ELEMENTARY
SYNCHRONOUS
F .G J MIMIL) -

Ali S. Janfada
Elementary Synchronous Programming

Also of interest

C++ Programming

Li Zheng, Yuan Dong, Fang Yang, 2019

ISBN 978-3-11-046943-1, e-ISBN (PDF) 978-3-11-047197-7,
e-ISBN (EPUB) 978-3-11-047066-6

Trusted Computing

Dengguo Feng, Yu Qin, Xiaobo Chu, Shijun Zhao, 2017
ISBN 978-3-11-047604-0, e-ISBN (PDF) 978-3-11-047759-7,
e-ISBN (EPUB) 978-3-11-047609-5

Technoscientific Research

Roman Z. Morawski, 2019

ISBN 978-3-11-058390-8, e-ISBN (PDF) 978-3-11-058406-6,
e-ISBN (EPUB) 978-3-11-058412-7

Web Applications with Javascript or Java, vol. 1

G. Wagner, M. Diaconescu, 2017

ISBN 978-3-11-049993-3, e-ISBN (PDF) 978-3-11-049995-7,
e-ISBN (EPUB) 978-3-11-049724-3

Web Applications with Javascript or Java, vol. 2

G. Wagner, M. Diaconescu, 2019

ISBN 978-3-11-050024-0, e-ISBN (PDF) 978-3-11-050032-5,
e-ISBN (EPUB) 978-3-11-049756-4

Ali S. Janfada

Elementary
Synchronous

Programming

In C++ and Java via Algorithms

DE GRUYTER

Author

Dr. Ali S. Janfada

Urmia University

Faculty of Science
Department of Mathematics
Urmia, 11km SERO Road, Iran
a.sjanfada@urmia.ac.ir

ISBN 978-3-11-061549-4
e-ISBN (PDF) 978-3-11-061648-4
e-ISBN (EPUB) 978-3-11-061673-6

Library of Congress Control Number: 2019938420
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2019 Walter de Gruyter GmbH, Berlin/Boston
Printing and binding: CPI books GmbH, Leck.

www.degruyter.com

In memory of my parents
and
to my family

Foreword

In 1975, when I received my B.Sc. degree in mathematics, I knew nothing about pro-
gramming except for some scattered codes. In fact, in 1973, when I was passing the
computer programming course, there were not personal computers on the market like
today, and running a program including punching the codes on the punch cards, cor-
recting the administrative mistakes, and re-punching them, as well as observing the
required time for their successful implementation on the only central computer of the
university and obtaining the outcomes would last almost a week. Therefore, I could
completely implement a maximum of ten programs during a semester. After my em-
ployment at Urmia University in 1989, computer programming was one of the courses
I eagerly taught in mathematics and physics due to my great interest in programming.
This passion directed me toward success in writing my first textbook [17] in Farsi in
1994, which soon became one of the most widely used applicable books in the com-
putational field, especially for postgraduate students in physics. Interestingly, my
relative skill in programming was one of the reasons for my success during a Ph.D.
program on algebraic topology in 2000, as the year of mathematics, at Manchester
University, UK. After completing my doctoral degree, I continued teaching computer
programming courses, and the initial ideas for writing the present book were born in
my mind in 2004. I first implemented my idea in the form of the pamphlets, and then,
I tested it as a textbook [18] in Pascal. In addition, I frequently modified and improved
these materials and then collected them as a pamphlet in C++, while drawing upon
the assistance of the interested and apt students. Later on, I published them as a text-
book [19], which was extensively used by my colleagues in other universities. All
these materials were designed and implemented based on the algorithm, which
demonstrated desired results in teaching the algorithm-based programming. In re-
cent years, I have found that the above-mentioned programming languages can be
simultaneously presented using the algorithms due to the proximity of their codes.
The suggestion and request of De Gruyter Publications for publishing the present
book encouraged me to simultaneously write the program for both C++ and Java lan-
guages, for which I appreciate the staff of this publications.

The current textbook aimed to provide the reader with a more convenient, better,
and faster method of programming via the algorithm in both C++ and Java languages.
In fact, this is the slogan of the current book: You will be a professional programmer
whenever you become a skilled algorithm designer since a program is nothing but an
algorithm with the special codes of a programming language.

This book covers nearly all the curriculum topics taught in computer science fun-
damentals and programming for mathematics, physics, and engineering except for
computer science during the B.Sc. program and thus can be used as a textbook for
these courses. Actually, the course is more efficient if the instructor considers the ap-

https://doi.org/10.1515/9783110161484-202

VIl =/ Foreword

plied examples related to each field. Further, the knowledge of high school mathe-
matics is a prerequisite for employing the present book, and therefore, it is useful for
high school graduates as well.

It is worth mentioning that this is not a reference book for programming in C++
and Java language; however, it seeks to encourage the readers to develop their skills
in algorithm writing for the problems in which mathematical calculations are ap-
plied, and simultaneously teach them to translate the algorithm into C++ and Java
codes. Therefore, without addressing the computer fundamentals and programming
details, algorithm-writing principles and techniques are dealt with after preliminary
discussions on algorithm-writing and programming concepts. Furthermore, the book
strives to gradually strengthen the readers’ ability in this regard so that they can iden-
tify and analyze the mental commands which are issued and implemented in their
brains for solving a computational mathematics problem and try to design an algo-
rithm based on their understanding and analyses.

To achieve this goal, we introduce a maximum of ten algorithmic templates,
which are considered the basic components of the algorithms, and attempt to teach
our readers which template to use for each subjective instruction and how to arrange
such templates in order to obtain a desired algorithm. Moreover, the translation of
each template into C++ and Java programming languages are explained with various
details, descriptions, and examples. Additionally, since each algorithm includes sev-
eral templates, the translation of the program into C++ and Java codes will be easy by
knowing the codes of each template. In addition, we can even translate our algo-
rithms to any programming language if we know the codes of each template in that
programming language.

To implement our strategy, in Chapter 1, we will explain that most of our daily
routines result from one or more algorithms. Then, the algorithm is defined, followed
by describing the steps for writing an algorithm. The flowchart, among all types of
algorithms, is the most transparent and simplest type and thus, it is easier to write,
execute, and translate into the codes of each language. Accordingly, in this book,
flowcharts are regarded as the framework of our algorithms and wherever we talk
about the algorithm, we imply the flowcharts.

In Chapters 2 and 3, we will take a brief look at the programming alphabet in C++
and Java languages, as well as some of its preliminary concepts and practice the pro-
vided explanations by implementing several introductory programs, respectively.
These two chapters guide the reader to write simple algorithms and programs. Fur-
thermore, Chapter 3 describes the nature of object-oriented programming in both C++
and Java languages. Due to the computational purpose of the book, most programs
are such that the employed functions (methods) are less dependent on the nature of
object-oriented programming.

Our main task begins in Chapter 4, which explains how to employ the basic algo-
rithm templates. Sub-algorithms (subprograms) are considered the main frameworks

Foreword =—— IX

of the algorithms (programs), which are more perceptible in large algorithms (pro-
grams). Moreover, in Chapter 5, by addressing a variety of sub-algorithms and sub-
programs, we elaborate on how each type of sub-algorithm (subprogram) is written
and called in the main algorithms (programs). By going through these two chapters,
a novice reader learns to walk. In other words, he learns how to create intermediate
algorithms and translate them into C++ and Java codes.

Additionally, automated and conditional loops are covered in Chapters 6 and 7,
respectively. The ability of algorithm-writing is substantially strengthened in these
two chapters using numerous examples. In addition, algorithmic templates are com-
pleted in the above-mentioned chapters. By studying these chapters, the reader
learns how to create suitable algorithms and write the desired programs

Acquiring skills in algorithm writing and programming is provided in Chapters 8
and 9, in which we deal with one-dimensional and two-dimensional arrays called also
victors and matrices, respectively. It should be noted that more than half of the appli-
cations use arrays. In particular, Chapter 9 discusses a variety of methods for solving
linear equation systems.

In this book, several guidelines are presented in order to solve the problems at
the end of the chapters (4-10), which help the reader to get some ideas from this sec-
tion in the cases they fail to solve these problems.

Sometimes, we do not understand part of a movie when we watch it. In such a
case, we rewind the film for further understanding and review it several times. We
may even watch it slowly in order to finally figure out what is going on in that section.
Given the nature of this course, students are advised to consider and apply three
points for learning useful materials.

The first point is to try to understand what processes your mind goes through for
doing a daily routine or solving a computational problem. More precisely, try to find
out what is going on in the brain by repeatedly reviewing and even slowly moving
such processes. Then, identify and analyze the implemented processes.

Next, classify your own perceptions of this recognition and analysis in a set of
regular instructions and design an algorithm using such a set so that the other person
who runs this algorithm obtains the same answer as your mind did.

Finally, learn the components (templates) of an algorithm, which are up to a max-
imum of ten, use them appropriately, and try to improve your skills in designing an
algorithm by further practice.

We write the name of all sub-algorithms, functions (method), templates, and
statements, as well as the keywords and for loop specifications in code font (the same
as what was just used for ‘for’), while the names of the variables are written in the
italic font. In general, we are bound to use the code font everywhere in the flowchart
or program, and we apply italic fonts wherever we speak of the variables in the text.
However, we employ the font of the table itself in the tables, which is nearly the same
as the two above-mentioned fonts.

Numbering the tables and figures is by the number of involved examples.

X —— Foreword

For the readers’ convenience, all the programs of the book are provided on De
Gruyter website www.degruyter.com (search: Elementary Synchronous Program-
ming).

In every human endeavour, there are a considerable number of people worthy of
respect and gratitude due to their invaluable moral, intellectual, and technical sup-
port. While not being able to name them all, I have selected to highlight a few.

I would like to gratefully appreciate Virayeshyar Editing Company, especially Ja-
vad Gholami, Associate Professor of Applied Linguistics at Urmia University, for his
valuable guidance and fast and meticulous editing of the present book. I also thanks
Amin Habibzadeh and Mohammad Mohammadi for their helps in editing parts of the
book.

My sincere thanks are due to Saeed Matlabjoo for his valuable suggestions re-
garding some issues, as well as his assistance in solving several systemic problems in
writing and working with the format of the publications.

I am also profoundly grateful to the staff of the Walter de Gruyter Publishing
House for all the publishing stages of this book. I owe special thanks to Katja Schu-
bert, the Production manager, who patiently and constantly provided me with tech-
nical guidance. In addition, I would like to thank Leonardo Milla, Aneta Cruz-Kaciak
and Angelika Sperlich for all their helps during the preparation of the book.

Special thanks go to two people without whom I could not publish this book in
due time and with such quality. My son, Erfan, who translated the original text from
Persian to English and patiently modified several English mistakes after the author’s
technical reviews and revisions. His encouragement has always inspired me. Further,
Ehsun Rasoulian, a very active student of the author at undergraduate and postgrad-
uate levels, was very helpful in carrying the burden of converting all the C++ pro-
grams to Java and their implementation. He, also, significantly contributed to the im-
plementation of some C++ programs, at times supported the author, technically
studied the entire text of the book, and finally, provided useful suggestions.

My heartfelt gratitude goes to my dear wife who provided a quiet environment for
me throughout the years of writing the present book, as well as the other books and
helped me progress in other research studies.

Finally, I apologize for all the respected readers for the weaknesses and short-
comings which may have skipped my attention. I sincerely request you, the Reader,
to acknowledge such shortcomings to the author.

Spring 2019, Ali S. Janfada

Contents

Foreword —VII

1 Basic concepts of Algorithm —1

1.1 Algorithm —1

1.2 Flowchart—7

2 Fundamental concepts of programming in C++—17
2.1 Primary concepts—18

2.1.1 Reserved words —18

2.1.2 Identifiers —18

2.1.3 Data types —19

2.1.4 Variables—21

2.1.5 Constants—23

2.1.6 Operators—23

2.1.7 Library (predefined) functions — 28

2.1.8 Arithmetic and logical expressions —29

2.2 Introduction to programming in C++ language —31
2.2.1 Output statement—33

2.2.2 Input statement——37

2.2.3 Formatted output—41

2.3 Pointers—43

3 Fundamental concepts of programming in Java— 47
3.1 Primary concepts —48

3.1.1 Data types—49

3.1.2 Literals and variables—50

3.1.3 Operators—51

3.2 Introduction to programming in Java—53

3.2.1 Output and input statements —55

3.2.2 Formatted output—61

3.3 Object-oriented programming (OOP) system — 64
3.3.1 Objects and class — 64

3.3.2 Types of variables —70

3.3.3 Constructors and destructors —71

3.3.4 Destructors and namespaces (C++ only) — 74
3.3.5 Static elements—77

3.3.6 The this keyword —82

XIl = Contents

4 Decision making and branching templates — 84
4.1 The if-else template—86

4.2 The if template—89

4.3 The if-else-if template —95

4.4 The switch statement—107

4.5 More applications of the if template —112
4.5.1 Transferring the program execution — 112
4.5.2 Terminating the program execution — 114

Exercises— 118

5 Sub-algorithms and subprograms —121

5.1 Sub-algorithms —121

5.2 Subprograms — 124

5.2.1 Functions —126

5.2.2 Multi-return sub-algorithm (subprograms) —136
5.3 Self-calling (recursive) functions —141

Exercises —150

6 Automated loops — 155
6.1 The for template —155
6.2 Series—182

Exercises—190
Supplementary exercises — 194

7 Conditional loops — 197

7.1 The while and do-while templates — 197

7.2 More applications of the conditional loops — 216
7.3 The if-goto loops (C++ only) — 239

Exercises — 241
Supplementary exercises — 244

8 One-dimensional arrays — 246
8.1 vectors —246
8.2 More applications of the arrays — 275

Exercises — 297
Supplementary exercises — 300

9 Two-dimensional arrays — 304

9.1 Matrices—304

9.2 Solving linear equations system — 341
9.2.1 Direct ways —342

9.2.2 Iterative methods — 346

Exercises —361
Supplementary exercises —363

Hints for the exercises — 365
Bibliography — 389

Index—393

Contents =—— XIII

1 Basic concepts of Algorithm

1.1 Algorithm

The word algorithm is derived from the name of a great Iranian Muslim mathemati-
cian, astronomer, and philosopher named al-Khawrizmi', who lived in the second
century anno hegirae. In general, by an algorithm, a set of usually predefined and
orderly instructions is meant to be followed to solve a particular type of problem. One
may perform various kinds of algorithms without being aware of them, in their rou-
tine and daily lives. For instance, the process of preparing a meal requires several
instructions since different stages are needed in cooking and preparing it for serving.
Take as another example, attending a church or mosque to say one’s praying. This
ritual needs several processes which can be turned into an algorithm. The same ap-
plies to robots. These machines are designed based on a special algorithm which in-
cludes a set of instructions to implement them in a way that when such instructions
are implemented successively, they move harmonically and perform the predesigned
tasks accurately. Other instances could be constructing a building, driving a car, tak-
ing medicine, setting the table, reading a book, taking a trip, publishing a book, di-
recting an office, and many other types of activities. When a mathematical problem
is suggested in a classroom, and the corresponding data are presented afterwards.
Consequently, particular solutions are expected to be obtained. Accordingly, a prob-
lem-solving algorithm is implemented? in order to arrive at specific results. Even the
processes which follow in somebody’s mind during solving a problem in their per-
sonal lives, some kinds of algorithms occur somewhat differently, for these algo-
rithms are not predefined vividly.

Having understood a problem, one could investigate various steps to approach
the solution. That, in turn, requires several other phases to arrive at a certain finding
to the posed problem. In the following, a more concise and accurate notion of the
construct of a standard algorithm is elaborated and defined.

An algorithm refers to a set of instructions applied in solving a problem. Accordingly, four different
phase are required to perform this activity. These particular characteristics include: concise expres-
sions, adequate details, the order of the phase, and the completion phase. Hence, the presences of
all these features are absolutely essential to perform a standard algorithm.

There are many discussions which lack all those four characteristics mentioned in the
definition given above. For instance, suppose the instructions to take a particular

1 Muhammad ibn Musa al-Khawrizmi (780 A.D. — 850 A.D.).
2 The verbs “implement” and “run” or “execute” are used for algorithms and programs, respectively.

https://doi.org/10.1515/9783110616484-001

2 — Basic concepts of Algorithm

medicine are given as follows. Dissolve a teaspoon suspension in a glass of water and
drink it three times a day for ten days. It is obvious that this instruction does not in-
clude some of the features mentioned in the construct definition given above. First,
the exact capacity of a teaspoon, or a glass is not specified precisely. Second, it is not
clear whether “three times a day” means one per every eight hours or after each daily
meal. Third, the order of pouring the medicine and water inside the glass are not ex-
plained concisely. In some cases, the accurate order of instruction seems to play a
phenomenal role such as pouring boiling oil and water.

From now on, by algorithm, the one with all of the four mentioned features is
meant. As mentioned earlier, different types of algorithms have already been imple-
mented in our daily lives. It is worth mentioning that the ideas that are made in the
brain can be transformed into algorithms, not those based on the feelings erupting
from the heart. In other words, all human activities caused by the five senses could
be expressed in the form of various algorithms.

To further elucidate the relationship between algorithms and the processes hap-
pening in the brain, an example is given to elaborate it and make a feeling of the issue.
Assume you have been requested utter even numbers from 2 to 10. You quote 2, 4, 6,
8, and 10, immediately. Nonetheless, have you ever wondered the processes which
occur in the brain to mention them so promptly? To further expatiate the issue, imag-
ine a video records the reactions and the processes which happen in your brain while
enumerating the even numbers from 2 to 10. That is, the processes which starts off
ever since the question is posed and duration in which the brain’s processes is to pro-
vide an answer. Having recorded the process, watch the recorded item in a slow mo-
tion. Then you can visualize different processes the brain applies not only in analys-
ing the issue but arriving at a solution to the posed problem that, in turn, is changed
into an algorithm. Thus, if that algorithm is given to somebody else to implement,
they will arrive at the same solution that have already been achieved.

In short, the answer to the posed question is divided into two parts. The first part
examines what the brain’s commands, step by step.

Put the number 2 (the first even number) in the “memory”. Then, till the number in the memory
does not exceed 10, repeatedly, write up or utter the number in the memory and then add 2 to it
and substitute for the preceding number in the memory.

The second part analyses these processes in the brain very carefully and patiently in
full details in order to convert it into an algorithm.

Algorithm 1.1(a).

1. Ina particular “location”, first put number 2;

2. Write the number in the location;

3. Add 2 units to the number in this location and substitute the result for the pre-
ceding one;

Algorithm = 3

4, If the number in this location is less than or equal to 10, continue implementing
the algorithm from the instruction number 2;
5. Or else, complete implementing the algorithm.

By the “place” in the above algorithm, we mean the “memory” mentioned in the
brain’s commands. In the brain, this algorithm is, indeed, implemented quickly and
the answer to the above question is achieved. We too, along with the brain, but slower
than it, implement this algorithm precisely and record the results in the table below.

Tab. 1.1(a): Results of implementing Algorithm 1.1(a).

Memory (place): 2 2+2=4 442=6 6+2=8 8+2=10 10+2=12
Value in the memory: 2 4 6 8 10

The core aim of this book is to create and gradually strengthen the ability to imagine
a slow motion (video) of the brain’s process and analyse the details of it, also, express
them as an algorithm in the readers. The extreme importance of the ability in design-
ing algorithms can be understood in the following fact which is the slogan of the
book.

You will be a good programmer whenever you become a skilful algorithm designer!

Yes, programming is as simple as this, provided that you possess elegance, preci-
sion, and sensitivity; elegance in imagining and analysing the brain’s commands,
precision in designing an algorithm, and sensitivity in the correctness of the algo-
rithm and fixing the probable mistakes.

Expressing the recent algorithm in the writing form seems vulgar. By establishing
and defining appropriate symbols and variables, we could express it in a simple and
symbolic form. We present the requested even number with the variable E. The varia-
ble E is, in fact, the “memory” in the brain’s commands or the “place” in Algorithm
1.1(a). We will use the assignment symbol E < 2 to assign (save) 2 to E and the E < E+2
in order to add two units to the last value saved to E and substitute for E; that is, after
adding 2 units to the last value of E in the memory, the last value is removed and the
new value substitutes (saves) for it.

The direction of the arrow in these standard symbols should always be from right to left. Using a
symbol such as 2 > E is incorrect. The reason will be explained in Chapter 4.

With the given symbols, we modify Algorithm 1.1(a) into a simpler form.

4 — Basic concepts of Algorithm

Algorithm 1.1(b).

1. E<2

2. Write E;

3. E<E+2 \
4, IfE<10,goto2; —
5. End.

In this algorithm, there exists a loop, (instructions which are repeated several times)
where the direction of the repetition is marked by an arrow. Note that the words like
“read, write (print), go to, if, then, terminate”, etc., also, some of the algebraic oper-
ations used for the algorithm implementer are assumed to be predefined.

Now we modify Table 1.1(a) to Table 1.1(b), called the implementation table>.

Tab. 1.1(b): Implementation table of Algorithm 1.1(b).

Processing E Output
before the loop 2

first iteration 4 2
second iteration 6 4
third iteration 8 6
forth iteration 10 8
fifth iteration 12 10

Rule 1 of arranging implementation table: Create columns according to the number of variables. Also,
consider a column for the resulting outputs of the algorithm. Now in the top row, we specify the col-
umn heads. The second row, named “before the loop”, is assigned for the results of the instructions
before the loop, if any. Then, in each row, we write down the results of each iteration of the loop. The
final row dedicated to the instructions (mainly one or more printing) implemented after exiting the
loop.

Although, arranging this table is often simple, its importance is not less than the im-
portance of the given steps for writing an algorithm.

If there is any carelessness in arranging the implementation table, we might not be able to notice the
malfunctioning of the algorithm and all of our efforts for writing an algorithm would be wasted.

3 The “implementation table” is used for both algorithms and programs.

Algorithm = 5

When arranging the implementation table, we are, in fact, putting ourselves in the
place of the implementer of the algorithm, which could be a human or a machine,
and we are implementing the instructions of the algorithm in the given order. What
is seen in the output column of the implementation table will be displayed, with a
specific pattern, in the output unit of the computer.

Why are we stressing the importance of algorithms? This is primarily because an
algorithm is the structural language of a computer program in any programming lan-
guage. Undoubtedly, all computer programs are rooted in one or several algorithms.
Computers are basically founded on algorithms. Hence, without algorithms, a com-
puter is nothing but a bunch of useless pieces.

Generally, when we are solving a problem, we are thinking at different moments,
subconsciously, about cases such as: Where should I start from? What should be done
now? Is it time to get the input? What inputs? Is it time to insert the results? What
results? Is it time to make a (double or multiple) decision? What decision? Is it time
to form a loop? What loop? From where should I start the loop and how should I end
it? Has the problem ended completely?

Several steps are conducted for answering each of the above-raised questions.
The position of these steps and their order are very important as they lead to the right
direction of solving the problem.

When we write an algorithm, we express the solution of the problem in a stereo-
typed manner. In other words, we arrange the steps required to solve the problem
next to each other in a stereotyped way regarding their position and order.

The algorithm of a problem plays the role of the solution of it and writing a pro-
gram in a programming language is like expressing this solution in that language so
the computer can execute it. What is important is the solution of the problem. This is
because in order to express it in a programming language, we only need to be familiar
with the rules and regulations of that language; however, if we do not know the solu-
tion, even if we know many programming languages, they will be of no use since we
do not know what to write.

If you take a look at cites [4, 7, 13, 17-19, 22] and the similar programming refer-
ences based on algorithms (flowcharts), you will get a more thorough understanding
of this fact. The author of these books have tried to represent the similarities of the
syntaxes of the statements of the C++, Java, Pascal, and Fortran languages and to
conclude that if you know a programming language, you could learn another pro-
gramming language very readily in a short period of time. At least for the computa-
tional purposes in the fields of Mathematics, Physics, and most of engineering
courses, the learning of how to program is based on understanding the algorithm.
You will definitely confirm this fact once you complete reading this book.

On the other hand, if the solution is not correct, what we write is nothing but a
waste of time. In other words, the more we haste in writing the program, the more
time we spend and the later in achieving a good program. Conversely, if we pay more

6 —— Basic concepts of Algorithm

attention to the details of the solution of the problem and express them as an algo-
rithm, writing a program will be nothing but a simple translation of the algorithm
with the use of a few specific formats and a limited set of rules.

Of what has been discussed about algorithms until now, we can provide some
concluding remarks on the general steps of writing an algorithm.

Steps of writing an algorithm:

First step (solving the problem). We solve the problem with the scientific method of the relevant field
and write down the required formulas if there are any;

Second step (analysing the solution). We picture, stage by stage, the responses and processes of
the brain in arriving at the solution with complete elegance. We review the details of the solution from
the brain’s point of view and identify and analyse all of the steps regarding their position and order;
Third step (writing the algorithm). By defining the variables, if necessary, and with a lot of precision
and patience, we review the analysis the solution to the posed problem in the second step and we
write down each stage regarding its position and order in the language of algorithms (we will start
studying the language of algorithms from Chapter 3);

Fourth step (implementing the algorithm). We should be sensitive in the correctness of the algo-
rithm: We arrange an implementation table and write down the results of implementing the algorithm
in the third step inside the table.

These four steps not only show the routine procedure of algorithm writing but also
create the basis of programming. What follows illustrates these steps:

solving the problem — analysing the solution — writing the algorithm — implementing the algorithm

! 1

answer answer

If these steps are conducted correctly, and, if the first answer, which is derived from
the brain’s process, matches the last answer, which is derived from implementing the
algorithm, then the job is almost complete; there is only one more step remaining for
programming and that is nothing but a straightforward translation:

Fifth step (writing the program). Regarding the rules of a chosen programming language, we trans-
late the algorithm of the third step to the desired language.

Several algorithms could be written for a single problem. However, a good algorithm
should, 1) work correctly; 2) have fewer steps; 3) not confuse the reader with a prolif-
eration of decisions and additional branches such as, if-then, or, goto statements;
4) get the results as fast as possible (require the least implementation time).

The following three algorithms are equivalent with Algorithm 1.1(b).

Flowchart == 7

1.1(c). 1. E €« 2;2. Write E; 3. E < E+2; 4. If E > 10 End; 5. Go to 2.
1.1(d). 1. E < 0; 2. E ¢ E+2; 3. Write E; 4. If E < 10 go to 2; 5. End.
1.1(e). 1. E < 2; 2. If E > 10 End; 3. Write E; 4. E ¢ E+2; 5. Go to 2.

This is while the following algorithm has less value compared to Algorithm 1.1(b) and
the three algorithms mentioned above since it does not meet the second feature of a
good algorithm.

1.1(f).1. E < 2; 2. If E > 10 go to 6; 3. Write E; 4. E < E+2; 5. Go to 2; 6. End.

1.2 Flowchart

In the previous section, we got familiar with algorithms and the two types of written
and symbolic forms for writing an algorithm. We saw that the symbolic form was sim-
pler than the written one. An even simpler way of writing an algorithm is by writing
it in a figurative form. An algorithm which is written with this illustrative method is
called a flowchart. In other words, a flowchart is an algorithm written with the lan-
guage of shapes. The following table describes some of the common constructive
shapes used in drawing a flowchart including their effects and an example of each
one of them. For more information concerning algorithms and flowcharts see the ref-
erences [2, 6, 7].

Tab. 1.2: Constructive shapes used in flowcharts and their applications.

Shape Application Example Meaning
beginning of algorithm terminate the algo-
or sub-algorithm, end rithm!
of algorithm, or return- terminate the sub-al-
ing from sub-algorithm gorithm and return to

the calling unit!

transfer the control (of
implementation) to the
position P!

outputting the results print the value of sum
D (on the screen) “ (on the screen)!
inputting the data read the values of a
(from the keyboard) and b (from the key-
board)!

determining a position
or transferring to a po-
sition

8 — Basic concepts of Algorithm

Shape Application Example Meaning

computation, if any, add 2 to the last value

and assignment of E and substitute

(save) for E!

if E<8, continue T-di-
decision making and F T rection; otherwise con-
branching tinue F-direction!

calling sub-algorithms, call the sub-algorithm
except functions S(u,t) S with the mentioned
arguments!

implementation or rep- implement (repeat) the

etition of do loop do loop with the men-

tioned specifications!

____________________ take the variable n as
I . .
1 ! side explanation ! n:integer an integer!

These constructive shapes are connected to each other by arrows. The direction of the
arrows represents the flow of the algorithm.

