

int main (void)

{

>
0
2
0
3
5
3

std::string_view str("Hello this is a test of Hello World");
std::cout << str.find("Hello") << '\n';

std::cout << str.rfind("Hello") << '\n';

std::cout << str.find_first_of ("Hello") << '\n';

std::cout << str.find_last_of ("Hello") << '\n';

std::cout << str.find_first_not_of ("Hello") << '\n';
std::cout << str.find_last_not_of ("Hello") << '\n';

g++ scratchpad.cpp; ./a.out

4

3

4

The results of this example are as follows:

e The find () function returns the location in the string of the first occurrence of

Hello which in this case is 0.

e rfind() returns the location of the last occurrence of the provided string, which,

in this case, is 24.

e find_ first_of () and find_last_of () find the first and last occurrence of

any of the characters provided (not the string as a whole). In this case, H is in the
provided string, and H is the first character in msg, which
means find_first_of () returns 0 since the 0 is the first index in the string.

e In the case of find_last_of (), 1 is the last-occurring letter, at position 33.

e find first_not_of() and find_last_not_of () are the opposite

of find_first_of () and find_last_of (), returning the first and last
occurrence of any character not in the provided string.

[961]

C++, RAII, and the GSL Refresher Chapter 4

std::any, std::variant, and std::optional

Other welcome additions to C++17 are the std: :any{}, std: :variant{}, and
std::optional{} classes. std::any{} is capable of storing any value at any time. Special
accessors are needed to retrieve the data in std: :any{}, but they are capable of holding
any value in a type-safe manner. To accomplish this, std: :any{} leverages an internal
pointer, and memory must be allocated each time the type is changed, for example:

#include <iostream>
#include <any>

struct mystruct {
int data;
}i

int main (void)
{
auto myany = std::make_any<int> (42);
std::cout << std::any_cast<int> (myany) << '\n';

myany = 4.2;
std::cout << std::any_cast<double> (myany) << '\n';

myany = mystruct{42};
std::cout << std::any_cast<mystruct> (myany) .data << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// 42

// 4.2

// 42

In the preceding example, we create std: :any{} and set it to an int with the value of 42,
a double with the value of 4.2, and a struct with the value of 42.

std::variant is more like a type-safe union. A union reserves storage space for all of the
types that are stored within the union at compile time (so no allocations is needed, but all of
the possible types must be known at compile time). The problem with a standard C union is
that there is no way to know what type is stored at any given time. Storing both an int and
a double at the same time is problematic, since using both simultaneously will lead to
corruption. With std: : variant, this type of issue can be avoided, as std: :variant is
aware of what type it is currently storing, and attempting to access the data as a different
type is not allowed (hence, std: : variant is type-safe), for example:

#include <iostream>
#include <variant>

[97]

C++, RAII, and the GSL Refresher Chapter 4

int main (void)

{
std::variant<int, double> v = 42;
std::cout << std::get<int>(v) << '\n';

v = 4.2;
std::cout << std::get<double>(v) << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// 42
// 4.2

In the preceding example, std: : variant is used to store both an integer and a double,
and we can safely retrieve the data in std: : variant without corruption.

std::optional is a nullable value type. A pointer is a nullable reference type in which the
pointer is either invalid or is valid and stores a value. To make a pointer value, memory
must be allocated (or at least pointed to). std: :optional is a value type, meaning the
memory for std: :optional doesn't have to be allocated, and under the hood,
construction is only performed when the optional is valid, removing the overhead of
constructing a default value type when it is not actually set. For complex objects, this not
only provides the ability to determine whether an object is valid, it allows us to skip
construction in the invalid case, which increases performance, for example:

#include <iostream>
#include <optional>

class myclass

{
public:
int val;

myclass (int wv)
val{v}

{

std::cout << "constructed\n";
}i
int main (void)

std::optional<myclass> o;
std::cout << "created, but not constructed\n";

if (o) |
std::cout << "Attempt #1: " << o->val << '\n';

[981]

C++, RAII, and the GSL Refresher Chapter 4

t
o = myclass{42};

if (o) A
std::cout << "Attempt #2: " << o->val << '\n';
}
}

// > g++ scratchpad.cpp; ./a.out
// created, but not constructed
// constructed

// Attempt #2: 42

In the preceding example, we create a simple class that stores an integer. In this class, we
output a string to stdout when the class is constructed. We then create an instance of this
class using std: :optional. We attempt to access this std: : opt ional before and after we
actually set the class to a valid value. As shown, the class is not constructed until we
actually set the class to a valid value. Since sts: :unique_ptr used to be the common
method for creating optionals, it should be no surprise that std: : opt ional shares a
common interface.

Resource Acquisition Is Initialization (RAII)

RAII is arguably one of the more notable differences between C and C++. RAII sets the
foundation and design patterns for the entire C++ library, and has been the inspiration for
countless other languages. This simple concept provides C++ with an unmatched level of
safety when compared to C, and this concept will be leveraged throughout this book when
C and POSIX must be used in place of C++ (for example, when a C++ alternative either
doesn't exist or is incomplete).

The idea behind RAII is simple. If a resource is allocated, it is allocated during the
construction of an object, and when the object is destroyed, the resource is released. To
accomplish this, RAII leverages the construction and destruction features of C++, for
example:

#include <iostream>

class myclass

{

public:
myclass ()

{

[991]

C++, RAII, and the GSL Refresher Chapter 4

std::cout << "Hello from constructor\n";

~myclass ()

{

std::cout << "Hello from destructor\n";
ti

int main (void)
{

myclass c;

// > g++ scratchpad.cpp; ./a.out
// Hello from constructor
// Hello from destructor

In the preceding example, we create a class that, on construction and destruction, outputs
to stdout. As shown, when the class is instantiated, the class is constructed, and when the
class loses focus, the class is destroyed.

This simple concept can be leveraged to guard a resource, as follows:

#include <iostream>

class myclass

{
int *ptr;

public:
myclass ()
ptr{new int (42)}

~myclass ()

{
delete ptr;

int get ()
{

return *ptr;
bi

int main (void)

{

[100]

C++, RAII, and the GSL Refresher Chapter 4

myclass c;
std::cout << "The answer is: " << c.get() << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42

In the preceding example, a pointer is allocated when myclass{} is constructed, and freed
when myclass{} is destroyed. This pattern provides many advantages:

¢ So long as the instance of myclass{} is visible (that is, can be accessed), the
pointer is valid. So, any attempt to access the memory in the class is guaranteed
to be safe as the deallocation of the memory only occurs when the scope of the
class is lost, which would result in an inability to access the class (assuming
pointers and references to the class are not used).

¢ No leaking of memory can occur. If the class is visible, the memory that the class
allocated will be valid. Once the class is no longer visible (that is, loses scope), the
memory is freed and no leak occurs.

Specifically, RAII ensures that the acquisition of a resource occurs at the initialization of the
object, and the release of the resources occurs when the object is no longer needed. As will
be shown later on in chapter 7, A Comprehensive Look at Memory Management,
std::unique_ptr[] and std::shared_ptr{} leverage this exact design pattern
(although, these classes go above and beyond the preceding example to enforce ownership
in addition to acquisition).

RAII does not just apply to pointers; it can be used for any resource that must be acquired
and then released, for example:

#include <iostream>

class myclass

{
FILE *m_file;

public:

myclass (const char *filename)
m_file{fopen(filename, "rb")}

{
if (m_file == 0) {

throw std::runtime_error ("unable to open file");

}

}

~myclass ()

[101]

C++, RAII, and the GSL Refresher Chapter 4

{
fclose(m_file);
std::clog << "Hello from destructor\n";

bi

int main (void)
{
myclass cl("test.txt");

try A
myclass c2 ("does_not_exist.txt");

t
catch (const std::exception &e) {
std::cout << "exception: " << e.what() << '\n';
t
t

// > g++ scratchpad.cpp; touch test.txt; ./a.out
// exception: unable to open file
// Hello from destructor

In the preceding example, we create a class that opens a file and stores its handle on
construction, and then closes the file on destruction and releases the handle. In the main
function, we create an instance of the class that is both constructed and destructed as
normal, leveraging RAII to prevent the file from leaking.

In addition to the normal case, we create a second class, which attempts to open a file that
doesn't exist. In this case, an exception is thrown. The important thing to note here is the
destructor is not called for this second instance. The is because the construction failed and
threw an exception. As a result, no resource was acquired, thus, no destruction is required.
That is, the acquisition of the resource is directly tied to the initialization of the class itself,
and a failure to construct the class safely prevents the destruction of a resource that was
never allocated in the first place.

RAII is a simple yet powerful feature of C++ that is leveraged extensively in C++, and this
design pattern will be expanded upon in this book.

[102]

C++, RAII, and the GSL Refresher Chapter 4

The Guideline Support Library (GSL)

As stated before, the goal of the C++ Core Guidelines is to provide a set of best practices
associated with programming C++. The GSL is a library designed to assist in maintaining
compliance with these guidelines. In general, there are some overall themes associated with
the GSL:

¢ Pointer ownership: Defining who owns a pointer is a simple way to prevent
memory leaks and pointer corruption. In general, the best way to define
ownership is through the use of std: :unique_ptr{}
and std::shared_ptr{}, which will be explained in depth in Chapter 7, A
Comprehensive Look at Memory Management, but in some cases, these cannot be
used and the GSL helps to deal with these edge cases.

¢ Expectation management: The GSL also helps to define what a function should
expect for input and what it ensures for output, with the goal being to transition
these concepts to C++ contracts.

¢ No pointer arithmetic: Pointer arithmetic is one of the leading causes of program
instability and vulnerabilities. Removing pointer arithmetic (or at least confining
pointer arithmetic to well-tested support libraries) is a simple way to remove
these types of issues.

Pointer ownership

Classical C++ doesn't distinguish between who owns a pointer (that is, the code or object
responsible for releasing the memory associated with a pointer) and who is simply
accessing memory using a pointer, for example:

void init (int *p)
{

*p o= 0;
}

int main (void)

{
auto p = new int;
init (p);
delete p;

}

// > g++ scratchpad.cpp; ./a.out
//

[103]

C++, RAII, and the GSL Refresher Chapter 4

In the preceding example, we allocate a pointer to an integer, and then pass that pointer to
a function called init (), which initializes the pointer. Finally, we delete the pointer after it
has been used by the init () function. If the init () function were located in another file,
it would not be clear whether the init () function should delete the pointer. Although in
this simple example it might be obvious that this is not the case, in complicated projects
with lots of code, this intent can be lost. Future modifications to such code can result in
improper use of pointers whose ownership is not well-defined.

To overcome this, the GSL provides a gs1::owner<>{} decoration that is used to
document whether a given variable is an owner of the pointer, for example:

#include <gsl/gsl>

void init (int *p)

int main(void)

{
gsl::owner<int *> p = new int;
init (p);
delete pj;

}

// > g++ scratchpad.cpp; ./a.out
//

In the preceding example, we document that p in the main function is the owner of the
pointer, meaning once p is no longer needed, the pointer should be released. Another issue
with the preceding example is that the init () function expects the pointer to not be null. If
the pointer were null, a null dereference would occur.

[104]

C++, RAII, and the GSL Refresher Chapter 4

There are two common methods for overcoming the possibility of a null dereference. The
first choice would be to check for a nullptr and throw an exception. The problem with
this approach is you would have to perform this null pointer check on every function.
These types of checks are costly and clutter code. The other option is to use a
gsl::not_null<>{} class. Like gsl::owner<>{}, gsl::not_null<>{} is a decoration
that can be compiled out of the code when debugging is not used. However, if debugging is
enabled, gs1: :not_null<>{} will throw an exception, abort (), or in some cases, refuse
to compile if the variable is set to null. Using gs1: :not_null<>{}, itis possible for a
function to state explicitly whether or not null pointers are allowed and safely handled, for
example:

#include <gsl/gsl>

gsl::not_null<int *>
test (gsl::not_null<int *> p)
{

return p;

}

int main (void)
{

auto pl = std::make_unique<int>();

auto p2 = test(gsl::not_null(pl.get()));
}

// > g++ scratchpad.cpp; ./a.out
//

In the preceding example, we create a pointer using std: :unique_ptr{}, and then pass
the resulting pointer to a function called test (). The test () function does not support a
null pointer, and therefore states this using gs1: :not_null<>{}.In turn, the test ()
function returns gs1: :not_null<>{}, telling the user that the test () function

ensures that the result of the function is not null (which is why the test function doesn't
support a null pointer in the first place).

[105]

C++, RAII, and the GSL Refresher Chapter 4

Pointer arithmetic

Pointer arithmetic is a common source of bugs that lead to instability and vulnerabilities.
For this reason, the C++ Core Guidelines discourages the use of this type of arithmetic. Here
are some examples of pointer arithmetic:

int array([10];

auto rl = array + 1;
auto r2 = *(array + 1);
auto r3 = array[1];

The last example is likely the most surprising. The subscript operator is, in fact, pointer
arithmetic, and its use can lead to out-of-range bugs. To overcome this, the GSL provides
the gs1::span{} class, which gives us a safe interface for working with pointers, including
arrays, for example:

#define GSL_THROW_ON_CONTRACT_VIOLATION
#include <gsl/gsl>
#include <iostream>

int main (void)

{
int arrayI[5] = {1, 2, 3, 4, 5};
auto span = gsl::span(array);

for (const auto &elem : span) {
std::clog << elem << '\n';

}

for (auto 1 = 0; 1 < 5; i++) {
std::clog << span[i] << '\n';

}

try A
std::clog << span[5] << '\n';
t
catch(const gsl::fail_fast &e) {
std::cout << "exception: " << e.what() << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// 1
/]2
// 3
4

//

[106]

C++, RAII, and the GSL Refresher Chapter 4

//
//
//
//
//
//
//

g W N e O

exception: GSL: Precondition failure at

Let's see how the preceding example works:

1. We create an array and initialize it with a set of integers.

2. We create a span into that array so that we can interact with the array safely. We
output the array to stdout using a range-based for loop (as a span includes an
iterator interface).

3. We output the array a second time to stdout, using a traditional index and
subscript operator (that is, the [] operator). The difference with this subscript
operator is each array access is checked for out-of-range errors. To demonstrate
this, we attempt to access the array out of bounds and gs1::span{} throws a
gsl::fail_fast{} exception. It should be noted
that GSL_THROW_ON_CONTRACT_VIOLATION is used to tell the GSL to throw
exceptions, instead of executing std: : terminate or ignoring the bounds checks
completely.

In addition to gs1: :span{}, the GSL also contains specializations of gs1: : span{}, which
help us when working with common types of arrays. For example, the GSL provides
gsl::cstring_span{}, as follows:

#include <gsl/gsl>
#include <iostream>

int main (void)

{

}

//
//

gsl::cstring_span<> str = gsl::ensure_z ("Hello World\n");
std::cout << str.data();

for (const auto &elem : str) {
std::clog << elem;

}

> g++ scratchpad.cpp; ./a.out
Hello World

// Hello World

[107]

C++, RAII, and the GSL Refresher Chapter 4

gsl::cstring_span{}isagsl::span{} that contains a standard C-style string. In the
preceding example, we load gs1::cstring_span{} with a standard C-style string, using
the gsl::ensure_z () function to ensure the string ends in a null character before
continuing. We then output the standard C-style string using a regular std: :cout call,
and also by using a range-based loop.

Contracts

C++ contracts provide the user with a means to state what a function expects as input, and
what that function ensures as output. Specifically, a C++ contract documents a contract
between the author of an API and the user of the AP, it also provides compile-time and
runtime validation of that contract.

Future versions of C++ will have built-in support for contracts, but until then, the GSL
provides a library-based implementation of C++ contracts by providing the expects () and
ensures () macros, for example:

#define GSL_THROW_ON_CONTRACT_VIOLATION
#include <gsl/gsl>
#include <iostream>

int main (void)
{
try {
Expects (false);
}
catch (const gsl::fail_fast &e) {
std::cout << "exception: " << e.what() << '\n';
}
}

// > g++ scratchpad.cpp; ./a.out
// exception: GSL: Precondition failure at

In the preceding example, we use the Expects () macro and pass it as false. Like the
assert () function that is provided by the standard C library, the Expects () macro fails
on false. Unlike assert (), Expects () will execute std: :terminate () even when
debugging is disabled, if the expression passed to Expects () evaluates to false. In the
preceding example, we state that Expects () should throw a gsl::fail_fast{}
exception instead of executing std: :terminate ().

[108]

C++, RAII, and the GSL Refresher Chapter 4

The Ensures () macro is the same as Expects (), with the only difference being the name,
which is meant to document the contract's output instead of its input, for example:

#define GSIL_THROW_ON_CONTRACT_VIOLATION
#include <gsl/gsl>
#include <iostream>

int

test (int 1)

{
Expects (i >= 0 && i < 41);
i++;

Ensures (1 < 42);
return i;

int main (void)
test (0);

try |
test (42);
}
catch (const gsl::fail_fast &e) {
std::cout << "exception: " << e.what() << '\n';
}
}

// > g++ scratchpad.cpp; ./a.out
// exception: GSL: Precondition failure at ...

In the preceding example, we create a function that expects the input to be greater than or
equal to 0 and less than 41. The function then operates on the input and ensures the
resulting output is always less than 42. A properly-written function will define its
expectations such that the Ensures () macros will never trigger. Instead, the Expects ()

checks will likely trigger instead, if the input would lead to an output that violates the
contract.

[109]

C++, RAII, and the GSL Refresher Chapter 4

Utilities
The GSL also provides some helper utilities that are useful in creating a more reliable and
readable code. One example of these utilities is the gs1::finally{} API, as follows:

#define concatl(a,b) a ## b
#define concat2(a,b) concatl (a,b)
#define concat?2 (dont_care, _ COUNTER_)

#include <gsl/gsl>
#include <iostream>

int main (void)
{
auto = gsl::finally ([]{
std::cout << "Hello World\n";

)i
}

// > g++ scratchpad.cpp; ./a.out
// Hello World

gsl::finally{} provides a simple means to execute code just prior to a function exiting,
by leveraging a C++ destructor. This is helpful when a function has to perform cleanup
before exiting. It should be noted that gs1::finally{} is most useful in the presence of
exceptions. Often, cleanup code is forgotten when an exception is fired, preventing the
cleanup logic from ever executing. The gs1::finally{} API will always execute, even if
an exception is fired, so long as it is defined just prior to performing an action that might
generate an exception.

In the preceding code, we also include a useful macro that allows the use of ____ to define
the name of the gs1::finally{} to use. Specifically, the user of gs1::finally{} must
store an instance of the gs1::finally{} object so that the object can be destroyed on
exiting the function, but having to name the gs1::finally{} object is cumbersome and
pointless, as there are no APIs to interact with the gs1::finally{} object (its only
purpose is to execute on exit). This macro provides a simple way of saying, I don't care
what the variable’s name is.

Other utility that the GSL provides are gs1: :narrow<> () and gsl::narrow_cast<>(),
for example:

#include <gsl/gsl>
#include <iostream>

int main (void)

[110]

C++, RAII, and the GSL Refresher Chapter 4

uint64_t val = 42;

auto vall = gsl::narrow<uint32_t>(val);
auto val2 gsl::narrow_cast<uint32_t>(val);

}

// > g++ scratchpad.cpp; ./a.out
//

Both of these APIs are the same as a regular static_cast<> (), with the only difference
being that gs1: :narrow<> () performs an overflow check while gs1::narrow_cast<> ()
is just a synonym for static_cast<> (), which documents that a narrowing of an integer

is taking place (that is, converting an integer with a larger number of bits into an integer
with fewer bits), for example:

fendif
#if SNIPPET30

#define GSL_THROW_ON_CONTRACT_VIOLATION
#include <gsl/gsl>
#include <iostream>

int main (void)
{
uint64_t val = OxXFFFFFFFFFFFFFFFE;

try A
gsl::narrow<uint32_t> (val);
t
catch(...) |
std::cout << "narrow failed\n";

}

// > g++ scratchpad.cpp; ./a.out
// narrow failed

In the preceding example, we attempt to convert a 64-bit integer into a 32-bit integer using
the gs1: :narrow<> () function, which performs an overflow check. Since an overflow
does occur, an exception is thrown.

[111]

C++, RAII, and the GSL Refresher Chapter 4

Summary

In this chapter, we provided an overview of some of the recent advancements in C++ that
are leveraged in this book. We started with an overview of the changes made to C++ in the
C++17 specification. We then briefly covered a C++ design pattern called RAIIL and how it is
used by C++. Finally, we introduced the GSL and how it can help to increase the reliability
and stability of system programming by helping to adhere to the C++ Core Guidelines.

In the next chapter, we will go over UNIX-specific topics such as UNIX processes and
signals, and a comprehensive overview of the System V specification, which is used to
define how programs are written for UNIX on Intel CPUs.

Questions

What are structured bindings?

What changes did C++17 make to nested namespaces?

What changes did C++17 make to the static_assert () function?
What is an i f statement initializer?

What does RAII stand for?

What is RAII used for?

What does gs1: :owner<>{} do?

P NP

What is the purpose of Expects () and Ensures () ?

Further Reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[112]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

Programming Linux/Unix
Systems

The goal of this chapter is to explain the foundations of programming on Linux/Unix-based
systems. This will provide a more complete picture of how a program executes on a
Unix/Linux system, how to write more efficient code, and where to look when hard-to-find

bugs arise.

To that end, this chapter starts by taking a comprehensive look at the Linux ABI, or more
specifically, the System V ABI. In this section, we will review everything from the register
and stack layout, to the System V calling conventions and ELF binary object specification.

The next section will briefly cover the Linux filesystem, including the standard layout and
permissions. We will then provide a comprehensive review of Unix processes and how to
program them, including considerations such as forking new processes and interprocess
communication.

Finally, this chapter will conclude with a brief overview of Unix-based signals and how to
work with them (both sending them and receiving them).

In this chapter, we will address the following;:

e The Linux ABI

¢ The Unix filesystem
e Unix process APIs

¢ Unix signal APIs

Programming Linux/Unix Systems Chapter 5

Technical requirements

In order to follow the examples in this chapter, you must have the following:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+

e CMake 3.6+

¢ An internet connection

To download all the code in this chapter, including the examples and code snippets, go to
the fOHOWing link: nttps://github.com/PacktPublishing/Hands-On-System-
Programming-with-CPP/tree/master/Chapter05.

The Linux ABI

In this section, we will discuss the Linux ABI (which is actually called the System V ABI),
as well as the ELF standard and its use in Linux/Unix.

We will also dive into some of the details associated with ELF files, how to read and
interpret them, and some of the implications of specific components within an ELF file.

The System V ABI

Unix System V was one of the first versions of Unix available, and largely defined Unix for
years. Under the hood, System V leveraged the System V ABI. As Linux and BSD (Unix-like
operating systems) became more widely used, the popularity of System V declined.
However, the System V ABI remained popular, as operating systems such as Linux
adopted this specification for Intel-based PCs.

In this chapter, we will focus on the System V ABI for Intel platforms on the Linux
operating system. It should be noted, however, that other architectures and operating
systems might use different ABIs. For example, ARM has its own ABI, which is largely
based on System V (and, oddly, the Itanium 64 specification), but has several key
differences.

The goal of this section is to expose the inner workings of a single Unix ABIL, which in turn
should make learning other ABIs easier, if needed.

[114]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter05

Programming Linux/Unix Systems Chapter 5

Most of the specifications discussed in this chapter can be found at the following
link: https://refspecs.linuxfoundation.org/.

The System V ABI defines most of the low-level details of a program (which in turn define
the interfaces for system programming), including:

e The register layout

e The stack frame

¢ Function prologs and epilogs

¢ The calling convention (that is, parameter passing)
¢ Exception handling

e Virtual memory layout

¢ Debugging

¢ The binary object format (in this case, ELF)

¢ Program loading and linking

In chapter 2, Learning the C, C++17, and POSIX Standards, we discussed the details of
program linking and dynamic loading, and we devoted an entire section to the binary
object format (ELF).

The following is a brief description of the remaining details of the System V specification,
with respect to the Intel 64-bit architecture.

The register layout

For the purpose of keeping this topic simple, we will focus on Intel 64-bit. A whole book
could be written on the different register layouts for each ABI, operating system, and
architecture combination.

The Intel 64-bit architecture (which is usually referred to as AMD64, as AMD actually wrote
it) defines several registers, of which a few have defined meanings within the instruction
set.

The instruction pointer rip defines a program's current location in executable memory.
Specifically, as a program executes, it executes from the location stored in rip, and each
time an instruction is retired, rip advances to the next instruction.

The stack pointer and the base pointer (rsp and rbp respectively) are used to define the
current location in the stack, as well as the location of the beginning of a stack frame (we
will provide more information on this later).

[115]

https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/

Programming Linux/Unix Systems Chapter 5

The following are the remaining general-purpose registers. These have different meanings,
which will be discussed in the rest of this section: rax, rbx, rcx, rdx, rdi, rsi, r8, r9, r10,
r11,r12,r13,r14,and r15.

It should be noted before we continue that there are several other registers defined on the
system that have very specific purposes, including floating-point registers and

wide registers (which are used by special instructions designed to speed up certain types of
calculations; for example, SSE and AVX). These are out of scope for the purpose of this
discussion.

Finally, some of the registers end with letters, while others end with numbers, because
versions of Intel's x86 processors only had letter-based registers, and the only true, general-
purpose registers were AX, BX, CX, and DX.

When 64-bit was introduced by AMD, the number of general-purpose registers doubled,
and to keep things simple, the register names were given numbers.

The stack frame

The stack frame is used to store the return address of each function, and to store function
parameters and stack-based variables. It is a resource used heavily by all program, and it
takes the following form:

high |[-———————- | <- top of stack

| === | <- Current frame (rbp)
| | <- Stack pointer (rsp)

The stack frame is nothing more than an array of memory that grows from top to bottom.
That is to say, on an Intel PC, pushing to the stack subtracts from the stack pointer, while
popping from the stack adds to the stack pointer—which means that memory actually
grows down (assuming your view is that memory grows upward as an address increases,
as in the previous diagram).

[116]

Programming Linux/Unix Systems Chapter 5

The System V ABI states that the stack is made up of stack frames. Each frame looks like the
following;:

high [-====---—- \
| \
| ————— \
| args8 |
| ————— \
| arg’ |
| ————— \
| ret addr |
| ————————— | <- Stack pointer (rbp)
| \
low |-—————————~— |

Each frame represents a function call, and starts with any arguments to a function beyond
the first six being called (the first six arguments are passed as registers—this will be
discussed in more detail later). Finally, the return address is pushed to the stack, and the
function is called.

Memory after the return address belongs to variables that are scoped to the function itself.
This is why we call variables defined in a function stack-based variables. The remaining stack
is used by functions that will be called in the future. Each time one function calls another,
the stack grows, while each time a function returns, the stack shrinks.

It is the job of the operating system to manage the size of the stack, ensuring that it always
has enough memory. For example, if an application is trying to use too much memory, the
operating system will kill the program.

Finally, it should be noted that on most CPU architectures, special instructions are provided
that return from a function call and automatically pop the return address of the stack. In the
case of Intel, the call instruction will jump to a function and push the current rip to the
stack as the return address, and then ret will pop the return address from the stack and
jump the address that was popped.

Function prologs and epilogs

Each function comes with a stack frame that, as stated previously, stores function
parameters, function variables, and return addresses. The code that manages these
resources is called the function's prolog (beginning) and epilog (ending).

[117]

Programming Linux/Unix Systems Chapter 5

To better explain this, let's create a simple example and examine the resulting binary:

int test ()

{
int 1 = 1;
int j = 2;

return i + 3J;

}

int main (void)
{
test ();

}

// > g++ scratchpad.cpp; ./a.out
//

If we disassemble the resulting binary, we get the following:

00000000000005fa <_Z4testv>:
push %rbp

mov $rsp, $rbp

movl $0x1,-0x8 (%rbp)

movl $0x2,-0x4 (%$rbp)

mov -0x8 (%rbp), $edx

mov -0x4 (%$rbp), $eax

add %edx, $eax

pop %rbp
retqg

In our test function, the first two instructions are the function's prolog. The prolog is
pushing the current stack frame (which is the previous function's stack frame), and then
setting the current stack pointer to rbp, which is in turn creating a new stack frame.

From there, the next two instructions are using the unused portion of the stack to create the
variables i and j. Finally, the resulting stack-based variables are loaded into registers, and
the result is added and returned in rax (which is the return register for most ABIs defined
for Intel).

The function's epilog is the final two instructions in this example. Specifically, the location
of the previous stack frame (which was pushed to the stack in the prolog) is popped from

the stack and stored in rbp, effectively changing to the previous stack frame, and then the
ret instruction is used to return to the previous function (just after the function call).

[118]

Programming Linux/Unix Systems Chapter 5

A keen eye might have noticed that space was not reserved on the stack by moving rsp for
the variables i and j. This is because the 64-bit version of the System V ABI defines what is
called the red zone. The red zone only applies to leaf functions (in our case, the test
function is a leaf function, meaning it doesn't call any other functions).

Leaf functions will never grow the stack any further, which means that the remaining stack
can be used by the function without having to advance the stack pointer, as all remaining
memory is fair game.

When system programming, this can sometimes be a problem if you are programming in
the kernel. Specifically, if an interrupt fires (using the current stack pointer as its stack),
corruption can occur if the stack was not properly reserved, therefore the interrupt would
corrupt a leaf function's stack-based variables.

To overcome this, the red zone must be turned off using the -mno-red-zone flag with

GCC. For example, if we compile the previous example with this flag, we get the following
binary output:

00000000000005fa <_zZ4testv>:
push %rbp

mov %$rsp, $rbp

sub $0x10, %$rsp

movl $0x1,-0x8 (%rbp)
movl $0x2,-0x4 (%$rbp)
mov —-0x8 (%rbp), $edx
mov —-0x4 (%$rbp), $eax
add %edx, $eax
leaveqg

retqg

As shown, the resulting binary is very similar to the original. There are two major
differences, however. The first is the sub instruction, which is used to move the stack
pointer, which in turn reserves stack space instead of using the red zone.

The second difference is the use of the 1eave instruction. This instruction pops rbp just as
in the previous example, but also restores the stack pointer, which has been moved to make
space for stack-based variables. In this example, the 1eave and ret instructions are the
new epilog.

[119]

Programming Linux/Unix Systems Chapter 5

The calling convention

A calling convention dictates which registers are volatile, which registers are non-volatile,
which registers are used for parameter passing and in which order, and which register is
used to return the result of a function.

A non-volatile register is a register that is restored to its original value just prior to a
function leave (that is, in its epilog). The System V ABI defines rbx, rbp, r12, r13, r14, and
r15 as non-volatile. By contrast, a volatile register is one that a called function can change
at will, without having to restore its value on return.

To demonstrate this, let's look at the following example:

0000000000000630 <__libc_csu_init>:
push %rl5

push %rl4

mov %$rdx,%rl5

push %rl3

push %rl2

As shown in the previous example, the __1ibc_csu_init () function (which is used by
libc to initialize) touches r12, r13,r14, and r15. As such, it must push the original values
of these registers to the stack before performing its initialization procedure.

In addition, in the middle of this code, the compiler stores rdx in r15. As will be shown
later, the compiler is preserving the third argument to the function. Just based on this code,
we know that this function takes at least three arguments.

A quick Google search will reveal that this function has the following signature:

__libc_csu_init (int argc, char **argv, char **envp)

Since this function touches non-volatile registers, it must restore these registers to their
original values before leaving. Let's look at the function's epilog;:

pop %rbx
pop %rbp
pop %ril2
pop %rl3
pop %rl4
pop %rlb
retqg

[120]

Programming Linux/Unix Systems

Chapter 5

As shown previously, the __1ibc_csu_init () function restores all the non-
volatile registers before leaving. This means that, somewhere in the middle of the
function, rbx was also clobbered (with its original value being pushed to the stack

beforehand).

In addition to volatile and non-volatile registers being defined, System V's calling
convention also defines which registers are used to pass function parameters. Specifically,
the registers rdi, rsi, rdx, rcx, r8, and r9 are used to pass parameters (in the order

provided).

To demonstrate this, let's look at the following example:

int test (int wvall,

return vall + val2;

main (void)

auto ret = test (42,

// > g++ scratchpad.cpp;
//

int val2)

42);

./a.out

In the previous example, we created a test function that takes two arguments, adds them
together, and returns the result. Let's now look at the resulting binary for the main ()

function:

000000000000060e <main>:
push %rbp

mov %rsp, $rbp

sub $0x10, $rsp

mov $0x2a, $esi

mov $0x2a, $edi

callqg 5fa <_Z4testii>
mov %eax, —0x4 (%$rbp)
mov $0x0, $eax

leaveq

retg

The first thing the main () function does is provide its prolog (as described in previous
chapters, the main () function is not the first function to execute, and thus, a prolog and
epilog are needed just like any other function).

[121]

Programming Linux/Unix Systems Chapter 5

The main () function then reserves space on the stack for the return value of the test ()
function, and fills in esi and edi with the parameters being passed to test () just before
calling test ().

The call instruction, as previously stated, pushes the return address onto the stack and
then jumps to the test () function. The result of the test () function is stored on the stack
(an operation that would be removed if optimization were enabled), and then 0 is placed in
eax just before returning.

As we can see, we did not provide our main function with a return value. This is because, if
no return value is provided, the compiler will automatically insert a return 0 for us, which
is what we see in this code, as rax is the return register for System V.

Now let's look at the test function binary:

00000000000005fa <_z4testii>:
push %$rbp

mov %rsp, $rbp

mov %$edi, -0x4 ($rbp)

mov %$esi, -0x8 (%rbp)

mov —-0x4 (%rbp), $edx

mov —-0x8 (%rbp), $eax

add %edx, %$eax

pop %rbp
retg

The test function sets up a prolog, and then stores the function's parameters on the stack
(an operation that would be removed with optimizations turned on). The stack variables
are then placed into volatile registers (to prevent them from having to be saved and
restored), the registers are added together, and the result is stored in eax. Finally, the
function returns with an epilog.

As stated previously, the return register for System V is rax, which means that every
function that returns a value will do so using rax. To return more than one value, rdx can
also be used. For example, see the following:

#include <cstdint>

struct mystruct
{
uint64_t datal;
uint64_t data2;
}i

mystruct test()

[122]

Programming Linux/Unix Systems Chapter 5

{

return {1, 2};

}

int main (void)
{

auto ret = test();

}

// > g++ scratchpad.cpp; ./a.out
//

In the previous example, we create a test function that returns a structure that has two 64-
bit integers. We choose two 64-bit integers because if we used regular ints, the compiler
would attempt to store the contents of the struct in a single 64-bit register.

The resulting binary for the test () function is as follows:

00000000000005fa <_Z4testv>:
push %$rbp

mov %rsp, $rbp

mov $0x1, $eax

mov $0x2, $edx

pop %rbp
retqg

As previously shown, the test function stores the results in rax and rdx before returning.
If more than 128 bits of data are returned, both the main () function and the test ()
function get way more complicated. This is because stack space must be reserved by the
main () function, and then the test () function must leverage this stack space to return the
results of the function.

The specific details of how this works are beyond the scope of this book, but, in short, the
address of the stack space reserved for the return value actually becomes the first argument
to the function, all of which is defined by the System V ABI.

It should be noted that the examples make heavy use of registers that are prefixed

with e rather than r. This is because e denotes a 32-bit register, while r denotes a 64-bit
register. The reason e versions are used so much is that we leverage integer-based literals
such as 1, 2, and 42. These are all of type int, as defined by the C and C++ specifications
(as stated in previous chapters), which, by default on an Intel 64 bit CPU, is a 32-bit value.

[123]

Programming Linux/Unix Systems Chapter 5

Exception handling and debugging

C++ exceptions provide a way to return an error to a catch handler somewhere in the call
stack. We will cover C++ exceptions in great detail in chapter 13, Error - Handling with
Exceptions.

For now, we will work with the following simple example:

#include <iostream>
#include <exception>

void test (int 1)
{
if (1 == 42) {
throw 42;
}
}

int main(void)
{
try {
test (1);
std::cout << "attempt #1: passed\n";

test (21);
std::cout << "attempt #2: passed\n";

}
catch(...) {
std::cout << "exception catch\n";

}
}

// > g++ scratchpad.cpp; ./a.out
// attempt #1: passed
// exception catch

In the previous example, we create a simple test () function that takes an input. If the
input is equal to 42, we throw an exception. This will cause the function to return (and
every calling function to continue to return) until a t ry or catch block is encountered. Any
code executed in the t ry portion of the block will execute the catch portion of the block if

an exception is thrown.

It should be noted that the return value of the called function is not considered or used.
This provides a means to throw an error at any point in the execution of a call stack of
functions, and catch possible errors at any point (most likely when the error can be safely
handled or the program can be safely aborted).

[124]

Programming Linux/Unix Systems Chapter 5

As shown in the preceding example, the first attempt to execute the test () function
succeeds, and the attempt #1: passed string is output to stdout. The second attempt to
execute the test () function fails when the function throws an exception, and as a result,
the attempt #2: passed string is not output to stdout as this code is never executed.
Instead, the catch block is executed, which handles the error (by ignoring it).

The details of exception handling (and debugging) are exceptionally difficult (pun
intended), and therefore the goal of this section is to explain how the System V specification
dictates the ABI associated with exception (and debugging) support.

I provide more detail about the inner workings of C++ exceptions in the following video,
recorded,at(:pp(zonthttps://www.youtube.com/watch?v=uQSQy—7lveQ.

At the end of this section, the following should be clear:

o C++ exceptions are expensive to execute, and therefore should never be used for
control flow (only error handling).

e C++ exceptions consume a lot of space in the executable and if they are not used,
the —-fno-exceptions flag should be passed to GCC to reduce the overall size of
the resulting code. This also means that no library facilities that could possibly
throw an exception should be used.

To support the previous example, the stack has to be unwound. That is, for the program to
jump to the catch block, the non-volatile registers need to be set to appear as though the
test () function was never executed in the first place. To do this, we, in a way, execute the
test () function in reverse, using a set of instructions provided by the compiler.

Before we get into the details of this information, let's first look at the assembly code
associated with our previous example:

0000000000000c11 <main>:
push %$rbp

mov %rsp, $rbp

push %$rbx

sub $0x8, $rsp

mov $0x1, %edi

callg b9%a <test>

callg a30 <std::cout>

mov $0x0, $eax
Jmp c90

callg 9f0 <__cxa_begin_catch@plt>

[125]

https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ
https://www.youtube.com/watch?v=uQSQy-7lveQ

Programming Linux/Unix Systems Chapter 5

callg a70 <_Unwind_Resume(@plt>
add $0x8, $rsp

pop %rbx

pop %rbp

retqg

To keep this easy to understand, the previous code has been simplified. Let's start at the
top. The first thing this function does is set up the function prolog (that is, the stack frame),
and then reserve some space on the stack. Once this is done, the code moves 0x1 into edi,
which passes a 1 to the test () function.

Next, the test () function is called. Next, some stuff happens (the details are not
important), and then std: : cout is called (which attempts to output the attempt #1:
passed string to stdout). This process is repeated for test (42) as well.

The next bit of code is where the main () function gets interesting. mov $0x0, $eax sets
eax to 0, which, as we know, is the return register. This code sets up the return value for
the main () function, but what is interesting is that the next instruction does a relative
jumps to c90 in the main () function, which is the add $0x8, $rsp code. This is the
beginning of the epilog of the function, which cleans up the stack and restores the non-
volatile registers.

The code in between is our catch block. This is the code that is executed if an exception is
thrown. If an exception is not thrown, the jmp <90 code is executed, which skips the
catch block.

The test function is far more simple:

0000000000000aba <_Z4testi>:

push %$rbp

mov %$rsp, $rbp

sub $0x10,%rsp

mov %edi,-0x4 (%$rbp)

cmpl $0x2a,-0x4 (%$rbp)

jne a9f

mov $0x4, %edi

callg 8e0 <__cxa_allocate_exception@plt>

callg 930 <__cxa_throw@plt>
nop

leaveq

retqg

[126]

Programming Linux/Unix Systems Chapter 5

In the test function, the function prolog is set up, and stack space is reserved (which
would likely be removed if optimizations were enabled). The input is then compared to 42,
and if they are not equal (as shown by the use of jne), the function jumps to the epilog and
returns. If they are equal, a C++ exception is allocated and thrown.

The important thing to note here is that the __cxa_throw () function does not return,
which means that the function's epilog is never executed. The reason for this is that, when
an exception is thrown, the programmer is stating that the remaining portion of the
function cannot execute, and instead, __cxa_throw () needs to jump to a catch block in
the call stack (in this case, in the main () function), or terminate the program if a

catch block cannot be found.

Since the function's epilog is never executed, the non-volatile registers need to be restored
to their original state somehow. This brings us to the DWAREF specification, and the
.eh_frame table that is embedded in the application itself.

As will be shown later on in this chapter, most Unix-based applications are compiled to a
binary format called ELF. Any ELF application that was compiled with C++ exception
support contains a special table called the .eh_frame table (this stands for exception
handling framework).

For example, if you run readelf on the previous application, you will see the
.eh_frame table, as follows:

> readelf -SW a.out
There are 31 section headers, starting at offset 0x2d18:

Section Headers:

[18] .eh_frame PROGBITS 0000000000000ca8 000ca8 000190 00 A O O 8

The DWAREF specification (which doesn't officially stand for anything) provides all the
information needed to debug an application. When debugging is enabled by GCC, several
debugging tables are added to the application to assist GDB.

The DWAREF specification is also used to define the instructions needed to reverse the stack;
in other words, to execute a function in reverse with respect to the contents of the non-
volatile registers.

[127]

Programming Linux/Unix Systems Chapter 5

Let's look at the contents of the .eh_frame table using readelf, as follows:

> readelf —--debug-dump=frames a.out

00000088 000000000000001c 0000005c FDE ...
DW_CFA_advance_loc: 1 to 0000000000000a6b
DW_CFA_def_cfa_offset: 16
DW_CFA_offset: r6 (rbp) at cfa-16
DW_CFA_advance_loc: 3 to 0000000000000a6e
DW_CFA_def_cfa_register: r6 (rbp)
DW_CFA_advance_loc: 51 to 0000000000000aal
DW_CFA_def_cfa: r7 (rsp) ofs 8
DW_CFA_nop
DW_CFA_nop
DW_CFA_nop

An entire book could be written on what this code does, but the goal here is to keep this
simple. For every single function in the program (which could be hundreds of thousands of
functions for programs with a lot of code), a block like the previous one is provided

in .eh_frame.

The preceding block (which was located by matching addresses found using objdump) is
the Frame Description Entry (FDE) for our test () function. This FDE describes how to
reverse the stack using DWAREF instructions, which are compressed instructions designed
to be as small as possible (to reduce the size of the .eh_frame table).

The FDE provides the stack reversal instructions based on the location of the throw. That is
to say, as a function executes, it continues to touch the stack. If more than one throw is
present in a function, it is possible that more of the stack has been touched in between each
throw, which means that more stack reversal instructions are needed to properly return the
stack back to normal.

Once a function's stack has been reversed, the next function in the call stack needs to be
reversed. This process continues until a catch block is located. The problem is that the
.eh_frame table is a list of these FDEs, which means that reversing the stack is an 0 (N*2)
operation.

[128]

Programming Linux/Unix Systems Chapter 5

Optimizations have been carried out, including the use of a hash table, but two things
remain true:

¢ Reversing the stack is a slow process.

¢ Using C++ exceptions takes up a lot of space. This is because each function
defined in the code not only has to contain the code for that function, it must also
contain an FDE that tells the code how to unwind the stack in the event that an
exception is fired.

Virtual memory layout

Virtual memory layout is also provided by the System V specification. In the next section,
we will discuss the details of the ELF format, which will provide more information about
the virtual memory layout and how it can be changed.

Executable and Linkable Format (ELF)

The Executable and Linkable Format (ELF) is the main format used in most Unix-based
operating systems, including Linux. Every ELF file begins with the hex number 0x7F, and
continues with the ELF string.

For example, let's look at the following program:

int main (void)
{
t

// > g++ scratchpad.cpp; ./a.out
//

If we look at a hexdump of the resulting a . out ELF file, we see the following:

> hexdump -C a.out

00000000 7f 45 4c 46 02 01 01 00 00 00 OO OO 00 00 OO0 OO |.ELF............ \
00000010 03 00 3e 00 01 00 OO OO £0O 04 00 OO0 00 00 00 OO0 [..>civviinnnnn. \
00000020 40 00 00 OO 00 00 OO OO e8 18 00 OO 00 00 00 OO0 |@...vvrviunnnn. \
00000030 00 00 OO OO 40 00 38 00 09 00 40 00 1c 00 1b 00 [|....Q@.8...@..... \

[129]

Programming Linux/Unix Systems Chapter 5

As shown, the ELF string is at the very beginning.

Every ELF file contains an ELF header, which describes some of the critical components of
the ELF file itself. The following can be used to view an ELF file's header:

> readelf -hW a.out
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 OO 00 00 00 0O 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: O
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4f0
Start of program headers: 64 (bytes into file)
Start of section headers: 6376 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 28
Section header string table index: 27

As shown, the ELF file that we compiled was linked to an ELF-64 file that adheres to the
Unix System V ABI for Intel 64-bit. Near the bottom of the header, you might notice the
mention of program headers and section headers.

[130]

Programming Linux/Unix Systems Chapter 5

Every ELF file can be viewed in terms of either its segments or its sections. To visualize this,
let's look at an ELF file from both points of view, as follows:

Segments Sections

As previously shown, each ELF file is composed of sections. The sections are then grouped
into segments, which are used to define which sections need to be loaded, and how (for
example, some sections need to be loaded as read-write, others as read-execute, or, in some
sub-optimal cases, read-write-execute).

ELF sections

To see a list of all of the sections, use the following command:

> readelf -SW a.out

[131]

Programming Linux/Unix Systems Chapter 5

This will result in the following output:

user: ~/Hands-On-System-Programming-with-CPP/Chapter05

user:~/Hands-0n-System-Programming-with-CPP/Chapter05$%$ readelf -SW a.out
There are 28 section headers, starting at offset 0x18e8:

Section Headers:
[Nr] Name Type Address off Size ES Flg Lk Inf Al
[o] NULL 0000000000000000 000000 000000 00
[1] .interp PROGBITS 0000000000000238 000238 00001c 00
[2] .note.ABI-tag NOTE 0000000000000254 000254 000020 00
[3] .note.gnu.build-id NOTE 0000000000000274 000274 000024 00 A
[4] .gnu.hash GNU_HASH 0000000000000298 000298 00001c 00
[5] .dynsym DYNSYM 00000000000002b8 0002b8 000090 18
[6] .dynstr STRTAB 0000000000000348 000348 00007d 00
[71 .gnu.version VERSYM 00000000000003c6 0003c6 00V0OCc 02
[8] .gnu.version_r VERNEED 00000000000003d8 0003d8 000020 00
[9] .rela.dyn RELA 00000000000003f8 0003f8 0000cO 18
[10] .init PROGBITS 00000000000004b8 0004b8 000017 00
[11] .plt PROGBITS 00000000000004d0 0004d0 000010 10
[12] .plt.got PROGBITS 00000000000004e0 00040 000008 08
[13] .text PROGBITS 00000000000004f0 000410 000192 00
[14] .fini PROGBITS 0000000000000684 000684 000009 00
[15] .rodata PROGBITS 0000000000000690 000690 000004 04
[16] .eh_frame_hdr PROGBITS 0000000000000694 000694 00003c 00
[17] .eh_frame PROGBITS 00000000000006d0 0006d0 000108 00
[18] .init_array INIT_ARRAY 0000000000200df0 000df0 000008 08
[19] .fini_array FINI_ARRAY 0000000000200df8 000df8 000008 08
[20] .dynamic DYNAMIC 0000000000200e00 00000 0001cO 10
[21] .got PROGBITS 0000000000200 cO 000fcO 000040 08
[22] .data PROGBITS 0000000000201000 001000 000010 00
[23] .bss NOBITS 0000000000201010 001010 000008 00
[24] .comment PROGBITS 0000000000000000 001010 000024 01
[25] .symtab SYMTAB 0000000000000000 001038 0005b8 18
[26] .strtab STRTAB 0000000000000000 0015f0 0001f8 00
[27] .shstrtab STRTAB 0000000000000000 0017e8 00009 00

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), 0 (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (0S specific), E (exclude),
1 (large), p (processor specific)

user:~/Hands-0n-System-Programming-with-CPP/Chapter@5$ I

N
(SISO ISR NS o) BN IS G RN S BN B EIGSIE SRS S RN, B N0, BN S B I |

N
SO NOOOODOOODODDDSDOSSOSOOrr oS

P P OO P 0000000 PD P DO PHOOONE OO

[132]

Programming Linux/Unix Systems Chapter 5

As shown, even in a simple example, there are several sections. Some of these sections
contain information that has already been talked about in previous chapters:

e eh_frame/.eh_frame_hdr: These contain the FDE information for reversing
the stack when dealing with exceptions, as just discussed. The eh_frame_hdr
section contains additional information for improving the performance of C++
exceptions, including a hash table that can be used to locate an FDE instead of
looping through the list of FDEs (which would be an 0 (n~2) operation
otherwise).

e .init_array/.fini_array/.init/.fini: These contain the constructors and
destructors that are executed by the code, including any libraries that are linked
to your code (as discussed, there could be many libraries linked to your
application under the hood). It should also be noted that these sections contain
code capable of performing runtime relocations, which must be executed at the
very beginning of any application to ensure that code is properly linked and
relocated.

e .dynsym: This contains all the symbols used for dynamic linking. As discussed
earlier, if GCC is used, these symbols will all contain C runtime linking names,
whereas if G++ is used, they will also contain mangled names. We will explore
this section in more detail shortly.

A lot can be learned from the output of the sections in readel£. For example, the addresses
all start with 0, and not some address in higher memory. This means the application was
compiled using the -pie flag during linking, which means that the application is
relocatable. Specifically, Position Independent Executable (PIE) (and as such, the ELF file)
contains the .plt and . got sections that are used to relocate the executable in memory.

This can also be seen from the inclusion of the . rela.xxx sections, which contain the
actual relocation commands used by the ELF loader to relocate the executable in memory.
To prove that this application was compiled using the -pie flag, let's look at the
application's compilation flags:

> gt+ scratchpad.cpp -v

/usr/lib/gcc/x86_64-1inux—gnu/7/collect2 -plugin /usr/lib/gcc/x86_64-1inux—
gnu/7/1liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-1linux-gnu/7/1to—
wrapper -plugin-opt=-fresolution=/tmp/ccmBVelh.res -plugin-opt=-pass-
through=-1lgcc_s -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-
lc -plugin-opt=-pass-through=-1lgcc_s -plugin-opt=-pass-through=-lgcc --—
sysroot=/ —--build-id --eh-frame-hdr -m elf_x86_64 —--hash-style=gnu —--as-
needed —-dynamic-linker /1ib64/1d-1inux-x86-64.s0.2 —pie -z now -z relro
/usr/lib/gcc/x86_64-1linux-gnu/7/../../../x86_64-1linux—-gnu/Scrtl.o
/usr/lib/gcc/x86_64-1linux-gnu/7/../../../x86_64-1linux—-gnu/crti.o

[133]

Programming Linux/Unix Systems Chapter 5

/usr/lib/gcc/x86_64-1inux—-gnu/7/crtbeginS.o -L/usr/lib/gcc/x86_64-1linux—
gnu/7 -L/usr/lib/gcc/x86_64-1inux-gnu/7/../../../x86_64-1linux—-gnu —
L/usr/lib/gcc/x86_64-1linux-gnu/7/../../../../1lib -L/1ib/x86_64-1linux-gnu -
L/lib/../1lib -L/usr/1ib/x86_64-1linux-gnu -L/usr/lib/../lib -
L/usr/lib/gcc/x86_64-1linux—-gnu/7/../../.. /tmp/ccZU6K8e.o —-lstdc++ —1m —
lgcc_s -lgcc -lc -lgcc_s -lgcc /usr/lib/gcc/x86_64-1inux—gnu/7/crtendS.o
/usr/lib/gcc/x86_64-1linux-gnu/7/../../../x86_64-1linux—-gnu/crtn.o

As previously shown, the -pie flag was provided.

Another thing to note is that the sections start at address 0 and progress, but, at some point,
the address jumps to 0x200000 and continues from there. This means that the application
is 2 MB aligned, which is typical for 64-bit applications as they have a much larger address
space to work with.

As will be shown, the point at which the jump to 0x200000 starts is the beginning of a new
program segment in the ELF file, and denotes a change in the permissions of the sections
being loaded.

There are some notable sections that should also be pointed out:

¢ .text: This contains most, if not all, of the code associated with the program.
This section is usually located in a segment marked as read-execute, and, ideally,
is not given write permissions.

e .data: This contains global variables that are initialized to a value other than 0.
As shown, this section exists in the ELF file itself, and, for this reason, these types
of variables should be used sparingly as they increase the size of the resulting
ELF file (which reduces the load time of the application and consumes additional
space on the disk). It should also be noted that some compilers will place
uninitialized variables in this section—so, if a variable should be 0, initialize it as
such.

¢ .Dbss: This section contains all the global variables that should be initialized to 0
(assuming C and C++ is used). This section is always the last section to be loaded
(that is to say, it is the last section marked by a segment), and does not actually
exist in the ELF file itself. Instead, when an ELF file is loaded into memory, the
size of the ELF file is extended to include the total size of this section, and the
extra memory is initialized to 0 by the ELF loader (or the C runtime).

[134]

Programming Linux/Unix Systems Chapter 5

e .dynstr/.strtab: These tables contain the strings that are used for symbol
names (that is, variable and function names). The .dynstr table contains all the
strings that are needed during dynamic linking, while the . st rtab section
contains all the symbols in the program. The key point here is that the strings
show up twice. The use of static in front of a variable or function prevents the
variable's symbol from showing up in the . dynsym section, which in turn means
it will not show up in the . dynstr section. The downside of this is that the
variable cannot be seen during dynamic linking, which means that, if another
library attempts to use extern on that variable, it will fail. By default, all
variables and functions should be labeled static unless you intend them to be
externally assessable, reducing the total size of the file on disk and in memory.
This also speeds up linking time, as it reduces the size of the . dynsym section,
which is used for dynamic linking.

To further examine how strings are stored in an ELF file, let's create a simple example with
a string that is easy to look up, as follows:

#include <iostream>
int main (void)
{
std::cout << "The answer is: 42\n";

}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42

As previously shown, this example outputs The answer is: 42 to stdout.

Let's now look for this string in the ELF file itself, using the following;:

> hexdump -C a.out | grep "The" -B1 -Al

000008£f0 £3 c3 00 00 48 83 ec 08 48 83 c4 08 c3 00 00 OO |....H...H....... \
00000900 01 00 02 00 00 54 68 65 20 61 6e 73 77 65 72 20 |..... The answer |
00000910 69 73 3a 20 34 32 0a 00 01 1b 03 3b 4c 00 00 00 |is: 42..... iL...

[135]

Programming Linux/Unix Systems Chapter 5

As previously shown, the string exists in our program and is located at 0x905. Now let's
look at the ELF sections for this application:

user: ~/Hands-On-System-Programming-with-CPP/Chapter05

user:~/Hands-0n-System-Programming-with-CPP/Chapter@5$ readelf -SW a.out
There are 29 section headers, starting at offset 0x1b00:

Section Headers:
[Nr] Name Type Address off Size ES Flg Lk Inf Al
[o] NULL 0000000000000000 000000 000000 00 0
[1] .interp PROGBITS 0000000000000238 000238 00001c 00 A 0
[2] .note.ABI-tag NOTE 0000000000000254 000254 000020 00 (/]
[3] .note.gnu.build-id NOTE 0000000000000274 000274 000024 00
[4] .gnu.hash GNU_HASH 0000000000000298 000298 000024 00
[5] .dynsym DYNSYM 00000000000002c0 0002c0 000108 18
[6] .dynstr STRTAB 00000000000003c8 0003c8 000117 00
[71 .gnu.version VERSYM 00000000000004e0 00040 000016 02
[8] .gnu.version_r VERNEED 00000000000004f8 0004f8 000040 00
[9] .rela.dyn RELA 0000000000000538 000538 000108 18
[10] .rela.plt RELA 0000000000000640 000640 000048 18
[11] .init PROGBITS 0000000000000688 000688 000017 00
[12] .plt PROGBITS 0000000000000600 000600 000040 10
[13] .plt.got PROGBITS 00000000000006e0 00060 000008 08
[14] .text PROGBITS 00000000000006Tf0 000610 000202 00
[15] .fini PROGBITS 00000000000008t4 0008f4 000009 00
[16] .rodata PROGBITS 0000000000000900 000900 000018 00
[17] .eh_frame_hdr PROGBITS 0000000000000918 000918 00004c 00
[18] .eh_frame PROGBITS 0000000000000968 000968 000148 00
[19] .init_array INIT_ARRAY 0000000000200d88 000d88 000010 08
[20] .fini_array FINI_ARRAY 0000000000200d98 000d98 000008 08
[21] .dynamic DYNAMIC 0000000000200da@ 000da@® 000200 10
[22] .got PROGBITS 0000000000200fa0@ 000fad 000060 08
[23] .data PROGBITS 0000000000201000 001000 000010 00
[24] .bss NOBITS 0000000000201020 001010 000118 00
[25] .comment PROGBITS 0000000000000000 001010 000024 01
[26] .symtab SYMTAB 0000000000000000 001038 0006408 18
[27] .strtab STRTAB 0000000000000000 0016e0 000321 00
[28] .shstrtab STRTAB 0000000000000000 001001 0000fe 00
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), 0 (extra 0S processing required), G (group), T (TLS),
C (compressed), x (unknown), o (0S specific), E (exclude),
1 (large), p (processor specific)
user:~/Hands-0n-System-Programming-with-CPP/Chapter05$% I

N

N
OO NSO NONSOSOFR,S

O ONSOOOOOOOOOOOOOO0OOOOSOSOO”OUVTTUIIGOTULTSO WL
P P OORFRP NGO PP DAOOCKO PHOCWOONE OO

If we look at the addresses within the sections, we can see that the string exists in a section
called . rodata, which contains constant data.

[136]

Programming Linux/Unix Systems Chapter 5

Now let's look at the assembly for this application using objdump, which disassembles the
code in the . text section, as follows:

user: ~/Hands-On-System-Programming-with-CPP/Chapter05

7f4: 5d pop %rbp
7f5: e9 66 ff ff ff jmpq 760 <register_tm_clones>

00000000000007fa <main>:

7fa: push %rbp

7fb: 89 e5 mov %rsp,%rbp

7fe: 8d 35 00 01 00 00 lea 0x100(%rip),%rsi # 905 <_ZStL19piecewise_construct+@x1>
805: 8d 3d 14 08 20 00 lea 0x200814(%rip),%rdi # 201020 <_ZSt4cout@@GLIBCXX_3.4>

80c: af fe ff ff callg 6¢c@ <_ZStlsIStllchar_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>
811: 00 00 00 00 mov $0x0, %eax

816: pop %rbp

817: retq

0000000000000818 <_Z41__static_initialization_and_destruction_0ii>:
818: 55 push %rbp
819: 48 89 e5 mov %rsp,%rbp

As previously shown, the code loads rsi with the address of the string (at 0x905), which is
the second parameter, just prior to calling std: : cout. It should be noted that, as before,
this application was compiled using the -pie command, which means that the application
itself will be relocated. This ultimately means that the address of the string will not be at
0x905, but instead will be at # + 0x905.

To prevent the need for a relocation entry (that is, an entry in the Global Offset Table
(GOT)), the program uses an instruction pointer relative offset. In this case, the instruction
to load rsi is at 0x805, and the offset 0x100 is used, which in turn returns 0x905 + rip.
This means that, no matter where in memory the application is loaded, the code can locate
the string without a relocation entry being needed.

ELF segments

As previously stated, ELF segments group the sections into loadable components, and
describe how and where to load the ELF file in memory. The ideal ELF loader would only
have to read ELF segments to load an ELF file, and (in the case of a relocatable ELF file) also
have to load the dynamic sections and relocation sections.

[137]

Programming Linux/Unix Systems Chapter 5

To see an ELF's segments, use the following code:

¢ user: ~/Hands-On-System-Programming-with-CPP/Chapter05
user:~/Hands-0 ng-witl 05% readelf -1W a.out

Elf file type is DYN (Shared object file)
Entry point 0x6f0
There are 9 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 Ox0001f8 R @Ox8
INTERP 0x000238 0x0000000000000238 0x0000000000000238 0x00001c 0x00001c R Ox1
[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000abd® 0x000ab® R E 0x200000
LOAD 0x000d88 0x0000000000200d88 Vx0000000000200d88 ©x000288 ©x0003b0 RW 0Ox200000
DYNAMIC 0x000dad 0x0000000000200dad 0x0000000000200dad 0x000200 0x000200 RW 0Ox8

NOTE 0x000254 0x0000000000000254 0x0000000000000254 0x000044 0x000044 R Ox4
GNU_EH_FRAME 0x000918 0x0000000000000918 0x0000000000000918 0x00004c 0x00004c R 0Ox4
GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 Ox000000 0x000000 RW 0x10
GNU_RELRO 0x000d88 0x0000000000200d88 0x0000000000200d88 0x000278 0x000278 R Ox1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.
version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .dynamic .got .data .bss

04 .dynamic

25 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

o7

08

As shown previously, the simple example has several program segments. The first segment
describes the program header (which defines the segments) and, for the most part, can be
ignored.

The second segment tells the ELF loader which relocator it is expecting to use. Specifically,
the program that is described in this segment is used for lazy relocations. When a program
is dynamically linked, the symbols in the GOT and Procedure Linkage Table (PLT) contain
the actual address in memory for each symbol, and the code references the entries in this
table instead of directly referencing a symbol.

This is necessary, as the compiler has no way of knowing the location of a symbol in
another library, so the ELF loader fills in the location of each symbol by loading the GOT
and PLT for symbols that exist in other libraries (or symbols that are not marked as static).

[138]

Programming Linux/Unix Systems Chapter 5

The problem is that a large program can have hundreds or thousands of these GOT or PLT
entries and, as a result, loading a program could take a long time. What makes this problem
even worse is that a lot of symbols from external libraries may never be called, which
means the ELF loader would need to fill in an entry in the GOT or PLT with a symbol
location that is not even needed.

To overcome these issues, the ELF loader loads the GOT and PLT with the location of a lazy
loader, instead of the symbol itself. The lazy loader (which is the program you see in the
second segment) loads the location of a symbol once it is used for the first time, reducing
program load times.

The third segment, marked as LOAD, tells the ELF loader to load the following portion of the
ELF file into memory. As shown in the previous output, this segment contains several
sections, all of which are marked as read-execute. For example, the . text section exists in
this section.

All the ELF loader has to do is follow the instructions by loading the portion of the ELF file
marked by the segment into the virtual address provided (with the memory size provided).

The fourth segment is the same as the third, but instead of the read-execute sections being
marked, the read-write sections are marked, including sections such as . data.

It should be noted that the offset in memory to load the fourth segment increases by
0x200000. As previously stated, this is because the program is 2 MB aligned. More
specifically, Intel 64-bit CPUs support 4 KB, 2 MB, and 1 GB pages.

Since the first loadable segment is marked read-execute, the second loadable segment
cannot be on the same page as the first (otherwise, it too would have to be marked read-
execute). As a result, the second loadable segment is designed to start on the next available
page, which in this case, is 2 MB in memory. This allows the operating system to mark the
first loadable segment as read-execute and the second loadable segment as read-write, and
the CPU can enforce these permissions.

The next segment defines the location of the dynamic section, which is used by the ELF
loader to perform dynamic relocations. This is necessary because the executable was
compiled using -pie. It should be noted that the ELF loader could scan the ELF sections to
find this data, but the goal of the program segments is to define all of the information
needed to load an ELF file without the need for scanning the sections. Sadly, in practice,
this is not always true, but, ideally, this should be the case.

[139]

Programming Linux/Unix Systems Chapter 5

The notes segment can safely be ignored. The following segments provide the ELF loader
with the location of the exception information (as described); the permissions for the stack
that the executable expects; which, ideally, would always be read-write and not read-write-
execute, and the location of the read-only section, which can have its permissions changed
to read-only once loaded.

The Unix filesystem

The Unix filesystem, which is used by most Unix-based operating systems, including
Linux, consists of a virtual filesystem tree, which is the frontend to the user and
applications. The tree starts with the root (that is, /), and all files, devices, and other
resources are located within this single root directory.

From there, a physical filesystem is usually mapped onto the virtual filesystem, providing a
mechanism by which files are stored and retrieved. It should be noted that this physical
filesystem does not have to be a disk; it could also be RAM or some other type of storage
device.

To perform this mapping, the operating system has a mechanism for instructing the OS to
perform this mapping. On Linux, this is done using /etc/fstab, as follows:

> cat /etc/fstab
UUID=... / ext4d ...
UUID=... /boot/efi vfat ...

As shown in this example, the root filesystem maps to a specific physical device (denoted
with a UUID), which contains an ext 4 filesystem. In addition, within this root filesystem,
another physical partition is mapped to /boot /efi and contains a VFAT filesystem.

What this means is that all access to the virtual filesystem defaults to the ext 4 partition,
while access to anything below /boot /efi is redirected to a separate VFAT partition that
contains files specific to UEFI (which is the specific BIOS being used in the textbox used to
write this book).

Any node within the virtual filesystem can be remapped to any device or resource. The
brilliance behind this design is that applications do not need to be concerned with what
type of device the virtual filesystem is currently mapping, as long as the application has
permissions for the portion of the filesystem it is trying to access, and has the ability to
open a file and read and write to it.

[140]

Programming Linux/Unix Systems Chapter 5

For example, let's look at the following:

> 1s /dev/null
/dev/null

On most Linux-based systems, a file called /dev/null exists. This file doesn't actually map
to a real file. Instead, the virtual filesystem maps this file to a device driver that ignores all
writes and returns nothing when read. For example, see the following:

> echo "Hello World" > /dev/null
> hexdump -nl6 /dev/null
<nothing>

Most Linux-based systems also provide a /dev/zero, which returns all zeros when read,
as follows:

> hexdump -nl16 /dev/zero
0000000 0000 0000 0000 0OOOO 0000 0000 0000 0000
0000010

There is also /dev/random, which returns a random number when read, as follows:

> hexdump -nl6 /dev/random
0000000 3ed9 25c2 ad88 bf62 d3b3 0£f72 b32a 32b3
0000010

As discussed previously, in Chapter 2, Learning the C, C++17, and POSIX Standards, the
layout of the filesystem that POSIX defines is as follows:

e /bin: for binaries used by all users

* /boot: for files needed to boot the operating system

¢ /dev: for physical and virtual devices

e /etc: for configuration files needed by the operating system
e /home: for user-specific files

e /1lib: for libraries needed by executables

e /mnt and /media: used as temporary mount points

e /sbin: for system-specific binaries

o /tmp: for files that are deleted on reboot

e /usr: for user-specific versions of the preceding folders

[141]

Programming Linux/Unix Systems Chapter 5

Typically, the files under /boot point to a physical partition that is different to the root
partition, the /dev folder contains files that are mapped to devices (rather than files that are
stored and retrieved on a disk), and /mnt or /media is used to mount temporary devices
such as USB storage devices and CD-ROMs.

