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Preface

Welcome to Expert C++! If you are an experienced C++ developer eager to elevate your skills and 
explore the full potential of C++20, you’ve come to the right place.

In this expert guide, we have meticulously crafted a learning journey to empower you with advanced 
programming techniques and practical knowledge that goes beyond traditional object-oriented 
programming. Whether you aspire to design high-performance applications, work with cutting-edge 
data structures, or master multithreading and concurrency, this book is your ultimate companion.

We will take you through the intricacies of designing templates, including the powerful realm of 
template metaprogramming. Memory management and smart pointers will become your allies as you 
tackle complex projects with confidence. Delve into the realm of data structures using the Standard 
Template Library (STL) containers, and then push the boundaries further with advanced data structures 
in C++. Discover the elegance of functional programming and the intricacies of concurrency and 
multithreading, all while learning to design concurrent data structures.

As you progress, we will guide you through the process of creating world-ready applications, 
incorporating essential design patterns, and understanding networking and security principles. The 
book’s culmination will be your enlightenment on debugging and testing, followed by a profound 
exploration of large-scale application design.

Whether you aspire to develop enterprise-level software or cutting-edge projects, this book is designed 
to empower you to become a proficient C++ programmer. So, waste no time and embark on this 
transformative journey.

Happy coding!

Who this book is for
The primary target audience consists of experienced C++ developers who are eager to elevate their 
skills and create professional-grade applications. Whether you wish to master complex programming 
concepts, improve application performance, or explore advanced techniques, this book will serve as 
a valuable resource in your journey.

The secondary target audience encompasses software engineers and computer science students with an 
interest in learning advanced C++ programming techniques and discovering real-world applications 
of the language. By delving into the content of this book, you can expand your knowledge and develop 
practical expertise in utilizing C++ for various projects and challenges.
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Regardless of your background or experience level, “Expert C++” aims to empower you with 
valuable insights and practical knowledge, guiding you towards becoming a proficient and capable 
C++ programmer.

What this book covers
Chapter 1, Building C++ Applications, will touch upon topics such as the application-building process 
in C++ and the low-level details of C++ applications

Chapter 2, Beyond Object-Oriented Programming, dives deeply into the design of OOP

Chapter 3, Understanding and Designing Templates, talks about the syntax of function and class 
templates, their instantiations, and their specializations.

Chapter 4, Template Meta Programming, provides you with the knowledge and skills you need to 
master template metaprogramming.

Chapter 5, Memory Management and Smart Pointers, illuminates the mystery behind memory and 
proper memory management techniques.

Chapter 6, Digging into Data Structures and Algorithms in STL, covers a wide range of data structures 
and algorithms.

Chapter 7, Advanced Data Structures, dives even deeper into what data structures there are, some of 
which you may have never heard about before.

Chapter 8, Functional Programming, talks about the fundamental blocks of functional programming, 
as well as ranges.

Chapter 9, Concurrency and Multithreading, introduces you to concurrency and multithreading 
fundamentals in C++ and the best practices for concurrent code design.

Chapter 10, Designing Concurrent Data, will help you picture problems with data races and acquire 
the basic knowledge needed to design concurrent algorithms and data structures.

Chapter 11, Designing World-Ready Applications, addresses common design ideas that will help prevent 
errors and write world-ready applications.

Chapter 12, Incorporating Design Patterns in C++ Applications, we will analyze examples of using 
design patterns in C++ applications in various different areas.

Chapter 13, Networking and Security, discuss the standard networking extension and see what is 
needed to implement networking-supported programs.

Chapter 14, Debugging and Testing, describes the analysis of a software defect, the use of the GNU 
Debugger (GDB) tool to debug a program, and the use of tools to automatically analyze software.
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Chapter 15, Large-Scale Application Design, discusses the practices behind building data-intensive 
applications and explores data partitioning, replication, caching, and data flow optimization.

Chapter 16, Understanding and Using C++ in Machine Learning Tasks, introduce the concepts of AI 
and ML and also provides examples of tasks in ML. We are going to implement them and give you a 
basic idea of how you should research and move forward with solving more complex tasks.

Chapter 17, Using C++ in Data Science, explains why C++ can be used in the data science industry 
and how it makes it possible.

Chapter 18, Designing and Implementing a Data Analysis Framework, explores the basic steps of building 
a complex data analysis program using C++.

To get the most out of this book
The g++ compiler with the option -std=c++2a is used to compile the examples throughout the book.

Software/hardware covered in the book Operating system requirements

g++ compiler Ubuntu Linux is a plus, but not a requirement

Basic C++ experience, including a familiarity with memory management, object-oriented programming, 
and basic data structures and algorithms, will be a big plus.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Expert-C-2nd-edition. If there’s an update to the code, it will be 
updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We sort 
the numericalData vector and calculate the median based on size and values”

https://github.com/PacktPublishing/Expert-C-2nd-edition
https://github.com/PacktPublishing/Expert-C-2nd-edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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A block of code is set as follows:

#include <iostream>
#include <vector>
#include <algorithm>
#include <map>

Any command-line input or output is written as follows:

std::unique_ptr<Base> ptr =     std::make_unique_default_init<Derived> 
();

ptr->test();

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Expert C++, 2nd edition, we’d love to hear your thoughts! Please click here to go 
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1804617830
https://packt.link/r/1804617830
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook 
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804617830

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804617830
https://packt.link/free-ebook/9781804617830


Part 1: 
Under the Hood of C++ 

Programming

In this part, you will learn the details of C++ program compilation, linking, and dive into the details 
of OOP, templates and memory management.

This part has the following chapters:

•	 Chapter 1, Building C++ Applications

•	 Chapter 2, Beyond Object-Oriented Programming

•	 Chapter 3, Understanding and Designing Templates

•	 Chapter 4, Template Meta Programming

•	 Chapter 5, Memory Management and Smart Pointers





1
Building C++ Applications

In the world of C++, where precision meets creativity, programmers are building extraordinary 
applications that will change the lives of people forever. We hope that this book will help you become 
an inseparable part of that community.

In this chapter, you will go through a crash course in C++ basics. We will touch upon topics such as 
the application-building process in C++ and the low-level details of C++ applications, and be provided 
a quick introduction to essential object-oriented programming techniques.

The following topics will be discussed in this chapter:

•	 Introduction to C++ and its latest standard

•	 Under the hood of the source code’s compilation, preprocessing, and linking

•	 The process of loading and running an executable file

•	 Intricacies behind the function call and recursion

•	 Data types, memory segments, and addressing fundamentals

•	 Pointers, arrays, and control structures

•	 Essentials of OOP

•	 Class relationships, inheritance, and polymorphism

Let’s begin!
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Technical requirements
The g++ compiler with the -std=c++2a option has been used to compile the examples throughout 
this chapter. You can find the source files that have been used in this chapter in the GitHub repository 
for this book at https://github.com/PacktPublishing/Expert-C-2nd-edition.

Building C++ applications
You can use any text editor to write code, because, ultimately, code is just text. To write code, you 
are free to choose between simple text editors such as Vim, or an advanced integrated development 
environment (IDE) such as MS Visual Studio. The only difference between a love letter and source 
code is that the latter might be interpreted by a special program called a compiler (while the love 
letter cannot be compiled into a program, it might give you butterflies in your stomach).

To mark the difference between a plain text file and source code, a special file extension is used. C++ 
operates with the .cpp and .h extensions (you may also occasionally encounter .cxx and .hpp 
as well). Before getting into the details, think of the compiler as a tool that translates the source code 
into a runnable program, known as an executable file or just an executable. The process of making 
an executable from the source code is called compilation. Compiling a C++ program is a sequence 
of complex tasks that results in machine code generation. Machine code is the native language of the 
computer – that’s why it’s called machine code.

Typically, a C++ compiler parses and analyzes the source code, then generates intermediate code, 
optimizes it, and, finally, generates machine code in a file called an object file. You may have already 
encountered object files; they have individual extensions – .o in Linux and .obj in Windows. The 
created object file contains more than just machine code that can be run by the computer. Compilation 
usually involves several source files, and compiling each source file produces a separate object file. 
These object files are then linked together by a tool called a linker to form a single executable file. 
This linker uses additional information stored in object files to link them properly (linking will be 
discussed later in this chapter).

https://github.com/PacktPublishing/Expert-C-2nd-edition
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The following diagram depicts the program-building phases:

Figure 1.1: The compilation phases of a typical C++ program

The C++ application-building process consists of three major steps:

1.	 Preprocessing

2.	 Compiling

3.	 Linking

All of these steps are done using different tools, but modern compilers encapsulate them in a single 
tool, thereby providing a single and more straightforward interface for programmers.

The generated executable file persists on the hard drive of the computer. To run it, it should be copied 
to the main memory, the RAM. The copying is done by another tool, named the loader. The loader is 
a part of the operating system (OS) and knows what and where should be copied from the contents 
of the executable file. After loading the executable file into the main memory, the original executable 
file won’t be deleted from the hard drive.

A program is loaded and run by the OS. The OS manages the execution of the program, prioritizes it 
over other programs, unloads it when it’s done, and so on. The running copy of the program is called 
a process. A process is an instance of an executable file.
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Preprocessing

A preprocessor is intended to process source files to make them ready for compilation. A preprocessor 
works with preprocessor directives, such as #define, #include, and so on. Directives don’t 
represent program statements, but they are commands for the preprocessor, telling it what to do 
with the text of the source file. The compiler cannot recognize those directives, so whenever you use 
preprocessor directives in your code, the preprocessor resolves them accordingly before the actual 
compilation of the code begins.

For example, the following code will be changed before the compiler starts to compile it:

#define NUMBER 41
int main() {
    int a = NUMBER + 1;
    return 0;
}

Everything that is defined using the #define directive is called a macro. After preprocessing, the 
compiler gets the transformed source in this form:

int main() {
    int a = 41 + 1;
    return 0;
}

It is dangerous to use macros that are syntactically correct but have logical errors:

#define SQUARE_IT(arg) (arg * arg)

The preprocessor will replace any occurrence of SQUARE_IT(arg) with (arg * arg), so the 
following code will output 16:

int st = SQUARE_IT(4);
std::cout << st;

The compiler will receive this code as follows:

int st = (4 * 4);
std::cout << st;

Problems arise when we use complex expressions as a macro argument:

int bad_result = SQUARE_IT(4 + 1);
std::cout << bad_result;
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Intuitively, this code will produce 25, but the truth is that the preprocessor doesn’t do anything but 
text processing, and in this case, it replaces the macro like this:

int bad_result = (4 + 1 * 4 + 1);
std::cout << bad_result; // prints 9, instead of 25

To fix the macro definition, surround the macro argument with additional parentheses:

#define SQUARE_IT(arg) ((arg) * (arg))

Now, the expression will take this form:

int bad_result = ((4 + 1) * (4 + 1));

Tip
As a rule of thumb, avoid using macro definitions. Macros are error-prone and C++ provides 
a set of constructs that make the use of macros obsolete.

The preceding example would be type-checked and processed at compile time if we used a 
constexpr function:

constexpr int double_it(int arg) { return arg * arg; }
int bad_result = double_it(4 + 1);

Use the constexpr specifier to make it possible to evaluate the return value of the function (or the 
value of a variable) at compile time.

Header files

The most common use of the preprocessor is the #include directive, which intends to include header 
files in the source code. Header files contain definitions for functions, classes, and so on:

// file: main.cpp
#include <iostream>
#include "rect.h"
int main() {
    Rect r(3.1, 4.05);
    std::cout << r.get_area() << std::endl;
}

After the preprocessor examines main.cpp, it replaces the #include directives with corresponding 
contents of iostream and rect.h.
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C++17 introduces the __has_include preprocessor constant expression, which evaluates to 1 if 
the file with the specified name is found and 0 if not:

#if __has_include("custom_io_stream.h")
#include "custom_io_stream.h"
#else
#include <iostream>
#endif

When declaring header files, it’s strongly advised to use so-called include guards (#ifndef, #define, 
and #endif) to avoid double declaration errors.

Using modules

Modules fix header files with annoying include-guard issues. We can now get rid of preprocessor 
macros. Modules incorporate two keywords – import, and export. To use a module, we import 
it. To declare a module with its exported properties, we use export. Before we list the benefits of 
using modules, let’s look at a simple usage example.

The following code declares a module:

export module test;
export int square(int a) { return a * a; }

The first line declares the module named test. Next, we declared the square() function and set 
it to export. This means that we can have functions and other entities that are not exported, so they 
will be private outside of the module. By exporting an entity, we set it to public for module users. 
To use module, we must import it, as shown in the following code:

import test;
int main() {
    square(21);
}

The following features make modules better compared to regular header files:

•	 A module is imported only once, similar to precompiled headers supported by custom language 
implementations. This reduces the compile time drastically. Non-exported entities do not affect 
the translation unit that imports the module.

•	 Modules allow us to express the logical structure of code by allowing us to select which units 
should be exported and which should not. Modules can be bundled together into bigger modules.

•	 We can get rid of workarounds such as include guards, as described earlier. We can import 
modules in any order. There are no more concerns for macro redefinitions.
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Modules can be used together with header files. We can both import and include headers in the same 
file, as demonstrated in the following example:

import <iostream>;
#include <vector>
int main() {
    std::vector<int> vec{1, 2, 3};
    for (int elem : vec) std::cout << elem;
}

When creating modules, you are free to export entities in the interface file of the module and move 
the implementations to other files. The logic is the same as it is for managing .h and .cpp files.

Compiling

The C++ compilation process consists of several phases. Some of the phases are intended to analyze 
the source code, while others generate and optimize the target machine code.

The following diagram shows the phases of compilation:

Figure 1.2: C++ compilation phases

Let’s look at some of these phases in detail.
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Syntax analysis

When speaking about programming language compilation, we usually differentiate two terms – syntax 
and semantics:

•	 The syntax is the structure of the code; it defines the rules by which combined tokens make 
structural sense. For example, day nice is a syntactically correct phrase in English because it 
doesn’t contain errors in either of the tokens.

•	 Semantics, on the other hand, concerns the actual meaning of the code – that is, day nice is 
semantically incorrect and should be corrected to nice day.

Syntax analysis is a crucial part of source analysis because tokens will be analyzed syntactically and 
semantically – that is, as to whether they bear any meaning that conforms to the general grammar rules.

Let’s take a look at the following example:

int b = a + 0;

This may not make sense to us, since adding zero to the variable won’t change its value, but the 
compiler doesn’t look at logical meaning here – it looks for the syntactic correctness of the code (a 
missing semicolon, a missing closing parenthesis, and more). Checking the syntactic correctness of 
the code is done in the syntax analysis phase of compilation. The lexical analysis part divides the code 
into tokens; syntax analysis checks for syntactic correctness, which means that the aforementioned 
expression will produce a syntax error if we have missed a semicolon:

int b = a + 0

g++ will complain with the expected ';' at the end of the declaration error.

Optimization

Generating intermediate code helps the compiler make optimizations in the code. Compilers try to 
optimize code a lot. Optimizations are done in more than one pass. For example, take a look at the 
following code:

int a = 41;
int b = a + 1;

During compilation, the preceding code will be optimized into the following:

int a = 41;
int b = 41 + 1;
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This, again, will be optimized into the following:

int a = 41;
int b = 42;

Some programmers do not doubt that, nowadays, compilers code better than programmers.

Machine code generation

Compiler optimizations are done in both intermediate code and generated machine code. The compiler 
usually generates object files containing a lot of other data besides the machine code.

The structure of an object file depends on the platform; for example, in Linux, it is represented 
in Executable and Linkable Format (ELF). A platform is an environment in which a program is 
executed. In this context, by platform, we mean the combination of the computer architecture (more 
specifically, the instruction set architecture) and the OS. Hardware and OSs are designed and created 
by different teams and companies. Each of them has different solutions to design problems, which 
leads to major differences between platforms. Platforms differ in many ways, and those differences 
are projected onto the executable file format and structure as well. For example, the executable file 
format in Windows systems is Portable Executable (PE), which has a different structure, number, 
and sequence of sections than ELF in Linux.

An object file is divided into sections. The most important ones for us are the code sections (marked 
as .text) and the data section (.data). The .text section holds the program’s instructions, while 
the .data section holds the data used by instructions. Data itself may be split into several sections, 
such as initialized, uninitialized, and read-only data.

An important part of object files, in addition to the .text and .data sections, is the symbol 
table. The symbol table stores the mappings of strings (symbols) to locations in the object file. In the 
preceding example, the compiler-generated output had two portions, the second portion of which 
was marked as information:, which holds the names of the functions used in the code and their 
relative addresses. This information: is the abstract version of the actual symbol table of the 
object file. The symbol table holds both symbols defined in the code and symbols used in the code 
that need to be resolved. This information is then used by the linker to link the object files together 
to form the final executable file.
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Linking

Let’s take a look at the following project structure:

Figure 1.3: A sample project structure with several .h and .cpp files

The compiler will compile each unit separately. Compilation units, also known as source files, are 
independent of each other in some way.

When the compiler compiles main.cpp, which has a call to the get_area() function in Rect, 
it does not include the get_area() implementation in main.cpp. Instead, it is just sure that the 
function is implemented somewhere in the project. When the compiler gets to rect.cpp, it does 
not know that the get_area() function is used somewhere. Here’s what the compiler gets after 
main.cpp passes the preprocessing phase:

// contents of the iostream
struct Rect {
private:
   double side1_;
   double side2_;
public:
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     Rect(double s1, double s2);
     const double get_area() const;
};
struct Square : Rect {
     Square(double s);
};
int main() {
   Rect r(3.1, 4.05);
   std::cout << r.get_area() << std::endl;
   return 0;
}

After analyzing main.cpp, the compiler generates the following intermediate code (many details 
have been omitted to simply express the idea behind compilation):

struct Rect {
     double side1_;
     double side2_;
};

void _Rect_init_(Rect* this, double s1, double s2);
double _Rect_get_area_(Rect* this);

struct Square {
     Rect _subobject_;
};

void _Square_init_(Square* this, double s);

int main() {
     Rect r;
     _Rect_init_(&r, 3.1, 4.05);
     printf("%d\n", _Rect_get_area(&r));
     // we've intentionally replace cout with printf for
     // brevity and
     // supposing the compiler generates a C intermediate
     // code
     return 0;
}

The compiler will remove the Square struct with its constructor function (we named it _Square_
init_) while optimizing the code because it was never used in the source code.
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At this point, the compiler operates with main.cpp only, so it sees that we called the _Rect_init_ 
and _Rect_get_area_ functions but did not provide their implementation in the same file. 
However, as we did provide their declarations beforehand, the compiler trusts us and believes that 
those functions are implemented in other compilation units. Based on this trust and the minimum 
information regarding the function signature (its return type, name, and the number and types of its 
parameters), the compiler generates an object file that contains the working code in main.cpp and 
somehow marks the functions that have no implementation but are trusted to be resolved later. This 
resolution is done by the linker.

In the following example, we have the simplified variant of the generated object file, which contains 
two sections – code and information. The code section has addresses for each instruction (the 
hexadecimal values):

code:
0x00 main
0x01 Rect r;

 0x02 _Rect_init_(&r, 3.1, 4.05);

0x03 printf("%d\n", _Rect_get_area(&r));
information:

 main: 0x00
_Rect_init_: ????
printf: ????
_Rect_get_area_: ????

Take a look at the information section. The compiler marks all the functions used in the code 
section that were not found in the same compilation unit with ????. These question marks will be 
replaced by the actual addresses of the functions found in other units by the linker. Finishing with 
main.cpp, the compiler starts to compile the rect.cpp file:

// file: rect.cpp
   struct Rect {
     // #include "rect.h" replaced with the contents
     // of the rect.h file in the preprocessing phase
     // code omitted for brevity
   };
   Rect::Rect(double s1, double s2)
     : side1_(s1), side2_(s2)
   {}
   const double Rect::get_area() const {
     return side1_ * side2_;
}
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Following the same logic here, the compilation of this unit produces the following output (don’t forget, 
we’re still providing abstract examples):

code:
 0x00 _Rect_init_
 0x01 side1_ = s1
 0x02 side2_ = s2
 0x03 return
 0x04 _Rect_get_area_
0x05 register = side1_
0x06 reg_multiply side2_
0x07 return
information:
_Rect_init_: 0x00
_Rect_get_area_: 0x04

This output has all the addresses of the functions in it, so there is no need to wait for some functions 
to be resolved later.

The task of the linker is to combine these object files into a single object file. Combining files results 
in relative address changes; for example, if the linker puts the rect.o file after main.o, the starting 
address of rect.o becomes 0x04 instead of the previous value of 0x00:

code:
 0x00 main
 0x01 Rect r;
 0x02 _Rect_init_(&r, 3.1, 4.05);
 0x03 printf("%d\n", _Rect_get_area(&r)); 0x04 _Rect_init_
 0x05 side1_ = s1
 0x06 side2_ = s2
 0x07 return
 0x08 _Rect_get_area_
 0x09 register = side1_
 0x0A reg_multiply side2_
 0x0B return
information (symbol table):
main: 0x00
 _Rect_init_: 0x04
printf: ????
_Rect_get_area_: 0x08
_Rect_init_: 0x04
_Rect_get_area_: 0x08

Correspondingly, the linker updates the symbol table addresses (the information: section in our 
example). As mentioned previously, each object file has a symbol table, which maps the string name 
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of the symbol to its relative location (address) in the file. The next step of linking is to resolve all the 
unresolved symbols in the object file.

Now that the linker has combined main.o and rect.o, it knows the relative location of unresolved 
symbols because they are now located in the same file. The printf symbol will be resolved the same 
way, except this time, it will link the object files with the standard library. Once all the object files 
have been combined (we omitted the linking of square.o for brevity), all the addresses have been 
updated, and all the symbols have been resolved, the linker outputs the one final object file that can 
be executed by the OS. As discussed earlier in this chapter, the OS uses a tool called the loader to load 
the contents of the executable file into memory.

Linking libraries

A library is similar to an executable file, with one major difference: it does not have a main() function, 
which means that it cannot be invoked as a regular program. Libraries are used to combine code that 
might be reused with more than one program. You already linked your programs with the standard 
library by including the <iostream> header, for example.

Libraries can be linked with the executable file either as static or dynamic libraries. When you link 
them as a static library, they become a part of the final executable file. A dynamically linked library 
should also be loaded into memory by the OS to provide your program with the ability to call its 
functions. Let’s suppose we want to find the square root of a function:

int main() {
   double result = sqrt(49.0);
}

The C++ standard library provides the sqrt() function, which returns the square root of its argument. 
If you compile the preceding example, it will produce an error insisting that the sqrt function has not 
been declared. We know that to use the standard library function, we should include the corresponding 
<cmath> header. But the header file does not contain the implementation of the function; it just 
declares the function (in the std namespace), which is then included in our source file:

#include <cmath>
int main() {
    double result = std::sqrt(49.0);
}

The compiler marks the address of the sqrt symbol as unknown, and the linker should resolve it in 
the linking stage. The linker will fail to resolve it if the source file is not linked with the standard library 
implementation (the object file containing the library functions). The final executable file generated 
by the linker will consist of both our program and the standard library if the linking was static. On 
the other hand, if the linking is dynamic, the linker marks the sqrt symbol to be found at runtime.
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Now, when we run the program, the loader also loads the library that was dynamically linked to our 
program. It loads the contents of the standard library into the memory as well and then resolves the 
actual location of the sqrt() function in memory. The same library that has already been loaded 
into memory can be used by other programs as well.

Low-level programming with C++
Initially, C++ was perceived as the successor of the C language; however, since then, it has evolved into 
something big, sometimes scary, and even untamable. With recent language updates, it now represents 
a complex beast that requires time and patience to tame. We will start this chapter by covering the basic 
constructs that almost every language supports, such as data types, conditional and loop statements, 
pointers, structs, and functions. We will look at those constructs from the perspective of a low-level 
systems programmer, curious about how even a simple instruction can be executed by the computer. 
A deep understanding of these basic constructs is mandatory to build a solid base for more advanced 
and abstract topics such as object-oriented programming (OOP).

Functions

Program execution starts with the main() function, which is the designated start of the program, as 
stated in the standard. A simple program outputting the Hello, World! message will look like this:

#include <iostream.h>
int main() {
    std::cout << "Hello, World!" << std::endl;
    return 0;
}

You may have encountered or used the arguments of the main() function in your passwords. It has 
two arguments, argc and argv, that allow strings to be passed from the environment. These are 
usually referred to as command-line arguments.

The names argc and argv are conventional and can be replaced with anything you want. The 
argc argument holds the number of command-line arguments passed to the main() function; 
the argv argument holds the necessary arguments (you can find the example code at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
01/2_argc_and_argv_usage.cpp).

For example, we can compile and run the preceding example with the following arguments:

$ my-program argument1 hello world --some-option

This will output the following to the screen:

The number of passed arguments is: 5

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/2_argc_and_argv_usage.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/2_argc_and_argv_usage.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/2_argc_and_argv_usage.cpp
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   Arguments are:
   argument1
   hello
   world
   --some-option

When you look at the number of arguments, you’ll notice that it is 5. The first argument is always the 
name of the program; that’s why we skipped it in this example by starting the loop from number 1.

Note
Rarely, you may see a widely supported but not standardized third argument, most commonly 
named envp. The type of envp is an array of char pointers and it holds the environment 
variables of the system.

The program can contain lots of functions, but the execution of the program always starts with the 
main() function, at least from the programmer’s perspective. Let’s try to compile the following code:

#include<iostream>
   void foo() {
   std::cout << "Risky foo" << std::endl;
}
// trying to call the foo() outside of the main() function
foo();
int main() {
     std::cout << "Calling main" << std::endl;
     return 0;
}

g++ raises an error on the foo(); call – that is, C++ requires a type specifier for 
all declarations. The call was parsed as a declaration rather than an instruction to execute. The 
way we tried to call a function before main() might seem silly for seasoned developers, so let’s try 
another way. What if we declare something that calls a function during its initialization? In the example 
at https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/
Chapter%2001/3_before_main.cpp, we defined a BeforeMain struct with a constructor 
printing a message, and then declared an object of the BeforeMain type in the global scope.

The example successfully compiles and the program outputs the following:

Constructing BeforeMain
Calling main()

What if we add a member function to BeforeMain and try to call it? See the following code to 
understand this:

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/3_before_main.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/3_before_main.cpp
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struct BeforeMain {
 // constructor code omitted for brevity
   void test() {
       std::cout << "test function" << std::endl;
   }
};

BeforeMain b;
b.test(); // compiler error

int main() {
     // code omitted for brevity
}

The call to test() won’t be successful. So, we cannot call a function before main() but we can 
declare variables – objects that would be initialized by default. So, there is something that performs 
initialization before main() is called. It turns out that the main() function is not the true starting 
point of a program. The actual starting function of the program prepares the environment – that 
is, it collects the arguments that were passed to the program and then calls the main() function. 
This is required because C++ supports global and static objects that need to be initialized before the 
program begins, which means before the main() function is called. In the Linux world, this function 
is referred to as __libc_start_main. The compiler augments the generated code with the call 
of __libc_start_main, which, in turn, may or may not call other initialization functions before 
the main() function gets called. Going abstract, just imagine that the preceding code will be altered 
to something similar to the following:

void __libc_start_main() {
    BeforeMain b;
    main();
}
__libc_start_main(); // call the entry point

Recursion

Another special property of main() is that it cannot be called recursively. From the perspective of the 
OS, the main() function is the entry point of the program, so calling it again would mean starting 
everything over; therefore, it is prohibited. However, calling a function recursive just because it calls 
itself is partially correct. For example, the print_number() function calls itself and never stops:

void print_number(int num) {
    std::cout << num << std::endl;
    print_number(num + 1); // recursive call
}
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Calling the print_number(1) function will output numbers 1, 2, 3, and so on. This is more like 
a function that calls itself infinitely rather than a correct recursive function. We should add a couple 
more properties to make the print_number() function a useful recursive one. First of all, the 
recursive function must have a base case, a scenario when a further function calls stop, which means 
the recursion stops propagating. We can make such a scenario for the print_number() function 
if, for example, we want to print numbers up to 100:

void print_number(int num) {
     if (num > 100) return; // base case
     std::cout << num << std::endl;
     print_number(num + 1); // recursive call
}

There is one more property for a function to be recursive: solving smaller problems that will eventually 
lead to the base case. In the preceding example, we already had this by solving a smaller problem 
for the function – that is, by printing one number. After printing one number, we move to the next 
small problem: printing the next number. Finally, we get to the base case and we are done. There isn’t 
any magic in a function calling itself; think of it as a function calling a different function with the 
same implementation. What’s interesting is how a recursive function affects the program’s execution 
overall. Let’s take a look at a simple example of calling a function from another function at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
01/5_calculate.cpp.

When a function is called, memory space is allocated for its arguments and local variables. The 
program starts with the main() function, which in this example simply calls the calculate() 
function by passing the 11 and 22 literal values. Control jumps to the calculate() function 
and the main() function is kind of on hold; it waits until the calculate() function returns 
to continue its execution. The calculate() function has two arguments, a and b; although we 
named sum(), max(), and calculate() differently, we could use the same names in all the 
functions. Memory space is allocated for these two arguments. Let’s suppose that an int takes 4 bytes 
of memory, so a minimum of 8 bytes are required for the calculate() function to be executed 
successfully. After allocating 8 bytes, 11 and 22 should be copied to the corresponding locations (see 
the following diagram for details):

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/5_calculate.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/5_calculate.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/5_calculate.cpp
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Figure 1.4: The calculate() function call

The calculate() function calls the sum() and max() functions and passes its argument values 
to them. Correspondingly, it waits for both functions to be executed sequentially to form the value to 
return to main(). The sum() and max() functions are not called simultaneously. First, sum() is 
called, which leads to the values of the a and b variables being copied from the locations that were 
allocated for the arguments of sum(), named n and m, which again take 8 bytes in total. Take a look 
at the following diagram to understand this better:

Figure 1.5: The calculate() function calls the sum() function

Their sum is calculated and returned. After the function is done and it returns a value, the memory 
space is freed. This means that the n and m variables are not accessible anymore and their locations 
can be reused.
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Important note
We aren’t considering temporary variables at this point. We will revisit this example later to 
show the hidden details of function execution, including temporary variables and how to avoid 
them as much as possible.

After sum() has returned a value, the max() function is called. It follows the same logic: memory is 
allocated to the x and y arguments, as well as to the res variable. We intentionally store the result of 
the ternary operator, (?:), in the res variable to make the max() function allocate more space for 
this example. So, 12 bytes are allocated to the max() function in total. At this point, the x main() 
function is still on hold and waits for calculate(), which, in turn, is on hold and waits for the 
max() function to complete (see the following diagram for details):

Figure 1.6: The max() function call after the sum() function is returned

When max() is done, the memory that’s allocated to it is freed and its return value is used by 
calculate() to form a value to return. Similarly, when calculate() returns, the memory is freed 
and the main() function’s local variable result will contain the value returned by calculate().

The main() function then finishes its work and the program exits – that is, the OS frees the memory 
allocated for the program and can reuse it later for other programs. The described process of allocating 
and freeing memory (deallocating it) for functions is done using a concept called a stack.

Note
A stack is a data structure adapter, which has rules to insert and access the data inside of it. 
In the context of function calls, the stack usually means a memory segment provided to the 
program that automatically manages itself while following the rules of the stack data structure 
adapter. We will discuss this in more detail later in this chapter.
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Going back to recursion, when the function calls itself, memory should be allocated to the newly 
called function’s arguments and local variables (if any). The function calls itself again, which means 
the stack will continue to grow (to provide space for the new functions). It doesn’t matter that we 
call the same function; from the stack’s perspective, each new call is a call to a completely different 
function, so it allocates space for it with a serious look on its face while whistling its favorite song. 
Take a look at the following diagram:

Figure 1.7: Illustration of a recursive function call inside the stack

The first call of the recursive function is on hold and waits for the second call of the same function, 
which, in turn, is on hold, and waits for the third call to finish and return a value, which, in turn, is 
on hold, and so on. If there is a bug in the function or the recursion base is difficult to reach, sooner 
or later, the stack will overgrow, which will lead to a program crash. This is known as stack overflow.

Though recursion provides more elegant solutions to a problem, try to avoid recursion in your programs 
and use the iterative approach (loops). In mission-critical system development guidelines such as the 
navigation system of a Mars rover, using recursion is completely prohibited.

Data and memory

When we refer to computer memory, we consider Random Access Memory (RAM) by default. 
Also, RAM is a general term for either SRAM or DRAM; we will mean DRAM by default unless 
stated otherwise. To clear things out, let’s take a look at the following diagram, which illustrates the 
memory hierarchy:
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Figure 1.8: Illustration of a memory hierarchy

When we compile a program, the compiler stores the final executable file in the hard drive. To run 
the executable file, its instructions are loaded into the RAM and are then executed by the CPU one 
by one. This leads us to the conclusion that any instruction required to be executed should be in the 
RAM. This is partially true. The environment that is responsible for running and monitoring programs 
plays the main role.

The programs we write are executed in a hosted environment, which is in the OS. The OS loads the 
contents of the program (its instructions and data – that is, the process) not directly into the RAM, but 
into the virtual memory, a mechanism that makes it possible both to handle processes conveniently 
and to share resources between processes. Whenever we refer to the memory that a process is loaded 
into, we mean the virtual memory, which, in turn, maps its contents to the RAM.

Let’s begin with an introduction to the memory structure and then investigate data types within 
the memory.

Virtual memory

Memory consists of lots of boxes, each of which can store a specified amount of data. We will refer 
to these boxes as memory cells, considering that each cell can store 1 byte representing 8 bits. Each 
memory cell is unique, even if they store the same value. This uniqueness is achieved by addressing 
the cells so that each cell has its unique address in memory. The first cell has the address 0, the second 
cell 1, and so on.

The following diagram illustrates an excerpt of the memory, where each cell has a unique address and 
ability to store 1 byte of data:
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Figure 1.9: Illustration of a memory cell

The preceding diagram can be used to abstractly represent both physical and virtual memories. The 
point of having an additional layer of abstraction is the ease of managing processes and providing 
more functionality than with physical memory. For example, OSs can execute programs greater than 
physical memory. Take a computer game as an example of a program that takes almost 2 GB of space 
and a computer with a physical memory of 512 MB. Virtual memory allows the OS to load the program 
portion by portion by unloading old parts from the physical memory and mapping new parts.

Virtual memory also better supports having more than one program in memory, thus supporting 
parallel (or pseudo-parallel) execution of multiple programs. This also provides efficient use of shared 
code and data, such as dynamic libraries. Whenever two different programs require the same library 
to work with, a single instance of the library could exist in memory and be used by both programs 
without them knowing about each other.
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Let’s take a look at the following diagram, which depicts three programs loaded into memory:

Figure 1.10: Illustration of three different programs that have been loaded into memory

There are three running programs in the preceding diagram; each of the programs takes up some space 
in virtual memory. My Program is fully contained in the physical memory. while the Calculator and 
Text Editor are partially mapped to it.

Addressing

As mentioned earlier, each memory cell has a unique address, which guarantees the uniqueness of 
each cell. An address is usually represented in a hexadecimal form because it’s shorter and it’s faster 
to convert into binary rather than decimal numbers. A program that is loaded into virtual memory 
operates and sees logical addresses. These addresses, also called virtual addresses, are fake and provided 
by the OS, which translates them into physical addresses when needed. To optimize the translation, 
the CPU provides a translation lookaside buffer, a part of its memory management unit (MMU). 
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The translation lookaside buffer caches recent translations of virtual addresses to physical addresses. 
So, efficient address translation is a software/hardware task. We will dive into the address’ structure 
and translation details in Chapter 5, Memory Management and Smart Pointers.

The length of the address defines the total size of memory that can be operated by the system. When 
you encounter statements such as a 32-bit system or a 64-bit system, this means the length of the 
address – that is, the address is 32 bits or 64 bits long. The longer the address, the bigger the memory. 
To make things clear, let’s compare an 8-bit long address with a 32-bit long one. As agreed earlier, 
each memory cell can store 1 byte of data and has a unique address. If the address length is 8 bits, the 
address of the first memory cell is all zeros – 0000 0000. The address of the next cell is greater by 
one – that is, it’s 0000 0001 – and so on.

The biggest value that can be represented by 8 bits is 1111 1111. So, how many memory cells can 
be represented with an address length of 8 bits? This question is worth answering in more detail. How 
many different values can be represented by 1 bit? Two! Why? Because 1 bit can represent either 1 or 
0. How many different values can be represented by 2 bits? Well, 00 is one value, 01 is another value, 
and then there’s 10, and, finally, 11. So, four different values in total can be represented by 2 bits.

Let’s make a table:

We can see a pattern here. Each position (each bit) in a number can have two values, so we can calculate 
the number of different values represented by N bits by finding 2N; therefore, the number of different 
values represented by 8 bits is 256. This means that an 8-bit system can address up to 256 memory 
cells. On the other hand, a 32-bit system can address 2^32 = 4 294 967 296 memory cells, each storing 
1 byte of data – that is, storing 4294967296 * 1 byte = 4 GB of data.

Data types

What’s the point of having data types at all? Why can’t we program in C++ using some var keyword 
to declare variables and forget about variables such as short, long, int, char, wchar, and so on? 
Well, C++ does support a similar construct, known as the auto keyword, which we used previously 
in this chapter, a so-called placeholder type specifier. It’s named a placeholder because it is, indeed, 
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a placeholder. We cannot (and we must not ever be able to) declare a variable and then change its 
type during runtime. The following code might be valid JavaScript code, but it is not valid C++ code:

var a = 12;
a = "Hello, World!";
a = 3.14;

Imagine the C++ compiler could compile this code. How many bytes of memory should be allocated 
for the a variable? When declaring var a = 12;, the compiler could deduce its type to int and 
specify 4 bytes of memory space, but when the variable changes its value to Hello, World!, the 
compiler has to reallocate the space or invent a new hidden variable named a1 of the std::string 
type. Then, the compiler tries to find every way to access the variable in the code that accesses it as 
a string and not as an integer or a double and replaces the variable with the hidden a1 variable. The 
compiler might just quit and start to ask itself the meaning of life.

We can declare something similar to the preceding code in C++ as follows:

auto a = 12;
auto b = "Hello, World!";
auto c = 3.14;

The difference between the previous two examples is that the second example declares three different 
variables of three different types. The previous non-C++ code declared just one variable and then 
assigned values of different types to it. You can’t change the type of a variable in C++, but the compiler 
allows you to use the auto placeholder and deduces the type of the variable by the value assigned to it.

It is crucial to understand that the type is deduced at compile time, while languages such as JavaScript 
allow you to deduce the type at runtime. The latter is possible because such programs are run in 
environments such as virtual machines, while the only environment that runs the C++ program is 
the OS. The C++ compiler must generate a valid executable file that could be copied into memory 
and run without a support system. This forces the compiler to know the actual size of the variable 
beforehand. Knowing the size is important to generate the final machine code because accessing a 
variable requires its address and size, and allocating memory space to a variable requires the number 
of bytes that it should take.

The C++ type system classifies types into two major categories:

•	 Fundamental types (int, double, char, void)

•	 Compound types (pointers, arrays, classes)

The language even supports special type traits, std::is_fundamental and std::is_compound, 
to find out the category of a type. Here is an example:

#include <iostream>
#include <type_traits>
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struct Point {
    float x;
    float y; };
int main() {

std::cout << std::is_fundamental_v<Point> << " "
<< std::is_fundamental_v<int> << " "

<< std::is_compound_v<Point> << " "

<< std::is_compound_v<int> << std::endl;
}

Most of the fundamental types are arithmetic types such as int or double; even the char type is 
arithmetic. It holds a number rather than a character, as shown here:

char ch = 65;
std::cout << ch; // prints A

A char variable holds 1 byte of data, which means it can represent 256 different values (because 1 
byte is 8 bits, and 8 bits can be used in 28  ways to represent a number). What if we use one of the bits 
as a sign bit, for example, allowing the type to support negative values as well? That leaves us with 7 
bits for representing the actual value. Following the same logic, it allows us to represent 2^7 different 
values – that is, 128 (including 0) different values of positive numbers and the same amount of negative 
values. Excluding 0 gives us a range of -127 to +127 for the signed char variable. This signed versus 
unsigned representation applies to almost all integral types.

So, whenever you encounter that, for example, the size of an int is 4 bytes, which is 32 bits, you should 
already know that it is possible to represent the numbers 0 to 232  in an unsigned representation, and 
the values -231 to +231  in a signed representation.

Pointers

C++ is a unique language in the way that it provides access to low-level details such as addresses of 
variables. We can take the address of any variable declared in the program using the & operator, as 
shown here:

int answer = 42;
std::cout << &answer;
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This code will output something similar to this:

0x7ffee1bd2adc

Notice the hexadecimal representation of the address. Although this value is just an integer, it is used 
to store it in a special variable called a pointer. A pointer is just a variable that can store address values 
and supports the * operator (dereferencing), allowing us to find the actual value stored at the address.

For example, to store the address of the variable answer in the preceding example, we can declare a 
pointer and assign the address to it:

int* ptr = &answer;

The variable answer is declared as int, which usually takes 4 bytes of memory space. We already 
agreed that each byte has a unique address. Can we conclude that the answer variable has four unique 
addresses? Well, yes and no. It does acquire four distinct but contiguous memory bytes, but when the 
address operator is used against the variable, it returns the address of its first byte. Let’s take a look at a 
portion of code that declares a couple of variables and then illustrate how they are placed in memory:

int ivar = 26;
char ch = 't';
double d = 3.14;

The size of a data type is implementation-defined, though the C++ standard states the minimum 
supported range of values for each type. Let’s suppose the implementation provides 4 bytes for int, 
8 bytes for double, and 1 byte for char. The memory layout for the preceding code should look 
like this:
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Figure 1.11: Variables in memory

Pay attention to ivar in the memory layout; it resides in four contiguous bytes.

Whenever we take the address of a variable, whether it resides in a single byte or more than 1 byte, 
we get the address of the first byte of the variable. If the size doesn’t affect the logic behind the address 
operator, then why do we have to declare the type of the pointer? To store the address of ivar in the 
preceding example, we should declare the pointer as int*:

int* ptr = &ivar;
char* pch = &ch;
double* pd = &d;
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The preceding code is depicted in the following diagram:

Figure 1.12: Illustration of a piece of memory that holds pointers that point to other variables

It turns out that the type of the pointer is crucial in accessing the variable using that very pointer. C++ 
provides the dereferencing operator for this (the * symbol before the pointer name):

std::cout << *ptr; // prints 26

It works like this:

1.	 It reads the contents of the pointer.

2.	 It finds the address of the memory cell that is equal to the address in the pointer.

3.	 It returns the value that is stored in that memory cell.
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The question is, what if the pointer points to the data that resides in more than one memory cell? That’s 
where the pointer’s type comes in. When dereferencing the pointer, its type is used to determine how 
many bytes it should read and return, starting from the memory cell that it points to.

Now that we know that a pointer stores the address of the first byte of the variable, we can read any 
byte of the variable by moving the pointer forward. We should remember that the address is just a 
number, so adding or subtracting another number from it will produce another address. What if we 
point to an integer variable with a char pointer?

int ivar = 26;
char* p = (char*)&ivar;

When we try to dereference the p pointer, it will return only the first byte of ivar.

Now, if we want to move to the next byte of ivar, we can add 1 to the char pointer:

// the first byte
*p;
// the second byte
*(p + 1);
// the third byte
*(p + 2);
// dangerous stuff, the previous byte
*(p - 1);

Take a look at the following diagram; it clearly shows how we access bytes of the ivar integer:

Figure 1.13 Illustration of accessing the ivar integer’s bytes
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If you want to read the first or the last two bytes, you can use a short pointer:

short* sh = (short*)&ivar;
// print the value in the first two bytes of ivar
std::cout << *sh;
// print the value in the last two bytes of ivar
std::cout << *(sh + 1);

Note
You should be careful with pointer arithmetics since adding or subtracting a number will 
move the pointer by the defined size of the data type. Adding 1 to an int pointer will add 
sizeof(int) * 1 to the actual address.

What about the size of a pointer? As mentioned previously, a pointer is just a variable that is special 
in the way that it can store a memory address and provide a dereferencing operator that returns the 
data located at that address. So, if the pointer is just a variable, it should reside in memory as well. We 
might consider that the size of a char pointer is less than the size of an int pointer just because the 
size of char is less than the size of int.

Here’s the catch: the data that is stored in the pointer has nothing to do with the type of data the 
pointer points to. Both the char and int pointers store the address of the variable, so to define the 
size of the pointer, we should consider the size of the address. The size of the address is defined by 
the system we work in. For example, in a 32-bit system, the address size is 32 bits long, and in a 64-bit 
system, the address size is 64 bits long. This leads us to a logical conclusion: the size of the pointer is 
the same regardless of the type of data it points to:

std::cout << sizeof(ptr) << " = "
<< sizeof(pch) << " = " << sizeof(pd);

It will output 4 = 4 = 4 in a 32-bit system and 8 = 8 = 8 in a 64-bit system.

Stack and the heap

The memory consists of segments and the program segments are distributed through these memory 
segments during loading. These are artificially divided ranges of memory addresses that make it 
easier to manage the program using the OS. A binary file is also divided into segments, such as code 
and data. We previously mentioned code and data as sections. Sections are the divisions of a binary 
file that are needed for the linker, which uses the sections that are meant for the linker to work and 
combines the sections that are meant for the loader into segments.

When we discuss a binary file from the runtime’s perspective, we mean segments. The data segment 
contains all the data required and used by the program, and the code segment contains the actual 
instructions that process the very same data. However, when we mention data, we don’t mean every 
single piece of data used in the program. Let’s take a look at this example:
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#include <iostream>
int max(int a, int b) { return a > b ? a : b; }
int main() {
     std::cout << "The maximum of 11 and 22 is: " <<
       max(11, 22);
}

The code segment of the preceding program consists of the instructions of the main() and max() 
functions, where main() prints the message using the cout object’s operator<< and then calls 
the max() function. What data resides in the data segment? Does it contain the a and b arguments 
of the max() function? As it turns out, the only data that is contained in the data segment is the The 
maximum of 11 and 22 is: string, along with other static, global, or constant data. We didn’t 
declare any global or static variables, so the only data is the mentioned message.

The interesting thing comes with the 11 and 22 values. These are literal values, which means they 
have no address; therefore, they are not located anywhere in memory. If they are not located anywhere, 
the only logical explanation of how they are located within the program is that they reside in the code 
segment. They are a part of the max() call instruction.

What about the a and b arguments of the max() function? This is where the segment in virtual 
memory that is responsible for storing variables that have automatic storage duration comes in – the 
stack. As mentioned previously, the stack automatically handles allocating/deallocating memory space 
for local variables and function arguments. The a and b arguments will be located in the stack when 
the max() function is called. In general, if an object is said to have an automatic storage duration, 
the memory space will be allocated at the beginning of the enclosing block. So, when the function is 
called, its arguments are pushed into the stack:

int max(int a, int b) {
// allocate space for the "a" argument
 // allocate space for the "b" argument return a > b ? a :
 // b;
 // deallocate the space for the "a" argument // deallocate
 // the space for the "b" argument
}

When the function is done, the automatically allocated space will be freed at the end of the enclosing 
code block.

It’s said that the arguments (or local variables) are popped out of the stack. Push and pop are terms 
that are used within the context of the stack. You insert data into the stack by pushing it, and you 
retrieve (and remove) data out of the stack by popping it. You might have encountered the term last 
in, first out (LIFO). This perfectly describes the push and pop operations of the stack.

When the program is run, the OS provides the fixed size of the stack. The stack can grow in size and 
if it grows to the extent that no more space is left, it crashes because of the stack overflow.
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We described the stack as a manager of variables with automatic storage duration. The word automatic 
suggests that programmers shouldn’t care about the actual memory allocation and deallocation. 
Automatic storage duration can only be achieved if the size of the data or a collection of the data is 
known beforehand. This way, the compiler is aware of the number and type of function arguments and 
local variables. At this point, it seems more than fine, but programs tend to work with dynamic data 
– data of unknown size. We will study dynamic memory management in detail in Chapter 5, Memory 
Management and Smart Pointers; for now, let’s look at a simplified diagram of memory segments and 
find out what the heap is used for:

Figure 1.14: Simplified diagram of memory segments

The program uses the heap segment to request more memory space than has been required before. 
This is done at runtime, which means the memory is allocated dynamically during the program 
execution. The program requests the OS for new memory space whenever required. The OS doesn’t 
know whether the memory is required for an integer, for a user-defined Point, or even for an array 
of user-defined Point. The program requests the memory by passing the actual size of bytes that it 
requires. For example, to request a space for an object of the Point type, the malloc() function 
can be used, as follows:

#include <cstdlib>
struct Point {
     float x;
     float y;
};
int main() {
     std::malloc(sizeof(Point));
}
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The malloc() function allocates a contiguous memory space of sizeof(Point) bytes – let’s 
say 8 bytes. It then returns the address of the first byte of that memory as it is the only way to provide 
access to space. And the thing is, malloc() doesn’t know whether we requested memory space for 
a Point object or int, and it simply returns void*. void* stores the address of the first byte of 
allocated memory, but it definitely cannot be used to fetch the actual data by dereferencing the pointer, 
simply because void does not define the size of the data. Take a look at the following diagram; it 
shows that malloc allocates memory on the heap:

Figure 1.15: Memory allocation on the heap

To use the memory space, we need to cast the void pointer to the desired type:

Point* p = static_cast<Point*>(std::malloc(sizeof(Point)));

C++ solves this headache with the new operator, which automatically fetches the size of the memory 
space to be allocated and converts the result into the desired type:

Point* p = new Point;

Control flow

It’s hard to imagine a program that doesn’t contain a conditional statement. It’s almost a habit to check 
the input arguments of functions to secure their safe execution. For example, the divide() function 
takes two arguments, divides one by the other, and returns the result. It’s pretty clear that we need to 
make sure that the divisor is not zero:

int divide(int a, int b) {
    if (b == 0) {
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        throw std::invalid_argument("The divisor is zero");
    }
    return a / b;
}

Conditionals are at the core of programming languages; after all, a program is a collection of actions 
and decisions. For example, the code at https://github.com/PacktPublishing/Expert-
C-2nd-edition/tree/main/Chapter%2001/6_max.cpp uses conditional statements to 
find the maximum value out of two input arguments.

The preceding example is oversimplified on purpose to express the usage of the if-else statement 
as-is. However, what interests us the most is the implementation of such a conditional statement. 
What does the compiler generate when it encounters an if statement? The CPU executes instructions 
sequentially one by one, and instructions are simple commands that do exactly one thing. We can 
use complex expressions in a single line in a high-level programming language such as C++, while 
the assembly instructions are simple commands that can do only one simple operation in one cycle: 
move, add, subtract, and so on.

The CPU fetches the instruction from the code memory segment, decodes it to find out what it should 
do (move data, add numbers, or subtract them), and executes the command.

To run at its fastest, the CPU stores the operands and the result of the execution in storage units called 
registers. You can think of registers as temporary variables of the CPU. Registers are physical memory 
units that are located within the CPU so that access is much faster compared to the RAM. To access 
the registers from an assembly language program, we use their specified names, such as rax, rbx, 
rdx, and so on. The CPU commands operate on registers rather than the RAM cells; that’s why the 
CPU has to copy the contents of the variable from the memory to registers, execute operations and 
store the results in a register, and then copy the value of the register back to the memory cell.

For example, the following C++ expression takes just a single line of code:

a = b + 2 * c - 1;

This would look similar to the following assembly representation (comments are added after semicolons):

mov rax, b; copy the contents of "b"
 ; located in the memory to the register rax
mov rbx, c
; the same for the "c" to be able to calculate 2 * c
mul rbx, 2
; multiply the value of the rbx register with
; immediate value 2 (2 * c)
add rax, rbx; add rax (b) with rbx (2*c) and store back in the rax sub 
rax, 1; subtract 1 from rax
mov a, rax
; copy the contents of rax to the "a" located in the memory

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/6_max.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/6_max.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/6_max.cpp
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A conditional statement suggests that a portion of the code should be skipped. For example, calling 
max(11, 22) means the if block will be omitted. To express this in the assembly language, the 
idea of jumps is used. We compare two values and, based on the result, we jump to a specified portion 
of the code. We label the portion to make it possible to find the set of instructions. For example, to 
skip adding 42 to the rbx register, we can jump to the portion labeled UNANSWERED using the 
unconditional jump instruction, jpm, as shown here:

mov rax, 2
 mov rbx, 0
 jmp UNANSWERED
 add rbx, 42; will be skipped UNANSWERED:
     add rax, 1
     ; ...

The jmp instruction performs an unconditional jump; this means it starts executing the first instruction 
at a specified label without any condition check. The good news is that the CPU provides conditional 
jumps as well. The body of the max() function will translate into the following assembly code 
(simplified), where the jg and jle commands are interpreted as jump if greater than and 
jump if less than or equal, respectively (based on the results of the comparison using 
the cmp instruction):

mov rax, max; copy the "max" into the rax register
 mov rbx, a
 mov rdx, b
 cmp rbx, rdx; compare the values of rbx and rdx (a and b)
jg GREATER; jump if rbx is greater than rdx (a > b)
jl LESSOREQUAL; jump if rbx is lesser than GREATER:
mov rax, rbx; max = a LESSOREQUAL:
mov rax, rdx; max = b

In the preceding code, the GREATER and LESSOREQUAL labels represent the if and else clauses 
of the max() function we implemented earlier.

Replacing conditionals with function pointers

Previously, we looked at memory segments, and one of the most important segments is the code segment 
(also called a text segment). This segment contains the program image, which is the instructions for 
the program that should be executed. Instructions are usually grouped into functions, which provide 
us with a unique name that allows us to call them from other functions. Functions reside in the code 
segment of the executable file.

A function has its own address. We can declare a pointer that takes the address of the function and 
then use it later to call that function:

int get_answer() { return 42; }
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int (*fp)() = &get_answer;
// int (*fp)() = get_answer; same as &get_answer

The function pointer can be called the same way as the original function:

get_answer(); // returns 42
fp(); // returns 42

Let’s suppose we are writing a program that takes two numbers and a character from the input and 
executes an arithmetic operation on the numbers. The operation is specified by the character, whether it’s 
+, -, *, or /. We implement four functions, add(), subtract(), multiply(), and divide(), 
and call one of them based on the value of the character’s input.

Instead of checking the value of the character in a bunch of if statements or a switch statement, 
we will map the type of the operation to the specified function using a hash table (you can find the 
code at https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/
main/Chapter%2001/7_calculating_with_hash_table.cpp).

As you can see, std::unordered_map maps char to a function pointer defined as (*)(int, 
int). That is, it can point to any function that takes two integers and returns an integer.

Details of OOP

C++ supports OOP, a paradigm that is built upon dissecting entities into objects that exist in a web 
of close intercommunication. Imagine a simple scenario in the real world where you pick a remote 
to change the TV channel. At least three different objects take part in this action: the remote, the 
TV, and, most importantly, you. To express these real-world objects and their relationship using a 
programming language, we aren’t forced to use classes, class inheritance, abstract classes, interfaces, 
virtual functions, and so on. These features and concepts make the process of designing and coding 
a lot easier as they allow us to express and share ideas elegantly, but they are not mandatory. As the 
creator of C++, Bjarne Stroustrup, says, “Not every program should be object-oriented.” To understand 
the high-level concepts and features of the OOP paradigm, we will try to look behind the scenes. 
Throughout this book, we will dive into the design of object-oriented programs. Understanding the 
essence of objects and their relationship, and then using them to design object-oriented programs, 
is one of the goals of this book.

Most of the time, we operate with a collection of data grouped under a certain name, thus making an 
abstraction. Variables such as is_military, speed, and seats don’t make much sense if they’re 
perceived separately. Grouping them under the name Spaceship changes the way we perceive 
the data stored in the variables. We now refer to the many variables packed as a single object. To do 
so, we use abstraction; that is, we collect the individual properties of a real-world object from the 
perspective of the observer. An abstraction is a key tool in the programmer’s toolchain as it allows 
them to deal with complexity. The C language introduced struct as a way to aggregate data, as 
shown in the following code:

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/7_calculating_with_hash_table.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/7_calculating_with_hash_table.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/7_calculating_with_hash_table.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/7_calculating_with_hash_table.cpp
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struct Spaceship {
bool is_military;
int speed;
int seats;
};

Grouping data is somewhat necessary for OOP. Each group of data is referred to as an object.

C++ does its best to support compatibility with the C language. While C structs are just tools that 
allow us to aggregate data, C++ makes them equal to classes, allowing them to have constructors, 
virtual functions, inherit other structs, and so on. The only difference between struct and class 
is the default visibility modifier: public for structs and private for classes. There is usually no 
difference in using structs over classes or vice versa. OOP requires more than just data aggregation. 
To fully understand OOP, let’s find out how we would incorporate the OOP paradigm if we have only 
simple structs providing data aggregation and nothing more.

The central entity of an e-commerce marketplace such as Amazon or Alibaba is Product, which 
we represent in the following way:

struct Product {
     std::string name;
     double price;
     int rating;
     bool available;
};

We will add more members to Product if necessary. The memory layout of an object of the Product 
type can be depicted like this:

Figure 1.16: The memory layout of a Product object
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Declaring a Product object takes sizeof(Product) space in memory while declaring a pointer 
or a reference to the object takes the space required to store the address (usually 4 or 8 bytes). See 
the following code block:

Product book;
Product tshirt;
Product* ptr = &book;
Product& ref = tshirt;

We can depict the preceding code as follows:

Figure 1.17: Illustration of the Product pointer and the Product reference in memory

Let’s start with the space the Product object takes in memory. We can calculate the size of the 
Product object by summing the sizes of its member variables. The size of a boolean variable is 
1 byte. The exact size of double or int is not specified in the C++ standard. In 64-bit machines, a 
double variable usually takes 8 bytes and an int variable takes 4 bytes.

The implementation of std::string is not specified in the standard, so its size depends on the 
library implementation. string stores a pointer to a character array, but it might also store the 
number of allocated characters to efficiently return it when size() is called. Some implementations 
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of std::string take 8, 24, or 32 bytes of memory, but we will stick to 24 bytes in our example. By 
summing it up, the size of Product will be as follows:

24 (std::string) + 8 (double) + 4 (int) + 1 (bool) = 37 bytes.

Printing the size of Product outputs a different value:

std::cout << sizeof(Product);

It outputs 40 instead of the calculated 37 bytes. The reason behind the redundant bytes is the padding 
of the struct, a technique practiced by the compiler to optimize access to individual members of the 
object. The central processing unit (CPU) reads the memory in fixed-size words. The size of the 
word is defined by the CPU (usually, it’s 32 or 64 bits long). The CPU can access the data at once if it’s 
starting from a word-aligned address. For example, the boolean data member of Product requires 
1 byte of memory and can be placed right after the rating member. As it turns out, the compiler aligns 
the data for faster access. Let’s suppose the word size is 4 bytes. This means that the CPU will access a 
variable without redundant steps if the variable starts from an address that’s divisible by 4. The compiler 
augments the struct earlier with additional bytes to align the members to word-boundary addresses.

High-level details of objects

We deal with objects as entities representing the result of abstraction. We have already mentioned the 
role of the observer – that is, the programmer who defines the object based on the problem domain. 
The way the programmer defines this represents the process of abstraction. Let’s take an example 
of an eCommerce marketplace and its products. Two different teams of programmers might have 
different views of the same product. The team that implements the website cares about the properties 
of the object that are essential to website visitors: buyers. The properties that we showed earlier in 
the Product struct are mostly meant for website visitors, such as the selling price, the rating of the 
product, and so on. Programmers that implement the website touch the problem domain and verify 
the properties that are essential to defining a Product object.

The team that implements the online tools that help manage the products in the warehouse cares 
about the properties of the object that are essential in terms of product placement, quality control, 
and shipment. This team shouldn’t care about the rating of the product or even its price. This team 
mostly cares about the weight, dimensions, and conditions of the product. The following illustration 
shows the properties of interest:
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Figure 1.18: The properties of interest for website visitors and warehouse managers

The first thing that programmers should do when starting the project is to analyze the problem 
and gather the requirements. In other words, they should get familiar with the problem domain and 
define the project requirements. The process of analyzing leads to defining objects and their types, 
such as the Product we discussed earlier. To get proper results from analyzing, we should think in 
objects, and, by thinking in objects, we mean considering the three main properties of objects: state, 
behavior, and identity.

Each object has a state that may or may not differ from the state of other objects. We’ve already 
introduced the Product struct, which represents an abstraction of a physical (or digital) product. 
All the members of a Product object collectively represent the state of the object. For example, 
Product contains members such as available, which is a Boolean; it equals true if the product 
is in stock. The values of the member variables define the state of the object. If you assign new values 
to the object member, its state will change:

Product cpp_book; // declaring the object
...
 // changing the state of the object cpp_book
cpp_book.available = true;
cpp_book.rating = 5;

The state of the object is the combination of all of its properties and values.

Identity is what differentiates one object from another. Even if we try to declare two physically 
indistinguishable objects, they will still have different names for their variables – that is, different identities:

Product book1;
book1.rating = 4;
book1.name = "Book";
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Product book2;
book2.rating = 4;
book2.name = "Book";

The objects in the preceding example have the same state, but they differ by the names we refer to 
them by – that is, book1 and book2. Let’s say we could somehow create objects with the same name, 
as shown in the following code:

Product prod;
Product prod; // won't compile, but still "what if?"

If this was the case, they would still have different addresses in memory:

Figure 1.19: Illustration of a piece of memory that would hold 

variables with the same name if it was possible

In the previous examples, we assigned 5 and then 4 to the rating member variable. We can easily 
make things unexpectedly wrong by assigning invalid values to the object, like so:

cpp_book.rating = -12;

-12 is invalid in terms of the rating of a product and will confuse users if it’s allowed to. We can 
control the behavior of the changes made to the object by providing setter functions:

void set_rating(Product* p, int r) {
     if (r >= 1 && r <= 5) {
       p->rating = r;
     }
     // otherwise ignore
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   }
...
 set_rating(&cpp_book, -12); // won't change the state

An object acts and reacts to requests from other objects. The requests are performed via function 
calls, which otherwise are called messages: an object passes a message to another. In the preceding 
example, the object that passed the corresponding set_rating message to the cpp_book object 
represents the object that we call the set_rating() function in. In this case, we suppose that we 
call the function from main(), which doesn’t represent any object at all. We could say it’s the global 
object, the one that operates the main() function, though there is not an entity like that in C++.

We distinguish the objects conceptually rather than physically. That’s the main point of thinking in 
terms of objects. The physical implementation of some concepts of OOP is not standardized, so we 
can name the Product struct as a class and claim that cpp_book is an instance of Product and 
that it has a member function called set_rating(). The C++ implementation almost does the 
same: it provides syntactically convenient structures (classes, visibility modifiers, inheritance, and so 
on) and translates them into simple structs with global functions such as set_rating() in the 
preceding example. Now, let’s dive into the details of the C++ object model.

Working with classes

Classes make things a lot easier when dealing with objects. They do the simplest necessary thing 
in OOP: they combine data with functions for manipulating data. Let’s rewrite the example of 
the Product struct using a class and its powerful features (you can find the code at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
01/8_product.h).

The class declaration seems more organized, even though it exposes more functions than we use to 
define a similar struct. Here’s how we should illustrate the class:

Figure 1.20: UML diagram of a Product class

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/8_product.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/8_product.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/8_product.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/8_product.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/8_product.h
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The preceding figure is somewhat special. As you can see, it has organized sections, signs before the 
names of functions, and so on. This type of diagram is called a unified modeling language (UML) 
class diagram. UML is a way to standardize the process of illustrating classes and their relationship. 
The first section is the name of the class (in bold), next comes the section for member variables, and 
then the section for member functions. The + (plus) sign in front of a function’s name means that the 
function is public. Member variables are usually private, but, if you need to emphasize this, you can 
use the - (minus) sign.

Initialization, destruction, copying, and moving

As shown previously, creating an object is a two-step process: memory allocation and initialization. 
Memory allocation is a result of an object declaration. C++ doesn’t care about the initialization 
of variables; it allocates the memory (whether it is automatic or manual) and it’s done. The actual 
initialization should be done by the programmer, which is why we have a constructor in the first place.

The same logic follows for the destructor. If we skip the declarations of the default constructor or 
destructor, the compiler should generate them implicitly; it will also remove them if they are empty 
(to eliminate redundant calls to empty functions). The default constructor will not be generated by 
the compiler if any constructor with parameters is declared, including the copy constructor. We can 
force the compiler to implicitly generate the default constructor:

class Product {
public:
     Product() = default;
// ...
};

We also can force it not to generate the compiler by using the delete specifier, as shown here:

class Product {
public:
     Product() = delete;
// ...
};

This will prohibit default-initialized object declarations – that is, Product p; won’t compile.

Object initialization happens when the object is created. Destruction usually happens when the object 
is no longer accessible. The latter may be tricky when the object is allocated on the heap. Take a look 
at the following code; it declares four Product objects in different scopes and segments of memory:

static Product global_prod; // #1
Product* foo() {
 Product* heap_prod = new Product(); // #4 heap_prod->name
                                     // = "Sample";
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 return heap_prod;
}
int main() {
 Product stack_prod; // #2 if (true) {
Product tmp; // #3
       tmp.rating = 3;
     }
     stack_prod.price = 4.2;
foo();
}

global_prod has a static storage duration and is placed in the global/static section of the program; 
it is initialized before main() is called. When main() starts, stack_prod is allocated on the stack 
and will be destroyed when main() ends (the closing curly brace of the function is considered as 
its end). Though the conditional expression looks weird and too artificial, it’s a good way to express 
the block scope.

The tmp object will also be allocated on the stack, but its storage duration is limited to the scope 
it has been declared in: it will be automatically destroyed when the execution leaves the if block. 
That’s why variables on the stack have automatic storage duration. Finally, when the foo() function 
is called, it declares the heap_prod pointer, which points to the address of the Product object 
allocated on the heap.

The preceding code contains a memory leak because the heap_prod pointer (which itself has an 
automatic storage duration) will be destroyed when the execution reaches the end of foo(), while 
the object allocated on the heap won’t be affected. Don’t mix the pointer and the actual object it points 
to: the pointer just contains the address of the object, but it doesn’t represent the object.

When the function ends, the memory for its arguments and local variables, which is allocated on the 
stack, will be freed, but global_prod will be destroyed when the program ends – that is, after the 
main() function finishes. The destructor will be called when the object is about to be destroyed.

There are two kinds of copying: deep copying and shallow copying objects. The language allows us 
to manage copy-initialization and assigning objects with the copy constructor and the assignment 
operator. This is a necessary feature for programmers because we can control the semantics of copying. 
Take a look at the following example:

Product p1;
Product p2;
p2.set_price(4.2);
p1 = p2; // p1 now has the same price Product p3 = p2;
// p3 has the same price

The p1 = p2; line is a call to the assignment operator, while the last line is a call to the copy constructor. 
The equals sign shouldn’t confuse you regarding whether it’s an assignment or a copy constructor call. 
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Each time you see a declaration followed by an assignment, consider it a copy construction. The same 
applies to the new initializer syntax (Product p3{p2};).

The compiler will generate the following code:

Product p1;
 Product p2;
Product_set_price(p2, 4.2);
operator=(p1, p2);
 Product p3;
Product_copy_constructor(p3, p2);

Temporary objects are everywhere in code. Most of the time, they are required to make the code work 
as expected. For example, when we add two objects together, a temporary object is created to hold 
the return value of operator+:

Warehouse small;
 Warehouse mid;
 // ... some data inserted into the small and mid objects
Warehouse large{small + mid}; // operator+(small, mid)

Let’s take a look at the implementation of the operator+() global for Warehouse objects:

// considering declared as friend in the Warehouse class Warehouse 
operator+(const Warehouse& a, const Warehouse& b) {
     Warehouse sum; // temporary
     sum.size_ = a.size_ + b.size_;
     sum.capacity_ = a.capacity_ + b.capacity_;
     sum.products_ = new Product[sum.capacity_];
     for (int ix = 0; ix < a.size_; ++ix) {
       sum.products_[ix] = a.products_[ix];
     }
     for (int ix = 0; ix < b.size_; ++ix) {
       sum.products_[a.size_ + ix] = b.products_[ix];
     }
     return sum;
}

The preceding implementation declares a temporary object and returns it after filling it with necessary 
data. The call in the previous example could be translated into the following:

Warehouse small;
 Warehouse mid;
 // ... some data inserted into the small and mid objects
Warehouse tmp{operator+(small, mid)};
 Warehouse large;
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 Warehouse_copy_constructor(large, tmp);
__destroy_temporary(tmp);

Move semantics, which was introduced in C++11, allow us to skip the temporary creation by moving 
the return value into the Warehouse object. To do so, we should declare a move constructor for 
Warehouse, which can distinguish between temporaries and treat them efficiently:

class Warehouse {
public:
Warehouse(); // default constructor
Warehouse(const Warehouse&); // copy constructor 
Warehouse(Warehouse&&); // move constructor
 // code omitted for brevity
};

Class relationships

Object intercommunication is at the heart of object-oriented systems. The relationship is the logical 
link between objects. The way we can distinguish or set up a proper relationship between classes of 
objects defines both the performance and quality of the system design overall. Consider the Product 
and Warehouse classes; they are in a relationship called aggregation because Warehouse contains 
products – that is, Warehouse aggregates Product:

Figure 1.21: A UML diagram that depicts aggregation between Warehouse and Product

There are several kinds of relationships in terms of pure OOP, such as association, aggregation, 
composition, instantiation, generalization, and others.

Aggregation and composition

We encountered aggregation in the example of the Warehouse class. The Warehouse class stores 
an array of products. In more general terms, it can be called an association, but to strongly emphasize 
the exact containment, we use the term aggregation or composition. In the case of aggregation, the 
class that contains an instance or instances of other classes could be instantiated without the aggregate. 
This means that we can create and use a Warehouse object without necessarily creating Product 
objects contained in Warehouse. Another example of aggregation is Car and Person. A Car object 
can contain a Person object (as a driver or passenger) since they are associated with each other, but 
the containment is not strong. We can create a Car object without a Driver object in it (you can 
find the code at https://github.com/PacktPublishing/Expert-C-2nd-edition/
tree/main/Chapter%2001/9_car_person_aggregation.h).

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/9_car_person_aggregation.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter01/9_car_person_aggregation.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/9_car_person_aggregation.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2001/9_car_person_aggregation.h
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Strong containment is expressed by composition. For the Car example, an object of the Engine 
class is required to make a complete Car object. In this physical representation, the Engine member 
is automatically created when a Car object is created.

The following is the UML representation of aggregation and composition:

Figure 1.22: A UML diagram that demonstrates examples of aggregation and composition

When designing classes, we have to decide on their relationship. The best way to define the composition 
between the two classes is the has-a relationship test. A Car object has-a Engine member because a 
car has an engine. Any time you can’t decide whether the relationship should be expressed in terms of 
composition, ask the has-a question. Aggregation and composition are somewhat similar; they just 
describe the strength of the connection. For aggregation, the proper question would be can have a; 
for example, a Car object can have a Driver object (of the Person type); that is, the containment 
is weak.

Inheritance

Inheritance is a programming concept that allows us to reuse classes. Programming languages provide 
different implementations of inheritance, but the general rule always stands: the class relationship 
should answer the is-a question. For example, a Car object is-a Vehicle class, which allows us to 
inherit Car from Vehicle:

class Vehicle {
   public:
     void move();
   };
class Car : public Vehicle { public: Car();
// ...
};

Car now has the move() member function derived from Vehicle. Inheritance itself represents 
a generalization/specialization relationship, where the parent class (Vehicle) is the generalization 
and the child class (Car) is the specialization.

You should only consider using inheritance if it is necessary. As we mentioned earlier, classes should 
satisfy the is-a relationship, and sometimes, this is a bit tricky.
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Summary
In this chapter, we touched on a few of the many new features of C++20 and are now ready to dive 
deeper into the language. We discussed the process of building a C++ application and its compilation 
phases. This includes analyzing the code to detect syntactical and grammatical errors, generating 
intermediate code to make optimizations, and, finally, generating the object file that will be linked 
with other generated object files to form the final executable file.

In the next chapter, we will learn more about OOP, including the inner workings of the language 
object model. We will dive into the details of virtual functions and learn how to use polymorphism.



2
Beyond Object-Oriented 

Programming

The complexity of a software project affects how difficult it is to develop, implement, and maintain the 
project. The procedural approach, or procedural programming paradigm, might be used to create a 
straightforward calculator, but a bank account management system would be too difficult to develop 
in this way.

The object-oriented programming (OOP) paradigm, which is supported by C++, is based on breaking 
down entities into objects that coexist in a web of close intercommunication. Imagine a simple situation 
where you use the remote to switch the TV station in the real world. The remote control, the TV, 
and, most importantly, you, are all involved in this activity. To express real-world objects and their 
relationship using a programming language, we aren’t forced to use classes, class inheritance, abstract 
classes, interfaces, virtual functions, and so on. While not necessary, the aforementioned capabilities 
and concepts make the process of designing and coding much simpler by enabling us to communicate 
and share ideas elegantly. “Not every program should be object-oriented,” as C++’s creator, Bjarne 
Stroustrup, puts it. To understand high-level concepts and features of the OOP paradigm, we will try 
to look behind the scenes. We shall go deeply into the design of OOP throughout this book. One of 
the objectives of this book is to comprehend the fundamental nature of objects and their relationships, 
before applying them to the creation of object-oriented applications.

In this chapter, we’ll study in-depth information about the following subjects:

•	 An introduction to OOP and the C++ object model

•	 Under the hood of inheritance and polymorphism

•	 Classical design patterns

•	 Design principles

•	 More UML in project design
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Technical requirements
The g++ compiler with the -std=c++20 option is used to compile the examples throughout this chapter.

You can find the source files for this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter02.

An introduction to OOP and the C++ object model
When writing a book about C++, you just have to talk about OOP because a) C++ is an object-oriented 
language, and b) OOP is at the heart of C++, which is also known by its original name – “C with 
classes.” OOP is one of the many paradigms that exist in the programming world. Its main purpose 
is to make the life of a programmer easier by allowing them to represent everything that exists in the 
real world with the help of objects.

Understanding objects

The majority of the time, we work with a set of data grouped together with a name, thus creating an 
abstraction. When viewed separately, variables such as is_military, speed, and seats don’t 
make much sense. We see the information stored in the variables differently when we group them 
together under the term spaceship. The multiple variables that are packed together are now 
referred to as one object. In order to accomplish this, we employ abstraction, which entails collecting 
the individual properties of a real-world object from the perspective of the observer. Abstraction is 
a key tool in the programmer’s toolchain, as it allows them to deal with complexity. The C language 
introduced struct as a way to aggregate data, as shown in the following code:

struct spaceship {
bool is_military;
int speed;
int seats;
};

Grouping data is somewhat necessary for OOP. Each group of data is referred to as an object’s blueprint.

Low-level details of objects

C++ does its best to support compatibility with the C language. While C structs are only a mechanism 
to aggregate data, C++ elevates them to the status of classes by enabling them to have constructors, 
virtual functions, the ability to inherit from other structs, and so on. The only difference between a 
struct and a class is the default visibility modifier – public for structs and private for classes. Typically, 
there is no difference between using structs instead of classes or vice versa. OOP requires more than 
just data aggregation. Let’s investigate how we would use the OOP paradigm if we had only basic 
structs that provided data aggregation and nothing else in order to properly comprehend OOP. A 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter02
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter02
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central entity of an e-commerce marketplace such as Amazon or Alibaba is Product, which we 
represent in the following way:

struct Product {
std::string name;
double price;
int rating;
bool available;
};

We will add more members to Product if necessary. The memory layout of an object of the Product 
type can be depicted like this:

Figure 2.1 – The memory layout of the Product object

Declaring a Product object takes sizeof(Product) space in memory, while declaring a pointer 
or a reference to the object takes the space required to store the address. If the computer we use has a 
32-bit operating system, the size of the space required to store the address is going to be 4 bytes, and 
if it has a 64-bit operating system, the size is 8 bytes (which is the most common nowadays). See the 
following code block:

Product book;
Product tshirt;
Product* ptr = &book;
Product& ref = tshirt;
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The previous code can be illustrated as follows:

Figure 2.2 – Memory space taken by the Product object versus the Product pointer

Let’s start with how much memory the Product object consumes. By adding up the sizes of each 
of its member variables, we can determine the size of the Product object. A boolean variable 
is 1 byte in size. The C++ standard does not specify the precise size of a double or int variable. 
Double variables typically take up 8 bytes on 64-bit computers, while int variables take up 4 bytes.

The size of std::string depends on the library implementation, as the implementation is not 
specified in the standard. In addition to storing a reference as a character array, string can also 
store the total number of characters allocated so that size() can return the value quickly. Some 
implementations of std::string take 8, 24, 32, or other completely different bytes of memory, but 
we will stick to 24 bytes in our example. By summing it all up, the size of Product will be as follows:

24 (std::string) + 8 (double) + 4 (int) + 1 (bool) = 37 bytes

Printing the size of Product outputs a different value:

std::cout  << sizeof(Product);
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Instead of the predicted 37 bytes, it outputs 40. The reason behind the redundant bytes is the padding 
of the struct, a technique practiced by the compiler to optimize access to individual members of the 
object. The Central Processing Unit (CPU) reads the memory in fixed-size words. The CPU defines 
the word size, which is typically 32 or 64 bits. If the CPU beings from a word-aligned address, it 
may access the data all at once. For instance, the Product object’s Boolean data member only 
needs 1 byte of memory and can be placed right after the rating member. It turns out that the data 
is aligned by the compiler for quicker access. Assume that each word takes up 4 bytes. This means 
that if a variable starts at an address that is divisible by four, the CPU will access the variable without 
repeating steps. The compiler augments the struct earlier with additional bytes to align the members 
to word-boundary addresses.

High-level details of objects

We deal with objects as entities, representing the result of abstraction. We have already mentioned the 
role of the observer – that is, the programmer who defines the object based on the problem domain. 
The programmer’s definition of this illustrates the abstraction process. Let’s use an online store and 
its products as an example. The same product could be seen differently by two separate programming 
teams. The website implementation team is concerned with the characteristics of the item that is 
crucial to website visitors – buyers. The selling price, the product’s rating, and other attributes that we 
previously displayed in the Product struct are primarily intended for website visitors. Programmers 
that implement the website touch the problem domain and verify the properties that are essential to 
defining a Product object.

The team that implements the online tools that help manage the products in a warehouse cares about the 
properties of the object that are essential in terms of product placement, quality control, and shipment. 
The product’s rating or even its price shouldn’t matter to this team. The product’s weight, size, and 
conditions are of primary concern to them. The following diagram shows the properties of interest:

Figure 2.3 – The properties of interest of a product for two different teams
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The first thing that programmers should do when starting the project is to analyze the problem and 
gather the requirements. In other words, they should get familiar with the problem domain and define 
the project requirements. The process of analyzing leads to defining objects and their types, such as 
the product we discussed earlier. To get proper results from analyzing, we should think in terms of 
objects, and by thinking in terms of objects, we mean considering the three main properties of objects 
– state, behavior, and identity. However, before talking about those three properties, let’s understand 
what the C++ object model looks like.

C++ object model

When we refer to an object model, we mean the underlying mechanisms that are used to construct 
and work with an object. Let us consider what object models there are, based on simple examples. 
We will start with a Rectangle class. First of all, let’s express Rectangle with the help of the C 
language. In the C language, Rectangle would be constructed with the help of a struct. The following 
is an example of a Rectangle struct in the C language, which we will transform into a C++ class:

typedef struct Rectangle {
int length;
int width;
} Rectangle;

And if we want to calculate the perimeter of a rectangle, we can write a function that takes the address 
of a Rectangle object and calculates it. An example can be seen here:

int rect_perimeter (const Rectangle* rect)
{
return 2 * (rect->length + rect->width);
}

As we know, in C there is no support for a relationship between data and functions that operate on it, 
which is why the functions are declared separately in C. In C++, the same example can be expressed 
in the following way:

class Rectangle {
public:
    Rectangle (int length = 0, int width = 0) :
                               m_length( length ),
                               m_width(width) {};
    int get_length() { return m_length; }
    int get_width() { return m_width; }
    void set_length(int length) { m_length = length; }
    void set_width(int width) { m_width = width; }
    int perimeter()
    {
        return 2 * (m_length + m_width);
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    }
private:
    int m_length;
    int m_width;
};

As we can see in the C++ Rectangle class, we also have functions that help us to work with data 
members – for example, for setting and getting the necessary values. Seeing these many functions, 
the question arises whether the object is going to take up more space in memory than its identical 
object written in C. The question can be answered by considering the object model that C++ uses 
to construct objects. Many people have different approaches to this problem, which is why we are 
going to introduce some of these approaches and then go with the one that seems more realistic and 
logical. The first approach is the one that says that functions, in fact, affect the size of an object. If we 
consider that each object has function pointers to every function the class has, then the object of the 
class below will occupy 56 bytes of memory (considering that the size of a pointer is 8 bytes and an 
integer is 4 bytes).

Figure 2.4 – An object model where the object contains pointers to all of its member functions

In this case, the size of the object can be considered consistent in some way, as it will always be the 
size of the pointer multiplied by the number of functions, plus the size of the data declared in the 
class. We can make it even more consistent if we use the model where data members and functions 
are all kept outside the object, and it only contains pointers to everything declared inside the class. 
In the case of our Rectangle object, the size won’t differ between the two models described, but if 
the class contains large sizes of arrays and also other large ADTs, the model that keeps only pointers 
will come in handy.
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Figure 2.5 – An object model where the object contains pointers 

to all of its data members and member functions

The two aforementioned models are not as space-efficient as the one we will talk about next. The 
concept of the third model is to make an object take up less space than it did in the previous models, 
and for that reason, the object in the third model holds only two pointers, no matter how many data 
members and functions are declared. There are also two tables – one that holds the data members, 
which are declared inside a class, and another that holds the addresses of the functions, which are 
also declared inside a class. The two pointers that take up space point to the two corresponding tables.

Figure 2.6 – An object model where the object contains only two pointers
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In this case, the object takes up less space but takes more time to run, so it’s not that efficient.

As we move closer to a more realistic object model, there is a need to talk about not only the classes 
that have simple data structures and functions but also all types of data and functions that can be 
declared in a class. When it comes to data members, a class can have two types, static and non-static, 
and when it comes to functions, a class can have static, non-static, and virtual types. According to the 
last model, which is the more realistic one, only the non-static data members are allocated directly 
within a class. Static data members, static and non-static functions, and virtual functions are allocated 
outside the object of the class. However, in this case, when it comes to virtual functions, there are 
some tricky aspects. The class has to know how to deal with virtual functions and what one it has to 
deal with exactly, and as virtual functions are called at runtime, there is a need for the object to have 
something that has access to that exact virtual function. For that reason, the object holds a pointer, a 
so-called virtual pointer, which points to a table, also known as the virtual table, the fields of which 
hold the addresses of virtual functions. The first slot of the virtual table is usually RTTI information 
about the object. So, let us change our class so that it contains all types of data and functions, but note 
that it’s done only as an example, and it’s definitely not the right way to implement a Rectangle class:

class Rectangle {
public:
    Rectangle(int length = 0, int width = 0) {
    m_length = length;
    m_width = width;
    }
    static int get_length() { return m_length; }
    int get_width() { return m_width; }
    virtual void set_length(int length) { m_length = length; }
    virtual void set_width(int width) { m_width = width; }
    int perimeter()
    {
        return 2 * (m_length + m_width);
    }
private:
    static int m_length;
    int m_width;
};

Now that our class contains all types of functions and data members, our object model looks as follows 
and is based on the description we gave previously.
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Figure 2.7 – The C++ object model

So, as we can see, the last model is some kind of combination of the last models. It is the most logical 
one, and we are going to stick with this one as the final C++ object model.

State

There is a state for each object, which might or might not be different from other objects’ states. We’ve 
already introduced the Product struct, which represents an abstraction of a physical (or digital) 
product. All the members of a Product object collectively represent the state of the object. Product, 
for instance, has a member called available, a Boolean that equals true if the product is in stock. 
The state of the object is determined by the values of the member variables. The state of the object 
member will change if new values are assigned to it:

Product cpp_book; // declaring the object
...
// changing the state of the object cpp_book
cpp_book.available = true;
cpp_book.rating = 5;

The state of the object is the combination of all of its properties and values.
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Identity

One thing that sets an object apart from other objects is its identity. Even if we try to declare two 
physically indistinguishable objects, they will still have different names for their variables – that is, 
different identities:

Product book1;
book1.rating = 4;
book1.name = "Book";
Product book2;
book2.rating = 4;
book2.name = "Book";

The objects in the previous example have the same state, but book1 and book2 are the different 
names we use to refer to them. Suppose we could somehow construct objects with the same name, as 
can be seen in the following block of code:

Product prod;
Product prod; // won't compile, but still "what if?"

If this was the case, they would still have different addresses in memory:

Figure 2.8 – Objects with the same name taking different addresses in the memory
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Identity is a fundamental property of an object and is one of the reasons why we can’t create empty 
objects, such as the following:

struct Empty {};
int main() {
    Empty e;
    std::cout << sizeof(e);
}

The preceding code will not output 0 as intended. A standard does not specify the size of an empty 
object. Compiler developers often allocate 1 byte for such objects; however, you may also come across 
4 or 8 bytes as well. The compiler must ensure that objects will occupy at least 1 byte of memory, since 
two or more instances of Empty should have distinct addresses in memory.

Behavior

In previous examples, we assigned 5 and then 4 to the rating member variable. We can easily make 
things unexpectedly wrong by assigning invalid values to the object, like so:

cpp_book.rating = -12;

-12 is invalid in terms of a product’s rating and will perplex users. By providing setter methods, we 
can regulate how the object reacts to changes made to it:

void set_rating(Product* p, int r) {
    if (r >= 1 && r <= 5) {
        p->rating = r;
    }
// otherwise ignore
}
...
set_rating(&cpp_book, -12); // won't change the state

An object acts and reacts to requests from other objects. Function calls – also called messages – are 
used to carry out the requests; one object transmits a message to another. In the preceding example, 
the object that passed the corresponding set_rating message to the cpp_book object represents 
the object that we call the set_rating() function. In this case, we assume that we could call the 
function from main(), which doesn’t actually represent any object at all. We could say it’s the global 
object, the one that operates the main() function, though there is not an entity like that in C++.

We distinguish the objects conceptually rather than physically. That’s the main thing to consider when 
thinking about objects. The physical implementation of some concepts of OOP is not standardized, so 
we can name the Product struct as a class and claim that cpp_book is an instance of Product, 
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and that it has a member function called set_rating(). The C++ implementation essentially 
accomplishes the same thing – it offers syntactically useful structures (classes, visibility modifiers, 
inheritance, and so on) and converts them into simple structs with global functions, such as set_
rating() in the previous example.

Mimicking a class

A struct allows us to group variables, name them, and create objects. The idea of a class is to include 
the corresponding operations in the object, grouping both data and operations that are applicable 
to that particular data. For example, for the object of the Product type, it is natural to call the 
set_rating() function on the object directly, rather than having a separate global function that 
takes a Product object via a pointer and modifies it. However, as we opted to use structs in the C 
manner, we can’t afford to have member functions. To mimic a class using a C struct, we have to declare 
functions that work with the Product object as global functions, as shown in the following code:

struct Product {
    std::string name;
    double price;
    int rating;
    bool available;
};
void initialize(Product* p) {
    p->price = 0.0;
    p->rating = 0;
    p->available = false;
}
void set_name(Product* p, const std::string& name) {
    p->name = name;
}
std::string get_name(Product* p) {
    return p->name;
}
void set_price(Product* p, double price) {
    if (price < 0 || price > 9999.42) return;
    p->price = price;
}
double get_price(Product* p) {
    return p->price;
}
// code omitted for brevity
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To use the struct as a class, we should manually call the functions in the proper order. For example, to 
use the object with properly initialized default values, we have to call the initialize() function first:

int main() {
    Product cpp_book;
    initialize(&cpp_book);
    set_name(&cpp_book, "Mastering C++ Programming");
    std::cout << "Book title is: " << get_name(&cpp_book);
    // ...
}

This seems doable, but the preceding code will quickly turn into an unorganized mess if new types 
are added. For example, consider the Warehouse struct that keeps track of products:

struct Warehouse {
    Product* products;
    int capacity;
    int size;
};
void initialize_warehouse(Warehouse* w) {
    w->capacity = 1000;
    w->size = 0;
    w->products = new Product[w->capacity];
    for (int ix = 0; ix < w->capacity; ++ix) {
    initialize(&w->products[ix]); // initialize each
                                   // Product object
    }
}
void set_size(int size) { ... }
// code omitted for brevity

The first obvious issue is the naming of functions. We had to name the initializer function of Warehouse 
initialize_warehouse to avoid conflict with the already declared initialize() function 
for Product. We might consider renaming the functions for the Product type to avoid possible 
conflicts in the future. Next comes the mess with functions. Now, we have a bunch of global functions, 
which will increase in number as we add new types. It will be even more unmanageable if we add 
some hierarchy of types.

Though compilers tend to translate classes into structs with global functions, as we showed earlier, 
C++ and other high-level programming languages solve these issues, and others that have not been 
mentioned, by introducing classes with smooth mechanisms and organizing them into hierarchies. 
Conceptually, keywords (class, public, and private) and mechanisms (inheritance and 
polymorphism) are there for developers to conveniently organize their code, but it won’t make the 
life of a compiler any easier.
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Working with classes

Classes make things a lot easier when dealing with objects. They do the simplest necessary thing in 
OOP – they combine data with functions to manipulate data. Let’s rewrite the example of the Product 
struct using a class and its powerful features:

class Product {
public:
    Product() = default; // default constructor
    Product(const Product&); // copy constructor
    Product(Product&&); // move constructor
    Product& operator=(const Product&) = default;
    Product& operator=(Product&&) = default;
// destructor is not declared, should be generated by the
// compiler
public:
    void set_name(const std::string&);
    std::string name() const;
    void set_availability(bool);
    bool available() const;
// code omitted for brevity
private:
    std::string name_;
    double price_;
    int rating_;
    bool available_;
};
std::ostream& operator<<(std::ostream&, const Product&);
std::istream& operator>>(std::istream&, Product&);

The class declaration seems more organized, even though it exposes more functions than we use to 
define a similar struct. Here’s how we should illustrate the class:
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Figure 2.9 – A UML diagram of the Product class

The preceding diagram is somewhat special. As you can see, it has organized sections, signs before the 
names of functions, and so on. This type of diagram is called a Unified Modeling Language (UML) 
class diagram. UML is a way to standardize the process of illustrating classes and their relationships. 
The first section is the name of the class (in bold), followed by the section for member variables, and 
then the section for member functions. The + (plus) sign in front of a function name means that the 
function is public. Member variables are usually private, but, if you need to emphasize this, you can 
use the - (minus) sign. We can omit all the details by simply illustrating the class, as shown in the 
following UML diagram:

Figure 2.10 – A UML diagram of the Product class without data members and member functions

We will use UML diagrams throughout this book and introduce new types of diagrams as needed. 
Before dealing with initializing, copying, moving, default and deleted functions, and, of course, operator 
overloading, let’s clear a couple of things up.
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Classes from a compiler perspective

First of all, no matter how monstrous the class from earlier may seem in comparison to the previously 
introduced struct, a compiler will translate it into the following code (we have slightly modified it for 
the sake of simplicity):

struct Product {
    std::string name_;
    bool available_;
    double price_;
    int rating_;
};
// we forced the compiler to generate the default
// constructor
void Product_constructor(Product&);
void Product_copy_constructor(Product& this, const Product&);
void Product_move_constructor(Product& this, Product&&);
// default implementation
Product& operator=(Product& this, const Product&);
// default implementation
Product& operator=(Product& this, Product&&);

void Product_set_name(const std::string&);
// takes const because the method was declared as const
std::string Product_name(const Product& this);
void Product_set_availability(Product& this, bool b);
bool Product_availability(const Product& this);
std::ostream& operator<<(std::ostream&, const Product&);
std::istream& operator>>(std::istream&, Product&);

Basically, the compiler generates the same code that we introduced earlier as a way to mimic class 
behavior using a simple struct. Though compilers vary in techniques and methods to implement the C++ 
object model, the preceding example is one of the popular approaches practiced by compiler developers. 
It balances the space and time efficiency in accessing object members (including member functions).

Next, we should consider when a compiler edits our code by augmenting and modifying it. The following 
code declares the global create_apple() function, which creates and returns a Product object 
with values specific to an apple. It also declares a book object in the main() function:

Product create_apple() {
    Product apple;
    apple.set_name("Red apple");
    apple.set_price("0.2");
    apple.set_rating(5);
    apple.set_available(true);
    return apple;
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}
int main() {
    Product red_apple = create_apple();
    Product book;
    Product* ptr = &book;
    ptr->set_name("Alice in Wonderland");
    ptr->set_price(6.80);
    std::cout << "I'm reading " << book.name()
      << " and I bought an apple for " << red_apple.price()
      << std::endl;
}

We already know that the compiler modifies the class to translate it into a struct and moves member 
functions to the global scope, each of which takes the reference (or a pointer) to the class as its first 
parameter. To support those modifications in the client code, it should also modify all access to 
the objects.

Tip
A line or lines of code that declare or use already declared class objects are referred to as 
client code.

Here’s how we will assume that a compiler modifies the preceding code (we use the word assume 
because we’re trying to introduce a compiler-abstract rather than a compiler-specific approach):

void create_apple(Product& apple) {
    Product_set_name(apple, "Red apple");
    Product_set_price(apple, 0.2);
    Product_set_rating(apple, 5);
    Product_set_available(apple, true);
    return;
}
int main() {
    Product red_apple;
    Product_constructor(red_apple);
    create_apple(red_apple);
    Product book;
    Product* ptr;
    Product_constructor(book);
    Product_set_name(*ptr, "Alice in Wonderland");
    Product_set_price(*ptr, 6.80);
    std::ostream os = operator<<(std::cout, "I'm reading ");
    os = operator<<(os, Product_name(book));
    os = operator<<(os, " and I bought an apple for ");
    os = operator<<(os, Product_price(red_apple));
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    operator<<(os, std::endl);
    // destructor calls are skipped because the compiler
    // will remove them as empty functions to optimize
    // the code
    // Product_destructor(book);
    // Product_destructor(red_apple);
}

The compiler also optimized the call to the create_apple() function to prevent temporary 
object creation. We will discuss the invisible temporaries that were generated by the compiler later 
in this chapter.

Initialization and destruction

As shown previously, the creation of an object is a two-step process – memory allocation and 
initialization. Memory allocation is a result of an object declaration. C++ doesn’t care about the 
initialization of variables; it allocates the memory (whether it is automatic or manual) and it’s done. 
The actual initialization should be done by the programmer, which is why we have a constructor in 
the first place.

The same logic follows for the destructor. If we skip the declarations of the default constructor or 
destructor, a compiler should generate them implicitly, which it would also remove if they are empty 
(to eliminate redundant calls to empty functions). The default constructor will not be generated by 
the compiler if any constructor with parameters is declared, including the copy constructor. We can 
force the compiler to implicitly generate the default constructor:

class Product {
public:
    Product() = default;
    // ...
};

We also can force it not to generate the compiler by using the delete specifier, as shown here:

class Product {
public:
    Product() = delete;
    // ...
};

This will prohibit default-initialized object declarations – that is, Product p; won’t compile.
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Here’s a tip – destructors are called in the order opposite to object declarations because the automatic 
memory allocation is managed by a stack, which is a data structure adapter that follows the last in, 
first out (LIFO) rule.

Object initialization happens on its creation. Destruction usually happens when an object is no longer 
accessible. The latter may be tricky when the object is allocated to the heap. Take a look at the following 
code; it declares four Product objects in different scopes and segments of memory:

static Product global_prod; // #1
Product* foo() {
    Product* heap_prod = new Product(); // #4
    heap_prod->name = "Sample";
    return heap_prod;
}
int main() {
    Product stack_prod; // #2
    if (true) {
    Product tmp; // #3
    tmp.rating = 3;
    }
    stack_prod.price = 4.2;
    foo();
}

global_prod has a static storage duration and is placed in the global/static section of the program; 
it is initialized before main() is called. When main() starts, stack_prod is allocated on the stack 
and will be destroyed when main() ends (the closing curly brace of the function is considered as 
its end). Though the conditional expression looks weird and too artificial, it’s a good way to express 
the block scope.

The tmp object will also be allocated on the stack, but its storage duration is limited to the scope 
it has been declared in; it will be automatically destroyed when the execution leaves the if block. 
That’s why variables on the stack have automatic storage duration. Finally, when the foo() function 
is called, it declares the heap_prod pointer, which points to the address of the Product object 
allocated on the heap.

The preceding code contains a memory leak because the heap_prod pointer (which itself has an 
automatic storage duration) will be destroyed when the execution reaches the end of foo(), while 
the object allocated on the heap won’t be affected. Don’t mix the pointer and the actual object it points 
to; the pointer contains the value of the object, but it doesn’t represent it.