Rule of directions. In this book, we adopt the branches towards the right side as the T-direction (T
for True) and the branches towards the left side as the F-direction (F for False). If the direction of any
branch is downwards, the priority will be with the right and left directions. In other words, in a right-
down double branch, the downwards direction will be F because we have already assumed the right
direction as T. Also, in a left-down double branch, the downwards direction will be T because we have
already assumed the left direction as F. These details are illustrated in the following figure.

F F<>T 1

As an example, Figure 1.1 displays Algorithm 1.1(b) visually.

Having the fact that the constructive shapes of a flowchart demonstrate, explic-
itly, the related instructions, we avoid writing unnecessary phrases such as “read” for
inputs, “write” for outputs, or “if” for decisions and branches. Also, for simplicity,
several assignment and substitution instructions could be written in a single rectan-
gle. In this case, upon entering this shape, all the instructions will be implemented
from top to down.

In compliance with the mentioned cases, and according to the recent statements,
one can claim that flowcharts are translatable to any programming language.

Flowchart =—— 9

E<E+2

E<10

Fig. 1.1: Flowchart of Algorithm 1.1(b).

Since flowcharts are visual algorithms, organizing their implementation table is sim-
ilar to that of an algorithm. After organizing the implementation table, we implement
the algorithm in the specified direction and, if necessary, give it appropriate data and
then write down the results of implementing every instruction in its appropriate loca-
tion inside the table. The input data must be appropriate regarding their number and
their type so that they cover all of the different states (like even, odd, negative, posi-
tive, zero etc.), and no state is left untested as it is possible that, for example, an in-
correct algorithm would accidentally work correctly only for positive numbers, so if
negative numbers or zero are not tested, the flaw of the algorithm would not be re-
vealed.

1.1.1. Exercise. Change the flowchart of Figure 1.1 in a way that instead of writing the
numbers themselves, calculate and write their sum.

1.1.2. Exercise. Draw flowcharts of Algorithms 1.1(c), 1.1.(d), 1.1(e), and 1.1(f).

Convention. Through the book, instead of the phrase “the flowchart of Figure A” we adopt writing
“Figure A” or “Flowchart A”, for simplicity.

In flowcharts, to prevent any bustle in the diagrams, some details like printed de-
signs, long calculation formulas, and non-significant and huge details are not written
and are applied only in programming. In choosing the constructive shapes of the
flowchart in Table 1.2, we have focused on their applications. However, different au-
thors may choose different shapes to construct flowcharts.

10 — Basic concepts of Algorithm

It is interesting to know that in the middle of the 1960s, computer terminals were
used for time-sharing access to central computers. Before the advent of personal com-
puters (PCs) in the early 1970s, computers were generally large, and costly systems
were owned only by large corporations such as universities and government agen-
cies. End users generally could not directly interact with the machine. Instead, in or-
der to run a program, a number of assignments for computer were gathered up by
punching some cards. A punched card was a flexible write-once medium that en-
coded data, most commonly 80 characters. Often, each statement, was punched on
one card. Groups or "decks" of cards formed programs and collections of data. Users
could create cards using a desk-sized keypunch with a typewriter-like keyboard. After
the job was completed, users could collect the results. In some cases, it could take
hours or days between submitting a job to the computing centre and receiving the
output. If a small error, no matter how trivial, occurred in a card, the program would
give an error.

Now, back to the drawing board! To correct this error, one would have had to
punch another entire card, replace it with the error card, rearrange the cards and in-
put them to the computer. On the other hand, the outputs were written on a printing
paper, and there were no displaying monitors. Sometimes, in the process of running
a program, the existence of an output statement inside an infinite loop would waste
a pack of papers, like the program related to Algorithm 1.2.

Algorithm 1.2.

1. E<2;

2. Write E; «——
3. E< E+2;

4. Goto2. —

Fig. 1.2: Main part of Algorithm 1.2

We say that the implementation of this algorithm is locked, that is, we have an end-
less loop which, if not stopped anyway, will continue to implement forever.

We should be glad that nowadays correcting mistakes in programs is much faster
and without any waste of resources. Generally, the time span needed from starting
the programming until acquiring its results has reached its least possible amount.

Flowchart =— 11

Algorithm 1.3. Write the main part of an algorithm to swap the values of m and n.
Solution. At first glance it might look as if the two instructions below could do this:
mé<n
n<m
To see if this is correct or not, we assume that the values 5 and 10 are saved for m and
n, respectively, in the memory. We implement these instructions in succession. Im-
plementing the first instruction will assign the value of n, which is 10, for m. That is
to say that the previous value for m, which was 5, is removed and the new value 10 is
saved for it. Now by implementing the second instruction, we will have the value 10
for both m and n indicating that the above-stated instructions do not give us what is
requested. Draw the implementation table!

The above problem is similar to a situation in which we have two gauges, one
containing rice and the other containing sugar, and we want to swap the contents of
the two gauges. To do this, we have no other choice but to use an auxiliary gauge. If
we mark the rice gauge m, the sugar gauge n, and the auxiliary gauge k, then, to swap
the contents of the gauges m and n, first we pour the contents of one of the gauges,
say m, into the k gauge; afterwards, we pour the contents of the n gauge inside m.
Finally, we empty k into n.

Likewise, to solve our problem, we consider an auxiliary variable k. Now we act
as we did in dealing with the problem of gauges: 1. k ¢ m; 2. m < n; 3. n ¢ k. The
flowchart of this part of the algorithm, which is called the swap algorithm, is
depicted in Figure 1.3.

y

kem
men
n<k

2

Fig. 1.3: The swap algorithm

Notation. Since this part of the algorithm will alternatively be used in the)
sequel, for simplicity in drawing algorithms, hereafter instead of the given me-n
template, for swapping the values of m and n by the swap algorithm T

method, we will use the front template in flowcharts

1.3.1. Exercise. Write the algorithm to swap the values of m and n without the use of
an auxiliary variable.

1.3.2. Exercise. Write an algorithm for switching the values of x, y and z in a way that
the value of x would be transferred to y, the value of y to z, and that of z to x.

12 — Basic concepts of Algorithm

Algorithm 1.4. Assume that you are asked to read the six “positive” integer numbers
7 12 9 24 11 18

and determine the maximum number.

Solution. You instantly write 24. How could your brain fulfil this? What would you do
if you were given 100 numbers instead of 6 numbers? Could you have determined the
maximum number as fast as you did now? For this problem, one might get a pen and
paper and by starting from the first number, read a number each time and after com-
paring it with the next number (next several numbers, instantly but one by one) com-
pare the read number with the number on the paper and, if the read number is larger,
cross the number on the paper and write the larger one on the paper.

One might do this by whispering it to oneself instead of writing it on the paper.
The act is the same in both ways. We will analyse, at a slow motion, the reaction of
the brain in this method for 100 numbers:

Reserve two places in the memory: the first for writing the maximum number and
the second for counting the read numbers. Put zero in the first place. The reason for
this is that our method is comparing and replacing the larger one and all of the posi-
tive numbers are larger than zero. Put 1 (the counter of the first number) in the second
place. Afterwards, until exactly 100 numbers are not read, each time read a number
and after increasing the counter, compare it with the value existing in the first place.
If the read number is larger than that, substitute it; otherwise, terminate the algo-
rithm by writing the last number in the first place.

This is the slow-motion visualization of the brain’s reaction, and it is from
here that an algorithmic idea is derived from it.

Before continuing to transfer the brain’s commands into the form of an algorithm,
we want you to ponder over this problem and try to draw a flowchart for it. It is likely
that your flowchart may be different from ours which is completely natural because
we all think in disparate ways.

In order to settle this idea as a flowchart (visual algorithm), first we define the

requested variables:
n: the number which is supposed to be read;
max: the first place in the memory to write the maximum of read numbers;
c: the second place in the memory to write the counter of read numbers.

Defining the variables has two major advantages. First, the implementer of the algo-
rithm gets to know each variable and its role. Thus, there is no ambiguity in imple-
menting the algorithm. Second, when writing a program in any programming lan-
guage, the data type of each variable, say, integer, real, character, etc. is declared to
the computer in an appropriate position with the codes of the desired programming
language. We will further discuss this in the next two chapters in the C++ and Java
languages. Hence, if we know the variables well, we will be able to choose an appro-
priate data type for each respective one.

Flowchart =—— 13

5

max<0
cel

Fig. 1.4(a): A testing flowchart for Algorithm 1.4.

Now we transform this idea into the form of an algorithm. To begin with, we assign 0
and 1 as the initial values of max and c, respectively. Then, in each repetition we first
read the number n and instantly increase ¢ by one. Next, the read number n is com-
pared with the last number assigned for max; if the read number n is bigger, it is sub-
stituted for max. Well, how do we write the condition of repeating the loop? Let us
test the condition “if ¢ < 100, then repeat the loop from the part of reading n”; after
implementing the algorithm, if this condition worked correctly in the implementation
table, then we are done. Otherwise, we correct it. Also, we put printing the value of
max upon exiting the loop. Figure 1.4(a) illustrates these steps.

We organize the implementation Table 1.3 of Flowchart 1.4(a) for the six numbers
given in the hypothesis of Algorithm 1.4 instead of 100 numbers (see Tab. 1.3). We
follow the fifth repetition of the loop: the number 11 is read, one unit is added to the
value 5 ¢, and the new value 6 substitutes for c. Then, in the first condition, the F-
direction right is followed and since the second condition is not true, the F-direction
down is followed to exit the loop. Although the output is correct, the numbers are not
finished yet! Therefore, the algorithm is not functioning properly and to remedy it,

14 — Basic concepts of Algorithm

max<0
cel

Y

cectl

Fig. 1.4(b): Modification of Flowchart 1.4(a).

we may change the second condition to ¢ < 6 or ¢ = 6 (in the case of one hundred
numbers to ¢ < 100 or ¢ = 100) (see Fig. 1.4(b)).

Tab. 1.3: Implementation table of Flowchart 1.4(a).

Processing n c max output
before the loop 1 0

first repeat 7 2

second repeat 12 3 12

third repeat 9 4 12

forth repeat 24 5 24

fifth repeat 11 6 24

after the loop 24

Flowchart == 15

max<n
ce2

Fig. 1.4(c): Modification of Flowchart 1.4(b) to work for arbitrary numbers.

We witnessed that organizing the implementation table,
First, showed that the algorithm is not working correctly;
Second, revealed where and how to fix the problem.

Rule 2 of arranging implementation table. In organizing an implementation table, we limit the num-
ber of repetitions if there are too many of them and we choose the data which is supposed to be read
in an appropriate and varied manner.

Question. Does Flowchart 1.4(b) work for 100 “arbitrary”, not just positive, numbers?
If not, then how should we modify it to have a desirable flowchart?

Answer. It is clear that the answer is negative. For instance, if all the numbers are
negative, then the algorithm would not work correctly, and the output will be 0. What
should we do?

16 — Basic concepts of Algorithm

The answer would be trivial if we were aware of the essence of the numbers. For
example, if we knew that all the numbers are greater than —1000 then we could have
taken that number as the initial value of max and left the other parts of the flowchart
unchanged. However, if we do not have such an assumption, then the solution is to
read the first number before the loop and take that as the initial value of max. Figure
1.4(c) shows this process.

Though reorganizing the implementation table, we see that one more alteration
needs to be done: we should take 2 as the initial value of c. In fact, we start counting
from 2 because one number is read before the loop.

To this point, we have only introduced the algorithm and flowchart with a few
examples. We will start the techniques of writing algorithms from Chapter 4.

Convention. From now on, throughout the present book, wherever we speak of algorithms, we mean
visual algorithms, that is, flowcharts.

2 Fundamental concepts of programming in C++

C++ is a middle-level programming language and is the successor of the C program-
ming language which was first introduced by Denis Ritchie at the AT&T’s Bell Labor-
atories in the USA in 1972. Denise Ritchie used the concepts of BCPL and B to develop
C and added data typing as well as some other powerful features.

The inception of C++ programming language began in 1979 when Bjarne Strou-
strup was working on his Ph.D. dissertation. He started working on a new language
with an object-oriented paradigm, Simula, and mixed it with the features of C pro-
gramming language. In 1983, he included some add-on features such as classes and
called the “C with Class” as C++. Also, C++ is interpreted as C+1, denoting one (skill)
more than C; for, as we will see in the sequel, the ++ operator adds 1 to its operand.
The first commercial edition of C++ programming language was released in October
1985. C++ is standardized by the Joint Technical Committee ISO/IEC JTC 1 of the Inter-
national Organization for Standardization (ISO) and the International Electro tech-
nical Commission (IEC) that develops and facilitates standards within the fields
of programming languages, their environments and system software interfaces. So
far, five revisions of the C++ standard have been published, and currently the next
revision, named C++20, is under way. These revisions are shown in Table 2.1.

Tab. 2.1: Revisions of the C++ standard.

Year C++ standard Informal name
1998 ISO/IEC 14882: 1998 C++98
2003 ISO/IEC 14882: 2003 C++03
2011 ISO/IEC 14882: 2011 C++ 11, C++ 0x
2014 ISO/IEC 14882: 2014 C++ 14, C++ 1y
2017 ISO/IEC 14882: 2017 C++17,C++ 12
2020 to be determined C++20

C++ runs on a variety of platforms, such as Windows, Mac OS, GNU/Linux, and the
various versions of UNIX. Anyone who has used either an Apple Macintosh or a PC
running Windows has indirectly used C++ because the primary user interfaces of
these systems are written in C++.

https://doi.org/10.1515/9783110616484-002

18 — Fundamental concepts of programming in C++

2.1 Primary concepts

Since the aim of this book is elementary programming, in this chapter we will intro-
duce the fundamental concepts which are essential for elementary programming in
C++ and leave the supplementary details for the books involved with advanced pro-
gramming in C++.

2.1.1 Reserved words

A reserved word (or keyword) is a word defined for the C++ compiler for a certain
purpose and cannot be used for any other means except for comments. It is “reserved
from use elsewhere”. This is a syntactic definition, and a reserved word may have no
meaning. C++ programming language has 95 reserved words of which only 32 basic
reserved words were also present in the C programming language and have been car-
ried over into C++. Having these number of reserved words, C++, is still one of the
fastest and most efficient programming languages. Some of the C++ reserved words
that will be used alternatively in this book are summarized in Table 2.2.

Tab. 2.2: Some frequently used reserved words in C++.

break case char class const continue
define default do double else float

for goto if int long namespace
private public return short signed sizeof
static string switch unsigned using void
while

The C++ compiler is case sensitive; therefore, For and for will show different behav-
iours in the C++ compiler.

2.1.2 Identifiers

An identifier is a name used to identify a variable, constant, function, subprogram,
or other user-defined items. This naming is more important, especially in variables.

Rule of naming identifiers. An identifier is a combination of letters A to Z or a to z, underscores, and
digits 0 to 9, provided that the first character cannot be a number.

Primary concepts =—— 19

For example, the names below can be used as identifiers:

counter pi epsilon a X2 t6 tik_tak

Although identifiers may be longer, they must differ in the first 31 characters if you want to be sure

that your programs are runnable in most versions of C++. Some of the old versions of C++ recognize

only the first 8 characters of an identifier.

— An identifier should not include the blank space character.

— The first character of an identifier is not recommended to be an underscore character. Beginning
identifiers with an underscore is considered poor programming style.

— An identifier cannot have two consecutive underscores.

— Anidentifier cannot be a reserved word. Reserved words have predefined special meanings for the
compiler.

— We will use the above rule and notes, which are valid for all versions of C++, for naming identifiers.

However, in the recent versions some other characters are allowed in naming identifiers.

For example, the names below are forbidden to be used as an identifier:

A t'19 t.19 t-19 t,19 t__19 -y 6ab i*2 a/b sin(x) f(3)
Here, the symbol “_” stands for the whitespace character (spacebar key) on the key-
board and we will use it for this purpose wherever an emphasis is required or if a
failure to its expression causes confusion.

2.1.3 Data types

The name of a program bears no quantity and, only contains a nominal value. By a

data, we mean an identifier containing a quantity. In order for a data to carry infor-

mation, it should have a type. C++ offers the programmer a rich assortment of built-

in as well as user-defined data types. The basic data types are as follows.

1) Integer data type int, used for integers.

2) Floating point data type float, used for real numbers with less precision.

3) Double floating point data type double, used for real numbers with high preci-
sion.

Several basic types, like the numerical types mentioned above, can be modified using
one or more of the type modifiers short, long, signed, and unsigned. All the numer-
ical types, in two integer and real groups, are gathered in Tables 2.3 and 2.4, respec-
tively including their range of values which can be stored in the data as well as the
size of the data, in bytes, which is saved in the memory. The modifier signed does not

20 — Fundamental concepts of programming in C++

make any changes and we have not used it in the tables. For example, the data types
int and signed int are the same.

Tab. 2.3: Types of integer data.

Type Range Size

(bytes)
int -2,147,483,648 to0 2,147,483,648 4
unsigned int 0to0 4,294,967,295 4
short int -32,768t0 32,767 2
unsigned short int 0to 65,535 2
long int -2,147,483,648 to 2,147,483,647 4
unsigned long int 0t0 4,294,967,295 4
long long -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807 8
unsigned long long 0to 18,446,744,073,709,551,615 8

In Table 2.4, a E b means a x 10P.

Tab. 2.4: Types of floating point (real) data.

Type Range Size (bytes)
float +3.4028 E-38to +3.4028 E 38
double +1.7977 E-308 to +1.7977 E308

long double

+1.1897 E-4932t0 £1.1897 E 4932 12

There are two reasons for distinguishing the two types of integers and reals. First is
the size of the relevant data stored in the memory. As seen in the tables, the integer
data sizes are relatively less than those of the real data. The second reason is that
these two types show completely different behaviours in calculations. In particular,
calculating with integer data is much quicker.
4) Character data type char, which carries a character. Each character data is stored

in one byte of the memory. In C++, each character data should be written between

two apostrophes, for example:

g

e \ 8 e

n Whitespace is also considered as a character.

Primary concepts = 21

The two character types are shown in Table 2.5.

Tab. 2.5: Types of character data.

Type Range Size (bytes)
char -128to 127 1
unsigned char 0 to 255 1

The range and size of data might be different from those shown in the above table,
depending on the compiler and the computer system one is using. By the sizeof op-
erator (see the operators subsection below), one can produce the correct size of vari-
ous data types on the used computer.

5) String data type string, which stores a sequence of letters, digits, and other
characters. In programs, a string must be placed between a pair of quotation
marks. For example, "The value of stl.id_no = " is a string. We will study
storage of strings in Chapter 8.

6) Boolean type bool, which are true or false. The default numeric value of true is 1
and false is 0 and these data types can be used in mathematical expressions, alt-
hough we do not recommend this.

7) Valueless data type void, which will be discussed later.

There is also another wide character data type wchar_t, which we will not use in this
book. Each data appears in either constant or variable form in the program. We em-
phasise that identifiers are mostly used in naming variables, constants, subprograms,
and user-defined functions. In this book, we will be dealing mostly with integer and
real data types.

2.1.4 Variables
A variable is an identifier which could be changed during the program. The variables

used in a program must have a type. Defining the variables and determining their
types in a program is done by the variable declaration syntax as shown below.

n Syntax (variable declaration):

a data type _ one or more variables ;

22 — Fundamental concepts of programming in C++

For example, the part
int x, y;

float m, n;

char c1, c2;
double d;

long int p;

of a program, declares to the compiler that the variables x and y are of int type, mand
n of float type, c1 and c2 of char type, d of double type, and p of long int type.

When we want to use a variable in a program, we should first choose a name for
the variable based on the role of the variable in the program. For example, the names
sum for the summation of a series and count for the counter of input numbers may be
suitable names. We could even use abbreviations for naming. For example, matA
would be an appropriate name for the matrix A. Anyway, the choice of the names is
up to the programmer with no limitations for it. We should only follow the rule of
naming identifiers. In this book, for the task of simplicity and avoiding large size pro-
grams, we will use short names for variables.

After choosing a name for a variable, we choose a type for it resembling in some
sense its application. For instance, it is clear that a variable named count, which acts
as a counter of the input numbers in the program, should be an integer type. If a var-
iable is used in a program without declaration, an error will show up.

The variables discussed above are normal variables in C++. On the other hand,
C++ is an object-oriented programming language in which feature each variable has
an access specifier. An access specifier specifies the positions from where the variable
can be accessed. The object-oriented feature of C++ will be discussed in Section 3.3.

Since variables have an essential role in programs, a clear understanding of them
is necessary. For this purpose, according to the figure below, a variable could be im-

accessibility

N

name: counter

type: int

agined as a box whose name is the name of the variable, and its content is an amount
(numeric or non-numeric) with the same type of the declared name. Moreover, with
the object-oriented feature each variable has an accessibility area.

Primary concepts = 23

2.1.5 Constants

A constant is an identifier which has a fixed value in the program and cannot be
changed under any circumstances. Defining the constants and specifying their types
in a program is done by one of the following constant declaration syntaxes:

Syntax (constant declaration):

#define_ name of constant_ value of constant;
const_ a data type _ name of constant = value of constant;

For example,
#define s 'x';
const int n = 100;

const signed char x = 'a';

Declaring variables and constants can be done at any point in the program. However, most program-
mers prefer to do this at the beginning of the program.

By a block in programming we mean a sequence of declarations and statements
within a pair of curl braces {}. The content of a block always starts at a new line,
shifted two or three spaces to the right. The opening brace { of a block can be placed
at the same line of the element that opens this block. The closing brace } should be
written on a separate line placed at the same column as the beginning of the element
that opens the block. The block-style mentioned above is one of the essential styles
of programming. We often ignore using the curly braces for a block which contains a
single statement. The rule related to the grouping of the blocks is explained in Chap-
ter 4.

2.1.6 Operators

An operator is a symbol that makes the compiler perform specific mathematical or
logical manipulations. An operator acts on either single or double operands sur-
rounding it. Operators are divided into several categories.

1) Arithmetic operators. These operators in C++ are gathered in Table 2.6.

24 = Fundamental concepts of programming in C++

Tab. 2.6: Arithmetic operations.

Operator Effect Example Result of example
+ addition 2+9 1
- subtraction 7-2.5 4.5
* multiplication 4 % 6 24
/ division and quotient 9.0 / 4 2.25

9/ 4 2
% remainder 10 % 3 1
+ increase by one 10++ 1
_— decrease by one 10-- 9

Considering an important note when working with the / operator is necessary.

If at least one of the operands of the / operator is a real value, the result will be real, On the other
hand, if both of them are integers, the result will be the quotient of the numerator by the denominator.

Two examples in Table 2.5 resemble the above-mentioned fact. In such cases, if we
want to use the / operator for the purpose of division, one reliable method is to write
the phrase (float) before the expression. For example, if the values 10 and 8 have
already been stored for the variables r and s, respectively, the result of (float)r/s
would be the exact value of the division, which is 1.25.

— The result for each of the operators +, -, and * is integer only when both the operands are integers.
— The right side operand of both operators / and % must be nonzero. Otherwise, either an error will
show up or the results will be incorrect.
— Both operands of the % operator should be an integer.
— If one of the operands of the % operator is negative, then we will have the following rules:
Ifa <@ andb > 0,thena % b isequivalentto -(-a % b);
Ifa >0 andb < 0,thena % b isequivalentto -(a % -b);

Ifa <0 andb < 0,thena % b isequivalentto (-a % -b).

— If either of the operators ++ and -- comes before its operand in calculations, at first, this operator
acts, and then the result participates in the sequel calculations. However, if it comes after the op-
erands, the current value of the operand is used and afterwards the operator acts on its operand.

To clarify the last explanation, we provide three examples in Table 2.7. First of all, it
is necessary to mention that the expression i++ in algorithm language is written as
i<i+1. In the first two examples of the table, we assume that the value 10 has already

Primary concepts = 25

been saved for the integer variable x in the memory, and, in the third example, we
further suppose that the integer variable y holds the value 15 in the memory.

Tab. 2.7: Examples of the operators ++ and --.

Example Algorithmic meaning Result
y = ++x X € x + 1 x: 11
y € X y: 11
y = x++ y ¢ X x: 11
X ¢« x +1 y: 10
m = ++x + y++ X € x + 1 x: 11
mex+y m: 26
yey+1 y: 16

2) Relational (comparative) operators. Table 2.8 specifies these operators in C++.

Tab. 2.8: Relational (comparative) operators.

Operator: < <= > >= == 1=

Math meaning: < < > = = #

The result of the effect of these operators on their operands will be a logical value (1
for true and O for false). If the operands are characters, the comparison will be made
based on the order of the character s’ locations in the ASCII code table.

3) Logical operators. These operators in C++ appear as shown in Table 2.9.

Tab. 2.9: Logical operators.

Operator Notation in logic Meaning
! ~ negation
&& A and

[v or

— The! operator has only one operand. !p is true whenever p is false and vice versa.
— p&&q is true if and only if both p and q are true.
- pllqis false if and only if both p and q are false.

26 — Fundamental concepts of programming in C++

4) Assignment operators. Table 2.10 lists the assignment operators supported by
C++. With the exception of the first one, all operators are compound.

Tab. 2.10: Assignment operators.

operator name example equivalent
= assignment X =y X =y

+= addition assignment X +=y X = Xty
-= subtraction assignment X —=y X = X-y
*= multiplication assignment X *=y X = X*y
/= division assignment X /=y x = x/y
%= remainder assignment X %=y X = X%y

The expression x = y makes the compiler assign (substitute) the value of y to x. This
assignment operator is also called the assignment statement since it behaves like a
statement (see the next section).

— Do not confuse the == relational operator with the = assignment operator. Using the == operator
instead of the = statement often causes an error. However, using the = operator instead of the ==
operator does not trigger an error. Nonetheless, it could engender delicate logical errors which
could eventually lead to serious problems.

— There must not be any space between the two characters in the compound assignment operators;
for example, +_=is illegal.

Apart from the above-cited classical operators, there are also some miscellaneous op-
erators.

5) The ? operator (two-way branching). This operator has the syntax below:

Syntax (? operator):

condition ? expression1 : expression 2

Effect: If the condition is true, then it returns the value of expression 1; otherwise, it
returns the value of expression 2. For example, consider the following assignment
statement.

var = (t >5) 7?1 : 0;

Primary concepts = 27

Here, var is assigned the value 1 if y is greater than 5 and O if it is not. The effect of
this assignment can be illustrated in the language of flowchart as displayed in the
following figure.

var < @ var < 1

6) The , operator. The syntax of this operator is as follows.

Syntax (, operator):

expression1 , expression2, ..., expressionn

Effect: The purpose of the comma operator is to string together several expressions.
The value assigned to a comma-separated list of expressions is the value of the right-
most expression. The values of other expressions will be discarded. This means that
the rightmost expression will become the value of the entire comma-separated ex-
pression. Two assignment examples are presented in Table 2.11 to clarify this further.

Tab. 2.11: Two examples of the , operator.

Example (assignment statement) Result
var = (count =19 , i =10 , count +1); var: 20
i=(i++, i + 100 , 999 + i); i: 1010

As you can see, the second (middle) expressions in both examples are discarded. The
parentheses are necessary because the comma operator has a lower precedence than
the assignment operator.

7) The sizeof operator. This operator returns the size of its operand, which is the
number of bytes it occupies in the memory. For example, if the variable var is
declared as a characteristic variable for the compiler, then the result of
sizeof_var will be 1. As another example, the result of sizeof(int) is 2. In the

28 — Fundamental concepts of programming in C++

latter example, the parentheses are necessary; otherwise, the compiler will iden-
tify int as a variable instead of a data type.
There are other types of operators like bitwise operators and other miscellaneous op-
erators which are not used throughout this book.

2.1.7 Library (predefined) functions

In every programming language, certain standard mathematical functions with math-
ematical applications, so called library functions, are predefined for the compiler of
the processor of that language. Most of these functions, like sin(x), appear in all of
the programming languages with the same name. However, some of them, like [x],
the round down of x (the least integer not greater than x), are defined by different
names in various languages. In C++ language, the most frequently used library func-
tions are summarized in Table 2.12. These functions are available in all of the recent
versions of C++. Advanced versions might contain additional functions. It should be
noted that there are some library functions applied for other than mathematical pur-
poses but, in this book, we will not use such functions.

Tab. 2.12: Some library functions supported by C++.