On some systems, /home could be mapped to a completely separate hard drive, allowing
the user to completely format and reinstall the root filesystem (that is, to reinstall the OS),
without losing any personal files or configurations.

The Unix filesystem also maintains an entire set of permissions that define who is allowed
to read, write, and execute files. See the following example:

> 1s —al

total 40

drwxrwxr—-x 3 usSer user ...

drwxrwxr-x 16 user user

-rwxrwxr-x 1 user user ... a.out
drwxrwxr—-x 3 user user ... build
-rw—-rw-r—-— 1 user user ... CMakeLists.txt
-rw—rw-r—-— 1 user user ... scratchpad.cpp

The filesystem defines the permissions for the file's owner, the file's group, and others
(users who are neither the owner nor part of the file's group).

The first column in the preceding example defines a file's permissions. The d defines
whether or not a node is a directory or a file. The first of the three characters define the
read/write/execute permissions for a file's owner, while the second defines the permissions
for a file's group, and finally, the third defines the permissions for others.

The third column in the preceding example defines the name of the owner, while the
second column defines the name of the group (which, in most cases, is also the owner).

Using this permission model, the Unix filesystem can control access to any file or directory
for any given user, a group of users, and everyone else.

Unix processes

A process on a Unix-based system is a userspace application executed and scheduled by the
operating system. In this book, we will refer to processes and userspace applications
interchangeably.

[142]

Programming Linux/Unix Systems Chapter 5

As will be shown, most Unix-based processes that are running at any given time are
children of some other parent process, and each kernel implements processes under the
hood differently, but the same basic commands for creating and managing processes are
provided by all Unix operating systems.

In this section, we will discuss how to create and manage Unix-based processes using
commonly-seen POSIX interfaces.

The fork() function

On a Unix-based system, the fork () function is used to create processes. The fork ()
function is a relatively simple system call provided by the operating system that takes the
current process, and creates a duplicate child version of the process. Everything about the
parent and child processes is the same, including opened file handles, memory, and so on,
with the key difference being that the child process has a new process ID.

In chapter 12, Learning to Program POSIX and C++ Threads, we will discuss threads (which
are more commonly used for system programming than processes). Both threads and
processes are scheduled by the operating system; the main difference between a thread and
a process is that a child and parent process do not have access to one another's memory,
while threads do.

Even though fork () creates a new process with the same resources and memory layout,
the memory that is shared between the parent and child processes are marked as copy-on-
write. This means that, as the parent and child process executes, any attempt to write to
memory that might have been shared causes the child process to create its own copies of
memory that only it can write to. As a result, the parent process is unable to see
modifications to the memory made by the child.

This is not true for threads, as threads maintain the same memory layout and are not
marked as copy-on-write. As a result, a thread is capable of seeing the changes made to the
memory by another thread (or parent process).

Let's look at the following example:

#include <unistd.h>
#include <iostream>

int main (void)
{
fork ();
std::cout << "Hello World\n";

[143]

Programming Linux/Unix Systems Chapter 5

// > g++ scratchpad.cpp; ./a.out
// Hello World
// Hello World

In this example, we use the fork () system call to create a duplicate process. The duplicate,
child, process outputs Hello World to stdout using std: :cout. As shown, the result of
this example is that Hello World is output twice.

The fork () system call returns the process ID in the parent process for the child, and in the
child 0, is returned. If an error occurs, -1 is returned and errno is set to the appropriate
error code. See the following example:

#include <unistd.h>
#include <iostream>

int main (void)
{
if (fork() != 0) {
std::cout << "Hello\n";
}
else {
std::cout << "World\n";
}
}

// > g++ scratchpad.cpp; ./a.out
// Hello
// World

In this example, the parent process outputs Hello while the child process outputs world.

To examine how shared memory is handled between the parent and child process, as
described, let's look at the following example:

#include <unistd.h>
#include <iostream>

int data = 0;

int main (void)

{

if (fork() != 0)
{
data = 42;
}
std::cout << "The answer is: " << data << '\n';

[144]

Programming Linux/Unix Systems Chapter 5

}

// > g++ scratchpad.cpp; ./a.out
// The answer is: 42
// The answer is: 0

In this example, we output the The answer is: string for both the parent and child
processes. Both processes have access to a global variable called data, which is initialized
to 0. The difference is that the parent process sets the data variable to 42 and the child does
not.

The parent process completes its job before the operating system schedules the child
process, and, as a result, The answer is: 42 isoutputto stdout first.

Once the child process has a chance to execute, it too outputs this string, but the answer is 0
and not 42. This is because, as far as the child is concerned, the data variable was never set.
Both the child process and the parent process have access to their own memory (at least, the
memory that is written), and as such, 42 was set in the memory for the parent, not the
child.

On most Unix-based operating systems, the first process to execute is init, which starts the
rest of the processes on the system using fork (). This means the init process is the root-
level parent for userspace applications (sometimes referred to as the grandparent). As such,
the fork () system call can be used to create complex trees of processes.

See the following example:

#include <unistd.h>
#include <iostream>

int main (void)
{

fork ();

fork ();

std::cout << "Hello World\n";
}

// > g++ scratchpad.cpp; ./a.out
// Hello World
// Hello World
// Hello World
// Hello World

[145]

Programming Linux/Unix Systems Chapter 5

In the preceding example, we execute the fork () system call twice, which generates three
additional processes. To understand why three processes are created instead of two, let's
make a simple modification to the example, to highlight the tree structure that is created, as
follows:

#include <unistd.h>
#include <iostream>

int main (void)
{
auto idl = fork();
std::cout << "idl: " << idl << '\n';

auto id2 = fork();
std::cout << "id2: " << id2 << '\n';
std::cout << "——————————— \n";

}

// > g++ scratchpad.cpp; ./a.out
// 1id1l: 14181
// 1d2: 14182

/] —mm—————
// idl: 0

// id2: 14183
/] —mm—————
// id2: 0

/] —mm—————
// id2: 0

/] —mm—————

In this example, we execute fork () twice, as previously, with the main difference being
that we output the ID for each process that is created. The parent process executes fork (),
outputs the ID, executes fork () again, and then outputs the ID again before executing.

Since the IDs are not 0 (in fact, they are 14181 and 14182), we know that this is the parent
process, and, as expected, it creates two child processes. The next IDs that are shown are 0
and 14183. This is the first child process (14181), which occurs at the first call to fork ()
by the parent.

This child process then continues to create its own child process (which has the ID 14183,
as stated). The parent process and the child process each created an additional process
(14182 and 14183) when the second fork () was executed, which both output 0 for id2.
This accounts for the last two outputs.

[146]

Programming Linux/Unix Systems Chapter 5

It should be noted that this example might need to be executed several times to get a clean
result, as each additional child process increases the chance that one child process will
execute at the same time as the other child processes, corrupting the output. As processes
do not share memory, implementing methods to synchronize the output in an example like
this is non-trivial.

The use of fork () creates n"2 processes, with n being the total number of times fork () is
called. For example, if fork () were called three times instead of two, as in the simplified
preceding example, we would expect Hello World to output eight times instead of four,
as shown here:

#include <unistd.h>
#include <iostream>

int main (void)

{

fork ();
fork ();
fork ();

std::cout << "Hello World\n";

// > g++ scratchpad.cpp; ./a.out
// Hello World
// Hello World
// Hello World
// Hello World
// Hello World
// Hello World
// Hello World
// Hello World

In addition to the exponential growth of processes shown, some processes might choose to
create a child while others might not, resulting in a complex process tree structure.

See the following example:

#include <unistd.h>
#include <iostream>

int main (void)
{
if (fork() != 0) {
std::cout << "The\n";
}
else {
if (fork() != 0) {

[147]

Programming Linux/Unix Systems Chapter 5

std::cout << "answer\n";

}

else {
if (fork() !'= 0) {
std::cout << "is\n";
}
else {

std::cout << 42 << '\n';

}

}

// > g++ scratchpad.cpp; ./a.out
// The

// answer

// is

// 42

In this example, the parent process creates child processes, while each child process does
nothing. This results in the The answer is 42 string being output to stdout solely by
the parent process.

The wait() function

As stated, each process is executed by the operating system in whatever order the operating
system chooses. As a result, it is possible that the parent process could finish its execution
prior to the child process completing. On some operating systems, this could result in
corruption, as some operating systems require the parent process to be alive for the child
process to successfully complete.

To handle this, POSIX provides the wait () function:

#include <unistd.h>
#include <iostream>
#include <sys/wait.h>

int main (void)
{
if (fork() != 0) {
std::cout << "parent\n";
wait (nullptr);
}
else {
std::cout << "child\n";

[148]

Programming Linux/Unix Systems Chapter 5

}
}

// > g++ scratchpad.cpp; ./a.out
// parent
// child

In this example, we create a child process that outputs child to stdout. Meanwhile, the
parent outputs parent to stdout and then executes the wait () function, which tells the
parent to wait for a child to complete its execution.

We pass nullptr to the wait () function, as that tells the wait () function that we are not
interested in an error code.

The wait () function waits for any child process to complete. It doesn't wait for a specific
child process to complete. As a result, if more than one child process has been created,
wait () must be executed more than once.

See the following example:

#include <unistd.h>
#include <iostream>
#include <sys/wait.h>

int main (void)
{

int id;

auto idl = fork();
auto 1d2 fork ();
auto i1id3 = fork();

while (1)
{
id = wait (nullptr);
if (id == -1)
break;
if (id == 1id1)

std::cout << "child #1 finished\n";

if (id == 1d2)
std::cout << "child #2 finished\n";

if (id == 1d3)
std::cout << "child #3 finished\n";

[149]

Programming Linux/Unix Systems Chapter 5

}

if (idl !'= 0 && id2 != 0 && id3 != 0)
std::cout << "parent done\n";

}

// > g++ scratchpad.cpp; ./a.out
// child #3 finished

// child #3 finished

// child #3 finished

// child #3 finished

// child #2 finished

// child #2 finished

// child #1 finished

// parent done

In the preceding example, we create eight child processes. As previously stated, the total
number of processes created is 2”*(the number of times fork is called). In this example,
however, we are interested in making sure that the grandparent, which is the root parent
process, is the last process to finish executing.

Remember that, when we call fork () like this, the first call creates the first child. The
second call to fork () makes another child, but the first child now becomes a parent as it
calls fork (). The same happens (but even more so) when we call fork () a third time. The
grandparent is the root parent process.

Regardless of which process is the grandparent process, we want to ensure that all child
processes finish before their parents do. To accomplish this, we record the process ID each
time fork () is executed. For child processes, this ID is set to 0.

The next thing we do is enter a while (1) loop, and then call wait (). The wait () function
will exit as soon as a child process is complete. Once the process is complete, we output
which child process exited to stdout. If the process ID that we get from wait () is -1, we
know that no more child processes exist, and we can exit the while (1) loop.

Finally, if none of the process IDs are equal to 0, we know that the process is the
grandparent, and we output when it exits just to show that it is the last process to exit.

Since the wait () function will not return 0, we know that when a child process exits, we
will only ever output the child process that exited within our while (1) loop. As shown,
we see that one child with id1 exits, two children with id2 exit, and four children with id3
exit. This is as expected, based on the math that we performed previously.

[150]

Programming Linux/Unix Systems Chapter 5

It should also be noted that this example ensures that all child processes are completed
before the parent completes. This means that the grandparent must wait for its children to
complete. Since the child processes of the grandparent also create their own processes, the
grandparent must first wait for the parent process to complete, which must wait in turn for
its children to complete.

This results in a cascading effect of child processes completing before their parents, all the
way until the grandparent process finally completes.

Finally, it should also be noted that, although parents have to wait for their children to
complete, it doesn't mean that all children with id3 will exit before children with id2 exit.
This is because one half of the child tree could complete without issue before the other half
completes, or in any order. As a result, it's possible to get outputs like this:

child #3 finished
child #3 finished
child #3 finished
child #2 finished
child #2 finished
child #3 finished
child #1 finished
parent done

In this example, the last child #3 to complete was the process that was created by the last
call to fork () by the grandparent process.

Interprocess communication (IPC)

In one of our preceding examples, we demonstrated how fork () can be used to create a
child process from a parent process, as shown here:

#include <unistd.h>
#include <iostream>
#include <sys/wait.h>

int main (void)
{
if (fork() != 0) {
std::cout << "parent\n";
wait (nullptr);
}
else {
std::cout << "child\n";

}

[151]

Programming Linux/Unix Systems Chapter 5

// > g++ scratchpad.cpp; ./a.out
// parent
// child

The reason we see parent output before child in this example is merely the result of the
operating system taking longer to start the child process than it takes to output from the
child process. If the parent process were to take longer, child would output first.

See the following example:

#include <unistd.h>
#include <iostream>
#include <sys/wait.h>

int main (void)
{
if (fork() != 0) {
sleep(1l);
std::cout << "parent\n";
wait (nullptr);
}
else {
std::cout << "child\n";
}
}

// > g++ scratchpad.cpp; ./a.out
// child
// parent

This is identical to the previous example, with the exception that a sleep () command was
added to the parent process, which tells the operating system to yield the execution of the
parent for one second. As a result, the child process has plenty of time to execute, resulting
in child being output first.

To prevent the child from executing first, we need to set up a communication channel
between the parent and child process so that the child process knows to wait for the parent
to finish outputting to stdout before the child does. This is called synchronization.

For more information about synchronization, how to handle it, and the issues that arise
from synchronization, such as deadlock and race conditions, please see the Further reading
section in this chapter.

[152]

Programming Linux/Unix Systems Chapter 5

In this section, the mechanism we will use to synchronize the parent and child process is
called Interprocess communication (IPC). It should be noted before we continue that
creating multiple processes and using IPC to synchronize them is a heavy-handed way of
creating and coordinating more than one task on the operating system. Unless separate
processes are absolutely needed, a better approach is to use threading, a topic that we cover
in great detail in Chapter 12, Learning to Program POSIX and C++ Threads.

There are several different types of IPC that can be leveraged in a Unix system. Here, we
will cover two of the most popular methods:

e Unix pipes
¢ Unix shared memory

Unix pipes

A pipe is a mechanism for sending information from one process to another. In its simplest
form, a pipe is a file (in RAM) that one process can write to, and the other can read from.
The file starts out empty, and no bytes can be read from the pipe until bytes are written to
it.

Let's look at the following example:

#include <string.h>
#include <unistd.h>
#include <sys/wait.h>

#include <array>
#include <iostream>
#include <string_view>

class mypipe

{

std::array<int, 2> m_handles;

public:
mypipe ()
{
if (pipe(m_handles.data()) < 0) {
exit (1);
}
}
~mypipe ()

{
close (m_handles.at (0));

[153]

Programming Linux/Unix Systems Chapter 5

close (m_handles.at (1)) ;

std::string
read ()
{
std::array<char, 256> buf;
std::size_t bytes = ::read(m_handles.at (0), buf.data(),
buf.size());

if (bytes > 0) {
return {buf.data(), bytes};

return {};

void
write (const std::string &msg)

{
::write (m_handles.at (1), msg.data(), msg.size());

ri

int main (void)

mypipe pj
if (fork() != 0) {
sleep(l);

std::cout << "parent\n";

p.write ("done");
wait (nullptr);

}

else {
auto msg = p.read();

std::cout << "child\n";

std::cout << "msg: " << msg << '\n';
}
}
// > g++ scratchpad.cpp -std=c++17; ./a.out
// parent
// child

// msg: done

[154]

Programming Linux/Unix Systems Chapter 5

This example is similar to the previous example, with the addition of a Unix pipe. This is
used to ensure that even if the parent takes a while to execute, the parent outputs to
stdout before the child executes. To accomplish this, we create a class that

leverages Resource Acquisition Is Initialization (RAII) to encapsulate the Unix pipe,
ensuring that the details of the C APIs are properly abstracted and the handles that are
opened to support Unix pipes are closed when the mypipe class loses scope.

The first thing we do in the class is to open the pipe, as follows:

mypipe ()
{
if (pipe(m_handles.data()) < 0) {
exit (1);
}
}

The pipe itself is an array of two file handles. The first handle is used to read from the pipe,
while the second handle is used to write to the pipe. The pipe () function will return -1 if
an error occurs.

It should be noted that if the pipe () function succeeds, the result is two file handles that
should be closed when they are no longer used. To support this, we close the file handles
that were opened in the destructor of the class, so that when the pipe loses scope, the pipe
is closed, as follows:

~mypipe ()

{
close (m_handles.at (0));
close (m_handles.at (1));

}
We then provide a read () function as follows:

std::string
read ()
{
std::array<char, 256> buf;
std::size_t bytes = ::read(m_handles.at (0), buf.data(), buf.size());

if (bytes > 0) {
return {buf.data(), bytes};
}

return {};

[155]

Programming Linux/Unix Systems Chapter 5

The read () function creates a buffer that can be read to, and we read from the pipe and
place the results in the buffer. Notice how we read from the first file handle, as stated.

It should be noted that the read () and write () functions that we leverage here will be
covered in detail in Chapter 8, Learning to Program File Input/Output. For now, it is
important to note that the read () function, in this case, is a blocking function, and will not
return until data is read from the pipe. If an error occurs (for example, the pipe is closed),
-1 will be returned.

To account for this, we only return the data that is read from the pipe if actual bytes are
read; otherwise, we return a null string, which can be used by the user of this class to detect
an error (or we could use a C++ exception, as covered in chapter 13, Error - Handling with
Exceptions).

Finally, we also add a write () function to the pipe, as follows:
void

write (const std::string &msg)

{
::write (m_handles.at (1), msg.data(), msg.size());

}

The write () function is far simpler, writing to the write side of the pipe using the
write () Unix function.

In the parent process we do the following:

sleep(1l);
std::cout << "parent\n";

p.write ("done");
wait (nullptr);

The first thing we do is sleep for one second, which ensures that the parent takes a long
time to execute. If synchronization were not used, the child process would output to
stdout before the parent process as a result of the use of this sleep () function.

The next thing we do is to output to stdout and then write the done message to the pipe.
Finally, we wait for the child process to finish before exiting.

The child process does the following:
auto msg = p.read();

std::cout << "child\n";
std::cout << "msg: " << msg << '\n';

[156]

Programming Linux/Unix Systems Chapter 5

As stated, the read () function is a blocking function, which means that it will not return
until data is read from the file handle (or an error occurs). We assume that no errors will
occur, and store the resulting string in a variable called msg.

Since the read () function is blocking, the child process will wait until the parent process
outputs to stdout, and then writes to the pipe. No matter what the parent process does
before the write to the pipe, the child process will wait.

Once the call to read () returns, we output to stdout child and the message that was sent
by the parent, and exit.

Using this simple example, we are able to send information from one process to another. In
this case, we use this communication to synchronize the parent and child processes.

Unix shared memory

Unix shared memory is another popular form of IPC. Unlike Unix pipes, Unix shared
memory provides a buffer that can be read and written to by both processes.

Let's examine the following example:

#include <string.h>
#include <unistd.h>
#include <sys/shm.h>
#include <sys/wait.h>

#include <iostream>

char *
get_shared_memory ()
{
auto key = ftok("myfile", 42);
auto shm = shmget (key, 0x1000, 0666 | IPC_CREAT);

return static_cast<char *>(shmat (shm, nullptr, 0));

}

int main (void)
{
if (fork() != 0) {
sleep(1l);
std::cout << "parent\n";

auto msg = get_shared_memory () ;
msg[0] = 42;

[157]

Programming Linux/Unix Systems Chapter 5

wait (nullptr);
t

else {
auto msg = get_shared_memory () ;
while (msg[0] != 42);

std::cout << "child\n";
}
}

// > g++ scratchpad.cpp; ./a.out
// parent
// child

In the preceding example, we create the following function which is responsible for
opening the shared memory between the parent and child processes:

char *
get_shared_memory ()
{
auto key = ftok("myfile", 42);
auto shm = shmget (key, 0x1000, 0666 | IPC_CREAT);

return static_cast<char *>(shmat (shm, nullptr, 0));

}

This function starts by creating a unique key, which is used by the operating system to
associate the shared memory between the parent and child processes. Once this key is
generated, shmget () is used to open the shared memory.

0x1000 tells shmget () that we would like to open 4 KB of memory, and 0666 |
IPC_CREATE is used to tell shmget () that we would like to open the memory with read
and write permissions, and create the shared memory file if it doesn't exist.

The result of shmget () is a handle that can be used by shmat () to return a pointer to the
shared memory.

It should be noted that a more complete example would wrap this shared memory in a
class so that RAII can be used as well as leveraging the GSL to properly protect the buffer
that is shared between both processes.

In the parent process, we do the following;:

sleep(1l);
std::cout << "parent\n";

auto msg = get_shared_memory () ;

[158]

Programming Linux/Unix Systems Chapter 5

msg[0] = 42;
wait (nullptr);

As in the previous example, the parent sleeps for one second before outputting to stdout.
Next, the parent gets the shared memory region, and writes 42 to the buffer. Finally, the
parent waits for the child to complete before exiting.

The child process does the following:

auto msg = get_shared_memory () ;
while (msg[0] !'= 42);

std::cout << "child\n";

As shown, the child process gets the shared memory buffer and waits for the buffer to have
the value 42. Once it does, which means the parent process has finished outputting to
stdout, the child outputs to stdout and exits.

The exec() function

Up until this point, all the child processes that we have created were copies of the parent
process, with the same code and memory structure. Although this can be done, it is far less
likely, as POSIX threads provide the same functionality without the issues with shared
memory and IPC. POSIX threads will be discussed in more detail in Chapter 12, Learning to
Program POSIX and C++ Threads.

Instead, it is more likely that calls to fork () will be followed by calls to exec (). The
exec () system call is used to override the existing process with a completely new process.
See the following example:

#include <unistd.h>
#include <iostream>

int main (void)

{
execl ("/bin/1s", "1ls", nullptr);
std::cout << "Hello World\n";

}

// > g++ scratchpad.cpp; ./a.out
// <output of ls>

[159]

Programming Linux/Unix Systems Chapter 5

In the preceding example, we make a call to exec1 (), which is a specific version of the
exec () family of system calls. The execl () system call executes the first argument to the
function, and passes the remaining arguments to the process as argv []. The last argument
always has to be nullptr, just as the last argument in argv [] is always nullptr.

The call to exec () (and friends) replaces the current process with the new process being
executed. As a result, the call to output Hello World to stdout is not called. This is
because this call is part of the a. out program, not the 1s program, and since exec ()
replaces the current process with the new executable, the output never occurs.

This is why fork () and exec () are usually called together. The call to fork () creates a
new process, while the call to exec () takes that new process and executes the desired
program as that new process.

This is how the system () system call works:

#include <unistd.h>
#include <iostream>

int main (void)
{

system("1s");

std::cout << "Hello World\n";
}

// > g++ scratchpad.cpp; ./a.out
// <output of ls -al>
// Hello World

When calling system (), the 1s executable is run, and the system () function waits until
the executable is complete. Once it is complete, the execution continues and the call to
output Hello World to stdout is made.

This is because the system () call forks a new process and runs exec () from that new
process. The parent process runs wait () and returns when the child process is complete.

To demonstrate this, we can make our own version of the system call, as follows:

#include <unistd.h>
#include <iostream>
#include <sys/wait.h>

void
mysystem(const char *command)

{

[160]

Programming Linux/Unix Systems Chapter 5

if (fork() == 0) {
execlp (command, command, nullptr);
t
else {
wait (nullptr);
t
t

int main (void)
{

mysystem("1ls");

std::cout << "Hello World\n";
}

// > g++ scratchpad.cpp; ./a.out
// <output of ls>
// Hello World

In the mysystem () function, we execute fork () to create a new child process and then
execute execlp () to execute 1s. (The call to execlp () will be explained later.)

The parent process calls wait (), and waits for the newly-created child process to complete.
Once it is complete, the call to mysystem () finishes, allowing the output of Hello World
to execute.

It should be noted that there are a couple of improvements that would make this function
more complete. The actual system () function passes arguments to the exec () call, which
our version does not.

The wait () call doesn't check to make sure that the child process that completed was the
process that was forked either. Instead, the call to wait () should loop until the child
process that was forked actually completes.

To pass arguments to the child process, we can do the following using execl ():

#include <unistd.h>
#include <iostream>

int main (void)
{

execl ("/bin/1s", "1ls", "-al", nullptr);
}

// > g++ scratchpad.cpp; ./a.out
// <output of ls -al>

[161]

Programming Linux/Unix Systems Chapter 5

In this example, we execute /bin/1s and pass —al to the process.

The second argument, which is 1s, is the same as argv [0], which is always the name of
the process. And just as with argv[argc] == nullptr, our last argumentis nullptr.

As mentioned earlier, there are different versions of exec (). See the following example:

#include <unistd.h>
#include <iostream>

int main (void)

{
const char *envp[] = {"ENV1=1", "ENV2=2", nullptr};
execle ("/bin/1ls", "1ls", nullptr, envp);

}

// > g++ scratchpad.cpp; ./a.out
// <output of ls>

The execle () version does the same thing as exec1 (), but also provides the ability to
pass in environment variables. In this case, we provide 1s with the process-specific
environment variables ENV1 and ENV2.

The execl () function so far have taken an absolute path to 1s. Instead of using the
absolute path, the PATH environment variable can be used to locate the executable, as
follows:

#include <unistd.h>
#include <iostream>

int main (void)
{

execlp("1ls", "1ls", nullptr);
}

// > g++ scratchpad.cpp; ./a.out
// <output of 1ls>

The call to execlp () locates 1s using PATH, instead of using an absolute path.

Alternatively, the exec () family also provides the ability to detail the argv [] arguments
using a variable, instead of directly as a function argument to exec (), as follows:

#include <unistd.h>
#include <iostream>

int main (void)

[162]

Programming Linux/Unix Systems Chapter 5

const char *argv[] = {"1ls", nullptr};
execv ("/bin/1s", const_cast<char **>(argv));

}

// > g++ scratchpad.cpp; ./a.out
// <output of 1ls>

As shown here, the execv () calls allow you to define argv [] as a separate variable.

One issue with the execv () family of calls is that argv [] is technically an array of pointers
to C-style strings, which take the form const char * in C++. However, calls to execv ()
and friends take char**, not const char**, which means that const_cast is needed to
convert the arguments.

The execv () family also provides the ability to pass in environment variables, just like
execl (), as follows:

#include <unistd.h>
#include <iostream>

int main (void)

{

const char *argv[] = {"1ls", nullptr};
const char *envp[] = {"ENV1=1", "ENV2=2", nullptr};
execve (

"/bin/1ls",

const_cast<char **>(argv),
const_cast<char **>(envp)
)
}

// > g++ scratchpad.cpp; ./a.out
// <output of 1ls>

In the preceding example, we pass in the argv [] arguments and the environment variables
using execve ().

Finally, it is also possible to use the path to locate the executable, instead of using an
absolute value, as follows:

\#include <unistd.h>
#include <iostream>

int main (void)

{

[163]

Programming Linux/Unix Systems Chapter 5

const char *argv[] = {"1ls", nullptr};
execvp ("1ls", const_cast<char **>(argv));

}

// > g++ scratchpad.cpp; ./a.out
// <output of ls>

In this example, the PATH environment variable is used to locate 1s.

Output redirection

In this chapter, we have outlined all the system calls that are needed to write your own
shell. You can now create your own processes, load an arbitrary executable, and wait for
the process to complete.

There are still a couple of things needed to create a complete shell. One of these is Unix
signals, which will be discussed shortly; the other is capturing the output of a child process.

To do this, we will leverage a Unix pipe for IPC and tell the child process to redirect its
output to this pipe so that the parent process can receive it.

See the following example:

#include <string.h>
#include <unistd.h>
#include <sys/wait.h>

#include <array>
#include <iostream>
#include <string_view>

class mypipe

{

std::array<int, 2> m_handles;

public:
mypipe ()
{
if (pipe(m_handles.data()) < 0) {
exit (1);
}
}
~mypipe ()

{

close (m_handles.at (0));

[164]

Programming Linux/Unix Systems Chapter 5

close (m_handles.at (1)) ;

}

std::string
read ()
{
std::array<char, 256> buf;
std::size_t bytes = ::read(m_handles.at (0), buf.data(),
buf.size());

if (bytes > 0) {
return {buf.data(), bytes};
t

return {};

}

void

redirect ()

{
dup2 (m_handles.at (1),
close (m_handles.at (0))
close (m_handles.at (1))

STDOUT_FILENO) ;

;
;
bi

int main (void)

mypipe pj
if (fork () == 0) {
p.redirect () ;
execlp("1ls", "1ls", nullptr);
t
else {

wait (nullptr);
std::cout << p.read() << '\n';

}

// > g++ scratchpad.cpp; ./a.out
// <output of 1ls>

In the preceding example, we use the same Unix pipe class that we created in the previous
example. The difference, however, is that the child process will not write to the Unix pipe,
but will output to stdout. So, we need to redirect the output of stdout to our Unix pipe.

[165]

Programming Linux/Unix Systems Chapter 5

To do this, we replace the write () function with redirect (), as follows:

void

redirect ()

{
dup2 (m_handles.at (1), STDOUT_FILENO);
close (m_handles.at (0));
close (m_handles.at (1)) ;

}

In this redirect () function, we tell the operating system to redirect all writes to
stdout that are made to our pipe (the write side of the pipe). As a result, when the child
process writes to stdout, the writes are redirected to the read side of the pipe for the
parent process.

As a result, the pipe handles for the child process are no longer needed (and are closed
before executing the child process).

The rest of the example is similar to our call to our custom mysystem () call, as follows:

if (fork() == 0) {

p.redirect () ;

execlp("1ls", "1ls", nullptr);
}
else {

wait (nullptr);
std::cout << p.read() << '\n';

}

A child process is created. Before we execute the 1s command, we redirect the output of the
child process. The parent process, just like mysystem (), waits for the child process to
complete, and then reads the contents of the pipe.

To create your own complete shell, a lot more functionality would be needed, including
providing asynchronous access to a child process's output for both stdout and stderr, the
ability to execute processes in the foreground and background, parsing arguments, and so
on. However, the bulk of the concepts that are needed have been provided here.

In the next section, we will discuss how Unix signals work.

[166]

Programming Linux/Unix Systems Chapter 5

Unix signals

Unix signals provide the ability to interrupt a given process, and allow a child to receive
this interruption and handle it any way they wish.

Specifically, Unix signals provide the user with the ability to handle specific types of
control flow and errors that might occur, such as a Terminal attempting to close your
program, or a segmentation fault that might be recoverable.

See the following example:

#include <unistd.h>
#include <iostream>

int main (void)
{
while (true) {
std::cout << "Hello World\n";
sleep(1l);

}

// > g++ scratchpad.cpp; ./a.out

// Hello World

// Hello World

// Hello World

/...

// "~C

In the preceding example, we create a process that executes forever, outputting Hello

World every second. To stop this application, we must use the CTRL+C command, which
tells the shell to terminate the process. This is done using a Unix signal.

We can trap this signal as follows:

#include <signal.h>
#include <unistd.h>
#include <iostream>

void handler (int sig)
{
if (sig == SIGINT)
{
std::cout << "handler called\n";

}

[167]

Programming Linux/Unix Systems

Chapter 5

int main (void)

{

}

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

signal (SIGINT, handler);

for

{

(auto i

std::cout << "Hello World\n";

= 0; i < 10; i++)

sleep(l);

> g++ scratchpad.cpp; ./a.out

Hello
Hello

World
World

“Chandler called

Hello

World

“Chandler called

Hello

World

“Chandler called

Hello

World

“Chandler called

Hello
Hello
Hello
Hello
Hello

World
World
World
World
World

In this example, we create a loop that outputs Hello World to stdout every second, and
does so 10 times. We then install a signal handler using the signal () function. This signal
handler tells the operating system that we would like to call the handler () function any

time SIGINT is called.

As a result, now, if we use CTRL+C, the signal handler is called instead, and we see

handler called outputto stdout.

It should be noted that, since we successfully handled SIGINT, using CTRL+C no longer
kills the process, which is why we used a for () loop instead of a while (1) loop. You
could also use CTRL+/ to send SIGSTOP instead of SIGINT, which would also kill the
application in the preceding example.

Another way to overcome this would be to use a global variable capable of stopping the
loop, as follows:

#include <signal.h>
#include <unistd.h>
#include <iostream>

[168]

Programming Linux/Unix Systems

Chapter 5

auto loop = true;

void handler (int sig)
{
if (sig == SIGINT)
{
std::cout << "handler called\n";
loop = false;

}

int main (void)
{
signal (SIGINT, handler);

while (loop) |
std::cout << "Hello World\n";
sleep(l);

}

// > g++ scratchpad.cpp; ./a.out
// Hello World

// Hello World

// ~“Chandler called

This example is identical to our previous example, except that we use a while () loop,
which loops until the 1oop variable is false. In our signal handler, we set the 1oop
variable to t rue, which stops the loop. This works because the signal handler is not

executed in the same thread as the while () loop.

This is important to understand, as deadlock, corruption, and race conditions can occur
when using signal handlers if these types of issues are not addressed. For more information

on threading, see Chapter 12, Learning to Program POSIX and C++ Threads.

Finally, before we conclude, the ki1l () function can be used to send a signal to a child

process, as follows:

#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>

#include <iostream>
void

mysystem(const char *command)

{

[169]

Programming Linux/Unix Systems Chapter 5

if (auto id = fork(); id > 0) |
sleep(2);
kill (id, SIGINT);

t

else {
execlp (command, command, nullptr);

t

t

int main (void)
{

mysystem("b.out");

}

// > g++ scratchpad.cpp -std=c++17; ./a.out
//

In this example, we created our mysystem () function call again, but this time, in the
parent, we killed the child process after two seconds instead of waiting for it to complete.
We then compiled our while (1) example and renamed it b. out.

We then executed the child process, which will execute forever, or until the parent sends
the kill command.

Summary

In this chapter, we provided a comprehensive overview of the Linux (System V) ABL We
discussed the register and stack layout, the System V calling convention, and the ELF
specification.

We then reviewed the Unix filesystem, including the standard filesystem layout and
permissions.

Next, we reviewed how to work with Unix processes, including common functions such
as fork (), exec (), and wait (), as well as IPC.

Finally, this chapter concluded with a brief overview of Unix-based signals and how to
work with them.

In the next chapter, we will provide a comprehensive look at console input and output
using C++.

[170]

Programming Linux/Unix Systems Chapter 5

Questions

What is the first return register for the System V architecture (64-bit) on Intel?
What is the first argument register for the System V architecture (64-bit) on Intel?
When pushing to the stack on Intel, do you add or subtract the stack pointer?
What is the difference between segments and sections in ELF?

What is stored in the .eh_frame section in an ELF file?

What is the difference between fork () and exec ()?

When creating a Unix pipe, which file handle is the write file handle? The first, or
the second?

8. What is the return value of the wait () system call?

NS gk ®h =

Further reading

® https://www.packtpub.com/application-development/c-multithreading-
cookbook

[171]

https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook
https://www.packtpub.com/application-development/c-multithreading-cookbook

Learning to Program Console
Input/Output

Console IO is essential for any program. It can be used to get user input, provide an output,
and support debugging and diagnostics. A common cause of program instability also
generally originates from poorly written IO, which is only exacerbated by the overuse of
standard C printf ()/scanf () IO functions. In this chapter, we will discuss the pros and
cons of using C++ IO, commonly referred to as stream-based IO, compared to the standard
C-style alternatives. In addition, we will provide a high-level introduction to C++
manipulators and how they can be used in place of standard C-style format strings. We will
conclude this chapter with a set of examples designed to guide the reader through the use
of both std: :cout and std::cin.

The chapter has the following objectives:

¢ Learning about stream-based 10
e User-defined type-manipulators
¢ An example of echoes

¢ The Serial Echo server example

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

Learning to Program Console Input/Output Chapter 6

To download all of the code in this chapter, including the examples and code snippets,
please see the following GitHub link: https://github.com/PacktPublishing/Hands-On-
System-Programming-with-CPP/tree/master/Chapter06.

Learning about stream-based 10

In this section, we are going to learn about the basics and some advantages and
disadvantages of stream-based IO.

The basics of stream

Unlike the C-style printf () and scanf () functions, C++ IO uses streams (std: : ostream
for output and std: : istream for input) that leverage the << and >> operators. For
example, the following code outputs Hello World to stdout using a non-member <<
overload of basic_ostreamfor const char * strings:

#include <iostream>

int main ()
{

std::cout << "Hello World\n";
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
Hello World

By default, the std: : cout and std: :wcout objects, which are instantiations of

std: :ostream, output data to the standard C stdout, with the only difference being that
std: :wcout provides support for Unicode, while std: : cout provides support for ASCIL
In addition to several non-member overloads, C++ provides the following arithmetic-style

member overloads:

basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<
basic_ostream &operator<<

short wvalue);

unsigned short value);

int value);

unsigned int wvalue);

long value);

unsigned long value);

long long value);

unsigned long long value);
float value);

double wvalue);

[173]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter06

Learning to Program Console Input/Output Chapter 6

basic_ostream &operator<<(long double value);
basic_ostream &operator<<(bool value);
basic_ostream &operator<<(const void* wvalue);

These overloads can be used to stream numbers of various types to stdout or stderr.
Consider the following example:

#include <iostream>

int main ()

{

std::cout << "The answer is: " << 42 << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

Using stdin by default, input is performed via std: :cin and std: :wcin. Unlike
std::cout, std: :cin uses the >> stream operator, instead of the << stream operator. The
following accepts input from stdin and outputs the result to stdout:

#include <iostream>

int main ()

{

auto n = 0;

std::cin >> nj;
std::cout << "input: " << n << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
42 J
input: 42

Advantages and disadvantages of C++ stream-
based 10

There are many pros and cons to using C++ for 1O instead of standard C functions.

[174]

Learning to Program Console Input/Output Chapter 6

Advantages of C++ stream-based IO

C++ streams are generally preferred over the standard C functions that leverage format
specifiers, because C++ streams are:

¢ Capable of handling user-defined types providing cleaner, type-safe IO

e Safer, preventing a larger number of accidental-buffer overflow vulnerabilities as
not all format-specifier bugs can be detected by the compiler or prevented using
the _s C function variants added to C11

¢ Capable of providing implicit memory management, and do not require variadic
functions

For these reasons, format specifiers are discouraged by the C++ Core Guidelines including
functions such as print £ (), scanf (), and others. Although there are many advantages to
using C++ streams, there are some disadvantages.

Disadvantages of C++ stream-based 10

The two most common complaints about C++ streams are as follows:

¢ Standard C functions (specifically print £ ()) often outperform C++ streams (an
issue that largely depends on your operating system and C++ implementation)

e Format specifiers are often more flexible than #include <iomanip>

Although these are typically valid complaints, there are ways to address these issues
without having to sacrifice the advantages of C++ streams, which we will explain in the
following sections.

Beginning with user-defined types

C++ streams provide the ability to overload the << and >> operators for user-defined types.
This provides the ability to create custom, type-safe IO for any data type, including system-
level data types, structures, and even more complicated types such as classes. For example,
the following provides an overload for the << stream operator to print an error code
provided by a POSIX-style function:

#include <fcntl.h>
#include <string.h>
#include <iostream>

class custom_errno

[175]

Learning to Program Console Input/Output Chapter 6

{ };

std::ostream &operator<<(std::ostream &os, const custom_errno &e)
{ return os << strerror(errno); }

int main ()

{
if (open("filename.txt", O_RDWR) == -1) {
std::cout << custom_errno{} << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
No such file or directory

In this example, we create an empty class that provides us with a custom type and overload
the << operator for this custom type. We then use strerror () to output the error string
for errno to the provided output stream. Although this could be achieved by directly
outputting the result of strerror () to the stream, it demonstrates how user-defined types
can be created and used with streams.

In addition to more complicated types, user-defined types can also be leveraged by input
streams. Consider the following example:

#include <iostream>

struct object_t
{
int datal;
int data2;
}i

std::ostream &operator<<(std::ostream &os, const object_t &obj)
0s << "datal: " << obj.datal << '\n';
0s << "data2: " << obj.data2 << '\n';
return os;
std::istream &operator>>(std::istream &is, object_t &obj)
is >> obj.datal;

is >> obj.data2;
return is;

int main ()

[176]

Learning to Program Console Input/Output

Chapter 6

{
object_t obj;

std::cin >> obj;
std::cout << obj;

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out

42 J
43
datal: 42
data2: 43

In this example, we create a structure that stores two integers. We then overload both the
<< and >> operators for this user-defined type, exercise these overloads by reading data
into an instance of our type, and then output the results. With our overloads, we have
instructed both std: :cin and std: : cout on how to handle the input and output of our

user-defined type.

Safety and implicit memory management

Although vulnerabilities are still possible with C++ streams, they are less likely compared
to their standard C counterparts. The classic example of a buffer overflow using the

standard C scanf () function is as follows:
#include <stdio.h>

int main ()

{
char buf[2];
scanf ("%s", buf);

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out

The answer is 42 J

*** stack smashing detected ***: <unknown> terminated

Aborted (core dumped)

[177]

Learning to Program Console Input/Output Chapter 6

The buffer being input by the user is larger than the space allocated for this buffer, resulting
in a buffer overflow situation. Increasing the size of buf will not solve the problem in this
example as the user can always input a string larger than the provided buffer. This issue
can be addressed by specifying a length limit on scanf ():

#include <stdio.h>

int main ()
{
char buf[2];
scanf ("%$2s", buf);

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is 42 J

Here, we provide the size of buf to the scanf () function, preventing the buffer overflow.
The problem with this approach is the size of buf is declared twice. If only one of these is
changed, a buffer overflow could be reintroduced. C-style macros could be used to address
this issue, but the decoupling of the buffer and its size is still present.

Although there are other ways to solve this using C, one way to address the preceding
issues with C++ is as follows:

#include <iomanip>
#include <iostream>

template<std::size_t N>
class buf_t

{
char m_buf [N];

public:

constexpr auto size()
{ return N; }

constexpr auto data()
{ return m_buf; }

}i

template<std::size_t N>
std::istream &operator>>(std::istream &is, buf_t<N> &b)
{

is >> std::setw(b.size()) >> b.data();

return is;

[178]

Learning to Program Console Input/Output Chapter 6

int main ()

{
buf_t<2> buf;
std::cin >> buf;

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is 42 J

Instead of using a * char, we create a user-defined type that encapsulates a * char and its
length. The total size of the buffer is coupled with the buffer itself, preventing accidental
buffer overflows. Still, if memory-allocation is allowed (which is not always the case when
programming systems, we can do better:

#include <string>
finclude <iostream>

int main ()

{
std::string buf;
std::cin >> buf;

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is 42 J

In this example, we use std: : string to store the input from std: : cin. The difference
here is that std: : st ring dynamically allocates memory as needed to store the input,
preventing a possible buffer overflow. If more memory is needed, more memory is
allocated or std: :bad_alloc is thrown and the program aborts. User-defined types with
C++ streams provide safer mechanisms for handling IO.

Common debugging patterns

In programming systems, one of the main uses of console output is debugging. C++ streams
provide two different global objects—std: : cout and std: : cerr. The first option,

std: : cout, is typically buffered, sent to stdout, and only flushed when either
std::flushor std: :endl is sent to the stream. The second option, std: : cerr, provides
the same functionality as std: : cout, but is sent to stderr instead of stdout, and is
flushed on every call to the global object. Take a look at the following example:

#include <iostream>

int main ()

[179]

Learning to Program Console Input/Output Chapter 6

std::cout << "buffered" << '\n';
std::cout << "buffer flushed" << std::endl;
std::cerr << "buffer flushed" << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
buffer

buffer flushed

buffer flushed

For this reason, error logic is usually sent to stderr using std: : cerr to ensure all error
console output is received in the event of a catastrophic issue. Likewise, general output,
including debug logic is sent to stdout using std: : cout to take advantage of buffering to
speed up console output, and '\n' is used to send a newline instead of std: :endl unless
an explicit flush is required.

The following shows a typical pattern in C for debugging:

#include <iostream>

#ifndef NDEBUG

#define DEBUG(...) fprintf (stdout, __ VA_ARGS_);
#else

#define DEBUG(...)

fendif

int main ()

{
DEBUG ("The answer is: %d\n", 42);

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

If debugging is enabled, which usually means that NDEBUG is defined, the DEBUG macro can
be used to send debug statements to the console. NDEBUG is used because this is the macro
that is defined when most compilers are set to Release mode, disabling assert () in
standard C. Another common debugging pattern is to provide the debug macro with a
debug level that allows the developer to dial in how verbose the program is while
debugging:

#include <iostream>

#ifndef DEBUG_LEVEL
#define DEBUG_LEVEL 0

[180]

Learning to Program Console Input/Output Chapter 6

fendif

#ifndef NDEBUG

#define DEBUG (level,...) \
if (level <= DEBUG_LEVEL) fprintf (stdout, __VA_ARGS__);
felse
#define DEBUG(...)
#endif

int main ()

{
DEBUG (0, "The answer is: %d\n", 42);
DEBUG (1, "The answer no is: %d\n", 43);

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

The problem with this logic is the overuse of macros to achieve debugging, a pattern that is
discouraged by the C++ Core Guidelines (https://github.com/isocpp/
CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res—macrosZ)./\Eﬁnlple
approach to debugging with C++17 is as follows:

#include <iostream>

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
fendif

int main ()
{
if constexpr (!g_ndebug) {
std::cout << "The answer is: " << 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

[181]

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-macros2

Learning to Program Console Input/Output Chapter 6

Even with C++17, some macro logic is needed to handle the NDEBUG macro that is provided
by the compiler when debugging is enabled. In this example, the NDEBUG macro is
converted into constexpr, which is then used in the source code to handle debugging. A
debug level can also be implemented using the following:

#include <iostream>

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
#else

constexpr auto g_debug_level
#endif

0;

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
#endif

int main ()

{
if constexpr (!g_ndebug && (0 <= g_debug_level)) {
std::cout << "The answer is: " << 42 << '\n';

if constexpr (!g_ndebug && (1 <= g_debug_level)) {
std::cout << "The answer is not: " << 43 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

Since changing the debug level is a compile-time feature in this example, it would be
passed to the compiler using ~-DDEBUG_LEVEL=xxx, and as such, still requires macro logic
to convert the C macro into a C++ constexpr. As can be seen in this example, the C++
implementation is far more complicated than a simple DEBUG macro that leverages
fprintf () and friends. To overcome this complexity, we will leverage encapsulation,
without sacrificing compile-time optimizations:

#include <iostream>

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
#else

constexpr auto g_debug_level = 0;

[182]

Learning to Program Console Input/Output Chapter 6

fendif

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
#endif

template <std::size_t LEVEL>

constexpr void debug(void (*func) ()) A
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
func () ;

bi
}

int main ()

{

debug<0>([] |
std::cout << "The answer is: " << 42 << '\n';
)i
debug<1>([] {
std::cout << "The answer is not: " << 43 << '\n';

1)
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

In this example, the debug logic is encapsulated into a constexpr function that takes a
Lambda. The debug level is defined using a template parameter to maintain constancy.
Unlike the typical standard C debugging pattern, this implementation will accept any
debug logic that can fit into a void (*func) () function or lambda and, like the standard C
version, will be compiled out and removed when the compiler is set to Release mode (that
is, when NDEBUG is defined, and typically optimizations are enabled). To show this, GCC
7.3 outputs the following when Release mode is enabled:

> g++ —-std=c++17 -03 -DNDEBUG scratchpad.cpp; ./a.out
> 1ls —al a.out
—rwxr-xr-x 1 user users 8600 Apr 13 18:23 a.out

> readelf -s a.out | grep cout

[183]

Learning to Program Console Input/Output Chapter 6

GCC 7.3 outputs the following when #undef NDEBUG is added to the source code
(ensuring the only difference is the debug logic is disabled, but the compile flags remain the
same):

> g++ —-std=c++17 scratchpad.cpp; ./a.out
> 1s —-al a.out
—-rwxr-xr-x 1 user users 8888 Apr 13 18:24 a.out

> readelf -s a.out | grep cout

23: 0000000000201060 272 OBJECT GLOBAL DEFAULT 24 _ZSt4cout@GLIBCXX_ 3.4
(5)

59: 0000000000201060 272 OBJECT GLOBAL DEFAULT 24
ZSt4cout@@GLIBCXX 3.4

The extra 288 bytes come from the debug logic that is completely removed by the compiler
thanks to the constancy observed by the additions of constexpr to C++17, providing a
cleaner approach to debugging, without the need for the extensive use of macros.

Another common debugging pattern is to include both the current line number and the
filename into debugging statements for additional context. The __ LINE__ and

__FILE__ macros are used to provide this information. Sadly, without the Source Location
TS(http://en.cppreference.com/w/cpp/experimental/source_location)xvhhjlvvasnot
included in C++17, there is no way to provide this information without these macros and
the inclusion of something like the following pattern:

#include <iostream>

#ifndef NDEBUG

#define DEBUG (fmt, args...) \
fprintf (stdout, "%s [%d]: " fmt, __ FILE__, _ LINE__, args);
#else
#define DEBUG(...)
#endif

int main ()
{

DEBUG ("The answer is: %d\n", 42);
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
scratchpad.cpp [11]: The answer is: 42

[184]

http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location
http://en.cppreference.com/w/cpp/experimental/source_location

Learning to Program Console Input/Output Chapter 6

In this example, the DEBUG macro automatically inserts the file name and line number into
the standard C-style fprintf () function. This works because wherever the compiler sees
the DEBUG macro, it inserts fprintf (stdout, "%s [%d]: " fmt, _ FILE_ ,
__LINE__, args);,and then must evaluate the line and file macros, resulting in the
expected output. One example of how to convert this same pattern to our existing C++
example is as follows:

#include <iostream>

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
felse

constexpr auto g_debug_level = 0;

fendif

#ifdef NDEBUG

constexpr auto g_ndebug = true;

#else

constexpr auto g_ndebug = false;

#endif

#define console std::cout << __FILE_ << " [" << __ LINE_ << "]: "

template <std::size_t LEVEL>

constexpr void debug(void (*func) ()) |
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
func () ;

bi

int main ()
{
debug<0>([] {
console << "The answer is: " << 42 << '\n';

)i

> g++ —-std=c++17 scratchpad.cpp; ./a.out
scratchpad.cpp [27]: The answer is: 42

Instead of using std: : cout in our debug lambdas, we add a console macro that uses

std: :cout, but also adds the file name and line number to the debug statement to provide
the same functionality as the standard C version. Unlike the standard C version, an
additional C macro function is not needed as the console macro will properly provide the
file name and line number where used.

[185]

Learning to Program Console Input/Output Chapter 6

Finally, to complete our C++17 debugging patterns, we add a debug, warning, and fatal
version of the preceding example with color, and an overload for the fatal function that
defaults to exiting with -1 on error.

To start, we leverage the same standard C macros as used in the preceding code snippets:

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
felse

constexpr auto g_debug_level = 0;

#endif

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
#endif

These macros convert standard C-style macros, which are needed for command-line
compatibility, to C++-style constant expressions. Next, we create a template function called
debug, capable of accepting a lambda function. This debug function first outputs a green
colored debug to stdout, and then executes the lambda function, if (and only if)
debugging is enabled and the debugging level matches that which was provided to the
debug function itself. If debugging is not enabled, the debug function is compiled without
impacting the size of the program, or its performance:

template <std::size_t LEVEL>
constexpr void debug(void (*func) ()) {
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
std::cout << "\033[1;32mDEBUG\033[0m ";
func () ;
}i
}

This same debug function is repeated to provide a warning, and a fatal version of this
function, with the only difference being color (which is platform-specific, and in this case is
intended for UNIX operating systems), and the fatal function exits the program after the
lambda function is executed with either a user-defined error code or —1:

template <std::size_t LEVEL>
constexpr void warning (void(*func) ()) {
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
std::cout << "\033[1;33mWARNING\O33[Om ";
func () ;

bi

[186]

Learning to Program Console Input/Output

Chapter 6

template <std::size_t LEVEL>
constexpr void fatal (void(*func) ()) A
if constexpr (!g_ndebug && (LEVEL <= g_debug_level))
std::cout << "\033[1;31mFATAL ERROR\033[Om ";
func () ;
crexit (-1);

bi

template <std::size_t LEVEL>
constexpr void fatal (int error_code, void(*func) ()) {
if constexpr (!g_ndebug && (LEVEL <= g_debug_level))
std::cout << "\033[1;31mFATAL ERROR\033[Om ";
func () ;
::exit (error_code);
Fi
}

int main ()

{
debug<0>([] {
console << "The answer is: " << 42 << '\n';
F) i
warning<0>([] A
console << "The answer might be: " << 42 << '\n';
F) i
fatal<O0>([] |
console << "The answer was not: " << 42 << '\n';
F) i
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out

DEBUG scratchpad.cpp [54]: The answer is: 42

WARNING scratchpad.cpp [58]: The answer might be: 42
FATAL ERROR scratchpad.cpp [62]: The answer was not: 42

[187]

{

{

Finally, these debugging patterns are exercised in amain () function to demonstrate how
they can be used:

Learning to Program Console Input/Output Chapter 6

Performance of C++ streams

A common complaint about C++ streams is performance, a problem that has largely been
mitigated over the years. To ensure C++ streams perform at their best, there are some
optimizations that can be applied:

¢ Disable std::ios::sync_with_stdio: C++ streams by default synchronize
themselves with standard C functions, such as print £ () and others. If these
functions are not being used, this synchronization feature should be disabled as
it will result in a noticeable improvement in performance.

¢ Avoid flushing: Where possible, avoid flushing C++ streams and let 1ibc++ and
the OS handle flushing for you. This includes not using std: : f1ush, and using
'"\n' instead of std: :endl, which flushes after it outputs a newline. When
flushing is avoided, all output is buffered for you, reducing the number of calls
to the OS to deliver the output.

e Use std::cout and std::clog instead of std::cerr: For the same reason, std: :cerr
will flush on destruction, increasing the number of times the OS is delivered
output. When possible, std: : cout should be used, with std: : cerr only being
used for fatal errors followed by control-flow changes, such as exits, exceptions,
assertions, and possible crashes.

It's impossible to provide a general answer to the question, Which is faster, printf () or
std: :cout? But in practice, if the preceding optimizations are used, std: : cout can often
outperform standard C printf (), but this is highly dependent on your environment and
use case.

In addition to the preceding example, one way to avoid unwanted flushing to increase
performance is to use std: : stringstreaminstead of std: : cout:

#include <sstream>
#include <iostream>

int main ()

{
std::stringstream stream;
stream << "The answer is: " << 42 << '\n';

std::cout << stream.str () << std::flush;
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

[188]

Learning to Program Console Input/Output Chapter 6

By using std: : stringstream, all output is directed to your controlled buffer until you are
ready to send the output to the OS via std: : cout and manual flushing. This can also be
used to buffer output to std: : cerr, reducing the total number of flushes. Another way to
avoid flushing is to use std: : clog:

#include <iostream>

int main ()

{

std::clog << "The answer is: " << 42 << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

std: :clog operates like std: : cout, but instead of sending output to stdout, std: :clog
sends output to stderr.

Learning about manipulators

C++ streams have several different manipulators that may be used to control both input and
output, some of which have already been discussed. The most common manipulator is
std: :endl, which outputs a newline and then flushes the output stream:

#include <iostream>

int main ()
{
std::cout << "Hello World" << std::endl;

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
Hello World

[189]

Learning to Program Console Input/Output Chapter 6

Another way to write this same logic is to use the std: : £1lush manipulator:
#include <iostream>

int main ()

{
std::cout << "Hello World\n" << std::flush;

> g++ —-std=c++17 scratchpad.cpp; ./a.out
Hello World

Both are the same, although '\n' should always be used unless a flush is explicitly needed.
For example, if multiple lines are needed, the following is preferred:

#include <iostream>

int main ()
{
std::cout << "Hello World\n";
std::cout << "Hello World\n";
std::cout << "Hello World\n";
std::cout << "Hello World" << std::endl;

> g++ —-std=c++17 scratchpad.cpp; ./a.out
Hello World
Hello World
Hello World
Hello World

Compared to the preceding code, the following is not preferred:

#include <iostream>

int main ()

{
std::cout << "Hello World" << std::endl;
std::cout << "Hello World" << std::endl;
std::cout << "Hello World" << std::endl;
std::cout << "Hello World" << std::endl;

> g++ —-std=c++17 scratchpad.cpp; ./a.out
Hello World
Hello World
Hello World
Hello World

[190]

Learning to Program Console Input/Output Chapter 6

It should be noted that the trailing flush is not needed, as : :exit () flushes stdout on exit
for you, which is called when main completes.

A common manipulator that is set at the beginning of any program is std: :boolalpha,
which causes Booleans to be outputted as t rue or false instead of 1 or 0 (with
std: :noboolalpha providing the inverse, which is also the default):

#include <iostream>

int main ()

{
std::cout << std::boolalpha;
std::cout << "The answer is: " << true << '\n';
std::cout << "The answer is: " << false << '\n';

std::cout << std::noboolalpha;
std::cout << "The answer is: " << true << '\n';
std::cout << "The answer is: " << false << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: true

The answer is: false

The answer is: 1

The answer is: 0

Another common set of manipulators is numeric base manipulators—std: : hex,

std: :dec, and std: : oct. These manipulators are similar to $d, $x, and %o used by
standard C-format specifiers (for example, those used by printf ()). Unlike the standard C
versions, these manipulators are global, and thus should be used with caution, especially in
libraries. To use these manipulators, simply add them to the stream prior to adding a
number for the desired base:

#include <iostream>

int main ()

{

std::cout << "The answer is: " << 42 << '\n' << std::hex
<< "The answer is: " << 42 << '\n';

std::cout << "The answer is: " << 42 << '\n' << std::dec
<< "The answer is: " << 42 << '\n';

std::cout << "The answer is: " << 42 << '\n' << std::oct
<< "The answer is: " << 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out

[191]

Learning to Program Console Input/Output Chapter 6

The answer is: 42
The answer is: 2a
The answer is: 2a
The answer is: 42
The answer is: 42
The answer is: 52

The first number, 42, is printed as 42 as no numeric base-manipulators have been used yet.
The second number is printed as 2a as the std: : hex manipulator was used resulting in 2a
as that is the hex value for 42. The third number that is printed is also 2a as numeric base
manipulators are global and thus, even though std: : cout is called a second time, the
stream is still told to use hex values instead of decimal. This pattern continues for both
std: :dec (for example, decimal numbers) and std: : oct (for example, octal numbers),
resulting in 42, 2a, 2a, 42, 42, and finally 52.

It is also possible to use the uppercase version of std: : hex instead of the default,
lowercase version seen in the previous example. To accomplish this,

use std: :uppercase and std: :nouppercase (std: :uppercase shows alphanumeric
characters in uppercase while std: : nouppercase does not, which is the default):

#include <iostream>

int main ()
{
std::cout << std::hex << std::uppercase << "The answer is: "
<< 42 << '"\n';
}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 2A

In this example, instead of 42 being outputted as 2a, it was outputted as 22, with the
alphanumeric characters being uppercase.

Typically, especially with respect to programming systems, hexadecimal and octal numbers
are printed with their base identifiers (for example, 0x and 0). To accomplish this, use the
std: :showbase and std: :noshowbase manipulators (std: : showbase shows the base
while std: :noshowbase does not, which is the default):

#include <iostream>

int main ()
{
std::cout << std::showbase;
std::cout << std::hex << "The answer is: " << 42 << '\n';

[192]

Learning to Program Console Input/Output Chapter 6

std::cout << std::dec << "The answer is: " << 42 << '\n';
std::cout << std::oct << "The answer is: " << 42 << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 0x2a

The answer is: 42

The answer is: 052

As seen from this example, std: : hex now outputs 0x2a instead of 2a, and std: :oct
outputs 052 instead of 52, while std: : dec continues to output 42 as expected (since
decimal numbers do not have base identifiers). Unlike numbers, pointers always output in
hexadecimal, lowercase, and with their base being shown, and

std: :uppercase, std: :noshowbase, std: :dec, and std: : oct do not affect the output.
One solution to this problem is to cast the pointer to a number, and then the preceding
manipulators may be used as shown in the following example, but this type of logic is
discouraged by the C++ Core Guidelines since reinterpret_cast is required, which is
frowned upon:

#include <iostream>

int main ()
{
int 1 = 0;
std::cout << &i << '\n';
std::cout << std::hex << std::showbase << std::uppercase
<< reinterpret_cast<uintptr_t>(&i) << '\n';

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out
0x7£££51d370b4
0X7FFF51D370B4

One issue with outputting pointers is that their total length (that is, the total number of
characters) changes from pointer to pointer. This can often be distracting when outputting
several pointers at the same time, as their base modifiers are likely not to match up. To
overcome this, std: :setwand std: :setfill may be used. std: : setw sets the total
width (that is, the total number of characters) in the next output. If the next output is not at
least the size of the value passed to std: : setw, the stream will automatically add spaces to
the stream:

#include <iomanip>
#include <iostream>

int main ()

{

[193]

Learning to Program Console Input/Output Chapter 6

std::cout << "The answer is: " << std::setw(18) << 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 42

In this example, the width is set to 18. Since the next addition to the stream is two
characters (from the number 42), 16 total spaces are added prior to adding 42 to the
stream. To change the characters that are added to the stream by std: : setw, use
std::setfill:

#include <iomanip>
#include <iostream>

int main ()
{
std::cout << "The answer is: " << std::setw(18) << std::setfill('0")
<< 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 000000000000000042

As can be seen, instead of spaces being added to the stream (which is the default),
'0' characters are added to the stream. The direction of the characters being added to the
stream can be controlled using std: :left, std::right, and std: :internal:

#include <iomanip>
#include <iostream>

int main ()
{
std::cout << "The answer is: "
<< std::setw(18) << std::left << std::setfill('0")
<< 42 << '"\n';

std::cout << "The answer is: "
<< std::setw(18) << std::right << std::setfill('0")
<< 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 420000000000000000
The answer is: 000000000000000042

[194]

Learning to Program Console Input/Output Chapter 6

std::left first outputs to the stream, and then fills in the stream with the remaining
characters, while std: : right fills in the stream with unused characters, and then outputs
to the stream. std: : internal is specific to text that uses base identifiers such as
std::hex and std: :oct with std: : showbase or pointers that automatically show the
base identifier, as follows:

#include <iomanip>
#include <iostream>

int main ()

{

int i = 0;

std::cout << std::hex
<< std::showbase;

std::cout << "The answer is: "
<< std::setw(18) << std::internal << std::setfill('0")
<< 42 << '"\n';

std::cout << "The answer is: "
<< std::setw(18) << std::internal << std::setfill('0")
<< &1 << '"\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 0x000000000000002a
The answer is: 0x00007ffc074c9bed

[195]

Learning to Program Console Input/Output Chapter 6

Often, especially in libraries, it can be useful to set some manipulators, and then restore the
stream to its original state. For example, if you're writing a library and you want to output a
number in hex, you would need to use the std: : hex manipulator, but doing so would
cause all of the numbers your user outputs from that point on to also be outputted in hex.
The problem is, you cannot simply use std: : dec to set the stream back to decimal because
the user might actually be using std: : hex in the first place. One way to deal with this
issue is to use the std: :cout.flags () function, which allows you to both get and set the
stream's internal flags:

#include <iostream>

int main ()

{
auto flags = std::cout.flags();
std::cout.flags (flags);

}

> g++ —-std=c++17 scratchpad.cpp; ./a.out

In general, all of the manipulators that have been discussed, as well as some others, can be
enabled/disabled using the std: : cout.flags () function, and the manipulators discussed
are simply wrappers around this function to reduce verbosity. Although this function can
be used to configure the manipulators (which should be avoided),

the std: :cout.flags () function is a convenient way to restore the manipulators after the
stream has been changed. It should also be noted that the preceding methods work for all
of the streams, not just std: : cout. One way to simplify restoring the manipulators is to
use a little functional programming, and wrap a user function with the save/restore logic,
as follows:

#include <iomanip>
#include <iostream>

template<typename FUNC>

void cout_transaction (FUNC f)

{
auto flags = std::cout.flags();
£0);
std::cout.flags (flags);

}

int main ()

{

cout_transaction ([]{
std::cout << std::hex << std::showbase;
std::cout << "The answer is: " << 42 << '\n';

[196]

Learning to Program Console Input/Output Chapter 6

1)

std::cout << "The answer is: " << 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 0x2a
The answer is: 42

In this example, we wrap the use of std: : cout in cout_transation. This wrapper stores
the current state of the manipulators, calls the user-provided function (which changes the
manipulators), and then restores the manipulators prior to completing. As a result, the
manipulators are unaffected after the completion of the transaction, which means the
second std: : cout in this example outputs 42 instead of 0x2a.

Finally, to simplify the use of manipulators, it can sometimes be useful to create your own
user-defined manipulators that can encapsulate your custom logic:

#include <iomanip>
#include <iostream>

namespace usr

{

class hex_t { } hex;

std::ostream &
operator<<(std::ostream &os, const usr::hex_t &obj)

{
0s << std::hex << std::showbase << std::internal
<< std::setfill('0"') << std::setw(18);

return os;

int main ()

{

std::cout << "The answer is: " << usr::hex << 42 << '\n';

> g++ —-std=c++17 scratchpad.cpp; ./a.out
The answer is: 0x000000000000002a

As can be seen from this example, by simply using usr: : hex instead of std: :hex, 42 is
OUQNHkxiuﬁngstd::hex,std::showbase,std::internal,std::setfill('O'L
and std::setw(18), reducing verbosity and simplifying multiple uses of this same logic.

[197]

Learning to Program Console Input/Output Chapter 6

Recreating the echo program

In this hands-on example, we will be recreating the popular echo program found on almost
all POs1x systems. The echo program takes all of the input provided to the program and
echoes it back to stdout. This program is very simple, with the following program options:

e —n: Prevents echo from outputting a newline on exit
e ——help: Prints the Help menu
e ——version: Prints some version information

There are two other options, -e and -E; we have omitted them here to keep things simple,
but, if desired, would serve as a unique exercise for the reader.

To see the full sources for this example, please see the following: https://github.com/
PacktPublishing/Hands-On-System-Programming-with—-CPP/blob/master/Chapter06/

examplel. cpp.

The main function presented here is a useful pattern to add to all programs and deviates
slightly from the original echo program as exceptions (which are highly unlikely in this
example) could generate error messages not seen in the original echo program; however, it
is still useful:

int
main (int argc, char **argv)
{
try {
return protected_main(argc, argv);
}
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " — what(): " << e.what () << "\n';
}
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FATILURE;
}

The goal of this logic is to catch any exceptions prior to the program exiting and outputting
the exception description to stderr before exiting with a failure status.

[198]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example1.cpp

Learning to Program Console Input/Output Chapter 6

Consider the following example:

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '"\n';

}

The preceding code catches all std: :exceptions and outputs a catch exception's
description (that is, e .what ()) to stderr. Note that std: : cerr is used here (instead of
std: :clog) just in case the use of exceptions generates instability, ensuring a flush occurs.
When using error-handling logic, it's always better to be on the safe side and ensure all
debugging output is delivered with performance being a secondary concern.