When the function ends, the memory for its arguments and the local variables allocated on the stack 
will be freed, but global_prod will be destroyed when the program ends – that is, after the main() 
function finishes. The destructor will be called when the object is about to be destroyed.
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Copying objects

There are two kinds of copying – a deep copy and a shallow copy of objects. The language allows us to 
manage copy initialization and the assignment of objects with the copy constructor and the assignment 
operator. This is a necessary feature for programmers because we can control the semantics of copying. 
Take a look at the following example:

Product p1;
Product p2;
p2.set_price(4.2);
p1 = p2; // p1 now has the same price
Product p3 = p2; // p3 has the same price

The line p1 = p2; is a call to the assignment operator, while the last line is a call to the copy 
constructor. The equals sign shouldn’t confuse you in terms of whether it’s an assignment or a copy 
constructor call. Each time you see a declaration followed by an assignment, consider it a copy 
construction – Product p3 = p2;.

The compiler will generate the following code:

Product p1;
Product p2;
Product_set_price(p2, 4.2);
operator=(p1, p2);
Product p3;
Product_copy_constructor(p3, p2);

The default implementation of the copy constructor (and assignment operator) performs a member-
wise copy of objects, as shown in the following diagram:

Figure 2.11 – A member-wise copy of objects
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Custom implementation is required if the member-wise copy produces invalid copies. For example, 
consider the following copy of the Warehouse objects:

class Warehouse {
public:
    Warehouse()
    : size_{0}, capacity_{1000}, products_{nullptr}
    {
        products_ = new Products[capacity_];
    }
    ~Warehouse() {
        delete [] products_;
    }
public:
    void add_product(const Product& p) {
    if (size_ == capacity_) { /* resize */ }
    products_[size_++] = p;
    }
    // other functions omitted for brevity
private:
    int size_;
    int capacity_;
    Product* products_;
};
int main() {
    Warehouse w1;
    Product book;
    Product apple;
    // ...assign values to products (omitted for brevity)
    w1.add_product(book);
    Warehouse w2 = w1; // copy
    w2.add_product(apple);
    // something somewhere went wrong...
}

The preceding code declares two Warehouse objects, and two different products are then added to 
the warehouses. Although this example is somewhat unnatural, it shows the dangers of the default 
implementation of copying. The following diagram shows us what went wrong in the code:
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Figure 2.12 – The representation of objects declared on the left in memory

Assigning w1 to w2 leads to the following structure:

Figure 2.11 – The result of a default copy constructor called on 

an object that allocates memory on the heap
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The default implementation simply copies each member of w1 to w2. After copying, both the 
products_ members of w1 and w2 point to the same location on the heap. When we add a new 
product to w2, the array pointed to by w1 is affected. It’s a logical error that could lead to undefined 
behavior in the program. We need a deep rather than a shallow copy – that is, we need to actually 
create a new array of products that has a copy of w1 object’s array.

A custom implementation of the copy constructor and the assignment operator solves this issue of 
shallow copying:

class Warehouse {
public:
    // ...
    Warehouse(const Warehouse& rhs) {
        size_ = rhs.size_;
        capacity_ = rhs.capacity_;
        products_ = new Product[capacity_];
        for (int ix = 0; ix < size_; ++ix) {
        products_[ix] = rhs.products_[ix];
        }
    }
// code omitted for brevity
};

The custom implementation of the copy constructor creates a new array. Then, it copies the source 
objects’ array elements one by one, thus preventing the product_ pointer from pointing to the 
wrong memory address. In other words, we implemented a deep copy of Warehouse objects by 
creating a new array.

Moving objects

Temporary objects are everywhere in code. Most of the time, they are required to make the code work 
as expected. For example, when we add two objects together, a temporary object is created to hold 
the return value of operator+:

Warehouse small;
Warehouse mid;
// ... some data inserted into the small and mid objects
Warehouse large{small + mid}; // operator+(small, mid)

Let’s take a look at the implementation of the global operator+() for Warehouse objects:

// considering declared as friend in the Warehouse class
Warehouse operator+(const Warehouse& a, const Warehouse& b) {
    Warehouse sum; // temporary
    sum.size_ = a.size_ + b.size_;
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    sum.capacity_ = a.capacity_ + b.capacity_;
    sum.products_ = new Product[sum.capacity_];
    for (int ix = 0; ix < a.size_; ++ix)
        { sum.products_[ix] = a.products_[ix]; }
    for (int ix = 0; ix < b.size_; ++ix)
        { sum.products_[a.size_ + ix] = b.products_[ix]; }
    return sum;
}

The preceding implementation declares a temporary object and returns it after filling it with necessary 
data. The call in the previous example could be translated into the following:

Warehouse small;
Warehouse mid;
// ... some data inserted into the small and mid objects
Warehouse tmp{operator+(small, mid)};
Warehouse large;
Warehouse_copy_constructor(large, tmp);
__destroy_temporary(tmp);

Move semantics, which was introduced in C++11, allows us to skip the temporary creation by moving 
the return value into the Warehouse object. To do so, we should declare a move constructor for 
Warehouse, which can distinguish between temporaries and treat them efficiently:

class Warehouse {
public:
    Warehouse(); // default constructor
    Warehouse(const Warehouse&); // copy constructor
    Warehouse(Warehouse&&); // move constructor
    // code omitted for brevity
};

The parameter of the move constructor is rvalue reference (&&).

An lvalue reference

Before explaining why rvalue references were introduced in the first place, let’s clear things up 
regarding lvalues, references, and lvalue references. When a variable is an lvalue, it can be addressed 
and pointed to and has a scoped storage duration:

double pi{3.14}; // lvalue
int x{42}; // lvalue
int y{x}; // lvalue
int& ref{x}; // lvalue-reference
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ref is an lvalue reference, a synonym for a variable that can be treated as a const pointer:

int * const ref = &x;

Besides the ability to modify objects by a reference, we can pass heavy objects to functions by reference 
in order to optimize and avoid redundant object copies. For example, operator+ for Warehouse 
takes two objects by reference, thus making it copy the addresses of objects rather than full objects.

lvalue references optimize code in terms of function calls, but to optimize temporaries, we should 
move on to rvalue references.

Rvalue references

We cannot bind lvalue references to temporaries. The following code won’t compile:

int get_it() {
    int it{42};
    return it;
}
...
int& impossible{get_it()}; // compile error

We need to declare an rvalue reference to be able to bind to temporaries (including literal values):

int&& possible{get_it()};

rvalue references allow us to skip a generation of temporaries as much as possible. For example, 
a function that takes a result as an rvalue reference runs faster by eliminating temporary objects:

void do_something(int&& val) {
    // do something with the val
}
// the return value of the get_it is moved to do_something
// rather than copied
do_something(get_it());

To consider the effect of moving, imagine that the preceding code is translated into the following (just 
to get the full idea of moving):

int val;
void get_it() {
    val = 42;
}
void do_something() {
    // do something with the val
}
do_something();
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Before moving was introduced, the preceding code would look like this (with some compiler optimization):

int tmp;
void get_it() {
    tmp = 42;
}
void do_something(int val) {
    // do something with the val
}
do_something(tmp);

The move constructor, along with the move operator, =(), has the effect of copying without actually 
carrying out a copy operation when the input argument represents rvalue. That’s why we should 
also implement these new functions in the class – so that we can optimize code wherever it makes 
sense. The move constructor can grab the source object instead of copying it, as shown here:

class Warehouse {
public:
    // constructors omitted for brevity
    Warehouse(Warehouse&& src)
    : size_{src.size_}, capacity_{src.capacity_},
    products_{src.products_}
    {
        src.size_ = 0;
        src.capacity_ = 0;
        src.products_ = nullptr;
    }
};

Instead of creating a new array of capacity_ size and then copying each element of the products_ 
array, we just grabbed the pointer to the array. We know that the src object is  an rvalue and that 
it will soon be destroyed, which means the destructor will be called and delete the allocated array. 
Now, we point to the allocated array from the newly created Warehouse object, which is why we 
cannot let the destructor delete the source array. Due to this, we assign nullptr to it to make sure 
the destructor will miss the allocated object. So, the following code will be optimized because of the 
move constructor:

Warehouse large = small + mid;

The result of the + operator will be moved rather than copied. Take a look at the following diagram:
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Figure 2.14 – A diagram of the + operator implementation

The preceding diagram demonstrates how the temporary is moved to the large object.

Notes on operator overloading

C++ provides a powerful mechanism to overload operators for custom types. It’s much better to calculate 
the sum of two objects using the + operator, rather than calling a member function. Calling a member 
function also involves remembering its name before calling it. It might be add, calculateSum, 
calculate_sum, or something else. Operator overloading allows for a consistent approach in 
class design. On the other hand, overloading operators increases unnecessary verbosity in code. The 
following snippet represents a list of comparison operators being overloaded, along with addition and 
subtraction for the Money class. The functions are marked as constexpr in the examples that follow. 
The constexpr specifier declares that the value of the function can be evaluated at compile time. 
The same definition applies to variables as well. The name itself consists of const and expression. 
This is a useful feature because it allows you to optimize your code to the fullest:

constexpr bool operator<(const Money& a, const Money& b) {
    return a.value_ < b.value_;
}
constexpr bool operator==(const Money& a, const Money& b) {
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    return a.value_ == b.value_;
}
constexpr bool operator<=(const Money& a, const Money& b) {
    return a.value_ <= b.value_;
}
constexpr bool operator!=(const Money& a, const Money& b) {
    return !(a == b);
}
constexpr bool operator>(const Money& a, const Money& b) {
    return !(a <= b);
}
constexpr bool operator>=(const Money& a, const Money& b) {
    return !(a < b);
}
constexpr Money operator+(const Money& a, const Money& b) {
    return Money{a.value_ + b.value_};
}
constexpr Money operator-(const Money& a, const Money& b) {
    return Money{a.value_ - b.value_};
}

As you can see, most of the preceding functions directly access the value member of the Money instance. 
To make it work, we should declare them as friends for Money. Here’s what Money will look like:

class Money
{
public:
    Money() {}
    explicit Money(double v) : value_{v} {}
    // construction/destruction functions omitted for
    // brevity
public:
    friend constexpr bool operator<(const Money&, const Money&);
    friend constexpr bool operator==(const Money&, const Money&);
    friend constexpr bool operator<=(const Money&, const Money&);
    friend constexpr bool operator!=(const Money&, const Money&);
    friend constexpr bool operator>(const Money&, const Money&);
    friend constexpr bool operator>=(const Money&, const Money&);
    friend constexpr bool operator+(const Money&, const Money&);
    friend constexpr bool operator-(const Money&, const Money&);
private:
    double value_;
};
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The class looks monstrous. C++20 introduces the spaceship operator, which allows us to skip the 
definition of comparison operators. operator<=>(), also known as the three-way comparison 
operator, requests the compiler to generate relational operators. For the Money class, we can use the 
default operator<=>(), as shown here:

class Money
{
// code omitted for brevity
    friend auto operator<=>(const Money&, const Money&) = default;
};

The compiler will generate the ==, !=, <, >, <=, and >= operators. The spaceship operator reduces 
the redundant definitions for operators and also provides a way to implement a generic behavior for 
all the generated operators. When implementing a custom behavior for the spaceship operator, 
we should note the return value type of the operator. It can be one of the following:

•	 std::strong_ordering

•	 std::weak_ordering

•	 std::partial_ordering

•	 std::strong_equality

•	 std::weak_equality

All of them are defined in the <compare> header. The compiler generates operators based on the 
return type of the three-way operator.

Encapsulation and the public interface

Encapsulation is a key concept in OOP. It allows us to hide the implementation details of objects from 
the client code. Take, for example, a computer keyboard – it has keys for letters, numbers, and symbols, 
each of which acts if we press them. Its usage is simple and intuitive, and it hides a lot of low-level 
details that only a person familiar with electronics would be able to handle. Imagine a keyboard without 
keys – one that has a bare board with unlabeled pins. You would have to guess which one to press to 
achieve the desired key combination or text input. Now, imagine a keyboard without pins – you have 
to send proper signals to the corresponding sockets to get the key-pressed event of a particular symbol. 
Users could be confused by the absence of labels, and they also could use it incorrectly by pressing or 
sending signals to invalid sockets. The keyboard as we know it solves this issue by encapsulating the 
implementation details – the same way programmers encapsulate objects so that they don’t load the 
user with redundant members, and to make sure users won’t use objects in the wrong way.

Visibility modifiers serve that purpose in the class by allowing us to define the accessibility level of 
any member. The private modifier prohibits any use of the private member from the client code. 
This allows us to control the modification of the private member by providing corresponding 
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member functions. A mutator function, familiar to many as a setter function, modifies the value 
of a private member after testing the value against specified rules for that particular class. An 
example of this can be seen in the following code:

class Warehouse {
public:
    // rather naive implementation
    void set_size(int sz) {
    if (sz < 1) throw std::invalid_argument("Invalid size");
    size_ = sz;
    }
    // code omitted for brevity
private:
    int size_;
};

Modifying a data member through a mutator function allows us to control its value. The actual data 
member is private, which makes it inaccessible from the client code, while the class itself provides 
public functions to update or read the contents of its private members. These functions, along with 
the constructors, are often referred to as the public interface of the class. Programmers strive to make 
the class’ public interface user-friendly.

Take a look at the following class, which represents a quadratic equation solver – an equation of 
the form ax2 + bx + c = 0. One of the solutions is finding a discriminant using the formula 
D = b2 - 4ac and then calculating the value of x, based on the value of the discriminant (D). 
The following class provides five functions – to set the values of a, b, and c respectively, to find the 
discriminant, and to solve and return the value of x:

class QuadraticSolver {
public:
    QuadraticSolver() = default;
    void set_a(double a);
    void set_b(double b);
    void set_c(double c);
    void find_discriminant();
    double solve(); // solve and return the x
private:
    double a_;
    double b_;
    double c_;
    double discriminant_;
};

The public interface includes the aforementioned four functions and the default constructor. To solve 
the equation 2x2 + 5x - 8 = 0, we should use QuadraticSolver like so:
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QuadraticSolver solver;
solver.set_a(2);
solver.set_b(5);
solver.set_c(-8);
solver.find_discriminant();
std::cout << "x is: " << solver.solve() << std::endl;

The public interface of the class should be designed wisely; the preceding example shows signs of bad 
design. A user must know the protocol – that is, the exact order to call the functions. If the user misses 
the call to find_discriminant(), the result will be undefined or invalid. The public interface 
forces the user to learn the protocol and call functions in the proper order – that is, setting the values 
of a, b, and c, calling the find_discriminant() function, and finally, calling the solve() 
function to get the desired value of x. A good design should provide an easy public interface. We can 
overwrite QuadraticSolver so that it only has one function that takes all the necessary input 
values, calculates the discriminant and returns the solution:

class QuadtraticSolver {
public:
    QuadraticSolver() = default;
    double solve(double a, double b, double c);
};

The preceding design is more intuitive than the previous one. The following code demonstrates the 
usage of QuadraticSolver to find the solution to the equation 22 + 5x - 8 = 0:

QuadraticSolver solver;
std::cout << solver.solve(2, 5, -8) << std::endl;

The last thing to consider here is the idea that a quadratic equation can be solved in more than one way. 
The one we introduced is solved by finding the discriminant. We should consider that, in the future, 
we could add further implementation methods to the class. Changing the name of the function may 
increase the readability of the public interface and secure future updates to the class. We should also 
note that the solve() function in the preceding example takes a, b, and c as arguments, and we 
don’t need to store them in the class, since the solution is calculated directly in the function.
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It’s obvious that declaring an object of QuadraticSolver just to be able to access the solve() 
function seems to be a redundant step. The final design of the class will look like this:

class QuadraticSolver {
public:
    QuadraticSolver() = delete;
    static double solve_by_discriminant(double a,
      double b, double c);
    // other solution methods' implementations can be
    // prefixed by "solve_by_"
};

We renamed the solve() function to solve_by_discriminant(), which also exposes the 
underneath method of the solution. We also made the function static, thus making it available to a 
user without declaring an instance of the class. However, we also marked the default constructor as 
deleted, which, again, forces the user not to declare an object:

std::cout << QuadraticSolver::solve_by_discriminant(2, 5, -8) << 
std::endl;

The client code now spends less effort using the class.

Class relationships

Object intercommunication is at the heart of object-oriented systems. The relationship is the logical 
link between objects. The way we can distinguish or set up a proper relationship between classes of 
objects defines both the performance and quality of a system design overall. Consider the Product 
and Warehouse classes; they are in a relationship called aggregation because Warehouse contains 
Products – that is, Warehouse aggregates Products:

Figure 2.15 – A UML diagram of the relationship between the Warehouse and Product classes

There are several kinds of relationships in terms of pure OOP, such as association, aggregation, 
composition, instantiation, generalization, and others.
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Aggregation and composition

We encountered aggregation in the Warehouse class example. The Warehouse class stores an 
array of Products. In more general terms, it can be called an association, but to strongly emphasize 
the exact containment, we use the terms aggregation or composition. In the case of aggregation, the 
class that contains an instance or instances of other classes can be instantiated without the aggregate. 
This means that we can create and use a Warehouse object without necessarily creating Product 
objects contained in Warehouse.

Another example of aggregation is Car and Person. A Car object can contain a Person object (as 
a driver or passenger), since they are associated with each other, but the containment is not strong. 
We can create a Car object without a Driver object in it, as follows:

class Person; // forward declaration
class Engine { /* code omitted for brevity */ };
class Car {
public:
    Car();
    // ...
private:
    Person* driver_; // aggregation
    std::vector<Person*> passengers_; // aggregation
    Engine engine_; // composition
// ...
};

The strong containment is expressed by composition. For the Car example, an object of the Engine 
class is required to make a complete Car object. In this physical representation, the Engine member 
is automatically created when Car is created.

The following is the UML representation of aggregation and composition:

Figure 2.16 – An example of aggregation and composition expressed in a UML diagram
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When designing classes, we have to decide on their relationship. The best way to define the composition 
between the two classes is the has-a relationship test. Car has Engine because a car has an engine. 
Anytime you can’t decide whether a relationship should be expressed in terms of composition, ask the 
has-a question. Aggregation and composition are somewhat similar; they just describe the strength of 
the connection. For aggregation, the proper phrase would be can have a. For example, Car can have 
a driver (of the Person type) – that is, the containment is weak.

Another type of relationship that connects objects with each other is inheritance, and when talking 
about inheritance, we should also talk about polymorphism, as they go hand in hand.

Under the hood of inheritance and polymorphism
Inheritance and polymorphism are two of the four main principles that OOP has. The four principles 
are as follows:

•	 Abstraction

•	 Encapsulation

•	 Inheritance

•	 Polymorphism

We have already talked about the first two principles, and now it is time to dive deeper into the final 
two – inheritance and polymorphism.

Inheritance

Classes can be reused, thanks to the programming notion of inheritance. Different programming 
languages offer various inheritance implementations, but the underlying principle is always the same 
– the class relationship should answer the is-a question. For instance, Car is Vehicle; hence, we 
can inherit Car from Vehicle:

class Vehicle {
public:
    void move();
};
class Car : public Vehicle {
public:
    Car();
// ...
};

Car now has the move() member function derived from Vehicle. The relationship between 
generalization and specialization represented by inheritance is one in which the parent class (Vehicle)
is the generalization, and the child class(Car)is the specialization.
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Note
The child class can be referred to as the derived class or the subclass, whereas the parent class 
can be called the base class or the superclass.

Only in extreme cases should you consider using inheritance. Classes should satisfy the is-a relationship, 
as we noted previously, although this might occasionally be tricky. Consider the Square and 
Rectangle classes. The following code declares the Rectangle class in its simplest possible form:

class Rectangle {
public:
    // argument checks omitted for brevity
    void set_width(int w) { width_ = w; }
    void set_height(int h) { height_ = h; }
    int area() const { return width_ * height_; }
private:
    int width_;
    int height_;
};

The Square is-a Rectangle, so we could easily inherit it from Rectangle:

class Square : public Rectangle {
public:
    void set_side(int side) {
    set_width(side);
    set_height(side);
}
int area() {
    area_ = Rectangle::area();
    return area_;
}
private:
    int area_;
};

Square extends Rectangle by adding a new data member, area_, and overwriting the area() 
member function with its own implementation. In reality, area_ and the method by which we calculate 
its value are redundant; we did this to highlight a poor class design and to make Square extend 
its parent to some extent. We’ll soon conclude that choosing inheritance in this circumstance was a 
poor design decision. Since Square is a Rectangle, it should be used anywhere Rectangle is 
used, as demonstrated here:

void make_big_rectangle(Rectangle& ref) {
    ref->set_width(870);
    ref->set_height(940);
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}
int main() {
    Rectangle rect;
    make_big_rectangle(rect);
    Square sq;
    // Square is a Rectangle
    make_big_rectangle(sq);
}

The make_big_rectangle() function takes a reference to Rectangle and Square inherits 
it, so it’s totally fine to send a Square object to the make_big_rectangle() function; Square 
is-a a Rectangle. The Liskov Substitution Principle is an instance of a successful type substitution 
with its subtype. Decide whether it was a mistake to inherit the square from the rectangle after learning 
why this substitution works in practice.

Inheritance from the compiler perspective

We can picture the Rectangle class we declared earlier in the following way:

Figure 2.17 – The diagram of a Rectangle class

The stack space needed for the local objects of a function is allocated when the rect object is 
declared in the main() function. When the make_big_rectangle() method is used, the same 
logic is applied. It doesn’t have local arguments; instead, it has an argument of the Rectangle& 
type, which behaves in a similar fashion to a pointer – it takes the memory space required to store a 
memory address (4 or 8 bytes in 32- and 64-bit systems respectively). The rect object is passed to 
make_big_rectangle() by reference, which means the ref argument refers to the local object 
in main():
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Figure 2.18 – The effect of passing by reference

Here is an illustration of the Square class:

Figure 2.19 – The visual representation of a Square class that contains a Rectangle subobject

The Square object includes a subobject of Rectangle, as seen in the preceding diagram; it serves as 
a partial representation of Rectangle. In this instance, the Square class doesn’t add any additional 
data members to the rectangle.

Although make_big_rectangle() accepts an argument of the Rectangle& type, the Square 
object is passed to it. We are aware that in order to access the underlying object, the type of the pointer 
(reference) is required. The type specifies how many bytes should be read from the pointer’s starting 
location. In this case, ref stores a copy of the starting address of the local rect object declared in 
main(). When make_big_rectangle() accesses the member functions via ref, it actually 
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calls global functions that take a Rectangle reference as their first parameter. The following is the 
function’s translation (again, we have somewhat adjusted it for simplicity):

void make_big_rectangle(Rectangle * const ref) {
Rectangle_set_width(*ref, 870);
Rectangle_set_height(*ref, 940);
}

When ref is dereferenced, sizeof(Rectangle) bytes are read from the beginning of the memory 
address that ref points to. When we pass a Square object to make_big_rectangle(), we 
assign the starting address of sq (the Square object) to ref. Because the Square object really has 
a Rectangle subobject, this will work just fine. When the make_big_rectangle() function 
dereferences ref, it is only able to access the sizeof(Rectangle) bytes of the object and doesn’t 
see the additional bytes of the actual Square object. The following diagram illustrates the part of 
the subobject that ref points to:

Figure 2.20 – The illustration of ref pointing to the Rectangle subobject
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Inheriting Square from Rectangle is almost the same as declaring two structs, one of which (the 
child) contains the other (the parent):

struct Rectangle {
    int width_;
    int height_;
};

void Rectangle_set_width(Rectangle& this, int w) {
    this.width_ = w;
}

void Rectangle_set_height(Rectangle& this, int h) {
    this.height_ = h;
}

int Rectangle_area(const Rectangle& this) {
    return this.width_ * this.height_;
}

struct Square {
    Rectangle _parent_subobject_;
    int area_;
};

void Square_set_side(Square& this, int side) {
    // Rectangle_set_width(static_cast<Rectangle&>(this),
    // side);
    Rectangle_set_width(this._parent_subobject_, side);
    // Rectangle_set_height(static_cast<Rectangle&>(this),
    // side);
    Rectangle_set_height(this._parent_subobject_, side);
}

int Square_area(Square& this) {
    // this.area_ = Rectangle_area(
    // static_cast<Rectangle&>(this));
    this.area_ = Rectangle_area(this._parent_subobject_);
    return this.area_;
}

The preceding code shows how inheritance is supported by the compiler. Take a look at the commented 
lines of code for Square_set_side and Square_area functions. Although we don’t really 
insist on this implementation, it perfectly captures how the compiler handles OOP code.
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Composition versus inheritance

Although the compiler treats the inheritance relationship more like a composition than an inheritance, 
the C++ language gives us a straightforward and OOP-friendly syntax to describe it. Instead of using 
inheritance wherever possible, it is really far preferable to use composition. It was claimed that the 
link between the Square and Rectangle classes was a poor design decision. One of the reasons 
was the subtype substitution principle, which allowed us to use Square incorrectly by passing it to 
a function that transforms it into Rectangle instead of Square. This reveals that Square is not 
Rectangle after all, proving that the is-a connection is incorrect. It is an adaptation of Rectangle 
rather than Rectangle itself. Therefore, it doesn’t exactly represent Rectangle; instead, it makes 
use of one to give class users certain restricted functionality.

Users shouldn’t be aware that Square can be used as Rectangle because, if they did, they might at 
some time send incorrect or unsupported messages to Square instances. Calls to the set_width 
or set_height functions are examples of invalid messages. Since it declared that it had inherited 
from Rectangle, Square cannot truly allow two independent member methods to change each 
of its sides separately:

class Square : public Rectangle {
// code omitted for brevity
};

What if the modifier is private instead of public? Both public and private inheritance types are 
supported by C++. Additionally, protected inheritance is also supported. When inheriting privately 
from a class, the subclass intends to use the parent class and has access to its public interface. The 
client code, however, is unaware that it is inherited from a derived class. In addition, users of the child 
class no longer have access to the public interface that was inherited from the parent class. Square 
appears to convert inheritance into composition:

class Square : private Rectangle {
public:
    void set_side(int side) {
    // Rectangle's public interface is accessible to
    // the Square
    set_width(side);
    set_height(side);
    }
    int area() {
        area_ = Rectangle::area();
        return area_;
    }
private:
    int area_;
};
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The client code cannot access members inherited from Rectangle:

Square sq;
sq.set_width(14); // compile error, the Square has no such
                  // public member
make_big_rectangle(sq); // compile error, can't cast Square
                        // to Rectangle

The same can be achieved by declaring a Rectangle member in the private section of Square:

class Square {
public:
    void set_side(int side) {
    rectangle_.set_width(side);
    rectangle_.set_height(side);
    }
    int area() {
        area_ = rectangle_.area();
        return area_;
    }
private:
    Rectangle rectangle_;
    int area_;
};

To use inheritance without a doubt, you should thoroughly examine use situations and provide 
a clear answer to the is-a question. When given the option between composition and inheritance, 
always pick composition.

We can omit the modifier when inheriting privately. The default access modifier for classes is private, 
so class Square : private Rectangle {}; is the same as the Square : Rectangle 
{}; class. Conversely, the default modifier for structs is public.

Protected inheritance

Finally, we have the protected access modifier. If class members are used in the class body, it describes 
the access level of those members. Users of the class can’t access protected members, but derived 
classes can. If the modifier is used to specify the type of inheritance, it behaves similarly to the private 
inheritance for derived class users. Protected inheritance makes the public interface of the base class 
visible to descendants of the derived class, whereas private inheritance keeps it hidden from all users 
of the derived class.

Although it’s difficult to see a situation where protected inheritance would be necessary, you should 
consider it as a tool that can be helpful in surprisingly obvious designs. Let’s say we need to create an 
adapter for a stack data structure. Typically, a dequeue, a linked list, or a vector (a one-dimensional 
array) is used to implement the stack.
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Here’s a tip – the stack conforms to the LIFO rule, which states that the last element inserted into the 
stack will be accessed first. Similarly, the first element inserted into the stack will be accessed last.

The stack doesn’t actually represent a data structure; rather, it sits on top of one and modifies, extends, 
or restricts how it is used. The following is a simple declaration of the Vector class representing a 
one-dimensional array of integers:

class Vector {
public:
    Vector();
    Vector(const Vector&);
    Vector(Vector&&) noexcept;
    Vector& operator=(const Vector&);
    Vector& operator=(Vector&&) noexcept;
    ~Vector();
public:
    void push_back(int value);
    void insert(int index, int value);
    void remove(int index);
    int operator[](int index);
    int size() const;
    int capacity() const;
private:
    int size_;
    int capacity_;
    int* array_;
};

The preceding Vector is not an STL-compatible container with random access iterator support; it 
contains the bare minimum for a dynamically increasing array. It can be declared and used in the 
following way:

Vector v;
v.push_back(4);
v.push_back(5);
v[1] = 2;

While the Vector class has operation[], which enables random access to any of its components, 
Stack forbids such access. Stack offers the push and pop operations so that we can, respectively, 
enter a value into its underlying data structure and get the value:

class Stack : private Vector {
public:
// constructors, assignment operators and the destructor
// are omitted for brevity
    void push(int value) {
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    push_back(value);
    }
    int pop() {
        int value{this[size() - 1]};
        remove(size() - 1);
        return value;
    }
};

Stack can be used in the following way:

Stack s;
s.push(5);
s.push(6);
s.push(3);
std::cout << s.pop(); // outputs 3
std::cout << s.pop(); // outputs 6
s[2] = 42; // compile error, the Stack has no publicly
           // available operator[] defined

In order for us to access it, the stack adjusts Vector and offers two member functions. We can fully 
use Vector while hiding Stack to prevent users from knowing about the inheritance. What if we 
want to inherit Stack to create an advanced version of it? Let’s imagine that the AdvancedStack 
class offers the min() function, which delivers the stack’s lowest value in constant time.

The private inheritance prohibits AdvancedStack so that it uses the public interface of Vector, 
so we need a way to allow the Stack subclasses to use its base class but hide the base class’s existence 
from class users. Protected inheritance serves that goal, as shown in the following code:

class Stack : protected Vector {
// code omitted for brevity
};
class AdvancedStack : public Stack {
// can use the Vector
};

By inheriting Stack from Vector, we allow the subclass of the Stack to use the Vector public 
interface. However, the users of both Stack and AdvancedStack won’t be able to access them 
as Vector.
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Polymorphism

Another crucial concept in OOP is polymorphism. It permits subclasses to implement the methods 
that are descended from the base class in their own unique ways. Consider the Musician class, 
which contains the play() member method:

class Musician {
public:
    void play() { std::cout << "Play an instrument"; }
};

Now, let’s declare the Guitarist class, which has the play_guitar() function:

class Guitarist {
public:
    void play_guitar() { std::cout << "Play a guitar"; }
};

This is an obvious case of using inheritance because Guitarist just screams that it is-a Musician. 
It would make sense for Guitarist to provide its own version of the play() method, rather than 
extending Musician by adding a new function (such as play_guitar()). We can make use of 
virtual functions to do this:

class Musician {
public:
    virtual void play() { std::cout << "Play an instrument"; }
};

class Guitarist : public Musician {
public:
    void play() override { std::cout << "Play a guitar"; }
};

Now, it’s obviousthat the Guitarist class provides its own implementation to the play() function, 
and that the client code can access it by just using the pointer to the base class:

Musician armstrong;
Guitarist steve;
Musician* m = &armstrong;
m->play();
m = &steve;
m->play();
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The preceding code snippet demonstrates polymorphism in action. Although using virtual functions 
is natural, unless we implement it correctly, it doesn’t really make much sense. First of all, the play() 
function of Musician should not have any implementation at all. The explanation is straightforward 
– since a musician cannot play more than one instrument at once, they should be able to play a 
certain instrument. By giving the function a value of 0, we make it a pure virtual function to get rid 
of the implementation:

class Musician {
public:
    virtual void play() = 0;
};

When the client code tries to declare an instance of Musician, a compile error occurs. Since you 
shouldn’t be able to build an object with an undefined function, it must result in a compilation error. 
Musician has just one purpose, and additional classes are required to inherit it. An abstract class is 
a class that is designed to be inherited. Instead of being an abstract class, Musician is actually called 
an interface. An abstract class is a semi-interface semi-class that can have both types of functions – 
with and without implementation.

Getting back to our example, let’s add the Pianist class, which also implements the Musician interface:

class Pianist : public Musician {
public:
    void play() override { std::cout << "Play a piano"; }
};

Let’s assume we have a function declared somewhere that returns a collection of musicians, either 
guitarists or pianists, to demonstrate the full potential of polymorphism:

std::vector<Musician*> get_musicians();

It is challenging for the client code to evaluate the get_musicians() function’s return value and 
determine the object’s actual subtype. It may be Guitarist, Pianist, or just Musician in 
general. The point is that the client shouldn’t really care about the actual type of objects, as it knows 
that the collection contains Musicians and a Musician object has the play() function. Since 
each object calls its implementation, the client only needs to loop through the collection to get each 
musician to play their appropriate instrument:

auto all_musicians = get_musicians();
for (const auto& m: all_musicians) {
m->play();
}

The whole potential of polymorphism is expressed in the preceding code. Let’s now examine the 
language’s low-level support for polymorphism.
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Virtual functions under the hood

Although virtual functions are not the only instances of polymorphism, we will focus more on them 
because dynamic polymorphism is the most common type of polymorphism in C++. Once again, using 
a concept or technology on your own is the best way to understand it better. Whether we declare a 
virtual member function in a class or it has a base class with virtual functions, the compiler augments 
the class with an additional pointer. The pointer points to a table that’s usually referred to as a virtual 
functions table, or simply a virtual table. We also refer to the pointer as the virtual table pointer.

Let’s imagine we are developing a class subsystem to manage bank customers’ accounts. Let’s say the 
bank requests that we implement cashing out based on the kind of account. For example, a savings 
account allows you to cash out money once a year, while a checking account allows you to cash out 
money whenever a customer wants. Let’s define the bare essentials to understand virtual member 
methods without going into any superfluous information regarding the Account class. We’ll examine 
the definition of the Account class:

class Account
{
public:
    virtual void cash_out() {
    // the default implementation for cashing out
    }
    virtual ~Account() {}
private:
    double balance_;
};

The Account class is converted by a compiler into a structure, with a pointer to the virtual functions 
table. The pseudocode that follows demonstrates what occurs when we declare virtual functions in 
a class. As always, keep in mind that we offer an explanation, rather than an implementation that is 
unique to a particular compiler (the name mangling is also in a generic form – for example, we rename 
cash_out Account_cash_out):

struct Account
{
    VTable* __vptr;
    double balance_;
};
void Account_constructor(Account* this) {
    this->__vptr = &Account_VTable;
}
void Account_cash_out(Account* this) {
    // the default implementation for cashing out
}
void Account_destructor(Account* this) {}
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Take a good look at the preceding pseudocode. The first member of the Account struct is named 
__vptr. Due to the two virtual functions that were previously defined for the Account class, we 
can think of the virtual table as an array containing two pointers to virtual member functions. See 
the following representation:

VTable Account_VTable[] = {
&Account_cash_out,
&Account_destructor
};

Let’s figure out what code the compiler will produce when we call a virtual function on an object, 
using our prior assumptions as a guide:

// consider the get_account() function as already
//implemented and returning an Account*
Account* ptr = get_account();
ptr->cash_out();

Here’s what we can imagine the compiler’s generated code to be like for the preceding code:

Account* ptr = get_account();
ptr->__vptr[0]();

Virtual functions show their power when they’re used in hierarchies. SavingsAccount inherits 
from the Account class, like so:

class SavingsAccount : public Account
{
public:
void cash_out() override {
// an implementation specific to SavingsAccount
}
virtual ~SavingsAccount() {}
};

When we call cash_out() via a pointer (or a reference), the virtual function is invoked based on 
the target object that the pointer points to. Let’s say, for instance, that the get savings_account() 
function returns SavingsAccount as Account*. The following code will call the SavingsAccount 
implementation of cash_out():

Account* p = get_savings_account();
p->cash_out(); // calls SavingsAccount version of the cash_out
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Here’s what the compiler generates for SavingsClass:

struct SavingsAccount
{
    Account _parent_subobject_;
    VTable* __vptr;
};
VTable* SavingsAccount_VTable[] = {
    &SavingsAccount_cash_out,
    &SavingsAccount_destructor,
};
void SavingsAccount_constructor(SavingsAccount* this) {
    this->__vptr = &SavingsAccount_VTable;
}
void SavingsAccount_cash_out(SavingsAccount* this) {
    // an implementation specific to SavingsAccount
}
void SavingsAccount_destructor(SavingsAccount* this) {}

Thus, we have two separate tables of virtual functions. The __vptr of an object of the Account 
type points to Account_VTable when it is created, whereas an object of the SavingsAccount 
type has its own  __vptr that points to SavingsAccount_VTable. Let’s take a look at the 
following code:

p->cash_out();

The preceding code translates into this:

p->__vptr[0]();

Now, it’s obvious that __vptr[0] resolves to the correct function because it is read via the p pointer.

What if SavingsAccount doesn’t override the cash_out() function? In that case, the compiler 
just places the address of the base class implementation in the same slot as SavingsAccount_
VTable, as shown here:

VTable* SavingsAccount_VTable[] = {
// the slot contains the base class version
// if the derived class doesn't have an implementation
&Account_cash_out,
&SavingsAccount_destructor
};

The representation and management of virtual functions are implemented differently by compilers. 
Some implementations use even different models, rather than the one we introduced earlier. For the 
purpose of simplicity, we introduced a well-liked strategy and presented it in a generalized manner.
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Now that we have covered the technical part of OOP and understood how to use this paradigm in 
our programs, it is time to learn how to correctly use it based on the type of problem we deal with. 
There are accepted best practices on how to design your classes, based on the problem you are going 
to solve. Those designs are also known as design patterns.

Classical design patterns
Design patterns are powerful tools for programmers to use. They enable us to find beautiful and 
tried-and-true solutions to design problems. A well-known design pattern can help you when you are 
attempting to create the optimal layout for your classes and the relationships between them.

Reusing effective designs and architectures is made simpler by design patterns. It is easier for developers 
of new systems to use proven techniques when they are expressed as design patterns. Design patterns 
assist you in selecting design options that enhance reusability and avoiding those that do not. Even 
documentation and maintenance of current systems can be enhanced by design patterns. Design 
patterns, in other words, facilitate the creation of “correct” designs more quickly.

“Who created design patterns?” is a question you might ask, and the answer is both no one and everyone. 
It is no one because there is no specific person to whom we can ascribe the creation of design patterns, 
and it is everyone because many people had the idea of using a particular design that turned out to 
solve relatable problems. Then, a group known as the Gang of Four decided to gather those ideas, 
name them, and write a book, making them available to everyone.

It is also interesting to mention that the concept of patterns was first introduced by Christopher 
Alexander in his book A Pattern Language: Towns, Buildings, Construction, which had nothing to do 
with programming.

In the book by the Gang of Four, it is written that every design pattern has four essential elements:

•	 The pattern name

•	 The problem

•	 The solution

•	 The consequences

The pattern name serves as a handle that allows us to succinctly summarize a design problem, 
potential solutions, and outcomes. Naming a pattern instantly expands our understanding of design. 
It enables us to design at a more abstract level. We can discuss patterns with our coworkers, in our 
documentation, and even just among ourselves when we have a name for them. It makes it simpler 
to describe designs and their trade-offs to others and to conceptualize new ones.

The problem outlines when to use the pattern. It discusses the problem and its circumstances. It could 
go into detail about specific design problems, such as how to express algorithms as objects. It could 
refer to class or object structures that show signs of rigid design. There could be a list of prerequisites 
in the problem before it makes sense to use the pattern.
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The solution outlines the components of the design, as well as their relationships, responsibilities, 
and cooperation. Because a pattern is like a template that can be used in several different scenarios, 
the solution does not specify a specific actual design or implementation. Instead, the pattern offers an 
abstract explanation of a design problem and how it is resolved by a standard arrangement of pieces 
(in our instance, classes and objects).

The outcomes and trade-offs of using a pattern are the consequences. Consequences for software 
sometimes include time and space trade-offs. They could also involve implementation and language issues.

Previously, we talked about the elements every design pattern has and in the first element which is a 
name we talked about the convenience of discussing this or that design pattern with a coworker. But 
if our coworker doesn’t know the design pattern by name, how should we describe it?

To describe a design pattern, we can use the following aspects:

•	 Intent: A description of both the problem and the solution, which suggests the design pattern 
to solve the problem

•	 Motivation: An additional example of a design problem and a solution that design suggests, 
based on the class and object structure

•	 Structure: A class diagram illustrating the many components of the pattern and their relationships

•	 Participants: The classes that are used by the design pattern and their responsibilities

•	 Code sample: The implementation in one of the programming languages

A singleton is the most basic illustration of a design pattern. We can define and use just one instance 
of a class. Assume, for instance, that an e-commerce platform just has one Warehouse. The project 
may need us to include and use the Warehouse class in several source files in order to have access 
to it. Make Warehouse a singleton so that everything is in sync:

class Warehouse {
public:
    static Warehouse* create_instance() {
        if (instance_ == nullptr) {
            instance_ = new Warehouse();
        }
        return instance_;
    }
    static void remove_instance() {
        delete instance_;
        instance_ = nullptr;
    }
private:
    Warehouse() = default;
    inline static Warehouse* instance_ = nullptr;
};
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Two static methods to construct and delete the matching instance were declared along with a static 
Warehouse object. Every time a user attempts to define a Warehouse object using the private 
constructor, a compilation error occurs. The client code must use the create_instance() method 
in order to access Warehouse:

Warehouse* w = Warehouse::create_instance();
Product book;
w->add_product(book);
Warehouse::remove_instance();

The Warehouse object’s singleton implementation is not complete and serves just as a demonstration 
of design patterns.

Design patterns overall can be classified into three categories:

•	 Creational patterns: These describe how to create more complex structures out of objects and 
classes while making these structures adaptable and effective

•	 Structural patterns: These provide a variety of object generation techniques, increasing code 
reuse and flexibility

•	 Behavioral patterns: These are focused on algorithms and the distribution of responsibilities 
among objects

Further, we are going to discuss two of the structural design patterns that are both similar and different 
– composite and decorator.

The composite pattern

When it’s necessary to handle a collection of items similar to a single object, a composite pattern is 
used. To depict a section of a hierarchy as well as its entirety, a composite pattern combines elements 
in terms of a tree structure. This kind of design pattern falls under the category of a structural pattern, 
since it builds a tree structure out of a collection of elements.

According to the book by the Gang of Four (also known as the GoF), the composite design pattern 
has the following intent: “Compose objects into tree structures to represent part-whole hierarchies. 
Composite lets clients treat individual objects and compositions of objects uniformly.”

The simplest example we can come up with is something that can contain itself and also other things 
that don’t contain anything. Let us take, for example, a box. A box can contain anything that fits in it, 
such as books, phones, or a refrigerator. A box can also contain another box, both along with books 
and phones and also without them. The following figure shows this:
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Figure 2.21 – A box that can contain another box and other items (a book in this example)

Now, let’s continue with this scenario and consider that we have to count all the books that are inside 
the box. We know that the box can contain either a book or another box, and that logic applies to all 
boxes. We can open all the boxes, take out the books, and count them, which sounds easy in the real 
world. However, when that idea is used in programming, it becomes difficult because of the many 
nesting levels.

The composite pattern suggests a solution to this problem. The solution is to return the number of 
books in the box, and if the box contains another box, then the method should go through that box 
too, using the same logic. What composite really suggests here is not caring at all about what type 
of thing we are dealing with, as we treat them all the same way with the help of a common interface.

The common interface that the composite pattern provides is called a component, the object that can’t 
contain itself (in our example, the books) is called a leaf, and the object that can contain itself is called 
a composite. The UML diagram for the composite design pattern is as follows:

Figure 2.22 – A UML diagram of a composite design pattern
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As we can see in the diagram, both Leaf and Composite implement Component. Composite 
can also add and remove components, which can turn out to be either Leaf or Composite.

As previously stated, the composite pattern combines elements in terms of a tree structure. Based on 
this statement, we can also draw the tree structure of a Composite object that can be formed from 
this design pattern.

Figure 2.23 – The tree structure of a composite design pattern

The next aspect that describes a design pattern is the participants. The participants of the composite 
design pattern are obviously the component, the composite, and the leaf.

 The component defines the composition’s object’s interface (when necessary), provides the default 
behavior for the interface shared by all classes, defines a management and access interface for its child 
components, and specifies (or, if necessary, implements) an interface to gain access to a component’s 
parent in a recursive structure.

The composite describes how the components that have children should behave, stores components 
as its children, and implements operations relating to children in the component interface.

The leaf represents the composition’s leaf objects; it cannot have children and describes how primitive 
objects should behave in the composition.

Clients communicate with objects in the composite structure using the Component class interface. 
Requests are processed directly if the receiver is a leaf. The receiver typically transmits requests to its 
child components if it is a composite, sometimes performing extra operations before or after forwarding.
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Let us further discuss the composite design pattern with the help of an example. The example will 
be based on a task management system. Let’s imagine that we have to write a program that allows a 
user to add tasks and also tasks with subtasks. The simple tasks we will call simply tasks, while other 
tasks that have subtasks we will call projects. The first and most basic UML diagram of our program 
will look like this:

Figure 2.24 – A UML diagram of a program based on a composite design pattern

Note that the diagram is just an example and many methods are omitted for brevity.

The code representation of the preceding UML diagram is as follows:

class ListOfTasks {
public:
// code omitted for brevity
    virtual std::string getTask() = 0;
};

class Task : public ListOfTasks {
public:
    // code omitted for brevity
    std::string getTask();
private:
    std::string taskDescription;
};
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class Project : public ListOfTasks {
public:
    // code omitted for brevity
    std::string getTask();
private:
    std::string projectName;
    std::vector<ListOfTasks*> tasks;
};

In our code, we only wrote the declaration of the classes and their data members, and also function 
prototypes. Many things are omitted in our code, including constructors, functions that add tasks or 
projects, and functions that help us set deadlines, mark completed tasks or projects, and so on. We 
will try to implement most of those functions but not all of them because it will become very long 
code, and we don’t want to bore you. The code of the described program is as follows:

#include <vector>
#include <string>

class listOfTasks {
public:
    virtual void setTask(std::string) = 0;
    virtual std::string getTask() const = 0;
    virtual bool isDone() const = 0;
    virtual void setDeadline(std::string) = 0;
    virtual std::string getDeadline() const = 0;
};

class Task : public ListOfTasks {
public:
    Task() : m_task_description{}, m_done(false){}
    Task(std::string task) : m_task_description(task) {}
    Task(std::string task, std::string deadline) :
        m_task_description(task)
        {
            this->setDeadline(deadline);
        }
    void setTask(std::string task)
    {
        m_task_description = task;
    }
    std::string getTask() const {

        return (m_task_description + "\t---\t" +
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          this->getDeadline() + '\n');
    }
    void setDeadline(std::string deadline)
    {
        m_deadline = deadline;
    }
    std::string getDeadline() const
    {
        return m_deadline;
    }
    void markDone()
    {
        m_done = true;
    }
    bool isDone() const
    {
        return (m_done == true);
    }
private:
    std::string m_task_description;
    std::string m_deadline;
    bool m_done;
};

The implementation of the Project class which inherits from ListOfTasks can be found on 
our GitHub account.

As you can see, we implemented the functionalities of our program following the concept of the 
composite design pattern. Our code is not complete; you can add different variations of parametrized 
constructors, destructors, and also a lot of functionality. The names of the functions can also be changed 
based on your preferences. In this coding example, we can see that there are pure virtual functions in 
our base class that have to be overridden in the children classes. The getTask() function perfectly 
depicts the concept of the composite design pattern. It treats everything as a task, also going inside 
the projects in order to find tasks there. It also bears the concept of tree traversals, which are discussed 
in further chapters.

Another key part of our program includes an array of the listOfTasks* type. It is the most logical 
thing to do. A composite can contain itself and also leaves, and in our case, our project can contain 
both tasks and also other projects, which is why we have chosen the listOfTasks* type so that 
we can create objects of both the task and project types. This is allowed because both inherit 
from the listOfTasks class.
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By discussing the pattern, bringing examples, and drawing diagrams, we can introduce “rules” to 
implement the design pattern. They are as follows:

•	 Breaking down your project to understand what parts it consists of. If the project can be broken 
down into parts that can be structured into a tree, then you can use the composite design 
pattern. After breaking down the project into elements and arrays, you have to make sure that 
the array can hold types corresponding to both of those objects.

•	 Making a container class to hold complicated items. Provide an array to keep references to child 
components in this class. The array should be of the component type because it is going to 
store both the leaves and composite objects.

•	 Creating a component interface with functions that make sense for both the leaves and 
composite objects.

•	 Declaring and implementing add and remove functions in the composite class is better. 
The leaves shouldn’t be able to add or remove anything, which is why it is better to declare 
those functions in the composite class and not in the component.

Summing up everything we have talked about, we can conclude that the composite design pattern 
is a great choice if you are going to work with complicated tree structures, as they make it easier to 
do by using recursion and polymorphism. Besides that, this design pattern adheres to one of the key 
design principles – the open-closed principle, which states that “objects or entities should be open for 
extension but closed for modification.”

The next design pattern we are going to discuss is a decorator pattern, which is kind of similar to the 
composite design pattern. We are not only going to discuss the properties of the decorator design 
pattern but also the differences between these two patterns that have similarities.

The decorator pattern

With the use of a structural design pattern called decorator, you can give existing objects new behaviors 
by enclosing them in special wrapper objects that also contain the new behaviors. Sometimes, we want 
to apply obligations to specific objects rather than a class as a whole.

Let us imagine that we have an application that allows us to edit photos. We import a photo and it is 
too long, so there is a need to add a scroll button․ The scroll button is not always necessary because 
our picture can fit into the application size, and there would be no need to add one. Therefore, 
everything should be decided during runtime, and we shouldn’t force our application to have a scroll 
button if it doesn’t need it. Clients are not in charge of deciding how and when to add a scroller to 
our application, also called a component.
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Enclosing the component in another object and adding the scroller provides a more adaptable strategy. 
Decorator is a term used to describe the enclosing object. The decorator might do something before or 
after sending requests to the component. You can recursively layer decorators thanks to transparency, 
which opens the door to an infinite number of extra responsibilities.

We should use the decorator design pattern in the following scenarios:

•	 If we want to dynamically and transparently assign responsibilities to specific objects – that is, 
without impacting other objects.

•	 If it is impossible to extend through subclassing. Sometimes, when we use the subclassing 
method, our program results in a class explosion, which looks like this:

Figure 2.25 – An example of a class explosion

Based on our description, it is not that easy to guess the structure of the design pattern. We don’t 
expect you to draw this structure yourself; instead, we will give you the real structure that this design 
pattern has. It consists of a component, a concrete component, a decorator, and a concrete decorator. 
A visual representation is as follows:
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Figure 2.26 – A UML diagram of a decorator design pattern

If we ignore Concrete Decorators and the names in our structure, we can see that the structure of the 
decorator design pattern is similar to the structure of the composite design pattern. What is different 
is the part that said to ignore for comparing those two patterns.

The component specifies the interface for objects that may have dynamically assigned responsibilities, 
the concrete component specifies an object to which extra responsibilities can be assigned, the decorator 
keeps track of an instance of a Component object and creates an interface that complies with that of 
Component, and the concrete decorators add new responsibilities to the component.

The Decorator pattern should be used with a number of considerations in mind. For example, you 
shouldn’t use this design pattern if you are going to add only one responsibility. As we have already 
said, we use the pattern to avoid class explosions, and if you think that your code is going to end up 
being one of the big explosions, then and only then you should consider using a decorator design 
pattern. As we have a common parent for both the decorator and the component, it is vital to keep 
the parent class as simple as possible. Subclasses should be given the responsibility to define the data 
representation; otherwise, the complexity of the Component class can make it difficult to apply 
decorators often. The likelihood of concrete subclasses paying for things they don’t need arises when 
the component has a lot of functionality.
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We have discussed class explosion, and the example was based on one of the most popular foods. We 
had pizza and pizza variations in our illustration. Let us imagine that there is a pizzeria that suggests 
buyers choose whatever topping they want, and a pizza without topping is a pizza with marinara 
sauce and one type of cheese. The customers can add whatever topping they want with different 
combinations. In this case, even if the pizzeria had only 10 ingredients, the number of variations will 
be a number that is equal to the factorial of 10, which is 3,628,800. With that many classes inheriting 
from a single class, it would be bigger than just an explosion (probably the end of the programming 
world). Decorator design patterns come in handy here to save our fast-growing programming world.

Let us consider a case where we have to write a program that can help a seller to get the price of the 
pizza, based on what topping the customer decided to add. In the following example, we demonstrate 
a definition of the classes that are connected over the logic of the decorator design pattern, as well as 
the implementation of the price function and the parametrized constructors. The code looks as follows:

#include <iostream>
#include <vector>

class ItalianFood {
public:
    virtual ~ItalianFood() {}
    virtual int price() const = 0;
};

class Pizza : public ItalianFood {
public:
    int price() const override {
        return 8;
    }
};

class Topping : public ItalianFood {
protected:
    ItalianFood* m_component;
public:
    Topping(ItalianFood* component) :
      m_component(component) {
    }
    int price() const override {
        return this->m_component->price();
    }
};

class Pepperoni : public Topping {
public:
    Pepperoni(ItalianFood* component) :
      Topping(component) {}
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    int price() const override {
        return 2 + Topping::price();
    }
};

class Ham : public Topping {
public:
    Ham(ItalianFood* component) : Topping(component) {}
    int price() const override {
        return 3 + Topping::price();
    }
};

//helper function to display the total price
void displayTotal(ItalianFood *component) {
    std::cout << "The total is " << component->price() << '$';
}

The preceding code looks somewhat similar to the code we demonstrated when we discussed the 
composite design pattern. We have the same inheritance hierarchy, but what is different in this code 
is the data member it holds, which is only one component. So, we can say that besides the structural 
difference, another difference is that in the decorator design pattern, the decorator has only one 
component, while in the composite design pattern, the composite contains multiple components. If 
we try to change the decorator and make it decorate multiple components, it will eventually become 
a composite design pattern, as it will form a tree-like structure. If we compare those structures as 
diagrams, they are different in the following way:

Figure 2.27 – The formation of objects when decorator and composite design patterns are applied
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So, anytime you design a program that is going to look like a tree, use the composite design pattern, 
and if you are going to wrap an object at some point, use the decorator design pattern.

We also mentioned that the composite design pattern adheres to the open-closed principle, while 
the decorator design pattern mostly adheres to the single responsibility principle, as a large class that 
implements all potential behavior variants can be broken down into multiple smaller classes. Meanwhile, 
if you decide to use the decorator design pattern, don’t forget that it has some disadvantages, such as 
removing a certain wrapper from the stack of wrappers, or creating a decorator so that its behavior 
is independent of the position in the decorator’s stack.

While design patterns help us design our projects in a specific way for a specific problem, design 
principles are universal for all types of projects.

Design principles
You can use a variety of principles and design techniques while creating your project. While keeping 
the design basic is usually preferable, there are certain fundamental rules that apply to practically all 
projects. For instance, SOLID is composed of five principles, all of which – or parts of them – can be 
beneficial to a design.

SOLID stands for the following principles:

•	 Single responsibility

•	 Open-closed

•	 Liskov substitution

•	 Interface segregation

•	 Dependency inversion

Let’s discuss each principle with examples.

The single responsibility principle

The idea of one object and one job is what the single responsibility principle asserts. Try to simplify 
the functionality of your objects and the intricacy of their relationships. Even if breaking down a 
large object into smaller, simpler components isn’t always simple, give each object a single task. Single 
responsibility is a context-bound concept. It’s not about having just one method in a class; it’s also 
about making the class or module responsible for one thing. For instance, the following User class 
just has one duty – saving user data:

class User
{
public:
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// constructors and assignment operators are omitted
// for code brevity
    void set_name(const std::string& name);
    std::string get_name() const;
    void set_email(const std::string&);
    std::string get_email() const;
// more setters and getters are omitted for code brevity
private:
    std::string name_;
    std::string email_;
    Address address_;
    int age;
};

However, we can compel the User class to include methods to add and delete payment options. 
Additionally, we can add a new type, PaymentOption. A user can have more than one payment 
option, so the relationship between User and PaymentOption is one-to-many, and the UML 
diagram looks like this:

Figure 2.28 – The UML diagram

With this example, we can move in two directions. The first one suggests splitting the User class 
into two distinct classes. Each class will be in charge of just one thing. The concept is shown in the 
following class diagram:
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Figure 2.29 – A UML diagram of a program based on the decorator design pattern

Only the user’s basic information will be stored in one of them, while the user’s payment options will be 
stored in the other. Accordingly, we gave them the names UserInfo and UserPaymentOptions. 
Although some people might like the new design, we’ll keep using the old one, and here’s why. Though 
the User class contains both user information and payment options, the latter also represents a piece 
of information. We set and get payment options in the same way that we set and get a user’s email. As 
a result, we don’t change the User class, since it already adheres to the single responsibility principle. 
The peace will be broken when we provide users of the User class the ability to make payments. In 
that case, the User class would handle both storing user data and processing payments. We won’t do 
that, since it violates the single responsibility principle.

The idea of single responsibility also applies to functions. There are two responsibilities for the 
add_payment_option() method. If the second (default) argument of the function is true, 
a new primary payment option is added. If not, the new payment option is added to the group of 
non-primary alternatives. It’s preferable to create a primary payment option using a different method. 
Each of the methods will then be in charge of a particular task.

The open-closed principle

According to the open-closed principle, a class should be open for extension but closed for modification. 
This implies that it is always preferable to add additional features to the underlying functionality rather 
than changing it. Let’s consider the Product class of the e-commerce application we designed. The 
following represents a simple diagram for the Product class:
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Figure 2.30 – A UML diagram of a Product class

The three properties of a Product object are name, price, and weight. Imagine that a client has a 
new request after you’ve designed the Product class and the entire e-commerce platform. They now 
want to purchase digital products, such as e-books, movies, and audio. Everything is fine except for 
the weight of the product. The product weight is the only item that needs improvement. We have to 
reconsider the logic behind Product usage now that there may be two different sorts of products 
– tangible and digital. We can add a new function to Product, as demonstrated in the following 
line of code:

class Product
{
public:
    // code omitted for brevity
    bool is_digital() const {
    return weight_ == 0.0;
    }
    // code omitted for brevity
};

We obviously changed the class, which is against the open-closed rule. According to the principle, the 
class should be closed to modifications. It should be open for extension. By rewriting the Product class 
and turning it into an abstract base class for all products, we can accomplish this. Next, we create two 
more classes that inherit the Product base class – PhysicalProduct and DigitalProduct. 
The new layout is shown in the following class diagram:
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Figure 2.31 – A UML diagram of a class hierarchy

The weight_ property was removed from the Product class, as shown in the preceding diagram. 
Now that there are two more classes, DigitalProduct lacks a weight_ property, while 
PhysicalProduct has one. DigitalProduct contains a file_path_ property instead. 
This approach satisfies the open-closed principle because now all the classes are open for extension. 
We use inheritance to extend classes, and the following principle is strongly related to that.

The Liskov substitution principle

The Liskov substitution principle is named after Barbara Liskov, a Turing Award winner and doctor 
of computer science. The Liskov substitution principle is associated with correctly deriving from a 
type. Simply put, this means that if a function accepts an argument of one type, it should also accept 
an argument of the derived type.
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It’s difficult to forget about inheritance and the Liskov substitution principle once you understand 
both. Let’s continue developing the Product class and add a new method that returns the price of the 
product, based on the currency type. We can store the price in the same currency units and provide 
a function to convert the price into a specified currency. This is how the technique is easily applied:

enum class Currency { USD, EUR, GBP };
// the list goes further
class Product
{
public:
    // code omitted for brevity
    double convert_price(Currency c) {
    // convert to proper value
    }
    // code omitted for brevity
    };

After some time passes, a business decides to provide lifelong discounts on all digital products. Every 
digital item will now be discounted by 12%. Soon, we’ll add a separate function to the DigitalProduct 
class that returns a converted price by applying the discount. Here’s how it looks in DigitalProduct:

class DigitalProduct : public Product
{
public:
    // code omitted for brevity
    double convert_price_with_discount(Currency c) {
    // convert by applying a 12% discount
    }
};

The problem in the design is obvious. Calling convert_price() on the DigitalProduct 
instance will have no effect. Even worse, the client code must not call it. Instead, it should call 
convert_price_with_discount() because all digital products must sell with a 12% discount. 
The design contradicts the Liskov substitution principle.

We should keep in mind the elegance of polymorphism, rather than damage the class hierarchy. Here 
is how a better version might appear:

class Product
{
    public:
    // code omitted for brevity
    virtual double convert_price(Currency c) {
    // default implementation
    }
    // code omitted for brevity
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};
class DigitalProduct : public Product
{
public:
    // code omitted for brevity
    double convert_price(Currency c) override {
    // implementation applying a 12% discount
    }
    // code omitted for brevity
};

You can see that we are no longer in need of the convert_price_with_discount() method, 
but we need to go through the design problems once more. Let’s improve the design by adding private 
virtual methods to the base class for discount calculation. The Product class now has a private virtual 
member method called calculate_discount() in the following modified version:

class Product
{
public:
    // code omitted for brevity
    virtual double convert_price(Currency c) {
    auto final_price = apply_discount();
    // convert the final_price based on the currency
    }
private:
    virtual double apply_discount() {
    return getPrice(); // no discount by default
    }
    // code omitted for brevity
};

The convert_price() function calls the private apply_discount() function, which returns the 
price as is. And here comes the trick – as shown in the following DigitalProduct implementation, 
we override the apply_discount() function in derived classes:

class DigitalProduct : public Product
{
public:
    // code omitted for brevity
private:
    double apply_discount() override {
    return getPrice() - (getPrice() * 0.12);
    }
    // code omitted for brevity
};
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A private function cannot be called from outside the class, although it can be overridden in derived 
classes. The beauty of overriding private virtual functions is demonstrated by the previous code. We 
make changes to the implementation while leaving the interface unchanged. A derived class doesn’t 
override the interface if it does not need to provide custom functionality for discount calculation. 
However, before converting the price, DigitalProduct must add a 12% discount. The base class’s 
public interface doesn’t need to be changed.

Tip
You should consider rethinking the design of the Product class. It’s even better practice to call 
apply_discount() directly in getPrice(), hence always returning the latest effective 
price, although at some point you should force yourself to stop.

The design process is imaginative but occasionally unappreciative. It’s not unusual to have to completely 
rebuild code due to new, unforeseen requirements. We employ strategies and concepts to reduce the 
number of disruptive changes that will occur with the addition of new features. The following SOLID 
principle is one of the greatest techniques to make your design flexible.

The interface segregation principle

According to the interface segregation principle, a complicated interface should be split up into smaller 
interfaces. Classes can avoid implementing an interface they don’t use.

We need to include functionalities for product shipping, replacement, and expiration in our e-commerce 
application. The shipment of the product involves moving the product item to its buyer. At the moment, 
we don’t care about the shipment details. Replacement of a product considers replacing a damaged 
or lost product after it has been shipped to the buyer. Finally, expiring a product means getting rid of 
products that did not sell by their expiry date.

We are free to implement all of the features in the aforementioned Product class, but eventually, 
we’ll come across things that, for instance, can’t be shipped (for example, selling a house rarely involves 
shipping it to the buyer). There may be certain products that cannot be replaced. An original painting, 
for instance, cannot be replaced, even if it is lost or destroyed. Finally, digital products won’t expire 
ever – well, in most situations.

Client code shouldn’t be forced to implement a functionality it doesn’t need. The class that implements 
behaviors is referred to as the client. The example that follows is a bad practice that goes against the 
interface segregation principle:

class IShippableReplaceableExpirable
{
public:
    virtual void ship() = 0;
    virtual void replace() = 0;



Design principles 123

    virtual void expire() = 0;
};

The Product class now implements the interface that was previously displayed. It has to provide 
an implementation for all of the methods. The following model is one suggested by the interface 
segregation principle:

class IShippable
{
public:
    virtual void ship() = 0;
    };
class IReplaceable
{
public:
    virtual void replace() = 0;
    };
class IExpirable
{
public:
    virtual void expire() = 0;
};

Now, none of the interfaces are implemented by the Product class. Its derived classes derive 
(implement) from specific types. The following example declares several types of product classes, each 
of which supports a limited number of the behaviors introduced earlier. Be aware that we exclude 
class bodies to keep the code concise:

class PhysicalProduct : public Product {};
// The book does not expire
class Book : public PhysicalProduct, public IShippable, public 
IReplaceable
{
};
// A house is not shipped, not replaced, but it can expire
// if the landlord decided to put it on sell till
// a specified date
class House : public PhysicalProduct, public IExpirable
{
};
class DigitalProduct : public Product {};
// An audio book is not shippable and it cannot expire.
// But we implement IReplaceable in case we send a
// wrong file to the user.
class AudioBook : public DigitalProduct, public IReplaceable
{
};
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Consider implementing IShippable for AudioBook if you want to wrap a file downloading 
as shipment.

The dependency inversion principle

Last but not least, objects shouldn’t be strongly coupled, according to dependency inversion. It 
makes it simple to switch to a different dependency. For instance, when a user buys a product, we 
send a receipt for the user’s purchase. Technically, there are various ways to send a receipt, including 
printing and mailing one or displaying it on the platform’s user account page. For the latter, we notify 
the consumer that the receipt is available to view through email or the app. View the following user 
interface to print a receipt:

class IReceiptSender
{
public:
    virtual void send_receipt() = 0;
};

Let’s assume we’ve added the purchase() function to the Product class and sent the receipt once 
it completes. The mailing of the receipt is handled by the following portion of the code:

class Product
{
public:
    // code omitted for brevity
    void purchase(IReceiptSender* receipt_sender) {
    // purchase logic omitted
    // we send the receipt passing purchase information
    receipt_sender->send _receipt(/*
      purchase-information */);
}
};

We can extend the application by adding as many receipt printing options as needed. The 
IReceiptSender interface is implemented by the class listed here:

class MailReceiptSender : public IReceiptSender
{
public:
    // code omitted for brevity
    void send_receipt() override { /* ... */ }
};
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Two more classes – EmailReceiptSender and InAppReceiptSender – both implement 
IReceiptSender. So, to use a specific receipt, we just inject the dependency to Product via the 
purchase() method, as shown here:

IReceiptSender* rs = new EmailReceiptSender();
// consider the get_purchasable_product() is
// implemented somewhere in the code
auto product = get_purchasable_product();
product.purchase(rs);

We can go further by implementing a method in the User class that returns the receipt-sending 
option, desirable for the concrete user. The classes will become much more uncoupled as a result.

The SOLID concepts covered here are all natural ways to construct classes. Although sticking to the 
principles is not required, your design will benefit if you do.

More UML in project design
Developers should agree upon and adhere to a shared set of standards and norms, some of which 
should be applicable to modeling when working on a software project. Models that use a standard 
notation and adhere to efficient style rules are simpler to comprehend and keep up with. These models 
will enhance communication both inside your team and with your partners and consumers, which will 
lessen the likelihood of expensive misunderstandings. By reducing the number of aesthetic options 
you must choose from, modeling guidelines help you save time so you can concentrate on what you 
do best – develop software. The first step in implementing modeling standards and rules within your 
company is to choose a common notation. The best one to choose is probably UML, as it depicts 
everything that the OOP paradigm suggests.

We have already shown the UML diagrams that depict the relationships between classes and objects, and 
in this part of the chapter, we will discuss the more advanced parts of the UML-like behavior diagrams.

UML provides the foundation necessary for you to precisely specify behavior, using its behavior 
diagrams. Behavior is the term used to describe the immediate results of at least one object’s activity. 
It has an impact on how objects’ states evolve over time. Behavior can be determined by an object’s 
behaviors or can arise as a result of interactions between different objects. The different types of 
behavior diagrams are the use case diagram, the state machine diagram, the activity diagram, the 
sequence diagram, and so on.

The sequence diagram

We will continue talking about behavior diagrams with the help of a sequence diagram. The sequence 
diagram outlines how items interact to complete a certain task – for example, how a person gets money 
from an ATM. The chronological order of the communications sent and received by the interaction 
partners is what is highlighted. You can model complicated relationships using various components 
to regulate the messages’ chronological sequence, as well as modularization techniques.
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Generally, sequence diagrams are used to explore a design, since it gives you a visual method to follow 
the invocation of the operations that your classes describe, helping you to find any obstacles in the 
object-oriented design. You can easily determine where you need to alter your design to disperse a load 
throughout your system by looking at the messages that are delivered to an object, the approximate 
length of time it takes to perform a summoned function, which visually indicates which objects are 
going to end up complex, and so on.

Before going straight into creating a sequence diagram, let’s list the general rules that should be followed 
to start the process of creating a sequence diagram. First of all, we should start from left to right, which 
means that the first message center is going to be in the top-left corner. If there are messages under the 
first message, it means that they are sent only after the first message is sent. Another rule is to layer 
your diagram to make it easier for others to read. The diagram should also have an actor, someone 
who starts the whole process. In the preceding example, the person who wants to get money from an 
ATM is supposed to be an actor. Having discussed the preceding rules, let’s now create a sequence 
diagram. Our diagram will be based on the example we previously talked about. The actor of our 
program will be a person who tries to get money from an ATM, and the objects of our program will 
be an ATM, a bank server, and a bank account. Let’s start by drawing what we discussed:

Figure 2.32 – The actor and objects illustrated with a sequence diagram

Our diagram is not complete, of course, and now that we have the main objects and the actor, we can 
continue drawing the messages and other details. Next, we will add the lifelines for both the actor and 
the objects. Lifelines show the existence of an object or an actor over time:

Figure 2.33 – The lifelines of the actor and objects

The lifelines are represented as dashed lines. Now, we can continue and start drawing the interactions 
between the actor and the objects. When people want to get money from an ATM, they should insert 
a card into it, which is the first interaction between an actor and an object.
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Figure 2.34 – The interaction between an actor and objects

Now, we see that four arrows are added to the diagram. The first one, named card insertion, is 
performed by the actor. The person inserts the card and sends a message to an ATM. The ATM itself 
should check whether the card is verified or not and send a message to the bank server to check it. 
The bank server checks it and responds with whether it is valid or not, and we can see that the return 
message is drawn with a dashed line and not a solid line, which is correct. The last arrow goes from 
an ATM to the actor, and the line of the arrow is not dashed, as it is not a reply message.

As you can see in the preceding diagram, only the case of a valid card is depicted. But what if the card 
is not valid? In that case, we should use an alternative frame. Let’s try to depict that:

Figure 2.35 – The illustration of an alternative frame in a sequence diagram
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Now, we can see the alternative frame we were talking about. It allows us to design a diagram that 
shows two different variations of the same process. If the card is valid, the process continues, and now 
the actor should enter the PIN.

Figure 2.36 – The second alternative frame of our example, expressed with a sequence diagram

So, we can see that the process continues with the same logic. The message reaches the bank account 
when the amount is entered. In that case, the bank server should send a message to the bank account 
to see whether the person has enough money. Let’s continue drawing the rest, and in the end, we will 
just add one more detail to our diagram and finish with it.
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Figure 2.37 – The final sequence diagram of our example
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We see in the final diagram that there is one more component. The shapes on the lines indicate the 
active time for each object.

Our diagram is based on a real-life example. When you start writing a program and want to use the 
sequence UML diagram to design it, your arrows represent the functions, and you can overwrite them 
with the names of your functions.

Following the rules and tips that we provided in the sequence diagram, you can now apply them to 
your projects if the logic of this diagram and the logic of your program match.

Summary
In this chapter, we discussed the fundamental concepts of OOP. We touched on the low-level details 
of classes and the compiler implementation of the C++ object model. Knowing how to design and 
implement classes without actually having classes helps a lot in using the classes the right way.

We also discussed the need for inheritance and tried to employ composition instead of inheritance, 
wherever it might be applicable. C++ supports three types of inheritance – public, private, and protected. 
All of these types have their applications in particular class designs. Finally, we understood the use 
and power of polymorphism by introducing an example that drastically increases the convenience 
of the client code.

We also talked about design patterns and the difference between two structural design patterns – 
composite and decorator.

And finally, we finished the chapter by diving into one of the advanced UML diagrams, providing a 
sequence diagram for our example and rules and tips on how you can use it in your programs.

The next chapter will introduce C++ templates, examples of template functions, template classes, 
template specialization, and template metaprogramming in general.

Questions
1.	 What are the three properties of objects?

2.	 What’s the advantage of moving objects instead of copying them?

3.	 What’s the difference between aggregation and composition relations?

4.	 What’s the difference between private and protected inheritance?

5.	 List the differences between composite and decorator design patterns.

6.	 Draw a sequence diagram that will be based on some interaction between a student and 
a university.
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Further reading
•	 Grady Booch – Object-Oriented Analysis and Design: https://www.amazon.com/

Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X

•	 Stanley Lippman – Inside the C++ Object Model: https://www.amazon.
com/Inside-Object-Model-Stanley-Lippman/dp/0201834545/
ref=sr_1_1?keywords=Inside+the+C%2B%2B+Object+Model&qid 
=1662479088&s=books&sr=1-1 

•	 Martina Seidl, Marion Scholz, and Christian Huemer – UML @ Classroom: An Introduction 
to Object-Oriented Modeling: https://www.amazon.com/UML-Classroom-
Introduction-Object-Oriented-Undergraduate/dp/3319127411
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3
Understanding and  

Designing Templates

Templates are a unique feature of C++ by which functions and classes have the ability to support 
generic data types—in other words, we can implement a function or class independent of a particular 
data type; for example, a client may request a max() function to handle different data types. Instead 
of implementing and maintaining many similar functions by using function overloading, we can just 
implement one max() function and pass the data type as a parameter. Moreover, templates can work 
together with multiple inheritance and operator overloading to create powerful generic data structures 
and algorithms in C++ such as the Standard Template Library (STL). Additionally, templates can also 
be applied to compile-time computation, compile-time and runtime code optimization, and more.

In this chapter, we will learn about the syntax of function and class templates, their instantiations, 
and their specializations. Then, we will introduce variadic templates and their applications. Next, we 
will discuss template parameters and the corresponding arguments that are used for instantiating 
them. After that, we’ll learn how to implement a type trait and how to use this type of information to 
optimize algorithms. Finally, we will present techniques that we can use to speed up programs when 
they’re executed, which include compile-time computation, compile-time code optimization, and 
static polymorphism.

This chapter will cover the following topics:

•	 Motivation for using templates

•	 Function templates

•	 Class templates

•	 Understanding variadic templates

•	 Exploring template parameters and arguments

•	 Traits

•	 Template metaprogramming (TMP) and its applications
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Technical requirements
The code for this chapter can be found in this book’s GitHub repository:

https://github.com/PacktPublishing/Expert-CPP/tree/master/Chapter03

Motivation for using templates
So far, when we have defined a function or a class, we have had to provide input, output, and 
intermediate parameters. For example, let’s say we have a function to perform the addition of two 
int-type integers. How do we extend this so that it handles all the other basic data types, such as 
float, double, char, and so on? One way is to use function overloading by manually copying, 
pasting, and slightly modifying each function. Another way is to define a macro to do the addition 
operation. Both approaches have their side effects.

Moreover, what happens if we fix a bug or add a new feature for one type, and this update needs to be 
done for all the other overloading functions and classes later? Instead of using this silly copy-paste-
and-replacement method, do we have a better way of handling this kind of situation?

In fact, this is a generic problem that any computer language can face. Pioneered by the general-purpose 
functional programming Meta Language (ML) in 1973, ML permits writing common functions or 
types that differ only in the set of types that they operate on when used, thus reducing duplication. 
Later inspired by the parameterized modules provided in the chartered life underwriter (CLU) and 
the generics provided by Ada, C++ adopted the template concept, which allows functions and classes 
to operate with generic types. In other words, it allows a function or class to work on different data 
types without them needing to be rewritten.

Actually, from an abstract point of view, C++ functions or class templates (such as cookie cutters) 
serve as a pattern for creating other similar functions or classes. The basic idea behind this is to create 
a function or class template without having to specify the exact type(s) of some or all variables. Instead, 
we define a function or class template using placeholder types, called template type parameters. Once 
we have a function or class template, we can automatically generate functions or classes by using an 
algorithm that has been implemented in other compilers.

There are three kinds of templates in C++: function templates, class templates, and variadic templates. 
We’ll take a look at these in the next sections.

Function templates
A function template defines how a family of functions can be generated. A family here means a group 
of functions that behave similarly. As shown in Figure 3.1 and outlined next, this includes two phases:

https://github.com/PacktPublishing/Expert-CPP/tree/master/Chapter03
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Figure 3.1 – Function template format

•	 Creating a function template, that is, the rules on how to write it

•	 Template instantiation, that is, the rules that are used to generate functions from their template

In part I of the preceding diagram, we discuss the format that will be used to create a function template 
for generic types, but with respect to the specialized template, which we also refer to as the primary 
template. Then, in part II, we introduce the three ways to generate functions from the template. Lastly, 
the Specialization and overloading subsection in this chapter tells us how to customize the primary 
template (by changing its behavior) for special types. In the following subsections, we will delve into 
various topics such as template creation syntax, template instantiation and its categories, as well as 
specialization and overloading of templates.

Syntax

There are two ways to define function templates, as shown in the following code snippet:

template <typename identifier_1, …, typename identifier_n >
function_declaration;

template <class identifier_1,…, class identifier_n>
function_declaration;

Here, identifier_i (i=1,…,n) is the type or class parameter, and function_declaration 
declares the function body part. The only difference in the preceding two declarations is the keywords—
one uses class while the other uses typename, but both have the same meaning and behavior. 
Since a type (such as the basic types—int, float, double, enum, struct, union, and so on) 
is not a class, the typename keyword method was introduced to avoid confusion.
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For example, the classic find-maximum-value function template, app_max(), can be declared 
as follows:

template <class T>
T app_max (T a, T b) {
return (a>b?a:b);// note:we use ((a)>(b) ? (a):(b))
                 // in macros
}                // it is safe to replace (a) by a, and (b)
                 // by b now

This function template can work for many data types or classes, as long as there’s a copy constructible 
type where the a>b expression is valid. For user-defined classes, this means that the greater-than 
operator ((>)) must be defined.

Note that the function template and template function are different things. Function template refers to a 
kind of template that’s used to generate functions by a compiler, so the compiler does not generate any 
object code for it. On the other hand, template function means an instance from a function template. 
Since it is a function, the corresponding object code is generated by the compiler. However, the latest 
C++ standard documents suggest avoiding using the imprecision term template function. Therefore, 
we will use function templates and member function templates in this book.

Instantiation

Since we may potentially have an infinite number of types and classes, the concept of function 
templates not only saves space in the source code file but also makes code easier to read and maintain. 
However, compared to writing separate functions or classes for the different data types that are used 
in our applications, it does not produce smaller object code. For instance, consider a program using 
a float and int version of app_max():

cout << app_max(3,5) << endl;
cout << app_max(3.0f,5.0f) << endl;

The compiler will generate two new functions in the object file, as follows:

int app_max ( int a, int b) {
  return (a>b?a:b);
}
float app_max (float a, float b) {
  return (a>b?a:b);
}

This process of creating a new definition of a function from a function template declaration is called 
template instantiation. During this instantiation process, the compiler determines the template 
arguments and generates actual functional code on demand for your application. Typically, there are 
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three forms: explicit instantiations, implicit instantiations, and template deductions. Let’s discuss each 
form starting with template deductions and later looking at the other two forms.

Deduction

When you call a template function, the compiler needs to figure out the template arguments first, 
even if not every template argument is specified. Most of the time, it will deduce the missing template 
arguments from the function arguments. For example, in part B of the preceding function, when you 
call app_max(5, 8) in line E, the compiler deduces the template argument as an int type (int 
app_max<int>(int,int)) because the input parameters, 5 and 8, are integers. Similarly, line F 
will be deduced as a float type—that is, float app_max<float>(float,float).

However, what happens if there is confusion during instantiation? For instance, in the commented-out line 
G of the previous program, depending on the compiler, it might call app_max<double>(double, 
double), app_max<int>(int, int), or just give a compile error message. The best way 
to help the compiler deduce the type is to call the function template by giving a template argument 
explicitly. In this case, if we call app_max<double>(5, 8.0), any confusion will be resolved.

Note
From the compiler’s point of view, there are several ways to do template argument deduction—
deduction from a function call, deduction from a type, auto type deduction, and non-deduced 
contexts. However, from a programmer’s point of view, you should never write fancy code to 
ill-use the concept of function template deduction to confuse other programmers, such as with 
line G in the previous example.

Specialization and overloading

Specialization allows us to customize the template code for a given set of template arguments. It allows 
us to define special behavior for specific template arguments. A specialization is still a template; you 
still need an instantiation to get the real code (automatically by the compiler).

In the sample code at https://github.com/PacktPublishing/Expert-C-2nd-
edition/tree/main/Chapter03/3_func_template_specialization.cpp, the 
primary function template, T app_max(T a, T b), will return a or b based on the return of 
operator a>b, but we can specialize it for T = std::string so that we only compare the 0-th 
elements of a and b; that is, a[0] >b[0].

The preceding code defines a primary template first, and then it explicitly specializes T as std::string; 
that is, instead of comparing the values of a and b, we only care about a[0] and b[0] (the behavior 
of app_max() is specialized). In the test function, line A calls app_max(int,int) and line B 
calls the specialized version because there is no ambiguity at the deduction time. If we uncomment 
lines C and D, the primary function template, char* app_max (char*, char*), will be 
called, since char* and std::string are different data types.

.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/3_func_template_specialization.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/3_func_template_specialization.cpp
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Essentially, specialization somewhat conflicts with function overload resolution: the compiler needs 
an algorithm to resolve this conflict by finding the right match among the template and overloading 
functions. The algorithm for selecting the right function involves the following two steps:

1.	 Perform overload resolution among regular functions and non-specialized templates.

2.	 If a non-specialized template is selected, check whether a specialization exists that would be 
a better match for it.

For example, in the following code block, we’re declaring the primary (line 0) and specialized function 
templates (lines 1-4), as well as the overload functions (lines 5-6) of f()):

template<tyename T1, typename T2> void f( T1, T2 );//line 0
template<typename T> void f( T ); // line 1
template<typename T> void f( T, T ); // line 2
template<typename T> void f( int, T* ); // line 3
template<> void f( int ); // line 4
void f( int, double ); // line 5
void f( int ); // line 6

f() will be called several times in the following code block. Based on the preceding two-step rule, 
we can show which function is chosen in the comments. We’ll explain the reason for doing this after:

int i=0;
double d=0;
float x=0;
complex c;
f(i);      //line A: choose f() defined in line 6
f(i,d);    //line B: choose f() defined in line 5
F<int>(i); //line C: choose f() defined in line 4
f(c);      //line D: choose f() defined in line 1
f(i,i);    //line E: choose f() defined in line 2
f(i,x);    //line F: choose f() defined in line 0
f(i, &d);  //line G: choose f() defined in line 3

For lines A and B, since f() defined in lines 5 and 6 are regular functions, they have the highest 
priority to be chosen, so f(i) and f(i,d) will choose them, respectively. For line C, because the 
specialized template exists, the f() instance generated from line 4 is a better match than what was 
created from line 1. For line D, since c is a complex type, only the primary function template defined 
in line 1 matches it. Line E will choose the f() instance that was created by line 2 because the two 
input variables are the same type. Finally, line F and line G will pick up the functions created from the 
templates in lines 0 and 3, respectively.

Having learned about functional templates, we will now move on to class templates.
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Class templates
A class template defines a family of classes, and it is often used to implement a container. For example, 
the C++ Standard Library contains many class templates, such as std::vector, std::map, 
std::deque, and so on. In OpenCV, cv::Mat is a very powerful class template, and it can handle 
1D, 2D, and 3D matrices or images with built-in data types such as int8_t, uint8_t, int16_t, 
uint16_t, int32_t, uint32_t, float, double, and so on.

Similar to function templates, as shown in Figure 3.2, the concept of class templates contains a template 
creation syntax, its specialization, and its implicit and explicit instantiations:

Figure 3.2 – Class template and its instantiation

In part I of the preceding diagram, with a certain syntax format, we can create a class template for 
generic types, also known as a primary template, and it can be customized for special types with 
different member functions and/or variables. Once we have a class template, in part II, the compiler 
will instantiate it to template classes either explicitly or implicitly based on the application’s demand.

Now, let’s look at the syntax for creating a class template.

Syntax

The syntax for creating a class template is as follows:

[export] template < template_parameter_list> class-declaration

Here, we have the following:

•	 template_parameter-list (see the link in the Further reading section) is a non-empty 
comma-separated list of the template parameters, each of which is either a non-type parameter, 
a type parameter, a template parameter, or a parameter pack of any of those.
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•	 class-declaration is the part that’s used to declare a class that contains a class name and 
its body in curly brackets. By doing so, the declared class name also becomes a template name.

For example, we can define a class template, V, so that it contains all kinds of 1D vector data types, 
as in https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/
main/Chapter03/6_class_v.h.

Once we have this class template, the compiler can generate classes during the instantiation process. 
For the reason we mentioned in the Function templates section, we will avoid using the imprecise 
term template class in this book. Instead, we will use class template.

Instantiation

Considering the class template, V, we defined in the previous section, we’ll assume the following 
declarations appear later:

V<char> cV;
V<int> iV(10);
V<float> fV(5);

Then, the compiler will create three instances of the V class, as follows:

class V <char>{
   public:
      V(int n=0);
      // ...
   protected:
      int m_nEle;
      char *m_buf;
};
 class V<int>{
   public:
      V(int n=0);
      // ...
   protected:
      int m_nEle;
      int *m_buf;
};

class V<float>{
   public:
      V(int n = 0);
      // ...
   protected:

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/6_class_v.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/6_class_v.h
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      int m_nEle;
      float *m_buf;
};

Similar to function template instantiation, there are two forms of class template instantiation—explicit 
instantiation and implicit instantiation. Let’s take a look at them.

Explicit instantiation

The syntax for explicit instantiation is as follows:

template class template_name < argument_list >;
extern template class template_name < argument_list >;//(since C++11)

An explicit instantiation definition forces instantiation of the class, struct, or union it refers to. In the 
C++0x standard, the implicit instantiation of a template specialization or its members is suppressed. 
Similar to the explicit instantiation of function templates, the location of this explicit instantiation 
can be anywhere after its template definition, and it is only permitted to be defined once in the entire 
program in one file.

Moreover, since C++11, an implicit instantiation step will be bypassed by an explicit instantiation 
declaration (extern template). This can be used to reduce compilation times.

Going back to the template class, V, we can explicitly instantiate it as follows:

template class V<int>;
template class V<double>;

Alternatively, we can do the following (since C++11):

extern template class V<int>;
extern template class V<double>;

The compiler will present us with an error message if we explicitly instantiate a function or class template 
but there is no corresponding definition in the program, as shown at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter03/4_class_
template_explicit.cpp.

In the preceding code block, we defined a class template between lines A and B, and then we implemented 
its member function, foo(), from lines C to D. Next, we explicitly instantiated it for the int type 
at line E. Since the code block between lines F and G is commented out (which means that there is no 
corresponding definition of foo() for this explicit int type instantiation), we have a linkage error. 
To fix this, we need to replace #if 0 with #if 1 at line F.

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter03/4_class_template_explicit.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter03/4_class_template_explicit.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter03/4_class_template_explicit.cpp
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Finally, there are some additional restrictions for explicit instantiation declarations, as follows:

•	 Static: A static class member can be named, but a static function cannot be allowed in an 
explicit instantiation declaration

•	 Inline: There is no effect for inline functions in explicit instantiation declarations, and inline 
functions are implicitly instantiated

•	 Class and its members: There is no equivalent for explicitly instantiating a class and all its members

Implicit instantiation

When referring to a template class, the compiler will only generate code from its template on-demand 
if it has not been explicitly instantiated or explicitly specialized. This is called implicit instantiation, 
and its syntax is as follows:

class_name<argument list> object_name;    //for non-pointer object
class_name<argument list> *p_object_name; //for pointer object

For a non-pointer object, a template class is instantiated and its object is created, but only the member 
functions used by this object are generated. For a pointer object, unless a member is used in the 
program, it is not instantiated.

Consider the example at https://github.com/PacktPublishing/Expert-C-2nd-
edition/tree/main/Chapter03/5_class_template_implicit_inst.h, where 
we define a class template, X, in the 5_class_template_implicit_inst.h file.

Then, it is included by the following four cpp files, which have main() in each (find the code 
at https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/
Chapter03/5_class_template_implicit_inst_A.cpp).

In 5_class_template_implicit_inst_A.cpp, the compiler will implicitly instantiate the 
X<int> and X<float> classes and then create xi and xf objects. But since X::f() and X::g() 
are not used, they are not instantiated.

Now, let’s look at 5_class_template_implicit_inst_B.cpp at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_
template_implicit_inst_B.cpp.

Here, the compiler will implicitly instantiate the X<int> class, create an xi object, and then generate 
the X<int>::f() function, but not X<int>::g(). Similarly, it will instantiate the X<float> 
class, create an xf object, and generate the X<float>::g() function, but not X<float>::f().

Then, we have 5_class_template_implicit_inst_C.cpp at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_
template_implicit_inst_C.cpp.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_A.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_A.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_B.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_B.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_B.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_C.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_C.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_C.cpp
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Since p_xi and p_xf are pointer objects, there is no need to instantiate their corresponding template 
classes through the compiler.

Finally, we have 5_class_template_implicit_inst_D.cpp at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_
template_implicit_inst_D.cpp.

This will implicitly instantiate X<int> and X<int>::f(), but not X<int>::g(); similarly, for 
X<float>, X<float>::f() and X<float>::g() will be instantiated.

Specialization

Similar to function specialization, the explicit specialization of a class template defines a different 
implementation for a primary template when a specific type is passed as a template parameter. However, 
it is still a class template and you need to get the real code by instantiation.

For example, let’s suppose that we have a struct X template that can store one element of any data 
type, and it has just one member function named increase( ). But for the char-type data, we 
want a different implementation of increase( ) and need to add a new member function called 
toUpperCase( ) to it. Therefore, we decide to declare a class template specialization for that type. 
We do this as follows:

1.	 Declare a primary class template, like so:

template <typename T>
struct X {
X(T init) : m(init) {}
T increase() { return ++m; }
T m;
};

This step declares a primary class template in which its constructor initializes the m member 
variable and increase() adds one to m and returns its value.

2.	 Next, we need to perform specialization for the char-type data, as follows:

template <> //No parameters inside <>, it tells
            //Compiler that this is a fully
            //specialized template.
struct X<char> {  //<char> after X, tells compiler
                  //that this is specialized only for
                  //type char
    X( const char init) : m(init) {}
    char increase() {
        return (m<127) ? ++m : (m=-128);
    }

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_D.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_D.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/5_class_template_implicit_inst_D.cpp
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    char toUpperCase() {
        if ((m >= 'a') && (m <= 'z')) m += 'A' - 'a';
    return m;
    }
    char m;
};

This step creates a specialized (with respect to the primary class template) class template with 
an additional member function, toUpperCase(), for the char-type data only.

3.	 Finally, we run a test:

int main() {
    X<int> x1(5);       //line A
    std::cout << x1.increase() << std::endl;
    X<char> x2('b');    //line B
    std::cout << x2.toUpperCase() << std::endl;
    return 0;
}

Finally, we have a main() function to test it. In line A, x1 is an object that has been implicitly 
instantiated from the primary template, X<T>. Since the initial value of x1.m is 5, 6 will be returned 
from x1.increase(). In line B, x2 is an object instantiated from the specialization template, 
X<char>, and the value of x2.m is b when it is executed. After calling x2.toUpperCase(), B 
will be the return value.

The complete code for this example can be found at 6_class_template_specialization.cpp.

In summary, the syntax that’s used in the class template’s explicit specialization is as follows:

template <> class[struct] class_name<template argument list> {
...
};

Here, the empty template parameter list, template <>, is used to explicitly declare it as a template 
specialization, and <template argument list> is the type parameter(s) to be specialized. 
For example, in ex3_6_class_template_specialization.cpp, we use the following:

template <> struct X<char> { ... };

Here, <char>, which is written after X, identifies the type for which we are going to declare a template 
class specialization.

Additionally, when we do specializations for a template class, all its members—even those that are 
identical in the primary template—must be defined because there is no inheritance concept for the 
primary template during template specializations.
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Next, we’ll take a look at partial specialization. This is a general statement of explicit specialization. 
Compared to the format of explicit specialization, which only has a template argument list, both the 
template parameter list and argument list are required for a partial specialization. For a template 
instantiation, the partial specialization template will be selected by the compiler if a user’s template 
argument list matches a subset of the template arguments. Then, a new class definition from the partial 
specialization template will be generated by the compiler.

In the following example, for the primary class template A, we can partially specialize it for const T in 
the argument list. Note that both of them have the same parameter list, which is <typename T>:

//primary class template A
template <typename T> class A{
...
};

//partial specialization for const T
template <typename T> class A<const T>{
...
};

In the following example, the primary class template B has two parameters: <typename T1> and 
<typename T2>. We partially specialize it by using T1=int, keeping T2 unchanged:

//primary class template B
template <typename T1, typename T2> class B{
…
};

//partial specialization for T1 = int
template <typename T2> class B<int, T2>{
 …
};

Finally, in the following example, we can see that the number of template parameters in a partial 
specialization does not have to match the parameter numbers that appeared in the original primary 
template. However, the number of template arguments (appearing after the class name in angle brackets) 
must match the number and type of the parameters in the primary template:

//primary class template C: template one parameter
template <typename T> struct C {
T type;
};

//specialization: two parameters in parameter list
//but still one argument (<T[N]>) in argument list
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template <typename T, int N> struct C<T[N]>{
T type;
};

Again, a class template partial specialization is still a class template. You must provide definitions for 
its member functions and number variables separately.

To end this section, let’s summarize what we’ve learned so far. In the following table, you can see a 
comparison between function and class templates, their instantiation, and their specialization:

Table 3.1 – Differences between function and class templates

Five concepts need to be emphasized here, as follows:

•	 Declaration: We need to follow the syntax that’s used to define a function or class template. 
At this point, a function or class template by itself is not a type, a function, or any other entity. 
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In other words, there are only template definitions in the source file, and no code, which can 
be compiled into an object file, is generated.

•	 Implicit instantiation: For any code to appear, a template must be instantiated. During this 
process, it becomes imperative to determine the template arguments so that the compiler can 
generate an actual function or class. In other words, they are compiled on-demand, which means 
that compiling the code of a template function or class does not happen until an instantiation 
with specific template arguments is given.

•	 Explicit instantiation: This tells the compiler to instantiate the template with the given types, 
regardless of whether they are used. Typically, it is used for providing libraries.

•	 Full specialization: This has no parameter list (fully customized); it only has an argument list. 
The most useful thing about template specialization is that you can create special templates for 
particular type arguments.

•	 Partial specialization: This is similar to full specialization, but is part parameter list (partially 
customized) and part argument list.

Understanding variadic templates
In the previous section, we learned how to write function or class templates with a fixed number of 
type parameters. But since C++11, standard generic functions and class templates can accept a variable 
number of type parameters. This is called variadic templates, which is an extension of C++ (see the 
link in the Further reading section, context [6]. We will learn about the syntax and usage of variadic 
templates by looking at examples.

Syntax

If a function or class template takes zero or more parameters, it can be defined as follows:

//a class template with zero or more type parameters
template <typename... Args>
class X {
...
};

//a function template with zero or more type parameters
template <typename... Args>
void foo( function param list) {
…
}
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Here, <typename ... Args> declares a parameter pack. Note that here, Args is not a keyword; 
you can use any valid variable name. The preceding class/function template can take any number of 
typename instances as its arguments need to be instantiated, as shown here:

X<> x0;
//with 0 template type argument
X<int, std::vector<int>> x1;
//with 2 template type arguments
//with 4 template type arguments
X<int, std::vector<int>, std::map<std::string,
  std::vector<int>>> x2;
//with 2 template type arguments
foo<float, double>( function argument list );
//with 3 template type arguments
foo<float, double, std::vector<int>>(function argument list);

If a variadic template needs at least one type parameter, then the following definition is used:

template <typename A, typename... Rest>
class Y {
...
};

template <typename A, typename... Rest>
void goo( const int a, const float b) {
 ....
};

Similarly, we can instantiate them by using the following code:

Y<int > y1;
Y<int, std::vector<int>, std::map<std::string, std::vector<int>>> y2;
goo<int, float>( const int a, const float b );
goo<int,float, double, std::vector<int>>( const int a, const float b 
);

In the preceding code, we created y1 and y2 objects from the instantiations of the variadic class template, 
Y, with one and three template arguments, respectively. For the variadic function goo template, we 
instantiate it as two template functions with two and three template arguments, respectively.

Examples

The following is probably the simplest example, showing a variadic template being used to find the 
minimum values of any input argument list: https://github.com/PacktPublishing/

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/7_variadic_my_min.cpp
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Expert-C-2nd-edition/tree/main/Chapter03/7_variadic_my_min.cpp. This 
example uses the concept of recursion until it reaches my_min(double n) to exit.

The printf() variadic function is probably one of the most useful and powerful functions in C 
or C++; however, it’s not type-safe. In the following code block, we’re adopting the classic type-safe 
printf() example to demonstrate the usefulness of variadic templates. As always, first, we need 
to define a base function, void printf_vt(const char *s), which ends the recursion.

Then, in its variadic template function, printf_vt(), whenever % is hit, the value is printed, and 
the rest is passed to its recursion until the base function is reached.

Finally, we can test and compare it with the traditional printf() example. The code example can be 
found at https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/
main/Chapter03/8_variadic_printf.cpp.