Function Argument(s) type Result type Effect

sin(x), cos(x), tan(x) int or float float trigonometric function of x
sinh(x), cosh(x), tanh(x) intor float float hyperbolic trigonometric function of x
asin(x), acos(x), atan(x) intor float float inverse trigonometric function of x
exp(x) int or float float exponential of x

Log(x) int or float float (natural) logarithm of x

Llog10(x) int or float float logarithm of x in base 10

pow(x, y) int or float int or float xtothe powerofy

sqre(x) int or float int or float square root of x

abs(x) int or float int integer absolute value of x
fabs(x) int or float intor float real absolute value of x

int(x) int or float int integer part of x

ceil(x) int or float int round up x

floor(x) int or float int round down x

fmod(x,y) int or float intor float remainder of x/y

Primary concepts = 29

Function Argument(s) type Result type Effect
max(x, y) int or float int or float maximumofxandy
min(x,y) int or float int or float minimum ofxandy

Note that the arguments of trigonometric functions are in radian.

In Chapter 5, we will see that, in addition to the library functions, a programmer
can define any other needed function in subprograms which are usable in any other
program.

— Note the limitation of some arguments. For example, the argument of the functions log() and
log10() must be positive and that of sqrt must not be negative. The same note should be taken
for the function pow.

— Never use the name of any library function for naming any identifier like a variable or a constant in
a program; otherwise, that function will lose its effect, which in turn could cause problems in the
results of the program.

2.1.8 Arithmetic and logical expressions

In mathematics, an expression such as

2sinx+10
X2

containing numbers, variables, mathematical functions, algebraic operators, frac-
tions, or/and pairs of parentheses is called an algebraic expression. An arithmetic
expression in C++ is a combination of variables, constants, library functions, arith-
metic operators, fractions, or pairs of parentheses. The result of an arithmetic expres-
sion is a number. The logical expressions are defined similarly. Each one of the ex-
pressions below is an example of an arithmetic expression in C++:

sin(x +2) 12.0 % t -2 *xexp(2.0) +k/ 4 abs(u-v)/ 10

In mathematics, xy means x multiplied by y but, in C++ the phrase xy means a variable with this
name. Always bear in mind that:

— Write the multiplication of x in y as x*y not xy;

— Write the multiplication of 2 in t as 2*t not 2t;

— Write the multiplication of -12in 4.5 as -12%x4.5 not -12(4.5);

Write the division of (x-y) byt as (x-y)/t not x-y/t;

Write the division of 1 by ab as 1/(a*b) not 1/ax*b.

— Avoid writing expressions which result in an illegal value such as a number divided by zero.

30 — Fundamental concepts of programming in C++

When several arithmetic operators act in succession, they act with a top-down priority

and subject to the following rule. Note that the = assignment operator has lower pri-
ority than all the arithmetic operators.

Rule of priority of operators. if an operator has a higher or equal priority with respect to the next
operator, it acts. Otherwise, the operator does not act until the next operator is compared to its next
one likewise. When an operator acts, it results in a numeral amount. Now, the previous operators
which had been passed over, are executed. Afterwards, we go to the next operators and continue this
procedure until we acquire the result of the expression.

During this procedure, 1) whenever we encounter an open parenthesis, at first, we calculate the
amount inside the parentheses until it closes. Then we continue the procedure. In the case of nested
pairs of parentheses, the priority is with the inner one; 2) whenever we encounter a library function,
first, that function affects its argument(s), thereby resulting in a numeral amount, then we continue
the procedure.

The priority of some arithmetic operators together with the assignment operator in
the two examples below are shown under each operator, as under scripts:

zZ = p * r % q *t w /3 X -5y
y T a * X -2 X %k b * x +5 C 5

Generally, the mentioned rule is used for arithmetic, relational, logical, and assign-
ment operators with a top-down priority as shown below.

() used for function call
() used for grouping in type
' ++ -- signs: + -

* /%

= += —_= *= /= %:

Since in this book we are dealing with only the above-mentioned operators, we skip
the discussion about other standard and miscellaneous operators and their priorities.

Introduction to programming in C++ language = 31

Now we are in a position where we could simply and accurately translate algebraic
expressions to C++ codes. Regarding the following notes is strongly recommended.

— To get accurate results from the program and avoid any probable mistakes, pay attention to the
type of the variables and constants when choosing their names.

— By considering the priority of the operators, you could avoid writing extra parentheses unless you
have doubt in using them, in which case, take caution and use the parentheses.

— Pay extra attention when choosing the type of the library functions and the type of their arguments.
Especially when writing the arguments of the trigonometric functions based on radians.

— Note that two relational operators cannot follow each other consecutively. For example, the ex-
pression -2 < x < 2 isillegalin C++. Instead, you should write: (-2 < x) && (x < 2).While
considering the priority of the relational operators and the && operator in the expression above,
the existence of parentheses is necessary.

Example. A number of algebraic expressions are written as C++ codes below:

I 1 (5% (x+y)¥2%2) / (X~)

Xy
ﬂR2+k+Tm s pix (R*R)+ (k+m) /R
4 cos (x+2y)-2sin?(x?) : 4 * cos(x + 2 * y)-2 * pow(sin(x * x2), 2)
:ro / (log(x) + sqgrt(exp(x) - exp(-x)) / fabs(x *y))

P
Inx+VeX-eX
Ixyl

Exercise. Translate the expressions below to C++ codes (what we mean by expression
is only the calculation, also, the e number is assumed as the Napier number which
could be written as exp(1)).

t/TmZn], sin (%) cos? (2) , 2+ |2+ |2+ V2472, os(VE) , Inx+ e

[xy|
a?+c

.3 2 : 2
Fioeas Sin (tan (log(x))) , sin” (x cos (2y)) + sin x“ cos (2y) .

2.2 Introduction to programming in C++ language

Based on computer type, the reader is responsible for installing and using an appro-
priate Integrated Development Environment (IDE) to work with. The related program-
ming techniques are discussed in the present book. In addition, all C++ programs are
run in Dev C++ 5.11 IDE workspace.

Statements are fragments of the C++ program which are executed in sequence.
The body of any function is a sequence of statements. The functions are discussed in
Chapter 5. For the present purpose, it suffices to indicate that a (main) program is
the function

32 —— Fundamental concepts of programming in C++

A C++ program pattern:

int main() {
body of the function (program)
return 0;

Hereafter, the italic phrases are not per se parts of the codes of the program in pro-

gramming. Instead, what is required is replaced for these phrases. Before explaining

the details of the above pattern, some programming styles are expressed which help
have clear programs for us as well as the users reading and executing these programs.

The block-style were previously explained (Subsection 2.1.5). We describe some more

styles as follows.

— Ablank is used after the comma and semicolon separators.

— A blank is employed before and after the binary and relational operations. For
example, the expressionsa = b + cand i < -1 are considered well-read com-
pared to a=b+c and i<-1, respectively; however, this style is not applied in two-
column programming since space is limited.

- No blank is utilized before the unitary operators ++ and --; the expression j ++
is illegal.

— No blank is used between the function name and the parenthesis of its argu-
ments; Never use prime (n); instead, use prime(n).

- Ablank s applied between each of the keywords if, for, switch, and while and
the parenthesis just after them; for instance, use if (b > @), for (i=1; i<=n;
i++), while (t==0).

- Avoid making long lines (i.e., not longer than 120 characters).

- Along statement can be written in any number of lines.

— More than one statement can be written in a single line although it is not recom-
mended.

- The two consecutive input are separated by a space. Never use comma or semi-
colon for this purpose.

The body of a function is a compound statement which, in turn, is a sequence of state-
ments and/or declarations (with at least one element) surrounded by curly braces:

{ statements and/or declarations }

Other types of statements are expression, selection (deciding and branching), itera-
tion (loop), and jump statements. An expression followed by a semicolon is a state-

Introduction to programming in C++ language —— 33

ment. Most statements are expression statements in C++. The other types of state-
ments are dealt with in Chapters 4, 6, and 7. Additionally, various types of subpro-
grams including functions are covered in Chapter 5.

The operating system of the computer starts executing the program from:

int main()

and upon completing the body of the program, the statement:

return 0;

takes the amount zero to the operating system and announces the termination of the
program. We may use the function void main() instead of the function int main()
and remove the return 0 statement.

The first programming statements, namely, the essential ones when working with
any programming language, are output and input statements.

2.2.1 Output statement

The process of writing the outputs is conducted using the output cout statement with
the following syntax.

Syntax (output statement):

cout << expression1 << expression2 << ...;

Upon executing this statement, expression 1, expression 2, and the like are written in
the output unit, respectively, after their probable calculation if there is any. Then, the
cursor remains in its position for another reading or writing (if there are any). Here,
the output unit is supposed to be the screen. The expressions in the list of cout state-
ment could be:
1) Constant, variable, arithmetic expression, or any other kind of expression;
2) Astring, suchas "The sum is:_".In this case, the exact phrase between the pair
of quotation marks is printed, which is:
The sum is:_
Throughout this book, strings in the C++ programs are mainly used for the pur-
pose of input notifications or output headings.
3) A format (output layout). The formats are discussed later;
4) A escape sequence or control character in Table 2.13 (these characters should be
placed between a pair of quotation marks, for example "\t");

34 = Fundamental concepts of programming in C++

5) endl, which is the same as "\n".

Tab. 2.13 The escape sequences or control characters.

control character name effect

\n new line move to the beginning of the next row

\t horizontal tab move to the beginning of the next eight column (next tab)
\v vertical tab move to the beginning of the next eight row
\b backspace back up one character removing it

\r carriage return move down a line

\a bib sound a bib

\" double quote write the " character

\\ backslash display the \ character

\? question mark display the ? character

\: quotation mark display the : character

Program P2_1 is the first program in C++.

// Program P2_1 the first program in C++
#include <iostream>
using namespace std;
int main() {
cout<<"Welcome to C++ programming world";
return 0;

Output:

Welcome to C++ programming world

The namespace statement
using namespace std;

employed in most C++ platforms are discussed in Section 3.3. Assume that this state-
ment provides a wide variety of facilities for the program including output and input
statements.

Since input and/or output data exist in nearly every program, we have the pre-
processor directive

Introduction to programming in C++ language =—— 35

#include <iostream>

in every program posited at the beginning of the program before the function int
main(). This pre-processor directive provides the input/output stream for the pro-
gram by loading the iostream header. In some old versions, the suffix . h is added to
the headers.

Hereafter, the namespace statement and the pre-processor directives are counted as parts of a pro-
gram.

In general, pre-processor directives are the lines included in the code of the programs
preceded by the hash sign, #. These lines are not program statements, instead, they
are considered directives for the pre-processor. The pre-processor examines the code
before the actual compilation of the code begins and resolves all these directives be-
fore any code is actually generated by the regular statements. To put it differently, a
pre-processor directive opens a gate of C++ capabilities and facilities for the program,
corresponding to the concerned header. There are only a few pre-processor directives
in C++ which individually explained whenever needed.
For clearing the work pad, the statement

clrscr;
is frequently used. In this case, we should place the pre-processor directive

#include <conio.h>

at the beginning of the program.
In some of the versions, in order to see the output of the program, the statement

getch();

should be written before the ending statement return o.
The following is another program, in which the header math.h is loaded to the
program by the pre-processor directive.

// Program P2_2 to use mathematical functions

#include <iostream>

#include <math.h>

using namespace std;

int main() {
cout<<"sin(1) = " /* string */<<sin(1)<<"\n\n";
cout<<"1.5 % 2.9 = "<<1.5 % 2.9; //multiply 1.5 by 2.9

36 —— Fundamental concepts of programming in C++

return 0;

}
Output:

sin(1) = 0.841471

1.5 % 2.9 =4.35

Be aware that in the above program, whatever is between the pairs of quotation marks
is directly transferred to the output and written without participating in the process
of executing the program except for the control characters. The expression "\n\n" is
used to create an empty line. Equivalently, end1<<endl can be employed for this pur-
pose. The two statements:

cout<<"sin(1) = "<<sin(1)<<"\n\n";
cout<<"1.5 * 2.9 = "<<1.5 * 2.9;

are equivalent to the following statements:

cout<<"sin(1) = "<<sin(1);
cout<<”"\n\n1.5 * 2.9 = "<<1.5 * 2.9;

If we have the statements:

cout<<"sin(1) = "<<sin(1);
cout<<”1.5 * 2.9 = "<<1.5 % 2.9;

then, the malformed output

sin(1) = 0.8414711.5 x 2.9 = 4.35

is the result. Examine it for yourself!

The programmer may want to provide additional comments of the program for
the user within the program which should not participate in the process of executing
the program. There are two ways to write comments. Line comments come after two
forward slashes // up to the end of the line. On the other hand, block comments start
with a forward slash and an asterisk /* and terminated with an asterisk and a forward
slash /. Further, block comments can extend across as many lines as needed. You
can find examples for the use of such comments in Program P2_2. It is noteworthy
that the purpose of using comments is for the transparency of the program so that if
anyone else reads the program, they can easily understand what the program is about
and what the details of the program are.

Introduction to programming in C++ language =—— 37

2.2.2 Input statement

So far, we found how the constants are declared and determined, as well as how to
declare the variables. There are three ways of determining a value for the variables.
1) When declaring the variables, for example the part

int x, y = 10;
char c1 = "a’, c2="1";

declares the two variables x and y as integer types and puts the value 10 in y. Then, it

declares the variables c1 and c2 assigning the character a and 1 to these variables,

respectively. Bear in mind not to confuse the character 1 with the number 1.

2) After declaring the variables using the assignment operator (statement) with the
syntax below:

Syntax (assignment statement):

avariable = an arithmetic phrase;

For example,
int u, v;
char k, s;

u 0;
v =0,
K='2":s= "%

In any frequent assignment statement, the numbers are assigned from right to the
left.

The assignment statement, in addition to determining values for the variables
can be used for calculation and substitution. For instance, the statement

i = i+1;

38 = Fundamental concepts of programming in C++

adds 1 to the last value of i in the memory, and substitutes the result for i.

The two expressions k = 2 and 2 = k are equal in theoretical studies, while they are completely dif-
ferentin programming. The statementk = 2 specifies an assignment statement whereas 2=k is illegal.
Furthermore, the statement u = sin(h) is an assignment statement while sin(h) = uis illegal.

3) Using the cin (input) statement, which is used in the general syntax below:

Syntax (input statement):

cin>> variable1 >> variable2 >> ... ;

For example, in the part
float a, b;
cin>>a>>b;

first the variables a and b are declared as real types. Then, the next statement reads
their values from the input unit, respectively, and saves the values for these variables
in the memory. The input unit is assumed to be the keyboard.

When entering the inputs, separate two consecutive inputs by one or more space characters. Moreo-
ver, never use a comma, semicolon, or other separators to separate the inputs.

After inputting the necessary inputs, we push the Enter key, denoted by the < sym-
bol, in order to continue running the program. Then, after entering all the inputs of
the concerned cin statement, and before pressing the Enter key, we can promptly in-
put the data related to the next cin statement in the current line if there is another
cin statement in the program. Of course, another way is to press the Enter key to com-
plete the process of inputting the data of the former cin statement and then, place the
data of the latter cin statement in the next line. Generally, the data of one or more
input statements can be placed in one or more lines. For example, if we assume that
a,i,andjareall declared as int types, based on the above discussion, upon executing
the two statements

cin>>a;
cin>>i>>j;

the data can be entered in any of the following four ways:

Introduction to programming in C++ language = 39

4 5 -6+ 4+ 4 5+ 4+
5 -6+ -6+ 5!
-6+

Therefore, the two above-mentioned statements are supposed to be equivalent to the
statement

cin>>a>>i>>j;
and its inputs behave the same. For example, consider the program below.

// Program P2_3: A simple program with various statements
#include <iostream>
#include <math.h>
using namespace std;
int main() {
const double pi = 3.14;
const double e = 2.7182;

const char star = '%';
int a, b, c, d;
double u;

cout<<"This is a simple program in C++"<<endl;
cout<<pi<<" isn't an integer'"<<endl;
cout<<"Enter two integers: ";

cin>>a>>b;

u =sqgrt(a / b);
cout<<star<<"\t"<<u<<floor(u)<<endl;
cout<<"exp(1) = "<<exp(1)<", e = "<<e<<"\n\n";
cout<<a / 10<<(double) a / 10<<endl;
cout<<"Enter two integers: ";
cin>>c>>d;

cout<<c<<d<<c * d;

return 0;

The explanations related to running Program P2_3 for some of the inputs and outputs
resulting from such programs are provided in the following passage (recall that the
sign < stands for pushing the Enter key). By running the program, the following lines
are displayed in the screen:

This is a simple program in C++
3.14 isn't an integer
Enter two integers: 13 4+

40 —— Fundamental concepts of programming in C++

In fact, after declaring the constants and variables, the output statement prints the
string “This is my first simple program in C++” in the list of the cout statement
and the cursor is transferred to the next line with the endl expression. In the new line,
the constant value pi is printed, followed by the string “_isn't an integer”. Again,
the cursor is transferred to the next line. In this line, at first, the input notification
“Enter two integers:_”is written to request the user to enter two integers. Next, the
user inputs two integers, for example, 14 and 3, respectively, separated by a space,
and presses the Enter key. Now, the integers 13 and 4 are stored in the memory for the
int type variables a and b, respectively.

Let’s continue running the program. The next statement is an assignment state-
ment in which first, the expression a / b is calculated in the argument of the library
function sqrt(). In this expression, the result is 3 which is the integer quotient of a
over b since both of the operands of / are integers. Now, the square root of this num-
ber (i.e., 3) is assigned to the real variable u. The next output statement first prints the
* character. Then the control character \t shifts the cursor one tab right (the eighth
column) and prints two items in its list without any spacing:

K 1.732051

After the control character, the first and second items are the value 1.73205 of u, and
the round down of u which is 1, respectively. The fifth item in the list of cout state-
ment is endl which transfers the cursor to a new line.

Clearly, the outputs are mixed together which is definitely not good. In the next
subsection, this problem is fixed with formatted outputs and then the designing of
the outputs is delivered to the programmer.

We continue the running process. The next cout statement prints the following
five items in its list: the output heading “exp(1)_=_", the value 2.71828 of exp(1)
(with the default five digits precision), the output head “,_e_=_", and the constant
data 2.7182 declared for the constant e. In addition, the last item in the list of the
present cout statement, namely "\n\n", creates an empty line. The output explained
in the present paragraph is:

exp(1).=.2.71828, e_=.2.7182

In the next cout statement, the two values 1 and 1. 3 are combined together and writ-
ten as:

11.3

The first one is considered the integer quotient of a by 10 while the second one is the
real value of a divided by 10. Recall that we should write the (double) prefix in order

Introduction to programming in C++ language = 41

to have the real value of a division in which the two operands of the / operator are
integers. The third item, endl, takes the cursor to a new line.

In the continuation of the program, the input notification “Enter two inte-
gers:_” requests the user to input two integers. Input 4 and press the Enter key. The
running is incomplete. Even if we press the Enter key several times, there is no result
since we have not yet entered the second input. Now enter 8:

Enter two integers: 4+
P

p
{8

By pressing the Enter key, the values 4 and 8 substitute for the integer variables c and
d, respectively. Then, the cout list, which is the values of the given inputs and their
multiplication, is written in succession without any spacing:

4832

Now, the running process is completed. When coding (translating) an algorithm to a
language, we strongly recommend considering the notes below. These notes are ap-
plied in Program P2_3.

- Take the types of the variables proportionate to the types in the algorithm.

— Provide suitable input notifications, before the input statements using the cout statement. This
helps the user to know the number, type, and the essence of the data which are entered.

— Provide appropriate output headings for the outputs to present their features.

2.2.3 Formatted output

When running Program P2_3, it was found that several outputs were mixed together
and appeared in an ugly form. The outputs in C++ can be designed in various forms
called formats which we will only refer to the common ones.

1) The required width for an output can be provided by the setw(n) format in which
n is an appropriate integer or an integer variable, the value of which is already
stored in the memory.

Effect: The output next to the setw(n) is written in n columns with this format.

If this width for the intended output,

— is more than that of the required output, then, we have extra blank columns
on the left side of the output.

42 —— Fundamental concepts of programming in C++

— isless than the width of the required output or it is an illegal number such as
anegative number or a number larger than what is considered for the format
setw(), it is ignored and thus, the output is written in a minimum number
of columns.

2) The decimal precision can be provided by the format setprecision(n), where n
is replaced by an appropriate integer or an integer variable, for which an appro-
priate value is already defined.

Effect: The decimal numbers are written with n precision digits which includes

the number of valuable decimal digits. If the value of n for the intended output,

- is more than the width of the required output, extra number of valueless dec-
imal digits is added from the rightmost columns. Depending on the program-
ming language version, these valueless decimal digits can be zero or other
digits which when rounded up, leading to the original number.

- islessthan the width of the required output, the intended number is rounded
up in the case where the number of integer digits is not less than n; otherwise
it is written in the floating-point form “a E b”, that is, a x b™.

— isanillegal number such as a negative number or a number larger than what
is considered for the format setprecision(), it is ignored and the output is
written with the defalt precision defined for the format.

“ By default, the float and double data types are written with six and ten valuable digits, respectively.
Note that these numbers may differ depending on the version of the compiler.

To use the two above-mentioned formats, the header iomanip.h should be loaded by
the following pre-processor directive.

#include <iomanip.h>

In Program P2_4 below, we run the same statements as in Program P2_3 with the same
inputs while with certain formats in order to observe the effect of the above formats.
You can further examine the above-mentioned formats by varying the numbers in the
arguments of the formats.

// Program P2_4: the previous program with formatted outputs
#include <iostream>
#include <math.h>
#include <iomanip>
#include <conio.h>
using namespace std;
int main() {
const double pi = 3.14;
const double e = 2.7182;

Pointers = 43

const char star = '%';
int a, b, c, d;
double u;

cout<<"This is a simple program in C++"<<endl;

cout<<pi<<" isn't an integer"<<endl;

cout<<"Enter two integers: ";

cin>>a>>b;

u = sqgrt(a / b);

cout<<setw(2)<<star<<"\t"<<setw(3)<<u<<" "<<floor(u)<<endl;

cout<<"exp(1) = "<<setprecision(17)<<exp(1)<<setprecision(5)
<", e = "<<e<<"\n\n";

cout<<a / 10<<setw(6)<<(double) a / 10<<setw(3)<<star<<endl;

cout<<"Enter two integers: ";

cin>>c>>d;
cout<<"c: "<<c<<", d: "<<d<<", c*d: "<<cx*d;
return 0;

3

input/output:

This is a simple program in C++

3.14 isn't an integer

Enter two integers:_.13.4+

F e 1.73205.1
exp(1)_=.2.7182818284590451, _e._=.2.7182

Tooo1.300%
Enter two integers:_4 8+
c:.4,.d:.8,.c*xd: 32

It is worth mentioning that, unfortunately, the setprecision() format continues to
the subsequent real numbers until another setprecision() format is notified. Several
systematic methods exist to deactivate it, however, a simple way is to active setpre-
cision(5) since the default precision is 5 in most C++ compilers.

The object-oriented aspect of the two programming languages C++ and Java are
synchronously explained in Section 3.3. We end this chapter with the concept of
pointers.

2.3 Pointers

Actually, a variable is a name for a piece of memory which holds its value. When the
program instantiates a variable, a free memory address is automatically assigned to
the variable and any allocated value is stored in this memory address. For example,
when the statement:

44 —— Fundamental concepts of programming in C++

int x;

is executed, a location of memory is associated with the variable x. It is notewor-
thy that the program needs not to care about the physical address of the data in the
memory; it simply uses the identifier whenever it needs to refer to the variable. How-
ever, obtaining the address of a variable during the runtime is useful for a program in
order to access the data cells which are at a certain location relative to such variable.

In general, the address of a variable can be obtained by preceding the name of a
variable with an & symbol known as the address-of operator. For example, the state-
ment:

X = &var;

assigns the address of the variable var to x; using the above statement, we no longer
assign the content of the variable itself to x while its address should be assigned in
the memory.

Obtaining the address of a variable is not very useful by itself. The * dereference
operator allows us to access the value at a particular address.

Having the address-of and dereference operators added to our toolkits, we can
now discuss the pointers. A pointer is a variable which holds a memory address as
its value. Further, it is one of the flexible and strong facilities of C++ programming
language which is not supported by Java in which the other facilities are used instead.
Furthermore, the pointer variables in C++ are declared similar to the normal variables
with an asterisk between the data type and the variable name in either of the follow-
ing three alternative ways:

data type*_variable or function;

data type_xvariable or function;

data type_x_variable or function;

For example, the statement:

int *x;

(read “integer x pointer” which is a commonly used shorthand for “a pointer to an
integer x”) declares x as a pointer to the int data type. The data type is not the type of

the pointer itself, instead, it is the type of the data which the pointer points to. In fact,
*x returns the value located at the address specified by x.

Pointers = 45

“ — When declaring a pointer variable, put the asterisk next to the name of the variable.
— When declaring a function, put the asterisk of a pointer return value next to the type.

For instance,
int *s, i, *x = &var;
doublex* getArea();

To clarify the above discussion, consider the following program.

// Program P2_5 to apply pointers

#include <iostream>

using namespace std;

int main () {
int var = 20, =*x;
X = &var;
cout<<"Value of var variable: "<<var<<endl;
cout<<"Address stored in x variable: "<<x<<endl;
cout<<"Value of * x variable: "<<xx<<endl;
return 0;

Output:

Value of var variable: 20
Address stored in x variable: 0x6ffe34
Value of *x variable: 20

In the above program, first, the actual variable var (with the initial value of 20) and
the pointer variable x are declared, which are both of int type. Then, the address of
var is stored in x. Finally, the real value of the variable var, the address of var stored
in the variable x, and the value in this address of the memory are printed, respec-
tively. It is worth mentioning that the address mentioned in the output may vary de-
pending on the used machine.

This section is finished with the fact that a pointer to a const value, known as the
const pointer, is a pointer which points to a constant value. The const keyword is
used before the data type in order to declare a const pointer. For example, consider
the two statements below:

const int con = 5;
const int *c = &con;

46 —— Fundamental concepts of programming in C++

The first statement declares the constant con of int type while the second one stores
its address in the const pointer c. However, the following statement is not allowed
since we cannot change a constant value:

*C = 6;

3 Fundamental concepts of programming in Java

Java is the brainchild of Java pioneer James Gosling, who traces Java’s core idea of,
“Write Once, Run Anywhere” back to the work he did in graduate school. James Gos-
ling along with other teammates, namely, Mike Sheridan and Patrick Naugh-
ton (called as the ‘Green’ Team) initiated Java language project for Sun Microsystems
for digital devices such as set-top boxes, televisions, and the like in June 1991. Over
time, the team added features and refinements which extended the heirloom of C++
and C, resulting in a new language called ‘Oak’, named after a tree outside Gosling’s
office, until it was discovered that a programming language named Oak already ex-
isted. Thus, the name was altered to ‘Green’, the name of their team. As the story goes,
after many hours of searching for a new name, the development team went out for a
coffee and the name Java was born. In fact, Java was a nickname selected to specify
the coffee originated from the small Indonesian island called Java.

Java is a high-level popular and general-purpose programming language and
computing platform. In fact, this programming language is known since it is easy to
use, fast, object-oriented, robust, platform independent, multi-threading, secure,
portable, and highly efficient. According to Oracle, the company which owns Java,
Java runs on more than 3 billion devices worldwide.

In addition, Java programming is considered an extremely diverse language and
is used for a variety of purposes such as developing desktop and web (i.e., Link-
den.com. Snapdeal.com and the like) applications, enterprise, mobile operating sys-
tem (i.e., Android), navigation systems, e-business solutions, smart cards, robotics,
games, and so on. Actually, Java is applicable everywhere!

All the revisions of Java and their release dates are summarized in Table 3.1.

Tab. 3.1: Revisions of Java.

Version Release date Version Release date
JDK Beta 1995 Java SE 6 December 2006
JDK 1.0 January 1996 JavaSE7 July 2011

JDK 1.1 February 1997 Java SE 8 (LTS) March 2014
J2SE 1.2 December 1998 Java SE 9 September 2017
J2SE 1.3 May 2000 Java SE 10 (18.3) March 2018
J2SE 1.4 February 2002 Java SE 11 (18.9 LTS) September

J2SE 5 September 2004 Java SE 12 (19.3) March 2019

The older version of Java SE 8 (LTS) is still supported. Further, the Java SE 11 (18.9
LTS) is the latest version followed by the future release, namely, the Java SE 12 (19.3).

https://doi.org/10.1515/9783110616484-003

48 = Fundamental concepts of programming in Java

Of course, the information is updated in accord with the time of writing the present
book. There are large amounts of valuable concepts in Java. However, in the current
chapter, only the necessary fundamental concepts of elementary programming intro-
duced, which are needed for the intended purpose we have in mind regarding the
programming for the mathematical calculations. For extensive studies the reader is
referred to the standard books and websites.