Consider the following example:

catch (...) {
std::cerr << "Caught unknown exception\n";

}

The preceding code catches all unknown exceptions, which in this program should almost
certainly never happen, and was added purely for completeness:

try A
return protected_main(argc, argv);

}

The t ry block attempts to execute the protected_main () function, and if it fails with an
exception, executes the catch blocks as described previously; otherwise, it returns from the
main function, ultimately exiting the program.

The goal of the protected_main () function is to parse the arguments provided to the
program, and handle each argument as expected:

int
protected_main (int argc, char **argv)
{

using namespace gsl;

auto endl = true;
auto args = make_span (argv, argc);

for (int 1 = 1, num = 0; i < argc; i++) {
cstring_span<> span_arg = ensure_z (args.at (i));

if (span_arg == "-n") {
endl = false;
continue;

[199]

Learning to Program Console Input/Output Chapter 6

}

if (span_arg == "--help") {
handle_help();
}

if (span_arg == "--version") {
handle_version();

}

if (num++ > 0) |
std::cout << " ";

}

std::cout << span_arg.data();

}

if (endl) |
std::cout << '\n';

}

return EXIT_SUCCESS;
t

Here is the first line:

auto endl = true;

It is used to control whether a newline is added to stdout on exit, just like the original echo
program, and is controlled by the —n program argument. Here is the next line:

auto args = make_span (argv, argc);

The preceding code converts the standard C argv and argc arguments into a C++ GSL
span, allowing us to safely process the program arguments in a C++-Core-Guideline-
compliant fashion. The span is nothing more than a list (specifically, it is very similar to
std: :array), with the bounds of this list being checked each time we access the list (unlike
std: :array). If our code attempts to access an argument that doesn't exist, an exception
will be thrown, and the program will safely exit with an error code, telling us via stderr
that we attempted to access an element in the list that does not exist (via the try/catch
logic in the main function.

Here is the next part:

for (int 1 = 1, num = 0; i < argc; i++) {
cstring_span<> span_arg = ensure_z (args.at (i));

[200]

Learning to Program Console Input/Output Chapter 6

It loops through each argument in the list. Normally, we would loop through each element
in a list using the ranged for syntax:

for (const auto &arg : args) {
}

But this syntax cannot be used because the first argument in the argument list is always the
program name, and in our case should be ignored. For this reason, we start from 1 (instead
of 0) as can be seen previously, and then we loop through the remaining elements in the
list. The second line in this snippet creates cstring_span{} from each program argument
in the list. cstring_span{} is nothing more than a standard C-style string wrapped in a
GSL span to protect any accesses to the string to make C-style string access C++-Core-
Guideline-compliant. This wrapper will later be used to compare the string to look for our
program options, such as —n, ~~help, and —-version, in a safe and compliant way. The
ensure_z () function ensures that the string is complete, preventing possible unwanted
corruption.

The next step is to compare each argument to the list of arguments we plan to support:

if (span_arg == "-n") {
endl = false;
continue;

}

Since we are using cstring_span{} instead of a standard C-style string, we can directly
compare the argument to the "-n" literal string safely without having to use an unsafe
function such as st rcmp (), or direct character comparisons, which is what the original
echo implementation does (and since we only support one single character option,
performance is the same). If the argument is —n, we instruct our implementation that no
newline should be added to stdout when the program exits by setting endl to false, and
then we continue looping through the arguments until they are all processed.

Here are the next two blocks of code:

if (span_arg == "--help") {
handle_help();
t

if (span_arg == "--version") {
handle_version();

}

[201]

Learning to Program Console Input/Output Chapter 6

They check whether the arguments are -—help or —-version. If either of these is provided
by the user, a special handle_help () or handle_version () function is executed. It
should be noted that handle_xxx () functions exit the program when they are done, so no
further logic is needed and it should be assumed that these functions never return (as the
program exits).

At this point, all of the optional arguments have been processed. All other arguments
should be outputted to stdout, just like the original echo program. The problem is that the
user could provide more than one argument that they wish to be outputted to stdout.
Consider the following example:

> echo Hello World
Hello World

In this example, the user has provided two arguments—Hello and World. The expected
outputis Hello World (with a space), not HelloWorld (without a space), and some
additional logic is needed to ensure that a space is outputted to stdout as needed.

Here is the next block:

if (num++ > 0) {
std::cout << " ";

}

This outputs a space to stdout after the first argument has already been outputted, but
right before the next argument is about to be outputted (and all remaining arguments). It
does this because num starts as 0 (and 0 is equal to 0, not greater than 0, and thus the space
is not outputted on the first argument), and then num is incremented. When the next
argument is processed, numis 1 (or larger) which is greater than 0, and thus the space is
added to stdout

Finally, the argument is added to stdout by providing std: : cout with the argument's
data, which is nothing more than the unsafe, standard C version of the argument that
std: : cout can safely handle for us:

std::cout << span_arg.data();
The last block in the protected_main () function is:
if (endl) |
std::cout << '\n';

}

return EXIT_SUCCESS;

[202]

Learning to Program Console Input/Output Chapter 6

By default, endl is t rue, and thus a newline is added to stdout before the program exits.
If, however, the user had provided —n, then endl would have been set to false by the
following;:

if (span_arg == "-n") {
endl = false;
continue;

}

In the preceding code, the program would exit without adding the newline to stdout. If ——
help was provided by the user, the handle_help () function would be executed as
follows:

void
handle_help ()
{
std::cout
<< "Usage: echo [SHORT-OPTION]... [STRING]...\n"
<< " or: echo LONG-OPTION\n"
<< "Echo the STRING(s) to standard output.\n"

<< "\nll

<< " -n do not output the trailing newline\n"

<< " —-help display this help and exit\n"

<< " --version output version information and exit\n";

::exit (EXIT_SUCCESS) ;
}

This function outputs the Help menu to stdout using std: : cout, and then exits the
program successfully. The handle_version () function does the same thing if ——version
is provided by the user:

void

handle_version ()

{

std: :cout

<< "echo (example) 1.0\n"
<< "Copyright (C) ?222\n"
<< "\n"
<< "Written by Rian Quinn.\n";

::exit (EXIT_SUCCESS) ;

[203]

Learning to Program Console Input/Output Chapter 6

To compile this example, we use CMake:

cmake_minimum_required (VERSION 3.6)
project (chapter6)

include (ExternalProject)
find_package (Git REQUIRED)

set (CMAKE_CXX_STANDARD 17)

list (APPEND GSL_CMAKE_ARGS
-DGSL_TEST=0FF
-DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}

ExternalProject_Add(
gsl
GIT_REPOSITORY https://github.com/Microsoft/GSL.git
GIT_SHALLOW 1
CMAKE_ARGS ${GSL_CMAKE_ARGS}
PREFIX ${CMAKE_BINARY_DIR}/external/gsl/prefix
TMP_DIR ${CMAKE_BINARY_DIR}/external/gsl/tmp
STAMP_DIR ${CMAKE_BINARY DIR}/external/gsl/stamp
DOWNLOAD_DIR ${CMAKE_BINARY_DIR}/external/gsl/download
SOURCE_DIR ${CMAKE_BINARY_DIR}/external/gsl/src
BINARY_DIR ${CMAKE_BINARY_DIR}/external/gsl/build

[204]

Learning to Program Console Input/Output Chapter 6

include_directories (${CMAKE_BINARY DIR}/include)
add_executable (examplel examplel.cpp)
add_dependencies (examplel gsl)

Here is the header portion of this CMakeLists. txt file:

cmake_minimum_required (VERSION 3.6)
project (chaptero6)

include (ExternalProject)
find_package (Git REQUIRED)

set (CMAKE_CXX_STANDARD 17)

This sets up CMake to require version 3.6 (since we use GIT_SHALLOW), gives the project a
name, includes the ExternalProject module (which provided ExternalProject_Add),
and sets the C++ standard to C++17.

Here is the next section:

list (APPEND GSL_CMAKE_ARGS
-DGSL_TEST=0FF
-DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}

ExternalProject_Add(
gsl
GIT_REPOSITORY https://github.com/Microsoft/GSL.git
GIT_SHALLOW 1
CMAKE_ARGS ${GSL_CMAKE_ARGS}
PREFIX ${CMAKE_BINARY_DIR}/external/gsl/prefix
TMP_DIR ${CMAKE_BINARY_DIR}/external/gsl/tmp
STAMP_DIR ${CMAKE_BINARY_DIR}/external/gsl/stamp
DOWNLOAD_DIR ${CMAKE_BINARY_DIR}/external/gsl/download
SOURCE_DIR ${CMAKE_BINARY_DIR}/external/gsl/src
BINARY_DIR ${CMAKE_BINARY_DIR}/external/gsl/build

[205]

Learning to Program Console Input/Output Chapter 6

It uses CMake's ExternalProject_Add to download and install the GSL from its Git
repository at GitHub using a depth of 1 (that is, GIT_SHALLOW 1) to speed up the
download process. The arguments provided to ExternalProject_Add (thatis,
GSL_CMAKE_ARGS) tell the GSL's build system to turn off unit testing (which our project
does not need) and to install the resulting headers into our build directory (which places
them in an include folder in our build directory). The remaining arguments provided to
ExternalProject_Add are optional, simply serve to clean up the output of
ExternalProject_Add, and can be ignored, or even removed if desired.

Finally, here is the last block:

include_directories (${CMAKE_BINARY DIR}/include)
add_executable (examplel examplel.cpp)

It tells the build system where to find our newly-installed GSL headers, and then creates an
executable called examplel from the examplel.cpp source code. To compile and run this

example, simply execute:

> mkdir build; cd build
> cmake ..; make

> ./examplel Hello World
Hello World

Understanding the Serial Echo server
example

In this hands-on example, we will be creating a serial-based echo server. An echo server
(regardless of the type) takes an input and echoes the input to the program's output (similar
to the first example, but in this case using a server-style application over a serial port).

To see the full sources for this example, please see the following: https://github.com/
PacktPublishing/Hands-On-System-Programming-with—-CPP/blob/master/Chapter06/

example?2.cpp.

#include <fstream>
#include <iostream>

#include <gsl/gsl>
using namespace gsl;

void

[206]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter06/example2.cpp

Learning to Program Console Input/Output Chapter 6

redirect_output (
const std::ifstream &is,
const std::ofstream &os,
std::function<void()> f)

auto cinrdbuf = std::cin.rdbuf();
auto coutrdbuf = std::cout.rdbuf();

std::cin.rdbuf (is.rdbuf ());
std::cout.rdbuf (os.rdbuf ());

£07

std::cin.rdbuf (cinrdbuf) ;
std::cout.rdbuf (coutrdbuf) ;

auto
open_streams (cstring_span<> port)
{
std::ifstream is (port.data());
std::ofstream os (port.data());

if (!'is || 'os) A
std::clog << "ERROR: unable to open serial port:" << port.data() <<
'\nl’.
::exit (EXIT_FAILURE) ;
}
return std::make_pair(std::move(is), std::move(os));
}
int

protected_main (int argc, char** argv)
{

auto args = make_span(argv, argc);

if (argc !'= 2) |
std::clog << "ERROR: unsupported number of arguments\n";
::exit (EXIT_FAILURE) ;

}

auto [is, os] = open_streams(
ensure_z (args.at (1))

)i

redirect_output (is, os, []{

std::string buf;

[207]

Learning to Program Console Input/Output Chapter 6

std::cin >> buf;
std::cout << buf << std::flush;
)i

return EXIT_SUCCESS;
t

The main function is the same as the first example. Its sole purpose is to catch any
exceptions that might fire, output the exception's description to stderr, and safely exit the
program with a failure status. For more information on how this works, please see the first
example. The protected_main () function's purpose is to open the serial port, read in an
input, and echo the input to the output:

int

protected_main (int argc, char** argv)

{

auto args = make_span(argv, argc);

if (argc != 2) |
std::clog << "ERROR: unsupported number of arguments\n";
::exit (EXIT_FAILURE) ;

auto [is, os] = open_streams(
ensure_z (args.at (1))

)

redirect_output (is, os, []{
std::string buf;

std::cin >> buf;
std::cout << buf << std::flush;
)i

return EXIT_SUCCESS;
t

Here is the first line:
auto args = make_span(argv, argc);

It does the same thing the first example does, which wraps the argc and argv argument
parameters in a GSL span, providing a safe mechanism for parsing the arguments provided
by the user.

[208]

Learning to Program Console Input/Output Chapter 6

Here is the second block:

if (argc != 2) |
std::clog << "ERROR: unsupported number of arguments\n";
::exit (EXIT_FAILURE) ;

}

It checks to make sure that one, and only one, argument was provided by the user. The
reason the total number of arguments (argc) is 2 and not 1 is because the first argument is
always the name of the program and in this case should be ignored, and thus 1 argument
provided by the user is actually equal to an argc of 2. Furthermore, we use std: :clog
instead of std: : cerr as instability is unlikely in this case, and a flush will be performed
for us by 1ibc when : :exit () is called.

Here is the second block:

auto [is, os] = open_streams(
ensure_z (args.at (1))
)

It opens the serial port and returns input and output streams that can be used by
std::cout and std: :cin to use the serial port instead of stdout and stdin. To do this,
the open_streams () function is used:

auto
open_streams (cstring_span<> port)
{
std::ifstream is (port.data());
std::ofstream os (port.data());

if (!'is || los) {
std::clog << "ERROR: unable to open serial port:" << port.data() <<
l\nl;
::exit (EXIT_FAILURE) ;
}
return std::make_pair (std::move(is), std::move(os));

}

This function takes in a cstring_span{} that stores the serial port to open (for example,
/dev/ttys0).

Next we move on the following streams:

std::ifstream is (port.data());
std::ofstream os (port.data());

[209]

Learning to Program Console Input/Output Chapter 6

The preceding code opens an input and output stream tied to this serial port. Both
ifstream{} and ofstream{} are file streams, which are outside the scope of this chapter
(they will be explained in later chapters), but in short, these open the serial device and
provide a stream object that std: : cout and std: : cin can use as if they were using
stdout and stdin (which are also technically file streams on a POSIX system).

Here is the next block:

if (tis || ltos)

std::clog << "ERROR: unable to open serial port:" << port.data() <<
"\n';

t:exit (EXIT_FAILURE) ;
}

It verifies that both the input stream and the output steam were successfully opened, which
is important because this type of error could happen (for example, an invalid serial port is
provided, or the user doesn't have access to the serial port). If an error occurs, the user is
informed via a message outputted to std: : clog, and the program exits with a failure
status.

Finally, if the input stream and output stream are successfully opened, they are returned in
a pair, which is read by the protected_main () function using a structured binding syntax
(a feature added in C++17).

Here is the next block in the protected_main () function:

redirect_output (is, os, []{
std::string buf;

std::cin >> buf;
std::cout << buf << std::flush;
)i

It redirects std: : cout and std: : cin to the serial port, and then echos input into the
program to the program's output, in effect echoing the serial port provided by the user. To
perform the redirection, the redirect_output () function is used:

void

redirect_output (
const std::ifstream &is,
const std::ofstream &os,
std::function<void()> f)

auto cinrdbuf = std::cin.rdbuf();
auto coutrdbuf = std::cout.rdbuf ();

[210]

Learning to Program Console Input/Output Chapter 6

std::cin.rdbuf (is.rdbuf ());
std::cout.rdbuf (os.rdbuf ());

£();

std::cin.rdbuf (cinrdbuf) ;
std::cout.rdbuf (coutrdbuf) ;
t

The redirect_output () function takes an input and output stream as a parameter, as
well as a function to execute and the final parameter. The first

thing redirect_function () doesis save the current buffers for std: :cin and

std: :cout:

auto cinrdbuf = std::cin.rdbuf();
auto coutrdbuf = std::cout.rdbuf ();

Next we see:

std::cin.rdbuf (is.rdbuf ());
std::cout.rdbuf (os.rdbuf ());

Both std::cin and std: :cout are redirected to the provided input and output streams.
Once this is done, the function that was provided is executed. Any use of std: :cin and
std: : cout will be redirected to the provided serial port instead of the standard stdout
and stdin. When the f () function is finished, std: :cin and std: : cout are restored to
their original buffers, redirecting them back to stdout and stdin:

std::cin.rdbuf (cinrdbuf) ;
std::cout.rdbuf (coutrdbuf) ;

Finally, the program exits with success. To compile this example, we use CMake:

cmake_minimum_required (VERSION 3.6)
project (chapter6)

include (ExternalProject)
find_package (Git REQUIRED)

set (CMAKE_CXX_STANDARD 17)

[211]

Learning to Program Console Input/Output

Chapter 6

list (APPEND GSL_CMAKE_ARGS
-DGSL_TEST=0FF
-DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}

ExternalProject_Add(
gsl
GIT_REPOSITORY https://github.com/Microsoft/GSL.git
GIT_SHALLOW 1
CMAKE_ARGS ${GSL_CMAKE_ARGS}
PREFIX ${CMAKE_BINARY_DIR}/external/gsl/prefix
TMP_DIR ${CMAKE_BINARY_DIR}/external/gsl/tmp
STAMP_DIR ${CMAKE_BINARY DIR}/external/gsl/stamp

DOWNLOAD_DIR ${CMAKE_BINARY_DIR}/external/gsl/download

SOURCE_DIR ${CMAKE_BINARY_DIR}/external/gsl/src
BINARY_DIR ${CMAKE_BINARY_DIR}/external/gsl/build

include_directories (${CMAKE_BINARY DIR}/include)
add_executable (example2 example2.cpp)
add_dependencies (example2 gsl)

This CMakeLists.txt is identical to the CMakeLists. txt in the first example (minus the
user of example? instead of examplel). For a complete explanation of how this works,

please see the first example in this chapter.

To compile and use this example, two computers are needed, one that acts as the echo
server and a second one that acts as the client, with both computers' serial ports connected

to each other. On the echo server computer, use the following:

> mkdir build; cd build
> cmake ..; make

> ./example2 /dev/ttySO

[212]

Learning to Program Console Input/Output Chapter 6

Note that your serial port device might be different. On the client computer, open two
terminals. In the first terminal, run the following:

> cat < /dev/ttySO

This code waits for the serial device to output data. In the second terminal, run:

> echo "Hello World" > /dev/ttySO

This sends data through the serial port to the echo server. When you press Enter, you will
see the example2 program that we wrote on the echo server close successfully, and the first
terminal on the client will show Hello World:

> cat < /dev/ttyS0
Hello World

Summary

In this chapter, we learned how to perform console-based IO, a common system-
programming requirement, using C++17. Unlike standard C-style IO functions, such as
printf () and scanf (), C++ uses stream-based IO functions, such as std: : cout and
std: :cin. There are many advantages and some disadvantages to using stream-based IO.
For example, stream-based IO provides a type-safe mechanism for performing 1O, while
raw, POSIX-style write () functions can often outperform stream-based IO due to a lack of
callstomalloc () and free ().

In addition, we looked at stream-based manipulators, which provide stream-based 10 with
a similar feature set to standard C-style format strings, but without the common instability
issues found with the C equivalents. In addition to manipulating the format of numbers
and Boolean values, we explored field properties, including width and justification.

Finally, we finished this chapter with two different examples. The first example showed
how to implement the popular POSIX echo program in C++ rather than in C. The second
created an echo server for the serial port that takes input from the serial port using

std: :cin and sends that input back over the serial port as an output using std: : cout.

In the next chapter we will provide a comprehensive overview of the memory management
facilities provided by C, C++, and POSIX including aligned memory and C++ smart
pointers.

[213]

Learning to Program Console Input/Output Chapter 6

Questions

1.

How does std: : cin help to prevent buffer overflows compared to the standard
C scanf?

Name at least one advantage from using C++ streams compared to the standard
C-style printf/scanf.

Name at least on disadvantage to using C++ streams compared to the standard C-
style printf/scanf.

When should std: :endl be used instead of \n?

What is the difference between std: : cerr and std: : clog, and when should
std::cerr be used?

How does one output extra characters between a base identifier and a hex value?
How does one output a number in octal and upper case?

How can standard C-style program arguments be safely parsed using C++ and
the GSL?

How does one save/restore the read buffer for std: :cin?

Further reading

® https://www.packtpub.com/application—-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-

programming-video

[214]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

A Comprehensive Look at
Memory Management

In this chapter, we will step the reader through how to properly and safely perform C++-
style memory management, while also adhering to the C++ Core Guidelines whenever
possible, leveraging additions to the C++ standard template library in C++11, C++14, and
C++17 to increase the safety, reliability, and stability of the reader's system program. We
will start by first introducing the new () and delete () functions, and how they may be
used to allocate type-safe memory, including aligned memory. Next, this chapter will
discuss the safety issues with using new () and delete () directly and how these safety
concern may be handled using smart pointers, including their impact on C++ Core
Guideline compliance. How to perform memory mapping and permissions will also be
discussed, with the chapter concluding with a brief discussion on fragmentation.

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

To download all of the code in this chapter, including the examples, and code snippets,
please visit: https://github.com/PacktPublishing/Hands-On-System-Programming-with-
CPP/tree/master/Chapter07.

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter07

A Comprehensive Look at Memory Management Chapter 7

Learning about the new and delete functions

In this section, the reader will learn how to allocate and deallocate memory using

C++17. You will learn how to use new () and delete () instead of malloc ()/free () to
increase the type-safety of allocations and deallocations. Various versions of these functions
will be explained, including array, aligned, and placement-style allocations.

The basics for writing a program

When writing a program, including system programming, there are a few different types of
memory that can be leveraged by the author:

¢ Global memory
¢ Stack memory
e Heap memory

Global memory exists in the program itself, is allocated by the OS's loader, and generally
exists in two different locations (assuming ELF binaries):

e .Dbss: zero-initialized (or uninitialized) memory

¢ .data: value-initialized memory

Consider the following example:

#include <iostream>

int bss_mem = 0;
int data_mem = 42;

int main ()

{
std::cout << bss_mem << '\n';
std::cout << data_mem << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0
// 42

[216]

A Comprehensive Look at Memory Management Chapter 7

Although used a lot in system programming, global memory is usually discouraged in
favor of stack memory and dynamic memory. Special care should be taken when using
value-initialized global memory, as this form of memory usage increases the size of the
program on disk, resulting in a larger storage impact, as well as long load times, while the
zero-initialized memory is provided by the OS-loader during linking.

Stack memory is the memory that is allocated on the stack:

#include <iostream>

int main ()
{
int stack_mem = 42;
std::cout << stack_mem << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 42

As shown in this example, stack_mem is allocated on the stack instead of globally because
it exists in the main () function. Stack memory is bound to the scope in which it was
created—in this case, the main () function. Besides being scoped, another advantage of
stack memory is that when the memory's scope is complete, the memory will be released
automatically for you. Care should be taken when using stack memory as this memory is
limited in size.

It should be noted that the total size of the stack is entirely system-
dependent and can vary widely. Unless you know the size of the stack, it
should be assumed to be small, and used with caution as there is no
simple way to determine when the stack runs out. Unlike dynamic
memory allocation, which usually returns an error of some kind when
memory is not available, on most systems when the stack runs out, your
program will simply crash.

For example, on our test system, when attempting to allocate an integer array of
268435456 on the stack as shown in the following code:

#include <iostream>

int main ()

{
int stack_mem[268435456];
std::cout << stack_mem[0] << '\n';

[217]

A Comprehensive Look at Memory Management Chapter 7

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// Segmentation fault (core dumped)

This results in a segmentation fault as the stack_mem variable exceeds the total size of the
stack.

The third form of memory and the main topic of this chapter is dynamic memory (also
called heap memory). Like the stack, each program is given a pool of heap memory by the
OS, which often can grow based on demand. Unlike the stack, and even global memory,
heap memory allocations can be quite large if the physical system and OS can support it. In
addition, unlike stack and global memory, heap memory is slow to allocate and any
memory that is allocated on-demand by the user must also be released back to the heap by
the user when complete. In C++, the fundamental method for allocating heap memory is
through the use of the new () and delete () operator functions, as shown here:

#include <iostream>

int main ()

{
auto ptr = new int;
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x5639c77e4e70

In this simple example, an integer (whose size is architecture-dependent, but assumed to be
4 bytes here) is allocated on the heap using the new operator. The address of the newly-
allocated memory is outputted to stdout, and then the memory is released back to the
heap using the delete () operator. In addition to single objects, arrays can also be
allocated/deallocated using the new () /delete () operators, as shown here:

#include <iostream>

int main ()

{
auto ptr = new int[42];
std::cout << ptr << '\n';
delete [] ptr;

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x5594a7d47e70

[218]

A Comprehensive Look at Memory Management Chapter 7

In this example, an array of integers is allocated a size of 42. Note that, unlike malloc () in
standard C, the new operator automatically calculates the total number of bytes needed for
an object or array of objects. Assuming that an integer is 4 bytes, in this example, the new
operator allocates 42 * sizeof (int) == 42 * 4 == 11088 bytes. In addition to the use
of new[] () to allocate an array, the delete [] () operator is used instead of the delete
operator. The delete operator calls the destructor for a single object while the delete [] ()
operator calls the destructor for each object in the array:

#include <iostream>

class myclass

{
public:
~myclass ()

{

std::cout << "my delete\n";
}
bi

int main ()

{
auto ptr = new myclass[2];
std::cout << ptr << '\n';
delete [] ptr;

)3

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x56171064ae78

// my delete

// my delete

It's important to note that some systems may use different pools to allocate single objects
versus arrays of objects versus aligned objects, and more. Care should be taken to ensure
that the deallocation routine matches the allocation routine. For example, if new [] () is
used, delete [] () should always be used instead of delete (). If a mismatch occurs,
systems that share the same pools will function without issue, but a crash could occur on
systems that do not share these pools as you would be attempting to release memory to a
pool to which the memory did not originally belong. The easiest way to prevent these types
of errorsis to use std: :unique_ptr{} and std: : shared_ptr{}, which will be discussed
in the Understanding smart pointers and ownership section.

[219]

A Comprehensive Look at Memory Management Chapter 7

Aligning memory

When programming systems, often allocating aligned memory (that is, memory that is
divisible by a specific alignment) is required. Specifically, when memory is allocated, the
resulting address that points to said allocated memory can be any value. When
programming systems, however, this can often be problematic as some APIs and physical
devices require memory to be allocated with a certain minimum granularity. Consider the
following example:

0x0ABCDEF123456789 // Unaligned
0x0ABCDEF12345F000 // 4 Kb aligned

Aligned memory may be allocated using all three memory types:

o Globally
¢ On the stack
e Dynamically

To allocate aligned memory globally using C++, use the alignas () specifier:
#include <iostream>
alignas (0x1000) int ptr[42];
int main ()
{
std::cout << ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x560809897000

[220]

A Comprehensive Look at Memory Management Chapter 7

In this example, an integer array of size 42 is allocated globally, and the alignas ()
specifier is used to align the array to a 4k page boundary. The array's address is then
outputted, and as shown, the address is divisible by a 4k page (that is, the first 12 bits are
zero). To allocate aligned memory on the stack, you can also use the alignas () specifier:

#include <iostream>

int main ()

{
alignas (0x1000) int ptr([42];
std::cout << ptr << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x560809897000

Instead of the array being allocated globally, the array is moved into the main function's
scope and is therefore allocated using the stack when the main function executes, and
automatically released when the main function completes. This type of allocation should be
used with care as the compiler has to add code to the program's executable to move the
stack pointer in order to align this memory. As a result, aligned allocations on the stack

indirectly allocate additional, unusable memory to ensure the pointer is aligned (shown on
Intel's x86_64 using GCC 7.3):

> objdump -d | grep main

00000000000008da <main>:

8da: 4c 8d 54 24 08 lea 0x8(%rsp), %rl0

8df: 48 81 e4 00 f0 ff ff and $OxffffffFfFFFFFFO00, Srsp
8e6: 41 ff 72 £8 pushq -0x8(%rl0)

As can be seen, the stack pointer (that is, the RSP register in this case), is moved to align the
integer array. If this type of allocation is done a lot, or the alignment is high (say a 2 MB
alignment), stack space could run out quickly. Another way to allocate aligned memory
(regardless of the type) is to manually calculate an aligned position within an existing
character buffer:

#include <iostream>

int main ()

{
char buffer[0x20007];
auto ptrl = reinterpret_cast<uintptr_t> (buffer);
auto ptr2 = ptrl - (ptrl % 0x1000) + 0x1000;

std::cout << std::hex << std::showbase;

[221]

A Comprehensive Look at Memory Management Chapter 7

std::cout << ptrl << '\n';
std::cout << ptr2 << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x7ff£d160dec20
// 0x7££d160df000

In this example, a character buffer of ample size is allocated on the stack. The character
buffer's address is then converted into an unsigned integer pointer type, an operation that
is discouraged by the C++ Core Guidelines as reinterpret_cast () should be avoided,
and then arithmetic on the character buffer's pointer is performed to locate a page-aligned
address inside the buffer, another operation that is discouraged by the C++ Core Guidelines
as pointer arithmetic should be avoided as well. Both the original and resulting pointers are
outputted to stdout, and as shown, the calculated pointer is aligned to a 4k page boundary
within the character buffer. To see how this algorithm works, see the following;:

// ptrl = 0x7££d160dec20

// ptrl % 0x1000 = 0xc20

// ptrl - (ptrl % 0x1000) = 0x7££d160de000

// ptrl - (ptrl % 0x1000) + 0x1000 = Ox7f£fd160d£f000

This type of process works, and has been used for years, but should be avoided as there are
better ways to accomplish this same task using alignas () without the need for type-
casting and pointer arithmetic that is prone to error and discouraged by the C++ Core
Guidelines.

Finally, the third way to allocate aligned memory is to use dynamic allocations. Prior to
C++17, this was done using posix_memalign () or the newer Cl1l aligned_alloc (), as
shown here:

#include <iostream>

int main ()

{
int *ptr;

if (posix_memalign (reinterpret_cast<void **>(&ptr), 0x1000, 42 *
sizeof (int))) |
std::clog << "ERROR: unable to allocate aligned memory\n";
::exit (EXIT_FAILURE) ;
}

std::cout << ptr << '\n';
free(ptr);

[222]

A Comprehensive Look at Memory Management Chapter 7

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55c5d31d1000

The posix_memalign () APlis a bit clunky. First, a pointer must be declared, the
alignment and size (which must be manually calculated) are provided, and then the
function returns 0 upon success. Finally, reinterpret_cast () is needed to tell the
posix_memalign () function that the provided pointer is void ** and not int**. Since
the posix_memalign () function is a C-style function, free () is used to release the
memory.

Another way to allocate aligned memory is to use the relatively new aligned_alloc ()
function, which provides a less clunky, more portable implementation:

#include <iostream>

int main ()

{

if (auto ptr = aligned_alloc (0x1000, 42 * sizeof(int))) {
std::cout << ptr << '\n';
free(ptr);

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55c5d31d1000

As shown, aligned_alloc () functions like a regular malloc () but with an additional
alignment parameter. This API still suffers from the same size issue asmalloc () and
posix_memalign (), where the total size of the array must be manually calculated.

To solve these issues, C++17 added aligned allocation versions of the new () and delete ()
operators that leverage alignas () as follows:

#include <iostream>
using aligned_int alignas (0x1000) = int;

int main ()

{
auto ptr = new aligned_int;
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55e32ecel000

[223]

A Comprehensive Look at Memory Management Chapter 7

In this example, we allocate a single integer using alignas () and the new () and
delete () operators. To accomplish this, we create a new type, called aligned_int, that
leverages alignas () in the type definition. The following can also be used to allocate an
aligned array:

#include <iostream>
using aligned_int alignas (0x1000) = int;

int main ()

{
auto ptr = new aligned_int[42];
std::cout << ptr << '\n';
delete [] ptr;

t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5649c0597000

The same aligned integer type is used, with the only difference being the use of new [] ()
and delete [] () instead of new () and delete (). Unlike the C APIs shown in the
preceding code, new () and delete (), including the aligned versions added to C++17,
automatically calculate the total number of bytes that need to be allocated for you,
removing potential errors.

nothrow

The new () and delete () operators are allowed to throw exceptions. In fact, if an
allocation fails, the default new operator throws std: :bad_alloc instead of

returning nullptr. In some situations, often seen when programming systems, an
exception on an invalid allocation is unwanted, and for this reason, a nothrow version has
been provided:

#include <iostream>

int main ()

{
auto ptr = new (std::nothrow) int;
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55893e230e70

[224]

A Comprehensive Look at Memory Management Chapter 7

Specifically, new (std::nothrow) is used instead of new (), which tells C++ that you
would like nullptr to be returned on an invalid allocation instead of new () throwing
std::bad_alloc. The array version was also provided as follows:

#include <iostream>

int main ()

{
auto ptr = new (std::nothrow) int[42];
std::cout << ptr << '\n';
delete [] ptr;

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5623076e9e70

And as one might expect, the aligned allocation versions of these functions were also
provided for single-object allocations:

#include <iostream>
using aligned_int alignas (0x1000) = int;

int main ()

{
auto ptr = new (std::nothrow) aligned_int;
std::cout << ptr << '\n';
delete ptr;

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55e36201a000

There's also array-style allocations:

#include <iostream>
using aligned_int alignas (0x1000) = int;

int main ()

{
auto ptr = new (std::nothrow) aligned_int[42];
std::cout << ptr << '\n';
delete [] ptr;

t

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// 0x557222103000

[225]

A Comprehensive Look at Memory Management Chapter 7

It should be noted that nullptr is only returned for types provided by C++. For user-
defined types, if an exception is thrown during construction, the nothrow version of
new (), which is marked nothrow, will call std: :terminate and abort:

#include <iostream>

class myclass

{

public:
myclass ()

{

throw std::runtime_error ("the answer was not 42");
}
}i

int main ()

{
auto ptr = new (std::nothrow) myclass;
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out

// terminate called after throwing an instance of 'std::runtime_error'
// what () : the answer was not 42

// Bborted (core dumped)

To overcome this issue, class-specific new and delete operators may be used (a topic to be
explained in the Overloading section).

Placement of new

In addition to aligned allocations and nothrow specifiers, C++ also provides the ability to
allocate memory from an existing, user-controlled buffer, a situation that can often be seen
while programming systems. For example, suppose you have mapped a buffer from a
physical device. Now suppose you wish to allocate from this buffer an integer,

the new () placement operator may be used to accomplish this:

#include <iostream>
char buf[0x1000];
int main ()

{

auto ptr = new (buf) int;

[226]

A Comprehensive Look at Memory Management Chapter 7

std::cout << ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5567b8884000

In this example, we leverage the new () placement operator to allocate memory from an
existing user-controlled buffer. The new () placement operator provides the object to be
allocated with the address that is provided, and then, as usual, calls the object's constructor.
It should be noted that the delete () operator is not needed in this case because the
memory to the object being allocated is user-defined, in which case there is no heap
memory to return to the heap when complete. Furthermore, the new () placement operator
doesn't manage the memory provided to a set of objects, a task that must be performed by
the user. To demonstrate this, see the following;:

#include <iostream>
char buf[0x1000];

int main ()

{
auto ptrl = new (buf) int;
auto ptr2 = new (buf) int;
std::cout << ptrl << '\n';
std::cout << ptr2 << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x558044c66180
// 0x558044c66180

In this example, the new () placement is used twice. As shown, the address that is provided
is the same since we have not manually advanced the address provided to

the new () placement, demonstrating that C++ doesn't automatically manage user-defined
memory when the new () placement is used. Typically, this type of example would lead to
undefined behavior if executed (in this case it doesn't since we are not actually using the
newly allocated memory). For these reasons, the new () placement should be used with
special care. In addition to single allocations, array allocations are also provided:

#include <iostream>
char buf[0x1000];
int main ()

{
auto ptr = new (buf) int[42];

[227]

A Comprehensive Look at Memory Management Chapter 7

std::cout << ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55594aff0000

Since C++ doesn't manage new () placement allocations, aligned allocations must be
provided by the user as well. The alignment algorithm provided in the preceding code
could be used to provide aligned allocations from a user-defined buffer, the memory that is
already aligned (for example, when interfacing with a physical device via mmap ()) could be
used, or alignas () could also be used, as follows:

#include <iostream>
alignas (0x1000) char buf[0x1000];

int main ()

{
auto ptr = new (buf) int;
std::cout << ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5567b8884000

In this example, since the buffer is aligned using alignas (), the resulting new placement
allocation is also aligned when this buffer is provided. This same type of allocation also
works for array allocation:

#include <iostream>
alignas (0x1000) char buf[0x1000];

int main ()

{
auto ptr = new (buf) int[42];
std::cout << ptr << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x55594aff0000

[228]

A Comprehensive Look at Memory Management Chapter 7

Overloading

Often when programming systems, the default allocation scheme provided by C++ is
undesirable. Examples include (but are not limited to):

¢ Custom memory layouts

e Fragmentation

¢ Performance optimizations
e Debugging and statistics

One way to overcome these issues is to leverage C++ allocators, a complex topic that will be
discussed in chapter 9, A Hands-On Approach to Allocators. Another, more heavy-handed,
way to achieve this is to leverage the new () and delete () operators' user-defined
overloads:

#include <iostream>

void *operator new (std::size_t count)

{
// WARNING: Do not use std::cout here
return malloc (count) ;

}

void operator delete (void *ptr)

{
// WARNING: Do not use std::cout here
return free(ptr);

}

int main ()

{
auto ptr = new int;
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55f204617e70

In this example, a custom new () and delete () operator overload is provided. Instead of
your program using the default allocation scheme provided by the new () and delete ()
functions, your user-defined versions will be used instead.

[229]

A Comprehensive Look at Memory Management Chapter 7

These overloads affect all allocations, including those used by the C++
library, so care should be taken when leveraging these overloads as
infinite cyclic recursions could occur if an allocation is performed inside
these functions. For example, data structures such as std: :vector and
std: :1list, or debugging functions such as std: : cout and std: :cerr
cannot be used as these facilities use the new () and delete () operators
to allocate memory.

In addition to the single-object new () and delete () operators, all of the other operators
may also be overloaded, including the array allocation versions:

#include <iostream>

void *operator new([] (std::size_t count)

{
// WARNING: Do not use std::cout here
return malloc (count);

}

void operator delete[] (void *ptr)

{
// WARNING: Do not use std::cout here
return free(ptr);

}

int main ()

{

auto ptr = new int[42];
std::cout << ptr << '\n';
delete [] ptr;

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55e5e2c62e70

[230]

A Comprehensive Look at Memory Management Chapter 7

Debugging and statistics are a common reason to overload the new () and delete ()
operators, providing useful information about the types of allocations that are occurring.
For example, suppose you wish to record the total number of allocations larger than, or
equal to, a page:

#include <iostream>
std::size_t allocations = 0;

void *operator new (std::size_t count)
{
if (count >= 0x1000) {
allocations++;

return malloc (count) ;

void operator delete (void *ptr)
{

return free (ptr);

int main ()

{
auto ptr = new int;
std::cout << allocations << '\n';
delete ptr;

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0

As shown, no allocations larger than a page were performed by our program, including
allocations made by the C++ library. Let's see what happens if we allocate a page as shown
here:

#include <iostream>

std::size_t allocations = 0;

void *operator new (std::size_t count)
{

if (count >= 0x1000) {
allocations++;

[231]

A Comprehensive Look at Memory Management Chapter 7

return malloc (count);

}

voild operator delete (void *ptr)

{

return free(ptr);

}

struct mystruct

{
char buf[0x1000];

bi

int main ()

{
auto ptr = new mystruct;
std::cout << allocations << '\n';
delete ptr;

t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 1

We get a single allocation larger than, or equal to, a page, as expected. This type of use of
new () and delete () overloaded can be extremely useful for debugging memory leaks,
locating allocation optimizations, and more. It should be noted however that care should be
taken when writing these types of overloads. If you accidentally allocate memory (for
example, when using a C++ data structure such as std: :vector{}, or when using

std: :cout), you could end up in an infinite loop, or adding to statistics you might be
trying to record.

In addition to global operator new and delete operator overloads, class-specific versions
are also provided:

#include <iostream>

class myclass
{
public:
void *operator new (std::size_t count)
{
std::cout << "my new\n";
return ::operator new (count);

}

void operator delete (void *ptr)

{

[232]

A Comprehensive Look at Memory Management Chapter 7

std::cout << "my delete\n";
return ::operator delete (ptr);

bi

int main ()

{
auto ptr = new myclass;
std::cout << ptr << '\n';
delete ptr;

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// my new

// 0x5561cac52280

// my delete

When class-specific operators are used, the only allocations that are directed to your
overloads are allocations for the specific class or classes that you provide overloads for. As
shown in the preceding example, the allocations made by std: : cout are not directed to
our class-specific overloads, preventing infinite recursion. The only allocation and
deallocation that uses overload are the ones for myclass.

As expected, all of the global operators also exist for the class-specific operators, including
versions such as aligned allocations:

#include <iostream>

class myclass

{

public:
void *operator new[] (std::size_t count, std::align_val_t al)
{
std::cout << "my new\n";
return ::operator new (count, al);
}
void operator deletel[] (void *ptr, std::align_val_t al)
{
std::cout << "my delete\n";
return ::operator delete (ptr, al);
}
bi
using aligned_myclass alignas(0x1000) = myclass;
int main ()

[233]

A Comprehensive Look at Memory Management

Chapter 7

{

}

auto ptrl = new aligned_myclass;
auto ptr2 = new aligned_myclass[42];
std::cout << ptrl << '\n';

std::cout << ptr2 << '\n';

delete ptrl;

delete

[]1 ptrz;

// > g++ —-std=c++17 scratchpad.cpp; ./a.out

//
//
//
//

Understanding smart pointers and

my new

0x563b49b74000
0x563b49b76000
my delete

ownership

In this section, the reader will learn how to use smart pointers to increase the safety,
reliability, and stability of their program, while also adhering to the C++ Core Guidelines.

The std::unique_ptr{} pointer

It should be clear by now that C++ provides an extensive set of APIs for allocating and

deallocating dynamic memory. It should also be clear that whether you are using

malloc ()/free () or new ()/delete (), errors are not only possible but likely in large

applications. For example, you might forget to release memory back to the heap:

#include <iostream>

int main ()

{

//
//
//
//
//
//

auto ptr = new int;
std::cout << ptr << '\n';

> g++ —-std=c++17 scratchpad.cpp; valgrind ./a.out

-=8627==
-=8627==
-=8627==
-=8627==
-=8627==

LEAK SUMMARY:

definitely lost: 4 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks

[234]

A Comprehensive Look at Memory Management Chapter 7

// ==8627== suppressed: 0 bytes in 0 blocks
// ==8627== Rerun with —--leak-check=full to see details of leaked memory

Or you could use delete instead of delete [] when allocating an array:
#include <iostream>

int main ()

{
auto ptr = new int[42];
std::cout << ptr << '\n';
delete ptr;

}

// > g++ —std=c++17 scratchpad.cpp; valgrind ./a.out

// ==8656== Mismatched free() / delete / delete []

// ==8656== at 0x4C2E60B: operator delete (void*) (vg_replace_malloc.c:576)
// ==8656== by 0x108960: main (in /home/user/examples/chapter_7/a.out)

// ==8656== Address 0x5aebc80 is 0 bytes inside a block of size 168 alloc'd
// ==8656== at 0x4C2DC6F: operator new[] (unsigned long)
(vg_replace_malloc.c:423)

// ==8656== by 0x10892B: main (in /home/user/examples/chapter_7/a.out)

To overcome this, C++11 introduced the concept of pointer ownership with two classes:

e std::unique_ptr{}: Defines a pointer uniquely owned by a single entity.
Copying this pointer is not allowed and is explicitly prevented by the compiler,
and deallocations are automatically handled by C++.

e std::shared_ptr{}: Defines a pointer that may be owned by one or more
entities. Copying this pointer is allowed, and deallocation only occurs when all of
the owners have released their ownership.

The C++ Core Guidelines, in general, discourage any dynamic allocations that are not
performed by these two classes. For most cases where new and delete would normally be
used, std: :unique_ptr{} should be used instead. Consider the following example:

#include <memory>
#include <iostream>

int main ()

{
auto ptr = std::make_unique<int> (42);
std::cout << *ptr << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 42

[235]

A Comprehensive Look at Memory Management Chapter 7

To create both std: :unique_ptr{} and std: : shared_ptr, C++ provides the following;:

e std::make_unique (): Creates std: :unique_ptr{}
e std::make_shared(): Creates std: :shared_ptr{}

If you plan to provide C++ Core Guideline compliance, get used to these functions. As
shown, to create std: :unique_ptr{}, you must provide the object type you plan to
allocate, and the object's initial value, as a template argument. Also, as shown, there is no
need to manually call the delete () operator, as this is done for you. To demonstrate this,
see the following:

#include <memory>
#include <iostream>

class myclass

{
public:
~myclass ()

{

std::cout << "my delete\n";
}
bi

int main ()

{
auto ptr = std::make_unique<myclass> () ;
std::cout << ptr.get() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5621eb029e70
// my delete

Using std: :unique_ptr{} in this example, both memory leaks and memory API
mismatching have been prevented. In addition, this smart allocation and deallocation is
scoped. Consider the following example:

#include <memory>
#include <iostream>

class myclassl

{

public:
~myclassl ()

{
std::cout << "my delete\n";

[236]

A Comprehensive Look at Memory Management Chapter 7

}
bi

class myclass?2

{

std::unique_ptr<myclassl> m_data;

public:
myclass2 ()
m_data{std: :make_unique<myclassl> () }
{}
bi

int main ()
{
myclass2 () ;
std::cout << "complete\n";

}

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// my delete
// complete

myclassl is stored as a member variable of myclass?2. In the main function, myclass?2 is
created and destroyed immediately, and as a result, when myclass2 is destroyed,
myclassl is also released back to the heap.

std: :unique_ptr{} accepts a pointer to previously-allocated memory (for example, via
the new () operator), and then, on destruction, releases the memory it was given via the
delete () operator by default. If the memory provided to std: :unique_ptr{} is
allocated using new[] () instead of new (), the [] version of std: :unique_ptr{} should
be used to ensure it releases the allocated memory using delete[] () instead of delete ():

#include <memory>
#include <iostream>

class myclassl
{
public:
~myclassl ()
{
std::cout << "my delete\n";
}
bi

int main ()

[237]

A Comprehensive Look at Memory Management Chapter 7

std::unique_ptr<myclassl[]> (new myclassl[2]);

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// my delete
// my delete

The more C++-Core-Guideline-compliant method for allocating and deallocating an array
using std: :unique_ptr{} is to use the array version of std: :make_unique ():

#include <memory>
#include <iostream>

int main ()

{
auto ptr = std::make_unique<int[]>(42);
std::cout << ptr.get() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x55b25f224e70
// my delete

Instead of manually allocating the array, std: :make_unique () allocates the array for you.
The difference between a single-object allocation and an array allocation with
std: :make_unique () is as follows:

e std::make_unique<type> (args): To perform a single-object allocation, the
type is provided as the template argument, and the object's constructor
arguments are provided as the arguments to std: :make_unique ()

® std::make_unique<type[]> (size): To perform an array allocation, the array
type is provided as the template argument, and the size of the array is provided
as the argument to std: :make_unique ()

In some cases, the memory provided to std: :unique_ptr{} cannot be released using
delete () ordelete(] () (for example, a mmap () buffer, placement new (), and more). To
support these types of scenarios, std: :unique_ptr{} accepts custom deleters:

#include <memory>
#include <iostream>

class int_deleter
{
public:
void operator () (int *ptr) const

{

[238]

A Comprehensive Look at Memory Management Chapter 7

std::cout << "my delete\n";
delete ptr;
i
i

int main ()

{
auto ptr = std::unique_ptr<int, int_deleter>(new int, int_deleter());
std::cout << ptr.get() << '\n';

t

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// 0x5615be977e70
// my delete

In the preceding example, a deleter class is created, and a functor (that is, operator ())
is provided, which performs the custom deletion. When it's time to release the allocated
memory, the functor is called by std: :unique_ptr{}.

One disadvantage of std: :ungiue_ptr{} in C++17 is that the alignment versions of the
new and delete operators were not extended to std: :unique_ptr{} (or
std::shared_pointer{}). Since there is no alignment version for std: :unique_ptr{},
if aligned memory is required, it must be allocated manually (hopefully an issue that will
be resolved in future versions of C++ as this allocation style is typically discouraged by the
C++ Core Guidelines):

#include <memory>
#include <iostream>

using aligned_int alignas (0x1000) = int;

int main ()

{
auto ptr = std::unique_ptr<int>(new aligned_int);
std::cout << ptr.get() << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x560eb6a0a000

[239]

A Comprehensive Look at Memory Management Chapter 7

Like a normal C++-style pointer, * and —> may be used to dereference at
std::unique_ptr{}:

#include <memory>
#include <iostream>

struct mystruct {
int data{42};
}i

int main ()

{
auto ptrl = std::make_unique<int> (42);
auto ptr2 = std::make_unique<mystruct>();
std::cout << *ptrl << '\n';
std::cout << ptr2->data << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 42
// 42

To get std: :unique_ptr{} torelease its allocation, the pointer needs to lose scope,
causing the destructor of std: :unique_ptzr{} to be called, which in turn releases the
allocation back to the heap. std: :unique_ptr{} also provides the reset () function,
which explicitly tells the pointer to release its memory on demand, without having to lose
scope:

#include <memory>
#include <iostream>

int main ()

{
auto ptr = std::make_unique<int>();
std::cout << ptr.get() << '\n';
ptr.reset ();
std::cout << ptr.get() << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x55bcfal2ble70
// 0

[240]

A Comprehensive Look at Memory Management Chapter 7

In this example, std: :unique_ptr{} is reset, and as a result, the pointer it is storing is
equivalent to nullptr. std: :unique_ptr{} does not check to ensure that the pointer is
valid when it is dereferenced using operators such as —> and *. For this reason, the
reset () function should be used with care, and used only when needed (for example,
when the order in which allocations are released matters).

Here are a couple of ways std: :unique_ptr{} could be invalid (but this is not an
exhaustive list):

e It was originally created using nullptr

e reset () or release () was called

To check whether std: :unique_ptr{} is valid, to ensure a null dereference doesn't
accidentally occur, the Boolean operator may be used:

#include <memory>
#include <iostream>

int main ()
{
auto ptr = std::make_unique<int> (42);
if (ptr) |
std::cout << *ptr << '\n';
}
ptr.reset ();
if (ptr) |
std::cout << *ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 42

As shown in this example, once reset () is called on std: :unique_ptr{}, it becomes
invalid (that is, its equal to nullptr), and the Boolean operator returns false, preventing
a nullptr dereference.

If std: :unique_ptr{} is created using the array syntax, the subscript operator may be
used to access a specific element in the array, similar to using the subscript operator for a
standard C array, or std: :array{}:

#include <memory>
#include <iostream>

int main ()

[241]

A Comprehensive Look at Memory Management Chapter 7

{
auto ptr = std::make_unique<int[]>(42);
std::cout << ptr[0] << '\n';

}

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// 0

In the preceding example, an integer array is allocated a size of 42, and the first element in
the array is outputted to stdout, which contains the value of 0 since
std: :make_unique () uses value initialization to zero-initialize all allocations.

It should be noted that even though the C++ Core Guidelines encourage
the use of std: :unique_ptr{} instead of manually allocating and
deallocating C-style arrays, the guidelines do not encourage the use of the
subscript operator to access the array since doing so performs unsafe
pointer arithmetic, and could potentially lead to a nullptr dereference.
Instead, a newly-allocated array using std: :unique_ptr{} should be
provided to gs1: : span prior to being accessed.

One limitation of C++17 with respect to std: :unique_ptr{} is the inability to directly add
one to an IO stream such as std: : cout. With C++17, the best way to output the address of
std::unique_ptr{} isto use the get () function, which returns the address of the
pointer. Another way to accomplish this is to create a user-defined overload:

#include <memory>
#include <iostream>

template<typename T> std::ostream &
operator<<(std::ostream &os, const std::unique_ptr<T> &ptr)
{

os << ptr.get();

return os;

}

int main ()

{
auto ptr = std::make_unique<int>();
std::cout << ptr << '\n';
std::cout << ptr.get() << '\n';

}

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// 0x55ed70997e70

[242]

A Comprehensive Look at Memory Management Chapter 7

The std::shared_ptr pointer

In most cases, std: :unique_ptr{} should be used to allocate dynamic memory. In some
use cases, however, std: :unique_ptr{} is incapable of properly representing pointer
ownership. Pointer ownership refers to who owns a pointer, or in other words, who is
responsible for allocating, and more importantly, deallocating a pointer. In most cases, a
single entity within a program is responsible for this task. There are, however, some use
cases where more than one entity must claim responsibility for deallocating a pointer.

The most common scenario where more than one entity must claim ownership over a
variable involves threading. Suppose you have two threads:

e Thread #1 creates a pointer (and thus owns it)
e Thread #2 uses the pointer from thread #1

In this example, the second thread owns the pointer just as much as the first thread that
created the pointer and provided it in the first place. The following example demonstrates
this scenario:

#include <thread>
#include <iostream>

class myclass

{
int m_data{0};

public:

~myclass ()
{
std::cout << "myclass deleted\n";

}

void inc ()
{ m_data++; }
bi

std::thread t1;
std::thread t2;

void
thread2 (myclass *ptr)
{
for (auto 1 = 0; 1 < 100000; i+4++) |
ptr->inc();

}

[243]

A Comprehensive Look at Memory Management Chapter 7

std::cout << "thread2: complete\n";

}

void
threadl ()
{

auto ptr = std::make_unique<myclass>();
t2 = std::thread(thread2, ptr.get());

for (auto 1 = 0; 1 < 10; i++) A
ptr->inc{();

}

std::cout << "threadl: complete\n";

int main ()
tl = std::thread(threadl);

tl.join();
t2.join();
t

// > g++ —-std=c++17 -lpthread scratchpad.cpp; ./a.out
// threadl: complete

// myclass deleted

// thread2: complete

In this example, the first thread is created, which creates a pointer to myclass. It then
creates the second thread and passes the newly-created pointer to this second thread. Both
threads perform a set of actions on the pointer, and then complete. The problem is that the
first thread doesn't have as much work to perform as the second thread, so it completes
quickly, releasing the pointer before the second thread has a chance to complete, since in
this scenario we have explicitly stated that thread1 is the owner of the pointer and
thread2 is simply a user of the pointer.

To overcome this issue, C++ provides a second smart pointer, called std: : shared_ptr{},
that is capable of assigning ownership to more than one entity. The syntax for
std::shared_ptr{} is almost identical to std: :unique_ptr{}:

#include <memory>
#include <iostream>

int main ()

{

auto ptr = std::make_shared<int>();

[244]

A Comprehensive Look at Memory Management Chapter 7

std::cout << ptr.get() << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x562e6ba9ce80

Internally, std: : shared_ptr{} maintains the managed object in a separate object that is
shared between all copies of the original std: : shared_ptr{}. This managed object stores
a count of the total number of std: : shared_ptr{} copies. Each time a copy is created, the
count inside the managed object increases. When std: : shared_ptr{} needs access to the
pointer itself, it must use its pointer to the managed object to ask for the pointer (that is,
std::shared_ptr{} doesn't store the pointer itself, but rather stores a pointer to a
managed object that stores the pointer). Each time std: : shared_ptr{} is destroyed, the
managed object's count is decreased, and when the count reaches 0, the pointer is finally
released back to the heap.

Using this pattern, std: : shared_ptr{} is capable of providing ownership of a single
pointer to multiple entities. The following rewrites the preceding example using
std::shared_ptr{} instead of std: :unique_ptr{}:

#include <thread>
#include <iostream>

class myclass

{
int m_data{0};

public:

~myclass ()
{
std::cout << "myclass deleted\n";

}

void inc ()
{ m_data++; }
bi

std::thread t1;
std::thread t2;

void
thread2 (const std::shared_ptr<myclass> ptr)
{
for (auto 1 = 0; 1 < 100000; i++) |
ptr->inc();

[245]

A Comprehensive Look at Memory Management

Chapter 7

}

std::cout << "thread2: complete\n";

}

void
threadl ()
{

auto ptr = std::make_shared<myclass>();
t2 = std::thread(thread2, ptr);

for (auto 1 = 0; 1 < 10; i++) A
ptr->inc();

}

std::cout << "threadl: complete\n";

int main ()
tl = std::thread(threadl);

tl.join();
t2.join();
t

// > g++ —-std=c++17 -lpthread scratchpad.cpp; ./a.out
// threadl: complete

// thread2: complete

// myclass deleted

As shown in this example, thread2 is given a copy of the original std: : shared_ptr{},

creating in effect two copies that point to a single managed object. When thread1

completes, thread2 still maintains a reference to the managed object and as a result, the
pointer remains intact. It's not until the second thread completes that the managed object's

reference count reaches 0 and the pointer is released back to the heap.

[246]

A Comprehensive Look at Memory Management Chapter 7

It should be noted that there are some disadvantages to std: : shared_ptr{}:

e Memory footprint: Since std: : shared_ptr{} maintains a pointer to a

managed object, std: : shared_ptr{} could result in two mallocs instead of one
(some implementations are capable of allocating a single, larger chunk of
memory and using it for both the pointer and the managed object). Regardless of
the implementation, the amount of memory that is needed

by std: :shared_ptr{} is larger than that of std: :unique_ptr{}, whichis
often the same size sd a regular C-style pointer.

Performance: All access to the pointer must first be redirected to the managed
object since std: : shared_ptr{} does not actually have a copy of the pointer
itself (just a pointer to the managed object). As a result, additional function calls
(that is, pointer dereferences) are required.

Memory leaks: There is a tradeoff between std: :unique_ptr{} and

std: :shared_ptr{}, and neither provides the perfect solution for managing
memory in a way that prevents possible nullptr dereferences while at the same
time preventing memory leaks. As demonstrated, the use of

std: :unique_ptr{} in some situations could result in a nullptr dereference.
On the other hand, std: : shared_ptr{} could result in a memory leak if the
number of copies of std: :shared_ptr{} never reaches 0. Although these
problems with smart pointers exist, the use of new () /delete () manually
doesn't address these issues (and almost certainly makes them worse), and in
general, if the right smart pointer type is used in the right scenario, these types of
issues can be alleviated.

Cyclic references: It is possible to create cyclic references with
std::shared_ptr{}.

Like std: :unique_ptr{}, std: :shared_ptr{} provides a reset () function:

#include <memory>
#include <iostream>

int main ()

{

auto ptrl = std::make_shared<int>();
auto ptr2 = ptril;

std::cout << ptrl.get() << '\n';
std::cout << ptr2.get() << '\n';
ptr2.reset ();

std::cout << ptrl.get() << '\n';
std::cout << ptr2.get() << '\n';

[247]

A Comprehensive Look at Memory Management Chapter 7

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x555b99574e80

// 0x555b99574e80

// 0x555b99574e80

// 0

In this example, two copies of std: : shared_ptr{} are created. We first output the
address of these pointers to stdout, and as expected, the address is valid, and they are the
same (as they both point to the same managed object). Next, we release using the reset ()
function, the second pointer and then output the address of the pointers again. The second
time around, the first std: : shared_ptr{} still points to a valid pointer, while the second
points to nullptr, since it no longer has a reference to the original managed object. The
pointer is eventually released back to the heap when the main () function completes.

One issue with the C++17 version of std: : shared_ptr{} is alack of an array version,
similar to std: :unique_ptr{}. Thatis, thereisno std: :shared_ptr<type[]> version
of std: :shared_ptr{}, similar to the std: :unique_ptr<type[]1>{} APl As aresult,
there is no way to allocate an array using std: :make_shared (), and there is no subscript
operator to access each element in the array. Instead, you must do the following;:

#include <memory>
#include <iostream>

int main ()

{
auto ptr = std::shared_ptr<int>(new int[42]());
std::cout << ptr.get()[0] << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0

C++ also provides a method for determining how many copies of std: : shared_ptr{}
exist (which essentially just asks the managed object for its reference count):

#include <memory>
#include <iostream>

int main ()

{
auto ptrl = std::make_shared<int>();
auto ptr2 = ptril;
std::cout << ptrl.get() << '\n';
std::cout << ptr2.get() << '\n';
std::cout << ptrl.use_count() << '\n';
ptr2.reset () ;

[248]

A Comprehensive Look at Memory Management Chapter 7

std::cout << ptrl.get() << '\n';
std::cout << ptr2.get() << '\n';
std::cout << ptrl.use_count() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x5644edde7e80

// 0x5644edde7e80

// 2

// 0x5644edde7e80

// 0

// 1

This example is similar to the preceding reset () example, but adds a call to the
use_count () function that reports the total number of copies of std: : shared_ptr{}. As
shown, when two copies of std: : shared_ptr{} are created, use_count () reports 2.
When reset () isrun, use_count () reduces to 1, and eventually when main () completes,
this count will reduce to 0 and the pointer will be released to the heap. It should be noted
that this function should be used with caution in multithreaded environments as races can
occur with respect to the reported count.

Similar to std: :unique_ptr{}, a Boolean operator is provided to std: : shared_ptr{} to
check whether the pointer is valid. Unlike std: :unique_ptr{}, the Boolean operator
doesn't determine whether the managed object has been released (as there might be a copy
of std: :shared_ptr{} lying around somewhere). Instead, the Boolean operator reports
whether or not std: : shared_ptr{} is maintaining a reference to the managed object.

If std: :shared_ptr{} is valid, it has a reference to the managed object (and thus access to
the allocated pointer), and the Boolean operator reports true. If std: : shared_ptr{} is
invalid, it no longer maintains a reference to the managed object (and thus doesn't have
access to the allocated pointer), returning nullptr when get () is called, and the

Boolean operator reports false:

#include <memory>
#include <iostream>

int main ()

{

auto ptr = std::make_shared<int>();
if (ptr) A
std::cout << "before: " << ptr.get() << '\n';

}
ptr.reset ();
if (ptr) {
std::cout << "after: "<< ptr.get() << '\n';

}

[249]

A Comprehensive Look at Memory Management Chapter 7

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// before: 0x55ac226b5e80

As shown in the preceding example, when the reset () function is called, the pointer is no
longer valid, as the smart pointer's internally-managed object is now pointing to nullptr,
and thus, the Boolean operator returns false. Since there are no other copies

of std: :shared_ptr{} (thatis, the managed object's count is 0), the allocated pointer is
also released back to the heap.

Like std: :unique_pt{}r, both the * and —> operators are provided to
dereference std: : shared_ptr{} (butno subscript operator since arrays are not
supported):

#include <memory>
#include <iostream>

struct mystruct {
int data;
}i

int main ()

{
auto ptr = std::make_shared<mystruct>();
std::cout << ptr->data << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0

Finally, one issue with std: : shared_ptr{} is that of cyclic references. The following
example does the best job of describing the issue:

#include <memory>
#include <iostream>

class myclass2;

class myclassl

{
public:

~myclassl ()

{

std::cout << "delete myclassl\n";

}

[250]

A Comprehensive Look at Memory Management Chapter 7

std: :shared_ptr<myclass2> m;

bi

class myclass?2

{
public:

~myclass2 ()

{

std::cout << "delete myclass2\n";

}

std: :shared_ptr<myclassl> m;

bi
int main ()

auto ptrl = std::make_shared<myclassl>();
auto ptr2 = std::make_shared<myclass2>();
ptrl->m = ptr2;
ptr2->m = ptrl;

t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out

In this example, two classes are created—myclassl and myclass2. Bothmyclass1 and
myclass2 maintain std: : shared_ptr{} references to each other (that is, for whatever
reason, both classes claim ownership over the other). When the pointers are destroyed, no
memory is released back to the heap because none of the destructors is ever called. To
understand why, we need to break down the number of copies that are made, and where
they exist.

The original std: : shared_ptr{} for ptrl and ptr2 are both created in the main ()
function, when means the #1 and #2 managed objects both have a use_count () of 1 upon
creation. Next, ptr1 is given a copy of std: : shared_ptr{} for ptr2, and vice version,
meaning the #1 and #2 managed objects now both have a use_count () of 2. When

main () completes, the std: :shared_ptr{} for ptr2inthemain () function

(not std: :shared_ptr{} in ptrl) is destroyed, but since there is still a
std::shared_ptr{} copy of ptr2 in ptr1, the pointer itself is not released. Next, ptr1 in
main () is destroyed, but since the copy of pt r2 still exists in one of the copies of ptr1,
ptrl itself is not released, and thus, we have created a copy of ptr1 and ptr2 that point to
each other, but with no copies of these pointers left in the code itself to release this memory,
and thus memory is permanently deleted.

[251]

A Comprehensive Look at Memory Management Chapter 7

To solve this, std: : shared_ptr{} provides a version of itself called std: :weak_ptr{}.It
has all the same properties of std: : shared_ptr{}, but doesn't increment the reference
counter of the managed object. Although the get () function could be used instead to store
a raw pointer, std: :weak_ptr{} still maintains a connection with the managed object,
providing a means to determine whether the managed object has been destroyed,
something you cannot do with a raw pointer. To demonstrate this, the preceding example
has been converted to use std: :weak_ptr{}inmyclassl and myclass2 instead

of std: :shared_ptr{}:

#include <memory>
#include <iostream>

class myclass2;

class myclassl

{
public:

~myclassl ()
{
std::cout << "delete myclassl\n";

}

std::weak_ptr<myclass2> m;
bi

class myclass2

{
public:

~myclass2 ()
{
std::cout << "delete myclass2\n";

}

std: :weak_ptr<myclassl> m;
bi

int main ()

auto ptrl = std::make_shared<myclassl>();
auto ptr2 = std::make_shared<myclass2>();
ptrl->m = ptr2;
ptr2->m = ptrl;

[252]

A Comprehensive Look at Memory Management Chapter 7

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// delete myclass2
// delete myclassl

As shown in this example, even though a cyclic reference still exists, the allocated pointers
are released back to the heap when main () completes. Finally, it should be noted that it is
possible to convert std: :unique_ptr to std: :shared_ptr using the following syntax:

auto ptr = std::make_unique<int>();
std: :shared_ptr<int> shared = std::move (ptr);

Since std: :unique_ptr is being moved, it no longer owns the pointer, and
instead std: :shared_ptr now owns the pointer. Moving from std: : shared_ptr to
std: :ungiue_ptr is not allowed.

Learning about mapping and permissions

In this section, the reader will learn how to map memory using C++ patterns. You will learn
how to map memory (a common system-programming technique), while doing so using
C++ patterns.

The basics

malloc ()/free (), new()/delete (), and std: :unique_ptr{}/std::shared_ptr{} are
not the only methods for allocating memory on a POSIX system. C++-style allocators are
another, more complicated, method for allocating memory that will be discussed in greater
detail in chapter 9, A Hands-On Approach to Allocators. A more direct, POSIX style for
allocating memory is to use mmap () :

#include <iostream>
#include <sys/mman.h>

constexpr auto PROT_RW = PROT_READ | PROT_WRITE;
constexpr auto MAP_ALLOC = MAP_PRIVATE | MAP_ANONYMOUS;

int main ()

{
auto ptr = mmap (0, 0x1000, PROT_RW, MAP_ALLOC, -1, 0);
std::cout << ptr << '\n';

munmap (ptr, 0x1000);

[253]

A Comprehensive Look at Memory Management Chapter 7

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x7feb41ab6000

The mmap () function may be used to map memory from different sources into a program.
For example, if you want to make device memory into your application, you would use
mmap () . If MAP_ANONYMOUS is passed to mmap (), it can be used to allocate memory the
same way you would allocate memory using malloc () and free (). In the preceding
example, mmap () is used to allocate a 4k page of memory that is marked read/write. The
use of MAP_PRIVATE tells mmap () that you do not intend to share this memory with other
applications (for example, for interprocess communication). Mapping memory this way
compared tomalloc ()/free () has some advantages and disadvantages.