The output of the preceding code is as follows:

p.]ï¿½U can accept 100 parameters (or more), x=10, y=3.600000
Variadic templates can accept 100 parameters (or more); x=10,y=3.6

At the beginning of the first line in the output, we can see some American Standard Code for 
Information Exchange (ASCII) characters from printf() because the corresponding variable 
type of %s should be a pointer to chars, but we give it a type of std::string. To fix this, we need 
to pass s.c_str(). However, with the variadic template version function, we do not have this issue. 
Moreover, we only need to provide %, which is even better—at least, it is for this implementation. Due 
to this and other benefits, variadic templates empower developers to write more versatile and efficient 
code while ensuring type safety and code reusability.

In summary, this section briefly introduced variadic templates and their applications. Variadic templates 
provide the following benefits (since C++11):

•	 They are a lightweight extension of the template family.

•	 They demonstrate the ability to implement numerous template libraries without the use of 
ugly templates and preprocessor macros. Thus, the implementation code is capable of being 
understood and debugged, and it saves compile time as well.

•	 They enable type-safe implementations of printf() variadic functions.

Next, we will explore template parameters and arguments.

Exploring template parameters and arguments
We learned about function and class templates and their instantiations in the previous three sections. 
We know that, when defining a template, its parameter list needs to be given. While we instantiate it, the 
corresponding argument list must be provided. In this section, we will further study the classifications 
and details of these two lists.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/7_variadic_my_min.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/8_variadic_printf.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/8_variadic_printf.cpp
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Template parameters

Recall the following syntax, which is used to define a class/function template. There is a <> symbol 
after the template keyword, in which one or more template parameters must be given:

//class template declaration
template <parameter-list> class-declaration

//function template declaration
template <parameter-list> function-declaration

A parameter inside the parameter list could be one of the following three types:

•	 Non-type template parameter: Refers to the compile-time constant values, such as integers 
and pointers, that reference static entities. These are often referred to as non-type parameters.

•	 Type template parameter: This refers to either built-in type names or user-defined classes.

•	 Template template parameter: This indicates the parameters are other templates.

We’ll discuss these in more detail in the following subsections.

Non-type template parameter

The syntax of the non-type template parameter is as follows:

//for a non-type template parameter with an optional name
type name(optional)

//for a non-type template parameter with an optional name
//and a default value
type name(optional)=default

//For a non-type template parameter pack with an optional //name
type ... name(optional) (since C++11)

Here, type is one of the following types:

•	 Integral type

•	 Enumeration

•	 Pointer to an object or a function

•	 lvalue reference to an object or a function

•	 Pointer to a member object or a member function

•	 std::nullptr_t (since C++11)



Exploring template parameters and arguments 151

Additionally, we may put arrays and/or function types in template declarations, but they are automatically 
replaced with data and/or function pointer(s).

The example at https://github.com/PacktPublishing/Expert-C-2nd-edition/
tree/main/Chapter03/9_none_type_template_param1.cpp shows a class template 
that uses a non-type template parameter, int N. In main(), we instantiate and create an object, x, 
and thus x.a has five elements with initial values of 1. After setting its fourth element value as 10, 
we print the output.

The example at https://github.com/PacktPublishing/Expert-C-2nd-edition/
tree/main/Chapter03/10_none_type_template_param2.cpp is an example of a 
function template that uses const char* as a non-type template parameter․

In main(), we successfully instantiate foo() with str1 and str2 since they are both compile-
time constant values and have external linkages. Then, if we uncomment lines 3-5, the compiler will 
report error messages. The reasons for getting these compiler errors are as follows:

•	 Line 3: str3 is not a const variable, so the value being pointed to by str3 cannot be changed. 
However, the value of str3 can be changed.

•	 Line 4: str4 is not a valid template argument of the const char* type because it has 
no linkage.

•	 Line 5: str5 is not a valid template argument of the const char* type because it has 
no linkage.

Another of the most common usages of non-type parameters is for specifying the size of an array. If you 
want to find out more, please go to https://stackoverflow.com/questions/33234979.

Type template parameter

The syntax of the type template parameter is as follows:

//A type Template Parameter (TP) with an optional name
typename |class name(optional)

//A type TP with an optional name and a default
typename[class] name(optional) = default

//A type TP pack with an optional name
typename[class] ... name(optional) (since C++11)

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/9_none_type_template_param1.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/9_none_type_template_param1.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/10_none_type_template_param2.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/10_none_type_template_param2.cpp
https://stackoverflow.com/questions/33234979
https://stackoverflow.com/questions/33234979
https://stackoverflow.com/questions/33234979
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Note
Here, we use the typename and class keywords interchangeably. Inside the body of the 
template declaration, the name of a type parameter is a typedef-name instance. When the 
template is instantiated, it aliases the type supplied.

Now, let’s look at some examples, as follows:

•	 Here’s a type template parameter without the default:

Template<class T> //with name

class X { /* ... */ };

Template<class > //without name

class Y { /* ... */ };

•	 And here’s a type template parameter with the default:

Template<class T = void> //with name

class X { /* ... */ };

Template<class = void > //without name

class Y { /* ... */ };

•	 Here’s an example of a type template parameter pack:

template<typename... Ts> //with name

class X { /* ... */ };

template<typename... > //without name

class Y { /* ... */ };

 
This template parameter pack can accept zero or more template arguments, and it only works on 
C++11 onward.



Exploring template parameters and arguments 153

Template template parameter

The syntax of the template template parameter is as follows:

//A template template parameter with an optional name
template <parameter-list> class name(optional)

//A template template parameter with an optional name and a //default
template <parameter-list> class name(optional) = default

//A template template parameter pack with an optional name
template <parameter-list> class ... name(optional) (since C++11)

Note
In template template parameter declaration, only the class keyword can be used; typename 
is not allowed. In the body of the template declaration, the name of a parameter is a template-
name instance, and we need arguments to instantiate it.

Now, suppose you have a function that acts as a stream output operator for a list of objects, as follows:

template<typename T>
static inline std::ostream &operator << ( std::ostream &out,
       std::list<T> const& v)
{
/*...*/
}

From the preceding code, you can see that for sequence containers such as vectors, double-end queues, 
and a multitude of map types, they are the same. Hence, using the concept of the template template 
parameter, it would be possible to have a single operator, <<, to rule them all. An example of this can 
be found in exch3_tp_c.cpp at https://github.com/PacktPublishing/Expert-
C-2nd-edition/tree/main/Chapter03/11_template_template_param.cpp.

The output of the preceding program is as follows:

class std::basic_ostream<char,struct std::char_traits<char> > &__cdecl 
operator
<<<float,class std::vector,class std::allocator<float>>(class
std::basic_ostream
<char,struct std::char_traits<char> > &,const class 
std::vector<float,class
std:
:allocator<float> > &):
3.14 4.2 7.9 8.08

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/11_template_template_param.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/11_template_template_param.cpp
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class std::basic_ostream<char,struct std::char_traits<char> > &__cdecl
operator
<<<char,class std::list,class std::allocator<char>>(class
std::basic_ostream<cha
r,struct std::char_traits<char> > &,const class std::list<char,class
std::alloca
tor<char> > &):
E F G H I
class std::basic_ostream<char,struct std::char_traits<char> > &__cdecl
operator
<<<int,class std::deque,class std::allocator<int>>(class
std::basic_ostream<char
,struct std::char_traits<char> > &,const class std::deque<int,class
std::allocat
or<int> > &):
10 11 303 404

As expected, the first part of the output for each call is the template function name in a pretty format, 
while the second part outputs the element values of each container.

Template arguments

To instantiate a template, all the template parameters must be replaced with their corresponding 
template arguments. The arguments are either explicitly provided, deduced from the initializer (for 
class templates), deduced from the context (for function templates), or defaulted. Since there are 
three categories of template parameters, we will have three corresponding template arguments as well. 
These are template non-type arguments, template type arguments, and template template arguments. 
Besides these, we will also discuss the default template arguments.

Template non-type arguments

Recall that non-type template parameters refer to compile-time constant values such as integers, 
pointers, and references to static entities. A non-type template argument provided in the template 
argument list must match one of these values. Typically, non-type template arguments are used for 
class initialization or the class container’s size specifications.

Although a discussion of the detailed rules for each type (integral and arithmetic types, pointers 
to objects/functions/members, lvalue reference parameters, and so on) of non-type argument is 
beyond the scope of this book, the overall general rule is that template non-type arguments should 
be converted into constant expressions of the corresponding template parameters.

Now, let’s take a look at the following example:

//part 1: define template with non-type template parameters
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/float pointer non-type parameter
template<const float* p> struct U {};

//L-value non-type parameter
template<const Y& b> struct V {};

//function pointer parameter
template<void (*pf)(int)> struct W {};

//part 2: define other related stuff
void g(int,float); //declare function g()
void g(int);       //declare an overload function of g()
struct Y {         //declare structure Y
float m1;
static float m2;
};
float a[10];
Y y; //line a: create a object of Y

//part 3: instantiation template with template non-type //arguments
U<a> u1;     //line b: ok: array to pointer conversion
U<&y> u2;    //line c: error: address of Y
U<&y.m1> u3; //line d: error: address of non-static member
U<&y.m2> u4; //line e: ok: address of static member
V<y> v;      //line f: ok: no conversion needed
W<&g> w;     //line g: ok: overload resolution selects g(int)

In the preceding code, in part 1, we defined three template structs with different non-type template 
parameters. Then, in part 2, we declared two overload functions and struct Y.

Finally, in part 3, we looked at the correct way to instantiate them by different non-type arguments.

Template type arguments

Compared to the template non-type arguments, the rule of a template type argument (for a type 
template parameter) is simple and requires that it must be a typeid instance. Here, typeid is a 
standard C++ operator that returns type identification information at runtime. It basically returns a 
type_info object that can be compared with other type_info objects.

Now, let’s look at the example at https://github.com/PacktPublishing/Expert-C-
2nd-edition/tree/main/Chapter03/12_template_type_argument.cpp.

In this example, in part 1, we defined three classes and function templates: the class template C with 
its type template parameter, two function templates with a type template parameter, and a non-type 
template parameter, respectively. In part 2, we have an incomplete struct A and an unnamed type, 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/12_template_type_argument.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/12_template_type_argument.cpp
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struct B. Finally, in part 3, we tested them. The outputs of the four typeid() instances in Ubuntu 
18.04 are as follows:

Tid1=A; Tid2=P1A; Tid3=1B; Tid4=FivE

From x86 MSVC v19.24, we have the following:

Tid1=struct A; Tid2=struct A; Tid3=struct B; Tid4=int __cdecl(void)

Additionally, since A, A*, B, and int() have typeid() instances, the code segment from 
lines A to D is linked with the template type classes or functions. Only line E is instantiated from the 
non-type template parameter function template—that is, f().

Template template arguments

For a template template parameter, its corresponding template argument is the name of a class template 
or a template alias. While finding a template to match the template template argument, only primary 
class templates are considered.

Here, a primary template refers to the template that is being specialized. Even though their parameter 
lists might match, the compiler will not consider any partial specialization with that of the template 
template parameter.

You can find an example of a template template argument at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/13_template_
template_argument.cpp.

In this example, we’re defining a primary class template, X, and its specialization, then a class template, 
Y, with a template template parameter. Next, we implicitly instantiate Y with template template argument 
X and create an object, c. Finally, main() outputs the names of the four typeid() instances; the 
results are int, char, char, and char, respectively.

Default template arguments

In C++, a function is called by passing arguments, and the arguments are used by the function. If, while 
invoking a function, the arguments are not passed, the default values are used. Similar to the function 
parameter default values, template parameters can have default arguments. When we define a template, 
we can set its default arguments, as at https://github.com/PacktPublishing/Expert-
C-2nd-edition/tree/main/Chapter03/14_default_template_arguments.cpp.

Certain rules need to be followed when we set the default arguments for template parameters, as 
outlined here:

•	 The declaration order matters—the declaration of the default template arguments must be on 
top of the primary template declaration. For instance, in the preceding example, you cannot 
move the code at lines 3 and 4 after line 9.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/13_template_template_argument.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/13_template_template_argument.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/13_template_template_argument.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/14_default_template_arguments.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/14_default_template_arguments.cpp
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•	 If one parameter has a default argument, then all the parameters after it must also have default 
arguments. For example, the following code is incorrect:

template<class U = char, class V, class W = int> class X 
{}; //Error
template<class V, class U = char, class W = int> class X 
{}; //OK

•	 You cannot give the same parameter default arguments twice in the same scope. For example, 
you will get an error message if you use the following code:

template<class T = int> class Y;
//compiling error, to fix it, replace "<class T = int>" 
by "<class T>"
template<class T = int> class Y {
public: T a;
};

Here, we have discussed two lists: template_parameter_list and template_argument_
list. These are used in function or class template creation and instantiation, respectively.

We also learned about two other important rules, as follows:

•	 When we define a class or function template, we need to give its parameter_list, as follows:

template <template_parameter_list>
class X { ... }
template <template_parameter_list>
void foo( function_argument_list ) { ... } //assume 
return
                                           //type is void

•	 When we instantiate them, we must provide the corresponding argument_list, as follows:

class X<template_argument_list> x
void foo<template_argument_list>( function_argument_list 
)

The parameter or argument types in these two lists can be classified into three categories, as shown in 
the following table. Note that although the top row is for class templates, these properties also apply 
to function templates:
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Table 3.2 – Categorization of parameter and argument types

Traits
Generic programming means writing code that works with any data type under certain requirements. 
It is the most efficient way of delivering reusable high-quality code in the software engineering 
industry. However, there are times in generic programming when being generic just isn’t good enough. 
Whenever the differences between types are too complex, it is very hard for an efficient generic to 
optimize a common implementation. For example, while implementing a sort function template, if 
we know the argument type is a linked list but not an array, a different strategy will be implemented 
to optimize the performance.

Although template specialization is one approach to overcoming this problem, it doesn’t provide type-
related information in a broad way. A type trait is a technique that’s used to collect information about 
the type. With its help, we can make more intelligent decisions to develop high-quality optimized 
algorithms in generic programming.

In this section, we will introduce how to implement a type trait, and then show you how to use type 
information to optimize algorithms.

Type trait implementation
To understand type traits, we’ll look at the classic implementations of boost::is_void 
and boost::is_pointer.
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boost::is_void

First, let’s look at one of the simplest traits classes, the is_void trait, which was created by Boost. It 
defines a generic template that’s used to implement the default behavior; that is, accept a void type, 
but not anything else. Hence, we have is_void::value = false:

//primary class template is_void
template< typename T >
struct is_void{
static const bool value = false; //default value=false
};

Then, we fully specialize it for the void type, like so:

//"<>" means a full specialization of template class is_void
template<>
struct is_void< void >{ //fully specialization for void
static const bool value = true; //only true for void type
};

Thus, we have a complete traits type that can be used to detect whether any given type, T, is void 
by checking the following expression:

is_void<T>::value

Next, let’s learn how to use partial specialization in boost::is_pointer traits.

boost::is_pointer

Similar to boost::is_void traits, a primary class template is defined as follows:

//primary class template is_pointer
template< typename T >
struct is_pointer{
static const bool value = false;
};

Then, it is partially specialized for all pointer types, like so:

//"typename T" in "<>" means partial specialization
template< typename T >
struct is_pointer< T* >{ //<T*> means partial
                         // specialization only for type T*
static const bool value = true; //set value as true
};
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Now, we have a complete traits type that can be used to detect whether any given type, T, is a 
pointer by checking the following expression:

is_pointer<T>::value

Since the boost type traits feature has already been formally introduced to the C++ 11 Standard 
Library, we can show the usage of std::is_void and std::is_pointer without including 
the preceding source code in the example at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter03/15_traits_boost.cpp.

The preceding code sets the boolalpha format flag for the string stream at the beginning. By doing 
so, all the Boolean values are extracted by their text representation, which is either true or false. 
Then, we use several std::cout instances to print the values of is_void<T>::value and 
is_pointer<T>::value. The output of each value is displayed at the end of the corresponding 
commented-out line.

Optimizing algorithms using traits
Instead of talking about this topic in a generic abstract way, we will use a classic optimized copy example 
to show the usage of type traits. Consider the standard library algorithm known as copy, shown here:

template<typename It1, typename It2>
It2 copy(It1 first, It1 last, It2 out);

Obviously, we can write a generic version of copy() for any iterator types—that is, It1 and It2 
here. However, as explained by the authors of the Boost library, there are some circumstances where 
the copy operation can be performed by memcpy(). We can use memcpy() if all of the following 
conditions are satisfied:

•	 Both types of iterators, It1 and It2, are pointers

•	 It1 and It2 must point to the same type, except for const and volatile qualifiers

•	 A trivial assignment operator must be provided by the type that It1 points to

Here, the trivial assignment operator means that the type is either a scalar type or that one of the 
following applies:

•	 There is no user-defined assignment operator for the type

•	 There is no reference type of data members inside the type

•	 Trivial assignment operators must be defined in all the base classes and data member objects

Here, a scalar type includes an arithmetic type, an enumeration type, a pointer, a pointer to a member, 
or a const- or volatile-qualified version of one of these types.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/15_traits_boost.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter03/15_traits_boost.cpp
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Now, let’s take a look at the original implementation. It includes two parts—the copier class template 
and the user interface function, that is, copy():

namespace detail{
//1. Declare primary class template with a static function
// template
    template <bool b>
    struct copier {
        template<typename I1, typename I2>
        static I2 do_copy(I1 first, I1 last, I2 out);
    };
//2. Implementation of the static function template
    template <bool b>
    template<typename I1, typename I2>
    I2 copier<b>::do_copy(I1 first, I1 last, I2 out) {
        while(first != last) {
        *out = *first;
        ++out;
        ++first;
    }
    return out;
};
//3. a full specialization of the primary function template
template <>
struct copier<true> {
    template<typename I1, typename I2>
    static I2* do_copy(I1* first, I1* last, I2* out){
    memcpy(out, first, (last-first)*sizeof(I2));
    return out+(last-first);
    }
};
} //end namespace detail

As mentioned in the comment lines, the preceding copier class template has two static function 
templates—one is the primary and the other is fully specialized. The primary does an element-by-
element hard copy, while the full specialization one copies all the elements at once via memcpy(), 
as follows:

//copy() user interface
template<typename I1, typename I2>
inline I2 copy(I1 first, I1 last, I2 out) {
    typedef typename boost::remove_cv
    <typename std::iterator_traits<I1>::value_type>::type v1_t;
    typedef typename boost::remove_cv
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    <typename std::iterator_traits<I2>::value_type>::type v2_t;
    enum{ can_opt = boost::is_same<v1_t, v2_t>::value
      && boost::is_pointer<I1>::value
      && boost::is_pointer<I2>::value
      && boost::has_trivial_assign<v1_t>::value
};
//if can_opt= true, using memcpy() to copy whole block by
//one
//call(optimized); otherwise, using assignment operator to
//do item-by-item copy
return detail::copier<can_opt>::do_copy(first, last, out);
}

To optimize the copy operation, the preceding user interface function defines two remove_cv 
template objects, v1_t and v2_t, and then evaluates whether can_opt is true. After that, the 
do_copy() template function is called. By using the test code posted in the Boost utility library 
(algo_opt_ examples.cpp), we can see that there is a significant improvement in using the 
optimized implementation; that is, it could be eight or three times faster for copying char or int 
types of data.

Finally, let’s conclude this section with the following highlights:

•	 A trait gives additional information other than just the type. It is implemented through 
template specializations.

•	 By convention, traits are always implemented as structs. The structs that are used to implement 
traits are known as trait classes.

•	 Bjarne Stroustrup said that we should think of a trait as a small object whose main purpose 
is to carry information that’s used by another object or algorithm to determine policy or 
implementation details (see the Further reading section, context [4]).

•	 Scott Meyers also summarized that we should use traits classes to gather information about 
types (see the Further reading section, context [5]).

•	 Traits can help us implement generic algorithms in an efficient/optimized way.

Next, we will explore TMP in C++.

TMP and its applications
A programming technique in which computer programs have the ability to treat other programs 
as their data is known as metaprogramming. This means that a program can be designed to read, 
generate, analyze, or transform other programs, and even modify itself while running. One kind of 
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metaprogramming is a compiler, which takes a text format program as an input language (C, Fortran, 
Java, and so on) and produces another binary machine code format program in an output language.

C++ TMP means producing metaprograms in C++ using templates. It has two components—a template 
must be defined, and a defined template must be instantiated. TMP is Turing-complete, which means 
it has the capability to compute anything computable, at least in principle. Also, because variables 
are all immutable (variables are constants) in TMP, recursion rather than iteration is used to process 
the elements of a set.

Why do we need TMP? Because it can speed up our programs during execution time! But since there 
is no free lunch in the optimization world, the prices we pay for TMP are longer compile time and/or 
larger binary code sizes. Additionally, not every problem can be solved with TMP; it only works when 
we’re computing something constant during compile time—for example, finding out all the primary 
numbers that are smaller than a constant integer, finding the factorial of a constant integer, unrolling 
a constant number of loops or iterations, and so on.

From a practical point of view, TMP has the ability to solve problems in the following three categories: 
compile-time computation, compile-time optimization, and replacing dynamic polymorphism with 
static polymorphism by avoiding virtual table lookup during runtime.

The next chapter will provide comprehensive coverage of compile-time computation, compile-time 
optimization, and static polymorphism, offering a deeper exploration of these important concepts 
in C++.

Summary
In this chapter, we discussed generic programming-related topics in C++. Starting by reviewing C 
macros and function overloading, we introduced the development motivations of C++ templates. Then, 
we presented the syntax of class and function templates with a fixed number of parameters, as well as 
their specializations and instantiations. Since C++11, variadic templates are accepted by the standard 
generic function and class templates. Based on this, we further classified the template parameters and 
arguments into three categories: non-type template parameters/arguments, type template parameters/
arguments, and template template parameters/arguments.

We also learned about traits and TMP. As a byproduct of template specialization, traits classes can 
provide us with more information about types. With the help of type information, eventually, the 
optimizations of implementing generic algorithms become possible. Another application of class and/
or function templates is to compute some constant tasks during compile time via recursion, which is 
called TMP. It has the ability to perform compile-time computation and/or optimization, as well as 
avoid virtual table lookup during runtime.

You should now have a deep understanding of templates. You should be able to create your own 
function and class templates in applications, as well as practice using traits to optimize your algorithm 
and use TMP to do compile-time computation for additional optimization.
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In the next chapter, we will explore how to implement traits in C++ and optimize algorithms 
using templates.

Questions
1.	 What are the negative side effects of macros and function overloading?

2.	 What is a class/function template? What is a template class/function?

3.	 What is a template parameter list? What is a template argument list? Once we have a class 
template, we can instantiate it either explicitly or implicitly. In what kind of scenario is explicit 
instantiation necessary?

4.	 What does polymorphism mean in C++? What is the difference between function overloading 
and function overriding?

5.	 What are type traits? How do we implement a type trait?

6.	 In the 5_class_template_implicit_inst_B.cpp file, we said implicit instantiation 
generates the X<int> class, and then creates an xi object and generates the X<int>::f() 
function, but not X<int>::g(). How can you verify that X<int>::g() is not generated?

7.	 Using TMP, solve the problem of f(x,n) = x^n, where n is a const and x is a variable.

8.	 Extend 16_loop_unrolling_traditional.cpp and 17_loop_unrolling_
metaprogramming.cpp to large N=10,100,10^3,10^4,10^6, ..., until you reach 
your system memory limits. Compare the compile time, object file size, and running CPU time.

Further reading
As referenced throughout this chapter, have a look at the following sources to find out more regarding 
what was covered in this chapter:

•	 Milner, R., Morris, L., Newey, M. (1975). A Logic for Computable Functions with Reflexive 
and Polymorphic Types. Proceedings of the Conference on Proving and Improving 
Programs. (https://www.research.ed.ac.uk/portal/en/publications/a-
logic-for-computable-functions-with-reflexive-and-polymorphic-
types(9a69331e-b562-4061-8882-2a89a3c473bb).html)

•	 Curtis, Dorothy (2009-11-06). CLU home page. Programming Methodology Group, Computer 
Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology. (http://
www.pmg.csail.mit.edu/CLU.html)

•	 Technical Corrigendum for Ada 2012, published by ISO. Ada Resource Association. 
2016-01-29. (https://www.adaic.org/2016/01/technical-corrigendum-
for-ada-2012-published-by-iso/)

•	 B. Stroustrup, C++. (https://dl.acm.org/doi/10.5555/1074100.1074189)

https://www.research.ed.ac.uk/portal/en/publications/a-logic-for-computable-functions-with-reflexive-and-polymorphic-types(9a69331e-b562-4061-8882-2a89a3c473bb).html
https://www.research.ed.ac.uk/portal/en/publications/a-logic-for-computable-functions-with-reflexive-and-polymorphic-types(9a69331e-b562-4061-8882-2a89a3c473bb).html
https://www.research.ed.ac.uk/portal/en/publications/a-logic-for-computable-functions-with-reflexive-and-polymorphic-types(9a69331e-b562-4061-8882-2a89a3c473bb).html
https://www.research.ed.ac.uk/portal/en/publications/a-logic-for-computable-functions-with-reflexive-and-polymorphic-types(9a69331e-b562-4061-8882-2a89a3c473bb).html
http://www.pmg.csail.mit.edu/CLU.html
http://www.pmg.csail.mit.edu/CLU.html
https://www.adaic.org/2016/01/technical-corrigendum-for-ada-2012-published-by-iso/
https://www.adaic.org/2016/01/technical-corrigendum-for-ada-2012-published-by-iso/
https://dl.acm.org/doi/10.5555/1074100.1074189
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•	 S. Meyers. Effective C++ 55 Specific Ways to Improve Your Programs and Designs 
(3rd Edition), Chapter 7. (https://www.oreilly.com/library/view/
effective-c-55/0321334876/)

•	 D. Gregor and J. Järvi (February 2008). Variadic Templates for C++0x. Journal of Object Technology. 
pp. 31-51. (http://www.jot.fm/issues/issue_2008_02/article2.pdf)

•	 https://www.boost.org/ for type traits, unit testing, and so on.

•	 https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarg/
templates.htm for generic templates discussions.

•	 https://stackoverflow.com/questions/546669/c-code-analysis-tool 
for code analysis tools.

•	 K. Czarnecki, U. W. Eisenecker. Generative Programming: Methods, Tools, and Applications, 
Chapter 10.

•	 N. Josuttis, D. Gregor, and D. Vandevoorde. C++ Templates: The Complete Guide (2nd Edition). 
Addison-Wesley Professional, 2017.

https://www.oreilly.com/library/view/effective-c-55/0321334876/
https://www.oreilly.com/library/view/effective-c-55/0321334876/
http://www.jot.fm/issues/issue_2008_02/article2.pdf
https://www.boost.org/
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarg/templates.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarg/templates.htm
https://stackoverflow.com/questions/546669/c-code-analysis-tool




4
Template Meta Programming

Template meta programming is a powerful technique in C++ that allows developers to write code that 
generates other code at compile time. This technique can be used to create highly efficient, generic, 
and reusable code, as well as to create domain-specific languages and other advanced features. In this 
book, you will learn the fundamentals of template metaprogramming and how to apply it to your own 
projects. You will also learn about the most important features of the C++ template system and the 
common pitfalls to avoid. Whether you are a beginner or an experienced C++ developer, this book 
will provide you with the knowledge and skills you need to master template metaprogramming and 
take your C++ programming to the next level.

In this chapter, we will discuss the following topics.

•	 Programming at compile time – the fundamentals (compile-time programming with templates)

•	 A Constexpr-based assessment of compile time

•	 Substitution Failure Is Not an Error (SFINAE) and the enable_if metafunction

•	 An introduction to type_traits

•	 Implementing trait functions

Technical requirements
To learn and understand template metaprogramming, you should have a solid understanding of the 
C++ programming language, including experience with templates, classes, and functions. Familiarity 
with the Standard Template Library (STL) and generic programming is also helpful. Additionally, you 
should have a development environment set up with a C++ compiler that supports at least C++11, the 
version of the standard that introduced many of the features used in template metaprogramming. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/ 
Expert-C-2nd-edition.

https://github.com/PacktPublishing/ Expert-C-2nd-edition
https://github.com/PacktPublishing/ Expert-C-2nd-edition
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Back to basics (compile-time programming with 
templates)
In the previous chapter, we discussed what templates are. In this chapter, we will go deeper into 
templates and will discuss why it is important to compute programs at compile time. In C++, there are 
some ways to compute values at compile time. New features have been added to language standards 
to carry out these functions.

The C++ template system is Turing-complete, meaning it has the ability to compute anything that can 
be computed, which was discovered during the process of standardizing the language. The first example 
of this was software that computed prime numbers, even though it did not complete compilation; the 
list of prime numbers was a component of the compiler’s error message. In essence, code determines 
whether a given number is a prime number at compile time.

Let us see the following example:

#include <iostream>
template <size_t n>
class Foo
{
public:
    Foo(void *);
    operator unsigned long();
};

template <size_t x, size_t y>
class DetectPrime
{
public:
    enum { prime = (x % y)
      && DetectPrime<(y > 2 ? x : 0),
      y>::prime };

};

template <size_t x>
class Print
{
public:
    Print<x - 1> obj;
    enum { prime = DetectPrime<x, x - 1>::prime };
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    void f() { Foo<x> new_obj = prime; }
};

class DetectPrime<0, 0>
{
public:
    enum { prime = 1 };
};

class DetectPrime<0, 1>
{
public:
    enum { prime = 1 };
};

class Print<1>
{
public:
    enum { prime = 0 };
    void f() { Foo<1> new_obj = 0; }
};

int main()
{
    Print<18> obj;
}

Let’s discuss the code.

In the main function, Print<18> is instantiated; it initiates a loop and creates Print with the values 
18, 17, 16, and so on. Every instance of Print<x> creates DetectPrime<x, x - 1>. When 
the second argument of these DetectPrime templates is reduced one by one to 1, they begin to 
instantiate themselves. They check to see whether their first parameter is prime in these class templates. 
The class template Foo’s constructor is used to transmit information about primeness to the member 
function in the Print class templates. Because the initialization of new_obj by Display::f() 
fails, the compiler will print errors. Because there is only one constructor for void* and only 0 is 
valid for void* when the initial value is 1, this is the case.
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Let’s look at error messages.

Figure 4.1 – Depth error

When we talk about compile-time programming, the first thing that comes to mind is to calculate the 
factorial of a number. How can we implement it using templates?

1. template <unsigned long X>
2. class SimpleFactorial
3. {
4.  public:
5.     enum { val = X * SimpleFactorial<X-1>::val };
6. };

Let’s examine our code now. We have a declaration for a non-type template argument in the first line. 
Note that the type is size_t because we must work with a positive value. In the second line, we 
have a declaration of the SimpleFactorial class; of course, we can declare a class, and in terms 
of visibility modifiers, a class is more convenient to use. In template metaprogramming terms, it is 
called a metafunction. Moving on, we will see a declaration of an anonymous enum, which has one 
value with the name value. You know that the name of the enumeration type is like a flag, but in 
this example, there is no need for one. A value is used to generate values of a metafunction. Let’s use 
this code by instantiating the template and passing it the desired arguments:

int main()
{
      const auto x = SimpleFactorial<4>::val;
      static_assert(x == 24, "Factorial of 4");
}

What is the output of this code after compilation?

Yes, there is an ill-formed program. Now, let’s go through the code and find out why. Templates are 
processed in two phases. In the first phase, everything that does not depend on template arguments 
is looked up and checked. The definition is checked for syntax errors such as missing semicolons or 
name lookup errors. Here’s an example:

template <typename U>
class Deque
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{
public:
    Deque() = default;
    Deque(const T &elem)
    : __container { new T(Elem) }
    // error : undefined identifier     Elem
{ }
private:
    U* __container // syntax error: missing semicolon
};

The second phase is argument-dependent lookup. A class template (or function template) is not a type; 
the source file does not contain templates, and a template must be instantiated. The compiler must 
generate an actual class (or function) using arguments. This is called the second phase of template 
processes. In our code after the first phase, the template class itself depends on recursively creating 
smaller instances of the same metafunction. The following code represents that form of generation:

#ifdef _SIMPLE_FACTORIAL_
template<>
class SimpleFactorial<4>
{
public:
    enum { val = static_cast<unsigned int>(4UL *
      static_cast<unsigned
      long>  (SimpleFactorial<3>::val)) };
};
#endif // To avoid code length, initializations with values, 3 and 2 are 
// omitted
#ifdef _SIMPLE_FACTORIAL_
template<>
class SimpleFactorial<1>
{
public:
    enum { val = static_cast<unsigned int>(1UL *
      static_cast<unsigned long>
      (SimpleFactorial<0>::val)) };
};

And so on until it reaches the limit. Most compilers won’t permit recursion depth to go past a certain 
point. This error is produced by the compiler:

enhance the depth of the recursive template instantiation:
enum { val = X * SimpleFactorial<X - 1>::val};
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The solution is as follows – we have to declare a template specialization with argument 0. A specialization 
is a variation of a template designed for a certain template argument list:

template<>
class SimpleFactorial<0>
{
public:
    enum { val = 1 };
};

The SimpleFactorial<0> specialization represents the terminating condition. Now, our code 
will work smoothly. For this kind of computation, the std::integral constant might be used 
instead of an enum (wrapping a static constant of the specified type is a std::integral constant. 
It serves as the foundational class for C++ type characteristics):

template <unsigned long X>
class SimpleFactorial : std::integral_constant<unsigned long, X * 
SimpleFactorial<X-1>::value>
{
};

template <>
class SimpleFactorial<0> : std::integral_constant<unsigned long, 1> {
};

Using constexpr is an alternate method:

constexpr unsigned long SimpleFactorial (unsigned long X)
{
    return (X == 0) ? 1 : X * SimpleFactorial(X - 1);
}

int main()
{
    int i = 4;
    constexpr auto x = SimpleFactorial(4);
    // auto y = SimpleFactorial(i);
}
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The function is computed at compile time when we comment out the declaration of y.

The assembly code version is displayed in Figure 4.2. The first two instructions set EBP to point at that 
location on the stack while saving the previous base pointer (ebp – right below the return address). 
The third line is the declaration of the i variable, which is initialized with 4, and the next line shows 
that in the address rbp–16, moves a constant value, 24, which is called an immediate operand. Now, 
replace the comments from the y variable to x:

 Figure 4.2 – A factorial representation in Assembly

int main ()
{
    int i = 4;
    //constexpr auto x = Factorial(4);
    auto y = Factorial(i);
}

Now, there is a function call in the fifth line in Figure 4.3 that will compute the runtime.

Figure 4.3 – A factorial representation in Assembly

Note
The constexpr specifier was used in this example.
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The second example computes the number’s primeness; however, in this case, the code is modified so 
that it now compiles on standard conforming compilers:

#include <iostream>

template<size_t x, size_t y>
class FindPrime
{
public:
    constexpr static  bool val = (x % y != 0)
      && FindPrime<x, y-1>::val;
};

template<size_t x>
class FindPrime<x, 2>
{
public:
    constexpr static bool val = (x % 2 != 0);
};

template <size_t x>
class Prime
{
public:
    constexpr static bool val = FindPrime<x, x/2>::val;
};

template<>
class Prime<0>
{
public:
    constexpr static bool val = false;
};

template<>
class Prime<1>
{
public:
    constexpr static bool val = false;
};

template<>
class Prime<2>
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{
public:
    constexpr static bool val = true;
};

template<>
class Prime<3>
{
public:
    constexpr static bool val = true;
};

int main()
{
    constexpr auto x = Prime<7>::val;
    std::cout << std::boolalpha << x << std::endl;
}

Again, let’s look at constexpr in this example – in the main function, there is a static assertion that 
performs static assertion at compile time. Prime<7>::val instantiates the IsPrime template 
expression. It doesn’t match any specialization of IsPrime, so after instantiation, the template code 
of Prime is the following:

template<>
struct Prime<7>
{
inline static constexpr const bool value = Compute_Prime<7, 7 / 
2>::value;
};

As you can see, another template expression, FindPrime (which has its own specialization), is 
called, and this must be instantiated too:

template<>
struct FindPrime<7, 3>
{
inline static constexpr const bool val = ((7U % 3U) != 0) && 
FindPrime<7,2>::val;
 };

This is called its specialization:

template <>
struct FindPrime<7, 2>
{
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inline static constexpr const bool val = ((7U % 2) != 0);
};

The last expression evaluates to true, and after that, FindPrime has the following form:

template<>
struct FindPrime<7, 3>
{
inline static constexpr const bool val = ((7U % 3U) && true);
};

The value of FindPrime is true and it assigns the value of Prime. So, after that, we have a result 
that says that number 7 is a prime number.

Compile-time evaluation using constexpr
The constexpr function was added in C++11 and enhanced in C++14. Besides the fact that we can 
declare a variable as constexpr, it indicates that, where possible, the return value is computed at 
compile time and is constant. A constexpr function is one whose return value can be computed at 
compile time when the consuming code requires it, according to the definition. In our example, the body 
of the function is written as a single statement because only a very small subset of the language can be 
used by constexpr functions. Many constexpr constraints were removed in C++14, making it 
much easier to write them now. You have already seen its use in the examples, and now, we will go deeper.

Here’s the syntax of constexpr:

•	 constexpr literal identity = expression

•	 constexpr literal identity {expression};

•	 constexpr literal identity (parameters);

•	 constexpr constructor (parameters);

As a constexpr variable, it must be immediately initialized. const variables can be initialized at 
runtime, whereas constexpr variables must be initialized at compile time. This is the difference between 
const and constexpr variables. constexpr variables are all fixed, as shown in the following code:

int main ()
{
int x = 24;
constexpr int result = x; // constexpr variable result
// needs to be initialized with a constant expression,
// causing a build problem
const int y = 24;
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constexpr int result_2 = y; // Ok, y is constant expression

    constexpr int result_3; // compile error: not
                            // initialized!
}

 The following guidelines apply to constexpr functions and constructors:

•	 As a constexpr function, its parameters type and return type must be a LiteralType.

•	 It can’t be virtual.

•	 A constexpr function can be recursive.

•	 A goto statement and try blocks are not permitted in the body of a function.

•	 A description of a thread or static storage duration.

•	 Each constructor chosen to initialize base class members and non-static data members must 
be a constexpr constructor.

•	 A non-constexpr template may be explicitly specialized and declared as constexpr. It may 
also contain all looping statements, such as for, range-based for, while, and do-while (as 
of C++14). It may also contain the if and switch statements, as shown in the following code:

template <typename U>
constexpr auto large (U const& ob1, const U& obj2)
{
if ( obj1 < obj2 ) { return obj2; }
else { return obj1; }
}
int main()
{
unsigned long x = large (34ul, 56ul);
static_assert( x == 56ul, "56 is not greater");
// The expression static assert is not an expression
// for an integral constant.
}

As you can see, the program is ill formed because static assertion requires a constant expression. The 
solution declares the x variable as const or constexpr. Variables of the constexpr type must 
be constant expressions, meaning their value can be determined at compile time. As a result, you 
cannot declare a function as constexpr because its value may change at runtime and cannot be 
determined at compile time, as shown in the following code:

short increase(short x, short y)
{
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    if ( y == 0 ) { return 1; }
    return (x * increase(x, y - 1));
}
int main( )
{
constexpr short x = increase( 5, 2 ); // constexpr variable
// "x" must be initialized by a constant expression,
// causing a compilation problem}

Using constant expression in every function and assuming that it is better than templates 
would be the biggest mistake. This is because every time we write a constexpr function, it might 
not be executed at compile time. It says that the function has the potential to run at compile time. It’s 
often a question of the compiler and the optimization level if a constexpr function runs at compile 
time or runtime. But since C++14, the restrictions that constexpr had in C++11 are gone (such 
as having new variables or loops in constexpr functions). The greatest common divisor of two 
numbers can be determined using the gcd function, as shown in the following code:

constexpr int gcd (short x, short y)
{
    while(y != 0)
    {
        int tmp = y;
        y = y % x;
        x = tmp;
    }
    return x;
}

int main( )
{
    constexpr short i = gcd (15, 25); // calculate the
                                // result i at compile time
    int arr[ gcd(5, 4) ]; // calculate the size of array at
                          // compile time
    short a = 11;
    short b = 24;
    constexpr short res = gcd (a, b); // constexpr variable
// must be initialized with a constant expression, causing
// a compilation issue}
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Constant expression-specified constructors (constexpr)

A constructor that is declared with a constexpr specifier is a constexpr constructor. With the 
constexpr constructor, objects of user-defined types can be included in valid constant expressions. 
constexpr constructor definitions must adhere to the following requirements:

•	 There cannot be any virtual base classes in the containing class.

•	 A literal type describes each of the parameter kinds.

•	 If its function body is not = delete or = default, then it must adhere to the 
following restrictions:

	� The function try block is not the issue

	� Only these statements may be included in the compound statement:

	� Declaring nothing (a null statement)

	� Statically defined assertions

	� Not defining classes or enumerations in typedef declarations

	� using

The constructor is implicitly specified as constexpr if a user-provided default constructor can fulfill 
the requirements of a constexpr constructor. Let’s look at a code example:

#include <iostream>

class Base { };

struct B2
{
    int x;
};

struct NL
{
    virtual ~NL() { }
};

int x = 11;

struct Derived1 : Base
{
    constexpr Derived1() : Base(), _m{12} { }
    constexpr Derived1(const Derived1 &obj) : Base{obj},
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      _m{12} { } constexpr Derived1(NL &n) : Base(),
      _m{12} { } private: int _m;
};

Here’s a list of differences between template metaprogramming and constexpr functions:

•	 A template metaprogram executes at compile time, but constexpr functions can run at 
compile time or runtime.

•	 Arguments of templates can be types or values. Templates can take such arguments as containers, 
such as std::vector<std::string>.

•	 Instead of modifying a value, you return a new value every time in template metaprogramming.

•	 The function arguments of constexpr functions correspond to the template arguments of 
a metafunction.

•	 A constexpr function can have variables, and you can modify them. A metafunction 
generates a new value.

•	 A metafunction can use a loop (since C++ 14).

Note
You cannot have STL containers as constexpr. Container objects have a dynamic memory 
allocation, so they cannot be persistent at both compile and runtime. There was no support for 
them before C++20; however, since then, these objects are allowed to be in the same places as 
constexpr functions, so they are destroyed at the end of compile time.

The following code demonstrates the use of compile-time constants in C++, specifically the constexpr 
keyword, along with the map container from the C++ Standard Library:

/* include directives */
using namespace std;
int main ()
{
    constexpr map<string, int> cxpr_mp {{"one", 1}, {"two",
      2}}; // compile error,
          // because map is STL container
    const map<string, int> c_mp {{"one", 1}, {"two", 2}}; // Ok
}
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constexpr if

C++17 added a new statement called constexpr if. The most important advantage is that 
constexpr if is evaluated at compile time, not at runtime. Based on a condition in a constant 
expression, the functionality enables you to eliminate if statement branches during compilation. The 
following shows the difference between ordinary if and constexpr if statements:

Ordinary if constexpr if
Performs another statement subject to 
conditions. Used when runtime-based code 
execution is required.

Removes non-matching function overrides 
from the overload, set in place of the 
SFINAE approach.

Determines which of the two sub-statements 
to execute, skipping the other.

Determines which of the two sub-statements to 
compile, discarding the other.

Requires both sub-statements to be well 
formed, regardless of which one is actually 
selected at runtime.

A compile-time if allows us to enable or 
discard statements according to compile-time 
conditions (even outside templates).

Table 4.1 – Difference between ordinary if and constexpr if statements

You may now be asking the question, why a compile-time if? Where will I use it? Let’s consider an 
example. How can we print out all the elements of the variadic template argument?

void print () {}

template <typename U, typename... T>
void print (U const& first, T const&... pack)
{
    cout << first << " ";
    print(pack...);
}

If this function receives one or more arguments, the template that represents the first argument 
independently will be used and prints it before recursively (I think recursion in templates is not a 
well-chosen word) calling for the remaining arguments. These remaining pack arguments are 
called a function parameter pack. For the base case, the print function is used; this is obviously 
invoked when emptying the function parameter pack and does not take an argument, as shown in 
the following code block:

print(3.14, "templates", 55);
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C++11 introduced a brand-new sizeof operator with variadic templates. It expands depending on 
the number of elements. This unwittingly leads to the idea that we can use this in the print function 
to print out all the arguments of the variadic template:

template <typename U, typename... T>
void print (U const& first, T const&... pack)
{
    cout << first << " ";
    if(sizeof...(pack) > 0)
    {
        print(pack...);
    }
}

However, this approach cannot work because we know that if the check condition is a runtime 
operation – that is, all exemplars are generated during lookup – and if we call the function already 
with the last argument, then the same function is called without an argument, leading to a compile 
error. Here, the constexpr if statement can help us:

if constexpr(sizeof...(args) > 0)

If print() is called for one argument only, args becomes an empty parameter pack so that 
sizeof...(args) becomes 0. The call of print() becomes a discarded statement, for which the 
code is not instantiated. The fact that the code is not instantiated means that only the first translation 
phase is performed.

Let us now see another example:

template <typename U>
string foo(U const& val)
{
    if (is_convertible_v<U, string>)
    {
        return val;
    }
    return to_string(val);
}
int main()
{
    foo("example");
}



SFINAE AND enable_if<> 183

The is_convertible type trait yields true when we pass a string literal and just returns val, 
without any conversion. However, we get a compile error with the following output:

 there isn't a matching function for the call to "to string"
return to_string(val);
 function template specialization "strchar [6]>" is requested here 
during function invocation.
    cout << str("hello");

Both branches were compiled by the compiler, and the other case had an error. The invalid code 
for this specific template instantiation could not be rejected. In this code example, the constexpr 
if statement is required because of this:

if constexpr(std::is_convertible<T, std::string>)

Having discussed the limitations of traditional template instantiation in the previous example, it’s time 
to move on to a more sophisticated solution for this issue. This is where SFINAE and enable_if<> 
come into play. These tools provide a way to modify the template instantiation process to handle specific 
cases differently, which is essential in solving complex template-related problems. By incorporating 
SFINAE and enable_if<> into your code, you can take your templates to the next level and unlock 
new possibilities. Let’s dive into the details of SFINAE and enable_if<> in the next topic.

SFINAE AND enable_if<>
Before C++17, there were already ways to enable or disable templates as a whole – a compile-time if, 
partial specialization, SFINAE, and enable_if<>. Referring to our previous example, is_prime<>, 
where we determined the authenticity of a prime number, we can use partial specialization to choose 
at compile time between different type implementations. We can choose different implementations 
depending on the argument (we used a struct in the code because function templates do not support 
partial specialization):

template <std::size_t n, bool = IsPrime(n)>
class hash_table;

template <std::size_t n>
class hash_table<n, true>
{
public:
    std::array<int, n> bucket;
};

template <std::size_t n>
class hash_table<n, false>
{
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public:
    array<int, next_prime<n>::value> bucket;
// next_prime<size_t n> is a meta function which compute
// the next prime number for the given integral.
};

Depending on whether n is a prime number, we use two different implementations of the hash_
table structure. So, we discovered that depending on the characteristics of the argument it is being 
invoked for, partial specialization can be used to choose between various implementations of a 
function template (we used class in the preceding code because function templates do not support 
partial specialization).

Argument substitution failure

As we already know, a type or value can be a parameter in the declaration of a class, a function, or a 
type alias in C++, thanks to the template mechanism. However, without instantiation at definition time, 
the template code itself is checked for correctness, ignoring the template parameters. At instantiation 
time, the template code is checked (again) to ensure that all code is valid. All these processes are 
called a two-phase translation of templates. Every template argument must be known, but not every 
argument needs to be provided when a function template is used. When possible, the compiler will 
infer the missing template arguments from the function arguments. Processing the template code, 
the compiler must at various times substitute arguments for the template parameters. However, this 
substitution can fail:

template <typename U>
typename U::value_type sub_phase
(U beg, U end)
{
// some code and return statement
}

void foo(list<short> &ls, short *p, short n)
{
    auto x = sub_phase(ls.begin( ), ls.end( ));
    auto y = sub_phase(p, p + n);
}

Because the arguments in this code match, and because vector<short>::iterator includes 
a member called value_type, instantiating x is successful. Although the arguments are identical, 
short* does not have a member called value_type; thus, we cannot conclude that y has been 
properly initialized:

short*::value_type sub_phase(short*, short*);
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We must declare a new function, which will satisfy our requirements.

template <typename U>
typename U::value_type sub_phase
(U beg, U end)

template <typename U>
U sub_phase (U*, U*) {// some code and return statement}

void foo(list<short> &ls, short *p, short n)
{
    auto x = sub_phase(ls.begin( ), ls.end( ));
    auto y = sub_phase(p, p + n);
}

Both initializations are successful in this case, but why, when attempting to match sub_phase (p, 
p + n) with the initial template definition, did an error not occur? The argument is a perfect match; 
however, when the real template argument (short*) is substituted, the return value is unsuccessful. 
If the parameter can be utilized in the manner specified by the whole function template definition, 
the compiler takes that into account (including the return type). There is a grammar principle known 
as SFINAE. Function templates are simply ignored because they don’t add a specialization to the 
overload set. The steps involved in function template argument deduction and overload resolution in 
C++ include name lookup, template argument deduction, the final variable function set, and selection 
of the best viable function. Understanding this process is important to writing correct and efficient 
C++ code that makes use of templates and function overloading.

In C++, it is pretty common to overload functions to account for various argument types. When a 
compiler sees a call to an overloaded function, it must therefore consider each candidate separately, 
evaluating the arguments of the call and picking the candidate that matches best. In cases where the 
set of candidates for a call includes function templates, before evaluating how well it matches, the 
compiler must first decide which arguments should be used for that candidate, and then substitute 
those arguments in the function parameter list with its return type (just like an ordinary function). 
However, the substitution process can run into problems – it can produce constructs that make no 
sense. Rather than deciding that such meaningless substitutions lead to errors, the language rules 
instead say that candidates with such substitution problems are simply ignored. This principle is called 
SFINAE, and it means that a failed substitution is not an error (David Vandevoorde).
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The following are the types of SFINAE errors:

•	 Attempting to instantiate a pack expression with many packs of various lengths

•	 Attempting to build an array of size zero, a void, a reference, a function, or another type that 
doesn’t have an integral size

•	 Using a type that is neither a class nor an enumeration that is on the left of a scope 
resolution operator

•	 Using a member of a type that the type does not have when trying to use that member

•	 Attempting to build a reference pointer

•	 Making an effort to establish a reference to void

•	 Trying to make a pointer to a T member when T is not a class type

•	 Attempting to assign a non-type template parameter to a type that is incorrect

•	 Attempting to define a function type that accepts void as an argument

Let’s consider the following code:

#include <iostream>

enum numbers { one = 1, two, three, four };

template <long X>
void dismem (int(*)[I % 2 == 0] = 0)
{
    std::cout << "even" << std::endl;
}

template <long X>
void dismem (int(*)[I % 2 == 1] = 0)
{
    std::cout << "odd" << std::endl;
}

int main ()
{
    dismem<one> ();
    dismem<four> ();
}
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There is an overload of non-type function templates (a non-type template argument is an expression 
that can have its value computed at compile time and is offered within a template argument list. 
Constant expressions, addresses of externally linked functions or objects, or addresses of static class 
members must be used as these parameters. In general, initializing a class or specifying the sizes of 
class members involves non-type template arguments). The parameter of the first version of div is a 
pointer to an array whose size is an expression and must be calculated at compile time. It’s the same 
in the second function parameter, with one difference – the expression that checks the evenness in 
the first function; in this case, the check is performed for odd numbers. The main function, after 
instantiation of the function template, prints out odd and even numbers. However, this is not an error; 
this is SFINAE. Now, what if we comment on the second version of div? There will be a compilation 
error, which was previously mentioned in the SFINAE error types.

Disabling templates with enable_if<>

enable_if<> is a type trait that evaluates a given compile-time expression passed as its (first) 
template argument, which behaves as follows:

•	 If the expression yields true, its type member type yields type:

	� If the second template argument is not given, type is void

	� If not, the second template argument type is type

•	 If the expression yields false, the member type is not defined. Due to the template feature 
called SFINAE, this has the effect that the function template with the enable_if expression 
is ignored.

The implementation is almost trivial:

template <bool Condition, class U = void>
class enable_if { };

template <typename U>
class enable_if<true, U> { typedef U type; };

If Condition is true, the U type is enabled as a member type, enable if::type. If enable 
if::type is not defined, nothing happens. When a specific condition is not satisfied, this can be 
used to hide signatures during compilation because, in this case, the enable if::type member 
won’t be specified, and attempting to build using it should fail:

/* include directives *
template <class U>
typename enable_if<(sizeof(U) > 4)>::type
custom_enable()
{
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    std::cout << "enabled" << std::endl;
}

int main()
{
    map<string, short> mp {{"one", 1}, {"two", 2}};
    custom_enable<decltype(mp)>();
    // custom_enable<const char*>();
}

The function template demonstrates the usage of enable_if. The return type is void because the 
second argument does not exist. The point here is that the function will not be formed if the size of T 
is equal to or smaller than 4 bytes. After the first function call everything is OK, prints out enabled, 
because the size of the map is bigger than 4 bytes (depending on the system, it may vary from 24 to 
32 bytes). However, when we comment on the first function call and remove the comments from the 
second one, it can be ill formed, depending on the size of the pointer (which is determined by different 
issues, such as the operating system and CPU architecture).

The next example shows an implementation of the std::advance algorithm, which is considered 
one of the standard library algorithms. It advances the iterator, it, by n element positions. What is 
of interest is that it has different implementations for different iterator categories:

#include <type_traits>
#include <iterator>
#include <set>
#include <deque>

namespace my_lib
{
// Implementation for random access iterators
template <typename X>
constexpr bool what_random_access_iterator =
  is_convertible<typename iterator_traits<X>::
  iterator_category, random_access_iterator_tag>::value;

template <typename X, typename Dist>
std::enable_if_t<what_random_access_iteraor<X>>
advance(X &x, Dist y) { x += y; }

// Implementation for bidirectional iterators
template <typename X>
constexpr bool what_bidirectional_iterator =
  is_convertible<typename std::iterator_traits<X>::
  iterator_category, std::bidirectional_iterator_tag>;
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template <typename X, typename Dist>
std::enable_if_t<what_bidirectional_iterator<X>
&& !what_random_access_iterator<X>>
advance(X &x, Dist y)
{
    if(y > 0)
    {
        for(; y> 0; ++x, --y) { }
    }
    else
    {
        for(; y < 0; --x, ++y) { }
    }
}

// Implementation for all other iterators

template <typename X, typename Dist>
std::enable_if_t<!what_bidirectional_iterator<X>
&& !what_random_access_iterator<X>>
advance(Iter &x, Dist y)
{
    if(y < 0)
    {
        throw "advance(): invalid category for negative y
    }
    while(y > 0)
    {
        ++x;
        --y;
    }
}
}

int main()
{
    std::set<int> st({1, 14, 5, 2});
    auto it = st.begin();
    my_lib::advance(it, 3);
    std::deque<std::string> dq({"hello", "some", "other"});
    auto it2 = dq.begin();
    my_lib::advance(it2, 2);
}
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We have a global variable template declaration named what_random_access_iterator, which 
contains a Boolean value determining whether the passed iterator category is random-access or not. 
To find out, the is_convertible type trait is used; it checks whether the tag matches. The two 
template type parameters for the function are, respectively, typename X and typename Dist 
as distance. Because enable if returns void by default if the second argument is not sent, we 
already know that the function’s return result is void.

The second example already declares the Boolean what_bidirectional_iterator, which 
checks whether the iterator is compatible with the bidirectional iterator. The function is slightly different 
from the previous one; here, the enable_if parameter checks whether it is bidirectional or not 
and, of course, denies the random-access case, as we know that the categories are in a hierarchical 
relationship with each other.

The body checks whether y > 0 or not. The third example is intended for the other iterator categories 
as forward, or input. In the parameter of enable_if, the condition is checked by negating the 
bidirectional category. In the function, the body checks whether y < 0; if yes, an exception is thrown. 
We eventually want to check whether a type contains a specified member of the right type when using 
enable if. Be aware that using enable if will not make the built-in copy, move, or assignment 
operators inoperative. The reason is that member function templates never count as special member 
functions and are ignored when a copy constructor is needed:

class Person
{
public:
    template <typename T>
    Person(T const&) { }
...
};

The predefined copy constructor is still used. Deleting the predefined is not a solution because then 
Person results in an error if a copy operation is done. The solution is to declare the copy constructor 
const volatile and then mark it as deleted.

Now that we’ve covered the importance of copy constructors and the solution for their behavior, it’s 
time to delve into another important aspect of C++ – type traits. Type traits are a mechanism for 
querying and manipulating the properties of types. By utilizing type traits, you can gain more control 
over your code and make it more efficient and readable. In the next chapter, we’ll explore type traits 
in depth and see how they can help us better understand and use C++ templates.
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Type traits
So far in this chapter, we can say that we have discussed only one technique of metaprogramming, 
which is called (as you already saw in its behavior) improved runtime performance. There is also a 
second approach, called improved type safety. If, with the first option, we could compute values at 
compile time, we can calculate the precise types required for algorithms or data structures in this 
section. Type features are a prime illustration of the second possibility. We can assess and alter types 
using a range of utilities called type traits, which are included in the Standard Library. This is also called 
the metaprogramming library. To use type traits, we must include the <type_traits> header:

Helper classes are the first category on the list:

•	 integral_constant(C++11)

•	 bool_constant(C++17)

•	 true_type

•	 false_type

As the root class for all C++ type traits is the std::integral constant, all standard type 
traits that produce values are descended from an instance of the integral constant. Let us see the 
following implementation:

#include <iostream>
#include <type_traits>
namespace my_lib
{
    template <typename  U, U var>
    struct integral_constant
    {
    constexpr static U value = var;
    using value_type = U;
    using type = integral_constant;
    constexpr operator value_type() const noexcept
    {
        return value;
    }
    constexpr value_type operator()() const noexcept
    {
         return value;
    }
};
}

enum numbers { one = 1, two, three };
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int main()
{
    using one_n = my_lib::integral_constant<numbers,
      numbers::one>;
    using three_n = my_lib::integral_constant<numbers,
       numbers::three>;
    static_assert(one_n() == numbers::one,
        "failed: val_1 != val_2 ");
}

Let’s examine the integral constant’s implementation. It has two parameters and is a class template. The 
type is described by the first parameter, while the non-type parameter with the U var is represented 
by the second. This U type is anticipated to be an integral type. The members are as follows:

•	 static constexpr T value = v, which means that we declare the T type value with 
a static constexpr specifier and assign it v, which is the second parameter of the class.

•	 using value_type = T – this declaration can be done with typedef too; it is the type 
alias for our T type.

•	 Using the injected class name and type = the integral constant.

•	 value type() – a conversion function for implicit type conversions that returns the wrapped 
value. It uses the constexpr operator.

•	 The operator()() const noexcept constexpr value type returns the 
wrapped value. With the help of this function, the integral constant can now be used in C++14 
compilation-time function objects.

•	 Specializations of the integral constant named the true type and the false type have simple 
declarations, as shown in the following code:

typedef true_type my::lib::integral_constant<bool, true>
typedef false_type my::lib::integral_constant<bool, false>

These two types are where almost all types of attributes come from. The alias template bool 
constant has been available since C++17:

namespace my_lib
{
template <bool Argument>
using constant_bool = integral_constant<bool, Argument>;
using true_type = bool_constant<true>;
using false_type = bool_constant<false>;
}
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Having distinct types for the resulting true and false values allows us to tag-dispatch, based on 
the result of the type traits:

#include <type_traits>
#include <iostream>

int main()
{
    using my_type = bool;
    const my_type x = 14;
    std::cout << std::boolaplha;
    std::cout << my_lib::bool_constant<x>::value; // true
}

Primary-type groups are the next feature. This category verifies whether or not a type is a main type:

•	 isVoid

•	 isNull_pointer

•	 isIntegral

•	 isArray

•	 isEnum

•	 isClass

•	 isFunction

•	 isPointer

If a type is void, my_lib::isVoid determines it. It contains the member constant value – if U 
is void, const void, volatile void, or const volatile void, the value is equal to 
true; otherwise, the value is false:

inherited from the trait of the same type:
namespace my_lib
{
template <typename U>
struct isVoid : my_lib::isSame<void, typename my_lib::remove_
cv<U>::type> { }
}

int main()
{
    cout << boolalpha;
    cout << my_lib::isVoid<void>::value << std::endl;



Template Meta Programming194

    cout << my_lib::isVoid<const void>::value;
    cout << my_lib::isVoid<int>::value << endl;
}

Since C++17, a trait has had a helper variable template (the _v suffix helps to get rid of the old syntax).

isNullpointer determines whether U is a null pointer. The member constant value is given. 
If U is nullptr t, const nullptr t, volatile nullptr t, or const volatile 
nullptr t, the value is true; otherwise, the value is false:

namespace my_lib
{
template <typename U>
struct isNullpointer
: my_lib::is_same<nullptr_t, my_lib::remove_cv_t<U>> { };
}

int main()
{
    cout << boolalpha;
    cout << my_lib::isNullpoitner<decltype(nullptr)>::value
      << endl;
    cout << my_lib::isNullpointer<char*>::value << endl;
}

The isIntegral type trait is a way to determine whether a T type is an integral type. It provides a 
member constant value that is equal to true if T is bool, char, short, int, long, or long 
long, and false otherwise. The value member is an integral constant, meaning that its value is 
determined at compile time. By utilizing the isIntegral type trait, you can gain more control over 
your code and make it more efficient and readable. Let’s consider the following code:

{
template <typename U>
struct isIntegral : my_lib::false_type { };
template <> isIntegral<int> : true_type { };
template <> isIntegral<bool> : true_type { };
template <> isIntegral<char> : true_type { };
template <> isIntegral<short> : true_type { };
template <> isIntegral<long> : true_type { };
// and etc.
}
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isArray determines whether T is a type of array. It gives the value of the member constant, which, 
if T is an array type, is equal to true; otherwise, it is equivalent to false:

namespace my_lib
{
    template <typename  U>
    struct isArray : false_type { };
    template <typename U>
    struct isArray<U[ ]> : true_type { };
    template <typename U, size_t N>
    struct isArray<U[N]> : true_type { };
}
int main()
{
    cout << std::boolalpha;
    cout << my_lib::isArray<int*>::value << endl;
    std::cout << my_lib::isArray<int[]>::value << endl;
}

The third category of traits is the composite type:

•	 isFundamental

•	 isArithmetic

•	 isScalar

•	 isReference

•	 isMemberPointer

Let us understand each in detail:

isFundamental

This determines whether U is a basic type, such as an arithmetic type, void, or nullptr t. 
It gives the value of the member constant, which is true if the T type is a fundamental type and 
false otherwise. IsFundamental inherits from integral_constant. It is already clear from 
the definition that the three aforementioned main types must be checked; if one of them evaluates as 
true, then the whole expression is true:

namespace my_lib
{
    template <typename U>
    struct isFundamental : my_lib::integral_constant<bool,
    my_lib::isArithmetic<U>::value ||
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    my_lib::isVoid<U>::value ||
    my_lib::isNullpointer<U>::value> { };
// implementation of the is_arithmetic will be as follows
}

class Person { };
int main()
{
    cout << boolalpha;
    cout << my_lib::isFundamental<int>::value << " ";
    cout << my_lib::isFundamental<Person>::value;
    cout << endl;
}

In the preceding code, the first call of the cout operator prints true because int is a fundamental 
type. However, the second call evaluates false, as Person is not a fundamental data type in C++.

isArithmetic

Integral types and floating-point types are the two sub-types of the isArithmetic types. Arithmetic 
operators such as +, -, *, and / are defined for these sorts of data. They specify the value of the member 
constant – if T is an arithmetic type, it is true; otherwise, it is false. The isArithmetic type 
inherits from the integral constant:

namespace my_lib
{
template <typename U>
struct isArithmetic : my_lib::integral_constant<bool,
my_lib::isIntegral::value || my_lib::isFloating_point<U>::value> { };
}
class Person
{
public:
    Person(float x = 0.0) : _m{x} { }
    operator float() { return _m; }
private:
    float _m;
};

int main()
{
    cout << boolalpha;
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    cout << my_lib::isArithmetic<Person>::value << " ";
    cout << my_lib::isArithmetic<float>::value << endl;
}

In the example, you can see that we created a Person class, which has a parametrized constructor and 
operator float, providing an implicit type conversion of the Person type to float. However, when 
we check for the isArithmetic type, we can see that it was not passed, and the result prints false.

isScalar

This determines whether U is a scalar type. Scalar data objects in C++ are those that have a single value 
and are not made up of other C++ objects, such as integers and pointers, while non-scalar data objects 
include arrays and classes. Although pointers to members seem to be simple scalars, implementations 
typically represent them using a variety of machine data. For instance, a function pointer and an 
offset value may both be included in a pointer to a member function. The member constant value is 
provided by the type trait; it is true if U is a scalar type and false otherwise. IsScalar inherits 
from the integral constant.namespace my_lib:

{
template <typename U>
struct isScalar : my_lib::integral_constant<bool,
my_lib::isArithmetic<U>::value ||
my_lib::isEnum<U>::value ||
my_lib::isPointer<U>::value ||
my_lib::isMember_pointer<U>::value ||
my_lib::isNullpointer<U>::value> { };
}

template <typename Arg1, typename... Args>
void are_scalars(Arg1&& first_arg, Args&&... args)
{
    using type = std::decay<decltype(first_arg)>::type;
    std::cout << typeid(type).name() << " is "
      << (my_lib::is_scalar<type>::value ? " " : "not ")
      << "a scalar" << std::endl;
    if constexpr(sizeof...(args) > 0)
    {
       are_scalars(std::forward<decltype(args)>(args)... );
    }
}
enum class E { one };
class M { int x; }obj;
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int main()
{
    are_scalar(3.14, 4, E::e, obj, "string");
}

This example demonstrates the implementation of the is_scalar type trait and shows how to use 
it in different situations. We declared the enum class and the ordinary class, and in function 
invocation, we passed these types and also several scalar types as int, double, and const 
char*. The result in the console is the following.

double is a scalar
int is a scalar
E is a scalar
M is not a scalar
char const* is a scalar

isReference determines whether U is a reference type. Similar to a pointer, a reference keeps track 
of an object’s address in another part of memory. A reference cannot be set to null or a different 
object after initialization, unlike a pointer. The member constant value equal to true is provided by 
the type trait. The value for any other type is false:

template <typename U>
struct isReference : my_lib::false_type { };
template <typename U>
struct isReference<U&> : my_lib::true_type { };
template <typename U>
struct isReference<U&&> : my_lib::true_type { };

With isMember_pointer, you can refer to non-static class members and non-static member 
functions using pointers for members. Because the address of a static member is not linked to any 
specific object, you cannot use a pointer for a member to point to a static class member. The member 
constant value equal to true is provided by the type trait. The value for any other type is false:

namespace my_lib
{
    template <typename U>
    struct isMember_pointer_helper : my_lib::false_type { };
    template <typename U, typename Y>
    struct isMember_pointer_helper<U Y::*> :
      my_lib::true_type { };
    template <typename U>
    struct isMember_pointer :
      isMember_pointer_helper<typename
      my_lib::remove_cv<U>::type> { };
}
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The modifiers that can be applied to various variables are compared using type characteristics. These 
type features, as shown in the following list, are not usually immediately beneficial:

•	 isConst

•	 isVolatile

•	 isPolymorphic

•	 isAbstract

•	 isFinal

•	 isSigned

•	 isUnsigned

isConst

The const keyword in C++ instructs the compiler to prevent any modification of an object or variable 
by specifying that it cannot be changed. The is_const type trait provides a member constant value 
that equals true if U is a type that is qualified as const or const volatile, and false for any 
other type. The value member is an integral constant, meaning its value is determined at compile 
time and can be used in constant expressions. Here is a simple implementation of is_const:

namespace my_lib
{
template <typename U> struct isConst : my_lib::false_type { };
template <typename U> struct isConst<const T> :  my_lib::true_type { 
};
}
int main()
{
    cout << boolalpha;
    cout << my_lib::isConst<int>::value << endl;
    cout << my_lib::isConst<const int*>::value << endl;
    std::cout << my_lib::isConst<int* const>::value
      << endl;
    std::cout << my_lib::
      is_const<typename my_lib::remove_reference<const
      int&>::type>::value << endl;
}

Here is an example where the constancy of const int* was tested; the potential result is false 
because int cannot be modified whereas a pointer can. Additionally, there is a restriction that states 
that const<U>::value is always false if U is a reference type. Removing the reference, as we 
did in the previous example, is the correct technique to determine whether a reference type is const.
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isVolatile

The isVolatile qualifier is used to tell the compiler that the value may change at any time. There 
are some properties of volatile:

•	 It cannot cache the variables in the register

•	 The value cannot change in order of assignment

•	 The volatile keyword cannot remove the memory assignment

If T is a volatile-qualified type that is volatile or const volatile, then the provided 
member constant value is equal to true. For any other type, the value is false. Inherited from 
std::integral_constant. The implementation is the same as for the is_const type trait.

isPolymorphic

Polymorphism is the ability to treat objects of different types as if they are of the same type. In C++, 
polymorphism is divided into two categories – static and dynamic. Static polymorphism with overloaded 
functions, an overloaded operator, and templates happens at compile time. Dynamic polymorphism 
with runtime interface changes. If a non-union class inherits or declares at least one virtual function, 
then the polymorphic type trait determines whether U is a polymorphic class and gives the member 
constant a value of true. The value for any other type is false. The isPolymorphic type 
inherited from the integral constant:

namespace my_lib
{
namespace detail
{
template <typename U>
my_lib::true_type detect_isPolymorphic (decltype(dynamic_cast<const 
volatile void*> (static_cast<U*>(nullptr))));
template <typename U>
my_lib::false_type detect_isPolymorphic(...);
}
template <typename U>
struct isPolymorphic : decltype(detail::detect_
isPolymorphic<U>(nullptr)) { };
}

struct Sirius { int i; };
struct Base { virtual void foo() { } };
struct Derived : Base { };
struct Aludra { virtual ~Aludra() = default; };
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int main()
{
    cout << boolalpha;
    my_lib::isPolymorphic<Sirius>::value << endl;
    my_lib::isPolymorphic<Base>::value << endl;
    my_lib::isPolymorphic<Derived>::value << endl;
    my_lib::isPolymorphic<Aludra>::value << endl;
}

Now, let’s dive into the implementation of type traits. We declare two namespaces – one is our library, 
named my_lib, and the second one is detail. In the detail namespace, there is declarations helper 
functions detect _is_polymorphic. The first overloaded version returns the true type and, as a 
parameter, first casts the T type statically and then dynamically. And the second overloaded version 
returns the false type and as a parameter takes ellipsis. The global is_polymorphic meta-
function derives from the detect_is_polymorphic function.

isAbstract

The defining characteristic of an abstract class type is that you cannot get a value of that type; therefore, 
it is improper to define a function, for instance, whose parameter or return type is abstract. Creating 
an array type with an abstract element type is also improper. SFINAE will not be applicable to U if 
it is abstract. While defining an entity of a function type with an abstract return type is permitted, it 
is not well formed. Therefore, if U is an abstract class – a non-union class that declares or inherits at 
least one pure virtual function – it must have a member constant with the true value. The value for 
any other type is false:

namespace my_lib
{
template <typename U, typename>
struct detect_isAbstract : my_lib::true_type { };

template <typename U>
struct detect_isAbstract<U, std::void_t<U[ ]>> : false_type { };

template <typename U>
struct isAbstract : detect_isAbstract<my_lib::remove_cv_t<U>, void> { 
};
}

class A
{
public:
    virtual void foo() = 0;
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};

int main()
{
    cout << boolalpha;
    cout << my_lib::is_abstract<A>::value << endl;
}

is_signed

C++ has signed, unsigned, and char types. In practice, there are basically only two types, signed and 
unsigned, because different compilers treat char as either signed or unsigned char. In general, if int 
is 4 bytes, it can store a range of values from –2.147.483.648 to 2.147.483.647, whereas an unsigned 
int can store from 0 to 4.294.967.295. So, the is_signed type trait checks whether T is signed 
and provides the member constant value as equal to true if T(-1) < T(0). For any other type, the 
value is false. It is inherited from std::integral_constant:

namespace my_lib
{
template <typename T, bool = my_lib::is_arithmetic<T>::value>
struct is_signed: my_lib::integral_constant<bool, T(-1) <T(0)>{};

template <typename T>
struct is_signed<T, false> : my_lib::false_type {};
} // namespace mylib
template <typename T>
struct is_signed : mylib::is_signed<T>::type {};

Summary
Templates in C++ enable computation to occur during the build process. This means that certain 
operations, such as computing the factorial of a number, can be performed at compile time instead 
of runtime. While most compile-time calculations can be replaced with “ordinary functions” using 
constexpr functions, templates are still useful in cases where they are necessary. In template 
metaprogramming, it is possible to examine and even change the attributes of a type using type traits. 
One important concept in this field is SFINAE, which states that the replacement of functional templated 
declarations should not produce bad code, and templates should only be used when necessary. Another 
important aspect of templates is the constexpr if statement, which serves as a compile-time 
if statement. It allows for the conditional execution of statements based on constant expressions, 
enabling even more complex computations to occur during the build process. In summary, templates 
provide a powerful tool to perform computations at compile time, making your code more efficient 
and readable. With the use of constexpr functions and constexpr if statements, as well as type 
traits to examine and change type attributes, the capabilities of templates in C++ are virtually limitless.
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Questions
1.	 What does metaprogramming actually entail?

2.	 What was the first template metaprogramming program?

3.	 When should you use constexpr?

4.	 What is the difference between const and constexpr?

5.	 Can a recursive function be constexpr?

6.	 Implement a program that calculates the Fibonacci number at compile time.





5
Memory Management and 

Smart Pointers

Memory management can be defined as a process in which a computer’s memory is managed – for 
example, assigning memory to programs, variables, and more – so that it doesn’t affect the overall 
performance. Sometimes, the computer’s data can range up to terabytes, so efficiently using memory 
is necessary to minimize memory wastage and boost performance.

Memory management and smart pointers come at a price in C++. Programmers often complain about 
C++ because of its manual memory management requirements. While languages such as C# and Java 
use automatic memory management, it makes the programs run slower than their C++ counterparts. 
Manual memory management is often error-prone and unsafe. As we already saw in the previous 
chapters, a program represents data and instructions. Almost every program uses computer memory 
to some extent. It’s hard to imagine a useful program that doesn’t require memory allocation.

Memory allocation and deallocation start with the simplest call of a function. Calling a function 
usually implies passing arguments to it. The function needs space to store those arguments. To make 
life easier, it’s handled automatically. The same automatic allocation happens when we declare objects 
in the code. Their lifetime depends on the scope they have declared. Whenever they go out of scope, 
they are deallocated automatically.

Most programming languages provide similar automatic deallocation functionality for dynamic 
memory. Dynamically allocated memory – as opposed to automatic allocation – is a term used by 
programmers to identify code portions that request new memory upon requirements. For example, 
this would be used in a program that stores the list of customers’ requests for new memory space 
upon the increase in the number of customers. To somehow differentiate between types of memory 
management, whether it’s automatic or manual, programmers use memory segmentation. A program 
operates with several segments of memory, including the stack, the heap, the read-only segment, and 
others, although all of them have the same structure and are part of the same virtual memory.

Most languages provide simplified methods for accessing dynamic memory without being concerned 
with its deallocation strategies, leaving the hard work up to the runtime support environment. C++ 
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programmers have to deal with the low-level details of memory management. Whether it’s due to the 
philosophy, structure, or age of the language, C++ doesn’t provide high-level memory management 
functionality. Therefore, a deep understanding of memory structure and its management is a must 
for every C++ programmer. Now, let’s illuminate the mystery behind memory and proper memory 
management techniques. In this chapter, we will cover the following topics:

•	 What is memory and how do we access it in C++?

•	 Memory allocation in detail

•	 Memory management techniques and idioms

•	 Garbage collection basics

Technical requirements
Clang has support for some of the features of the C++ standard following C++20, informally referred 
to as C++2b. You can use Clang in C++2b mode with the -std=c++2b option, but you can use 
the g++ compiler with the -std=c++2a option to compile the examples throughout this chapter.

You can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition.

Understanding computer memory
At the lowest level of representation, memory is a device that stores the state of a bit. Let’s say we are 
inventing a device that can store a single bit of information. Nowadays, it seems both meaningless 
and magical at the same time. It’s meaningless to invent something that was invented a long time ago. 
It’s magical because programmers nowadays have the luxury of stable multifunctional environments 
providing tons of libraries, frameworks, and tools to create programs without them even understanding 
them under the hood. It has become ridiculously easy to declare a variable or allocate dynamic memory, 
as shown in the following code snippet:

int x;
double *pd = new double(3.14);

It’s hard to describe how the device stores these variables. To somehow shed some light on that magical 
process, let’s try to design a device that stores a bit of information.

Designing a memory storage device

We will use electrical circuits, relays, and logic gates to design a simple device that can store a bit. The 
purpose of this section is to understand the structure of memory at its lowest level.

https://github.com/PacktPublishing/Expert-C-2nd-edition
https://github.com/PacktPublishing/Expert-C-2nd-edition
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Here’s a simple illustration of an electric circuit, which should be familiar to you from physics classes:

Figure 5.1: A memory storage device

It consists of a wire connecting a battery to a light bulb. The wire has a switch that controls the state 
of the light bulb. The light bulb is on when the switch is closed; otherwise, it’s off. We will add two 
Not OR (NOR) logical elements to this circuit. A NOR is usually represented in the following way:

     

Figure 5.2: NOR logic gate

It has two inputs (the wires leading into the element), each of which represents an electrical signal. 
We say that the output (the wire coming out from the element) is 1 if both inputs are 0. That’s why 
we call it Not OR – because the OR element outputs 1 if any of its inputs are 1. The preceding NOR 
element is simply constructed using two relays. A relay is a switch that uses an electromagnet to close 
and open the contacts. Look at the following diagram:
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Figure 5.3: Open and close contacts

When both switches of relays are closed (meaning the relays are working and pulling down the 
switches of the circuit), the light bulb is off. When we move the switch to the open position of both 
relays, the light bulb turns on. The preceding diagram is one of the ways to depict a NOR gate. At this 
point, we can create a logic element using electric wires, light bulbs, batteries, and relays. Now, let’s 
see a strange combination of two NOR elements leading to an interesting discovery:

      

Figure 5.4: R-S flip-flop

The preceding diagram is a typical representation of an R-S flip-flop. R stands for reset, while S stands 
for set. The device built by the preceding scheme can store one bit. The output, Q, is the wire from 
which we can read the contents of the device. If we set the flip-flop to store the bit, the output will 
be 1. You should carefully examine the preceding diagram and imagine passing signals to its inputs 
one by one or both at the same time and see the output at Q. When the input, S, is 1, Q becomes 1. 
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When R is 1, Q becomes 0. This way, we set or reset the bit. It will store the bit so long as we supply 
current to the device.

Now, imagine we have a lot of devices, as designed earlier, interconnected so that we can store more 
than one bit of information. This way, we can construct complex memory devices that store bytes or 
even kilobytes (KB) of data.

The preceding device is similar to those used in computers before the invention of transistors. A 
transistor is a much smaller device capable of storing bits. Transistors differ in type. Modern devices 
don’t use relays; instead, they incorporate millions of transistors for storing and manipulating data. A 
central processing unit (CPU) register is an example of a device that leverages transistors to store a 
specified number of bits. Usually, a general-purpose register stores up to 64 bits of data. However, you 
can’t store all your programs and data using only registers. The organization of computer memory is 
much more sophisticated. Now, let’s move on and examine the hierarchy of computer memory from 
a higher-level perspective.

Understanding computer memory from a higher-level perspective

Knowing the details of computer memory and data storage is crucial in writing professional programs. 
When programmers refer to the term memory, most of the time, they mean virtual memory. Virtual 
memory is an abstraction supported by the operating system (OS) that controls and provides memory 
space for processes. Each process has its address space represented as a collection of several segments. 
We discussed what memory segments there are and how a given program uses each in Chapter 2, 
Low-Level Programming with C++. From the programmer’s perspective, accessing a memory space 
is mostly limited to object declaration and use. Whether we declare an object on the stack, heap, or 
static memory, we access the same memory abstraction – the virtual memory. Although complicated, 
virtual memory makes life a lot easier. Working directly with physical memory is harder, although it 
is a great advancement in a programmer’s skills. You should at least know what memory storage units 
there are and how you can leverage that knowledge to write better code.

In this section, we discussed the physical memory hierarchy. We call it a hierarchy because each 
memory unit at a lower level provides faster access but a smaller space. Each consecutively higher 
level of memory provides more space in exchange for slower access.

We will discuss the physical memory hierarchy because it will help us design better code. Knowing 
how memory works at each level helps us improve as programmers and allows us to organize data 
manipulation better. The following diagram illustrates the memory hierarchy:
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Figure 5.5: Memory hierarchy

Registers are the fastest accessible memory units placed in the CPU. The number of registers is limited, 
so we can’t keep all the program data in them. On the other hand, Dynamic RAM (DRAM) can store 
a wide range of data for the program. It takes much longer to access data from the DRAM because of 
its physical structure and distance from the CPU. The CPU accesses DRAM via the data bus, which 
is a set of wires that transfers data between the CPU and DRAM. To signal to the DRAM controller 
whether it will read or write data, the CPU uses the control bus. We will refer to DRAM as the main 
memory. Let’s look at the memory hierarchy in detail.

Registers

Registers hold a fixed amount of data. The CPU word size is usually defined by the maximum length of a 
register – for example, eight bytes or four bytes. We can’t directly access a register from a C++ program.

C++ supports embedding assembly code using the asm declaration; for example, asm("mov edx, 
4"). It’s a platform-specific and artificial augmentation of the code, so we don’t suggest using it.

Note
Visual C++ support for the standard C++ asm keyword is limited to the fact that the compiler 
will not generate an error on the keyword. However, an asm block will not generate any 
meaningful code. Use __asm instead of asm:

asm-block:
    __asm assembly-instruction; opt
    __asm {assembly-instruction-list}; opt
assembly-instruction-list:
    assembly-instruction; opt
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    assembly-instruction; assembly-instruction-list; opt

Here’s an example of this:

__asm {
   mov al,
   2 mov dx,
   0xD007 out dx, al
}
OR
__asm mov al, 2
__asm mov dx, 0xD007
__asm out dx, al

In older versions of the language, we could use the register keyword when declaring a variable:

register int num = 14;

Note
The register storage class specifier was deprecated in C++11.

The keyword is unused and has been reserved since C++17.

The modifier specified that the compiler stores the variable in the register. This way, it gave programmers 
a fake sense of code optimization.

Tip
Compilers are sophisticated tools that translate higher-level C++ code into machine code. In 
the translation process, the code takes several transformations, including code optimizations. 
When programmers apply tricks to force the compiler to optimize a portion of the code, the 
compiler takes them as suggestions rather than commands.

For example, accessing a variable in a loop will be faster if that variable is placed in a register rather 
than in the DRAM. For example, the following loop accesses objects one million times:

  int number{42};
  for (int ix = 0; ix < 10000000; ++ix)
  {
     int res{number + ix};
     // do something with res
  }
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As we know, the number has an automatic storage duration (it has nothing to do with the auto 
keyword) and is placed on the stack. The stack is a segment in the virtual memory, and the virtual 
memory is an abstraction over the physical DRAM. It’s faster to access the object in a register than in 
DRAM. Let’s suppose reading the value of a number from the DRAM is five times slower than from 
a register. It might seem obvious to optimize the preceding loop using the register keyword, as 
shown here:

auto number{42};
// the loop omitted for code brevity

However, compilers make better optimizations nowadays, so the need for a modifier has faded over 
time and it is now a deprecated language feature. A better optimization would be getting rid of the 
number object altogether. For example, the following code represents the compile-optimized version 
that uses the actual value rather than accessing it via the variable that resides in the DRAM:

for (int ix = 0; ix < 1000000; ++ix)
{
    int res{42 + ix};
    // do something with res
}

Although the preceding example is arguably simple, we should consider compiler optimizations that 
take place during compilation.

Discovering the registers improves our understanding of the program execution details. The point is 
that everything the CPU performs happens via the registers, including the instructions that the CPU 
should decode and execute, which are accessed using a specific register. These are commonly referred 
to as instruction pointers. When we run the program, the CPU accesses its instructions and decodes 
and executes them. Reading data from the main memory and writing data to memory is performed 
by copying it from and to the registers. Usually, general-purpose registers are used to temporarily 
hold data while the CPU performs operations on it. The following diagram depicts an abstract view 
of the CPU and its interaction with the main memory via buses:
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Figure 5.6: Connection between CPU and DRAM via buses

As you can see, the communication between the CPU and DRAM happens via various buses. In 
Chapter 2, Low-Level Programming with C++, we discussed the low-level representation of C++ 
programs – you should take a quick look at that to better understand the following example.

Now, let’s see registers in action. The following C++ code declares two variables and stores their sum 
in a third variable:

int a{ 40 }, b{ 2 };
int c{ a + b };

To execute the sum instruction, the CPU moves the values of the a and b variables into its registers. 
After calculating the sum, it then moves the result into another register. An assembler pseudocode 
representation of the program looks similar to the following:

mov eax, a
mov ebx, b
add eax, ebx

The compiler doesn’t need to generate code that maps each variable to one register – the number 
of registers is limited. You just need to remember that you should keep regularly accessed variables 
small enough that they fit into one of the registers. For larger objects, the cache memory comes to 
the rescue. Let’s see how.
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Cache memory

The idea of caching is common in programming and computer systems. Images loaded in the browser 
are cached to avoid further requests to the web server to download them in case the user visits the 
website again in the future. Caching makes programs run faster. This concept can be leveraged in 
many forms, including in single functions. For example, the following recursive function calculates 
the factorial of a number:

long long factorial(long long n)
{
    if (n <= 1) { return 1; }
       return n * factorial(n - 1);
}

The function doesn’t remember its previously calculated values, so the following calls lead to five and 
six recursive calls, respectively:

factorial(5); // calls factorial(4), which calls factorial(3), and so 
on
factorial(6); // calls factorial(5), which calls factorial(4), and so 
on

We can cache already calculated values at each step by storing them in a globally accessible variable, 
as shown here:

std::unordered_map<long, long> cache;
long factorial(long n)
{
    if (n <= 1) return 1;
    if (cache.contains(n))
    {
        return cache[n];
    }
    cache[n] = n * factorial(n - 1);
    return cache[n];
}

These modifications optimize further calls to the function:

factorial(4);

Calling factorial(4) on its own on the previous line means that it’s already been cached:

factorial(5);
factorial(6); // calls the factorial(5) which returns already 
// calculated value in cache[5]
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In the same way that the concept of caching makes the factorial function run faster, an actual memory 
device named the cache is placed inside the CPU. This device stores recently accessed data to make further 
access to that data faster. The following diagram depicts registers and cache memory inside the CPU:

Figure 5.7: Registers and cache memory

The cache size usually ranges from 2 KB to 64 KB (and, rarely, 128 KB). While it doesn’t seem big 
enough for applications such as Photoshop, where the image’s data size can be way bigger than the 
cache size itself, it does help in many scenarios. For example, suppose we store more than 1,000 
numbers in a vector:

std::vector<int> vec;
vec.push_back(1);
...
vec.push_back(9999);

The following code prints the vector items:

for (auto it: vec)
{
     std::cout << it;
}
   // 1
   // 2
   // 3
   // ...
   // 9999

Suppose that to print the item, the CPU copies it from memory to the rax register, then calls the << 
operator, which prints the value of the rax to the screen. On each iteration of the loop, the CPU copies 
the next item of the vector into the rax register and calls the function to print its value. Each copy 
operation requires the CPU to place the address of the item on the address bus and set the control 
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bus to read mode. The DRAM microcontroller accesses the data using the address received by the 
address bus and copies its value to the data bus, thereby sending the data to the CPU. The CPU directs 
the value to the rax register and then executes instructions to print its value. The following diagram 
shows this interaction between the CPU and DRAM:

Figure 5.8: Intersection between the CPU and DRAM

To optimize the loop, the CPU maintains an idea of data locality – that is, it copies the whole vector 
into the cache and accesses vector items from the cache, omitting the unnecessary requests to DRAM. 
In the following diagram, you can see that the data received from DRAM via the data bus is then 
stored in the cache memory:

Figure 5.9: Cache memory
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The cache residing in the CPU is known as a level 1 (L1) cache. This is the smallest in capacity and 
resides inside the CPU. Many architectures have a level 2 (L2) cache, which resides outside the CPU 
(though closer than the main memory) and is accessed the same way as DRAM. The difference between 
the L2 cache and DRAM is the physical structure and data access patterns. The L2 cache represents 
Static RAM (SRAM), which is faster than DRAM but is also much more expensive.

Tip
Some runtime environments leverage the idea of caching when implementing garbage collection. 
They separate the objects into categories based on their lifetime with objects that have the 
smallest lifetime, such as the ones allocated to the local scope of the code, placed in the cache 
both to be accessed and deallocated faster.

New levels of cache memories serve as caches for the lower level. For example, the L2 cache serves as 
a cache memory for the L1 cache. When the CPU encounters a cache miss, it requests the L2 cache, 
and so on.

Main memory

The physical structure of DRAM forces it to refresh its charge to keep the data stable, while SRAM 
doesn’t need to be refreshed like DRAM. We call DRAM the main memory mostly because programs 
are loaded into it; the OS maintains virtual memory and maps it to DRAM. All the actual work happens 
through the main memory first.

As we already discussed, the main memory represents a sequence of addressable bytes of data. Each 
byte has a unique address and is accessed using that address. We mentioned earlier how the CPU 
places the address of the data on the address bus, thereby letting the DRAM microcontroller fetch 
the requested data and send it via the data bus.

As we know, the OS introduces virtual memory as an abstraction over physical memory. It maps 
the contents of the virtual memory to the physical memory, which involves the CPU’s translation 
lookaside buffer (TLB). The TLB is another form of cache memory: it stores the recent translations 
of virtual memory into physical memory, thereby caching it for future requests. As shown in the 
following diagram, the CPU coordinates with the TLB to properly translate virtual addresses into 
physical addresses:
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Figure 5.10: TLB

Though memory management is sophisticated, the OS provides us with a simple enough abstraction 
to manage the memory required for our programs. We can allocate it either automatically using the 
stack, or dynamically on the heap. Automatic memory allocation doesn’t involve many concerns and 
difficulties; we just declare objects and they are placed on the stack and then automatically removed 
whenever the execution leaves the scope. In the case of dynamic memory (not to be confused with 
the hardware DRAM mentioned earlier), both allocation and deallocation should be done manually, 
which creates possibilities for making errors, which leads to memory leaks.

Permanent storage

When we turn off the computer, the contents of the main memory are erased (because the charge 
is not refreshed anymore). To store the data permanently, even when the power is off, computers 
are equipped with a hard disk drive (HDD) or a solid-state drive (SSD). From the perspective of 
programmers, permanent storage is used to store programs with their necessary data. We already know 
that to run a program, it should be loaded into the main memory – that is, copied from the HDD 
to DRAM. The OS handles this using a loader and creates a program image in memory, commonly 
referred to as a process. When the program is done or the user closes it, the OS marks the address 
range of the process as free to use.

Let’s suppose we use a text editor to write notes while learning C++. The text that’s typed into the 
editor resides in the main memory unless we save it on the HDD. This is important to note because 
most programs keep track of recent user activity and also allow the user to modify program settings. 
To keep these settings the way the user modified them, even after the program is relaunched, the 
program stores them as a separate settings file on the HDD. The next time the program runs, it first 
reads the corresponding settings file or files from the HDD and updates itself to apply the recent 
modifications of settings.
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Usually, permanent storage has a much bigger capacity compared to the main memory, which makes 
it possible to use the HDD as a backup for virtual memory. The OS can maintain the virtual memory 
and fake its size, making it bigger than the physical DRAM. For example, the DRAM’s 2-GB maximum 
capacity could be quickly exhausted by launching several heavyweight applications. However, the OS 
still can maintain a larger virtual memory by backing up its additional space with the HDD. When 
the user switches between applications, the OS copies the exceeding bytes of virtual memory to the 
HDD and maps the currently running application to the physical memory.

This makes programs and the OS run slower but allows us to keep them open without caring about 
the limited size of the main memory. Now, let’s dive a little deeper into memory management in C++.

The basics of memory management

Most of the time, issues that arise during memory management happen when programmers forget 
about deallocating memory space. This results in memory leaks. A memory leak is a widespread issue 
in almost every program. When the program requests a new memory space for its data, the OS marks 
the provided space as busy. That is, no other instruction of the program or any other program can 
request that busy memory space. When the portion of the program is done with the memory space, 
ideally, it must notify the OS to remove the busy label to make the space available to others.

Some languages provide automatic control over dynamically allocated memory, leaving the programmer 
to worry about the logic of the application rather than constantly being concerned with deallocating 
memory resources. However, C++ assumes that the programmer is responsible and smart (which is 
not always the case). Dynamically allocated memory management is the programmer’s responsibility. 
That’s why the language provides both new and delete operators to deal with memory space, where 
the new operator allocates memory space and the delete operator deallocates it. In other words, 
the ideal code for dealing with dynamically allocated memory looks like this:

T* p = new T();
// allocate memory space p->do_something();
// use the space to do something useful delete p;
// deallocate memory space

Forgetting to call the delete operator makes the allocated memory space busy forever. By forever, 
we mean as long as the program is running. Now, imagine a web browser that is always open on the 
user’s computer. Memory leaks here and there might lead to memory starvation over time, and sooner 
or later, the user has to restart the program or, even worse, the OS.

This issue applies to any resource that we work with, whether it’s a file or a socket we forget to close 
(more about sockets in Chapter 12, Networking and Security). To solve this issue, C++ programmers use 
the Resource Acquisition Is Initialization (RAII) idiom, stating that a resource should be acquired 
on its initialization, which allows it to be properly released later. In the context of RAII, initialization 
specifically refers to the initialization of an object, tying the lifetime of the resource to the lifetime of 
the object. Let’s see RAII in action.
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An example of memory management

Consider the following function, which dynamically allocates an array of 420 shorts, reads their values 
from the user input, prints them in ascending order, and deallocates the array:

void print_sorted()
{
    short* arr{new short[420]};
    for (int ix = 0; ix < 420; ++ix)
    {
        std::cin >> arr[ix];
    }
    std::sort(arr, arr + 420);
    for (int ix = 0; ix < 420; ++ix)
    {
       std::cout << arr[ix];
    }
    delete arr; // very bad!
}

We already made a mistake in the preceding code by using the wrong delete operator to deallocate 
the memory. To deallocate an array, we must use the delete[] operator; otherwise, the code will 
lead to memory leaks. Here’s how we illustrate the allocation of the array:

Figure 5.11: Dynamic array allocation
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Let’s say we release the space using delete instead of delete[]. It will treat arr as a short pointer, 
and therefore will remove the first 2 bytes starting at the address contained in the arr pointer, as 
shown in the following diagram:

Figure 5.12: Dynamic array deletion

So, we’ve removed the first item out of 420 items and left the 419 shorts untouched on the heap. 
Whenever we need new space on the heap, that small section containing the 419 untouchables won’t 
be reused again. Though the family of new and delete operators is implementation-defined, we 
shouldn’t hope for the best implementation that avoids memory leaks.

Let’s modify the preceding code to properly release the allocated memory for the array and make sure 
we eliminate the possibility of inputting negative numbers:

void print_sorted()
{
    short* arr{new short[420]};
for (int ix = 0; ix < 420; ++ix)
        {
          std::cin >> arr[ix];
          if (arr[ix] < 0) return;
        }
std::sort(arr, arr + 420);
//print the sorted array, code omitted for brevity
delete[] arr;
}
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The preceding modifications are another example of a possible memory leak, though we clearly wrote 
ugly code for the sake of simplicity. The point is that whenever the user inputs a negative number, the 
function returns. This leaves us with 420 orphan shorts that should be released somehow. However, 
the only access to the allocated memory was the arr pointer, which is declared on the stack, so it will 
be automatically deleted (the pointer variable, not the memory space pointed to it) when the function 
returns. To eliminate the possibility of a memory leak, we should simply call the delete[] operator 
before the function exits:

void print_sorted()
{
    short* arr{ new short[420] };
    for(int ix = 0; ix < 420; ++ix)
    {
        std::cin >> arr[ix];
        if (arr[ix] < 0)
    {
        delete[] arr;
        return;
    }
}
// sort and print the sorted array, code omitted for
// brevity
  delete[] arr;
}

The code gets somewhat ugly, but it fixes the memory leak. What if we modify the function further 
and use a third-party library function to sort the array?

include <strange_sort.h>
void print_sorted()
{
short* arr{new short[420]};
for (...) { /* code omitted for brevity */ }
      strange_sort::sort(arr, arr + 420);
// print the sorted array, code omitted for brevity
      delete[] arr;
}

It turns out that strange_sort::sort throws an exception when the value of the array item 
exceeds 420 (that’s why it’s a strange sort, after all). If the exception is left uncaught, it will bubble up 
to the caller function unless it is caught somewhere or the program crashes. The uncaught exception 
leads to stack unwinding, which leads to the automatic destruction of the arr variable (the pointer), 
so we face another possibility of a memory leak. To fix it, we could wrap strange_sort::sort 
in a try-catch block:
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try
{
strange_sort::sort(arr, arr + 420);
}
catch (ex) { delete[] arr; }

C++ programmers constantly seek ways to deal with memory leaks, such as the RAII idiom and smart 
pointers, which we will discuss in the next sections.