3.1 Primary concepts

In this section, the primary concepts of Java programming language are discussed
and compared to the C++ programming language. The definition of all the primary
concepts of C++, previously provided in Section 2.1, are valid in Java. Therefore, we
only explain the reserved words, data types, operators, and library functions, as well
as declaring variables and literals (constants in C++) in Java. We start with the re-
served words or the keywords as the alphabet of Java. Some of the frequently used
reserved words in Java are represented in Table 3.2. Those in bold are the ones which
are utilized in the present book.

Tab. 3.2: Some frequently used reserved words or keywords in Java.

abstract assert boolean break byte case
catch char class const continue default
double do else enum extends false
final finally float for goto if
implements import instanceof int interface long
native new null package private protected
public return short static strictfp super
switch synchronized this throw throws transient
true try void volatile while

Similar to the C++ compiler, the Java compiler is case-sensitive and therefore, the be-
haviours of For and for are different in both compilers.

Although goto and const are no longer used in the Java programming language,
they are still cannot be used as identifiers.

The rule of naming identifiers in Java slightly differs by C++.

The rule of naming the identifiers in Java.
- Allthe identifiers should begin with either a letter ‘a’ to ‘2’ or ‘A’ to ‘Z’, $ symbol or an underscore.

Primary concepts —— 49

After the starting character, an identifier can have any combination of the above-mentioned char-
acters.
The whitespace character cannot be employed in an identifier.

- AJava keyword cannot be utilized as an identifier.

3.1.1 Datatypes

The Java language has a rich implementation of data types which specify the size and
type of values that can be stored in an identifier. In Java, data types are classified into
primitive and non-primitive (reference) categories. The reference data types are dis-
cussed in Section 3.3. Primitive data types contain four integer data types including
byte, short, int, long, as well as two floating point data types float and double,
character data type char, Boolean data type boolean, and finally, the void data type
void. A brief description of each data type is presented as follows.

1)

2)

4)

5)
6)

8)

Integer data type byte is used to save memory when dealing with a large number
of integers which are in the range of this data type (Tab. 3.3). This is because a
byte data type occupies the least space of the memory needed for a numerical
data type, which includes eight bits (one byte).

Integer data type short is utilized to save memory for the integers lying in the
range of this data type (Tab. 3.3). The space in memory which a short data type
occupies is 2 times larger than that of byte.

Integer data type int is employed for integers of normal size. Furthermore, an int
data type in the memory is 4 and 2 times larger than a byte and a short, respec-
tively.

Integer data type long is applied when a wider range is needed compared to the
int. It needs an eight-byte space to be stored in the memory.

Floating point data type float is used for real numbers with less precision.
Floating point data type double is utilized for real numbers with high precision.
Character data type char is employed to store a Unicode character in 2 bytes of
the memory while the C++ language uses 1 byte to store the char data types. This
is because C++ supports only ASCII codes for character data types which includes
only the English letters and symbols and to do this 1 byte is sufficient. However,
Java language supports the Unicode characters (i.e., letters and symbols) of more
than 18 international languages and 1 byte of memory is insufficient for storing
all these characters. Moreover, each character data in Java, compared to C++,
should be written between two apostrophes such as '*' or the whitespace charac-
ter ' ' which is demonstrated as '_' whenever an emphasis is required or if a
failure to its expression causes confusion.

Boolean data type boolean represents only one bit of information for either true
or false. The corresponding boolean types in C++ are 1 and 0, respectively.

50 — Fundamental concepts of programming in Java

In this book, mainly the int, float, and double data types are used whereas the long
and char data types are occasionally employed. However, the boolen data types
rarely utilized. Java fails to support the implementation of unsigned integers while
C++ supports it. Table 3.3 demonstrates the size, range, and default values of these
data types in which the floating-point notation ‘a E b’ means a x 10P.

Tab. 3.3: Primitive data types and their size, range, and default values.

Type Size Range Default
(byte
s)
byte 1 -1281t0 127 0
short 2 -32,7681t0 32,767 0
int 4 -2,147,483,648 to 2,147,483,647 0
long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 0
float 4 +1.40129846432481707 E-45to +3.40282346638528860 E +38 0.0
double 8 +4.94065645841246544 E -324d to £+1.79769313486231570 E +308 0.0
char 2 0to 65535 ("\u0000' to "\uffff") "\u0000'
boolean 1bit false ortrue false

Besides the above-mentioned basic data types, there are valueless data type void and
string data type String in Java. A string is often a combination of any Unicode char-
acters placed between a pair of quotation marks (e.g., "Note that 10 % 3 = 1").
Formatted prints are considered one of the most common applications of the strings
which is discussed in Section 3.2.

3.1.2 Literals and variables

Unlike C++, we have no constants in Java, instead, literals play the role of the con-
stants. A literal is a source code representation of a fixed value which is assigned to
a variable in a program. Literals occur in the following four types.

1) String literals are enclosed in double quotes. For example, the statement

String s = "this is a string";

declares a string variable named s and assigns it the string literal inside the dou-
ble quotes.

2) Character literals are enclosed in single quotes and contain only one character.
For instance,

Primary concepts = 51

char star = 'x';

3) Boolean literals which are either true or false. Unlike C++, these values fails to
correspond to 1 and 0.

4) Numerical literals can contain either integer or floating-point values. For exam-
ple,

float e = 2.8271;
A variable is an identifier associated with a value which can be modified during the

program. Each variable in a program should have a type. Variables in Java are de-
clared by the same syntax as in C++.

Syntax (variable declaration):

A data type _ one or more variables ;
or
A data type _ one variable = a literal ;

where, the literal data type is identical to that of the corresponding variable. For in-
stance, consider the codes:

int a,b;
float pi = 3.14;

The first line declares the int variables a and b to the compiler while the second line
declares the variable pi of float type and assigns it the literal 3.14.

Java includes local, instance, and class variables. These types of variables are ex-
amined in Section 3.3.

3.1.3 Operators

Java programming language uses the same arithmetic, relational (comparative), log-
ical, and assignment operators which C++ apply, and their behaviours are highly
comparable. In a number of cases, Java operators exert different results compared to
their C++ equivalents. The division / operator generates an exception if we divide an
integer by zero. For instance, 1.0/0.0 causes positive infinity (Infinity on the
screen) while -1.0/0.0 leads to negative infinity (-Infinity on the screen). Addition-

52 —— Fundamental concepts of programming in Java

ally, 1.0/(-1.0/0.0), which is 1 over negative infinity and 0.0/0.0, which is arith-
metically undefined, cause in minus zero (-0. 0 on the screen) and the not-a-number
value (NaN on the screen), respectively.

As shown, Java defines positive and negative zeroes and infinities, as well as not-
a-number values which indicate different habits as an operand in logical expressions.
For example, the logical expression of 8.0 == -0.0 is true whereas 0.0 > -0.0 is
false. Since NaN is unordered, all the comparison operators return false if either oper-
and is NaN, except for != which always returns true if either operand is NaN.

The results of some (mainly binary) calculations concerned with the above-men-
tioned values are represented in Table 3.4. In this table, the results are what appear
on the screen. The variable p is assumed a positive real number which can be replaced
in the program calculations by, say, 1.0. In addition, the variable inf is supposed to
be the infinity. This variable may be replaced by 1.0/0. 0 in the program calculations.

Tab. 3.4: Abnormal calculations in Java.

Expression Resultin Java Expression ResultinJava Example Result in Java
(£0.0)%(0.0) 0.0 J-p NaN +p/inf 0.0
(£0.0)(0.0) -0.0 V=0.0 -0.0 +p/Finf -0.0
(£0.0)(zp) 0.0 £0.0/£0.0 NaN £inf/x0.0 Infinity
(£0.0)(xp) -0.0 +0.0/%0.0 NaN +inf/+0.0 -Infinity
(£0.0)(zinf) NaN +0.0/+p 0.0 tinf/xp Infinity
(£0.0)(sinf) NaN +0.0/%p -0.0 £inf/¥p -Infinity
(zinf)(zinf) Infinity £0.0/zinf 0.0 £inf/zinf NaN
(zinf)(zinf) ~Infinity +0.0/Finf -0.0 +inf/Finf NaN
(£p)(zinf) Infinity +p/+0.0 Infinity inf-inf NaN
(£p)(xinf) -Infinity +p/%0.0 -Infinity

The ? and , (comma) operators have the same actions in C++ and Java programs. The
sizeof () operator is not defined in Java since the size of primitives in Java is fixed in
all platforms.

Further, the arithmetic and logical expressions have similar behaviours in C++
and Java programs. In particular, in Java, we follow the same priority for the operators
as in C++. Several library functions which are mainly used in Java are summarized in
Table 3.5 analogous to Table 2.12 with minor differences.

Introduction to programming in Java = 53

Tab. 3.5: Some library functions supported by Java.

Function Argument(s) type Result type Effect

Math.sin(x) double double sin(x)

Math.cos(x) double double sin(x)

Math.tan(x) double double tan(x)

Math.sinh(x) double double sinh(x)
Math.cosh(x) double double cosh(x)
Math.tanh(x) double double tanh(x)
Math.asin(x) double double sin™1(x)
Math.acos(x) double double cos™(x)
Math.atan(x) double double tan™1(x)
Math.exp(x) double double e*

Math.log(x) double double In(x)

Math.log10(x) double double logo(x)
Math.pow(x,y) double double x¥

Math.sqrt(x) double double Vx

Math.abs(x) int, long, float, double same type |x|

Math.ceil(x) double double round up x
Math.floor(x) double double round down x
Math.max(x,y) int, long, float, double same type maximum of x and y
Math.min(x,y) int, long, float, double same type minimum of x and y
Math.PI 3.14159265358979323846
Math.E 2.7182818284590452354

3.2 Introduction to programming in Java

Installing and using Java depends on the user’s computer, which is the reader’s re-
sponsibility. The programming techniques are discussed in this book. All Java pro-
grams in the present book are run in eclipse IDE 2018-09 workspace.

We start with a Java program pattern.

A Java program pattern:

package P3;
specifier class class name {
/*
* line comments
*/
body of program

54 —— Fundamental concepts of programming in Java

public static void main(String[] args) {
main body
3

As before, the italic phrases in the program codes are not parts of the codes per se and
what is required by these phrases is placed for them.

The package statement defines a namespace in which classes are stored. The
package is used to organize the classes based on functionality. Suppose it as a folder
in a file directory. These packages are employed to avoid the name conflicts and to
write better maintainable code. However, the package statement cannot appear any-
where in the program. In fact, it should be in the first line of the program or it can be
omitted in which case, the class names are put into the default package which has no
name.

Further, packages in Java can be divided into built-in and user-defined catego-
ries. There exist various built-in packages such as java, lang, awt, javax, swing, net,
io, util, sql, and the like while the user-defined packages are written by the program-
mer for specific purposes. In the current book, we use no package in our programs.

A C++ program was a sequence of separate fragments containing declarations,
statements and functions (subprograms) altogether under the control of a main func-
tion which results in running the program. Contrarily, a Java program is often gath-
ered in a unit class including separate data members and member functions (meth-
ods) which form the body of program in the above pattern. Here again, a main method
(the void main() method in the above pattern) results in running the program.

Actually, a method is a compound statement which includes a sequence of state-
ments and declarations within a pair of curly braces. An expression followed by a
semicolon is considered a statement. The other types of statements are expression,
selection (decision and branching), iteration (loop), and jump statements. A number
of other types of statements are addressed in Chapters 4, 6, and 7. Moreover, various
types of subprograms including the methods are dealt with in Chapter 5. The classes
and their various aspects along with data members and methods are discussed in de-
tails in the next section.

Similar to C++ programs, there are two ways for writing the comments. Line com-
ments come after two forward slashes // up to the end of the line. However, block
comments begin with a forward slash and an asterisk /* and terminate with an aster-
isk and a forward slash */. Additionally, these comments can extend across as many
lines as needed.

It is strongly recommended to consider the programming styles at the beginning
of Section 2.2. The output and input statements are regarded as the basic handling
statements in all programming languages.

Introduction to programming in Java = 55

3.2.1 Output and input statements

We start with the output statement. Consider Program P3_1 (compare to Program
P2_1).

// Program P3_1 the first program in Java
public class P3_1 {
public static void main(String[] args) {
System.out.print("Welcome to Java programming world");
}
}

This simple program, having P3_1 class name, contains only the main body which is
an output statement. This statement prints the string inside the double quotes:

Welcome to Java programming world

In general, there are two normal (unformatted) print statements.

Syntax (print statement):

System.out.print(armument1+armument2 +...);
System.out.println(armument1+armument2 +..);

where, each of the arguments may be one of the following items:

1. Constant, variable, arithmetic expressions, or any other kind of expression;

2. A string, for instance, "The sum is: ".In this case, the exact phrase between
the pair of quotation marks is printed, as:

The sum is:.
3. The escape sequences or the control characters are provided in Table 3.6. These

characters should be placed between a pair of quotation marks, for example,
n \t n ;

Tab. 3.6 The frequently used escape sequences or control characters.

escape sequence name effect

\n new line move to the beginning of the next row

\t horizontal tab move to the beginning of the next eight column (next tab)

56 = Fundamental concepts of programming in Java

escape sequence name effect

\b backspace back up one character removing it
\r carriage return move down a line

\f form feed move the next page

\" double quote write the " character

\' single quote display the ' character

Note that the two consecutive arguments in the print statement are separated by a +
operation. A space is used before and after this separator to distinguish the successive
arguments. Nevertheless, this may cause a conflict, particularly, when we have two
consecutive arithmetic expressions in which case the + operation arithmetically adds
these expressions. Therefore, we can separate such expressions with the null argu-
ment "" or spaces in order to prevent this inconvenience. The three examples along
with their outputs in Table 3.7 clarify this fact.

Tab. 3.7: Use the null argument "" or spaces between two consecutive arithmetic expressions.

Statement Output
System.out.print(1 + 2); 3
System.out.print(1 + "" + 2); 12
System.out.print(1 + " " + 2); 12

The difference between the two above-mentioned printing statements is that the
println() statement positions the cursor onto the next line after printing the desired
arguments while the print() statement leaves the cursor on the current line. As a
result, the escape character "\n" has the same effect as println() if we put it as the
last argument of the print() statement. However, these two print statements have
their own applications.

There exists no pre-processor directive in Java. However several head statements
are contributed for certain purposes. Consider Program P3_2 analogous to Program
P2_2 in which the mathematical sine function is invoked.

// Program P3_2 to use mathematical functions
public class P3_2 {
public static void main(String[] args) {
System.out.print("sin(1) = " /* string */ + Math.sin(1.0) + "\n\n");
System.out.print("1.5 * 2.9 =" + 1.5 x 2.9);
}
}

Introduction to programming in Java = 57

Output:

sin(1) = 0.8414709848078965

1.5 % 2.9 =4.35

The same explanations after Program P2_2 are established here. In particular, the ex-
pression “\n\n" is used to create an empty line, and the following three pairs of state-
ments are equivalent:

System.out.print("sin(1) = " + Math.sin(1.0) + "\n\n");
System.out.print("1.5 * 2.9 =" + 1.5 % 2.9);
System.out.print("sin(1) = " + Math.sin(1.0));
System.out.print("\n\n1.5 *x 2.9 =" + 1.5 * 2.9);
System.out.println("sin(1) = " + Math.sin(1.0) + "\n");
System.out.print("1.5 * 2.9 =" + 1.5 % 2.9);

That is because, as mentioned above, the print("\n") is the same as println().

We continue with the input statement. There are several ways to obtain input

from the input unit. Here, the common input statements are employed. In Java, four
steps should be followed to read the inputs from the input unit:

1.

Importing the Scanner class by the head statement:
import java.util.Scanner;

at the top of the program before starting the class;
Providing the input facility for the Java compiler by the statement:

Scanner scan = new Scanner(System.in);

often at the beginning of the class body in which the inputs are to be read;
Reading the single input n (here with int data type) by the statement:

int n = scan.nextInt();
Closing the input facility by the statement:
scan.close();

often at the end of the class body in which the statement in item 2 is contained.

58 —— Fundamental concepts of programming in Java

The scanner object scan in statements 2, 3, and 4 is selected by the programmer (The
concepts “class” and “object” are discussed in the next section). Throughout the pre-
sent book, the name read is applied for the numeric scanning in order to have a uni-
form scanner name. Then, having imported the Scanner class (the head statement in
item 1), we keep fixed using the statement

Scanner read = new Scanner(System.in);

to provide input facility; the statement

int n = read.nextInt();

to read the int type variable n; and the statement:
read.close();

to close the input facility. The aspects of these statements are not discussed any more.
At present, we only use the above steps to read the inputs. With the statement

int n = read.nextInt();

the int type variable n is read. It is noteworthy that the variable n may not be individ-
ually declared any more. In addition, the same statements are used for other numeric
data types. It suffices to replace “Int” by the data type name starting with an upper-
case letter (e.g., nextShort(), nextDouble() and the like). Further, the reading of
char type inputs in left to the next section.

The two above Programs P3_1 and P3_2 were analogous to Programs P2_1 and
P2_2. The strategy of using the same programs in both C++ and Java languages pro-
vides the chance to compare the similarities and differences, along with synchronous
learning of the details related to the aspects of the programs. We continue our strategy
in the following couple of examples.

As in C++ programs, there are three methods of storing a value for the variables
in Java including: along with declaration, after the declaration by assignment state-
ments, and using output statements. Furthermore, the way of entering the inputs in
Java is the same as C++. In particular, inputs may be entered in one or more lines, and
the two consecutive inputs should only be separated by a space. Consider Program
P3_3 analogous to Program P2_3.

// Program P3_3: A simple program with various statements
import java.util.Scanner;
public class P3_3 {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);

Introduction to programming in Java = 59

double pi = 3.14;

double e = 2.7182;

char star = '%x';

double u;

System.out.println("This is a simple program");
System.out.println(pi + " isn't an integer");
System.out.print("Enter two integers: ");

int a = read.nextInt();

int b = read.nextInt();

u = Math.sqrt(a/b);

System.out.println(star + "\t" + u + Math.floor(u));
System.out.print("exp(1) = " + Math.exp(1) + ", e =" + e + "\n\n");
System.out.println(a/10 + "" + (double) a/10);
System.out.print("Enter two integers: ");

int ¢ = read.nextInt();

int d read.nextInt();

System.out.println(c + "" + d + "" + ¢ * d);
read.close();

Some of the inputs and outputs resulting from the above program are provided in the
following passage. Recall that the sign «' stands for pressing the Enter key.
By running the program, the following lines are displayed on the screen:

This is a simple program in Java
3.14 isn't an integer
Enter two integers: 13_4+

In fact, after declaring the literals and variables, the first output statement prints its
string argument “This is my first simple program in Java” and then the cursor
is transferred to the next line due to the println() type of output statement. In the
new line, the constant value of pi and, following it, the string “_isn't an integer”
is printed by the second print statement. One more, the cursor is moved to the next
line. In this line, first, the input notification “Enter two integers:.” is written to
request the user to enter two integers using the print1n() statement which leaves the
cursor in the current line. Next, the user inputs two integers, for example, 13 and 4,
respectively, separated by a space, and presses the Enter key. Now, the integer num-
bers 13 and 4 are stored in the memory for the variables a and b, respectively.

Let’s continue running the program. The next statement is an assignment state-
ment. In this statement, first, the expression a / b is calculated in the argument of the
library function Math.sqrt(). In this expression, the result is 3 which is the integer
quotient of a by b since both of the operands of / are integers. Now, the square root

60 —— Fundamental concepts of programming in Java

of 3is assigned to the real variable u. The next output statement prints first the * char-
acter. Then, the control character \t shifts the cursor one tab right (the eighth col-
umn). Finally, the current print statement continuous printing the last two items in
its list without any spacing:

L 1.73205080756887721.0

The first item after the control character is the value 1. 7320508075688772 of u and the
second one is the round down of u which is 1.0. Then, the cursor is transferred to a
new line.

As it is evident, the outputs are mixed together which is definitely not good. This
problem is solved by formatted outputs and the designing of the outputs is delivered
to the programmer.

We continue the running process. The next output statement prints the five argu-
ments which are mentioned below in its arguments list: first, the output heading
“exp(1)._=._"; second, the value 2.718281828459045 of exp (1) with the default 15 dig-
its precision; third, the output heading “, _e_=_"; fourth, the constant value 2.7182
which is previously declared for the literal e. The fifth and last item in the list of the
present print statement, "\n\n", creates an empty line. The output explained in the
present paragraph is:

exp(1).=.2.718281828459045, _e_=._2.7182

In the next print statement, the two values 1 and 1. 3 are mixed together and written
as:

11.3

The first value is the integer quotient of a by 10 and the second one as the last argumet
is the real value of a divided by 10. The middle argument fails to affect anything while
if we remove it, the result 2. 3 is obtained which is 1 + 1.3. Recall that we should write
the (double) prefix in order to have the real value of a division in which the two op-
erands of the / operator are integers.

In the continuation of the program, the input notification “Enter two inte-
gers:_” requests the user to input two integers. Input 4 and press the Enter key. The
running is incomplete. There are no results even if we press the Enter key several
times since we have not yet entered the second input. Now, enter 8:

Enter two integers: 4+
P

{8

Introduction to programming in Java —— 61

By pressing the Enter key, the values 4 and 8 substitute for the int type variables ¢
and d, respectively. Afterwards, the arguments of the next print statement, which is
the value of the given inputs and their multiplication, is written in succession, with-
out any spacing:

4832
Now, the executing process is completed. We strongly recommend considering the

notes below when coding (translating) an algorithm in any programming language.
These notes are applied in Program P3_3.

— Take the types of the variables proportionate to the types in the algorithm.

— Provide suitable input notifications before input statements by print() statement. This helps the
user to know the number, type and the essence of the data which would be entered.

— Provide appropriate output headings for the outputs to present their features.

3.2.2 Formatted output

In Program P3_3, we experienced some mixed outputs together which frequently ap-
pear in an unacceptable form. Java programming language provides a variety of fa-
cilities, called formats, for the programmer to design the outputs. For the purpose of
calculation, we only express commonly used numerical formats. We adopt using the
italic brackets for optional items. In general, we employ the following syntax in order
to have a formatted print.

Syntax (formatted print):

System.out.printf("format string" [, argument 1, argument 2, ...]);

where, format string contains the string literals and format specifiers. Moreover, arguments are re-
quired only if there are format specifiers in the format string. Additionally, format specifiers appear

in the following pattern:

%[flags] [width] [. precision] conversion character

The aspects of the above items are explained as follows.

Flags: Various flags are defined for the Java compiler out of which three of them are
frequently used in the programs associated with the calculations.
- left-justify (default is to right-justify);

62 —— Fundamental concepts of programming in Java

+: outputa plus (+) or minus (-) sign for a numerical value;
0: forces numerical values to be zero-padded (default is blank padding).

Width: Specifies the field width for outputting the argument and represents the min-
imum number of characters to be written to the output. Include space for the expected
commas and a decimal point in the determination of the width for numerical values.
The width is ignored if it is less than the minimum number of characters needed for
the output.

Precision: Used to restrict the output depending on the conversion. It specifies the
number of digits of precision when outputting floating-point values. Numbers are
rounded to the specified precision. Finally, the valueless zeroes are padded to reach
the declared precision if the precision is more than the real decimal digits of the out-
put.

Conversion characters: These characters are:

d: decimal integer (byte, short, int, long);

f: floating-point number (float, double);

c: character, capital C uppercases the letters;

s: string, capital S uppercases all the letters in the string;

\n: newline platform, specific newline character; use %n instead of \n for greater
compatibility.

Several examples are presented in Table 3.8

Tab. 3.8: Examples of formatted outputs.

Format string Argument Result Format string Argument Result

"%d" 123 123 "%.3f" 123.9876 123.988
"%+d" 123 +123 "%+.3f" 123.9876 +123.498
"%5d" 123 123 "%10.3f" 123.9876 123,988
"%+d" 123 _+123 "%5.3f" -123.9876 -123.988
"%05d" 123 00123 "%.0f" 124.9876 125

"%3c" 'A' oA "%12.5f" -124.9876 _.—124.98760
"%s" "Class" Class "%010.3f" 123.9876 000123.987

"%5S" "Class" _CLASS "%06.1f" 123.9876 124.0

Introduction to programming in Java —— 63

We run Program P3_3 with the same inputs while with certain formats in order to ob-
serve the effect of the above formats. You can further examine the mentioned formats
by varying the numbers flags, width, precision, and conversion characters.

// Program P3_4: the previous program with formatted outputs

import java.util.Scanner;

public class P3_4 {

public static void main(String[] args) {
Scanner read = new Scanner(System.in);
double pi = 3.14;
double e = 2.7182;
char star = 'x';
double u;
System.out.println("This is a simple program in Java");
System.out.println(pi + " isn't an integer");
System.out.print("Enter two integers: ");
int a = read.nextInt();
int b = read.nextInt();
u = Math.sqrt(a/b);
System.out.printf("%2c %10.2f %.0f\n", star, u, Math.floor(u));
System.out.printf("exp(1) = %.17f, e = %.4f\n\n", Math.exp(1.0), e);
System.out.printf("%7s %.17f%5s %.4f\n\n", "exp(1) =",
Math.exp(1.0), ", e =", e);

System.out.printf("%d %6.2f %2c\n", a/10, (double) a/1@, star);
System.out.print("Enter two integers: ");
int ¢ = read.nextInt();
int d = read.nextInt();
System.out.printf("c: %d, d: %d, c*d: %d", c, d, cxd);
read.close();

input/output:

This is my first simple program in Java
3.14 isn't an integer

Enter two integers:.14 3 «
Cxeeeenn1.7300
exp(1)_=.2.71828182845904500,_e_=._.2.7182

exp(1).=.2.71828182845904500, _e_=.2.7182
Too.1.40 %

Enter two integers: 4 8 +«

c:.4,.d:.8,_ c*d:_32

64 —— Fundamental concepts of programming in Java

As shown, in the above program the following two statements have the same effects.
It is the readers responsibility to discover the details!

System.out.printf("exp(1) = %.17f, e = %.4f\n\n", Math.exp(1.0), e);
System.out.printf("%7s %.17f%5s %.4f\n\n", "exp(1) =", Math.exp(1.0), ", e =", e);

Now, we are ready to synchronously explain the object-oriented aspect of the two
programming languages C++ and Java.

3.3 Object-oriented programming (OOP) system

The C++ programming mainly aims to introduce the concept of object-orientation to
the C programming language: C++ is equivalent to C+1 in programming codes which
means one feature more than C, namely, “Class”. In fact, C++ encapsulates high and
low-level language features. Therefore, it is considered as an intermediate level lan-
guage. In addition, C++ allows both procedural and object-oriented programming.
Using the object-orientation feature of C++ is not felt a necessity due to the calcula-
tion natures of our subprograms except for a few cases and thus, we prefer simplicity
in the codes instead.

Contrarily, Java is a high-level, general-purpose, class-based, object-oriented
programming language which is designed to minimize implementation dependen-
cies.

An object is a real-world entity such as stone, glass, book, umbrella, bike and the
like. Further, object-oriented programming is a methodology or paradigm for design-
ing a program using the objects and classes. It simplifies software development and
maintenance by providing the properties including object, class, inheritance, poly-
morphism, abstraction, and encapsulation. We only discuss and use the notions of
object and class since the present book seeks to adhere to mathematical calculations.

In general, by an object, we mean any entity which has state and behaviour
where, state and behaviour mean data and functionality, respectively. In other words,
the object-oriented approach is extremely close to the real world and its applications
since the state and behaviour of these objects are nearly the same as the real-world
objects. In the next subsection, the concepts of objects and class are synchronously
dealt with in C++ and Java programming languages. The differences are explained
whenever necessary.

3.3.1 Objects and class

A class is a blueprint of the objects, that is, a collection of similar objects. In other
words, an object is an instance of a class. Furthermore, an object can be physical and

Object-oriented programming (OOP) system —— 65

logical while a class is only a logical entity. Finally, class is invisible to the world
whereas the object is visible.

In general, a class is somehow a user-defined data which has the elements con-
taining data members, member functions (methods), constructors, and the like. The
following is the syntax for defining a class in C++ and Java with a minor difference.

Syntax (defining class):

class class name {
access specifier
data members
member functions
}; // Unlike Java, a class terminates with a semicolon in C++

By class definition, we indicate to define a structure or a blueprint while not to exclu-
sively define a data; that is, to what the objects of that class type contain and what
operations can be performed on the objects. The following are examples of the class
in C++ and Java.