Advantages:

¢ Fragmentation: Allocating memory using MAP_ANONYMOUS usually maps
memory in sizes that are multiples of a page size, or, worst case, a power of two.
The is because mmap () is asking the OS kernel for a block memory, and that
memory must be mapped into the application, which can only be done in blocks
no smaller than a page. As a result, fragmentation of this memory is far less likely
that multiple, random memory allocations usually made using malloc ().

e Permissions: When using mmap (), you can state the permissions you wish to
apply to the newly-allocated memory. This is especially useful if you need
memory with special permissions, such as read/execute memory.

¢ Shared memory: The memory allocated using mmap () can also be shared by

another application instead of being allocated privately for a specific application,
as withmalloc ().

Disadvantages:

e Performance: malloc ()/free () allocate and deallocate to a block of memory
that is managed by the C library inside the application itself. If more memory is
needed, the C library will call into the OS, using functions such as brk () or even
mmap (), to get more memory from the OS. When free is called, the released
memory is provided back to the memory being managed by the C library, and in
a lot of cases is never actually provided back to the OS. For this reason,
malloc ()/free () can quickly allocate memory for the application because no
OS-specific calls are being made (unless of course the C library runs out of
memory). mmap (), on the other hand, has to call into the OS on every single
allocation. For this reason, it does not perform as well asmalloc ()/free () since
an OS call can be expensive.

[254]

A Comprehensive Look at Memory Management Chapter 7

¢ Granularity: For the same reason that mmap () reduces fragmentation, it also
reduces granularity. Every single allocation made by mmap () is at least a page in
size, even if the requested memory is only a byte.

To demonstrate the potential waste of mmap (), see the following;:

#include <iostream>
#include <sys/mman.h>

constexpr auto PROT_RW = PROT_READ | PROT_WRITE;
constexpr auto MAP_ALLOC = MAP_PRIVATE | MAP_ANONYMOUS;

int main ()

{
auto ptrl = mmap (0, 42, PROT_RW, MAP_ALLOC, -1, 0);
auto ptr2 = mmap (0, 42, PROT_RW, MAP_ALLOC, -1, 0);

std::cout << ptrl << '\n';
std::cout << ptr2 << '\n';

munmap (ptrl, 42);
munmap (ptr2, 42);
}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// 0x7£c1637ad000
// 0x7f£cl1637ac000

In this example, 42 bytes are allocated twice, but the resulting addresses are a 4k page
apart. This is because allocations made by mmap () must be at least a page in size, even
though the requested amount was only 42 bytes. The reason that malloc () /free () does
not have this waste is that these functions request large chunks of memory at a time from
the OS, and then manage this memory using various different allocation schemes internally
within the C library. For more information on how this is done, there is a very good
explanation within newlib on the
tOpiC:https://sourceware.org/git/?pznewlib—cygwin.git;azblob;f=newlib/libc/stdl
ib/malloc.c.

[255]

https://sourceware.org/git/?p=newlib-cygwin.git;a=blob;f=newlib/libc/stdlib/malloc.c;h=f5ac2920888563013663454758cce102e40b69ad;hb=HEAD
https://sourceware.org/git/?p=newlib-cygwin.git;a=blob;f=newlib/libc/stdlib/malloc.c;h=f5ac2920888563013663454758cce102e40b69ad;hb=HEAD

A Comprehensive Look at Memory Management Chapter 7

Permissions

mmap () may be used to allocate memory with special parameters. For example, suppose
you need to allocate memory that has read/execute permissions instead of the read/write
permissions that are typically associated with malloc () /free():

#include <iostream>
#include <sys/mman.h>

constexpr auto PROT_RE = PROT_READ | PROT_EXEC;
constexpr auto MAP_ALLOC = MAP_PRIVATE | MAP_ANONYMOUS;

int main ()

{
auto ptr = mmap (0, 0x1000, PROT_RE, MAP_ALLOC, -1, 0);
std::cout << ptr << '\n';

munmap (ptr, 0x1000);
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x7feb41ab6000

As shown, allocating memory with read/execute permissions is the same as allocating
memory with read/write permissions substituting PROT_WRITE with PROT_EXEC.

On systems that support read/write or read/execute (also known as W"E,
which states that write is mutually exclusive with execute), write and
execute permissions should not be used together at the same time.
Specifically, in the event of malicious use of your program, preventing
executable memory from also having write permissions can prevent a
number of known cyber attacks.

The problem with allocating memory as read/execute and not read/write/execute is that
there is no easy way to place executable code into your newly-allocated buffer as the
memory was marked as read/execute only. The same is true if you wish to allocate read-
only memory. Once again, since write permissions were never added, there is no way to
add data to read-only memory as it doesn't have write permissions.

[256]

A Comprehensive Look at Memory Management Chapter 7

To make the situation worse, some operating systems prevent applications from allocating
read/write/execute memory as they attempt to enforce W/E permissions. To overcome this
issue, while still providing a means to set the desired permissions, POSIX provides
mprotect (), which allows you to change the permissions of memory that has already been
allocated. Although this may be used with memory that is managed by malloc ()/free (),
it should instead be used with mmap () memory permissions that can only be enforced at
the page level on most architectures. malloc ()/free () allocate from a large buffer that is
shared among all of the program's allocations, while mmap () only allocates memory with
page granularity, and therefore is not shared by other allocations.

The following shows an example of how to use mprotect:

#include <iostream>
#include <sys/mman.h>

constexpr auto PROT_RW = PROT_READ | PROT_WRITE;
constexpr auto MAP_ALLOC = MAP_PRIVATE | MAP_ANONYMOUS;

int main ()

{
auto ptr = mmap (0, 0x1000, PROT_RW, MAP_ALLOC, -1, 0);
std::cout << ptr << '\n';

if (mprotect (ptr, 0x1000, PROT_READ) == -1) {
std::clog << "ERROR: Failed to change memory permissions\n";
::exit (EXIT_FAILURE) ;

}

munmap (ptr, 0x1000);
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 0x7fb05b4b6000

In this example, mmap () is used to allocate a buffer the size of a 4k page with read/write
permissions. Once the memory is allocated, mprotect () is used to change the permissions
of the memory to read-only. Finally, munmap () is used to release the memory back to the
operating system.

[257]

A Comprehensive Look at Memory Management Chapter 7

Smart pointers and mmap()

With respect to C++, the biggest issue with mmap () and munmap () is that they suffer from a
lot of the same disadvantages asmalloc ()/free():

e Memory leaks: Since mmap () and munmap () must be executed manually, it's
possible the user could forget to call munmap () when the memory is no longer
needed, or a complex logic bug could result in munmap () not being called at the
right time.

e Memory mismatch: It's possible that the users of mmap () could call free ()
instead of munmap () by accident, resulting in a mismatch that is almost certain to
generate instability because memory from mmap () is coming from the OS kernel,
while free () is expecting memory from application heap.

To overcome this, mmap () should be wrapped with std: :unique_ptr{}:

#include <memory>
#include <iostream>

#include <string.h>
#include <sys/mman.h>

constexpr auto PROT_RW = PROT_READ | PROT_WRITE;
constexpr auto MAP_ALLOC = MAP_PRIVATE | MAP_ANONYMOUS;

class mmap_deleter

{

std::size_t m_size;

public:
mmap_deleter (std::size_t size)
m_size{size}

{1

void operator () (int *ptr) const
{
munmap (ptr, m_size);
}
bi

template<typename T, typename... Args>
auto mmap_unique (Argsé&é&... args)

{
if (auto ptr = mmap(0, sizeof(T), PROT_RW, MAP_ALLOC, -1, 0)) {

auto obj = new (ptr) T(args...);

[258]

A Comprehensive Look at Memory Management Chapter 7

auto del = mmap_deleter (sizeof (T));

return std::unique_ptr<T, mmap_deleter>(obj, del);

}

throw std::bad_alloc();
t

int main ()

{
auto ptr = mmap_unique<int>(42);
std::cout << *ptr << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// 42

In this example, the main function calls mmap_unique () instead of std: :make_ungiue (),
as std: :make_unique () allocates memory using new () /delete (), and we wish to use
mmap () /munmap () instead. The first part of the mmap_unique () function allocates memory
using mmap () the same way as our previous examples. In this case, permissions were set to
read/write, but they could have also been changed using mprotect () to provide read-only
or read/execute if desired. If the call to mmap () fails, std: :bad_alloc () is thrown, just
like the C++ library.

The next line in this example uses the new () placement operator, as discussed earlier in in
the Placement new section. The goal of this call is to create an object whose constructor has
been called to initialize the T type as required. In the case of this example, this is setting an
integer to 42, but if a class were used instead of an integer, the classes constructor would be
called with whatever arguments were passed to mmap_unique ().

The next step is to create a custom deleter for our std: :ungiue_ptzr{}. This is done
because by default, std: :ungiue_ptr{} will call the delete () operator instead of
munmap () . The custom deleter takes a single argument that is the size of the original
allocation. This is needed because munmap () needs to know the size of the original
allocation, unlike delete () and free (), which just take a pointer.

Finally, std: :unique_ptr{} is created with the newly-created object and custom deleter.
From this point on, all of the memory that was allocated using mmap () can be accessed
using the standard std: :unique_ptr{} interface, and treated as a normal allocation.
When the pointer is no longer needed, and std: :unique_ptr{} is out of scope, the
pointer will be released back to the OS kernel by calling munmap () as expected.

[259]

A Comprehensive Look at Memory Management Chapter 7

Shared memory

In addition to allocating memory, mmap () may be used to allocate shared memory,
typically for interprocess communications. To demonstrate this, we start by defining a
shared memory name, "/shm", and our read, write, and execute permissions:

#include <memory>
#include <iostream>

#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h>

constexpr auto PROT_RW = PROT_READ | PROT_WRITE;
auto name = "/shm";
Next, we must define our custom deleter, which uses munmap () instead of free ():

class mmap_deleter

{

std::size_t m_size;

public:
mmap_deleter (std::size_t size)
m_size{size}

{1

void operator () (int *ptr) const

{

munmap (ptr, m_size);
ti

In this example, we build off of the previous example, but instead of having a single
mmap_unique () function, we now have a server and a client version. Although typically
shared memory would be used for interprocess communication, in this example, we share
memory in the same application to keep things simple.

[260]

A Comprehensive Look at Memory Management Chapter 7

The main function creates both a server and a client-shared pointer. The server version
creates shared memory using the following;:

template<typename T, typename... Args>
auto mmap_unique_server (Args&&... args)
{
if (int fd = shm_open(name, O_CREAT | O_RDWR, 0644); fd != -1) {

ftruncate (fd, sizeof (T));
if (auto ptr = mmap (0, sizeof(T), PROT_RW, MAP_SHARED, fd, 0)) {

auto obj = new (ptr) T(args...);
auto del = mmap_deleter (sizeof (T));

return std::unique_ptr<T, mmap_deleter> (obj, del);

}

throw std::bad_alloc();
}

This function is similar to the mmap_unique () function in the previous example, but opens
a handle to a shared memory file instead of allocating memory using MAP_ANONYMOUS. To
open the shared memory file, we use the POSIX shm_open () function. This function is
similar to the open () function. The first parameter is the name of the shared memory file.
The second parameter defines how the file is opened, while the third parameter provides
the mode. shm_open () is used to open the shared memory file, and the file descriptor is
checked to make sure the allocation succeeded (that is, the file descriptor is not -1).

Next, the file descriptor is truncated. This ensures that the size of the shared memory file is
equal to the size of the memory we wish to share. In this case, we wish to share a

single T type, so we need to get the size of T. Once the shared memory file has been
properly sized, we need to map in the shared memory using mmap () . The call to mmap () is
the same as our previous examples, with the exception that MAP_SHARED is used.

Finally, like the previous example, we leverage the new () placement operator to create the
newly-allocated type in shared memory, we create the custom deleter, and then finally, we
return std: :unique_ptr{} for this shared memory.

To connect to this shared memory (which could be done from another application), we
need to use the client version of the mmap_unique () function:

template<typename T>
auto mmap_unique_client ()

{

[261]

A Comprehensive Look at Memory Management Chapter 7

if(int fd = shm_open (name, O_RDWR, 0644); fd != -1) {
ftruncate (fd, sizeof (T));

if (auto ptr = mmap (0, sizeof(T), PROT_RW, MAP_SHARED, fd, 0)) {

auto obj = static_cast<T*>(ptr);
auto del = mmap_deleter (sizeof (T));

return std::unique_ptr<T, mmap_deleter>(obj, del);

}

throw std::bad_alloc();
t

The server and client versions of these functions look similar, but there are differences. First
and foremost, the shared memory file is opened without 0_CREAT. This is because the
server creates the shared memory file, while the client connects to the shared memory file,
so there is no need to pass O_CREAT in the client version. Finally, the signature of the client
version of this function doesn't take any arguments like the server version. This is because
the server version uses the new () placement to initialize the shared memory, which doesn't
need to be done a second time. Instead of using the new placement, static_cast () is
used to convert void * to the proper type prior to delivering the pointer to the newly
created std: :unique_ptr{}:

int main ()

{
auto ptrl = mmap_unique_server<int> (42);
auto ptr2 = mmap_unique_client<int>();
std::cout << *ptrl << '\n';
std::cout << *ptr2 << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -1lrt; ./a.out
// 42
// 42

The result of this example is that memory is shared between a server and a client, wrapping
the shared memory in std: :unique_ptr{}. Furthermore, as shown in the example, the
memory is properly shared, as can be seen by 42 being printed for both the server and
client version of the pointer. Although we use this for an integer type, this type of shared
memory can be used with any complex type as needed (although care should be taken

when attempting to share classes, especially those that leverage inheritance and contain
vTable).

[262]

A Comprehensive Look at Memory Management Chapter 7

Learning importance of memory
fragmentation

No chapter on memory management would be complete without a brief discussion of
fragmentation. Memory fragmentation refers to a process in which memory is broken up
into chunks, often spread out, almost always resulting in the allocator's inability to allocate
memory for an application, ultimately resulting in std: :bad_alloc () being thrown in
C++. When programming systems, fragmentation should always be a concern as it can
dramatically impact the stability and reliability of your program, especially on resource-
constrained systems, such as embedded and mobile applications. In this section, the reader
will get a brief introduction to fragmentation, and how it affects the programs they create.

There are two types of fragmentation—external and internal fragmentation.

External fragmentation

External fragmentation refers to the process by which memory is allocated and deallocated
in different sized chunks, ultimately leading to large amounts of unusable, unallocatable
memory. To demonstrate this, suppose we have five allocations:

#1 #2 #3 #4 #5

obj obj obj obj obj

All five allocations succeed, and all of the memory is allocated. Now, let's suppose that the
second and fourth allocations are released back to the heap:

#1 #3 #5

[263]

A Comprehensive Look at Memory Management Chapter 7

By releasing memory back to the heap, memory is now available for allocation again. The
problem is that this memory is spread out due to the original 1, 3, and 5 allocations. Now
let's suppose we want to make a final allocation:

#1 #3 #5
| I 1 I
obj 1 | obj _1L"#0 1 op
1 d) -
I obj |1
_—— =]

The final allocation fails, even though there is enough free memory for the allocation,
because the free memory is spread out — in other words, the free memory is fragmented.

External fragmentation, in the general case, is an extremely difficult problem to solve, and
this problem has been studied for years, with operating systems implementing various
approaches over time. In chapter 9, A Hands-On Approach to Allocators, we will discuss
how C++ allocators can be used to address some external fragmentation issues in your
program using various different custom allocator patterns.

Internal fragmentation

Internal fragmentation refers to memory being wasted during an allocation. For example,
when we allocate an integer using mmap (), as we did in the preceding examples, mmap ()
allocates an entire page for the integer, wasting nearly 4k of memory in the process. This is
known as internal fragmentation:

#1 #2 #3 #4

obj obj obj obj 1

[264]

A Comprehensive Look at Memory Management Chapter 7

Like external fragmentation, the lost memory from internal fragmentation cannot be used
for other allocations. In fact, the view of memory at a high level would look just like that of
external fragmentation. The difference is that external fragmentation continuously takes
large chunks of free, unallocated memory and breaks it up into smaller and smaller
fragmented memory, which at some point becomes too small to be allocated in the future.
Internal fragmentation would appear the same, but in some cases, even larger, unusable
blocks of memory would appear fragmented throughout all of the memory. This unusable
memory is not unusable because it isn't large enough for a given allocation, but instead
because the unusable memory has been claimed by a smaller, previous allocation that
simply doesn't use all of the memory that it was given.

It should be noted that when solving fragmentation issues, often the solution is to optimize
for one type of fragmentation over another, with each choice having its advantages and
disadvantages.

Internal over external fragmentation

Allocators used by malloc () and free () often favor optimizing for internal
fragmentation over external fragmentation. The goal is to provide an allocator with as little
waste as possible and then leverage various different allocation patterns to reduce the
likelihood of external fragmentation as much as possible. These types of allocators are
preferred for applications as they minimize the memory requirements of a single
application on any given operating system, leaving the additional memory for other
applications. Furthermore, if external fragmentation prevents an allocation from occurring,
the application always asks the OS for more memory (until the OS runs dry).

External over internal fragmentation

Operating systems tend to optimize for external fragmentation over internal fragmentation.
This reason for this is that operating systems generally can only allocate memory at the
page granularity, meaning internal fragmentation in a lot of cases is unavoidable.
Furthermore, if external fragmentation is allowed to occur over time, it would result in the
operating system eventually crashing if given enough time to execute. For this reason,
operating systems use allocation patterns such as the buddy allocator pattern, which
optimize for external fragmentation, even at the expense of large amounts of internal
fragmentation.

[265]

A Comprehensive Look at Memory Management Chapter 7

Summary

In this chapter, we learned various ways to allocate memory using new () and delete ()
and malloc () and free (), including aligned memory and C-style arrays. We looked at
the difference between global memory (memory in the global space), stack memory (or
scoped memory), and dynamically-allocated memory (memory that is allocated using

new () and delete ()). The safety concerns of new () and delete () were also discussed,
and we demonstrated how C++ smart pointers, including std: : shared_ptr{} and

std: :unique_ptr{}, may be used to prevent common instability issues in programs, and
how they provide C++ Core Guidance support. We concluded this chapter with a quick
review of fragmentation and how it can affect system programs.

In the next chapter, we will cover file inputer and output including read and writing to a
file, and the filesystem APIs that were added by C++17.

Questions

1. What is the difference between new () and new[] ()?

N

Can delete () be safely used to release memory back to heap that was allocated
using new [] ()?

What is the difference between global memory and static memory?

How does one allocate aligned memory using new () ?

Can std: :make_shared () be used to allocate an array?

When should std: :shared_ptr{} be used instead of std: :unique_ptr{}?
Can mmap () be used to allocate read/execute memory?

*® N W

What is the difference between internal and external fragmentation?

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[266]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

Learning to Program File
Input/Output

File input/output (I/O) is an essential part of most system-level programs. It can be used for
debugging, saving program states, handling user-specific data, and even interfacing with
physical devices (thanks to POSIX block and character devices).

Prior to C++17, working with file I/O was difficult, as filesystem management had to be
handled using non-C++ APIs, which are often unsafe, platform-specific, or even incomplete.

In this chapter, we will provide a hands-on review of how to open, read, and write to files,
and work with paths, directories, and the filesystem. We will conclude by providing three
different examples that demonstrate how to log to a file, tail an existing file, and benchmark
the C++ file input/output APIs.

This chapter will cover the following topics:

e Ways to open a file
¢ Reading and writing to a file
o File utilities

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

GCC 7+
CMake 3.6+
An internet connection

Learning to Program File Input/Output Chapter 8

To download all the code in this chapter, including the examples, and code snippets, see
the following link: https://github.com/PacktPublishing/Hands—-On-System-
Programming-with—-CPP/tree/master/Chapter08.

Opening a file

There are many ways to open a file. We will discuss some of these in the following sections,
and how to accomplish this using the std: : fstream C++ APIs.

Different ways to open a file

Opening a file in C++ is as simple as providing a std: : f£st ream object with the filename
and path of the object you wish to open. This is shown as follows:

#include <fstream>
#include <iostream>

int main ()

{
if (auto file = std::fstream("test.txt")) {
std::cout << "success\n";
}
else {
std::cout << "failure\n";
}
}

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In this example, we open a file named test . txt, which we previously created using the
POSIX touch command. This file is opened with read/write permissions (as that is the
default mode).

The file is stored in a variable named file, and it is checked to ensure it was properly
opened using the bool operator overload that std: : fst ream provides. If this file is
successfully opened, we output success to stdout.

[268]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter08

Learning to Program File Input/Output Chapter 8

The preceding example leverages the fact that a std: : fst ream object has an overloaded
bool operator that returns true when the file is successfully opened. Another way to more
explicitly perform this action is to use the is_open () function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt"); file.is_open()) {
std::cout << "success\n";
I3
I3

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In this preceding example, instead of relying on the bool operator overload, we leverage
C++17 to check whether the file is open using is_open () in the if statement. The
preceding examples were further simplified by the use of the constructor to initialize the
std: : fstream, instead of explicitly calling open () as follows:

#include <fstream>
#include <iostream>

int main ()
{
auto file = std::fstream();
if (file.open("test.txt"); file.is_open()) {
std::cout << "success\n";
}
}

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In this example, the std: : fstream object is created with the default constructor, meaning
no file has yet to be opened, allowing us to postpone opening the file until we are ready to
do so. We then open the file using the open () function, and then, similar to the preceding

example, we leverage C++17 to check to see if the file opened prior to outputting success
to stdout.

In all of the preceding examples, there was no need to call close () on the file. This is
because, like other C++ classes such as std: :unique_ptr that leverage RAII,
std: : fstream objects close the file automatically for you on destruction.

[269]

Learning to Program File Input/Output Chapter 8

It is possible, however, to close the file explicitly if so desired, as follows:

#include <fstream>
#include <iostream>

int main ()

{
std::cout << std::boolalpha;

if (auto file = std::fstream("test.txt")) {
std::cout << file.is_open() << '\n';
file.close();
std::cout << file.is_open() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// true
// false

In this example, we open a text file and use is_open () to check whether the file is open.
The first use of is_open () returns true, since the file was successfully opened. We then
close the file explicitly using close (), and then check whether the file is open again using
is_open (), which now returns false.

Modes for opening a file

Up until now, we have opened the file using the default mode. There are two modes that
may be used to open a file:

e std::ios::in: Opens the file for reading
e std::ios::out: Opens the file for writing

In addition, there are several other modes that may be used in conjunction with these two,
to modify how a file is opened:

e std::ios::binary: Opens the file for binary use. By default, std: : fstreamis
in text mode, which applies specific rules about how a file is formatted using
newline characters, and which types of character may be read/written to a file.
These rules are usually appropriate for text files, but cause problems when you
attempt to read/write binary data to a file. In this case, std: :ios: :binary
should be added to your mode specifier.

[270]

Learning to Program File Input/Output Chapter 8

e std::ios: :app: When this mode is used with std: :ios: : out, all writes to the
file append to the end of the file.

® std::ios::ate: When this mode is used with either std::ios::inor
std::ios: :out, the file is positioned at the end of the file once it has been
successfully opened. That is, reads and writes to the file occur at the end of the
file, even right after the file is opened.

e std::ios::trunc: When this mode is used with either std: :io0s::in or
std::ios: :out, the contents of the files are deleted prior to opening the file.

To demonstrate these modes, the first example opens a file for reading in binary mode:

#include <fstream>
#include <iostream>

int main ()
{
constexpr auto mode = std::ios::in | std::ios::binary;
if (auto file = std::fstream("test.txt", mode)) {
std::cout << "success\n";

}

// > g++ —std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

All of the modes are constant values, and for this reason, in the preceding

example, constexpr is used to create a new constant called mode that represents opening a
file in read-only, binary mode. To open a file for read-only in text mode instead of binary
mode, simply remove the std: :ios: :binary mode, as follows:

#include <fstream>
#include <iostream>

int main ()
{
constexpr auto mode = std::ios::in;
if (auto file = std::fstream("test.txt", mode)) {
std::cout << "success\n";

}

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

[271]

Learning to Program File Input/Output Chapter 8

In the preceding example, we open the file in read-only, text mode. The same logic may
also be used for write-only, as follows:

#include <fstream>
#include <iostream>

int main ()

{
constexpr auto mode = std::ios::out | std::ios::binary;
if (auto file = std::fstream("test.txt", mode)) {

std::cout << "success\n";

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

Here, we open the file in write-only, binary mode. To open a file in write-only, test mode,
use the following:

#include <fstream>
#include <iostream>

int main ()
{
constexpr auto mode = std::ios::out;
if (auto file = std::fstream("test.txt", mode)) {
std::cout << "success\n";

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

Once again, since std: :ios: :binary has been left out, this code opens the file in write-
only, text mode.

To open a file in write-only, binary mode at the end of the file (instead of the beginning of
the file, which is the default), use the following:

finclude <fstream>
#include <iostream>

int main ()
{

constexpr auto mode = std::ios::out | std::ios::binary |
std::ios::ate;

if (auto file = std::fstream("test.txt", mode)) {

[272]

Learning to Program File Input/Output Chapter 8

std::cout << "success\n";

}

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In this example, we open the file in write-only, binary mode at the end of the file by adding
std::ios: :ate to the mode variable. This moves the output pointer in the file to the end
of the file, but allows writing to occur at any place within the file.

To ensure that the file is always appended to the end of the file, open the file using
std::ios::app instead of std::ios::ate, as follows:

#include <fstream>
#include <iostream>

int main ()
{
constexpr auto mode = std::ios::out | std::ios::binary |
std::ios::app;
if (auto file = std::fstream("test.txt", mode)) {
std::cout << "success\n";
3
3

// > g++ —std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In the preceding example, writes and additions to the file are always appended to the file as
the file was opened using std: :ios: :app.

It should be noted that in all of the previous examples that used std: :ios: : out, the file
was opened using std: :ios: : trunc. This is due to the fact that truncate mode is the
default when using std: :ios::out, unless std::ios::ate or std: :ios: :app is used.
The problem with this is that there is no way to open a file for write-only at the beginning
of the file without truncating the file.

[273]

Learning to Program File Input/Output

Chapter 8

To overcome this issue, the following may be used:

#include <fstream>
#include <iostream>

int main ()
{

constexpr auto mode = std::ios::out | std::ios::binary |
std::ios::ate;

if (auto file = std::fstream("test.txt", mode); file.seekp(0)) {

std::cout << "success\n";
i

// > g++ —-std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

In this example, we open the file in write-only, binary mode at the end of the file, and then
we use seekp () (a function that will be explained later) to move the output position in the

file to the beginning of the file.

Although std::ios: :trunc is the default when std: :ios: :out is used, if
std::ios::inis also used (that is, read/write mode), you must explicitly add

std: :ios: :trunc if you wish to clear the contents of the file prior to opening the file, as

follows:

#include <fstream>
#include <iostream>

int main ()
{
constexpr auto mode = std::ios::in | std::ios::out |
std::ios::trunc;
if (auto file = std::fstream("test.txt", mode)) {
std::cout << "success\n";

}

// > g++ —std=c++17 scratchpad.cpp; touch test.txt; ./a.out
// success

Here, the file is opened in read/write mode, and the contents of the file are deleted prior to

opening the file.

[274]

Learning to Program File Input/Output Chapter 8

Reading and writing to a file

The following sections will help you to understand how to read and write to a file using the
std::fstream C++ APIs.

Reading from a file

C++ provides several different methods for reading a file, including by field, by line, and by
number of bytes.

Reading by field

The most type-safe method for reading from a file is by field, the code which is as follows:

finclude <fstream>
#include <iostream>

int main ()

{
if (auto file = std::fstream("test.txt")) {

std::string hello, world;
file >> hello >> world;
std::cout << hello << " " << world << '\n';

}

// > gt++ —-std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;

./a.out
// Hello World

In this example, we open a file for reading and writing (since that is the default mode). If
the file is successfully opened, we read in two strings into two variables—hello and world
respectively. To read the two strings, we use >> operator (), which behaves just like
std::cin as discussed in chapter 6, Learning to Program Console Input/Output.

For a string, the stream reads characters until the first whitespace or newline is discovered.
As with std: : cin, numeric variables can also be read, as follows:

#include <fstream>
#include <iostream>

int main ()

{

[275]

Learning to Program File Input/Output Chapter 8

if (auto file = std::fstream("test.txt")) {
int answer;
file >> answer;
std::cout << "The answer is: " << answer << '\n';

// > gt++ -std=c++17 scratchpad.cpp; echo "42" > test.txt; ./a.out
// The answer is: 42

In this example, we read in an integer instead of a string, and, just like a string, the stream
reads in bytes until a whitespace or newline is discovered, and then interprets the input as
a number. Of course, if the field being read is not a number, 0 is read, as follows:

// > g++ —std=c++17 scratchpad.cpp; echo "not_a_number" > test.txt; ./a.out
// The answer is: 0

It should be noted that an error flag is set when this occurs, which we will discuss later in
this chapter.

As with other C++ streams, std: : fstream can be overloaded to provide support for user-
defined types, as follows:

#include <fstream>
#include <iostream>

struct myclass
{
std::string hello;
std::string world;
bi

std::fstream &operator >>(std::fstream &is, myclass &obj)

is >> obj.hello;
is >> obj.world;

return is;

std::ostream &operator<<(std::ostream &os, const myclass &obj)
os << obj.hello;
os << ' ';

os << obj.world;

return os;

[276]

Learning to Program File Input/Output Chapter 8

int main ()
{
if (auto file = std::fstream("test.txt")) |
myclass obj;
file >> ob7j;
std::cout << obj << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt; ./a.out
// Hello World

In this example, we create a user-defined type called myclass. In the main () function, we
open a file, and if the file is successfully opened, we create a myclass{} object, read the file
into the myclass{} object, and then output the results of the myclass{} object to stdout.

To read the file into the myclass{} object, we overload >> operator () for

std: : fstream{} which reads in two strings, and stores the results in the myclass{}
object. To output the myclass{} object to stdout, we build upon what we learned in
Chapter 6, Learning to Program Console Input/Output, with respect to user-defined overloads
of std: :ostream, and provide a user-defined overload for our myclass{} object.

The result is that Hello World is read from the file and output to stdout.

Reading bytes

In addition to reading fields from a file, C++ provides support for reading bytes directly
from the file. To read a single byte from the stream, use the get () function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
char ¢ = file.get();
std::cout << c << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out

// H

[277]

Learning to Program File Input/Output Chapter 8

Reading more than one byte in C++17 is still an unsafe operation, as there is no ability to
read x number of bytes directly into a std: : st ring. This means that a standard C-style
buffer must be used instead, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
char buf[25] = {};
file.read (buf, 11);
std::cout << buf << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; echo "Hello World" > test.txt; ./a.out
// Hello World

In the preceding example, we create a standard C-style character buffer called buf, and
then read 11 bytes from the file into this character buffer. Finally, we output the results to
stdout.

We need to ensure that the total number of bytes being read does not exceed the total size
of the buffer itself—an operation that often leads to a coding error, generating hard-to-
debug buffer overflows.

The simple solution to this problem is to use a wrapper around the read () function that
checks to make sure the requested number of bytes does not exceed the total size of the
buffer, as follows:

#include <fstream>
#include <iostream>

template<typename T, std::size_t N>
void myread(std::fstream &file, T (&str) [N], std::size_t count)
{
if (count >= N) {
throw std::out_of_range("file.read out of bounds");

}

file.read(static_cast<char *>(str), count);

}

int main ()
{
if (auto file = std::fstream("test.txt")) {

[278]

Learning to Program File Input/Output Chapter 8

char buf[25] = {};
myread(file, buf, 11);
std::cout << buf << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt; ./a.out
// Hello World

In this example, we create a template function called myread () that encodes the total size
of the buffer into the function itself during compilation. Before a read occurs, the size of the
buffer can be checked to ensure a buffer overflow will not occur.

It should be noted that this works well for arrays, but is problematic for dynamically-
allocated arrays, as the total size of the buffer must also be passed to our wrapper function,
potentially leading to hard-to-debug logic bugs (that is, not providing the proper size of the
buffer, swapping the total number of bytes to read with the buffer size, and so on).

To overcome these types of issues, gs1: : span should be used instead.

When reading bytes instead of fields, it can be helpful to know from where in the file you
are currently reading. As you read from a file stream, both a read and a write pointer are
maintained internally within the stream. To get the current read position, use the tellg ()
function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
std::cout << file.tellg() << '\n';
char ¢ = file.get();
std::cout << file.tellg() << '\n';

}

// > gt++ —-std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out

// 0
/71

Here, we open a file as usual and output the current read pointer, which as expected is 0.
We then read a single character from the file, and output the read pointer again. This time,
the pointer is 1, indicating we have successfully read a single byte.

[279]

Learning to Program File Input/Output Chapter 8

Another method for reading a single byte is to use the peek function, which functions
similarly to get (), except that the internal read pointer is not incremented, as follows:

#include <fstream>
#include <iostream>

int main ()

{

if (auto file = std::fstream("test.txt")) {
std::cout << file.tellg() << '\n';
char ¢ = file.peek();

std::cout << file.tellg() << '\n';
s

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out

// 0

// 0

This example is the same as the previous one, except that peek () is used instead of get ().
As shown, the read pointer is 0 both before and after peek () is used to read a byte from
the buffer, demonstrating that peek () doesn't increment the read pointer within the
stream.

The reverse is also provided by C++. Instead of reading a byte from the file without moving
the read pointer, it is also possible to move the read pointer without reading bytes from the
stream using the ignore () function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
std::cout << file.tellg() << '\n';
file.ignore(1);
std::cout << file.tellg() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out

// 0

//1

[280]

Learning to Program File Input/Output Chapter 8

In this example, we move the read pointer in our file stream by a single byte, and use
tellg () to verify that the read pointer has in fact been moved. The ignore () function
increments the read pointer relative to the current read pointer.

C++ also provides the seekg () function, which sets the read pointer to an absolute
position, shown as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
std::string hello, world;

file >> hello >> world;
std::cout << hello << " " << world << '\n';

file.seekg(l);

file >> hello >> world;
std::cout << hello << " " << world << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out

// Hello World

// ello World

In the preceding example, the seekg () function is used to set the read pointer to 1 byte
into the file after reading, effectively rewinding, allowing us to read the file again.

Reading by line

Finally, the last type of file read is by line, meaning that you read each line from the file,
one at a time, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
char buf[25] = {};
file.getline (buf, 25, '\n');

[281]

Learning to Program File Input/Output Chapter 8

std::cout << buf << '\n';
i

// > g++ —-std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out
// Hello World

In this example, we create a standard C character buffer, read a line from the file, and
output the line to stdout. Unlike the read () function, getline () keeps reading until
either the size of the buffer is reached (the second argument), or a delimiter is seen.

Since a line is defined differently depending on the OS you're using (although in this case,
we will stick to Unix), the get1ine () function takes a delimiter argument, allowing you to
define what the end of a line is.

Like the read (), function, this operation is unsafe as it requires the user to ensure that the
total buffer size given to get1ine () is, in fact, the total size of the buffer—providing a
convenient mechanism to introduce hard-to-debug buffer overflows.

Unlike the read () function, C++ provides a non-member version of getline () that
accepts any stream type (including std: : cin), and std: : string instead of a standard C-
style string, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
std::string str;
std::getline(file, str);
std::cout << str << '\n';

}

// > g++ —std=c++17 scratchpad.cpp; echo "Hello World" > test.txt;
./a.out
// Hello World

In the preceding example, instead of calling file.getline (), we instead call
std::getline (), and provide the function with std: : st ring, which can dynamically
change its size depending on the number of bytes that need to be read—preventing
possible buffer overflows.

[282]

Learning to Program File Input/Output Chapter 8

It should be noted that in order to achieve this, the std: : string will perform a new () /
delete () automatically for you—which (especially with respect to system programming)
might introduce inefficiencies that are unacceptable. In this case, the file.getline ()
version should be used, with a wrapper class, similar to what we did with the read ()
function.

Finally, if changes are made to a file that has already been opened, the following will sync
the current stream with these changes:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
file.sync();
}
}

As shown in the preceding code, the sync () function may be used to resync an already
open file with changes to the file.

Writing to a file

Symmetrically like std: : cin and file reading, a file writing is also provided that behaves
similarly to std: : cout. Unlike reading, there are only two different modes of file
writing—by field and by byte.

Writing by field
To write to a file by field, use << operator (), similar to std: : cout, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
std::string hello{"Hello"}, world{"World"};
file << hello << " " << world << '\n';

[283]

Learning to Program File Input/Output Chapter 8

// > gt++ —std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt
// Hello World

In the preceding example, we open a file as usual and then create two std: : st ring objects
with hello and world added to the strings respectively. Finally, these strings are written
to the file. Note that there is no need to close or flush the file, as this is done for us on
destruction of the file stream object.

Like std: : cout, C++ natively supports standard C character buffers and numeric types, as

follows:

#include <fstream>
#include <iostream>

int main ()

{

if (auto file = std::fstream("test.txt")) {
file << "The answer is: " << 42 << '\n';
i
i
// > gt++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt

// The answer is: 42

In the preceding example, we write a standard C character buffer and an integer directly to
the file. User-defined types are also supported with respect to writing, as follows:

#include <fstream>
#include <iostream>

struct myclass

{

bi

std:

std::string hello{"Hello"};

std::string world{"World"};

:fstream &operator << (std::fstream &os, const myclass &obj)
0s << obj.hello;

os << ! v,.

os << obj.world;

return os;

[284]

Learning to Program File Input/Output Chapter 8

int main ()

{
if (auto file = std::fstream("test.txt")) |

file << myclass{} << '\n';
}
}

// > g++ —std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt
// Hello World

In this example, we open a file and write a myclass{} object to the file. The myclass{}
object is a struct that contains two member variables initialized with Hello and World. A
user-defined << operator () overload is then provided that writes to a provided file
stream the contents of the myclass{} object, resulting in Hello World being written to
the file.

Writing bytes

In addition to writing by field, writing a stream of bytes is also supported. In the following
example, we write a single byte to the file (in addition to a newline) using the put ()
function, which is similar to get () but used for writing instead of reading:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file =
file.put ('H'
file.put ('\n

std::fstream("test.txt")) {
)i
")

}

// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt
// H

[285]

Learning to Program File Input/Output Chapter 8

Multiple bytes can also be written using the write () function, as follows:

finclude <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) |
file.write ("Hello World\n", 12);
}
}

// > g++ -std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt
// Hello World

In the preceding example, we write 12 bytes to the file (11 characters for the string Hello
World, and one additional string for the newline).

Like the read () function, the write () function is unsafe and should be wrapped to ensure
that the total number of bytes written to the file does not exceed the total size of the buffer
(otherwise a buffer overflow would occur). To demonstrate how even standard C-style
const character buffers are unsafe, see the following:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) |
file.write ("Hello World\n", 100);
3
3

// > g++ -std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt

// Hello World

/] ; 99999999]) 90000V 995-09ODROV99999199999 |

As shown in this example, attempting to write 100 bytes from a standard C const character
buffer that is only 13 bytes in size (11 for Hello World, 1 for the new line, and 1 for the

\ 0 null termination), results in a buffer overflow. In this case, the buffer overflow results in
corrupted bytes being written to the file, which, at best, leaks parts of the program, but
could also generate instability, including hard-to-debug segmentation faults.

[286]

Learning to Program File Input/Output Chapter 8

To overcome this, a wrapper should be used whenever using these types of unsafe
functions, as follows:

#include <string.h>

#include <fstream>
#include <iostream>

void
mywrite (std::fstream &file, const char *str, std::size_t count)
{
if (count > strlen(str)) {
throw std::out_of_range("file.write out of bounds");

file.write(str, count);

int main ()
{
if (auto file = std::fstream("test.txt")) {
mywrite (file, "Hello World\n", 100);

// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt

// terminate called after throwing an instance of 'std::out_of_range'
// what (): file.write out of bounds

// BAborted (core dumped)

In the preceding example, we create a wrapper around the write () function, similar to the

read () function wrapper that we created previously. When we attempt to write more

bytes than the total size of the standard C const character buffer, we generate an exception

that can be used to trace the error to our attempt to write 100 bytes.

It should be noted that this wrapper only works with standard C const character buffers
that are generated by the compiler. It is possible to declare this type of buffer manually
where this type of function will fail, as follows:

#include <string.h>

#include <fstream>
#include <iostream>

void
mywrite (std::fstream &file, const char *str, std::size_t count)

[287]

Learning to Program File Input/Output Chapter 8

{
if (count > strlen(str)) {
std::cerr << count << " " << strlen(str) << '\n';
throw std::out_of_range("file.write out of bounds");

}

file.write(str, count);

}

int main ()

{

if (auto file = std::fstream("test.txt")) {
const char strl1[6] = {'H','e','1l','1','0"',"'\n"'};
const char str2[6] = {"#',"#',"#',"#',"#','\n'};

mywrite (file, strl, 12);
mywrite (file, str2, 6);

}

// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt
// Hello
// World
// World

In this example, we create two standard C const character buffers. The first buffer consists
of the word Hello with a newline, and the second buffer consists of the word World with a
newline. We then write Hello to the file, but instead of writing 6 characters, we write 12.
Finally, we write Wor1d to the file, and we provide the correct number of bytes, which is 6.

The resulting output is Hello World, with World being written to the file twice. The
reason for this is a carefully crafted buffer overflow. The first write to the file writes Hello
to the buffer, but provides the write () function with 12 bytes instead of 6. Our wrapper in
this case is looking for a null terminator, which does not exist (as we have defined our
standard C const character buffers manually, removing the null terminator).

As aresult, the mywrite () function doesn't detect the overflow, and write both buffers.

There is no safe way to overcome this type of problem (the read () function has similar
issues) without the use of the guideline support library, diligence, and a static analyzer
capable of detecting the use of a these types of buffers unsafely being used (which is not a
trivial thing for a static analyzer to do). As a result, in general, functions such as read ()
and write () should be avoided in favor of by-field and by-line alternatives when possible.

[288]

Learning to Program File Input/Output

Chapter 8

Similar to tellg (), the write stream also has the ability to get the current write pointer

position using the tellp () function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {

std::cout << file.tellp() << '\n';
file << "Hello";
std::cout << file.tellp() << '\n';
file << ' ';
std::cout << file.tellp() << '\n';
file << "World";
std::cout << file.tellp() << '\n';
file << '"\n';
std::cout << file.tellp() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt;

test.txt

// 0

// 5

// 6

// 11

// 12

// Hello World

cat

In the preceding example, Hello World is written to the file, and the tellp () function is

used to output the write pointer position, which resultsin 0, 5, 6, 11, and 12.

It is also possible to move the write pointer to an absolute position within the file using the

seekp () function, as follows:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {

std::cout << file.tellp() << '\n';
file << "Hello World\n";
std::cout << file.tellp() << '\n';
file.seekp(0);
std::cout << file.tellp() << '\n';

[289]

Learning to Program File Input/Output Chapter 8

file << "The answer is: " << 42 << '\n';
std::cout << file.tellp() << '\n';

}

// > gt++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat
test.txt

// 0

// 12

// 0

// 18

// The answer is: 42

In this example, we write Hello World to the file, and then move the write pointer within
the stream back to the beginning of the file. We then write The answer is: 42 to the file.
Along the way, we use tellp () to output the location of the write pointer, showing how
the write pointer moves as we perform these actions.

As a result, the file consists of The answer is: 42, instead of Hello World, as Hello
World is overwritten.

Finally, as with the sync () function, the writes to a file can be flushed to the filesystem
when desired using the following;:

#include <fstream>
#include <iostream>

int main ()
{
if (auto file = std::fstream("test.txt")) {
file.flush();
}
}

It should be noted that although you can flush the file manually (for example, if you know
a change must hit the filesystem), the file will be closed and flushed to the filesystem
automatically when the std: : £st ream object loses scope and is destroyed.

[290]

Learning to Program File Input/Output Chapter 8

When reading and writing, it's possible that different types of errors could occur.
std: : fstream provides four different functions for determining the state of the stream, as

follows:

e good (): If this function returns t rue, no errors have occurred, and the stream
has not reached the end of the file.

e cof ():If this function returns t rue, the end of the file has been reached. Internal
errors do not affect the result of this function.

e fail ():If this function returns t rue, an internal error has occurred, but the
stream is still functional, for example, if a numerical conversion error occurs.

e bad (): If this function returns t rue, an error has occurred, and the stream is no
longer functional, for example, if the stream fails to open a file.

When normal file operations occur, good () should return t rue, while the other three
status functions should return false, as follows:

#include <fstream>
#include <iostream>

int main ()

{
std::cout << std::boolalpha;

if (auto file = std::fstream("test.txt")) {
std::string hello{"Hello"}, world{"World"};

file << hello << " " << world << '\n';
std::cout << "good: " << file.good() << '\n';
std::cout << "fail: " << file.fail() << '\n';
std::cout << "bad: " << file.bad() << '\n';
std::cout << "eof: " << file.eof() << '\n';
}
}
// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out; cat

test.txt

// good: true
// fail: false
// bad: false
// eof: false
// Hello World

In the preceding example, Hello World is written to a file successfully, resulting
in good () returning true.

[291]

Learning to Program File Input/Output Chapter 8

In addition to using the good () function, ! operator () can be used to detect whether an

error has occurred, as follows:

#include <fstream>
#include <iostream>

int main ()

{
std::cout << std::boolalpha;

if (auto file = std::fstream("test.txt")) {
std::string hello{"Hello"}, world{"World"};
file << hello << " " << world << '\n';
if (!file)
std::cout << "failed\n";

// > g++ —std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out;
test.txt
// Hello World

cat

Here, Hello World is successfully written to the file, and as a result, the good () function
returns t rue, which means ! operator () returns false, resulting in the failed string

never being output to stdout.

Similarly, the bool operator can be used, which returns the same result as good (), as

follows:

#include <fstream>
#include <iostream>

int main ()

{
std::cout << std::boolalpha;

if (auto file = std::fstream("test.txt")) {
std::string hello{"Hello"}, world{"World"};
file << hello << " " << world << '\n';
if (file) |
std::cout << "success\n";

// > g++ —-std=c++17 scratchpad.cpp; echo "" > test.txt; ./a.out;

cat

[292]

Learning to Program File Input/Output Chapter 8

test.txt
// success
// Hello World

In the preceding code, Hello World is successfully written to the file, resulting in the bool
operator returning t rue; this means that the good () function would also return true,
since they return the same result.

If an error occurs, the error status remains triggered until the stream is closed, or until the
clear () function is used, telling the stream that you have dealt with the error, as follows:

#include <fstream>
#include <iostream>

int main ()

{
std::cout << std::boolalpha;

if (auto file = std::fstream("test.txt")) {
int answer;
std::cout << file.good() << '\n';
file >> answer;
std::cout << file.good() << '\n';
file.clear();
std::cout << file.good() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; echo "not_a_number" > test.txt; ./a.out
// true
// false
// true

In the preceding example, a string is written to a text file. This test file is opened for
reading, and an integer is read. The problem is that the value written to the file is not
actually a number, causing the file stream to report an error.

The clear function is then used to clear the error, after which the good () function
continues to report t rue.

[293]

Learning to Program File Input/Output Chapter 8

Understanding file utilities

All of the C++ APIs described in this chapter thus far were added prior to C++17. Although
C++ provided the ability to read and write a file, it didn't provide all of the other file
operations that are needed to manage a filesystem, including file paths, directory
management, and so on.

This section will focus on the std: : filesystem additions in C++17 that address most of
these shortcomings.

Paths

A path is nothing more than a string that represents a node in a filesystem. On UNIX
systems, this is usually a string consisting of a series of directory names, /, and a filename,
usually with an extension. The purpose of a path is to represent the name and location of a
file, which can then be used to perform an action on the file such as opening the file for
reading and writing, changing the file's permissions, or even removing the file from the
filesystem.

It should be noted that a path can represent many different types of nodes in a filesystem,
including files, directories, links, devices, and so on. A more complete list will be presented
later in this chapter. Consider the following example:

/home/user/

This is a path that refers to a directory named user, located in a root directory named
home. Now consider the following:

/home/user/test.txt

This refers to a file named test . txt in this same directory. The file's stem is test, while
the file's extension is . txt. In addition, the file's root is / (which is the case on most UNIX
systems).

On UNIX systems, paths can take on different forms, including the following:

Block devices: The path refers to a POSIX-style block device such as /dev/sda

Character devices: The path refers to a POSIX-style character device such as
/dev/random

Directories: The path refers to a regular directory
Fifo: The path refers to a pipe or other form of IPC

[294]

Learning to Program File Input/Output

Chapter 8

To determine what type a path is, C++17 provides the following test functions:

¢ Socket: The path refers to a POSIX socket
e Symlink: The path refers to a POSIX symlink
e Files: The path refers to a regular file

#include <iostream>
#include <filesystem>

int main ()

{

}

//
//
//
//
//
//
//
//
//
//

using namespace std::filesystem;

std:
std:
std:
std:
std:
std:
std:
std:
std:
std:

> g++
true
true
true
false
false
false
true
false
false

rcout
rcout
rcout
rcout
rcout
rcout
rcout
rcout
rcout
rcout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

std: :boolalpha;
is_block_file("/dev/sdal") << '\n';
is_character_file("/dev/random") << '\n';
is_directory ("/dev") << '\n';

is_empty ("/dev") << '\n';

is_fifo("scratchpad.cpp") << '\n';
is_other ("scratchpad.cpp") << '\n';
is_regular_file ("scratchpad.cpp") << '\n';

is_socket ("scratchpad.cpp") << '\n';
is_symlink ("scratchpad.cpp") << '\n';

—-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out

As shown in the preceding example, /dev/sda is a block device, /dev/randomis a
character device, /dev is a directory that is not empty, and the scratchpad. cpp file that is
used to compile all the examples in this chapter is a regular file.

To determine if a path exists, C++17 provides the exists () function, as follows:

#include <iostream>
#include <filesystem>

int main ()

{

[295]

Learning to Program File Input/Output Chapter 8

std::cout << std::boolalpha;

std::cout << std::filesystem::exists("/dev") << '\n';

std::cout << std::filesystem::exists("/dev/random") << '\n';
std::cout << std::filesystem::exists ("scratchpad.cpp") << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// true
// true
// true

Here the directory /dev exists, and so do the character device /dev/random and the
regular file scratchpad. cpp.

Every program that executes must execute from a given directory. To determine this
directory, C++17 provides the current_path () function, as follows:

#include <iostream>
#include <filesystem>

int main ()
{
std::cout << std::filesystem::current_path() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-CPP/Chapter08"

In this example, current_path () is used to get the current directory that a. out is
executing from. The path that was provided by current_path () is an absolute path. To
turn an absolute path into a relative path, use the relative () function, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
std::cout << std::filesystem::relative (path) << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "-"

As shown in this example, the relative path for the current path is simply (.).

[296]

Learning to Program File Input/Output Chapter 8

Similarly, to turn a relative path into an absolute path, C++17 provides the canonical ()
function:

#include <iostream>
finclude <filesystem>

int main ()
{
std::cout << std::filesystem::canonical (".") << '\n';
std::cout << std::filesystem::canonical ("../Chapter08") << '\n';

}

// > g++ —std=c++17 scratchpad.cpp —-lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with—-CPP/Chapter08"
// "/home/user/Hands-On-System-Programming-with—-CPP/Chapter08"

In this example, we use the canonical () function to convert a relative path to an absolute
path. It should be noted that getting the absolute path of . is another way to return the
same result of current_path ().

Also note that the canonical () function returns the absolute path with all references to
../ and ./ resolved, reducing the absolute path to its minimal form. If this type of path is
not desired, the absolute () function may be used instead, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
std::cout << std::filesystem::absolute("../Chapter08") << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-CPP/Chapter08/../Chapter08"

As shown in this example, the . ./ is not removed by the absolute () function.

Since there are different ways to represent the same path (that is, relative, canonical, and
absolute), C++17 provides the equivalent () function, as follows:

#include <iostream>
#include <filesystem>

int main ()

{

auto pathl = std::filesystem::path{"."};

auto path2 std::filesystem::path{"../Chapter08"};

[297]

Learning to Program File Input/Output

Chapter 8

aut
aut
aut

std:
std:
std:
std:
std:

@]
@]
@]

scout
tcout
tcout
tcout
tcout

// > g++ —-std=c++17 scratchpad.

//
//
//
//

true
true
true
true

path3 =
path4
pathb =

<<
<<
<<
<<
<<

std:
std:
std:

std:
std:
std:
std:
std:

:filesystem:
:filesystem:
:filesystem:

:boolalpha;

:filesystem:
:filesystem:
:filesystem:
:filesystem:

:path{"../Chapter08/../Chapter08"};
:current_path();
:current_path () /

"../Chapter08/";

:equivalent (pathl, path2) << '\n';
:equivalent (pathl, path3) << '\n';
:equivalent (pathl, path4) << '\n';
:equivalent (pathl, path5) << '\n';
cpp —lstdc++fs; ./a.out

All the paths referenced in this example refer to the same directory, regardless of whether
they are relative, canonical, or absolute.

If you wish to determine if two paths are lexically equal (containing the same exact

characters), use operator () instead, as follows:

#include <iostream>

finclude <filesystem>

int main ()

{
auto
auto
auto
auto
auto
std:
std:
std:
std:
std:
}
// > g++
// false
// false
// false
// false

pathl = std::filesystem::path{"."};

path2 = std::filesystem: :path{"../Chapter08"};

path3 = std::filesystem: :path{"../Chapter08/../Chapter08"};
path4 = std::filesystem::current_path();

path5 = std::filesystem::current_path() / "../Chapter08/";
:cout << std::boolalpha;

:cout << (pathl == path2) << '\n';

:cout << (pathl == path3) << '\n';

:cout << (pathl == path4) << '\n';

:cout << (pathl == path5) << '\n';

—-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out

[298]

Learning to Program File Input/Output Chapter 8

The code here is the same as the preceding code, apart from the use of == operator ()
instead of the equivalent () function. The previous example returned t rue for all of the
paths since they all refer to the same path, while the preceding example returns false
because the same paths are not lexically equal, even though they are technically the same
path.

Note the use of / operator () in these examples. C++17 provides different concatenation
functions for paths that conveniently provide a clean, readable way of adding to an existing
path: /, /=, and +=. / operator () (and the self-modifying version /= operator ())
concatenates two paths while adding a / for you, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();

path /= "scratchpad.cpp";

std::cout << path << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/scratchpad.cpp"

In this example, scratchpad. cpp is added to the path using /= operator (), and a / is
added for us. If you wish to add the / yourself, or you do not wish for a / to be added at
all, you can use += operator (), as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path += "/scratchpad.cpp";

std::cout << path << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-
CPP/Chapter08/scratchpad.cpp"

[299]

Learning to Program File Input/Output Chapter 8

The result here is the same as in the previous example, with the difference being that +=
operator () is used instead of /= operator (), and so the / needs to be added manually.

In addition to concatenation, C++17 provides some additional path modifiers. One such
function is remove_filename (), which removes the filename from a path, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << path << '\n';
path.remove_filename () ;
std::cout << path << '\n';

// > gt++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out

// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/scratchpad.cpp"

// "/home/user/Hands-On-System-Programming-with—-CPP/Chapter08/"

As shown, the remove_filename () function removes the filename from the path.

It is also possible to replace the filename with something else, instead of removing it, as
follows:

#include <iostream>
finclude <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << path << '"\n';
path.replace_filename ("test.cpp");
std::cout << path << '\n';

// > g++ —std=c++17 scratchpad.cpp -lstdc++fs; ./a.out

// "/home/user/Hands-On-System-Programming-with-
CPP/Chapter08/scratchpad.cpp"

// "/home/user/Hands-On-System-Programming-with-CPP/Chapter08/test.cpp"

[300]

Learning to Program File Input/Output Chapter 8

As shown, the filename scratchpad. cpp was replaced with test . cpp.

As well as replacing the filename, it is also possible to replace the extension, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << path << '\n';
path.replace_extension ("txt");
std::cout << path << '\n';

// > g++ —-std=c++17 scratchpad.cpp —-lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-
CPP/Chapter08/scratchpad.cpp"

// "/home/user/Hands-On-System-Programming-with-
CPP/Chapter08/scratchpad.txt"

As shown, the extension for scratchpad. cpp was changed to . txt.

Finally, if you need to, it's possible to clear a path using the clear () function, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << path << '\n';
path.clear();
std::cout << path << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/scratchpad.cpp"

// nn

As shown in the preceding code, the clear () function deletes the contents of the path (as
if it were default constructed).

[301]

Learning to Program File Input/Output Chapter 8

As stated, a path consists of different parts including a root name, directory, stem, and
extension. To dissect a path into these different components, C++17 provides some helper
functions, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << std::boolalpha;

std::cout << path.root_name() << '\n';
std::cout << path.root_directory() << '\n';
std::cout << path.root_path() << '\n';
std::cout << path.relative_path() << '\n';
std::cout << path.parent_path() << '\n';

std::cout << path.filename() << '\n';
std::cout << path.stem() << '\n';
std::cout << path.extension() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out

// wn
// "/"
// "/"

// "home/user/Hands-On-System-Programming-with-
CPP/Chapter08/scratchpad.cpp"

// "/home/user/Hands-On-System-Programming-with-CPP/Chapter08"
// "scratchpad.cpp"

// "scratchpad"

// ".cpp"

In this example, we dissect the path of the scratchpad. cpp file into its different parts. The
parent path is /home /user/Hands-On-System-Programming-with-CPP/Chapter08,
the filename is scratchpad. cpp, the stem is scratchpad, and the extension is . cpp.

Not all paths contain all the parts that a path could potentially contain. This can occur when
a path points to a directory, or when it is ill-formed.

To figure out which parts a path contains, use the following helpers:

#include <iostream>
#include <filesystem>

int main ()

[302]

Learning to Program File Input/Output Chapter 8

auto path = std::filesystem::current_path();
path /= "scratchpad.cpp";

std::cout << std::boolalpha;

std::cout << path.empty() << '\n';

std::cout << path.has_root_path() << '\n';
std::cout << path.has_root_name() << '\n';
std::cout << path.has_root_directory() << '\n';
std::cout << path.has_relative_path() << '\n';
std::cout << path.has_parent_path() << '\n';

std::cout << path.has_filename() << '\n';
std::cout << path.has_stem() << '\n';
std::cout << path.has_extension() << '\n';
std::cout << path.is_absolute() << '\n';
std::cout << path.is_relative() << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// false
// true
// false
// true
// true
// true
// true
// true
// true
// true
// false

As shown here, you can determine whether a path has a root path, root name, root
directory, relative path, parent path, filename, stem, and extension. You can also determine
whether the path is an absolute path or a relative path.

Finally, C++17 provides different mechanisms for managing paths on a filesystem,
depending on the type of path you're using. For example, if you wish to create a directory
or delete a path (regardless of its type), use the create_directory () and remove ()
functions respectively, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "test";

[303]

Learning to Program File Input/Output Chapter 8

std::cout << std::boolalpha;
std::cout << std::filesystem::create_directory(path) << '\n';
std::cout << std::filesystem::remove (path) << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// true
// true

In the preceding example, we use the create_directory () function to create a directory,
and then we use the remove () function to delete it.

We can also rename a path using the rename () function, as follows:

#include <iostream>
#include <filesystem>

int main ()

{
auto pathl = std::filesystem::current_path();
auto path2 = std::filesystem::current_path();
pathl /= "testl";
path2 /= "test2";

std::cout << std::boolalpha;

std::cout << std::filesystem::create_directory(pathl) << '\n';
std::filesystem: :rename (pathl, path2);

std::cout << std::filesystem::remove (pathl) << '\n';

std::cout << std::filesystem::remove (path2) << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// true
// false
// true

In this example, we create a directory using the create_directory () function. We
rename the directory using the rename () function, and then delete both the old directory
path and the new one. As shown, the attempt to delete the directory that has been renamed
fails, as that path no longer exists, while attempting to delete the new directory succeeds, as
that path does exist.

[304]

Learning to Program File Input/Output Chapter 8

The remove () function will remove any path (assuming the program has the proper
permissions), unless the path points to a directory that is not empty, in which case it will
fail. To remove a directory that is not empty, use the remove_all () function, as follows:

#include <fstream>
#include <iostream>
#include <filesystem>

int main ()

{
auto path = std::filesystem::current_path();
path /= "test";

std::cout << std::boolalpha;
std::cout << std::filesystem::create_directory(path) << '\n';

std::fstream(path / "testl.txt", std::ios::app);
std::fstream(path / "test2.txt", std::ios::app);
std::fstream(path / "test3.txt", std::ios::app);

std::cout << std::filesystem::remove_all (path) << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// true
// 4

As shown here, we create a directory and add some files to the directory using

std: : fstream. We then delete the newly created directory using remove_all () instead
of remove (). If we used the remove () function, the program would throw an exception, as
follows:

terminate called after throwing an instance of
'std::filesystem::__cxxll::filesystem_error'

what () : filesystem error: cannot remove: Directory not empty
[/home/user/Hands-On-System-Programming-with-CPP/Chapter08/test]
Aborted (core dumped)

Another common operation to perform on a filesystem is to iterate over all of the files in a
directory. To do this, C++17 provides a directory iterator, as follows:

#include <fstream>
#include <iostream>
finclude <filesystem>

int main ()

{

[305]

Learning to Program File Input/Output Chapter 8

auto path = std::filesystem::current_path();
path /= "test";

std::cout << std::boolalpha;
std::cout << std::filesystem::create_directory(path) << '\n';

std::fstream(path / "testl.txt", std::ios::app);
std::fstream(path / "test2.txt", std::ios::app);
std::fstream(path / "test3.txt", std::ios::app);

for (const auto &p: std::filesystem::directory_iterator (path)) {
std::cout << p << '\n';

std::cout << std::filesystem::remove_all (path) << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lstdc++fs; ./a.out
// true

// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/test/testl.txt"

// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/test/test3.txt"

// "/home/user/Hands-On-System-Programming-with-—
CPP/Chapter08/test/test2.txt"

// 4

In the preceding example, we create a directory using the create_directory () function,
add some files to the directory, and then use a directory iterator to iterate over all the files.

The directory iterator functions like any other iterator in C++, which means, as shown in the
preceding example, that we can leverage the ranged for syntax.

Finally, C++17 provides a convenient function for determining the path to the temporary
directory, which can be used to create temporary directories as needed for your program,
as follows:

#include <fstream>
#include <iostream>
finclude <filesystem>

int main ()

{
std::cout << std::filesystem::temp_directory_path() << '\n';

// > g++ —std=c++17 scratchpad.cpp —-lstdc++fs; ./a.out

[306]

Learning to Program File Input/Output Chapter 8

// "/tmp"
#endif

It should be noted that on POSIX systems, the temporary directory is usually /tmp, as
shown here. However, it's still prudent to use the temp_directory_path () instead of
hard-coding this path.

Understanding the logger example

In this section, we will extend the debugging example in chapter 6, Learning to Program
Console Input/Output, to include a rudimentary logger. The goal of this logger is to redirect
additions to the std: : c1og stream to a log file in addition to the console.

Just like the debugging functions in chapter 6, Learning to Program Console Input/Output,
we would like the logging functions to be compiled out if the debugging level is not
sufficient, or if debugging has been disabled.

To accomplish this, please see the following code: https://github.com/PacktPublishing/
Hands-On-System-Programming-with-CPP/blob/master/Chapter08/examplel.cpp.

To start, we will need to create two constant expressions—one for the debug level, and one
to enable or disable debugging outright, as follows:

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
felse

constexpr auto g_debug_level = 0;

#endif

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
#endif

Next, we will need to create a global variable, as follows:

std::fstream g_log{"log.txt", std::ios::out | std::ios::app};

The global variable is the log file stream. This will be used to write additions to the
std: :clog stream to a log file. Since this is a log file, we open it as write-only, append,
meaning we can only write to the log, and all writes must append to the end of the file.

[307]

https://cdp.packtpub.com/hands_on_system_programming_with_c___/wp-admin/post.php?post=31&action=edit#post_29
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/example1.cpp

Learning to Program File Input/Output Chapter 8

Next, we will need to define the 1og function itself. This function needs to be able to output
to both std: : clog and to our log file stream without executing the debug logic more than
once (as this could result in unexpected behavior).

The following implements the 1og function with this goal in mind:

template <std::size_t LEVEL>
constexpr void log(void (*func) ()) {
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
std::stringstream buf;

auto g_buf = std::clog.rdbuf();
std::clog.rdbuf (buf.rdbuf ());

func () ;
std::clog.rdbuf (g_buf) ;

std::clog << "\033[1;32mDEBUG\033[0m: ";
std::clog << buf.str();

g_log << "\033[1;32mDEBUG\033[0m: ";
g_log << buf.str();
}i
}

Like the debug functions in chapter ¢, Learning to Program Console Input/Output, this 1log
function starts by wrapping the business logic of the function in a constexpr if statement
(a feature new to C++17), providing the compiler with a means to compile out the code if
debugging is disabled, or if the provided debug level is greater than the current debug
level.

If debugging should take place, the first step is to create a string stream, which behaves just
like std: : clog and the log file stream, but saves the results of any additions to the stream
toastd::string

The read buffer for std: : clog is then saved, and the read buffer of the string stream is
provided to std: : clog. Any additions to the std: : clog stream will be redirected to our
string stream instead of stderr.

Next, we execute the user-provided debug function, collecting the debug string and storing
it in the string stream. Finally, the read () buffer for std: :clogis restored to stderr, and
we output the string stream to both std: : clog and the log file stream.

[308]

Learning to Program File Input/Output Chapter 8

The last step is to create our protected_main () function thatlogs Hello World. Note
that, for demonstration, we also add Hello World to std::clog manually, without the
log function, to demonstrate that std: : clog functions as normal and only logs to our log
file when the 1og function is used. This is shown with the following code:

int

protected_main (int argc, char** argv)

{
(void) argc;
(void) argv;

log<0> ([1{
std::clog << "Hello World\n";
P

std::clog << "Hello World\n";

return EXIT_SUCCESS;
}

To compile this code, we leverage the same CMakeLists. txt file that we have been using
forthECﬁherexanqﬂES:https://github.com/PacktPublishing/Hands—On—System—
Programming-with—-CPP/blob/master/Chapter08/CMakelLists.txt.

With this code in place, we can compile and execute this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter08/

> mkdir build

> cd build

> cmake

> make

> . /examplel
DEBUG: Hello World
Hello World

> cat log.txt
DEBUG: Hello World

Notice how both the debug statements are output to stderr (both the statement in the 1og
function, and the statement manually executed without the 1og function). Yet, the log file
only has a single statement in it, demonstrating the 1og function is responsible for
redirecting additions to std: : clog to both the log file and stderr, while leaving

std: :clog intact for future uses.