Using smart pointers
Many languages support automated garbage collection. For example, memory acquired for an object 
is tracked by the runtime environment. It will deallocate the memory space after the object with a 
reference to it goes out of scope. Consider the following, for example:

// a code sample of the language (not-C++) supporting
// automated garbage collection
void foo(int age) {
Person p = new Person("John", 35);
        if (age <= 0) { return; }
        if (age > 18) {
             p.setAge(18);
}
     // do something useful with the "p"
}
// no need to deallocate memory manually

In the preceding code block, the p reference (usually, references in garbage-collected languages are 
similar to pointers in C++) refers to the memory location returned by the new operator. The automatic 
garbage collector manages the lifetime of the object created by the new operator. It also tracks references 
to that object. Whenever the object has no references, the garbage collector deallocates its space. 
Something similar to that might be achieved by using the RAII idiom in C++. Let’s see it in action.

Leveraging the RAII idiom

As already mentioned, the RAII idiom suggests acquiring the resource on its initialization. Look at 
the following class:

template <typename T>
class ArrayManager
{
public:
    ArrayManager(T* arr) : arr_{arr} {}
    virtual ~ArrayManager() { delete[] arr_; }
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    T& operator[](int ix) { return arr_[ix]; }
    T* raw() { return arr_; }
};

The print_sorted function can now use ArrayManager to properly release the allocated array:

void print_sorted()
{
ArrayManager<short> arr{ new short[420] };
for (int ix = 0; ix < 420; ++ix)
{
      std::cin >> arr[ix];
}
strange_sort::sort(arr.raw(), arr.raw() + 420);
  for (int ix = 0; ix < 420; ++ix)
  {
      std::cout << arr[ix];
  }
}

We suggest using standard containers such as std::vector rather than ArrayManager, though 
it’s a good example of the RAII application: acquiring the resource on initialization. We created an 
instance of ArrayManager and initialized it with the memory resource. From that point, we can 
forget about its release because the actual release happens in the destructor of ArrayManager. And, 
as we declared the ArrayManager instance on the stack, it will be automatically destroyed when 
the function returns or an uncaught exception occurs, and the destructor will be called.

Using a standard container is preferred in this scenario, so let’s implement the RAII idiom for single 
pointers. The following code dynamically allocates memory to a Product instance:

Product* apple{new Product};
apple->set_name("Red apple");
apple->set_price(0.42);
apple->set_available(true);
// use the apple
// don't forget to release the resource
delete apple;

If we apply the RAII idiom to the preceding code, it will release the resource at the proper point of 
code execution:

ResourceManager<Product> res{new Product};
res->set_name("Red apple");
res->set_price(0.42);
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res->set_available(true);
// use the res the way we use a Product
// no need to delete the res, it will automatically delete
// when gets out of the scope

The ResourceManager class should also overload the * and -> operators because it has to behave 
like a pointer to properly acquire and manage a pointer:

template <typename T>
class ResourceManager
{
public:
ResourceManager(T* ptr) : ptr_{ptr} {}
        ~ResourceManager() { delete ptr_; }
        T& operator*() { return *ptr_; }
        T* operator->() { return ptr_; }
public:
    void set_name(const std::string& name) {
         name_ = name;
}
    void set_price(double price) {
     price_ = price;
}
private:
     T *ptr_;
     std::string name_;
     double price_;
};

The ResourceManager class cares about the idea of the smart pointer in C++. C++11 introduced 
several types of smart pointers. We call them smart because they wrap around the resource and manage 
its automatic deallocation. This happens solely because the destructor of an object will be called when 
the object is set to destroy. That said, we operate with the dynamically allocated space through the 
object with an automatic storage duration. When the handler object goes out of scope, its destructor 
executes the necessary actions to deallocate the underlying resource.

However, smart pointers might bring additional issues. The simple smart pointer discussed in the 
preceding paragraph has several issues that will arise eventually. For example, we didn’t take care of 
ResourceManager copying the following:

void print_name(ResourceManager<Product> apple)
{
std::cout << apple->name();
}
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ResourceManager<Product> res{ new Product };
res->set_name("Red apple");
print_name(res);
res->set_price(0.42);
//...

The preceding code leads to undefined behavior. The following diagram shows the disguised problem:

Figure 5.13: Resource acquisition

Both res and apple acquire the same resource. Whenever one of them goes out of scope (apple), the 
underlying resource is released, which leaves the other ResourceManager instance with a dangling 
pointer. When the other ResourceManager instance goes out of scope, it will try to delete the 
pointer twice. Usually, programmers are aware of the kind of smart pointer they need in a specific case. 
That’s why C++ provides several types of smart pointers that we will discuss further. To use them in 
your programs, you should import the <memory> header.

std::unique_ptr

Similar to the  ResourceManager instance we implemented earlier, std::unique_ptr represents 
a basic smart pointer. For example, to manage the Product object using this smart pointer, we can 
do the following:

std::unique_ptr<Product> res{ new Product };
res->set_name("Red apple");
// res will delete its acquired resource when goes out of
// scope
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Note how we access the Product member function, set_name. We treat the res object as something 
that is of the Pointer* type.

unique_ptr is unique because it provides the semantics of strict ownership – it is obligated to 
destroy the acquired object. More interestingly, unique_ptr can’t be copied. It doesn’t have a copy 
constructor or assignment operator. That’s why its ownership is strict. Of course, that doesn’t mean 
that we can’t move a unique_ptr class. In that case, we completely pass ownership to the other 
instance of the unique pointer.

One of the main requirements for smart pointers is keeping them lightweight. We can surely agree 
on that. While unique_ptr is a full class with several member functions, it doesn’t pollute with 
additional data members. It’s just a wrapper around the raw pointer to the allocated object. We can 
access that raw pointer by calling the release() member function of unique_ptr, as shown here:

Product* p = res.release();
// now we should delete p manually to deallocate memory

Note that the release() function doesn’t call the delete operator. It only gives back ownership. 
After calling the release() function, unique_ptr no longer owns the resource. To reuse a 
unique_ptr that already owns a resource, you should use the reset() member function. It calls 
the delete operator for the underlying pointer and resets the unique pointer for further use. On 
the other hand, if you want to get the underlying object without releasing the ownership, you should 
call the get() member function:

std::unique_ptr<Product> up{ new Product() };
Product* p = res.get();
// now p also points to the object managed by up

We can’t use a unique_ptr class in the following scenario because it can’t be copied:

// Don't do this
void print_name(std::unique_ptr<Product> apple)
{
std::cout << apple->name();
}
std::unique_ptr<Product> res{ new Product };
res->set_name("Red apple");
print_name(res); // bad code res->set_price(0.42);
// ...

However, it’s not what we’re looking for in the preceding code. You can consider the preceding code a 
bad design because it confuses the ownership details. Let’s move on to the next smart pointer in C++, 
which solves the issue of passing unique_ptr to functions.
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std::shared_ptr and std::weak_ptr

We need a smart pointer that provides shared ownership. What we needed was introduced back in 
C++11 as std::shared_ptr. It’s harder to implement a smart pointer with shared ownership 
because you should take care of correctly deallocating the resource. For example, when the print_
name() function in the preceding code block finishes its work, its arguments and local objects will 
be destroyed. Destroying a smart pointer leads to the proper deallocation of the resource it owns. How 
would the smart pointer know if that resource was still owned by another smart pointer? One of the 
popular solutions is keeping a count of references to the resource. The shared_ptr class does the 
same: it keeps the number of pointers pointing to the underlying object and deletes it when the use 
count becomes 0. Therefore, several shared pointers can own the same object.

Now, the example we just discussed should be rewritten like this:

void print_name(std::shared_ptr<Product> apple)
{
std::cout << apple->name();
}
std::shared_ptr<Product> res{ new Product };
res->set_name("Red apple");
print_name(res);
res->set_price(0.42);
// ...

After calling the print_name() function, the use count of the shared pointer increases by 1. It 
will decrease by 1 when the function finishes its work but the managed object won’t be deallocated. 
That’s because the res object is not out of scope yet. Let’s slightly modify the example to print the 
count of references to the shared object:

void print_name(std::shared_ptr<Product> apple)
{
std::cout << apple.use_count() << " eyes on the " << apple->name();
}
std::shared_ptr<Product> res{ new Product };
res->set_name("Red apple");
std::cout << res.use_count() << std::endl;
print_name(res);
std::cout << res.use_count() << std::endl;
res->set_price(0.42);
// ...

The preceding code will print the following to the screen:

1
2 eyes on the Red apple
1
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When the last shared_ptr goes out of scope, it also destroys the underlying object. However, you 
should be careful when sharing an object between shared pointers. The following code shows an 
obvious issue with shared ownership:

std::shared_ptr<Product> ptr1{ new Product() };
Product* temp = ptr1.get();
if (true)
{
std::shared_ptr<Product> ptr2{temp};
      ptr2->set_name("Apple of truth");
}
ptr1->set_name("Peach"); // danger!

Both ptr1 and ptr2 point to the same object, but they are not aware of each other. So, when we 
modify the Product object via ptr2, it will affect ptr1. When ptr2 goes out of scope (after the 
if statement), it will destroy the underlying object, which is still owned by ptr1. This happens 
because we make ptr2 own the object by passing the raw temp pointer to it. ptr1 can’t track that.

Ownership can only be shared using the copy constructor or the assignment operator of std::shared_
ptr. This way, we avoid deleting the object if it’s in use by another shared_ptr instance. Shared 
pointers implement shared ownership using control blocks. Each shared pointer holds two pointers 
– one for the object it manages and another for the control block. The control block represents a 
dynamically allocated space containing the use count of the resource. It also contains several other 
things crucial to shared_ptr, such as the resource’s allocator and deleter. We will introduce 
allocators in the next section. deleter is usually the regular delete operator.

The control block also contains several weak references. This is because the owned resource might be 
pointed to a weak pointer, too. std::weak_ptr is the smaller brother of std::shared_ptr. 
It refers to an object managed by a shared_ptr instance but doesn’t own it. weak_ptr is a way 
to access and use the resource owned by shared_ptr without owning it. However, there is a way 
to convert a weak_ptr instance into shared_ptr using the lock() member function.

Both unique_ptr and shared_ptr can be used to manage dynamically allocated arrays. The 
template parameter must be specified correctly:

std::shared_ptr<int[]> sh_arr{ new int[42] };
sh_arr[11] = 44;

To access an element of the underlying array, we can use the [ ] operator of the shared pointer. 
Also, note that using a smart pointer won’t have drawbacks when used in dynamic polymorphism. 
For example, let’s suppose we have the following class hierarchy:

struct Base
{
virtual void test()
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{
std::cout << "Base::test()" << std::endl;
}
};

struct Derived : Base
{
void test() override
{
std::cout << "Derived::test()" << std::endl;
}
};

The following code works as expected and outputs Derived::test() to the screen:

std::unique_ptr<Base> ptr =     std::make_unique_default_init<Derived> 
();
ptr->test();

Although the use of smart pointers might seem to spoil the beauty of pointers, it is suggested that you 
use smart pointers intensively to avoid memory leaks. However, it’s worth noting that replacing all 
pointers with smart pointers, whether it’s a unique_ptr or a shared_ptr pointer, will not solve 
all the memory leak problems. They have their disadvantages, too. Consider a balanced approach, or 
better, thoroughly understand both the problem and the smart pointers themselves in detail before 
applying them to the problem.

Managing memory in C++ programs comes at a price. The most important thing that we’ve discussed is 
the proper deallocation of memory space. The language doesn’t support automatic memory deallocation, 
but it’s worth mentioning garbage collectors. However, to have a complete garbage collector, we need 
language-level support. C++ doesn’t provide any of that. Let’s try to imitate a garbage collector in C++.

Garbage collection
A garbage collector is a separate module that’s usually incorporated in the runtime environments 
of interpretable languages. For example, C# and Java both have garbage collectors, which makes 
programmers’ lives a lot easier. The garbage collector tracks all the object allocations in the code and 
deallocates them once they are not in use anymore. It’s called a garbage collector because it deletes 
the memory resource after it’s been used: it collects the garbage left by programmers.

It’s said that C++ programmers don’t leave garbage after them; that’s why the language doesn’t have 
support for a garbage collector. Though programmers tend to defend the language by stating that it 
doesn’t have a garbage collector because it’s a fast language, the truth is that it can survive without one.

Languages such as C# compile the program into an intermediate byte-code representation, which 
is then interpreted and executed by the runtime environment. The garbage collector is a part of the 
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environment and actively tracks all object allocations. It is a sophisticated beast that tries its best to 
manage memory in a reasonable time. The following diagram depicts a typical runtime environment 
that allocates memory supervised by the garbage collector:

Figure 5.14: Garbage collector

We manually call the delete operator to release the memory space in C++, even when using smart 
pointers. Smart pointers just acquire the object and delete the object when it goes out of scope. The 
key point is that even though smart pointers introduce some semi-automatic behavior, they still act 
as if the programmer didn’t forget to release the resource at a specified point of the code. The garbage 
collector does that automatically and usually uses separate execution threads. It tries its best not to 
slow down the program’s execution speed.

Some garbage collection implementation techniques involve classifying objects by their lifetime 
duration. Classification makes the garbage collector visit the objects and release the memory space if 
objects aren’t in use anymore. To make this process faster, objects with short lifetimes should be visited 
more often than objects with longer lifetimes. Take, for example, the following code:

class Garbage
{
    public:
        char ch;
        int i;
};

void foo()
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{
    Garbage* g1 = new Garbage();
    if (true)
    {
       Garbage* g2 = new Garbage();
    }
}

int main()
{
    Garbage* g3 = new Garbage();
}

If C++ had a garbage collector, then the g1, g2, and g3 objects would be deleted in different time 
slots of the program’s execution. If the garbage collector classifies them by their lifetime duration, 
then g2 would have the shortest lifetime and should be visited first to release it.

To implement a garbage collector in C++, we should make it a part of the program. The garbage 
collector should first take care of allocating memory to track and remove it:

class GarbageCollector
{
public:
template <typename T>
        static T* allocate()
      {
            T* ptr{new T()};
              objects_[ptr] = true;
              return ptr;
}
         static void deallocate(T* p)
        {
            if (objects_[p])
                {
                  objects_[p] = false;
                  delete p;
                }
       }
  private:
std::unordered_map<T*, bool> objects_;
};
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The preceding class keeps track of objects allocated through the static allocate() function. If the 
object is in use, it deletes it through the deallocate() function. Here’s how GarbageCollector 
can be used:

int* ptr = GarbageCollector::allocate<int>();
*ptr = 42;
GarbageCollector::deallocate(ptr);

This class makes memory management a little bit harder than smart pointers. There is no need to 
implement a garbage collector in C++ because smart pointers can handle almost any scenario regarding 
automatic memory deallocation.

However, let’s see one of the tricks that will allow the garbage collector to properly deallocate the 
space pointed to by some pointer. In our simplest possible implementation, shown previously, we kept 
track of all the pointers that we provided to users. Each pointer points to some space on the heap that 
should be freed at some point in the program’s execution. In GarbageCollector, we would use 
the standard delete operator. The question is, how does it know how many bytes should be freed? 
Take a look at the following example:

Student* ptr = new Student; int* ip = new int{42};
// do something with ptr and ip delete ptr;
delete ip;

Let’s suppose that a Student instance takes 40 bytes of memory and an integer takes 4 bytes. We 
should somehow pass that information to the delete operator. In the preceding code, we deleted 
both ptr and ip, each of which points to memory spaces of different sizes. So, how does it know 
that 40 bytes should be marked as free in the case of ptr and 4 bytes should be marked as free in the 
case of ip? There is more than one solution to this problem, so let’s look at one of them.

Whenever we allocate memory, the new operator puts the size of the allocated space just before the 
actual memory space, as shown in the following diagram:
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Figure 5.15: Space size of allocated memory

This information is then used by the delete operator, which reads the size of the memory space by 
reading the corresponding bytes placed before the memory space. One of the top concerns of C++ is 
managing memory for collections of data. STL containers, such as std::vector and std::list, 
as described in Chapter 6, Digging into Data Structures and Algorithms in STL, have different models 
for working with memory. By default, a container has a specified memory allocator that handles the 
memory allocation and deallocation of container elements. Let’s look at allocators in more detail.

Using allocators
The idea behind an allocator is to provide control to container memory management. In simpler words, 
an allocator is an advanced garbage collector for C++ containers. Although we discuss allocators in the 
scope of container memory management, you can expand the idea to a generic garbage collector. At 
the beginning of this section, we implemented a badly designed garbage collector. When examining 
allocators, you will find a lot of similarities between the poorly designed GarbageCollector 
class and the default allocator in C++. Defined in <memory>, the default allocator has two basic 
functions – allocate() and deallocate(). The allocate() function is defined as follows:

   [[nodiscard]] constexpr T* allocate(std::size_t num);

The allocate() function acquires space for num objects of the T type. Pay attention to the 
[[nodiscard]] attribute – it means that the return value should not be discarded by the caller. 
The compiler will print a warning message otherwise.
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Let’s use the allocator to acquire space for five integers:

import <memory>;
 int main()
{
std::allocator<int> IntAlloc;
int* ptr = IntAlloc.allocate(5);
/* construct an integer at the second position 
*/                  std::allocator_traits<IntAlloc>::
construct(IntAlloc, ptr + 1, 42);
IntAlloc.deallocate(ptr, 5); // deallocate all
}

Note how we used std::allocator_traits to construct objects in the allocated space.

The deallocate() function is defined as follows:

constexpr void deallocate(T* p, std::size_t n)

In the previous code snippet, we used the deallocate() function by passing the pointer returned 
by the allocate() function.

Types of allocators

Allocators are divided into three categories:

•	 Linear allocators

•	 Pool allocators

•	 Stack allocators

Linear allocators are the simplest. The idea is to keep a pointer at the beginning of the memory block 
next to the allocated allocator, and also use a different pointer or numeric representation that needs 
to be moved every time you allocate space:

Figure 5.16: Linear allocator

Let’s imagine that the allocator gets a request to allocate 4 bytes of memory. The allocator’s actions to 
execute the request will be as follows:
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1.	 Check whether there is enough memory to allocate.

2.	 Add the specified size to the used variable (4 bytes).

3.	 Return the memory pointer as the memory that’s been used:

Figure 5.17: 4 bytes in the linear allocator

Then, there is a request to allocate 8 bytes, and, accordingly, the allocator actions will be the same. 
This will keep happening until the memory runs out:

Figure 5.18: 8 bytes in the linear allocator

Now, it’s time to talk about freeing up memory. This type of allocator does not support selectively 
freeing certain memory blocks – that is, with delete/free and with the 0x3000 pointer, we can 
free this memory, but the linear allocator cannot afford it.

All we need to do is free all the allocator’s occupied memory and continue working with it until we 
get empty memory:

Figure 5.19: Freeing up the memory

The following code shows the declaration of the LinearAlloc class:

class LinearAlloc
{
public:
    LinearAlloc(const std::size_t size);
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    ~LinearAlloc();
public:
    void state()
    {
         std::cout << used << std::endl;
         std::cout << total_size << std::endl;
    }
    template <typename T>
    T* allocate(const std::size_t size = 1);
    void reset(const std::size_t size);
private:
    void *memory;
    std::size_t used;
    std::size_t total_size;
};

Let’s look at the constructors and methods of the LinearAlloc class:

•	 LinearAlloc(const std::size_t size): This is a parameterized constructor that 
gets the total size of the memory that needs to be allocated.

•	 ~LienarAlloc(): This is a destructor that erases the entire memory space.

•	 Allocate(std::const std::size_t size = 1): This is a function template 
(method) that returns a pointer of the specified type if there is enough space in memory. The 
size variable shows how many objects of the same type to create. By default, this is set to 1.

•	 The reset method frees the memory and creates a new one with the passed argument.

•	 Three data members describe the pointer for the memory, the total size for the allocator, and 
the size used, respectively.

The next allocator type is the pool allocator, which is also called a memory pool. The idea of the pool 
allocator is that it divides most of the memory into pieces of the same size. It is also a simple allocator 
because when allocation is required, it simply returns one of the free fragments of fixed-size memory, 
and when any fragment needs to be freed, it saves this fragment of memory for use later.

I suggest we look at an example to understand how it works. So, let’s take a block of memory equal 
to 14 bytes and pass it to the allocator.

As shown in the following figure, we store the beginning and the end of the memory managed by 
the allocator, as well as a list (forward_list) of addresses of free blocks and a fixed small size for 
each block. Let’s assume this is 2:
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Figure 5.20: Pool allocator

If a request arrives to allocate one block of memory, the allocator’s actions are very primitive. First, 
it checks whether there are links to the list of free blocks; if there are none, it is not difficult to guess 
that the allocator’s memory has already expired. If there is at least one link, it simply deletes from 
the beginning or end of the list (in this implementation, from the beginning) and gives its address 
to the user:

Figure 5.21: Allocated two bytes

As you can see, the first 2 bytes are already being used and the first block of free_blocks is deleted. 
If there are several blocks to allocate memory, then the allocator, in turn, performs the same actions 
that it did previously:
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Figure 5.22: 6 bytes allocated

In this example, you can see that there has already been a request to allocate 6 bytes of memory, which 
has been successfully provided. As for releasing a block, if a command is used to release a block, the 
allocator simply adds this address to one of the ends of the linked list (free_blocks). If an address 
does not match the memory address of the allocator – for example, 0x3010 – we will give the user 
a memory that does not belong to us (of course, this will lead to undefined behavior or, if you are 
lucky, just close the application). To avoid this possible problem, initial and final indicators are used, 
which allow you to check whether the user made a mistake when requesting a release action with the 
address. There is another possible problem: the user can give the command to release absolutely any 
address located in the allocator memory area (that is, in the area from the beginning to the end), but 
not the ending address of any of the equal blocks; for example, a block with the 0x3005 address. This 
action will lead to undefined behavior (this is a description of behavior that can lead to completely 
unpredictable consequences – for example, a request outside the array or redirecting a pointer in 
place of the freed space. The worst thing is that the program will not terminate immediately or will 
give some kind of error):

Figure 5.23: Deallocation
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The following code shows the declaration of the PoolAlloc class:

class PoolAlloc
{
public:
    PoolAlloc(std::size_t all_size, std::size_t b_size);
    ~PoolAlloc();
public:
    int8_t* allocate(const std::size_t size = 1);
    void deallocate(int8_t *p, const std::size_t size = 1);
    void free();
private:
    int8_t *start;
    int8_t *end;
    std::size_t block_size;
    std::size_t block_count;
    std::forward_list<int8_t*> free_blocks;
};

Let’s look at the constructors and methods of the PoolAllocator class:

•	 PoolAllocator(std::size_t all_size, std::size_t block_size): As 
in LinearAlloc, there is also a parameterized constructor that gets the size of the memory. 
The second argument is the fixed size of the block.

•	 ~PoolAllocator(): This is a destructor that frees all memory.

•	 Allocate(std::size_t size): This is a method that returns a free pointer. If its size 
is greater than 1, then the program should look for addresses that are next to each other. If 
there are no such addresses, it returns nullptr.

•	 Deallocate: The method frees the specified address from the size.

•	 Free: This method clears the memory.

The last allocator type is StackAlloc, which is a powerful linear allocator that allows you to manage 
memory as a stack. Everything is the same as before in that we store the pointer at the beginning 
of our memory, but, unlike a linear allocator, we can also move it back – that is, we can perform a 
redistribution operation, which is not supported by linear allocators:
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Figure 5.24: Stack allocator – 6 bytes allocated

When the allocation command comes to allocate 6 bytes, in addition to the part of the memory 
provided by the user, we assign a header (the user will not interact with it in any way), in which we 
store information about how many bytes were allocated (in this example, the header size is 4 bytes).

This situation will occur when allocating 10 bytes:

Figure 5.25: 24 bytes allocated

It’s time to release the blocks. Everything is already a little more interesting (as discussed earlier, you 
can only allocate and free the memory using the LIFO technique). First, you have to subtract the 
header size, then subtract this header value, and only after that substruction can you subtract the 
number from the header plus the header size from used.

The following code shows the declaration of the StackAlloc class:

struct Header
{
    int bytes;
    Header(int size) : bytes(size) { }
};

class StackAllocator
{
public:
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        StackAllocator(std::size_t);
        ~StackAllocator();

public:
        template <typename T>
        T* allocate(const std::size_t t = 1);
        void deallocate(std::size_t t = 1);
        void Free();
private:
        int8_t *memory;
        int total_size;
        int used;
        int header_count;
};

Let’s look at the constructors and methods of the StackAllocator class:

•	 Header: This is a structure that stores the size of each block.

•	 StackAllocator(std::size_t): This is a parameterized constructor that gets the 
whole size of memory.

•	 ~StackAllocator(): This is a destructor that frees all memory.

•	 allocate(std::size_t t): This is a function template that returns a pointer of a given 
type if there is enough space in memory. The size variable shows how many objects of the 
same type to create. By default, it is set to 1.

•	 deallocate(std::size_t t): This is a method that deallocates the memory from the 
end-sized elements. By default, the size is 1.

•	 Free(): This method clears the memory.

•	 Now, let’s summarize this chapter.

Summary
Garbage collectors in languages such as C# are provided by the environment. They work in parallel 
with the user program and try to clean up after the program whenever it seems efficient. We cannot 
do the same in C++; all we can do is implement a garbage collector directly in the program, providing 
a semi-automatic way of freeing the used memory resource. This mechanism is properly covered by 
the smart pointers that have been part of the language since C++11.

Memory management is one of the key components of every computer program. A program should be 
able to request memory dynamically during its execution. Good programmers understand the inner 
details of memory management. That helps them design and implement more performant applications. 
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While manual memory management is considered an advantage, it tends to become painful in larger 
applications. In this chapter, we learned how we can avoid errors and handle memory deallocation 
using smart pointers. Having this basic understanding, you should be confident in designing programs 
that avoid memory leaks. In the next chapter, we will learn about STL, focusing on data structures 
and algorithms, and will dive into their STL implementation. Besides comparing data structures and 
algorithms, we will introduce one of the notable new features in C++20: concepts.

Questions
1.	 From a high-level perspective, explain memory hierarchy.

2.	 What is garbage collection and how does it work?

3.	 Explain the different types of allocators.





Part 2:  
Designing Robust and Efficient 

Applications

This part will concentrate on the efficiency of data processing using data structures and algorithms, 
concurrency tools. You will also get introduced to essential design patterns and best practices.

This part has the following chapters:

•	 Chapter 6, Digging into Data Structures and Algorithms in STL

•	 Chapter 7, Advanced Data Structures

•	 Chapter 8, Functional Programming

•	 Chapter 9, Concurrency and Multithreading

•	 Chapter 10, Designing Concurrent Data

•	 Chapter 11, Designing World-Ready Applications

•	 Chapter 12, Incorporating Design Patterns in C++ Applications

•	 Chapter 13, Networking and Security

•	 Chapter 14, Debugging and Testing

•	 Chapter 15, Large-Scale Application Design





6
Digging into Data Structures 

and Algorithms in STL

For programmers, understanding data structures is crucial. The majority of the time, the way you store 
your data determines the application’s overall efficiency. Take, for example, an email client. You may 
create an email client that displays the 10 most recent emails and it will have the best user interface 
available; showing the 10 most recent emails will operate on nearly every device. After 2 years of 
using your email application, the user will have received hundreds of thousands of emails. When the 
user needs to find an email, your data structure expertise will come in handy. The way you store the 
hundreds of thousands of emails and the methods (algorithms) you employ to sort and search them 
will set your application apart from the others.

While working on different projects, programmers face many problems and try to find the best 
solutions to those problems – by saying best, I mean the most efficient ones. Using tried-and-true data 
structures and methods may vastly increase a programmer’s productivity. One of the most significant 
characteristics of a successful program is its speed, which we may achieve by creating new algorithms 
and using or modifying old ones.

The question arises of how to use data structures and algorithms using a programming language, 
which is, in our case, C++. C++20 introduces concepts for defining meta types – types describing 
other types. The data design is complete thanks to this powerful feature of the language.

The C++ Standard Template Library (STL) covers a wide range of data structures and algorithms. 
We will look at how to use STL containers to arrange data effectively using data structures. Then, 
we will look at some of the STL’s algorithm implementations. It is crucial to understand and use 
concepts in STL containers because C++20 introduces big improvements into iterators by introducing 
iterator concepts.

In this chapter, we are going to discuss the following topics:

•	 Sequential data structures (with an introduction to STL and iterators)

•	 Node-based data structures
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•	 Graphs and trees

•	  Hash tables

•	  Algorithms

Technical requirements

The g++ compiler with the -std=c++20 option was used to compile the examples throughout this 
chapter. You can find the source files that have been used in this chapter in the GitHub repository 
for this book at https://github.com/PacktPublishing/Expert-C-2nd-edition.

Sequential data structures
Even if you are a programmer who has never heard of a single data structure and you do not even 
know what they are, you may be surprised to learn that you have probably used one in your projects. 
Let’s take, for example, an array, which every experienced programmer must have used at least once. 
We can use an array to store and order a collection of data.

Programmers frequently use data structures other than arrays in their projects. Knowing about and 
using the right data structures might make a big difference in the way your software runs. You must 
have a deeper understanding of data structures before you can select the most appropriate one.

The obvious question is whether we need to learn about the variety of data structures, such as vectors, 
linked lists, hash tables, graphs, and trees. Let’s imagine a hypothetical situation in which the need 
for a better data structure emerges.

In the introductory part of this chapter, we briefly discussed an example that we will use to extend 
our discussions. We mentioned designing an email client. The basics for designing an application 
are decisions, and among the most important decisions is choosing a data structure. This is because, 
eventually, everything is going to revolve around it. Let’s have a look at the basic tasks that will be 
performed during the design and implementation of the email client.

Imagine an email client being a program that keeps track of emails from numerous senders. We may 
install it on our computers or smartphones, or we can use the web version. Sending and receiving 
emails are the primary functions of an email client program. Let’s pretend we are working on an email 
client, which is easy enough to use, and that, as is customary in programming books, we use a library 
that encapsulates the task of sending and receiving emails.

Instead, we want to focus on developing methods for storing and retrieving emails. The user of an 
email client should be able to see a list of emails in the app’s inbox area. We also have to consider that 
the user is not only going to receive and send emails but also the fact that they may wish to perform 
other operations (for example, deleting).

https://github.com/PacktPublishing/Expert-C-2nd-edition
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The deletion itself can be performed in two ways:

•	 The user can delete just one message at a time

•	 The user can delete the messages in bulk

Other operations that are applied to emails can include choosing an email by randomly selecting and 
replying to its sender or forwarding the email to someone else.

Let’s start by drawing a basic struct that describes an Email object:

#include <chrono>
#include <string>

struct Email
{
    std::string subject;
    std::string body;
    std::string from;
    std::chrono::time_point<std::chrono::system_clock>
      datetime;
};

The first concern should be organizing a collection of emails into a structure that is easily accessible. 
In this case, what could be a better idea other than an array? The elements of an array appear to be 
very easy to access, and if we talk about time complexity, it is good to mention that the access time 
complexity of an array element is O(1), which is the best possible time out there. Let’s look at a code 
example that shows that all the incoming emails are kept in an array:

// let's suppose a million emails is the max for anyone
const int MAX_EMAILS = 1'000'000;
Email inbox[MAX_EMAILS];

When it comes to an array of 10 elements or 20 elements, it is okay to work with and manipulate arrays, 
but when we are talking about hundreds of thousands of emails, different problems can arise. For 
each newly received email, we push an Email object with the corresponding fields into the inbox 
array. The last pushed element is the most recent message. To display a list of 10 recent emails, we 
must read and return the array’s last 10 entries.

Issues may and definitely will arise when we are working with hundreds of thousands of emails that 
are simply stored in an inbox array. What should we do and how should we use an array if we want 
to search for a single word in all those emails? We must scan all the emails in the array and collect 
those that include the word in a new array.
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Look at the following pseudocode:

std::vector<Email> search(const std::string& word) {
    std::vector<Email> search_results;
    for (all-million-emails) {
        if (inbox[i].subject.contains(word)) {
            search_results.push_back(inbox[i]);
        }
    }
    return search_results;
}

For small collections, using an array to hold all the data is more than sufficient. In the case of real-
world applications that deal with larger sets of data, the situation changes dramatically. The point of 
using an appropriate data structure is a big part of the solutions to those problems as it improves the 
performance of the application. The preceding example illustrates a trivial problem: finding a value 
in a collection of emails. It takes a decent amount of time to find that value in a single email.

If we assume that we are looking for a word in an email’s subject field, which contains up to 10 words, 
searching for a specific word in an email’s subject means comparing the word to all of the other words 
in the subject. In the worst-case scenario, there is no match at all.

The worst-case scenario has been highlighted since it is the only one in which the lookup will require 
verifying each word in the subject field. If you do this for hundreds of thousands of emails, the user 
will have to wait for an unreasonable amount of time.

Choosing the right data structure for the specific problem is crucial in terms of application efficiency. 
Let’s say we want to map words to email objects using a hash table. Each word will be associated with 
a list of email objects that include it. As illustrated in the following figure, this strategy will improve 
the efficiency of the search operation:

Figure 6.1: Association of a word with a list of email objects

The search() function will just return the list referred to by the hash table key:

std::vector<Email> search(const std::string& word) {
    return table[word];
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}

This method only requires splitting each incoming email into words and updating the hash table.

We use Email objects as values rather than references for simplicity. It is worth noting that storing 
references to Email in the vector would be preferable.

There are different approaches to categorizing data structures into types. People mainly talk about 
two categories but their names differ for different people. Some say, for example, that data structures 
can be classified into linear and non-linear structures; some call those types sequential and node-
based structures, and so on. So long as you understand what those classifications mean, you can call 
them whatever you want. In this book, we are going to address them as sequential and node-based 
data structures.

Let’s have a look at some different data structures and how they might be used.

The dynamically growing one-dimensional array, sometimes called a vector, is one of the most common 
data structures used by programmers. In the STL library, this dynamically growing array is called 
std::vector. The main principle of a vector is that it comprises objects of the same kind, which 
are stored in memory in sequential order. A vector of 4-byte integers, for example, would have the 
memory arrangement shown next. A 4-byte space is represented by each box.

On the right-hand side of Figure 6.2, we can see the vector’s indexes:

Figure 6.2: Vector representation in RAM

Any of the vector’s elements may be accessed in real time because of their physical structure.

To apply containers correctly to certain problems, we must separate containers based on the functions 
they perform. To do so, we commonly measure the complexity of their operations in terms of the 
number of elements in the container. The vector’s element access, for example, is specified as a  constant-
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time operation, which implies that fetching a vector item requires the same number of instructions, 
regardless of the vector’s length.

Because accessing the first and 100th elements of a vector requires the same amount of work, we refer 
to it as a constant-time operation, commonly known as an O(1) operation.

But can we consider that every operation that we perform on a vector takes O(1) time? For some 
operations, the answer to the previous questions is a strict no and for other operations, it is sometimes 
yes and sometimes no.

How is that possible? To understand the case of sometimes yes and sometimes no, we are going to 
discuss the operation that adds new elements. When adding a new item to the end of a vector, it’s 
important to keep the vector’s capacity in mind. When there is no more space available for the vector, 
it should dynamically expand in size.

Consider the following Vector class and its push_back() method at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/1_vector.h.

To fully understand how the push_back() function works and before putting the explanation into 
words, let’s take a look at the following diagram, where the capacity of the vector is 6 and the size of 
the vector is 4 at first:

Figure 6.3: Representation of the push_back function

Every time we push back an element, the size of the vector increases. We can see that when there is 
space (enough capacity) in our vector, adding an element to the end of the vector takes O(1) time, but 
what happens when there is no more capacity? In that case, we should allocate a brand-new array, copy 
all the elements of the old one into the new array, and then add the newly inserted element at the next 
free slot at the end of the new array. The code at https://github.com/PacktPublishing/
Expert-C-2nd-edition/blob/main/Chapter%2006/2_vector_push_back.h 
demonstrates this.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/1_vector.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/1_vector.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/2_vector_push_back.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/2_vector_push_back.h
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Note
Although the preceding code is correct and works fine, we should also consider the fact that 
the newly allocated space might be adjacent to our array, and in that case, the compilers are 
so smart nowadays that they don’t copy elements. Instead, they just add the new space to our 
already existing array.

The decision of choosing a resizing factor depends on the person who implements the vector – we 
set it to 2, which causes the vector to expand so that it’s twice as big when it’s full. As a result, we 
may claim that inserting a new item at the end of the vector takes a consistent amount of time the 
vast majority of the time. It just inserts the item into the empty slot and raises the private value of 
the size_ variable. Adding a new element will occasionally involve creating a new, larger vector 
and copying the old one into the new one. For cases like this, the operation is said to take amortized 
constant time to complete.

After discussing the sometimes yes and sometimes no case, I think there is a need to also bring an example 
of a no case. Again, the example will be based on adding elements to a vector, but this time, it adds 
them from the front, not from the back. For the push front function, all the other elements should be 
moved by one slot to the right to free up a slot for the new element, as shown in the following diagram:

Figure 6.4: Representation of the push_front function

You can see how we would implement the push_front() function in our Vector class at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
06/2_vector_push_back.h.

Choosing a vector is not a suitable solution when you simply need to put new items at the front of 
the container. Other containers should be explored in situations like these.

STL containers

To take advantage of the data structures and different algorithms provided, C++ decided to combine 
most of those advantages into one library and called it STL. STL combines all those privileges into 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/2_vector_push_back.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/2_vector_push_back.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/2_vector_push_back.h
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different containers and algorithms. Although understanding and constructing data structures is a 
valuable programming skill, you do not have to do it every time you require one in your project. We 
entrust the implementation of stable and tested data structures and algorithms to the people who 
contributed to creating that library. Understanding the underlying details of data structures and 
algorithms allows us to make better STL container and algorithm choices when facing challenges in 
our projects.

The vectors and linked lists discussed previously are implemented in STL as std::vector<T> and 
std::list<T>, where T is the type of each element of the collection. Besides the type, containers 
also take a second default template parameter as an allocator. std::vector, for example, is 
declared as follows:

template <typename T, typename Allocator = std::allocator<T> >
class vector;

An allocator handles the efficient allocation/deallocation of container elements. std::allocator 
is the default allocator for all standard containers in STL. A more sophisticated allocator that behaves 
differently based on the memory resource is std::pmr::polymorphic_allocator. STL provides 
std::pmr::vector as an alias template that uses a polymorphic allocator. It is defined as follows:

namespace pmr {
template <typename T>
using vector = std::vector<T,std::pmr::polymorphic_allocator<T>>;
}

Now, let’s take a closer look at std::vector and std::list.

Using std::vector and std::list

std::vector is defined in the <vector> header. You can find a simple usage example at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
06/3_vector.cpp.

std::vector grows dynamically. We should consider the growth factor. When declaring a vector, 
it has some default capacity, which will then grow upon element insertion. Every time the number of 
elements exceeds the capacity of the vector, it increases its capacity by a given factor (usually, it doubles 
its capacity). If we know the approximate number of elements that we will need in the vector, we can 
optimize its use by initially allocating that capacity for the vector using the reserve() method. 
For example, the following code reserves a capacity for 10,000 elements:

std::vector<int> vec;
vec.reserve(10000);

It forces the compiler and hence the vector to allocate space for 10,000 elements, thereby avoiding 
resizing during element insertion (unless we reach the 10,000-element threshold).

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/3_vector.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/3_vector.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/3_vector.cpp
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On the other hand, if we encounter a scenario where the capacity is much bigger than the actual 
number of elements in the vector, we can shrink the vector to free the unused memory. We need to 
call the shrink_to_fit() function, as shown in the following example:

vec.shrink_to_fit();

This reduces the capacity so that it fits the size of the vector.

operator[] is used to access vector elements in the same way that it is used to access a regular 
array. If you have a closer look at the functions that std::vector provides, you’ll come across a 
function named at(). If you read what it does, you might be surprised that it does the same thing as 
operator[]. So, the question arises: why do we need two ways of accessing elements of a vector? 
The answer is simple: there are differences between those two functions (operator overloading is 
also considered a function). The at() function returns a reference to the element at the specified 
location, with bounds checking.

Let’s take a look at the following example:

std::cout << vec.at(2);
// is the same as
std::cout << vec[2];
// which is the same as
std::cout << vec.data()[2];

The difference between at() and operator[] is that at() accesses the specified element with 
bounds checking; that is, the following line throws a std::out_of_range exception:

try {
vec.at(999999);
} catch (std::out_of_range& e) { }

std::list is used similarly. We will talk about iterators later in this chapter, which allow us to 
abstract from specific containers so that we may easily substitute a list with a vector. First, though, 
let’s look at the differences between the public interfaces of a list and a vector.

Although there are a set of functions that both std::list and std::vector support, such as 
size(), resize(), empty(), clear(), erase(), and others, some functions are supported 
by one of those containers. The list has the push_front() function, which inserts an element at 
the front of the list. This is done efficiently because std::list represents a doubly linked list. As 
shown in the following code, std::list supports push_back() as well:

std::list<double> lst;
lst.push_back(4.2);
lst.push_front(3.14);
// the list contains: "3.14 -> 4.2"
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The list supports additional operations that come in handy in many situations. The merge() function, 
for example, can be used to combine two sorted lists. It accepts another list as input and combines all 
of its nodes with the current list’s nodes. After this operation, the list that was supplied as input to the 
merge() function becomes empty.

Note
When we talked about the list and its corresponding container std:: list, we meant a 
doubly linked list. We know that there is also another type of list: a singly linked list, which 
is slightly different from a doubly linked list. The STL library takes care of a singly linked 
list as well by providing a container called std::forward_list, which is defined in the 
<forward_list> header file.

The splice() method is somewhat similar to merge(), except that it moves a portion of the list 
provided as an argument. By moving, we mean re-pointing internal pointers to proper list nodes. This 
is true for both merge() and splice().

Both merge() and splice() have multiple overloads. The merge() function has four overloads, 
whereas splice() has six overloads. The prototypes of the merge() function’s overloads are 
as follows:

void merge(list& rhs);

void merge(list&& rhs);

template <typename Cmp>
void merge(list& rhs, Cmp compare);

template <typename Cmp>
void merge(list&& rhs, Cmp compare);

The prototypes of the splice() function’s overloads are as follows:

void splice(const_iterator position, list& rhs);
void splice(const_iterator position, list&& rhs);
void splice(const_iterator position, list& rhs, const_iterator it);
void splice(const_iterator position, list&& rhs, const_iterator it);
void splice(const_iterator position, list& rhs, const_iterator start, 
const_iterator end);
void splice(const_iterator position, list&& rhs, const_iterator start, 
const_iterator end);

Let’s look at a simple example of how these functions work when they’re applied to two different 
lists: https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/
main/Chapter%2006/4_list_example.cpp.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/4_list_example.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/4_list_example.cpp
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When we use containers to store and manipulate complex objects, the price of copying elements 
plays a big role in the program’s performance. Consider the following struct, which represents a 
three-dimensional point:

struct Point
{
float x;
float y;
float z;
Point(float px, float py, float pz) : x(px), y(py), z(pz){}
Point(Point&& p): x(p.x), y(p.y), z(p.z){}
};

Now, look at the following code, which inserts a Point object into a vector:

std::vector<Point> points;
points.push_back(Point(1.1, 2.2, 3.3));

A temporary object is constructed and then moved to the vector’s corresponding slot. We can represent 
this visually as follows:

Figure 6.5: Inserting an object of the Point type into the vector with the push_back function

To postpone resizing operations for as long as possible, the vector takes up more space before being 
used. When we insert a new element, the vector transfers it to the next available slot (and, if that slot 
is filled, reallocates extra space). We can use that uninitialized space to create a new element in place. 
For this, the vector provides the emplace_back() method. Here is how we can put it to use:

points.emplace_back(1.1, 2.2, 3.3);

Pay attention to the arguments we passed directly to the function. The following illustration depicts 
the use of emplace_back():
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Figure 6.6: Inserting an object of the Point type into the vector with the emplace_back function

emplace_back() constructs the element through std::allocator_traits::construct(). 
The latter typically uses the placement of the new operator to construct the element at the already 
allocated uninitialized space.

std::list, in turn, provides an emplace_front() method. Both functions return a reference to 
the inserted element. The only requirement is for the type of element to be EmplaceConstructible. 
For vectors, the type should also be MoveInsertable.

Using container adapters

You may have come across depictions of the stack and queue as data structures (or containers in 
the C++ language). Technically, they are data structure adapters rather than data structures. In STL, 
std::stack and std::queue adopt containers by providing a special interface to access them. 
“Stack” is a phrase that is universally used. We have only used it to represent a memory segment for 
items that have an automated storage period. Because of its allocation/deallocation mechanism, the 
segment is given the name stack.

When we define objects, they are pushed to the stack and pulled out when they are destroyed. The 
objects are popped in the opposite order to that they were pushed in. That is why the memory section 
is referred to as the stack. The stack adapter uses the same last in, first out (LIFO) mechanism. The 
following are the most important functions that std::stack provides:

void push(const value_type& value);
void push(value_type&& value);

The push() function invokes the underlying container’s push_back() method. Typically, a vector 
is used to implement the stack. The container is one of the two template arguments that std::stack 
takes. It doesn’t matter what you select, but it must have a member method called push_back(). 
std::stack and std::queue have a default container called std::deque.
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std::deque allows fast insertion at its beginning and its end. It is an indexed sequential container 
similar to std::vector. Deque stands for double-ended queue.

Let’s see stack in action:

#include <stack>
int main()
{
    std::stack<int> st;
    st.push(1); // stack contains: 1
    st.push(2); // stack contains: 2 1
    st.push(3); // stack contains: 3 2 1
}

A better alternative to the push() function is emplace(). It calls emplace_back() of the 
underlying container, so it constructs elements in place.

The pop() method is used to remove the element. It takes no parameters and returns nothing; all 
it does is remove the top element from the stack. The top() method is used to get the stack’s top 
member. Let’s change the preceding example so that all of the stack members are printed before they 
are popped out (the code for this can be found at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter%2006/5_stack_example.cpp).

The top() function returns a reference to the top element. It calls the back() function of the 
underlying container. Pay attention to the last top() function that we called on the empty stack. We 
suggest that you check the size of the stack using size() before calling top() on the empty one.

queue is another adapter with slightly different behavior from the stack. The logic behind the queue 
is that it returns the first inserted element first: it maintains the first in, first out (FIFO) principle. 
Look at the following diagram:

Figure 6.7: Illustration of the FIFO principle

The formal names for inserting and retrieving operations in a queue are enqueue and dequeue. std:: 
queue keeps a consistent approach and provides the push() and pop() functions. To access the 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/5_stack_example.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/5_stack_example.cpp
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first and last elements of the queue, you should use front() and back(). Both return references 
to elements. Here is a simple usage example:

#include <iostream>
#include <queue>
int main()
{
    std::queue<char> q;
    q.push('a');
    q.push('b');
    q.push('c');
    std::cout << q.front(); // prints 'a'
    std::cout << q.back(); // prints 'c'
    q.pop(); // removes the top element
    std::cout << q.front(); // prints 'b'
}

Knowing how to use various containers and adapters is beneficial when they are used appropriately. 
There is not a one-size-fits-all solution for all types of problems when it comes to selecting the correct 
container. The stack is used by several compilers to parse code expressions. The stack, for example, 
makes validating the parentheses in the following equation simple:

int r = (a + b) + (((x * y) - (a / b)) / 4);

To practice, write a small program that validates the preceding expression using a stack.

std::priority_queue is another container adapter. A balanced, node-based data structure, such 
as max-heap or min-heap, is frequently used by a priority queue. Let’s take a look at a simple usage 
scenario for std::priority_queue: https://github.com/PacktPublishing/Expert-
C-2nd-edition/tree/main/Chapter%2006/6_priority_queue_example.cpp.

At the end of this chapter, we will look at trees and graphs to learn how the priority queue works 
under the hood.

Now that we have talked about some of the sequence containers and container adapters that are 
available, it is time to learn about the techniques that will allow us to iterate over the elements of 
those containers or adapters.

Iterating containers
A container that is not iterable is analogous to a car that cannot be driven. A container, after all, is a 
collection of items. The for loop is one of the most frequent techniques we can use to iterate over 
container elements:

std::vector<int> vec{1, 2, 3, 4, 5};

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/6_priority_queue_example.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/6_priority_queue_example.cpp
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for (int ix = 0; ix < vec.size(); ++ix) {
std::cout << vec[ix] << ", ";
}

For element access, containers offer a distinct set of actions. operator[], for example, is provided 
by the vector but not by the list. std::list has the front() and back() methods, which return 
the first and last elements, respectively. std::vector, as already discussed, additionally provides 
at() and operator[].

This means that we cannot use the preceding loop to iterate list elements. However, we can loop over 
a list (and vector) with a range-based for loop, as follows:

std::list<double> lst{1.1, 2.2, 3.3, 4.2};
for (auto& elem : lst) {
std::cout << elem << ", ";
}

The secret is buried in the range-based for loop’s implementation, which may appear confusing. 
It uses the std::begin() method to get an iterator that points to the container’s first element.

Based on the physical structure of the container, an iterator is an object that points to the container 
element and may be advanced to the next element. Declare a vector iterator and initialize it with 
an iterator pointing to the beginning of the vector iterator with the following code:

std::vector<int> vec{1, 2, 3, 4};
std::vector<int>::iterator it{vec.begin()};

Almost all containers provide four member functions (not taking into consideration the functions 
that return constant iterators) – begin(), end(), rbegin(), and rend(). They return iterators 
to either the beginning or end of the container. The functions and their descriptions are as follows:

•	 begin(): Returns an iterator to the first element.

•	 end(): Returns an iterator to the element following the last element.

•	 rbegin(): Returns a reverse iterator to the first element of the reversed container. It corresponds 
to the last element of the container.

•	 rend(): Returns a reverse iterator to the element following the last element of the reversed 
container. It corresponds to the element preceding the first element of the container.
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The following diagram shows how we treat the beginning and the end of the container:

Figure 6.8: Illustration of where iterators returned from the functions point to

The preceding code, which iterated over the list elements using a range-based for loop, may look 
something like this:

auto it_begin = std::begin(lst);
auto it_end = std::end(lst);
for ( ; it_begin != it_end; ++it_begin) {
std::cout << *it_begin << ", ";
}

Pay attention to the * operator that we used in the previous code to access the underlying element of 
the iterator. We consider an iterator a clever pointer to the container element.

The std::begin() and std::end() functions typically call the containers’ begin() and 
end() methods, respectively. However, they are also applicable to regular arrays.

As we mentioned previously, not all containers have those four functions. The container that stands 
out from the rest is std::forward_list. It only has begin() and end() functions, as well as 
before_begin() functions, which return an iterator to the element before the first element of the 
container. This element acts as a placeholder, attempting to access it results in undefined behavior. The 
only use cases can be found in the insert_after(), emplace_after(), erase_after(), 
and splice_after() functions and the increment operator.

The container iterator knows exactly how to work with the container elements. As seen in the code at 
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/
Chapter%2006/7_iterating_containers.cpp, advancing a vector iterator moves it to the 
next slot in the array, while advancing a list iterator moves it to the next node using the associated pointer.

Because each container implements its own iterator, list and vector iterators have the same interface 
but function differently. The iterator’s behavior is determined by its category. The iterator of a vector, 
for example, is a random-access iterator, which means we may use it to read any element at random. 
The following code gets the vector’s fourth member through its iterator by adding three to it:

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/7_iterating_containers.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/7_iterating_containers.cpp
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std::vector<int> vec { 2, 4, 6, 8, 10 };
auto it = vec.begin();
std::cout << *(it + 3);

There are six iterator categories in STL. Let’s look at each in detail:

•	 The input iterator allows read access (through the * operator) as well as forwarding the position 
of the iterator using the prefix and postfix increment operators. We can only iterate through 
the container once while using an input iterator because it does not support multiple passes. 
On the other hand, the forward iterator allows numerous passes. We can read the value of the 
element through the iterator many times using multiple-pass capability.

•	 The output iterator does not provide access to the element, but it allows us to assign new 
values to it.

•	 A combination of an input iterator and output iterator with the multiple passes feature comprises 
the forward iterator.

•	 The forward iterator, on the other hand, can only increment, but bidirectional iterators 
can move the iterator to any position. They support decrementing operations. For example, 
std::list supports bidirectional iterators.

•	 Finally, the random access iterator allows you to jump through elements by adding/subtracting 
a number to/from the iterator. The iterator will jump to the position specified by the arithmetic 
operation. std::vector provides random access iterators.

The set of operations that may be applied to the iterator is defined by each of the categories. For 
example, the input iterator may be used to read the value of one element and then increment 
the iterator to proceed to the next element. The random access iterator, on the other hand, 
allows you to increment and decrement the iterator with arbitrary values, read and write the 
element’s value, and so on.

•	 The contiguous iterator category has all of the qualities stated thus far in this section, and in 
addition, it expects the container to be contiguous. This means that container elements are 
guaranteed to reside right next to each other. std::array is an example of a contiguous container.

The information about the iterator is used by functions such as distance() to get the quickest 
result in execution. The distance() function between two bidirectional iterators, for example, 
takes a linear amount of time to execute, but the same function takes a constant amount of time for 
random access iterators.

An example implementation is shown in the pseudocode at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/8_
distance.cpp.

Although the preceding pseudocode works, we should keep in mind that testing an iterator’s category 
at runtime is not an option. It is defined at compile time, so we need to use template specialization to 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/8_distance.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/8_distance.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/8_distance.cpp
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generate the distance() function for random access iterators. A better solution would be using 
the std::is_same type trait, defined in <type_traits> (the code can be found at https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%20
06/9_distance_2.cpp).

std::is_same_v is a helper template for std::is_same and is defined as follows:

template <class T, class U>
inline constexpr bool is_same_v = is_same<T, U>::value;

An iterator’s most essential feature is that it allows containers and algorithms to be loosely coupled.

The struct iterator described in this section has been deprecated and is now considered a legacy feature. 
C++20 introduced a new system of iterators based on concepts.

Concepts and iterators
C++20 introduced concepts as one of its major features. Along with concepts, C++20 has new iterators 
based on concepts. Even though the iterators we’ve explained up to this point are now considered 
legacy features, they have already been used in many lines of code. That is why we introduced them 
first before continuing with the new iterator concepts. Now, let’s find out what concepts are and how 
to use them.

Understanding concepts

Abstraction is essential in computer programming. In the previous chapters, we discussed that OOP is 
a way to represent data and operations as abstract entities. We also covered template metaprogramming 
by diving into templates and making our classes even more flexible by reusing them for various 
aggregate types. Templates allow not just abstraction from specific types but also loose coupling 
between entity and aggregate types. Consider the std::vector class. It offers a general interface 
for storing and manipulating object collections. We can easily define three separate vectors, each of 
which will contain three different types of objects:

std::vector<int> ivec;
std::vector<Person> persons;
std::vector<std::vector<double>> float_matrix;

We would have to perform something like this for the previous code if we did not have templates:

int_vector ivec;
custom_vector persons; // supposing the custom_vector
                       // stores void*
double_vector_vector float_matrix;

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/9_distance_2.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/9_distance_2.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/9_distance_2.cpp
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Even though the preceding code is completely inappropriate, we should all agree that templates 
are the foundation of generic programming. Concepts introduce even more flexibility into generic 
programming. Now, it is possible to set restrictions on template parameters, check for constraints, and 
discover inconsistent behavior at compile time. A template class declaration looks like this:

template <typename T>
class Wallet
{
// the body of the class using the T type
};

In the preceding code block, pay close attention to the typename keyword. Concepts take this a step 
further by allowing it to be replaced with a type description that explains the template parameter. Let’s 
say we want the Wallet class to work with types that can be added together – that is, they should 
be addable. Here is how employing an idea in the code can help us do that:

template <addable T>
class Wallet
{
// the body of the class using addable T's
};

As a result, we can now build Wallet instances by providing addable types. The compiler will 
produce an error if the type does not fulfill the requirement. It appears to be supernatural. Two Wallet 
objects are declared in the following snippet:

class Book
{
// doesn't have an operator+
// the body is omitted for brevity
};
constexpr bool operator+(const Money& a, const Money& b) {
return Money{a.value_ + b.value_};
}
class Money
{
friend constexpr bool operator+(const Money&, const Money&);
// code omitted for brevity
private:
double value_;
};
Wallet<Money> w; // works fine
Wallet<Book> g; // compile error
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The Book class has no +operator, so the construction of g will fail because of the template 
parameter type restriction.

We can declare a concept using the concept keyword, which has the following form:

template <parameter-list>
concept name-of-the-concept = constraint-expression;

As you can see, a concept is also declared using templates. We can refer to them as types that describe 
other types. Concepts rely heavily on constraints. A constraint is a way to specify requirements for 
template arguments, and, as follows, a concept is a set of constraints. Here is how we can implement 
the preceding addable concept:

template <typename T>
concept addable = requires (T obj) {obj + obj;}

Standard concepts are defined in the <concepts> header.

We can also combine several concepts by requiring the new concept to support the others. To achieve 
that, we can use && operator. Let’s see how iterators leverage concepts and bring an example of 
an incrementable iterator concept that combines other concepts.

Using iterators in C++20
Iterators were the first to fully use concepts after they were introduced. Iterators and their categories 
are now considered legacy because, starting from C++20, we use iterator concepts such as readable 
(which specifies that the type is readable by applying the * operator) and writable (which specifies 
that a value can be written to an object referenced by the iterator). Let’s look at how incrementable 
is defined in the <iterator> header, as promised:

template <typename T>
concept incrementable = std::regular<T> && std::weakly_
incrementable<T> && requires (T t) { {t++} -> std::same_as<T>; };

Therefore, the incrementable concept requires the type to be std::regular. This means it 
should be constructible by default and have a copy constructor and operator==(). Besides that, the 
incrementable concept requires the type to be weakly_incrementable, which means the 
type supports pre- and post-increment operators, except that the type is not required to be equality-
comparable. That is why incrementable joins std::regular to require the type to be equality-
comparable. Finally, the addition requires constraint points since the type should not change after an 
increment – that is, it should be the same type as before. Although std::same_as is represented as 
a concept (defined in <concepts> in previous versions), we used to use std::is_same, which is 
defined in <type_traits>. They do the same thing, but the C++17 version, std::is_same_v, 
was verbose, with additional suffixes.
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As a result, instead of iterator categories, we now refer to iterator concepts. In addition to the ones we 
have already discussed, the following concepts should be considered:

•	 input_iterator: This specifies that the type allows its referenced values to be read and is 
both pre- and post-incrementable

•	 output_iterator: This specifies that values of the type can be written to and that the type 
is both pre- and post-incrementable

•	 input_or_output_iterator: The unnecessarily long name aside, this specifies that the 
type is incrementable and can also be dereferenced.

•	 forward_iterator: This specifies that the type is input_iterator and that it also 
supports equality comparison and multi-pass

•	 bidirectional_iterator: This specifies that the type supports forward_iterator 
and that it also supports backward movement

•	 random_access_iterator: This specifies that the type is bidirectional_iterator 
and supports advancement in constant time and subscripting

•	 contiguous_iterator: This specifies that the type is random_access_iterator 
and refers to elements that are contiguous in memory

Let’s look at an example where we implemented the distance function using iterator concepts instead 
of categories: https://github.com/PacktPublishing/Expert-C-2nd-edition/
blob/main/Chapter%2006/10_distance_3.cpp.

They almost repeat the legacy iterators that we discussed earlier, but now, they can be used when 
declaring template parameters so that the compiler will take care of the rest.

So far, we have discussed sequence data structures and their corresponding containers, container 
adapters, and iterators, but since sequence data structures are not almighty and can’t solve all the 
problems in the world, we will continue to learn about other types of data structures. First, we’ll cover 
node-based data structures.

Node-based data structures
Node-based data structures do not necessarily take contiguous blocks of memory. They mainly 
allocate nodes in memory that are connected. In this case, logically, there is no need to allocate a block 
of memory when nodes can occupy node-size spaces and be connected in some way. This means that 
nodes might be spread randomly in memory.

The linked list is the most often used and most basic node-based data structure. A visual representation 
of a doubly linked list is shown in the following diagram:

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/10_distance_3.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/10_distance_3.cpp
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Figure 6.9: Illustration of a doubly linked list

Apart from the structural differences, the way that operations run on node-based data structures 
also differs from that of sequential data structures. Some of the operations are faster, while some are 
slower. For example, if we compare an array and a list, the time complexity of reading an element will 
be O(1) for an array and O(n) for a list. Here, the insertion will be O(n) for an array because it 
has to copy elements, while for a list, it will be O(1) if we consider that it just changes pointers that 
point to nodes, and so on. To keep it short, let’s implement the element insertion at the front of the 
list. We will keep each node as a struct:

template <typename T>
struct Node
{
node(const T& it) : item{it}, next{nullptr}, prev{nullptr} {}
T item;
Node<T>* next;
Node<T>* prev;
};

Take a look at the data members that the node contains. To explain this more figuratively, let’s imagine 
students who are going to cross a street. They are told to hold hands so that they can all cross the 
street together. Each hand of a child that holds the hand of the child in front can be considered a 
next pointer, which provides a connection between nodes, while the hand of a child who stands in 
front and holds the hand of the child behind them can be considered as a prev pointer. Nodes are 
chained similarly.

To implement a linked list, all we need is to keep a pointer to its first node, usually called the head of 
the list. Now, let’s look at the way operations run on a linked list. Inserting an element at the front of 
the list is simple (the code for this can be found at https://github.com/PacktPublishing/
Expert-C-2nd-edition/blob/main/Chapter%2006/12_linked_list.h).

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/12_linked_list.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter%2006/12_linked_list.h
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There are three cases that we should consider when performing an insertion on a list:

•	 Inserting at the front

•	 Inserting at the end

•	 Inserting in the middle

Let’s illustrate these operations and the steps that are needed to make insertions at different positions.

Inserting an element at the front of the list, as discussed earlier, involves the steps shown in the 
following diagram:

 

Figure 6.10: Inserting an element at the front of a list
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Inserting an element in the middle of the list is shown in the following diagram:

Figure 6.11: Inserting an element in the middle of a list
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Finally, inserting an element at the end of the list is done as follows:

Figure 6.12: Inserting an element at the end of a list

In the preceding diagrams, inserting an element into a vector is different from inserting an element into 
a list. How would you choose between a vector and a list? You should concentrate on the operations 
and their speed. For example, reading any element from the vector takes constant time. We can store 
one million emails in a vector, and retrieve the one at position 834,000 without any additional effort. 
For linked lists, the operation is linear. Therefore, if you need to store a collection of data that will be 
mostly read, but not written, then using a vector is a reasonable choice.

Inserting an element at any position in the list takes a constant-time operation, while the vector will 
strive to insert an element at a random position. Therefore, when you need a collection of objects to/
from which data can be intensively added/removed, the better choice would be a linked list.

We should also take into account the cache memory. Vectors have good data locality. Reading the 
first element of a vector involves copying the first N elements into the cache. Further reads of vector 
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elements will be even faster. We cannot say the same for linked lists. To find out the reason, let’s 
compare the memory layouts of a vector and a linked list.

Graphs and trees
Graphs and trees are considered non-linear data structures, which come in handy in solving various 
kinds of problems. Though they are both non-linear data structures, they have differences, which 
help us distinguish them from each other. For example, the tree should have a root node, while the 
graph doesn’t have one; the tree forms a tree-like structure when dealing with data while the graph 
organizes the data into a network-like structure; there can be loops in a graph, while a tree doesn’t 
allow this; and so on.

Trees

Thinking about a combination of a binary search algorithm and sorting algorithms can lead to the 
idea of having a container that maintains objects so that they’re sorted by default. std::set, which 
is built on a balanced tree, is one such container. Before discussing balanced trees, let’s look at the 
binary search tree, which is a great option for quick lookups.

The binary search tree’s concept is that the values of a node’s left-hand subtree are smaller than the 
node’s value. The right-hand subtree of a node, on the other hand, has values that are greater than the 
node’s value. A binary search tree looks like this:

Figure 6.13: Example of a binary search tree

The element with a value of 40 is located in the left-hand subtree, as shown in the preceding diagram, 
because it is less than 60 (the root element). On the other hand, the element with a value of 90 resides 
in the right-hand subtree because it is greater than the root element. The same logic applies to the 
rest of the tree elements.
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A binary tree node is represented as a struct containing the item and two pointers to each child. Here 
is a sample code representation of a tree node:

template <typename T>
struct TreeNode
{
    T item;
    TreeNode<T>* left;
    TreeNode<T>* right;
};

In a completely balanced binary search tree, searching, inserting, and deleting elements takes O(log 
n). STL does not have a specific container for trees, but it does have some that are comparable and 
are based on a tree implementation. For example, the std::set container is based on a balanced 
tree that uniquely stores elements in sorted order:

#include <set>
...
std::set<int> s{1, 5, 2, 4, 4, 4, 3};
// s has {1, 2, 3, 4, 5}

std::map is also based on a balanced tree, but this one provides a container that maps a key to 
some value, as follows:

#include <map>
...
std::map<int, std::string> numbers;
numbers[3] = "three";
numbers[4] = "four";
...

As shown in the preceding code, we mapped integers to strings. In our case, when we wrote numbers[3], 
3 became a key for a map named numbers, and when we assigned "three" to it, "three" became 
a value for the 3 key. So, when we tell the map to store the value of 3 as a key and three as a value, it 
adds a new node to its inner tree with the key equal to 3 and the value equal to three.

The set and map operations are logarithmic, which makes it a very efficient data structure in most 
cases. However, there is a more efficient data structure, which we will discuss later.

Graphs

The binary search tree’s balancing nature is based on a variety of search index implementations. For 
example, database systems use a balanced tree called a B-tree for table indexing. Although the B-tree 
is not a binary tree, it follows the same balancing logic as a binary tree, as shown here:



Digging into Data Structures and Algorithms in STL274

Figure 6.14: Example of a B-tree

Graphs, on the other hand, represent connected nodes with no proper order:

Figure 6.15: Example of a graph

Let’s suppose we are building a social network that will eventually beat Facebook or TikTok within the 
market. The users in the social network can follow each other, which can be represented as a graph. 
For example, if A follows B, B follows C, and C follows both B and A at the same time, then we can 
represent the relationships like so:
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Figure 6.16: Representation of user connections with graphs

A node is called a vertex in a graph. The link between two nodes is called an edge. There is no fixed 
graph representation, so we should choose from several. Let’s think about our social network – how 
would we represent that user A follows user B?

One of the best options here is using a hash table. We can map each user to all of the users they follow:

Figure 6.17: Representation of user connections with hash tables

The graph implementation becomes a hybrid container, as shown at https://github.com/
PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/13_graph.h.

To make an STL-compatible container, we must add an iterator to the graph. Although iterating a 
graph is not a good idea, adding an iterator is not a bad idea.

Though graphs are really powerful data structures, we are not going to stop at this point – the next 
data structure we are going to talk about does not yield a graph.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/13_graph.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/13_graph.h
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Hash tables
The hash table is the most efficient data structure currently available. It is based on the concept of 
vector indexing, which is a rather simple concept. Consider the following example of a large vector 
with list pointers:

std::vector<std::list<T> > hash_table;

Accessing the elements of a vector takes constant time – that is the primary superpower of a vector. 
The hash table enables us to use any type as the container’s key. The basic idea of the hash table is to 
use a well-curated hash function that will generate a unique index for the input key. For example, 
when we use a string as a hash table key, the hash table uses a hash function to generate the hash as 
the index value for the underlying vector (the code for this can be found at https://github.
com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/14_
insert_hashtable.cpp).

Here is how we can illustrate a hash table:

Figure 6.18: Illustration of a hash table

Because it is based on a vector, accessing a hash table takes constant time every time. Although various 
keys may provide the same hash values, causing collisions, those collisions can be avoided by using a 
list of values as the vector element (as shown in the preceding diagram).

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/14_insert_hashtable.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/14_insert_hashtable.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter%2006/14_insert_hashtable.cpp
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STL supports the concept of a hash table through a container named std::unordered_map:

#include <unordered_map>
...
std::unordered_map<std::string, std::string> hashtable;
hashtable["key1"] = "value 1";
hashtable["key2"] = "value 2";
...

The std::unordered_map function uses the std::hash() function defined in the 
<functional> header to generate the hash value for the provided keys. You can define a custom 
implementation for the hash function. The third template parameter of std::unordered_map 
is the hash function, which defaults to std::hash.

Algorithms
Algorithms, as mentioned previously, are functions that take an input, process it, and provide an output. 
In most cases, in STL, an algorithm refers to a function that processes a set of data. Containers, such 
as std::vector, std::list, and others, are used to store data collections.

One of the common tasks in a programmer’s routine is to select an efficient algorithm. For example, 
using the binary search technique to search a sorted vector will be significantly faster than using 
sequential searching. An asymptotic analysis, which considers the speed of the algorithm concerning 
the size of the input data, is used to compare the efficiency of algorithms. This means that we should 
not compare two algorithms by applying them to a container with 10 or 100 elements.

The true difference between methods becomes apparent when they’re applied to a large enough 
container – one with one million or even one billion elements. Verifying an algorithm’s complexity 
is the process of determining its efficiency. You may have come across O(n) or O(log n) algorithms. 
The O() function (pronounced big-oh) determines an algorithm’s complexity.

Let’s have a look at the different types of search algorithms and see how they differ in terms of complexity.

Search algorithms

Search algorithms are an essential part of a programmer’s toolkit. They allow us to find specific 
elements within a collection of data efficiently. Two commonly used search algorithms are sequential 
search and binary search.

Sequential search, also known as linear search, is a simple algorithm that goes through each element 
of a collection until it finds the desired element or reaches the end. It has a linear time complexity, 
denoted as O(n), where n is the size of the input. Sequential search is straightforward to implement 
but may become inefficient for large datasets.
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Binary search, on the other hand, is a more efficient algorithm that requires the collection to be sorted 
beforehand. It works by repeatedly dividing the search space in half, eliminating the half where the 
desired element cannot be located. This process continues until the element is found or it is determined 
that it does not exist in the collection. Binary search has a logarithmic time complexity, denoted as 
O(log n), where n is the size of the input. This algorithm is particularly useful for large datasets as 
it reduces the number of comparisons needed to find the element significantly.

When selecting an algorithm, it is important to consider its time complexity and how it scales with 
the size of the input data. The asymptotic analysis, represented by the big O notation, provides a way 
to compare and evaluate the efficiency of different algorithms. By analyzing the number of operations 
performed relative to the input size, we can determine how the algorithm’s performance will be affected 
as the dataset grows.

STL provides various algorithms, including search algorithms, to operate on collections of data. These 
algorithms are designed to work with iterators, which allow us to access and traverse different types of 
containers generically. By using iterators, the STL algorithms offer flexibility and abstraction, allowing 
them to be used with a wide range of containers that supports the required iterator operations.

In summary, search algorithms play a vital role in finding elements within data collections. Sequential 
search is a simple but less efficient algorithm, while binary search offers a significant improvement 
in efficiency but requires a sorted collection. Understanding the time complexity and choosing the 
appropriate algorithm based on the size of the input data are crucial considerations. STL provides a 
set of powerful algorithms that operate on containers through iterators, making them versatile and 
widely applicable in various programming scenarios.

Sorting

Sorting is a fundamental task in computer programming, and it involves arranging a collection of 
elements in a specific order. Sorted containers are particularly useful when utilizing search algorithms 
such as binary search. While programmers rarely implement their own sorting algorithms these days, 
they have access to built-in sorting functions such as std::sort() in STL.

Quicksort is one of the most popular and fastest sorting algorithms available. The core idea behind any 
sorting algorithm is to identify smaller or larger elements and swap them until the entire collection 
is sorted. For example, selection sort divides the collection into two parts: a sorted subarray and 
an unsorted subarray. It continuously searches for the smallest element in the unsorted subarray 
and swaps it with the first element of the unsorted subarray. This process repeats until the unsorted 
subarray becomes empty.

STL provides the std::sort() function, which takes two random-access iterators and sorts the 
elements between them. It is a versatile function that can be used with various container types, such 
as std::vector. However, for containers that do not support random access iterators, such as 
std::list, the sort function cannot be directly used. Instead, such containers provide their own 
sort() member function for efficient sorting.
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The std::sort() function also allows a third parameter, a comparing function, which is used to 
determine the order of elements in the container. For custom types, the elements must support the 
less than operator (<) for proper sorting. Alternatively, a separate comparison function can be defined, 
or a lambda function can be used as an elegant and anonymous way to define the comparison logic.

Efficient software development involves understanding and utilizing appropriate data structures and 
algorithms. By harnessing the power of C++20 and familiarizing yourself with the data structures 
and algorithms covered in this chapter, you can optimize your programs for improved performance. 
A strong grasp of the fundamental algorithms and data structures is crucial for developing effective 
problem-solving skills, and it enables the creation of efficient software that saves time and enhances 
the user experience, making it a superior choice among alternatives.

Summary
In this chapter, we went over the basics of data structures and the differences between them. We 
learned how to use them based on problem analysis. For example, because of the difficulty of linked-
list element access operations, using a linked list in applications requiring random lookups is deemed 
time-consuming. Due to its constant-time element access, a dynamically increasing vector is more 
suited to such cases. In contrast to, for example, a list, using a vector in problems that require quick 
insertions at the front of the container is more costly.

This chapter also covered algorithms and how to measure their effectiveness. We compared several 
problems to develop better methods for solving them more quickly.

In the next chapter, we are going to continue the topic of data structures by diving deeper into it and 
discussing advanced data structures, their properties, and their implementation details.

Further reading
For more information, refer to the following resources:

•	 Programming Pearls, by Jon Bentley, available at https://www.amazon.com/Programming-
Pearls-2nd-Jon-Bentley/dp/0201657880/

•	 Data Abstraction and Problem Solving Using C++: Walls and Mirrors, by Frank Carrano and 
Timothy Henry, available at https://www.amazon.com/Data-Abstraction-
Problem-Solving-Mirrors/dp/0134463978/

•	 Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein, available at https://www.
amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844/

•	 C++ Data Structures and Algorithms by Wisnu Anggoro, available at https://www.packtpub.
com/product/c-data-structures-and-algorithms/9781788835213

https://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880/
https://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880/
https://www.amazon.com/Data-Abstraction-Problem-Solving-Mirrors/dp/0134463978/
https://www.amazon.com/Data-Abstraction-Problem-Solving-Mirrors/dp/0134463978/
https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844/
https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844/
https://www.packtpub.com/product/c-data-structures-and-algorithms/9781788835213
https://www.packtpub.com/product/c-data-structures-and-algorithms/9781788835213
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Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Describe how an element is added to a vector that is expanding dynamically.

2.	 What distinguishes inserting an element at the front of a linked list from inserting it at the 
front of a vector?

3.	 Implement a hybrid data structure that stores its elements as a vector and a list, respectively. Pick 
the underlying data structure that implements the operation in each case as quickly as possible.

4.	 How would a binary search tree look if 100 elements were added in increasing order?



7
Advanced Data Structures

In the previous chapter, we discussed the importance of knowing what data structures and algorithms 
are and how to use them in everyday problems. In this chapter, we are going to dive even deeper into 
what data structures there are, some of which you may have never heard about before.

Knowing about basic data structures is one thing but knowing and understanding how some of the 
advanced data structures work is a goal every programmer should strive to achieve. But what are 
advanced data structures and how are they considered to be advanced? We talked briefly about trees 
and graphs in the previous chapter. Even looking back at their names brings thoughts about those 
data structures being of an advanced type. They sound so serious; they even look like something 
solid. And to answer the question you may now have: yes, they are considered to be advanced data 
structures. Should we just say that, for example, trees are advanced data structures and stop at that 
point? Definitely not, as there are different types of trees, some of which are more advanced than 
others. Among the different types of trees, we can find a general tree, a binary tree, a binary search 
tree, an AVL tree, a red-black tree, a B-tree, and so on.

Let us consider a simple case where one type of tree is more advanced than the other. The difference 
will be discussed between a binary search tree and an AVL tree. Both of those trees keep the elements 
in such a way that small elements are on the left side of the root while the large elements are on the 
right side of the root. Let us take, for example, the following sequence of numbers: {1, 2, 3, 4, 5, 6, 7}. 
They will form both a binary search tree and an AVL tree and we will compare their structures with 
the diagrams shown here:
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Figure 7.1 – Binary search tree versus AVL tree

The difference is impossible not to notice. We formed two types of trees with the same elements and 
got different tree structures. Let us consider we want to search for an element and it is number seven. 
In the case of a binary search tree, we have to go through every node to get to the last element because 
it is not a balanced tree and it looks more like a linked list than a binary search tree. Meanwhile, in the 
case of an AVL tree, we need half the steps to reach the element we want as it is balanced. Therefore, 
which one of these trees is more advanced? It is definitely an AVL tree as it is more complicated. 
Complicated not in a visual way but based on the self-balancing functionality: every time an insertion 
takes place, it checks whether the tree is balanced or not and self-balances itself if necessary.

Trees and graphs are not the only advanced data structures: there are also advanced lists, hash tables, 
tries, and so on. You don’t have to learn them by heart because having even a general idea of what 
they are adds another precious tool to your knowledge base.

In this chapter, we are obviously not going to cover all the advanced data structures, only the ones we 
find interesting and worth mentioning. We will touch upon the following topics:

•	 B-trees

•	 Heaps and their applications

•	 Advanced lists

•	 Implementation details of  std::unordered_map

The last topic is not an advanced data structure, as you can see; it is an STL container, which we talked 
about briefly in the previous chapter. Since it is based on one of the advanced data structures, which 
is the hash table, we decided to include it in this chapter as well.
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Technical requirements
The g++ compiler with the -std=c++20 option is used to compile the examples throughout the 
chapter. You can find the source files used in this chapter in the GitHub repository for this book 
at https://github.com/PacktPublishing/Expert-C-2nd-edition.

B-trees
A B-tree is a self-balancing tree data structure through which you can organize search, insertion, 
deletion, and sequential access in logarithmic time. For some operations, the time is not always 
logarithmic. In the previous chapter, we learned about the time complexity of the std::vector 
container’s push_back() function. When calculating it, we mentioned that it was amortized, O(1). 
The same happens for B-trees. Performing deletion and insertion on a B-tree takes amortized O(log 
n) time. The B-tree is a generalization of the binary search tree that allows nodes to have multiple 
children. The number of children and keys that a node of a B-tree can hold depends on what order it is 
in. According to Knuth’s definition, a B-tree of order m is a tree that satisfies the following properties:

•	 Every node has at most m children

•	 Every internal node has at least {m/2} children

•	 Every non-leaf node has at least two children

•	 All leaves appear on the same level and carry no information

•	 A non-leaf node with k children contains k−1 keys

The following diagram shows a B-tree of order 5 formed of elements 
{4,24,67,234,12,11,160,2,6,43,54,5,3,301}:

Figure 7.2 – B-tree of order 5

Why use B-trees is a question that most programmers ask. There is a binary search tree that also 
works in O(log n) time and also keeps the elements in a structure that a B-tree supports: smaller 
elements are on the left side of the root and larger elements are on the right side of the root. What is 
the use of a tree that can hold multiple keys and multiple children? To answer the question, we have 
to dig deep to understand why, in fact, B-trees were created.

https://github.com/PacktPublishing/Expert-C-2nd-edition
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Bayer and McCreight first introduced the idea of a B-tree in 1972. It was first created with the intention 
of being used as an external memory data structure but became useful in many different ways.

Let us remember the memory hierarchy of a computer by looking at the following diagram:

Figure 7.3 – Memory hierarchy of a computer

In this case, the memory device, which is higher in the hierarchy, is the closest to the CPU; hence, the 
process of reading data from that device is much faster. This means that things start to go a little bit 
slower when the CPU has to read or write data from a hard disk. To understand how we can organize 
the reading and writing process so that it is faster and how all of this is connected to a B-tree, we have 
to look at the hard disk structure and how it stores data:

Figure 7.4 – Hard disk structure
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The physical block size is usually 512 bytes, which is the size of the smallest block that the disk controller 
can read or write. So, the information inside those blocks should be structured in a way that takes less 
time to work with the data. When we read from a hard disk or write to it, the block of information is 
put inside the RAM and is then read or written. No change actually takes place on the hard disk itself.

Let us say we have a list of students, where the student IDs, names, ages, and their marks in each 
subject are kept. The list will look like this:

ID Name Surname Age Algebra Computer Science Physics …
1 Kurt Carey 18 90 78 86 …
2 Kezia Holloway 22 99 65 76 …
3 Camilla Bolton 21 65 98 87 …
4 Connah Weber 19 46 88 63 …
5 Emyr Dillon 20 89 68 54 …
6 Joshua Pierce 22 78 56 45 …
… … … … … … …

Let us imagine that the full list occupies 20 blocks of hard disk, which is, of course, a lot, and if the data 
is searched inside those blocks, we have to go inside 20 blocks at worst in order to find the data we 
need. We can reorganize this by adding another list that holds only the IDs of students and a pointer 
that points to the row associated with the student. In that case, the size of the list will reduce, and if we 
imagine that it takes 2 blocks instead of 20 blocks of memory, we can look for the data by only going 
through those 2 blocks. Another thing that can happen is that the information takes 200 blocks and 
the list we created takes 20 blocks, which is again more, and we will need a new list, which will take 
up only 2 blocks, and so on and so forth.
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The following diagram shows the structure we will get at the end:

The diagram even looks like a tree when we rotate it. This principle and the principle of a B-tree coincide 
in the following way: the children of a root grow as the number of keys also grows and, eventually, 
new children are created. We can now say that for reading blocks of data from a hard disk, B-trees are 
used. The usage of a B-tree in these kinds of problems is crucial if not mandatory.

When talking about trees, we cannot just skip the part of operations that trees allow us to perform 
on the data. The most important operations that are performed on trees are searching, insertion, and 
deletion. We are going to discuss those three operations for a B-tree but, as we have to specify the 
order of a B-tree before moving on to those discussions, we decided to take a specification of a B-tree, 
which is a 2-3 tree, and show how insertion, deletion, and searching work on a 2-3 tree.

A 2-3 tree is a B-tree of order 3 and follows the general properties and rules of a B-tree. Its specific 
properties are as follows:

•	 Nodes that have 2 children are called “2-nodes”

•	 “2-nodes” nodes must have 1 data value

•	 Nodes that have 3 children are called “3-nodes”

•	 “3-nodes” nodes must have 2 data values

Let us look at how our node structure will look from the code perspective:

template <class valueType>
struct node{
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    valueType _small_value;
    valueType _large_value;
    node <valueType>* _left_node;
    node <valueType>* _mid_node;
    node <valueType>* _right_node;
    node <valueType>* _parent_node;
};

We can also provide helper functions such as parametrized constructors and Boolean functions that 
tell whether the node is a leaf, 2-node, or 3-node. Those functions can be included in the struct 
node itself.

If we try to construct a 2-3 tree, it will probably look like the code at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_
to_three_tree.h.

Searching
Let us start with the find function. The idea behind the strategy of finding an element lies in looking 
at a root node and then, based on the results, going to the left subtree or the right subtree. As you can 
see in the preceding code, we also have Boolean functions, which will help us implement the find 
function based on the type of node we are dealing with. A node of a 2-3 tree can be a leaf, a 2-node, 
or a 3-node and as those nodes have a different number of keys, the implementations of a search 
function should slightly differ for each type of node.

Before the implementation of the find function, let us first look at a simple illustrative example of 
looking for an element with a value of 554 in a 2-3 tree:

Figure 7.5 – A 2-3 tree example

First, we look at the root node. We see that its value is 17 and it is not equal to 554. So, we continue 
looking for the number:

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree.h


Advanced Data Structures288

Figure 7.6 – First step to find a value inside a 2-3 tree

As the number is bigger than the root node’s value, we continue with the right subtree of the tree:

Figure 7.7 – Second step to find a value inside a 2-3 tree

Trying to find out the value in the right subtree’s node failed so we have to make more comparisons in 
order to move to the next subtree if there is one. In our case, we have more subtrees, so we continue 
comparing our elements:
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Figure 7.8 – Third step to find a value inside a 2-3 tree

As we can see, we continue with the right subtree:

Figure 7.9 – Last step to find a value inside a 2-3 tree

Therefore, as you can see, we have found our element. However, what would happen if we did not find 
it in that node either? In that case, as our node is a leaf node, there would be no need to compare to 
find out whether it is greater or smaller than the node’s values because leaf nodes do not have children.

Now, let us implement the find function by inserting the logic described previously into our code. 
We are going to have two functions: one will be public to the user and the other will be a private 
function. This is done because of the way we implement the logic. Our function will be a recursive 
function and for that, we have to pass a node to our function. And as we don’t want to make the user 
pass a node instead of the tree object, we cover it with a function that only takes the target value. In the 
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code at https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/
main/Chapter07/ch7_two_to_three_tree_2.h, we also implemented isLeaf(), 
isTwoNode(), and isThreeNode() functions considering that our tree is constructed in the 
right way.

As you can see, we have two functions for performing the find operation. One of them is public and 
the other is private for our own use. We have two functions because we don’t want to bother the user by 
making them pass any other argument other than the value that should be searched. As we are going 
to use recursion for this operation, we declared a private function, which we will call from the public 
function and our user will never know about that. The implementation of the public find function 
can be found at https://github.com/PacktPublishing/Expert-C-2nd-edition/
blob/main/Chapter07/ch7_two_to_three_tree.cpp.

In the preceding code, you can see that we have one node structure and we treat it as both a 2-node 
and a 3-node. The confusion arises when we treat a node as a 2-node because, in this case, we have 
additional elements such as _mid_node, _small_value, and _large_value. If our node 
is a two-node, we don’t need _mid_node (a pointer to a middle node); hence, we can assign 
nullptr to it when constructing our node (two-node), and when it comes to _small_value and 
_large_value, our two-node doesn’t need it either as a two-node node has only one data member 
and, in that case, we can take either _small_value or _large_value as our one element and 
we can assign zero to it or we can take both elements and assign the same value to both of them. We 
can also use a flag that will point out our node being a two-node or a three-node.

Insertion

As with the find function, in the case of the insert function, we are going to first look at the 
illustrations of how inserting elements into a 2-3 tree works. We will perform insertion with the 
following elements:

{19, 7, 11, 21, 14, 13, 12}

1.	 Insert 19 into a node:

Figure 7.10 – Inserting 19 into a node

2.	 Check whether a node is a two-node or a three-node. If it is a two-node, compare the element 
with the element of the two-node and insert it, making necessary changes.

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree_2.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree_2.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_two_to_three_tree.cpp
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Figure 7.11 – Inserting 7 into a node that already has 1 element

Now we have a three-node node and we want to make another insertion but there is no place, as the 
maximum number of keys is two, so we have to make structural changes:

Figure 7.12 – Inserting the third value when the node has the maximum number of elements

In this case, we have to split the node and promote the median of the three values by creating a new 
node, which will become a parent.

Figure 7.13 – Splitting of a node
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But there is also a case when the node we split has a parent and the median is promoted to the 
parent node. Two cases also arise from it: when the parent has one element, the promoted element is 
inserted into the parent node, but if the parent node has two elements, we have to continue splitting 
and promoting the median. We will discuss this case in a few illustrations; now, let us continue with 
the rest of the elements:

Figure 7.14 – Inserting 21 into a node that has only 1 element

Now that we have to insert 14 into our 2-3 tree, we come across one of the cases described previously, 
where we have to split a node in order to insert an element and not ruin the structure of a 2-3 tree:

Figure 7.15 – Inserting 14 into a node that already has 2 elements



Searching 293

After inserting 14 into the leaf node, we get the following diagram:

Figure 7.16 – Ruined structure after inserting 14

Now that the 2-3 tree structure is ruined, we have to split the leaf node and promote the median (19) 
element to the parent node:

Figure 7.17 – Splitting of a node

Next, we insert 13:

Figure 7.18 – Inserting 13 into a node that has only 1 element
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The next insertion follows the previously described logic, but it is a little bit more complicated as we 
have to split two nodes. We will now try to insert 12:

Figure 7.19 – Inserting 12 into a node that already has 2 elements

We should insert 12 into the middle node and, after doing so, we get the following diagram:

Figure 7.20 – Ruined structure after inserting 12

As the 2-3 tree structure is again ruined, we have to repeat the process of splitting and promoting the 
median (13) element. After doing it, we get the following diagram:

Figure 7.21 – Structure is still ruined after the first split

After promoting 13, our 2-3 tree structure is not restored so we have to continue splitting and 
promoting the median (13) element:
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Figure 7.22 – Structure after the last split

Now, we can see that the 2-3 tree structure is correct.

Deletion

After discussing how the insertion is done, we can pass on to the last and probably the most complex of 
the operations on a 2-3 tree: deletion. The strategy of a deletion process is the opposite of the strategy 
used in insertion. In the case of insertion, for example, we split a node, while in the case of deletion, 
we have to merge the elements, but it only sounds that easy. When we perform deletion on a 2-3 tree, 
we have to remember the following points:

•	 To delete a value, we have to replace it with its in-order successor and then remove

•	 If a node is left with less than one data value, then two nodes must be merged together

•	 If a node becomes empty after deleting a value, it is then merged with another node

Let us first look at the visual representation of a deletion process performed on a 2-3 tree. The examples 
will be shown using the following tree:

Figure 7.23 – A 2-3 tree example

So, let us assume we want to delete 40. We find the node where 40 is located and try to remove it. 
If 40 is not located in the leaf node, it makes it hard to just remove it. That is why, firstly, we have to 
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move it inside a leaf node by performing swapping, and then perform the deletion. Following the first 
point just discussed, we swap 40 with its in-order successor, which is 47. The tree will look like this:

Figure 7.24 – Swapping with a leaf node

We can see that after swapping the elements, 40 is ruining the logic of a 2-3 tree as it is not greater 
than 47, though it has to be, while 47 is in a legal position as it is larger than its left subtree and 
smaller than its right subtree. We don’t have to worry about 40 being in an illegal position, as the 
next step is to delete it:

Figure 7.25 – Ruined structure after removing 40 from a leaf node

Before removing a value from a leaf node, there are two cases:

•	 The leaf node has two values, one of which has to be removed

•	 The leaf node has only one value, which has to be removed

This means that if we remove a value from a leaf node and it still has a value in it, then our job is 
done because the logic of a 2-3 tree remains. In our example, we remove 40 and there is no value 
in the node, which means we have an empty node, which is not acceptable. In the preceding figure, 
the node without a value is pictured. So now we have to delete a node itself. After deleting a node, 
we have a structure where the parent node contains 2 values and has 2 children, which again ruins 
the structure of a 2-3 tree. To delete a node without harming the structure of a 2-3 tree, we have to 
perform merging. We are going to move down the smaller value of the parent node, which is 47, and 
merge it with the leaf ’s left sibling:
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Figure 7.26 – Merging 47 with the leaf’s left sibling

Let us now remove 78 from the tree. As 78 is already in the leaf node, we will not swap the values, 
and at the first step, we will just remove the value:

Figure 7.27 – Ruined structure after removing 78

Now, we again face the problem where we have a node without a value, and we have to do something 
about it. If we try the technique described previously, which is deleting a node without a value and 
merging the parent’s value with its left sibling, we will have the following diagram:

Figure 7.28 – Structure is still ruined when 55 is merged with the leaf’s left sibling
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The preceding structure is a disaster in all the dimensions and timelines of a tree world. We want 
to avoid the disaster and are not going to do what we just did. We have to come up with a different 
technique. We see that our left node has two values, and it can spare one of the values. If it spares 47 
and makes it a right node of a node with a value of 55, we will have a ruined structure, as shown here:

Figure 7.29 – Structure is still ruined after sparing 47

So, what we are going to do here is take the greater value of the left leaf node, which is 47, and we are 
going to promote it to the parent node and the value of a parent node is going down to the left leaf node:

Figure 7.30 – Restored structure of a 2-3 tree

The preceding 2-3 tree is perfectly structured, which means that deletion was performed correctly. 
Now, let us try to remove the value 47. As we can see, 47 is in an internal node of the tree so we have 
to swap it with its in-order successor, 55, as shown in the following illustration:
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Figure 7.31 – The 2-3 tree after swapping 47 with 55

Now when 47 is in the leaf node, we can remove it from the node, leaving the leaf node empty and 
facing the same problem of having a leaf node without any value. Since the left leaf node doesn’t have 
two values, we can’t spare it in this case, so we have to perform the other operation: merging. The 
merging operation has to be performed on a parent node and a left leaf node by bringing down the 
value of a parent node and also deleting the right leaf node:

Figure 7.32 – Ruined structure after removing 47

However, we are not done with the removal as we have a parent node that contains no value and 
only one child with two values. We must apply the recursive removal strategy to the parent node that 
contains no value. The first thing we should do is check whether the parent node’s sibling can spare 
a value. Because the sibling has only one value, 10, we can’t spare a value, so we have to perform 
merging. Merging two internal nodes is similar to merging two leaf nodes, with one exception – in 
the case of merging internal nodes, the children of an empty node must be adopted:

Figure 7.33 – Structure is still ruined after merging
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The structure we got after performing the operations listed previously is not a 2-3 tree and we are 
one step away from making it. We have to merge the root node with its child to make a 2-3 tree by 
bringing the root node’s value down and removing the root node:

Figure 7.34 – Restored structure of a 2-3 tree

To perform deletion on a 2-3 tree, we have to locate the correct node and start the process of deletion. 
The process is different for leaf nodes and internal nodes. During the process, it is decided whether 
merging or distributing is going to be performed.

In this section, we discussed B-trees and dived deeper into one of their specializations: 2-3 trees. We 
also went through the most important functions performed on a 2-3 tree, showing the illustrations 
and describing the steps that are performed during each operation.

In the next section, we are going to discuss one of the most powerful containers that the C++ STL 
library provides to its users: std::unordered_map.

Implementation details of std::unordered_map
In the previous chapter, we discussed std::unordered_map very briefly, saying only that it is 
the representation of the hash table data structure in C++. At first, along with other hash containers, 
std::unordered_map wasn’t in the original STL. It was introduced to C++ users only with the 
TR1 library extension.

std::unordered_map is an associative container that is part of the STL library. It holds key-value 
pairs with distinctive keys. The time complexity of search, insertion, and removal of items is amortized 
O(1). This means that all the operations listed are performed in a constant time almost always. In 
an unordered map, the key value often serves as a means of uniquely identifying each element, and 
the mapped value is an object connected to that key. Key-value and mapped value types may vary.

Internally, the components are arranged into buckets rather than being sorted in any specific sequence. 
The hash of an element’s key determines which bucket it will be put into. Similar hash codes for keys 
cause them to be put in the same bucket. As soon as the hash is calculated, it links to the exact bucket 
the element was put into, allowing for quick access to particular elements.

There is also another variation of std::unordered_map called std::unordered_multimap. 
The latter may contain multiple copies of each key value. In this part of the book, we are not going to 
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go any further and discuss std::unordered_multimap. Instead, we will dive deeper into the 
concept and implementation details of std::unordered_map.

The implementation details that we will discuss are as follows:

•	 How std::unordered_map organizes element storing

•	 How elements are inserted into or searched in std::unordered_map

•	 The hash functions and strategies that are used to implement them

•	 Collisions and how they are handled

Let’s begin with discussing the first two points.

How std::unordered_map organizes element storing 
and how elements are inserted into or searched in 
std::unordered_map
std::unordered_map is organized into buckets. Imagine having an array where every cell is a 
bucket that contains elements. A question might arise from these words: “that contains elements.” Are 
we talking about giving an array as the second parameter in the following code?

#include <unordered_map>
#include <vector>
#include <string>

int main() {
  std::unordered_map<std::string, std::vector<int>> table;
  table["Word"] = { 45,6,2,6 };
}

In this case, we see clearly that there is more than one value that has to be stored. Although this 
example might seem reasonable and a logical motivation to have buckets, it is not the case. The bucket 
an element is placed into depends entirely on the hash of its key. Two different keys with different 
values could generate the same hash (bucket). The bucket interface implementation can differ from 
compiler to compiler as there is no fixed rule, only best practices.

The first practice is to use lists. This means that each bucket contains lists that hold pairs: a pair of a key 
type and a value type. And every time different keys result in the same hash value, the bucket under 
that index adds a node and holds the new values inside it. If we illustrate this, it will look like this:
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Figure 7.35 – Bucket that contains lists that hold pairs

This method of using a linked list to deal with collisions is called separate chaining. The worst thing 
that could happen is that the hash function always returns the same hash value for all the keys passed 
to it. In that case, the time complexity of operations such as insert, find, and delete will be 
O(n). To avoid such complications, which hardly ever occur, there is also another way to organize 
the bucket interface of std::unordered_map.

The second way to do this is to use another data structure that is better than a linked list. We have 
already discussed a data structure that performs operations faster than a linked list in the previous part 
of this chapter, and that is a self-balancing binary search tree. This technique is better for looking up an 
element as its time complexity is O(log n), but the self-balancing operations during insertion, for 
example, make it harder to insert an element than it is with linked lists where no comparison is needed.

std::unordered_map provides functions that work with the bucket interface. Those functions 
are as follows:

•	 begin(size_type), cbegin(size_type): Returns an iterator or a constant iterator 
to the beginning of the specified bucket

•	 end(size_type), cend(size_type): Returns an iterator or a constant iterator to 
the end of the specified bucket

•	 bucket_count(): Returns the number of buckets

•	 max_bucket_count(): Returns the maximum number of buckets

•	 bucket_size (size_type): Returns the number of elements in a specific bucket

•	 bucket(const Key& key): Returns the bucket for a specific key



Hash functions and strategies that are used to implement them 303

Knowing how storing is organized, we already know what happens when we insert an element into 
std::unordered_map. First of all, the key that was passed to the container is passed to a hashing 
function, which returns a value that becomes an index of an array. Then, under that index, both the 
key and the value are stored.