C++ codes: Java codes:
class Test { class Test {
private: private int datal;
int datal; public float data2, data3;
public: public void function1() {
float data2, data3; datal = 1;
void function1() { }
datal = 1; public float function2(int k) {
} data2 = k * k;
float function2(int k) { return data2;
data2 = k * k; 3
return data2; }
3
};

Based on the above discussion, defining a class in C++ terminates with a semicolon
following the closed curly bracket ‘}’. However, in Java, a class ends without any sem-
icolon.

Here, Test is a class which has three data members datal, data2, and data3,
along with two member functions including function2() and function2(). A data
member is a variable which is declared in any class by using any primitive data
types, (e.g., int) or derived data type (e.g., user-named class data type).

A member function, which we refer to as a method, is a function which has its
definition or prototype within or outside its class definition. A method operates on

66 —— Fundamental concepts of programming in Java

any object of the class of which it is a member, and has access to all the data members
of a class for that object.

Every method in Java should be a part of a class which is different from that of
C++. Methods are generally divided into built-in and user-defined categories. The
built-in methods are part of the compiler package such as System.out.println() and
System.exit(0). Hereafter, by a method, we mean a user-defined method.

The access specifier specifies the accessibility of an element. If it is considered
as private, then the data members and methods in its range can be accessed only
from inside the same class. The compiler throws an error if we attempt to access pri-
vate data from outside of the class. Another access specifier is public, in which case,
data members and methods are accessible from anywhere, inside or outside of the
class. Moreover, there exists another access specifier named protected in which data
members and methods can be accessed in the derived class or within the same class.
The protected specifiers are not discussed and used in this book. The public specifier
is mainly used in both languages C++ and Java.

One of the differences between C++ and Java in the object-oriented programming
is that in Java a specifier is a modifier while it is written as a label in C++. This fact
can be experienced in the above Test class. Another difference is in the default spec-
ifiers. In C++, the access modifier for an element is private if we specify no access
modifiers by default for that element inside the class. However, the default specifier
for Java programs is the private-package which implies that the element is accessible
from inside the same package to which the class belongs.

The method function1() in the above examples has neither return value (of void
type) nor has it any parameter. We may put the void keyword inside the parenthesis
only in C++ programs if there is no parameter. Contrarily, the method function2()
has float-type return value. Additionally, it has one parameter of int type. In gen-
eral, a method can have any data type or it is void. In addition, it can be void of any
parameter or it contains one or more parameters. No method can be defined outside
the class in Java since it is a class-based programming language. However, in C++, a
method can be defined outside the class using the : : (scope resolution) operator, as
demonstrated in the following codes.

C++ codes only:

double Test::function3(double t) {
data3 =t xt-2*t+1;
return data3;

In this case, this method should be declared inside the class as follows.

double function3(double);

Object-oriented programming (OOP) system =—— 67

There are two worthwhile notes related to the methods in C++ which need attention.
First, the declaration is a statement with a semicolon at the end. Second, writing the
name of the parameter in the declaration statement is optional. In the above declara-
tion statement, only the data type of the parameter is written. Now, return to the syn-
chronous approach.

When a class is defined, only the specifications of the objects is defined while no
memory is allocated to the objects. Actually, memory is allocated to an object as soon
as it is created with the following syntaxes in both languages.

Syntax (creating an object):

C++ codes: Java codes:

class name_object name; class name_object name = new_class name();

For example, the statements:
C++ codes: Java codes:

Test obj1, obj2; Test obj1 = new Test();
Test obj1 = new Test();

creates two objects obj1 and obj2 of the class Test. As shown, the objects are created
one by one in Java while in C++, the objects are created in groups as if they are in class
data type.

We can access the data members and methods by using a . (dot) operator in both
languages. For instance, the statement:

obj2.function1();

calls the function1() method inside the Test class for the objects obj2. Similarly, the
data member data2 can be accessed as:

obj1.data2 = 356.07;

Notice that, the private members can be accessed only from inside the class. Accord-
ingly, you can write the statement

obj2.functionl();

68 —— Fundamental concepts of programming in Java

anywhere (inside or outside the class Test) in the above-mentioned examples. How-
ever, a code such as

obj1.datal = 6.5;

should constantly be inside the Test class.

On the other hand, in the input statement defined in Section 3.2, the println(),
print(), and printf () are built-in methods which have already been defined for the
compiler of Java aiming at printing their arguments. Furthermore, the nextInt() isa
built-in method for reading the int type inputs. Therefore, when we write read.nex-
tInt(), in fact, we call the nextInt() method in the Scanner class for the object read.

In Sections 2.2 and 3.1, various (primitive) data types were presented. There is
another data type, named reference data types, which is any instantiable class type
that stands for the objects of a class, and the array type which points to the arrays.
The word "reference” is selected for these data types since they are handled "by ref-
erence"; in other words, the address of the object or array is stored in a variable,
passed to methods, and the like. By comparison, primitive types are handled "by
value"; the actual primitive values are stored in variables and passed to the methods.

Most of the above discussions are demonstrated in Programs P3_5.

C++ codes: Java codes:
// Program P3_5 to illustrate objects // Program P3_5 to illustrate objects
// and class in C++ Programming // and class in C++ Programming
#include <iostream> import java.util.Scanner;
using namespace std; class Box {
class Box { private char name;
private: public float length=0;
char name; public float breadth=0;
public: public float height=0;
float length, breadth, height; public void setName(char name) {
void setName(char name) { this.name=name;
this->name=name; System.out.println("name of the box "
cout<<"Name of box set to : " + "set to " + name);
<<name<<endl; }
} public void setDimensions(float 1,
void setDimensions(float 1, float b, float b, float h) {
float h) { length=1;
length=1; breadth=b;
breadth=b; height=h;
height=h;
} public char getName() {
char getName() { return this.name;
return this->name; }
} public float getVolume() {
float getVolume() { return length * breadth * height;
return lengthxbreadth*height; }
} public float getSurface() {
float getSurface() { return 2x(length*breadth+breadth*height
return 2*(length*breadth+breadthxheight +height*length);
+height*xlength); 3}
} 3

}; //

Object-oriented programming (OOP) system =—— 69

// public class P3_5 {
int main() { public static void main(String args[]) {
Box B1, B2; Scanner read=new Scanner(System.in);
char s1, s2; Box Bl1=new Box();
float 11, 12, b1, b2, h1, h2; Box B2=new Box();
cout<<"Enter the name of box1: "; char s1, s2;
cin>>s1; float 11, 12, b1, b2, h1, h2;
B1.setName(s1); System.out.print("Enter the name of box1: ");
cout<<"Enter the name of box2: "; s1=read.next().charAt(0);
cin>>s2; B1.setName(s1);
B2.setName(s2); System.out.print("Enter the name of box2: ");
cout<<"Enter length, breadth, height " s2=read.next().charAt(0);
<<"of "<<B1.getName()<<": "; B2.setName(s2);
cin>>11>>b1>>h1; System.out.print("Enter length, breadth, "
B1.setDimensions(11, b1, h1); + "height of " + Bl.getName() + ": ");
cout<<"Enter length, breadth, height " 11=read.nextFloat();
<<"of "<<B2.getName()<<": "; bl=read.nextFloat();
cin>>12>>b2>>h2; h1=read.nextFloat();
B2.setDimensions(12, b2, h2); B1.setDimensions(11, b1, h1);
cout<<"volume of box "<<B1.getName() System.out.print("Enter length, breadth, "
<<": "<<B1.getVolume()<<endl; + "height of " + B2.getName() + ": ");
cout<<"surface of box "<<B2.getName() 12=read.nextFloat();
<<": "<<B2.getSurface()<<endl; b2=read.nextFloat();
return 0; h2=read.nextFloat();
3 B2.setDimensions(12, b2, h2);
System.out.println("volume of box "
. + B1.getName() + ": " + Bl.getVolume());
InDUt/OUtpUt' System.out.println("surface of box "
+ B2.getName() + ": " + B2.getSurface());
Enter the name of box1: A+« read.close();
Name of box set to : A }
Enter the name of box2: B+ Y

Name of box set to : B

Enter length, breadth, height of A: 1 2 3+« Input/output:
Enter length, breadth, height of B: 1 2 3«

volume of box A: 6

LA
surface of box B: 22 Enter the name of box1: A

Name of box set to : A

Enter the name of box2: B+

Name of box set to : B

Enter length, breadth, height of A: 1 2 3¢«
Enter length, breadth, height of B: 1 2 3¢
volume of box A: 6.0

surface of box B: 22.0

In each of the above programs, five public methods are declared, along with the
declaration of one private and three public data members as instance variables. The
first public void method, setName(), receives a char type argument and print it fol-
lowing the message name of box set to:_. The second void method, setDimen-
tions(), receives its three float arguments I, b, and h and then assigns them to the
instance variables length, breadth, and height, respectively. The two above-men-
tioned methods have parameters but no return. On the other hand, the three remain-
ing methods have no parameters but return values. The third char-type method,
namely getName (), returns the private instance variable name. Notice the use of the
this keyword in this method (see Section 3.3.6). Finally, the float-type methods
getVolume() and getSurface() return, respectively, the volume and surface of the

70 — Fundamental concepts of programming in Java

associated boxes with dimensions length, breadth, and height, as instance variables.
The running of the program is clear.

3.3.2 Types of variables

As in C++, a block in Java is a group of one or more statements enclosed in curly
braces {}. For example,

{int i, j; 1 = 100; j = 200;}

A block s itself a type of statement. Variables in both C++ and Java languages include
the following types.

1)

2)

Local variables. These variables are declared in methods, constructors (refer to
the next subsection), or blocks. A local variable is created (memory allocated to
them) when the involved method, constructor, or block is executed and disap-
peared once it terminates. Local variables are visible only within the method,
constructor, or block in which the variable is declared. We cannot use access
specifiers for local variables. Moreover, a local variable fails to be defined with
the static keyword (Subsection 3.3.5). In the following sample class, the local
variable age is declared within a method.

C++ codes: Java codes:
class Student { class Student {
public: public void StAge() {
void StAge() { int age=0;
int age=0; age=age+5;
age=age+t5; System.out.print("Student age is: "
cout<<"Student age is: "<<age; + age);
3 }
3 3

Instance (or non-static) variable. An instance variable is the one which is de-
clared without the static keyword in a class outside any method, constructor,
or block. They are called instance variables since they are object-specific and are
not shared among the objects. In other words, an instance variable is created
when an object of the class is created and disappeared when the object is disap-
peared. Unlike the local variables, we may use access specifiers for instance var-
iables. The default access specifier is used if no access specifier is specified. The
instance variables can be directly accessed by calling the variable name inside
the class. In other words, these variables are visible for all the methods, construc-
tors, and blocks in the class. However, instance variables should be called using
the completely qualified name:

Object-oriented programming (OOP) system = 71

object name.variable name

when instance variables are given accessibility. For example, in Programs P3_6
below, the public float variable InitialSum is an instance variable which is
called in the main() methods for the object s in both programs.

3) Class (or static) variable. A class variable is declared with the static keyword
in a class and common for all the objects of the class. There exists exactly one
copy of this variable regardless of how many times the class is instantiated. Fur-
ther details about the class variables are presented in Subsection 3.3.5.

In C++, there exists another type of variable, called a global variable, which is de-
clared in the main unit.

3.3.3 Constructors and destructors

A constructor is a special method which automatically initializes an object of its class
when it is created. It is called constructor since it constructs the initial values of data
members of the class. A constructor differs from a normal method in the following
items:

— A constructor has the same name as the class itself;

A constructor has no return value;

A constructor is constantly public ;

A constructor is automatically called when an object is created;

There are three types of constructors including default, parameterized, and copy con-
structors. A default constructor is the one which takes no parameter. There is a de-
fault constructor in Programs P3_6.

C++ codes: Java codes:
// Program P3_6 to illustrate the // Program P3_6 to illustrate the
// default constructor // default constructor
#include <iostream> class Sum {
using namespace std; public float InitialSum;
class Sum { public Sum() {
public: InitialSum=0;
float InitialSum; }
Sum() { //
InitialSum=0; public static void main(String[] args) {
} Sum s=new Sum();
3 System.out.print("InitalSum s: "
// + s.InitialSum);

int main() { 3

72 — Fundamental concepts of programming in Java

Sum s; }

cout<<"InitalSum s: "<<s.InitialSum;

return 0; Output:
3

InitalSum s: 0.0
Output:

InitalSum s: @

In the program above, as soon as the object is created the constructor is called and
the object s is initialized to O.

The initialization of the object members is necessary. The C++ and Java compilers
provide a default constructor implicitly even if the programmer fails to explicitly de-
fine a constructor. In Programs P3_6, if we remove the constructor, along with its
body, the value of InitialSumis printed as the default value:

Output In C++ compiler: Output In Java compiler:
InitalSum s: 6.30584e-044 InitalSum s: 0.0

Unlike Java, in the C++ compiler a compiler-dependent value is stored for s. There-
fore, it would be better that we initialize the constructor and its body.

It is possible to pass parameters to a constructor. Typically, these parameters help
initialize an object when it is created. A parameterized constructor is used to ini-
tialize various data members of different objects with varied values when they are
created. Additionally, parameters are simply added to a parameterized constructor
for its creation. Each of the Programs P3_7 represents a parameterized constructor
which is called for the object P1 in the main() unit.

C++ codes: Java codes:

// Program P3_7 to illustrate the copy // Program P3_7 to illustrate the copy

// and parameterized constructors // and parameterized constructors

#include <iostream> class Point {

using namespace std; private double x, y;

class Point { public Point(double x1, double y1) {
private: x=x1;

double x, y; y=y1;

public: 3

Point(double x1, double y1) { public Point(Point P2) {
x=x1; x=P2.x;
y=y1; y=P2.y;

} }

Point(const Point &P2) { public double getX() {return x;}
x=P2.x; public double getY() {return y;}
y=P2.y; //

3 public static void main(String[] args) {

double getX() {return x;} Point P1=new Point(1.3, -3.5);

Object-oriented programming (OOP) system = 73

double getY() {return y;} Point P2=new Point(P1);
3} System.out.println("P1.x=" + P1.getX()
// + ", Pl.y=" + Pl.getY());
int main() { System.out.println("P2.x=" + P2.getX()
Point P1(1.3, -3.5); + ", P2.y=" + P2.getY());
Point P2(P1); 3
cout<<"P1.x="<<P1.getX()<<", P1.y=" }

<<P1.getY()<<endl;
cout<<"P2.x="<<P2.getX()<<", P2.y="

<<P2.getY(); Output:
return 0;
} P1.x=1.3, P1.y=-3.5
P2.x=1.3, P2.y=-3.5
Output:

P1.x=1.3, P1.y=-3.5
P2.x=1.3, P2.y=-3.5

The initial values should pass as parameters to the constructor function when an ob-
jectis declared in a parameterized constructor. However, the normal method of object
declaration may fail to work. In C++, the constructors can be called explicitly or im-
plicitly as follows.

Point P1 = Point(10, 15); \\ explicit call
Point P1(10,15); \\ implicit call

The copy constructor is a constructor which creates an object by initializing it with
an object of the same class already created. A copy constructor has the following gen-
eral function prototype:

C++ codes: Java codes:
class name (const class name &old_object) ; class name (class name old_object);

In each of the above Programs P3_7, the new object P2 is initialized to the old object
P1. 1t is worth mentioning that, for any class which has no user-defined copy con-
structor, the compiler creates a default copy constructor per se.

Constructors may be overloaded. In fact, when we have both default and param-
eterized constructors defined in the class, it implies there exist overloaded construc-
tors with or without any parameters. In addition, we can have any number of con-
structors in a class differing in parameter lists. In each of the following programs
P3_8, two constructors with different parameters are defined thus, the constructors
are overloaded.

74 —— Fundamental concepts of programming in Java

C++ codes: Java codes:
// Program P3_8 to apply the // Program P3_8 to apply the
// overloaded constructors // overloaded constructors
#include <iostream> class Student {
using namespace std; public int id;
class Student { public double grade;
public: public Student(double g) {
int id; id=191001;
double grade; grade=g;
Student(double g) { }
id=191001; public Student(int i, double g) {
grade=g; id=i ;
} grade=g ;
Student(int i, double g) { }
id=i ; //
grade=g ; public static void main(String[] args) {
3 Student stl1=new Student(12.5);
1 Student st2=new Student(191002, 16.75);
// System.out.println("st1.id=" + st1.id
int main() { + ", stl.grade=" + stl.grade);
Student st1(12.5); System.out.println("st2.id=" + st2.id
Student st2(191002, 16.75); + ", st2.grade=" + st2.grade);
cout<<"stl.id="<<st1.id }
<<", stl.grade="<<st1.grade; 3

cout<<"\nst2.id="<<st2.id

<<", st2.grade="<<st2.grade;
b Output:

st1.id=191001, st1.grade=12.5
Output: st2.1d=191002, st2.grade=16.75

st1.id=191001, st1.grade=12.5
st2.1d=191002, st2.grade=16.75

In the main part of the above codes, if we write
C++ codes: Java codes:
Student st1; Student stl1=new Student()

then, a compile-time error is encountered since no default constructor is defined.

3.3.4 Destructors and namespaces (C++ only)

A destructor is a special methods which destructs an object or, equivalently, de-al-
locate the memory which was already allocated to the object. Further, a destructor
method is automatically called when the object goes out of the scope:

- the function terminates;

Object-oriented programming (OOP) system == 75

- the program ends;
— ablock containing local variables ends.

More than one destructor cannot be used for an object in a program. Destructors have
the same name as the class preceded by a tilde ‘~’ symbol while they take no param-
eter and fail to return anything. Program P3_9 aims to highlight the concept of the
destructor.

C++ codes only:
// Program P3_9 to highlight the concept of destructor

#include <iostream>
using namespace std;

class ABC {
public:
ABC() { //constructor is defined
cout<<"The control is in constructor"<<endl;
}
~ABC() { //destructor is defined
cout<<"The control is in destructor"<<endl;
3
3

//******************************

int main() {

ABC abc1; //constructor is called
cout<<"Function main is terminating...."<<endl;
return 0;

}

Output:

The control is in constructor
Function main is terminating...
The control is in destructor

In the above program, the message The control is in constructor is printed when
the constructor is called, followed by printing Function main is terminating... in
the main() function. Then, the object abc1, which was created before, goes out of
scope, the destructor is called, and The control is in destructor is printed in order
to de-allocate the memory consumed by abc1.

We now explain the statement

using namespace std;

used in most of the C++ programs. The namespace is a container for the identifiers.
It puts the names of its members in a distinct space so that they are unable to conflict
with the names in other namespaces or global namespaces. The syntax of name-
spaces is as follows.

76 = Fundamental concepts of programming in Java

Syntax (namespace):

namespace identifier {
entities

where, the identifier is considered any valid identifier and the entities are the set of
variables, classes, objects, and functions which are included within the namespace.
For example, consider the following codes:

namespace mySpace {
float r, s;

The variables r and s are normal variables declared within a namespace called
mySpace. We should use the : : operator in order to access these variables from the
outside of mySpace namespace. For instance, to access the previous variables from the
outside of mySpace, we can write:

mySpace: :r
mySpace::s

Two namespaces are used in Program P3_10.

C++ codes only:

// Program P3_10 to create two namespaces
#include <iostream>
using namespace std;
namespace nsl {

int value() {return 5;}
3
//
namespace ns2 {

const double x = 100;

double value() {return 2xx;}

}

//******************************

int main() {

cout<<nsi::value()<<'\n'; // access value function within nsi
cout<<ns2::value()<<'\n'; // access value function within ns2
cout<<ns2::x<<'\n'; // access variable x directly
return 0;

Object-oriented programming (OOP) system = 77

Output:

5
200
100

All the files in the C++ standard library declare all of its entities within the std name-
space. In fact, the statement

using namespace std;

requires the compiler to take anything which is in the std namespace and dump it in
the global namespace. However, it increases the probability for name conflicts since
a bunch of extra names, which were unexpected, were added to the global name-
space, and that might butt the heads with some of your own names. Accordingly, it
suffices to use the concerned identifiers using the : : operator in the programs which
were involved with only a few identifiers in order to avoid this inconvenience. For
instance, std: : cout notifies the compiler that it requires the cout identifier which is
in the std namespace. Therefore, the following two programs (both in the C++ codes)
lead to the same outputs: Sample text.

#include <iostream> #include <iostream>

using namespace std; int main() {

int main() { std: :cout<<"Sample text";
cout<<"Sample text"; return 0;
return 0; }

¥

Throughout the present book, we adopt the left pattern in our programs in C++ lan-
guage and use the statement

using namespace std;

at the top of the programs just after the pre-processor directives.

3.3.5 Static elements

The static keyword in C++ and Java is mainly used for memory management. Static
elements are allocated to memory only once through a program in the static storage
area and they have a scope until the program terminates. The static element can be:
- Alocal variable in functions (C++ only);

— A data member;

- A method in class;

78 — Fundamental concepts of programming in Java

- Ablock.

A static local variable in C++ exists only inside a function where it is declared (sim-
ilar to a local variable). Moreover, its lifetime begins when the function is called while
it only terminates when the (main) program ends. However, the lifetime of a local
variable ends upon terminating the associated function. A static local variable is
demonstrated in Programs P3_11 in C++ codes.

C++ codes only:

// Program P3_11 to declare and use a static local variable
#include <iostream>
using namespace std;
void getCount() {
static int count = 0;
count++;
cout<<"static local variable count: "<<count<<endl;
3
//
int main() {
getCount();
getCount();
getCount();
return 0;

}

Output:

static local variable count: 1
static local variable count: 2
static local variable count: 3

In the above program, the function getCount() is called 3 times. During the first call,
the variable count is declared as the static local variable and is initialized to 0 by de-
fault. Then, the count is increased by 1 which is displayed on the screen. When the
function getCount() returns, variable count still exists since it is a static variable.
During the second and third function calls, the previously storage value for count is
increased by 1 without initializing the 0 value to count and then, it is displayed on the
screen. The output of Program P3_11, if the count is not specified as a static variable,
is as:

static local variable count: 1
static local variable count: 1
static local variable count: 1

Different copies of a normal data member are created with the associated objects
when that data member is declared in a class. In some cases, a common data member
is needed which should be the same for all the objects. We cannot perform this using

Object-oriented programming (OOP) system =—— 79

normal data members and thus, static data members are required in this respect. A
static data member, known as a class member, is declared with the static keyword.
It is noteworthy that a static data member cannot be private. It is called a class mem-
ber since it belongs to the class instead of the objects. Additionally, this data member
makes the program memory efficient, that is, it saves the memory. No matter how
many objects of the class are created, there is only one copy of the static data member.
In other words, one single copy of static data member is shared between all the ob-
jects of that class. When the first object is created, a static data member is initialized
to zero if no other initialization is presented.

In C++, the declaration of a static data member is unable to be considered a defi-
nition. The data member is declared in a class scope while the definition is performed
at the file scope using the scope resolution : : operator as:

data type_class name: : static data member name;

In the left C++ program P3_12 below, the static data member count is defined by the
following statement after the class StA.

int StA::count;

The static data member, along with the definition may be initialized in C++. For ex-
ample, we may initialize the above-mentioned static data member count to, say, 1and
write the following statement instead of the above one.

int StA::count = 1;

The above paragraph is valid in C++. However, in Java, static data members cannot
be initialized outside the class. Instead, they can be separately initialized in the static
blocks. A static block is a block of statements inside a Java class which is executed
before the main method at the time of class loading. By default (if no value is initial-
ized), the value of a numerical static data member is considered as O in both C++ and
Java languages.

In addition, static data members can be directly accessed by the class name while
no object is required to access these variables. The following codes represents how a
static member can be accessed:

C++ codes: Java codes:
class name: : static data member name class name . static data member name

Programs P3_12 are examples of static data members in C++ and Java.

80 —— Fundamental concepts of programming in Java

C++ codes:

// Program P3_12 to declare and
// use a static data member
#include <iostream>

using namespace std;

Java codes:

// Program P3_12 to declare and
// use a static data member
class StA {

public static int count;

class StA { public StA() {
public: count++;
static int count; }
StAQ) { //
count++; public static void main(String[] args) {
} StA a=new StA();
3 System.out.println("static data member "

int StA::count; + " for first object:
// StA b=new StA();
int main() { System.out.println("static
StA a; + " for second object:
cout<<"static data member for first " StA c=new StA();
<<"object: "<<StA::count<<endl; System.out.println("static

" + a.count);

data member
" + a.count);

data member

StA b; + " for third object: " + a.count);
cout<<"static data member for second " }
<<"object: "<<StA::count<<endl; 3}
StA c;
cout<<"static data member for third " Output:
<<"object: "<<StA::count<<endl;
return @; static data member for first object: 1
3 static data member for second object: 2
static data member for third object: 3
Output:

static data
static data
static data

member for first object: 1
member for second object: 2
member for third object: 3

In each of these programs, we have created the StA class with a static data member
count declared inside the class. By default, count is initialized to 0. Of course, in C++
the static data members should be defined outside the class. This is done in the left
program using the : : operator. In the default constructor of this class we are incre-
menting the static variable count by 1. So every time an object is created this value is
incremented. The output of the programs show this fact for three objects created in
the main() function.

A static method, also called a class method, belongs to the class rather than the
objects of a class. In other words, allocating static storage, a static method is inde-
pendent of any particular object of the class. That is to say that, a static method can
be called directly using the class name itself rather than creating an object and calling
from the object. A static method can only access static data members and other static
methods with the following statements in C++ and Java.

Object-oriented programming (OOP) system = 81

C++ codes: Java codes:
class name: : method name () ; class name. method name () ;
The most common example of a static member is Java's main() method. This special

method is referred to as the main method or the driver method. Programs P3_13 are
examples of static methods.

C++ codes: Java codes:
// Program P3_13 to declare and // Program P3_13 to declare a
// use a static method // use a static method
#include <iostream> class StB {
using namespace std; public static int count, k;
class StB { public static int getCount() {
public: callCount();
static int count, k; count++;
static int getCount() { return count;
callCount(); 3
count++; public static void callCount() {
return count; k++;
} System.out.print("In call " + k);
static void callCount () { 3
k++; static {
cout<<"In call "<<k; count=10;
} }
}; //
int StB::count=10; public static void main(String[] args) {
int StB::k; System.out.println("Calling the "
// + "Static method:");
int main() { System.out.println(", count is: "
cout<<"Calling the static member " + StB.getCount());
<<"function: "<<endl; System.out.println(", count is: "
cout<<", count is: " + StB.getCount());
<<StB::getCount()<<endl; System.out.println(", count is: "
cout<<", count is: " + StB.getCount());
<<StB::getCount()<<endl; }
cout<<", count is: " }
<<StB::getCount()<<endl;
return 0; Output:
3
Calling the static method:
Output: In call 1, count is: 11
Calling the static method: In call 2, count is: 12
In call 1, count is: 11 In call 3, count is: 13

In call 2, count is: 12
In call 3, count is: 13

In each of the Programs P3_13, we created two static data members count initialized
to 10 in the program as well as k which is initialized to 0 by default. Furthermore, two
static methods getCount() and callCount() are created which access to these static

82 — Fundamental concepts of programming in Java

data members. Moreover, the static method callCount() is called in the static method
getCount(). As shown in the left program, both static data members are defined after
ending the class. However, as previously mentioned, this is unnecessary in Java un-
less we want to initialize a value to the data member. In the right program, we initial-
ized the static data member to 10 within a static block. As demonstrated in both pro-
grams, the static methods are directly called without creating any object.

3.3.6 The this keyword

The this keyword is commonly used in both C++ and Java languages. There are vari-
ous applications of this keyword in both languages. However, due to the calculation
aim of the present book, we do not need all the applications in our programs and only
one feature is used in several programs.

Moreover, the this keyword in C++ is an important pointer accessible only within
the non-static member functions of a class and points to the object for which the mem-
ber function is called. However, in Java, the this keyword is an instance variable
which refers to the current object in a method or constructor.

As explained above, using the this keyword is nearly the same in both lan-
guages. The most common use of the this keyword in both C++ and Java is to resolve
the ambiguity between the instance variables and parameters with the same name.
This can be accomplished by the following syntaxes:

C++ codes: Java codes:

this->var = var; this.var = var;

where, the variable var is simultaneously regarded as an instance variable and a pa-
rameter. In the left C++ codes, this->var means (thisx).var, in the literature of the

pointers (Section 2.3). To clarify the above discussions, consider Programs P3-14.