[309]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt

Learning to Program File Input/Output Chapter 8

Learning about the tail file example

In this example, we will create a simple program to tail a file. The goal of this example is to
mimic the behavior of tail -f -n0, which outputs new additions to a file. The - £
argument tells the tail to follow the file and -n0 tells tail to only output to stdout new
additions.

The first step is to define the mode we plan to use when opening the file we are tailing, as
follows:

constexpr auto mode = std::ios::in | std::ios::ate;

In this case, we will open the file as read-only, and move the read pointer to the end of the
file on open.

The next step is to create a tail function that watches for changes to a file and outputs the
changes to stdout, as follows:

[[noreturn]] void
tail (std::fstream &file)
{
while (true) {
file.peek();
while(!file.eof ()) {
auto pos = file.tellg();

std::string buf;
std::getline(file, buf, '\n');

if (file.eof () && !file.good())
file.seekg(pos);
break;

}

std::cout << buf << '\n';

}
sleep(l);

file.clear();
file.sync();

}

This tail function starts by telling the compiler that this function does not return, as the
function is wrapped in a while (true) loop that never ends.

[310]

Learning to Program File Input/Output Chapter 8

Next, the function checks whether the end of the file has been reached by first peeking the
file, and then checking the end-of-file bit using eof () . If it has, the program sleeps for a
second, clears all status bits, resyncs with the filesystem to see if any new changes have
been made, and then loops again.

If the read pointer is not at the end of the file, its current position is read in case its position
in the file needs to be restored. The next line in the file is read and stored in a buffer.

It's possible that attempting to read the next line using get 1ine will fail (for example,
when the last character in a file is not a newline). If this occurs, the contents of the buffer
should be ignored (as it is not a complete line), and the read pointer needs to be restored to
its original position.

If the next line is successfully read, it is output to stdout, and we loop again to see if more
lines need to be read.

The last function in this example must parse the arguments provided to our program to get
the file name to tail, open the file, and then call the tail function with the newly opened
file, as follows:

int
protected_main (int argc, char **argv)
{

std::string filename;

auto args = make_span (argv, argc);

if (args.size() < 2) {
std::cin >> filename;

}

else {
filename = ensure_z (args[1l]) .data();
}
if (auto file = std::fstream(filename, mode)) {

tail (file);
}

throw std::runtime_error ("failed to open file");

}

As with previous examples, we parse the arguments using a gs1: : span to ensure safety
and remain compliant with C++ Core Guidelines. If no arguments are provided to the
program, we wait for the user to provide the program with the filename to tail.

[311]

Learning to Program File Input/Output Chapter 8

If a filename is provided, we open the file and call tail (). If the file cannot be opened, we
throw an exception.

To compile this code, we leverage the same CMakeLists. txt file that we have been using
fOrfhE(ﬁherexquﬂeS:https://github.com/PacktPublishing/Hands—On—System—
Programming-with—-CPP/blob/master/Chapter08/CMakelLists.txt.

With this code in place, we can compile and execute this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter08/

> mkdir build

> cd build

cmake ..

make

touch test.txt
./example2 test.txt

vV VVY

From another terminal, we can make changes to the file as follows:

> cd Hands-On-System-Programming-with-CPP/Chapter08/build
> echo "Hello World" > test.txt

This would result in the example program outputting the following to stdout:

Hello World

To ensure the program is ignoring incomplete lines, we can add an incomplete line to the
file, as follows:

> echo —n "Hello World" > test.txt

This results in no output from the example program.

Comparing C++ versus mmap benchmark

In this example, we will benchmark the difference between reading the contents of a file
using std: : fstream and reading them using mmap () .

It should be noted that the mmap () function leverages a system call to directly map a file
into the program, and we expect mmap () to be faster than the C++ APIs highlighted in this
chapter. This is because the C++ APIs have to perform an additional memory copy, which is
obviously slower.

[312]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt

Learning to Program File Input/Output Chapter 8

We will start this example by defining the size of the file we plan to read, as follows:

constexpr auto size = 0x1000;

Next, we must define a benchmark function to record how long it takes to perform an
action:

template<typename FUNC>
auto benchmark (FUNC func) {

auto stime = std::chrono::high_resolution_clock::now();
func () ;

auto etime = std::chrono::high_resolution_clock::now();
return etime - stime;

}

In the preceding function, we leverage a high-resolution timer to record how long it takes
to execute a user-provided function. It should be noted that this benchmark program is
relatively generic, and can be used for a lot of non-trivial functions (as trivial functions are
often difficult to benchmark, even with high-resolution timers).

Finally, we need to create a file read, and then we need to read the file using
std::fstreamand mmap () as follows:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

using namespace std::chrono;

char buf[size] = {};

if (auto file = std::fstream("test.txt", std::ios::out)) {
file.write (buf, size);

char buf[size];
if (auto file std::fstream("test.txt", std::ios::in)) {
auto time = benchmark ([&file, &bufl]{
file.read (buf, size);

I~

P

std::cout << "c++ time: "

[313]

Learning to Program File Input/Output Chapter 8

<< duration_cast<microseconds> (time) .count ()
<< '"\n';

void *buf;
if (int fd = open("test.txt", O_RDONLY); fd != 0) {
auto time = benchmark ([&fd, &buf]{
buf = mmap (NULL, size, PROT_READ, 0, £fd, 0);
)i

munmap (buf, size);

std::cout << "mmap time: "
<< duration_cast<microseconds> (time) .count ()
<< '"\n';

return EXIT_SUCCESS;
t

The first step in the protected_main () function is to create the file we plan to read, as
follows:

char buf[size] = {};
if (auto file = std::fstream("test.txt", std::ios::out)) {
file.write (buf, size);

}

To do this, we open the file we plan to read using write-only, which also opens the file
using std: :ios: : trunc by default, erasing the contents of the file for us just in case.
Finally, we write size number of zeros to the file.

The next step is to read the file using std: : fstream, as follows:

char buf[size];
if (auto file std::fstream("test.txt", std::ios::in)) |
auto time = benchmark ([&file, &buf]{
file.read (buf, size);

I~

)i

std::cout << "c++ time: "

<< duration_cast<microseconds> (time) .count ()
<< '"\n';

[314]

Learning to Program File Input/Output Chapter 8

Before we read the file using std: : fstream, we open the file using read-only, which
opens the file at the beginning of the file. Our file read is then encapsulated in our
benchmark function. The results of the benchmark are output to stdout.

Finally, the last step is to do the same for mmap (), as follows:

void *buf;
if (int fd = open("test.txt", O_RDONLY); fd != 0) {
auto time = benchmark ([&fd, &buf]{
buf = mmap (NULL, size, PROT_READ, 0, fd, 0);
)i

munmap (buf, size);

std::cout << "mmap time: "
<< duration_cast<microseconds> (time) .count ()
<< '"\n';

}

As with std: : £strean, the file is opened first, and then the use of mmap () is encapsulated
in our benchmark function.

To compile this code, we leverage the same CMakeLists. txt file that we have been using
forthECﬁherexanqﬂES:https://github.com/PacktPublishing/Hands—On—System—
Programming-with—-CPP/blob/master/Chapter08/CMakelLists.txt.

With this code in place, we can compile and execute this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter08/

> mkdir build

> cd build

> cmake
> make
> . /example3
c++ time: 16
mmap time: 3

As shown, mmap () executes faster than std: : fstream.

[315]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter08/CMakeLists.txt

Learning to Program File Input/Output Chapter 8

Summary

In this chapter, we learned how to open a file in different ways, depending on how we plan
to use the file itself. Once opened, we learned how to read and write to the file using the
std::fstream C++ APIs.

We learned the difference between fields and bytes, and the advantages and disadvantages
of both methods of reading and writing, as well as common unsafe practices. In addition,
we learned about support functions that provide the ability to move pointers within the
std: : fstream APIs to manipulate how a file is read and written.

Furthermore, in this chapter, we gave an extensive overview of the new filesystem APIs
added to C++17, including paths and their support functions for manipulating files and
directories.

We concluded this chapter with three examples. In the first we wrote a logger to redirect
the output of std: : clog to alog file and stdout. The second example demonstrated how
to rewrite the tail POSIX command using C++.

Finally, in the third example, we wrote some benchmarking code to compare the difference
in performance of POSIX, C and C++. In the next chapter, we will cover C++ allocators
including how to create stateful allocators such as a memory pool that can be used when
system programming to improve memory performance and efficiency when applicable.

Questions

1. What is the name of the function used to see whether a file was successfully
opened?
2. What is the default mode for opening a file?

3. What happens if you attempt to read a non-numeric value into a numeric
variable from a file?

4. What types of error could occur if you unsafely use the read () orwrite ()
functions?

5. Does /= operator () add a / to your path for you automatically?
6. What is the stem of the following path—/home /user/test.txt?
7. What is the parent directory of the following path—/home /user/test .txt?

[316]

Learning to Program File Input/Output Chapter 8

Further reading

® https://www.packtpub.com/application—-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-
programming-video

[317]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

A Hands-On Approach to
Allocators

In chapter 7, A Comprehensive Look at Memory Management, we learned how to allocate and
deallocate memory using C++-specific techniques, including the use of std: :unique_ptr
and std::shared_ptr. In addition, we learned about fragmentation and how it is capable
of wasting large amounts of memory depending on how memory is allocated and then later
deallocated. System programmers often have to allocate memory from different pools
(sometimes originating from different sources), and handle fragmentation to prevent the
system from running out of memory during operation. This is especially true for embedded
programmers. Placement new () may be used to solve these types of issues, but
implementations based on placement new are often hard to create and even harder to
maintain. Placement new () is also only accessible from user-defined code, providing no
control over the allocations that originate from the C++ standard library APIs (such

as std:: list and std:: map).

To solve these types of issues, C++ provides a concept called the allocator. C++ allocators
define how memory should be allocated and deallocated for a specific type T. In this
chapter, you will learn how to create your own allocators while covering the intricate
details of the C++ allocator concept. This chapter will end with two different examples; the
first example will demonstrate how to create a simple, cache-aligned allocator that is
stateless, while the second will provide a functional example of a stateful object allocator
that maintains a free pool for fast allocations.

The objectives of this chapter are as follows:

e Introducing the C++ allocators
¢ Studying an examples of stateless, cache-aligned allocator
¢ Studying an example of stateful, memory-pool allocator

A Hands-On Approach to Allocators Chapter 9

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

To download all of the code in this chapter, including the examples and code snippets,
please see the following link: https://github.com/PacktPublishing/Hands—-On-System-
Programming-with—-CPP/tree/master/Chapter09.

Introducing the C++ allocators

C++ allocators define a template class that allocates memory for a specific type T and are
defined by the allocator concept definition. There are two different types of allocators:

¢ Allocators that are equal
¢ Allocators that are unequal

An allocator that is equal is an allocator that can allocate memory from one allocator and
deallocate memory from another, for example:

myallocator<myclass> myallocl;
myallocator<myclass> myalloc2;

auto ptr = myallocl.allocate(l);
myalloc2.deallocate (ptr, 1);

As shown in the preceding example, we create two instances of myallocator{}. We
allocate memory from one of the allocators and then deallocate memory from the other
allocator. For this to be valid, the allocators must be equal:

myallocl == myalloc2; // true

If this does not hold true, the allocators are considered unequal, which greatly complicates
how the allocators can be used. An unequal allocator is usually an allocator that is stateful,
meaning it stores a state within itself that prevents an allocator from deallocating memory
from another instance of the same allocator (because the state is different).

[319]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter09

A Hands-On Approach to Allocators Chapter 9

Learning about the basic allocator

Before we dive into the details of a stateful, unequal allocator, let's review the most basic
allocator, which is a stateless, equal allocator. This most basic allocator takes the following
form:

template<typename T>
class myallocator

{

public:

using value_type = T;

using pointer = T *;

using size_type = std::size_t;
public:

myallocator () = default;

template <typename U>
myallocator (const myallocator<U> &other) noexcept
{ (void) other; }

pointer allocate(size_type n)

{

if (auto ptr = static_cast<pointer>(malloc(sizeof(T) * n))) |
return ptr;

}

throw std::bad_alloc();
}

void deallocate (pointer p, size_type n)
{ (void) n; return free(p); }

bi

template <typename T1l, typename T2>
bool operator==(const myallocator<T1l> &, const myallocator<T2> &)
{ return true; }

template <typename T1l, typename T2>
bool operator!=(const myallocator<T1l> &, const myallocator<T2> &)
{ return false; }

To start, all allocators are template classes, as follows:

template<typename T>
class myallocator

[320]

A Hands-On Approach to Allocators Chapter 9

It should be noted that allocators can have any number of template arguments, but at least
one is needed to define the type that the allocator will allocate and deallocate. In our
example, we use the following aliases:

using value_type = T;
using pointer = T *;
using size_type = std::size_t;

Technically speaking, the only alias that is required is the following;:

using value_type = T;

Since, however, T* and std: :size_t are required to create a minimal allocator, these
aliases might as well be added to provide a more complete implementation. The optional
aliases include the following:

using value_type = T;

using pointer = T *;

using const_pointer = const T *;

using void_pointer = void *;

using const_void_pointer = const void *;
using size_type = std::size_t;

using difference_type = std::ptrdiff_t;

If a custom allocator doesn't provide these, the preceding default values will be provided
for you.

As shown, all allocators must provide a default constructor. This is due to the fact that C++
containers will create the allocator on their own, in some cases more than once, and they
will use the default constructor to do so, which means the construction of an allocator must
be possible without the need of an additional argument.

The allocate () function in our example is the following:

pointer allocate(size_type n)
{
if (auto ptr = static_cast<pointer>(malloc(sizeof(T) * n))) {
return ptr;

}

throw std::bad_alloc();
}

As with all of the functions being explained in this example, the function signature of

the allocate () function is defined by the allocator concept, which means that each
function in the allocator must take on a specific signature; otherwise, the allocator will not
compile correctly when used by existing containers.

[321]

A Hands-On Approach to Allocators Chapter 9

In the preceding example, malloc () is used to allocate some memory, and if malloc
doesn't return nullptr, the resulting pointer is returned. Since the allocator allocates
pointers of the T* type, and not void *, we must statically cast the result of malloc ()
before returning the pointer. The number of bytes provided tomalloc () is equal

to sizeof (T) * n.This is because the n parameter defines the total number of objects the
allocator must allocate—because some containers will allocate several objects at once and
expect that the objects being allocated are contiguous in memory. Examples of this include
std: :deque and std: :vector, and it's up to the allocator to ensure these rules hold true
in memory. Finally, if malloc () returns nullptr, indicating the requested memory could
not be allocated, we throw std: :bad_alloc().

It should be noted that in our example, we use malloc () instead of new ().

Here, malloc () should be used instead of new () because the container will construct the
object being allocated for you. For this reason, we don't want to use new (), since it would
also construct the object, meaning the object would be constructed twice, which would lead
to corruption and undefined behavior. For this reason, new () and delete () should never
be used in an allocator.

The deallocate function performs the opposite of the allocate function, freeing
memory and releasing it back to the operating system:

void deallocate (pointer p, size_type n)
{ (void) n; free(p); }

In the preceding example, to deallocate memory, we simply need to call free (). Note that
we are creating an equal allocator, which means that pt r does not need to originate from
the same allocator performing the deallocation. The number of allocations, n, however,
must match the original allocation, which in our case may be safely ignored, since we are
using malloc () and free (), which automatically keep track of the size of the original
allocation for us. Not all allocators will have this property.

In our simple example, there are two additional requirements to conform to a C++ allocator
that are far less obvious in terms of what exactly their purpose is. The first is the use of a
copy constructor using a template type of U, as follows:

template <typename U>
myallocator (const myallocator<U> &other) noexcept
{ (void) other; }

This is because when you use the allocator with a container, you specify the type in the
container's definition, for example:

std::list<myclass, myallocator<myclass>> mylist;

[322]

A Hands-On Approach to Allocators Chapter 9

In the preceding example, we create an std: : 1ist of themyclass{} type, with an
allocator that allocates and deallocates myclass{} objects. The problemis, std::1ist has
its own internal data structures that must also be allocated. Specifically, std: : 1ist
implements a linked list, and as a result, std: : 1ist must be able to allocate and deallocate
linked list nodes. In the preceding definition, we defined an allocator that allocates and
deallocates myclass{} objects, but std::1ist will actually allocate and deallocate nodes
and these two types are not the same. To solve this, std: : 1ist will create a copy of the
myclass{} allocator using the template version of the copy constructor,

providing std: : 1ist with the ability to create its own node allocator using the allocator
that it was originally provided. For this reason, the template version of the copy constructor
is required for a fully functional allocator.

The second odd addition to the preceding example is the use of the equality operators, as
follows:

template <typename T1l, typename T2>
bool operator==(const myallocator<Tl1l> &, const myallocator<T2> &)
{ return true; }

template <typename T1l, typename T2>
bool operator!=(const myallocator<Tl> &, const myallocator<T2> &)
{ return false; }

The equality operators define whether the allocator is equal or unequal. In the preceding
example, we have created a stateless allocator, which means that the following is valid:

myallocator<int> myallocl;
myallocator<int> myalloc2;

auto ptr = myallocl.allocate(l);
myalloc2.deallocate (ptr, 1);

If the preceding property holds true, the allocators are equal. Since, in our

example, myallocl{} callsmalloc () when allocating, and myalloc2{} calls free ()
when deallocating, we know that they are interchangeable, which means the preceding
holds true and our example implements an equal allocator. The preceding equality
operators simply state this equality formally, providing APIs, such as C++ containers, with
a means to create new allocators as needed.

[323]

A Hands-On Approach to Allocators Chapter 9

Understanding the allocator's properties and
options

The basic allocator we just discussed provides only the required functionality to create and
use an allocator with existing C++ data structures (and other user-defined types that
leverage object allocation). In addition to the optional aliases we discussed, there are
several other options and properties that make up C++ allocators.

Learning the properties

C++ allocators must adhere to a certain set of properties, most of which are either obvious
or easily adhered to.

The value pointer type

The first set of properties ensures that the pointer type returned by the allocator is, in fact, a
pointer:

myallocator<myclass> myalloc;

myclass *ptr = myalloc.allocate(l);
const myclass *cptr = myalloc.allocate(l);

std::cout << (*ptr).datal << '\n';
std::cout << (*cptr).data2 << '\n';

std::cout << ptr->datal << '\n';
std::cout << cptr->data2 << '\n';

// 0
// 32644
// 0
// 32644

If the pointer returned by the allocator is truly a pointer, it's possible to dereference the
pointer to access the memory it points to, as shown in the preceding example. It should also
be noted that in this example, we get relatively random values returned when attempting to
output the resulting allocated memory to stdout. This is because there is no requirement
to zero memory from an allocator, as this operation is done for us by the container that uses
this memory, which is more performant.

[324]

A Hands-On Approach to Allocators Chapter 9

Equality

As stated previously, if an allocator is equal when compared, they return t rue, as shown
here:

myallocator<myclass> myallocl;
myallocator<myclass> myalloc2;

std::cout << std::boolalpha;

std::cout << (myallocl == myalloc2) << '\n';
std::cout << (myallocl != myalloc2) << '\n';
// true
// false

If two allocators of the same type return t rue, it means a container that uses this allocator
is free to allocate and deallocate memory with different instances of the same allocator
freely, which ultimately enables the use of certain optimizations. For example, it's possible
for a container to never actually store an internal reference to an allocator, and instead to
create an allocator only when memory needs to be allocated. From that point on, the
container manages memory internally, and only deallocates memory on destruction, at
which time the container will create yet another allocator to perform deallocations, once
again assuming the allocators are equal.

As we've covered, allocator equality usually correlates with statefulness. Typically, stateful
allocators are not equal, while stateless allocators are equal; but this rule doesn't always
hold true, especially when a copy is made of a stateful allocator, which is required by the
spec to provide equality (or at least the ability to deallocate previously-allocated memory
that was allocated from the copy). We will provide more details on this specific issue when
we cover stateful allocators.

One issue with allocators prior to C++17 was that there was no easy way for a container to
identify whether an allocator was equal, without first creating two instances of the same
allocator at initialization, comparing them, and then setting the internal state based on the
result. Due to this limitation in the C++ allocator concept, containers either assumed
stateless allocators (which was the case with older versions of C++ libraries), or they
assumed all allocators were stateful, removing the possibility of optimizations.

To overcome this, C++17 introduced the following;:

using is_always_equal = std::true_type;

[325]

A Hands-On Approach to Allocators Chapter 9

If this is not provided by your allocator, as is the case with the preceding examples, the
default value is std: :empty, telling the container that the old-style comparisons are
required to determine equality. If this alias is provided, the container will know how to
optimize itself.

Different allocation types

How memory is allocated by a container depends entirely on the type of container, and as a
result, an allocator must be able to support different allocation types, such as the following:

¢ All allocations by an allocator must be contiguous in memory. There is no
requirement for one allocation to be contiguous in memory with another
allocation, but each individual allocation must be contiguous.

¢ An allocator must be able to allocate more than one element in a single allocation.
This can sometimes be problematic depending on the allocator.

To explore these properties, let's use the following example:

template<typename T>
class myallocator

{

public:

using value_type = T;
using pointer = T *;
using size_type = std::size_t;

using is_always_equal = std::true_type;

public:

myallocator ()
{
std::cout << this << " constructor, sizeof(T): "
<< sizeof (T) << '\n';

}

template <typename U>
myallocator (const myallocator<U> &other) noexcept
{ (void) other; }

pointer allocate(size_type n)

{
if (auto ptr = static_cast<pointer>(malloc(sizeof(T) * n))) {
std::cout << this << " A [" << n << "]: " << ptr << '"\n';
return ptr;

[326]

A Hands-On Approach to Allocators

Chapter 9

throw std::bad_alloc();

volid deallocate (pointer p, size_type

{

(void) nj;

std::cout << this << " D [" << n
free(p);

bi

template <typename T1l, typename T2>
bool operator==(const myallocator<Tl> &,
{ return true; }

template <typename T1l, typename T2>
bool operator!=(const myallocator<Tl> &,
{ return false; }

<< "]: " << p << "\n';

const myallocator<T2> &)

const myallocator<T2> &)

The preceding allocator is the same as the first allocator, with the exception that debugging
statements were added to the constructors and the allocate and deallocate functions,
allowing us to see how a container is allocating memory.

Let's examine a simple example of std: :1ist:

std::1list<int, myallocator<int>> mylist;
mylist.emplace_back (42);

// 0x7ffe97b0e8el0 constructor, sizeof (T):

// 0x7ffe97b0e8e0 A [1]: 0x55c0793e8580
// 0x7ffe97b0e8e0 D [1]: 0x55c0793e8580

[327]

24

A Hands-On Approach to Allocators Chapter 9

As we can see, we have a single allocation and deallocation from the allocator. The allocator
is allocating memory of 24 bytes even though the type provided was an int, which is of 4
bytes in size. This is because std: : 1ist allocates linked list nodes, which in this case are
24 bytes. The allocator is located at 0x7ffe97b0e8e0, and the allocation was located at
0x55c0793e8580. Also, as shown, the number of elements allocated each time the allocate
function was called was one. This is because std: : 1ist implements a linked list, which
does a dynamic allocation for each element added to the list. Although this seems
extremely wasteful when a custom allocator is leveraged, this can be quite helpful when
performing system programming as it is sometimes easier to work with memory when only
one element is being allocated at a time (instead of multiple).

Now let's look at std: :vector, as follows:

std::vector<int, myallocator<int>> myvector;
myvector.emplace_back (42);
myvector.emplace_back (42);
myvector.emplace_back (42);

// Ox7ffeldb8e2d0 constructor, sizeof(T): 4

// 0xT7ffeldb8e2d0 A [1]: 0x55bf9dbdd550
// 0xT7ffeldb8e2d0 A [2]: 0x55bf9dbebe90
// 0xT7ffeldb8e2d0 D [1]: 0x55bf9dbdd550
// 0xT7ffeldb8e2d0 A [4]: 0x55bf9dbdd550
// 0xT7ffeldb8e2d0 D [2]: 0x55bf9dbebe90
// 0xT7ffeldb8e2d0 D [4]: 0x55bf9dbdd550

In the preceding example, we create std: : vector with our customer allocator, and then,
unlike the previous example, we add three integers to the vector instead of one. This is
because std: : vector has to maintain contiguous memory regardless of the number of
elements in the vector (which is one of the main properties of std: : vector). As a result,
if std: :vector fills up (that is, runs out of memory), std: : vector must allocate a
completely new, contiguous block of memory for all of the elements in std: : vector,
copy std: :vector from the old memory to the new memory, and then deallocate the
previous block of memory as it is no longer large enough.

[328]

A Hands-On Approach to Allocators Chapter 9

To demonstrate how this works, we add three elements to std: :vector:

e The first element allocates a block of memory that is four bytes in size (n ==
and sizeof (T) == 4).

¢ The second time we add data to std: : vector, the current block of memory is
full (as only four bytes were allocated the first time around), so std: :vector
must deallocate this previously-allocated memory, allocate a new block of
memory, and then copy the old contents of std: : vector. This time around,
however, the allocation sets n == 2, so eight bytes are allocated.

¢ The third time we add an element, std: : vector is out of memory again, and
the process is repeated but with n == 4, which means that 16 bytes are
allocated.

As a side note, the first allocation starts at 0x55bf9dbdd550, which also happens to be the
location of the third allocation. This is because malloc () is allocating memory that is
aligned to 16 bytes, which means that the first allocation, although only 4 bytes in size,
actually allocated 16 bytes, which would have been enough for n == 4 in the first place
(that is, the implementation of std: : vector provided by GCC could use an optimization).
Since the first allocation is deallocated the second time memory is added to the

std: :vector, this memory is free to be used for the third time an element is used, as the
original allocation is still large enough for the requested amount.

It is obvious looking at how the allocator is used, that unless you actually need contiguous
memory, std: : vector is not a good choice for storing a list, as it is slow. std: :1ist,
however, takes up a lot of additional memory, as each element is 24 bytes, instead of 4. The
next and final container to observe is std: : deque, which finds a happy medium between
std::vector and std::1list:

std::deque<int, myallocator<int>> mydeque;
mydeque.emplace_back (42);
mydeque.emplace_back (42);
mydeque.emplace_back (42);

// constructor, sizeof(T): 4

// Ox7ffdea986e67 A [8]: 0x55d6822b0dal
// Ox7ffdea986f30 A [128]: 0x55d6822afaf0l
// Ox7ffdea986f30 D [128]: 0x55d6822afaf0l
// Ox7ffdea986e67 D [8]: 0x55d6822b0dal

[329]

A Hands-On Approach to Allocators Chapter 9

std: :deque creates a linked list of memory blocks that can be used to store more than one
element. In other words, std: :dequeisa std::1list of std: :vectors. Like std::1ist,
memory is not contiguous, but like std: : vector, each element only consumes four bytes
and a dynamic memory allocation is not needed for each element added. As shown,
sizeof (T) == 4 bytes, and during the creation of std: : deque, a large buffer of memory
is allocated to store several elements (128 elements, to be specific). The second, smaller
allocation is used for internal bookkeeping.

To further explore std: : deque, let's add a lot of elements to std: : deque:
std: :deque<int, myallocator<int>> mydeque;

for (auto 1 = 0; 1 < 127; i++)
mydeque.emplace_back (42);

for (auto 1 = 0; 1 < 127; i++)
mydeque.emplace_back (42);

for (auto 1 = 0; 1 < 127; i++)
mydeque.emplace_back (42);

// constructor, sizeof(T): 4

// 0x7ffc5926blb7 A [8]: 0x560285cc0dal
// 0x7f£c5926b280 A [128]: 0x560285cbfaf0
// 0x7f£c5926b280 A [128]: 0x560285ccl1660
// 0xT7f£c5926b280 A [128]: 0x560285cclbcO
// 0x7f£c5926b280 D [128]: 0x560285cbfaf0
// 0x7f£c5926b280 D [128]: 0x560285ccl1660
// 0x7f£c5926b280 D [128]: 0x560285cclbcO
// 0x7f£fc5926blb7 D [8]: 0x560285cc0dal

In the preceding example, we add 127 elements three times. This is because each allocation
allocates enough for 128 elements, with one of the elements being used for bookkeeping.
As shown, std: :deque allocates three blocks of memory.

Copying equal allocators

Copying containers with allocators that are equal is straightforward—this is because the
allocators are interchangeable. To explore this, let's add the following overloads to the
previous allocator so that we may observe additional operations taking place:

myallocator (myallocator &&other) noexcept
{
(void) other;
std::cout << this << " move constructor, sizeof(T): "

[330]

A Hands-On Approach to Allocators Chapter 9

<< sizeof (T) << '\n';

myallocator &operator=(myallocator &&other) noexcept
{
(void) other;
std::cout << this << " move assignment, sizeof (T): "
<< sizeof (T) << '\n';
return *this;

myallocator (const myallocator &other) noexcept

{
(void) other;
std::cout << this << " copy constructor, sizeof (T): "
<< sizeof (T) << '\n';

myallocator &operator=(const myallocator &other) noexcept
{
(void) other;
std::cout << this << " copy assignment, sizeof (T): "
<< sizeof (T) << '\n';
return *this;

}

The preceding code adds a copy constructor, copy assignment operator, move
constructor, and a move assignment operator, all of which have debug statements so that
we may see what the container is doing. With the preceding addition, we will be able to see
when a copy of an allocator is performed. Now let's use this allocator in a container that is
copied:

std::1list<int, myallocator<int>> mylistl;

std::1list<int, myallocator<int>> mylist2;

mylistl.emplace_back (42);
mylistl.emplace_back (42);

std:iicout << Memmmmmm o \n";
mylist2 = mylistl;
std:iicout << Memmmmmm o \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

[331]

A Hands-On Approach to Allocators Chapter 9

In the preceding example, we create two lists. In the first std: : 1ist, we add two elements
to the list and then we copy the list to the second std: : 1ist. Finally, we add two more
elements to the second std: : 1ist. The output is as follows:

0x7fff866d1e50 constructor, sizeof(T): 24
0x7fff866d1e70 constructor, sizeof(T): 24
0x7fff866d1e50 A [1]: 0x557c430ec550
0x7fff866d1e50 A [1]: 0x557c430fae90
0x7f££866d1d40 copy constructor, sizeof(T): 24
0x7fff866d1d40 A [1]: 0x557c430e39a0
0x7fff866d1d40 A [1]: 0x557c430f14a0

0x7£f£866d1e70 A [1]: 0x557c430£3b30
0x7ff£f866d1e70 A [1]: 0x557c430ec4dO
0x7££f£866d1e70 D [1]: 0x557c430e39a0
0x7££f£866d1e70 D [1]: 0x557c430£14a0
0x7f££f£866d1e70 D [1]: 0x557c430£3b30
0x7££f£866d1e70 D [1]: 0x557c430ec4dO
0x7££f£866d1e50 D [1]: 0x557c430ec550
0x7££f£866d1e50 D [1]: 0x557c430fae90

As expected, each list creates the allocator that it plans to use, and the allocators create
std: :1ist nodes of 24 bytes. We then see the first allocator allocate memory for the two
elements that are added to the first list. The second list is still empty just prior to copying
the first list and, as a result, the second container creates a third, temporary allocator that it
can use solely for copying the lists. Once this is done, we add the final two elements to the
second list, and we can see the second list uses its original allocator to perform the
allocations.

std: :1ist is free to allocate memory from one allocator and deallocate from another, and
this is seen in the deallocations, which is why std: : 1ist creates a temporary allocator
during the copy, as it is free to do so. Whether a container should create temporary
allocators is not the point (although it is likely a debatable optimization).

Moving equal allocators

Moving a container is similar to copying a container if the allocators are equal. Once again,
this is because there are no rules as to what the container has to do, since a container can
use its original allocator to handle any memory, and if it needs to, it can create a new
allocator, as follows:

std::1list<int, myallocator<int>> mylistl;
std::1list<int, myallocator<int>> mylist2;

[332]

A Hands-On Approach to Allocators Chapter 9

mylistl.emplace_back (42);
mylistl.emplace_back (42);

std::cout << " \n";
mylist2 = std::move (mylistl);
std::cout << " \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

In the preceding example, instead of copying the first container, we move it instead. As a
result, the first container after the move is no longer valid, and the second container now
owns the memory from the first container.

The output of this example is as follows:

0x7ffe582e2850 constructor, sizeof(T): 24
0x7ffe582e2870 constructor, sizeof(T): 24
0x7ffe582e2850 A [1]: 0x56229562d550
0x7ffe582e2850 A [1]: 0x56229563be90
0x7ffe582e2870 A [1]: 0x5622956249a0
0x7ffe582e2870 A [1]: 0x5622956324a0
0x7ffe582e2870 D [1]: 0x56229562d550
0x7ffe582e2870 D [1]: 0x56229563be90
0x7ffe582e2870 D [1]: 0x5622956249a0
0x7ffe582e2870 D [1]: 0x5622956324a0

Similar to the copy example, the two lists are created and each std: :1ist creates an
allocator that manages the std: : 1ist nodes of 24 bytes. Two elements are added to the
first list, and then the first list is moved into the second list. As a result, memory that
belongs to the first list is now owned by the second container and no copies are performed.
The second allocations to the second list are performed by its own allocator, as are all

deallocations, since allocations from the first allocator can be deallocated using the second

allocator.

[333]

A Hands-On Approach to Allocators Chapter 9

Exploring some optional properties

C++ allocators provide some additional properties that are above and
beyond is_always_equal. Specifically, the author of a C++ allocator can optionally define

the following:

® propagate_on_container_copy_assignment
® propagate_on_container_move_assignment

® propagate_on_container_swap

The optional properties tell a container how the allocator should be handled during a
specific operation (that is, copy, move, and swap). Specifically, when a container is copied,
moved, or swapped, the allocator isn't touched and, as we will show, this can result in
inefficiencies. The propagate properties tell the container to propagate the operation to the
allocator. For example, if propagate_on_container_copy_assignment is set to

std: :true_type and a container is being copied, the allocator must also be copied when
normally it wouldn't be.

To better explore these properties, let's create our first unequal allocator (that is, two
different instances of the same allocator may not be equal). As stated, most allocators that
are unequal are stateful. In this example, we will create a stateless, unequal allocator to
keep things simple. Our last example in this chapter will create an unequal, stateful
allocator.

To start our example, we first need to create a managed object for our allocator class, as
follows:

class myallocator_object

{
public:

using size_type = std::size_t;
public:

void *allocate(size_type size)
{
if (auto ptr = malloc(size)) {
std::cout << this << " A " << ptr << '\n';
return ptr;

}

throw std::bad_alloc();

[334]

A Hands-On Approach to Allocators Chapter 9

voilid deallocate (void *ptr)

{
std::cout << this << " D " << ptr << '\n';
free (ptr);

bi
Unequal allocators must adhere to the following properties:

¢ All copies of an allocator must be equal. This means that even if we create an
unequal allocator, a copy of an allocator must still be equal. This becomes
problematic when the rebind copy constructor is used, as this property still holds
true (that is, even though two allocators may not have the same type, they may
still have to be equal if one is the copy of another).

¢ All equal allocators must be able to deallocate each other's memory. Once again,
this becomes problematic when the rebind copy constructor is used. Specifically,
this means that an allocator managing int objects might have to deallocate
memory from an allocator managing std: : 1ist nodes.

To support these two rules, most unequal allocators end up being wrappers around a
managed object. That is, an object is created that can allocate and deallocate memory and
each allocator stores a pointer to this object. In the preceding

example, myallocator_object{} is the managed object capable of allocating and
deallocating memory. To create this object, all we did was move malloc () and free ()
from the allocator itself into this myallocator_object{}; the code is the same. The only
additional logic that was added to myallocator_object{} is the following:

¢ The constructor takes a size. This is because we cannot create the managed object
as a template class. Specifically, the managed object needs to be able to change
the type of memory that it manages (because of the rules outlined). The specific
need for this will be covered shortly.

e A rebind() function was added that specifically changes the size of the memory
being managed by the managed object. Once again, this allows us to change the
size of the allocation being performed by myallocator_object{}.

Next, we need to define the allocator itself, as follows:

template<typename T>
class myallocator

{

[335]

A Hands-On Approach to Allocators Chapter 9

The first part of the allocator is the same as the other allocators, requiring the use of a
template class that allocators memory for some T type:

public:
using value_type = T;
using pointer = T *;
using size_type = std::size_t;
using is_always_equal = std::false_type;

The next part of our allocator defines our type aliases and optional properties. As shown,
all three propagate functions are undefined, which tells any container that uses this
allocator that when a copy, move, or swap of the container occurs, the allocator is not
copied, moved, or swapped as well (the container should continue using the same allocator
it was given at construction).

The next set of functions defines our constructors and operators. Let's start with the default
constructor:

myallocator ()
m_object{std: :make_shared<myallocator_object> ()}
{
std::cout << this << " constructor, sizeof(T): "
<< sizeof (T) << '\n';

}

As with all of the constructors and operators, we output to stdout some debug
information so that we can watch what the container is doing with the allocator. As shown,
the default constructor allocates myallocator_object{} and stores it as

std: :shared_ptr. We leverage std: : shared_ptr, as each copy of the allocator will have
to be equal, and as a result, each copy must share the same managed object (so that
memory allocated from one allocator can be deallocated from the copy). Since either
allocator could be destroyed at any type, both own the managed object and as a result,
std::shared_ptr is the more appropriate smart pointer.

The next two functions are the move constructor and assignment operator:

myallocator (myallocator &&other) noexcept
m_object{std::move (other.m_object) }
{
std::cout << this << " move constructor, sizeof (T): "
<< sizeof (T) << '"\n';

}

myallocator &operator=(myallocator &&other) noexcept

{

[336]

A Hands-On Approach to Allocators Chapter 9

std::cout << this << " move assignment, sizeof(T): "
<< sizeof (T) << '\n';

m_object = std::move (other.m_object);
return *this;

}

In both cases, we need to std: :move () our managed object as a result of a move operation.
The same thing applies for copying as well:

myallocator (const myallocator &other) noexcept
m_object{other.m_object}

std::cout << this << " copy constructor, sizeof(T): "
<< sizeof (T) << '\n';

myallocator &operator=(const myallocator &other) noexcept
{

std::cout << this << " copy assignment, sizeof(T): "
<< sizeof (T) << '\n';

m_object = other.m_object;
return *this;

}

As shown, if a copy is made of the allocator, we must also copy the managed object. As a
result, a copy of the allocator leverages the same managed object, which means that the
copy can deallocate memory from the original.

The next function is what makes unequal allocators so difficult:

template <typename U>
myallocator (const myallocator<U> &other) noexcept
m_object{other.m_object}

std::cout << this << " copy constructor (U), sizeof(T): "
<< sizeof (T) << '\n';

[337]

A Hands-On Approach to Allocators Chapter 9

The preceding function is the rebind copy constructor. The point of this constructor is to
create a copy of another allocator of a different type. So for example, std: : 1ist starts off
withmyallocator<int>{}, but it really needs an allocator of
themyallocator<std::1list::node>{} type, notmyallocator<int>{}. To overcome
this, the preceding function allows a container to do something like the following:

myallocator<int> allocl;
myallocator<std::list::node> alloc2(allocl);

In the preceding example, alloc2 is a copy of allocl, even though allocl and alloc2
do not share the same T type. The problem is, an int is four bytes, while in our examples,
std::1list::node has been 24 bytes, which means that not only does the preceding
function have to be able to create a copy of an allocator with a different type that is equal, it
also has to be able to create a copy that is capable of deallocating memory of a different
type (specifically, in this case, al1oc2 has to be able to deallocate ints even though it
manages std: : 1ist: :node elements). In our example, this is not a problem since we are
using malloc () and free (), but as we will show in our last example, some stateful
allocators, such as a memory pool, do not conform well to this requirement.

The allocate and deallocate functions are defined as follows:

pointer allocate(size_type n)

{
auto ptr = m_object->allocate(sizeof(T) * n);
return static_cast<pointer> (ptr);

}

void deallocate (pointer p, size_type n)
{

(void) n;

return m_object->deallocate (p);

}

Since our managed object just callsmalloc () and free (), we can treat the object's
allocate () and deallocate () functionsasmalloc () and free () as well, and as such,
the implementation is simple.

Our private logic in the allocator class is as follows:
std::shared_ptr<myallocator_object> m_object;
template <typename T1, typename T2>

friend bool operator==(const myallocator<Tl> &lhs, const myallocator<T2>
&rhs);

[338]

A Hands-On Approach to Allocators Chapter 9

template <typename T1l, typename T2>
friend bool operator!=(const myallocator<T1l> &lhs, const myallocator<T2>
&rhs);

As stated, we store a smart pointer to the managed object, which allows us to create copies
of the allocator. We also state that our equality functions are friends, and although we place
these friend functions in the private portion of the class, we could have placed them
anywhere as friend declarations are not affected by public/protected/private declarations.

Finally, the equality functions are as follows:

template <typename T1, typename T2>
bool operator==(const myallocator<T1l> &lhs, const myallocator<T2> &rhs)
{ return lhs.m_object.get () == rhs.m_object.get(); }

template <typename T1l, typename T2>
bool operator!=(const myallocator<T1l> &lhs, const myallocator<T2> &rhs)
{ return lhs.m_object.get () !'= rhs.m_object.get(); }

Our equal allocator example simply returned true for operator== and false for
operator!=, which stated that the allocators were equal (in addition to the use of
is_always_equal). In this example, is_always_equal is set to false, and in our
equality operators, we compare the managed objects. Each time a new allocator is created, a
new managed object is created, and as a result, the allocators are not equal (that is, they are
unequal allocators). The problem is, we cannot simply always return false for
operator== because a copy of an allocator must always be equal to the original per the
specification, which is the reason we use std: : shared_ptr. Each copy of the allocator
creates a copy of std: : shared_ptr, and since we compare the address of the managed
object if a copy of the allocator is made, the copy and the original have the same managed
object and as a result, return t rue (that is, they are equal). Although std: :shared_ptr
may not be used, most unequal allocators are implemented this way, as it provides a simple
way to handle the difference between equal and unequal allocators based on whether or not
the allocator has been copied.

Now that we have an allocator, let's test it:

std::1list<int, myallocator<int>> mylist;
mylist.emplace_back (42);

// O0x7ffce60fbdl0 constructor, sizeof (T): 24
// 0x561feb431590 A [1]: 0x561febd43fecO
// 0x561feb431590 D [1]: 0x561febd43fecO

[339]

A Hands-On Approach to Allocators Chapter 9

As you can see, our allocator is capable of allocating and deallocating memory. The
allocator in the preceding example was located at 0x561feb431590, and the element that
was allocated by the std: : 1ist container was located at 0x561feb43fecO.

Copying an unequal container that has the propagate property set to false is simple, as
follows:

std::1list<int, myallocator<int>> mylistl;
std::1list<int, myallocator<int>> mylist2;

mylistl.emplace_back (42);
mylistl.emplace_back (42);

mylist2.emplace_back (42);
mylist2.emplace_back (42);

std::cout << " \n";
mylist2 = mylistl;
std::cout << " \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

As shown in the preceding example, we create two lists and populate both lists with two
elements each. Once the lists are populated, we then copy the first container into the
second, and we output to stdout so that we can see how the container handles this copy.
Finally, we add two more elements to the just-copied container.

The output of this example is as follows:

// O0x7ffd65al5cb0 constructor, sizeof (T): 24
// Ox7ffd65al5cel0 constructor, sizeof (T): 24

// 0x55c4867c3a80 A [1]: 0x55c4867b9210 <--- add to list #1

// 0x55c4867c3a80 A [1l]: 0x55c4867baecO0 <--- add to list #1

// 0x55c4867d23c0 A [1]: 0x55c4867c89c0 <-—- add to list #2

// 0x55c4867d23c0 A [1]: 0x55c4867cb050 <--- add to list #2

[/ e

[/ e

// 0x55c4867d23c0 A [1]: 0x55c4867c39f0 <--- add to list #2 after copy
// 0x55c4867d23c0 A [1]: 0x55c4867c3al0 <--- add to list #2 after copy
// 0x55c4867d23c0 D [1]: 0x55c4867c89c0 <——- deallocate list #2

// 0x55c4867d23c0 D [1]: 0x55c4867cb050 <—-—- deallocate list #2

// 0x55c4867d23c0 D [1]: 0x55c4867c39f0 <—-—- deallocate list #2

// 0x55c4867d23c0 D [1]: 0x55c4867c3al0 <—-—- deallocate list #2

// 0x55c4867¢c3a80 D [1]: 0x55c4867b9210 <—-—- deallocate list #1

// 0x55c4867¢c3a80 D [1]: 0x55c4867baecO0 <—-——- deallocate list #1

[340]

A Hands-On Approach to Allocators Chapter 9

As shown, copying the containers does not involve the allocator. When the copy occurs, list
two keeps the two allocations it already has, overwriting the values for the first two
elements. Since the propagate properties are false, the second container keeps the
allocator it was originally given, and uses the allocator to allocate the second two elements
after the copy, but also deallocate all of the previously-allocated elements when the list
loses scope.

The problem with this approach is the need for the container to loop through each element
and perform a manual copy. For integers, this type of copy is fine, but we could have stored
large structures in the list and as a result, copying the containers would have resulted in
copying each element in the container, which is wasteful and expensive. Since the
propagate property is false, the container has no choice as it cannot use the allocator from
the first list and it cannot use its own allocator to copy the elements allocated in the first list
(since the allocators are not equal). Although this is wasteful, as will be shown, this
approach may still be the fastest approach.

Moving a list has a similar issue:

std::1list<int, myallocator<int>> mylistl;
std::1list<int, myallocator<int>> mylist2;

mylistl.emplace_back (42);
mylistl.emplace_back (42);

mylist2.emplace_back (42);
mylist2.emplace_back (42);

std::cout << " \n";
mylist2 = std::move (mylistl);
std::cout << " \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

In the preceding example, we do the same thing we did in the previous example. We create
two lists, and add two elements to each list just before moving one list to another.

The results of this example are as follows:

// O0x7ffd65al5cb0 constructor, sizeof (T): 24
// Ox7ffd65al5cel0 constructor, sizeof (T): 24

// 0x55c4867c3a80 A [1l]: 0x55c4867c3al0 <--- add to list #1
// 0x55c4867c3a80 A [1l]: 0x55c4867c39f0 <--- add to list #1
// 0x55c4867d23c0 A [1]: 0x55c4867c0170 <--- add to list #2
// 0x55c4867d23c0 A [1]: 0x55c4867c0190 <--- add to list #2

[

A Hands-On Approach to Allocators Chapter 9

/]
// 0x55c4867d23c0 A [1] 0x55c486709c90 <--- add to list #2 after move
// 0x55c4867d23c0 A [1] 0x55c4867b9cb0 <--- add to list #2 after move
// 0x55c4867d23c0 D [1] 0x55c4867c0170 <———- deallocate list #2
// 0x55c4867d23c0 D [1] 0x55c4867c0190 <——- deallocate list #2
// 0x55c4867d23c0 D [1] 0x55c486709¢c90 <-—-- deallocate list #2
// 0x55c4867d23c0 D [1] 0x55c4867b9cb0 <--- deallocate list #2
// 0x55c4867c3a80 D [1] 0x55c4867c3al0 <—-—- deallocate list #1
// 0x55c4867c3a80 D [1] 0x55c4867c39f0 <—-—-- deallocate list #1

In the preceding example, we can see that the same inefficiency exists. Since the propagate
property is false, the container cannot use the allocator from the first list and instead,
must continue to use the allocator that it already has. As a result, the move operation
cannot simply move the internal container from one list to another, but instead it must loop
through the entire container, executing std: :move () on each individual element such that
the memory associated with each node in the list is still managed by the second list's
original allocator.

To overcome these issues, we will add the following to our allocator:

using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;

These properties tell any container that uses this allocator that if a copy, move, or swap of
the container occurs, the same operation should occur with the allocator. For example, if we
copy std: : list, the container must not only copy the elements, but it should also copy the
allocator.

Let's look at the following copy example:

std::1list<int, myallocator<int>> mylistl;
std::1list<int, myallocator<int>> mylist2;

mylistl.emplace_back (42);
mylistl.emplace_back (42);

mylist2.emplace_back (42);
mylist2.emplace_back (42);

std::cout << " \n";
mylist2 = mylistl;
std::cout << " \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

[342]

A Hands-On Approach to Allocators Chapter 9

This copy example is the same as our previous copy example. We create two lists and add
two elements to each list. We then copy the first list into the second list and then add two
additional elements into the second list before finishing (which ultimately will deallocate
the lists).

The results of this example are as follows. It should be noted that this output is a bit more
complicated, so we will take this one step at a time:

// Ox7ffc766ec580 constructor, sizeof (T): 24
// Ox7ffc766ecbb0 constructor, sizeof (T): 24
// 0x5638419d9720 A [1]: 0x5638419d0b60 <-—-- add to list #1
// 0x5638419d9720 A [1]: 0x5638419de660 <-—-- add to list #1
// 0x5638419e8060 A [1]: 0x5638419e0cf0 <--- add to list #2
// 0x5638419e8060 A [1]: 0x5638419d9690 <--- add to list #2

In the preceding output, both lists are created and two elements are added to each
container. Next, the output will show what happens when we copy the second container
into the first:

// 0x5638419e8060 D [1]: 0x5638419e0cf0

// 0x5638419e8060 D [1]: 0x5638419d9690

// 0xT7ffc766ecbb0 copy assignment, sizeof (T): 24

// 0xT7ffc766ec450 copy constructor (U), sizeof(T): 4
// 0xT7ffc766ec3f0 copy constructor (U), sizeof(T): 24
// 0xT7ffc766ecd60 copy constructor, sizeof (T): 24

// 0x5638419d9720 A [1]: 0x5638419e8050

// 0x5638419d9720 A [1]: 0x5638419d9690

Since we set the propagate property to false, the container now has the option to keep the
memory used by the first container (for example, to implement a copy-on-write
implementation). This is because the container should create a copy of the allocator and any
two copies of an allocator are equal (that is, they can deallocate each other's memory). This
implementation of glibc does not do this. Instead, it attempts to create a clean view of
memory. The two lists, allocators are not equal, which means that once the copy has taken
place, the container will no longer be able to deallocate its own, previously-allocated
memory (because it will likely no longer have access to its original allocator). As a result,
the container deletes all of the memory it previously allocated as its first step. It then creates
a temporary allocator using a rebind copy of the first list's allocator (which oddly seems to
be unused), just before creating a direct copy of the first list's allocator and using it to
allocator new memory for the elements that will be copied.

[343]

A Hands-On Approach to Allocators Chapter 9

Finally, now that the copy is complete, the last two elements can be added to the second
list, and each list can be destroyed once they lose scope:

// 0x5638419d9720 A [1]: 0x5638419d96b0 <--- add to list #2 after copy
// 0x5638419d9720 A [1]: 0x5638419d5el10 <--- add to list #2 after copy
// 0x5638419d9720 D [1]: 0x5638419e8050 <—-—-- deallocate list #2
// 0x5638419d9720 D [1]: 0x5638419d9690 <-—-- deallocate list #2
// 0x5638419d9720 D [1]: 0x5638419d96b0 <—-—-- deallocate list #2
// 0x5638419d9720 D [1]: 0x5638419d5el10 <-—-- deallocate list #2
// 0x5638419d9720 D [1]: 0x5638419d0b60 <—-—- deallocate list #1
// 0x5638419d9720 D [1]: 0x5638419de660 <—-—- deallocate list #1

As shown, since the allocator was propagated, the same allocator is used to deallocate the
elements from both lists. This is because once the copy is complete, both lists are now using
the same allocator (as a copy of any two allocators must be equal, and the way that we
chose to implement this was to create a copy of the same base allocator object when a copy
occurs). It should also be noted that the glibc implementation does not choose to implement
a copy-on-write scheme, which means not only that the implementation fails to take
advantage of the possible optimizations that the propagate property provides, but the
implementation of a copy is actually slower, as the copy not only has to copy each element
one at a time, but must also allocate new memory for the copy as well.

Now let's look at a move example:

std::1list<int, myallocator<int>> mylistl;
std::1list<int, myallocator<int>> mylist2;

mylistl.emplace_back (42);
mylistl.emplace_back (42);

mylist2.emplace_back (42);
mylist2.emplace_back (42);

std::cout << " \n";
mylist2 = std::move (mylistl);
std::cout << " \n";

mylist2.emplace_back (42);
mylist2.emplace_back (42);

Like our previous move example, this creates two lists, and adds two elements to each list
just before moving the first list into the second. Finally, our example adds two elements to
the second list (which is now the first list), before completing and deallocating both lists
when they lose scope.

[344]

A Hands-On Approach to Allocators Chapter 9

The resulting output of this example is as follows:

// Ox7ffc766ec580 constructor, sizeof (T): 24

// Ox7ffc766ecb5b0 constructor, sizeof (T): 24

// 0x5638419d9720 A [1]: 0x5638419d96b0 <-—- add to list #1

// 0x5638419d9720 A [1]: 0x5638419d9690 <-—- add to list #1

// 0x5638419d5¢20 A [1]: 0x5638419e8050 <-—- add to list #2

// 0x5638419d5¢20 A [1]: 0x5638419d5e30 <-—- add to list #2

[/ e

// 0x5638419d5e20 D [1] 0x5638419e8050 <--- deallocate list #2
// 0x5638419d5e20 D [1] 0x5638419d5e30 <--- deallocate list #2
// 0x7ffc766ec5b0 move assignment, sizeof (T): 24

[/ e

// 0x5638419d9720 A [1] 0x5638419d5e10

// 0x5638419d9720 A [1] 0x5638419e8050

// 0x5638419d9720 D [1]: 0x5638419d96b0 <--- deallocate list #1
// 0x5638419d9720 D [1] 0x5638419d9690 <--- deallocate list #1
// 0x5638419d9720 D [1] 0x5638419d5e10 <--- deallocate list #2
// 0x5638419d9720 D [1] 0x5638419e8050 <--- deallocate list #2

Like the previous examples, you can see the lists being created and the first elements being
added to each list. Once the move occurs, the second list deletes the memory associated
with its previously-added elements. This is because once the move occurs, the memory
associated with the second list is no longer needed (as it is about to be replaced with the
memory allocated by the first list). This is possible since the first list's allocator will be
moved to the second list (since the propagate property was set to t rue), and as a result, the
second list will now own all of the first list's memory.

Finally, the last two elements are added to the list and the lists lose scope and deallocate all
of their memory. As shown, this is the most optimal implementation. No additional
memory is allocated no element-by-element move is needed. The move operation simply
moves the memory and allocator from one container to the other. Also, since no copy of the
allocators is made, this is a simple operation for any allocator to support, and as such, this
property should always be set to true.

Optional functions

In addition to properties, there are several optional functions that provide containers with
additional information about the type of allocator they are provided. One optional function
is the following;:

size_type myallocator::max_size();

[345]

A Hands-On Approach to Allocators Chapter 9

The max_size () function tells the container the max size, "n", that an allocator can allocate.
In C++17, this function has been deprecated. The max_size () function returns the largest
possible allocation that the allocator can perform. Curiously, in C++17, this defaults

to std::numeric_limits<size_type>::max() / sizeof (value_type), whichin
most cases is likely not a valid answer as most systems simply do not have this much
available RAM, suggesting this function provides little value in practice. Instead, like other
allocation schemes in C++, std: :bad_alloc will be thrown if and when an allocation fails,
indicating to the container that the allocation it attempted to perform is not possible.

Another set of optional functions in C++ is the following:

template<typename T, typename... Args>
static void myallocator::construct (T* ptr, Args&&... args);

template<typename T>
static void myallocator::destroy(T* ptr);

Just like with the max_size () function, the construct and destruct functions were
deprecated in C++17. Prior to C++17, these functions could be used to construct and
destruct the object associated with the provided by ptr. It should be noted that this is why
we do not use new and delete when allocating memory in a constructor, but instead use
malloc () and free (). If we were to use new () and delete (), we would accidentally call
the constructor and/or destructor of the object twice, which would lead to undefined
behavior.

Studying an example of stateless,
cache-aligned allocator

In this example, we will create a stateless, equal allocator designed to allocator cache-
aligned memory. The goal of this allocator is to show a C++17 allocator that can be
leveraged to increase the efficiency of the objects a container is storing (for example, a
linked list), as cache-thrashing is less likely to occur.

To start, we will define the allocator as follows:

template<typename T, std::size_t Alignment = 0x40>
class myallocator

{
public:

using value_type = T;
using pointer = T *;

[346]

A Hands-On Approach to Allocators Chapter 9

using size_type = std::size_t;
using is_always_equal = std::true_type;

template<typename U> struct rebind {
using other = myallocator<U, Alignment>;

i
public:

myallocator ()

{1

template <typename U>
myallocator (const myallocator<U, Alignment> &other) noexcept
{ (void) other; }

pointer allocate(size_type n)

{
if (auto ptr = aligned_alloc (Alignment, sizeof (T) * n)) A
return static_cast<pointer> (ptr);

}

throw std::bad_alloc();
t

voilid deallocate (pointer p, size_type n)

{
(void) nj;
free(p);

bi

The preceding allocator is similar to the other equal allocators that we have created in this
chapter. There are a couple of notable differences:

¢ The template signature of the allocator is different. Instead of just defining the
allocator type T, we also added an Alignment parameter and set the default
value to 0x40 (that is, the allocations will be 64-byte-aligned, which is the typical
size of a cache line on Intel CPUs).

e We also provide our own rebind structure. Typically, this structure is provided
for us, but since our allocator has more than one template argument, we must
provide our own version of the rebind structure. This structure is used by a
container, such as std: : 1ist, to create any allocator the container needs
without having to create a copy (instead, it can directly create an allocator during
initialization). In our version of this rebind structure, we pass the Alignment
parameter that is provided by the original allocator.

[347]

A Hands-On Approach to Allocators Chapter 9

e The rebind copy constructor must also define the Alignment variable. In this
case, we force the Alignment to be the same if a rebind is going to occur, which
will be the case as the rebind structure provides the Alignment (which is also
the same).

To test our example, let's create the allocator and output the address of an allocation to
ensure that the memory is aligned:

myallocator<int> myalloc;

auto ptr = myalloc.allocate(l);
std::cout << ptr << '\n';
myalloc.deallocate (ptr, 1);

// 0x561d512b6500

As shown, the memory that was allocated is at least 64-byte-aligned. The same thing is true
for multiple allocations, as follows:

myallocator<int> myalloc;

auto ptr = myalloc.allocate(42);
std::cout << ptr << '\n';
myalloc.deallocate (ptr, 42);

// 0x55dcdcb41500

As shown, the memory allocated is also at least 64-byte-aligned. We can also use this
allocator with a container:

std::vector<int, myallocator<int>> myvector;
myvector.emplace_back (42);

std::cout << myvector.data() << '\n';
// 0x55£875a0£500

And once again, the memory is still properly aligned.

Compiling and testing

To compile this code, we leverage the same CMakeLists. txt file that we have been using
forfhe(ﬁherexanqﬂES:https://github.com/PacktPublishing/HandsfonfSystemf
Programming-with-CPP/blob/master/Chapter09/CMakelLists.txt.

[348]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt

A Hands-On Approach to Allocators Chapter 9

With this code in place, we can compile this code using the following;:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter09/

> mkdir build

> cd build

> cmake ..
> make

To execute the example, run the following command:
> ./exampleé6

The output should resemble the following:

0x55aec04dbd00
0x55aec04e8f40
0x55aec04d5d00

test cases: 3 | 3 passed
assertions: - none -

As shown in the preceding snippet, we are able to allocate different types of memory, as
well as deallocate this memory and all of the addresses are 64-byte-aligned.

Studying an example of a stateful,
memory—pool allocator

In this example, we will create a far more complicated allocator, called a pool allocator. The
goal of the pool allocator is to quickly allocate memory for a fixed-size type while
simultaneously (and more importantly) reducing internal fragmentation of memory (that is,
the amount of memory that is wasted by each allocation, even if the allocation size is not a
multiple of two or some other optimized allocation size).

Memory-pool allocators are so useful that some implementations of C++ already contain
pool allocators. In addition, C++17 technically has support for a pool allocator in something
called a polymorphic allocator (which is not covered in this book, as no major
implementations of C++17 have support for polymorphic allocators at the time of writing),
and most operating systems leverage pool allocators within the kernel to reduce internal
fragmentation.

[349]

A Hands-On Approach to Allocators Chapter 9

The major advantages of a pool allocator are as follows:

e The use of malloc () is slow. Sometimes free () is slow too, but for some
implementations, free () is as simple as flipping a bit, in which case it can be
implemented incredibly fast.

e Most pool allocators leverage a deque structure, meaning the pool allocator
allocates a large block of memory and then divides this memory up for
allocations. Each block of memory is linked using a linked list so that more
memory can be added to the pool as needed.

Pool allocators also have an interesting property where the larger the block size, the larger
the reduction is on internal fragmentation. The penalty for this optimization is that if the
pool is not completely utilized, the amount of memory that is wasted increases as the block
size increases, so pool allocators should be tailored to meet the needs of the application.

To start our example, we will first create a pool class that manages a list of blocks and gives
out memory from the blocks. The list of blocks will be stored in a stack that grows forever
(that is, in this example, we will attempt to defragment the memory in the blocks, or
remove a block from the stack if all memory from the block has been freed). Each time we
add a block of memory to the pool, we will divide up the block into chunks of the size

of sizeof (T), and add the address of each chunk onto a second stack called the address
stack. When memory is allocated, we will pop an address off the address stack, and when
memory is deallocated, we will push the address back onto the stack.

The beginning of our pool is as follows:

class pool

{
public:

using size_type = std::size_t;
public:

explicit pool (size_type size)
m_size{size}

{1

The pool will act as our managed object for our unequal allocator, as was the case with our
previous unequal allocator example. As a result, the pool is not a template class, as we will
need to change the size of the pool if the rebind copy constructor is used (more on that
specific topic to come). As shown, in our constructor, we store the size of the pool, but we
do not attempt to preload the pool.

[350]

A Hands-On Approach to Allocators Chapter 9

To allocate, we pop an address from our address stack and return it. If the address stack is
empty, we add more addresses to the address stack by allocating another block of memory,
adding it to the stack of blocks, dividing up the memory into chunks, and adding the
divided up chunks to the address stack, as follows:

void *allocate ()

{
if (m_addrs.empty())

{
this->add_addrs () ;

}

auto ptr = m_addrs.top();
m_addrs.pop () ;

return ptr;

}

To deallocate memory, we push the address provided to the address stack so that it can be
allocated again later on. Using this method, allocating and deallocating memory for a
container is as simple as popping and pushing an address to a single stack:

void deallocate (void *ptr)

{
m_addrs.push (ptr) ;

}

We will need to change the size of the pool if the rebind copy constructor is used. This type
of copy should only occur when attempting to create an allocator of the int type to an
allocator of the std: :1ist: :node type, which means that the allocator being copied will
not have been used yet, meaning a resize is possible. If the allocator has been used, it would
mean that the allocator has already allocated memory of a different size and, as a result, a
rebind would be impossible with this implementation. Consider the following code for it:

void rebind(size_type size)

{
if (!m_addrs.empty () || !m_blocks.empty())

{

std::cerr << "rebind after alloc unsupported\n";
abort () ;
}

m_size = size;

[351]

A Hands-On Approach to Allocators Chapter 9

It should be noted that there are other ways to handle this specific issue. For example,

a std: :1ist could be created that doesn't attempt to use the rebind copy constructor. An
allocator could also be created that is capable of managing more than one pool of memory,
each pool being capable of allocating and deallocating memory of a specific type (which, of
course, would result in a performance hit).

In our private section, we have the add_addrs () function that was seen in the allocate
function. The goal of, this function is to refill the address stack. To do this, the this

function allocates another block of memory, divides the memory up, and adds it to the
address stack:

void add_addrs ()

{

}

constexpr const auto block_size = 0x1000;
auto block = std::make_unique<uint8_t[]>(block_size);

auto v = gsl::span<uint8_t>(
block.get (), block_size
)i

auto total_size =

v.size() % m_size == 0 ? v.size() : v.size() - m_size;
for (auto 1 = 0; 1 < total_size; i += m_size)
{

m_addrs.push(&v.at (1)) ;
t

m_blocks.push(std: :move (block));

Finally, we have the private member variables, which includes the pool's size, the address
stack, and the stack of blocks. Note that we use std: : stack for this. std: : stack uses
std: :deque to implement the stack, and although a more efficient stack can be written that
doesn't leverage iterators, in testing, std: : stack is nearly as performant:

size_type m_size;

std::stack<void *> m_addrs{};
std::stack<std::unique_ptr<uint8_t[]>> m_blocks{};

[352]

A Hands-On Approach to Allocators Chapter 9

The allocator itself is nearly identical to the previous unequal allocator we already defined:

template<typename T>
class myallocator

{

public:
using value_type = T;
using pointer = T *;
using size_type = std::size_t;
using is_always_equal = std::false_type;
using propagate_on_container_copy_assignment = std::false_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;

One difference is that we define propagate_on_container_copy_assignment as false,
specifically to prevent the allocator from being copied as much as possible. This choice is
also backed by the fact that we already determined that glibc doesn't provide a huge benefit
turning this property on when leveraging an unequal allocator.