The search for an element, when we have separate chaining and use linked lists, can differ in effectiveness. 
The basic approach is to locate the bucket that corresponds to the key and then carry out a linear 
search within that bucket when looking for an item in a hash table using a key. The hash function is 
used in the first phase; a different method must be used in the second.

Utilizing std::find() or its equivalent to discover an object whose key equals our key is the most 
straightforward method. Naturally, it would be incorrect to hard-wire operator==; instead, the 
user should be able to supply a function object with equality semantics.

Consider the case where the user is storing C-style strings. In this case, it is better to check them by 
using the strcmp()function.

Two function objects—a hash function and an equality function—are used as parameters for hashed 
associative containers. Each has its own default ones.

We can do the lookup of an element in an alternative way. Let us take, for example, the case where we 
decided to sort the bucket elements in ascending order. In this case, instead of comparing the keys for 
an equality case, we will compare them using operator<. What this will give us is that the average 
number of comparisons, for example, for a failed search when we use the equality operator will be n, 
while using less than operator results in n/2.

Hash functions and strategies that are used to implement 
them
The hash function is used to convert keys into indexes of an array. The hash function should, in theory, 
map every potential key to a distinct slot index, but in reality, this is challenging to do.

A hash function that takes a set of items as input and maps each one to a distinct slot is called a 
perfect hash function. It is feasible to create a perfect hash function if we know the items and the 
collection won’t change. Unfortunately, there is no methodical way to build a perfect hash function 
given a random set of elements. Thankfully, we can still gain performance efficiency, even if the hash 
algorithm is not perfect.

The size of the hash table can be increased in order to include all possible values for the element 
range, which is one technique to ensure that the hash function is always perfect. This ensures that 
every component will have a unique slot. Although this is doable for small numbers of items, it is 
impractical for huge numbers of elements.

It is sufficient to take into account hash functions that accept any integer as an input. Why? Even if a 
key is not an integer, it may be easily converted into one so that it can be hashed. Hash functions that 
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take an argument of the integer type can also differ in their implementation. Here are a few simple 
hashing operations that work with positive numbers:

•	 Digit selection

•	 Folding

•	 Using modulo

Digit selection

The digit selection method can be applied if the user knows exactly how many digits there are in the 
numbers that are passed to the hash function as keys. In this case, the user can choose two or three 
digits depending on how much space the hash table occupies. Let us take, for example, numbers that 
have eight digits and we also know that the first two digits are zeros. Skipping the first two digits, we 
can take the third and the last digit and make a number out of them. For example, we have an integer, 
00637981. We take the digits 6 and 1 and make an index where the key should be stored. The key 
will be stored under index 61. The digits you select in a given scenario do require some caution 
because if, for example, you choose the first two digits, the index where all the keys will be stored is 
going to be index 0.

Although this method is simple and quick, it doesn’t typically distribute the elements fairly.

Folding

Adding the digits is one technique to enhance the prior method of choosing digits. Folding is the 
process that results from this. You may, for instance, sum up all the numbers in 00637981, which 
gives us the following:

0 + 0 + 6 + 3 + 7 + 9 + 8 + 1 = 34

The key will be kept under index 34. The indexes can vary from 0 to 54 considering that the 
biggest number obtained is the one where the first 2 digits are 0 (as always) and all other digits are 9 
(00999999). You may group the numbers in the search key and then add the groups to adjust this 
or expand the size of the hash table. For example, if we group the numbers by two, we will have the 
following result:

00 + 63 + 79 + 81 = 223

In this case, the index will range from 0 to 297. We can also group the number by four digits, as in 
this example:

0063 + 7981 = 8044
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And in this case, the index will range from 0 to 10098.

Using modulo

This method’s logic is to take the number that is passed to the hash function and module it with the 
size of the hash table. So, for example, if we have 1,000 elements, then our number can be stored under 
the index ranging from 0 to 999. The number in the previous example in this method will be stored 
under index 981 for the following reason:

637981 % 1000 = 981

The one problem with this method is that if you choose the size of the hash table in a way that it is 
not a prime number, then the collision will be much more common than if you had chosen a prime 
number. The number 1000 can be replaced by 1009 because it is a prime number and 1000 is 
not. In the examples we have used, the numbers are too small to be useful as the size of a hash table.

In the beginning, we also talked about passing only an integer to a hash function. In this case, we 
also have to take care of converting other data types, for example, a string into an integer. Let us 
take, for example, the word “ant.” We can convert this into an integer by just assigning each letter its 
ASCII number:

a – 97

n – 110

t – 116

We then sum them up:

97+110+116 = 323

Or we can just concatenate them together:

97110116

After that, the number will be passed to a hash function that will work with it. Another way of 
converting the string into a number can be just replacing each letter with its position in the alphabet:

a – 1

n – 14

t – 20
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We can then apply the same tactics used previously:

1+14+20 = 35

or

11420

The problem of summing up the numbers will result in a collision when other words are formed with 
the same letter – for example, the word “tan” will result in the same number if we apply the first tactic. 
In this case, it is better to use the version that concatenates the numbers. We can also use another 
concatenation tactic, which says that we can take the positions of the letters in the alphabet, turn them 
into their binary representations, and then concatenate them.

There is also the suggestion of making a function that calls different hash functions and randomly 
decides what function is going to be called. This practice is called universal hashing.

We introduced and discussed simple hashing tactics because the hashing function should itself be 
simple and compute the result very quickly. Of the methods discussed, the modulo method is most 
widely used.

Collisions and how they are handled

When talking about organizing elements for implementing std::unordered_map by using a hash 
function, we couldn’t miss the part where the collisions happen, as it is one of the basic problems that 
results in different organization types. Earlier, we talked about solutions such as separate chaining and 
perfect hashing, which could solve the problem of handling collisions. Another concept that solves 
this problem is called linear probing. It is one of the forms of open addressing, along with quadratic 
probing and double hashing.

When the hash function creates a collision by mapping a new key to a hash table cell that is currently 
filled by another key, linear probing looks for the next available space in the table and inserts the new 
key there. The same procedure is used for lookups: systematically scanning the table from the hash 
function’s location until a cell with the right key or an empty cell is found.
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Figure 7.36 – Example of linear probing

Nevertheless, there is a drawback to linear probing. The problem with this particular method is 
that putting an element in the “next open space” merely by going to the next accessible hash bucket 
causes clustering. By clustering, we mean that our data eventually ends up clustered in one area of 
our container; in other words, it is just grouped in one place.

The clustering effect is bad for hash tables and containers that are implemented using that logic. In 
fact, if a table is clustered, it is by definition badly constructed. This often indicates that there is an 
issue with our hash algorithm inside. Clustering is typically caused by one of two problems with hash 
functions: either they don’t use the whole container range, or they don’t distribute the data uniformly 
across the hash buckets. It turns out that employing linear probing as a collision resolution approach 
can occasionally cause both of these two things to happen, which results in a clustered container.

Naturally, again, this relies on our dataset. If we use linear probing to solve the collision problem and 
we have a lot of items that end up in one hash bucket, the container will start to get occupied, fairly 
rapidly, and we’ll have a clustered container in the end.

To avoid such problems, our container can hold a load factor. The entire table may be replaced by a 
new table, bigger by a constant factor if the insertion would increase the load factor of the table (its 
proportion of occupied cells) over a certain threshold. As opposed to threshold values near 1 and 
low growth rates, setting this threshold close to 0 and employing a high growth rate for the container 
size results in quicker container operations but higher memory usage. When the load factor exceeds 
1/2, doubling the container’s size is a frequent solution that keeps the load factor between 1/4 and 1/2.

std::unordered_map provides two functions related to the load factor; max_load_factor() 
has an overload to get or set the max load factor:
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•	 load_factor(): Returns the average number of elements per bucket

•	 max_load_factor(): Returns the current maximum load factor

•	 max_load_factor(float): Sets the maximum load factor to the passed argument

Everything we have discussed before is details that are used to implement std::unordered_map. 
We cannot exactly say which of the details described are used to implement the container because, as 
we have already said, every compiler has its own implementation and the programmers are the ones 
who decide what tactics to use to implement the container. Later, those implementations are put in 
the compiler for the usage of the users.

Heaps and their applications
The term heap is definitely familiar to you but, most probably, the heap we are going to talk about has 
nothing to do with the heap you know. When studying computer systems, it is unavoidable not to 
touch on topics connected with memory, especially RAM. And when talking about RAM and virtual 
memory, we can’t skip the part where we separate the memory into stack and heap. Is this heap, which 
is used for dynamic memory allocation, connected to the heap we are going to discuss? The answer 
can be guessed from the first sentence of this subchapter and it is no.

A heap is an abstract tree-based data structure. What does that mean? Well, it is structured as a tree 
and has some properties of trees, specifically a binary tree. Let us not dive deep into what types of 
trees are there, and just talk about what kind of binary trees do exist and to what category our heap 
belongs. There are full, complete, and other types of binary trees, but we are going to talk about the 
two categories mentioned. A full binary tree is considered to be a tree in which every node except 
for leaves should have two children. You can see an example illustration of a full binary tree here:

Figure 7.37 – Full binary tree

Some people think that a full binary tree is a tree where all the nodes have two children except for 
the leaf nodes, but also that all the nodes are at the same level. In the preceding example, we have a 
full binary tree, and all the nodes are at the same level. But you should bear in mind that the example 



Heaps and their applications 309

that follows is also a full binary tree, as it corresponds to the preconditions of a full binary tree that 
we mentioned at first:

 

Figure 7.38 – Also a full binary tree

The following tree meets all the pre-conditions for a full binary tree; therefore, it is also a full binary tree:

Figure 7.39 – Also a full binary tree

A complete binary tree seems like a full binary tree, but not all full binary trees can be a complete 
binary tree, and also, not all complete binary trees are full binary trees. A binary tree is said to be 
complete if all the levels of a tree are filled except for the last one, which can only be half-filled from 
left to right. The first and second full binary trees are also considered to be complete binary trees, as 
they both fall under the conditions that form a complete binary tree. The third example is a full binary 
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tree, but not a complete binary tree because it lacks the left nodes and it is half-filled from right to left, 
not from left to right. The following illustration is a perfect example of that:

 

Figure 7.40 – Full but not complete binary tree

Here we see that the tree is half-filled from left to right and this is okay for a complete binary tree, 
but when it comes to fulfilling the conditions of a full binary tree, we see that we have a node that has 
only one child, which is against the concept of a full binary tree.

Heap data structure follows the concept of a complete binary tree. Let us consider we are given an 
array and we have to make a heap from it. This means that we have to form a complete binary tree. 
The heap is formed by making the values line up from left to right; for example, let’s imagine we are 
given an array with values {1,3,7,11,51,9,4,8}. The formed heap/complete binary tree will look like this:

Figure 7.41 – Heap/complete binary tree
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The indexing works in the following way:

•	 If a node is at index i

•	 Its left child is at 2*i

•	 Its right child is at 2*i + 1

•	 Its parent is at i/2

If we look at the indexes in the array and the structure of the tree, we can clearly see that all these 
points are true.

The heap we formed is just a general heap and, in this case, has nothing special. So, if it is not special 
and it is just a complete binary tree, why make a big deal out of it? The thing is that we don’t use general 
heaps, we use its specifications: min heap and max heap.

The idea behind max heap is that the root of the tree has the largest value among all the nodes of a 
tree, and this property is applied to all the subtrees that the tree has:

Figure 7.42 – Example of a max heap

Intuitively, the opposite should be true for a min heap – the root of the tree has the smallest value 
among all the nodes of a tree, and this property is applied to all the subtrees that the tree has:
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Figure 7.43 – Example of a min heap

The operations supported by max heap or min heap are the following, among others:

•	 Finding the maximum/minimum element

•	 Inserting an element

•	 Deleting the maximum/minimum element

•	 Max-heapify/min-heapify

The first operation from the list is the easiest one. We are going to work with either a max heap or 
a min heap, and as we know that the maximum element in a max heap is the root value and the 
minimum element in a min heap is also a root value, in these functions, we have nothing to do but 
to return the root value.

The insertion is either performed on a min heap or a max heap and, by that, we mean that when inserting 
an element, we know exactly that the structure we are making an insertion into follows all the rules 
provided by a mean heap or a max heap. The process of inserting an element is always performed at 
the end of the heap and then the necessary operations are performed to keep the min heap or max 
heap structure. Let us try to implement the insert function considering that our heap class has a 
vector named values that holds all the values. The implementation of an insert function for a 
max heap will look like this:

template <typename itemType>
void myHeap<itemType>::insert(itemType newItem)
{

  values.push_back(newItem);
  int newItemIndex = values.size() - 1;
  bool isPlaced = false;
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  while ((newItemIndex > 0) && !isPlaced)
  {
    int parentIndex = (newItemIndex - 1) / 2;
    if (values[newItemIndex] < values[parentIndex])
    {
      isPlaced = true;
    }
    else
    {
      std::swap(values[newItemIndex], values[parentIndex]);
      newItemIndex = parentIndex;
    }
  }
}

The complexity of an insert function is O(log n) as the worst that can happen is swapping the 
values from a leaf to the root, which doesn’t exceed the height of a tree; hence, the complexity is not 
more than O(log n).

The deletion is performed on the root of a heap. Its logic is to swap the root with the last element 
and get a partial heap and then turn the semiheap into a heap by making the necessary comparisons 
and swapping. Let us look at a simple illustration that shows how the deletion of a max heap root is 
done step by step.

Swap the root node’s value with the value of the last node.

Figure 7.44 – First step of deleting the root of a max heap



Advanced Data Structures314

Delete the last node.

Figure 7.45 – Second step of deleting the root of a max heap

Swap the root with the child that has the greater value.

Figure 7.46 – Last step of deleting the root of a max heap

And finally, the last function on our list is the heapify function. Imagine that we have an array 
and we form a heap based on its indexes without following any rules. Let us imagine that we have the 
following array: {4,7,34,23,1,0,21}.

And when we form a heap with these values, we get the following diagram:
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Figure 7.47 – Example of a heap formed from array elements

We see that the heap we got is neither a min heap nor a max heap. We need a function that can make 
a min heap or a max heap from such a structure, and here is where the heapify function comes 
in handy. The logic that is put inside the heapify function is also very easy to understand. The 
function starts from the bottom of the tree and looks at the leaves. As the leaves are heaps themselves, 
the function then goes up to the parents of those leaves and compares the values of the parents to the 
values of their children and makes necessary changes by swapping. The function goes up until it reaches 
the root of the tree. By the time it reaches the root of the tree and makes the necessary changes by 
swapping, the tree becomes a min heap or a max heap. Let us min heapify the previous structure 
step by step (as leaves are already heaps themselves, they need no change or swapping at that level):

1.	 Move on to the leaves’ parents and compare their values to the values of their children.

Figure 7.48 – First step of the min heapify function
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2.	 Swap the parent with a child if the value of the parent is bigger than any of the values of its 
children. If both children have smaller values than the value of their parent, swap the parent’s 
value with the smallest value of its children.

Figure 7.49 – Second step of the min heapify function

3.	 Compare the values of the swapped (if they were swapped) nodes’ values with the value of 
their parent.

Figure 7.50 – Third step of the min heapify function

4.	 Swap the parent with a child if the value of the parent is bigger than any of the values of its 
children. If both children have smaller values than the value of their parent, swap the parent’s 
value with the smallest value of its children. Stop when you reach the root.

Figure 7.51 – Last step of the min heapify function
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After talking about the most important function and features the heap abstract data structure has, it 
is also important to talk about the applications of a heap ADT. We should understand how, when, or 
where to use such a data structure.

The heap data structure has many applications, including the following:

•	 Priority queue

•	 Heap sort

•	 Selection and graph algorithms

•	 Order statistics

We are not going to dive deep into every heap application mentioned. We will discuss using heaps in 
priority queues and in the implementation of the heap sort. Before moving on to those two points, 
we will give a short description in a sentence or two to help you understand how the heap is used in 
selection and graph algorithms and also order statistics, leaving it to your curiosity to dive deeper 
into those topics yourself.

A heap makes it possible to retrieve the minimum or maximum element in constant time and make 
additional selections (such as the median or kth element) in data stored in a heap in sub-linear time, 
which is a great reason to use heaps in selection algorithms.

A heap is used in graph algorithms based on its ability to traverse the data structure in polynomial order.

The heap data structure may be used to rapidly and accurately determine the kth lowest/biggest 
member in an array, something which will be useful for order statistics.

As you can guess from its name, the priority queue is a queue that holds elements in priority order. This 
means that, for example, the largest value has the highest priority or the lowest value has the highest 
priority. This logic is similar to the logic of a heap ADT. If you managed to implement a heap, it should 
be no problem to implement a priority queue as the operations of a priority queue are comparable 
with the operations of a heap. Consequently, we can use a max heap, for example, to implement a 
priority queue. Is it better to make a max heap a data member of a priority queue class or is it better 
to use inheritance? To answer the question, we have to try to understand what type of relationship 
they can be. The inheritance corresponds to the “is-a relationship.” Can we say that a priority queue 
is a max heap? We definitely can’t. That is why we can either keep an object inside the priority queue 
class or we can inherit it privately, which doesn’t belong to the concept of an “is-a relationship.” The 
operations that are used in the implementation of the priority queue will call the functions of a max 
heap. For example, if the priority queue has a top() function, it will call the function that returns 
the maximum element. The delete() function of a priority queue will call the delete_max() 
function of a max heap, and so on.

We talked about implementing a priority queue with the help of a heap, but why do we do that? Isn’t 
there a better data structure for doing so? For example, a binary search tree can also provide the same 
functionality, as its leftmost child will contain the smallest element and the rightmost child will contain 
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the biggest. The thing about binary search trees is that they are not always balanced, while heaps are. 
And sometimes, in the worst case, finding an element will take O(n) time rather than O(log n). 
This brings us back to the idea that implementing a priority queue with a heap is the right decision.

The heap sort method, as its name suggests, uses a heap to sort an array of elements that is not in any 
particular order. Let us assume that we have an array out of which we formed a heap, or to be more 
specific, a max heap. Then, we can remember from this subsection that we talked about deleting a 
root of the heap. Its logic was to swap the value of the root with the value of the last element of a 
heap, delete the last element, and perform max_heapify() on the new root. By applying the same 
tactics (without deleting the last element), we can implement a heap sort algorithm, which is one of 
the fastest sorting algorithms. Let us write the implementation of the heap sort algorithm considering 
that we already have a max_heapify() function:

template <typename itemType>
void heapSort(itemType array[], int size)
{
  for (int index = (size / 2) - 1; index >= 0; --index)
  {
    max_heapify(array, size, index);
  }
  for (int index = size - 1; index >= 0; --index) {
    std::swap(array[0], array[index]);
    max_heapify(array, index, 0);
  }
}

The implementation is very simple. First, we call the max_heapify() function to make a heap out 
of the array elements, and then perform sorting by applying logic similar to the delete() function.

Heap sort’s efficiency is comparable to that of merge sort. They both take O(n logn) time for the 
worst and average cases. Heap sort has an advantage over merge sort as it doesn’t require additional 
space for performing sorting. Quick sort can also be compared to heap sort as it also takes O(n logn 
) time to sort an array in the average case, but in the worst case, it takes O(n2) time, which makes it 
different from heap sort. Despite having a worst-case efficiency of O(n2), quick sort is typically chosen 
more than other sorting algorithms as it hardly ever faces its worst-case scenario.

Advanced lists
We have already talked about lists in the previous chapter as node-based data structures. Knowing 
how lists work, it may be interesting for us to dive deeper into the data structure to understand what 
other variations it has. In this part of the chapter, we are going to find out whether lists can be any 
better or not and what other variations of lists there are.



Advanced lists 319

Among the list variations are skip lists, XOR lists, unrolled lists, self-organizing lists, and so on. We 
are not going to talk about every advanced list type there is, but only one or two to make the idea of 
an advanced data structure, specifically an advanced list data structure, clearer.

Skip lists

The name “skip list” hints that the data structure should be connected with skipping something. The 
only thing it can skip is a node, as it is composed of nodes. This means that in some operations that 
are performed on lists, we can skip the accepted steps. Let us take for example the search algorithm. 
In order to find an element inside a list, we spend O(n) time even if it is sorted. To mention the 
elements in a list being sorted is important in this case because the logic that the skip list applies can 
work only with sorted elements. Carrying on the thought of skipping steps, what if we could shorten 
the amount of time spent on that operation such as search? “Skip list” is a data structure that allows 
us to do that. To make a “skip list” to bypass some nodes, we build several layers. Let us imagine we 
have the following list, which contains 13 elements:

Figure 7.52 – List with 13 elements

The elements are in a sorted order, as you can see. To make a skip list out of this, we should just add 
another layer to it that skips some of its elements. The following illustration shows this idea:

Figure 7.53 – Adding a layer to form a skip list

Now let us imagine that we want to search for the number 188. We will check the elements of the 
layer we have created until we find the node whose next node’s element is greater than 188. After 
finding the node, we go down to the initial lane and search for an element linearly. Let us show the 
illustration of how that works:
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Figure 7.54 – The searching process in a skip list

Based on the example, we see that we skipped some nodes by adding a layer to our list. What will 
be the time complexity of this example? When we use only two layers for a “skip list,” we create a 
new space to keep some of the elements in a new layer, and if we divide the whole list equally, we get 
O(√n), (square root of n), extra space. And by having an O(√n) extra space, we can achieve time 
complexity that is equal to O(√n) in this particular example.
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We talked about having only two layers, but can there be more? The answer is yes! There can be as many 
layers as you want (unless there are no nodes left to add a layer); it will increase the space complexity 
meanwhile decreasing the time complexity reaching O(log n). Deciding the maximum level of 
nodes is also one of the important problems, and the accepted limit is log(p−1)N, where N is the 
maximum number of elements in the list.

A “skip list,” like any other type of list, can grow. By saying grow, we mean that the elements can be added 
to it and also can be deleted. Thinking about inserting an element into a skip list seems easy because 
all we have to do is find the position as it is a sorted list and add a node by changing some pointers. 
The real problem arises when we add an element and our structure of having evenly distributed nodes 
in other layers is crashed. What do we have to do now? Should we destroy all the layers and start from 
scratch, or should we leave it as it is? Should we promote the newly added node to the layer above or 
not? If we promote it to a higher level, should it be only at that level, or be promoted to even higher 
levels? The answer is both yes and no to those questions, except for destroying the layers and starting 
from scratch. That is something we don’t really want to do.

Inserting a node into a skip list starts at the lowest level because it is the level where we can find all the 
nodes. Then, promoting the node to a higher level or not depends on coincidence․ Let us imagine that 
randomly returns either true or false. A function that decides whether a node will be promoted 
or not will return true if the node is not at the maximum level and it needs to be promoted. In this 
case, the process will be repeated until the maximum level is reached or the function returns false. 
Let’s look at the following example where we try to insert 68 into the skip list with the following steps:

1.	 Find the right position at the lowest level:

Figure 7.55 – Locating the right position at the lowest level
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2.	 Insert the new node at the right position and call the function that either promotes it or not:

Figure 7.56 – Inserting the new node at the right position

3.	 If the function returns true and we are not at the maximum level, we promote it and call the 
function for a higher level again. If the function returns false, we keep the node only at the 
lowest level:

Figure 7.57 – Promoting the node to a higher level

4.	 Call the promoting function for the higher level:
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Figure 7.58 – Function for promoting the node returns false

The simple code representation will look something like this:

//consider all as member functions of a class SkipList
bool true_or_false() //function that randomly decides
                     //whether the node will be promoted
{                    //or not
    srand(time(0));
    return rand() % 2;
}

void promote(Node<T>* node, int level) //function that
                                       //promotes the
{                                      //node
    if (true_or_false() && level != MAX_LEVEL) {
        insert(node, level);
        promote(node, level + 1);
    }
    return;
}

void insert(Node<T>* node, int level)
{
    find_pos(node, level); // finds the position and
                           // inserts there
// implementation omitted for brevity
    promote(node, level + 1);
}
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The deletion of a node is very simple and depends on no coincidence. We should just delete the node 
from every level it is in.

Having understood how skip lists are structured and how they work, as a conclusion, we want to quote 
the author who described skip lists first:

“Skip lists are a probabilistic data structure that seem likely to supplant balanced 
trees as the implementation method of choice for many applications. Skip list 

algorithms have the same asymptotic expected time bounds as balanced trees and 
are simpler, faster, and use less space.”

- William Pugh

XOR lists

We have already talked about an advanced list data structure that is more time-efficient than the normal 
list data structure. Now it’s time to talk about an advanced list data structure whose distinguishing 
feature is its space efficiency. The list, as you can guess from the title, is called an XOR list. XOR is 
short for exclusive or.

If you are not familiar with logical operations and logic gates, it is time to read about them as XOR 
belongs to the list of logical operations. XOR can return two values only: 1 (true) and 0 (false). If we 
picture the truth table of the XOR operation, it will look like this:

Figure 7.59 – Table of the XOR operation

What would happen if we performed XOR on the two numbers that are the same? Well, the result 
will always be 0. This logic that is inserted into the operation is very useful in the construction and 
use of our XOR linked list.

This advanced data structure uses a bitwise XOR operation to reduce the amount of storage needed 
for doubly linked lists. A single node in a typical doubly linked list needs two address fields to point 
to the node before it and the node after it. As a result, memory use increases. Instead of storing the 
next and previous nodes’ real memory locations in the XOR linked list, storing two addresses, one 
for the previous node and one for the next node, only one address is stored, and this is the result of 
XORing two addresses. So, if we visually illustrate the structure of an XOR list, it would look like this:
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Figure 7.60 – Example of an XOR list

We can see that each node stores the XOR of the previous and next nodes’ addresses and since the first 
and the last nodes don’t have a previous and next node, respectively, we consider them to be NULL. 
So, we might ask what this gives us. As we have already said, when the number is XORed with itself, 
it gives us a zero. And now, for example, if we want to move forward from the second node, we just 
can XOR the address of the previous node with the address that holds the second node, which is 
500^700. And for moving backward, we do the opposite, which is XORing the address of the next 
node (700) with the address that holds the second node (500^700).

If we try to implement an XOR list, the first thing that we are going to do is declare a Node structure. 
It can be part of the XOR_list class. First of all, let us take a look at what our Node structure 
should contain:

template <typename T>
 struct Node {
       T m_data;
       Node<T>* npx; // traditionally called npx meaning next,
     `                // previous, XOR
 };

As we can see, our node has only two data members, which are m_data and npx, and nothing more. 
From this structure, the whole concept can be built, and if we put it in a XOR_list class, it will help 
us construct the memory-efficient doubly linked list as can be seen at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_
list.h.

We are not going to implement all the functionality of the XOR list; that is why we will omit the 
parametrized constructors, but we will try to implement the insert function. To make the insert 
function work, we need to have a method that calculates and returns the XORed value of the necessary 
addresses. The function will look like this:

Node<T>* Xor(Node<T>* addr1, Node<T>* addr2)
{
        return reinterpret_cast<Node<T>*> (reinterpret_cast<uintptr_
t>(addr1) ^ reinterpret_cast<uintptr_t>(addr2));
}

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.h
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.h
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The odd thing about this function is the casts that are performed. We see that addr1 and addr2 are 
both of the Node<T>* type and to perform the operation, we cast them to uintptr_t and then 
recast them back to Node<T>*. At first, it seems like a dumb thing to do, but if you have experience 
with pointers and addresses, you should probably guess that you can’t XOR the addresses unless they 
are cast to some other type that can be XORed. In our case, that type is uintptr_t, which is an 
unsigned integer big enough to contain a void*.

Now we can implement the insert function, which is as simple as the following code:

     template <typename T>
   void insert(T data)
  {
        std::shared_ptr<Node<T>> new_node =
          std::make_shared <Node<T>>();
        new_node->m_data = data;
        new_node->npx = head;
        if (head != nullptr)
  {
            head->npx = Xor(new_node, head->npx);
        }

        head = new_node;
 }

After completing the insertion, our head points to the last node, but we can iterate over it and come 
back to the last node or the other node we want. The combined look of all the functions and the 
preceding class looks like the code at https://github.com/PacktPublishing/Expert-
C-2nd-edition/blob/main/Chapter07/ch7_xor_list.cpp (we also added a print 
function so that you can test whether this works or not).

We remind you that the preceding code is not the whole implementation of the XOR list and we would 
be happy if you tried to implement it using the knowledge and the strategy that this chapter imparted.

Summary
In this chapter, we discussed advanced data structures such as B-trees, heaps, and advanced lists. We 
also talked about one of the best containers STL has to hand and also about the strategies that are 
used to implement the container.

First, we went for the B-tree by understanding the importance of using B-trees and also where they 
are mostly used. We dived deeper into one of many specializations of B-trees – a 2-3 tree. After giving 
the structural implementation of the 2-3 tree, we also implemented the search function for the tree 
and discussed insertion and deletion in the most detailed way possible.

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter07/ch7_xor_list.cpp
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The implementation strategies of std::unordered_map were also put into light within this 
chapter. The most important operations that make up std::unordered_map are hashing, collision 
handling, and storing strategies.

We also discussed the heap data structure by talking about its structure and the operations that it 
performs. The heap data structure has many applications, which include the following:

•	 Priority queue

•	 Heap-sort

•	 Selection and graph algorithms

•	 Order statistics

In the last part of the chapter, we talked about two advanced lists: the skip list and the XOR list. By 
implementing some of the skip list’s functionality and the XOR list, we understood the logic that is 
applied in both of those data structures.

Questions
1.	 List the properties that a B-tree of order m should satisfy.

2.	 What strategies can be used to handle collisions in implementing unordered_map by yourself?

3.	 What types of heaps are there and how do they differ?

4.	 Implement an insert function for the min heap.

5.	 Why is a heap used to implement a priority queue?

6.	 On what logic do the skip list and XOR list rely?

Further reading
For more information regarding what was covered in this chapter, please take a look at the following links:

•	 Data Abstraction & Problem Solving with C++: Walls and Mirrors by Frank M. Carrano –  
https://www.amazon.com/Data-Abstraction-Problem-Solving- 
Mirrors/dp/0132923726

•	 Advanced Data Structures by Peter Brass – https://www.amazon.com/Advanced 
-Data-Structures-Peter-Brass/dp/1108735517/ref=sr_1_1?crid=2 
VE0ZP2ZHHISR&keywords=peter+brass&qid=1660662754&s=books& 
sprefix=peter+bras%2Cstripbooks%2C327&sr=1-1

•	 Data Structures and Algorithms Made Easy by Narasimha Karumanchi – https://www. 
amazon.com/Data-Structures-Algorithms-Made-Easy/dp/819324527X 
/ref=sr_1_1?crid=3B1D4IZHTSW7E&keywords=data+structures+and+ 
algorithms+made+easy+narasimha&qid=1660662838&s=books&sprefix 
=data+structures+and+algorithms+made+easy+narasimha%2Cstrip 
books%2C253&sr=1-1

https://www.amazon.com/Data-Abstraction-Problem-Solving-Mirrors/dp/0132923726
https://www.amazon.com/Data-Abstraction-Problem-Solving-Mirrors/dp/0132923726
https://www.amazon.com/Advanced-Data-Structures-Peter-Brass/dp/1108735517/ref=sr_1_1?crid=2VE0ZP2ZHHISR&keywords=peter+brass&qid=1660662754&s=books&sprefix=peter+bras%2Cstripbooks%2C327&sr=1-1
https://www.amazon.com/Advanced-Data-Structures-Peter-Brass/dp/1108735517/ref=sr_1_1?crid=2VE0ZP2ZHHISR&keywords=peter+brass&qid=1660662754&s=books&sprefix=peter+bras%2Cstripbooks%2C327&sr=1-1
https://www.amazon.com/Advanced-Data-Structures-Peter-Brass/dp/1108735517/ref=sr_1_1?crid=2VE0ZP2ZHHISR&keywords=peter+brass&qid=1660662754&s=books&sprefix=peter+bras%2Cstripbooks%2C327&sr=1-1
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8
Functional Programming

One of the most famous programming paradigms, which is object-oriented programming (OOP), 
provides us with a way of thinking about objects, thus expressing the real world in terms of classes 
and their relationships. Functional programming is an entirely distinct programming paradigm that 
allows us to focus on the functional structure rather than the physical structure of code. Functional 
programming has two benefits that make it worthwhile to learn and use. Firstly, it is a new paradigm, 
which encourages you to think differently. Flexible thinking is necessary for solving problems. People 
who adhere to a single paradigm tend to offer similar solutions to every problem, but the most elegant 
solutions require a broader perspective. Developers may solve problems even more effectively by using 
the new skills they get from mastering functional programming. Secondly, functional programming 
helps to cut down on software errors. Functional programming’s distinctive methodology is largely 
due to the fact that it breaks programs down into functions, none of which alter the state of the data.

In this chapter, we will talk about the fundamental blocks of functional programming, as well as ranges. 
Ranges, which were first introduced in C++20, give us a fantastic approach to constructing algorithms 
that operate on collections of data. The core of functional programming is creating algorithms that 
can be applied sequentially to a set of data. That is why this chapter will also include ranges.

The topics discussed in this chapter will be as follows:

•	 Introduction to functional programming

•	 Introduction to the ranges library

•	 First-class and higher-order functions

•	 Pure functions

•	 Delving more deeply into recursion

•	 Metaprogramming in functional C++
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Technical requirements
The g++ compiler, along with the -std=c++20  option (which requires gcc10 or later), will be used 
to compile the examples in this chapter. You can find the source files used in this chapter at https://
github.com/PacktPublishing/Expert-C-2nd-edition.

Functional programming revealed
As we mentioned earlier, functional programming is a programming paradigm. When building programs, 
you might think of a paradigm as a way of thinking. C++ is a multiparadigm language. It can be used 
to create programs using a procedural paradigm, which means executing statements one at a time. 
We have already spoken about the object-oriented approach, which divides a complicated system into 
objects that interact with each other. Contrarily, functional programming encourages us to break the 
system down into functions rather than objects. It operates with expressions rather than statements. 
In essence, you send an input to a function, which then returns an output. This can then be used as 
input for another function. Although it may appear straightforward at first, functional programming 
contains a number of rules and techniques that are challenging to understand at first. Nevertheless, if 
you succeed in doing so, a new way of thinking—the functional way—will be unlocked by your brain.

Let us begin with an example that will explain the concept of functional programming to make this a 
little clearer. Consider a scenario in which we are required to determine the number of even numbers 
in a given vector of integers. The sole drawback is that there are several vectors of this kind. To output 
a result as a new vector including the results of the computation for each input vector, we must count 
the even integers in each vector individually.

The input is given in the form of a matrix: a vector of vectors. The simplest way to express this in C++ 
is by using the following type:

std::vector<std::vector<int>>

We can further reduce the complexity of the preceding code by using type aliases as follows:

using IntMatrix = std::vector<std::vector<int>>;

An illustration of this problem is provided next. We have a bunch of vectors containing integers, and 
as a result, we should get a vector containing a count of even numbers:

https://github.com/PacktPublishing/Expert-C-2nd-edition
https://github.com/PacktPublishing/Expert-C-2nd-edition
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Figure 8.1 – Counting the even numbers in multiple vectors

Take a look at the following function. It accepts a matrix, commonly known as a vector of int-type 
vectors, as a parameter. The function determines how many even numbers there are:

std::vector<int> count_all_evens(const IntMatrix& numbers)
{
    std::vector<int> even_numbers_count;
    for (const auto& number_line: numbers) {
        int even{0};
        for (const auto& number: number_line) {
            if (number % 2 == 0) {
            ++even;
        }
    }
    even_numbers_count.push_back(even);
    }
    return even_numbers_count;
}

The preceding function keeps a separate vector to store the count of even numbers for each vector. 
Due to the fact that the input is a vector of vectors, the method loops over the first vector to extract 
the inner vectors. It goes over each retrieved vector once and advances a counter if it comes across 
an even value in the vector. After completing the loop for each vector, the final result is pushed to the 
vector containing the list of numbers. Although you might want to return to the previous example 
and improve the code, we will go on for now and break it down into smaller functions. The first thing 
we do is to make a separate function, which only counts the even numbers.
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Let us name it count_evens, as follows:

int64_t count_evens(const std::vector<int>& number_line) {
    return std::count_if(number_line.begin(),
    number_line.end(), [](int num){return num % 2 == 0;});
}

Note how we applied the count_if() algorithm. It takes two iterators: the first iterator indicates the 
beginning of a range and the second indicates the end of a range. As we can see, it also takes a third 
parameter, a unary predicate, which is called for each element of a collection. In our case, a lambda 
expression was passed as a third parameter. Any other callable entity, such as a function pointer, an 
std:: function, and so on, may also be used.

Now that we have a separate counting function, we can call it in the original count_all_evens() 
function. The following implementation of count_all_evens() expresses functional programming 
in C++:

auto count_all_evens(const std::vector<std::vector<int>>&
numbers) {
    return numbers |
      std::ranges::views::transform(count_evens);
}

Before delving into the preceding code, let us agree that the first thing that strikes our attention in 
this code is not the strange use of the | operator but rather its clarity. Take a look at it in comparison 
to the code version we presented at the start of this section. While both of them accomplish the same 
task, the second one—the functional one—does it more succinctly. Keep in mind that the function 
neither keeps nor modifies any state. It has no negative consequences. This is essential in functional 
programming since a function needs to be a pure function. It accepts an argument, processes it without 
altering it, and then returns a new value (usually based on the input). The first difficulty in functional 
programming is breaking a task down into smaller, more manageable independent functions.

Although we came to the functional solution from an imperative one, this is not the right way to 
use it when leveraging the functional programming paradigm. You need to alter your method and 
style of thinking rather than creating the imperative code first and then rewriting it to achieve the 
functional version. You should tame the process of thinking functionally. We can solve the problem 
by first trying to count all the even integers for a single vector. If we can figure out how to solve the 
problem for a single vector, we can solve it for all of the vectors. The following screenshot illustrates 
how the count_evens() method takes a vector to generate a single value:

Figure 8.2 – Workflow of the count_evens() function
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Once the problem with one vector has been solved, we should proceed to the original problem by 
applying the solution to all the vectors. The std::transform() function essentially does what 
we need: it takes a function that can be applied to a single value and transforms it in order to process 
a collection. The following figure illustrates how we use it to implement a function (count_all_
evens) that can process a collection of items from functions (count_evens) that process only 
one item at a time:

Figure 8.3 – The usage of the count_evens() function by the std::transform() function

The core concept of functional programming is the division of a larger problem into smaller, independent 
tasks. Each function is specialized to do a single, manageable task, without comprehending the root 
of the problem. A collection of transformed items is then produced from the initial raw input by 
composing several functions together.

Now, the final version of the count_all_evens() function leverages ranges. Let us find out what 
they are and how to use them because we will need them in further examples.

Using ranges
Ranges represent a collection of objects or anything iterable abstractly. The simplest definition merely 
requires begin() and end() to exist on the range. Ranges may be categorized in a variety of ways, 
but the most crucial one is according to the abilities of its iterators.

Ranges are connected to views. In this chapter, we will look at them both. They give us a general 
approach to creating and managing groupings of items. We often use iterators to loop through 
containers and work with their elements, as you have already seen. Thanks to iterators, we can have 
a loose connection between algorithms and containers.
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For example, earlier, we applied count_if() to the vector, but count_if() is not aware of what 
container it was applied to. Take a look at the following declaration of count_if():

template <typename InputIterator, typename UnaryPredicate>
constexpr typename iterator_traits<InputIterator>::difference_type 
count_if(InputIterator first, InputIterator last, UnaryPredicate p);

As you can see, besides its verbose declaration, which is specific to C++, count_if() does not take 
a container as an argument. Instead, it operates with iterators – specifically, input iterators.

An input iterator supports iterating forward using the ++ operator and accessing each element using 
the * operator. We also can compare input iterators using the == and != relationships.

Algorithms repeatedly iterate over containers, without truly understanding what kind of container 
they are iterating over. Any entity with a beginning and an end is capable of being used with the 
count_if() function. By this, we mean an entity that has begin() and end() functions, the 
first of which returns an iterator (pointer) to the first element of the container while the second one 
returns an iterator one past the last element of the container. Let us look at the following syntax:

#include <array>
#include <iostream>
#include <algorithm>
int main()
{
    std::array<int, 4> arr{1, 2, 3, 4};
    auto res = std::count_if(arr.cbegin(), arr.cend(),
      [](int x){ return x == 3; });
    std::cout << "There are " << res << " number of
      elements equal to 3";
}

In addition to being general, algorithms are difficult to assemble. In most cases, we apply an algorithm 
to a collection and then save the outcome in another collection, which we can then use to apply further 
algorithms in the same way in the future. In order to put the outcomes into another container, we 
utilize std::transform(). For example, the following code defines a vector of Product:

// consider the Product is already declared and has a
// "name", "price", and "weight"
// also consider the get_products() is defined
// and returns a vector of Product instances
using ProductList = std::vector<std::shared_ptr<Product>>;
ProductList vec{get_products()};

Imagine that a separate group of programmers worked on the project and decided to keep the product 
names as numbers, such as 1 for an apple, 2 for a peach, and so on. This means that vec will contain 
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Product instances, each of which will have a number character in its name field (whereas the name’s 
type is std::string – this is why we keep the number as a character instead of its integer value). 
Now, our task is to transform the names of products from numbers into full strings (apple, peach, 
and so on). Create a list of products and add two apples, one peach, and three bananas and transform 
the names using std::transform:

ProductList full_named_products; // type alias has been
                                 // defined above
using ProductPtr = std::shared_ptr<Product>;
std::transform(vec.cbegin(), vec.cend(),
  std::back_inserter(full_named_products), [](ProductPtr
  p){ /* modify the name and return */ });

After executing the preceding code, the full_named_products vector will contain products 
with full product names. Now, to filter out all the apples and copy them to a vector of apples, we need 
to use std::copy_if:

ProductList apples;
std::copy_if(full_named_products.cbegin(),
  full_named_products.cend(),
  std::back_inserter(apples),
  [](ProductPtr p){ return p->name() == "apple"; });

Prior to the introduction of ranges, the lack of nice composition was one of the greatest drawbacks 
of the preceding code samples. We can interact with container items and construct algorithms in an 
elegant way thanks to ranges.

A range, like the containers we have worked with so far, has a begin() and an end() – thus, to 
put it simply, a range is a traversable entity. Every STL container may be thought of as a range in this 
context. Ranges are now accepted as direct arguments for STL algorithms. They do this so that we 
can send a result from one algorithm to another without having to store intermediary results in local 
variables. For instance, when applied to a range, std::transform, which we previously used 
with begin() and end(), has the following form (the following code is pseudocode). We can 
rebuild the preceding example using ranges. Note that we simplified these code examples by omitting 
std::ranges::views from in front of the filter and transform functions. Use them as 
std::ranges::views::filter and std::ranges::views::transform, accordingly:

auto apples = filter(
transform(vec, [](ProductPtr p){/* normalize the name */}),
[](ProductPtr p){return p->name() == "apple";}
);

Do not forget to import the <ranges> header. The transform function will return a range 
containing Product pointers whose names are normalized; that is, the numerical value is replaced 
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with a string value. The filter function will then take the result and return the range of products 
that have apple as their name.

Finally, we can pipe ranges together using the overloaded operator, |, which we used in the example at 
the beginning of this chapter. In this manner, we can combine algorithms to generate a result, as follows:

auto apples = vec | transform([](ProductPtr p)
  {/* normalize the name */})
    | filter([](ProductPtr p){return p->name() ==
             "apple";});
for (auto fruit : apples)
    std::cout << fruit->name_ << std::endl;

Instead of nested function calls, we used piping. Due to the fact that we previously used the | operator 
as a bitwise OR, this may at first seem strange. Whenever you see it applied to a collection, it refers 
to piping ranges.

The | operator is inspired by the Unix shell pipe operator. In Unix, we can pipe the results of several 
processes together; for example, ls -l | grep cpp | less will find cpp in the result of the 
ls command and show the final result one screen at a time using the less program.

A range is an abstraction over a collection, as we just said. This is not necessarily a collection. The 
preceding example only transfers a range from function to function, where the range merely specifies 
the start and finish of a collection, therefore it does not carry any cost. In addition, it allows us to 
access the underlying collection elements. The following diagram illuminates this idea:

Figure 8.4 – The process of transforming a source collection into a result collection
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Instead of returning a collection, the function (transform() or filter()) returns a range 
structure. The begin() iterator of the range will point to the element in the source collection that 
satisfies the predicate. The iterator for the range is a proxy object; in contrast to a typical iterator, it 
leads to an element that fulfills the provided criteria. They are frequently referred to as “clever iterators” 
since they always find the next element in the collection that meets the criterion when we advance 
them (by incrementing, for instance). What’s more intriguing is that the type of function we use to 
organize the collection affects how “smart” the iterator is. For instance, the range returned by the 
filter() method contains smart iterators for its increment operator. The main reason for this is 
that filter may produce fewer items than the initial collection. On the other hand, transform 
just transforms the elements, not returning a result with fewer elements. This means that a range 
produced by transform will have different element access but the same capability for increment/
decrement operations. For each access, the smart iterator of the range will return the transformed 
element from the original collection. In other words, it simply implements the *() operator for the 
iterator, similar to what can be seen in the following code snippet:

auto operator*()
{
    return predicate(*current_position);
}

This way, we are creating a new view of the collection rather than a new collection of transformed 
elements. The same applies to filter and other functions. More interestingly, range views leverage 
lazy evaluation. For our preceding example, even if we have two range transformations, the result is 
produced by evaluating them in a single pass.

In the example with transform and filter, each of the functions defines a view, but they do not 
modify or evaluate anything. When we assign the result to the result collection, the vector is constructed 
from the view by accessing each element. That is where the evaluation happens.

It is as simple as that – ranges provide us with function composition with lazy evaluation.

First-class and higher-order functions
In functional programming, functions are regarded as first-class objects (but you may also come 
across as first-class citizens). This implies that we should handle them as objects as opposed to a set of 
instructions. What difference does this make to us? The only criterion for a function to be considered 
an object at this point is its ability to be passed to other functions. Higher-order functions are defined 
as functions that accept other functions as arguments.

Programmers in C++ frequently pass one function to another. Here’s how to do it the old-school way:

typedef void (*PF)(int);
void foo(int arg)
{
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    // do something with arg
}
int bar(int arg, PF f)
{
    f(arg);
    return arg;
}
bar(42, foo);

We declared a pointer to a function in the code that was written here. With one integer parameter and 
no value returned, PF denotes a type definition for the function. This illustration shows a common 
method for passing function pointers as parameters to other functions. We treat the function as if it 
were an object. However, this depends on what we understand by an object.

An object is something that has a state, according to our definition from earlier chapters. As a result, 
if we treat a function as an object, we should be able to alter its state in some way. This isn’t true for 
function pointers, though. A better method for passing a function to another function is as follows:

class Function
{
    public:
    void modify_state(int a) {
    state_ = a;
}
int get_state() {
    return state_;
}
void operator()() {
    // do something that a function would do
}
private:
int state_;
};
void foo(Function f)
{
    f();
    // some other useful code
}

Look closely at the preceding code. It declares a class that has an overloaded operator(). We 
make an operator callable whenever we overload one for a class. As simple as it may seem, anything 
that can be called is considered to be a function. Therefore, an object of a class with an overloaded 
operator() might be considered a function (also referred to as a functor). This seems like a trick, 
as we made an object callable rather than making a function an object. However, this allowed us to 
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achieve what we were looking for: a function that has a state. The client code shown here shows that 
a Function object has a state:

void foo(Function f)
{
    f();
    f.modify_state(11);
    cout << f.get_state(); // get the state
    f(); // call the "function"
}

This, for instance, allows us to keep track of how many times the function has been invoked. Here is 
a straightforward example that counts calls:

class Function
{
    public:
    void operator()() {
    // some useful stuff
    ++called_;
}
private:
    int called_ = 0;
};

Finally, std::function, which is defined in the <functional> header in the following code, 
demonstrates another way of defining a higher-order function:

#include <functional>
void print_it(int a) {
    cout << a;
}
std::function<void(int)> function_object = print_it;

When function_object is called (using operator()), it delegates the call to the print_it 
function. std::function encapsulates any function and allows it to work with it as an object (and 
pass it to other functions as well).

Higher-order functions may be seen in all of the aforementioned examples of functions that accepted 
other functions as arguments. A higher-order function is also another name for a function that returns 
a function. In conclusion, a higher-order function is a function that accepts or returns a different 
function or set of functions. Take a look at the following example:

#include <functional>
#include <iostream>
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std::function<int (int, int)> get_multiplier()
{
    return [](int a, int b) { return a * b; };
}
int main()
{
    auto multiply = get_multiplier();
    std::cout << multiply(3, 5) << std::endl;
    // outputs 15
}

get_multiplier() returns a lambda wrapped in std::function. Then, we call the result, just 
like we would call a regular function. The get_multiplier() function is a higher-order function. 
Similar to what we did in the previous example, we can implement currying using a higher-order 
function. Currying is the process of splitting up functions that take many arguments into smaller 
functions that each take a single parameter in functional programming. For instance, multiply(3, 
5) would become multiply(3) (5). This is how we can do it:

std::function<int(int)> multiply(int a)
{
    return [a](int b) { return a * b; };
}
int main()
{
    std::cout << multiply(3)(5) << std::endl;
}

multiply() takes one argument and returns a function that also takes a single argument. Pay 
attention to the lambda capture: it captures the value of a so that it can multiply it by b in its body.

Currying is a reference to the logician Haskell Curry. The Haskell, Brook, and Curry programming 
languages are also named after him.

Having abstract functions that we can combine is one of currying’s most advantageous features. 
multiply() can be customized, and then we can use it where applicable or pass these customized 
versions to other methods. The following code illustrates this:

auto multiplyBy22 = multiply(22);
auto fiveTimes = multiply(5);
std::cout << multiplyBy22(10); // outputs 220
std::cout << fiveTimes(4); // outputs 20
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You must’ve used a higher-order function when working with the STL. Predicates are used by several 
STL algorithms to filter out or handle collections of objects. For example, the std::find_if 
function finds the element that satisfies the passed predicate object, as shown in the following example:

std::vector<int> elems{1, 2, 3, 4, 5, 6};
std::find_if(elems.begin(), elems.end(), [](int el) {return el % 3 == 
0;});

std::find_if takes a lambda as its predicate and calls it for all the elements in the vector. Whichever 
element satisfies the condition is returned as the requested one.

Another example of a higher-order function would be std::transform, which we introduced at 
the beginning of this chapter (not to be confused with ranges::view::transform). Let’s use 
it to transform a string into uppercase letters:

std::string str = "lowercase";
std::transform(str.begin(), str.end(), str.begin(),
[](unsigned char c) { return std::toupper(c); });
std::cout << str; // "LOWERCASE"

The third parameter is the beginning of the container and is where the std::transform function 
inserts its current results.

Why use functional programming?

First of all, functional programming brings forth conciseness. Compared to its imperative counterparts, 
the code is substantially shorter. It offers straightforward yet very expressive tools. Less code means 
less chance of errors appearing.

Functions don’t cause any mutations, which makes parallelizing them considerably easier. This is 
one of the main concerns in concurrent programs because concurrent tasks need to share mutable 
data between them. The majority of the time, primitives such as mutexes must be used to deliberately 
synchronize threads. Explicit synchronization is eliminated when using functional programming, and 
the code can be executed on several threads without modification.

According to the functional paradigm, those functions that do not alter the state of the program are 
considered to be pure. They only accept an input, alter it in a way that is determined by the user, and 
provide an output. No matter how many times it is called, a pure function always produces the same 
output for the same input. Whenever we speak about functional programming, we should take all 
pure functions into account by default.

The following function takes double as its input and returns its square:

double square(double num) { return num * num; }

Only writing pure functions could seem like a deliberate slowdown of the program.
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Tip
Some compilers, such as GCC, provide attributes that help the compiler optimize the code. For 
example, the [[gnu::pure]] attribute tells the compiler that the function can be considered 
a pure function. This will reassure the compiler that the function doesn’t access any global 
variables and that the function’s result depends solely on its input.

There are many situations in which a regular function might provide a quicker solution. However, you 
must push yourself to think practically in order to adjust to the paradigm. The following program, for 
instance, defines a vector and determines the square roots of each of its components:

void calc_square_roots(std::vector<double>& vec)
{
    for (auto& elem : vec) {
      elem = std::sqrt(elem);
    }
}
int main()
{
    std::vector<double> vec{1.1, 2.2, 4.3, 5.6, 2.4};
    calc_square_roots(vec);
}

In this case, the vector is passed by reference. This implies that altering it in the function also alters the 
initial collection. Given that the input vector is altered, it is evident that this is not a pure function. A 
practical substitute would preserve the input and return the changed items in a new vector:

std::vector<double> pure_calc_square_roots(const std::vector<double>& 
vec)
{
    std::vector<double> new_vector;
    for (const auto& elem : vec) {
    new_vector.push_back(std::sqrt(elem));
    }
    return new_vector;
}

An even better example of functional thinking is to solve a smaller problem and apply it to the 
collection. The smaller problem, in this case, is calculating the square root of a single number, 
which is already implemented as std::sqrt. Applying it to the collection is done with 
std::ranges::views::transform, as follows:

#include <ranges>
#include <vector>
#include <cmath>
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int main()
{
    std::vector<double> vec{1.1, 2.2, 4.3, 5.6, 2.4};
    auto wrapper = [] (double x) {return std::sqrt(x);};
    auto result = vec |
      std::ranges::views::transform(wrapper);
}

As we already know, storing intermediary objects can be avoided by employing ranges. In the preceding 
example, we directly applied transform to the vector. transform only returns a view of the source 
vector’s altered items, not the entire collection. The actual transformed copies of elements are made 
when we construct the result vector. Also, keep in mind that std::sqrt is considered a pure function.

The chapter’s first example, which we solved, provided us with the required context for functional 
programming. We should familiarize ourselves with this paradigm’s guiding principles in order to 
comprehend it better. We will explore the fundamentals of functional programming in the next part 
to provide you with a deeper understanding of how and when to use the paradigm.

Principles of functional programming

Despite its age (it was created in the 1950s), the functional paradigm didn’t completely revolutionize 
programming. Most of the dominant paradigms these days include imperative and object-oriented 
languages. C++ is a multi-paradigm language, as we have repeatedly said in this book and as is said 
in many other books. The benefit of learning C++ is that we can modify it to match practically any 
environment. The paradigm is difficult to comprehend. Before you can begin to conceive in terms of 
the paradigm, you must first feel it and put it into practice. After that, you will instantly see answers 
to common problems.

You may be able to recall the concepts that you first struggled with before realizing the full potential of 
object-oriented programming. Functional programming follows the same rules. The fundamental ideas 
of functional programming that will serve as the foundation for subsequent advancement are covered 
in this part. Some of these ideas are applicable beyond or have already been used outside the functional 
paradigm. Nevertheless, make an attempt to comprehend and use each of the following principles.

Pure functions
As we previously stated, a function is considered pure if it does not mutate the state. Pure functions 
may be thought of as less efficient than their non-pure counterparts, but they are wonderful since they 
prevent the majority of errors that develop in code as a result of state changes. Bugs are related to the 
program state in some way. Obviously, programs work with data, so they set up the functionality to 
modify the state and this leads to the expected results for the end user.

In OOP, we decompose the program into objects, each of which has a list of special features. In OOP, 
the state of an object is one of its core characteristics. OOP relies heavily on the ability to change an 
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object’s state by interacting with it (in other words, calling its methods). Invoking a member function 
typically causes the object’s state to change. In functional programming, we organize code into a 
collection of pure functions, each of which has its own purpose and is independent of the others.

Let us take a look at a simple example, just to make this concept clear. Let’s say we’re dealing with 
User objects in a program and each user object contains the age associated with the user. The User 
type is described as a struct in the following code block:

struct User
{
    int age;
    string name;
    string phone_number;
    string email;
};

There is a need to update users’ ages on a yearly basis. Let’s suppose we have a function that is invoked 
for each User object once a year. The following function takes a User object as input and increases 
its age property by 1:

void update_age(User& u)
{
    u.age = u.age + 1;
}

The update_age() function takes the input by reference and updates the original object. This is not 
the case in functional programming. Instead of taking the original object by reference and mutating 
its value, the following pure function returns a totally different User object with the same properties, 
except for the updated age property:

User pure_update_age(const User& u) // cannot modify the
                                    // input argument
{
    User tmp{u};
    tmp.age = tmp.age + 1;
    return tmp;
}

Although it seems inefficient compared to update_age(), one of the pros of this approach is that it 
makes operations crystal clear (this is really useful when we’re debugging code). Now, it’s guaranteed 
that pure_update_age() won’t modify the original object. We can modify the preceding code 
so that it will take the object by value. This way, we skip creating the tmp object, as the argument 
itself represents a copy:

User pure_update_age(User u) // u is the copy of the
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                             // passed object
{
    u.age = u.age + 1;
    return u;
}

If a pure function is called multiple times with the same arguments, it must return the same result 
every time. The following code demonstrates that our pure_update_age() function returns the 
same value when it’s given the same input:

User john{.age{21}, .name{"John"}};
auto updated{pure_update_age(john)};
std::cout << updated.age; // prints 22
updated = pure_update_age(john);
std::cout << updated.age; // prints 22

When a function is called repeatedly with the same input data, it is very advantageous for it to react 
consistently. This implies that we can create the application’s logic by breaking it down into smaller 
functions, each of which has a specific and obvious purpose. The additional temporary object is an 
overhead for the pure function, though. In a typical approach, the program state is kept in a centralized 
store and is indirectly updated by pure functions. Every time a pure function is called, the changed 
object is returned as a new object that can be saved if required. You may think of it as modifying the 
code so that the entire object is not passed.

Folding

Combining a set of values in order to get a smaller reduced number of outcomes is known as folding 
(or reduction). Most of the time, we are discussing a single outcome. The operation of iterating across 
recursive structures is abstracted via folding. For instance, recursive access to elements is common 
in structures such as linked lists and vectors. Although the vector’s recursiveness is debatable, we will 
treat it as such because it enables us to access its members by continually incrementing the index. In 
order to deal with these structures, we typically keep track of the outcome at each stage and process 
the next item so that the outcome from the prior step can be integrated with it later. Folding is called 
left or right folding based on the direction in which we process the collection elements.

For example, the std::accumulate function (another example of a higher-order function) is a 
perfect example of folding functionality because it combines values in the collection. Take a look at 
the following simple example:

std::vector<double> elems{1.1, 2.2, 3.3, 4.4, 5.5};
auto sum = std::accumulate(elems.begin(), elems.end(), 0.0);

The last argument passed to the function is the accumulator. This is the starting value that ought to 
be used as the prior value for the collection’s first item. The preceding code calculates the sum of the 
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vector elements. It’s the default behavior of the std::accumulate function. As we mentioned 
previously, it is a higher-order function, which implies that a function could be passed as its argument. 
This will then be called for each element to produce the desired result. For example, let’s find the 
product of the elems vector we declared previously:

auto product = std::accumulate(elems.begin(), elems.end(), 1.0,
[](int prev, int cur) { return prev * cur; });

It requires a binary operation; that is, a function with two arguments. The first argument of the 
operation is the previous value that’s been calculated so far, while the second argument is the current 
value. The result of the binary operation will be the previous value for the next step. Using one of the 
STL’s existing operations, the preceding code may be rewritten succinctly:

auto product = std::accumulate(elems.begin(), elems.end(), 1.0,
std::multiplies<double>());

A better alternative to the std::accumulate function is the std::reduce function. reduce() 
is similar to accumulate(), except it doesn’t keep the order of the operation; that is, it doesn’t 
necessarily process the collection elements sequentially. You can pass an execution policy to the 
std::reduce function and change its behavior, say, to processing elements in parallel. Here’s 
how the reduce function can be applied to the elems vector from the previous example using the 
parallel execution policy:

//include header <execution> to compile
std::reduce(std::execution::par, elems.begin(), elems.end(),
1, std::multiplies<double>());

Although std::reduce seems faster compared to std::accumulate, you should be careful 
when using it with non-commutative binary operations.

Recursion and folding go hand in hand. Breaking a difficult task into smaller ones and completing 
them separately can be accomplished using recursion.

Delving more deeply into recursion
The primary characteristics of a recursive function have previously been covered. Almost all the 
problems that can be solved with an iterative solution can also be solved with a recursive solution. Let 
us take a look at the simple recursive solution of one of the most famous problems: the calculation 
of the nth Fibonacci number:

int fibonacci(int n)
{
    if (n <= 1) return n;
    return fibonacci(n-1) + fibonacci(n - 2);
}
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Let us illustrate the process that happens when the preceding function is called. In our example, we 
will consider that the argument passed to the function is 6, which means that n is equal to 6. The 
process starts like this:

Figure 8.5 – First call of the recursive fibonacci() function

The function calls itself until n is equal to or smaller than 1, but what happens when it becomes equal 
to 1?

Figure 8.6 – When the function reaches the base case
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As we can see in the diagram, the function where n is equal to 1 returns it to the function, which is 
fibonacci(2), from where the next function call happens as fibonacci(2-2) and is the next 
function call our compiler sees. That function also meets our condition and returns 0. This means 
that now we have two resolved values, which are 1 and 0, that can be added together. When they are 
added together, they return to the fibonacci(3) function, as shown in the following diagram:

Figure 8.7 – Return to the function that resulted in the addition of two base case results

Other calls follow the same logic. Looking at these diagrams, we notice that they are somewhat similar 
to tree structures and, in fact, they form a tree structure. The following diagrams show the whole tree 
structure we get when calling a fibonnaci function for a number, 6 here:



Delving more deeply into recursion 349

Figure 8.8 – The tree structure of a recursive fibonacci() function

Compared to iterative functions, recursive functions offer beautiful solutions. However, choosing to 
employ recursion should be done with caution. Stack overflows are one of the most often encountered 
problems with recursive functions.

Head recursion

Head recursion is the regular type of recursion that we are already familiar with. For example, a 
factorial counting function is implemented recursively, as follows:

int factorial(int n)
{
    if (n <= 1) return 1;
    return n * factorial(n - 1);
}

It behaves as a head recursive function, meaning that it makes the recursive call before processing the 
result at the current step. Take a look at the following line from the factorial function:

...
return n * factorial(n - 1);
...
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To find and return the result of the product, the function factorial is called with a reduced argument, 
that is, (n - 1). This means that the product (the * operator) is kind of on hold and is waiting 
for its second argument to be returned by factorial(n - 1). The stack grows in line with the 
number of recursive calls to the function. Let’s try to compare the recursive factorial implementation 
with the following iterative approach:

int factorial(int n)
{
    int result = 1;
    for (int ix = n; ix > 1; --ix) {
        result *= ix;
    }
    return result;
}

We keep the outcome of the product at each stage in the same variable (the named result), which 
is one of the key distinctions in this case. With this in mind, let’s try to decompose the recursive 
implementation of the factorial function.

It is evident that each function call occupies a specific amount of stack space. Every result from each 
stage should be kept on the stack in a different location. The recursive function allocates space to its 
variables even though we are aware that they should—and even must—be the same variable. The 
counter-intuitiveness of regular recursive functions prompts us to find a solution that somehow knows 
that the result of each recursive call should be stored in the same place.

Tail recursion

The issue of dealing with several unnecessary variables in recursive functions is solved by tail recursion. 
The fundamental concept behind tail-recursive functions is to do the real processing prior to the 
recursive call. To convert the factorial function into a tail-recursive one, follow these steps:

int tail_factorial(int n, int result)
{
    if (n <= 1) return result;
    return tail_factorial(n - 1, n * result);
}

Pay attention to the new argument of the function. Carefully reading the preceding code gives us a 
basic idea of the tail recursion that’s occurring: the processing is done before the recursive call. Before 
tail_factorial is called again in its body, the current result is calculated (n * result) and 
passed to it.

While this idea might not seem fascinating, it would be really efficient if Tail Call Optimization 
(TCO) was supported by the compiler. TCO basically involves knowing that the second argument of 
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the factorial function (the tail) can be stored at the same location for every recursive call. This allows 
for the stack to stay the same size, independent of the number of recursive calls.

We can’t forget template metaprogramming while we’re talking about compiler optimizations. We’re 
mentioning it here alongside compiler optimizations because we can treat metaprogramming as the 
biggest optimization that can be done to the program.

Metaprogramming in functional C++
One more paradigm of programming is metaprogramming. Due to the fact that we are not working 
with the regular process of programming, this method of coding is completely different. A program’s 
three stages of coding, compiling, and executing are referred to as a “regular process” in this context. 
It’s obvious that a program does what it’s supposed to do when it is executed. The compiler uses linking 
and compilation to generate an executable. Metaprogramming, on the other hand, is where the code 
is executed during the compilation of the code. This might sound magical if you are dealing with it 
for the first time. How can we execute code if the program doesn’t even exist yet? Recalling what we 
learned about templates in the previous chapters, we know that the compiler processes them with 
more than one pass. In the first pass, the compiler defines the necessary types and parameters that 
are used in the template class or function. With the next pass, the compiler starts to compile them 
in the way we’re familiar with; that is, it generates some code, which will be linked by the linker to 
produce the final executable file.

Here’s a classic mind-blowing example of metaprogramming in C++:

template <int N>
struct MetaFactorial
{
    enum {
        value = N * MetaFactorial<N - 1>::value
    };
};

template <>
struct MetaFactorial<0>
{
    enum {
        value = 1
    };
};
int main() {
    std::cout << MetaFactorial<5>::value; // outputs 120
    std::cout << MetaFactorial<6>::value; // outputs 720
}
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Why would we bother writing so much code for a factorial when we could have done it as in the 
previous section with only a few lines of code? Its efficiency is the cause. Although compiling the code 
will take a little longer, it is much more efficient than the normal factorial function (implemented either 
recursively or iteratively). And the reason behind this efficiency is the fact that the actual calculation 
of the factorial is happening at compile time. In other words, the results are already usable when 
the executable is run. No calculations are performed at runtime; we just use the computed result. If 
you’re encountering this code for the first time, the explanation that follows will make you fall in love 
with metaprogramming.

Let’s decompose and analyze the preceding code in detail. First of all, the MetaFactorial template is 
declared with a single enum with a value property. This enum is chosen solely because its properties 
are calculated at compile time. So, whenever we access the value property of MetaFactorial, it is 
already being calculated (evaluated) at compile time. Take a look at the actual value of the enumeration. 
It makes a recursive dependency from the same MetaFactorial class:

template <int N>
struct MetaFactorial
{
    enum {
        value = N * MetaFactorial<N - 1>::value
    };
};

Some of you may have already noticed the trick here. MetaFactorial<N - 1> is not the same 
struct as MetaFactorial<N>. Although it has the same name, each template with a different type 
or value is generated as a separate new type. So, let’s say we call something like the following:

std::cout << MetaFactorial<5>::value;

Here, the hard-working compiler generates three different structs for each value (the following is some 
pseudocode representing how we should picture the compiler working):

struct MetaFactorial<5>
{
    enum {
        value = 5 * MetaFactorial<4>::value
    };
};
struct MetaFactorial<4>
{
    enum {
        value = 4 * MetaFactorial<3>::value
    };
};
struct MetaFactorial<3>
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{
    enum {
        value = 3 * MetaFactorial<2>::value
    };
};
struct MetaFactorial<2>
{
    enum {
        value = 2 * MetaFactorial<1>::value;
};
};
struct MetaFactorial<1>
{
    enum {
        value = 1 * MetaFactorial<0>::value;
    };
};

In the next pass, the compiler replaces each of the generated struct’s values with their respective 
numeric values, as shown in the following pseudocode:

struct MetaFactorial<5>
{
enum {
    value = 5 * 4
    };
};
struct MetaFactorial<4>
{
    enum {
        value = 4 * 3
    };
};
struct MetaFactorial<3>
{
    enum {
        value = 3 * 2
    };
};
struct MetaFactorial<2>
{
    enum {
        value = 2 * 1
    };
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};
struct MetaFactorial<1>
{
    enum {
        value = 1 * 1
    };
};

Then, the compiler removes the unused generated structs, leaving only MetaFactorial<3>, which 
is, again, only used as MetaFactorial<3>::value. This can also be optimized. By doing this, 
we get the following result:

std::cout << 720;

Compare this with the previous line we had:

std::cout << MetaFactorial<5>::value;

That’s the beauty of metaprogramming – it’s done at compile time and leaves no trace, like a ninja. The 
compilation takes longer but the execution of the program is the fastest it can possibly be compared to 
regular solutions. We advise you to attempt constructing meta-versions of cost-expensive calculations, 
such as calculating the nth Fibonacci number. Although it’s not quite as simple as writing code for 
runtime rather than compile time, you can immediately see its power.

Summary
In this chapter, we learned a new viewpoint on making use of C++. It may be used as a functional 
programming language since it is a multi-paradigm language.

We studied the fundamentals of functional programming, including folding, higher-order functions, 
and pure functions. Pure functions are those that don’t alter the state of the system. One advantage of 
pure functions is that they don’t create as many bugs as state modifications do.

Higher-order functions are functions that take or return other functions. Other than in functional 
programming, C++ programmers use higher-order functions when dealing with the STL.

Pure functions, along with higher-order functions, allow us to decompose the whole application into 
a big assembly line of functions. Each function in this assembly line is responsible for receiving data 
and returning a new, modified version of the original data (without mutating the original state). When 
combined, these functions provide a well-coordinated line of tasks.

In the next chapter, we will dive into multithreaded programming and discuss the thread support 
library components that were introduced in C++.
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Questions
1.	 List the advantages of ranges.

2.	 What functions are known to be pure?

3.	 What’s the difference between a pure virtual function and a pure function in terms of 
functional programming?

4.	 What is folding?

5.	 What is the advantage of tail recursion overhead recursion?

Further reading
For more information regarding what was covered in this chapter, please take a look at the following links:

•	 Learning C++ Functional Programming by Wisnu Anggoro: https://www.packtpub.
com/application-development/learning-c-functional-programming

•	 Functional Programming in C++: How to Improve Your C++ Programs Using Functional 
Techniques by Ivan Cukic: https://www.amazon.com/Functional-Programming-
programs-functional-techniques/dp/1617293814/

https://www.packtpub.com/application-development/learning-c-functional-programming

https://www.packtpub.com/application-development/learning-c-functional-programming

https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814/
https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814/
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Concurrency and 

Multithreading

Concurrent programming allows us to create more efficient programs. C++ didn’t have built-in support 
for concurrency or multithreading for a long time. Now, it has full support for concurrent programming, 
threads, thread synchronization objects, and other functionality that we will discuss in this chapter.

Before the language was updated for thread support, programmers had to use third-party libraries. 
One of the most popular multithreading solutions was Portable Operating System Interface (POSIX) 
threads. C++ introduced thread support with C++11. It makes the language even more robust and 
applicable to wider areas of software development. Understanding threads is somewhat crucial for 
C++ programmers as they tend to squeeze every bit of the program to make it run even faster. Threads 
introduce us to a completely different way of making programs faster by running functions concurrently. 
Learning about multithreading at a fundamental level is a must for every C++ programmer. There are 
lots of programs where you can’t avoid using multithreading, such as network applications, games, and 
GUI applications. This chapter will introduce you to concurrency and multithreading fundamentals 
in C++ and the best practices for concurrent code design.

The following topics will be covered in this chapter:

•	 Understanding concurrency and multithreading

•	 Working with threads

•	 Managing threads and sharing data

•	 Designing concurrent code

•	 Using thread pools to avoid thread creation overheads

•	 Getting familiar with coroutines in C++20
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Technical requirements
The g++ compiler with the -std=c++2a option was used to compile the examples in this chapter. You can 
find the source files that were used in this chapter at https://github.com/PacktPublishing/
Expert-CPP.

Understanding concurrency and multithreading
The simplest form of running a program involves its instructions being executed one by one by the 
central processing unit (CPU). As you already know from previous chapters, a program consists of 
several sections, one of them containing the instructions of the program. Each instruction is loaded into 
a CPU register for the CPU to decode and execute it. It doesn’t matter what programming paradigm you 
use to produce an application as the result is always the same – the executable file contains machine code.

We mentioned that programming languages such as Java and C# use support environments. However, if 
you cut down the support environment in the middle (usually, the virtual machine), the final instructions 
being executed should have a form and format familiar to that particular CPU. It’s obvious to programmers 
that the order of statements run by the CPU is not mixed in any circumstance. For example, we are sure 
and can continue to be so that the following program will output 4, "hello", and 5, respectively:

int a{4};
std::cout << a << std::endl;
int b{a};
++b;
std::cout << "hello" << std::endl; b--;
std::cout << (b + 1) << std::endl;

We can guarantee that the value of a variable will be initialized before we print it on the screen, in 
the same way, we can guarantee that the "hello" string will be printed before we decrement the 
value of b and that the (b + 1) sum will be calculated before printing the result to the screen. The 
execution of each instruction might involve reading data from or writing to memory.

As introduced in Chapter 5, Memory Management and Smart Pointers, the memory hierarchy is 
sophisticated enough to make our understanding of program execution a little bit harder. For example, 
the int b{a}; line from the previous example assumes that the value of a is loaded from memory into 
a register in the CPU, which will then be used to write into the memory location of b. The keyword here 
is location because it carries a little bit of special interpretation for us. More specifically, we are speaking 
about memory location. Concurrency support depends on the memory model of the language – that is, 
a set of guarantees for concurrent memory access. Although the byte is the smallest addressable memory 
unit, the CPU works with words in data. That said, words are the smallest units the CPU reads from or 
writes to memory. For example, we consider the following two declarations as separate variables:

char one;
char two;

https://github.com/PacktPublishing/Expert-CPP
https://github.com/PacktPublishing/Expert-CPP
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If those variables are allocated to the same word (considering the word size is bigger than the size of 
a char), reading and writing any of the variables involves reading the word containing both of them. 
Concurrent access to the variables might lead to unexpected behavior. That’s the issue that requires 
memory model guarantees. The C++ memory model guarantees that two threads can access and update 
separate memory locations without interfering with each other. A memory location is a scalar type. 
A scalar type is an arithmetic type, pointer, enumeration, or nullptr_t. The largest sequence of 
adjacent bit-fields of non-zero length is considered a memory location too. A classic example would 
be the following structure:

struct S {
  char a;
  int b: 5;
  unsigned c: 11;
  unsigned :0;
  unsigned d: 8;
  struct {
       int ee: 8;
} e;
};

As shown in the preceding example, two threads accessing the same separate struct memory 
locations won’t interfere with each other. So, what should we consider when speaking about concurrency 
or multithreading?

Concurrency is usually confused with multithreading. They are similar but are different concepts in 
detail. To make things easy, just imagine concurrency as two operations whose running times interleave 
together. Operation A runs concurrently with operation B if their start and end times are interleaved 
at any point, as shown in the following diagram:

Figure 9.1 – Operations A and B running concurrently
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When two tasks run concurrently, they don’t have to run in parallel. Imagine the following situation: 
you are watching TV while surfing the internet. Although multitasking in this way is not a good 
practice, let’s imagine for a moment that you have a favorite TV show that you can’t miss and at the 
same time, your friend asks you to do some research on bees. You would find it difficult to concentrate 
on both tasks; at any fixed moment, your attention is grabbed by either the show you are watching or 
the interesting facts about bees that you are reading in an article found on the web. So, your attention 
would go from the show to the bees from time to time.

In concurrency, however, you can do two tasks concurrently. To make this happen, your brain allots a 
specific time slot to the show during which you can watch the show and enjoy it. After this, your brain 
allows you to switch to the article, read a couple of sentences, and then switch back to the show. This 
is a simple example of concurrently running tasks. Just because their start and end times interleave 
doesn’t mean they run at the same time. On the other hand, you breathe while doing any of the tasks 
mentioned earlier. Breathing happens in the background; your brain doesn’t switch your attention 
from the show or the article to your lungs to inhale or exhale. Breathing while watching the show is 
an example of running tasks in parallel. Hence, both examples show us the essence of concurrency.

So, what is going on when you run more than one application on your computer? Are they running 
in parallel? We can be certain that they run concurrently; however, the actual parallelism depends 
on your computer’s hardware. As we know from previous chapters, the main job of the CPU is to run 
an application’s instructions, one by one. How would a single CPU handle running two applications 
at the same time? To understand this, we should learn about processes.

Processes

A process is an image of a program running in memory. When we start a program, the OS reads the 
content of the program from the hard disk, copies it to memory, and points the CPU to the starting 
instruction of the program. The process has a private virtual address space, stack, and heap. Two 
processes don’t interfere with each other in any way. That’s a guarantee provided by the OS. That also 
makes a programmer’s job very difficult if they aim for interprocess communication (IPC). We won’t 
discuss low-level hardware features in this book but you should have a general understanding of what 
is going on when we run a program. It depends on the underlying hardware – more specifically, the 
kind and structure of the CPU. The number of CPUs, number of CPU cores, levels of cache memory, 
and shared cache memory between CPUs or their cores – all of these affect the way the OS runs and 
executes programs.

The number of CPU cores in a computer system determines the number of processes running in parallel.

When we speak about multiprocessing, we consider an environment that allows several processes 
to run concurrently. And here comes the tricky part: if the processes run at the same time, then we 
say that they run in parallel. So, concurrency is not parallelism, but parallelism implies concurrency.
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If the system has just one CPU, processes run concurrently but not in parallel. The OS manages this 
with a mechanism called context switching. Context switching implies freezing the work of the process 
for a moment, copying all the register values that the process was using at the current time, and storing 
all of the active resources and values of the process. When a process is stopped, another process takes 
on the right to run. After the specified amount of time provided for this second process, the OS starts 
context switching. Again, it copies all of the resources used by the process. Then, the previous process 
is started. Before starting it, the OS copies the resources and values to the corresponding slots that 
were used by the first process and then resumes the execution of this process.

The interesting thing is that the processes are not even aware of such a thing. The described process 
happens so fast that the user cannot notice that the programs running in the OS are not running at 
the same time. The following diagram depicts two processes run by a single CPU. When one of the 
processes is active, the CPU executes its instructions sequentially, storing any intermediary data in 
its registers (you should consider cache memory as in any game, too). The other process is waiting 
for the OS to provide its portion of time to run. See the following figure:

Figure 9.2 – IPC
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Running more than one process is a sophisticated job for the OS. It manages the states of processes, 
defines which process should take more CPU time than others, and so on. Each process gets a fixed time 
to run before the OS switches to another process. This time can be longer for one process and shorter for 
another. The process of scheduling takes place through the use of priority tables. The OS provides more 
time for processes with a higher priority – for example, a system process has a higher priority than user 
processes. Another example could be that a background task monitoring network health has a higher 
priority than a calculator application. When the provided time slice is up, the OS initiates a context 
switch – that is, it stores the state of Process A to resume its execution later. See the following diagram:

Figure 9.3 – Context switch
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After storing the state, as shown in the following diagram, it switches to the next process to execute it:

Figure 9.4 – Process switch A
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And here’s switch B:

Figure 9.5 – Process switch B

If Process B was running before, its state should be loaded back to the CPU. In the same way, when 
the time slice (or time quantum) is up for Process B, the OS stores its state and loads the state of 
Process A back to the CPU (the state it had before being paused by the OS). See the following diagram 
to understand this better:
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Figure 9.6 – Image caption

Processes do not share anything in common – or at least they think so. Each running process behaves 
as if it’s alone in the system. It has all of the resources the OS can provide. In reality, the OS manages 
to keep processes unaware of each other, hence simulating freedom for each one. Finally, as shown 
in Figure 9.7, after loading the state of Process A back, the CPU continues executing its instructions 
like nothing happened:
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Figure 9.7 – Process execution

Process B is frozen until a new time slice is available for it to run.

A single CPU running more than one process is similar to a teacher checking the examination papers 
of students. The teacher can check only one exam paper at a time, though they can introduce some 
concurrency by checking answers one by one for each exam test. First, they check the answer to the 
first question for one student, then switch to the first answer of the test of the second student, and 
then may switch back to the first student’s second answer, and so on. Whenever the teacher switches 
from one exam paper to the other, they note down the number of the question where they left off. 
This way, they will know where exactly to start when they go back to the same paper.

In the same way, the OS notes down the point of execution of a process before pausing it to resume 
another process. The second process can (and most probably will) use the same register set used by 
the paused process. This forces the OS to store register values for the first process somewhere so that 
they can be recovered later. When the OS pauses the second process to resume the first one, it loads 
already saved register values back into corresponding registers. The resumed process won’t notice any 
difference and will continue its work like it was never paused.
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At this juncture, we should be mindful of the fact that everything discussed in the previous chapters 
relates to single-CPU systems. In the case of multi-CPU systems, each CPU in the system consists 
of multiple cores, and each core has its own set of registers. Also, each core can execute program 
instructions independently of the other cores, which allows you to run processes in parallel without 
pausing and resuming them. In this example, a teacher with a couple of assistants is similar to a system 
with multiple CPU cores. Each core can check one exam paper; all of them are checking different 
exam papers simultaneously.

Challenges with processes

Difficulties arise when processes need to contact each other in some way. Let’s say a process should 
calculate something and pass the value to a completely different process. There are several methods 
to achieve IPC – one of them is using a memory segment shared between processes. The following 
diagram depicts two processes accessing the shared memory segment:

Figure 9.8 – Shared memory



Concurrency and Multithreading368

As shown in Figure 9.8, process 1 stores the results of the calculation to shared memory, and process 
2 reads it from the segment. In the context of our previous example, the teacher and their assistants 
share their checking results in a shared paper. Threads, on the other hand, share the address space of 
the process because they run in the context of the process. While a process is a program, a thread is 
a function rather than a program. That said, a process must have at least one thread, which we call 
the thread of execution.

Note
A thread is the container of instructions of a program that is run in the system, while the process 
encapsulates the thread and provides resources for it.

Most of our interest lies in threads and their orchestration mechanisms. Let’s take a closer look at them.

Threads

A thread is a section of code in the scope of a process that can be scheduled by the OS scheduler. 
While a process is the image of the running program, managing multi-process projects along with IPC 
is much harder and sometimes useless compared to projects leveraging multithreading. Programs 
deal with data and, usually, collections of data. Accessing, processing, and updating data is done by 
functions that are either the methods of objects or free functions composed together to achieve a result. 
In most projects, we deal with tens of thousands of functions and objects. Each function represents a 
bunch of instructions wrapped under a sensible name; these are created so that they can be invoked 
by other functions. Multithreading aims to run functions concurrently to achieve better performance.

For example, a program that calculates the sum of three different vectors and prints them calls the 
function calculating the sum for the first vector, then for the second vector, and finally, for the last 
one. It all happens sequentially. If the processing of a single vector takes A amount of time, then the 
program will run in 3A time. The following code demonstrates this example:

void process_vector(const std::vector<int> &vec)
{
// calculate the sum and print it
}
int main()
{
    std::vector<int> vec1{1, 2, 3, 4, 5};
    std::vector<int> vec2{6, 7, 8, 9, 10};
    std::vector<int> vec3{11, 12, 13, 14, 15};
    process_vector(vec1);
// takes A amount of time, process_vector(vec2); // takes A amount 
of time, process_vector(vec3), and // takes A amount of time.
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If there was a way to run the same function for three different vectors simultaneously, it would take 
just A amount of time for the whole program in the preceding example. Threads of execution, or just 
threads, are exact ways of running tasks concurrently. By tasks, we usually mean a function, although 
you should remember std::packaged_task as well. Again, concurrency shouldn’t be confused 
with parallelism. When we speak about threads running concurrently, you should consider context 
switching for the process, as discussed previously. A similar principle applies to threads.

std::packaged_task is similar to std::function. It wraps a callable object – a function, 
lambda, function object, or bind expression. The difference with std::packaged_task is that it 
can be invoked asynchronously. More on this will be covered later in this chapter.

Each process has a single thread of execution, sometimes called the main thread. A process can have 
more than one thread, and that’s when we call it multithreading. Threads run in almost the same way 
as processes. They also have context switching.

Threads run separately from each other, but they share most of the resources of a process because all 
of the threads belong to the process. The process occupies hardware and software resources such as 
CPU registers and memory segments, including its stack and heap. While a process doesn’t share its 
stack or heap with other processes, its threads have to use the same resources that are occupied by 
the process. Everything that happens in a thread’s life happens within the process.

However, threads don’t share the stack. Each thread has its portion of the stack. The reason behind 
this segregation relies on the fact that a thread is just a function and the function itself should have 
access to the stack to manage the life cycle of its arguments and local variables. When we run the 
same function as two (or more) separately running threads, the runtime should somehow handle their 
boundaries. Although it’s error-prone, you can pass a variable from one thread to another (either by 
value or by reference). Let’s suppose that we started three threads by running the process_vector() 
function for the three vectors in the preceding example. Note that starting a thread means copying 
the underlying function somehow (its variables but not the instructions) and running it separately 
from any other thread. In this scenario, the same function will be copied as three different images, 
and each will run independently of the others. Hence, each should have its own stack. On the other 
hand, the heap is shared between threads. So, we arrive at the following:
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Figure 9.9 – Shared heap

As in the case of processes, threads running concurrently are not necessarily running in parallel. As 
shown in Figure 9.9, each thread gets a small portion of CPU time to be run and, again, there is an 
overhead regarding the switching from one thread to another. Each paused thread’s state should be 
stored somewhere to be recovered later when resuming it. The internal structure of the CPU defines 
whether threads could truly run in parallel. The number of CPU cores defines the number of threads 
that can truly run in parallel.

Tip
 The C++ thread library provides the hardware_concurrency() function to find out 
the number of threads that can truly run concurrently. You can refer to this number when 
designing concurrent code.
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The following diagram depicts two CPUs with four cores each. Each core can run a thread independently 
of the other:

Figure 9.10 – Threads in multiple CPUs

Not only do two processes run in parallel but also their threads are run in parallel using the CPU 
cores. Now, how will the situation change if we have several threads but one single-core CPU? The 
result would be the same as what was illustrated earlier for processes. Look at the preceding diagram 
– it depicts how the CPU executes Thread 1 for some time slice:

The currently active Process A has two threads that run concurrently. At each specified point in time, 
only one of the threads is executed. When the time slice is up for Thread 1, Thread 2 is executed. 
The difference from the model we discussed for processes is that threads share the resources of the 
process, which leads to unnatural behavior if we aren’t concerned with concurrent code design issues. 
Now, let’s dive into C++ threading support and find out what issues arise when using multithreading.
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Working with threads
When the C++ program starts – that is, the main() function starts its execution – you can create 
and launch new threads that will run concurrently with the main thread. To start a thread in C++, 
you should declare a thread object and pass it the function that you want to run concurrently to the 
main thread. The following code demonstrates declaring and starting a thread using std::thread, 
which is defined as follows:

#include<thread>
#include <iostream>
void foo()
{
    std::cout << "Testing a thread in C++" << std::endl;
}
int main()
{
    std::thread test_thread{foo};
}

That’s it. We can create a better example to show how two threads work concurrently. Let’s say we 
print numbers in a loop concurrently to see which thread prints what:

#include <thread>
#include <iostream>
void print_numbers_in_background()
{
    auto ix{0};
    // Attention: an infinite loop!
    while (true)
    {
        std::cout << "Background: " << ix++ << std::endl;
    }
}
int main()
{
    std::thread background{print_numbers_in_background};
    auto jx{0};
    while (jx < 1000000)
    {
        std::cout << "Main: " << jx++ << std::endl;
    }
}
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The preceding example will print both outputs with the Main: and Background: prefixes mixed. 
An excerpt from the output might look like this:

  ...
   Main: 90
   Main: 91
   Background: 149
   Background: 150
   Background: 151
   Background: 152
   Background: 153
   Background:
   Main: 92
   Main: 93
  ...

Whenever the main thread finishes its work (printing to the screen one million times), the program 
wants to finish without waiting for the background thread to complete. This leads to program 
termination. Let’s see how we should modify the previous example.

Waiting for threads

The thread class provides the join() function if you want to wait for it to finish. Here is a modified 
version of the previous example that waits for the background thread:

#include <thread>
#include <iostream>
void print_numbers_in_background()
{
    // code omitted for brevity
}
int main()
{
    std::thread background{print_numbers_in_background};
// the while loop omitted for brevity background.join();
}

As we discussed previously, the thread function is run as a separate entity independently from other 
threads – even the one that started it. It won’t wait for the thread it has just started, and that’s why you 
should explicitly tell the caller function to wait for it to finish. It is necessary to signal that the calling 
thread (the main thread) is waiting for the thread to finish before itself.



Concurrency and Multithreading374

Although detaching a thread might seem natural, there are plenty of scenarios when we need to wait 
for the thread to finish. For example, we might pass loc to the caller variables for the running thread. 
In this case, we can’t let the caller detach the thread as the caller might finish its work earlier than 
the thread started it. Let’s illustrate this for the sake of clarity. Thread 1 declares the loc variable and 
passes it to Thread 2, which has been started from Thread 1:

Figure 9.11 – Threads relationship

Passing the address of loc to Thread 2 is error-prone if Thread 1 doesn’t join it. If Thread 1 finishes 
its execution before Thread 2, then accessing loc by its address leads to an undefined behavior:
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Figure 9.12 – Threads crush

There is no such object anymore, so the best that we can hope for is the program crashing. This will 
lead to unexpected behavior because the running thread won’t have access to the caller’s local variables 
anymore. You should either join or detach a thread.

We can pass any callable object to std::thread. The following example shows passing a lambda 
expression to the thread:

#include <iostream>
#include <thread>

int main()
{
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    std::thread tl{[]
    {
        std::cout << "A lambda passed to the thread"; }};
        tl.join();
}

Furthermore, we can use callable objects as thread arguments. Take a look at the following code, which 
declare the TestTask class with the overridden operator() function:

#include <thread>
class TestTask
{
public:
    TestTask() = default;
    void operator()()
    {
        state_++;
    }
private:
    int state_ = 0;
};
int main()
{
    std::thread t{TestTask()};
    t.join();
}

One of the advantages of a functor (the TestTask class with the overridden operator() function) 
is its ability to store state information. Functors are a beautiful implementation of the command design 
pattern; we will discuss them in Chapter 11, Designing a Strategy Game Using Design Patterns. Getting 
back to threads, let’s move on to a new addition in the language that allows for better ways to join threads.

Using std::jthread

C++20 introduced a joinable thread, std::jthread. It provides the same interface as std::thread. 
This means we can replace all threads with jthreads in the code. It wraps std::thread, so it 
delegates down to the wrapped thread.

If the version of your compiler doesn’t support std::jthread, you are free to go with the Resource 
Acquisition Is Initialization (RAII) idiom, which is perfectly applicable to threads. Take a look at 
the following code:

class thread_raii
{
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public:
    explicit thread_raii(std::thread &t)
        : thread_(std::move(t))
{
}
~thread_raii()
{
    thread_.join();
}
private:
    std::thread thread_;
};
void foo()
{
    std::cout << "Testing thread join";
}
int main()
{
    std::thread t{foo};
    thread_raii r{t};
    // will automatically join the thread
}

However, the preceding code lacks an additional check because a thread passed to the RAII class might 
have already been detached. To see whether the thread could be joined, we can use the joinable() 
function. This is how we should overwrite the thread_raii class:

class thread_raii
{
public:
    explicit thread_raii(std::thread &t)
    : thread_(std::move(t))
{
}
~thread_raii()
{
    if (thread_.joinable())
    {
        thread_.join();
    }
}
private:
    std::thread thread_;
};



Concurrency and Multithreading378

First, the destructor tests whether the thread is joinable before calling the join() function. However, 
instead of dealing with idioms and being concerned about whether the thread has been joined already 
before joining it, we prefer using std::jthread. Here’s how we can do that using the TestTask 
function we declared previously:

std::jthread jt{TestTask()};

That’s it – there’s no need to call jt.join() and a new cooperative interruptible feature out of the 
box that we use by incorporating jthread. We say that jthread is a cooperative interruptible 
because it provides the request_stop() function, which allows us to request the thread to stop. 
When this function is called, the thread is informed of the request, and it’s up to the thread to respond 
appropriately. In the case of the print_numbers_in_background function, we could modify 
it to periodically check for the stop request using a loop and gracefully exit the thread’s execution if 
the request has been made. Recall the example with the thread printing numbers in an infinite loop. 
We modified the main thread to wait for it, which leads to us waiting for it forever. Here’s how we can 
modify the thread using std::jthread to leverage the request_stop() function:

int main()
{
    std::jthread background{print_numbers_in_background};
    auto jx{0};
    while (jx < 1000000)
    {
        std::cout << "Main: " << jx << std::endl;
    }
// The main thread is about to finish, so we request the
// background thread to stop
background.request_stop();
}

The print_numbers_in_background() function now receives a request and can behave 
accordingly. Now, let’s learn how to pass arguments to the thread function.

Passing arguments to the thread function

The std::thread constructor takes arguments and forwards them to the underlying thread 
function. For example, to pass the 4 and 2 arguments to the foo() function, we will pass the 
arguments to the std::thread constructor:

void foo(int one, int two)
{ // do something
}
std::thread t{foo, 4, 2};

4 and 2 will be passed as the first and second arguments to the foo() function, respectively.



Managing threads and sharing data 379

The following example illustrates passing an argument by reference:

class big_object
{
};
void make_changes(big_object &);
void error_prone()
{
    big_object b;
    std::jthread t{make_changes, b};
    // do something else
}

To understand why we named the function error_prone, we should know that the thread constructor 
copies the values passed to it and then passes them to the thread function with rvalue references. 
This is done so that it works with move-only types. So, it will try to call the make_changes() 
function with rvalue, which will fail to compile (you can’t pass rvalue to a function that expects 
a non-constant reference). We need to wrap the arguments that need to be a reference in std::ref:

std::thread t{make_changes, std::ref(b)};

The preceding code emphasizes that the argument should be passed by reference. Working with 
threads requires being a little more attentive because there are many ways to get unexpected results 
or undefined behavior in the program. Let’s see how we can manage threads to produce safer 
multithreaded applications.

Managing threads and sharing data
As discussed previously, executing threads involves pausing and resuming some of them if the number 
of threads exceeds the number of parallel running threads supported by the hardware. Besides that, 
creating a thread also has an overhead. One of the suggested practices to deal with having many 
threads in a project is using thread pools.

The idea of a thread pool lies in the concept of caching. We create and keep threads in a container to be 
used later. This container is called a pool. For example, the following vector represents a simple thread pool:

#include <thread>
#include <vector>
std::vector<std::thread> pool;

Whenever we need a new thread, instead of declaring the corresponding std::thread object, we 
use one already created in the pool. When we are done with the thread, we can push it back to the 
vector to use it later if necessary. This saves us some time when we’re working with 10 or more threads. 
A proper example would be a web server.
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A web server is a program that waits for incoming client connections and creates a separate connection 
for each client to be processed independently from others. A typical web server usually deals with 
thousands of clients at the same time. Each time a new connection is initiated with some client, the web 
server creates a new thread and handles the client requests. The following pseudocode demonstrates 
a simple implementation of a web server’s incoming connection management:

void process_incoming_connections()
{
    if (new connection from client)
    {
        t = create_thread(); // potential overhead
        t.handle_requests(client);
    }
}
while (true)
{
    process_incoming_connections();
}

When using a thread pool, the preceding code will avoid creating a thread every time it needs to 
process a client request. Creating a new thread requires additional and rather expensive work from 
the OS. To save that time, we use a mechanism that omits creating new threads on each request. To 
make the pool even better, let’s replace its container with a queue. Whenever we ask for a thread, the 
pool will return a free thread, and whenever we are done with a thread, we push it back to the pool. 
A simple design for a thread pool would look like this:

#include <queue>
#include <thread>
#include <mutex>
class ThreadPool
{
public:
    ThreadPool(int number_of_threads = 1000)
    {
        for (int ix = 0; ix < number_of_threads; ++ix)
    {
        pool_.push(std::thread());
    }
}
std::thread get_free_thread()
{
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    std::unique_lock<std::mutex> lock(mutex_)
    if (pool_.empty())
    {
        throw std::exception("no available thread");
    }
    auto t = std::move(pool_.front());
    pool_.pop();
    return t;
}
void push_thread(std::thread t)
{
    std::unique_lock<std::mutex> lock(mutex_)
    pool_.push(std::move(t));
}
private:
    std::queue<std::thread> pool_;
    std::mutex mutex_;
};

The constructor creates and pushes threads to the queue. In the following pseudocode, we replace 
the direct creation of a thread for client request processing with ThreadPool, which we looked 
at previously:

ThreadPool pool;
void process_incoming_connections()
{
    if (new connection from client)
    {
        auto t = pool.get_free_thread();
        t.handle_request(client);
    }
}
while (true)
{
    process_incoming_connections();
}

Supposing that the handle_request() function pushes the thread back to the pool when it’s 
done, the pool behaves as a centralized store for connection threads. Though what’s shown in the 
preceding snippet is far from being ready for production, it conveys the basic idea of using thread 
pools in intensive applications.
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Sharing data

A race condition is something that programmers using multithreading are scared of and try to avoid 
as much as possible. Imagine two functions that work concurrently with the same data, as shown here:

int global = 0;
void inc()
{
global = global + 1;
}
...
std::thread t1{inc};
std::thread t2{inc};

To address the potential race condition arising from non-atomic operations on a shared variable, one 
effective approach is to protect the data using a mutex, which ensures exclusive access and prevents 
concurrent modifications by multiple threads.