C++ codes: Java codes:

//Program P3_14 to apply ‘this’ keyword //Program P3_14 to apply ‘this’ keyword

#include <iostream> class Stud {
using namespace std; public int id;
class Stud { public double grade;
public: public Stud (int id, double grade) {
int id; this.id=id;
double grade; this.grade=grade;
Stud (int id, double grade) { 3
this->id=id; public void display() {
this->grade=grade; System.out.println("ID: " + id
3 + ", Grade: " + grade);

void display() { }

Object-oriented programming (OOP) system = 83

cout<<"ID: "<<id<<", Grade: " [[*KFKIKIKIKKIKIKIKKKK IR KKK KKK
<<grade<<endl; public static void main(String args[]) {
3 Stud stl=new Stud (191005, 15.75);

Y Stud st2=new Stud (191008, 17.25);
// st1.display();
int main() { st2.display();

Stud st1= Stud (191005, 15.75); 3}

Stud st2= Stud (191008, 17.25); }

st1.display();
st2.display();

return 0;
}
Output: Output:
ID: 191005, Grade: 15.75 ID: 191005, Grade: 15.75
ID: 191008, Grade: 17.25 ID: 190087, Grade: 17.25

In the above-mentioned programs, the parameters and instance variables id and
grade are homonymous. Therefore, the this keyword is used to distinguish between
the local and instance variables. Removing the this keyword, along with -> in the
left and . in the right programs, the following output is displayed:

Output (the left program): Output (the right program):
ID: 0, Grade: 4.94066e-324 ID: 0, Grade: 0.0
ID: 46, Grade: 2.2727e-322 ID: @, Grade: 0.0

In the left output, the strange numbers stand for the existence of errors.

4 Decision making and branching templates

In many studies and branches of science, there is a limited set of infrastructure ob-
jects and tools in which all the elements are subject to specific rules and principles.
These elements act as the building blocks and have a certain names in every case. For
instance, the periodic table of the elements in chemistry, regular figures and curves
in geometry, numbers in arithmetic, prime numbers in number theory, and building
materials in the construction industry are several examples of various sets of the
building blocks.

As previously explained in Chapter 1, algorithms are the root bases of the elemen-
tary programming in every programming language. This set of infrastructure objects
are called templates in algorithm designing. Each template in an algorithm corre-
sponds to a statement in a program. Fortunately, a limited number of templates exist
which facilitate memorization of each statement; however, this is not enough. What
is worth mentioning is when, where, and how to use these statements appropriately.

In the remaining chapters of this book, it is attempted to introduce and gradually
strengthen the ability to employ these templates in an optimized and systematic way.
Facilitating and organizing the algorithms, as well as having the ability to translate
the templates into the codes of any programming language, are two major advantages
of the templates. Therefore, the algorithms created by such templates can be trans-
lated into any programming language. In other words, writing a program for the al-
gorithm in a certain programming language, includes translating the algorithm of
that problem into the codes of the programming language, template by template, af-
ter constructing the algorithm of a specific problem.

Templates are divided into simple and compound types. A simple or a 1-shape
template indicates that the corresponding statement of that template is a single re-
served word without any block. The input cin, output cout, and the assignment =
statements correspond to simple templates and are referred to as input (in the shape
of a parallelogram), output (in the shape of a torn paper), and assignment (in the
shape of a rectangle), templates, respectively. Bear in mind that the assignment op-
erator is regarded as the assignment statement. In addition, more instructions in the
same rectangle are counted as a simple template.

Further, a compound template includes more than one shape, or its correspond-
ing statement has one or more reserved words along with several blocks. The tem-
plates in the algorithms are generally categorized into decision making and branch-
ing (the conditional), looping, and jumping groups. The decision making and
branching templates are studied in the present chapter. Furthermore, chapters 5, 6
and 7 are dedicated to the looping templates. The jumping templates are scattered in
Chapters 4, 6, and 7 and occasionally applied in the remaining chapters.

The present chapter first examines three two-way branching templates, namely
the if, if-else, and if-else-if ones. Then, two jumping goto and exit templates

https://doi.org/10.1515/9783110616484-004

The if-else template = 85

are presented for transmitting the implementations and termination, respectively.
The final section delves into a multi-way branching template, called the switch tem-
plate.

Accordingly, the flowchart of each template and its translation into both C++ and
Java codes are provided. Then, the result of template implementation and other re-
lated details are explained. Finally, the template is applied in various examples.

It is strongly recommended to consider the following important rule regarding
the blocks (Subsection 2.1.5).

The rule of grouping. A block encompassing more than one statement should be places between a
couple of curl braces {3.

Failure to comply with this rule leads to an error or incorrect results. For example,
consider the following small programs in both C++ and Java codes regardless of the
notion of codes. As seen, the ranges of if, else, and the body of the main program
(method), as the specific blocks, are separately grouped and are shifted two spaces to
the right.

C++ codes: Java codes:
// Sample program. // Sample program.
#include <iostream> import java.util.Scanner;
using namespace std; public class Sample_program {
int main() { public static void main(String[] args) {
int k; Scanner read=new Scanner(System.in);
cout<<"Enter the integer k: "; int k;
cin>>k; System.out.print("Enter the integer k: ");
if (k>0) { k=read.nextInt();
cout<<"Inside: k="<<k<<endl; if (k>0) {
k++; System.out.println("Inside: k=" + k);
3 kt++;
else { 3
cout<<"Inside: k="<<k<<endl; else {
k--; System.out.print("Inside: k=" + k);
3 k--;
cout<<"Outside: k="<<k<<endl; }
return 0; System.out.print("Outside: k=" + k);
3 read.close();
}
}

Although writing the statements inside the blocks (two or three columns ahead) fails
to affect the program running, it has two advantages. It makes the program clear and
well-built by separating various blocks in different groups. Moreover, it enables the
reader to easily analyze and perceive the program by distinguishing such blocks in a
variety of groups.

86 —— Decision making and branching templates

Conventions in algorithm-writing. The following conventions are adopted in algorithm-writing, as
well as programming used either in the examples or exercises (in the texts or at the end of chapters).
The word “read” means “read from the input unit (keyboard)”;

The word “print” indicates “print on the output unit (screen)”;

— The word “receive” implies “receive from the call unit (see Chapter 5)”;

— The word “return” denotes “return to the call unit (see Chapter 5)”;

For the sake of simplicity, we write: print MESSAGE instead of print “MESSAGE”. This may not be con-
fused since the phrase “MESSAGR” is in the code font.

4.1 The if-else template

The if-else template appears when there is a two-way branch. Given the rule of
distributions in the flowcharts represented in chapter 1, the flowchart related to this
template along with the syntaxes of the i f-else statement in both C++ and Java codes
is illustrated as follows.

The if-else template Syntax in C++ codes Syntaxin Java codes

if (condition) if (condition)
block A block A

else else

position P position P

Implementation: If the condition is true, first, the T-path (the if-range in program-
ming) including block A is implemented and then the implementation control is
transferred to position P. Otherwise, the F-path (the else-range in programming) en-
compassing block B is implemented and the control is transferred to position P.

The statements in the if-range and else-range, should be grouped by {}if they are more than one.

The above-mentioned problem related to disregarding the grouping notice can be ob-
served in the next example.

4.1. Example (The hanging problem). This problem arises when more than one state-
ment is presented between the if and else parts without curly braces in the if-else

The if-else template = 87

| "Range F" | | "Range T" |

a<a-1 a<atl

Fig. 4.1(a): The hanging problem flowchart (without problem).

statements. This example is presented for further clarification. Translate the sample
flowchart in Figure 4.1(a) into both C++ and Java codes.

Solution. The following if-else statements are the answer to the above-mentioned
problem:

C++ codes: Java codes:

if (a>0) { if (a>0) {
cout<<"Range T"; system.out.print("Range T");
a=atl; a=a+l;

} }

else { else {
cout<<"Range F"; system.out.print("Range F");
a=a-1; a=a-1;

¥ }

If grouping the if-range is disregarded, then we will encounter the hanging if prob-
lem: the statement a = a + 1 is hanging. Therefore, there will be a “misplaced if”
error. Additionally, the existence of an error alerts the presence of a problem which
needs to be solved. The worse situation happens when the else-range is expressed
without grouping as:

C++ codes: Java codes:

else else
cout<<"Range F"; system.out.print("Range F");
a=a-1; a=a-1;

In fact, in this case, no error appears while only the statement after else is processed
as the else-range. In other words, the corresponding flowchart is shown in Figure
4.1(b).

88 — Decision making and branching templates

>

a>
"Range F" "Range T"
a<a+l
|
)
a<atl

Fig. 4.1(b): The flowchart of the hanging problem (with a problem).

Therefore, using the grouping rule is extensively emphasized due to the great im-
portance of the subject. However, rarely ever, if the ranges are extremely short to
place the whole statement in a single line, this rule can be ignored to simplicity and
reduce the size of the program. For example:

C++ codes: Java codes:

if (i>0) it++; else i--; if (i>0) it++; else i--;

4.2, Example. Construct a flowchart to read the integer number a. Then, print the read
number followed by the message “_is positive” if the number is positive; otherwise
print n followed by the message “_is not positive”.

Solution. The required flowchart is depicted in Figure 4.2. This flowchart is translated
into both C++ and Java codes in Programs P4_2.

C++ codes: Java codes:
// Program P4_2 to use the // Program P4_2 to use the
// if-else statement // if-else statement
#include <iostream> import java.util.Scanner;
using namespace std; class P4_2 {
int main() { public static void main(String[] args) {
int a; Scanner read=new Scanner(System.in);
cout<<"Enter an integer: "; int a;
cin>>a; System.out.print("Enter an integer: ");
if (a>0) a=read.nextInt();
cout<<a<<" is positive"; if (a>0)
else System.out.print(a + " is positive");
cout<<a<<" is not positive"; else
return 0; System.out.print(a + " is not positive");
3 read.close();
}

The if template —— 89

-4 1
[o feeni e
e e e e 4

a,"is not
positive."

Fig. 4.2: A simple use of the if-else template.

positive."

4.2 The if template

If one of the two blocks in the if-else template is null, it is placed in the F-path in
order to standardize it. In other words, if we have only one block, it is put in the T-
path. This trend is guaranteed since every condition has a negation. Therefore, even
if a block is posited in the F-path, it can be moved to the T-path by negating the con-
dition. The obtained template, which is a special case of the if-else template, is
called the if template. The F-path in the flowchart of the if-else template collapses
since block B does not exist in this flowchart. In addition, block B together along with
the else reserved word in the syntaxes of the if-else statement of both codes is re-
moved. Consequently, the representation of the if template, as well as the syntaxes
of the if statement in both codes is as follows.

The if template Syntax in C++ codes Syntax inJava codes

if (condition) if (condition)
block A block A
- position P position P

block A

90 — Decision making and branching templates

Implementation: The T-path (the if-range in programming) including block A is
first implemented if the condition is true and then the control is transferred to posi-
tion P. Otherwise, the control is transferred to position P.

The statements in the if-range should be grouped by {} if they more than one.

Although the if statement has only one reserved word, it always contains a block (the
if-range).

The rule of the intersection of the T- and F-paths. Intersect the T- and F-paths in the flowcharts of the
if and if-else templates exactly below the involved condition.

This rule is one of the important tasks in drawing the flowcharts and has three ad-
vantages. First, it makes the flowchart clear and legible, in particular from the imple-
mentation point of view. Second, the flowcharts constructed using this rule, are trans-
latable into any programming language. Third, this rule reduces the probable errors
arising from disregarding the grouping rule. Some of these features are experienced
in the next example.

4.3. Example. Draw a flowchart to read a positive integer number. Then, print the
output if it is positive:

The given number_is positive

Print the output if it is zero:

The given number_is zero

And print the output if it is negative:

The given number_is negative

Solution. Here, we are facing a three-way branching. Therefore, two if-else tem-
plates are used for this purpose. One of these three branching is put in the T-path of
an if-else template while the other two branching are placed in the F-path. After-
wards, the two-way branching in the F-path is separated using another if-else tem-

plate. Finally, the flowchart displayed in Figure 4.3(a) is obtained. Programs P4_3_A
display the translation of this flowchart into both C++ and Java codes.

The if template =—— 91

a,"is
positive"

a,"is
negative"

a,"is zero"

Fig. 4.3(a): Nested conditional templates.

C++ codes: Java codes:
// Program P4_3_A to use nested // Program P4_3_A to use nested
// the if-else statements // the if-else statements
#include <iostream> import java.util.Scanner;
using namespace std; class P4_4_A{
int main() { public static void main(String[] args) {
int a; Scanner read=new Scanner(System.in);
cout<<"Enter an integer: "; int a;
cin>>a; System.out.print("Enter an integer: ");
if (a>0) a=read.nextInt();
cout<<a<<" is positive"; if (a>0)
else System.out.print(a + " is positive");
if (a==0) else
cout<<a<<" is zreo"; if (a==0)
else System.out.print(a + " is zero");
cout<<a<<" is negative"; else
return 0; System.out.print(a + " is negative");
3 read.close();
3
3

Question. Why didn’t we comply with the grouping rule for the else range from the
outer if-else template?

Answer. Since only one statement (the compound if-else statement) existed in this
respect.

92 — Decision making and branching templates

Fig. 4.3(b): The rule of T- and F-paths is not used.

As illustrated in Figure 4.3(a), the body of the T-path of the external conditional tem-
plate is itself another conditional template, that is, the if-else template. In this case,
we are supported to have two nested conditional templates (nested conditional state-
ments in programming). As shown, this flowchart is totally transparent and complete.
Having applied the rule of T- and F-paths, one can observe the clearness and legibility
of Flowchart 4.3(a). However, the three flowcharts in Figure 4.3(b) lack this feature.

Further, every IF reserved word in the IF-ELSE-ENDIF statement ends with an
ENDIF reserved word in some programming languages including Fortran. The trans-
lation of Flowchart 4.3(a) into Fortran codes is as follows:

READx, a
IF a.GT.0
PRINT*, a, 'is positive’
ELSE
IF a.EQ.0
PRINT*, a, 'is zero'
ELSE
PRINT*, a ,'is negative’
ENDIF
ENDIF

In the main model of Figure 4.3(a), the positions of each ENDIF is clearly determined
in the intersection of the T- and F-paths of the involved IF-ELSE-ENDIF template.
However, no unique place can be determined for each ENDIF in the three models of
Figure 4.3(b)

It occasionally happens to terminate the implementation of a flowchart before
closing the entire flowchart with the keyword “end”. Any programming languages
has a one-keyword statement for this purpose. For example, the keywords STOP in
Fortran, halt in Pascal, and exit(@) in both C++ and Java play the role of termina-
tion. However, the following rule is recommended in the flowcharts.

The if template —— 93

iég;iive" a,"is zero®

Fig. 4.3(c): The existence of two “end” keywords (not recommended).

a,"is
positive"

Close each flowchart with only one ellipse end-shape with the keyword “end” inside.

Flowchart 4.3(c) is not recommended for Example 4.3, although we cannot claim that
it is incorrect. One may use a common word like “stop”, or specialized keyword
exit(0) instead of the keyword “end” inside the right hand end-shape.

4.4, The dangling else problem. This classic problem is created when no matching
else is found for each if. This problem basically occurs when the nested if or if-
else statements are employed without grouping by {}. Let us explain this fact in more
details. There are two if and if-else statements both in the one-line form in the fol-
lowing part:

if (c1) i++;
if (c2) j++; else k++;

Either of the statements is clear and there is no problem. Now consider the following
on-line statement:

if (c1) if (c2) r++; else s++;

94 — Decision making and branching templates

Fig. 4.4: Dangling problem flowchart.

In this example, r++is unambiguously executed when both conditions are true. How-
ever, this question arises that the else clause is dandling on which if? One may in-
terpret s++ as being executed when the condition cI is false (thus, attaching the else
to the first if) or true and the condition c2 is false (therefore, attaching the else to the
second if). In other words, the previous statement is found as either of the following
expressions whose flowcharts are displayed in Figure 4.4. The codes of the right
flowchart is as follows:

C++ codes: Java codes:
if (c1) { if (c1) {
if (c2) if (c2)
r++; r++;
3 }
else else
S++; SHt:

However, the codes of the left flowchart:

C++ codes: Java codes:
if (cl) { if (cl) {
if (c2) if (c2)
r++; r++;
else else
Stt; S++;
3 }

The rule of dangling else. The reserved word else is always paired with the most recent reserved
word if.

The if-else-if template =—— 95

@ group A

group D group C
[|
I

Fig. 4.5(a): Multi-way decision with nested if-else templates.

Accordingly, the expression
if (c1) if (€2) r++; else s++;

is equivalent with the second expression provided above. Therefore, applying the
grouping rule is helpful for avoiding similar ambiguities.

4.3 The if-else-if template

4.5. Observation. Occasionally, there is a variety of nested if-else templates in algo-
rithms, where a multi-way (multi-condition) decision is taken. An example of these
circumstances including three conditions is represented in Figure 4.5(a).

The condition is evaluated from the top of the ladder downwards. Considering
the statements pinpointed so far, translating Flowchart 4.5(a) into both codes are as
follows.

C++ codes: Java codes:
if (condition1) if (condition1)
block A block A
else else
if (condition2) if (condition2)
block B block B
else else

if (condition3) if (condition3)

96 —— Decision making and branching templates

@ block A f—
@ block B |—>
@ block C [—

block D

Fig. 4.5(b): The if-else-if template.

block C block C
else else
block D block D

As it is shown, we face three nested if-else templates. From the implementation
point of view, the previous flowchart is equivalent to the one in Figure 4.5(b). This
template is referred to as the if-else-if template. The syntaxes of the if-else-if
statement in both C++ and java codes are presented below.

C++ codes: Java codes:

if (condition1) if (condition1)
block A block A

else if (condition2) else if (condition2)
block B block B

else if (condition3) else if (condition3)
block C block C

else else
block D block D

“ The statements in each block, should be grouped by {3} if they are more than one.

The if-else-if template —— 97

a,"is
positive" >
/-

a, "is zero"

L

a, "is
negative"

Fig. 4.5(c): Flowchart 4.3(a) with the if-else-if template.

The clearness and simplicity in the flowchart and codes of the if-else-if template
can be perceived by comparing the flowcharts 4.5(a) and 4.5(b) and their codes.

It should be noted that in the multi-way branching, it is always possible to pro-
vide the nested if-else template as Figure 4.5(a) by negating the conditions if nec-
essary and, following it, the if-else-if template as Figure 4.5(b). As an example,
Flowchart 4.5(c) is a redrawing of Flowchart 4.3(a). Programs P4_5_C are the same as
Program P4_3_A using the if-else-if statement instead of the nested if-else state-
ments.

C++ codes: Java codes:

// Program P4_5_C to rewrite Program // Program P4_5_C to rewrite Program
// 4_3_A with the if-else-if statement // 4_3_A with the if-else-if statement

#include <iostream> import java.util.Scanner;
using namespace std; class P4_5_C {
int main() { public static void main(String[] args) {
int a; Scanner read=new Scanner(System.in);
cout<<"Enter an integer: "; int a;
cin>>a; System.out.print("Enter an integer: ");
if (a>0) a=read.nextInt();
cout<<a<<" is positive"; if (a>0)
else if (a==0) System.out.print(a + " is positive");
cout<<a<<" is zreo"; else if (a==0)
else System.out.print(a + " is zero");
cout<<a<<" is negative"; else
return 0; System.out.print(a + " is negative");
3 read.close();
}

98 —— Decision making and branching templates

<rmin s > |
<o w5

block C

Fig. 4.6(a): The if-else-if template cannot be used.

Considering the following rule is necessary when using the if-else-if templates.

The rule of making the if-else-if template. The last F-path block in the if-else-if template may
be empty, while none of the T-paths should be empty. Otherwise, a combination of the if-else-if
template and the nested if-else templates should be used.

The next example clarifies the issue described in the above rule.

4.6. Example. The if-else-if template cannot be used for Flowchart 4.6(a) since it
fails to satisfy the above rule. Furthermore, it is not consistent with the standard tem-
plates proposed in this book. Use a combination of the nested if-else templates and
the if-else-if template to draw an equivalent flowchart for Figure 4.6(a).

Solution. Negate the condition 1 to create an if template. Moreover, an if-else-if
template may be applied for the rest of the flowchart. The resulted flowchart is de-
picted in Figure 4.6(b)

4.6_1. Exercise. Translate Flowchart 4.6(b) to both C++ and Java codes.
Question. Is it necessary to group the block corresponding the T-path block of the

outer if template in programming?
Answer. The answer is no, since only one if-else-if template exists.

The if-else-if template =—— 99

condition 1

@ block A [
@ block B [

block C

Fig. 4.6(b): An if-else-if template nested in an if template.
4.7. Example. Draw a flowchart to read the three integer numbers a, b, and c. Then, if

one of the inequalities a < 10, b < 20, or ¢ < 30 holds, then print Yes. Otherwise, print

No.
Solution. The required flowchart is drawn using the if-else-if template in Figure

4.7(a).

"Yes"

"Yes"

"Yes"

e

"No"

end

Fig. 4.7(a): Print Yes if one of the three conditions is true; otherwise, print No.

100 —— Decision making and branching templates

Fig. 4.7(b): Merging the conditions in Figure 4.7(a) with the | | operator.

Programs P4_7 is the transferred codes of Flowchart 4.7(a) in both C++ and Java lan-
guages.

Java codes:
C++ codes:
// Program P4_7: another use of // Program P4_7: another use of
// the if-else-if statement // the if-else-if statement
#include <iostream.h> import java.util.Scanner;
using namespace std; class P4_7 {
int main() { public static void main(String[] args) {
int a, b, c; Scanner read=new Scanner(System.in);
cout<<"Enter three integers: "; int a, b, c;
cin>>a>>b>>c; System.out.print("Enter three integers: ");
if (a<10) a=read.nextInt();
cout<<"Yes"; b=read.nextInt();
else if (b<20) c=read.nextInt();
cout<<"Yes"; if (a<10)
else if (c<30) System.out.print("Yes");
cout<<"Yes"; else if (b<20)
else System.out.print("Yes");
cout<<"No"; else if (c<30)
return 0; System.out.print("Yes");
} else

System.out.print("No");
read.close();

We can combine the three conditions and use the logical | | operator based on Figure
4.7(b) since the same print exists in all the three T-paths.

The if-else-if template =—— 101

Fig. 4.8(a): Flowchart in Figure 4.7(b) with the operator 8& instead of | |.
4.7.1. Exercise. Translate Flowchart 4.7(b) into both C++ and Java codes.

4.7.2. Exercise. Draw a deformation of Flowchart 4.7(a) using an if-else template
and the | | operator. Then, translate it into both C++ and Java codes.

4.8. Observation. The flowcharts in Figures 4.7(a) and 4.7(b) are equivalent. The for-
mer is drawn using the i f-else-if template while there a conditional template in the
latter one which is depicted employing the || operators. Figure 4.8(b) is similar to
Figure 4.7(b) which is drawn applying the && rather than the | | operators.

Based on the above-mentioned observation, we attempt to draw a flowchart in
which the if-else-if template is used instead of the && operators. Note that the com-
posed proposition

a<108& b <2088&c<30

is true if and only if all the three conditions are true. Therefore, the part of the
flowchart which prints Yes acts as Flowchart 4.8(b). When is No printed? Considering
the value of the above composed proposition, the phrase “No” is printed when at least
one of the conditions above is false. Then, No is printed in the F-path of all the three
conditions. The following rule is applied to close several opened conditional tem-
plates.

The rule of closing the conditional templates. The opened conditional templates are closed from the
innermost to the outermost ones, respectively.

102 —— Decision making and branching templates

Fig. 4.8(b): Part of the flowchart equivalent to Figure 4.8(a) which prints Yes.

According to the above rule, first, close the template involved with the condition c <
30. Taking into account this if-else template as the T-path of the condition b < 20,
close this middle if-else template. Finally, consider this double nested if-else tem-
plates as the T-range of the condition a < 10 and close the outermost if-else tem-
plate. Figure 4.8(c) illustrates the obtained flowchart.

Flowchart 4.8(c) cannot be directly translated into the program codes using the
if-else-if statement since its structure is not only the same as the structure of the
if-else-if template in Figure 4.5(a) but also it is the mirror symmetric to that struc-
ture. Accordingly, the same structure as that of Figure 4.5(a) is obtained if we negate
the conditions and thus, the if-else-if statement is applied to translate it into the
codes of the program.

Fig. 4.8(c): A flowchart equivalent to Figure 4.8(c) with the nested if-else templates.

The if-else-if template = 103

The rule of merging the conditions by the | | operator: The following three flowcharts are equivalent.

cond. 1 || cond. 2

block A

block A

block B

block B

4.8.1. Exercise. Redraw Flowchart 4.8(c) negating its conditions, and translate it into
both C++ and Java codes.

Based on the recent discussions, we can impose a rule for merging the && and | | op-
erators.

4.9. Example. Draw a flowchart to read the coefficients a, b, and ¢ of the quadratic
equation ax* + bx + ¢ = 0, in which a is assumed to be nonzero, and then calculate and
print the roots accompanied by the appropriate headings.

104 —— Decision making and branching templates

&

d<b*b-4*a*c

x1«(-b+vd)/(2*a) "Two roots:",
x2<(-b-vd)/(2*a)] x1,x2 —
"One root:",
x¢ -b/(2*a) X -
-

"No real roots"

Ol

Fig. 4.9: Calculating and printing the roots of the quadratic equation ax? + bx + c=0.

Solution. Let d = b>- 4ac is the discriminant of this polynomial. Then, the three argu-
ments are obtained as follows:
1. Ifd> 0, we have two distinct real roots:

_—b+Vd -b—+d

1 2a

2. Ifd =0, the equation has only one real root:

-b

*=7q

3. Ifd <0, there is no real root for the equation.

The above arguments are illustrated in Flowchart 4.9.

Sometimes, the algorithm of certain problems are not derived from a special idea,
instead, they are easily written by one or more formulas, and probably followed by a
short discussion. In such algorithms one only needs to pay attention to the correct
use of the formulas and the related discussions. So far, all the examples were approx-
imately of this type. The translations of Flowchart 4.9 into both C++ and Java codes
are displayed in Programs P4_9.

C++ codes:

// Program P4_9 to find the
// roots of an equation.
#include <iostream>
#include <math.h>
using namespace std;
int main() {
float a, b, c, d;
double x1, x2, x;
cout<<"Enter the coefficients:
cin>>a>>b>>c;
d=b*b-4*a*c;
if (d>0) {
x1=(-b+sqrt(d))/(2*a);
x2=(-b-sqrt(d))/(2*a);
cout<<"Two roots: "<<x1
<<" and "<<x2;
b
else if (d==0) {
x=-b/(2*a);
cout<<"One root: "<<x;
3
else
cout<<"No real roots!";
return 0;

Input/output:

Enter the coefficients: 1 4 -5«
Two roots: 1 and -5

The if-else-if template = 105

Java codes:

// Program P4_9 to find the
// roots of an equation.
import java.util.Scanner;
class P4_9 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
float a, b, c, d;
double x1, x2, x;
System.out.print("Enter the
+ "coefficients: ");
a=read.nextFloat();
b=read.nextFloat();
c=read.nextFloat();
d=bx*b-4*a*c;
if (d>0) {
x1=(-b+Math.sqrt(d))/(2*a);
x2=(-b-Math.sqrt(d))/(2*a);
System.out.print("Two roots: " + x1
+ " and " + x2);

}
else if (d==0) {

x=-b/(2*a);

System.out.print("One root: " + x);
}
else

System.out.print("No real roots!");
read.close();

Input/output:

Enter the coefficients: 1 4 -5«
Two roots: 1.0 and -5.0

In some cases, the nature of the given problem requires using the consecutive condi-
tional templates. Therefore, we should be careful not to fall into the trap of the nested
conditional templates. The next example demonstrates such a case.

4.10. Example. Draw a flowchart to read three numbers of a, b, and c, sort them in
ascending order, and finally, print the sorted numbers.

Solution. Every individual can propose an exclusive solution to this problem. To this
end, a method called “the bubble sorting algorithm” is employed. In this method,
starting from the first number, two consecutive numbers are compared each time. If
the former one is greater than the latter, then we swap the two numbers. Afterwards,
we go one number forward and repeat the same process for the new pair of numbers.
Accordingly, the biggest number, among the others, is transferred to the last position,

106 —— Decision making and branching templates

a>b

Fig. 4.10: Bubble sorting method for three numbers.

that is, it rises up like a bubble. Then, this number is put aside and the process is
repeated for the remaining numbers until only one number is left. Therefore, the num-
bers are sorted in ascending order. The swap algorithm (see Chapter 1) is used to swap
the consecutive numbers.

The above-mentioned method is used for the three given numbers a, b, and c. In
the first step, a is compared with b. If a is greater than b, then they are swapped. Af-
terwards, b is compared with c. They swap only if b is greater than c. To this point,
the biggest number, among others, is shifted to the end. In the second step, the values
of b and c (probably the new ones) are compared and then swapped if the former is
greater than the latter one. The reaction of the brain to perform this process is too
quick to trace. The required flowchart is depicted in Figure 4.10. In Chapter 8, we will
focus on using this method for any set of numbers.