The constructors are the same as previously defined:

myallocator ()
m_pool{std: :make_shared<pool> (sizeof (T)) }

std::cout << this << " constructor, sizeof (T): "

<< sizeof (T) << '\n';

template <typename U>
myallocator (const myallocator<U> &other) noexcept
m_pool{other.m_pool}

std::cout << this << " copy constructor (U), sizeof(T): "
<< sizeof (T) << '\n';

m_pool->rebind(sizeof (T));

myallocator (myallocator &&other) noexcept
m_pool{std::move (other.m_pool) }
std::cout << this << " move constructor, sizeof(T): "

<< sizeof (T) << '\n';

myallocator &operator=(myallocator &&other) noexcept

{

[353]

A Hands-On Approach to Allocators Chapter 9

std::cout << this << " move assignment, sizeof (T): "
<< sizeof (T) << '\n';

m_pool = std::move (other.m_pool);
return *this;

myallocator (const myallocator &other) noexcept
m_pool{other.m_pool}

std::cout << this << " copy constructor, sizeof (T): "
<< sizeof (T) << '\n';

myallocator &operator=(const myallocator &other) noexcept

{
std::cout << this << " copy assignment, sizeof(T): "
<< sizeof (T) << '\n';

m_pool = other.m_pool;
return *this;

}

The allocate and deallocate functions are the same as previously defined, calling the
pool's allocation function. One difference is that our pool is only capable of allocating
memory in single chunks (that is, the pool allocator is not capable of allocating more than
one address while also preserving continuity). As a result, if n is something other than 1
(that is, the container is not std: : 1ist or std: :map), we fall back to amalloc ()/free ()
implementation, which is typically the default implementation:

pointer allocate(size_type n)
{
if (n !'= 1) |
return static_cast<pointer>(malloc(sizeof (T) * n));

return static_cast<pointer>(m_pool->allocate());

void deallocate (pointer ptr, size_type n)
{
if (n !'= 1)
free (ptr

’

{
)

m_pool->deallocate (ptr);

[354]

A Hands-On Approach to Allocators Chapter 9

The rest of the allocator is the same:

private:
std::shared_ptr<pool> m_pool;

template <typename T1l, typename T2>
friend bool operator==(const myallocator<T1l> &lhs, const
myallocator<T2> &rhs);

template <typename T1l, typename T2>
friend bool operator!=(const myallocator<T1l> &lhs, const
myallocator<T2> &rhs);

template <typename U>
friend class myallocator;

bi

template <typename T1l, typename T2>
bool operator==(const myallocator<T1l> &lhs, const myallocator<T2> &rhs)
{ return lhs.m_pool.get () == rhs.m_pool.get(); }

template <typename T1l, typename T2>
bool operator!=(const myallocator<T1l> &lhs, const myallocator<T2> &rhs)
{ return lhs.m_pool.get () != rhs.m_pool.get(); }

Finally, before we can test our allocator, we will need to define a benchmarking function,
capable of giving us an indication of how long a specific operation takes. This function will
be defined in better detail in chapter 11, Time Interfaces in Unix. For now, the most
important thing to understand is that this function takes a callback function as an input (in

our case, a Lambda), and returns a number. The higher the returned number, the longer the

callback function took to execute:

template<typename FUNC>
auto benchmark (FUNC func) |

auto stime = std::chrono::high_resolution_clock::now();
func () ;

auto etime = std::chrono::high_resolution_clock::now();
return (etime - stime) .count ();

[355]

A Hands-On Approach to Allocators Chapter 9

The first test we will perform is creating two lists and adding elements to each list, while
timing how long it takes to add all of the elements to the list. Since each addition to the list
requires an allocation, performing this test will give us a rough comparison on how much
better our allocator is at allocating memory compared to the default allocator provided by
glibc.

constexpr const auto num = 100000;

std::list<int> mylistl;
std::1list<int, myallocator<int>> mylist2;

auto timel = benchmark ([&]{
for (auto 1 = 0; i < num; 1i++) |
mylistl.emplace_back (42);
t
)i

auto time2 = benchmark ([&]{
for (auto 1 = 0; i < num; 1i++) |
mylist2.emplace_back (42);
t
)i

std::cout << "[TEST] add many:\n";
std::cout << " - timel: " << timel << '\n';
std::cout << " - time2: " << time2 << '\n';

As stated, for each list, we add 100000 integers to the list and time how long it takes,
giving us the ability to compare the allocators. The results are as follows:

0x7ffca71d7a00 constructor, sizeof (T): 24
[TEST] add many:

- timel: 3921793

- time2: 1787499

As shown, our allocator is 219% faster than the default allocator at allocating memory.

In our next test, we will compare our allocator with the default allocator with respect to
deallocating memory. To perform this test, we will do the same thing as before, but instead
of timing our allocations, we will time how long it takes to remove elements from each list:

constexpr const auto num = 100000;

std::list<int> mylistl;
std::1list<int, myallocator<int>> mylist2;

for (auto 1 = 0; i < num; i++) |

[356]

A Hands-On Approach to Allocators Chapter 9

mylistl.emplace_back (42);
mylist2.emplace_back (42);
}

auto timel = benchmark ([&]{
for (auto 1 = 0; i < num; 1i++) |
mylistl.pop_front();
t
)i

auto time2 = benchmark ([&]{
for (auto 1 = 0; i < num; 1i++) |
mylist2.pop_front ();
t
)i

std::cout << "[TEST] remove many:\n";
std::cout << " - timel: " << timel << '\n';
std::cout << " - time2: " << time2 << '\n';

The results of the this function are as follows:

0x7f£f£f14709720 constructor, sizeof(T): 24
[TEST] remove many:

- timel: 1046463

- time2: 1285248

As shown, our allocator is only 81% as fast as the default allocator. This is likely because the
free () function is more efficient, which is not a surprise, as pushing to a stack could, in
theory, be slower than some implementations of free (). Even though our free () function
is slower, the difference is negligible compared to the improvement in both allocations and
fragmentation. It is also important to note that the allocation and deallocation speeds are
almost the same with this implementation, which is what we would expect.

To ensure we wrote our allocator correctly, the following will run our test again, but
instead of timing how long it takes to add elements to the list, we will add up each value in
the list. If our total is as we expect, we will know that allocations and deallocations were
performed properly:

constexpr const auto num = 100000;
std::1list<int, myallocator<int>> mylist;

for (auto 1 = 0; i < num; i++) |
mylist.emplace_back(1i);

[357]

A Hands-On Approach to Allocators Chapter 9

uint64_t totall{};
uint64_t total2{};

for (auto 1 = 0; i < num; 1i++) {
totall += i;
total2 += mylist.back();
mylist.pop_back();

std::cout << "[TEST] verify: ";
if (totall == total2) {
std::cout << "success\n";

}

else {
std::cout << "failure\n";
std::cout << " - totall: " << totall << '\n';
std::cout << " - total2: " << total2 << '\n';

}

As expected, the output of our test is success.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthECﬁherexquﬂeS:https://github.com/PacktPublishing/Hands—On—System—
Programming-with—-CPP/blob/master/Chapter09/CMakelLists.txt.

With this code in place, we can compile this code using the following;:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter09/

> mkdir build

> cd build

> cmake —-DCMAKE_BUILD_TYPE=Release
> make

To execute the example, run the following;:

> ./example?

[358]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter09/CMakeLists.txt

A Hands-On Approach to Allocators Chapter 9

The output should resemble the following:

0x7ffca71d7a00 constructor, sizeof(T): 24
[TEST] add many:

- timel: 3921793

- time2: 1787499
0x7f££f14709720 constructor, sizeof(T): 24
[TEST] remove many:

- timel: 1046463

- time2: 1285248
0x7f££f5d8ad040 constructor, sizeof(T): 24
[TEST] verify: success

test cases: 5 | 5 passed
assertions: - none -

As you can see, the output of our example matches the output we provided before. It
should be noted that your results might very based on factors such as the hardware or what
is already running on the box.

Summary

In this chapter, we looked at how to create our own allocators, and covered the intricate
details of the C++ allocator concept. Topics included the difference between equal and
unequal allocators, how container propagation is handled, rebinding, and potential issues
with stateful allocators. Finally, we concluded with two different examples. The first
example demonstrated how to create a simple, cache-aligned allocator that is stateless,
while the second provided a functional example of a stateful object allocator that maintains
a free pool for fast allocations.

In the next chapter, we will use several examples to demonstrate how to program POSIX
sockets (that is, network programming) using C++.

[3591]

A Hands-On Approach to Allocators Chapter 9

Questions

What does is_always_equal mean?

What determines whether an allocator is equal or unequal?

Can a stateful allocator be equal?

Can a stateless allocator be equal?

What does propagate_on_container_copy_assignment do?
What does the rebind copy constructor do for a container?

NSO e =

What is the difference between std: :1ist and std: : vector with respect to the
n variable passed to the allocate function?

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[360]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

10

Programming POSIX Sockets
Using C++

In this chapter, you will learn how to program POSIX sockets using C++17, including more
common C++ paradigms, such as Resource Aquisition Is Initialization (RAII). To begin
with, this chapter will discuss what a socket is, and the difference between UDP and TCP.
The POSIX APIs will be explained in detail prior to walking you through five different
examples. The first example will step you through programming with POSIX sockets by
creating a UDP echo server example. The second example will create this same example
using TCP instead of UDP and explain the differences. The third example will expand upon
our existing debug logger that has been created in previous chapters, while the fourth and
fifth examples will explain how to safely process a packet.

In this chapter, we will cover the following topics:

e POSIX sockets
¢ Leveraging C++ and RAII with sockets
e TCP vs UDP

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

GCC 7+
CMake 3.6+
An internet connection

Programming POSIX Sockets Using C++ Chapter 10

To download all of the code in this chapter, including the examples, and code snippets,
please see the following link: https://github.com/PacktPublishing/Hands-On-System-
Programming-with—-CPP/tree/master/ChapterlO.

Beginning with POSIX sockets

Unfortunately, C++ does not contain a native networking library (something that will
hopefully be addressed with C++20). For this reason, POSIX sockets are needed to perform
networking with C++. The POSIX sockets API defines an API for sending and receiving
network packets using the standard, Unix file-descriptor paradigm. When programming
with sockets, both a server and a client must be created. Servers are responsible for binding
a specific port to the socket protocol that is being developed by the user of the sockets
library. Clients are any other application that is connected to a previously-bound port. Both
servers and clients have their own IP addresses.

When programming sockets, besides picking address types, such as IPv4 versus IPv6,
typically the programmer must also choose between UDP versus TCP. UDP is a
connectionless protocol that provides no assurances that a packet is reliably sent, with the
advantage being speed and simplicity. UDP is commonly used for data that does not have
to be received 100% of the time, such as your position in a video game. TCP, on the other
hand, is a connection-based protocol that ensures all packets are received in the order they
are sent and is the typical protocol used for its reliability.

Beginning with APIs

The following sections will explain, in detail, the different socket APIs.

The socket() API

All POSIX socket programming starts with the creation of a socket file descriptor using the
socket () API which takes the following form:

int socket (int domain, int type, int protocol);

[362]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter10

Programming POSIX Sockets Using C++ Chapter 10

The domain defines the address type used when creating the socket. In most cases, this
would be AF_INET for IPv4 or AF_INET6 for IPv6. In the case of our examples in this
chapter, we will use AF_INET. The type field usually takes on SOCK_STREAM for a TCP
connection or SOCK_DGRAM for a UDP connection, both of which will be demonstrated in
this chapter. Finally, the protocol field in this API will be set to 0 in all of our examples,
telling the API to use the default protocol for whichever socket type is specified.

Upon completion of this AP, a socket file descriptor is returned, which will be needed by
the remaining POSIX APIs. If this API fails, —1 is returned, and errno is set to an
appropriate error code. It should be noted that errno is not thread-safe and its use should
be handled with care. A great way to handle these types of errors is to immediately convert
the errno into a C++ exception, which can be done using the following:

if (m_fd = ::socket (AF_INET, SOCK_STREAM, 0); m_fd == -1) {
throw std::runtime_error (strerror (errno));

}

In the preceding example, an IPv4 TCP socket is created. The resulting file descriptor is
saved into a memory variable, m_fd. Using C++17 syntax, the file descriptor is checked for
validity, and if an error is reported (that is, 1), an exception is thrown. To provide a
human-readable version of the error, errno is converted into a string using strerror ().
Not only does this provide a string version of errno, it also ensures that the process of
recording the error doesn't change errno in the process, which can happen if a more
complicated approach is used.

Finally, when the socket is no longer needed, it should be closed like any other file
descriptor using the POSIX close () function. It should be noted that most POSIX
operating systems will automatically close sockets that are still open when the application
closes.

To prevent possible descriptor leaks, the socket file descriptor may be encapsulated in a
class, as follows:

class mytcpsocket
{
public:
explicit mytcpsocket (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_STREAM, 0); m_fd == -1) {
throw std::runtime_error (strerror (errno));
}
}

~mytcpsocket ()

[363 1]

Programming POSIX Sockets Using C++ Chapter 10

{

close (m_£fd);

}

auto descriptor () const
{ return m_f£fd; }

private:

int m_fd{};
ti

In the preceding example, we open an IPv4 TCP socket using the logic in the prior example,
ensuring any errors are detected and properly reported. The difference is that we store the
file descriptor as a member variable, and when mytcpsocket{} loses scope, we
automatically ensure the file descriptor is properly released back to the operating system.
Any time the file descriptor is needed, the descriptor () accessor may be used.

The bind() and connect() APIs

Once a socket file descriptor is created, the socket must be bound, or connected, depending
on whether the socket is creating the connection (the server), or is connecting to an existing
bound socket (client). When communicating via TCP or UDP, binding a socket dedicates a
port for the socket. Ports 0-1024 are reserved for specific services and are often managed by
the operating system (requiring special privileges to bind). The remaining ports are user-
defined and often may be bound without privileges. Determining which port to use is
dependent on the implementation. Some ports are predetermined for a specific application,
or the application can ask the operating system for an open port to use, which has the
added complication of communicating this newly-allocated port to potential client
applications.

The bind () API takes the following form:

int bind(int socket, const struct sockaddr *address, socklen_t
address_len) ;

[364]

Programming POSIX Sockets Using C++ Chapter 10

The socket integer parameter is the socket file descriptor that was previously provided by
the socket () APIL The address parameter tells the operating system which port to bind
to, and which IP address to accept incoming connections from, usually INADDR_ANY which
tells the operating system that an incoming connection may be accepted from any IP
address. Finally, the address_len parameter tells the API what the total size of the
address structure is.

The total size (in bytes) is needed for the address structure because different structures are
supported depending on the socket type you're using. For example, an IPv6 socket has a
larger IP address compared to an IPv4 socket. In this chapter, we will discuss IPv4, which
uses the sockaddr_in{} structure, which defines the following fields:

e sin_family: Thisis identical to the socket domain, which, in the case of IPv4, is
AF_INET.

e sin_port: This defines the port to bind to, which must be converted into
network byte order using htons ().

¢ sin_address: This defines the IP address to accept incoming connections from,
which must also be converted into network byte order using htonl (). Often,
this is set to htonl (INADDR_ANY), indicating connections are accepted from any
IP address.

Since the address structure is variable in length, the bind () API takes a pointer to an
opaque structure type and uses the length field to ensure the proper information was
provided. It should be noted that this type of API is not encouraged by the C++ Core
Guidelines as there is no type-safe way of implementing this API. In fact, in order to use
this API, reinterpret_cast () is needed to convert a sockaddr_in{} to the

opaque sockaddr{ } structure. Although the use of reinterpret_cast () is not
supported by the C++ Core Guidelines, there is no alternative and therefore if sockets are
needed, this rule must be broken.

While servers use bind () to dedicate a port for the socket, clients use connect () to
connect to an already-bound port. The connect () API has the following form:

int connect (int socket, const struct sockaddr *address, socklen_t
address_1len) ;

[365]

Programming POSIX Sockets Using C++ Chapter 10

It should be noted that the parameters for connect () are identical to bind (). Like

bind (), you must provide the file descriptor returned by the call to socket (), and like
bind (), you must provide, in the case of IPv4, a pointer to a sockaddr_in{} structure as
well as the size of the sockaddr_in{} structure. When filling out the sockaddr_in{}
structure, you would use the following:

e sin_family: Thisis identical to the socket domain, which, in the case of IPv4, is
AF_INET.

e sin_port: This defines the port to connect to, which must be converted into
network byte order using htons ().

e sin_address: This defines the IP address to connect to, which must also be
converted into network byte order using htonl (). For loopback connections,
this would be set to htonl (INADDR_LOOPBACK).

Finally, both bind () and connect () return 0 on success or -1 on failure, setting errno in
the event of an error.

The listen() and accept() APIs

For TCP servers, two additional APIs exist that provide the server with a means to listen for
and accept incoming TCP connections—listen () and accept ().

The 1isten () API has the following form:

int listen(int socket, int backlog);

The socket parameter is the file descriptor returned by the socket () APL and the backlog
parameter limits the total number of outstanding connections that may be made. In the
examples in this chapter, we will use a backlog of 0, which tells the API to use an
implementation-specific value for the backlog.

If 1isten () succeeds, 0 is returned, otherwise -1 is returned and errno is set to the
appropriate error code.

Once your application is set up to listen for incoming connections, the accept () API may
be used to accept a connection once it is ready. The accept () API has the following form:

int accept (int socket, struct sockaddr *address, socklen_t *address_len);

[366]

Programming POSIX Sockets Using C++ Chapter 10

Like the other APIs, the socket parameter is the file descriptor returned by the socket ()
API and the address, and the address_1len parameter returns information about the
connection. nullptr may also be provided for both the address and address_len if the
connection information is not needed. Upon successful completion of the accept () AP, a
socket file descriptor for the client connection is returned, which may be used to send and
receive data to and from the client.

If accept fails to execute, instead of a valid socket file descriptor being returned, -1 is
returned, and errno is set appropriately.

It should be noted that both 1isten () and accept () are only needed for TCP
connections. With a TCP connection, the server creates two or more socket descriptors; the
first one is used to bind to a port and listen for connections, while the second one is the
socket file descriptor for the client, which is used to send and receive data. UDP, on the
other hand, is a connectionless protocol and thus the same socket that is used to bind to a
port is also used to send and receive data with the client.

The send(), recv(), sendto(), and recvfrom() APIs

To send information to a server or client after opening a socket, POSIX provides the send ()
and sendto () APIs. The send () API has the following form:

ssize_t send(int socket, const void *buffer, size_t length, int flags);

The first parameter is the socket file descriptor for the server or client you wish to send data
to. It should be noted that the socket must be connected to a specific client or server to work
(such as communicating back to a server, or to a client opened using TCP). The buffer
parameter points to the buffer you wish to send, 1ength defines the length of the buffer
you wish to send, and flags provides various different settings for how you wish to send
the buffer, which in most cases is just set to 0. It should also be noted that when flags is
set to 0, there is typically no difference between the write () function and the send ()
function, and both may be used.

[367]

Programming POSIX Sockets Using C++ Chapter 10

If a server is attempting to communicate with a client using UDP, the server won't know
who or how to send information to the client as the server binds to a specific port, not to a
specific client. Likewise, if a client using UDP doesn't connect to a specific server, it will not
know who or how to send information to the server. For this reason, POSIX provides
sendto (), which adds the sockaddr{} structure to define who and how you wish to send
the buffer. sendto () has the following form:

ssize_t sendto(int socket, const void *buffer, size_t length, int flags,
const struct sockaddr *dest_addr, socklen_t dest_len);

The only difference between send () and sendto () is that sendto () also provides the
destination address and len parameters, which provide the user with a way to define
who the buffer is sent to.

To receive data from a client or server, POSIX provides the recv () API, which has the
following form:

ssize_t recv(int socket, void *buffer, size_t length, int flags);

The recv () API takes the same parameters as the send () API, with the difference being
that the buffer will be written to (which is why it's not labeled const) when data is
received, and the length field describes the total size of the buffer and not the total number
of bytes received.

Likewise, POSIX provides a recvfrom () API, which is similar to the sendto () APl and
has the following form:

ssize_t recvfrom(int socket, void *restrict buffer, size_t length, int
flags, struct sockaddr *restrict address, socklen_t *restrict address_len);

Both the send () and sendto () functions return the total number of bytes that were sent,
while the recv () and recvfrom() functions return the total number of bytes received. All
of these functions return -1 and set errno to an appropriate value in the event of an error.

[368]

Programming POSIX Sockets Using C++ Chapter 10

Studying an example on the UDP echo
server

In this example, we will walk you through a simple echo server example using UDP. An
echo server (as is the same with our previous chapters) echoes any input to its output. In
the case of this UDP example, the server echoes data sent to it from a client back to the
client. To keep the example simple, character buffers will be echoed. How to properly
process structured packets will be covered in the following examples.

Server

To start, we must define the maximum buffer size we plan to send from the client to the
server and back, and we must also define the port we wish to use:

#define PORT 22000
#define MAX_SIZE 0x10

It should be noted that any port number will do so long as it is above 1024, to prevent the
need for privileges. In this example, the following includes are needed for the server:

#include <array>
#include <iostream>
#include <stdexcept>

#include <unistd.h>
#include <string.h>

#include <sys/socket.h>
#include <netinet/in.h>

[369 1]

Programming POSIX Sockets Using C++ Chapter 10

The server will be defined using a class to take advantage of RAII, providing a clean
method for closing the socket opened by the server when it is no longer needed. We also
define three private member variables. The first variable will store the socket file descriptor
that the server will use throughout the example. The second variable stores the address
information of the server, which will be provided to the bind () function, while the third
parameter stores the address information of the client, which will be used by the
recvfrom () and sendto () functions:

class myserver

{
int m_£fd{};
struct sockaddr_in m_addr{};
struct sockaddr_in m_client{};

public:

The constructor of the server will open the socket and bind the provided port to the socket,
as follows:

explicit myserver (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_DGRAM, 0); m_fd == -1) {
throw std::runtime_error (strerror (errno));

}

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_ANY) ;

if (this->bind() == -1) {
throw std::runtime_error (strerror (errno));
}
}

The socket is opened using AF_INET, which tells the socket API that IPv4 is desired.
Additionally, SOCK_DGRAM is provided, which tells the socket API that UDP is desired
instead of TCP. The result of the call to : : socket () is saved into the m_fd variable, which
stores the servers socket file descriptor. Leveraging C++17, if the resulting file descriptor is
-1, an error occurred, and we throw the error, which will be recovered later.

[370]

Programming POSIX Sockets Using C++ Chapter 10

Next, we fill in a sockaddr_in{} structure:

e sin_family is set to AF_INET to match the socket, telling the socket API we
wish to use IPv4.

e sin_port is set to the port number, and htons is used to convert host byte order
into network byte order for a short.

e sin_addr is set to INADDR_ANY, which tells the socket API that the server will
accept data from any client. Since UDP is a connectionless protocol, this means
we may receive data from any client if desired.

Finally, a call to a member function, called bind (), is made and the result is checked for an
error. If an error occurs, an exception is thrown.

The bind function is nothing more than a wrapper around the : :bind () socket API, as
follows:

int bind()
{
return ::bind/(
m_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)i
}

In the preceding code snippet, we call bind with the socket file descriptor that is opened in
the constructor of our server class, and we provide the bind API with the port and address
that was also initialized in the constructor prior to calling this function, which tells the
socket to bind to port 22000 and any IP address.

Once the socket has been bound, the server is ready to receive data from a client. Since we
bound the socket to any IP address, any client can send us information. We could use the
recv () POSIX API for this, but the problem with this approach is that once we receive
data, we will not know who sent us the information. This is fine if we don't need to send
that client any information in return, or we embed the client information in the data
received, but in the case of a simple echo server, we need to know who to echo the data to.
To solve this problem, we use recvfrom () instead of recv (), as follows:

ssize_t recv(std::array<char, MAX_SIZE> &buf)
{

socklen_t client_len = sizeof (m_client);

return ::recvfrom
m_fd,

[371]

Programming POSIX Sockets Using C++ Chapter 10

buf.data(),
buf.size(),
0,
(struct sockaddr *) &m_client,
&client_len
)i
t

The first parameter is the socket file descriptor that was created during construction, while
the second and third parameters are the buffer and its maximum size. Note that our

recv () member function takes std: : array instead of a pointer and a size, as a pointer
and a size parameter would not be C++-Core-compliant because doing so provides an
opportunity for error in reporting the actual size of the array. The last two parameters are a
pointer to a sockaddr_in{} structure and its size.

It should be noted that in our example we provide recvfrom () with a sockaddr_in{}
structure, as we know that the client that will be connecting will use an IPv4 address. If this
is not the case, the recvfrom () function will fail, as we will have provided it with a
structure that is too small to provide, say, an IPv6 address if it is used. To overcome this
issue, you may use sockaddr_storage{} instead of sockaddr_in{}. The
sockaddr_storage{} structure is large enough to store an incoming address type. To
determine which address type you received, the sin_family field may be used, which is
required in all of the structures.

Finally, we return the result of the call to recvfrom (), which could either be the number of
bytes received, or -1 in the event of an error.

To send a buffer to a client that connects to the UDP server, we use the sendto () API, as
follows:

ssize_t send(std::array<char, MAX_SIZE> &buf, ssize_t len)

{

if (len >= buf.size()) {

throw std::out_of_range("len >= buf.size()");
}
return ::sendto(

m_fd,

buf.data(),

buf.size(),

OI

(struct sockaddr *) &m_client,
sizeof (m_client)

[372]

Programming POSIX Sockets Using C++ Chapter 10

As with the other APISs, the first parameter is the socket file descriptor that was opened in
the constructor. The buffer is then provided. The difference between recvrom () and
sendto () in this case is that the number of bytes to send is provided instead of the total
size of the buffer. This doesn't break C++ Core Guidance as the total size of the buffer is still
attached to the buffer itself, and instead the number of bytes to send is a second value used
to determine how far into an array we plan to address. We do, however, need to ensure the
length field is not out of range. This could be done using a call to Expects (), as follows:

Expects (len < buf.size())

In the case of this example, we explicitly check for an out-of-range error and throw a more
verbose error if this should occur. Either approach would work.

As with the recvfrom () call, we provide the sendto () API with a pointer to a
sockaddr_in{} structure, which tells the socket which client to send data to. In this case,
since the API does not modify the address structure (and thus the structure cannot change
in size), a pointer to the length field is not needed.

The next step is to put all of these together to create the echo server itself, as follows:

void echo ()
{
while (true)

{
std::array<char, MAX_SIZE> buf{};

if (auto len = recv(buf); len != 0) {
send (buf, len);

}

else {
break;

}

[373]

Programming POSIX Sockets Using C++ Chapter 10

The echo server is designed to receive a buffer of data from a client, send it back to the same
client, and repeat. To start, we create an infinite loop that is capable of echoing data from
any client until we are told the client has disconnected. The next step is to define a buffer
that will be used to both send and receive data to the client. We then call the recv ()
member function and provide it with the buffer we wish the receive function to fill in with
data from the client and check whether the number of bytes returned from the client is
greater than 0. If the number of bytes returned from the client is greater than 0, we use the
send member function to send (or echo) the buffer back to the client. If the number of bytes
is 0, we assume the client has disconnected as a result, and we stop the infinite loop, which
in turn completes the echo process.

The client-information structure (that is, m_client) is provided to both the recvfrom()
and sendto () POSIX APIs. This is done intentionally. The only assumption we are making
is that all clients connecting will use IPv4. The recvfrom () function will fill in the
m_client structure for us when data is received from a client, telling us who the client was
that sent us the information. We then provide this same structure back to the sendto ()
function to tell the API who to echo the data to.

As stated before, when the server class is destroyed we close the socket, as follows:

~myserver ()

{
close (m_£fd);

}

Finally, we complete the server by instantiating the server in a protected_main ()
function, and then begin echoing:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.echo () ;

return EXIT_SUCCESS;
}

int
main (int argc, char** argv)
{
try |
return protected_main (argc, argv);

[374]

Programming POSIX Sockets Using C++ Chapter 10

t
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '"\n';
t
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;
t

As shown, the main function is protected from possible exceptions, and in the
protected_main () function, we instantiate the server and call its echo () member
function, which starts the infinite loop for echoing client data.

The client logic

In this example, the following includes are needed for the client:

#include <array>
#include <string>
#include <iostream>
#include <stdexcept>

#include <unistd.h>
#include <string.h>

#include <sys/socket.h>
#include <netinet/in.h>

Like the server, the client is created using a class to take advantage of RAII:

class myclient

{
int m_fd{};
struct sockaddr_in m_addr{};

public:

In addition to the class definition, two private member variables are defined. The first, like
the server, is the socket file descriptor that will be used by the client. The second defines the
address information for the server the client desires to communicate with.

[375]

Programming POSIX Sockets Using C++ Chapter 10

The constructor of the client is similar to the server's, with some minor differences:

explicit myclient (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_DGRAM, 0); m_fd == -1) {
throw std::runtime_error (strerror (errno));

}

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK) ;

if (connect () == -1) {
throw std::runtime_error (strerror (errno));

}

Like the server, the client creates a socket file descriptor for IPv4 by using AF_INET and the
protocol type is set to UDP by using SOCK_DGRAM. If the socket () API returns an error, an
exception is thrown. The sockaddr_in{} structure that is set up is different from the
server. The server's sockaddr_in{} structure defines how the server will bind the socket,
while the client sockaddr_in{} structure defines what server the client will connect to. In
the case of this example, we set the address to INADDR_LOOPBACK as the server will be
running on the same computer. Finally, the connect () member function is called, which
connects to the server, and if an error occurs, an exception is thrown.

To connect to the server, the following connect () member function is used:

int connect ()

{
return ::connect (
m_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)i
}

It should be noted that connecting to a server with UDP is optional as UDP is a
connectionless protocol. The connect function, in this case, tells the operating system
which server you plan to communicate with such that send () and recv () may be used,
instead of sendto () and recvfrom () on the client side. Like the bind () member function
for the server, the connect () function leverages the sockaddr_in{} structure filled in by
the constructor.

[376]

Programming POSIX Sockets Using C++ Chapter 10

To send data to the server to be echoed, the following send () member variable is used:

ssize_t send(const std::string &buf)
{
return ::send(
n_fd,
buf.data(),
buf.size(),
0
)i
}

Since we plan to send the server a string, we pass the send () member function a string
reference. The send () POSIX API is then given the socket file descriptor created in the
constructor, the buffer to send to the server to be echoed, and the total length of the buffer
being sent. Since we don't use the £1ags field, the send () member function could also be
written using the write () function, as follows:

ssize_t send(const std::string &buf)
{
return ::write(
m_fd,
buf.data(),
buf.size ()
)i
}

To receive data from the server after it has been echoed, we use the following recv ()
member function:

ssize_t recv(std::array<char, MAX_SIZE> &buf)
{
return ::recv(
m_fd,
buf.data(),
buf.size() - 1,
0
)

[377]

Programming POSIX Sockets Using C++ Chapter 10

There are many ways to implement the recv () member function. Since we know the total
size of the string being sent to the server, and we know the server will echo the same-sized
string back to us, we could always create a second string the same size as the first (or
simply reuse the original string if you trust echo actually is occurring). In the case of this
example, we create a receive buffer with a specific maximum size to demonstrate a more
likely scenario. As a result, in this example, we can send any size string we wish, but the
server has its own, internal maximum buffer size that it can accept. The server will then
echo the data back to the client. The client itself has its own maximum-sized receive buffer,
which ultimately limits the total number of bytes that may be echoed. Since the client is
echoing strings, we must reserve one byte for a trailing ' \0' to null terminate any string
that is received by the client that fills the entire receive buffer.

To send and receive data to and from the server, we create an echo function, as follows:

void echo ()

{
while (true) {
std::string sendbuf{};
std::array<char, MAX_SIZE> recvbuf{};

std::cin >> sendbuf;

if (sendbuf == "exit") {
send ({});
break;

}

send (sendbuf) ;
recv (recvbuf) ;

std::cout << recvbuf.data() << '\n';

}

The echo function, like the server, first creates an infinite loop so that it can send multiple
strings to the server to be echoed. Inside the infinite loop, two buffers are created. The first
is the string that will take in user input. The second defines the receive buffer to be used.
Once the buffers are defined, we use std: : cin to get from the user the string to be sent to
the server (which will ultimately be echoed).

[378]

Programming POSIX Sockets Using C++ Chapter 10

If the string is the word exit, we send 0 bytes to the server and exit the infinite loop. Since
UDP is a connectionless protocol, the server has no way of knowing whether the client has
disconnected because no such construct exists. Therefore, without sending a signal to the
server to stop (in this case we send 0 bytes), the server would stay in an infinite loop as it
has no way of knowing when to stop. In this example, this poses an interesting problem
because if the client crashes or is killed (for example, with Ctrl + C), the server will never be
given the 0 byte signal, and thus remain in an infinite loop. There are many ways to solve
this issue (that is, by sending a keep-alive signal), but once you go down the path of trying
to solve this problem, you quickly end up with a protocol that is so similar to TCP, you
might as well use TCP.

Finally, the user-inputted buffer is sent to the server using the send () member function,
the server echoes the string, and then the client then receives the string using the recv ()
member function. Once the string is received, the data is output to stdout using
std::cout.

Like the server, when the client class is destroyed, the socket file descriptor is closed,
closing the socket:

~myclient ()
{
close (m_£fd);
}
}i

Finally, the client is created using the same protected_main () function as the server and
our previous examples:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myclient client{PORT};
client.echo();

return EXIT_SUCCESS;
}

int
main (int argc, char** argv)
{
try {
return protected_main(argc, argv);

[379]

Programming POSIX Sockets Using C++ Chapter 10

}

t
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " — what(): " << e.what () << "\n';
t
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;

In the preceding code, the client is instantiated in the protected_main () function, and the
echo function is called, which accepts user input, sends the input to the server, and outputs
any echoed data to stdout.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

for the other examples: https://github.com/PacktPublishing/Hands-On-System-
Programming-with-CPP/blob/master/Chapterl10/CMakeLists.txt.

With this code in place, we can compile this code using the following;:

>

git clone

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git

>
>
>

>
>

cd Hands-On-System-Programming-with-CPP/Chapterl0/
mkdir build
cd build

cmake
make

To execute the server, run the following:

>

./examplel_server

To execute the client, open a new terminal and run the following:

> cd Hands-On-System-Programming-with-CPP/Chapterl0/build

>

./examplel_client

Hello J
Hello
World
World
exit J

[380]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt

Programming POSIX Sockets Using C++ Chapter 10

As shown in the preceding snippet, when the client is executed, and input is entered, the
input is echoed back to the terminal. Once complete and the word exit is entered, the
client exits. Also the server will exit when the client is complete. To demonstrate the
connection issue with UDP, instead of entering exit, hit Ctrl + C on the client—the client
will exit but the server will continue to execute, waiting for more input from the client as it
will not know the client has completed. To solve this issue, out next example will create the
same echo server but using TCP instead.

Studying an example on the TCP echo
server

In this example, we will walk the reader through creating an echo server, but using TCP
instead of UDP. Just like with the previous example, an echo server echoes any input to its
output. Unlike the UDP example, TCP is a connection-based protocol, and thus some of the
specifics of how to establish a connection and send/receive data are different in this
example.

Server

To start, we must define the maximum buffer size we plan to send from the client to the
server and back, and we must also define the port we wish to use:

#define PORT 22000
#fdefine MAX_SIZE 0x10

For the server, we will need the following includes:

#include <array>
#include <iostream>

#include <unistd.h>
#include <string.h>

#include <sys/socket.h>
#include <netinet/in.h>

[381]

Programming POSIX Sockets Using C++ Chapter 10

As with the previous examples, we will create the server using a class to take advantage of
RAIIL

class myserver
{
int m_fd{};
int m_client{};
struct sockaddr_in m_addr{};

public:

As with UDP, three member variables will be used. The first member variable, m_fd, stores
the socket file descriptor for the socket associated with the server. Unlike UDP, this
descriptor will not be used to send/receive data with a client. Instead, m_client represents
a second socket file descriptor that will be used to send/receive data with the client. Like
with UDP, the sockaddr_in{} structure, m_addr, will be filled in with the server address
type, which will be bound.

The constructor for the server is similar to the UDP example:

explicit myserver (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_STREAM, 0); m_fd == -1) {
throw std::runtime_error (strerror (errno));

}

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_ANY) ;

if (this->bind() == -1) {
throw std::runtime_error (strerror (errno));
t
t

Like the UDP example, a socket file descriptor for the server is created, but instead of
SOCK_DGRAM being used, SOCK_STREAM is used instead. The sockaddr_in{} structure is
identical to the UDP example with IPv4 being used (that is, AF_INET), the port, and any IP
address being used to signal that connections from any IP address will be accepted.

[382]

Programming POSIX Sockets Using C++ Chapter 10

Like the UDP example, the sockaddr_in{} structure is then bound using the following
member function:

int bind{()
{
return ::bind(
m_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)
}

The preceding bind () function is identical to the bind () function used in the UDP
example.

Unlike UDP, a second, client-specific socket descriptor is created, and the IP address, port,
and address type are all set for that socket type, meaning communicating with the client
does not require sendto () or recvfrom() since we have a specific socket file descriptor
that already has this additional information bound to it. For this reason, send () and

recv () may be used instead of sendto () and recvfrom().

To receive data from the client, the following member function will be used:

ssize_t recv(std::array<char, MAX_SIZE> &buf)
{
return ::recv(
m_client,
buf.data(),
buf.size(),
0

)i
}

The only difference between the UDP example and this example is the use of recv ()
instead of recvfrom (), which omits the additional sockaddr_in{} structure. If you recall
from the previous UDP example, m_fd was used with recvfrom() instead of m_client
with recv (). The difference is that m_c1lient in the UDP example is a sockaddr_in{}
structure that defines who to receive data from. With TCP, m_client is instead a socket
descriptor, and who to receive data from is bound to the descriptor, which is why the
additional sockaddr_in{} structure is not needed.

The same is also true for the send () member function:

ssize_t send(std::array<char, MAX_SIZE> &buf, ssize_t len)
{

if (len >= buf.size()) {

[383]

Programming POSIX Sockets Using C++ Chapter 10

throw std::out_of_range("len >= buf.size()");

}

return ::send(
m_client,
buf.data(),
len,
0
)i
t

Unlike in the UDP example, the preceding send () function may use the send () POSIX
APl instead of sendto (), as the address information about who and how to send data to
the client is bound to the descriptor and, as such, the additional sockaddr_in{}
information may be omitted. The rest of the send () function is identical to the UDP
example.

The echo function is quite a bit different from its UDP counterpart:

void echo ()
{
if (::listen(m_£fd, 0) == -1) {
throw std::runtime_error (strerror (errno));

}

if (m_client = ::accept(m_fd, nullptr, nullptr); m_client == -1) {
throw std::runtime_error (strerror (errno));

}

while (true)

{
std::array<char, MAX_SIZE> buf{};

if (auto len = recv(buf); len != 0) {
send (buf, len);
}
else {
break;
}
}

close (m_client);

[384]

Programming POSIX Sockets Using C++ Chapter 10

Since TCP requires connections, the first step in the echo function for the server is to tell the
POSIX API that you wish to begin listening for incoming connections. In our example, we
tell the API to use the default connection backlog, which is implementation-specific, by
setting the backlog to 0. The next step is to wait for an incoming connection from a client
using the accept () POSIX APIL By default, this function is a blocking function. The
accept () function returns a socket file descriptor with the address information bound to
the descriptor and as a result, we pass nullptr to the address fields in the accept ()
POSIX API as this information is not needed in our example (but might be needed if you,
for example, need to filter certain incoming clients).

The next step is to wait for data to be received by the client and then echo that data back to
the client using the send () member function. This logic is identical to the UDP example. It
should be noted that if we receive 0 bytes from the client, we stop processing data from the
client, similar to what was done with UDP. The difference is that, as will be shown, on the
client side, we do not need to explicitly send 0 bytes to the server for this condition to
occur.

The last step in the echo function is to close the client socket file descriptor once the client
has finished:

~myserver ()
{
close (m_£fd);
}
}i

As with the other examples, we close the server's socket file descriptor when the server
class is destroyed. Finally, the server is instantiated in a protected_main () function, as
follows:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.echo () ;

}

int
main (int argc, char** argv)
{
try A
return protected_main(argc, argv);

[385]

Programming POSIX Sockets Using C++ Chapter 10

t
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '"\n';
t
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;
t

Like the UDP example, the server is instantiated, and the echo () function is executed.

The client logic

The client logic is similar to the UDP client logic with a few minor exceptions. The
following includes are needed:

#include <array>
#include <string>
#include <iostream>

#include <unistd.h>
#include <string.h>

#include <sys/socket.h>
#include <netinet/in.h>

Just like with the UDP example, a client class is created to leverage RAII, and the m_fd and
m_addr private member variables are defined to store the socket file descriptor for the
client, and the address information for the server the client wishes to connect to:

class myclient

{
int m_fd{};
struct sockaddr_in m_addr{};

public:

Unlike the UDP example, but like the TCP server logic, the constructor creates a socket for
IPv4 and TCP using both AF_INET and SOCK_STREAY, as follows:

explicit myclient (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_STREAM, 0); m_fd == -1) {

[386 1]

Programming POSIX Sockets Using C++ Chapter 10

throw std::runtime_error (strerror (errno));

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK) ;

if (connect () == -1) {
throw std::runtime_error (strerror (errno));

}

The rest of the constructor is identical to the UDP example, as are the connect (), send (),
and recv () functions:

int connect ()

{
return ::connect (
m_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)i
}
ssize_t send(const std::string &buf)
{
return ::send/(
m_fd,
buf.data(),
buf.size(),
0
)i
}
ssize_t recv(std::array<char, MAX_SIZE> &buf)
{
return ::recv (
m_fd,
buf.data(),
buf.size() - 1,
0
)i
}

[387]

Programming POSIX Sockets Using C++ Chapter 10

As shown in the preceding snippet, the client functions almost exactly the same as a UDP
client. The difference between a UDP client and a TCP client, other than the use of
SOCK_STREAY, lies in the implementation of the echo function:

void echo ()
{
while (true) {
std::string sendbuf{};
std::array<char, MAX_SIZE> recvbuf{};

std::cin >> sendbuf;

send (sendbuf) ;
recv (recvbuf) ;

std::cout << recvbuf.data() << '\n';
}

Unlike the UDP example, the TCP client does not need to check for the exit string. This is
because if the client disconnects (for example, Ctrl + C is used to kill the client), 0 bytes are
received on the server side, telling the server logic the client has been disconnected. This is
possible because TCP is a connection-based protocol, and thus, the operating system is
maintaining an open connection, including keep-alive signals between the server and the
client so that the user of the API doesn't have to do this explicitly. For this reason, in most

cases, this is the desired socket type, as it prevents a lot of common problems with
connection status:

~myclient ()
{
close (m_£fd);
}
}i

As shown in the preceding code, like all of the other examples, when the client is destroyed,
the socket file descriptor is closed, as follows:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myclient client{PORT};
client.echo();

[388]

Programming POSIX Sockets Using C++ Chapter 10

int
main (int argc, char** argv)
{
try A
return protected_main(argc, argv);

t

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';

}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;
t

Finally, the client is instantiated in a protected_main () function, and the echo function is
called.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthE(ﬁherexquﬂesthttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapter10/CMakelLists.txt.

With this code in place, we can compile this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter10/

> mkdir build

> cd build

> cmake
> make

To execute the server, run the following:

> ./example2_server

[389]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt

Programming POSIX Sockets Using C++ Chapter 10

To execute the client, open a new terminal and run the following:

> cd Hands-On-System-Programming-with-CPP/Chapter10/build
> ./example2_client

Hello J

Hello

World

World

<ctrl+c>

As shown in the preceding snippet, when the client is executed, and input is entered, the
input is echoed back to the terminal. Once complete, and Ctrl + C is entered, the client exits.
As you can see, the server will exit when the client is complete. The preceding example
demonstrates the ease of use of TCP, and its advantages over UDP. The next example will
demonstrate how to use TCP for something more useful.

Exploring an example on TCP Logger

To demonstrate something more useful, the following example implements the same logger
that we have been developing throughout this book, but as a remote logging facility.

Server

The same macros and includes are needed for this example as with the previous examples
in this chapter. To start the server, we must define the log file:

std::fstream g_log{"server_log.txt", std::ios::out | std::ios::app};

Since the logger will be executing on the same computer to keep the example simple, we
will name the file the server is logging to as server_log.txt.

The server is identical to the TCP server in the previous example, with the exception that
only a recv () member function is needed (that is, there is no need for a send () function as
the server will only be receiving log data):

class myserver
{
int m_£fd{};
int m_client{};
struct sockaddr_in m_addr{};

public:
explicit myserver (uintl6_t port)

[390]

Programming POSIX Sockets Using C++

Chapter 10

if (m_fd = ::socket (AF_INET, SOCK_STREAM, O0);

; m_fd == -1)
throw std::runtime_error (strerror (errno));

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_ANY) ;

if (this->bind() == -1) {
throw std::runtime_error (strerror (errno));

int bind()

{

return ::bind(
n_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)

)

ssize_t recv(std::array<char, MAX_SIZE> &buf)

{

}

return ::recv(
m_client, buf.data(), buf.size(), O
)i

{

The difference between the previous TCP example and this example is the use of the 1og ()
function instead of the echo function. Both functions are similar in that they listen for an

incoming connection and then loop infinitely until data is received by the server:

void log ()
{
if (::listen(m_£fd, 0) == -1) {
throw std::runtime_error (strerror (errno));
}
if (m_client = ::accept(m_fd, nullptr, nullptr); m_client == -1) {
throw std::runtime_error (strerror (errno));
}

while (true)

{
std::array<char, MAX_SIZE> buf{};

[391]

Programming POSIX Sockets Using C++ Chapter 10

if (auto len = recv(buf); len != 0) {
g_log.write (buf.data(), len);
std::clog.write (buf.data(), len);

t

else {
break;

close (m_client);

}

The difference with the 1og function is that when data is received by the client, instead of
echoing the data back to the server, the data is output to stdout and written to the

server_log.txt log file.
As shown here, the rest of the server logic is the same as the previous example:

~myserver ()

{

close (m_£fd);
ti

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.log();

return EXIT_SUCCESS;

int
main (int argc, char** argv)
{
try {
return protected_main (argc, argv);
t
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '"\n';
t

catch (...) {
std::cerr << "Caught unknown exception\n";

[392]

Programming POSIX Sockets Using C++ Chapter 10

return EXIT_FAILURE;
t

The socket file descriptor is closed when the server object is destroyed, the server is
instantiated in a protected_main () function, and the 1og () function is then executed.

The client logic

The client logic for this example is a combination of the debug examples in previous
chapters (which we have been building upon) and the previous TCP example.

We start by defining the debug level and enable macros, as with previous examples:

#ifdef DEBUG_LEVEL

constexpr auto g_debug_level = DEBUG_LEVEL;
#else

constexpr auto g_debug_level
fendif

0;

#ifdef NDEBUG

constexpr auto g_ndebug = true;
#else

constexpr auto g_ndebug = false;
fendif

The client class is identical to the client class in the previous TCP example:

class myclient
{
int m_£fd{};
struct sockaddr_in m_addr{};

public:
explicit myclient (uintl6_t port)
{
if (m_fd = ::socket (AF_INET, SOCK_STREAM, O0)

; m_fd == -1) {
throw std::runtime_error (strerror (errno));

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK) ;

if (connect () == -1) {

[393]

Programming POSIX Sockets Using C++ Chapter 10

throw std::runtime_error (strerror (errno));

}

int connect ()

{

return ::connect (
m_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)i
t

ssize_t send(const std::string &buf)

{
return ::send(
n_fd,
buf.data(),
buf.size(),
0
)i
t

~myclient ()
{

close (m_£fd);
t
ti

The only difference between the client in this example and the client in the previous
example is that in this example, there is no need for a recv () function (as no data is being
received from the server), and there is no need for the echo () function (or anything
similar) as the client will be used directly to send data to the server as needed.

As with the previous debug example, a log file for the client is needed, and in this example,
we will also globally instantiate the client, as follows:

myclient g_client{PORT};
std::fstream g_log{"client_log.txt", std::ios::out | std::ios::app};

As shown, the client log file will be named client_log.txt, to prevent a collision with
the server log file as both will be running on the same computer to simplify the example.

[394]

Programming POSIX Sockets Using C++

Chapter 10

The log function is identical to the 1og function defined in chapter 8, Learning to Program
File Input/Output, with the exception that in addition to logging to stderr and the client-

side log file, the debug string will also be logged to the server:

template <std::size_t LEVEL>
constexpr void log(void(*func) ()) {
if constexpr (!g_ndebug && (LEVEL <= g_debug_level)) {
std::stringstream buf;

auto g_buf = std::clog.rdbuf();
std::clog.rdbuf (buf.rdbuf ());

func () ;
std::clog.rdbuf (g_buf);

std::clog << "\033[1;32mDEBUG\033[0m: ";
std::clog << buf.str();

g_log << "\033[1;32mDEBUG\033[0m: ";
g_log << buf.str();

g_client.send("\033[1;32mDEBUG\033[0m: ");
g_client.send(buf.str());
}i
}

As shown in preceding code, the 1og function encapsulates any output to std: : clog, and
redirects the resulting string to stderr, the log file, and for the purpose of this example, to

the client object that sends the string to the server to be logged on the server side.

The remaining portion of the example is identical to the previous examples:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

log<0>([1{
std::clog << "Hello World\n";
}) i

std::clog << "Hello World\n";

return EXIT_SUCCESS;

[395]

Programming POSIX Sockets Using C++ Chapter 10

int
main (int argc, char** argv)
{
try A
return protected_main(argc, argv);

t

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';

}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;
t

The protected_main () function outputs Hello World\n to stderr, which is redirected
to include stderr, the log file, and finally sent to the server. Another call to std: :clogis

made to show that only calls to std: clog that are encapsulated in the 1og () function are

redirected.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthe(ﬁherexanqﬂES:https://github.com/PacktPublishing/HandsfonfSystemf
Programming-with-CPP/blob/master/Chapter10/CMakelLists.txt.

With this code in place, we can compile this code using the following;:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter10/

> mkdir build

> cd build

> cmake
> make

To execute the server, run the following:

> ./example3_server

[396]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt

Programming POSIX Sockets Using C++ Chapter 10

To execute the client, open a new terminal and run the following:

> cd Hands-On-System-Programming-with-CPP/Chapter10/build
> ./example3_client

Debug: Hello World

Hello World

> cat client_log.txt
Debug: Hello World

> cat server_log.txt
Debug: Hello World

As shown in the preceding snippet, when the client is executed, the client and server side
both output DEBUG: Hello Worldto stderr. Inaddition, the client outputs Hello
World to stderr as the second call to std: : clog is not redirected. Finally, both log files
contain the redirected DEBUG: Hello World.

In all of the examples so far, the one thing that has been ignored is what happens if more
than one client attempts to connect to the server. In the examples in this chapter, only one
client is supported. To support additional clients, threading is needed, which will be
covered in Chapter 12, Learning to Program POSIC and C++ Threads where we will expand
upon this example to create a logging server capable of logging the debug output of more
than one application. The final two examples in this chapter will demonstrate how to
process non-string data packets using TCP.

Trying out an example for processing
packets

In this example, we will discuss how to process the following packet from the client to the
server:

struct packet
{
uint64_t len;
char buf [MAX_SIZE];

uint64_t datal;
uint64_t data2;
}i

[397]

Programming POSIX Sockets Using C++ Chapter 10

The packet consists of some fixed-width integer data and a string (fields in a network must
always be fixed width, as you might not have control of the type of computer your
application is running on and non-fixed width types, such as int and 1ong, might change
depending on the computer).

This type of packet is common among many programs, but as will be demonstrated, this
type of packet has challenges with respect to safely parsing.

The server is identical to the previous TCP examples, minus the recv_packet () function
(and the recv () function processes packets instead of std: :arrays):

class myserver

{

voild recv_packet ()
{
if (::listen(m_£fd, 0) == -1) {
throw std::runtime_error (strerror (errno));

t
if (m_client = ::accept(m_fd, nullptr, nullptr); m_client == -1) {
throw std::runtime_error (strerror (errno));

}

packet p{};

if (auto len = recv(p); len != 0) {
auto msg = std::string(p.buf, p.len);
std::cout << "datal: " << p.datal << '\n';
std::cout << "data2: " << p.data2 << '\n';
std::cout << "msg: \"" << msg << "\"\n";
std::cout << "len: " << len << '\n';

}

close (m_client);

bi

[398]

Programming POSIX Sockets Using C++ Chapter 10

In the recv_packet () function, we wait to receive data from the client. Once the packet is
received from the client, we parse the packet received. The integer data associated with the
packet is read and output to stdout without issue. The string data, however, is more
problematic. Since we don't know the total size of the string data being received, we must
account for the entire buffer to safely process the string, and in a sense, maintain type-
safety. Of course, in our example, to reduce the total size of the packet, we could have
placed the integer data first in the packet, and then created a variable length packet, but this
is both unsafe and hard to control or accomplish in more complicated scenarios. Most
attempts to solve this problem (of having to send and receive more data than is actually
needed) result in an operation that is variable in length, and thus, unsafe.

The rest of the server is identical to the previous examples:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.recv_packet ();

}

int
main (int argc, char** argv)
{
try {
return protected_main (argc, argv);
}
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';
}
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;
}

As shown in preceding code, the server is instantiated in a protected_main () function
and the recv_packet () function is called.

[399]

Programming POSIX Sockets Using C++ Chapter 10

The client logic
The bulk of the client is also identical to the previous examples:

class myclient

{

void send_packet ()
{
auto msg = std::string("Hello World");

packet p
42,
43,
msg.size(),

{1

{

ti
memcpy (p.buf, msg.data(), msg.size());

send(p) ;

bi
The send_packet () function is the only part that's different from the previous examples
(minus the fact that the send () function sends packets instead of a std: :array ()). In the
send_packet () function, we create a packet without our "Hello World" string. It should

be noted that to create this packet, we still require some processing, including a memory
copy. Once the packet is created, we send it to the server for processing.

The rest of the client is identical to the previous examples:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myclient client{PORT};
client.send_packet () ;

}

int
main (int argc, char** argv)

[400]

Programming POSIX Sockets Using C++ Chapter 10

try {
return protected_main(argc, argv);

t

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '"\n';

}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;
t

The client is instantiated in a proceted_main () function, and the send_packet ()
function is executed.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthE(ﬁherexquﬂesthttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapter10/CMakelLists.txt.

With this code in place, we can compile this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter10/

> mkdir build

> cd build

> cmake
> make

To execute the server, run the following:
> ./exampled_server

To execute the client, open a new terminal and run the following:

> cd Hands-On-System-Programming-with-CPP/Chapter10/build
> ./exampled_client

[401]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt

Programming POSIX Sockets Using C++ Chapter 10

On the server side, the following is output to stdout:

datal: 42
data2: 43
msg: "Hello World"
len: 280

As shown in the preceding snippet, the packet data is sent by the client and received by the
server. The total size of the packet received by the server is 280 bytes, even though the total
size of the string is far smaller. In the next example, we will demonstrate how marshaling
packets can safely reduce the total size of a packet at the expense of some additional
processing (although likely negligible depending on your use case).

Processing an example of processing JSON

In this final example, we will demonstrate how packets can be marshaled using JSON to
safely reduce the size of a network packet, at the expense of some additional processing. To
support this example, the following C++ JSON library will be used: https://github.com/

nlohmann/Jjson.

To incorporate this JSON library into our example, the following will have to be added to
our CMakeLists.txt, which downloads this header-only library and installs it into our
build folder to be used:

list (APPEND JSON_CMAKE_ARGS
-DBUILD_TESTING=OFF
~DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_ DIR}
)

ExternalProject_Add(
json
GIT_REPOSITORY https://github.com/nlohmann/json.git
GIT_SHALLOW 1
CMAKE_ARGS ${JSON_CMAKE_ARGS}
PREFIX ${CMAKE_BINARY_DIR}/external/json/prefix
TMP_DIR ${CMAKE_BINARY_DIR}/external/json/tmp
STAMP_DIR ${CMAKE_BINARY_DIR}/external/json/stamp
DOWNLOAD_DIR ${CMAKE_BINARY_DIR}/external/json/download
SOURCE_DIR ${CMAKE_BINARY_DIR}/external/json/src
BINARY_DIR ${CMAKE_BINARY_DIR}/external/json/build
UPDATE_DISCONNECTED 1

[402]

https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json

Programming POSIX Sockets Using C++

Chapter 10

Server

The server includes and macros are the same, with the exception that JSON must be added,

as follows:

#include <nlohmann/json.hpp>
using json = nlohmann::json;

The server in this example is identical to the previous examples, with the exception of the

recv_packet () function:

class myserver

{

void recv_packet ()

{
std::array<char, MAX_SIZE> buf{};
if (::listen(m_fd, 0) == -1) {
throw std::runtime_error (strerror (errno));
}
if (m_client = ::accept(m_£fd, nullptr, nullptr);
throw std::runtime_error (strerror (errno));
}
if (auto len = recv(buf); len != 0) {
auto j = json::parse(buf.data(), buf.data() + len);
std::cout << "datal: " << j["datal"] << '\n';
std::cout << "datal2: " << j["data2"] << '\n';
std::cout << "msg: " << J["msg"] << '\n';
std::cout << "len: " << len << '\n';
}
close (m_client);
}

}i

== -1) |

[403]

Programming POSIX Sockets Using C++ Chapter 10

In the recv_packet () function, we need to allocate a buffer with some maximum size; this
buffer is not required to be received in full, but rather is a placeholder for our JSON buffer,
which could be any size up to our maximum. Parsing the JSON data is simple. The integer
data and the string data are safely parsed into their integer and std: : string types,
respectively, all adhering to the C++ Core Guidelines in the process. The code is simple to
read and follow, and the packet can be changed in the future without having to change any
additional logic.

The rest of the server is identical:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.recv_packet ();

}

int
main (int argc, char** argv)
{
try {
return protected_main(argc, argv);
}
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " — what(): " << e.what() << '\n';
}
catch (...) |
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;
}

The server is instantiated in a protected_main () function and the recv_packet ()
function is called.

[404]

Programming POSIX Sockets Using C++ Chapter 10

The client logic
Like the server, the client must also include the JSON header:

#include <nlohmann/Jjson.hpp>
using json = nlohmann::json;

As with the server, the client is the same as the previous examples, minus the
send_packet () function:

class myclient

{

void send_packet ()

{

json 3J;

j["datal"] = 42;
j["data2"] = 43;

J["msg"] = "Hello World";

send (j.dump());

bi

The send_packet () function is equally simple. A JSON packet is constructed and sent to
the server. The difference is that the packet is marshaled into a JSON string before being
sent (using the dump () function). This converts all of the data into a single string with
special syntax to define the start and end of each field in a well-established, well-tested
fashion to prevent unsafe parsing. In addition, as will be shown shortly, the total number of
bytes being sent is dramatically reduced.

The rest of the client is identical:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myclient client{PORT};
client.send_packet ();

[405]

Programming POSIX Sockets Using C++ Chapter 10

int
main (int argc, char** argv)
{
try A
return protected_main(argc, argv);

t

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';

}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;
t

The client is instantiated in a protected_main () function, and the send_packet ()
function is called.

Compiling and testing

To compile this code, we leverage the same CMakeLists. txt file that we have been using
forthE(ﬁherexquﬂeszhttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapter10/CMakelLists.txt.

With this code in place, we can compile this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter10/

> mkdir build

> cd build

> cmake
> make

To execute the server, run the following:
> ./example5_server

To execute the client, open a new terminal and run the following:

> cd Hands-On-System-Programming-with-CPP/Chapter10/build
> ./example5_client

[406]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter10/CMakeLists.txt

Programming POSIX Sockets Using C++ Chapter 10

On the server side, the following is output to stdout:

datal: 42

data2: 43

msg: "Hello World"
len: 43

As shown in the preceding snippet, the packet data is sent by the client and received by the
server. The total size of the packet received by the server is 43 bytes, which is 6.5 times
more efficient compared to the previous example. In addition to providing a smaller
packet, the logic for creating and parsing the packet is similar, and easier to read and
modify in the future. Furthermore, with things such as JSON Schema, packets may even be
validated prior to processing, a topic outside the scope of this book.

Summary

In this chapter, we learned how to program POSIX sockets using C++17. Specifically, we
learned the common APIs associated with POSIX sockets, and how to use them. We
concluded this chapter with five different examples. The first example created a UDP echo
server, while the second example created a similar echo server using TCP instead of UDP,
outlining the differences between the different approaches. The third example expanded
upon our debug example by adding a server component to our debugger. The fourth and
fifth examples demonstrated how to process a simple network packet, and the benefits of
using marshaling to simplify the process.

In the next chapter, we will discuss the C and C++ time interfaces that can be used to get the
wall clock, measure elapsed time and perform benchmarking.

Questions

What is the main difference between UDP and TCP?

What protocol type does UDP use?

What protocol type does TCP use?

What address type does AF_INET represent?

What is the difference between bind () and connect ()?

What is the difference between sendto () and send ()?

How does a UDP server detect when a UDP client is dropped or crashed?

PN AR

What are the benefits of using packet marshaling?

[407]

Programming POSIX Sockets Using C++ Chapter 10

Further reading

® https://www.packtpub.com/application—-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-
programming-video

[408]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

11

Time Interfaces in Unix

In this chapter, the reader will learn how to program the POSIX and C++ time interfaces
using C++17. To start, this chapter will cover the UNIX epoch and POSIX t ime .h APIs and
how to use them. Next, the C++ Chrono APIs will be briefly explained, how they relate to
time.h, and some examples will also be provided. Finally, this chapter will conclude with
two simple examples of how to use the time interfaces. The first example will demonstrate
how to read the system clock and output the results to the console on an interval, and the
second example will demonstrate how to benchmark software using the C++ high-
resolution timer.

In this chapter, we will cover the following topics:

¢ Learning about POSIX time.h APIs

e The C++ Chrono APIs

¢ Understanding the read system clock with an example
e An example involving a high-resolution timer

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

To download all of the code in this chapter, including the examples and code snippets,
please see the following link: https://github.com/PacktPublishing/Hands-On-System—
Programming-with-CPP/tree/master/Chapterll.

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter11

Time Interfaces in Unix Chapter 11

Learning about POSIX time.h APIs

We will begin this chapter by discussing POSIX t ime .h APIs, which provide APIs for
reading various clocks and performing calculations on these clock times. Although these
APIs are specific to standard C, as will be demonstrated in the following section, the C time
interfaces are still needed when working with C++, a problem that is being addressed in
C++20.

Learning about the types of APIs

The UNIX epoch defines the number of seconds from January 1, 1970. Interfaces described
in this chapter leverage the UNIX epoch to define the notion of time. The POSIX time.h
APIs, for the purpose of this chapter, define three different, opaque types:

e tm: An opaque structure that holds a date and time.

e time_t: A typedef that stores a time that is typically implemented using an
integer that stores the number of seconds from the UNIX epoch.

e clock_t: A typedef that stores the amount of processor time the application
has executed.

These APIs provide various functions for creating these types and manipulating them. It
should be noted that there are different types of clocks:

¢ System clock: The system clock reads the clock that the operating system is
maintaining and stores the date and time that is presented to the user (for
example, the clock that is shown on the taskbar). This clock can be changed at
any point in time, so using it for timing in an application is usually discouraged
as the clock being used might move back/forward in time in unexpected ways.

e Steady clock: A steady clock is a clock that ticks as the program executes. The
more the program executes, the larger this clock grows. It should be noted that
this clock will not match the results of the system clock and typically, only the
difference between two of these clocks has any real value.

e High-resolution clock: This is the same as a steady clock, with the exception that
the result being returned has a much higher resolution. These types of clocks are
often used for benchmarking.

[410]

Time Interfaces in Unix Chapter 11

The time() API

The time () APIreturns the current system clock and takes on the following form:

time_t time (time_t *arg);

You can either provide the time () function with a previously-defined time_t variable,
or it will return one for you (if you pass nullptr as the argument), as follows:

#include <ctime>
#include <iostream>

int main ()
{
auto t = time (nullptr);
std::cout << "time: " << t << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 1531603643

In the preceding example, we create a variable, called t, using the time () API to get the
current number of seconds from the UNIX epoch. We then output this value to stdout. It
should be noted that the t ime_t typedef is usually implemented using an integer value,
which is why we can output its value directly to stdout, as shown in the preceding
example.

As stated, you can also provide time () with your own, previously-defined, variable, as
follows:

#include <ctime>
#include <iostream>

int main ()
{
time_t t;
time (&t);
std::cout << "time: " << t << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 1531603652

[411]

Time Interfaces in Unix Chapter 11

The preceding example is identical to the first example, but instead of storing the return
value of time (), we pass in our time_t variable as an argument to the function. Although
this syntax is supported, the former is preferred. t ime () will return -1 in the event of an
error, which can be checked and handled as needed.

The ctime() typedef

The time_t typedef is implementation-specific, and although it is typically implemented
using an integer that stores the number of seconds from the Unix epoch, this is not
guaranteed to be the case, meaning the preceding examples would likely not compile.
Instead, to output the value of a t ime_t variable in a supported fashion, use the ctime ()
API, which takes on the following form:

char* ctime (const time_t* time);

The ctime () API takes a pointer to a t ime_t variable and outputs a standard C character
string. The memory that backs the string that is returned is maintained by the t ime .h API

(and therefore does not need to be freed) and, as a result, is not thread-safe. This API may
be used as follows:

#include <ctime>
#include <iostream>

int main ()
{
auto t = time (nullptr);
std::cout << "time: " << ctime (&t);

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: Sat Jul 14 15:27:44 2018

As can be seen from the preceding example, instead of the number of seconds from the
Unix epoch being returned, a human-readable version of the current time and date is
returned. It should also be noted that, in addition to the ct ime () function not being
thread-safe, it also does not provide a mechanism for adjusting its output format. As a
result, the use of this function is typically discouraged in place of other t ime . h functions.

[412]

Time Interfaces in Unix Chapter 11

The localtime() and gmtime() APIs

The time () APIreturns a time_t value that stores the number of seconds from the Unix
epoch, as stated earlier. This value can further be processed to expose date and time
information, providing us with the ability to convert the date and time to either the local
time or Greenwich Mean Time (GMT). To do this, the POSIX API provides both the
localtime () and gmtime () functions, as follows:

struct tm *localtime(const time_t *time);
struct tm *gmtime (const time_t *time);

Both of these functions take a pointer to a t ime_t variable and return a pointer to a tm
opaque structure. It should be noted that the structure the return value points to is
managed, like ctime (), by the time.h implementation, and thus is not freed by the user,
meaning the results of this function are not thread-safe.

The asctime() function

To output an opaque tm structure to stdout (or, in general, just to convert the structure to
a standard C string), the POSIX API provides the asctime () function, which has the
following form:

char* asctime(const struct tm* time_ptr);

The asctime () function takes the same form as ctime (), with the exception that a pointer
to a tm structure is provided as the main argument instead of a t ime_t variable, as follows:

#include <ctime>
#include <iostream>

int main ()
{
auto t = time(nullptr);
std::cout << "time: " << asctime (localtime (&t));

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: Sat Jul 14 15:28:59 2018

[413]

Time Interfaces in Unix Chapter 11

As shown in the preceding example, there is no difference in the output between ctime ()
and asctime (localtime ()). To output the same time in GMT instead of local time, use
the following:

#include <ctime>
#include <iostream>

int main ()

{

auto t = time(nullptr);
std::cout << "time: " << asctime (gmtime (&t));

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: Sat Jul 14 21:46:12 2018

As shown in the preceding example, gmtime () and localtime () execute the same, with
the only difference being a time zone change.

The strftime() function

So far, the output of ctime () and asctime () was predetermined by the POSIX API. That
is, there is no way to control the output format. In addition, these functions return internal
memory, preventing their thread safety. To fix these issues, the POSIX API added the
strftime () function, which is the recommended API for converting an opaque tm
structure to a character string, and takes the following form:

size_t strftime (char * str, size_t count, const char *format, const struct
tm *time);

The str parameter accepts a preallocated, standard C string, while the count parameter
defines the size of the first parameter. The format parameter accepts a null-terminated,
standard C string that defines the format to which to convert the date and time, while the
final t ime parameter accepts the opaque tm structure to convert to a string. The format
string that is provided to this function is similar to the format string provided to other
POSIX functions, such as print£ (). The next couple of examples will demonstrate some of
these format specifiers.

[414]

Time Interfaces in Unix Chapter 11

To demonstrate the strftime () function, the following outputs the current date to
stdout:

#include <ctime>
#include <iostream>

int main ()

{
auto t = time (nullptr);

char buf[256]11{};
strftime (buf, sizeof (buf), "%m/%$d/%Y", localtime(&t));

std::cout << "time: " << buf << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 07/14/2018

As shown in the preceding example, the t ime () APl is used to get the current date and
time. The 1ocaltime () function is used to convert the result of t ime () (which is time_t)
to an opaque tm structure that represents the local date and time. The resulting tm structure
is passed to strftime () with a format string of "%m/%d/%Yy", which outputs
month/day/year to the standard C string provided. Finally, this string is output to the
stdout, resulting in 07/14/2018.