A potential race condition is happening because t1 and t2 are modifying the same variable with 
more than one step. Any operation that is performed in a single thread-safe step is called an atomic 
operation. An atomic operation refers to an operation that is performed indivisibly, without interference 
from other concurrent operations. It guarantees that the operation is completed as a single thread-
safe step, ensuring consistency and avoiding race conditions. In this case, incrementing the value of 
the variable is not an atomic operation, even if we use the increment operator. Atomic operations are 
essential in multithreaded programming to ensure data integrity when multiple threads access and 
modify shared data concurrently. Instead of using a mutex or other synchronization mechanisms to 
protect critical sections, atomic operations provide an alternative approach. They allow you to directly 
manipulate shared data without the need for explicit locking and unlocking, resulting in potentially 
higher performance and reduced contention between threads.

Protecting shared data using a mutex

To protect shared data, objects called mutexes are widely used. A mutex is an object that controls 
the running of a thread. Imagine threads in the same context as humans trying to find a way to work 
with data, one by one. When a thread locks a mutex, the other thread waits until it is done with the 
data and unlocks the mutex. The other thread then locks the mutex and starts working with data. 
The following code demonstrates how we can solve the problem of a race condition using a mutex:

#include <mutex>
...
std::mutex locker;
void inc()
{
    locker.lock();
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    global = global + 1;
    locker.unlock();
}
... std::thread t1{inc};
std::thread t2{inc};

When t1 starts executing inc(), it locks a mutex, which stops any other thread from accessing the 
global variable unless the original thread doesn’t unlock the next thread.

C++17 introduced the std::lock_guard class, which provides us with a convenient way to guard 
a mutex and ensure that it has been unlocked properly. In the given code snippet, a std::mutex 
class named locker is declared as the synchronization primitive for protecting the shared data:

std::mutex locker;
void inc()
{
    std::lock_guard g(locker);
    global = global + 1;
}

The inc() function demonstrates the usage of std::lock_guard. When this function is called, 
a lock guard object, g, is created, with the mutex locker as its argument. The lock guard automatically 
locks the mutex upon its creation, ensuring that only one thread can access the critical section at a time.

While utilizing language-provided guards such as std::lock_guard can help mitigate race 
conditions, it is crucial to understand potential pitfalls that can arise when dealing with multithreaded 
applications, such as deadlocks.

Hence, if possible, it’s always better to use language-provided guards.

Avoiding deadlocks

New problems arise with mutexes, such as deadlocks. A deadlock is a condition of multithreaded 
code when two or more threads lock a mutex and wait for the other to unlock another.

The most common piece of advice to avoid deadlocks is to always lock two or more mutexes in the 
same order. C++ provides the std::lock() function, which serves the same purpose.

The following code illustrates the swap function, which takes two arguments of the X type. Suppose 
that X has a member, mt, which is a mutex. The implementation of the swap function locks the mutex 
of the left object first, then locks the mutex of the right object:

void swap(X &left, X &right)
{
    std::lock(left.mt, right.mt);
    std::lock_guard<std::mutex> lock1(left.mt,
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      std::adopt_lock);
    std::lock_guard<std::mutex> lock2(right.mt,
      std::adopt_lock);
    // do the actual swapping
}

To avoid deadlocks in general, avoid nested locks. That said, don’t acquire a lock if you are already 
holding one. If this is not the case, then acquire locks in a fixed order. This fixed order will allow you 
to avoid deadlocks.

Designing concurrent code
Project complexity rises drastically when concurrency is introduced. It’s much easier to deal with 
sequentially executing synchronous code compared to concurrent counterparts. Many systems avoid 
using multithreading at all by introducing event-driven development concepts, such as event loops. The 
point of using an event loop is to introduce a manageable approach to asynchronous programming. 
To take this concept further, imagine any application providing a graphical user interface (GUI). 
Whenever the user clicks on any GUI component, such as buttons, types in fields, or even moves the 
mouse, the application receives so-called events regarding the user action. Whether it’s button_press, 
button_release, mouse_move, or any other event, it represents a piece of information for the 
application to use to react properly. A popular approach is to incorporate an event loop to queue any 
event that occurred during user interaction.

While the application is busy with its current task, the events produced by user actions are queued to 
be processed in the future. This processing involves calling handler functions attached to each event. 
They are called in the order they were put into the queue.

Introducing multithreading into the project brings additional complexity. You should now take care of 
race conditions and proper thread handling, maybe even using a thread pool to reuse thread objects. 
In sequentially executed code, you care for the code and only the code. When using multithreading, 
you now care a little bit more about how the very same code is executed. For example, a simple 
design pattern, such as the singleton, behaves differently in a multithreading environment. The classic 
implementation of a singleton looks like this:

class MySingleton
{
public:
    static MySingleton* get_instance() {
    if (instance_ == nullptr) {
    instance_ = new MySingleton();
}
return instance_;
}
// code omitted for brevity
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private:
    static inline MySingleton* instance_ = nullptr;
};

The following code starts two threads, both using the MySingleton class:

void create_something_unique()
{
    MySingleton *inst = MySingleton::get_instance();
    // do something useful
}
void create_something_useful()
{
    MySingleton *anotherInst = MySingleton::get_instance();
    // do something unique
}
std::thread t1{create_something_unique};
std::thread t2{create_something_useful};
t1.join();
t2.join();
// some other code

The t1 and t2 threads both call the get_instance() static member function of the MySingleton 
class. t1 and t2 may both pass the check for the empty instance and both execute the new operator. 
We have a race condition here. The resource – in this case, the class instance – should be protected 
from such a scenario. Here’s an obvious solution that uses a mutex:

class MySingleton
{
public:
    static MySingleton *get_instance()
    {
        std::lock_guard lg{mutex_};
        if (instance_ == nullptr)
        {
            instance_ = new MySingleton();
        }
    return instance_;
}
// code omitted for brevity
private:
    static std::mutex mutex_;
    static MySingleton *instance_;
}
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Using a mutex will solve this problem, but it will make the function work more slowly because each 
time a thread requests an instance, a mutex will be locked instead (which involves additional operations 
by the OS kernel). The proper solution would be using what is known as the double-checked locking 
pattern. Its basic idea is this:

1.	 Lock the mutex after instance_ check.

2.	 Check instance_ again after the mutex has been locked; another thread might have 
passed the first check and waited for the mutex to unlock.

See the following code for details:

static MySingleton *get_instance()
{
    if (instance_ == nullptr)
    {
        std::lock_guard lg{mutex_};
        if (instance_ == nullptr)
        {
            instance_ = new MySingleton();
        }
    }
    return instance_;
}

Several threads may pass the first check and one of them will lock the mutex. Only one thread will 
make it to the new operator call. However, after unlocking the mutex, the threads that have passed 
the first check will try to lock it and create the instance. The second check is there to prevent this. The 
preceding code allows us to reduce the performance overhead of the synchronized code. The approach 
we provided here is one of the ways to prepare yourself for concurrent code design.

Concurrent code design is very much based on the capabilities of the language itself. The evolution 
of C++ is marvelous. In its earliest versions, it didn’t have built-in support for multithreading. Now, it 
has a well-stocked thread library and the new C++20 standard provides us with even more powerful 
tools, such as coroutines.

Introducing coroutines

We discussed an example of asynchronous code execution when speaking about GUI applications. 
GUI components react to user actions by firing corresponding events, which are pushed into the event 
queue. This queue is then processed, one by one, by invoking the attached handler functions. This 
process happens in a loop; that’s why we usually refer to the concept as the event loop.
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Asynchronous systems are really useful in input/output (I/O) operations because any I/O operation 
blocks the execution at the point of an I/O call. For example, the following pseudocode reads a file 
from a directory and then prints a welcome message to the screen:

auto f = read_file("filename");
cout << "Welcome to the app!";
process_file_contents(f);

Attached to the synchronous execution pattern, we know that the Welcome to the app! 
message will only be printed after the read_file() function finishes executing. process_file_
contents() will be invoked only after cout completes. When dealing with asynchronous code, 
all we know about code execution starts to behave like something unrecognizable. The following 
modified version of the preceding example uses the read_file_async() function to read the 
file contents asynchronously:

std::future<std::string> p = read_file_async("filename");
cout << "Welcome to the app!";
process_file_contents(p);
// we shouldn't be able to do this.

Considering read_file_async() is an asynchronous function, Welcome to the app! 
will be printed sooner than the file’s contents. The very nature of asynchronous execution allows us 
to invoke functions to be executed in the background, which provides us with non-blocking I/O.

However, there is a slight change in the way we treat the return value of the function. If we deal with 
an asynchronous function, its return value is considered something called a promise or a promise 
object. This is the way the system notifies us when the asynchronous function has been completed. 
The promise object has three states:

•	 Pending

•	 Rejected

•	 Fulfilled

Note
A promise object is said to be fulfilled if the function is done and the result is ready to be 
processed. In the event of an error, the promise object will be in the rejected state. If the promise 
is not rejected or fulfilled, it is pending.
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C++20 introduced coroutines as an addition to the classic asynchronous functions. Coroutines 
move the background execution of the code to the next level; they allow a function to be paused and 
resumed when necessary. Imagine a function that reads file contents and stops in the middle, passes 
the execution context to another function, and then continues reading the file to its end. So, before 
diving deeper, consider a coroutine as a function that can be as follows:

•	 Started

•	 Paused

•	 Resumed

•	 Finished

To make a function a coroutine, you can use the co_await, co_yield, or co_return keyword. 
co_await is a construct that tells the code to wait for asynchronously executing code. This means 
that the function can be suspended at that point and its execution can be resumed when a result is 
ready. For example, the following code requests an image from the network using a socket:

task<void> process_image()
{
    image i = co_await request_image("url");
    // do something useful with the image
}

Since the network request operation is also considered an I/O operation, it might block the execution 
of the code. To prevent blocking, we can use asynchronous calls. The line that uses co_await in the 
preceding example is a point where the function’s execution could be suspended. In simpler words, 
when the execution reaches the line with co_await, the following happens:

1.	 It quits the function for a while (until there isn’t ready data).

2.	 It continues executing from where it was before process_image() was called.

3.	 It comes back again to continue executing process_image() at the point where it left it.

To achieve this, a coroutine (the process_image() function is a coroutine) is not handled 
the way regular functions are handled in C++. One of the interesting or even surprising features 
of coroutines is that they are stackless. We know that functions can’t live without the stack. That’s 
where the function pushes its arguments and local variables before even executing its instructions. 
Coroutines, on the other hand, instead of pushing anything to the stack, save their state in the heap 
and recover it when resumed.

Tip
This is tricky because there are stackful coroutines as well. Stackful coroutines, also referred 
to as fibers, have a separate stack.
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Coroutines are connected to callers. In the preceding example, the function that calls sprocess_
image() transfers execution to the coroutine and is then paused by the coroutine (also known as 
yielding), which transfers the execution back to the caller. As we stated, the heap is used to store the 
state of the coroutine, but the actual function-specific data (arguments and local variables) are stored 
on the caller’s stack. That’s it – the coroutine is associated with an object that is stored on the caller 
function’s stack. The coroutine lives as long as its object.

Coroutines might give the wrong impression of adding redundant complexity to the language, 
but their use cases are great in improving applications that use asynchronous I/O code (as in the 
preceding example) or lazy computations. That said, when we have to invent new patterns or introduce 
complexities into projects to handle, for instance, lazy computations, we can improve our experience 
by using coroutines in C++.

Please note that asynchronous I/O or lazy computations are just two examples of coroutine applications. 
There are many more out there.

Summary
In this chapter, we discussed the concept of concurrency and showed how it is different from 
parallelism. We learned about the difference between a process and a thread – the latter being of 
interest. Multithreading allows us to manage a program so that it’s more efficient, though this also 
brings additional complexity. To handle data races, we can use synchronization primitives such as 
mutexes. A mutex is a way to lock the data used by one thread to avoid invalid behavior being produced 
by simultaneously accessing the same data from several threads.

We also covered the idea that an I/O operation is considered blocking and that asynchronous functions 
are one of the ways to make it non-blocking. Coroutines, as part of asynchronously executing code, 
were introduced in C++20.

Finally, we learned how to create and start a thread. More importantly, we learned how to manage 
data between threads. In the next chapter, we will dive into data structures that are used in 
concurrent environments.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is concurrency?

2.	 What is the difference between concurrency and parallelism?

3.	 What is a process?

4.	 What’s the difference between a process and a thread?

5.	 Write code to start a thread.
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6.	 How could you make the singleton pattern thread-safe?

7.	 Rewrite the MySingleton class so that it uses std::shared_ptr for the returned instance.

8.	 What are coroutines and what is the co_await keyword used for?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resource:

•	 Anthony Williams, C++ Concurrency in Action: https://www.amazon.com/ 
C-Concurrency-Action-Anthony-Williams/dp/1617294691/

https://www.amazon.com/ C-Concurrency-Action-Anthony-Williams/dp/1617294691/
https://www.amazon.com/ C-Concurrency-Action-Anthony-Williams/dp/1617294691/
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Designing Concurrent Data 

Structures

In the previous chapter, we touched on the basics of concurrency and multithreading in C++. One 
of the biggest challenges in concurrent code design is properly handling data races. The concepts of 
thread synchronization and orchestration are not easy to grasp. However, they are essential. While 
we can use synchronization primitives such as mutexes in all places where data races may occur, that 
practice has costs and side effects, which must be considered.

A better way of designing concurrent code is to avoid locks at all costs. That would not only increase 
the performance of the application but also make it much safer than before. Easier said than done – 
lock-free programming is a challenging topic, which we will introduce in this chapter. In particular, 
we will go further into the fundamentals of designing lock-free algorithms and data structures. This 
is a complex topic being continuously researched by many outstanding developers. We will touch 
on the basics of lock-free programming, which will give you an idea of how to construct your code 
efficiently. After reading this chapter, you will be better able to picture problems with data races and 
acquire the basic knowledge needed to design concurrent algorithms and data structures. It might 
also be helpful for your general design skills to build fault-tolerant systems.

The following topics will be covered in this chapter:

•	 Understanding data races and lock-based solutions

•	 Using atomics in C++ code

•	 Designing lock-free data structures

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-CPP.

https://github.com/PacktPublishing/Expert-CPP
https://github.com/PacktPublishing/Expert-CPP
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Thread safety
Thread safety is a crucial idea in computer science and programming. In the current world, where 
applications can run in parallel both locally and remotely, being able to write code that multiple 
processes can execute simultaneously plays a crucial role in software development.

Imagine a C++ first-person platform game with functions that allow the player to perform actions 
such as moving and jumping, computer-generated characters that can attack the player, and a user 
interface that keeps the player updated with the most relevant information about the status of the game 
(i.e., points, health, etc.). In this context, all those functions must be thread-safe. If the functions are 
not thread-safe, the game can behave unpredictably. For example, the player could end up interacting 
with a piece of a computer-generated object that is not in that spot anymore, or they may see a status 
of their actions that is outdated or incorrect.

This example includes the main concerns regarding thread safety. The most likely cause of the player 
trying to interact with an object that is not there is known as a race condition. A race condition 
occurs when two processes, in this case, the player’s movement and the computer updating their 
character’s location, occur simultaneously. Given that both can’t happen simultaneously, there needs 
to be a synchronization mechanism that determines how the character’s location is updated. On top of 
causing immediate issues, race conditions can have longer-term side effects. One of those side effects 
is known as data corruption. Data corruption occurs when data is modified by multiple threads and 
left in a state that would not occur if the modifications happened sequentially. A synchronization 
mechanism can also help address this issue.

The solution to the problems mentioned involves implementing synchronization mechanisms. These 
mechanisms can have side effects and cause problems. The most common issues are deadlocks. The 
synchronization mechanism is implemented so that two or more processes may wait to access a 
resource forever. This usually happens when the synchronization mechanism consists of locking, and 
a resource user never unlocks it. On top of this, synchronization mechanisms add overhead to the 
execution of the program, which can cause performance problems and lead to the program running 
too slow for its expected use.

We can use a mechanism known as concurrent data structures to address the need for thread-safe 
operations to reduce the chances of causing one of the side effects mentioned. These data structures 
are implemented in a multi-threaded environment without manually implementing synchronization. 
This allows the structures to provide both thread safety and better performance. The most common 
concurrent data structures include Concurrent Queues, Concurrent Hash Tables, Concurrent Sets, 
and Concurrent Stacks.

Lock-based concurrent data structures
Lock-based concurrent data structures are a type of concurrent structure. They are called lock-based 
because they use synchronization-locking mechanisms such as mutexes to ensure that only one thread 
can access the underlying data.
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A thread-safe singleton pattern

In the previous chapter, we discussed deadlocks and ways to avoid them. The last example we used was 
implementing a thread-safe singleton pattern. We will expand on that in this section. Imagine that we 
want to use a class for creating database connections. We will name that class connection_manager.

Here’s a simple pattern implementation that tracks down the connections to the database. Keeping a 
separate connection whenever we need access to the database is not a good practice. Instead, we will 
re-use the existing connection to query the database from different parts of the program:

#include <memory>

namespace db_utils {

class connection_manager {

private:
  static std::shared_ptr< connection_manager> instance_;

public:
  static std::shared_ptr<connection_manager> get_instance() {
    if (instance_ == nullptr) {
      instance_.reset(new connection_manager());
    }
    return instance_;
  }
}; // class connection_manager

std::shared_ptr<connection_manager> connection_manager::instance_ = 
nullptr;

} // namespace db_utils

The goal of implementing the singleton pattern is to ensure that we only have one connection to the 
database that all threads use instead of having multiple connections. However, the implementation 
shown here is not thread-safe. To understand why, let’s look at the following function:

  static std::shared_ptr<connection_manager> get_instance() {
    if (instance_ == nullptr) {
      instance_.reset(new connection_manager());
    }
    return instance_;

Let’s imagine that thread1 and thread2 are running this function. One potential execution 
sequence is as follows:
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Thread 1 Thread 2
àif (instance_ == nullptr) {

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

àif (instance_ == nullptr) {

i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

The arrows indicate the lines of code that get executed in each thread. As we can see, Thread 1 will 
see no connection and create one, while Thread 2 will see a connection and re-use the existing one.

Now, let’s look at the following execution sequence:

Thread 1 Thread 2
àif (instance_ == nullptr) {

àif (instance_ == nullptr) {

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

As we can see, in this case, both Thread 1 and Thread 2 see the instance as null, and both proceed to 
create a connection. Each thread returns its connection. However, the connection created by Thread 1 
will be lost as soon as Thread 1 stops using it, as the pointer to the connection held by the singleton class 
is now pointing to the connection created by Thread 2. Even worse than that, let’s look at this sequence:

Thread 1 Thread 2
àif (instance_ == nullptr) {

àif (instance_ == nullptr) {

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

àreturn instance_;
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In this case, the connection generated by Thread 1 is leaked immediately after Thread 2. The preceding 
issue is that Thread 2 resets instance_ after it has already been set. This is because even though we 
perceive get_instance() as a single operation, it consists of several instructions, each executed 
sequentially by a thread. The function shouldn’t consist of more than one instruction for two threads 
so that they don’t interfere with each other. When the operation consists of more than one instruction, 
data races appear. A solution to this problem is to use a synchronization primitive, such as a mutex. 
The following code modification uses a mutex and the double-checked locking pattern discussed in 
the previous chapter to solve this problem:

#include <memory>
#include <mutex>

namespace db_utils {

class connection_manager {

private:
  static std::shared_ptr<connection_manager> instance_;
  static std::mutex mutex_;

public:
  static std::shared_ptr<connection_manager> get_instance() {
    // lock the Mutex
    std::lock_guard lg { mutex_ };
    if (instance_ == nullptr) {
      instance_.reset(new connection_manager());
    }
    return instance_;
  }

}; // class connection_manager

std::shared_ptr<ConnectionManager> ConnectionManager::instance_ = 
nullptr;
std::mutex ConnectionManager::mutex_;

} // namespace db_utils

Note the use of std::lock_guard. This class creates a mechanism that establishes a lock when 
the class is created and releases the lock when the class goes out of scope. This is very convenient to 
avoid leaving a Mutex locked.
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Now, let’s take a look at the scenarios from before with the mutex in place:

Thread 1 Thread 2
àstd::lock_guard lg { mutex_ };

àif (instance_ == nullptr) {

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

àstd::lock_guard lg { mutex_ };

àif (instance_ == nullptr) {

i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

This scenario continues to work as before, with the overhead of locking and unlocking the mutex. 
This is an example of the extra cost of using synchronization mechanisms. The second scenario now 
looks like this:

Thread 1 Thread 2
àstd::lock_guard lg { mutex_ };

àif (instance_ == nullptr) { àstd::lock_guard lg { mutex_ };

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

àif (instance_ == nullptr) {

à i n s t a n c e _ . r e s e t ( n e w 
ConnectionManager());

àreturn instance_;

Notice that Thread 2 has to stop once it tries to get the lock as Thread 1 has it. This prevents the 
problems mentioned in the previous parts. The third scenario also looks this way: Thread 2 always 
has to stop if Thread 1 has the lock.

As seen in the mutex running on the first scenario, the synchronization mechanism causes an overhead 
every time the connection is requested under this implementation. There is an optimization that solves 
that problem and looks as follows:

private:
  static std::shared_ptr<ConnectionManager> instance_;
  static std::mutex mutex_;



Lock-based concurrent data structures 397

public:
  static std::shared_ptr<ConnectionManager> get_instance() {
    if (instance_ == nullptr) {
      // lock the Mutex
      std::lock_guard lg { mutex_ };
      if (instance_ == nullptr) {
        instance_.reset(new ConnectionManager());
      }
    }
    return instance_;
  }

As you can see in this code, the mutex is only acquired in the case in which it may be needed, that 
is, when the connection is currently null. Because this optimization requires checking twice the 
condition. It is called double-checked locking.

As a rule of thumb, when dealing with operations with multiple lines of code, we should always consider 
the possibility of those lines running in an interleaved way and see what could happen.

Synchronized counters

Another typical example of thread safety is the synchronized counter. That is a counter that multiple 
threads can use simultaneously to keep a common count. An example of the code is as follows:

#include <thread>
#include <iostream>
int counter = 0;
void foo() { counter++; }

int main() {
  std::thread A { foo };
  std::thread B { foo };
  std::thread C {[] { foo(); } };
  std::thread D {[] {
    for (int i = 0; i < 10; ++i) {
      foo();
    }
  }};
  std::cout << "Count: " << counter;
}

Note that when running this code, the output tends to be a random number, sometimes 3, sometimes 
13, and sometimes a number in between. This issue is due to a combination of problems: thread safety 
and synchronization issues.
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The thread safety issue is that even though the counter++ operation seems to be thread-safe, 
however, it is not, as it is the combination of two operations:

counter = counter + 1

This can be read as follows (in pseudo-code):

temp = counter
temp = temp + 1
counter = temp

Let’s analyze the execution of these by two threads:

Thread 1 Thread 2
àtemp = counter

àtemp = counter

àtemp = temp + 1

àtemp = temp + 1

àcounter = temp

àcounter = temp

As we can see from this sequence, the end of the execution of the thread counter will be incremented 
only by one, even though it should have been incremented by two.

We can use the same technique as the singleton example and add a blocking mutex to solve this problem:

std::mutex m;
void foo(){
  std::lock_guard g{m};
  counter++;
}

Looking at the execution sequence from before, Thread 2 will be locked from adding to the counter 
until Thread 1 has finished adding, as seen here:

Thread 1 Thread 2
àstd::lock_guard g{m};

àtemp = counter àstd::lock_guard g{m};

àtemp = temp + 1

àcounter = temp

àtemp = counter

àtemp = temp + 1

àcounter = temp
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As we saw in these examples, the main drawback to locking is performance. Theoretically, we use 
threads to speed up program execution, specifically data processing. In the case of big collections 
of data, using multiple threads might increase the program’s performance drastically. However, in a 
multi-threaded environment, we take care of concurrent access first because accessing the collection 
with multiple threads might lead to its corruption.

Concurrent stacks

In Chapter 6, Digging into Data Structures and Algorithms in STL, we learned about stacks. In this 
section, we will implement a thread-safe version of the Lock-Based Concurrent version of a stack 
using locks. A stack has two primary operations, push and pop. Both of them modify the state of the 
container. The stack is not a container itself; it’s an adapter that wraps a container and provides an 
adapted interface to access it. We will wrap std::stack in a new class by incorporating thread 
safety. Besides constructors and destructors, std::stack offers the following functions:

Operation Functionality
top() Accesses the top element of the stack
empty() Returns true if the stack is empty
size() Returns the current size of the stack
push() Inserts a new item into the stack (at the top)
emplace() Constructs an element in place at the top of the stack
pop() Removes the top element of the stack
swap() Swaps the contents with another stack

We will focus on thread safety to simplify the implementation rather than making a powerful, full-
featured stack. With this in mind, we will look at functions that modify the underlying data structure. 
These are the push()  and pop()  functions. These functions might corrupt the data structure if 
several threads try to execute them simultaneously. So, the following declaration is the class representing 
a thread-safe stack:

#include <mutex>
#include <stack>
#include <memory>

template <typename T> class safe_stack {

private:
  std::stack<T> wrappee_;
  mutable std::mutex mutex_;

public:
  safe_stack();
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  safe_stack(const safe_stack &other);
  void push(T value);
  std::shared_ptr<T> pop();

  bool empty() const;
};

We declared Mutex_ as mutable because we locked it in the empty() const function. It’s 
arguably a better design choice than removing the const-ness of empty(). However, you should 
know by now that using a mutable for any data member suggests we have made bad design choices. 
Anyway, the client code for safe_stack won’t care much about the inner details of the realization; 
it doesn’t even know that the stack uses a mutex to synchronize concurrent access.

Let’s now look at the implementation of its member functions, along with a short description starting 
with the copy constructor:

template <typename T> safe_stack<T>::safe_stack(const safe_stack<T> 
&other) {
  std::lock_guard<std::mutex> lock(other.mutex_);
  wrappee_ = other.wrappee_;
}

Note that this operation requires locking Mutex of the other stack. This ensures that the other stack’s 
underlying data won’t get modified while we make a copy of it.

Next, let’s look at the implementation of the push() function. Similar to the previous one, we need 
to lock the mutex and push the data into the underlying stack:

template<typename T>
void safe_stack<T>::push(T value) {
    std::lock_guard<std::mutex> lock(mutex_);
    wrappee_.push(value);
}

Note that the remaining functions also similarly incorporate thread synchronization:

•	 Locking the mutex

•	 Performing the task

•	 Unlocking the mutex

This ensures that only one thread is accessing the data at any time.
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Tip
If you are not a fan of typing long C++ type names such as std::lock_guard<std::mutex>, 
use the using  keyword to make short aliases for types, for example, using locker = 
std::lock_guard<std::mutex>;.

Continuing with the implementations, we can now write the pop() function. We can implement it 
so that pop() directly returns the value at the top of the stack. We do this mainly because we don’t 
want someone to access the top of the stack (with a reference) and then pop that data from within 
another thread. The implementation is as follows:

template<typename T>
std::shared_ptr<T> safe_stack<T>::pop() {
    std::lock_guard<std::mutex> lock(mutex_);
    if (wrappee_.empty()) {
        return nullptr;
    }
    else {
        return std::make_shared<T>(wrappee_.pop());
    }
}

In this section, we looked at mutex implementations of thread-safe structures, particularly thread-
safe stacks. As we mentioned, adding mutexes to the code has performance consequences, as well as 
possibly causing unintended locks and deadlocks. In the next section, we’ll discuss a solution to the 
problem, which is the use of lock-free concurrent structures.

Lock-free concurrent data structures
As mentioned in the previous sections, lock-based data structures have some drawbacks. Among 
them, the reduction in performance is caused by the need to check the synchronization structures 
and the possibility of introducing problems such as deadlocking. A possible solution to this problem 
is to use lock-free concurrent data structures.

Unlike lock-based functions, where one thread can block another, and both might wait for some 
condition before making progress, a lock-free state ensures progress is made by at least one of the 
threads. We say that algorithms and data structures using data synchronization primitives are blocking. 
That is, a thread is suspended until another thread acts. That means the thread can’t progress until the 
block is removed (typically unlocking a mutex). Our interest lies in data structures and algorithms that 
don’t use blocking functions. We call some of them lock-free, although we should make a distinction 
between the types of non-blocking algorithms and data structures.
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Using atomic types

Earlier in this chapter, we introduced the use of multiple separate lines of code as one reason for 
data races. Whenever you have an operation with more than one instruction, those instructions may 
interleave when run by multiple parallel threads. Very few functions can be implemented without 
multiple instructions, so the solution to this problem must come from the language. In the case of 
C++, it provides atomic types.

First, let’s understand why the word atomic is used. In general, we understand atomic to mean something 
that can’t be broken down into smaller parts. That is, an atomic operation is an operation that can’t 
be partially performed: either it’s fully executed or it isn’t. An example of an atomic operation is the 
assignment of an integer:

num = 37;

If two threads access this line of code, neither can encounter it partially executed. In other words, 
there are no gaps where other threads could interfere with this operation between assignments. Of 
course, the same statement might have a lot of gaps if num represents a complex object with a user-
defined assignment operator. On the other hand, a non-atomic operation might end up being partially 
executed. As shown before, a way to deal with this problem is to use a mutex:

#include <mutex>

std::mutex mutex_;

void foo() {
  mutex_.lock();
  int a{41};
  int b{a + 1};
  mutex_.unlock();
}

Note
In Greek, a means not, and tomo means to cut. The word atom comes from the Greek atomos, 
which translates to uncuttable. Therefore, atomic means indivisible units. We use atomic types 
and operations to avoid gaps between instructions.

To simplify this process and reduce the need to add blocking mechanisms manually, C++ provides 
atomic types. An atomic type guarantees that all operations performed on them are also atomic. That 
means we can write thread-safe operations with atomic types.
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The difference between an operation that uses an atomic type and a manual locking mechanism is that 
the first doesn’t require specified mechanisms. That’s a big help as it reduces the performance hits and 
possibilities for errors. In most cases, this is achieved by leveraging lower-level mechanisms to ensure 
the independent and atomic execution of instructions. However, atomic types might also use internal 
locking. All atomic types in the standard library expose the is_lock_free() function to ensure 
they don’t use internal locking. The standard atomic types are defined in the <atomic> header.

The obj.is_lock_free() function returns true if operations on obj are done directly with 
atomic instructions, and it returns false if any means of internal locking is used.

Note
The only atomic type that doesn’t have the is_lock_free() member function is 
std::atomic_flag. The operations of this type are required to be lock-free. It’s a Boolean 
flag mainly used as a base to implement other lock-free types.

The implementation of lock-free mechanisms sometimes depends on the hardware. To check for this, 
the static constexpr function, is_always_lock_free(), returns true if the atomic type 
is lock-free for all supported hardware. The function is constexpr, so we can define whether the 
type is lock-free at compile time.

We use specializations for atomic types, for example, std::atomic<long>; however, you can 
refer to the following table for more convenient names for atomic types. The left-hand column of the 
table contains the atomic type, and the right-hand column contains its specialization:

Atomic type Specialization

atomic_bool std::atomic<bool>

atomic_char std::atomic<char>

atomic_schar std::atomic<signed char>

atomic_uchar std::atomic<unsigned char>

atomic_int std::atomic<int>

atomic_uint std::atomic<unsigned>

atomic_short std::atomic<short>

atomic_ushort std::atomic<unsigned short>

atomic_long std::atomic<long>

atomic_ulong std::atomic<unsigned long>
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atomic_llong std::atomic<long long>

atomic_ullong std::atomic<unsigned long long>

atomic_char16_t std::atomic<char16_t>

atomic_char32_t std::atomic<char32_t>

atomic_wchar_t std::atomic<wchar_t>

The preceding table represents basic atomic types. The fundamental difference between regular and 
atomic types is the operations we can apply to them. Let’s now discuss atomic operations in more detail.

Operations on atomic types

Recall that the primary goal of atomic types is to remove the opportunity for different threads to run 
separate instructions in incorrect orders. To achieve this, atomic types either eliminate gaps between 
instructions or provide operations that combine several instructions wrapped as a single instruction. 
The following are operations on atomic types.

Operation Functionality
load() Loads and returns the value of the atomic variable.

store()
Replaces the value of the atomic variable with the provided 
non-atomic argument.

exchange()
Stores a new value in the variable and returns the 
previous value.

compare_exchange_weak()
Performs compare and swap (CAS). Stores a new value in 
the variable if the variable currently contains a specific value. 
This operation is marked weak because it is not thread-safe.

compare_exchange_strong() Implements the thread-safe version of CAS.
wait() Waits for a change in the value of the variable.

notify_one()
Notifies one of the threads waiting that the variable 
has changed.

notify_all()
Notifies all threads that are waiting that the variable 
has changed.

Both load() and store() are similar to regular read and assign operations for non-atomic 
variables. Whenever we access the value of an object, we execute a read instruction. For example, see 
the following use of int:

#include <iostream>

void function() {



Lock-free concurrent data structures 405

  int i = 1;
  std::cout << i;
}

It can be re-written using atomic int as follows:

#include <iostream>
#include <atomic>

void function() {
  std::atomic_int i;
  i.store(1);
  std::cout << i.load();
}

As we can see, even though both pieces of code achieve similar results, accessing atomic variables 
should be done through atomic operations. The following code shows the definitions of load, store, 
and exchange in the GCC compiler:

#include <atomic>

std::atomic<int> atomic_value{42};

int load_impl(std::atomic<int>* atomic_ptr) {
    int value;
    __asm__ __volatile__("movl %1, %0 ; lock; addl $0, %0"
                         : "=r"(value)
                         : "m"(*atomic_ptr));
    return value;
}

void store_impl(std::atomic<int>* atomic_ptr, int value) {
    __asm__ __volatile__("movl %1, %0 ; lock; addl $0, %0"
                         : "=m"(*atomic_ptr)
                         : "r"(value)
                         : "memory");
}
int exchange_impl(std::atomic<int>* atomic_ptr, int value) {
    __asm__ __volatile__("xchgl %0, %1"
                         : "=r"(value), "=m"(*atomic_ptr)
                         : "0"(value), "m"(*atomic_ptr)
                         : "memory");
    return value;
}
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As we can see, the implementations have to be written directly in assembly to avoid using lock 
operations. Similarly, here is the implementation of exchange:

int __sync_lock_test_and_set(std::atomic<int>* atomic_ptr, int value) 
{
    __asm__ __volatile__("lock; xchg %0, %1"
                         : "=r"(value), "=m"(*atomic_ptr)
                         : "0"(value), "m"(*atomic_ptr)
                         : "memory");
    return value;
}

int exchange_impl(std::atomic<int>* atomic_ptr, int value) {
    int previous_value =
      __sync_lock_test_and_set(atomic_ptr, value);
    return previous_value;
}

The compare_exchange_weak() and compare_exchange_strong() functions work 
similarly. They compare the first argument (expected_value) with the atomic variable, and if they 
are equal, they replace the variable with the second argument (target_value). Otherwise, they 
atomically load the value into the first argument (that’s why it is passed by reference). The difference 
between weak and robust exchanges is that compare_exchange_weak() can fail incorrectly (a 
spurious failure). That is, even when expected_value is equal to the underlying value, the function 
treats them as not equal. That’s done because, on some platforms, it leads to increased performance.

The wait(), notify_one(), and notify_all() functions have been added since C++20. The 
wait() function blocks the thread until the value of the atomic object modifies. It takes an argument 
to compare with the value of the atomic object. If the values are equal, it blocks the thread. To manually 
unblock the thread, we can call notify_one() or notify_all(). The difference is that notify_
one() unblocks at least one blocked operation, while notify_all() unblocks all such operations.

Lock-free stacks

A critical feature of a stack is ensuring that another thread can safely access values pushed by one thread. 
In a previous section, we implemented a lock-based stack that wrapped std::stack. A stack is not 
a real data structure but an adapter. Usually, when implementing a stack, we choose either a vector 
or a linked list as its underlying data structure. Let’s look at an example of a lock-free stack based on 
a linked list. Pushing a new element into the stack involves creating a new list node, setting its next 
pointer to the current head node, and then setting the head node to point to the newly inserted node.

Note
If you are confused by the terms head or next pointer, revisit Chapter 6, Digging into Data 
Structures and Algorithms in STL, where we discussed linked lists in detail.
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In a single-threaded context, the steps described are fine; however, if there is more than one thread 
modifying the stack, we should start worrying. Let’s find the pitfalls of the push() operation. Here 
are the three main steps happening when a new element is pushed into the stack:

  void push(T data) {
    node *new_elem = new node(data);
    new_elem->next_ = head_;
    head_ = new_elem;
  }

In the first step, we declare the new node that will be inserted into the underlying linked list. The 
second step describes that we are inserting it at the start of the list – that’s why the new node’s next 
pointer points to head_. Finally, as the head_ pointer represents the starting point of the list, we 
should reset its value to indicate the newly added node, as done in step 3.

The node type is the internal structure used in the stack to represent a list node. Here’s how it is defined:

#include <atomic>

template <typename T>
class lock_free_stack {
private:

struct node {
     T data_;
     node* next_;
     node(const T& data) : data_{ data } {}
};
node* head_;

std::atomic<std::shared_ptr<node>> top;

// The rest of the body is omitted for brevity
};

When looking at the code, we can see a race condition as shown in this table:

Thread 1 Thread 2
à node *new_elem = new node(data);

à node *new_elem = new 
node(data);

à new_elem->next_ = head;

à head_ = new_elem;

à new_elem->next_ = head;

à head_ = new_elem;
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As you can see in the table, one thread at step 2 sets the next pointer of the new element to point 
to head_. The other thread makes  head_ point to the other new element. This leads to data 
corruption. This race condition can be solved by using locking. However, in this case, we want to solve 
it in a non-locking way, so instead, we’ll use an atomic type. The code then looks like this:

#include <atomic>
#include <memory>

template <typename T>
class lock_free_stack {
private:
    struct node {
        T data_;
        std::shared_ptr<node> next_;

        node(T value) : data_(std::move(value)),
          next_(nullptr) {}
    };

    std::atomic<std::shared_ptr<node>> head_;
public:
    void push(T data) {
        std::shared_ptr<node> new_elem =
          std::make_shared<node>(data);

        new_elem->next_ = head_.load();
        while (!std::atomic_compare_exchange_weak(&head_,
          &new_elem->next_, new_elem)) {
            new_elem->next_ = head_.load();
        }
    }
};

We use compare_exchange_weak() to ensure that head_ pointer has the same value as we 
stored in new_elem->next. If it is, we set it to new_elem. Once compare_exchange_weak() 
succeeds, we are sure the node has been successfully inserted into the list.

Now, we are accessing nodes using atomic operations. The atomic form of a pointer of type 
T – std::atomic<shared_ptr<T>>  – provides the same interface. Besides that, 
std::atomic<shared_ptr<T>> provides a pointer to the fetch_add() and fetch_sub() 
arithmetic operations. They do atomic addition and subtraction on the stored address.

Finally, we will implement pop() to complete the implementation of the stack:

    std::shared_ptr<T> pop() {
        std::shared_ptr<node> old_head = head_.load();
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        while (old_head &&
            !std::atomic_compare_exchange_weak(&head_,
            &old_head, old_head->next_)) {
            old_head = head_.load();
        }

        return (old_head ? std::make_shared<T>(
          std::move(old_head->data_)) : nullptr);
    }

We applied almost the same logic in the preceding code as with the push() function.

A lock-free queue

Similar to the way we implemented stack, we can implement a lock-free version of the queue using atomics:

#include <atomic>
#include <memory>
#include <iostream>

template<typename T>
class lock_free_queue {
private:
    struct node {
        T data;
        std::atomic<node*> next;
        node(const T& value): data(value), next(nullptr) {}
    };

    std::atomic<node*> head;
    std::atomic<node*> tail;

public:
    lock_free_queue(): head(new node(T())),
      tail(head.load()) {}

    void push(const T& value) {
        node* new_node = new node(value);
        node* old_tail = tail.exchange(new_node,
          std::memory_order_acq_rel);
        old_tail->next = new_node;
    }

    bool pop(T& value) {
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        node* old_head = head.load(
          std::memory_order_relaxed);
        while (true) {
            node* next = old_head->next.load(
              std::memory_order_acquire);
            if (!next) {
                return false;
            }
            if (head.compare_exchange_weak(old_head, next,
              std::memory_order_release)) {
                value = next->data;
                delete old_head;
                return true;
            }
        }
    }
};

int main() {
    lock_free_queue<int> q;
    q.push(1);
    q.push(2);
    q.push(3);

    int value;
    while (q.pop(value)) {
        std::cout << "Popped value: " << value
          << std::endl;
    }

    return 0;
}

A lock-free hashtable

We can also implement a lock-free hashtable as shown here:

#include <iostream>
#include <atomic>

template<typename K, typename V, std::size_t N>
class lock_free_hash_table {
private:
    struct Node {
        K key;
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        V value;
        Node* next;
        Node(const K& k, const V& v) : key(k), value(v),
          next(nullptr) {}
    };

    std::atomic<Node*> buckets[N];

public:
    lock_free_hash_table() {
        for (std::size_t i = 0; i < N; ++i) {
            buckets[i].store(nullptr);
        }
    }

    bool insert(const K& key, const V& value) {
        std::size_t hash = std::hash<K>()(key) % N;
        Node* newNode = new Node(key, value);
        while (true) {
            Node* head = buckets[hash].load();
            newNode->next = head;
            if (buckets[hash].compare_exchange_weak(head,
              newNode)) {
                return true;
            }
            // if compare_exchange_weak fails, head is
            // updated to the new value
            // we need to update the next pointer of
            // newNode and try again
            newNode->next = nullptr;
        }
    }

    bool find(const K& key, V& value) {
        std::size_t hash = std::hash<K>()(key) % N;
        Node* node = buckets[hash].load();
        while (node != nullptr) {
            if (node->key == key) {
                value = node->value;
                return true;
            }
            node = node->next;
        }
        return false;
    }
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};

int main() {
    lock_free_hash_table<int, std::string, 100> hashTable;
    hashTable.insert(1, "one");
    hashTable.insert(2, "two");
    hashTable.insert(3, "three");

    std::string value;
    if (hashTable.find(2, value)) {
        std::cout << "Found value: " << value << std::endl;
    } else {
        std::cout << "Value not found." << std::endl;
    }

    return 0;
}

A lock-free set

Finally, we will take a look at a lock-free set:

#include <iostream>
#include <atomic>

template<typename T>
class lock_free_set {
private:
    struct Node {
        T value;
        Node* next;
        Node(const T& v) : value(v), next(nullptr) {}
    };

    std::atomic<Node*> head;

public:
    lock_free_set() : head(nullptr) {}

    bool insert(const T& value) {
        Node* newNode = new Node(value);
        while (true) {
            Node* curHead = head.load();
            newNode->next = curHead;
            if (head.compare_exchange_weak(curHead,
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              newNode)) {
                return true;
            }
            newNode->next = nullptr;
        }
    }

    bool contains(const T& value) {
        Node* curNode = head.load();
        while (curNode != nullptr) {
            if (curNode->value == value) {
                return true;
            }
            curNode = curNode->next;
        }
        return false;
    }
};

int main() {
    lock_free_set<int> set;
    set.insert(1);
    set.insert(2);
    set.insert(3);

    if (set.contains(2)) {
        std::cout << "Set contains 2." << std::endl;
    } else {
        std::cout << "Set does not contain 2."
          << std::endl;
    }

    return 0;
}

More operations on atomics

In the previous section, we used std::atomic<> on a pointer to a user-defined type. That is, we 
declared the following structure for the list node:

    struct node {
        T data_;
        std::shared_ptr<node> next_;

        node(T value) : data_(std::move(value)),
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          next_(nullptr) {}
    };

The node struct is a user-defined type. Although in the previous section, we instantiated 
std::atomic<std::shared_ptr<node>>, in the same way, we can instantiate std::atomic<> 
for almost any user-defined type, that is, std::atomic<T>. However, you should note that the 
interface of std::atomic<T> is limited to the following operations:

•	 load()

•	 store()

•	 exchange()

•	 compare_exchange_weak()

•	 compare_exchange_strong()

•	 wait()

•	 notify_one()

•	 notify_all()

On top of these, some operations are specifically available for atomics based on their underlying type.

std::atomic<> instantiated with an integral type (such as an integer or a pointer) has the following 
operations, along with the ones we listed previously:

•	 fetch_add()

•	 fetch_sub()

•	 fetch_or()

•	 fetch_and()

•	 fetch_xor()

On top of increment (++) and decrement (--), the following operators are also available: +=, -=, 
|=, &=, and ^=.

Finally, there is a special atomic type called atomic_flag with two available operations:

•	 clear()

•	 test_and_set()

You should consider std::atomic_flag with atomic operations. The clear() function clears 
it by setting the flag to false, while test_and_set() changes the value to true and returns 
the previous value.
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C++ 20 added more new member functions as indicated here:

•	 test() – atomically returns the value of the flag.

•	 wait() – blocks the thread until notified and the atomic value changes.

•	 notify_one() – notifies at least one thread waiting on the atomic object.

•	 notify_all() – notifies all threads blocked waiting on the atomic object.

Summary
In this chapter, we introduced a simple example of a stack design. There are more complex examples to 
research and follow. When we discussed designing a concurrent stack, we looked at two versions, one 
representing a lock-free stack. Unlike lock-based solutions, lock-free data structures and algorithms 
are the ultimate goals for programmers, as they provide mechanisms to prevent data races without 
synchronizing the resources.

We also introduced atomic types and operations, which you can use in your projects to ensure 
instructions are indivisible. If you remember to use atomic types when using multithreading, it is 
unnecessary to worry about synchronization. We strongly suggest you continue researching the topic 
and build more robust, complex lock-free data structures. In the next chapter, we will see how to 
design world-ready applications.

Questions
1.	 What is the advantage of checking whether the instance is null in the multi-threaded 

singleton implementation?

2.	 What is the purpose of using a mutex in implementing a lock-based stack’s copy constructor?

3.	 What are atomic types, and what are their basic operations?

4.	 What operations do the load() and store() functions perform in atomic types?

5.	 What additional operations are supported on std::atomic<int>  compared 
to std::atomic<>?

Further reading
•	 Concurrent Patterns and Best Practices by Atul Khot, at https://www.packtpub.com/

application-development/concurrent-pattern s-and-best-practices

•	 Mastering C++ Multithreading by Maya Posch, at https://www.packtpub.com/ 
application-development/mastering-c-multithreading

https://www.packtpub.com/application-development/concurrent-pattern s-and-best-practices
https://www.packtpub.com/application-development/concurrent-pattern s-and-best-practices
https://www.packtpub.com/ application-development/mastering-c-multithreading
https://www.packtpub.com/ application-development/mastering-c-multithreading
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Designing World-Ready 

Applications

Using a programming language in production-ready projects is a new step in learning the language 
itself. Sometimes, the examples in this book may take a different approach than the equivalent version 
used in real-world programs. When theory meets practice is when you learn a language. C++ is not 
an exception. Learning syntax, solving book problems, and understanding examples in books are 
stepping stones toward creating real-world applications. However, in the real world, we face an extra 
set of challenges.

In this chapter, we will go over the basics of practical programming with C++. This will help you tackle 
real-world applications better. Complex projects require a lot of thinking and designing. Sometimes, 
programmers must completely rewrite a project and start from scratch because they have made bad 
design choices at the beginning of development. This chapter addresses some common design ideas 
that will help prevent errors and write world-ready applications.

The chapter will cover the following topics:

•	 Design patterns

•	 Applying design patterns

•	 Domain-driven design

•	 An example of a real-world project (an Amazon clone)

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition.

https://github.com/PacktPublishing/Expert-C-2nd-edition
https://github.com/PacktPublishing/Expert-C-2nd-edition
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Design patterns
Design patterns are a set of well-studied solutions to commonly occurring design situations. These 
patterns provide mechanisms to solve complex problems in a structured and reusable way. Design 
patterns were first introduced by Christopher Alexander, who was an architect and design theorist. In 
1977, he published a book titled A Pattern Language: Towns, Buildings, Construction. His work was later 
adapted by programmers and developers to organize their work, which led to the creation of software 
design patterns. This eventually led to the publication of Design Patterns: Elements of Reusable Object-
Oriented Software by the Gang of Four. The Gang of Four includes Erich Gamma from Eclipse, IBM, 
and Microsoft, Richard Helm from IBM, Ralph Johnson from Xerox, and John Vissides from IBM.

Design patterns are important in software design, as they provide a common language for designers 
to refer to their ideas and proposed solutions. Design patterns allow designers to use ideas already 
tried and produce reproducible code. Being able to do this reduces the time it takes to make code 
and the chances of the code having errors. Design patterns are categorized into creational, structural, 
and behavioral.

As the name suggests, creational design patterns are used during object creation. The most common 
creational patterns include Singleton, which ensures that only one instance of a class is created, and 
Factory, which allows for a superclass to create objects while allowing subclasses to change the type 
of the object being made.

Structural patterns center on ways to combine classes to create larger structures. This group includes 
the Adapter pattern, which allows incompatible classes to work together, and the Composite pattern, 
which allows objects to be combined in tree-shaped structures.

Behavioral patterns focus on the communication between objects and ways to delegate responsibilities. 
This group includes the Observer pattern, which allows for notifications from one object to others, 
and the Command pattern, which separates requests from actions and their execution.

As discussed, design patterns are an essential consideration during the design and implementation 
of software in a way that is maintainable and reliable.

Singleton

The Singleton pattern is a creational design pattern that guarantees that a class has only one instance 
across a system. That instance can then be used as a single point of access. Singleton is one of the most 
well-known and used design patterns.

Many times in a system, having only one instance of a class becomes necessary. This occurs, for example, 
when the class represents a resource of which there is only one instance – a device attached to the 
computer. In this scenario, having multiple instances of this class would lead to potential conflicts as 
they try to interact with the resource.



Design patterns 419

The Singleton pattern attempts to maintain this single instance by ensuring that only one class instance 
can be created and that any component using that class will be redirected to that instance. This is 
done in effect by making the class constructor private and using a static method to access the 
instance, as shown in the Chapter11/ch11-1.cpp.

In code, when the first request for an instance of class is made, the getInstance method creates 
a new instance. After that instance is created, all future calls to getInstance will return the existing 
class instance. In line with this, the constructor is made private to prevent others from creating an 
instance. The copy constructor and copy assignment operators are deleted to prevent an accidental 
copy from happening there.

The Singleton pattern can be beneficial. However, it has some drawbacks, such as introducing a global 
state that can make code harder to understand. Similarly, the implementation presented here is not 
thread-safe. A thread-safe implementation of Singleton does exist.

Factory

The Factory pattern is a creational design pattern that provides mechanisms to create an object 
without explicitly calling out the class of the object that needs to be created. This pattern is helpful in 
scenarios where the class of the object to be created is unknown until the code is executed or when 
the logic needed to create the object is complex, so the code should be abstracted into its own class.

A factory pattern consists of a Creator class, the class that creates the objects, and Product classes, 
which are the classes of the objects to be created. The Creator class provides mechanisms to create 
Product objects without specifying the class of the created object.

The factory patterns have many positive effects, such as reducing the coupling between classes and 
increasing flexibility and extensibility. This comes from the fact that Product classes can be added 
later without changing the code in the Creator class.

On top of this, the factory pattern is also helpful when the logic to create an object is complex, and 
encapsulating it in a separate class can simplify the process of modifying and maintaining that logic. 
This works especially well when complex calculations or external dependencies are present.

The code in Chapter11/ch11-5.cpp shows an implementation of the Factory pattern to 
create two types of objects, used to calculate the factorial of a number.

The AbstractFactorial class is the base class for all factorial implementations in this code. 
Recursive and iterative factorials are different implementations of the function. FactorialFactory 
is the Factory class, and it creates a class that calculates a factorial based on the parameter sent to 
the constructor – I for iterative and R for recursive.

While the factory pattern is an excellent tool to address the aforementioned situations, it also has 
some drawbacks. Those drawbacks include the following:

•	 Increasing code complexity, as the code’s creation now requires multiple classes and methods
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•	 Increasing the coupling, as client classes now need to know about the factory class

•	 Reducing performance by dynamically creating new objects that could have been created statically

Adapter

The Adapter pattern is a structural pattern used to convert an interface into another so that the interface 
user can still connect through it. This idea is analogous to that of an electrical adapter.

In software systems, especially legacy ones, it is common to see classes developed in the past that 
cannot be modified. These classes sometimes need to be used by newer pieces of software that require 
a different interface than the ones these classes provide. Given the impossibility of modifying the 
original class, the Adapter pattern can connect the class and the new client.

To help to solve any given problem, the adapter pattern has three components – the original interface, 
the target interface, and the adapter. The original interface is the interface provided by the class, the 
target interface is the interface that is expected, and the adapter is the intermediary between the two.

Adapters can be implemented in two ways – as a class and as an object. A class adapter inherits from 
both interfaces simultaneously, allowing the adapter to override the original interface. An object 
adapter contains an instance of the original class that can call the original interface as needed.

The code in Chapter11/ch11-2.cpp shows an implementation of a class adapter that adapts the 
Adaptee::sum function to the expected TargetInterface::add function:

As shown here, the adapter pattern can be used in situations where interfaces need to be adapted 
without permanent changes being made to the original interface. This problem appears when adapting 
legacy or third-party interfaces.

Composite

The Composite pattern is a structural design pattern where individual objects and groups of objects can 
be treated similarly. This pattern is useful when a hierarchy of objects and operations must consistently 
be performed over these objects. For example, this pattern can be observed when grouping objects 
in a drawing.

For example, the following diagram shows a hierarchy of objects – a rectangle is an object, group 1 
contains a rectangle, and a triangle is another object. Group 2, which includes the previous group and 
the hexagon, is another object. All these objects have a common set of operations. If we operate group 
2 (i.e., move or delete), that operation must be run on all objects inside the group.
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Figure 11.1 – A composite pattern example

As shown in the preceding diagram, the main idea for the composite pattern is to create nested 
composites of objects that can contain objects or composites of other objects. All the objects in this 
hierarchy share common interfaces. These interfaces allow the user to perform operations consistently 
across the whole composite.

The composite pattern can be used to improve flexibility and extensibility. The hierarchical representation 
allows us to add or remove objects without changing the rest of the code. This pattern can be particularly 
convenient when a hierarchy needs to be created at runtime.

Another positive effect of the composite pattern is to make code more readable and maintainable, as 
some of the code needed to perform the operations can be simplified and abstracted.

The code in Chapter11/ch11-6.cpp shows an implementation of the shape grouping 
composite pattern.

In this code, there are two shapes, Rectangle and Triangle, which can be composed in a 
CompositeShape that contains Shapes. The CompositeShape type also inherits from a shape, 
meaning that CompositeShapes can contain CompositeShapes inside of it.

Even though the composite pattern has many positive effects, it also has some drawbacks. These include 
potentially making code more complex if the objects in the hierarchy are very different, and hence, the 
hierarchy adds more complexity than it can simplify. Similarly, understanding how an individual object 
works can be harder if the code is too abstracted, as it may depend on how the hierarchy operates.

Observer

The Observer pattern is a behavioral design pattern that can establish a one-to-many connection 
among objects. When one object changes, all the other objects are notified of the change so that they 
can take action. This pattern is also known as Publish-Subscribe and Event-Listener.
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When designing software, it is common to find dependencies where changes in one object require 
other objects to perform tasks. This configuration can be seen in scenarios such as the mouse moving 
on the screen, the user pressing a button, or a printer showing an error. The observer pattern shows 
a mechanism to create these relationships.

To achieve this goal, the observer pattern has two main kinds of participants – subject and multiple 
observers. The subject is the object that needs to be observed, and the observers are the objects that 
need to be notified.

Under the observer pattern, the subject keeps a collection of all the observers by providing mechanisms 
for the observers to add themselves to the collection or remove themselves from it. Once in the 
collection, the observer is notified when the subject state changes.

The code in Chapter11/ch11-4.cpp implements the observer pattern for a mouse move 
operation. In this code, MouseMoveSubject collects and notifies all the objects interested in 
being informed when the mouse is moved. MouseEvent includes the necessary information to 
understand the move that happened.

Command

The Command design pattern is a behavioral pattern that encapsulates requests so that the object that 
requests the operation is decoupled from the object that operates. This mechanism allows for the use 
of different request mechanisms, such as queues or logs, and supports operations that can be undone.

The command pattern has four components – Command, Receiver, Invoker, and Client. The 
Command component implements the request to act and serves as a common interface for all clients. 
Receiver implements the actual execution of the action. The Invoker creates and runs commands. 
The Client uses the invoker the run commands.

The code in Chapter11/ch11-7.cpp shows an example of the command pattern used to 
implement the open and save file operations. The command pattern can support implementations of 
features such as undo, as it can store a history of the executed commands. However, it can also have 
some drawbacks, including adding complexity to code if there are too many commands or they are 
already too complex.

Applying design patterns
Design patterns are powerful solutions that can be used to solve common software problems. Given 
the amount of study that has gone into them, they can produce scalable, maintainable, and flexible 
code. Despite this, they must be applied appropriately for the patterns to be useful. The following are 
some considerations to make sure that patterns are applied appropriately.
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The problem

When applying a design pattern, it is essential to consider the problem at hand and all the requirements 
involved. Once understood, they must be contrasted with the patterns being considered and the 
problem they are designed to resolve. Patterns are general solutions, so they may or may not match 
the precise requirements of the problem at hand.

Trade-offs

Each pattern has a series of positive effects and also some drawbacks. When applying a pattern, it is 
important to consider the trade-offs related to code complexity and potential performance issues.

Systemwide impact

When considering patterns, it’s essential to consider the local problem being solved and the higher-
level system being implemented. Particularly, the pattern implementation should fit the overall design 
and not incorporate new complexities, new dependencies, or unnecessary dependencies, given that 
other dependencies are already needed in the system.

Users

The system user and the code being written should be considered when considering patterns. Patterns 
tend to make things simpler. However, they can make them more challenging if not implemented 
correctly. Understanding the level of complexity that users will face after implementing a pattern is 
essential when deciding which pattern to use or whether to use one at all.

Using domain-driven design

Domain-Driven Design (DDD) is an approach to building software that makes it reflect its real-life 
applications’ domain structure. To be able to do this, the approach emphasizes learning about and 
understanding the domain in which the software will exist and using that knowledge to create the 
data structures and algorithms. Eric Evans describes this strategy in the book Domain-Driven Design: 
Tackling Complexity in the Heart of Software.

As mentioned, DDD focuses on understanding the domain. This understanding can come from 
multiple sources, the most common of which is working with domain experts. The theory is that 
once developers have a solid understanding of the domain, they can write software that supports the 
real-life scenarios required in the business. This understanding can, in turn, produce software that 
delivers more value to users and causes less dissatisfaction.

Another advantage of DDD is producing more modular, less coupled, and more cohesive code. That 
is because a thorough understanding of the domain can help develop structures that contain only the 
necessary information and are only connected with the objects relevant to its function.
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As DDD requires interaction between domain experts and development teams, both groups must 
have a common language. This way, both experts and developers can reduce misunderstandings and 
streamline communications. These languages are known as Domain Specific Languages (DSLs). 
Under this language, concepts such as bounded context can be defined. Bounded contexts are areas 
of a domain that are self-contained and have their own rules and behaviors. This bounded context 
results in more modular codes that are easier to evolve and maintain over time.

DDD also puts focus on domain models. Domain models abstract the real-world concepts in a domain. 
Using these abstractions, it is possible to model the domain more straightforwardly so that experts 
and developers can understand it.

Even though DDD can be an excellent approach to software development, it can also be complex. The 
interactions between experts and developers can lead to more complex models than needed, resulting 
in more complex and challenging code maintenance. Given this, balancing the need to understand 
domain details with writing simpler, durable code over time is essential.

An example of a real-world project
To help ground the ideas of design patterns and DDD, we will discuss the implementation of an 
Amazon clone in C++.

Using DDD, the first step is to understand the domain. In this scenario, the domain is e-commerce. 
The idea, then, is to create a piece of software that models electronic commerce and supports users 
buying products online.

As previously mentioned, using bounded context is an essential component of DDD. In this case, we 
can identify the following ones – product management, order processing, and payment processing. 
Each has its own set of rules and constraints and can be considered a separate part of the system.

To begin with, let’s focus on the product management domain. This area includes product listings, 
inventory tracking, and customer feedback processing. Those concepts can be modeled using product, 
inventory, and review.

Let’s start with the product. Since product addition and removal happens frequently, we can model 
each product as a class. The code for this class is shown in Chapter11/ch11-8.cpp.

This code shows how products, electronics, and TV are valid representations of their corresponding 
entities in the domain – that is, each of them seems to have the appropriate properties. However, this 
is a problematic implementation, as it requires the creation of a new class each time a product is added, 
which involves recompilation and redeployment. Instead of this, we need to find a more extensible 
solution. Luckily, this is a well-known problem that has already been studied, and there is a design 
pattern that provides a solution – the builder design pattern. The following code shows a rewrite of 
the previous code using the builder pattern.
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Let’s start with the include as in the previous part:

#include <string>
#include <iostream>

The Product class has the name, description, price, and inventoryLevel properties:

class Product {
    private:
        std::string name;
        std::string description;
        double price;
        int inventoryLevel;

The constructor once again initializes the properties:

    public:
        // Constructor
        Product(std::string name, std::string description,
          double price, int inventoryLevel)
            : name(name), description(description),
            price(price), inventoryLevel(inventoryLevel) {}

The class has the corresponding getters and setters:

        // Getters
        std::string getName() {
            return name;
        }
        std::string getDescription() {
            return description;
        }
        double getPrice() {
            return price;
        }
        int getInventoryLevel() {
            return inventoryLevel;
        }
};

We now create the builder class that includes the necessary properties:

class ProductBuilder {
    private:
        std::string name;
        std::string description;
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        double price;
        int inventoryLevel;

The product builder also contains getters and setters to manipulate those properties:

    public:
        ProductBuilder() {}

        ProductBuilder& setName(std::string name) {
            this->name = name;
            return *this;
        }

        ProductBuilder& setDescription(std::string
          description) {
            this->description = description;
            return *this;
        }

        ProductBuilder& setPrice(double price) {
            this->price = price;
            return *this;
        }

        ProductBuilder& setInventoryLevel(int
          inventoryLevel) {
            this->inventoryLevel = inventoryLevel;
            return *this;
        }

Finally, the product builder contains a build method that takes the values in the product builder 
and uses them to create a product object:

        Product build() {
            return Product(name, description, price,
              inventoryLevel);
        }
};

Now, let’s try creating a product using the product builder. As shown in this code, the way to do that 
is to create a product builder, set all its properties, and then use the build method. Once built, the 
product can be used as usual:

int main() {
    Product product = ProductBuilder()
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        .setName("Samsung TV")
        .setDescription("A 55-inch 4K smart TV from
          Samsung.")
        .setPrice(899.99)
        .setInventoryLevel(10)
        .build();

    // Use the Product object
    std::cout << "Product name: " << product.getName() <<
      std::endl;
    std::cout << "Product description: " <<
      product.getDescription() << std::endl;
    std::cout << "Product price: $" << product.getPrice()
      << std::endl;
    std::cout << "Product inventory level: " <<
      product.getInventoryLevel() << std::endl;

    return 0;
}

As shown in the code, the builder pattern is designed to create complex objects using a step-by-step 
approach that allows for objects of different configurations and variations. In this case, the product 
object can have these multiple configurations.

Now that we have an implementation for the product, let’s implement an inventory. Implementing 
an inventory in this system may seem simple, as an inventory is a collection of products and their 
availability. However, this can be complex in an e-commerce system, as multiple users interact with 
the system and may try to buy the same product. This problem is then a good candidate to use the 
observer pattern. In this case, we can use an observer to help update the inventory. The implementation 
of this is shown as follows.

Let’s start with the necessary includes:

#include <string>
#include <vector>
#include <iostream>
#include <algorithm>

Then, we can create a class product that will be observed. We’ll only declare it at this point and then 
implement it:

class Product;
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Now that we have a product, we can create an Observer class that can be inherited by classes that 
need to observe the product. This class contains a single abstract method used to report updates on 
the product:

class Observer {
public:
    virtual void update(Product* product) = 0;
protected:
    static std::vector<Product*> products;
};
std::vector<Product*> Observer::products;

Now, we can implement the product class, which has the usual properties (name, description, price, 
and inventory level) and a list of observers:

class Product {
    private:
        std::string name;
        std::string description;
        double price;
        int inventoryLevel;
        std::vector<Observer*> observers;

The product class also includes a constructor to initialize the properties:

    public:
        // Constructor
        Product(std::string name, std::string description,
          double price, int inventoryLevel) {
            this->name = name;
            this->description = description;
            this->price = price;
            this->inventoryLevel = inventoryLevel;
        }

There is also a series of getters and setters:

        // Getters and setters
        std::string getName() {
            return name;
        }
        void setName(std::string name) {
            this->name = name;
        }
        std::string getDescription() {
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            return description;
        }
        void setDescription(std::string description) {
            this->description = description;
        }
        double getPrice() {
            return price;
        }
        void setPrice(double price) {
            this->price = price;
        }
        int getInventoryLevel() {
            return inventoryLevel;
        }
        void setInventoryLevel(int inventoryLevel) {
            this->inventoryLevel = inventoryLevel;
            notify();
        }

And the operations attach and detach, allowing observers to list themselves as necessary updates and 
remove themselves from the list:

        //observer pattern methods
        void attach(Observer* observer) {
            observers.push_back(observer);
        }
        void detach(Observer* observer) {
            observers.erase(std::remove(observers.begin(),
              observers.end(), observer), observers.end());
        }

Finally, the product includes a notify function, called by the setters, and it reaches the update 
function on all the observers:

        void notify() {
            for (auto observer : observers) {
                observer->update(this);
            }
        }
};

Now, let’s implement a couple of observers. The first one is Cart, which is defined as a class that 
inherits from the observer and contains a list of products:

class Cart : public Observer {



Designing World-Ready Applications430

    private:
        std::vector<Product*> products;
    public:
        void addProduct(Product* product) {
            products.push_back(product);
            product->attach(this);
        }

As the cart is an observer, it must implement the update method. In this case, the cart removes from 
itself any product that has become unavailable:

        void update(Product* product) {
            // Check if the product is in the cart and
            // remove it if inventory level reaches zero
            for (auto it = products.begin(); it !=
              products.end(); it++) {
                if ((*it) == product && product->
                  getInventoryLevel() == 0) {
                    products.erase(it);
                    break;
                }
            }
        }
        size_t size() {
            return products.size();
        }
};

We can also implement a second observer, the checkout. The checkout includes a list of products and 
the total price:

class Checkout : public Observer {
    private:
        double totalPrice;
        std::vector<Product*> products;

When a product is updated, the checkout recalculates the total price using the new prices of the products:

    public:
        void update(Product* product) {
            // Recalculate total price when inventory level
            // changes
            totalPrice = 0;
            // Loop through all products in the cart and
            // recalculate the total price
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            // This assumes that the cart is already
            // populated with products
            for (auto product : products) {
                totalPrice += product->getPrice();
            }
        }
        void addProduct(Product* product) {
            products.push_back(product);
            product->attach(this);
            update(product);
        }
        double getTotalPrice() {
            return totalPrice;
        }
};

Now, let’s try the code. Let’s create some products:

int main() {
    // Create a product with an initial inventory level of
    // 10
    Product product = Product ("Samsung TV", "A 55-inch 4K
      smart TV from Samsung.", 899.99, 10);

Add the products to the cart and checkout:

    // Create a shopping cart and add the product to the
    // cart
    Cart cart = Cart();
    cart.addProduct(&product);

    // Create a checkout object and add it as an observer
    // of the product
    Checkout checkout = Checkout();
    product.attach(&checkout);

Finally, we can modify the product’s inventory level to see the effect of the cart size and the total price:

    // Reduce the inventory level of the product and
    // observe the effect on the cart and checkout
    product.setInventoryLevel(9);
    std::cout << "Cart size: " << cart.size() << std::endl;
    std::cout << "Total price: $" <<
      checkout.getTotalPrice() << std::endl;
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    // Reduce the inventory level of the product to zero
    // and observe the effect on the cart and checkout
    product.setInventoryLevel(0);
    std::cout << "Cart size: " << cart.size() << std::endl;
    std::cout << "Total price: $" <<
      checkout.getTotalPrice() << std::endl;

    return 0;
}

We’d have to continue going through the bounded context while implementing the Amazon clone. For 
example, we can focus on the context of orders, including address, payment, and status. The domain 
customer should include information, payment methods, and subscriptions. We can also look at 
domain payments, including payment methods such as credit cards, debit cards, and bank transfers. 
Each domain has its own complexities and is interesting to explore. Once the domains have been 
defined and the problems inherited from each are identified, we can consider using design patterns 
if the issues are well known.

Summary
Software development requires meticulous design. In this chapter, we looked at using design patterns to 
help us identify well-known solutions to already-studied problems. We looked at creational, structural, 
and behavioral patterns. Creational patterns allow us to create objects more flexibly. Structural designs 
help us organize things and classes, and behavioral patterns help us manage interactions between objects.

On top of this, we looked at a technique used to facilitate the design of our entities, known as DDD. 
This approach uses domain expertise to model the real-world entities needed to perform operations 
that a system needs to support. This knowledge is usually acquired by interacting with domain experts. 
DDD promotes the use of domain areas so that we can create less coupled and more cohesive entities.

Finally, we showed a partial implementation of an Amazon clone, where we used DDD to identify the 
entities involved. Then, we used design patterns to implement them in a consistent and extensible manner.

In the next chapter, we will continue working on incorporating design patterns in C++ programs, 
including game development, data-intensive applications, and enterprise applications.

Questions
1.	 What are the benefits of using design patterns?

2.	 What is the purpose of creational patterns?

3.	 What is the purpose of structural patterns?

4.	 What is the purpose of behavioral patterns?
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5.	 What is the purpose of DDD?

6.	 Which entities would you identify in the bounded domain payment from the Amazon 
clone example?

7.	 Which pattern would you use to create different payment methods?

Further reading
For further information, refer to the following:

•	 Object-Oriented Analysis and Design with Applications by Grady Booch: https://www.
amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/
dp/ 020189551X/

•	 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al: 
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- 
Oriented/dp/0201633612/

•	 Code Complete: A Practical Handbook of Software Construction by Steve McConnel: https://
www.amazon.com/Code-Complete-Practical-Handbook-Con struction/
dp/0735619670/

•	 Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans: https://
www.amazon.com/Domain-Driven-Design-Tackling- Complexity-Software/
dp/0321125215/

https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/ 020189551X/
https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/ 020189551X/
https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/ 020189551X/
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- Oriented/dp/0201633612/
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- Oriented/dp/0201633612/
https://www.amazon.com/Code-Complete-Practical-Handbook-Con struction/dp/0735619670/
https://www.amazon.com/Code-Complete-Practical-Handbook-Con struction/dp/0735619670/
https://www.amazon.com/Code-Complete-Practical-Handbook-Con struction/dp/0735619670/
https://www.amazon.com/Domain-Driven-Design-Tackling- Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling- Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling- Complexity-Software/dp/0321125215/
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Incorporating Design Patterns 

in C++ Applications

As the previous chapter showed, design patterns are reusable solutions to common problems that 
developers encounter while developing software. Using design patterns, we can make code more 
modular, flexible, and easier to maintain. C++ is commonly used to develop high-performance 
applications. Incorporating design patterns can be beneficial, as they can help make coding more 
efficient, easier to maintain, and less error-prone.

Several design patterns can be used in C++ applications, including creational, structural, and behavioral. 
Creational patterns can be used to make code more efficient and flexible. Structural patterns can 
make coding more organized and better structured. Behavioral patterns can be used to implement 
communication between objects and classes.

In this chapter, we will analyze examples of using design patterns in C++ applications in the following areas:

•	 Design patterns in game development

•	 Design patterns in data-intensive applications

•	 Design patterns in enterprise applications

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter12.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter12
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter12
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Design patterns in game development
This section will discuss common uses of design patterns in game development. We will explore using 
some of the patterns from the previous chapter, combined with the introduction of two new patterns 
(the flyweight pattern and the state pattern).

For this purpose, we’ll implement a hybrid of an action and strategy game, where the player controls a 
group of agents fighting another group of agents. As part of this game, we will use the following patterns:

•	 Singleton: The singleton pattern can be used to manage global resources across the game, such 
as the game manager, the audio system, and the input system.

•	 Factory pattern: The factory pattern can create different game objects, such as agents, weapons, 
and ammunition.

•	 Flyweight pattern: The flyweight pattern can manage game assets, such as terrain, textures, 
and animation.

•	 Observer pattern: The observer pattern can be used to monitor player actions and produce 
the appropriate reactions from the remaining elements in the game.

•	 State pattern: The state pattern can be used to manage the different stages of the game and ensure 
that the elements respond appropriately. This includes menus, gameplay, and game-over screens.

The singleton pattern

Let’s get started with the implementation of this game:

1.	 We’ll start by using the singleton pattern to create a game manager. First, we’ll add the include 
statements:

#include <iostream>
#include <unordered_map>

2.	 Then, we can implement the GameManager class with operations controlling the game. 
Most infrastructures in which the game will run (i.e., a PC or a console) keep the player in 
one game at a time, so it makes sense for GameManager to be a singleton. Given that, we 
can implement it as follows. We will declare GameManager as a private instance of itself 
and a private contractor:

class GameManager {
private:
    static GameManager* instance; // singleton
                                  // instance
    GameManager() {} // private constructor to prevent
                     // direct instantiation
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3.	 We then implement the getInstance method as required by the singleton pattern:

public:
    static GameManager* getInstance() {
        if (instance == nullptr) {
            instance = new GameManager(); // create
             // singleton instance if it doesn't exist
        }
        return instance;
    }

4.	 Finally, we add some functions to manipulate the game, such as start, pause, resume, and end:

    void startGame() {
        std::cout << "Starting the game...\n";
    }

    void pauseGame() {
        std::cout << "Pausing the game...\n";
    }

    void resumeGame() {
        std::cout << "Resuming the game...\n";
    }

    void endGame() {
        std::cout << "Ending the game...\n";
    }
};

5.	 Now that the class is ready, we can try it by adding a main method that accesses the game 
manager and starts, pauses, resumes, and ends the game:

GameManager* GameManager::instance = nullptr; // initialize 
singleton instance to null
int main() {
    GameManager* gameManager =
      GameManager::getInstance(); // get singleton
                                  // instance
    gameManager->startGame(); // start the game
    gameManager->pauseGame(); // pause the game
    gameManager->resumeGame(); // resume the game
    gameManager->endGame(); // end the game

    return 0;
}
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The execution of this code produces the following:
Starting the game...
Pausing the game...
Resuming the game...
Ending the game...

The factory pattern

We can now use the Factory pattern to create a weapon:

1.	 To do this, we will create a Weapon class that includes a name:

class Weapon {
private:
    std::string name;
public:
    Weapon(std::string name) : name(name) {}

    void use() {
        std::cout << "Using " << name << "!\n";
    }
};

2.	 We then use a factory to create new weapons. Note that this is a very simplified version of the 
factory pattern, used this way to reduce the amount of code needed:

class WeaponFactory {
public:
    static Weapon* createWeapon(std::string name) {
        return new Weapon(name);
    }
};

3.	 We can also modify the start of the game to include the creation of the weapon:

    void startGame() {
        std::cout << "Starting the game...\n";
        Weapon* weapon =
          WeaponFactory::createWeapon("Sword");
        weapon->use();
        delete weapon;
    }
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The execution of the program now looks as follows:
Starting the game...
Using Sword!
Pausing the game...
Resuming the game...
Ending the game...

We can now use the flyway pattern to create a target. Since this is a pattern we haven’t discussed before, 
let’s do so now before using it.

The flyway pattern

The flyway pattern is a structural design pattern used to minimize resource utilization and improve 
performance by sharing information among multiple objects. This is achieved by dividing the information 
of an object into two – the intrinsic (invariant) information, which is the same for all instances of the 
object, and the extrinsic (variable) information. This means that the intrinsic information is shared 
by all the objects, while the extrinsic information changes with each one.

A traditional example of the pattern is using characters in a word processing application. In this 
context, each character has two sets of properties. The intrinsic ones are the font, size, and color, and 
the extrinsic ones are the position in the document. In a game context, targets can be implemented 
using this pattern. Many properties of the targets, such as the shape and color, are shared among all 
targets, while each target’s position is individual:

1.	 To implement this pattern, we can use a factory that stores all previous instances of the object 
with the same intrinsic properties and returns them, while creating new models when they 
don’t exist. Let’s look at an implementation in the context of our game.

The Target class contains a property named texture that describes its texture:
class Target {
private:
    std::string texture; // intrinsic state

2.	 The class also includes a constructor and a function that draws the target on the screen:

public:
    Target(std::string texture) : texture(texture) {}

    void draw(int x, int y) {
        std::cout << "Drawing target at (" << x << ",
          " << y << ") with texture: " << texture <<
          std::endl;
    }
};
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//Then a factory class includes a set of existing //targets for 
use if needed.
class TargetFactory {
private:
    static std::unordered_map<std::string, Target*>
      targets; // flyweight pool

3.	 The factory then uses the texture as intrinsic and no properties as extrinsic. This means the 
first instance is returned if a second target with the same texture is requested. If no target with 
that texture exists, a new one is created:

public:
    static Target* getTarget(std::string texture) {
        if (targets.count(texture) == 0) {
          // check if target exists in pool
            targets[texture] = new Target(texture);
              // create new target if it doesn't exist
        }
        return targets[texture];
          // return existing or newly created target
    }
};

4.	 Finally, we initialize the pool as empty:

std::unordered_map<std::string, Target*> TargetFactory::targets 
= {}; // initialize flyweight
                             // pool

5.	 Now that we have the target, we can modify the Weapon class so that targets appear once the 
weapon is used:

    void use() {
        Target* target =
          TargetFactory::getTarget("red");
        target->draw(10, 10);
        std::cout << "Using " << name << "!\n";
    }

With all these modifications in place, the program produces the following output:
Starting the game...
Drawing target at (10, 10) with texture: red
Using Sword!
Pausing the game...
Resuming the game...
Ending the game...
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As mentioned at the beginning of the section, we can continue adding patterns such as observer for 
the reactions and state for better state management. Other patterns can also be useful, depending on 
the requirements of the game.

Design patterns in data-intensive applications
This section will discuss the common uses of design patterns in data-intensive applications. We will 
not select patterns from those in the previous section to show as many patterns as possible. However, 
the patterns included in the previous section can have applications in data-intensive applications.

In this context, we will explore a data-intensive application that provides a real-time stock process and 
allows users to perform buy and sell operations. The system uses a database to store information and 
a C++ API to allow users to perform the operations. The performance of this application is key, as a 
small time difference can result in big monetary losses. To implement this application, we’ll consider 
five design patterns:

•	 Proxy pattern: The proxy pattern can limit access to information. For example, it can be used 
to check users’ permissions and return results based on the customer level of access, from live 
data to a proxy date with a time delay.

•	 Decorator pattern: The decorator pattern can add information to stock objects. This information 
can include historical performance, forecasting, currency exchanges, and so on.

•	 Iterator pattern: The iterator pattern can be used to iterate over sets of values and perform 
operations such as calculating the total value of a portfolio.

•	 Adapter pattern: The adapter pattern can provide a uniform interface for multiple sources 
of stock information – for example, the different interfaces provided by other markets and 
financial institutions.

•	 Command pattern: The command pattern can be used to encapsulate the steps needed to 
perform the buy and sell operations in a way that they can be undone as needed.

The proxy pattern

Let’s start by using the proxy pattern to cache the stock and reduce the need to access the database. 
The proxy pattern is another new one, so let’s discuss it before using it.

The proxy pattern is a structural pattern that provides a placeholder for another object to control 
access to it. The proxy, then, acts as an intermediary between the user of the object and the actual 
object. This allows the proxy to provide additional or restricted functionality compared to accessing 
the object directly.

This pattern helps protect objects that can be expensive or need to be protected from access. It can also 
be added to provide functionality, such as logging access to the object or caching the results. In the 
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context of the stock application, we will use the proxy to cache and restrict access to the information. 
The following is a reference implementation:

1.	 Let’s start by adding the necessary include statements:

#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>

2.	 Then, we define a class that contains the symbols and stock prices. This class will be an interface 
for any source providing stock information:

// Subject Interface
class StockData {
public:
    virtual ~StockData() {}
    virtual std::vector<std::string> getSymbols() = 0;
    virtual float getPrice(const std::string& symbol)
      = 0;
};

3.	 Now that we have the interface, we will implement the real subject – in this case, a MySQL 
database that contains the live data, but it is expensive to access and can experience performance 
degradation if too many clients access it simultaneously:

// Real Subject
class MySQLDatabase : public StockData {

This class contains the SQL operations needed to get the symbols available:
public:
    std::vector<std::string> getSymbols() override {
        // Query the database for the list of symbols
        // here
        std::vector<std::string> symbols = {"AAPL", "MSFT"};
        return symbols;
    }

It also contains a method to return the price of a given symbol:
    float getPrice(const std::string& symbol) override {
        // Query the database for the stock price here
        std::cout << "Retrieving stock price for " <<
        symbol << " from MySQL database" << std::endl;
        float price = 0.0f;
        // ...



Design patterns in data-intensive applications 443

        return price;
    }
};

4.	 Now that we have the interface and object we want to protect using a proxy, we can define it. 
The proxy implements the same interface as the main object, which is supposed to provide 
equivalent functionality:

// Proxy
class StockDataProxy : public StockData {

This proxy will be used to cache the stock data, so it has a reference to the main object if the 
data is unavailable and a map to cache the already available data:

private:
    StockData* realSubject;
    std::unordered_map<std::string, float> cache;

public:
    StockDataProxy(StockData* realSubject) :
      realSubject(realSubject) {}

For example, we’ll assume that the symbols can be updated, so when a client requests all the 
symbols, the proxy returns them from the main object:

    std::vector<std::string> getSymbols() override {
        return realSubject->getSymbols();
    }

5.	 On the other hand, when the client requests price information, the proxy tries to access the 
information from the cache. If the price is present in the cache, the proxy returns it. If the 
information is not cached, it’s retrieved from the main object and stored in the cache. A more 
advanced implementation of this idea would include an expiration for the cache to ensure the 
price information doesn’t become stale. We won’t add that here to simplify the code:

    float getPrice(const std::string& symbol) override {
        // Check if the stock price is in the cache
        auto it = cache.find(symbol);
        if (it != cache.end()) {
            std::cout << "Retrieving stock price for "
              << symbol << " from proxy cache" <<
              std::endl;
            return it->second;
        }

        // If the stock price is not in the cache,
        // forward the request to the real subject



Incorporating Design Patterns in C++ Applications444

        float price = realSubject->getPrice(symbol);
        cache[symbol] = price;  // Update the proxy
                                // cache
        return price;
    }
};

6.	 Now that we have all the pieces in place, we can use the proxy to obtain the information needed:

// Client
int main() {
    StockData* stockData = new StockDataProxy(new
      MySQLDatabase());

    // Retrieve the price of MSFT twice
    std::cout << "Price of MSFT: " << stockData->
      getPrice("MSFT") << std::endl;
    std::cout << "Price of MSFT: " << stockData->
      getPrice("MSFT") << std::endl;

    delete stockData;
    return 0;
}

This program should return the following:
Price of MSFT: Retrieving stock price for MSFT from MySQL 
database
0
Price of MSFT: Retrieving stock price for MSFT from proxy cache
0

As shown in the output, the first time the client requests the price for MSFT, it’s returned from 
the database, and the second time, it’s returned from the cache in the proxy.

Let’s move on to the next pattern.

The decorator pattern

In this example, we will use the decorator pattern to provide stock information in euros instead of 
dollars. Before implementing it, let’s discuss the decorator pattern.

The decorator pattern is a structural design pattern used to dynamically extend the functionality of 
objects without the need to modify the original code. This causes the objects to acquire extra behaviors 
at runtime. To achieve this, a decorator class is created. The decorator wraps the original and adds 
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the new functionality while delegating the functions that the original object can perform back to it. 
Let’s implement this in the context of the stock application:

1.	 As usual, let’s start with the include statements:

#include <iostream>
#include <string>

2.	 We will reuse the previous part’s simplified version of the StockPrice interface. This interface 
now allows for the return of a stock price:

// Component Interface
class StockPrice {
public:
    virtual ~StockPrice() {}
    virtual float getPrice(const std::string& symbol)
      = 0;
};

3.	 For this example, we’ll return the prices directly instead of simulating access from a database 
to get an actual number of the given stocks:

// Concrete Component
class StockPriceData : public StockPrice {
public:
    float getPrice(const std::string& symbol) override {
        // Get the stock price from a data store or
        // web service here
        float price = 0.0f;
        if (symbol == "AAPL") {
            price = 134.16f;
        } else if (symbol == "MSFT") {
            price = 252.46f;
        } else if (symbol == "GOOG") {
            price = 2362.01f;
        }
        return price;
    }
};

4.	 Now, let’s implement the ExchangeRate interface. This interface will represent objects that 
can return the exchange rate between two currencies:

// Component Interface
class ExchangeRate {
public:
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    virtual ~ExchangeRate() {}
    virtual float getRate(const std::string&
    fromCurrency, const std::string& toCurrency) = 0;
};

5.	 We can create a class that implements the exchange rate functionality with that interface. To 
simplify the code, we will hardcode an exchange rate of 1.5. A full implementation would 
consider the from and to currencies and use a service to obtain the exchange rate:

// Concrete Component
class ExchangeRateData : public ExchangeRate {
public:
    float getRate(const std::string& fromCurrency,
      const std::string& toCurrency) override {
        // Query the external API for the exchange
        // rate here
        std::cout << "Retrieving exchange rate for "
          << fromCurrency << " to " << toCurrency <<
          " from external API" << std::endl;
        float rate = 1.5f;
        // ...
        return rate;
    }
};

6.	 We have the functionality now, so we can obtain the stock price and exchange rate. Using a 
decorator, we can augment the stock price calculation to include exchange rates. The decorator 
inherits from StockPrice, as it implements the ability to return a stock price when given 
a symbol:

// Decorator
class StockPriceDecorator : public StockPrice {

7.	 The decorator includes an instance of the original stock price calculator, as it still needs to use 
it to obtain the prices:

protected:
    StockPrice* component;

public:
    StockPriceDecorator(StockPrice* component) :
      component(component) {}

    float getPrice(const std::string& symbol) override {
        return component->getPrice(symbol);
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    }
};

8.	 With the decorator interface available, we can create a concrete implementation that inherits 
from the decorator (and, hence, also from StockPrice):

// Concrete Decorator
class StockPriceExchangeRateConverter : public 
StockPriceDecorator {

9.	 When calculating the stock price, the decorator uses the main object combined with the 
exchange rate calculator and augments the result, returning the value in euros instead of dollars:

public:
    StockPriceExchangeRateConverter(StockPrice*
    component, ExchangeRate* exchangeRate)
        : StockPriceDecorator(component),
          exchangeRate(exchangeRate) {}

    float getPrice(const std::string& symbol) override {
        float price = component->getPrice(symbol);
        float rate = exchangeRate->getRate("USD",
          "EUR"); // Convert to EUR
        float convertedPrice = price * rate;
        return convertedPrice;
    }

private:
    ExchangeRate* exchangeRate;
};

10.	 With all the pieces in place, we can now run the code to obtain the price of AAPL and MSFT 
in euros:

int main() {
    StockPrice* stockPrice = new
      StockPriceExchangeRateConverter(new
      StockPriceData(), new ExchangeRateData());

    std::cout << "Price of AAPL in EUR: " <<
      stockPrice->getPrice("AAPL") << std::endl;
    std::cout << "Price of MSFT in EUR: " <<
      stockPrice->getPrice("MSFT") << std::endl;

    delete stockPrice;
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    return 0;
}

This code returns the following:
Retrieving exchange rate for USD to EUR from external API
Price of AAPL in EUR: 201.24

Retrieving exchange rate for USD to EUR from external API
Price of MSFT in EUR: 378.69

This, as expected, is the stock prices in euros.

The iterator pattern

Finally, we’ll show an example of using the iterator pattern in the app. The iterator pattern is a behavioral 
design pattern that can access collection elements without exposing the underlying mechanism to 
obtain the values. This means that the transversal is separated from the implementation of the data 
storage, allowing for different transversal methods to be used on the same collection. In the context of 
the stocks app, we could combine the stock price between cached and not cached data, or return the 
data by combining different sources, such as markets. To simplify the implementation, we will represent 
the stocks in an array to focus the code on the iterator pattern. The code for this implementation can 
be found in Chapter12/Iterator.cpp on GitHub.

This code outputs the following:

Price of AAPL: 134.16
Price of MSFT: 252.46
Price of GOOG: 2362.01

This is the list of stocks and prices stored in the underlying structure.

Design patterns in enterprise applications
This section will discuss common uses of design patterns in enterprise applications. We will again 
explore different patterns to those mentioned before, even though those patterns can also have 
applications in this domain. For this section, we’ll use a Customer Relationship Management (CRM) 
application to create and manage user accounts, as a driving example. In this context, let’s consider 
the following five patterns:

•	 Service-Oriented Architecture (SOA): The SOA pattern separates responsibilities for different 
tasks. Each task is implemented by an independent, reusable object that is easier to deploy 
and reuse.
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•	 Dependency Injection (DI): The DI pattern can manage object dependencies. Objects are 
created using a container that can inject dependencies and manage their life cycle, making it 
easier to orchestrate complex operations and test complex systems.

•	 Model-View-Controller (MVC): The MVC pattern can be used to separate the data layers 
(model), the user interface (view), and the management of inputs and outputs (controller).

•	 Event-Driven Architecture (EDA): The EDA pattern can manage customer creation or deletion 
events. These events are used by different systems that need to take action based on the actual 
event. This pattern allows for looser coupling and more effortless scalability.

•	 Repository: The repository pattern can be used to encapsulate access to data. This allows an 
application to access data without being tied to a particular data source or technology.

SOA

This pattern is more complex and requires multiple components to be implemented, making them 
hard to represent in simple code. For that reason, we’ll use one example in this section, which can be 
found in Chapter12/SOA.cpp.

The output of this program is as follows:

Customer Account for johndoe@example.com

Note how all the operations in this application are independent of each other. Each service is loosely 
coupled, which means they can be used by other applications as needed.

Summary
In this chapter, we discussed the application of design patterns to three main scenarios – games, 
data-intensive applications, and enterprise applications. As mentioned in the previous chapter, design 
patterns play a key role in performant, scalable applications that will be easy to modify in the future. 
As we saw in the different sections, some patterns are used in some areas more than others, and some 
require more complex implementations than others.

Given the extensive number of patterns and situations that can apply, we studied the application of 
eight patterns to eight different scenarios across the three domains. As you continue learning about 
patterns and domains, consider reviewing how patterns can apply to those.

In the next chapter, we will move to a new aspect of software development – networking and security. 
There, we will discuss ways to make your program work across different computers and how to write 
applications that keep information safe and systems protected from malicious actors.
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Questions
1.	 What design patterns can be used in games?

2.	 What design patterns can be used in data-intensive applications?

3.	 What design patterns can be used in enterprise applications?

4.	 How can the flyweight pattern be used to reduce resource consumption?

5.	 How can the proxy pattern be used to cache data?

6.	 How can the decorator pattern be used to augment the functionality of an object?

7.	 What is the purpose of SOA?

8.	 What are the components of the MVC pattern?

Further reading
For further information, refer to the following:

•	 Object-Oriented Analysis and Design with Applications by Grady Booch: https://www.
amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/
dp/020189551X/

•	 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al: 
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- 
Oriented/dp/0201633612/

•	 Code Complete: A Practical Handbook of Software Construction by Steve McConnel: https://
www.amazon.com/Code-Complete-Practical-Handbook-Construction/
dp/0735619670/

•	 Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans: https://
www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/
dp/0321125215/

https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X/
https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X/
https://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X/
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- Oriented/dp/0201633612/
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object- Oriented/dp/0201633612/
https://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
https://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
https://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215/
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Networking and Security

Network programming continues to become more and more popular. Most computers are connected 
to the internet, and more and more applications now rely on being connected. From simple program 
updates that might require an internet connection to applications that depend on a stable internet 
connection, network programming is necessary for application development.

Designing a network application is an excellent addition to your skillset as a programmer. This chapter 
will discuss the standard networking extension and see what is needed to implement networking-
supported programs. We will focus on the main principles of networking and the protocols driving 
communication between devices.

Once an application uses a network, one of the significant challenges developers face is keeping the 
application secure. Whether it’s related to the input data being processed or coding with proven 
patterns and practices, the application’s security must be the top priority. This chapter will also visit 
the techniques and best practices used to write secure C++ programs.

We will cover the following topics in this chapter:

•	 Introduction to networks, the OSI model, and network programming using sockets

•	 Understanding network protocols

•	 Designing an echo server

•	 Securing applications

•	 Securing network applications

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. 
You can find the source files used in this chapter at the following GitHub repository: https://
github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter13

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter13
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter13
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Introduction to networks, the OSI model, and network 
programming using sockets
Two or more computers can interact using networks. For example, computers connect to the internet 
using a hardware component called a network adapter or a network interface controller (NIC). The 
operating system installed on the computer provides drivers to work with the network adapter—that 
is, to support network communications. The computer must have a network adapter installed with 
an OS that supports the networking stack.

By stack, we mean the layers of modifications the data goes through when traveling from one computer 
to another. For example, opening a website on a browser renders data gathered through the network. 
That data is received as a sequence of zeros and ones and then transformed into a more intelligible 
form for the web browser. Layering is essential in networking. Network communication as we know 
it today consists of several layers conforming to the Open Systems Interconnection (OSI) model 
we’ll discuss here. The NIC is a hardware component that supports the physical and data link layers 
of the OSI model.

The OSI model

The OSI model aims to standardize communication functions between various devices that differ in 
structure and organization. These standards are needed for both hardware and software. For example, 
a smartphone using an Intel CPU running on Android differs from a MacBook computer running 
on macOS. The difference is not the names and companies behind the aforementioned products 
but the structure and organization of hardware and software. A set of standardized protocols and 
intercommunication functions is proposed as the OSI model to account for differences in network 
communication. The layers that we mentioned earlier are presented here:

•	 Application layer

•	 Presentation layer

•	 Session layer

•	 Transport layer

•	 Network layer

•	 Data-link layer

•	 Physical layer

A more simplified model includes the following four layers:

•	 Application: This processes the details of the particular application

•	 Transport: This provides data transmission between two hosts

•	 Network: This handles the transfer of packets around the network
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•	 Link: This includes the device driver in the operating system and the network adapter inside 
the computer

The link (or data-link) layer consists of the device driver in the operating system and the network 
adapter in the computer.

Suppose you use a desktop messaging application such as Skype or Telegram to understand these 
layers. When you type in a message and hit the Send button, the message goes through the network 
to its destination. In this scenario, let’s suppose you are sending a text message to your friend with 
the same application installed on their computer. This process might seem simple from a high-level 
perspective, but it is sophisticated, and even the most straightforward message undergoes many 
transformations before reaching its destination. First, when you hit the Send button, the text message 
gets converted into binary form. The network adapter operates with binaries. Its basic function is to 
send and receive binary data through the medium. Besides the actual data sent over the network, the 
network adapter should know the destination address of the data.

The destination address is one of many properties appended to user data. By user data, we mean the 
text you typed and sent to your friend. The destination address is the unique address of your friend’s 
computer. The typed text is packaged with the destination address and other information necessary 
to be sent to its target.

Your friend’s computer (including the network adapter, OS, and messaging application) receives and 
unpackages the data. The messaging application renders the text in that package on the screen.

Almost every OSI layer mentioned at the beginning of this chapter adds its specific header to the data 
sent over the network. The following diagram depicts how the data from the application layer gets 
stacked with headers before it’s moved to its destination:

Figure 13.1 – OSI model
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Look at the first segment (the application layer) in the preceding diagram. The data is the text you’ve 
typed into the messaging application to send to your friend. The data is packaged with headers specific 
to each OSI model layer in each layer, down to the physical layer. On the other side, the computer 
receives and retrieves the packaged data. Each layer removes the header specific to that layer and moves 
the rest of the package to the next layer. Finally, the data reaches your friend’s messaging application.

As programmers, we are mostly concerned with writing applications that can send and receive data 
over a network without delving into the details of layers. However, we need a minimal understanding 
of how layers augment higher-level data with headers. Let’s learn how a network application works 
in practice.

Network applications under the hood

A network application on a device communicates with other applications installed on different devices 
through the network. In this chapter, we’ll discuss applications working together through the internet. 
A high-level overview of this communication can be seen in the following diagram:

Figure 13.2 – Network applications

At the lowest level of communication is the physical layer, which transmits bits of data through the 
medium. In this case, a medium is the network cable (consider Wi-Fi communication too). The user 
application abstracts from the lower levels of network communication. The operating system provides 
everything a programmer needs. The operating system implements the low-level details of the network 
communication, such as the Transmission Control Protocol/Internet Protocol (TCP/IP) suite.

Whenever an application needs to access the network, whether a local area network (LAN) or the 
internet, it requests the operating system to provide an access point. The OS offers a gateway to the 
network by utilizing a network adapter and specific software that speaks to the hardware.
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Here’s a more detailed illustration of what this looks like:

Figure 13.3 – Connecting multiple computers

The operating system provides an API to work with its networking subsystem. The main abstraction 
that programmers should care about is the socket. We can treat a socket as a file that sends its contents 
through the network adapter. Sockets are the access points that connect two computers via the network, 
as depicted in the following diagram:
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Figure 13.4 – Sockets

From the programmer’s perspective, the socket is a structure that allows us to implement data through 
the network in applications. The socket is a connection point that either sends or receives data; that is, 
an application receives data via sockets too. The operating system provides a socket for the application 
upon request. An application can have more than one socket. Client applications in the client-server 
architecture usually operate with a single socket. Now, let’s delve into socket programming in detail.