Worth to mention that the first and third if templates are the same in Flowchart
4.10. In fact, the values of a and b may vary from their previous values after exiting

The switch statement =—— 107

the second if template. This fact is understood if the implementation table is ar-
ranged for a =12, b = 8 and c¢= 5. Program P4_10 is the translation of Flowchaer 4.10

into both C++ and Java codes.

C++ codes:

// Program P4_10 to sort three
// numbers by the bubble method
#include <iostream>
using namespace std;
int main() {
float a, b, c, t;
cout<<"Enter three numbers: ";
cin>>a>>b>>c;
if (a>b)
{t=a; a=b; b=t;}
if (b>c)
{t=b; b=c; c=t;}
if (a>b)
{t=a; a=b; b=t;}
cout<<"The sorted numbers:
<a<<", "<<h<<", "<<c;
return 0;

Input/output:

Enter three numbers: 23 -13 11+
The sorted numbers: -13, 11, 23

Java codes:

// Program P4_10 to sort three
// numbers by the bubble method
import java.util.Scanner;
class P4_10 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
float a, b, c, t;
System.out.print("Enter three numbers: ")
a=read.nextFloat();
b=read.nextFloat();
c=read.nextFloat();
if (a>b)
{t=a; a=b; b=t;}
if (b>c)
{t=b; b=c; c=t;}
if (a>b)
{t=a; a=b; b=t;}
System.out.print("The sorted numbers:
+a+", "+ b+t ", "+ c);

read.close();

Input/output:

Enter three numbers: 23 -13 11+
The sorted numbers: -13, 11, 23

4.10.1. Exercise. Apply the bubble sorting method to draw a flowchart in order to sort
four numbers in ascending order. Further, write the codes of its program.

4.4 The switch statement

4.11. Observation. This time start with a program. Suppose that the five ranks of A, B,
C, D, and E corresponds to the titles very good, good, average, weak, and failed, re-
spectively. Programs P4_11_A receive the earned rank by the user and determine and
print its corresponding title using the if-else-if statement. Moreover, the programs
are written in a way to identically treat both uppercase and lowercase letters.

108 —— Decision making and branching templates

"very good" |
I

"good"

"average" N
J

"weak" N

!

Fig. 4.11(a): Flowchart of Program P4_11 using the if-else-if template.

C++codes:

// Program P4_11_A to specify
// a title for any given rank
// using the if-else-if statement
#include <iostream>
using namespace std;
int main() {
char ch;
cout<<"Enter your rank: ";
cin>>ch;
if (ch=='a'||ch=="'A")
cout<<"very good";
else if (ch=='b'||ch=='B')
cout<<"good";
else if (ch=='c'||ch=='C")
cout<<"average";
else if (ch=='d'||ch=='D")
cout<<"weak";
else
cout<<"failed";
return 0;

Java codes:

// Program P4_11_A to specify
// a title for any given rank
// using the if-else-if statement
import java.util.Scanner;
class P4_11_A {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
char ch;
System.out.print("Enter your rank: ");
ch=read.next().charAt(0);
if (ch=='a'||ch=="A")
System.out.print("very good");
else if (ch=='b'||ch=='B')
System.out.print("good");
else if (ch=='c'||ch=='C")
System.out.print("average");
else if (ch=='d'||ch=='D")
System.out.print("weak");
else
System.out.print("failed");
read.close();

The flowchart of Programs P4_11 (Fig. 4.11(a)) drawn with another pattern in Figure
4.11(b). These two flowcharts are equivalent from the executive point of view. In cases

ch="?
‘a'or'A’ " "
very good >
I
'b'or'B' " N
good N
J
‘c'or'C’ " "
average N
I
Idlor'Dl " "
weak N
I
non of the cases
"failed"

Fig. 4.11(b): Flowchart of Program P4_11 using the switch template.

The switch statement =—— 109

where we are dealing with this kind of multi-way branching, we use the switch tem-
plate with a flowchart similar to the one displayed in Figure 4.11(b).

Programs P4_11_B are the same as Programs P4_11_A. The only difference is that
in the latter programs the switch template substitutes for the if-else-if template in

the former one.

C++codes:

// Program P4_11_B to specify
// a title for any given rank
// using the switch statement
#include <iostream.h>
using namespace std;
int main() {

char ch;

cout<<"Enter your rank:

cin>>ch;

switch (ch) {

",
’

case 'a': case 'A':
cout<<"very good";
break;

case 'b': case 'B':
cout<<"good";

break;

case 'c': case 'C':
cout<<"average";
break;

case 'd': case 'D':
cout<<"weak";
break;

Java codes:

// Program P4_11_B to specify
// a title for any given rank
// using the switch statement
import java.util.Scanner;

class P4_11_B {

public static void main(String[] args) {
Scanner read=new Scanner(System.in);

char ch;

System.out.print("Enter your rank: ");

ch=read.next().charAt(0);
switch (ch) {

case 'a': case 'A':

System.out.print("very good");

break;

case 'b': case 'B':
System.out.print("good");
break;

case 'c': case 'C':
System.out.print("average");
break;

case 'd': case 'D':
System.out.print("weak");

110 —— Decision making and branching templates

variable = ?

case 1
block 1 |3 break N
case 2
block 2 | break N
case n
block n N break —
non of the cases
block z
<:E:>
Fig. 4.11(c): The switch template.
default: break;
cout<<"failed"; default:
break; System.out.print("failed");
} break;
return 0; }
} read.close();
3
}

In general, we use the switch template with the flowchart as in Figure 4.11(c) in the
multi-way branching.

Implementation: If the variable satisfies in

— thecasel, then, block 1 first runs, afterwards, the break statement terminates this
case and finally, the control transfers to position P;

— the case 2, then, block 2 first runs, then the break statement terminates such a
case and the control transfers to position P;

- the case n, then, block n is run, the break statement terminates the case, and
eventually, the control transfers to position P;

— none of the cases, then, block z is first run, the break statement terminates this
case, and the control transfers to position P.

The switch statement =—— 111

Translating of the switch template into both C++ and Java codes is written in the fol-
lowing parts.

C++ codes: Java codes:
Switch (variable) { Switch (variable) {
case case 1 : case case 1 :
block 1 block 1
break; break;
case case 2 : case case 2 :
block 2 block 2
break; break;
case case n : case case n :
block n block n
break; break;
default default
block z block z
3 }

Several notes should be highlighted regarding the switch template.

— The variable of the switch statement only admits one of the two int or char data types. Therefore,
we should use the conditional templates if we want to work with other types of data.

— No block needs to be grouped by {3} since the break statement terminates the corresponding case.

— Even the break may be ignored in block z.

— The block z along with the break keyword may not exist.

— Not every case needs to contain a break. If no break appears, the flow of control falls through to
the subsequent case until a break is appeared.

Additionally, each of the case 1, case 2, ..., case n expressions should be in the same
data type as the variable. In addition, each of these expressions may have several
cases. In this circumstance, each expression is stated in the range of a case and the
establishment of one of these expressions for the switch variable suffices to run the
corresponding block. For example, consider the program parts below.

C++ codes: Java codes:
switch (m) { switch (m) {
case 1: case 2: case 3: case 1: case 2: case 3:
cout<<"one, two, or three"; System.out.print("one, two, or three");
break; break;

case 4: case 4:

112 —— Decision making and branching templates

cout<<"four"; System.out.print("four");
brak; brak;
default: default:
cout<<"not known"; System.out.print("not known");
} }

If the value read for the integer m is:

- equalto1, 2, or 3, then the phrase “one, two, or three” is printed;

— equal to 4, then phrase “four” is printed;

— avalue other than the above values, then the phrase “not known” is printed.

Besides the above application, the break statement, as a jumping statement, has an-
other usage. Other applications of the break statement will be discussed in details in
Chapters 6 and 7 where the loops are studied.

4.5 More applications of the if template

In this section, further applications of the if template are explained in which the if-
range is cut by either a jumping or termination statement. Additionally, in the subse-
quent subsections, both jumping goto and exit(0) statements are presented. Indeed,
these statements are single reserved words.

4.5.1 Transferring the program execution

To transfer (jump) from one part of the program to the other one (after or before the
position of the statement), there are statements in both C++ and Java languages with
the following syntaxes.

C++ codes: Java codes:

goto_label, break_label;

Execution: Resume the program at the statement with the mentioned label. In other
words, the running control is transferred to the statement with the mentioned label.

— Alabel can be an identifier or a positive number often from 1 to 255.

— A statement with the mentioned label should appear in the program. This statement is written as
below:
label : the desired statement ;

— The label may correspond to a block of statements:
label : { block of statements }

More applications of the if template = 113

4.12, Example. In Programs P4_12_A we employ the two above-mentioned state-
ments.

C++ codes: Java codes:

// Program P4_12 to apply // Program P4_12 to apply

// the goto statement // the break statement

#include <iostream> import java.util.Scanner;

using namespace std; class P4_12 {

int main() { public static void main(String[] args) {
int n, g=1000; Scanner read=new Scanner(System.in);

", int n, g=1000;

cout<<"Enter a nonnegative integer: "; System.out.println("Enter a

cin>>n; + "non-negative integer: ");
switch (n) { n=read.nextInt();
case 0: goto C; break; X: {
case 10: goto B; break; A {
case 100: goto A; break; B: {
default: cout<<"Out of range"; C: {.
! switch (n) {
goto X; case 0: break A;
3 case 10: break B;
A: g=gtn; case 100: break C;
B: g=g+n; default: System.out.print(
C: g=g+n; "Out of range");
cout<<g; break X;
X: {);)2
return 0; g=g+n;
3
g=g+n;
. }
Input/output: g=gn;
System.out.println(g);
Enter a nonnegative integer: 10+ 3
1020 read.close();
}
}
Input/output:

Enter a nonnegative integer: 10+
1020

This program in both C++ and Java codes, reads the nonnegative integer n and then,

if the value of n,

- is 0, the statement with the label C is executed and the value 1000 is printed for
g

— is 10, the program resumes at the statement labelled B and therefore, the value
1020 printed for g;

- is100, the program is continued from the statement with the label A and the value
1300 is printed for g;

— otherwise, the message Out of range is printed and the program is terminated .

114 —— Decision making and branching templates

Question. Why are the break statements practically useless in the left program?
Answer: Look for the answer within the goto statement.

Unless necessary, attempt not to use the goto statement since it decreases the speed
of the program execution and confuses its reader. Fortunately, we rarely need to use
the goto statement since there are various loops to fill the gap of using the goto state-
ment. Moreover, the goto statement is not employed throughout this book, except for
several times. Although this statement is a Java keyword, it is not used in Java.

4.5.2 Terminating the program execution

The statements with the following syntaxes exist in the C++ and Java languages for
successful termination of the program.

C++ codes: Java codes:
exit(0); System.exit(0);

Execution: Terminate the program execution at this point.

We should place the stdlib.h pre-processor statement at the beginning of the program in order to
use the exit(@) statement in C++ codes.

4.13. Example. For example, we use the statement

C++ codes: Java codes:
exit(0); System.exit(0);
in Programs P4_12 instead of the statement

C++ codes: Java codes:

goto B; break B;

and thus Programs P4_13 are acquired. Explain the outputs of this program in any
case!

C++ codes:

// Program P4_13 to use the
// exit(@) statement
#include <iostream>
using namespace std;
int main() {
int n, g=1000;
cout<<"Enter a nonnegative integer: ";
cin>>n;
switch (n) {
case 0:
case 10:

goto C; break;
cout<<"Exit...";
exit(0); break;

case 100: goto A; break;
default: cout<<"Out of range";
goto X;

T 8=gtn;

:og=gn;
cout<<g;
X: {3

return 0;

}
A g=g+n;
B
o

Input/output:

Enter a nonnegative integer: 10+
Exit...

More applications of the if template = 115

Java codes:

// Program P4_13 to use the
// System.exit(@) statement
import java.util.Scanner;
class P4_13 {

public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int n, g=1000;
System.out.print("Enter a
+ "non-negative integer: ");
n=read.nextInt();

X: {
A {
B: {
C: {
switch (n) {
case 0: break A;
case 10: System.out.print(
"Exit... ");
System.exit(0);
break B;
case 100: break C;
default: System.out.print(
"Out of ange");
break X;
}
3
g=gtn;
}
g=g*n;
3
g=g+n;
System.out.println(g);
3
read.close();
3
Input/output:

Enter a nonnegative integer: 10+
Exit...

In either program, label B and the related break statement are useless.

4.14. Example. Write an algorithm to read the Cartesian coordinates of a point with
the names a and b, respectively, determine the position of that point in the coordinate
plane, and finally, print it with appropriate headings.

116 —— Decision making and branching templates

RE

Fig. 4.14: Determine and printing the position of a point in the coordinate plane.

Solution. We draw the flowchart in a way that if the point is at the origin, on the x-
axis, or on the y-axis in Part 1, the algorithm is terminated by separately printing them
with appropriate headings using the exit(0) statement in C++ and System.exit(0)
statement in Java. Otherwise, the position of the point is determined and printed by
mentioning the number of the coordinate quarter. The flowchart is depicted in Figure
4.14. Programs P4_14 are the translation of this flowchart into both C++ and Java
codes.

C++ codes: Java codes:

// Program P4_14 to indicate the // Program P4_14 to indicate the

// position of a point on the XY-axis // position of a point on the XY-axis
#include <iostream> import java.util.Scanner;

#include <stdlib.h> class P4_14 {

using namespace std;
int main() {
float a, b;

cout<<"Enter the XY-coordinates: ";

cin>>a>>b;
if (a==0 && b==0) {
cout<<"Origin";
exit(0);
3
if (b==0) {
cout<<"X-axis";
exit(0);
3
if (a==0) {
cout<<"Y-axis";
exit(0);
3
if (b>0)
if (a>0)
cout<<"Quarter 1";
else
cout<<"Quarter 2";
else
if (a<e0)
cout<<"Quarter 3";
else
cout<<"Quarter 4";
return 0;

More applications of the if template =—— 117

public static void main(String[] args) {
Scanner read=new Scanner(System.in);
float a, b;
System.out.print("Enter the "

+ "XY-coordinates: ");
a=read.nextFloat();
b=read.nextFloat();
if (a==0 && b==0) {

System.out.print("Origin");
System.exit(0);
3
if (b==0) {
System.out.print("X-axis");
System.exit(0);
3
if (a==0) {
System.out.print("Y-axis");
System.exit(0);
3
if (b>0)
if (a>0)
System.out.print("Quarter 1");
else
System.out.print("Quarter 2");
else
if (a<e)
System.out.print("Quarter 3");
else
System.out.print("Quarter 4");
read.close();

Of course, Part 1 in Flowchart 4.13 can be considered as an if-else-if template and

translated to both codes as follows.

C++ codes:

if (a==0 && b==0) {
cout<<"Origin";
exit(0);

}

else if (b==0) {
cout<<"X-axis";
exit(0);

}

else if (a==0) {
cout<<"Y-axis";
exit(0);

3

Java codes:

if (a==0 && b==0) {
System.out.print("Origin");
System.exit(0);

}

if (b==0) {
System.out.print("X-axis");
System.exit(0);

}

if (a==0) {
System.out.print("Y-axis");
System.exit(0);

}

118 — Decision making and branching templates

4.14_1. Exercise. In the codes of Part 1 presented in the above codes, what results are
obtained if one, two, or all the termination statements are removed? Discuss the an-
swer in all cases.

Exercises

In the following exercises: arrange the implementation table, if needed, write the
complete program, and provide appropriate input notifications and output headings,
if any. Writing an algorithm stands for drawing its flowchart.

4.1, Write an algorithm to read two real numbers and print the integer numbers 1, -1,
or 0 if their multiplication is positive, negative, or zero, respectively.

4.2, Write an algorithm to read an integer n and if the number is a multiple of 3, then
print the output below:

The value of n is a multiple of 3
A similar message is printed if it is a multiple of 5 or 7. Note that a number can simul-
taneously be the multiple of two or all the numbers 3, 5, and 7. In this case, two or

three messages are printed.

4.3. Write an algorithm to read a positive integer n and then determine whether the
number is a full square or not by printing one of the messages YES or NO.

4.4, Write an algorithm to read the real numbers A, B, and C and print the message
YES in the case that these three numbers form the edges of a triangle; otherwise, print
the message NO.

4.5. Repeat the exercise 4.4 for a right-angle triangle.

4.6. Repeat the exercise 4.4 for an equilateral triangle.

4.7. Repeat the exercise 4.4 for an isosceles triangle.

4.8. Write an algorithm to read the radius of a circle, calculate the area of the circle,
inscribed square, and circumscribed square of the circle, and finally, print them.

4.9. Write an algorithm to read three integers. Then, calculate and print the average
of these integers if the first number is even; otherwise, calculate and print the squares
sum of the integers.

Exercises =—— 119

4.10. The number of digits of a positive integer is equal to one plus the integer part of
its logarithm (based on 10). Write an algorithm to read an arbitrary integer, then cal-
culate and print the number of its digits.

4.11. Write an algorithm to read an integer number n. Then,
- if nis negative and its last digit is O or 5 (i.e., it is divisible by 5), print the output:

The value of n is negative and divided by 5
- ifnis non-negative and its last digit is O or 5, print the output:

The value of n is non-negative and divided by 5
- ifnis none of the above, print the output:

The value of n is not divided by 5
4.12. Assuming that the year 1980 is a leap year, write an algorithm to read the num-
ber n, as a year (after or before the year 1980), and determine if it is a leap year. If yes,
print YES; otherwise, print NO.
4.13. Write an algorithm to print the number of days of a month by reading the count
n of that month. Suppose the year is not a leap year. If n is not in the range of 1 to 12,
print the message: I1legal number.
4.14. Write an algorithm to read the two numbers m, (as months), and d, (as days),
and then calculate and print the number of a day in a year which corresponds to the
d-th day of the m-th month (e.g., by reading 2 and 21, print: 52).
4.15. In Exercise 4.14, modify the algorithm in a way to print the message Illegal
month if the month number m is in the illegal rang and the message I1legal day if
the day number n is in the illegal range; otherwise, the process in Exercise 4.14 is
performed.
In the exercises 4.16 and 4.17 take O for Monday, 1 for Sunday, ..., and 6 for Friday.
4.16. Assuming that the first day of the current year is Saturday, write an algorithm
to read n, (as the count of a day in the year), and then determine and print which day

of the week it is.

4.17. Repeat the exercise 4.16 in the case that the first day f of the year is either read.

120 —— Decision making and branching templates

4.18. Totally 90 two-digit numbers 10 to 99 are known to exist. Write an algorithm to
read the positive integer n. Then, print the words First, Second, or Third if it is one
of the first, second, or third 30 numbers, respectively. Eventually, print the message
Not two-digit number if n is not a two-digit number. Do this task in duplicate using
the switch and if-else-if templates.

4.19. Write an algorithm to read each time a pair of numbers m, (as a month), and d,
(as a day). Then, print the message I1legal month if the month number m is in the
illegal range and the message I1legal day if the day number n is in the illegal range;
otherwise, calculate and print a day of the week corresponding to the d-th day of the
m-th month. The termination happens whenever the read values for m and d are both
Zero.

4.20. Turn your computer input into a calculator: write an algorithm to read a real

number a, a character, and a real number b, each separated with a blank space and

if that character is,

-+, calculate and print the value of a + b;

— -, calculate and print the value of a - b;

— x, calculate and print the value of a * b;

-/, calculate and print the value of a / b (announce a division by zero with the
message Divided by zero);

- otherwise, print: illegal character

Repeat the above process until the character ‘.’ is entered.

4.21. Write an algorithm to read a letter ¢ and if the input for c is,
— one of the letters b or B, print Black;

— one of the letters w or W, print White;

— one of the letters r or R, print Red;

— one of the letters g or G, print Green;

— or if other than the letters above, print Not in range.

Afterwards, asks the user if they want to exit the program, by printing the message
Quit?

Terminate the program if the letter n or N is entered and repeat the program from read-
ing c if n or N is entered; if a letter other than the above four characters in entered, ask

the user to type Y or N by printing the message:

Enter 'Y' or 'N':

5 Sub-algorithms and subprograms

5.1 Sub-algorithms

Assume that we know the programming for reading the entries of a matrix, as well as,
calculating the sum and multiplication of two matrices along with the inverse and
determinant of a matrix. Then, suppose that we were asked to write the following pro-
gram:

Write a program to read a positive integer n with n = 2. Then, read the entries of the three n x n
matrices A, B, and C, individually, where C is assumed invertible. Finally, compute and print the
value of det(AB + C™).

If we were to write the required task within one unit of such a large program, we
would encounter several problems including: the complexity in writing the different
parts and connecting to each other, repeating the same parts, and most importantly,
testing the correctness of the program and correcting lots of runtime errors. This is, if
not impossible, a very exhausting task.

What is the solution? Clearly, we can divide this program into several subpro-
grams each performing a specific task. For example, in the recent program, we could
use the subprograms with specific tasks as follows: (1) To read the entries of a matrix
and save them in the memory, (2) To get two matrices, add them, and return the re-
sult, (3) To get two matrices, multiply them, and return the result, (4) To get a matrix,
invert it, and return the result, and (5) To get a matrix, compute its determinant, and
return the result. Afterwards, a main program manages the tasks of these subpro-
grams. More precisely, the main program calls the above-mentioned subprograms in
a reasonable order, to arrive at the requested value after reading the value of n (Tab.
5.1).

Tab. 5.1: Managing the subprograms by the main program

Number of subprogram Input to subprogram Procedure

(1) A saving in the memory
(1) B saving in the memory
(1) C saving in the memory
3) Aand B return AB as, say, X
(4 c return C'as, say, Y
(#))] XandY return X + Y as, say, Z
(5) Z return det(2)

https://doi.org/10.1515/9783110616484-005

122 —— Sub-algorithms and subprograms

Eventually, the main algorithm, prints the final returned result and the program is
terminated. Several motivations for using the sub-algorithms (subprograms) are men-
tioned below.

Writing the algorithm becomes simpler since the tasks of a large calculation are
distributed among the small sub-algorithms and a main algorithm plays the role
of a director. Actually, writing the sub-algorithms and the main algorithm is sim-
pler due to their small size and limited job;

Testing the correctness of the algorithm is summarized to checking each of the
small sub-algorithms and, therefore, the problem of testing the algorithm is re-
solved. In particular, correcting the algorithm becomes easier in the single sub-
algorithms and the main algorithm if there are any probable errors;

Repeating the same parts of the program is avoided and thus, the time is not
wasted;

Saving every sub-algorithm in auxiliary memories for using in other future pro-
grams, independently.

The rule of constructing the sub-algorithms. The sub-algorithms are written exactly like the algo-
rithms and all the templates in writing the algorithms can be applied to the sub-algorithms.

In practice, a sub-algorithm does nothing unless another sub-algorithm or the main
algorithm, which is named the “call unit”, calls it. In this case, none, one, or several
values enter the sub-algorithm and thus, its implementation starts. As a result, one
or both of the following are processed.

1.
2.

A task such as reading, printing, assigning, and the like is performed;
One or several values return to the call unit.

The rule of starting the sub-algorithms. At the start of a sub-algorithm, the name of the sub-algo-
rithm, along with the (formal) parameters inside a pair of parentheses is placed inside an ellipse
shape which is the sub-algorithm prototype in algorithm-writing. This instruction is called the defin-
ing instruction of the sub-algorithm.

For example,

Data_reader(a,b,c)

The parameters of a sub-algorithm are divided into two types. The first type, called
the value parameter, brings values from the call unit to the sub-algorithm. All the pa-
rameters in Java are value parameters. In addition to the value parameters, there is a

Sub-algorithms = 123

second type parameter in C++ called the reference parameter which sends out the re-

sults from the sub-algorithm to the call unit. Some value parameters may play the role

of the reference parameters in C++ programs, which are discussed later on.
Throughout the present book, we start the main algorithm with the shape below:

In addition, it is sufficient to write only the name of parameters in algorithm-writing;
however in programming, the data type of each parameter should be added before its
name.

The rule of ending the sub-algorithms. When implementing a sub-algorithm is completed, the imple-
mentation control of the algorithm is shifted after the position from where the sub-algorithm was
called.

The shape

is used at the end of a sub-algorithm instead of the shape

which was used at the end of the main algorithms.

The carrier variable of the return single value is written instead of ‘?’. However,
we have an empty return if there is no return value to the call unit. Although the re-
turn statement may not be written in programs of these circumstances, the empty re-
turn instruction is written in the algorithms for these cases. This preserves the stand-
ard shape of the flowcharts related to the sub-algorithms indicating that the sub-
algorithms should have at least one return instruction.

When a sub-algorithm is called, the values (expressions) that are passed to the
call unit are called the actual parameters or arguments. Later on, we will find that
the types of sub-algorithms and the ways of their calling vary. Nevertheless, there is
one common point in all the calling processes. In other words, the name of the sub-
algorithm along with a pair of parentheses probably with several arguments inside
occurs in the calling instruction of a sub-algorithm, for instance, power(y, 8). Fur-
ther, following the parameters in the defining instruction of a sub-algorithm, the ar-
guments in the calling instruction of a sub-algorithm inside the call unit are divided

124 — Sub-algorithms and subprograms

into value and reference types. The value arguments carry certain values to the sub-
algorithm and the reference arguments take the results coming from the sub-algo-
rithm. The terms “arguments” and “parameters” are used interchangeably. Figure 5.0
displays the data flow from the call unit to the sub-algorithm (subprogram) and vice
versa by the parameters and arguments.

The rule of parameter-argument. The number, order, and type of the parameters should be compati-
ble with the number, order, and type of their corresponding arguments.

For example, in the defining instruction

1 1
1 x:real 1
-==1 s 1
, h:integer h
L 1

considering the type of the defined parameters x and n, we can write: power(y, 8) in
the calling instruction in order to call the sub-algorithm for the real value y and inte-
ger value 8 which correspond the value parameters x and n, respectively. However,
none of the following forms is allowed:

power(y,8.0), power(8,y), power(y).

— Repetition is allowed in the arguments, however, none of the parameters can be repetitive. For
instance, the following defining instruction is illegal.

Roots(a,b,b)

— The arguments and their corresponding parameters can be either homonymous or non-homony-
mous. For example, the form power(x,n) may occur as the form power(u,k) in the above-men-
tioned calling instruction.

5.2 Subprograms

The translation of sub-algorithm and main algorithm is called the subprogram and
main program in programming, respectively. Similar to most programming lan-
guages, the order of writing the main program and the subprograms is not important
in C++ and Java languages. However, professional programmers prefer to place the
main program at the beginning of their programs. This strategy is followed in most
programs of the current book.

Subprograms =—— 125

We regard the main program and each of the sub programs as a unit. Further-
more, we may occasionally refer to the main program as the main unit and to each of
the sub programs with the name of that unit. In particular, the call unit refers to a unit
which calls a subprogram. Moreover, the call unit may be either the main program or
a subprogram. By a complete program we mean the main program as well as all its
subprograms, if any.

The variables declared in the main program and the subprograms are referred to
as the global and local variables, respectively.

Depending on the number of the returned values, the sub-algorithms (subpro-
grams) are classified into one-return (function), no-return (void) and multi-return
types. There is no multi-return subprogram in Java programming language. The no-
return (void) and 1-return subprograms are called methods in this language. In other
words, a method is a collection of statements which perform some specific tasks and
frequently returns one result to the call unit. However, it is occasionally used to per-
form certain tasks such as reading, printing, assigning, and the like without returning
anything. Think of a method as a subprogram which acts on the value parameters and
mostly returns a value. The methods in the current book are mainly of this type.

The methods in Java act like the functions (i.e., no-return or 1-return) in C++.
Therefore, the words “function” and “method” have the same meaning in program-
ming. Of course, the method which is the synonym of the technique is excluded. In
fact, the word “method” is commonly used after the Java programming language ap-
pearance and before that, the word “function” is used for this purpose.

Convention. Throughout this book,

— When we talk of sub-algorithms (subprograms), we mean all types including the functions or meth-
ods.

— In the present book, the words “function” and “method” are interchangeably used, which refer to
the same concept.

The value of each value argument is copied to the corresponding value parameter at
the calling time. This type of parameter passing is called pass-by-value. We have
already explained that all the Java parameters are value parameters since all the Java
sub-algorithms (subprograms) are of function type. In other words, all the Java pa-
rameters are strictly pass-by-value while C++ has pass-by-reference parameters
which refer to the reference parameter as well.