Likewise, this function may be used to output the current time:

#include <ctime>
#include <iostream>

int main ()

{
auto t = time (nullptr);

char buf[256]1{};
strftime (buf, sizeof buf, "%$H:%M", localtime(&t));

std::cout << "time: " << buf << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 15:41

The preceding example is identical to the previous example, the only difference being that
the format specifier is $H: $M, which represents hour :minute, resulting in 15:41.

[415]

Time Interfaces in Unix

Chapter 11

Finally, to output the same string as ctime () and asctime (), use the following example:

#include <ctime>
finclude <iostream>

int main ()

{

auto t

time (nullptr);

char buf[256]1{};

strftime (buf, sizeof buf, "%a %$b %d %$H:%M:%S
std::cout << "time: " << buf << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out

// time: Sat Jul 14 15:44:57 2018

localtime (&t));

The preceding example is identical to the previous two examples, with the exception that
the format specifier is "$a %b %$d %H:%M:%S %Y", which outputs the same results as

ctime () and asctime ().

The difftime() function

Technically speaking, the time_t typedef is considered opaque (although it almost always
is a signed 32-bit integer on Unix systems). For this reason, to ascertain the difference
between two time_t values, the difftime () function is provided as follows:

double difftime(time_t time_end, time_t time_beq)

’

The difftime () function takes two time_t values and returns the difference as a double

(since a non-POSIX function might support fractional times):

#include <ctime>
#include <iostream>

#include <unistd.h>

int main ()
{

auto tl1 =
sleep(2);

auto t2

time (nullptr);

time (nullptr);

std::cout << "diff: " << difftime(t2, tl) <<

'\n',’

[416]

Time Interfaces in Unix Chapter 11

std::cout << "diff: " << t2 - tl << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// diff: 2

As shown in the preceding example, the difftime () function returns the difference
between two times. It should be noted that although the preceding code compiles on most
systems, difftime () should be used instead of the second example of directly subtracting
two values.

The mktime() function

What if you have two opaque tm structures and you wish to calculate their difference? The
problem here is that the difftime () function only takes t ime_t and not the tm structure.
To support the reverse of the localtime () and gmtime () functions, which convert
time_t into a tm structure, the mktime () function converts a tm structure back into a
time_t value, as follows:

time_t mktime (struct tm *time);

The mktime () function takes a single parameter, which is the opaque tm structure you
wish to convert to a time_t value:

#include <ctime>
#include <iostream>

int main ()

{
auto tl1 = time (nullptr);
auto 1t = localtime (&tl);
auto t2 = mktime (1lt);

std::cout << "time: " << ctime (&t2);

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: Sat Jul 14 16:00:13 2018

The preceding example gets the current time and date using the time () API, and converts
the results into a tm structure using the 1ocaltime () APL The resulting tm structure is
then converted back into a t ime_t value using mkt ime (), and the resulting is output to
stdout using ctime ().

[417]

Time Interfaces in Unix Chapter 11

The clock() function

Up to this point, time () has been used to get the current system date and time. The
problem with this type of clock is it returns the value the operating system is managing
with respect to the current date and time, which can change at any point and time (for
example, the user might be flying between time zones). This can be a problem, for example,
if you are using the time APIs to keep track of how long something has executed. In this
case, when a time zone change occurs, the application using t ime () might record the
amount of time that has passed as being negative.

To overcome this issue, POSIX provides the clock () function, as follows:

clock_t clock (void);

The clock () APl returns a clock_t value, which is similar to a time_t value. The
difference between time () and clock () is that time () returns the current system time,
while clock () returns a value that represents the total amount of time that has passed
since the start of the application, for example:

#include <ctime>
#include <iostream>

int main ()

{
std::cout << "clock: " << clock() << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// clock: 2002

In the preceding example, the result of clock () is output to stdout. As shown, the value
is implementation-specific, and only the difference between two clock_t values has any
meaning. To convert clock_t into seconds, POSIX provides the CLOCKS_PER_SEC macro,
which provides the necessary conversion, as shown in the following example:

#include <ctime>
#include <iostream>

#include <unistd.h>

int main ()

{

auto cl1 = clock();
sleep(2);
auto c2 = clock();

[418]

Time Interfaces in Unix Chapter 11

std::cout << "clock: " <<
static_cast<double>(c2 - cl) / CLOCKS_PER_SEC << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// clock: 3.2e-05

In the preceding example, the clock () APlis used to get the first clock value, and then the
application sleeps for two seconds. Once the application is executed again by the operating
system, the clock value is read again and the difference is converted into milliseconds
using CLOCKS_PER_SEC (and then multiplied by 1,000). Notice the value does not equate to
2,000 milliseconds. This is because the application does not record execution while sleeping,
and thus, only the execute time of the application is seen by clock ().

To better demonstrate the difference in time, the following example demonstrates a one-to-
one comparison of clock () and time ():

#include <ctime>
#include <iostream>

#include <unistd.h>
int main ()
{

auto cl = clock();

auto tl1 = time(nullptr);

while (time (nullptr) - tl1 <= 2);
auto c2 = clock();
std::cout << "clock: " <<

static_cast<double>(c2 - cl) / CLOCKS_PER_SEC << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// clock: 2.05336

The preceding example is identical to the previous example, with the exception being we
spin for two seconds using t ime () instead of sleeping for two seconds, resulting in the
clock () returning two seconds.

[419]

Time Interfaces in Unix Chapter 11

Exploring C++ Chrono APIs

C++ includes the Chrono APIs which, mostly, provide C++ wrappers around

the POSIX time . h APIs. For this reason, some time.h functions are still needed to provide
full functionality, including the conversion to standard C strings. It should be noted that
although some additions have been made in C++17 (specifically floor (), ceil (), and
round ()), the Chrono APIs are expected to see a relatively large overhaul with the
introduction of C++20, which is outside the scope of this book. For this reason, the C++
Chrono APIs are briefly explained in this section to provide an overview of the current
APIs.

The system_clock() API

The std: :chrono::system_clock{} APlis similar to time () in that it is capable of
getting the system clock. system_clock{} is also the only clock that is capable of being
converted into t ime_t (as it is likely implemented using t ime ()), as shown in the
following example:

#include <chrono>
#include <iostream>

int main ()

{

auto t = std::chrono::system_clock::now();
std::cout << "time: " << std::chrono::system_clock::to_time_t (t) <<
l\nl’.

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 1531606644

In the preceding example, the current system clock is read using

the system_clock: :now () API, and the result is converted into a t ime_t value using
the system_clock::to_time_t () APL As with the previous example, the result is the
number of seconds from the Unix epoch.

[420]

Time Interfaces in Unix Chapter 11

The time_point API

The result of the system_clock: :now () APlisa time_point{}. C++ does not provide a
function to convert a time_point{} to a string (it won't until C++20), and as a result, the
POSIX functions discussed in the previous section are still needed to perform this
translation, as follows:

#include <chrono>
#include <iostream>

template<typename C, typename D>
std::ostream &
operator<<(std::ostream &os, std::chrono::time_point<C,D> &obj)
{
auto t = std::chrono::system_clock::to_time_t (obj);
return os << ctime (&t);

int main ()

{
auto now = std::chrono::system_clock::now();
std::cout << "time: " << now;

}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// time: Sat Jul 14 19:01:55 2018

In the preceding example, we first define a user-defined overload for time_point{},
which is the result of the std: :chrono: :system_clock: :now () APL This user-defined
overload converts time_point{} into a time_t value using the

C++ std::chrono: :system_clock::to_time_t () APIL and then converts time_t into a
standard C string using ctime (), and streams the result to stdout.

Unlike the POSIX time.h APIs, the Chrono libraries provided various functions for
incrementing, decrementing, and comparing a t ime_point {} using C++ operator
overloads, as follows:

#include <chrono>
#include <iostream>

template<typename C, typename D>
std::ostream &
operator<<(std::ostream &os, const std::chrono::time_point<C,D> &obj)
{
auto t = std::chrono::system_clock::to_time_t (obj);
return os << ctime (&t);

[421]

Time Interfaces in Unix Chapter 11

int main ()
{
using namespace std::chrono;
auto now = std::chrono::system_clock::now();

std::cout << "time: " << now;

now += 1h;

std::cout << "time: " << now;
now —-= 1h;
std::cout << "time: " << now;

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 1531606644

In the preceding example, the user-defined overload for t ime_point{} is provided as with
the previous example. The current date and time are read using
std::chrono::system_clock: :now (), and the result is output to stdout. Finally, the
resulting t ime_point{} is incremented by an hour, and then decremented by an hour
(using the hour literal), and the results are also output to stdout.

In addition, arithmetic comparisons are supported, as follows:

#include <chrono>
#include <iostream>

int main ()

{
auto nowl = std::chrono::system_clock::now();
auto now2 = std::chrono::system_clock::now();
std::cout << std::boolalpha;
std::cout << "compare: " << (nowl < now2) << '\n';
std::cout << "compare: " << (nowl > now2) << '\n';
std::cout << "compare: " << (nowl <= now2) << '\n';
std::cout << "compare: " << (nowl >= now2) << '\n';
std::cout << "compare: " << (nowl == now2) << '\n';
std::cout << "compare: " << (nowl != now2) << '\n';
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// compare: true

[422]

Time Interfaces in Unix Chapter 11

// compare: false
// compare: true
// compare: false
// compare: false
// compare: true

In the preceding example, the system clock is read twice, and the resulting t ime_point{}
values are compared using the supported comparison operators. It should be noted that the
results of this example could be different depending on the system this code is executed on,
as the resolution of the time could be different.

Duration

The time_point{} type provides arithmetic to increment, decrement, and perform
addition and subtraction. This arithmetic is all done using a C++ Chrono duration{},
which defines a range of time. Another way to view duration{} is that it would be the
resulting abstraction of the POSIX difftime () call. In fact, the subtraction of two
time_point{} types resultsina duration{}.

In the preceding examples, t ime_point {} was incremented and decremented by an hour
using the i duration literal for an hour. Like the hour literal, C++ provides the following
literals for a duration of time, which may be used for this arithmetic:

e Hour: h

e Minute: min

e Second: s
Millisecond: ms

e Microsecond: us
¢ Nanosecond: ns

Durations have a relatively complex template structure, which is outside the scope of this
book, for defining their resolution (that is, whether a duration is in seconds, milliseconds,
or hours), and can technically take on almost any resolution as a result. Although this
functionality exists, C++ provides some predefined helpers for converting from one
duration to another, preventing you from needing to know the inner workings of
duration{}:

e std::chrono::nanoseconds
e std::chrono::microseconds

e std::chrono::milliseconds

[423]

Time Interfaces in Unix Chapter 11

® std::chrono::seconds
® std::chrono::minutes

® std::chrono::hours

For example, below we will use these predefined helpers to convert the system clock to
seconds and milliseconds:

#include <chrono>
#include <iostream>

#include <unistd.h>
int main ()

{

using namespace std::chrono;

auto nowl = system_clock::now();
sleep(2);
auto now2 = system_clock::now();
std::cout << "time: " <<

duration_cast<seconds> (now2 - nowl) .count () << '\n';
std::cout << "time: " <<

duration_cast<milliseconds> (now2 — nowl).count () << '\n';
std::cout << "time: " <<

duration_cast<nanoseconds> (now2 — nowl).count () << '\n';

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 2

// time: 2001

// time: 2001415132

In the preceding example, the system clock is read twice, with a sleep for two seconds
separating each read. The resulting t ime_point{} values are then subtracted to create a
duration{}, and the resulting durationf{} is converted into seconds, milliseconds, and
nanoseconds, with the results being output to stdout using the count () member function,
which simply returns the value of duration{}.

Like time_point{}, a duration can also be manipulated using arithmetic, as follows:

#include <chrono>
#include <iostream>

[424]

Time Interfaces in Unix Chapter 11

int main ()
{

using namespace std::chrono;

seconds t (42);

t++;

std::cout << "time: " << t.count() << '\n';
t,,,

std::cout << "time: " << t.count() << '\n';
t += 1s;

std::cout << "time: " << t.count() << '\n';
t —-= 1s;

std::cout << "time: " << t.count() << '\n';
t %= 2s;

std::cout << "time: " << t.count() << '\n';

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 43
// time: 42
// time: 43
// time: 42
// time: O

In the preceding example, two duration{} variables are created that represent a second,
one with the value of 0 seconds, and the second with a value of 42 seconds. Arithmetic is
then performed on the first duration and the results are output to stdout.

In addition, comparisons are also supported:

#include <chrono>
#include <iostream>

int main ()
{

using namespace std::chrono;

auto tl1 = 0s;
auto t2 = 42s;

std::cout << std::boolalpha;
std::cout << "compare: " << (tl < t2) << '\n';
std::cout << "compare: " << (tl > t2) << '\n';

[425]

Time Interfaces in Unix Chapter 11

std::cout << "compare: " << (tl <= t2) << '\n';
std::cout << "compare: " << (tl >= t2) << '\n';
std::cout << "compare: " << (tl == t2) << '\n';
std::cout << "compare: " << (tl != t2) << '\n';

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// compare: true

// compare: false

// compare: true

// compare: false

// compare: false

// compare: true

In the preceding example, two durations are created that represent 0 seconds and 42
seconds respectively, and both durations are compared using the comparison operators.

Most of the modifications to the Chrono library that are taking place will likely occur in
C++20 with a large number of APIs being added to address the relatively obvious
shortcomings of the existing API. In C++17, however, the f1oor (), ceil (), round (), and
abs () APIs were added to the Chrono APIs, which return the floor, ceil, round, or absolute
values of a duration, as shown in the following example (with similar APIs also being
added to the time_point{} type):

#include <chrono>
#include <iostream>

int main ()

{

using namespace std::chrono;

auto sl1 = -42001ms;

std::cout << "floor: " << floor<seconds>(sl).count () << '\n';
std::cout << "ceil: " << ceil<seconds>(sl).count () << '\n';
std::cout << "round: " << round<seconds>(sl).count () << '\n';
std::cout << "abs: " << abs(sl).count () << '\n';

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// floor: —-43

// ceil: —-42

// round: -42

// abs: 42001

[426]

Time Interfaces in Unix Chapter 11

The steady_clock function

system_clock{} is similar to time (), while steady_clock{} is similar to clock (), and
performs the same objective—to provide a clock that represents the amount of time the
application has executed, regardless of the current system date and time (which might
change depending on the user of the system); for example:

#include <chrono>
#include <iostream>

#include <unistd.h>
int main ()

{

using namespace std::chrono;

auto nowl = steady_clock::now();
sleep(2);
auto now2 = steady_clock::now();
std::cout << "time: " <<

duration_cast<seconds> (now2 - nowl).count () << '\n';
std::cout << "time: " <<

duration_cast<milliseconds> (now2 — nowl).count () << '\n';
std::cout << "time: " <<

duration_cast<nanoseconds> (now2 — nowl).count () << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 2

// time: 2001

// time: 2001447628

In the preceding example, the steady_clock: :now () function is read twice, with a sleep
separating the two calls. The resulting values are subtracted, converted to seconds,
milliseconds, and nanoseconds, and the result is output to stdout. It should be noted that
unlike clock (), the resulting steady clock accounts for the time the application slept.

[427]

Time Interfaces in Unix

The high_resolution_clock function

On most systems, high_resolution_clock{} and steady_clock{} are the same. In
general, high_resolution_clock{} represents the highest-resolution clock available as a

steady clock and, as shown in the following example, the result is the same with

stead_clock{}:

#include <chrono>
#include <iostream>

#include <unistd.h>
int main ()

{

using namespace std::chrono;

auto nowl = high_resolution_clock::now();
sleep(2);
auto now2 = high_resolution_clock::now();
std::cout << "time: " <<
duration_cast<seconds> (now2 - nowl) .count () << '\n';
std::cout << "time: " <<
duration_cast<milliseconds> (now2 - nowl) .count () << '\n';
std::cout << "time: " <<
duration_cast<nanoseconds> (now2 — nowl).count () << '\n';
t
// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// time: 2
// time: 2000
// time: 2002297281

In the preceding example, the high_resolution_clock: :now () function is read twice,
with a sleep separating the two calls. The resulting values are subtracted, converted into

seconds, milliseconds, and nanoseconds, and the result is output to stdout.

[428]

Time Interfaces in Unix Chapter 11

Studying an example on the read system
clock

In this example, we will bring everything we learned in this chapter into a simple
demonstration that reads the system clock at an interval specified by the user. To
accomplish this, the following inclusions and namespaces are needed:

#include <chrono>
#include <iostream>

#include <gsl/gsl>
#include <unistd.h>
using namespace std::chrono;

Like the examples throughout this chapter, a user-defined overload for std: :ostream{} is
provided to convert time_point{} into a standard C string, and then stream the result to
stdout:

template<typename C, typename D>
std::ostream &
operator<<(std::ostream &os, std::chrono::time_point<C,D> &obj)
{
auto t = std::chrono::system_clock::to_time_t (obj);
return os << ctime (&t);

}

In our protected_main () function (which is a pattern used throughout this book), we
output the current system time on an interval provided by the user, as follows:

int
protected_main (int argc, char **argv)
{
using namespace std::chrono;
auto args = gsl::make_span(argv, argc);
if (args.size() !'= 2) {
std::cerr << "wrong number of arguments\n";
rrexit (1) ;
}
gsl::cstring_span<> arg = gsl::ensure_z(args.at(l));

while (true) {
auto now = std::chrono::system_clock::now();

[429]

Time Interfaces in Unix Chapter 11

std::cout << "time: " << now;
sleep(std::stoi(arg.data()));

}

In the preceding code, we convert the arguments list into gs1: : span{}, and then make
sure we were given an argument. If no argument is provided, we exit the program. The
argument is then converted into cstring_span{ }, and an infinite loop is started. In the
loop, the system clock is read and output to stdout, and then the program sleeps for the
amount of time provided by the user:

int

main (int argc, char **argv)

{

try A
return protected_main (argc, argv);

t

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';

}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;
t

As with all of our examples, the protected_main () function is executed by the main ()
function, which catches exceptions should they occur.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthE(ﬁherexquﬂesthttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapterll/CMakelLists.txt.

With this code in place, we can compile this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapter10/

> mkdir build

> cd build

[430]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt

Time Interfaces in Unix Chapter 11

> cmake
> make

To execute the example, run the following:

> ./examplel 2

time: Sun Jul 15 15:04:41 2018
time: Sun Jul 15 15:04:43 2018
time: Sun Jul 15 15:04:45 2018
time: Sun Jul 15 15:04:47 2018
time: Sun Jul 15 15:04:49 2018

As shown in the preceding snippet, the example is run with an interval of two seconds, and
the application outputs the system clock to the console every two seconds.

Studying an example on high-resolution
timer

In this example, we will create a simple benchmark using high_resolution_clock{}. To
accomplish this, the following inclusions and namespaces are needed:

#include <chrono>
#include <iostream>

#include <gsl/gsl>
To create a benchmark function, we use the following:

template<typename FUNC>
auto benchmark (FUNC func) {

auto stime = std::chrono::high_resolution_clock::now();
func () ;

auto etime = std::chrono::high_resolution_clock::now();
return etime - stime;

}

This function has been seen before in chapter 8, Learning to Program File Input/Output, The
Logger Example. This code leverages functional programming to wrap a function call
(likely a lambda) between two calls to the high-resolution clock. The results are then
subtracted and returned. As we learned in this chapter, high_resolution_clock{}
returns a time_point{} and their difference creates a durationi}.

[431]

Time Interfaces in Unix

Chapter 11

The protected_main () function is implemented as follows:

int
protected_main (int argc, char **argv)
{
using namespace std::chrono;
auto args = gsl::make_span(argv, argc);
if (args.size() !'= 2) {
std::cerr << "wrong number of arguments\n";
crexit (1) ;
}

gsl::cstring_span<> arg = gsl::ensure_z(args.at(1));

auto d = benchmark ([&arg]{

for (uint64_t i = 0; i1 < std::stoi(arg.data());

)i

std::cout << "time: " <<
duration_cast<seconds> (d) .count () << '\n';

std::cout << "time: " <<
duration_cast<milliseconds> (d) .count () << '\n';

std::cout << "time: " <<
duration_cast<nanoseconds> (d) .count () << '\n';

}

In the preceding code, we convert the arguments list to a gs1: : span{}, and then check to
make sure we were given an argument. If no argument is provided, we exit the program.
The argument is then converted into cstring_span{}, and a loop that runs for as long as
the user wishes is benchmarked. The result of the benchmark is then converted into

seconds, milliseconds, and nanoseconds and output to stdout:

int
main (int argc, char **argv)
{

try {

return protected_main(argc, argv);
}
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";

std::cerr << " — what(): " << e.what () << '\n';

}
catch (...) |

[432]

Time Interfaces in Unix Chapter 11

}

std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;

As with all of our examples, the protected_main () function is executed by the main ()
function, which catches exceptions should they occur.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthE(ﬁherexquﬂesthttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapterll/CMakelLists.txt.

With this code in place, we can compile this code using the following:

>

git clone

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git

>
>
>

>
>

cd Hands-On-System-Programming-with-CPP/Chapterl10/
mkdir build
cd build

cmake
make

To execute the example, run the following:

>

./example2 1000000

time: 0
time: 167
time: 167455690

As shown in the preceding snippet, the example is run with a loop of 1000000 iterations,
and the amount of time it takes to execute that loop is output to the console.

[433]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt

Time Interfaces in Unix Chapter 11

Summary

In this chapter, we learned how to use both the POSIX and C++ time interfaces to read the
system clock, and a steady clock for more precise timing. This chapter concluded with two
examples; the first example demonstrated how to read the system clock and output the
results to the console on a user-defined interval, and the second demonstrated how to
benchmark software using the C++ high-resolution timer. In the next chapter, we will learn
how to program both POSIX and C++ threads with examples that build upon the lessons
learned in this chapter.

In the next chapter, we will discuss C++ threads, synchronization primitives such as
mutexes, and how to program them.

Questions

What is the Unix epoch?

What type does t ime_t usually represent?

What is the difference between t ime () and clock ()?
Why does difftime () return a double?

What is a C++ duration{}?

What is the difference between steady_clock{}
and high_resolution_clock{}?

SN SRS

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[434]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

12

Learning to Program POSIX
and C++ Threads

In this chapter, the reader will learn how to program both POSIX and C++ threads. We will
start by discussing how to program with POSIX threads, and then move on to C++ threads,
providing a comparison of the APIs for each one.

Then we will present three examples. The first will demonstrate how to use threading to
perform a parallel computation. The second will demonstrate how to create your own high-
resolution timer using threading in order to perform benchmarking (albeit a timer that is
likely not very accurate).

The third and final example will build upon our existing debugging example to provide
support for multiple clients.

It should be noted that this chapter assumes the reader already has a basic understanding
of threading, thread synchronization, and the challenges associated with race conditions
and deadlock. Here, we will only focus on the APIs provided by POSIX and C++ for
working with threads.

The chapter will cover the following:

e POSIX threads
C++ threads
Parallel computation

Benchmarking with threads

Thread logging

Learning to Program POSIX and C++ Threads Chapter 12

Technical requirements

In order to follow the examples in this chapter, the reader must have the following;:

¢ A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

e GCC7+
e CMake 3.6+
¢ An internet connection

To download all the code in this chapter, including the examples and code snippets, go to
ﬂlefoﬂovvhlglhlk:https://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/tree/master/Chapterl?2

Understanding POSIX threads

A thread is similar to a process, with the main distinctions being the following:

e Threads are contained within processes

¢ Threads inherently share a memory space with other threads of the same process,
while processes do not share resources unless explicitly told to (using inter-
process communication mechanisms)

Like processes, however, threads are scheduled for execution at any time by the operating
system. This may mean executing in parallel with other threads, leading to performance
optimizations if properly used, but at the expense of introducing threading-specific logic
bugs, such as race conditions and deadlock.

The goal of this section is to briefly review POSIX threads. These largely influenced the
design of C++ threads, which will be discussed later.

The basics of POSIX threads

The most basic use of a thread is to create it, and then join the thread, which, in effect, waits
for the thread to finish its work before returning as follows:

#include <iostream>
#include <pthread.h>

void *mythread(void *ptr)

[436]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter12

Learning to Program POSIX and C++ Threads Chapter 12

std::cout << "Hello World\n";
return nullptr;

int main ()

pthread_t threadl;
pthread_t thread2;

pthread_create (&threadl, nullptr, mythread, nullptr);
pthread_create (&thread2, nullptr, mythread, nullptr);

pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);
t

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// Hello World
// Hello World

In the preceding example, amythread () function is created with the signature (void
) () (void *), which is required by POSIX threads. In this example, the thread simply
outputs to stdout and returns.

In the main () function, two threads are created using the pthread_create () function,
which takes the following form:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void*),
void *arg

)

In this example, a pthread_t type is created and passed to the first argument. The
attribute argument is ignored using a nullptr, and so is the argument to the thread itself
(since it is not used). The only other thing we provide the pthread_create with function
is the thread itself, which is a function pointer to our mythread () function.

To wait for the thread to complete, we use the pthread_join () function, which takes the
following form:

int pthread_join(pthread_t thread, void **value_ptr);

[437]

Learning to Program POSIX and C++ Threads Chapter 12

The previously-created pthread is provided as the first argument to this function, while
the return value of the pthread is ignored using a nullptr (since the thread doesn't return
a value).

The result of this example is that He11o Worldis output to stdout twice (since two
threads are created).

It should be noted that there are several issues with this example, which we will only
briefly address in this chapter (as entire books can be written on the topic of parallel
computing):

e Type safety: Both the argument to the thread and its return value are passed as a
void *, completely removing any and all forms of type safety with respect to the
thread itself. As a result, the pthread interface is not C++ Core Guideline
compliant, and encourages the creation of hard-to-find logic errors. As will be
demonstrated, C++ largely addresses these issues, albeit using an interface ,
which, at times, might seem difficult to follow.

¢ Race conditions: The preceding example does not attempt to address the
possible race conditions of both threads outputting to stdout at the same time.
As a result, if this example is executed enough times, it is likely that corruption
with respect to its output would result.

¢ No input/output: Often, threads operate on globally-defined data without the
need for input or output, but it is entirely possible that input and/or output may
be needed in a different situation. This example doesn't address how to
accomplish this.

Threads are implemented differently depending on the operating system, and cross-
platform software needs to take this into account. Some operating systems implement
threads as separate processes, while others implement threads as separate, scheduleable
tasks within a process.

Either way, the POSIX specification dictates that a thread be identifiable, regardless of the
underlying implementation.

To identify a thread, the following may be used:

#include <iostream>
#include <pthread.h>

void *mythread(void *ptr)
{
std::cout << "thread id: "
<< pthread_self () << '\n';

[438]

Learning to Program POSIX and C++ Threads Chapter 12

return nullptr;

}

main ()

{
pthread_t threadl;
pthread_t thread2;

pthread_create (&threadl, nullptr, mythread, nullptr);
pthread_create (&thread2, nullptr, mythread, nullptr);

pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);
t

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// thread id: 140232513570560
// thread id: 140232505177856

The preceding example is identical to the first, with the exception that, instead of
outputting Hello World to stdout, we use the pthread_self () function to output the
thread's identifier. The pthread_self () function takes the following form:

pthread_t pthread_self (void);

Since the pthread_t type is usually implemented using an integer type, in our preceding
example, we can output the value of this type to stdout using std: : cout.

To provide support for input and output, the pthread API provides a void * for both the

input and the output of the thread function. The following example demonstrates how to
do this:

#include <iostream>
#include <pthread.h>

void *mythread(void *ptr)

{
(*reinterpret_cast<int *>(ptr))++;
return ptr;

}

main ()
{
int in_value = 42;
void *out_value = nullptr;

pthread_t threadl;

[439]

Learning to Program POSIX and C++ Threads Chapter 12

pthread_t thread2;

pthread_create (&threadl, nullptr, mythread, &in_value);
pthread_create (&thread2, nullptr, mythread, &in_value);

pthread_join(threadl, &out_value);
pthread_join(thread2, &out_value);

std::cout << "value: "
<< *reinterpret_cast<int *>(out_value) << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// 44

In this example, the thread function assumes the parameter it is passed is a pointer to an
integer. It takes the value provided, increments it, and then returns it back to the caller
(which, in this case, is the main () function).

In the main () function, we create both an input and an output value, with the input being
initialized to 42. A pointer to the input value is provided during the creation of the thread,
and a pointer to the output value is provided while joining the threads.

Finally, the resulting value is output to stdout. This is 44, since two threads were created,
each of which increments the provided input once.

Since both threads are operating on the same integer, it is possible that a race condition
could corrupt the results of these threads if they happen to execute at the same time; a
problem that will be addressed later on.

Yielding

One advantage to using threads is that they can execute for a very long time without
preventing the execution of your main thread/application. The downside is that threads
that execute without an end can end up consuming too much CPU.

For example, consider the following code:

#include <iostream>
#include <pthread.h>

void *mythread(void *ptr)
{
while (true) {
std::clog << static_cast<char *>(ptr) << '\n';

[440]

Learning to Program POSIX and C++ Threads

Chapter 12

}

pthread_yield();

main ()

{

}

//
//
//
//
//
//
//
//
//
//

char namel[9] = "thread 1";
char name2[9] = "thread 2";

pthread_t threadl;
pthread_t thread2;

pthread_create (&threadl,
pthread_create (&thread2,

pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);

> g+t —-std=c++17 scratchpad.cpp —-lpthread;

thread
thread
thread
thread
thread
thread
thread
thread
thread

2

PR RPN EDNDDND

nullptr, mythread, namel);
nullptr, mythread, name2);

./a.out

In the preceding example, we create a thread that uses a while (true) statement, which
executes as fast as possible, forever. Such a thread would execute until the operating system
decided to preempt the thread to schedule another thread or process, resulting in the
output of the thread occurring in a blocked, almost serial fashion.

In some cases, however, the user might need the thread to perform an action and then
release its access to the CPU to allow another thread to perform its task. To accomplish this,
we use the pthread_yield () API which takes the following form:

int pthread_yield(void)

In the preceding example, the use of the yield function provides each thread with an
opportunity to execute, resulting in a better-shuffled output of thread 1 and thread 2.

[441]

Learning to Program POSIX and C++ Threads Chapter 12

Although this function is provided, it should be noted that the operating system is excellent
at handling threads that must perform a lot of work, and pthread_yield () should only
be used when the user explicitly understands how it might provide optimization in their
specific use case (since overuse of the pthread_yield () function can actually result in
performance degradation).

It should also be noted that pthread_yield () is not available on all Unix systems.

In addition to pthread_yield (), the POSIX API also provides functions to put a thread to
sleep if there is nothing to do (resulting in better performance and battery life), as follows:

#include <iostream>

#include <unistd.h>
#include <pthread.h>

void *mythread(void *ptr)
{
while (true) {
sleep(l);
std::cout << "hello world\n";

}

main ()

{
pthread_t thread;
pthread_create (&thread, nullptr, mythread, nullptr);
pthread_join(thread, nullptr);

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// hello world
// hello world
// hello world

In the preceding example, we create a thread that outputs Hello World once a second by
creating a single thread that outputs to stdout, and then uses the sleep () function to put
the thread to sleep for a second.

It should be noted that the use of sleep () should be handled with care, as it is possible for
the operating system to race the sleep () call by yielding before sleep () is called.

[442]

Learning to Program POSIX and C++ Threads Chapter 12

Synchronization

Race conditions are a common problem when using threads, and solving race conditions
without introducing deadlock (a thread that can no longer execute due to logic bugs with
thread synchronization logic) is a complicated topic deserving of its own book.

The following example attempts to demonstrate the issues with potential race conditions:

#include <array>
#include <iostream>
#include <pthread.h>

int count = 0;

void *mythread(void *ptr)
{

count++;

main ()
{
while (true) {
count = 0;
for (auto 1 = 0; 1 < 1000; 1i++) {
std::array<pthread_t, 8> threads;

for (auto &t : threads) {
pthread_create (&t, nullptr, mythread, nullptr);

for (auto &t : threads) {
pthread_join(t, nullptr);

std::cout << "count: " << count << '\n';

// > g++ —-std=c++17 scratchpad.cpp —-lpthread; ./a.out
// count: 7992
// count: 7996
// count: 7998
// count: 8000
// count: 8000

[443]

Learning to Program POSIX and C++ Threads Chapter 12

To produce a race condition, we must execute threads fast enough, and for long enough
(especially on modern hardware), that one thread performs an operation on a shared
resource when another thread is in the middle of completing its own operation on that
same shared resource.

There are many, many ways to do this. In the case of the preceding example, we have a
thread that increments a counter, and then we create 8000 of these threads, increasing the
chance that a race condition might occur. At some point during execution, two threads read
the current value of the counter at the exact same time, incrementing the value and storing
the incremented value at the same time. This results in the counter only being incremented
once, even though two threads were executing.

As a result, and as can be seen from the output of the example, the count in some cases is
less than 8000. In these cases, race conditions occurred, resulting in corruption.

To solve this issue, we must protect the critical region, which, in this case, is the part of the
thread that uses the shared resource. The following example demonstrates one way to do
this using a mutex (which ensures mutual exclusion to a critical region):

#include <array>
#include <iostream>
#include <pthread.h>

int count = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_ INITIALIZER;

void *mythread(void *ptr)

{
pthread_mutex_lock (&lock) ;
count++;
pthread_mutex_unlock (&lock);

main ()
{
while (true) {
count = 0;
for (auto 1 = 0; 1 < 1000; 1i++) {
std::array<pthread_t, 8> threads;

for (auto &t : threads) {

pthread_create (&t, nullptr, mythread, nullptr);

for (auto &t : threads) {
pthread_join(t, nullptr);

[444]

Learning to Program POSIX and C++ Threads Chapter 12

}
}

std::cout << "count: " << count << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 8000
// count: 8000
// count: 8000
// count: 8000
// count: 8000

In the preceding example, we wrap the critical region with a mutex. A mutex leverages
atomic operations (operations that are guaranteed by hardware to manipulate a shared
resource without corruption) to gain access to a critical region, one thread at a time.

If a thread attempts to gain access to a critical region while another thread is actively using
the region, it waits until the thread is complete. Once the thread is complete, all the waiting
threads race to get access to the critical region, and the thread that wins gets access while
the remaining threads continue to wait. (Each operating system has its own way of
implementing this to prevent the possibility of starvation; another topic that is beyond of
scope of this book.)

As can be seen from the output of the preceding example, the use of a mutex around the
critical region (in this case, the incrementing of the count variable) prevents the possibility
of a race condition, resulting in 8000 being output every time.

The problem with mutexes is that each time the mutex is locked, a thread must wait until it
is unlocked before it can continue. This is what protects the critical region from other
threads, but it results in deadlock if the same thread attempts to lock the same mutex more
than once (for example, when using recursion), or if mutexes are locked in the wrong
order.

To overcome this problem, the POSIX API provides the ability to turn a mutex into a
recursive mutex, as follows:

#include <iostream>
#include <pthread.h>

int count = 0;
pthread_mutex_t lock;
pthread_mutexattr_t attr;

void *mythread(void *ptr)

[445]

Learning to Program POSIX and C++ Threads

Chapter 12

pthread_mutex_lock (&lock) ;
pthread_mutex_lock (&lock) ;
pthread_mutex_lock (&lock) ;
count++;
pthread_mutex_unlock (&lock);
pthread_mutex_unlock (&lock);
pthread_mutex_unlock (&lock);

int main ()

pthread_mutexattr_init (&attr);

pthread_mutexattr_settype (&attr,

pthread_mutex_init (&lock, &attr);

pthread_t threadl;
pthread_t thread2;

pthread_create (&threadl, nullptr,
pthread_create (&thread2, nullptr,

pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);

std::cout << "count: " << count <<

// > g++ —std=c++17 scratchpad.cpp -lpthread;

// count: 2

PTHREAD MUTEX_RECURSIVE) ;

mythread,
mythread,

In the preceding example, we are able to lock the mutex more than once without causing a
deadlock by first setting the mutex to recursive mode using a mutex attribute. It should be

noted that this additional flexibility typically comes with additional overhead.

The last POSIX API we will discuss in this chapter is the condition variable. As

was demonstrated previously, a mutex may be used to synchronize access to critical
regions of code. Another form of thread synchronization is to ensure threads execute in the

proper order, which is what condition variables allow.

In the following example, threads 1 and 2 may execute at any time:

#include <iostream>
#include <pthread.h>

pthread mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

[446]

Learning to Program POSIX and C++ Threads

Chapter 12

void *mythreadl (void *ptr)
{
pthread_mutex_lock (&lock) ;

std::cout << "Hello World: 1\n";

pthread_mutex_unlock (&lock);
return nullptr;
voilid *mythread2 (void *ptr)

{
pthread_mutex_lock (&lock) ;

std::cout << "Hello World: 2\n";

pthread_mutex_unlock (&lock);

return nullptr;

main ()

{
pthread_t threadl;
pthread_t thread2;

pthread_create (&thread2, nullptr, mythread?2,
pthread_create (&threadl, nullptr, mythreadl,

pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);

}

// > g++ —std=c++17 scratchpad.cpp -lpthread;

// Hello World: 2
// Hello World: 1

nullptr);
nullptr);

./a.out

In this example, we create two threads, each outputting to stdout in a critical region that is
guarded using a mutex. The rest of the example is the same as with previous examples in
this chapter. As shown, thread 2 is executed first, and then thread 1 (this is largely due
to thread 2 being created first). However, there is still the possibility that thread 1 could
have executed first, as there is nothing controlling the order in which threads execute.

To solve this, the POSIX API provides a condition variable that may be used to synchronize

the order of threads, as shown here:

#include <iostream>
#include <pthread.h>

bool predicate = false;

[447]

Learning to Program POSIX and C++ Threads

Chapter 12

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *mythreadl (void *ptr)

{
pthread_mutex_lock (&lock) ;
std::cout << "Hello World: 1\n";
predicate = true;
pthread_mutex_unlock (&lock);
pthread_cond_signal (&cond) ;

return nullptr;

volid *mythread2 (void *ptr)

{
pthread_mutex_lock (&lock) ;
while (!predicate) {

pthread_cond_wait (&cond, &lock);

}
std::cout << "Hello World: 2\n";
pthread_mutex_unlock (&lock);

return nullptr;

}

main ()

{
pthread_t threadl;
pthread_t thread2;
pthread_create (&thread2, nullptr, mythread2, nullptr);
pthread_create (&threadl, nullptr, mythreadl, nullptr);
pthread_join(threadl, nullptr);
pthread_join(thread2, nullptr);

}

// > g++ —std=c++17 scratchpad.cpp -lpthread;
// Hello World: 1
// Hello World: 2

./a.out

[448]

Learning to Program POSIX and C++ Threads Chapter 12

As we can see, thread 1 executes first, and then thread 2, even though thread 2 was
created first. To accomplish this, we use the pthread_cond_wait ()
and pthread_cond_signal () functions, as follows:

bool predicate = false;
int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal (pthread_cond_t *cond);

The pthread_cond_wait () function takes a pointer to a condition variable, and a mutex.
When it is executed, it unlocks the mutex and waits for a call to pthread_cond_signal ()
to be executed. Once the signal is sent, pthread_cond_wait () locks the mutex again and
continues execution.

The use of the predicate variable, which is also guarded by the mutex, is used to ensure
that any spurious wake-ups are handled. Specifically, it is possible for

the pthread_cond_wait () function to wake up even though the condition variable has
not yet been signaled. As a result, you must always pair the pthread_cond_wait ()
function with a predicate.

Exploring C++ threads

In the previous section, we learned how POSIX provides support for threads. In this
section, we will discuss C++ threads, which are largely inspired by POSIX threads. They
provide similar functionality while simplifying the APIs in some ways, and also providing
type safety.

The basics of C++ threads

To demonstrate the simplicity of C++ threads, the following example, like the first example
in this chapter, creates two threads and then waits for them to finish executing:

#include <thread>
#include <iostream>

void mythread()
{

std::cout << "Hello World\n";
}

main ()

{
std::thread tl{mythread};

[449]

Learning to Program POSIX and C++ Threads Chapter 12

std::thread t2{mythread};

tl.join();
t2.join();
t

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// Hello World
// Hello World

There are some notable differences compared to the POSIX version of this example:

¢ The thread function itself may take on a number of different function signatures,
and is not limited to (void *) (*) (void *).In this example, the thread
function uses the void (*) () signature.

e The constructor of the thread type also creates the thread (no need to define the
type, and then explicitly create the thread later).

It should be noted that in Linux, the pthread library still needs to be linked to the example.
This is because, under the hood, C++ is using pt hread instances to provide thread support.

Like the POSIX version, C++ also provides the ability to get the thread ID, as follows:

#include <thread>
#include <iostream>

void mythread()
{
std::cout << "thread id: "
<< std::this_thread::get_id() << '\n';
}

main ()

{
std::thread tl{mythread};
std: :thread t2{mythread};

std::cout << "threadl id: " << tl.get_id() << '\n';
std::cout << "thread2 id: " << t2.get_id{() << '\n';
tl.join();
t2.join();

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// threadl id: 139960486229760
// thread2 id: 139960477837056

[450]

Learning to Program POSIX and C++ Threads Chapter 12

// thread id: 139960477837056
// thread id: 139960486229760

In the preceding example, we use both the this_thread namespace and the thread itself to
get the ID, demonstrating that there are two different ways to query a thread's ID
(depending on the point of view of the caller).

The input and output of C++ threads is a good example of how C++ threading, in some
ways, is more complicated than POSIX threading. As was stated, the biggest issue with
POSIX threads with respect to input and output is a clear lack of type safety.

To solve this, C++ provides a concept called C++ futures, which, by itself, probably deserves
its own chapter. We will describe them here briefly, to give the reader some general
knowledge of how they work.

In the following example, we create a mythread () function that has the signature
int (*) (int), which takes a value, adds one, and returns the result (very similar to the
preceding POSIX example of input and output):

#include <thread>
#include <future>
#include <iostream>

int mythread(int wvalue)

{

return ++value;
t

int main ()

std: :packaged_task<int (int)> taskl (mythread);
std: :packaged_task<int (int)> task2 (mythread);

auto f1 = taskl.get_future();
auto f2 task2.get_future();

std::thread tl(std::move(taskl), 42);
std::thread t2(std::move(task2), 42);

tl.join();
t2.join();
std::cout << "valuel: " << fl.get() << '\n';
std::cout << "value2: " << f2.get () << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out

[451]

Learning to Program POSIX and C++ Threads Chapter 12

// Hello World
// Hello World

With C++ futures, we need to first tell C++ the signature type of our thread to ensure type
safety. To accomplish this in our example (there are many ways to leverage the future's
APIs, this is simply one of them), we create a std: : packaged_task{} and provide it with
our thread function signature.

This does a couple of things. First, it tells the APIs which thread to call, and, in addition, it
sets storage aside for the result of the thread that can be retrieved later

using std: : future{}. Once std: :packaged_task{} is created, we get the
std::future{} from packaged_task{} using the get_future () function.

Finally, we start the thread by creating a thread object and passing it
the std: :packaged_task{} object created previously.

We can provide the thread with its initial input in the constructor of the thread, which takes
all of the arguments of the thread as additional, template-based arguments. To retrieve the
result of the thread, we use get () from the future, which is valid once the thread has
completed and been joined (hence the name future).

Although futures are, in some ways, more complicated than simply passing a void *
around, the interface is elegant, allowing for threads to take on any desired signature type
while also providing type safety. (No reinterpret_casts () were needed to provide this
example, ensuring Core Guideline Compliance and reducing the likelihood of hard-to-find
logic bugs.)

Yielding

Similar to POSIX threads, C++ threads provide the ability to yield a thread, relinquishing
the CPU so that other threads that need to perform their tasks may do so. This is expressed
as follows:

#include <thread>
#include <iostream>

void mythread(const char *str)
{
while (true) {
std::clog << str << '\n';
std::this_thread::yield();

[452]

Learning to Program POSIX and C++ Threads Chapter 12

main ()

{
std::thread tl{mythread, "thread 1"};
std::thread t2{mythread, "thread 2"};

tl.join();
t2.join();
}

// > g++ -std=c++17 scratchpad.cpp -lpthread; ./a.out
// thread 2

// thread
// thread
// thread
// thread
// thread
// thread
// thread
// thread

[SR e e S S N

In the preceding example, we leverage the yield () function provided by the
this_thread namespace, which yields the calling thread. As a result, it is better capable of
shuffling the output of the thread between the two threads, as previously demonstrated.

In addition to yielding, a thread might need to stop its execution for a given amount of
time. Similar to sleep () in POSIX, C++ provides the ability to sleep the currently executing
thread. The difference with C++ is that a more granular APl is provided, allowing the user
to easily decide which type of granularity they prefer (including nanosecond and second
resolutions), as follows:

#include <thread>
#include <chrono>
#include <iostream>

using namespace std::chrono_literals;

void mythread()
{
while (true) {
std::this_thread::sleep_for (1ls);
std::cout << "hello world\n";

}

main ()

{
std: :thread t{mythread};

[453]

Learning to Program POSIX and C++ Threads Chapter 12

t.join();

}

// > gt++
// hello
// hello
// hello

—-std=c++17 scratchpad.cpp -lpthread; ./a.out
world
world
world

In the preceding example, we create a thread that outputs Hello World to stdout. Just
prior to outputting to stdout, the thread sleeps for a second by calling the sleep_for ()
provided by the this_thread namespace, and using the second literal to define 1 second,
resulting in Hello World being output to stdout each second.

Synchronization

Another notable difference between POSIX threads and C++ threads is the simplicity of
thread synchronization. Like the POSIX APIs, C++ provides the ability to create a mutex, as

follows:

#include
#include
#include

<mutex>
<thread>
<iostream>

int count = 0;
std::mutex mutex;

void mythread()

{

mutex.lock () ;
count++;
mutex.unlock () ;

}

main ()

{

std::
std::

thread tl{mythread};
thread t2{mythread};

tl.join();
t2.join();

std::

}

// > g++

cout << "count: " << count << '\n';

—-std=c++17 scratchpad.cpp —-lpthread; ./a.out

[454]

Learning to Program POSIX and C++ Threads Chapter 12

// count: 2

In the preceding example, we create a thread that increments a shared counter, which is
surrounded by a C++ std: :mutex{ }, in effect creating a guarded critical region. We then
create two threads, wait for them to complete, and then output the result to stdout, which
ends up being 2 as we executed two threads.

The problem with POSIX threads and the preceding C++ example is seen when a thread has
to leave a critical region in more than one place, as follows:

void mythread()
{

mutex.lock () ;

if (count == 1) {
mutex.unlock () ;
return;

t

count++;

mutex.unlock () ;

}

In the preceding example, the critical region is exited in more than one place, and, as a
result, the mutex must be unlocked in multiple places to prevent deadlock. Although this
seems a simple example, an uncountable number of deadlock bugs have resulted from
simply forgetting to unlock a mutex before returning from a critical region.

To prevent this problem, C++ provides std: : lock_guard{ }, which provides a simple
mechanism for unlocking a mutex using Resource Acquisition Is Initialization (RAII) as
follows:

#include <mutex>
#include <thread>
#include <iostream>

int count = 0;
std: :mutex mutex;

void mythread()
{
std::lock_guard lock (mutex);

if (count == 1) {
return;

}

[455]

Learning to Program POSIX and C++ Threads

Chapter 12

count++;

}

main ()

{
std::thread tl{mythread};
std: :thread t2{mythread};

tl.join();
t2.join();

std::cout << "count: " << count <<

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread;

// count: 1

In the preceding example, we create an RAIl-based lock guard in the thread instead of
manually locking and unlocking the mutex. As a result, in this example, the entire thread is
in the critical region as the mutex is locked when the guard is created and unlocked when

the lock goes out of scope (that is, when the thread returns).

As demonstrated in the preceding example, it's impossible to accidentally forget to unlock

the mutex, as unlocking the mutex is handled for us by the lock guard.

In some cases, the user might wish the thread to perform other useful work while waiting

to gain access to a critical region. To accomplish this, std: :mutex{}

provides try_lock () as an alternative to 1ock (), which returns false if the lock could

not be acquired:

#include <mutex>
#include <thread>
#include <iostream>

int count = 0;
std::mutex mutex;

void mythread ()

{
while (!mutex.try_lock());
count++;
mutex.unlock () ;

}

main ()
{
std::thread tl{mythread};

Learning to Program POSIX and C++ Threads Chapter 12

std::thread t2{mythread};

tl.join();
t2.join();

std::cout << "count: " << count << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 2

In the preceding example, we continue to try to lock the mutex in an endless while loop.
We could, however, perform some additional work if try_lock () returns false, or we

could sleep for a given amount of time before trying again, thereby reducing stress on the
operating system and battery.

If you wish to use try_lock with a lock guard to prevent the need to manually unlock the
mutex, you may do so using the following:

#include <mutex>
#include <thread>
#include <chrono>
#include <iostream>

int count = 0;
std: :mutex mutex;

using namespace std::chrono_literals;

void mythread()
{

std::unique_lock lock (mutex, std::defer_lock);

while (!lock.try_lock()) {
std::this_thread::sleep_for (1ls);
t

count++;

main ()

{
std::thread tl{mythread};
std::thread t2{mythread};

tl.join();
t2.join();

[457]

Learning to Program POSIX and C++ Threads Chapter 12

std::cout << "count: " << count << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 2

In this example, we introduce two new features of C++ threads. The first is
std::unique_lock{}, which is similar to std: : lock_guard{}.

std::lock_guard{} is a simple RAIl wrapper around a mutex,

while std: :unique_lock provides similar facilities to std: :unique_ptr{}, in that the
resulting lock is movable (not copyable), and provides additional APIs above and beyond a
simple RAII wrapper.

As a side note, with respect to all of these lock guards, don't forget to define the guard's
variable, otherwise the lock will be locked and unlocked immediately, resulting in hard-to-
find bugs.

One of the additional APIs provided by std: :unique_lock is the ability to defer locking
the mutex (that is, not locking on the construction of the lock itself). This provides the user
with the ability to better control when locking occurs, using one of the many lock functions,
such as lock (), try_lock (), try_lock_for(),and try_lock_until ().

In our preceding example, we try to lock the critical region, and, if that fails, we sleep for a
second before trying again. Other modifiers include the std: :adopt_lock{} and

std: :try_lock{} modifiers, which either assume the mutex is already locked, or that the
constructor tries to lock without blocking.

In addition to regular mutexes, C++ also provides, like POSIX, a recursive mutex, as shown
in the following code:

#include <mutex>
#include <thread>
#include <iostream>

int count = 0;
std::recursive_mutex mutex;

void mythread()

{
std::lock_guard lockl (mutex);
std::lock_guard lock2 (mutex);
count++;

}

main ()

[458]

Learning to Program POSIX and C++ Threads Chapter 12

std::thread tl{mythread};
std: :thread t2{mythread};

tl.join();
t2.join();
std::cout << "count: " << count << '\n';

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 2

In this example, we are capable of creating two lock guards on the same recursive lock
without creating deadlock (as destructors are executed in reverse order to construction,
ensuring the locks are unlocked in the proper order).

Another common problem with mutexes relates to locking more than one mutex at the
same time; that is to say, if more than one critical region exists and a particular operation
must operate on both critical regions at the same time. To accomplish this, C++17 added
std: :scoped_lock{}, which is similar to std: : lock_guard{}, but accepts more than
one lock, as follows:

#include <mutex>
#include <thread>
#include <iostream>

int count = 0;
std: :mutex mutexl;
std: :mutex mutex2;

void mythread()

{
std: :scoped_lock lock (mutexl, mutex2);
count++;

main ()

{
std::thread tl{mythread};
std::thread t2{mythread};

tl.join();
t2.join();
std::cout << "count: " << count << '\n';

[459]

Learning to Program POSIX and C++ Threads Chapter 12

// > g++ —std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 2

In this example, more than one mutex is locked and unlocked using the
std::scoped_lock{} class.

std: :unique_lock{} is similar to std: :unique_ptr{} in that it guards a resource and
prevents copying. Similar to std: : shared_ptr{} the mutex APIs also provide

std: :shared_lock{}, which provides the ability for more than one thread to gain access
to the same mutex. The following code demonstrates this:

#include <shared_mutex>
#include <thread>
#include <iostream>

int count = 0;
std::shared_mutex mutex;

void mythreadl ()
{
while (true) |
std::unique_lock lock (mutex);
count++;

void mythread2 ()
{
while (true) {
std::shared_lock lock (mutex);
std::cout << "count: " << count << '\n';

main ()

{
std::thread tl{mythreadl};
std::thread t2{mythread2};
std::thread t3{mythread2};

tl.join();
t2.join();
t3.join();

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// count: 999

[460]

Learning to Program POSIX and C++ Threads Chapter 12

// count: 1000
// count: 1000
// count: 1000
// count: 1000
// count: 1000
// count: count: 1000
// count: 1000

In the preceding example, we have two threads—a producer and a consumer. The producer
(mythreadl) increments a counter, while the consumer (mythread2) outputs the count to
stdout. In the main () function we create three threads—one producer and two
consumers.

We could implement this scenario using a regular std: :mutex; however, such an
implementation would be suboptimal as both consumers are not modifying the counter,
meaning multiple consumers could safely execute simultaneously without corrupting the
results if they happen to collide (as no modifications are being made).

If aregular std: :muted is used, however, the consumers would have to wait on each
other, which would also be suboptimal (obviously ignoring the fact that stdout is also a
shared resource that should be treated as its own critical region to prevent corruption of
stdout itself).

In order to solve this problem, we leverage std: : shared_mutex instead of a regular
std: :mutex. In the producer, we lock the mutex using std: :unique_lock{}, which
ensures exclusive access to the critical region. In the consumer, however, we leverage
std: :shared_lock{}, which only waits on previous locks using std: :unique_lock{}.
If the mutex was acquired using std: : shared_lock{ }, the thread continues execution
without waiting, sharing access to the critical region.

Finally, prior to C++17 with the addition of std: : scoped_lock{}, the only way to lock
more than one mutex was to use the std: : lock () (and friends) functions, as follows:

#include <mutex>
#include <thread>
#include <iostream>

int count = 0;
std: :mutex mutexl;
std: :mutex mutex2;

void mythread()

{
std::unique_lock lockl (mutexl, std::defer_lock);
std::unique_lock lock2 (mutex2, std::defer_lock);

[461]

Learning to Program POSIX and C++ Threads Chapter 12

std::lock (lockl, lock2);

count++;

main ()

{
std::thread tl{mythread};
std: :thread t2{mythread};

tl.join();
t2.join();
std::cout << "count: " << count << '\n';

}

// > g++ —-std=c++17 scratchpad.cpp —-lpthread; ./a.out
// count: 2

As with POSIX, C++ also provides the ability to control the order in which threads execute,
using condition variables. In the following example, we create two threads and synchronize

the order of their execution using a condition variable, similar to the condition variable
example for POSIX:

#include <mutex>

#include <condition_variable>
#include <thread>

#include <iostream>

std: :mutex mutex;
std::condition_variable cond;

void mythreadl ()

{
std::cout << "Hello World: 1\n";
cond.notify_one();

void mythread?2 ()

{
std::unique_lock lock (mutex);
cond.wait (lock);
std::cout << "Hello World: 2\n";

main ()
{
std::thread t2{mythread2};

[462]

Learning to Program POSIX and C++ Threads

Chapter 12

std::thread tl{mythreadl};

tl.join();
t2.join();
t

// > g++ —-std=c++17 scratchpad.cpp -lpthread;

// Hello World: 1
// Hello World: 2

As shown in the preceding example, although the second thread is created first, it executes
last. This is accomplished by creating a C++ condition variable. In the second thread, we
protect the critical region using std: :unique_lock{}, and then we wait for the first

thread to signal that it has completed by making a call to notify_one ().

Once the first thread has completed and notified the second thread, the second thread

finishes its execution.

This same approach also works for more than one thread in broadcast mode using C++

threads, as follows:

#include <mutex>

#include <condition_variable>
#include <thread>

#include <iostream>

std::mutex mutex;
std::condition_variable cond;

void mythreadl ()

{
std::cout << "Hello World: 1\n";
cond.notify_all();

void mythread2 ()

{
std::unique_lock lock (mutex);
cond.wait (lock);
std::cout << "Hello World: 2\n";
cond.notify_one();

main ()

{
std::thread t2{mythread2};
std::thread t3{mythread2};

[463]

Learning to Program POSIX and C++ Threads Chapter 12

std::thread tl{mythreadl};

tl.join();
t2.join();
t3.join();

}

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// Hello World: 1
// Hello World: 2
// Hello World: 2

In this example, the first thread completes its work and then signals to all the remaining
threads to complete. The second thread protects the critical region with a mutex, and waits
for a signal from the first thread.

The problem is that once the first thread executes and signals that it is done, the remaining
threads will attempt to execute, but only one thread can acquire the critical region, resulting
in the third thread waiting for the critical region to be unlocked and being notified. For this
reason, when the second thread is complete, it must notify the condition variable again to
unlock the remaining thread, allowing all three to complete.

To overcome this, we will combine everything learned in this section, as follows:

#include <shared_mutex>
#include <condition_variable>
#include <thread>

#include <iostream>

std::shared_mutex mutex;
std::condition_variable_any cond;

void mythreadl ()
{

std::unique_lock lock (mutex);
std::cout << "Hello World: 1\n";

cond.notify_all();
}

void mythread2 ()
{

std::shared_lock lock (mutex);
cond.wait (lock);

std::cout << "Hello World: 2\n";

[464]

Learning to Program POSIX and C++ Threads Chapter 12

main ()

{
std::thread t2{mythread2};
std::thread t3{mythread2};
std::thread tl{mythreadl};

tl.join();

t2.join();

t3.join();
t

// > g++ —std=c++17 scratchpad.cpp -lpthread; ./a.out
// Hello World: 1
// Hello World: 2
// Hello World: 2

This example is identical to the previous example, with one simple change. Instead
of std: :mutex{}, we make use of std: :shared_mutex{}, and std: :shared_lock{}is
used to lock the mutex.

In order to be able to use a shared mutex in place of a regular

mutex, std: :condition_variable_any{} must be used instead of
std::condition_variable{}.By using std::shared_mutex{} instead of

std: :mutex{}, when the first thread signals that it has completed, the remaining threads
are free to complete their work and process the critical region simultaneously.

Finally, C++ provides a convenient mechanism for calling a function once if more than one
thread is needed, but allowing only one to execute initialization logic (a feature that POSIX
also provides but is not covered in this book), as follows:

#include <mutex>
#include <thread>
#include <iostream>

std::once_flag flag;

void mythread()

{
std::call_once(flag, [] {
std::cout << "Hello World\n";

)i

main ()

std::thread tl{mythread};
std::thread t2{mythread};

[465]

Learning to Program POSIX and C++ Threads Chapter 12

tl.join();
t2.join();
t

// > g++ —-std=c++17 scratchpad.cpp -lpthread; ./a.out
// Hello World

In this example, more than one thread is created, but Hello World is only executed once
using the std: :call_once{} wrapper. It should be noted that although this seems simple,
std::call_once{} ensures that the flag that holds the state as to whether or not the
wrapped logic has yet to be executed is flipped atomically, thereby preventing the
possibility of race conditions, however unlikely they might be.

Studying an example on paraliel
computation

In this example, we will demonstrate how to perform a parallel computation task that will
calculate prime numbers, using threading. In this example, the following inclusion files and
namespaces are required:

#include <list>
#include <mutex>
#include <thread>
#include <iostream>
#include <algorithm>

#include <gsl/gsl>
using namespace gsl;

using namespace std::string_literals;

Calculating prime values is an expensive operation for large numbers, but thankfully, they
can be calculated in parallel. It should be noted that in our example, we don't attempt to
optimize our search algorithm, as our goal here is to provide a readable example of
threading. There are many methods, some simple, for improving the performance of the
code in this example.

To store the prime numbers that our program finds, we will define the following class:

class primes

{
std::1list<int> m_primes;
mutable std::mutex m_mutex;

[466]

Learning to Program POSIX and C++ Threads Chapter 12

public:

void add(int prime)

{
std::unique_lock lock (m_mutex);
m_primes.push_back (prime) ;

}

void print ()

{
std::unique_lock lock (m_mutex);
m_primes.sort();

for (const auto prime : m_primes) {
std::cout << prime << ' ';
}
std::cout << '\n';
i

primes g_primes;

This class provides a place for us to store each prime number using the add () function.
Once all the primes that we plan to search for are found, we provide a print () function
that is capable of printing the identified prime numbers in sorted order.

The thread that we will use to check whether a number is a prime number is as follows:

void check_prime (int num)

{

for (auto 1 = 2; 1 < num; i++) |
if (num % 1 == 0) {
return;

}
}

g_primes.add (num) ;

}

In this thread, we loop through every possible multiple of the number provided, and check
to see whether the modulus is 0. If it is 0, the number is not a prime. If no multiple is found,
the number is a prime and it is added to our list.

[467]

Learning to Program POSIX and C++ Threads Chapter 12

Finally, in our protected_main () function, we search for a set of primes. We start by first
converting all of our arguments so that they may be processed:

int

protected_main (int argc, char** argv)

{

auto args = make_span (argv, argc);

if (args.size() != 4) {
std::cerr << "wrong number of arguments\n";
crexit (1) ;

}

We are expecting three arguments. The first argument will provide the highest possible
number we wish to check to see whether it is a prime number; the second argument is the
total number of threads we wish to create to search for prime numbers, and the third will
determine whether we want to print the results.

The next task is to get the highest possible prime number to search for, as well as to get the
total number of threads to create. Consider the following code:

int max_prime = std::stoi(args.at(l));
int max_threads = std::stoi(args.at(2));

if (max_prime < 3) {
std::cerr << "max_prime must be 2 or more\n";
rrexit (1) ;

if (max_threads < 1) {
std::cerr << "max_threads must be 1 or more\n";
rrexit (1) ;

}

Once we know how many primes to search for, and how many threads to create, we search
for our prime numbers as follows:

for (auto 1 = 2; i < max_prime; i += max_threads) {

std::1list<std::thread> threads;
for (auto t = 0; t < max_threads; t++) {
threads.push_back (std::thread{check_prime, i + t});

for (auto &thread : threads) {
thread.join();

[468]

Learning to Program POSIX and C++ Threads Chapter 12

}

In this code, we search for all the primes up to the number provided by the user,
incrementing by the total number of threads provided by the user. We then create a list of
threads, providing each thread with the number it should look for prime from.

Once all the threads are created, we wait for the threads to finish. It should be noted that
there are many ways to further optimize this logic, including preventing the recreation of
threads, thus preventing the overuse of malloc (), but this example provides a simple
mechanism to demonstrate the point of this example.

The last thing we do in the protected_main () function is check to see whether the user
wants to see the results, and to print them if so:

if (args.at(3) == "print"s) {
g_primes.print ();

}

return EXIT_SUCCESS;
}

Finally, we execute the protected_main () function using our main (), and catch any
exceptions that might arise as follows:

int
main (int argc, char** argv)
{
try {
return protected_main(argc, argv);
t
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';
t
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;

[469]

Learning to Program POSIX and C++ Threads Chapter 12

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

for the other examples—find it at the following link: https://github.com/
PacktPublishing/Hands-On-System-Programming-with—-CPP/blob/master/Chapterl2/

CMakeLists.txt.

With this code in place, we can compile this code using the following:

>

git clone

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git

>
>
>

>
>

cd Hands-On-System-Programming-with-CPP/Chapterl2/
mkdir build
cd build

cmake
make

To execute the example, run the following:

> time ./examplel 20 4 print

2

357 11 13 17 19

As shown in this snippet, the prime numbers up to 20 are identified. To demonstrate the
effectiveness of threading, execute the following;:

> time ./examplel 50000 4 no
real Om2.180s
user O0m0.908s
sys 0m3.280s

> time ./examplel 50000 2 no
real O0m2.900s
user Oml1.073s
sys 0m3.230s

> time ./examplel 50000 1 no
real Om4.546s
user O0m0.910s
sys O0m3.615s

As can be seen, as the total number of threads decreases, the total amount of time the
application takes to find the prime numbers increases.

[470]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt

Learning to Program POSIX and C++ Threads Chapter 12

Studying an example on benchmarking with
threads

In previous chapters, we discussed how to benchmark software using various different
mechanisms. In this chapter, we will explore creating our own high-resolution timer using
a thread, instead of using the high-resolution timer provided by the C++ chrono APIs.

To accomplish this, we will create a thread with the sole job of counting as fast as possible.
It should be noted that although this will provide a high-resolution timer that is extremely
sensitive, it has a lot of disadvantages compared to computer architectures such as Intel.
These provide hardware instructions with higher resolution than is possible here, while
being less susceptible to CPU frequency scaling.

In this example, the following inclusion and namespaces are needed:

#include <thread>

#include <mutex>

#include <condition_variable>
#include <iostream>

#include <gsl/gsl>
using namespace gsl;

We will store the high-resolution timer in a count variable, as follows:

int count = 0;
bool enable_counter = true;

std::mutex mutex;
std::condition_variable cond;

The enable_counter Boolean will be used to turn the timer off, while the mutex and
condition variable will be used to turn the timer on at the correct time.

Our high-resolution timer will consist of the following:

void tick ()
{

cond.notify_one();

while (enable_counter) {
count++;

}

[471]

Learning to Program POSIX and C++ Threads Chapter 12

The timer will notify the condition variable that it is running once it is started, and will
continue to count until the enable_counter flag is set to false. To time an operation, we
will use the following;:

template<typename FUNC>
auto timer (FUNC func) A
std::thread timer{tick};

std::unique_lock lock (mutex);
cond.wait (lock) ;

func () ;

enable_counter = false;
timer.join();

return count;

}

This logic creates the timer thread, and then waits for it to start using the condition
variable. Once the timer is started, it will execute the function under test and then disable
the timer and wait for the thread to complete, returning the resulting total number of ticks.

In our protected_main () function, we ask the user for the total number of times to loop
in a for loop, and then time how long it takes to execute the for loop, outputting the
results to stdout when we are done, as follows:

int
protected_main (int argc, char** argv)
{

auto args = make_span(argv, argc);

if (args.size() !'= 2) {
std::cerr << "wrong number of arguments\n";
trexit (1) ;

}

auto ticks = timer ([&] {
for (auto 1 = 0; 1 < std::stoi(args.at(l)); i++) {
}

)i

std::cout << "ticks: " << ticks << '\n';

return EXIT_SUCCESS;

[472]

Learning to Program POSIX and C++ Threads Chapter 12

Finally, we execute the protected_main () function using our main (), and catch any
exceptions that might arise, as follows:

int

main (int argc, char** argv)

{

try {
return protected_main (argc, argv);

}

catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';

}
catch (...) |
std::cerr << "Caught unknown exception\n";

return EXIT_FAILURE;

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthE(ﬁherexquﬂesthttps://github.com/PacktPublishing/Hands—On—System—
Programming-with-CPP/blob/master/Chapterl12/CMakelLists.txt.

With this code in place, we can compile this code using the following:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapterl2/

> mkdir build

> cd build

> cmake
> make

To execute the code, run the following:

> ./example2 1000000
ticks: 103749316

As shown in this snippet, the example is run with a loop of 1000000 iterations, and the
number of ticks it took to execute the loop is output to the console.