Programming network applications using sockets

As we mentioned previously, a socket is an abstraction over network communication. We treat them as 
regular files—everything written to a socket is sent via the network to its destination by the operating 
system. Everything received via the network is written into the socket by the operating system. This 
way, the OS provides two-way communication for network applications.

Let’s suppose that we run two different applications working with the network. For example, we open 
a web browser to surf the web and use a messaging application (such as Skype) to chat with friends. 
The web browser represents a client application in a client-server network architecture. In this case, 
the server is the computer that responds to the requested data. For example, we type an address into 
the web browser’s address bar and see the resulting web page on the screen. The web browser requests 
a socket from the operating system whenever we visit a website. In terms of coding, the web browser 
creates a socket using the API provided by the OS. We can describe the socket with a more specific 
prefix: a client socket. For the server to process client requests, the web server’s computer must listen 
for incoming connections; the server application creates a server socket to listen to connections.

Whenever a connection is established between the client and server, data communication can proceed. 
The following diagram depicts a web browser request to facebook.com:

facebook.com


Understanding network protocols 457

Figure 13.5 – Browser requests

Pay attention to the group of numbers in the preceding diagram. This is called an IP address. The IP 
address is the location we need to transfer data to the device. There are billions of devices connected 
to the internet. Each device exposes a unique numeric value representing its address to make a unique 
distinction between them. A connection is established using the IP protocol, which we call an IP address. 
An IP address consists of four groups of 1-byte-length numbers. Its dotted-decimal representation is 
in the form XXXX, where X is the 1-byte number. The values at each position range from 0 to 255. 
More specifically, it’s a version 4 IP address. Modern systems use a version 6 address, a combination 
of numbers and letters, providing a wider range of available address values.

When creating a socket, we assign the IP address of the local computer to it; that is, we’re binding the 
socket to the address. When using the socket to send data to another device in the network, we should 
set its destination address. Another socket on that device holds the destination address. To create a 
connection between two devices, we use two sockets. Reasonable questions might arise—What if 
several applications run on the device? What if we run several applications, each creating a socket for 
itself? Which one should receive the incoming data?

To answer these questions, take a good look at the preceding diagram. You should see a number after 
the colon at the end of the IP address. That’s called the port number. A port number is a 2-byte-length 
number assigned to the socket by the operating system.

Because of the 2-byte length limit, the OS cannot assign more than 65,536 unique port numbers to 
sockets; you cannot have more than 65,536 simultaneously running processes or threads communicating 
via the network (however, there are ways to reuse sockets). Apart from that, port numbers are reserved 
for specific applications. These ports are called well-known ports and range from 0 to 1023. They are 
reserved for privileged services. For example, the Hyper-Text Transfer Protocol (HTTP) server’s 
port number is 80. That doesn’t mean it can’t use other ports.

Understanding network protocols
A network protocol is a collection of rules and data formats that define intercommunication between 
applications. For example, a web browser and server communicate via HTTP. HTTP is more 
like a set of rules than a transport protocol. Transport protocols are at the base of every network 
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communication. An example of a transport protocol would be TCP. When we mentioned the TCP/
IP suite, we meant the implementation of TCP over IP. We can consider the IP protocol as the heart 
of internet communications.

It provides host-to-host routing and addressing. Everything we send or receive online is packaged as 
an IP packet. The following diagram shows what an IPv4 packet looks like. In this context, an octet 
refers to a group of 8 bits equivalent to 1 byte:

Figure 13.6 – IP packet

The IP header weighs 20 bytes. It combines necessary flags and options for delivering a packet from 
the source address to the destination address. In the domain of the IP protocol, we usually call a 
packet a datagram. Each layer has its specific terms for packets. More careful specialists talk about 
encapsulating TCP segments into IP datagrams. It’s totally fine to call them packets.

Each protocol at the higher level appends meta-information to data that is sent and received via the 
network; for example, TCP data is encapsulated in an IP datagram. Besides this meta-information, 
the protocol also defines the underlying rules and operations that should be performed to complete 
a data transfer between two and more devices.

Tip
You can find more detailed information in specific documents called Requests for Comments 
(RFCs). For example, RFC 791 describes the IP protocol, while RFC 793 describes TCP.

Many popular applications—file transfer, email, web, and others—use TCP as their primary transport 
protocol. For example, the HTTP protocol defines the format of messages transferred from the client 
to the server and vice versa. The actual transfer happens using a transport protocol—in this case, TCP. 
However, the HTTP standard doesn’t limit TCP to being the only transport protocol.
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The following diagram illustrates the TCP header being appended to data before passing it to the 
lower level:

Figure 13.7 – TCP header

Pay attention to the source port number and destination port number. Those are the unique identifiers 
that differentiate between running processes in operating systems. Also, take a look at the sequence 
and acknowledgment numbers. They are TCP-specific and used for transmission reliability.

In practice, TCP is used due to its following features:

•	 Retransmission of lost data

•	 In-order delivery

•	 Data integrity

•	 Congestion control and avoidance

IP is not reliable. It doesn’t care for lost packets, so TCP handles the retransmission. It marks each 
packet with a unique identifier that the other transmission side should acknowledge. If the sender 
does not receive an acknowledgment code (ACK) for a packet, the protocol will resend the packet 
(a few times). It is also crucial to receive packets in the proper order. TCP reorders received packets 
to represent correctly ordered information. That’s why, when listening to music online, we don’t listen 
to the end of the song at its beginning.

Retransmission of packets might lead to another problem known as network congestion. This 
happens when a node doesn’t manage to send packets fast enough. Packets get stuck for a while, 
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and unnecessary retransmission increases their number. Various implementations of TCP employ 
algorithms for congestion avoidance.

TCP maintains a congestion window—a factor determining how much data can be sent out. TCP slowly 
increases the congestion window after initializing the connection using the slow-start mechanism. 
Though the protocol is described in the corresponding RFC, operating systems implement many 
mechanisms differently.

On the other side of the fence is the User Datagram Protocol (UDP). The main difference between 
these two is that TCP is reliable. This means that, in the case of lost network packets, it resends the same 
packet until it reaches its designated destination. Because of its reliability, data transmissions via TCP 
are considered to take longer than UDP. UDP doesn’t guarantee we can deliver packets properly and 
without losses. Instead, developers should resend, check, and verify the data transmission. Applications 
that require fast communication tend to rely on UDP. For example, a video call application or an online 
game uses UDP because of its speed. Even if a couple of packets get lost during the transmission, it 
won’t affect the user experience. It’s better to have small glitches while playing a game or talking to a 
friend in a video chat than to wait seconds for the next frame of the game or video.

Designing an echo server
For this example, we will implement an echo server. An echo server is a network server that echoes back 
any data it receives from a client. In other words, when a client sends a message to an echo server, the 
server returns the same message to the client. The purpose of an echo server is to demonstrate basic 
communication between a client and a server. The echo server operates based on a simple request-
response model. When a client connects to the server, it establishes a communication channel with 
the server. The client can then send a message to the server over this channel. The server receives 
the message, processes it, and sends the same message back to the client. The client can then receive 
and display the echoed message. Echo servers are commonly used for testing network connectivity, 
troubleshooting, and verifying the integrity of network communication. They allow developers to 
check whether the network functions properly by verifying that the data sent and received remains 
intact during transmission.

Additionally, echo servers can serve as a starting point for building more complex server applications. 
They provide a foundation for understanding the basics of socket programming. They can be 
expanded to handle more sophisticated tasks, such as processing and responding to specific requests 
or implementing protocols such as HTTP or the File Transfer Protocol (FTP).

We start by including the necessary header files, such as iostream for input/output operations, 
string for string handling, cstring for string manipulation functions, sys/socket.h for socket 
programming, arpa/inet.h for manipulating IP addresses, and unistd.h for closing sockets:

#include <iostream>
#include <string>
#include <cstring>
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#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>

We define two constants—BUFFER_SIZE to specify the buffer size for receiving and sending data, 
and PORT to specify the port number on which the server will listen for incoming connections:

const int BUFFER_SIZE = 1024;
const int PORT = 8080;

The main function begins. We declare variables to store the server socket, client socket, server address, 
client address, and a buffer for receiving and sending data:

int main() {
    int serverSocket, clientSocket;
    sockaddr_in serverAddress, clientAddress;
    char buffer[BUFFER_SIZE];

We create a socket using the socket system call. The function takes three arguments—the address 
family (AF_INET for IPv4), the socket type (SOCK_STREAM for TCP), and the protocol (0 for the 
default protocol). If the socket creation fails, we print an error message and return 1:

    // Create socket
    serverSocket = socket(AF_INET, SOCK_STREAM, 0);
    if (serverSocket == -1) {
        std::cerr << "Failed to create socket." << std::endl;
        return 1;
    }

Next, we set up the server address structure. We set the address family to AF_INET, the IP address 
to INADDR_ANY (which means the server will bind to all available network interfaces), and the port 
number to the one specified in the PORT constant:

    // Set up the server address
    serverAddress.sin_family = AF_INET;
    serverAddress.sin_addr.s_addr = INADDR_ANY;
    serverAddress.sin_port = htons(PORT);

We bind the socket to the server address using the bind system call. If the binding fails, we print an 
error message and return 1:

    // Bind socket to address
    if (bind(serverSocket, (struct sockaddr*)
      &serverAddress, sizeof(serverAddress)) < 0) {
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        std::cerr << "Failed to bind socket." << std::endl;
        return 1;
    }

The server enters the listening state using the listen system call. We pass the server socket and the 
maximum number of connections that can be waiting (5 in this case):

    // Listen for incoming connections
    listen(serverSocket, 5);

We print a message indicating that the server is listening on the specified port:

    std::cout << "Server listening on port " << PORT <<
      std::endl;

The server waits for an incoming connection using the accept system call. It blocks until a client 
connects to the server. Once a client connection is established, a new socket is created for communication 
with that client. If the accept call fails, we print an error message and return 1:

    // Accept incoming connection
    socklen_t clientAddressLength = sizeof(clientAddress);
    clientSocket = accept(serverSocket, (struct
      sockaddr*)&clientAddress, &clientAddressLength);
    if (clientSocket < 0) {
        std::cerr << "Failed to accept a connection." <<
          std::endl;
        return 1;
    }

We print a message indicating that a client has connected, along with the client’s IP address:

    std::cout << "Client connected: " <<
      inet_ntoa(clientAddress.sin_addr) << std::endl;

The server enters a loop to receive data from the client and send it back. We use the recv system 
call to receive data from the client into the buffer. The function returns the number of bytes received, 
0 if the client disconnects, or -1 if an error occurs. If data is received successfully, we use the send 
system call to return the received data to the client. We also print the number of bytes received and sent:

    // Receive and send data back to the client
    ssize_t bytesRead;
    while ((bytesRead = recv(clientSocket, buffer,
      BUFFER_SIZE, 0)) > 0) {
        send(clientSocket, buffer, bytesRead, 0);
        std::cout << "Received and sent " << bytesRead << "
          bytes." << std::endl;
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    }

We check the return value of recv outside the loop. If it’s 0, the client has disconnected, so we print 
a corresponding message. If it’s -1, it indicates an error, so we print an error message and return 1:

    if (bytesRead == 0) {
        std::cout << "Client disconnected." << std::endl;
    } else if (bytesRead == -1) {
        std::cerr << "Error in receiving data." <<
          std::endl;
        return 1;
    }

Finally, we close the client and server sockets using the close system call:

    // Close the sockets
    close(clientSocket);
    close(serverSocket);

    return 0;
}

This completes the code for the echo server. Note that this is a basic example and does not extensively 
handle multiple concurrent connections or error handling. It is recommended to add appropriate 
error handling and enhance the server based on your specific requirements.

Note that we’ve kept each component independent from the others to make it easier to try separately. 
A full implementation would require using one component inside another to achieve full functionality.

Securing applications
Compared to many languages, C++ is a little harder to master regarding secure coding. Plenty of 
guidelines provide advice regarding how to and how not to avoid security risks in C++ programs. One 
of the most popular issues discussed in Chapter 1, Building C++ Applications, is using preprocessor 
macros. The example we used had the following macro:

#define DOUBLE_IT(arg) (arg * arg)

Improper use of this macro leads to logic errors that are hard to spot. In the following code, the 
programmer expects to get 16 printed to the screen:

int res = DOUBLE_IT(3 + 1);
std::cout >> res >> std::endl;
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The output is 7. The issue here is with the missing parentheses around the arg parameter; that is, the 
preceding macro should be rewritten as follows:

#define DOUBLE_IT(arg) ((arg) * (arg))

Although this example is popular, we strongly suggest avoiding macros as much as possible. C++ 
provides many constructs that can be processed at compile time, such as constexpr, consteval, 
and constinit—even if statements have a constexpr alternative. Use them if you need compile-
time processing in your code.

Although we don’t want you to become paranoid about security issues, you should be careful almost 
everywhere. Learning the language’s quirks and oddities will avoid most of these issues. Also, a good 
practice would be to use the newest features that replace or fix the disadvantages of previous versions. 
For example, consider the following create_array() function. Remember not to return pointers 
or references to local variables:

double* create_array()
{
double arr[10] = {0.0};
return arr;
}

The caller of the create_array() function is left with a pointer to the non-existing array because 
arr has an automatic storage duration. We can replace the preceding code with a better alternative 
if required:

#include <array>;
std::array<double> create_array()
{
    std::array<double> arr;
    return arr;
}

Strings are treated as character arrays and are the reason behind many buffer overflow issues. One of 
the most frequent issues is writing data into a string buffer while ignoring its size. The std::string 
class is a safer alternative to C strings in that regard. However, when supporting legacy code, you should 
be careful when using functions such as strcpy(), as shown in the following example:

#include <cstdio>
#include <cstring>
int main()
{
   char small_buffer[4];
   const char* long_text = "This text is long enough to
     overflow small buffers!";
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   strcpy(small_buffer, long_text);
}

Given that, legally, small_buffer should have a null terminator at the end of it, it will only cope 
with the first three characters of the long_text string. However, the following happens after 
calling strcpy():

Figure 13.8 – strcopy

It would help if you were even more careful when implementing network applications. Most data 
coming from client connections should be handled properly, and buffer overflows are not rare. Let’s 
learn how to make network applications more secure.

Securing network applications
In the previous section of this book, we designed a network application that receives client data using 
socket connections. Besides the fact that most viruses that penetrate the system are from the outside 
world, network applications have this natural tendency to open the computer to various threats on 
the internet. First, an open port exists when running a network application. Someone who knows 
the same port your application listens to can intrude by faking protocol data. We will mostly discuss 
the server side of network applications here; however, some topics also apply to client applications.

One of the first things you should do is incorporate client authorization and authentication. These 
are two terms that are easy to confuse. Be careful not to use them interchangeably; they are different, 
as detailed here:

•	 Authentication is the process of validating client access. This means that not every incoming 
connection request is served right away. Before transferring data to and from the client, the 
server application must be sure that the client is known. In almost the same way we access a 
social network platform by typing in our email and password, the authentication of a client 
defines whether the client has the right to access the system.

•	 Authorization, on the other hand, defines what precisely the client can do in the system. It’s a 
set of permissions that are provided to specific clients. For instance, the client application we 
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discussed in the previous section can upload files to the system. Sooner or later, you might 
want to incorporate paid subscriptions and provide paying clients with a broader range of 
features; for example, by allowing them to create folders to organize their files. So, when a 
client requests a folder’s creation, we might want to authorize the request to discover whether 
the client has the right to do so.

When the client application initiates a connection with the server, all the server gets is the connection 
details (IP address, port number). To let the server know who is behind the client application (the 
actual user), the client application sends over the user’s credentials. Usually, this process involves 
sending the user a unique identifier (such as a username or an email address) with the password to 
access the system. The server then checks these credentials against its database and verifies whether 
it should grant access to the client.

This communication between the client and the server might be a simple text or formatted object 
transfer. For example, the protocol that’s defined by the server might require the client to send a 
JavaScript Object Notation (JSON) document in the following form:

{
"email": "myemail@example.org," "password": "notSoSIMPLEp4s8"
}

The response from the server allows the client to proceed further or update its UI to let the user know 
the result of the operation. When signing in, you might have encountered several cases while using 
any web or network application. For example, a wrongly typed password might lead to an Invalid 
username or password error being returned by the server.

Besides this first necessary step, it is wise to validate every piece of data coming from the client 
application. A buffer overflow might be easily avoided if the email field is checked for size. For example, 
when intentionally trying to break the system, the client application might send a JSON object with a 
large value for its fields. That check is on the server’s shoulders. Preventing security flaws starts with 
data validation.

Another form of security attack is making too many requests per second from single or multiple clients. 
For example, a client application making hundreds of authentication requests in 1 second causes the 
server to intensively process those requests and waste resources trying to serve them all. It would be 
better to check the rate of client requests—for example, limiting them to a single request per second.

These forms of attacks (intentional or unintentional) are called Denial-of-Service (DOS) attacks. 
The more advanced version of a DOS attack takes the form of making a huge number of requests to 
the server from multiple clients. This form is called a Distributed DOS (DDOS) attack. A simple 
approach might be to blacklist IP addresses trying to crash the system by making multiple requests 
per second. As a programmer of network applications, you should consider all the issues described 
here and many others outside the scope of this book when developing your applications.
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Summary
In this chapter, we introduced designing network applications in C++. We started by introducing the 
basics of networking. Understanding networking completely takes a lot of time, but there are several 
foundational concepts that every programmer must know before implementing an application in 
any way related to the network. Those foundational concepts include layering in the OSI model and 
different kinds of transport protocols, such as TCP and UDP. Understanding the differences between 
TCP and UDP is necessary for any programmer. As we learned, TCP makes reliable connections 
between sockets, the next thing a programmer encounters when developing network applications. 
Those are the connection points of two instances of applications. Whenever we need to send or receive 
data through a network, we should define a socket and work with it almost as usual with a regular file.

All the abstractions and concepts we use in application development are handled by the OS and, in 
the end, by the network adapter. This is a device that’s capable of sending data through a network 
medium. Receiving data from the medium doesn’t guarantee safety. The network adapter receives 
anything coming from the medium. To ensure we handle incoming data correctly, we should also 
ensure application security. The last section of this chapter was about writing secure code and validating 
the input to make sure no harm will be done to the program. Securing your program is a good step in 
ensuring high-quality programs. One of the best approaches to developing programs is testing them 
thoroughly. In Chapter 11, Designing World-Ready Applications, you may recall that we discussed 
software development steps and explained that one of the most important steps explained testing the 
program once the coding phase was complete. After testing it, you will most probably discover a lot of 
bugs. Some of these bugs are hard to reproduce and fix, and that’s where debugging comes to the rescue.

The next chapter is all about testing and debugging your programs correctly.

Questions
1.	 List all seven layers of the OSI model.

2.	 What’s the point of port numbers?

3.	 Why should you use sockets in network applications?

4.	 Describe the sequence of operations you should perform on the server side to receive data 
using a TCP socket.

5.	 What are the differences between TCP and UDP?

6.	 Why shouldn’t you use macro definitions in your code?

7.	 How would you differentiate between different client applications when implementing a 
server application?
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Further reading
For further information, refer to the following resources:

•	 TCP/IP Illustrated, Volume 1: The Protocols, by R. Stevens and K.R. Fall: https://www.
amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-Professional/
dp/0321336313/

•	 Networking Fundamentals, by Gordon Davies: https://www.packtpub.com/cloud-
networking/networking-fundamentals

https://www.amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-Professional/dp/0321336313/
https://www.amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-Professional/dp/0321336313/
https://www.amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-Professional/dp/0321336313/
https://www.packtpub.com/cloud-networking/networking-fundamentals
https://www.packtpub.com/cloud-networking/networking-fundamentals


14
Debugging and Testing

Testing and debugging play a crucial part in the pipeline of the software development process. While 
debugging fixes problems, testing assists in problem detection. But many possible flaws can be avoided 
if we adhere to specific guidelines throughout the implementation stage. In addition, since testing 
is expensive, it would be beneficial if we could use tools to automatically examine software before 
human testing became necessary. Furthermore, it’s crucial to consider when, how, and which software 
tests we should conduct.

In this chapter, we will cover the following topics:

•	 Understanding the root cause of an issue

•	 Debugging programs

•	 Static and dynamic analysis

•	 Testing, test-driven development (TDD), and behavior-driven development (BDD)

This chapter describes the analysis of a software defect, the use of the GNU Debugger (GDB) tool to 
debug a program, and the use of tools to automatically analyze software. The concepts of unit testing, 
TDD, and BDD, as well as how to use them practically during the software engineering development 
process, will also be covered.

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples throughout the 
chapter. You can find the source files used in this chapter in the GitHub repository for this book 
at https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/
Chapter14.

Understanding the root cause of an issue
In medicine, a good doctor needs to understand the difference between treating the symptoms and 
curing the condition. For instance, prescribing medications to a patient with a broken arm will just 
soothe the symptoms; surgery is likely the best option to help bones to heal. Root cause analysis 

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter14
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter14
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(RCA) is a systematic process that’s used to identify the fundamental cause of a problem. It tries to 
determine the root of the problem’s fundamental cause by following a predetermined sequence of 
procedures with the use of the appropriate tools. Thus, we may ascertain the following:

•	 What happened?

•	 How did it happen?

•	 Why did it happen?

•	 What appropriate measures should be taken to stop it from happening again or to lessen its impact?

According to RCA, an action in a particular place triggers another action in another place, and so 
on. We can determine the origins of the problem and how it evolved into the symptom we have by 
tracing the action chain back to the beginning. Aha! This is exactly the procedure we should use to 
eliminate or decrease software defects. We will learn about the fundamental RCA processes, how to 
apply the RCA method to find software defects, and what guidelines a C++ developer should follow 
to avoid such errors from appearing in software in the following subsections.

RCA overview

An RCA procedure typically consists of five phases, listed as follows:

1.	 Define the problem: We may discover answers to the following questions at this stage: 
What is going on? What are the signs of a problem? In what environment or conditions is the 
problem occurring?

2.	 Gather data: We need to collect enough data to create a causal factor chart. This phase might 
be costly and time-consuming.

3.	 Create a causal factor chart: A causal factor chart provides a visual structure for organizing 
and analyzing the obtained data. The causal factor chart is nothing more than a sequence 
diagram with logic tests that describes the events leading up to the occurrence of a symptom. 
This charting process should drive the data collection process until the investigators are satisfied 
with the thoroughness of the chart.

4.	 Identify the root causes: Using the causal factor chart, we can create a decision diagram known 
as the root cause map to determine the underlying cause or reasons.

5.	 Recommend and implement solutions: Once a root cause or multiple causes have been 
identified, the answers to the following questions can help us find a solution: what can we 
do to avoid this from happening again? How will a solution be implemented? Who will be held 
accountable for it? What are the expenses and risks of implementing the solution?

One of the most common factor diagrams used in the software engineering industry is the RCA tree 
diagram. The following diagram provides an example of its structure:
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Figure 14.1 – Example of an RCA tree diagram

Let’s assume we have a problem that has A, B, and C symptoms. Symptom A can be caused by events 
A1 or A2, symptom B can be caused by either events B1 and B2 or events B3 and B4, and symptom 
C is caused by events C1 and C2. After data collection, we found that symptoms A and C never 
appeared and that we only have symptom B. Further analysis shows that events B1 and B2 are not 
involved when the problem occurs, so we can identify that the root cause of this problem is happening 
because of event B3 or event B4.

If the software has a defect, rather than simply fixing it at the point of failure, we should use RCA 
to investigate the original fundamental root cause(s) of the problem. Then, the root cause(s) of the 
problem can be traced back to the requirements, the design, the implementation, the verification, 
and/or the test planning and input data. When the underlying issues are identified and resolved, the 
software’s quality may be improved, and therefore maintenance costs can be dramatically lowered.

We’ve just learned how to identify the root cause of a problem but keep in mind that the best defense is 
a good offense. So, instead of analyzing and fixing a problem, what if we can prevent it from happening?

Prevention is better than cure – good coding behavior

According to an IBM study, if the overall cost of requirements and design is 1X, the implementation 
and coding process will take 5X, unit and integration tests will take about 10X, comprehensive 
customer beta test costs will take about 15X, and costs to fix bugs in the post-product release stage 
will take about 30X! As a result, reducing code defects is one of the most efficient strategies to reduce 
production costs.

Although the generic methodology for determining the root causes of software defects is critical, it 
would be even better if we could avoid some defects during the implementation stage. To achieve 
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this, we need to have good coding behavior, which implies following a particular set of rules. These 
rules are divided into two categories: low and high. The low-level rules may cover the following items:

•	 Uninitialized variables

•	 Integer divisions

•	 Mistakenly using = instead of ==

•	 Potentially assigning a signed variable to an unsigned variable

•	 Missing break in switch statements

•	 Side effects in compound expressions or function calls

When it comes to the high-level rules, we have topics related to the following:

•	 Interfaces

•	 Resource management

•	 Memory management

•	 Concurrency

B. Stroustrup and H. Sutter have proposed adopting these guidelines in their live document, C++ Core 
Guidelines (Release 0.8), which emphasizes static type safety and resource safety. They also underline 
the benefits of using range checking to avoid dereferencing null-ptr, dangling pointers, and the 
systematic usage of exceptions. If a developer follows these principles, their code will be statically 
type-safe with no resource leaks. Furthermore, it will not only catch a greater number of programming 
logic errors but it will also run faster. Because of page limitations, we will only look at a few examples 
of this in this subsection. If you want to look at more examples, please go to https://isocpp.
github.io/CppCoreGuidelines/.

The uninitialized variable problem

An uninitialized variable is one of the most common mistakes a programmer can make. When we 
declare a variable, a certain amount of continuous memory will be allocated to it. If it is not initialized, 
it still has some value, but there is no deterministic way of predicting it. Consequently, unpredictable 
behavior shows up when we execute the program, which you can find at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_
uninit_variable.cpp.

In the code at the preceding link, when x is declared, the OS will assign 4 bytes of unused memory 
to it, which means that the value of x is whatever value was residing in that memory. Every time we 
run this program, both the address and value of x might be different. Additionally, some compilers, 
such as Visual Studio, will initialize the value of x as 0 in the debug version but keep it uninitialized 
in the release version. In that case, we have a totally different output in the debug and release versions.

https://isocpp.github.io/CppCoreGuidelines/
https://isocpp.github.io/CppCoreGuidelines/
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_uninit_variable.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_uninit_variable.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_uninit_variable.cpp
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Side effects in compound expressions

When an operator, expression, statement, or function has finished being evaluated, it may be prolonged 
or may continuously exist inside its compound. This continuous existence has some side effects that 
may lead to some undefined behaviors. Let’s have a look at the code at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_
compound.cpp to understand this.

Because of the undefined behavior of the evaluation order of operands, the result of the preceding 
code could be either 16 or 12.

Mixed signed and unsigned problems

Typically, binary operators (+, -, *, /, %, <, <=, >, >=, ==, !=, &&, ||, !, &, |, <<, >>, ~, ^, =, +=, 
-=, *=, /=, and %=) require both side operands to be of the same type. If the two operands are of 
different types, one will be promoted to the same type as the other. Roughly speaking, there are three 
C standard conversion rules given in subclause 6.3.1.1 [ISO/IEC 9899:2011]:

•	 When we mix types of the same rank, the signed one will be promoted to an unsigned type

•	 When we mix types of a different rank, the lower-ranked one will be promoted to the higher-
ranked type if all the values of the lower-ranked side can be represented by the higher-ranked side

•	 If none of the values of the lower-ranked type can be represented by the higher-ranked type in 
the preceding case, then the unsigned version of the higher-ranked type will be used

Now, let’s take a look at the traditional signed integer minus unsigned integer problem at https://
github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/
ch14_rca_mix_sign_unsigned.cpp.

In the code example at the preceding link, the signed int value will be automatically converted into 
an unsigned int value, and the result will be uint32_t z = -10. On the other hand, because 
−10 cannot be represented as an unsigned int value, its hexadecimal value, 0xFFFFFFF6, will be 
interpreted as UINT_MAX - 9 (that is, 4294967286) on two’s complement machines.

Order of evaluation problem

The following example is concerned with the initialization order of class members in a constructor. 
Since the initialization order is the order in which the class members appear in the class definition, 
it’s a good practice to separate the declaration of each member into different lines, as demonstrated 
at https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/
Chapter14/ch14_rca_order_of_evaluation.cpp.

Now, let us write the main function where we are going to create objects of the classes declared 
previously, and based on those objects, we are going to explain how the initialization order works:

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_compound.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_compound.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_compound.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_mix_sign_unsigned.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_mix_sign_unsigned.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_mix_sign_unsigned.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_order_of_evaluation.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_rca_order_of_evaluation.cpp
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int main()
{
A a(10);
B b1(10), b2(3.0f);
a.print(); //v1=10,v2=10,v3=10 for both debug and release
b1.print(); //v1=10, v2=10 for both debug and release
b2.print(); //v1=-858993460,v2=3 for debug; v1=0,v2=3 for
            //release.
}

In class A, although the declaring order is v1 -> v2, putting them in one line confuses other 
developers. In the first constructor of class B, v1 will be initialized as x, then v2 will be initialized as 
v1 because its declaration order is v1->v2. However, in its second constructor, v1 will be initialized 
as v2 first (at this point, v2 is not initialized yet!), then v2 will be initialized by x. This causes the 
different output values of v1 in debug and release versions.

Compile-time checking versus runtime checking

The following example shows that runtime checking the (number of bits for an integer-type cloud 
variable) can be replaced by compile-time checking:

//check # of bits for int
//courtesy:https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines
int nBits = 0; // don't: avoidable code
for (int i = 1; i; i <<= 1){
++nBits;
}
if (nBits < 32){
cerr << "int too small\n";
}

Since int can be either 16 or 32 bits, depending on the OS, this example fails to achieve what it is 
trying to achieve. We should use int32_t or just replace it with the following:

static_assert(sizeof(int) >= 4); //compile-time check

Another example is concerned with reading the max number of n integers into a one-dimensional array:

void read_into(int* p, int n); // a function to read max n
                               // integers into *p
...
int v[10];
read_into(v, 100); //bad, off the end, but the compile
                   //cannot catch this error.
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This can be fixed using span<int>:

void read_into( span<int> buf); // read into a range of integers
...
int v[10];
read_into(v); //better, the compiler will figure out the
               //number of elements

The general rule here is to do the analysis at compile time as much as possible and not postpone it 
until runtime.

Avoiding memory leaks

A memory leak means that the allocated dynamic memory can never be freed. In C, we use malloc() 
and/or calloc() to allocate memory and free() to release it. In C++, the new operator and the 
delete or delete[] operators are used to manage memory dynamically. Although the risks of 
memory leaks can be reduced with the help of smart pointers and Resource Acquisition Is Initialization 
(RAII), there are still some rules we need to follow if we wish to build high-quality code.

First, the easiest memory management way is the memory you never allocated by your own code. For 
example, whenever you can write T x;, don’t write T* x = new T(); or shared_ptr<T> 
x(new T() );.

Next, do not manage the memory using your own code, as shown here:

void f_bad(){
T* p = new T() ;
...             //do something with p
delete p ;     //leak if throw or return before reaching
               //this line
}

Instead, try to use RAII, as follows:

void f_better()
{
std::auto_ptr<T> p(new T());     //other smart pointers is
                                 //ok also
...                              //do something with p
//will not leak regardless of whether this point is reached or not
}

Then, use unique_ptr to replace shared_ptr unless you need to share its ownership, as follows:

void f_bad()
{
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shared_ptr<Base> b = make_shared<Derived>();
...
} //b will be destroyed at here

Since b is locally used without copying it, its refcount value will be always 1. This means we can 
use a unique_ptr instance to replace it, like so:

void f_better()
{
unique_ptr<Base> b = make_unique<Derived>();
... //use b locally
} //b will be destroyed at here

Finally, even if you really need to dynamically manage the memory by yourself, don’t manually allocate 
the memory if there is an std container library class available.

In this section, we learned how to locate a problem using RCA and how to prevent a problem by 
following coding best practices. Next, we’ll learn how to use a debugger tool to control the line-by-line 
execution of a program and examine the values of variables and expressions during its running time.

Debugging programs
Debugging is the process of locating and fixing program bugs or problems. Interactive debugging, 
data/control flow analysis, and unit and integration testing are all examples of this. We will only cover 
interactive debugging in this part, which is the process of executing your source code line by line with 
breakpoints while displaying the values of the variables being used and corresponding memory addresses.

Tools for debugging a C/C++ program

There are several tools accessible in the C++ community, depending on your development environment. 
The following is a list of the most popular ones across various platforms:

•	 Linux/Unix:

	� GDB: A free open source command-line interface (CLI) debugger.

	� Eclipse: A free open source integrated development environment (IDE). It supports not 
only debugging but also compiling, profiling, and smart editing.

	� Valgrind: Another open source dynamic analysis tool; it is good for debugging memory 
leaks and threading bugs.

	� Affinic: A commercial graphical user interface (GUI) tool built for the GDB, Low-Level 
Debugger (LLDB), and Low-Level Virtual Machine (LLVM) debuggers.
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	� Data Display Debugger (DDD): An open source data display debugger for GDB, DBX, the 
Java Debugger (JDB), Extended Debugger (XDB), and Python; it displays data structures 
as graphs.

	� GDB in Emacs mode: An open source GUI tool that uses GNU Emacs to view and edit 
source code when debugging with GDB.

	� KDevelop: A free and open source IDE and debugger tool for programming languages such 
as C/C++, Objective-C, and so on.

	� Nemiver: An open source tool that works well in the GNOME desktop environment.

	� SlickEdit: A good tool for debugging multithreaded and multiprocessor code.

•	 Windows:

	� Visual Studio: A commercial tool with a GUI that’s free for community versions

	� GDB: This can run in Windows as well with the help of Cygwin or MinGW

	� Eclipse: Its C++ Development Tooling (CDT) project can be installed on Windows with 
the MinGW GNU Compiler Collection (GCC) compiler in the toolchains

•	 macOS:

	� LLDB: This is the default debugger in Xcode on macOS and supports C/C++ and Objective-C 
on desktop and iOS devices and their simulators

	� GDB: This CLI debugger is also used on macOS and iOS systems

	� Eclipse: This free IDE using GCC works for macOS

Since GDB can be run on all platforms, we will show you how to use GDB in the following subsections.

GDB overview

GDB allows a developer to examine what is happening within another program while it is running 
or what another program was doing when it crashed. GDB can do the following four main things:

•	 Start a program and specify anything that might affect its behavior.

•	 Make a program stop when certain conditions are met.

•	 Investigate what happened when a program was terminated.

•	 Change the values of variables while a program is executing. This implies we can experiment with 
something to reduce the impacts of one problem and/or learn about the side effects of another.
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It is important to note that two programs or executable files are involved: GDB and the program that 
needs to be debugged. Because these two programs can run on the same or different machines, we 
can divide debugging into three categories:

•	 Native debugging: Both programs run on the same machine

•	 Remote debugging: GDB runs on a host machine, while the debugged program runs on a 
remote machine

•	 Simulator debugging: GDB runs on a host machine, while the debugged program runs on 
a simulator

Based on the latest release (GDB v8.3) at the time of writing this book, the languages supported by GDB 
include C, C++, Objective-C, Ada, Assembly, D, Fortran, Go, OpenCL, Modula-2, Pascal, and Rust.

Because GDB is a cutting-edge debugging tool that is complex and has many functions, it will be 
impossible to cover all its features in this section. Instead, we’ll look at examples to learn about the 
most helpful aspects.

Examples of GDB

Before practicing these examples, we need to check whether GDB has been installed on our system 
by running the following code:

~wus1/chapter-13$ gdb –help

If the following kind of information is displayed, we will be ready to start:

This is the GNU debugger. Usage:
gdb [options] [executable-file [core-file or process-id]]
gdb [options] --args executable-file [inferior-arguments ...]

Selection of debuggee and its files:
--args Arguments after executable-file are passed to inferior
--core=COREFILE Analyze the core dump COREFILE.
--exec=EXECFILE Use EXECFILE as the executable.
...

Otherwise, we need to install it. Let’s go over how we can install it on the different OSes:

•	 For Debian-based Linux, run the following command:

~wus1/chapter-13$ sudo apt-get install build-essential

•	 For Red Hat-based Linux, run the following command:

~wus1/chapter-13$sudo yum install build-essential
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•	 For macOS, run the following command:

~wus1/chapter-13$brew install gdb

Windows users can install GDB through MinGW distributes. macOS will need a taskgated configuration.

Then, type gdb --help again to check whether it was successfully installed.

Setting breakpoints and inspection variable values

In the following example, we will learn how to set breakpoints, continue, step into, or step over a function, 
print values of variables, and how to use help in gdb. The source code is available at https://
github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/
ch14_gdb_1.cpp.

Let’s build this program in debug mode, as follows:

~wus1/chapter-13$ g++ -g ch14_gdb_1.cpp -o ch14_gdb_1.out

Note that for g++, the -g option means the debugging information will be included in the output 
binary file. If we run this program, it will show the following output:

x=10.000000, y=20.000000, x*y = 30.000000

Now, let’s use gdb to see where the bug is. To do that, we need to execute the following command line:

~wus1/chapter-13$ gdb ch14_gdb_1.out

By doing this, we will see the following output:

GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
http://gnu.org/licenses/gpl.html
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show 
copying" and "show warranty" for details.
This GDB was configured as "aarch64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from a.out...done.
(gdb)

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_gdb_1.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_gdb_1.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_gdb_1.cpp
http://gnu.org/licenses/gpl.html
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Now, let’s have a look at the various commands in detail:

•	 break and run: If we type b main or break main and press Enter, a breakpoint will be 
inserted into the main function. Then, we can type run or r to start debugging the program. 
The following information will be shown in a Terminal window. Here, we can see that our 
first breakpoint is at the sixth line in the source code and that the debugged program has been 
paused in order to wait for a new command:

(gdb) b main
Breakpoint 1 at 0x8ac: file ch14_gdb_1.cpp, line 6.
(gdb) r
Starting program: /home/nvidia/wus1/Chapter-13/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/aarch64-linuxgnu/
libthread_db.so.1".
Breakpoint 1, main () at ch14_gdb_1.cpp:6
6 float x = 10, y = 20;

•	 next, print, and quit: The n or next command will go to the next line of the code. If 
the line calls a subroutine, it does not enter the subroutine; instead, it steps over the call and 
treats it as a single source line. If we want to show the value of a variable, we can use the p or 
print command, followed by the variable’s name. Finally, if we want to exit from gdb, the q 
or quit command can be used. Here is the output from the Terminal window after running 
these operations:

(gdb) n
7 float z = multiple(x, y);
(gdb) p z
$1 = 0
(gdb) n
8 printf("x=%f, y=%f, x*y = %f\n", x, y, z);
(gdb) p z
$2 = 30
(gdb) q
A debugging session is active.
Inferior 1 [process 29187] will be killed.
Quit anyway? (y or n) y
~/wus1/Chapter-13$

•	 step: Now, let’s learn how to step into the multiple() function and find the bug. To do 
that, we need to start over by using the b, r, and n commands to reach line 7 first. Then, we 
can use the s or step command to step into the multiple() function. Next, we use the 
n command to reach line 14 and p to print the value of the ret variable, which is 30. At this 
point, we’ve figured out that by using aha the bug is at line 14!:, instead of x*y, 
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we have a typo—that is, x+y. The following code block shows the corresponding outputs from 
these commands:

~/wus1/Chapter-13$gdb ch14_gdb_1.out
...(gdb) b main
Breakpoint 1 at 0x8ac: file ch14_gdb_1.cpp, line 6.
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/nvidia/wus1/Chapter-13/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/aarch64-linuxgnu/
libthread_db.so.1".
Breakpoint 1, main () at ch14_gdb_1.cpp:6
6 float x = 10, y = 20;
(gdb) n
7 float z = multiple(x, y);
(gdb) s
multiple (x=10, y=20) at ch14_gdb_1.cpp:14
14 float s = x + y;
(gdb) n
15 return s;
(gdb) p s
$1 = 30

•	 help: Lastly, let’s learn about the help command to end this small example. When gdb is 
launched, we can use the help or h command to get the usage information of a particular 
command in its command input line. For instance, the following Terminal window summarizes 
what have we learned so far:

(gdb) h b
Set breakpoint at a specified location
break [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if 
CONDITION]
PROBE_MODIFIER shall be present if the command is to be placed 
in
a
probe point. Accepted values are `-probe' (for a generic,
automatically
guessed probe type), `-probe-stap' (for a SystemTap probe) or
-probe-dtrace' (for a DTrace probe).
LOCATION may be a linespec, address, or explicit location as
described
below.
....
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(gdb) h r
Start debugged program.
You may specify arguments to give it.
Args may include "*", or "[...]"; they are expanded using the
shell that will start the program (specified by the "$SHELL"
environment
variable). Input and output redirection with ">", "<", or ">>"
are also allowed.

(gdb) h s
Step program until it reaches a different source line.
Usage: step [N]
Argument N means step N times (or till program stops for another
reason).

(gdb) h n
Step program, proceeding through subroutine calls.
Usage: next [N]
Unlike "step", if the current source line calls a subroutine,
this command does not enter the subroutine, but instead steps 
over
the call, in effect treating it as a single source line.
(gdb) h p
Print value of expression EXP.
Variables accessible are those of the lexical environment of the
selected
stack frame, plus all those whose scope is global or an entire0
file.
(gdb) h h
Print list of commands.
(gdb) h help
Print list of commands.
(gdb) help h
Print list of commands.
(gdb) help help
Print list of commands.

At this point, we have learned about a few basic commands we can use to debug a program. These 
commands are break, run, next, print, quit, step, and help. We will learn about functions 
and conditional breakpoints, the watchpoint, and the continue and finish commands in the 
next subsection.
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A detailed explanation of gdb’s function breakpoints, conditional breakpoints, watchpoint, and the 
continue and finish commands can be found at https://github.com/PacktPublishing/
Expert-C-2nd-edition/blob/main/Chapter14/Function%20Breakpoints%2C%20
Conditional%20Breakpoints%2C%20Watchpoint%2C%20and%20the%20Continue%20
and%20Finish%20Commands.pdf, while an explanation of logging gdb into a text file can be 
found at https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/
main/Chapter14/Logging%20GDB%20Into%20a%20Text%20File.pdf.

Practical debugging strategies

Since debugging is the costliest stage in the software development life cycle, finding bugs and fixing 
them isn’t feasible, especially for large, complex systems. However, certain strategies can be used in 
practical processes, some of which are listed here:

•	 Use printf() or std::cout: This is the old-fashioned way of doing things. By printing some 
information to the Terminal, we can check the values of variables and perform where-and-
when kinds of log profiles for further analysis.

•	 Use a debugger: Although learning to use a GDB kind of debugger tool is not an overnight 
thing, it can save lots of time. So, try to become familiar with it step by step and gradually.

•	 Reproduce bugs: Whenever a bug is reported in the field, make a record of the running 
environment and input data.

•	 Dump log files: An application program should dump log messages into a text file. When 
a crash happens, we should check the log files as the first step to see whether an abnormal 
event occurred.

•	 Have a guess: Roughly guess a bug’s location and then prove whether it was right or wrong.

•	 Divide and conquer: Even in the worst scenario where we do not have any idea of what bugs 
there are, we still can use the binary search strategy to set breakpoints and then narrow down 
and eventually locate them.

•	 Simplify: Always start from the most simplified scenario and gradually add peripherals, input 
modules, and so on until the bug can be reproduced.

•	 Source code version controlled: If a bug has suddenly appeared on a release but it ran fine 
previously, do a source code tree check first. Someone may have made a change!

•	 Don’t give up: Some bugs are hard to locate and/or fix, especially for complex and multi-team 
involved systems. Put them aside for a while and rethink it on your way home—the aha moment 
may reveal itself eventually.

So far, we’ve learned about macro-level problem localization using RCA, as well as good coding practices 
to prevent problems. Furthermore, by using a cutting-edge debugger tool such as GDB, we can control 
the execution of a program line by line, allowing us to analyze and fix problems at the micro level. All 

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Function%20Breakpoints%2C%20Conditional%20Breakpoints%2C%20Watchpoint%2C%20and%20the%20Continue%20and%20Finish%20Commands.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Function%20Breakpoints%2C%20Conditional%20Breakpoints%2C%20Watchpoint%2C%20and%20the%20Continue%20and%20Finish%20Commands.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Function%20Breakpoints%2C%20Conditional%20Breakpoints%2C%20Watchpoint%2C%20and%20the%20Continue%20and%20Finish%20Commands.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Function%20Breakpoints%2C%20Conditional%20Breakpoints%2C%20Watchpoint%2C%20and%20the%20Continue%20and%20Finish%20Commands.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Logging%20GDB%20Into%20a%20Text%20File.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Logging%20GDB%20Into%20a%20Text%20File.pdf
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these activities are programmer-centralized and manual. Can any automatic tools help us diagnose 
the potential defects of a program? We’ll take a look at static and dynamic analysis in the next section.

Static and dynamic analysis
In the previous sections, we learned about the RCA process and how to use GDB to debug a defect. 
This section will discuss how to analyze a program with and without executing it. The former is called 
dynamic analysis, while the latter is called static analysis.

Static analysis

Static analysis is used to evaluate the quality of a computer program without executing it. Although 
this can usually be accomplished through the use of automatic tools and code reviews/inspections, 
we will only focus on automatic tools in this section.

Automatic static code analysis tools are intended to compare a set of code to one or more sets of 
coding standards or guidelines. Typically, the terms static code analysis, static analysis, and source code 
analysis are used interchangeably. We may uncover many potential issues before the testing phases 
by scanning the whole code base with every conceivable code execution path. However, it has several 
limitations, which are set out here:

•	 It can produce false positive and false negative alarms

•	 It only applies the rules that were implemented inside the scanning algorithm, and some of 
them may be subjectively interpreted

•	 It cannot find vulnerabilities that were introduced in a runtime environment

•	 It can provide a false sense of security that everything is being addressed

There are about 30 automatic C/C++ code analysis tools under both commercial and free open source 
categories. The names of these tools include Clang, CLion’s built-in code analysis tool, Cppcheck, 
Eclipse, Visual Studio, and GNU g++, just to name a few.

Details on  -Wall, -Weffcc++, and -Wextra options, which are built into the g++ GNU compiler, 
can be found at https://github.com/PacktPublishing/Expert-C-2nd-edition/
blob/main/Chapter14/Introducing%20-Wall%2C%20-Weffcc%2B%2B%20and%20
-Wextra.pdf.

Dynamic analysis

Dynamic analysis is a shortened form of dynamic program analysis, which examines the performance 
of a software program by running it on a real or virtual processor. Dynamic analysis, as with static 
analysis, can be performed automatically or manually. Unit tests, integration tests, system tests, and 
acceptance tests, for example, are often human-involved dynamic analytical procedures. Memory 

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Introducing%20-Wall%2C%20-Weffcc%2B%2B%20and%20-Wextra.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Introducing%20-Wall%2C%20-Weffcc%2B%2B%20and%20-Wextra.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Introducing%20-Wall%2C%20-Weffcc%2B%2B%20and%20-Wextra.pdf
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debugging, memory leak detection, and profiling tools, on the other hand, such as IBM Purify, 
Valgrind, and Clang sanitizers, are examples of automated dynamic analysis tools. In this section, we 
will concentrate on automatic dynamic analysis tools.

The stages in a dynamic analysis process include preparing the input data, running a test program, 
gathering the relevant parameters, and analyzing the output. In general, dynamic analysis tools employ 
code instrumentation and/or a simulation environment to conduct tests on the analyzed code as it 
executes. We can interact with a program in the following ways:

•	 Source code instrumentation: A special code segment is inserted into the original source 
code before compilation.

•	 Object code instrumentation: A special binary code is added directly into the executable file.

•	 Compilation stage instrumentation: A checking code is added through special compiler 
switches. It doesn’t change the source code. Instead, it uses special execution stage libraries to 
detect errors.

Dynamic analysis has the following pros:

•	 There are no false positive or false negative results because an error will be detected that isn’t 
predicted from a model

•	 It does not need source code, which means the proprietary code can be tested by a 
third-party organization

The cons of dynamic analysis are set out here:

•	 It only detects defects on the routes related to the input data. Other defects may not be found.

•	 It can only check one execution path at a time. To obtain a complete picture, we need to run the 
test as many times as possible. This requires a significant amount of computational resources.

•	 It cannot check the correctness of the code. It is possible to get the correct result from the 
wrong operation.

•	 Executing incorrect code on a real processor may have unanticipated results.

•	 A detailed explanation of the usage of Valgrind can be found at https://github.com/
PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Usage%20
of%20Valgrind.pdf.

Testing, TDD, and BDD
In the previous section, we learned about automatic static and dynamic program analysis. This section 
will concentrate on human-involved (test code preparation) tests, which are a subset of dynamic 
analysis. Unit testing, TDD, and BDD are examples.

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Usage%20of%20Valgrind.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Usage%20of%20Valgrind.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Usage%20of%20Valgrind.pdf
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Unit testing presumes that if we already have a single unit of code, we must develop a test driver and 
prepare input data to see whether the output is right. Following that, we perform integration tests to test 
multiple units at once, followed by acceptance tests to test the entire application. Because integration 
and acceptance tests are more difficult to maintain and more project-related than unit tests, covering 
them in this book is extremely difficult. Those of you who are interested can find out more by going 
to https://www.iso.org/standard/45142.html.

In contrast to unit tests, TDD believes that we should have test code and data first, develop some code 
and make it pass quickly, and finally refactor until the customer is happy. On the other hand, BDD has 
the philosophy that we should not test the implementation of a program and instead test its desired 
behavior. To this end, BDD emphasizes that a communication platform and language among people 
involved in software production should be set up as well.

Unit testing

A unit is a component that is part of a larger or more complicated application. A unit, such as a 
function, a class, or an entire module, often has its own user interface. Unit testing is a type of software 
testing used to determine whether a unit of code behaves as expected in terms of its design criteria. 
The following are the primary characteristics of unit testing:

•	 It is small and simple, quick to write and run, and, as a result, it finds problems in the early 
development cycle; hence, problems can be fixed easily.

•	 Since it is isolated from dependencies, each test case can be run in parallel.

•	 Unit test drivers help us understand the unit interface.

•	 It greatly helps integration and acceptance tests when tested units are integrated later.

•	 It is normally prepared and performed by developers.

While we can write a unit test package from scratch, there are a lot of Unit Test Frameworks (UTFs) 
already being developed in the community. Boost.Test, CppUnit, GoogleTest, Unit++, and CxxTest 
are the most popular ones. These UTFs typically offer the following features:

•	 They only require a minimal amount of work for setting up a new test.

•	 They depend on standard libraries and support cross-platform, which means they are easy to 
port and modify.

•	 They support test fixtures, which allow us to reuse the same configuration for objects for several 
different tests.

•	 They handle exceptions and crashes well. This means that a UTF can report exceptions but 
not crashes.

•	 They have good assert functionalities. Whenever an assertion fails, its source code location 
and the values of the variables should be printed.

https://www.iso.org/standard/45142.html
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•	 They support different outputs, and these outputs can be conveniently analyzed either by 
humans or other tools.

•	 They support test suites, and each suite may contain several test cases.

Now, let’s take a look at an example of the Boost UTF (since v1.59.0). It supports three different usage 
variants: the single-header-only variant, the static library variant, and the shared library variant. It 
includes four types of test cases: test cases without parameters, data-driven test cases, template test 
cases, and parameterized test cases.

It also has seven types of check tools: BOOST_TEST(), BOOST_CHECK(), BOOST_REQUIRE(), 
BOOST_ERROR(), BOOST_FAIL(), BOOST_CHECK_MESSAGE( ), and BOOST_CHECK_
EQUAL(). It supports fixtures and controls the test output in many ways as well. When writing a test 
module, we need to follow these steps:

1.	 Define the name of our test program. This will be used in output messages.

2.	 Choose a usage variant: header-only, link with a static, or as a shared library.

3.	 Choose and add a test case to a test suite.

4.	 Perform correctness checks on the tested code.

5.	 Initialize the code under test before each test case.

6.	 Customize the ways in which test failures are reported.

7.	 Control the runtime behavior of the built test module, which is also called runtime configuration.

For example, the following example covers steps 1-4. If you are interested, you can get examples of 
steps 5-7 at https://www.boost.org/doc/libs/1_70_0/libs/test/doc/html/
index.html.

To build the code at https://github.com/PacktPublishing/Expert-C-2nd-edition/
blob/main/Chapter14/ch14_unit_test1.cpp, we may need to install Boost, as follows:

sudo apt-get install libboost-all-dev

Then, we can build and run it, as follows:

~/wus1/Chapter-13$ g++ -g ch14_unit_test1.cpp
~/wus1/Chapter-13$ ./a.out

The preceding code results in the following output:

Running 3 test cases...
ch14_unit_test1.cpp(13): error: in "my_suite/test_case1": check x == 
'b'
has failed ['a' != 'b']
ch14_unit_test1.cpp(25): error: in "my_suite/test_case3": check false 

https://www.boost.org/doc/libs/1_70_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/test/doc/html/index.html
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_unit_test1.cpp
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/ch14_unit_test1.cpp
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has
failed
*** 2 failures are detected in the test module "my_test"

Here, we can see that there are failures in test_case1 and test_case3. In test_case1, the 
value of x is not equal to b, and obviously, a false check cannot pass the test in test_case3.

TDD

As shown in the following diagram, a TDD process starts by writing failing test code and then adds/
modifies the code to let the test pass. After that, we refactorize the test plan and code until all the 
requirements are satisfied:

Figure 14.2 – TDD process

Step 1 is to write a failing test. Instead of developing code first, TDD starts to write test code initially. 
Because we do not have code yet, we know that if we run the test, it will fail. During this stage, the test 
data format and interface are defined, and the code implementation details are imagined.

The goal of Step 2 is to make the test pass as quickly as possible with minimal development effort. 
We don’t want to implement everything perfectly; we only want it to pass the test. Once it goes green, 
we will have something to show and tell the customer, at which point the customer may refine the 
requirement after seeing the initial product. Then, we move on to the next phase.

The third phase is refactoring. During this stage, we may go in, look at, and see what we would like 
to change and how to change it.
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For traditional developers, the most difficult thing about TDD is the mindset change from the coding 
then testing pattern to the testing then coding pattern. To get a vague idea of a test suite, J. Hartikainen 
suggested that a developer considers the following five steps to start:

1.	 Decide the inputs and outputs first.

2.	 Choose class/function signatures.

3.	 Decide on only one tiny aspect of the functionality to test.

4.	 Implement the test.

5.	 Implement the code.

Once we’ve finished this iteration, we can gradually refactor it until the overall comprehensive goal 
is achieved.

BDD

The most difficult part of software development is communicating with business participants, developers, 
and the quality analysis team. A project can easily exceed its budget, miss deadlines, or fail completely 
because of misunderstood or vague requirements, technical arguments, and slow feedback cycles.

BDD is an agile development process with a set of practices that aims to reduce communication gaps/
barriers and other wasteful activities. It also encourages team members to continuously communicate 
with real-world examples during the production life cycle.

BDD contains two main parts: deliberate discovery and TDD. To let people in different organizations 
and teams understand the right behavior of the developed software, the deliberate discovery phase 
introduces an example mapping technique to make people in different roles have conversations through 
concrete examples. These examples will become automated tests and living documentation of how 
the system behaves later. In its TDD phase, BDD specifies that the tests for any software unit should 
be specified in terms of the desired behavior of the unit.

There are several BDD framework tools (JBehave, RBehave, FitNesse, Cucumber, and so on) for 
different platforms and programming languages. Generally speaking, these frameworks perform the 
following steps:

1.	 Read a specification format document that’s been prepared by a business analyst during the 
deliberate discovery phase.

2.	 Transform the document into meaningful clauses. Each individual clause is capable of being 
set into test cases for quality assurance (QA). Developers can implement source code from 
the clause as well.

3.	 Execute the test for each clause scenario automatically.
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As shown in the following diagram, the traditional V-shape model emphasizes the pattern of requirement 
| design | coding | testing. TDD believes a development process should be driven by testing, while BDD 
adds communication between people from different backgrounds and roles into the TDD framework 
and focuses on behavior testing:

Figure 14.3 – V-shaped, TDD, and BDD models in comparison with each other

Moreover, unit testing emphasizes testing individual components when coding is complete. TDD 
focuses more on how to write tests before writing code, and then adding/modifying code through 
next-level test plans. BDD encourages collaborations between customers, business analysts, developers, 
and QA analysts. Although we can use each one individually, we really should combine them for the 
best results in this agile software development era.

To learn about incorporating TDD and BDD, refer to our GitHub repository at the following 
link: https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/
main/Chapter14/Incorporating%20TDD%20and%20BDD.pdf.

Summary
In this chapter, we discussed testing and debugging in the context of the software development process. 
Testing uncovers problems, while RCA assists in discovering a problem at the macro level. However, 
good programming practices can help to prevent software defects in the early stages. Furthermore, 
the CLI debugging tool known as GDB can help us set breakpoints and execute a program line by 
line while printing variable values during program execution.

We also discussed automatic analysis tools and human-assisted testing processes. Static analysis evaluates 
a program’s performance without running it. Dynamic analysis tools, on the other hand, can detect 
flaws by simply running the program. Finally, we learned about the tactics for incorporating testing 
into a software development pipeline, including what, when, and how. When the coding is finished, 

https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Incorporating%20TDD%20and%20BDD.pdf
https://github.com/PacktPublishing/Expert-C-2nd-edition/blob/main/Chapter14/Incorporating%20TDD%20and%20BDD.pdf


Further reading 491

unit testing focuses on testing individual components. TDD focuses more on how to write tests before 
developing code and then reiterates this process through a next-level test plan. BDD encourages 
collaborations between customers, business analysts, developers, and QA analysts.

Further reading
•	 J. Rooney and L. Vanden Heuvel. Root Cause Analysis For Beginners. Quality Progress, July 

2004, p.45-53.

•	 T. Kataoka, K. Furuto, and T. Matsumoto. The Analyzing Method of Root Causes for Software 
Problems. SEI Tech. Rev. no. 73, p. 81, 2011.

•	 K. A. Briski et al.. Minimizing code defects to improve software quality and lower development 
costs. IBM Rational Software Analyzer and IBM Rational PurifyPlus software.

•	 https://www.learncpp.com/cpp-programming/eight-c-programming-
mistakes-the-compiler-wont-catch/

•	 B. Stroustrup and H. Sutter. C++ Core Guidelines. (https://isocpp.github.io/
CppCoreGuidelines/)

•	 https://www.sourceware.org/gdb/

•	 https://www.fayewilliams.com/2014/02/21/debugging-for-beginners/

•	 https://www.perforce.com/blog/sca/what-static-analysis

•	 https://linux.die.net/man/1/g++

•	 https://www.embedded.com/static-vs-dynamic-analysis-for-secure-
code-development-part-2/

•	 ISO/IEC/IEEE 29119-1:2013: Software and systems engineering – Software testing

•	 https://www.boost.org/doc/libs/1_70_0/libs/test/doc/html/index.
html

•	 K. Beck. Test-Driven Development by Example, published by Addison Wesley, ISBN 978-0321146533.

•	 H. Erdogmus and T. Morisio. On the Effectiveness of Test-first Approach to Programming. Proc. 
of the IEEE Trans. on Software Engineering, 31(1). January 2005.

•	 https://codeutopia.net/blog/2015/03/01/unit-testing-tdd-and-bdd/
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Large-Scale Application Design

The demand for scalable and efficient systems has increased as more organizations have embraced 
technology. As more and more businesses start using digital technologies, the need to handle large 
volumes of data, support growing user bases, and ensure application performance becomes key. This 
chapter focuses on large-scale applications in C++, focusing on crucial aspects such as organization 
and scaling.

In this context, we will analyze the ideas behind horizontal and vertical scaling. Scaling is used to 
improve application performance in two primary ways – via horizontally and vertically scaling. This 
chapter examines the benefits and considerations associated with each approach. The chapter also 
discusses the specific challenges and techniques in scaling C++ applications. C++ has long been a 
popular programming language for its performance and flexibility, but scaling C++ applications to 
handle large-scale projects can present unique obstacles. We will explore strategies to optimize and 
distribute workloads, leverage parallelism and concurrency, and employ scalable data structures.

One type of large-scale application is data-intensive applications. With exponential data, processing, 
and storage growth, designing applications that can efficiently handle massive data volumes has 
become critical. This chapter will discuss the practices behind building data-intensive applications. 
The chapter also explores data partitioning, replication, caching, and data flow optimization. By 
understanding these principles, we can design robust and scalable applications that can handle the 
demands of large-scale data processing.

In summary, we will cover the following topics in this chapter:

•	 The introduction of large-scale, cross-platform project organization

•	 Horizontal and vertical scaling

•	 Scaling C++ applications

•	 Designing data-intensive applications
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Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter15.

The introduction of large-scale, cross-platform project 
organizing
Large-scale, cross-platform project organizing in C++ refers to implementing a comprehensive system 
that facilitates managing and coordinating multiple projects across different platforms, using the C++ 
programming language. It involves the development of a robust framework that enables seamless 
integration, communication, and resource sharing between diverse projects. By leveraging the power 
and versatility of C++, this approach provides a scalable and efficient solution to organize and execute 
large-scale projects on various platforms.

Large-scale, cross-platform project organization in C++

Large-scale, cross-platform projects in C++ pose unique challenges in organization and management. 
These projects involve developing software applications that can run on multiple operating systems 
or platforms, such as Windows, macOS, and Linux. This article will explore the key aspects and 
considerations involved in organizing a large-scale, cross-platform project in C++, along with examples 
to illustrate the concepts discussed.

Cross-platform project organization refers to the structure and management practices that ensure 
efficient software application development, maintenance, and deployment across different operating 
systems or platforms. It involves handling platform-specific code, libraries, and dependencies and 
ensuring compatibility and performance on each target platform.

A modular architecture is crucial for large-scale, cross-platform projects. Breaking down a project into 
smaller, independent modules offers several benefits, including code reusability, maintainability, and 
ease of testing. Each module can encapsulate platform-specific functionality, such as user interfaces 
or system integrations. Consider a cross-platform project that involves developing a media player 
application. The project can be divided into modules – core functionality, UI components, media 
playback, and file management. Each module can have platform-specific implementations while the 
core logic remains platform-agnostic.

Abstraction layers provide a way to isolate platform-specific code and provide a unified interface 
for the rest of an application. This allows developers to write portable code seamlessly, adapting to 
different platforms without extensive modifications. Suppose you are developing a cross-platform 
graphics application that utilizes different rendering APIs, such as DirectX on Windows and OpenGL 
on macOS and Linux. By implementing an abstraction layer, you can encapsulate the platform-specific 
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rendering code within separate modules and expose a common interface for the rest of the application. 
This ensures that the core logic remains independent of the underlying rendering technology.

Utilizing platform-independent libraries can significantly simplify cross-platform development. These 
libraries provide pre-built functionality that can be seamlessly integrated into a project, reducing the 
need to write platform-specific code. Examples of such libraries include Boost, Qt, and SDL, which 
offer cross-platform support for various tasks, such as networking, user interfaces, and multimedia. 
For instance, you can leverage Boost if you develop a networking component for a cross-platform 
project. It provides a consistent API for network operations, abstracting the platform-specific details 
and enabling the application to communicate over different operating systems.

Large-scale, cross-platform projects require robust build systems and continuous integration (CI) 
practices – build systems that automate compiling, linking, and packaging applications for different 
platforms. Popular build systems such as CMake and Make can handle complex dependencies and 
generate platform-specific scripts. CI tools, such as Jenkins or Travis CI, facilitate automated testing, 
deployment, and integration of code changes across multiple platforms. They ensure that the project 
remains stable and functional on all supported platforms.

Thorough testing and debugging are critical in large-scale, cross-platform projects. Verifying an 
application’s behavior on different platforms is essential, ensuring compatibility, stability, and optimal 
performance. Tools such as Google Test and CppUnit assist in creating unit tests, while platform-
specific debugging tools aid in identifying and resolving platform-specific issues.

A large-scale, cross-platform project in C++

Organizing a large-scale, cross-platform project in C++ requires careful planning and consideration 
of various factors. These projects involve developing software applications that can run on multiple 
operating systems or platforms. Understanding the target platforms’ specific requirements is crucial 
for effective project organization. Each platform may have unique capabilities, constraints, and APIs 
that must be considered during development. By thoroughly researching and documenting these 
requirements, developers can design an architecture that accommodates the specific needs of each 
platform. For example, if developing a cross-platform mobile application in C++, developers need to 
consider different screen sizes, input methods, and performance characteristics across platforms such as 
iOS and Android. Considering these platform-specific requirements upfront, they can design a flexible 
architecture that efficiently adapts to different screen resolutions and leverages platform-specific APIs.

Abstraction layers are crucial in decoupling platform-specific code from the core application logic. 
Developers can write portable code agnostic to the underlying platform using abstraction layers 
and interfaces. This approach simplifies maintenance, reduces code duplication, and promotes 
cross-platform compatibility.

Despite efforts to abstract platform-specific code, some scenarios may require direct interaction with 
platform-specific APIs or libraries. In such cases, developers should carefully handle platform-specific 
code and avoid cluttering the code base with numerous conditionals. Using conditional compilation 
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directives, such as preprocessor directives or C++11’s constexpr if, allows developers to isolate 
platform-specific code sections without cluttering the main code base. This approach helps maintain 
code readability and reduces the chances of introducing bugs due to conditional logic.

The section below the preprocessor directives in the following code block represents the cross-platform 
code, which can be shared code that does not depend on any specific platform. This code can be executed 
on all platforms, ensuring a project’s cross-platform compatibility. This code snippet demonstrates 
two key considerations when organizing a large-scale, cross-platform project in C++. We will utilize 
preprocessor directives (#ifdef, #elif, and #endif) to include platform-specific code based on 
the current platform. This example defines platform-specific code for Windows, macOS, and Linux. 
You can add more platform-specific sections as needed:

// main.cpp - Entry point of the cross-platform project

#include <iostream>

// Define platform-specific code using preprocessor
// directives
#ifdef _WIN32
    #define PLATFORM_NAME "Windows"
    // Include platform-specific headers and code
    #include <windows.h>
#elif __APPLE__
    #define PLATFORM_NAME "macOS"
    // Include platform-specific headers and code
    #include <CoreFoundation/CoreFoundation.h>
#elif __linux__
    #define PLATFORM_NAME "Linux"
    // Include platform-specific headers and code
    #include <unistd.h>
#endif

int main() {
    std::cout << "Running on " << PLATFORM_NAME << std::endl;

    // Cross-platform code
    // ...

    return 0;
}
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When you compile and run this code, it will display the name of the platform it runs on. The 
platform-specific code sections can contain any platform-specific functionality or API calls required 
for your project.

Please note that this is a simplified example demonstrating the concept of platform-specific and cross-
platform code organization. In a real-world, large-scale, cross-platform project, you would have more 
complex structures, additional modules, and various platform-specific functionalities integrated into 
the overall project organization.

Clear and comprehensive documentation is essential for large-scale, cross-platform projects. Documenting 
a project’s architecture, design decisions, APIs, and platform-specific considerations allows developers 
to understand the project’s structure and functionality. Additionally, well-documented code helps new 
team members quickly get up to speed and facilitates collaboration. Collaboration is crucial in cross-
platform projects, especially when multiple teams or developers are involved. Establishing effective 
communication channels, such as regular meetings, shared project documentation, and version control 
systems, helps ensure everyone is aligned and working toward the same goals. Collaboration tools 
such as Git and project management platforms such as Jira can aid in tracking progress, assigning 
tasks, and resolving issues efficiently.

Cross-platform projects often require performance optimization to ensure a smooth operation on 
different platforms. Developers should profile and analyze an application’s performance on each target 
platform, identifying bottlenecks and platform-specific optimizations. For example, if a cross-platform 
project involves real-time audio processing, developers may need to consider different audio libraries 
or adjust buffer sizes based on platform-specific latency characteristics. By fine-tuning the application’s 
performance on each platform, developers can provide a consistent user experience across different 
operating systems.

Handling errors and exceptions in a cross-platform project requires consideration of platform-specific 
behaviors and conventions. Different operating systems may have unique error codes, exception-handling 
mechanisms, or APIs for error reporting. Developers should carefully handle errors and exceptions, 
ensuring that an application gracefully handles platform-specific exceptions and communicates errors 
effectively to the user. Adopting a consistent error-handling strategy across platforms improves an 
application’s reliability and user experience.

Best practices and strategies for managing a large-scale,  
cross-platform project in C++

Managing a large-scale, cross-platform project in C++ requires careful planning, coordination, and 
adherence to best practices. These projects involve developing software applications that run seamlessly 
on multiple operating systems or platforms. In this article, we will explore the best practices and 
strategies that can help efficiently manage and coordinate large-scale, cross-platform projects in C++, 
ensuring compatibility, maintainability, and successful project delivery.
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Defining clear project goals and scope is vital to managing large-scale, cross-platform projects. 
Determine the specific platforms to target, the desired functionality, and the project’s expected 
outcomes. Communicate these goals to the development team to align everyone’s efforts and ensure 
a shared understanding of the project’s scope.

Agile development methodologies, such as Scrum or Kanban, offer significant benefits to manage 
large-scale, cross-platform projects. These methodologies emphasize iterative development, frequent 
communication, and adaptive planning. By breaking a project into smaller, manageable sprints and 
conducting regular team meetings, developers can address challenges, adapt to changing requirements, 
and deliver incremental value.

Effective version control and collaboration tools are crucial to managing large-scale, cross-platform 
projects involving multiple team members. Utilize version control systems such as Git to track changes, 
manage branches, and facilitate collaboration. Collaboration tools such as project management platforms 
(e.g., Jira and Trello) and communication platforms (e.g., Slack and Microsoft Teams) foster effective 
communication, task tracking, and issue resolution.

Implementing a robust continuous integration/continuous delivery (CI/CD) pipeline is essential 
to managing large-scale, cross-platform projects. CI automates the process of building, testing, and 
integrating code changes across different platforms. CD ensures that an application is always in a 
deployable state. By adopting CI/CD practices, developers can detect and resolve issues early, streamline 
the release process, and maintain high software quality.

Developing and adhering to cross-platform development guidelines is critical to maintaining code 
consistency, readability, and portability. Establish coding conventions, naming conventions, and design 
patterns that promote cross-platform compatibility. Document these guidelines and ensure that all 
team members are familiar with them to facilitate collaboration and maintain a unified code base.

Maintain a continuous feedback loop throughout a project to monitor progress, identify issues, and 
gather stakeholder feedback. Regularly review project milestones, performance metrics, and user 
feedback to make informed decisions and iterate on the project’s direction. Actively seek feedback from 
team members, end users, and stakeholders to ensure the project meets their expectations and needs.

Horizontal and vertical scaling
Horizontal and vertical scaling are architectural strategies that can be applied in various domains, 
including software development in C++. Although scaling primarily refers to managing infrastructure 
and resources, it can affect software design and development.

Horizontal and vertical scaling are two fundamental approaches to handling increased demands or 
improving performance in computing systems. These concepts apply to various domains, including 
software development, databases, and server infrastructure. Let’s delve into horizontal and vertical 
scaling, understanding their differences, advantages, and use cases.
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Horizontal scaling

Horizontal scaling, or scaling out, involves adding more instances or nodes to distribute a workload 
across multiple machines. In this approach, a system’s capacity is increased by expanding horizontally 
rather than enhancing the resources of individual devices.

The advantages of horizontal scaling include the following:

•	 Improved scalability: Horizontal scaling allows for easy scalability by adding more machines 
to a system. It provides the flexibility to accommodate increased user demand or data 
processing requirements.

•	 Enhanced fault tolerance: By distributing a workload across multiple machines, horizontal 
scaling enhances fault tolerance. If one machine fails, the others can continue handling the 
load, ensuring high availability.

•	 Cost-effectiveness: Horizontal scaling can be cost-effective since it involves adding 
commodity hardware or virtual instances, which are generally more affordable than investing 
in high-end machines.

Horizontal scaling is well suited to scenarios involving the following:

•	 High-traffic websites: Distributing web traffic across multiple servers can efficiently handle 
many concurrent user requests

•	 Big data processing: Distributing data processing tasks across multiple nodes allows for parallel 
processing, improving performance

•	 Load balancing: Horizontal scaling works well in load-balanced environments, where multiple 
servers can distribute requests evenly

Vertical scaling

Vertical scaling, or scaling up, involves increasing a single machine’s resources (such as CPU, memory, 
or storage) to handle increased workloads or improve performance. In this approach, the capacity of 
a machine is expanded by enhancing its capabilities.

The advantages of vertical scaling include the following:

•	 Simplicity: Vertical scaling involves upgrading or replacing existing hardware resources without 
requiring significant software or system architecture changes.

•	 Efficient resource utilization: Vertical scaling allows for the efficient utilization of resources 
within a single machine. It can be more effective for applications that require significant 
processing power or memory access.

•	 Reduced complexity: Since a system is contained within a single machine, managing multiple 
instances or nodes is typically less complex.
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Vertical scaling is beneficial in the following scenarios:

•	 Applications with single-threaded performance requirements: Some applications, such as 
certain scientific computations or simulations, may benefit from increased processing power 
on a single machine

•	 Memory-intensive applications: Vertical scaling can be effective for applications that heavily 
rely on memory, such as in-memory databases or complex data analytics

It is important to note that horizontal and vertical scaling are not mutually exclusive and can be 
combined, based on the specific needs of a system. A hybrid approach, known as diagonal scaling, 
combines the advantages of both strategies.

Scaling C++ applications
Scaling C++ applications refers to optimizing and expanding C++ code bases to handle increased 
workloads and accommodate growing user demands. It involves analyzing performance bottlenecks, 
identifying areas of improvement, and implementing scalable solutions such as parallelization, 
distributed computing, and load balancing. By scaling C++ applications, developers can ensure that 
their software can efficiently handle larger data volumes, higher user concurrency, and increased 
processing demands, resulting in improved performance and a better user experience.

Horizontal scaling in C++

Horizontal scaling in C++ involves distributing a workload across multiple machines or instances to 
handle increased demand or achieve better performance. This can be achieved through techniques 
such as load balancing and distributed computing.

In a horizontally scaled C++ application, different instances or nodes can handle other parts of the 
workload concurrently. This approach can improve the application’s overall throughput, scalability, 
and fault tolerance. For example, horizontal scaling in a web application written in C++ can involve 
deploying multiple instances of an application server behind a load balancer to distribute incoming 
requests evenly.

To facilitate horizontal scaling in C++, designing the application with a modular architecture and 
loose coupling is essential. This allows different instances to work independently and communicate 
effectively. Technologies such as message queues or distributed databases can also ensure data 
consistency across instances.

Vertical scaling in C++

Vertical scaling, or scaling up, involves increasing a single machine’s resources (such as CPU, memory, 
or storage) to handle increased workloads or improve performance. This can be achieved by upgrading 
the hardware or provisioning more powerful virtual machines.
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Vertical scaling can also involve using advanced techniques such as vectorization or parallel programming 
to leverage specialized hardware features such as Single Instruction, Multiple Data (SIMD) instructions 
or Graphics Processing Unit (GPU) acceleration.

Choosing between horizontal and vertical scaling depends on the specific requirements and constraints 
of an application. Horizontal scaling offers better scalability and fault tolerance, while vertical scaling 
can provide a cost-effective solution for applications with lower demands or resource constraints.

It is worth noting that scaling considerations in C++ often extend beyond just managing infrastructure. 
Designing an application with scalability in mind, utilizing efficient algorithms and data structures, 
and leveraging parallelism can contribute to the ability to scale effectively in both horizontal and 
vertical directions.

Designing data-intensive applications
Designing data-intensive applications in C++ involves considering various aspects, including data 
storage, data processing, and efficient utilization of system resources. This section will list some key 
considerations and best practices for designing data-intensive applications in C++.

To begin with, some best practices for data modeling and storage are listed as follows:

•	 Identify the nature and structure of the data: Analyze the data requirements and determine 
the appropriate data model, such as relational, NoSQL, or a combination of both, based on 
the application’s needs.

•	 Choose efficient data storage solutions: Select appropriate data storage technologies, such 
as databases (MySQL, PostgreSQL, and MongoDB) or distributed filesystems (Hadoop 
HDFS and Apache Cassandra), based on factors such as scalability, performance, and data 
integrity requirements.

•	 Optimize data access and retrieval: Employ techniques such as indexing, caching, and query 
optimization to enhance data retrieval performance. Utilize appropriate data structures and 
algorithms to store and retrieve data efficiently.

We should consider the following in terms of concurrency and parallelism:

•	 Leverage multi-threading: Utilize multithreading to parallelize data processing tasks and 
improve overall performance. Use synchronization mechanisms such as locks or mutexes to 
ensure data consistency and avoid race conditions.

•	 Utilize parallel algorithms and libraries: Use similar computing libraries such as Intel Threading 
Building Blocks (TBBs) or OpenMP to parallelize computationally intensive operations. These 
libraries provide abstractions and utilities for efficient parallel processing.
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The following applies to efficient memory management:

•	 Minimize memory overhead: Design data structures and algorithms that minimize memory 
usage, avoiding unnecessary duplication or excessive object creation. Use memory-efficient 
containers, such as std::vector or std::deque, and manage dynamic memory 
allocation carefully.

•	 Utilize memory pooling: Implement custom memory pooling techniques to reduce the 
overhead of frequent memory allocation and deallocation, especially in scenarios with high 
object creation rates.

See these suggestions for stream processing and pipelining:

•	 Employ stream processing techniques: Utilize frameworks such as Apache Kafka or RabbitMQ 
for real-time data ingestion and processing. Stream processing enables efficient data processing 
as it arrives, facilitating real-time analytics and response.

•	 Implement data pipelines: Design data processing pipelines to transform and manipulate data 
efficiently. Break down processing tasks into smaller stages or modules, ensuring scalability 
and maintainability.

Apply the following to your performance optimization:

•	 Profile and identify bottlenecks: Use profiling tools and techniques to identify performance 
bottlenecks in data-intensive operations. Optimize critical sections of code by applying 
appropriate algorithms, data structures, or parallelization techniques.

•	 Utilize SIMD instructions: Use SIMD instructions, such as Intel SSE or AVX, to perform 
data-parallel operations efficiently. SIMD instructions can significantly improve performance 
in numerical and vectorized computations.

These practices align with data security and integrity:

•	 Ensure data privacy and protection: Implement appropriate security measures, such as 
encryption, access control, and authentication, to safeguard sensitive data. Follow best practices 
for secure coding and handling of user input to prevent security vulnerabilities.

•	 Implement data validation and error handling: Validate input data to ensure its integrity and 
reliability. Handle exceptions and errors gracefully, providing informative error messages and 
robust recovery mechanisms.

By considering and incorporating these best practices into the design and implementation of data-
intensive applications in C++, developers can create efficient, scalable, and robust systems that effectively 
handle large volumes of data and deliver optimal performance.
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This example shows a simple data-intensive application, demonstrating data storage, processing, 
and management:

#include <iostream>
#include <vector>
#include <algorithm>

Data structure

We define a Record structure to represent individual records. Each record has an ID, name, and 
age associated with it:

// Data structure for storing records
struct Record {
    int id;
    std::string name;
    int age;
};

Data processing

The processData function takes a vector of Record objects as input and performs various data 
processing operations. In this case, we sort the records based on age using the std::sort algorithm, 
with a lambda function as the comparison criterion. Then, we print the sorted records:

// Function to process records
void processData(const std::vector<Record>& records) {
    // Sort records by age
    std::vector<Record> sortedRecords = records;
    std::sort(sortedRecords.begin(), sortedRecords.end(),
      [](const Record& a, const Record& b) {
        return a.age < b.age;
    });

    // Print sorted records
    std::cout << "Sorted Records by Age:\n";
    for (const auto& record : sortedRecords) {
        std::cout << "ID: " << record.id << ", Name: " <<
          record.name << ", Age: " << record.age <<
          std::endl;
    }

    // Perform data processing operations
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    // ...
}

The main function

In the main function, we create a sample dataset with multiple records. We pass this dataset to the 
processData function to perform the data processing operations.

This is a simplified example, but it demonstrates how data structures can be used to store records and 
how data processing operations can be performed on them. In real-world data-intensive applications, 
you typically have more complex data structures, advanced algorithms, and additional functionality 
to handle large datasets efficiently:

int main() {
    // Create a sample dataset
    std::vector<Record> records = {
        {1, "John", 35},
        {2, "Alice", 28},
        {3, "Michael", 42},
        {4, "Emily", 32},
        {5, "David", 40}
    };

    // Process the data
    processData(records);

    return 0;
}

Summary
This chapter covered several essential aspects of large-scale software development, providing insights 
into organizing cross-platform projects, implementing scaling strategies, scaling C++ applications, 
and designing efficient data-intensive applications.

This introduction to large-scale, cross-platform project organization highlights the complexity 
of developing software applications that can seamlessly run across multiple operating systems 
or platforms. It emphasizes key considerations such as modular architecture, abstraction layers, 
platform-independent libraries, build systems, testing practices, documentation, and collaboration. 
By understanding and implementing these practices, developers can effectively manage the intricacies 
of large-scale, cross-platform projects.
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The discussion on horizontal and vertical scaling explored two fundamental approaches to handling 
increased demands and enhancing performance in computing systems. Horizontal scaling involves 
distributing a workload across multiple machines or instances, providing benefits such as improved 
scalability, fault tolerance, and cost-effectiveness. On the other hand, vertical scaling focuses on 
enhancing the resources of a single machine, simplifying management, and ensuring efficient resource 
utilization. Understanding each scaling approach’s advantages, use cases, and considerations is crucial 
to optimizing system performance and handling growing workloads.

The information covered on scaling C++ applications delved into the specific techniques and 
strategies to scale applications written in C++. It covers multithreading, parallel computing, memory 
management, and efficient resource utilization. Leveraging the capabilities of C++ language features, 
libraries, and optimization techniques can significantly enhance the scalability and performance of 
C++ applications in diverse environments.

Designing data-intensive applications in C++ involves crucial data storage, processing, and resource 
management considerations. Key areas covered include data modeling and storage selection, concurrency 
and parallelism, efficient memory management, stream processing and pipelining, performance 
optimization, and data security and integrity. By following best practices and implementing efficient 
design patterns, developers can create data-intensive applications that handle large volumes of data, 
optimize performance, and ensure data integrity and security.

Understanding and incorporating these concepts into software development processes enable developers 
to tackle the challenges associated with large-scale projects efficiently. Developers can achieve optimal 
performance, scalability, and maintainability in their software systems by organizing cross-platform 
projects, implementing appropriate scaling strategies, optimizing C++ applications, and designing 
efficient data-intensive applications. The next chapter will look at using C++ for machine learning tasks.

Questions
1.	 What are the key considerations for organizing a large-scale cross-platform project in C++?
2.	 What are the differences between horizontal and vertical scaling, and what are their respective 

advantages and use cases?
3.	 How can C++ applications be scaled effectively, considering multithreading, parallel computing, 

and efficient resource utilization?
4.	 What are the important factors to consider when designing data-intensive applications in C++, 

including data storage, processing, and memory management?
5.	 How can modular architecture and abstraction layers be leveraged in large-scale cross-platform 

projects to ensure scalability and maintainability?
6.	 What are the best practices to optimize performance and ensure data integrity and security in 

data-intensive applications developed in C++?
7.	 How would you differentiate between different client applications when implementing a 

server application?
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Further reading
For further information, refer to the following:

•	 Lessons from Building and Scaling LinkedIn: https://www.infoq.com/presentations/
linkedin-architecture-stack/

•	 High-Performance Computing: Modern Systems and Practices by Thomas Sterling, Matthew Anderson, 
and Maciej Brodowicz: https://www.sciencedirect.com/book/9780124201583/
high-performance-computing

https://www.infoq.com/presentations/linkedin-architecture-stack/

https://www.infoq.com/presentations/linkedin-architecture-stack/

https://www.sciencedirect.com/book/9780124201583/high-performance-computing
https://www.sciencedirect.com/book/9780124201583/high-performance-computing


Part 3: 
C++ in the AI World

This part is an overview of recent advances in AI and machine learning. You will learn how to tackle 
machine learning tasks using C++, and even designing a dialog-based search engine. This part has 
the following chapters:

•	 Chapter 16, Understanding and Using C++ in Machine Learning Tasks

•	 Chapter 17, Using C++ in Data Science

•	 Chapter 18, Designing and Implementing a Data Analysis Framework





16
Understanding and Using C++ 

in Machine Learning Tasks

This book aims to provide you with a comprehensive guide to leveraging the power of C++ in the field 
of machine learning (ML). Whether you’re a beginner exploring the realms of artificial intelligence 
(AI) or an experienced developer looking to expand your skill set, this book will equip you with the 
knowledge and tools necessary to apply C++ effectively to ML tasks. ML has become a fundamental 
discipline in the realm of AI, enabling computers to learn from data and make predictions or decisions 
without explicit programming. As the demand for intelligent systems continues to grow, so does 
the need for robust programming languages that can handle the computational complexities of ML 
algorithms. This is where C++ shines. So, whether you’re a researcher, a data scientist, or simply a 
curious learner, we hope this book will serve as your roadmap to mastering C++ in the realm of ML. 
We invite you to dive in, experiment, and unlock the immense potential that C++ brings to the world 
of intelligent systems.

AI and ML have become more and more popular recently. From simple food delivery websites to 
complex industrial robots, AI has been declared as one of the main features powering software and 
hardware. While, most of the time, the terms are used to make the product look more serious, some 
companies are intensively researching and incorporating AI into their systems. Before we go further, 
take into account the fact that this chapter is a gentle introduction to ML from a C++ programmer’s 
perspective. For more comprehensive literature, refer to the list of books in the Further reading section. 
In this chapter, we will introduce the concepts of AI and ML. While it is preferred that you have a 
mathematical background, we will barely use any math in this chapter. If you are planning to enlarge 
your skill set and dive into ML, you must consider studying mathematics first.

Besides introducing the concepts, this chapter also provides examples of tasks in ML. We are going 
to implement them and give you a basic idea of how you should research and move forward with 
solving more complex tasks.
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We will cover the following topics in the chapter:

•	 Introduction to AI and ML in general

•	 Categories and applications of ML

•	 Designing a C++ class for calculations

•	 Neural network structure and implementation

•	 Regression analysis and clustering

Technical requirements
The g++ compiler with the -std=c++2a option was used to compile the examples in this chapter. You can 
find the source files that were used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition.

Introduction to AI
The simplest definition of AI is robots acting like humans. It is the intelligence demonstrated by 
machines. And this is where the discussion around the definition of intelligence comes in: how can 
we define it for machines, and at what level should we shout out loud that we are dealing with an 
intelligent machine?

If you are not familiar with the different tests we can use to verify the intelligence of a machine, one 
of the popular ways to do so is the Turing test. The idea is to have an interrogator asking questions 
to two people, one of them being a machine and the other a human. If the interrogator can’t make a 
clear distinction between those two, the machine should be considered intelligent.

Note
The Turing test is named after Alan Turing. The test was introduced in his paper, Computing 
Machinery and Intelligence, in 1950. He proposed using the imitation game to determine whether 
a machine thinks like a human.

The people being interrogated are behind a wall so that the interrogator can’t see them. The interrogator 
then asks several questions to both participants. The following diagram demonstrates how the 
interrogator communicates with the human and the machine, but can’t physically see them:

https://github.com/PacktPublishing/Expert-C-2nd-edition

https://github.com/PacktPublishing/Expert-C-2nd-edition
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Figure 16.1 – Interrogator

When you start diving into the field of AI, the definition of intelligence gets more and more vague. 
Questions can be asked to a machine in any form: in text, in audio, in visual form, and so on. 
Numerous things might never be available in machines, such as the look on their faces. Sometimes, 
people understand each other’s moods by the look on their faces. You can’t be sure whether a robot 
will understand or will even be able to imitate the mood on its face. No one taught us to look angry 
when we are angry. No one taught us to have emotions. They are just there. It’s hard to tell whether 
someday, something similar might be achieved for machines.

When speaking about AI, most of the time, we presume it’s about a robot that talks and behaves 
similarly to humans. But when you try to dissect it as a programmer, you come across a lot of sub-fields, 
each of which takes a lot of time to understand. Many of the fields have a lot of tasks in progress or 
are in the early research phase. Here are some of the sub-fields in AI that you might be interested in 
focusing on in your career:

•	 Computer vision: This involves designing algorithms for visual object recognition and 
understanding objects by analyzing their visual representation. It’s easy for humans to spot a 
familiar face in the crowd, but implementing similar functionality for machines might take a 
lot of time to gain accuracy equal to humans.

•	 Natural language processing (NLP): A linguistic analysis of text by machines. It has applications 
in various segments, such as machine translation. Imagine that the computer completely 
understands human written text so that we can tell it what to do instead of spending months 
learning a programming language.

•	 Knowledge reasoning: This might seem the obvious goal for machines to behave intelligently. 
Knowledge reasoning is concerned with making machines reason and provide solutions based on 
the information they have; for example, providing a diagnosis by examining medical conditions.
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•	 ML: A field of study of algorithms and statistical models used by machines to perform tasks 
without explicit instructions. Instead of direct instructions, ML algorithms rely on patterns and 
inference. That said, ML allows machines to do the job on their own, without human involvement.

Let’s discuss the preceding sub-fields separately and then concentrate on ML.

Computer vision

Computer vision is a comprehensive field of study and has a lot of ongoing research projects. It is 
concerned with almost everything related to visual data processing. It has wide applications in various 
areas; for example, face recognition software processing data from various cameras spread over the city 
to find and determine criminal suspects, or optical character recognition software that produces text 
from images containing it. Combined with some augmented reality (AR) technologies, the software 
can translate text in images into a language familiar to the user.

Studies in this field are making progress by the day. Combined with AI systems, computer vision is the 
field that makes machines perceive the world as we do. A simple task for us, however, is challenging 
to implement in terms of computer vision. For example, when we see an object in an image, we can 
easily spot its dimensions. For example, the following figure represents the front view of a bicycle:

Figure 16.2 – Front view of a bicycle

Even if we don’t mention that it’s a bicycle, it’s not so hard for a human to determine it. It’s obvious 
to us that the black bold line at the bottom center is the front wheel of the bicycle. It’s hard to tell the 
computer to understand that this is a wheel. All the computer sees is a collection of pixels, some of 
which are the same color:
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Figure 16.3 – Collection of pixels

Besides understanding the wheel of the bicycle, it should also deduce that this bicycle must have another 
wheel that is not visible in the figure. And again, we might guess the approximate size of the bicycle, 
whereas this is a comprehensive task for the computer to determine from the image. That said, this 
simple thing from our perspective might become a real challenge in computer vision.

Important
We suggest using the OpenCV (https://opencv.org/) library for computer vision 
tasks. It is a cross-platform library written in C and C++. OpenCV represents a set of functions 
aimed at real-time computer vision, including, but not limited to, facial recognition, gesture 
recognition, motion understanding, motion tracking, and other features.

Typical tasks in computer vision include object recognition, identification, and detection:

•	 Object recognition: Object recognition refers to the ability to classify or categorize an object 
based on its general characteristics or features. It involves determining the class or category 
to which an object belongs. In our example, object recognition is the understanding that the 
object in the preceding figure is a vehicle. It involves recognizing the overall characteristics 
and features that define an object as a vehicle, such as its shape, size, and general appearance.

•	 Object identification: Object identification, on the other hand, goes beyond recognizing the 
general class or category of an object. It involves pinpointing or specifically identifying an 
individual instance or part of an object. In our example, object identification would involve 
recognizing and isolating a specific part of the vehicle, such as identifying the wheel of the 
bicycle in the preceding figure. It focuses on identifying specific details or components that 
distinguish one instance or part of an object from others.

https://opencv.org/
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•	 Object detection: Object detection tasks for bicycles might include identifying specific 
components or regions of interest, such as handlebars, pedals, the saddle, or wheels. These 
tasks aim to locate and label the different parts of the bicycle within an image, enabling a 
comprehensive understanding of its structure and attributes.

Now, let’s look at NLP.

NLP

Another interesting field of study is NLP. NLP makes efforts to make computers understand human 
languages. A more generalized approach is automatic speech recognition and natural language 
understanding, which are key features of virtual assistants. Today, it’s not magic anymore to talk to 
your phone and ask it to search for something on the web, for example. The entire process is powered 
by complex algorithms in speech and text analysis. The following diagram shows a high-level view of 
the process that happens within the conversational agents:

Figure 16.4 – NLP

Furthermore, in addition to virtual assistants, there are numerous chat-like programs (ChatGPT, 
Bard, and others) and language models that have emerged, offering assistance and providing valuable 
information to users. These programs, much like the one you are currently interacting with, utilize 
advanced NLP techniques to understand user input, generate relevant responses, and assist with a 
wide range of queries.

Many language processing tasks are related to the web. A search engine processing the user input to 
search millions of documents on the web is one of the top applications of NLP. In the next chapter, 
we will dive a lot deeper into search engine design and implementation. One of the main concerns in 
search engine design is processing the text data. The search engine cannot just store all the websites 
and respond to the user for the first match for the query. Numerous tasks in NLP have complex 
implementations. Suppose that we are designing a program that is fed with a text document and we 
need to output sentences within the document. Recognizing the beginning and the end of a sentence 
is one of its complex tasks. The following sentence is a simple example:

I love studying C++. It's hard, but interesting.



Introduction to AI 515

The program will output two sentences:

I love studying C++.
It's hard, but interesting.

In terms of a coding task, we just search for the . (dot) character at the end and make sure the first 
word starts with a capital letter. How would the program behave if one of the sentences had the 
following form?

I love studying C++!

As there is an exclamation point at the end of the sentence, we should revisit our program to add 
another rule for recognizing the ending of a sentence. What if a sentence ends like this?

It's hard, but interesting...

One by one, more and more rules and definitions are introduced so that we have a fully functional 
sentence extractor. Leveraging ML moves us in a smarter direction when solving NLP tasks.

Another language-related task is machine translation, which automatically translates a document 
from one language into another. Also, note that building a comprehensive NLP system will benefit 
other fields of study, such as knowledge reasoning.

Knowledge reasoning

Knowledge reasoning involves making computers think and reason in a similar way to humans. 
Imagine having a conversation with a machine that starts like this:

[Human] Hello
[Machine] Hello

We can program the machine to answer specific questions or understand complex text input given by 
the user, but it’s a lot harder to make the machine reason based on previous experience. For example, 
the following reasoning is one of the goals of the study:

[Human] I was walking yesterday and it was raining.
[Machine] Nice.
[Human] I should dress warmer next time.
[Machine] OK.
[Human] I think I have a temperature.
[Machine] Did you should be a cold yesterday?
[Human] I guess so.
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While it might seem easy to spot the connection between catching a cold and the rain, it takes a lot of 
effort for the program to deduce it. It must associate the rain with cold and having a temperature with 
catching a cold. It also needs to remember the previous input so that it can intelligently keep the dialog.

All of the aforementioned fields of study are exciting areas for a programmer to dive deeper into. 
Finally, ML in general is something that sits at the fundament for all other fields in terms of designing 
algorithms and models for each specific application. We are fortunate to live in an era where the 
boundaries between humans and machines are blurring, thanks to breakthroughs in NLP and related 
fields. Now, let’s embark on a journey to unravel the intricacies of NLP and harness the power of C++ 
in creating intelligent language-based applications.

ML
ML takes us to a whole new level of making machines execute tasks the way humans do, maybe even 
better. Compared to the fields we introduced previously, the goal of ML is to build systems that can 
do things without specific instructions. In the journey of inventing artificially intelligent machines, 
we should take a closer look at human intelligence. When a child is born, they don’t express intelligent 
behavior; instead, they start to slowly become familiar with the surrounding world. There is no recorded 
evidence of any 1-month-old child solving differential equations or composing music. In the same 
way that a child learns and discovers the world, ML is concerned with building the foundational 
models that directly perform the tasks and learning how to do them. That’s the fundamental difference 
between setting up a system to carry out predefined instructions and letting it figure it out on its own.

When a child starts walking, taking things, talking, and asking questions, they are gaining knowledge 
about the world step by step. They take a book, taste it, and sooner or later stop chewing books as 
they realize they’re not edible. Years pass and the child now opens the pages of the book and looks 
for images in it and the little figures comprising the text. A few more years pass and the child starts to 
read them. Over the years, the child’s brain becomes more and more complicated and creates more 
and more connections between its neurons. The child becomes an intelligent human being.

Imagine a system that has some magical algorithms and models in it. After feeding it a bunch of data, it 
will be able to understand more and more, the same way a child gets to know the world by processing 
the input data in the form of visual data (looking through their eyes), smell, or flavor. Later on, by 
developing a way to ask questions, the child gets to understand words and associates those words 
with objects in the real world, and even intangible concepts. ML systems act almost in the same way. 
They process the input data and produce some output that conforms to the results expected by us. 
The following diagram illustrates this idea:
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Figure 16.5 – The ML system

Now, let’s dive deeper into ML. As always, the best way to understand something new is to try to 
implement it first.