[473]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter12/CMakeLists.txt

Learning to Program POSIX and C++ Threads Chapter 12

Studying an example on thread logging

The final example in this chapter will build upon our existing debugger example to add
support for multiple clients. In chapter 10, Programming POSIX Sockets Using C++, we
added support for networking to the example debugger, providing the ability to offload
our debugging logs to a server in addition to the local system.

The problem with this is that the server could only accept one connection before closing, as
it didn't have the logic for handling more than one client. In this example, we will fix that
issue.

To start, we will need to define our port and max debug string length, as follows:

#define PORT 22000
#define MAX_SIZE 0x1000

The server will require the following include statements:

#include <array>
#include <unordered_map>

#include <sstream>
#include <fstream>
#include <iostream>

#include <mutex>
#include <thread>

#include <unistd.h>
#include <string.h>

#include <sys/socket.h>
#include <netinet/in.h>

As with our previous example, the log file will be defined as global, and a mutex will be
added to synchronize access to the log:

std: :mutex log_mutex;
std::fstream g_log{"server_log.txt", std::ios::out | std::ios::app};

Instead of the recv () function being defined in the server, we will define it globally to
provide easy access to our client threads (each client will spawn a new thread):

ssize_t
recv (int handle, std::array<char, MAX_SIZE> &buf)
{

return ::recv(

[474]

Learning to Program POSIX and C++ Threads Chapter 12

handle,
buf.data(),
buf.size (),
0
)i
t

As with the recv () function, the 1og () function will also be moved out of the server and
will create our client threads. Each time a connection is made by a client, the server will
spawn a new thread (the 1og () function), which is implemented as follows:

void
log (int handle)
{

while (true)

{
std::array<char, MAX_SIZE> buf{};

if (auto len = recv(handle, buf); len != 0) {
std::unique_lock lock (log_mutex);

g_log.write (buf.data(), len);
std::clog.write (buf.data(), len);

g_log.flush{();
}
else {
break;
}
}

close (handle);

}

The only difference with using the 1og () function, compared to the example in Chapter

10, Programming POSIX Sockets Using C++, is the addition of std: :unique_lock{} to
guard access to the log (in the event that more than one client attempts to write to the log at
the same time). The handle is passed to the log function instead of the handle being a
member of the server, and we flush the log file after each write to ensure all the writes are
actually written to disk, as we will close the server application by killing it.

Finally, the server is modified to accept incoming connections and spawn threads as a
result. The server starts with the same logic in the previous example:

class myserver

{

[475]

Learning to Program POSIX and C++ Threads Chapter 12

int m_fd{};
struct sockaddr_in m_addr{};

public:

myserver (uintl6_t port)

{

if (m_fd = ::socket (AF_INET, SOCK_STREAM, 0); m_fd == -1) {

throw std::runtime_error (strerror (errno));

m_addr.sin_family = AF_INET;
m_addr.sin_port = htons (port);
m_addr.sin_addr.s_addr = htonl (INADDR_ANY) ;

if (bind() == -1) A
throw std::runtime_error (strerror (errno));

int bind()
{
return ::bind(
n_fd,
reinterpret_cast<struct sockaddr *>(&m_addr),
sizeof (m_addr)
)i
t

The server's constructor creates a socket, and binds the socket to the ports identified. The
major difference with the server is in the use of the 1isten () function, which used to be
the 1og () function. Consider the following code for it:

void listen ()

{
if (::listen(m_£fd, 0) == -1) {
throw std::runtime_error (strerror (errno));

while (true) {
if (int ¢ = ::accept (m_fd, nullptr, nullptr); c !'= -1) {

std::thread t{log, c};
t.detach();

continue;

[476]

Learning to Program POSIX and C++ Threads Chapter 12

throw std::runtime_error (strerror (errno));

}

The 1isten () function listens on the socket for new connections. When a connection is
made, it creates a thread using the 1og () function and provides the 1og function with the
handle of the new client.

There is no need to ensure the server and or clients are closed properly, as TCP will handle
this for us, eliminating the need to track each client thread once created (that is, there is no
need to join () the thread when it is complete). For this reason, we use the detach ()
function, which tells C++ that a join () will not take place, and the thread should continue
to execute even after the thread object is destroyed.

Finally, we loop, waiting for more clients to connect.

The remaining logic for the server is the same. We create the server in the
protected_main () function and execute the protected_main () function in our main ()
function, attempting to catch any exceptions that might occur. The following code shows
this:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

myserver server{PORT};
server.listen();

}

int
main (int argc, char** argv)
{
try {
return protected_main (argc, argv);
)3
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " - what(): " << e.what() << '\n';
)3
catch (...) {
std::cerr << "Caught unknown exception\n";

}

return EXIT_FAILURE;

[477]

Learning to Program POSIX and C++ Threads Chapter 12

}

Finally, the client logic for this example is identical to the client logic found in chapter
10, Programming POSIX Sockets using C++.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forthe(ﬁherexannpkﬁ——https://github.com/PacktPublishing/Hands—On—System—
Programming-with—-CPP/blob/master/Chapterll/CMakelLists.txt.

With this in place, we can compile the code using the following;:

>

git clone

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git

>
>
>

>
>

cd Hands-On-System-Programming-with-CPP/Chapterl2/
mkdir build
cd build

cmake
make

To execute the server, run the following;:

>

./example3_server

To execute the client, open a new Terminal and run the following:

>
>

cd Hands-On-System-Programming-with-CPP/Chapterl2/build
./example3_client

Debug: Hello World
Hello World

>

./example3_client

Debug: Hello World
Hello World

>

cat client_log.txt

Debug: Hello World
Debug: Hello World

>

cat server_log.txt

Debug: Hello World
Debug: Hello World

As shown in this snippet, when the client is executed, the client and server side both

[478]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter11/CMakeLists.txt

Learning to Program POSIX and C++ Threads Chapter 12

output DEBUG: Hello World to stderr. In addition, the client outputs Hello
World to stderr as the second call to std: : clog is not redirected.

Both log files contain the redirected DEBUG: Hello World. Finally, we can execute the
client more than once, resulting in the server logging the output from both clients instead of
just one.

Summary

In this chapter, we discussed how to program threads using both POSIX and C++ APIs. We
then discussed three examples. The first example demonstrated how to use threading to
perform a parallel computation, while the second demonstrated how to create your own
high-resolution timer using threading to perform benchmarking.

Finally, the third example built upon our existing debugging example to provide support
for multiple clients. The next, and final, chapter will discuss the error handling features
provided by C and C++, including C style error handling and exceptions.

Questions

How do you get the ID of a thread using POSIX? What about when using C++?
What is the main issue with POSIX thread input and output?

What is a race condition?

What is deadlock?

Whatis std: : future{} in C++, and what problem is it trying to solve?

What is the main reason for using std: :call_once ()?

What is the difference between std: : shared_mutex and std: :mutex?

P NGOl W=

What is the purpose of a recursive mutex?

Further reading

® https://www.packtpub.com/application-development/cl7-example

® https://www.packtpub.com/application-development/getting-started-cl7-
programming-video

[479]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

13

Error — Handling with
Exceptions

In this final chapter, we will learn how to perform error handling while system
programming. Specifically, three different methods will be presented. The first method will
demonstrate how to use POSIX-style error handling, while the second method will
demonstrate how to use the standard C-style set jump exceptions. The third method will
demonstrate how to use C++ exceptions, and the pros and cons of each approach will be
discussed. Finally, this chapter will conclude with an example that demonstrates how C++
exceptions outperform POSIX-style error handling.

In this chapter, we will cover the following topics:

e POSIX-style error handling
¢ Exception support in C++
¢ An example with Exception Benchmark

Technical requirements

In order to compile and execute the examples in this chapter, the reader must have the
following;:

A Linux-based system capable of compiling and executing C++17 (for example,
Ubuntu 17.10+)

GCC 7+
CMake 3.6+
An internet connection

Error — Handling with Exceptions Chapter 13

To download all of the code in this chapter, including the examples, and code snippets,
please see the following link: https://github.com/PacktPublishing/Hands-On-System-
Programming-with—-CPP/tree/master/Chapterl3

Error handling POSIX-style

POSIX-style error handling provides the most basic form of error handling possible,
capable of being leveraged on almost any system, in almost any program. Written with
standard C in mind, POSIX-style error handling takes the following form:

if (foo () !'= 0) {
std::cout << errno << '\n';

}

Generally, each function called either returns 0 on success or -1 on failure, and stores the
error code into a global (non-thread safe) implementation-defined macro, called errno. The
reason 0 is used for success is that on most CPUs, comparing a variable to 0 is faster than
comparing a variable to any other value, and the success case is the expected case. The
following example demonstrates how this pattern is used:

#include <cstring>
#include <iostream>

int myfunc(int wval)
{
if (val == 42) {
errno = EINVAL;
return -1;

}

return 0;

}

int main ()
{
if (myfunc(l) == 0) {
std::cout << "success\n";

}

else {

std::cout << "failure: " << strerror(errno) << '\n';
t
if (myfunc(42) == 0) {

std::cout << "success\n";

[481]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/tree/master/Chapter13

Error — Handling with Exceptions Chapter 13

t
else {
std::cout << "failure: " << strerror (errno) << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure: Invalid argument

In this example, we create a function called my func (), which takes an integer and returns
an integer. The function accepts any value as its parameter as valid except for 42. If 42 is
provided as the input function, the function returns -1 and sets errno to EINVAL, which
states that the function was provided an invalid argument.

In the main function, we call my func (), both with a valid input, and an invalid input and
test, to see whether an error has occurred, resulting in success for the valid input and
failure: Invalid argument for the invalid input. It should be noted that we leverage
the strerror () function, which converts POSIX-defined error codes into their string
equivalent. It should also be noted that this simple example will be leveraged throughout
this chapter as we build and improve upon it.

The first issue that arises from this simple example is that the output of the function is
leverage for error handling, but what if the function needs to output a value other than an
error code? There are two ways to handle this. The first way to handle this is to constrain
valid output of the function (that is, not all outputs are considered valid). This is generally
how POSIX handles this problem. The following example demonstrates this:

#include <cstring>
#include <iostream>

int myfunc(int val)
{
if (val == 42) {
errno = EINVAL;
return 0;

}

return 42;

}

int main ()
{
if (auto handle = myfunc(l); handle != 0) {
std::cout << "success: " << handle << '\n';

}

[482]

Error — Handling with Exceptions Chapter 13

else {
std::cout << "failure: " << strerror (errno) << '\n';
t
if (auto handle = myfunc(42); handle != 0) {
std::cout << "success: " << handle << '\n';
t
else {
std::cout << "failure: " << strerror (errno) << '\n';

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success: 42
// failure: Invalid argument

In the preceding example, we create a my func () function that returns a handle given valid
input, and 0 given invalid input. This is similar to a lot of POSIX functions that return file
handles. In this case, the notion of success is reversed, and, in addition, a handle may
never take on a value of 0, as this is used to represent an error. Another possible method for
providing error handling while also providing function output is to return more than one
value, as follows:

finclude <utility>
#include <cstring>
#include <iostream>

std::pair<int, bool>
myfunc (int val)
{
if (val == 42) {
errno = EINVAL;
return {0, false};

return {42, true};

int main ()

{

if (auto [handle, success]
std::cout << "success:

myfunc (1); success) A
' << handle << '\n';

}
else {
std::cout << "failure: " << strerror(errno) << '\n';

[483]

Error — Handling with Exceptions Chapter 13

if (auto [handle, success] = myfunc(42); success) {
std::cout << "success: " << handle << '\n';

t

else {
std::cout << "failure: " << strerror (errno) << '\n';

}

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// success: 42
// failure: Invalid argument

In the preceding example, we return std: :pair{} (which is really just a struct with two
values). The first value in the pair is our handle, while the second value in our pair
determines whether the handle is valid. Using this mechanism, 0 could be a valid handle as
we have a way to tell the user of this function whether it is valid. Another way to do this is
to provide the function with an argument that acts as an output and not as an input, a
practice that is discouraged by the C++ Core Guidelines. This is depicted by means of the
following code:

#include <cstring>
#include <iostream>

int myfunc(int wval, int &error)
{
if (val == 42) {
error = EINVAL;
return 0;

return 42;

int main ()

{

int error = 0;

if (auto handle = myfunc(l, error); error == 0) {
std::cout << "success: " << handle << '\n';

)3

else {
std::cout << "failure: " << strerror (error) << '\n';

)3

if (auto handle = myfunc (42, error); error == 0) {
std::cout << "success: " << handle << '\n';

[484]

Error — Handling with Exceptions Chapter 13

else {
std::cout << "failure: " << strerror (error) << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success: 42
// failure: Invalid argument

In this example, myfunc () takes two arguments, with the second argument accepting an
integer intended to store an error. If the error integer remains at 0, no error has occurred. If,
however, the error integer is set, an error has occurred, which we detect and output the
failure as a result. Although this method is discouraged by the C++ Core Guidelines
(mainly because there are better ways to perform error handling in C++), this method has
the added benefit that the error integer is thread-safe, unlike the use of errno, which is not
thread-safe.

Besides the verbosity of POSIX-style error handling and a tendency for error values to be
ignored, the biggest issue with POSIX-style error handling is the numerous branch
statements that must be executed continuously in the unlikely event that an error might
occur. The following example demonstrates this:

#include <cstring>
#include <iostream>

int myfunc(int wval)
{
if (val == 42) {
errno = EINVAL;
return -1;

}

return 0;

}

int nestedl (int wval)
{
if (auto ret = myfunc(val); ret != 0) {
std::cout << "nestedl failure: " << strerror (errno) << 'A\n';
return ret;
}
else {
std::cout << "nestedl success\n";

}

return 0;

[485]

Error — Handling with Exceptions Chapter 13
int nested2 (int wval)
{
if (auto ret = nestedl(val); ret != 0) {
std::cout << "nested2 failure: " << strerror(errno) << '\n';
return ret;
}
else {
std::cout << "nested2 success\n";
}
return O;
}
int main ()
{
if (nested2 (1) == 0) {
std::cout << "nested2 (1) complete\n";
}
else {
std::cout << "nested2 (1) failure: " << strerror (errno) << '\n';
}
if (nested2(42) == 0) {
std::cout << "nested2 (42) complete\n";
}
else {
std::cout << "nested2 (42) complete: " << strerror(errno) << '\n';

}
}

//
//
//
//
//
//
//

nestedl success
nested2 success
nested2 (1) complete
nestedl failure:
nested2 failure:

nested2 (42) failure:

> g++ —-std=c++17 scratchpad.cpp;

./a.out

Invalid argument
Invalid argument
Invalid argument

In this example, we create the same myfunc () function that returns an error if the input
provided is 42. We then call this function from a function that is called by another function
(that is, we are making nested calls to our myfunc (), a practice that is highly likely to occur
while system programming). Since my func () might return an error, and our nested
functions are unable to handle the error, they must also return an error code, which, in
turn, must also be checked. The bulk of the code in this example provides nothing more
than error handling logic, designed to forward the results of an error to the next function in
the hope that the next function is capable of handling the error.

[486]

Error — Handling with Exceptions Chapter 13

This nested error forwarding may be referred to as stack unwinding. Each time we call a
function that could return an error, we check whether an error has occurred and we return
the result to the next function in the stack. This process of unwinding the call stack is
repeated until we get to a function in the call stack that is capable of handling the error. In
our case, this is the main () function.

The problem with POSIX-style error handling is that stack unwinding must be performed
manually, and thus, this code is executed continuously in the success case, resulting in
poor-performing, verbose code, as demonstrated by the preceding example, which checks a
simple integer value in only three nested calls.

Finally, it should be noted that POSIX-style error handling does support Resource
Acquisition Is Initialization (RAII), meaning objects defined in the scope of a function are
destroyed properly the function exits in both the success case and the error case, as
demonstrated in the following example:

#include <cstring>
#include <iostream>

class myclass

{

public:
~myclass ()

{

std::cout << "destructor called\n";
}
}i

int myfunc(int wval)
{

myclass c{};

if (val == 42) {
errno = EINVAL;
return -1;

}

return 0;

int main ()

if (myfunc(l) == 0) {
std::cout << "success\n";

}

else {

[487]

Error — Handling with Exceptions Chapter 13

std::cout << "failure: " << strerror (errno) << '\n';

}

if (myfunc(42) == 0) {
std::cout << "success\n";
t
else {
std::cout << "failure: " << strerror (errno) << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// destructor called

// success

// destructor called

// failure: Invalid argument

In the preceding example, we create a simple class that outputs a string to stdout on
destruction and creates an instance of this class in our myfunc () function. When myfunc ()
is called, both on success and failure, the destructor of the class is called properly on exit.
In our next error handling mechanism, called set jump, we will demonstrate how a lot of
the issues with POSIX-style error handling are addressed while also demonstrating that the
key limitation with set jump is a lack of RAII support, possibly resulting in undefined
behavior.

Learning about set jump exceptions

Set jump exceptions may be viewed as C-style exceptions. Like C++-style exceptions, set

jump exceptions provide the user with the ability to set a place in the code to return to in
the event of an error, and a method for generating the exception that performs the jump.
The following code example demonstrates this:

#include <cstring>
#include <csetjmp>

#include <iostream>
std::jmp_buf jb;

void myfunc(int wval)
{
if (val == 42) {
errno = EINVAL; // Invalid argument
std::longjmp (jb, -42);

[488]

Error — Handling with Exceptions

Chapter 13

}

int main ()
{
if (setjmp(jb) == -42) {
std::cout << "failure: " << strerror (errno) << '\n';
std::exit (EXIT_FAILURE) ;
t

myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure: Invalid argument

In this example, we create our myfunc () function, but instead of returning an error code,
we execute a long jump, which acts like a goto, jumping to the last place in the call stack that
a call to set jmp () was made. In our main function, we first call set jmp () to place our
return point, and then we make calls to our my func () function with both a valid input and

an invalid input.

Immediately, we have addressed several issues with POSIX-style error handling. As can be
seen in the preceding example, the code is far less complicated, removing the need to check
for error conditions. In addition, myfunc () returns a void, as no error code needs to be

returned, meaning there is no longer a need to constrain the output of a function to support

an error case, as can be seen in the following example:

#include <cstring>
#include <csetjmp>

#include <iostream>
std::jmp_buf jb;

int myfunc(int val)
{
if (val == 42) {
errno = EINVAL;
std::longjmp (jb, -1);

[489]

Error — Handling with Exceptions

Chapter 13

return 42;

int main ()

if (setjmp(jb) == -1) {
std::cout << "failure: " << strerror (errno) << '\n';
std::exit (EXIT_FAILURE) ;

auto handlel = myfunc(l);
std::cout << "success: " << handlel << '\n';

auto handle2 = myfunc(42);
std::cout << "success: " << handle2 << '\n';

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// success: 42
// failure: Invalid argument

In this example, my func () returns a handle, and the error case is handled using a set jump
exception. As a result, my func () may return any value, and the user of the function knows

whether a handle is valid based on whether a long jump was called.

Since a return value of myfunc () is no longer needed, we also no longer need to check the
return value of my func (), meaning our nested example is greatly simplified, as follows:

#include <cstring>
#include <csetjmp>

#include <iostream>
std::jmp_buf jb;

void myfunc (int wval)
{
if (val == 42) {
errno = EINVAL;
std::longjmp (jb, -1);

void nestedl (int wval)
{
myfunc (val);
std::cout << "nestedl success\n";

[490]

Error — Handling with Exceptions Chapter 13

void nested2 (int wval)

{
nestedl (val);
std::cout << "nested2 success\n";

int main ()

if (setjmp(jb) == -1) {
std::cout << "failure: " << strerror(errno) << '\n';
exit (EXIT_FAILURE) ;

nested2 (1) ;
std::cout << "nested2 (1) complete\n";

nested2 (42);
std::cout << "nested2 (42) complete\n";

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// nestedl success

// nested2 success

// nested2 (1) complete

// failure: Invalid argument

As can be seen, the only error logic in this example exists in myfunc () checking to ensure
the input is valid. The remaining error logic has been removed. Not only does this result in
code that is easier to read and maintain, but the resulting code also performs better, as we
are no longer executing branch statements, but manually unwinding the call stack by hand.

Another benefit of using set jump exceptions is that it is possible to create thread-safe error
handling. In our previous example, we set errno in the event of an error, which is then
read when we reach the code that is capable of handling the error. With set jump, errno is
no longer needed as we can return the error code in the long jump itself, using the
following approach:

#include <cstring>
#include <csetjmp>

#include <iostream>
void myfunc (int val, jmp_buf &jb)

{
if (val == 42) {

[491]

Error — Handling with Exceptions Chapter 13

std::longjmp (jb, EINVAL);
}

int main ()
{
std::jmp_buf jb;

if (auto ret = setjmp(jb); ret > 0) {
std::cout << "failure: " << strerror(ret) << '\n';
std::exit (EXIT_FAILURE) ;

t

myfunc (1, jb);
std::cout << "success\n";

myfunc (42, jb);
std::cout << "success\n";

}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure: Invalid argument

In the preceding example, instead of setting errno and returning -1 in our long jump, we
return the error code in our long jump, and, using the C++17 syntax, store the value from
the long jump in our call to set jump and make sure this value is greater than 0. The first
time set jump is called, it returns 0 as no error has occurred yet, meaning the branch is not
taken. If, however, set jump is called a second time (when our long jump is called), the
value that is placed in the call to our long jump is returned instead, resulting in the branch
being taken and an error reported in a thread-safe manner.

Note that the only modification we need to make to our example is that we must pass the
jump buffer of every function, which is highly inconvenient, especially in the case of nested
function calls. In our previous examples, the jump buffer was stored globally, which is not
thread-safe, but is more convenient, and results in cleaner code.

In addition to an awkward mechanism for providing thread safety, the main disadvantage
to using set jump for error handling is a lack of support for RAII, meaning objects created in
the scope of a function may not have their destructors called on exit (a problem that is
actually implementation-specific). The reason destructors are not called is that the function
never technically exits. set jump/long jump stores the instruction pointer and non-volatile
registers in the jump buffer on a call to set jump.

[492]

Error — Handling with Exceptions Chapter 13

When a long jump is performed, the application overwrites the instruction pointer and
CPU registers with the values stored in the jump buffer and then continues execution as if
the code after the call to set jump () was never executed. For this reason, the destructors of
an object are never executed, as demonstrated in the following example:

#include <cstring>
#include <csetjmp>

#include <iostream>
Jmp_buf jb;

class myclass

{
public:
~myclass ()

{

std::cout << "destructor called\n";
bi

void myfunc (int wval)

{

myclass c{};

if (val == 42) {
errno = EINVAL;
std::longjmp (jb, -1);

int main ()

if (setjmp(jb) == -1) {
std::cout << "failure: " << strerror(errno) << '\n';
exit (EXIT_FAILURE) ;

myfunc (1) ;
std::cout << "success\n";
myfunc (42) ;

std::cout << "success\n";

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// destructor called

[493]

Error — Handling with Exceptions Chapter 13

// success
// failure: Invalid argument

In this example, we create a simple class that outputs a string to st dout when the class is
destroyed. We then create an instance of this class in myfunc () . In the success case, the
destructor is called as my func () exits, resulting in the destructor being called. In the failure
case, however, myfunc () never exits, resulting in the destructor not being called.

In the next section, we will talk about C++ exceptions that build upon set jump exceptions
to not only provide support for RAIL but also provide the ability to return complex data
types in the event of an error.

Understanding exception support in C++

C++ exceptions provide a mechanism for reporting errors in a thread-safe manner, without
the need to manually unwind the call stack, while also providing support for RAII and
complex data types. To better understand this, refer to the following example:

#include <cstring>
#include <iostream>

void myfunc (int wval)
{
if (val == 42) {
throw EINVAL;
}
}

int main ()
{
try |
myfunc (1) ;
std::cout << "success\n";

myfunc (42);
std::cout << "success\n";
}
catch (int ret) {
std::cout << "failure: " << strerror(ret) << '\n';
}
}

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// success
// failure: Invalid argument

[494]

Error — Handling with Exceptions Chapter 13

In the preceding example, our my func () function has been greatly simplified compared to
its POSIX-style equivalent. Just like our previous examples, if the input provided to the
function is 42, the error is returned (in this case, it is actually thrown). If the input provided
is not 42, the function returns successfully.

Like set jump, calls to my func () no longer need to check the return value of the function as
no return value is provided. To handle the error case, we wrap our call to myfunc () ina
try...catch block. If any of the code in the t ry{ } block results in an exception being
thrown, the catch [} block will be executed. As with most C++, the catch block is type-
safe, meaning you must state what type of return data you plan to receive in the event of an
exception being thrown. In this case, we throw EINVAL, which is an integer, so we catch an
integer and output the result to stdout.

Similar to set jump, myfunc () no longer needs to return an error code, which means it is
free to output any value it wants (meaning the output is not constrained), as shown in the
next example:

#include <cstring>
#include <iostream>

int myfunc(int wval)
{
if (val == 42) {
throw EINVAL;
}

return 42;

}

int main ()

{

try {
auto handlel = myfunc(1l);
std::cout << "success: " << handlel << '\n';

auto handle2 = myfunc(42);
std::cout << "success: " << handle2 << '\n';
}
catch (int ret) {
std::cout << "failure: " << strerror(ret) << '\n';
}
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success: 42
// failure: Invalid argument

[495]

Error — Handling with Exceptions Chapter 13

In the preceding example, my func () returns a handle, which may take on any value, since
the user of this function will know whether the handle is valid if an exception has been
thrown.

Similar to set jump, our nested case is greatly simplified compared to our POSIX-style error
handling example, as we no longer need to manually unwind the call stack:

#include <cstring>
#include <iostream>
void myfunc (int wval)
{
if (val == 42) {
throw EINVAL;

void nestedl (int wval)
{
myfunc (val);
std::cout << "nestedl success\n";

void nested2 (int wval)
{
nestedl (val) ;
std::cout << "nested2 success\n";

main ()
{
try {
nested2 (1) ;
std::cout << "nested2 (1) complete\n";

nested2 (42);
std::cout << "nested2 (42) complete\n";
}
catch (int ret) H{
std::cout << "failure: " << strerror(ret) << '\n';

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// nestedl success

// nested2 success

// nested2 (1) complete

// failure: Invalid argument

[496]

Error — Handling with Exceptions Chapter 13

The preceding example is similar to our set jump example, the main difference being that
we throw an exception instead of performing a long jump, and we catch the exception
using the try. . .catch block.

Unlike set jump, C++ exceptions support RAII, meaning objected defined within the scope
of a function are properly destroyed as the function exits:

#include <cstring>
#include <iostream>

class myclass

{

public:
~myclass ()
{

std::cout << "destructor called\n";
bi

void myfunc (int wval)
{

myclass c{};

if (val == 42) {
throw EINVAL;

main ()
{
try {
myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";
}
catch (int ret) {
std::cout << "failure: " << strerror(ret) << '\n';

// > g++ —std=c++17 scratchpad.cpp; ./a.out
// destructor called

// success

// destructor called

// failure: Invalid argument

[497]

Error — Handling with Exceptions Chapter 13

As can be seen in the preceding example, the destructor is called in both the success case
and the failure case. To accomplish this, C++ includes a stack unwinder, which is capable of
automatically unwinding the stack, similar to how we manually unwound the call stack
using POSIX-style error handling, but automatically and without the need to execute
branch statements through the code, resulting in optimal performance (as if error checking
was not taking place). This is called zero-overhead exception handling.

The details of how the unwinder automatically unwinds the call stack without incurring
any performance overhead, while still supporting RAII in a thread-safe manner, is outside
the scope of this book, since this process is extremely complicated. However, a brief
explanation follows.

When C++ exceptions are enabled and your code is compiled, a set of stack-unwinding
instructions are also compiled for each function and placed the executable in a place where
the C++ exception unwinder can find them. The compiler then compiles the code as if error
handling is not taking place, and the code executes as such. If an exception is thrown, a
thread-safe object is created that wraps the data being thrown and is stored. From there, the
execution of the function is reversed using the call stack-unwinding instructions that were
previously saved in the executable, eventually resulting in the function that threw the
exception being exited to its caller. Before the function exits, all destructors are executed,
and this process is continued for each function that was called in the call stack until a
catch{} block is encountered that is capable of handling the data that was thrown.

Here are some key points to keep in mind:

¢ The unwind instructions are stored in a table in the executable. Each time a
function's execution needs to be reversed (from a register point of view), the
unwinder must look up these instructions for the next function in the table. This
operation is slow (although some optimizations have been added, including the
use of a hash table). For this reason, exceptions should never be used for control
flow as they are slow and inefficient in the error case, while extremely efficient in
the success case. C++ exceptions should only be used for error handling.

¢ The more functions you have in a program, or the larger the functions are (that is,
the more the function touches the CPUs registers), the more information that
must be stored in the unwind instructions table, resulting in a larger program. If
C++ exceptions are never used in your program, this information is still compiled
and stored in the application. For this reason, exceptions should be disabled if
they are not used.

[498]

Error — Handling with Exceptions Chapter 13

In addition to being thread-safe, performant, and capable of supporting RAII, C++
exceptions all support complex data types. The typical data type that is used by C++
includes strings, as follows:

#include <cstring>
#include <iostream>

void myfunc (int wval)
{
if (val == 42) {
throw std::runtime_error ("invalid val");
t
t

int main ()
{
try {
myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";
t
catch(const std::runtime_error &e) |
std::cout << "failure: " << e.what() << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure: invalid val

In the preceding example, we throw a std: : runtime_error{} exception. This exception
is one of many, provided by C++, that inherits std: : exception, which supports the ability
to store a string in addition to the exception type itself. In the preceding example, we store
invalid val. The preceding code is capable of not only detecting the provided string but
also the fact that std: : runtime_exception{} was thrown.

In some cases, you might not know what type of exception is being thrown. This is usually
the case when an exception that doesn't inherit std: : exception is thrown, such as raw
strings and integers. To catch any exception, use the following;:

#include <cstring>
#include <iostream>

void myfunc (int wval)

{

[499]

Error — Handling with Exceptions Chapter 13

if (val == 42) |
throw -1;
}
}
main ()
{
try {

myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";
}
catch(...) |
std::cout << "failure\n";
}
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure

In the preceding example, we throw an integer and we catch it using the . .. syntax, which
states that we wish to catch all exceptions. It's always good practice to have this type of
catch statement at least somewhere in your code to ensure that all exceptions are being
caught. In all of our examples throughout this book, we have included this catch
statement for that very reason. The major disadvantage to this type of catch{} block is that
we must use std: :current_exception () to get the exception, for example:

finclude <cstring>
#include <iostream>
#include <stdexcept>

void myfuncl (int wval)
{
if (val == 42) {
throw std::runtime_error ("runtime_error");

}

void myfunc?2 (int val)
{
try {
myfuncl (val);
}
catch(...) {

[500]

Error — Handling with Exceptions Chapter 13

auto e = std::current_exception();
std::rethrow_exception(e);

}

int main ()

{
try A
myfunc2 (42) ;

t
catch (const std::exception& e) {
std::cout << "caught: " << e.what() << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// caught: runtime_error

In the preceding example, we throw std: :runtime_error () frommyfunci ().In

my func2 (), we catch the exception using the . . . syntax, stating that we wish to catch all
exceptions. To get the exception, we must use std: : current_exception (), which
returns std: :exception_ptr{}.std::exception_ptr{} is an implementation-specific
pointer type that can be re-thrown using std: : rethrow_exception (). Using this
function, we can then catch the exception using the preceding standard method and output
the message within. It should be noted that if you wish to catch an exception,
std::current_exception () is not the recommended way, as you would need to re-
throw the exception to get the what () from it since std: :exception_ptr does not
provide an interface for getting what (). It should also be noted that
std::current_exception () will not help if an exception was thrown that is not a
subclass of std: :exception{}.

Finally, it's possible to replace subclass std::exception with your own, custom data.
To do this, refer to the following example:

#include <cstring>
#include <iostream>
#include <stdexcept>

class myexception : public std::exception
{
int m_error{0};

public:

myexception (int error) noexcept
m_error{error}

[501]

Error — Handling with Exceptions Chapter 13

{1

const char *
what () const noexcept

{

return "error";

int error () const noexcept

{

return m_error;
ti

void myfunc (int wval)

{
if (val == 42) {
throw myexception (42);

int main ()
{
try {
myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";

t
catch (const myexception &e) {
std::cout << "failure: " << std::to_string(e.error()) << '\n';

// > g++ -std=c++17 scratchpad.cpp; ./a.out
// success
// failure: 42

In the preceding example, we subclass std: :exception to create our own exception that
is capable of storing an error number. As with all subclasses of std: :exception{}, the
what () function should be overloaded to provide a message that uniquely identifies your
custom exception. In our case, we also provide a function to retrieve the error code that was
stored when the exception was created and thrown.

[502]

Error — Handling with Exceptions Chapter 13

Another common task is to create a custom string for your exception. This, however, can
lead to a common mistake, which is to return a constructed string in the what () function:

const char *
what () const noexcept

{
return ("error: " + std::to_string(m_error)).c_str();

}

The preceding code produced undefined behavior, and a hard-to-find bug. In the preceding
code, we store an error code just like we did in the previous example, but instead of
returning it, we return the error code in a string in the what () function. To do this, we
leverage the std: :to_string () function to convert our error code into a std: : string.
We then prepend error:, and return the resulting standard C string.

The problem with the preceding example is that a pointer to the standard C string is
returned and then std: : string{} is destroyed when the what () function exits. The code
that attempts to use the string returned by this function will end up reading deleted
memory. The reason this is hard to find is that in some cases, this code will execute as
expected, only because the contents of memory likely didn't change fast enough. Given
enough time, however, this code will likely lead to corruption.

Instead, to create a string that outputs the same message, put the resulting error code in the
constructor of an existing exception:

#include <cstring>
#include <iostream>

class myexception : public std::runtime_error

{

public:
myexception (int error) noexcept
std::runtime_error ("error: " + std::to_string(42))
{1}

bi

void myfunc (int wval)
{
if (val == 42) {
throw myexception (42);

}

int main ()

try A

[503]

Error — Handling with Exceptions Chapter 13

myfunc (1) ;
std::cout << "success\n";

myfunc (42);
std::cout << "success\n";
t
catch (const std::exception &e) {
std::cout << "failure: " << e.what () << '\n';
t
t

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// success
// failure: error: 42

In the preceding example, we subclass std: : runtime_error{} instead of

std: :exception directly, and create our what () message during the construction of the
exception. This way, when what () is called, the exception information is available without
corruption.

We will end this chapter with a note about the only real addition to C++17 with respect to
exception support. Throwing an exception while an exception is already thrown is
generally discouraged. To accomplish this, you must throw an exception from the
destructor of a class that has been marked as except (), and that is destroyed during stack-
unwinding. Prior to C++17, a destructor could detect whether this was about to happen by
leveraging the std: :uncaught_exception () function, which would return true if an
exception was in the process of being thrown. To support throwing an exception while an
exception is already being thrown, C++17 changed this function to return an integer that
represents the total number of exceptions currently being thrown:

#include <cstring>
#include <iostream>

class myclass

{
public:
~myclass ()

{
std::cout << "uncaught_exceptions: "
<< std::uncaught_exceptions () << '\n';

}i
void myfunc (int wval)

{

myclass c{};

[504]

Error — Handling with Exceptions Chapter 13

if (val == 42) {
throw EINVAL;
t
t

int main ()
{
try {
myfunc (1) ;
std::cout << "success\n";

myfunc (42) ;
std::cout << "success\n";

t
catch(int ret)
std::cout << "failure: " << strerror(ret) << '\n';

}
}

// > g++ —-std=c++17 scratchpad.cpp; ./a.out
// uncaught_exceptions: 0

// success

// uncaught_exceptions: 1

// failure: Invalid argument

In the preceding example, we create a class that outputs to stdout, the total number of
exceptions currently being thrown. This class is then instantiated in my func () . In the
success case, no exceptions are in the process of being thrown when the class is destroyed.
In the error case, one exception is reported as being thrown when the class is destroyed.

Studying an example on exception
benchmark

In this final example, we will demonstrate that C++ exceptions outperform POSIX-style
exceptions (a claim that is largely dependent on the hardware you're executing on, as
compiler optimizations and aggressive branch prediction can improve the performance of
POSIX-style error handling).

[505]

Error — Handling with Exceptions Chapter 13

POSIX-style error handling requires the user to check the result of a function each time it is
executed. When function nesting occurs (which will almost certainly happen), this issue is
exacerbated even further. In this example, we will take this case to the extreme, creating a
recursive function that checks the results of itself thousands of times, while executing the
test hundreds of thousands of times. Each test will be benchmarked and the results will be
compared.

There are a lot of factors that could change the results of this test, including branch
prediction, optimizations, and the operating system. The goal of this test is to take the
example so far to the extreme that most of these issues are washed out in the noise, and
any performance-related issues with any approach are easily identifiable.

To start, we will need the following includes:
#include <csetjmp>

#include <chrono>
#include <iostream>

We will also need the following globally-defined jump buffer, as we will be comparing C++
exceptions to set jump and POSIX-style error handling;:

jmp_buf Jjb;
We will also use the same benchmark code we have used in previous chapters:

template<typename FUNC>
auto benchmark (FUNC func) |

auto stime = std::chrono::high_resolution_clock::now();
func () ;

auto etime = std::chrono::high_resolution_clock::now();
return (etime - stime) .count ();

}

Our first recursive function will return an error using POSIX-style error handling;:

int myfuncl (int wval)
{
if (val >= 0x10000000) {
return -1;

}

if (val < 0x1000) {
if (auto ret = myfuncl(val + 1); ret == -1) {
return ret;

}

[506]

Error — Handling with Exceptions Chapter 13

}

return 0;

}

As shown, the return value of the function is compared as expected. The second function
will return an error using set jump:

void myfunc?2 (int wval)

{
if (val >= 0x10000000) {
std::longjmp (jb, -1);
}

if (val < 0x1000) {
myfunc2 (val + 1);

}

As expected, this function is less complicated, since no return value needs to be returned or
compared. Finally, the third function will return an error using C++ exceptions:

void myfunc3 (int wval)

{
if (val >= 0x10000000) {
throw -1;
t

if (val < 0x1000) {
myfunc3 (val + 1);

}

As expected, this function is almost identical to set jump, with the use of C++ exceptions
being the only difference. Since we are not testing RAII, we would expect C++ exceptions to
be as fast to execute as set jump, since both do not need to perform a comparison.

Finally in our protected main function, we will execute each function the same way we
have in our previous examples, to demonstrate that each function executes as expected:

void test_funcl ()
{
if (auto ret = myfuncl(0); ret == 0) {
std::cout << "myfuncl: success\n";
}
else {
std::cout << "myfuncl: failure\n";

}

[507]

Error — Handling with Exceptions Chapter 13

if (auto ret = myfuncl(bad); ret == 0) {
std::cout << "myfuncl: success\n";

t

else {
std::cout << "myfuncl: failure\n";

uint64_t total = 0;
for (auto 1 = 0; 1 < num_iterations; 1i++) {
total += benchmark ([&]
myfuncl (0) ;
)i

std::cout << "timel: " << total << '\n';

}

The first test function tests the C-style error handling logic to ensure that the function
returns both success and failure as expected. We then execute the success case several times
and time how long it takes to execute, outputting the results to stdout:

volid test_func2 ()
{
if (setjmp (jb) == -1) {
std::cout << "myfunc2: failure\n";

uint64_t total = 0;
for (auto 1 = 0; i1 < num_iterations; i++) {
total += benchmark ([&] {
myfunc2 (0) ;
)i

std::cout << "time2: " << total << '\n';
return;

myfunc2 (0) ;
std::cout << "myfunc2: success\n";

myfunc?2 (bad) ;
std::cout << "myfunc2: success\n";

[508]

Error — Handling with Exceptions Chapter 13

As shown, we also ensure that the second, C-style exceptions example also returns success
and failure as expected. Then, we execute the success case several times to see how long it

takes to execute:

void test_func3()
{
try {
myfunc3 (0) ;
std::cout << "myfunc3: success\n";

myfunc3 (bad) ;

std::cout << "myfunc3: success\n";
}
catch(...) {

std::cout << "myfunc3: failure\n";

uint64_t total = 0;
for (auto 1 = 0; 1 < num_iterations; 1i++) {
total += benchmark ([&]
myfunc3 (0) ;
)i

std::cout << "time3: " << total << '\n';

}

We do the same thing with our C++ exceptions example. We complete our
protected_main () function by executing each test, as follows:

int
protected_main (int argc, char** argv)
{

(void) argc;

(void) argv;

test_funcl () ;
test_func2 () ;
test_func3();

return EXIT_SUCCESS;

[509]

Error — Handling with Exceptions Chapter 13

The results of the benchmark are output to stdout:

int
main (int argc, char **argv)
{
try A
return protected_main(argc, argv);
}
catch (const std::exception &e) {
std::cerr << "Caught unhandled exception:\n";
std::cerr << " — what(): " << e.what () << '\n';
}
catch (...) {
std::cerr << "Caught unknown exception\n";

return EXIT_FATILURE;
}

As with all of our examples, the protected_main () function is executed by the main ()
function, which catches exceptions should they occur.

Compiling and testing
To compile this code, we leverage the same CMakeLists. txt file that we have been using

forfhecﬁherexanqﬂesthttps://github.com/PacktPublishing/HandsfonfSystemf
Programming-with-CPP/blob/master/Chapterl13/CMakelLists.txt.

With this in place, we can compile this code using the following;:

> git clone
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP.git
> cd Hands-On-System-Programming-with-CPP/Chapterl3/

> mkdir build

> cd build

> cmake
> make

To execute the example, run the following code:

> . /examplel
myfuncl: success
myfuncl: failure
timel: 1750637978
myfunc2: success

[510]

https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt
https://github.com/PacktPublishing/Hands-On-System-Programming-with-CPP/blob/master/Chapter13/CMakeLists.txt

Error — Handling with Exceptions Chapter 13

myfunc2: failure
time2: 1609691756
myfunc3: success
myfunc3: failure
time3: 1593301696

As shown in the preceding code snippet, C++ exceptions outperformed POSIX-style error
handling, and set jump exceptions were comparable.

Summary

In this chapter, we learned three different methods for performing error handling when
system programming. The first method was POSIX-style error handling, which involves
returning an error code from every function executed and the results of each function being
checked to detect an error. The second method involved the use of standard C-style
exceptions (that is, set jump), demonstrating how this form of exception-handling solves a
lot of issues with POSIX-style error handling, but introduces issues with RAII support and
thread safety. The third example discussed the use of C++ exceptions for error handling,
and how this form of error handling solves most of the issues discussed in this chapter,
with the only disadvantage being an increase in the size of the resulting executable. Finally,
this chapter concluded with an example that demonstrated how C++ exceptions outperform
POSIX-style error handling.

Questions

Why do C++ exceptions outperform POSIX-style error handling?

How does a function return an output with POSIX-style error handling?
Why doesn't set jump support RAII?

How do you catch any exception using a catch{ } block?

Why do C++ exceptions increase the size of an executable?

AN i

Why should C++ exceptions not be used for control flow?

[511]

Error — Handling with Exceptions Chapter 13

Further reading

® https://www.packtpub.com/application—-development/cl7-example

® https://www.packtpub.com/application-development/getting—-started-cl17-
programming-video

[512]

https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/c17-example
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video
https://www.packtpub.com/application-development/getting-started-c17-programming-video

Assessments

Chapter 1

1.

The act of making system calls to accomplish tasks provided by the operating
system is called system programming.

By calling an operating system's interrupt handlers.

Special instructions were added to the CPU to support system calls without the
need to call an interrupt handler, which saves more of the CPU state prior to
execution.

No. Most implementations of malloc () /free () ask for a large amount of
memory from the operating system and then divide up that memory during the
program's execution. A system call is only needed when this memory runs out
and malloc () /free () must ask for more.

Speculative execution.

Type safety is the extent to which a programming language helps to prevent
errors due to the differences between types. Strongly typed languages prevent
these types of error more than weakly typed languages.

C++ templates provide a user with the ability to define your code without having
to define type information ahead of time.

Chapter 2

1.

2.

3.
4.

Yes. Most of the C standard is also part of the POSIX standard. POSIX generally
goes above and beyond to provide additional facilities specific to POSIX
operating systems. Examples of C and POSIX functions include read () and
write ().

_start () is the entry point to an application and is usually provided by the C
runtime facilities. main () is a function provided by the user and is usually the
first function to execute in the user's code, which is eventually called by the C
runtime facilities once the application is fully initialized.

Executing global constructors and destructors, and initializing C++ exceptions.

Before.

Assessments

5.

6.
7.

C++ name mangling embeds the entire signature of a function into the function's
symbol. This is not only needed to provide support for function overloading in
C++, but also ensures that the linker doesn't accidentally dynamically link two
functions with the same name that have different signatures (which can happen
in C).

C symbols are not mangled. C++ are.

A pointer can point to any memory, including a nullptr. A reference cannot.

Chapter 3

1.

This depends on the CPU architecture. On some CPUs, a short int is 16 bits
wide, while an int is 32 bits wide. This is not the case on all CPUs.

This depends on the CPU architecture. On most CPUs, an int is 32 bits wide, but
this is not always the case.

No.

An int32_t will always be 32 bits wide. On some CPUs, an int could be 16, 32,
or 64 bits wide.

Yes. These are called exact-width types and will always be the desired width.

Ensures that structures are not automatically padded by the compiler for
optimizations.
No.

Chapter 4

1.

A L

N

Structured binding provides the ability to retrieve the result of a structure by
manually providing individual variables, for example, auto [first, second]
= std::pair{l, 2}

You can now list nested namespace on the same line

You no longer need to provide an error message

Provides you with the ability to define a variable inside an i f statement
Resource acquisition is initialization

To acquire and initialize a resource on construction and release the resource on
destruction

States who owns a pointer (that is, the entity responsible for deleting the pointer)

Expects () defines a functions input expectations and Ensures () defines a
function's output

[514]

Assessments

Chapter 5

N

S Tk W=

rax.

rdi.

subtracts.

A segment is a group of sections.

The information needed to handle exceptions.

Fork () creates a new process, while exec () overwrites an existing process with
a new program. Both are needed to launch a new program.

second.
The process ID of the process that completed.

Chapter 6

AR

o X® N

std::cin is type-aware.

Capable of handling user-defined types providing cleaner, type-safe IO.
Format specifiers are often more flexible than #include <iomanip>.
Use std: :endl if a flush must occur.

std: :cerr will flush after each write, while std: : c1og will not. Use
std: : cerr when handling errors to ensure that all debugging information is
successfully flushed prior to a catastrophic issue.

std::internal.

By using both std: :oct and std: :uppercase.
By leveraging a gs1: :span.

By leveraging the rdbuf () member function.

Chapter 7

1. new () allocates a single object, while new () allocates an array of objects.
2. No.
3. Global memory is visible to the entire program, while static memory (defined

globally) is only visible to the source file in which it is defined.
By leveraging an alias with the alignas () function, such as using
aligned_int alignas (0x1000) = int;.

[515]

Assessments

5.
6.

Not in C++17 and below

std: :shared_ptr should only be used if more than one object must own the
memory (that is, the memory needs to be able to be released by more than one
object in any order and at any time).

Yes (depending on the operating system and permissions).

If you allocate 4 bytes and use 3, you have created internal fragmentation
(wasted memory). If you allocate memory in such a way that the allocator no
longer has contiguous blocks of memory to give out (even if it has a lot of free
memory), you have created external fragmentation.

Chapter 8

NSO D=

is_open ()

std::ios_base::in | std::ios_base::out
0 is read and a flag is set

Buffer overflow errors

Yes

test

/home/user

Chapter 9

1.

SANES LN

This means that two instances of the same allocator are always equal, which in
turn means that both allocators can allocate and deallocate each other's memory.

If two instances of the same allocator can allocate and deallocate each other's
memory.

Yes.
Yes.
When a container is copied, its allocator is also copied.

It provides the container with the ability to create a copy of the allocator it was
provided for a different type.

For std::1ist,n ==1;for std: :vector, n can be any number.

[516]

Assessments

Chapter 10

Ol LN

UDP is connectionless.

SOCK_DGRAM

SOCK_STREAM

IPV4.

Bind () allocates a port, while connect () connects to a previously allocated
port.

sendto () takes the address as a parameter and is usually used by UDP, while
send () is usually used by TCP.

It doesn't.

Type safety.

Chapter 11

S o

Thursday, 1 January 1970

The number of seconds since the UNIX epoch began.

clock () is relative to the execution of the program.
Non-POSIX operating systems might support fractional time.
A wrapper around difftime ().

A steady clock provides the actual time, while a high resolution timer provides a
number that only provides a value when used with duration{}.

Chapter 12

= LN

SRR

pthread_self ()
They are not type safe.
When two threads race to read/write the same resource.

When a thread waits on a synchronization primitive (for example, a mutex) that
will never be released.

A C++ future provides a type-safe mechanism for returning the result of a thread.

To ensure that a function is only executed once, regardless of the number of
threads that call it.

[517]

Assessments

7. std::shared_mutex provides the ability to support multiple readers.

8. Allows a single thread to lock the same mutex more than once without entering

deadlock.

Chapter 13

1.

C++ exceptions do not need to check the return result of every function call.

2. POSIX-style functions must reserve a part of a function's output to convey an

error. For example, if a function must return a file handle, 0 is returned in the
event of an error, which means that a file handle cannot have the value 0.

Set jump does not unwind the stack, which means destructors are skipped.
catch(...)

Instructions on how to unwind a stack must be stored for every function. This is
the tradeoff for increased performance.

They are slow.

[518]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C++ Data
Structures and

Algorithms

Le:

code to build scalable and

C++ Data Structures and Algorithms
Wisnu Anggoro

ISBN: 9781788835213

Know how to use arrays and lists to get better results in complex scenarios
Build enhanced applications by using hashtables, dictionaries, and sets

Implement searching algorithms such as linear search, binary search, jump
search, exponential search, and more

Have a positive impact on the efficiency of applications with tree traversal

Explore the design used in sorting algorithms like Heap sort, Quick sort, Merge
sort and Radix sort

Implement various common algorithms in string data types

Find out how to design an algorithm for a specific task using the common
algorithm paradigms

https://www.packtpub.com/application-development/c-data-structures-and-algorithms

Other Books You May Enjoy

C++ Reactive
Programming

C++ Reactive Programming
Praseed Pai

ISBN: 9781788629775

¢ Understand language-level concurrency in C++

Explore advanced C++ programming for the FRP

Uncover the RxCpp library and its programming model

Mix the FP and OOP constructs in C++ 17 to write well-structured programs
Master reactive microservices in C++

Create custom operators for RxCpp

Learn advanced stream processing and error handling

[520]

https://www.packtpub.com/application-development/c-reactive-programming

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[521]

Index

A organization 31
pointers 39, 40, 41, 42
allocation program, starting 32, 33, 34
types 326, 328, 329 programs, linking 34, 35, 36
allocators 318 scope 37, 38
American Standard Code for Information C++ allocators
Interchange (ASCII) 57 about 318, 319
application binary interface (ABI) 8 basic allocator 320, 321, 322
application programming interface (API) 8 optional functions 345, 346
arithmetic logic unit (ALU) 62 optional properties 334, 335, 336, 338, 339,
arrays 39, 40, 41, 42 341, 342, 343, 345
asctime() function 413 properties 324
C++ applications
B linking 45, 46, 47, 48
benchmarking, with threads C++ Chrono APlIs
about 471, 472 duration 423, 424, 425, 426
code, compiling 473 exploring 420
Boolean 67, 68 high_resolution_clock function 428
built-in types, with C/C++ steady_clock function 427
about 57 system_clock() APl 420
Boolean 67, 68 time_point APl 421, 422
character type 57, 58, 59, 60 C++ Core Guidelines
floating point numbers 65, 66, 67 reference 92, 181
integer type 61, 62, 63, 64, 65 C++ exceptions 494, 495, 497, 498, 499, 500,
bytes 501, 503, 504, 505
reading 277,278, 280 C++ standard
writing 285, 286, 288, 290, 292 about 43
conventions and concepts 44
C language syntax 44
C Run-time Libraries (CRT) libraries 34 libraries 45, 51
C standard language organization 44
about 30 pointers, versus references 49, 50
arrays 39, 40, 41, 42 scope 48, 49
Environment section 31 C++ streams
Language section 31 performance, optimizations 188, 189
libraries 42 C++ threads

Libraries section 32 basics 449, 450, 452

exploring 449
synchronization 454, 455, 456, 458, 460, 461,
463,464, 465
yielding 452, 453
C++17
compile-time facilities 85, 86, 87
initializers, in if/switch statements 84, 85
inline variables 91, 92
library modifications 92
namespace 88, 89
overview 84
structured bindings 89, 90, 91
C++
versus mmap 312, 315
character type 57, 58, 59, 61
clock() function 418, 419
complex instruction set computer (CISC) 62
contracts 108, 109
ctime() typedef APl 412

D

delete function 216
difftime() function 416
dynamic libraries 37

E

echo program
recreating 198, 199, 200, 201, 202, 203, 205,
206
equal allocators
copying 330, 332
moving 332, 333
exception benchmark
code, compiling 510
example 505, 506, 507, 509
executing 510
exception support, C++ 494, 495, 496, 497, 498,
499,500, 501, 503, 504, 505
exec() function 159, 160, 162, 163
Executable and Linkable Format (ELF)
about 129, 131
sections 131, 133, 135, 136, 137
segments 137, 138, 139
external fragmentation
about 263, 264

[523]

optimizing 265

F

field
used, for reading from file 275, 276
used, for writing to file 283
file input/output (10) 267
file utilities
about 294
path 294, 295,297, 298, 300, 302, 303
file
opening 268
opening, modes 270,272,273
opening, ways 268, 269,270
reading from 275
writing to 283
filesystem, POSIX standard
/bin 53
/boot 53
/dev 53
letc 53
/home 53
/lib 53
/media 53
/mnt 53
/sbin 53
/tmp 53
Jusr 53
floating point numbers 65, 66, 67
fork() function 143, 144, 146, 147
Frame Description Entry (FDE) 128
function overloading 47

G

global memory 216
Global Offset Table (GOT) 137
gmtime() APl 413
Greenwich Mean Time (GMT) 413
guideline support library (GSL)
about 103
contracts 108,109
pointer arithmetic 106, 107, 108
pointer, ownership 103, 104, 105
utilities 110, 111

H error handling libraries 51
file input/output libraries 51

heap memory 218, 219 memory management libraries 51
High-Resolution Timer threading libraries 51
code, compiling 433 time libraries 51
example 431, 432 libraries
executing 433 about 36
high_resolution_clock function 428 dynamic libraries 36, 37
static libraries 36
I library modifications, C++17
instruction set architecture (ISA) 37, 62 any class 97, 99
integer types 61, 62, 63, 64, 65 optional class 97, 99
internal fragmentation string view 92, 93, 95, 96
about 264, 265 variant class 97, 99
optimizing 265 line
International Organization for Standardization used, for reading from file 281
(ISO) 30 Linux ABI 114
Interprocess Communication (IPC) localtime() API 413
about 152 logger
Unix pipes 153, 155, 156 example 307, 308, 309

Unix shared memory 157, 158

J malloc() function
JSON, processing reference 255
about 402 manipulators 189, 190, 191, 192, 193, 194, 196,
client logic 405 197
code, compiling 406 memory fragmentation
server 403, 404 external fragmentation 263, 264
importance 263
L internal fragmentation 264, 265

memory management 52
memory mapping
advantages 254

lazy loading 37
libraries, C standard language

errno.h 42 (
inttypes.h 42 disadvantages 254

limits.h 42 memory

setiump.h 43 aligning 220, 221, 222,223, 224

signal.h 43 allocating 216

stdbool.h 43 deallocating 216

stddef.h 43 global memory 216

stdint.h 43 heap memory 216

stdio.h 43 mapping 253

stdlib.h 43 mapping, with map() function 253, 254, 255
time.h 43 nothrow 224,225,226

overloading 229, 231, 232, 233

libraries, C++ standard .
permissions 256, 257

console input/output libraries 51

[524]

program, writing 216,217, 218, 219
shared memory, defining 260, 261, 262
stack memory 216

mktime() function 417

mmap() function
disadvantages 258
using 258,259

mmap
versus C++ 312, 315

N

Network Interface Controller (NIC) 13
new function

about 216

placement 226, 227, 228

O

object file 35

P

packets, processing from client to server
about 397, 399
client logic 400
code, compiling 401
parallel computation
code, compiling 470
performing 466, 468, 469
testing 470
path
managing 294
personal computers (PCs) 8
pointer arithmetic 42, 106, 108
pointer ownership
about 234
defining 103, 104, 105
pointers
about 39, 40, 41, 42,234
shared_ptr pointer 243, 244,245, 246, 248,
249, 250, 251, 253
unique_ptr{} pointer 234, 236, 237, 238, 239,
240, 241, 242
versus references 49, 50
Position Independent Executable (PIE) 133
POSIX sockets 362
POSIX standard

[525]

about 51
filesystem 53
memory management 52, 53
sockets 53
threading 54

POSIX threads
about 436
basics 437, 438, 439
synchronization 443, 444, 445, 446, 447, 449
yielding 440, 442

POSIX time.h APIs
about 410
asctime() function 413
clock() function 418, 419
ctime() typedef 412
difftime() function 416
gmtime() function 413
high-resolution clock 410
localtime() function 413
mktime() function 417
steady clock 410
strftime() function 414, 415
system clock 410
time() APl 411, 412
types 410

POSIX-style error-handling 481, 482, 483, 484,

485, 486, 488

properties, C++ allocators
equality 325
value pointer type 324

R

Read System Clock

code, compiling 430

example 429, 430

executing 431
reduced instruction set computer (RISC) 63
references

versus pointers 49, 50
Resource Acquisition is Initialization (RAIl) 49, 99,

100, 101, 102, 155, 361, 455, 487

run-time type information (RTTI) 19

S

scope, standard C 37, 38
scope, standard C++ 48, 49
Serial Echo server
example 206,208, 209, 210,211, 212,213
Set Jump exceptions 488, 489, 490, 491, 492,
494
shared memory
defining 260, 261, 262
shared_ptr pointer
about 243,244, 245, 246, 248, 249, 250, 251,
253
disadvantages 247
side-channel attacks 17
socket() API
about 362, 363
accept() 367
bind() 364, 366
connect() 365, 366
listen() 366
recv() 368
recvfrom() 368
send() 367
sendto() 368
sockets 53
Source Location TS
reference 184
speculative execution 16
stack memory 217,218
standard integer types
about 68, 69, 70, 71, 72
structure 73, 74, 75, 76,77, 79, 81
Standard Template Library (STL) 27
static libraries 36
steady_clock function 427
stream-based 10
about 173
advantages 175
disadvantages 175
stream, using 173, 174
stritime() function 414, 415
synchronization 152
system call, security risks
about 15
meltdown 16, 17

[526]

Spectre 16, 17
SYSRET 15
system call, types
console input/output 11, 12
file input/output 13
memory allocation 12
networking 13
process creation 14
threading 14
time 13,14
system call
about 8
anatomy 8§, 9, 10, 11
system programming 8
system programming with C++, benefits
about 17
APIs 27
C++ containers 27
error handling 26, 27
functional programming 24, 25
objects 19, 20, 21
templates 22, 23
type safety 18, 19
System V ABI
about 114,115

calling conventions 120, 121, 122, 123

debugging 124, 126, 127

epilogs 119

exception handling 124

function prologs 117

red zone 119

register layout 115, 116

stack frame 116, 117

virtual memory layout 129
system_clock() APl 420

T

tail file
example 310, 311, 312
TCP echo server
about 381
client logic 386, 388
code, compiling 389
executing 390
server 381, 382, 383, 385

TCP Logger
about 390
client logic 393, 394, 395
code, compiling 396
executing 397
server 390, 391
thread logging
about 474, 475,477
code, compiling 478
threading 54
time() APl 411, 412
time_point APl 421, 422
type error
exception support 19
polymorphic type conversions 19

U

UDP echo server

about 369

client logic 375, 376, 378, 379

code, compiling 380

executing 380

server 369, 370,372,373, 374
unique_ptr{} pointer 236, 237, 238, 239, 240,

241, 242

Unix filesystem 140, 142
Unix pipes 153, 155, 156
Unix processes
about 142
exec() function 159, 160, 162, 163
fork() function 143, 144, 146, 147
Interprocess Communication (IPC) 151
output redirection 164, 166
wait() function 148, 150
Unix shared memory 157, 158
Unix signals 167, 168, 169
user-defined types
about 175,177
C++ streams, performance optimization 188,
189
debugging patterns 179, 180, 182, 183, 185,
186, 187
memory management 177, 178
utilities, GSL 110, 111

w

wait() function 148, 150

Y4

zero-overhead exception-handling 498

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with System Programming
	Technical requirements
	Understanding system calls
	The anatomy of a system call
	Learning about different types of system calls
	Console input/output
	Memory allocation
	File input/output
	Networking
	Time
	Threading and process creation

	System call security risks
	SYSRET
	Meltdown and Spectre

	Benefits of using C++ when system programming
	Type safety in C++
	Objects of C++
	Templates used in C++
	Functional programming associated with C++
	Error handling mechanism in C++
	APIs and C++ containers in C++

	Summary
	Questions
	Further reading

	Chapter 2: Learning the C, C++17, and POSIX Standards
	Technical requirements
	Beginning with the C standard language
	How the standard is organized
	Environment
	Language
	Libraries

	How a C program starts
	All about linking
	Static libraries
	Dynamic libraries

	Scope
	Pointers and arrays
	Libraries

	Learning about the C++ standard
	How the standard is organized
	General conventions and concepts
	Language syntax
	Libraries

	Linking C++ applications
	Scope
	Pointers versus references
	Libraries

	Beginning with the POSIX standard
	Memory management
	Filesystems
	Sockets
	Threading

	Summary
	Questions
	Further reading

	Chapter 3: System Types for C and C++
	Technical requirements
	Exploring C and C++ default types
	Character types
	Integer types
	Floating – point numbers
	Boolean

	Learning standard integer types
	Structure packing

	Summary
	Questions
	Further reading

	Chapter 4: C++, RAII, and the GSL Refresher
	Technical requirements
	A brief overview of C++17
	Language changes
	Initializers in if/switch statements
	Additions to compile-time facilities
	Namespaces
	Structured bindings
	Inline variables

	Changes in the library
	String View
	std::any, std::variant, and std::optional

	Resource Acquisition Is Initialization (RAII)
	The Guideline Support Library (GSL)
	Pointer ownership
	Pointer arithmetic
	Contracts
	Utilities

	Summary
	Questions
	Further Reading

	Chapter 5: Programming Linux/Unix Systems
	Technical requirements
	The Linux ABI
	The System V ABI
	The register layout
	The stack frame
	Function prologs and epilogs
	The calling convention
	Exception handling and debugging
	Virtual memory layout

	Executable and Linkable Format (ELF)
	ELF sections
	ELF segments

	The Unix filesystem
	Unix processes
	The fork() function
	The wait() function
	Interprocess communication (IPC)
	Unix pipes
	Unix shared memory

	The exec() function
	Output redirection

	Unix signals
	Summary
	Questions
	Further reading

	Chapter 6: Learning to Program Console Input/Output
	Technical requirements
	Learning about stream-based IO
	The basics of stream
	Advantages and disadvantages of C++ stream-based IO
	Advantages of C++ stream-based IO
	Disadvantages of C++ stream-based IO

	Beginning with user-defined types
	Safety and implicit memory management
	Common debugging patterns
	Performance of C++ streams

	Learning about manipulators
	Recreating the echo program
	Understanding the Serial Echo server example
	Summary
	Questions
	Further reading

	Chapter 7: A Comprehensive Look at Memory Management
	Technical requirements
	Learning about the new and delete functions
	The basics for writing a program
	Aligning memory
	nothrow
	Placement of new
	Overloading

	Understanding smart pointers and ownership
	The std::unique_ptr{} pointer
	The std::shared_ptr pointer

	Learning about mapping and permissions
	The basics
	Permissions
	Smart pointers and mmap()
	Shared memory

	Learning importance of memory fragmentation
	External fragmentation
	Internal fragmentation
	Internal over external fragmentation
	External over internal fragmentation

	Summary
	Questions
	Further reading

	Chapter 8: Learning to Program File Input/Output
	Technical requirements
	Opening a file
	Different ways to open a file
	Modes for opening a file

	Reading and writing to a file
	Reading from a file
	Reading by field
	Reading bytes
	Reading by line

	Writing to a file
	Writing by field
	Writing bytes

	Understanding file utilities
	Paths

	Understanding the logger example
	Learning about the tail file example
	Comparing C++ versus mmap benchmark
	Summary
	Questions
	Further reading

	Chapter 9: A Hands-On Approach to Allocators
	Technical requirements
	Introducing the C++ allocators
	Learning about the basic allocator
	Understanding the allocator's properties and options
	Learning the properties
	The value pointer type
	Equality

	Different allocation types
	Copying equal allocators
	Moving equal allocators

	Exploring some optional properties
	Optional functions

	Studying an example of stateless, cache–aligned allocator
	Compiling and testing

	Studying an example of a stateful, memory–pool allocator
	Compiling and testing

	Summary
	Questions
	Further reading

	Chapter 10: Programming POSIX Sockets Using C++
	Technical requirements
	Beginning with POSIX sockets
	Beginning with APIs
	The socket() API
	The bind() and connect() APIs
	The listen() and accept() APIs
	The send(), recv(), sendto(), and recvfrom() APIs

	Studying an example on the UDP echo server
	Server
	The client logic
	Compiling and testing

	Studying an example on the TCP echo server
	Server
	The client logic
	Compiling and testing

	Exploring an example on TCP Logger
	Server
	The client logic
	Compiling and testing

	Trying out an example for processing packets
	The client logic
	Compiling and testing

	Processing an example of processing JSON
	Server
	The client logic
	Compiling and testing

	Summary
	Questions
	Further reading

	Chapter 11: Time Interfaces in Unix
	Technical requirements
	Learning about POSIX time.h APIs
	Learning about the types of APIs
	The time() API
	The ctime() typedef
	The localtime() and gmtime() APIs
	The asctime() function
	The strftime() function
	The difftime() function
	The mktime() function
	The clock() function

	Exploring C++ Chrono APIs
	The system_clock() API
	The time_point API
	Duration
	The steady_clock function
	The high_resolution_clock function

	Studying an example on the read system clock
	Compiling and testing

	Studying an example on high-resolution timer
	Compiling and testing

	Summary
	Questions
	Further reading

	Chapter 12: Learning to Program POSIX and C++ Threads
	Technical requirements
	Understanding POSIX threads
	The basics of POSIX threads
	Yielding
	Synchronization

	Exploring C++ threads
	The basics of C++ threads
	Yielding
	Synchronization

	Studying an example on parallel computation
	Compiling and testing

	Studying an example on benchmarking with threads
	Compiling and testing

	Studying an example on thread logging
	Compiling and testing

	Summary
	Questions
	Further reading

	Chapter 13: Error – Handling with Exceptions
	Technical requirements
	Error handling POSIX-style
	Learning about set jump exceptions
	Understanding exception support in C++
	Studying an example on exception benchmark
	Compiling and testing

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