Understanding ML

ML is a big field of study with a lot of research in progress and is expanding rapidly. To understand 
ML, we should first understand the nature of learning. Thinking and reasoning are the key concepts 
that make us – humans – special. The core of ML is to make the system learn and use that knowledge 
to act upon tasks. You might recall your first steps in studying programming. We are sure it wasn’t easy. 
You had to learn new concepts, build abstractions, and make your brain understand what’s going on 
under the hood of program execution. After that, you were supposed to build complex systems using 
those small building blocks described in primers as keywords, instructions, conditional statements, 
functions, classes, and so on.

However, an ML program differs from the programs we usually create. Take a look at the following code:

int calculate()
{
    int a{14};
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    int b{27};

    int c{a + b};

    return c;
}

This simple program does what we instructed it to do. It contains several simple instructions that lead 
to the c variable representing the sum of a and b. We can modify this function to take user input, 
as follows:

int calculate(int a, int b)
{     int c{a + b}; return c;
}

The preceding function will never gain any intelligence. It doesn’t matter how many times we call the 
calculate() function. It also doesn’t matter what numbers we provide as its input. The function 
represents a collection of instructions. We might say even a collection of hardcoded instructions – that 
is, the function will never modify its instructions to behave differently based on the input. However, 
we can introduce some logic; let’s say we make it return 0 every time it receives negative numbers:

int calculate(int a, int b)
{     if (a < 0 && b < 0) {
    return 0;
    }     int c{a + b}; return c;
}

The conditional statement introduced the simplest form of a decision that the function makes based on 
its input. We can add more and more conditionals so that the function will grow and have a complex 
implementation. However, no number of conditional statements will make it smarter because it is 
not something that the code comes up with on its own. And here comes the limit that we face when 
dealing with programs: they don’t think; they act as we programmed them to act. We are the ones 
who decide how they must behave. And they always obey. Well, so long as we didn’t introduce bugs.

Now, imagine an ML algorithm in action. Suppose the calculate() function has some magic in 
it so that it returns a value based on the input. Let’s say it has the following form:

int calculate(int a, int b)
{     // some magic
    // return value
}
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Now, suppose that we are calling calculate() and passing 2 and 4 as its arguments, hoping that 
it will calculate their sum and return 6. Also, imagine that we can somehow tell whether the result 
is what we expected. After a while, the function behaves such that it understands how to use those 
input values and return their sum. The class that we will build in the next section represents our first 
steps toward understanding ML.

Designing an algorithm that learns

The following class represents a calculation machine. It comprises four arithmetic operations and 
expects that we provide examples of how it should calculate the input values:

classExample
{
public:
int input1;
int input 2;
int output;
};
class CalculationMachine
{
public:
using Examples = std::vector<Example>;
// pass calculation examples through the setExamples() void 
setExamples(const Examples& examples);
// the main function of interest
// returns the result of the calculation int calculate(int a, int b);
private:
// this function pointer will point to // one of the arithmetic 
functions below int (*fptr_)(int, int) = nullptr;
private:
// set of arithmetic functions
static int sum(int, int);
static int subtract(int, int);
static int multiply(int, int);
static int divide(int, int);
};

Before using the calculate() function, we should provide a list of examples for the setExamples() 
function. Here’s a sample of the examples that we provide to CalculationMachine:

3 4 7
2 2 4
5 5 10
4 5 9
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The first two numbers in each line represent the input arguments; the third number is the result of 
the operation. The setExamples() function is how CalculationMachine learns how to 
use the correct arithmetic function. In the same way that we can guess what’s going on from the 
preceding examples, CalculationMachine tries to find the best fit for its operations. It goes 
through examples and defines which of the functions it should use when calculate() is called. 
The implementation is similar to the following:

void CalculationMachine::setExamples(const Examples &examples)
{int sum_count{0};
int sub_count{0};
int mul_count{0};
int div_count{0};
for (const auto &example : examples)
{if (CalculationMachine.sum(example.input1, example.input2) ==
example.output)
{++sum_count;
}if (CalculationMachine.subtract(example.input1, example.input2) ==
example.output)
{++sub_count;
}// the same for multiply() and divide()
}// the function that has the maximum number of correct
// output results
// becomes the main function for called by calculate()
// fptr_ is assigned the winner arithmetic function
}

As you can see from the preceding example, the function calls all the arithmetic functions and compares 
their return value with the example output. Every time the result is correct, it increases the count of 
correct answers for the specific function. Finally, the function with the maximum number of correct 
answers is assigned to fptr_, which is used by the calculate() function, as follows:

int CalculationMachine::calculate(int a, int b)
{// fptr_ points to the sum() function
return fptr_(a, b);
}

With that, we have devised a simple learning algorithm. The setExamples() function might be 
renamed setDataSet(), trainWithExamples(), or something similar. The point of this 
example with CalculationMachine is that we define a model and algorithm that works with it; 
we can call this ML. It learns from data. Or, even better, it learns from experiences. Each record in the 
vector of examples that we provided to CalculationMachine can be regarded as an experience. 
We say that the performance of the calculation improves with experience – that is, the more we provide 
examples, the more it becomes confident in choosing the right function to perform the task. And the 
task is calculating the value based on two input arguments. The process of learning itself is not a task. 
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Learning is what leads to performing the task. Tasks are usually described as how the system should 
process an example, where an example is a collection of features. However, in ML terms, an example 
is represented as a vector (mathematical), where each entry is another feature; the choice of the vector 
data structure is just a coincidence. As one of the fundamental principles is training the system, ML 
algorithms can be categorized as supervised or unsupervised. Let’s examine their differences and then 
establish various applications of ML systems.

Categories of ML

Categorizing ML algorithms depends on the kind of experience they have during the learning process. 
We usually call this collection of examples a dataset. Some books also use the term data points. A dataset 
is a collection of data representing anything useful to the target system. It might include measurements 
of weather for certain periods, a list of prices for the stock of some company or companies, or any 
other set of data. While the dataset might be unprocessed or so-called raw, some datasets contain 
additional information for each contained experience. In the CalculationMachine example, 
we used a raw dataset, although we already programmed the system to recognize that the first two 
values were the operands of the operation and the third value was its result. As already mentioned, 
we categorize ML algorithms into supervised and unsupervised:

Figure 16.6 – Categorization of ML

Supervised learning algorithms learn from labeled datasets; that is, each record contains additional 
information describing the data. CalculationMachine is an example of a supervised learning 
algorithm. Supervised learning is also known as training with an instructor. The instructor teaches 
the system using the dataset:
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Figure 16.7 – Supervised learning

A good example of an application of a supervised learning algorithm is the spam filter in email 
applications. Users label emails as spam or not and the system then tries to find patterns in new 
incoming emails to detect potential spam emails.

The example with CalculationMachine is another case of supervised learning. We fed it the 
following dataset:

3 4 7
2 2 4
5 5 10

4 5 9

We programmed CalculationMachine to read the first two numbers as input arguments, and 
the third number as the output produced by a function applied to the input. This way, we provided 
the necessary information on what exactly the system should get as a result.

Unsupervised learning algorithms are even more complex – they process the dataset, which contains 
a bunch of features, and then try to find useful properties of these features. Unsupervised learning 
algorithms are mostly left alone to define what’s in the dataset. In terms of intelligence, an unsupervised 
learning approach meets the description of an intelligent creature more than supervised learning 
algorithms. In contrast, supervised learning algorithms try to predict which input values map to the 
output values, while unsupervised algorithms perform several operations to discover patterns in a 
dataset. Following the same association in the preceding diagram, the following diagram describes 
an unsupervised learning algorithm:
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Figure 16.8 – Unsupervised algorithm

Examples of applications of unsupervised learning algorithms are recommendation systems. We will 
discuss one in the next chapter, where we will design a web search engine. Recommendation systems 
analyze user activity to recommend similar data, such as movie recommendations.

As shown in Figure 16.6, reinforcement learning is also an option. This is a category of algorithms that 
learn from mistakes. There is a feedback loop between the learning system and its experiences so that 
reinforcement learning algorithms interact with an environment. They might make a lot of mistakes 
in the beginning and, after processing the feedback, correct and improve themselves. The learning 
process becomes part of task execution. Imagine that CalculationMachine receives only input 
numbers but not the result of the calculation. For each experience, it will produce a result by applying 
one of the arithmetic operations and then receive feedback. Let’s say it subtracts the numbers and 
then modifies itself to calculate the sum based on the feedback.

Applications of ML

Understanding the different categories of ML helps us apply it better to various kinds of tasks. There is 
a wide range of tasks that can be solved with ML. We have already mentioned classification as one of 
the tasks that can be solved with ML algorithms. Classification is the process of filtering and ordering 
the input to specify the categories the input belongs to. Solving classification with ML usually means 
that it produces a function that maps input to a specific output. Outputting a probability distribution 
over classes is also a type of classification task. One of the best examples of a classification task is object 
recognition. The input is a set of pixel values (in other words, an image) and the output is a value 
that identifies the object in the image. Imagine a robot that can recognize different kinds of tools and 
deliver them to workers on command – for example, a mechanic working in a garage has an assistant 
robot that can recognize a screwdriver and bring it on command.
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Something more challenging is classification with missing inputs. In the preceding example, it’s similar to 
asking the robot to bring something to screw the bolts. When some of the input is missing, the learning 
algorithm must operate with more than one function to achieve a successful result. For example, the 
assistant robot might bring pliers first and then come up with a screwdriver as the correct solution.

Similar to classification is regression, where the system is asked to predict a numerical value, given 
some input that is provided. The difference is the format of the output. An example of a regression 
task is predicting the future prices of stocks. These and other applications of ML are making it grow 
rapidly as a field of study. Learning algorithms are not just a list of conditional statements, which is 
what they might feel like at first. They are based on more comprehensive constructs modeled after 
human brain neurons and their connections. This leads us to the next section, where we will cover 
artificial neural networks (ANNs).

Neural networks
Neural networks are designed to recognize patterns. They are modeled after the human brain; more 
specifically, we speak about neurons of the brain and their artificial counterparts – artificial neurons. 
A neuron in the human brain is illustrated in the following diagram:

Figure 16.9 – A neuron in the human brain

A neuron communicates with other neurons via synapses. The basic functionality of a neuron is 
processing a portion of data and producing signals based on that data. In programming terms, a 
neuron takes a set of inputs and produces an output.

That’s why the following diagram makes it clear why an artificial neuron is similar to the human 
brain’s neuron structure:
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Figure 16.10 – The human brain’s neuron structure

ANNs consist of interconnected artificial neurons or nodes organized in layers, and they are primarily 
used for ML and pattern recognition tasks. They leverage mathematical algorithms and optimization 
techniques to learn and make predictions based on input data. An ANN represents a group of 
interconnected nodes, with each node representing a model after a neuron. Each node connection 
can transmit signals similar to synapses in biological brain neurons. Neural networks are a set of 
algorithms that helps cluster and classify. As you can see from the preceding diagram, the neural 
network consists of three layers:

•	 Input layer

•	 Hidden layer

•	 Output layer

The input and output layers speak for themselves; the initial inputs are external data, such as images, 
audio, or text files. The output is the task’s accomplishment, such as classifying the text’s content or 
the objects that were recognized in images. The hidden layer is what makes the network produce 
reasonable results. The transition of input to output goes through the hidden layer, which does the 
heavy analyzing, processing, and modifications necessary to produce the output.

Consider the preceding diagram; it shows that a neuron can have multiple input and output connections. 
Usually, each connection has a weight that specifies the importance of the connection. The layering in 
the preceding diagram tells us that neurons in each layer are connected to neurons of the immediately 
preceding and immediately following layers. You should note that there might be several hidden layers 
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between the input and output layers. While the primary purpose of input and output layers is reading 
external data and returning calculated (or deduced) output, the purpose of hidden layers is to adapt by 
learning. Learning also involves adjusting connections and weights to improve the output’s accuracy. 
This is the part where ML comes into play. So, if we create a complex neural network with several 
hidden layers ready to learn and improve, we get an AI system. In the next section, we’ll examine the 
clustering problem before covering regression analysis.

Clustering
Clustering is concerned with grouping a set of objects to distribute them into groups of similar objects. 
Also known as cluster analysis, this is a set of techniques and algorithms that intends to group similar 
objects, producing clusters. The simplest illustrative introduction would be grouping a set of colored 
objects into different groups consisting of objects of the same color, as follows:

Figure 16.11 – Clustering

Although we are discussing AI tasks in this chapter, we suggest that you first try to solve problems 
with the knowledge base that you have so far. Let’s think about how we would categorize objects by 
similarity. First of all, we should have a basic idea of what the object will look like. In the preceding 
example, we are looking at an object’s shape, color, dimensions (the width and height of a 2D object), 
and so on. Without going much deeper, a basic representation of an object might look like this:

classObject
{
public:
int color;
int shape;
int width;
int height;
};
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Let’s consider the fact that the values for color and shape are in a range of predefined values. 
We could use enumerations for better readability. Clustering analysis involves analyzing objects to 
categorize them somehow. The first thing that comes to mind is having a function that accepts a list 
of objects. Let’s try to define one:

using objects_list = std::vector<Object>;
using categorized_table = std::unordered_map<int, objects_list>;
categorized_table clusterize(const objects_list &objects)
{
// categorization logic
}

Think for a moment about the implementation details. We need to define the clustering points. These 
might be the color and the type of the shape. The challenging thing is that they might be unknown. 
That said, to cover everything just in case, we will categorize objects for every property, as follows:

categorized_table clusterize(const objects_list &objects)
{
categorized_table result;
for (const auto &obj : objects)
{result[obj.color].push_back(obj);
result[obj.shape].push_back(obj);
}return result;
}

Objects with a similar color or shape are grouped in a hash table. While the preceding code is rather 
simple, it bears the basic idea of grouping objects by some similarity criterion. What we did in the 
previous example is more likely to be described as hard clustering, where an object either belongs to 
a cluster or it doesn’t. On the contrary, soft clustering (also known as fuzzy clustering) describes an 
object that belongs to a cluster to a certain degree.

For example, the similarity of objects for the shape property could be defined by the result of a 
function applied to the objects – that is, the function defines whether object A and object B have a 
similar shape if, let’s say, object A’s shape is a square and object B’s shape is a rhombus. This means 
we should update the logic in the previous example to compare objects against several values and 
define their shape as a group. By developing this idea further, sooner or later, we will arrive at different 
strategies and algorithms of clustering, such as K-means clustering.

Regression analysis
Regression analysis is concerned with finding the deviations for one value from another. The simplest 
way of understanding regression analysis is through the graphs for functions in mathematics. You 
might recall the graph for the f(x) = y function:
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Figure 16.12 – Graph for the f(x) = y function

For every value of x, the function results in a fixed value for y. Regression analysis is somewhat 
similar to the preceding graph as it is concerned with finding a relationship between variables. More 
specifically, it estimates relationships between a dependent variable and several independent variables. 
The dependent variable is also known as an outcome, while the independent variables are also referred 
to as features. The number of features might be 1.

The most common form of regression analysis is linear regression. It looks similar to the preceding 
graph. Here’s an example representing the relationship between hours spent on testing programs and 
the number of bugs discovered in the release version:
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Figure 16.13 – Linear regression

In ML, regression analysis is used as a way of forecasting. You might develop a program to predict 
an outcome based on the values for dependent variables. As you have probably already guessed so 
far, ML is a big field with a wide range of topics. Although programmers tend to use math as little as 
possible, ML makes it impossible. You still need to grasp some of the math subjects to get the most 
out of ML. Regression analysis strongly depends on math statistics.

C++ and ML
It’s now no longer a secret that ML is more about math than programming. Computer science has its 
roots in mathematics and, in the early years, computer scientists were mathematicians first. You might 
be familiar with several eminent scientists, including Alan Turing, John von Neuman, Claude Shannon, 
Norbert Wiener, Niklaus Wirth, Donald Knuth, and many others. All of them are mathematicians 
with a special love for technology. During its development, computer programming became a more 
friendly field to newcomers. In the last two or three decades, computer programmers stopped being 
forced to learn math before developing useful programs. Languages evolved into more and more 
high-level tools that allow almost everyone to code.

There are plenty of frameworks that make this job easier for programmers. It now takes a matter of 
weeks to grasp some framework or a high-level programming language and create a new program. 
Programs, however, tend to repeat themselves. It’s not so hard to build something nowadays because 
there are a lot of patterns and best practices that help us along the way. The role of mathematics has 
been pushed back and more and more people become programmers without even the slightest need 
to use math. That’s not an issue; it’s more like a natural flow for the technology to evolve. In the end, 
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technology aims to make human living more comfortable. The same relates to engineers. While, back 
in the 1960s, engineers at NASA made calculations using computers, they were not computers as we 
know them today. Those were real human beings with this specialty called being a computer, although 
being a computer meant being great at mathematics and solving equations much faster than others.

Now, we are part of the new age in computer science, where mathematics is back again. ML engineers 
are now using mathematics the same way mathematicians used programming languages in the 1970s 
or 1980s. It’s now not enough to know a programming language or a framework to devise a new 
algorithm or incorporate ML into your applications. You should also be good at least in some sub-fields 
of mathematics, such as linear algebra, statistics, and probability theory.

Almost the same logic applies to C++. Modern languages provide a wide range of functionality out 
of the box, while C++ developers are still striving to design flawless programs with manual memory 
management. If you do some quick research into the field of ML, you will find that most of the libraries 
or examples out there use Python. At first, this might be seen as the default language to use in ML 
tasks. However, ML engineers are starting to touch a new threshold in evolution – performance. This 
threshold is not new; lots of tools out there still use C++ in parts where they need performance. Game 
development, operating systems, mission-critical systems, and many other fundamental areas use C++ 
(and C) as the de facto standard. It’s now time for C++ to conquer a new area. Our best advice would 
be to study both ML and C++ because it is slowly becoming critical for ML engineers to incorporate 
C++ to get the best performance out there.

Summary
In this chapter, we introduced ML, alongside its categories and applications. It is a rapidly growing 
field of study that has numerous applications in building intelligent systems. We categorized ML into 
supervised, unsupervised, and reinforcement learning algorithms. Each of these categories has its 
applications in solving tasks, such as classification, clustering, regression, and machine translation.

Then, we implemented a simple learning algorithm that defines a calculation function based on 
experiences provided as input. We called this a dataset and used it to train the system. Training with 
datasets (called experiences) is one of the key properties of ML systems.

Finally, we introduced and discussed ANNs and applied them to recognize patterns. ML and neural 
networks go hand in hand in solving tasks. This chapter provided you with a necessary introduction to 
this field, along with several examples of tasks, so that you can spend some time diving into the topic. 
This will help you have a general idea of AI and ML since it’s becoming increasingly necessary for 
engineers in real-world application development. In the next chapter, we will learn how to implement 
a dialog-based search engine.
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Questions
Answer the following questions to test your knowledge of this chapter:

1.	 What is ML?

2.	 What are the differences between the supervised and unsupervised learning algorithms?

3.	 Give some examples of ML applications.

4.	 How would you modify the CalculationMachine class to change its behavior after training 
it with a different set of experiences?

5.	 What is the purpose of neural networks?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Artificial Intelligence and Machine Learning Fundamentals: https://www.packtpub.
com/product/artificial-intelligence-and-machine-learning-
fundamentals/9781789801651

•	 Machine Learning Fundamentals: https://www.packtpub.com/product/machine-
learning-fundamentals/9781789803556

•	 Hands-On Machine Learning for Algorithmic Trading: https://subscription.packtpub.
com/search?query=hands%20machine%20learning%20algorithmic%20
trading

•	 OpenCV: https://opencv.org/

https://www.packtpub.com/product/artificial-intelligence-and-machine-learning-fundamentals/9781789801651

https://www.packtpub.com/product/artificial-intelligence-and-machine-learning-fundamentals/9781789801651

https://www.packtpub.com/product/artificial-intelligence-and-machine-learning-fundamentals/9781789801651

https://www.packtpub.com/product/machine-learning-fundamentals/9781789803556

https://www.packtpub.com/product/machine-learning-fundamentals/9781789803556

https://subscription.packtpub.com/search?query=hands%20machine%20learning%20algorithmic%20trading

https://subscription.packtpub.com/search?query=hands%20machine%20learning%20algorithmic%20trading

https://subscription.packtpub.com/search?query=hands%20machine%20learning%20algorithmic%20trading

https://opencv.org/
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Using C++ in Data Science

C++ is widely used in many fields, including data science. Data scientists typically choose Python 
because of its simplicity and breadth of libraries, but C++ offers some advantages that make it an 
effective tool for data analysis. This chapter explains why C++ can be used in the data science industry 
and how it makes it possible. C++ is fast and efficient. In C++, code is compiled into machine code 
before execution. This compilation enables C++ programs to execute significantly faster than an 
interpreted language such as Python. C++ can perform well when dealing with extensive data or 
computationally intensive tasks. C++ algorithms can use lower memory management and better code 
execution to process data faster.

Additionally, C++ provides extensive support for parallel computing. The language offers libraries 
such as OpenMP and MPI, allowing developers to standardize their code and use multicore processors 
and distributed systems. Parallel computing is beneficial when processing complex data, which can 
be broken down into smaller independent tasks. Using the parallel capabilities of C++, data scientists 
can speed up their calculations and improve productivity.

C++ offers many advantages for data science, including the ability to interface with other languages ​​
and programs. With its robust interfaces, C++ makes it easy to interface with libraries written in other 
languages​​, such as Python and R. This interface allows data scientists to take advantage of the vast 
ecosystem of available libraries and tools old while gaining the advantage of differing performance 
advantages by combining the strengths of programming languages, data scientists can create powerful 
and efficient data processing pipelines.

In addition, C++ provides many data structures and algorithms well suited for data science projects. The 
Standard Template Library (STL) provides a comprehensive set of streams and algorithms, including 
vectors, maps, aggregation, sorting, and search functions. These data structures and algorithms are 
highly customized and manage large amounts of data. In addition, C++ allows developers to create 
custom data structures and algorithms for specific data analysis needs. This increases flexibility and 
control over their data processing pipeline.

While C++ may require more effort and expertise than Python for the data science industry, its speed, 
efficiency, parallel computing, connectivity, and data manipulation make it a solid choice for certain 
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applications. In particular, C++ shines for business needs, such as extensive datasets, processing 
resources, implementing complex algorithms, and optimizing resources.

In this chapter, we will cover the following topics:

•	 Introduction to data science

•	 Data capturing and manipulation

•	 Data cleansing and processing

•	 Applying machine learning algorithms

•	 Data visualization

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter17.

Introduction to data science
Data science is a set of disciplines that combines statistical analysis, machine learning, and domain 
knowledge to extract insights and informed decisions from large complex datasets. It involves collecting, 
processing, and analyzing data to reveal patterns, trends, and relationships, which are predictive models 
that can be used to drive business decisions.

The essence of data science is the process of analyzing and pre-processing data. This involves 
understanding the structure and quality of the data, identifying missing values, outliers, and anomalies, 
and transforming the data into a format suitable for analysis to facilitate subsequent analytical procedures 
such as data cleaning. Feature engineering and dimensionality reduction are better and more efficient.

After pre-processing the data, data scientists use statistical and machine learning techniques to extract 
insights and build models. They use statistical techniques such as hypothesis testing, regression analysis, 
and time-series analysis to understand relationships between variables and make predictions based 
on historical data. Using machine learning algorithms with decision trees, random forests, support 
vector machines, and neural networks includes use for tasks such as classification, clustering, and 
regression. They also learn to respect and predict or identify patterns in other unseen data.

In recent years, big data and technological advances have opened up new opportunities in data science. 
Large amounts of data from social media, sensors, and Internet of Things (IoT) devices present 
challenges and opportunities. Data scientists now access more information but face the challenge 
of such mass production working well and analyzing information. Technologies such as distributed 
computing, cloud computing, and parallel processing have emerged to address these challenges and 
enable scalable data analysis.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter17
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter17
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Data visualization is essential in data science because it helps communicate insights and patterns more 
effectively. Data scientists can present their findings to stakeholders and decision-makers meaningfully 
and impactfully by visualizing data with charts, graphs, and interactive dashboards. Visualization 
helps tell a story and detect and identify hidden patterns or outliers that are not obvious from raw 
data analysis alone.

Ethics and privacy are essential considerations in data science. While working with sensitive personal 
information, data scientists must ensure that data is used responsibly and ethically. Protecting individual 
privacy, ensuring data security, and addressing bias and impartiality in samples are important aspects 
of ethical data science practice. Organizations and data scientists must be compliant with guidelines 
such as the General Data Protection Regulation (GDPR) to ensure ethical data handling.

C++ example

As a first example, the following code calculates the most basic statistic for a set of numbers, the 
average. The code uses only the standard library and does all the calculations by hand:

#include <iostream>
#include <vector>

// Function to calculate the average of a vector of numbers
double calculateAverage(const std::vector<double>& data) {
    if(data.size() == 0) {
        return 0.0;
    }
    double sum = 0.0;
    for (double value : data) {
        sum += value;
    }
    return sum / data.size();
}

int main() {
    // Create a vector of numbers
    std::vector<double> numbers = {1.2, 2.5, 3.7, 4.1, 5.6};

    // Calculate the average using the calculateAverage
    // function
    double average = calculateAverage(numbers);

    // Print the average to the console
    std::cout << "The average of the numbers is: " <<
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      average << std::endl;

    return 0;
}

Given these functions’ complexity, libraries have been developed to implement them, allowing 
programmers to build on those to calculate more complex results. For example, the following code 
calculates the covariance matrix using the Eigen/Dense library. The Eigen library can be downloaded 
from this link: https://eigen.tuxfamily.org/index.php?title=Main_Page.

This example was written using version 3.4.0:

#include <iostream>
#include <Eigen/Dense>

Eigen::MatrixXd calculateCovarianceMatrix(const Eigen::MatrixXd& data) 
{
    int numVariables = data.cols();
    int numSamples = data.rows();

    // Calculate centered data
    Eigen::MatrixXd centeredData = data.rowwise() –
      data.colwise().mean();

    // Calculate covariance matrix
    Eigen::MatrixXd covarianceMatrix =
      (centeredData.transpose() * centeredData) /
      (numSamples - 1);

    return covarianceMatrix;
}

int main() {
    // Create a data matrix with 5 samples and 3 variables
    Eigen::MatrixXd data(5, 3);
    data << 1.2, 2.3, 3.4,
            2.5, 3.6, 4.7,
            3.7, 4.8, 5.9,
            4.1, 5.2, 6.3,
            5.6, 6.7, 7.8;

    // Calculate the covariance matrix
    Eigen::MatrixXd covarianceMatrix =
      calculateCovarianceMatrix(data);
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    // Print the covariance matrix
    std::cout << "Covariance Matrix:\n" << covarianceMatrix
      << std::endl;

    return 0;
}

Now that we have some understanding of the overall process, let’s take a look at each of the steps involved.

Data capturing and manipulation
Data capturing and manipulation are critical areas of data science. They involve the acquisition, 
extraction, transformation, and processing of data so that it is helpful for analysis and decision-making. 
These techniques are important in gaining meaningful insights and taking advantage of large, complex 
datasets. In this article, we will explore the importance of data capture and manipulation and discuss 
the basic concepts and techniques of these techniques.

Data capture refers to collecting and retrieving data from various sources. This can include structured 
data from databases, spreadsheets, or APIs and unstructured data from text, images, and social media 
sources. The data capture phase involves identifying the right start, extracting data, and converting it 
into a format suitable for analysis. Techniques such as web scraping, data extraction tools, and data 
integration frameworks are often used to capture and aggregate data from various sources.

Once captured, the data must be processed and transformed to make it useful for analysis. Data 
processing involves cleaning, filtering, and pre-processing data to ensure quality, integrity, and accuracy. 
Typical tasks in this category include dealing with missing values, eliminating duplicates, correcting 
errors, standardizing data, transforming data into suitable proxies for analysis, and procedures such 
as data cleaning management, statistical techniques, and data wrangling tools to be used to ensure 
data is dependable and valuable.

Data manipulation also includes feature engineering, which involves creating or modifying existing data 
to extract relevant information and improve predictive models. This process can consist of techniques 
such as scaling, normalization, encoding categorical variables, creating interaction terms, and deriving 
features based on domain knowledge. Engineering can improve the efficiency and accuracy of machine 
learning models and enable better insights from data.

Data capture and processing must consider data privacy and security. Organizations must comply with 
regulations and standards to protect sensitive information and ensure data privacy. Anonymization, 
data masking, encryption, and access control mechanisms protect data during storage and processing. 
Handling data ethically and securely is essential, especially when dealing with Personally Identifiable 
Information (PII) or sensitive business data.

Effective data capture and use requires careful planning and consideration of data needs and research 
objectives. Defining clear data capture methods, identifying appropriate data sources, and establishing 
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data quality standards is important. Organizations should also establish data governance practices to 
ensure consistency, documentation, and version control.

Moreover, automation and advanced technologies play a key role in data capture and manipulation. 
Machine learning algorithms, natural language processors, and computer vision techniques can 
automate data extraction and pre-processing tasks, reducing manual effort and improving productivity. 
Tools and assemblies have advanced, such as data integration software Extract, Transform, and Load 
(ETL) pipelines, and data preparation systems. They will be able to handle large amounts of data and 
simplify the conversion process.

C++ example

Let’s look at an example:

#include <iostream>
#include <curl/curl.h>

In this example, we use cURL to retrieve data from the specified URL (https://letsusedata.
com/data/cpp_sample.txt):

// Callback function to receive data from cURL
size_t WriteCallback(void* contents, size_t size, size_t nmemb, 
std::string* data) {
    size_t totalSize = size * nmemb;
    data->append(static_cast<char*>(contents), totalSize);
    return totalSize;
}

The received data is stored in the responseData string. The WriteCallback function is a 
callback function assigned to cURL. It adds the received data to the data set. In the main function, we 
use curl_easy_init() to initialize the cURL. If possible, we configure the URL to retrieve the 
data using curl_easy_setopt(). We provide the WriteCallback function to get the data as a 
callback and set the responseData string to write data. Then, we use curl_easy_perform() 
to execute the request. If the request is successful, we print the retrieved data to the console. Finally, 
we clean up the cURL using curl_easy_cleanup(). The cURL library can be downloaded 
from https://curl.se/.

To use the cURL library, it needs to be linked. The linking command can be platform-specific; for 
example, the library can be linked by using g++ -o app main.cpp -std=c++20 -lcurl:

int main() {
    // Initialize cURL
    CURL* curl = curl_easy_init();
    if (curl) {

https://letsusedata.com/data/cpp_sample.txt
https://letsusedata.com/data/cpp_sample.txt
https://curl.se/
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        std::string url =
          "https://letsusedata.com/data/cpp_sample.txt";
        std::string responseData;

        // Set the URL to retrieve data from
        curl_easy_setopt(curl, CURLOPT_URL, url.c_str());

        // Provide the callback function to receive the
        // data
        curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION,
          WriteCallback);
        curl_easy_setopt(curl, CURLOPT_WRITEDATA,
          &responseData);

        // Perform the request
        CURLcode res = curl_easy_perform(curl);
        if (res != CURLE_OK) {
            std::cerr << "cURL failed: " <<
              curl_easy_strerror(res) << std::endl;
        }
        else {
            // Data retrieval successful
            std::cout << "Data retrieved successfully:" <<
              std::endl;
            std::cout << responseData << std::endl;
        }

        // Clean up cURL
        curl_easy_cleanup(curl);
    }
    else {
        std::cerr << "cURL initialization failed." <<
          std::endl;
    }

    return 0;
}

Now that we have looked at how to capture data, we’ll review how to clean and process data in the 
next section.
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Data cleansing and processing
Data cleaning and processing is a key step in the data science industry, where unstructured data is 
processed and used to improve its quality, integrity, and usability. These processes play a key role in 
ensuring that the data used for assessment and decision-making is accurate, precise, and dependable. 
This section will explore the importance of data cleansing and processing and discuss these processes’ 
basic concepts and techniques.

Data cleaning, also known as data cleaning or data scrubbing, refers to the process of identifying, 
correcting, or removing errors, inconsistencies, and anomalies from a data structure. Raw data often 
contain missing values, anomalies, records duplicates, inconsistent characters, or other abnormalities 
that are biased if not dealt with or may produce inaccurate results. Data cleansing aims to address 
these issues and improve data collection.

However, using the information to make the data relevant to analysis requires cleansing and processing 
This includes storing, filtering, organizing, integrating, or transforming data to derive useful insights. 
Data processing techniques derive meaningful information, reveal patterns, and interpret data in a 
manageable way.

The following are the basic steps and procedures for data cleansing and processing:

1.	 Data validation: Data validation ensures the data complies with predetermined rules or constraints. 
It is about ensuring the data’s integrity, accuracy, and correctness. Validation methods include 
data type checking, range verification, and consistency checks between related data fields.

2.	 Handling missing data: Missing data is common in datasets. Methods of handling missing 
data include imputation, where missing values ​​are replaced by estimated or estimated values, or 
deletion, where rows or columns of missing data are explicitly removed. Different imputation 
methods, such as mean imputation, regression imputation, or model-based imputation, can 
be used.

3.	 Outlier identification: An outlier is a data point that deviates significantly from a typical pattern 
or value in a dataset. Outliers can adversely affect data analysis and modeling. Techniques such 
as statistical methods, visualization, and machine learning algorithms can be used to detect 
and deal with abnormalities appropriately.

4.	 Removal of duplicate data: Duplicate records can corrupt analysis and produce biased results. 
Identifying and removing duplicate records ensures data integrity. Methods include eliminating 
duplicate entries by comparing records based on key fields or similarity measures.

5.	 Standardization and normalization: Standardization and normalization of data is the conversion 
of data into a consistent format or scale. This step ensures that different data sources or variables 
are comparable. Scaling, z-score normalization, or min-max normalization transform the data.

6.	 Feature engineering: Feature engineering involves creating or modifying new features to 
extract meaningful information and improve predictive models. These steps include encoding 
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categorical variables, creating interaction terms, and finding new dependent features, domain 
knowledge, or statistical methods.

7.	 Data integration: Data integration combines data from multiple sources into an integrated 
dataset. This includes resolving inconsistencies, setting up data structures, and ensuring 
data consistency.

8.	 Data reduction: Data reduction techniques aim to reduce the size or scope of a data set while 
preserving its important characteristics. This step is especially useful when working with 
large datasets. Techniques such as sampling, feature selection, or dimensionality reduction 
techniques such as principal component analysis (PCA) can be used to reduce the size and 
complexity of the data.

Effective data cleaning and processing requires domain expertise, statistical methods, and programming 
skills. It is important to understand dataset characteristics, analyze the data, and make informed 
decisions based on the specific goals and needs of the analysis. Also, advanced automation and 
technology, such as data cleansing tools and wrangling platforms, or machine learning algorithms, 
improve data cleansing and make things much easier.

C++ example

The following code shows how to use C++ to remove duplicates, normalize the data, and manage 
missing values:

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

// Function to remove duplicates from a vector
template <typename T>
void removeDuplicates(std::vector<T>& data) {
    std::sort(data.begin(), data.end());
    data.erase(std::unique(data.begin(), data.end()),
      data.end());
}

// Function to normalize data between 0 and 1
template <typename T>
void normalizeData(std::vector<T>& data) {
    T minVal = *std::min_element(data.begin(), data.end());
    T maxVal = *std::max_element(data.begin(), data.end());
    T range = maxVal - minVal;
    std::transform(data.begin(), data.end(), data.begin(),
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        [minVal, range](T val) { return (val - minVal) /
          range; });
}

int main() {
    // Create a vector with some duplicate values and
    // missing data
    std::vector<double> values = { 1.2, 2.5, 3.7, 4.1, 2.5,
      5.6, -1.0, 6.7, 4.1, 7.8 };

    // Remove duplicates from the vector
    removeDuplicates(values);

    // Handle missing data by removing -1 values
    values.erase(std::remove(values.begin(), values.end(),
      -1.0), values.end());

    // Normalize the data between 0 and 1
    normalizeData(values);

    // Display the unique values after data cleansing and
    // normalization
    std::cout << "Unique values (after data cleansing and
      normalization):\n";
    for (const auto& value : values) {
        std::cout << value << std::endl;
    }

    return 0;
}

Now that we have completed the data preparation component, let’s look at how machine learning 
algorithms can be applied.

Applying machine learning algorithms
Machine learning algorithms are central to data science and artificial intelligence. They use mathematical 
models and statistical techniques to train computers to learn from data and make predictions or 
perform informal actions. Machine learning algorithms enable you to extract insights and patterns 
from large, complex datasets and inform decisions, automatically processing and improving predictive 
capabilities. Let us examine and discuss some commonly used algorithms.
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Machine learning algorithms can be classified into three categories: supervised learning, unsupervised 
learning, and reinforcement learning.

Supervised learning algorithms learn from labeled training data, where each data point is associated 
with a corresponding goal or outcome. These algorithms aim to generalize from the training data and 
make predictions about unseen data. Commonly used supervised learning algorithms include linear 
regression, decision trees, support vector machines, and neural networks.

Unsupervised learning algorithms work with unlabeled data, where the goal is to discover hidden 
patterns, clusters, or patterns in the data. These algorithms search for the underlying structure of the 
data without a predefined target variable. Examples of unsupervised learning algorithms are clustering 
algorithms such as k-means and hierarchical clustering and dimensionality reduction techniques such 
as principal component analysis (PCA) and t-SNE.

Reinforcement learning algorithms involve training an agent to interact with the environment, learn 
from its actions, and improve its decision-making through trial and error. These algorithms use rewards 
or punishments to determine the agent’s actions toward a specific goal. Reinforcement learning has 
applications in robotics, sports games, and autonomous systems.

Implementing machine learning algorithms includes data pre-processing, feature selection or 
extraction, model training, analysis, and deployment. This requires thoroughly understanding the 
problem domain, carefully selecting appropriate algorithms, and developing model parameters well 
to get what you want.

Machine learning algorithms have wide applications in various industries, including healthcare, 
finance, marketing, image and speech recognition, natural language processing, recommendation 
systems, and so on. They support applications such as customer segmentation, fraud identification, 
sensitivity analysis, predictive monitoring, and personalization to deliver business recommendations.

It is important to note that the choice of algorithm depends on the specific problem, the nature of 
the data, and the desired results. Different algorithms have different strengths and weaknesses, and 
their performance can vary depending on the context. Therefore, it is essential to implement different 
algorithms, evaluate their performance, and iterate to improve the results.

Machine learning algorithms enable data scientists and researchers to use data for prediction, insight, 
and decision-making. With so many available frameworks, choosing the most appropriate one is 
important based on the problem, data characteristics, and preferences. By effectively implementing 
machine learning algorithms, organizations can unlock the potential of their data to innovate in 
different areas.
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C++ example

This example demonstrates the application of a supervised learning algorithm, linear regression, 
to predict housing prices based on input features. You can modify and extend this code to include 
additional features, use different regression models, or incorporate more complex algorithms to tackle 
a variety of prediction tasks in different domains:

#include <iostream>
#include <vector>
#include <numeric>
#include <cmath>

In this example, we have a dataset of house sizes (houseSizes) and their corresponding prices (prices).

We use the calculateMean function to compute the input features’ meaning and the target 
variable’s mean:

// Function to calculate the mean of a vector
template <typename T>
T calculateMean(const std::vector<T>& data) {
    T sum = std::accumulate(data.begin(), data.end(), 0.0);
    return sum / data.size();
}

Then, the calculateLinearRegression function is used to calculate the coefficients of the 
linear regression model. This function estimates the slope and intercept of the regression line best 
fitting the given data:

// Function to calculate the linear regression coefficients
template <typename T>
std::pair<T, T> calculateLinearRegression(const
  std::vector<T>& x, const std::vector<T>& y) {
    T xMean = calculateMean(x);
    T yMean = calculateMean(y);

    T numerator = 0.0;
    T denominator = 0.0;

    for (size_t i = 0; i < x.size(); i++) {
        numerator += (x[i] - xMean) * (y[i] - yMean);
        denominator += std::pow(x[i] - xMean, 2);
    }

    T slope = numerator / denominator;
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    T intercept = yMean - slope * xMean;

    return std::make_pair(slope, intercept);
}

Finally, using the calculated regression coefficients, we use the predictPrice function to predict 
the price for a new house size (newHouseSize):

// Function to predict the housing price using linear
// regression
template <typename T>
T predictPrice(const std::pair<T, T>& coefficients, T x) {
    return coefficients.first * x + coefficients.second;
}

int main() {
    // Input features (house sizes)
    std::vector<double> houseSizes = { 1000, 1500, 2000,
      2500, 3000 };

    // Corresponding housing prices
    std::vector<double> prices = { 300000, 450000, 500000,
      600000, 700000 };

    // Calculate the linear regression coefficients
    std::pair<double, double> regressionCoefficients =
      calculateLinearRegression(houseSizes, prices);

    // Predict the price for a new house size
    double newHouseSize = 1800;
    double predictedPrice =
      predictPrice(regressionCoefficients, newHouseSize);

    // Display the results
    std::cout << "Linear Regression Equation: y = " <<
      regressionCoefficients.first << "x + " <<
      regressionCoefficients.second << std::endl;
    std::cout << "Predicted price for a house of size " <<
      newHouseSize << " sq. ft.: " << predictedPrice <<
      std::endl;

    return 0;
}
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Now that we have used machine learning on the data, we can help users understand the results using 
data visualization.

Data visualization
Data visualization is the visual representation of data and information. It requires visual representations 
such as charts, diagrams, and maps to communicate complex issues and examples to a large audience 
effectively. Data visualization is important in exploratory data analysis, insight presentation, and 
decision-making processes. This section will examine data visualization’s importance and discuss 
some key features and techniques.

One of the key benefits of data visualization is the ability to simplify complex data and make it more 
meaningful and accessible. Patterns, trends, and relationships can be quickly identified by visually 
presenting information, allowing participants to gain insight and make appropriate decisions. Visual 
representations recognizing them makes it easier to identify notable features, differences, and anomalies 
in the data.

Data visualization can take many forms, including bar charts, line graphs, scatter plots, histograms, 
and heat maps. The choice of image depends on the nature of the data and the specific insights or 
comparisons to be provided. Each model has strengths and is appropriate for different data types and 
research objectives.

Several considerations need to be considered in effective data visualization. Considerations such as 
choosing the right visual style, choosing the right colors and fonts, providing a clear headline and 
legend, and ensuring proper scale are important. The graphic design should focus on the information 
and a clear, simple, and logical representation of the underlying data.

Advancements in technology and the availability of data visualization tools and libraries have made it 
easier for individuals and organizations to create visualizations. Popular tools include Python libraries 
such as Matplotlib and Seaborn, JavaScript libraries such as D3.js and Plotly, and data visualization 
software such as Tableau and Power BI.

Data visualization has numerous applications across various fields. It is widely used in business analytics, 
finance, healthcare, marketing, and social sciences. Visualization aids in communicating insights, 
monitoring key performance indicators, presenting trends and forecasts, and engaging stakeholders.

C++ example

In this code, the input features (house sizes) are stored in the houseSizes vector, and the corresponding 
housing prices are stored in the prices vector. We create a data file named data.dat and write 
the house sizes and prices to the file.
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Next, we generate a gnuplot script file named script.plt. The script sets the x-axis label to 
House Size (sq. ft.), the y-axis label to Price, and plots the data points using the with 
points option.

Finally, we execute the gnuplot command using system() to plot the data. The generated plot 
will display the house sizes on the x axis and the corresponding prices on the y axis.

The gnuplot command can be downloaded from http://www.gnuplot.info/:

#include <iostream>
#include <fstream>
#include <vector>

int main() {
    // Input features (house sizes)
    std::vector<double> houseSizes = { 1000, 1500, 2000,
     2500, 3000 };

    // Corresponding housing prices
    std::vector<double> prices = { 300000, 450000, 500000,
      600000, 700000 };

    // Create a data file for plotting
    std::ofstream dataFile("data.dat");
    for (size_t i = 0; i < houseSizes.size(); i++) {
        dataFile << houseSizes[i] << " " << prices[i] <<
          std::endl;
    }
    dataFile.close();

    // Generate the gnuplot script for plotting
    std::ofstream scriptFile("script.plt");
    scriptFile << "set xlabel 'House Size (sq. ft.)'" <<
      std::endl;
    scriptFile << "set ylabel 'Price'" << std::endl;
    scriptFile << "plot 'data.dat' with points" <<
      std::endl;
    scriptFile.close();

    // Execute the gnuplot command
    std::string command = "gnuplot -persist script.plt";
    if (std::system(command.c_str()) != 0) {
        std::cerr << "Failed to execute gnuplot command."
          << std::endl;

http://www.gnuplot.info/
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        return 1;
    }

    return 0;
}

The addition of data visualization completes the data analysis steps.

Summary
Data science is an interdisciplinary field that utilizes statistical methods, machine learning algorithms, 
and data visualization to extract insights from large volumes of data. It involves programming skills, 
mathematical expertise, and domain knowledge to explore, transform, and model data for informed 
decision-making and predictions.

The first step in the data science pipeline is data capturing and manipulation. This process involves 
collecting and organizing data from various sources into a structured format. Data scientists work 
with large datasets, employing efficient methods to manipulate and transform the data. This includes 
merging datasets, filtering out irrelevant information, and handling missing or inconsistent data, 
ensuring a solid foundation for analysis.

Data cleansing and processing are crucial to enhancing data quality. Data scientists address anomalies 
and errors by identifying and handling missing values, outliers, and inconsistencies. They use 
imputation, outlier detection, and data transformation to clean and pre-process the data. They create 
a reliable dataset for further analysis and modeling by eliminating noise and ensuring data integrity.

Applying machine learning algorithms is a key aspect of data science. These algorithms learn patterns 
and relationships in the data to make predictions or classifications. Data scientists select suitable 
algorithms based on the problem and data at hand. They train models using historical data and apply 
them to new, unseen data for predictions. Machine learning algorithms range from simple regression 
and classification methods to complex techniques such as neural networks and ensemble methods.

Data visualization plays a crucial role in data science by transforming complex data into intuitive 
representations. Data scientists create charts, graphs, and interactive visualizations to communicate 
insights effectively. Visualization tools and libraries help explore the data, identify trends, and uncover 
relationships between variables. Presenting data visually makes complex information accessible and 
understandable, enabling stakeholders to make data-driven decisions.

In summary, data science combines statistical methods, machine learning algorithms, and data 
visualization to extract insights from data. The process involves capturing and manipulating data, 
cleansing, and processing it, applying machine learning algorithms, and visualizing the results. By 
harnessing the power of data, data scientists drive innovation and make informed decisions across 
various domains.



Questions 549

Questions
1.	 What are some features of C++ that make it suitable for data analysis and manipulation?

2.	 Is there a way to read data from an external source, such as a database or file in C++, and 
manipulate it?

3.	 What are the common methods and libraries in C++ for data cleaning, processing, and 
normalization tasks?

4.	 In C++, how can you implement popular machine learning algorithms such as linear regression?

5.	 How can you display and analyze your data effectively with interactive and attractive data 
visualizations in C++?

Further reading
For further information, refer to the following:

•	 Data Science for Business by Foster Provost and Tom Fawcett

•	 C++ Data Structures and Algorithm Design Principles by Pavel A. Pevzner and Michael S. Sanders

•	 Mastering OpenCV 4 with C++ by Daniel Lélis Baggio, David Millán Escrivá, Khvedchenia 
Ievgen, and Naureen Mahmood
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Designing and Implementing a 

Data Analysis Framework

Designing and implementing data analysis programs in C++ requires careful consideration of various 
factors. C++ is known for its efficiency and functionality, which makes it the best choice for dealing 
with large amounts of data. This chapter will explore the basic steps of building a complex data analysis 
program using C++. Defining the goals and requirements of the program is an important first step. 
This helps guide the design and implementation process, ensuring that the process meets specific 
research requirements.

Data governance is critical to the data analysis process. C++ provides robust data structures and 
libraries for efficient data processing. Choosing an appropriate data structure, such as arrays or vectors, 
is important for proper data storage and processing. Preliminary data processing and cleaning play 
an important role in ensuring data quality. C++ provides string manipulation capabilities to handle 
formatting, outliers, and missing values. Implementing an algorithm for data preprocessing before 
performing the analysis is important.

Dealing with multiple data sources often requires data transformation and integration. C++ provides 
libraries and functions for simple data processing and integration. C++ libraries such as Boost and 
Eigen provide a wide range of mathematical functions, linear algebra functions, machine learning 
algorithms, and so on for analysis and modeling.

Visualization and reporting are essential for effective communication of data. C++ libraries such as 
Qt and OpenGL allow developers to create interactive diagrams, charts, and graphs. Performance 
improvements are important for large datasets and tasks requiring computer processing. C++ features 
such as multithreading and parallel computation can improve the framework’s performance.

Data security and privacy should be addressed through encryption, secure data management, and 
regulatory compliance. Proper documentation ensures system longevity and maintainability. In 
conclusion, designing and implementing data analysis systems in C++ requires careful consideration 
of data management, preprocessing, transformation, analysis, visualization, optimization, security, 
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and documentation. Using the power and strength of C++, developers can build robust systems to 
facilitate effective data analysis and informed decision-making.

In this chapter, we will cover the following topics:

•	 Using and processing statistical data types

•	 Working with tabular and rectangular data

•	 A complete ETL pipeline design strategy

Technical requirements
The g++ compiler with the -std=c++2a option is used to compile the examples in this chapter. You 
can find the source files used in this chapter at https://github.com/PacktPublishing/
Expert-C-2nd-edition/tree/main/Chapter18.

Using and processing statistical data types
In C++, information is typically represented using standard C++ types, including integers, floating-
point numbers, and strings. When running statistical data in C, it is vital to consider an appropriate 
information type for a selected analysis or calculation.

•	 Categorical variables: They represent qualitative records falling into unique classes or classes. 
In C++, these variables are typically defined with the aid of strings. Developers can use standard 
string manipulation functions and strategies in C++ to manage this data and perform operations 
such as frequency counts.

•	 Numerical variables: Numerical variables represent quantitative facts and can be continuous 
or discrete. C++ includes multiple numerical data types, including integers (int, long, and 
short), floating-point numbers (float and double), and other types (std::fixed and 
std::decimal). These types make it possible to create estimates and perform statistical 
and mathematical operations.

•	 Ordinal Variables: Ordinal variables represent data with a natural order or ranking. In C++, 
developers can use integers or enumerations to represent ordinal variables. By assigning 
numeric values to different categories or ranks, C++ allows for comparisons, sorting, and other 
operations on ordinal variables.

To process statistical data types in C++, developers can leverage various libraries and frameworks 
specifically designed for statistical analysis. For example, the Boost C++ libraries provide statistical 
algorithms, random number generators, and probability distributions that facilitate advanced statistical 
calculations. Additionally, developers can use C++ libraries such as Eigen, Armadillo, or OpenCV for 
linear algebra operations, matrix manipulations, and numerical computations required in statistical 
modeling and analysis.

https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter18
https://github.com/PacktPublishing/Expert-C-2nd-edition/tree/main/Chapter18
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Visualization of statistical data in C++ can be accomplished using graphics libraries such as Qt, 
OpenGL, or Matplotlib (with C++ bindings). These libraries enable developers to create charts, graphs, 
and visual representations of data to aid in data exploration and interpretation.

In summary, while C++ does not have dedicated data types labeled explicitly as “statistical data types,” 
developers can utilize standard C++ data types and libraries to effectively manage and process categorical, 
numerical, and ordinal variables. By leveraging the power and flexibility of C++ and relevant libraries, 
statistical analysis and calculations can be performed efficiently and accurately.

C++ example

This example demonstrates the processing of numerical, categorical, and ordinal data:

#include <iostream>
#include <vector>
#include <algorithm>
#include <map>

We calculate the median using the same approach as before for numerical data. We sort the 
numericalData vector and calculate the median based on size and values:

int main() {
    // Numerical Data
    std::vector<double> numericalData = {4.5, 2.3, 1.8,
      3.2, 5.1};

    // Calculating the median
    std::sort(numericalData.begin(), numericalData.end());
    size_t size = numericalData.size();
    double median;
    if (size % 2 == 0) {
        median = (numericalData[size / 2 - 1] +
          numericalData[size / 2]) / 2.0;
    } else {
        median = numericalData[size / 2];
    }
    std::cout << "Numerical Median: " << median <<
      std::endl;

For categorical data, we count the frequency of each category using an std::map variable called 
categoryCounts. By iterating over the categoricalData vector, we increment the count for 
each category in the map. Finally, we print the category counts to the console:

    // Categorical Data
    std::vector<std::string> categoricalData = {"Apple",
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      "Orange", "Banana", "Apple", "Grape"};

    // Counting the frequency of each category
    std::map<std::string, int> categoryCounts;
    for (const auto& category : categoricalData) {
        categoryCounts[category]++;
    }
    // Print the category counts
    std::cout << "Category Counts:" << std::endl;
    for (const auto& pair : categoryCounts) {
        std::cout << pair.first << ": " << pair.second <<
          std::endl;
    }

For ordinal data, we count the frequency of each value using an std::map variable called 
ordinalCounts. By iterating over the ordinalData vector, we increment the count for each 
value in the map. Then, we identify the mode (the most frequent value) by finding the value with the 
highest count. Finally, we print the mode to the console:

    // Ordinal Data
    std::vector<int> ordinalData = {2, 1, 3, 2, 2, 1, 3};

    // Calculating the mode (most frequent value) of the
    // ordinal data
    std::map<int, int> ordinalCounts;
    for (const auto& value : ordinalData) {
        ordinalCounts[value]++;
    }

    int mode = 0;
    int maxCount = 0;
    for (const auto& pair : ordinalCounts) {
        if (pair.second > maxCount) {
            mode = pair.first;
            maxCount = pair.second;
        }
    }
    std::cout << "Ordinal Mode: " << mode << std::endl;

    return 0;
}
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This example highlights numerical, categorical, and ordinal data processing using C++. You can 
expand upon these techniques, incorporate more advanced statistical calculations, or use specialized 
libraries for more complex analyses.

Working with tabular and rectangular data
Working with tabular and rectangular data in C++ is fundamental to data analysis and manipulation. 
Tabular data, or rectangular data, is structured in rows and columns, resembling a table or spreadsheet. 
C++ provides various techniques and libraries that enable efficient handling and processing of 
such data. This section will explore the key concepts and approaches for working with tabular and 
rectangular data in C++.

To represent tabular data in C++, the most common approach is to use two-dimensional arrays or 
vectors. Arrays provide a straightforward way to store data in a grid-like structure, where each element 
represents a specific cell in the table. Alternatively, vectors of vectors can be used to create a more 
flexible and resizable structure, allowing for dynamic manipulation of the tabular data.

When working with tabular data, it is essential to consider techniques for data input and output. 
C++ provides various mechanisms to read and write tabular data from files, such as CSV (comma-
separated values) files. Libraries such as the Standard Template Library (STL) or external libraries 
such as Boost can efficiently simplify the process of reading and writing tabular data.

Once the tabular data is loaded into the program, C++ offers powerful data manipulation and analysis 
capabilities. Developers can iterate over rows and columns of the tabular data structure, perform 
calculations, apply transformations, and filter or select specific subsets of the data.

When dealing with large tabular datasets, optimizing performance becomes crucial. C++ provides 
techniques to improve efficiency, such as using efficient algorithms, employing parallel computing 
techniques, or leveraging libraries such as Intel’s Threading Building Blocks (TBB) or OpenMP 
for parallelization.

In addition to core C++ functionality, various libraries and frameworks offer specialized tools for 
working with tabular data. For example, the Eigen library provides efficient matrix operations and 
linear algebra functionality, making it suitable for advanced data manipulations and computations on 
tabular data. The Qt library offers GUI-based solutions for interactive visualization and manipulation 
of tabular data.

Furthermore, C++ provides opportunities for data analysis and statistical calculations on tabular 
data. Libraries such as Boost and GNU Scientific Library (GSL) offer statistical functions, probability 
distributions, and regression analysis capabilities that enable developers to derive valuable insights 
and perform advanced statistical computations on tabular data.
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Visualizing of tabular data is crucial for gaining a deeper understanding of the data patterns and 
relationships. C++ offers several options for data visualization, including libraries such as Qt, OpenGL, 
or Matplotlib (with C++ bindings). These libraries allow developers to create plots, charts, and graphs 
that present the tabular data in a visually appealing and interpretable way.

Data validation and error handling are essential aspects of working with tabular data. C++ provides 
mechanisms for data validation, such as checking for missing or inconsistent values, handling errors 
during data processing, and implementing robust error-handling tools to ensure the integrity and 
reliability of the tabular data.

In conclusion, working with tabular and rectangular data in C++ involves leveraging the language’s core 
features, libraries, and external tools. C++ provides powerful capabilities for loading, manipulating, 
analyzing, and visualizing tabular data efficiently. Developers can process and analyze tabular data 
effectively by employing the right techniques and libraries, extracting meaningful insights, and making 
informed decisions.

C++ example

We define a sample tabular data structure using vector vectors (tabularData) in this example. 
Each inner vector represents a row in the table, and each element within the inner vectors represents 
a cell. We then display the tabular data by iterating over the rows and cells using nested for loops. 
The elements are printed to the console, with tabs (\t) used to separate the values and new lines 
(std::endl) to move to the next row.

Next, we calculate the sum of each row in the tabular data. We iterate over the rows and cells, 
accumulating the sum for each row. The row sums are stored in a separate vector (rowSums). Finally, 
we display the calculated row sums by iterating over the rowSums vector and printing each value 
to the console. This example demonstrates basic operations on tabular data, such as displaying the 
data and performing calculations on specific rows. You can extend these techniques to include more 
complex data manipulations and analyses based on the requirements of your particular use case:

#include <iostream>
#include <vector>

int main() {
    // Sample tabular data
    std::vector<std::vector<int>> tabularData = {
        {1, 2, 3},
        {4, 5, 6},
        {7, 8, 9}
    };

    // Display the tabular data
    for (const auto& row : tabularData) {
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        for (const auto& cell : row) {
            std::cout << cell << '\t';
        }
        std::cout << std::endl;
    }

    // Calculate the sum of each row
    std::vector<int> rowSums;
    for (const auto& row : tabularData) {
        int rowSum = 0;
        for (const auto& cell : row) {
            rowSum += cell;
        }
        rowSums.push_back(rowSum);
    }

    // Display the row sums
    std::cout << "Row Sums:" << std::endl;
    for (const auto& sum : rowSums) {
        std::cout << sum << std::endl;
    }

    return 0;
}

In this second example, we define a rectangular data structure using vector vectors (rectangularData). 
Each inner vector represents a row in the rectangular structure, and each element within the inner 
vectors represents an element in that row. We demonstrate accessing and modifying elements of the 
rectangular data. For example, we access the element at index [1][2] using rectangularData[1]
[2] and print its value to the console. We also modify the element at index [2][1] to a new value 
(100) using rectangularData[2][1] = 100.

Next, we iterate over the rectangular data using nested for loops. We traverse each row and element 
within the row, printing the elements to the console. Tabs (\t) are used to separate the values, and 
new lines (std::endl) are used to move to the next row. Finally, we display the rectangular data 
structure with the modified element and the corresponding row and column indexes.

This example highlights basic operations on rectangular data in C++, including accessing and modifying 
specific elements and iterating the entire data structure. You can expand upon these techniques to 
perform more complex operations and manipulations on rectangular data based on your specific needs:

#include <iostream>
#include <vector>
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int main() {
    // Rectangular data represented as a vector of vectors
    std::vector<std::vector<int>> rectangularData = {
        {1, 2, 3},
        {4, 5, 6},
        {7, 8, 9},
        {10, 11, 12}
    };

    // Accessing and modifying rectangular data
    int element = rectangularData[1][2];  // Accessing a
      specific element
    std::cout << "Element at [1][2]: " << element <<
      std::endl;

    rectangularData[2][1] = 100;  // Modifying an element
    std::cout << "Modified element at [2][1]: " <<
      rectangularData[2][1] << std::endl;

    // Iterating over rectangular data
    std::cout << "Rectangular Data:" << std::endl;
    for (const auto& row : rectangularData) {
        for (const auto& element : row) {
            std::cout << element << '\t';
        }
        std::cout << std::endl;
    }

    return 0;
}

A complete ETL pipeline design strategy
Designing a complete Extract, and Transform, Load  (ETL) pipeline in C++ involves careful planning 
and considering various components to ensure efficient and reliable data integration and processing. 
An ETL pipeline encompasses extracting data from multiple sources, transforming it according to 
business rules or requirements, and loading it into a target system or database. This section will explore 
a comprehensive ETL pipeline design strategy in C++.

1.	 Data Extraction: The first step in an ETL pipeline is extracting data from diverse sources. C++ 
offers various techniques for data extraction, including reading from files (such as CSV or JSON), 
connecting to databases using SQL, or integrating with APIs for real-time data retrieval—libraries 
such as Boost.Asio or cURL can aid in handling network-based data extraction.
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2.	 Data Transformation: Once the data is extracted, it often requires transformation to ensure its 
quality, consistency, and compatibility with the target system. C++ provides powerful tools for 
data manipulation, such as string parsing, regular expressions, and algorithms from the STL. 
Additionally, libraries such as Boost and Eigen offer advanced data manipulation capabilities, 
including matrix operations and statistical transformations.

3.	 Data Validation and Cleansing: Data quality is vital for reliable analysis and decision-making, 
performing data validation on C++ facilities, and cleansing through data type checks, range 
validation, and handling missing or erroneous values. Custom validation functions and algorithms 
can be implemented to verify data integrity and enforce data quality rules.

4.	 Data Aggregation and Enrichment: In some cases, data needs to be aggregated or enriched 
with additional information before loading it into the target system. C++ allows developers 
to perform complex aggregations, merging, and joining operations using algorithms from the 
STL or custom implementations. Integration with external services or databases can enhance 
data enrichment capabilities.

5.	 Target System Loading: C++ offers multiple approaches to loading transformed data into the 
target system or database. Depending on the requirements, developers can use direct database 
connections and execute SQL statements, use object-relational mapping (ORM) frameworks 
such as ODB or SOCI, or leverage third-party libraries such as Apache Kafka or RabbitMQ for 
streaming or message-based data loading.

6.	 Error Handling and Logging: Robust error handling and logging mechanisms are crucial for an 
ETL pipeline. C++ provides exception-handling constructs, such as try-catch blocks, to handle 
runtime errors effectively. Logging libraries such as Boost.Log or spdlog can record detailed 
information about the ETL process, including errors, warnings, and informational messages.

7.	 Performance Optimization: Optimizing the performance of the ETL pipeline is vital when 
dealing with large datasets or complex transformations. C++ provides various techniques for 
performance optimization, such as parallel processing using multithreading or multiprocessing, 
utilizing efficient algorithms, and optimizing memory management. Profiling tools such as 
Valgrind or gperftools can aid in identifying performance bottlenecks.

8.	 Scalability and Flexibility: An effective ETL pipeline design should be scalable and flexible to 
accommodate future growth and changes in data sources or requirements. By following modular 
design principles and adhering to good software engineering practices, such as encapsulation, 
abstraction, and decoupling, developers can build an ETL pipeline that is easy to maintain, 
extend, and adapt to evolving needs.

In conclusion, designing a complete ETL pipeline in C++ involves a thoughtful approach to data 
extraction, transformation, validation, loading, error handling, and performance optimization. By 
leveraging the power, flexibility, and extensive libraries available in C++, developers can create robust, 
efficient, and scalable ETL pipelines that effectively integrate and process data, enabling organizations 
to derive valuable insights and make informed decisions.
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C++ example

In this example, assume we have a CSV file (data.csv) with customer and sales columns:

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <sqlite3.h>

We will extract the data from the CSV file, transform it by calculating the total sales for each customer, 
and load the transformed data into an SQLite database.

The split function is used to split a string based on a delimiter (in this case, a comma). This function 
parses each CSV file line into individual data elements:

// Function to split a string based on a delimiter
std::vector<std::string> split(const std::string& str, char delimiter) 
{
    std::vector<std::string> tokens;
    std::stringstream ss(str);
    std::string token;
    while (std::getline(ss, token, delimiter)) {
        tokens.push_back(token);
    }
    return tokens;
}

The transformData function takes the extracted data and calculates the total sales for each 
customer using an std::map variable. Each row of the data is processed, and the sales value is 
accumulated for each customer:

// Function to transform the data
std::map<std::string, double> transformData(const 
std::vector<std::vector<std::string>>& data) {
    std::map<std::string, double> transformedData;
    for (const auto& row : data) {
        std::string customer = row[0];
        double sales = std::stod(row[1]);
        transformedData[customer] += sales;
    }
    return transformedData;
}
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Using the SQLite C++ API, the loadIntoDatabase function establishes a connection to the 
SQLite database (sales.db). It creates a sales table if it does not already exist. Then, it prepares 
an INSERT query statement and binds the customer name and total sales values for each transformed 
data entry. The prepared statement is executed, and the bindings are cleared and reset for the next 
entry. Finally, the database connection is closed:

// Function to load transformed data into the database
void loadIntoDatabase(const std::map<std::string, double>& 
transformedData) {
    sqlite3* db;
    sqlite3_open("sales.db", &db);

    std::string createTableQuery = "CREATE TABLE IF NOT
      EXISTS sales (customer TEXT PRIMARY KEY, total_sales
      REAL);";
    sqlite3_exec(db, createTableQuery.c_str(), nullptr,
      nullptr, nullptr);

    std::string insertQuery = "INSERT INTO sales (customer,
      total_sales) VALUES (?, ?);";
    sqlite3_stmt* stmt;
    sqlite3_prepare_v2(db, insertQuery.c_str(), -1, &stmt,
      nullptr);

    for (const auto& pair : transformedData) {
        sqlite3_bind_text(stmt, 1, pair.first.c_str(), -1,
          SQLITE_STATIC);
        sqlite3_bind_double(stmt, 2, pair.second);
        sqlite3_step(stmt);
        sqlite3_clear_bindings(stmt);
        sqlite3_reset(stmt);
    }

    sqlite3_finalize(stmt);
    sqlite3_close(db);
}

In the main function, we open the input file (data.csv) and read its contents line by line. Each line 
is split into individual data elements using the split function, and the resulting rows are stored in 
the data vector. Next, the transformData function is called, passing the data vector. It calculates 
the total sales for each customer and returns an std::map variable containing the transformed data:

int main() {
    std::ifstream inputFile("data.csv");
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    if (!inputFile) {
        std::cout << "Failed to open input file." <<
          std::endl;
        return 1;
    }

    std::vector<std::vector<std::string>> data;
    std::string line;
    while (std::getline(inputFile, line)) {
        std::vector<std::string> row = split(line, ',');
        data.push_back(row);
    }

    inputFile.close();

    std::map<std::string, double> transformedData =
      transformData(data);

The loadIntoDatabase function is then called, passing the transformed data. It loads the 
transformed data into the SQLite database by establishing a connection, creating the table (if necessary), 
and inserting the customer’s name and total sales values. Finally, a success message indicates that the 
ETL pipeline has been executed successfully:

    loadIntoDatabase(transformedData);

    std::cout << "ETL pipeline executed successfully." <<
      std::endl;

    return 0;
}

To run this example, ensure the SQLite and libsqlite3-dev libraries are installed and linked 
correctly. Also, provide a valid data.csv file in the same directory as the executable, containing 
customer and sales data separated by commas.

This example provides a basic framework for an ETL pipeline in C++, where data is extracted, transformed, 
and loaded into a target database. You can expand and enhance this pipeline to handle more complex 
data transformations, validation, error handling, and other tasks per your specific requirements.
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Summary
In C++, you can work with statistical data types, process tabular data, and design a complete ETL 
pipeline strategy using various libraries and techniques. Here’s a brief overview of how you can 
accomplish each of these tasks in C++.

Using and processing statistical data types in C++ involves utilizing the built-in data types for numerical 
data, such as integers (int, long, float, and double) and characters (char). These data types 
allow you to perform basic statistical computations and calculations. However, you can leverage 
libraries such as Boost, Armadillo, or Eigen for more advanced statistical analysis. These libraries 
provide extensive functionality for working with statistical data types, including statistical modeling, 
regression analysis, hypothesis testing, and data manipulation.

To work with tabular and rectangular data in C++, you can use the container classes provided by the 
standard library, such as std::vector or std::array. These classes allow you to represent rows 
and columns of data in a structured manner. The STL also offers algorithms and functions specifically 
designed for sorting, searching, and efficiently transforming tabular data. These utilities enable you 
to manipulate and analyze the tabular structure’s data effectively.

Designing a complete ETL pipeline in C++ involves utilizing various libraries and tools that facilitate 
different stages of the pipeline. One popular library for building ETL pipelines in C++ is Apache Kafka. 
Kafka provides a distributed streaming platform that allows you to process and transform data in real 
time. You can use it for the pipeline’s extraction and loading phases, enabling efficient and scalable 
data transfer. Also, libraries such as Apache Avro or Protocol Buffers can define data schemas and 
serialize/deserialize data during extraction and loading.

For the transformation phase, libraries such as Apache Spark or TensorFlow can be employed, depending 
on the transformations’ complexity. These libraries offer powerful tools for data manipulation, machine 
learning, and distributed processing, allowing you to perform advanced data transformations on large 
datasets. Moreover, C++ provides database connectors such as ODBC or JDBC, which enable you 
to connect to different data sources and load data into a target database or data warehouse. These 
connectors facilitate the loading phase of the ETL pipeline, ensuring efficient and reliable data storage.

In conclusion, by leveraging the capabilities of C++ and various libraries, you can effectively work 
with statistical data types, process tabular and rectangular data, and design a complete ETL pipeline. 
C++ provides a versatile and powerful programming environment for handling data, and by utilizing 
appropriate libraries and tools, you can perform complex statistical analysis, manipulate tabular data 
efficiently, and automate the extraction, transformation, and loading of data in your projects.
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Questions
1.	 What are some advantages of using statistical data types in data analysis, and how can C++ 

facilitate their processing?

2.	 How can C++ effectively handle and process tabular and rectangular data? What are some 
techniques and libraries available for this purpose?

3.	 What are the key components and considerations in designing a complete ETL pipeline? How 
does C++ enable the implementation of an efficient and reliable ETL pipeline?

Further reading
C++ for Data Science by Cristiano L. Fontana (https://opensource.com/article/20/2/c-
data-science)

https://opensource.com/article/20/2/c-data-science
https://opensource.com/article/20/2/c-data-science


Index

Symbols
2-3 tree  287-294

deletion  295-300

A
abstraction  40, 264
acknowledgment code (ACK)  459
adapter pattern  420, 441
address  26
address bus  216
Affinic  476
aggregation  86
algorithms  277

optimizing, with traits  160-162
search algorithms  277, 278
sorting  278

allocators
types  235-242
using  234, 235

Amazon clone
implementing, with DDD  424-432
implementing, with design patterns  424-432

American Standard Code for Information 
Exchange (ASCII)  149

applications
securing  463-465

argument substitution failure  184-187
artificial intelligence (AI)  510, 511

computer vision  512-514
knowledge reasoning  515, 516
NLP  514, 515

artificial neural networks (ANNs)  524
asm declaration  210
assignment operator  48
atomic operation  382
atomic types

operations  404-406, 413, 414
using  402-404

augmented reality (AR)  512
authentication  465
authorization  465

B
behavioral patterns  104, 418
behavior-driven development 

(BDD)  469, 486, 489
bidirectional iterators  263
binary tree  309-311
boost::is_pointer trait  159, 160



Index566

boost::is_void trait  159
Boost UTF

example  487
breakpoints

setting  479

C
C/C++ program debug tools, for Linux/Unix

Affinic  476
Data Display Debugger (DDD)  477
Eclipse  476
GDB  476
GDB in Emacs mode  477
KDevelop  477
Nemiver  477
SlickEdit  477
Valgrind  476

C/C++ program debug tools, for macOS
Eclipse  477
GDB  477
LLDB  477

C/C++ program debug tools, for Windows
Eclipse  477
GDB  477
Visual Studio  477

C++  529, 530
cross-platform project organization  494
large-scale cross-platform project 

organization  495-497
C++20

iterators, using  266, 267
C++ applications

building  4, 5
compilation  9
linking  12-16
preprocessor  6, 7

C++ applications, scaling  500
horizontal scaling  500
vertical scaling  500

C++ Development Tooling 
(CDT) project  477

C++, low-level programming
class relationship  50
control flow  37-39
data and memory  23
functions  17-19
using  17

C++ object model  54, 58-62
C++ Standard Template Library (STL)  247
C++ system type

compound types  28, 29
fundamental types  28

cache memory  214-217
categorical variables  552
central processing unit  

(CPU)  43, 57, 209, 358
chartered life underwriter (CLU)  134
CI/CD pipeline  498
class relationship  50

aggregation  50, 51
composition  50, 51
inheritance  51

class template  139
instantiation  140, 141
specialization  143-145
syntax  139
versus function template  146, 147

class template, instantiation
explicit instantiation  141
implicit instantiation  142

cluster analysis  526
clustering  526, 527
command-line arguments  17



Index 567

command pattern  422, 441
compilation, C++ applications

machine code generation  11
optimization  10
syntax analysis  10

compilation stage instrumentation  485
compiler  4
compile-time checking, versus 

runtime checking
example  474, 475

compile-time evaluation
with constexpr function  176, 177

compile-time programming
with templates  168-176

composite pattern  104-110, 420, 421
composition  86

versus inheritance  93, 94
compound expressions

side effects  473
compound types  28, 29
computer memory  206
computer vision  511-514

object detection  514
object identification  513
object recognition  513

concepts  264-266
concurrency  358

versus multithreading  359, 360
concurrent code

coroutines  386-389
designing  384-386

concurrent stacks  399, 401
conditionals

replacing, with function pointers  39, 40
consequences  103
constexpr function  179, 180

using, in compile-time evaluation  176, 177
constexpr if statement  181-183

container adapters
using  258, 259

containers
iterating  260-263

context switching  361
contiguous iterator  263
continuous integration (CI) practices  495
control bus  216
control flow  37-39
copy constructor  48
coroutines  386-389
creational patterns  104
cross-platform project organization  494
cURL library

reference link  538
Customer Relationship 

Management (CRM)  448
Cygwin  477

D
data and memory  23

address  26
addressing  27
data types  27, 28
heap  34-37
pointer  29-34
stack  34-37
virtual memory  24-26

data capture and manipulation  537, 538
C++ example  538, 539

data cleansing and processing  540, 541
C++ example  541, 542
steps and procedures  540, 541

Data Display Debugger (DDD)  477
data-intensive applications

data processing  503
data structure  503



Index568

designing  501
main function  504

data-intensive applications, 
best practices  501

concurrency and parallelism  501
data security and integrity  502
efficient memory management  502
performance optimization  502
stream processing and pipelining  502

data science  534
C++ example  535-537

data structures  281
B-trees  283-287
find function  287-294
std::unordered_map, implementing  300, 301

data structures and algorithms  247
data structures,  lists

skip list  319-324
XOR list  324-326

data types  27, 28
data visualization  546

C++ example  546, 548
deadlocks

avoiding  383, 384
debugging  469, 476

strategies  483
decorator pattern  110-115, 441, 444-448
default template arguments  156, 157
Denial-of-Service (DOS) attacks  466
Dependency Injection (DI) pattern  449
dependency inversion principle  124, 125
design patterns  102-104, 418

aspects  103
adapter pattern  420
applying  422
categories  104
command pattern  422

composite pattern  104-110, 420, 421
decorator pattern  110-115
domain-driven design, using  423, 424
elements  102
factory pattern  419
in data-intensive applications  441
in enterprise applications  448
in game development  436
observer pattern  421, 422
principles  115
problem  423
singleton pattern  418, 419
system users  423
systemwide impact  423
trade-offs  423

design patterns, data-intensive 
applications  441

adapter pattern  441
command pattern  441
decorator pattern  441-448
iterator pattern  441, 448
proxy pattern  441-444

design patterns, elements
pattern name  102
problem  102
solution  103

design patterns, in enterprise 
applications  448

Dependency Injection (DI)  449
Event-Driven Architecture (EDA)  449
Model-View-Controller (MVC)  449
repository  449
Service-Oriented Architecture 

(SOA)  448, 449
design patterns, in game development  436

factory pattern  436-439
flyway pattern  439-441



Index 569

flyweight pattern  436
observer pattern  436
singleton pattern  436-438
state pattern  436

design patterns, SOLID principles
dependency inversion principle  124, 125
interface segregation principle  122-124
Liskov substitution principle  119-122
open-closed principle  117-119
single responsibility principle  115-117

Distributed DOS (DDOS) attack  466
domain-driven design

using  423, 424
Domain Specific Languages (DSLs)  424
double-checked locking pattern  386
double-ended queue (deque)  259, 260
dynamic analysis  484

cons  485
pros  485

dynamic libraries  16
Dynamic RAM (DRAM)  210, 215

E
echo server

designing  460-463
Eclipse  476, 477
edge  275
Eigen library

reference link  536
enable_if<>  183, 184

used, for disabling template  187-190
ETL pipeline design strategy  558

C++ example  560-562
data aggregation and enrichment  559
data extraction  558
data transformation  559

data validation and cleansing  559
error handling and logging  559
performance optimization  559
scalabillity and flexibility  559
target system loading  559

Event-Driven Architecture 
(EDA) pattern  449

Event-Listener  421
exclusive or (XOR)  324
Executable and Linkable Format (ELF)  11
explicit instantiation  141

restrictions  142
Extended Debugger (XDB)  477
Extract, Transform, and Load 

(ETL) pipelines  538, 558

F
factory pattern  419, 436-439

drawbacks  419
features  528
fibers  388
File Transfer Protocol (FTP)  460
find function  287-294
first in, first out (FIFO)  259
flyway pattern  439, 440
flyweight pattern  436
folding  345, 346
forward iterator  263
functional C++

metaprogramming  351-354
functional programming  330-333

first-class objects  337-341
higher-order functions  337-341
need for  341-343
principles  343

function parameter pack  181



Index570

function pointers
used, for replacing conditionals  39, 40

function template  134, 135
deduction  137
instantiation  136
overload functions  138
specialization  137, 138
syntax  135, 136
versus class template  146, 147

fundamental types  28
fuzzy clustering  527

G
Gang of Four (GoF)  102, 104
garbage collector  230-234
General Data Protection 

Regulation (GDPR)  535
GNOME desktop environment  477
GNU Compiler Collection (GCC)  477
GNU Debugger (GDB)  469, 476, 477

examples  478, 479
functionalities  477
in Emacs mode  477

GNU Scientific Library (GSL)  555
good coding behavior  471, 472
graphical user interface (GUI)  384
Graphics Processing Unit (GPU)  501
graphs  272-275

H
hard disk drive (HDD)  218
hash function, with std::unordered_map

collisions, handling considerations  306-308
digit selection  304
folding  304

implementing, strategies  303
modulo, using  305, 306

hash tables  276
head recursion  349, 350
heap  34-37, 308-318
horizontal scaling  498, 499

advantages  499
scenarios  499

Hyper-Text Transfer Protocol (HTTP)  457

I
implicit instantiation  142, 143
include guards  8
inheritance  51, 87-89

access modifier, protecting  94-96
from compiler perspective  89-92
versus composition  93, 94

initialization  219
initialized data  11
input iterator  263
input/output (I/O)  387
inspection variable values

setting  480-482
instruction pointers  212
instruction set architecture  11
integrated development 

environment (IDE)  4
interface segregation principle  122-124
Internet of Things (IoT)  534
interprocess communication (IPC)  360
isAbstract  201
isArithmetic  196, 197
isConst  199
isFundamental  195
isIntegral type trait  194
isPolymorphic  200, 201



Index 571

isScalar  197-199
is_signed  202
isVolatile  200
iterator pattern  441, 448
iterators

using, in C++20  266, 267

J
Java Debugger (JDB)  477
JavaScript Object Notation 

(JSON) document  466

K
KDevelop  477
knowledge reasoning  511, 515, 516

L
large-scale cross-platform project 

organization  494-497
best practices  497, 498
errors and exceptions, handling  497

last in, first out (LIFO)  72, 258
level 1 (L1) cache  217
level 2 (L2) cache  217
linear allocators  235
linked list  267
linker  4
linking libraries  16
Liskov substitution principle  119-122
local area network (LAN)  454
lock-based concurrent data structures  392

concurrent stacks  399, 401
synchronized counters  397, 398
thread-safe singleton pattern  393-397

lock-free concurrent data structures  401
atomic types, using  402-404
lock-free hashtable  410
lock-free queue  409
lock-free set  412
lock-free stacks  406-408
operations, on atomic  

types  404-406, 413, 414
lock-free hashtable  410
lock-free queue  409
lock-free set  412
lock-free stacks  406-408
Low-Level Debugger (LLDB)  476, 477
low-level programming

with C++  17
Low-Level Virtual Machine (LLVM)  476
lvalue reference  77

M
machine code generation  11
machine learning algorithms

applying  542, 543
C++ example  544, 546

machine learning  
(ML)  512, 516-518, 529, 530

applications  523
categories  521-523
learning algorithm, designing  519-521

macro  6
main() function  22
main thread  369
memory hierarchy

cache memory  214-217
examining, from higher-level 

perspective  209, 210



Index572

main memory  217, 218
permanent storage  218, 219
registers  210-213

memory leaks  475
avoiding  475, 476

memory management  205
basics  219
example  220-223

memory management unit (MMU)  26
memory pool  237
memory storage device

designing  206-209
Meta Language (ML)  134
metaprogramming  162

in functional C++  351-354
MinGW  477
mixed signed and unsigned problems  473
Model-View-Controller (MVC) pattern  449
MS Visual Studio  4
multithreading  368

versus concurrency  359, 360
mutex

shared data, protecting with  382, 383

N
native debugging  478
Natural language processing 

(NLP)  511, 514, 515
Nemiver  477
network application  454-456

programming, with sockets  456, 457
securing  465, 466

network interface controller (NIC)  452
layers  452

network protocols  457-460

neural networks  524, 525
hidden layer  525
input later  525
output layer  525

node-based data structures  267-271
non-type template parameter  150, 151
NOR logic gate  207
numerical variables  552

O
object code instrumentation  485
object-oriented programming 

(OOP)  17, 40-43, 53, 54
aggregation  86, 87
behavior  64, 65
classes, from compiler perspective  69-71
classes, working with  46, 47
class, mimicking  65, 66
class relationships  85
composition  86, 87
copying  47, 48
destruction  47, 48, 71, 72
encapsulation  82-85
high-level details of objects  43-46, 57, 58
identity  63, 64
initialization  47-50, 71, 72
low-level details of objects  54-57
lvalue reference  77
moving  47, 48
objects  54
objects, copying  73-76
objects, moving  76, 77
operator overloading  80-82
public interface  82-85
rvalue reference  78-80
state  62
working, with classes  67, 68



Index 573

object-oriented programming 
(OOP), principles

inheritance  87-89
polymorphism  87, 97, 98
virtual functions  99-102

observer pattern  421, 422, 436
O(log n) algorithms  277
open-closed principle  117-119
OpenCV

reference link  513
Open Systems Interconnection 

(OSI) model  452-454
optimization  10
order of evaluation problem  473
ordinal variables  552
outcome  528
output iterator  263

P
pattern name  102
permanent storage  218, 219
physical memory  217
placeholder type specifier  27
platform  11
pointer  29-34
polymorphism  97, 98
pool  379
pool allocator  237
pop  35
Portable Executable (PE)  11
port number  457
preprocessor  6
preprocessor, C++ applications

header files  7, 8
modules, using  8, 9

primary template  135, 139

principal component analysis 
(PCA)  541, 543

printf() variadic function  149
problem outlines  102
process  5, 218, 360-365

challenges  367, 368
executing  366, 367

promise  387
promise object  387
proxy pattern  441-444
Publish-Subscribe  421
pure functions  343-345

folding  345, 346
push  35
Python  477

Q
quality assurance (QA)  489

R
race condition  392
random access iterator  263
Random Access Memory (RAM)  23
ranges

using  333-337
RCA tree diagram  470, 471
read-only data  11
recursion  19-23
recursive function  346-349

head recursion  349, 350
tail recursion  350

registers  38, 210-215
regression analysis  527- 529
remote debugging  478
repository pattern  449



Index574

Request for Comments (RFCs)  458
Resource Acquisition Is Initialization 

(RAII)  219, 376, 475
implementing  223-226

root cause analysis (RCA)  470
overview  470

R-S flip-flop  208
rvalue reference  78-80

S
scalar type  359
search algorithms  277, 278
semantics  10
sequence diagram  125-130
sequential data structures  248-253

STL containers  253
sequential search (linear search)  277
Service-Oriented Architecture 

(SOA)  448, 449
setter functions  45
SFINAE  183, 184
SFINAE errors

types  186
simulator debugging  478
Single Instruction, Multiple 

Data (SIMD)  501
single responsibility principle  115-117
singleton  103
Singleton pattern  418, 419, 436-438
skip list  319-324
SlickEdit  477
smart pointers

RAII idiom, leveraging  223-226
std::shared_ptr  228-230
std::unique_ptr  226, 227
std::weak_ptr  228-230
using  223

sockets
used, for programming network 

application  456, 457
solid-state drive (SSD)  218
solution outlines  103
sorting  278
source code instrumentation  485
source files  12
specialized template  135
stack  22, 34-37, 452
stack allocators  241
stackless coroutines  388
stack overflow  23
Standard Template Library  

(STL)  133, 167, 253, 555
state pattern  436, 441
static analysis  484

limitations  484
static libraries  16
Static RAM (SRAM)  217
statistical data types

C++ example  553, 555
processing  552, 553
using  552, 553

std::jthread
using  376-378

std::list
using  255-258

std::unordered_map  300, 301
elements, inserting  301-303
elements, searching  301-303
used, for organizing element storing  301-303

std::vector
using  254, 255

STL containers  253, 254
container adapters, using  258-260
std::list, using  255-258
std::vector, using  254, 255



Index 575

structural patterns  104, 418
Substitution Failure Is Not  

an Error (SFINAE)  167
supervised learning algorithm  521
symbol table  11
synchronized counters  397, 398
syntactic correctness  10
syntax  10
syntax analysis  10

T
tabular and rectangular data

C++ example  556, 557
working with  555, 556

Tail Call Optimization (TCO)  350
tail recursion  350
TCP

features  459
template

disabling, with enable_if<>  187-190
using  134

template arguments  154
template instantiation  136
template metaprogramming (TMP)  162, 163
template non-type arguments  154, 155
template parameters  150
template template arguments  156
template template parameter  150-154
template type arguments  155, 156
template type parameters  134
test-driven development 

(TDD)  469, 486-489
testing  469
text segment  39
thread function

arguments, passing to  378, 379

Threading Building Blocks  (TBB)   555
threads  368-371

data, sharing  382
deadlocks, avoiding  383, 384
managing  379-381
shared data, protecting with mutex  382, 383
std::jthread, using  376-378
waiting for  373-376
working with  372, 373

thread-safe singleton pattern  393-397
thread safety  392
trait classes  162
traits  158

used, for optimizing algorithms  160-162
translation lookaside buffer (TLB)  217, 218
Transmission Control Protocol/

Internet Protocol (TCP/IP)  454
trees  272, 273
trivial assignment operator  160
t-SNE  543
type substitution  89
type template parameter  150-152
type trait  158
type trait implementation

boost::is_pointer  159, 160
boost::is_void  159

type traits  191-195
isAbstract  201
isArithmetic  196, 197
isConst  199
isFundamental  195
isPolymorphic  200, 201
isScalar  197-199
is_signed  202
isVolatile  200



U
UML, in project design  125

sequence diagram  125-130
Unified Modeling Language (UML)  47, 68
uninitialized data  11
uninitialized variable problem  472
unit  486
Unit Test Frameworks (UTFs)  486

features  486, 487
unit testing  486

characteristics  486
cons  486

User Datagram Protocol (UDP)  460

V
Valgrind  476
variadic templates  147

benefits  149
examples  148, 149
syntax  147, 148

vertical scaling  498, 499
advantages  499
scenarios  500

Vim  4
virtual memory  24, 25, 217
Visual Studio  477

W
well-known ports  457

X
Xcode  477
XOR list  324-326

Y
yielding  389



Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C++ High Performance - Second Edition

Björn Andrist, Viktor Sehr

ISBN: 978-1-83921-654-1

•	 Write specialized data structures for performance-critical code

•	 Use modern metaprogramming techniques to reduce runtime calculations

•	 Achieve efficient memory management using custom memory allocators

•	 Reduce boilerplate code using reflection techniques

•	 Reap the benefits of lock-free concurrent programming

•	 Gain insights into subtle optimizations used by standard library algorithms

•	 Compose algorithms using ranges library

•	 Develop the ability to apply metaprogramming aspects such as constexpr, constraints, and 
concepts

•	 Implement lazy generators and asynchronous tasks using C++20 coroutines 

https://packt.link/9781839216541


579Other Books You May Enjoy

Modern C++ Programming Cookbook - Second Edition

Marius Bancila

ISBN: 978-1-80020-898-8

•	 Understand the new C++20 language and library features and the problems they solve

•	 Become skilled at using the standard support for threading and concurrency for daily tasks

•	 Leverage the standard library and work with containers, algorithms, and iterators

•	 Solve text searching and replacement problems using regular expressions

•	 Work with different types of strings and learn the various aspects of compilation

•	 Take advantage of the file system library to work with files and directories

•	 Implement various useful patterns and idioms

•	 Explore the widely used testing frameworks for C++ 

https://packt.link/9781800208988


580

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Expert C++, 2nd edition, we’d love to hear your thoughts! If you purchased the 
book from Amazon, please click here to go straight to the Amazon review page for this book and 
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804617830


581

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook 
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804617830

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804617830
https://packt.link/free-ebook/9781804617830



	Cover
	Title Page
	Copyright and Credits
	Contributors
	About the reviewers
	Table of Contents
	Preface
	Part 1: Under the Hood of C++ Programming
	Chapter 1: Building C++ Applications
	Technical requirements
	Building C++ applications
	Preprocessing
	Compiling
	Linking

	Low-level programming with C++
	Functions
	Data and memory
	Control flow
	Details of OOP
	Class relationships

	Summary

	Chapter 2: Beyond Object-Oriented Programming
	Technical requirements
	An introduction to OOP and the C++ object model
	Understanding objects
	Low-level details of objects
	High-level details of objects
	C++ object model
	State
	Identity
	Behavior
	Mimicking a class
	Working with classes
	Classes from a compiler perspective
	Initialization and destruction
	Copying objects
	Moving objects
	An lvalue reference
	Rvalue references
	Notes on operator overloading
	Encapsulation and the public interface
	Class relationships
	Aggregation and composition

	Under the hood of inheritance and polymorphism
	Inheritance
	Polymorphism
	Virtual functions under the hood

	Classical design patterns
	The composite pattern
	The decorator pattern

	Design principles
	The single responsibility principle
	The open-closed principle
	The Liskov substitution principle
	The interface segregation principle
	The dependency inversion principle

	More UML in project design
	The sequence diagram

	Summary
	Questions
	Further reading

	Chapter 3: Understanding and Designing Templates
	Technical requirements
	Motivation for using templates
	Function templates
	Syntax
	Instantiation
	Deduction
	Specialization and overloading

	Class templates
	Syntax
	Instantiation
	Specialization

	Understanding variadic templates
	Syntax
	Examples

	Exploring template parameters and arguments
	Template parameters
	Non-type template parameter
	Type template parameter
	Template template parameter
	Template arguments

	Traits
	Type trait implementation
	Optimizing algorithms using traits
	TMP and its applications
	Summary
	Questions
	Further reading

	Chapter 4: Template Meta Programming
	Technical requirements
	Back to basics (compile-time programming with templates)
	Compile-time evaluation using constexpr
	Constant expression-specified constructors (constexpr)

	SFINAE AND enable_if<>
	Argument substitution failure
	Disabling templates with enable_if<>

	Type traits
	isFundamental
	isArithmetic
	isScalar
	isConst
	isVolatile
	isPolymorphic
	isAbstract
	is_signed

	Summary
	Questions

	Chapter 5: Memory Management and Smart Pointers
	Technical requirements
	Understanding computer memory
	Designing a memory storage device
	Understanding computer memory from a higher-level perspective
	An example of memory management

	Using smart pointers
	Leveraging the RAII idiom
	std::unique_ptr
	std::shared_ptr and std::weak_ptr

	Garbage collection
	Using allocators
	Types of allocators

	Summary
	Questions

	Part 2: Designing Robust and Efficient Applications
	Chapter 6: Digging into Data Structures and Algorithms in STL
	Technical requirements
	Sequential data structures
	STL containers

	Iterating containers
	Concepts and iterators
	Understanding concepts

	Using iterators in C++20
	Node-based data structures
	Graphs and trees
	Trees
	Graphs

	Hash tables
	Algorithms
	Search algorithms
	Sorting

	Summary
	Further reading
	Questions

	Chapter 7: Advanced Data Structures
	Technical requirements
	B-trees
	Searching
	Insertion
	Deletion

	Implementation details of std::unordered_map
	How std::unordered_map organizes element storing and how elements are inserted into or searched in std::unordered_map
	Hash functions and strategies that are used to implement them
	Digit selection
	Folding
	Using modulo
	Collisions and how they are handled

	Heaps and their applications
	Advanced lists
	Skip lists
	XOR lists

	Summary
	Questions
	Further reading

	Chapter 8: Functional Programming
	Technical requirements
	Functional programming revealed
	Using ranges
	First-class and higher-order functions
	Why use functional programming?
	Principles of functional programming

	Pure functions
	Folding

	Delving more deeply into recursion
	Head recursion
	Tail recursion

	Metaprogramming in functional C++
	Summary
	Questions
	Further reading

	Chapter 9: Concurrency and Multithreading
	Technical requirements
	Understanding concurrency and multithreading
	Processes
	Threads

	Working with threads
	Waiting for threads
	Using std::jthread
	Passing arguments to the thread function

	Managing threads and sharing data
	Sharing data
	Protecting shared data using a mutex
	Avoiding deadlocks

	Designing concurrent code
	Introducing coroutines

	Summary
	Questions
	Further reading

	Chapter 10: Designing Concurrent Data Structures
	Technical requirements
	Thread safety
	Lock-based concurrent data structures
	A thread-safe singleton pattern
	Synchronized counters
	Concurrent stacks

	Lock-free concurrent data structures
	Using atomic types
	Operations on atomic types
	Lock-free stacks
	A lock-free queue
	A lock-free hashtable
	A lock-free set
	More operations on atomics

	Summary
	Questions
	Further reading

	Chapter 11: Designing World-Ready Applications
	Technical requirements
	Design patterns
	Singleton
	Factory
	Adapter
	Composite
	Observer
	Command

	Applying design patterns
	The problem
	Trade-offs
	Systemwide impact
	Users
	Using domain-driven design

	An example of a real-world project
	Summary
	Questions
	Further reading

	Chapter 12: Incorporating Design Patterns in C++ Applications
	Technical requirements
	Design patterns in game development
	The singleton pattern
	The factory pattern
	The flyway pattern

	Design patterns in data-intensive applications
	The proxy pattern
	The decorator pattern
	The iterator pattern

	Design patterns in enterprise applications
	SOA

	Summary
	Questions
	Further reading

	Chapter 13: Networking and Security
	Technical requirements
	Introduction to networks, the OSI model, and network programming using sockets
	The OSI model
	Network applications under the hood
	Programming network applications using sockets

	Understanding network protocols
	Designing an echo server
	Securing applications
	Securing network applications
	Summary
	Questions
	Further reading

	Chapter 14: Debugging and Testing
	Technical requirements
	Understanding the root cause of an issue
	RCA overview
	Prevention is better than cure – good coding behavior
	The uninitialized variable problem
	Side effects in compound expressions
	Mixed signed and unsigned problems
	Order of evaluation problem
	Compile-time checking versus runtime checking
	Avoiding memory leaks

	Debugging programs
	Tools for debugging a C/C++ program
	GDB overview
	Examples of GDB
	Setting breakpoints and inspection variable values
	Practical debugging strategies

	Static and dynamic analysis
	Static analysis
	Dynamic analysis

	Testing, TDD, and BDD
	Unit testing
	TDD
	BDD

	Summary
	Further reading

	Chapter 15: Large-Scale Application Design
	Technical requirements
	The introduction of large-scale, cross-platform project organizing
	Large-scale, cross-platform project organization in C++
	A large-scale, cross-platform project in C++
	Best practices and strategies for managing a large-scale, cross-platform project in C++

	Horizontal and vertical scaling
	Horizontal scaling
	Vertical scaling

	Scaling C++ applications
	Horizontal scaling in C++
	Vertical scaling in C++

	Designing data-intensive applications
	Data structure
	Data processing
	The main function

	Summary
	Questions
	Further reading

	Part 3: C++ in the AI World
	Chapter 16: Understanding and Using C++ in Machine Learning Tasks
	Technical requirements
	Introduction to AI
	Computer vision
	NLP
	Knowledge reasoning

	ML
	Understanding ML
	Designing an algorithm that learns
	Categories of ML
	Applications of ML

	Neural networks
	Clustering
	Regression analysis
	C++ and ML
	Summary
	Questions
	Further reading

	Chapter 17: Using C++ in Data Science
	Technical requirements
	Introduction to data science
	C++ example

	Data capturing and manipulation
	C++ example

	Data cleansing and processing
	C++ example

	Applying machine learning algorithms
	C++ example

	Data visualization
	C++ example

	Summary
	Questions
	Further reading

	Chapter 18: Designing and Implementing a Data Analysis Framework
	Technical requirements
	Using and processing statistical data types
	C++ example

	Working with tabular and rectangular data
	C++ example

	A complete ETL pipeline design strategy
	C++ example

	Summary
	Questions
	Further reading

	Index
	Other Books You May Enjoy