The flow of data passing from a subprogram to a call unit and vice versa in the
multi-return subprograms is depicted in Figure 5.0. It is worth mentioning that all the
parameters are of value type in the functions (methods) and thus, the single value of
the (1-return) function is probably returned by the return statement by means of the
function carrier.

126 —— Sub-algorithms and subprograms

Definition:
Formal parameters
void pol_cart(val_parl, val_par2, .., ref_parl, ref_par2, ..)
Calling time: / / / /
pol_cart(val_argl, val_arg2, .., ref_argl, ref_arg2,

Actual parameters (arguments)

Fig. 5.0: The flow of data via the parameters and arguments in the multi-return subprograms.

Considering the above discussions, the classification of subprograms is revised and
summarized in two categories, namely methods, which occur in both C++ and Java
languages and multi-return sub-programs which are only dedicated to C++. In the
coming chapters, the majority subprograms are function type.

5.2.1 Functions

We start with the function which exactly returns one value. This type of sub-algorithm
is used when a programmer wants to construct a function which is not in the list of
the library functions. Therefore, this category is referred to as the user-defined func-
tion. Furthermore, in cases where the return of only one value to the call unit is re-
quired it is advised to use this type of sub-algorithm since its construction and call
are easy.

5.1. Example. The sign function for a real number x is defined as follows.

-1, ifx<0,
sign(x) =40, if x =0,
1, if x> 0.

Write a function sub-algorithm to receive a real value and return sign(x).

Subprograms =— 127

fe-1 >

<>
<A
e D

return f

Fig. 5.1(a): The carrier name is different from the function name.

Solution. This function is clearly defined in Flowchart 5.1(a). In this function the
name of the carrier related to the result is different from the name of the function. Of
course, we may select the same name for both carrier and function (Fig. 5.1(b)).

Moreover, if the carrier is to return the single value of a function, it is reasonable
for the carrier to occur at least in one assignment instruction in order to obtain a value
to return. Occasionally, there is no carrier and thus the return value of a function is
directly returned. Flowchart 5.1(c) is of this type.

@ x:float
0 sign< -1 —
0 sign <0 —
sign «1

Fig. 5.1(b): The carrier name is homonym to the function name.

128 —— Sub-algorithms and subprograms

Fig. 5.1(c): There is no carrier and the return value is returned directly.

The syntax of the function (method) defining statement. The statement for defining a function sub-
program in programming is written as follows.

C++ codes: Java codes:

data type_name(parameters) { modifier_static_data type_name(parameters) {
function body method body

3 3

Recall from Section 3.2 that the keyword static is used for the static methods for
which the memory is allocated only once at the time of class loading. These methods
are common to every object such that it is known as member or class method. Con-
versely, non-static methods for which the keyword static is not written, the memory
is allocated multiple times whenever a method is called. These methods are specific
to an object, therefore, they are known as instance methods. Based on the purpose of
the present book, we use the static keyword in our methods.

The name of method is an identifier and should be selected following the rule of
naming identifiers. In addition, the data type is the value type of the data returned to
the call unit. In the void methods, the void keyword is written instead of data type.
The following is an example of this type.

C++ codes: Java codes:
void Sign(double x) { static void Sign(double x) {
if (x>0) if (x>0)
cout<<"Sign: 1"; System.out.print("Sign: 1");
else if (x=0) else if (x=0)

cout<<"Sign: 0"; System.out.print("Sign: 0");

Subprograms =—— 129

else else
cout<<"Sign: -1"; System.out.print("Sign: -1");

In Example 5.2 we find another function of this type.
We leave an empty parenthesis for the parameters if there is no parameter. An
example of this type of function is as follows.

C++ codes: Java codes:

double e() { static double e() {
return exp(1.0); return Math.exp(1.0);

} }

In this book, all the functions except for a few examples have at least one parameter
and exactly one return value. The form of parameters, if any, is explained below.

The rule of the parameter list in functions. All the parameters of a function, if any, are value parame-
ters and the list of parameters is of the following pattern:

data type_first parameter, data type_second parameter, ..., data type_last parameter

As shown, two consecutive parameters are separated by a comma. For example, in
the defining statement

C++ codes: Java codes:
double Pad(float x, float y, int n) static double Pad(float x, float y, int n)

the parameters x and y are declared as float type while the parameter n is declared
as int type for the function Pad() and the data type of the return result for this func-
tion is double.

Given the above-mentioned discussions, Flowcharts 5.1(a), 5.1(b), and 5.1(c) are
translated into both C++ and Java codes.

C++ codes: Java codes:
// Subprogram 5.1(a) // Subprogram 5.1(a)
int sign(double x) { static int sign(double x) {
int f; int f;
if (x<0) if (x<0)
f=-1; f=-1;
else if (x==0) else if (x==0)
=0; f=0;

else else

130 —— Sub-algorithms and subprograms

f=1; f=1;
return f; return f;
} 3
// Subprogram 5.1(b) // Subprogram 5.1(b)
int sign(double x) { static int sign(double x) {
int sign; int sign;
if (x<0) if (x<0)
sign=-1; sign=-1;
else if (x==0) else if (x==0)
sign=0; sign=0;
else else
sign=1; sign=1;
return sign; return sign;
} }
// Subprogram 5.1(c) // Subprogram 5.1(c)
int sign(double x) { static int sign(double x) {
if (x<0) if (x<0)
return -1; return -1;
else if (x==0) else if (x==0)
return 0, return 0;
else else
return 1; return 1;
} }

Note 1 of the functions. None of the parameters should be defined as a local variable anymore in the
body of a subprogram. In other words, a parameter in simultaneously unable to be a local variable.

For example, writing a statement like
float x;

in the body of each of the three above-mentioned subprograms is illegal.

Note 2 of the functions. We should not read any parameter in the body of a sub-algorithm (subpro-
gram) anymore; the value of any parameter reaches the sub-algorithm (subprogram) by the call unit.

For instance, reading x is completely illegal in each of Flowcharts or Subprograms
5.1(a), 5.1(b), and 5.1(c).

Note 3 of the functions. We should not print the return value, if any, in the body of a sub-algorithm
(subprogram) anymore; this value is going to be returned to the call unit.

Subprograms =—— 131

sesign(sin(y))
tesin(sign(y))

Fig. 5.1(d): A main program calling the function sign().

For instance, printing fin Flowchart or Subprogram 5.1(a) as well as printing sign in
Flowchart or Subprogram 5.1(b) is illegal.
Now we explain how to call a function.

The rule of calling a 1-return function. Calling a function with a return value in algorithm-writing and
programming is similar to calling a library mathematical function.

More precisely, a function with a return value is called by its name followed by the
arguments which may occur in either of the following forms:

— In the list of an output statement;

- Inalogical expression, especially, in an if template condition;

— Inan arithmetic expression;

- As an argument of another function or a library function.

In general, the above-mentioned call phrase may occur anywhere a library function
probably occurs. The occurrence of the above sign() function can be observed in the
following examples:

if (sign(x)==0) switch (sign(k)) System.out.println(sin(sign(t));
u=sqrt(sign(y)); y=pow(x, sign(n)); cout<<sin(sign(t));

The sub-algorithm of the sign() function is called in the main algorithm of Flowchart
5.1(d).

132 —— Sub-algorithms and subprograms

As shown, the function sign() and the library function sin() are equally treated
upon calling. Programs P5_1 are the codes of the main Algorithm 5.1(d) along with the
function sub-algorithm 5.1(a).

C++ codes: Java codes:

// Program P5_1 containing two units:
// A function sub-program, sign,

// and a main program
#include <iostream>

// Program P5_1 containing two units:
// A method sub-program, sign,

// and a main program

import java.util.Scanner;

#include <math.h> class P5_1{
using namespace std; static int sign(double x) {
int sign(double x) { int f;
int f; if (x<0)
if (x<0) f=-1;
f=(-1); else if (x==0)
else if (x==0) f=0;
=0, else
else f=1;
f=1; return f;
return f; }
} [[*FKKIKFKKIKFIKKIKFIKKKIKF KKK KKK
/ /%% public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);
double y, t; double y, t;
int s; int s;
cout<<"Enter a real number: "; System.out.print("Enter a real number: ");
cin>>y; y=read.nextDouble();

s=sign(sin(y));

t=sin(sign(y));

if (s==0)
cout<<"sign(sin("<<y<<"))="<<s;

else
cout<<"sin(sign("<<y<<"))="<<t;

return 0;

Input/output:

Enter a real number: 1+

sin(sign(1))=0.841471

3

}

s=sign(Math.sin(y));
t=Math.sin(sign(y));
if (s==0)
System.out.print("sign(sin(" +y
+ ")) ="+
else
System.out.print("sin(sign(" + y
+ ") ="+

read.close();

Input/output:

Enter a real number:

1+

sin(sign(1.0)) = 0.8414709848078965

In C++ programming language, the short function subprograms can immediately be
written after the preprocessor statements using inline manner. Accordingly, the in-
line keyword is added before the defining statement. These subprograms frequently
occupy a single line since they are short. In this regard, an example is provided as
follows.

Subprograms =—— 133

inline float h(float x) {return exp(x) + exp(-x);}

Typically, both of the following subprograms are equivalent to the above inline func-
tion.

float h(float x) {
return exp(x) + exp(-x);

3

float h(float x) {
float h;
h=exp(x) + exp(-x);
return h;

}

Two common methods exist for writing a complete program including the main pro-
gram and its subprogram(s). The first way is to write the main program after all the
subprograms. There is nothing to say about this way. In the second way, which is the
preference of most programmers, the main program is written before all the subpro-
gram(s).

In C++ language, all the subprograms should be predefined before the main pro-
gram when using the second way. This can be performed using a predefined state-
ment which is a copy of the defining statement with a semicolon at the end. Of course,
we may remove the name of the parameters and only leave their data types. Actually,
the predefined statement specifies to the compiler about the structure of the function
and its parameters.

Calling a void function is quite different.

The rule of calling a void function. Calling a void function in algorithm-writing is conducted by an
instruction with the following shape:

name(arquments)

)

Similarly, a void function is called by a statement with the following syntax in programming:
name(arguments).

Similar to all the parameters, the arguments are all the value arguments. The paren-
thesis empty is left empty if there is no argument. The next example includes a void
function.

134 —— Sub-algorithms and subprograms

Roots(a,b,c)

de<b*b-4*axc

x1«(-b+vd)/(2*a) "Two roots:",
x2¢(-b-vd)/(2%a)] x1,x2)

<> |
<>

"One root:",
x€ -b/(2*%a) —> X |

.

“No real roots" |

Fig. 5.2(a): Receiving the coefficients and determining the roots of ax?>+ bx + c=0.

5.2. Example. Write a function named Roots() to receive the coefficients a, b, and ¢
of the quadratic equation ax*>+ bx + ¢ = 0 in which a is assumed to be nonzero and
then calculate and print the roots accompanied by appropriate headings. Next, write
another function named Heading() to print an appropriate heading for the above-
mentioned function. Finally, write a main algorithm to call these sub-algorithms.
Solution. The first function has already been worked out in Example 4.9. Remove the
start and end parts as well as the reading instruction in Flowchart 4.9 and take the
resulted flowchart as the body of the required void function. Then, Flowchart 5.2(a)
is obtained. Flowchart 5.2(b) is a sketch of printing a heading. This function has no
return value or parameter.

Ultimately, the above functions are called in the main algorithm of Flowchart
5.2(c).

Heading()

Fig. 5.2(b): Sketch of printing a heading.

Subprograms =— 135

Heading()

Roots(u,v,w)

Fig. 5.2(c): Calling the two functions Roots() and Heading().

In this main algorithm, the related heading is first printed using the Heading function.
Then, the quadratic polynomial coefficients named u, v, and w are read and the Roots
function is called for these three values. Programs P5_2 are the codes of the main Al-
gorithm 5.2(c) along with the two function sub-algorithms 5.2(a) and 5.2(b).

C++ codes: Java codes:

// Program P5_2 containing two // Program P5_2 containing two

// sub programs: "Heading" to print a // sub programs: "Heading" to print a
// heading and "Roots" to investigate // heading and "Roots" to investigate
// and print the roots of a polynomial // and print the roots of a polynomial

#include <iostream> import java.util.Scanner;
#include <math.h> class P5_2 {
using namespace std; static void Heading() {
void Heading() { System.out.println(
COULSK ",k kkkkkxhkkkx*kx*x"<<endl; "kkKk kKKK K AK KK KKKE")
cout<<"x Roots of *"<<endl; System.out.println(
cout<<"x axx”*2+b*x+c=0 *"<<endl; "x Roots of *");
COUtLK kxkkkkkkxkkkkkkxx"<<endl; System.out.println(
return; "% axx*2+tb*x+c=0 *");
3 System.out.println(
// Ukkkkk KKK KK KKKRKA") 5
void Roots(double a, double b, }
double ¢) { //
double d, x, x1, x2; static void Roots(double a, double b,
d=b*b-4*ax*c; double ¢) {
if (d>0) { double d, x, x1, x2;
x1=(-b+sqrt(d))/(2*a); d=bxb-4*a*c;
x2=(-b-sqrt(d))/(2*a); if (d>0) {
cout<<"Two roots: "<<x1<<", "<<x2; x1=(-b+Math.sqrt(d))/(2*a);
3 x2=(-b-Math.sqrt(d))/(2*a);
else if (d==0) { System.out.print("Two roots: " + x1
x=-b/(2*a); + " "+ x2);
cout<<"Just one root: "<<x; 3}

3 else if (d==0) {

136 —— Sub-algorithms and subprograms

else x=-b/(2*a);
cout<<"No real roots"; System.out.print("Just one root: " + x);
return; }
} else
// System.out.print("No real roots");
int main() { }
double u, v, w; //
Heading(); public static void main(String[] args) {
cout<<"Enter the coefficients: "; Scanner read=new Scanner(System.in);
cin>>u>>v>>w; double u, v, w;
Roots(u, v, w); Heading();
return 0; System.out.print("Enter the "
3 + "coefficients: ");
u=read.nextDouble();
Input/output: v=read.nextDouble();

w=read.nextDouble();
Roots(u, v, w);

KAKRKRAAKRKARRkAARA)kX
read.close();
* Roots of *)
* akx"2+bxx+c=0 * }
KARKRAARKkARRkAAXk)k%
Enter the coefficients: 1 3 -10+
Two roots: 2, -5 Input/output:
KARAkKKRAkAKRAkARkAkAkkkkk
* Roots of *

* a*x"2+b*x+c=0 *
ook dokkkok ko ko k ko kkok

Enter the coefficients: 1 3 -10+
Two roots: 2.0, -5.0

5.2.2 Multi-return sub-algorithm (subprograms)

We first consider this type of sub-algorithms in C++. The behaviours of the value and
reference parameters are explained following by pass-by-value and pass-by-reference
concepts. As already mentioned, the Java language fails to support this type of sub-
programs. Therefore, we attempt to write equivalent subprograms for the C++ multi-
return subprograms in Java.

An argument as a variable has both a value and a unique reference (address).
Both pass-by-value and pass-by-reference approaches are used to pass the arguments
to the subprogram. However, either the value or the reference can be passed to the
subprogram via an argument. In the pass-by-reference approach, the reference of the
argument in the memory of the computer is passed to the called subprogram whereas,
in the pass-by-value approach the real value of the argument is passed to the called
subprogram. In other words, a copy of the value argument is first stored in the tem-
porary reference of the subprogram when it is going to pass the called subprogram
and then, it is passed to the subprogram. Finally, its temporary references are totally
disappeared after terminating the subprogram.

Subprograms =— 137

The difference between pass-by-reference and pass-by-value approaches is that
modifications made to the arguments passed in by reference in the subprogram can
affect the call unit while those applied to the arguments passed in by value in the
subprogram are unable to affect the call unit. Further, arguments passed by the value
can be variables (e.g., x), literals (e.g., 107), and expressions (e.g., sin(x) + 2x / y) while
the reference arguments have to be variables.

We use the multi-return sub-algorithms (subprograms) when there is more than
one return to the call unit or when sub-algorithms (subprograms) are needed to mod-
ify some arguments. The defining instruction for this type of sub-algorithms (subpro-
grams) is similar to the void functions. The only difference is that, unlike the func-
tions where all the parameters were value parameters, the parameters here are a
combination of the value and reference parameters.

The rule of the parameter list for multi-return subprograms. The parameters of a multi-return sub-
program are of the following form:

data type_‘c’ first parameter, data type_‘c’ second parameter, ..., data type_‘c’ last parameter

where, ‘c’ stands for the characteristic symbol of the parameter which is empty for the value param-
eters and & for the reference parameters.

As shown in the above rule, the reference parameter is indicated by following the pa-
rameter name through an & symbol. Then, the compiler passes the memory address of
the actual parameter instead of the value. The & symbol may stick to the parameter.
For example, in the defining statement

void Pol_Cart(float ro, float theta, float &x, float &y)
both float variables ro and theta are value parameters while the float variables x

and y are reference parameters. Moreover, the notes of function subprograms men-
tioned in Subsection 5.2.1 are applied here with slight differences.

Notes of the multi-return subprograms in C++: 1. None of the parameters should be defined as a local
variable in the body of a subprogram anymore. In other words, a parameter is unable to be a local
variable at the same time.

2. We should not read any value parameter in the body of a sub-algorithm (subprogram) anymore;
the value of any parameter reaches to the sub-algorithm (subprogram) by the call unit.

3.We should not print any reference parameter in the body of a sub-algorithm (subprogram) anymore;
these parameters are going to be returned to the call unit.

138 —— Sub-algorithms and subprograms

Pol_Cart(ro,theta,x,y) @
x<ro*cos(theta) "

y<ro*sin(theta)

i Pol_Cart(r,t,u,v)
M u,v

Fig. 5.3: Converting the polar coordinate (ro, theta) to the Cartesian coordinate (x, y).

Additionally, the calling instruction for multi-return sub-algorithms (subprograms)
is similar to the void functions with the difference that, unlike the functions where all
the arguments were value arguments, the arguments here are a combination of the
value and reference arguments. In the next example a multi-return sub-program is
experienced.

5.3. Example. The Cartesian coordinates (x, y) of a point are calculated from its polar
coordinates (p,) as follows.

x =p cos(0), y = p sin(6).

Write a sub-algorithm named Pol_Cart to receive the polar coordinates of a point and
then calculate and return its Cartesian coordinates. Next, write a main algorithm to
read the polar coordinates of a point and then calculate and print its Cartesian coor-
dinates calling the Pol_Cart sub-algorithm.

Solution. The requested algorithm is drawn in Flowchart 5.3 and its translation is
written in Program P5_3 in C++ codes.

C++ codes only:

// Program P5_3 to convert polar coordinates
// to Cartesian coordinates using a subprogram.
#include <iostream>
#include <math.h>
using namespace std;
Pol_Cart(double ro, double theta, double &x, double &y) {
X = ro*cos(theta);
y = roxsin(theta);
return x, y;
¥
//

Subprograms —— 139

int main() {
double r, t, u, v;
cout<<"Enter the polar coordinates: ";
cin>>r>>t;
Pol_Cart(r, t, u, v);
cout<<"The Cartesian coordinates are ("<<u<<", "<<v<<")";
return 0;

Input/output:

Enter the polar coordinates: 1 0+
The Cartesian coordinates are (1, 0)

Writing the return statement including its reference parameters at the end of the subprogram is op-
tional in the multi-return subprograms. However, writing an empty return statement is illegal. In
other words, the return statement should always be accompanied by the return parameters.

Now, we program for Algorithm 5.3 in Java. Since Java is strictly pass-by-value, there-
fore, the Cartesian coordinate should be used as the objects of the class Cart. The
following synchronous programs are employed to examine the object-orientation fea-
ture in both C++ and Java.

C++ codes: Java codes:

// Program P5_3_00P to convert polar // Program P5_3_00OP to convert polar
// coordinates to Cartesian coordinates // coordinates to Cartesian coordinates

// using an OOP subprogram. // using a subprogram.
#include <iostream> import java.util.Scanner;
#include <math.h> class Cart {

using namespace std;

public double x, y;
class Cart {

public: 3
double x, y; /!

}; class P5_3_00P {

// static Cart Pol_Car(double ro,

static Cart Pol_Car(double ro, double theta) {

double theta) { Cart P=new Cart();

Cart P; P.x=ro*Math.cos(theta);
P.x=ro*cgs(theta); P.y=ro*Math.sin(theta);
P.y=ro*sin(theta);
return P; return P;

}; J

// //

int main() { public static void main(String[] args) {
double P_x, P_y, r, t; double r, t, P_x, P_y;
cout<<"Enter the polar coordinates: "; System.out.print("Enter the polar "
cin >>r>> t; + "coordinates: ");
P_x=Pol_Car(r, t).x; Scanner read=new Scanner(System.in);
P_y=Pol_Car(r, t).y;
cout<<"The Cartesian coordinates: (" r=read. nextDouble();

<<P_x<<", "<<P_y<<")"; t=read.nextDouble();
return 0; P_x=Pol_Car(r, t).x;

} P_y=Pol_Car(r, t).y;

140 —— Sub-algorithms and subprograms

System.out.print("Cartesian coordinates:"

Input/output: F P T T Py + YY),
read.close();
Enter the polar coordinates: 1 0+ } }
The Cartesian coordinates are (1, 0)
Input/output:

Enter the polar coordinates: 1 0+
The Cartesian coordinates are (1.0, 0.0)

Based on the rule, any reference parameter should have the & symbol. In addition, the
parameter should have the & symbol if it is of both value and parameter types. In the
subprogram of the next example, the parameters m and n are of both value and refer-
ence types.

5.4. Example (Swap algorithm). The swap algorithm was discussed in Chapter 1. Write
a subprogram, named swap, to receive two integer values of m and n, swap their value,
and return them with the same parameters. Then, write a main algorithm to call the
subprogram swap() for the two read integers.

Solution. The requested algorithm in C++ codes is found in Program P5_4.

// Program P5_4 to interchange two integers using the swap function
#include <iostream>
using namespace std;
void swap(int&, int&);
int main() {
int m, n;
cout<<"Enter two integers m and n: ";
cin>>m>>n;
swap(m, n);
cout<<"The interchanged values: m="<<m<<" and n="<<n;
return 0;
3
//
void swap(int& m, int& n) {
int k;
k=m;, m=n; n=k;

3
Input/output:

Enter two integers m and n: 1 2«
The interchanged values: m=2 and n=1

The following synchronous Programs P5_4_OOP shoe the object-oriented feature in
C++ and Java.

C++ codes:

// Program P5_4_00P to swap two objects
#include <iostream>
using namespace std;
class Var {
public:
int no;
Var(int no) {
this->no=no;
}
3
//******************************
void swap(Var &v1l, Var &v2) {
int k;
k=v1.no;
v1.no=v2.no;
v2.no= k;
3
//
int main() {
Var vi=Var(1);
Var v2=Var(2);
swap(vl, v2);
cout<<"vl.no = "<<v1.no<<endl;
cout<<"v2.no = "<<v2.no<<endl;
return 0;

}

Output:

I
N

vli.no =
v2.no =1

Self-calling (recursive) functions = 141

Java codes:

// Program P5_4_00P to swap two objects
class Var {
int no;
Var(int no) {
this.no=no;
}
3
//
class swap {
public static void swap(Var v1, Var v2) {
int k;
k=v1.no;
v1.no=v2.no;
v2.no=k;
3
// KIKKKKIKKKKHIK KKK KKK KK
public static void main(String[] args) {
Var vi=new Var(1);
Var v2=new Var(2);
swap(vl, v2);

System.out.println("vli.no = " + v1.no);
System.out.println("v2.no = " + v2.no);
}
3
Output:
vli.no = 2
v2.no =1

In each of the Programs P5_4_OOP, there exists a constructor which constructs the
initial values of int-type data members (instance variable) no. In the left C++ pro-
gram, the method swap() receives the arguments v1 and v2 as the objects created in
the main method, call the instance variable no in the class Var, and finally, swap and
return them. These tasks are performed in the right Java program within the class
swap. The run of the program is clear.

5.3 Self-calling (recursive) functions

Self-calling is a technique in which a sub-algorithm (subprogram) calls itself one or
more times in its uncompleted implementation (execution) process. In this case, the
following tasks are performed in the implementation process of this calls. Consider-
ing these tasks leads to a better understanding of the notion of self-calling and there-
fore an accurate method of applying this notion in algorithm-writing (programming).

142 —— Sub-algorithms and subprograms

1) Imagine that, a temporary layered memory called the “stack memory” is created
in each calling of the sub-algorithm and the values of arguments are copied to a
layer of this memory such that each layer is distinguished from the previous layer
and stacked on that layer. It is noteworthy that all the arguments are of value
type.

2) Further, the self-calling process is repeated up to the reflexing point. By the re-
flexing point we mean the first completed sub-algorithm in the last calling in
which there is no more self-calling and the sub-algorithm is completely imple-
mented. With the arrangement of the layers of the stack memory in the first
above- mentioned task, the top layer is related to the last calling. The top layer of
the stack memory is disappeared when the last calling is completely imple-
mented. Then, the implementation control is transferred just after the point from
where the final self-calling was conducted. Now, the uncompleted implementa-
tion of this sub-algorithm is completed and the corresponding layer of the stack
memory is disappeared. This procedure is repeated until the first uncompleted
sub-algorithm called from the call unit is completed. Finally, the bottom layer
related to the first call is disappeared and the implementation control is trans-
ferred just after the point from where the first calling from the call unit was per-
formed.

One of the most important applications of the self-calling technique is the calculation
of recursive equations or recursive functions. The most popular recursive example is
the factorial function (relation).

5.5. Example. The factorial of the non-negative integer n is defined by the recursive
relation
n!'=n(n-1)!

or by the following recursive function:

_(L ifn=0,
fact(n) = {n fact(n — 1), otherwise.

Write a function to receive a non-negative integer n and then calculate and return the
factorial of n using the recursive technique.
Solution. The definition is clear and we only need an if-else template. Flowchart
5.5(a) visualizes this sub-algorithm.

The main algorithm represented in Flowchart 5.5(b) reads an integer m and prints
a message if the number is negative. Otherwise, it calculates and prints the factorial
of the given number by calling the fact() sub-algorithm. Programs P5_5 combined
Sub-algorithm 5.5(a) and main Algorithm 5.5(b) in C++ and Java codes.

int main() {

k= fact(m);

i

long fact(int
6 if (n==0)

return 1;
else

—

return nx}

Self-calling (recursive) functions = 143

stack memory

fact(n-1);

]

long fact(int
2 if (n==0)

return 1;
else

return nx

—

fact(n-1);

]

long fact(int

if (n==0)
1 return 1;
else

return n*

)

fact(n-1);

]

long fact(int
1 if (n==0)
return 1;
else
return nx

3

fact(n-1);

reflexing point

Fig. 5.5(c): Self-calling process in the recursive function fact().

144 —— Sub-algorithms and subprograms

return nxfact(n-1) <::::EgEEEE:E:::::>

Fig. 5.5(a): Calculating the factorial of n using the recursive technique.

fefact(m) m,"is negative"

G

Fig. 5.5(b): Calculating the factorial of a read number calling the function fact().

C++ codes: Java codes:
// Program P5_5 to write down the // Program P5_5 to write down the
// factorial function recursively // factorial method recursively
#include <iostream.h> import java.util.Scanner;
using namespace std; class P5_5 {
long fact(int n) { static long fact(int n) {
if (n==0) if (n==0)
return 1; return 1;
else else
return nxfact(n-1); return nxfact(n-1);
} 3
// //
int main() { public static void main(String[] args) {
int m; Scanner read=new Scanner(System.in);
long int k; long k;
cout<<"Enter an integer: "; System.out.print("Enter an integer: ");

cin>>m; int m;

Self-calling (recursive) functions = 145

if (m<0) m=read.nextInt();
cout<<m<<" is negative"; if (m<0)
else { System.out.print(m + " is negative");
k=fact(m); else {
cout<<m<<"! = "<<k; k = fact(m);
} System.out.print(m + "! =" + k);
return 0; }
} read.close();
}
Input/output: 3
Enter an integer: 4+« Input/output:

10! = 3628800
Enter an integer: 4+
10! = 3628800

As explained at the beginning of the section, Figure 5.5(c) illustrates the self-calling
process in the recursive function of Flowchart 5.1(a) from the call unit up to the re-
flexing point and then back to the call unit bringing the required value of the factorial
of n for n = 3. The dotted lines indicates that the implementation of the surrounded
region is uncompleted. This illustration is for the C++ codes. Furthermore, the same
is true for Java codes.

In Example 5.5, we had a 1-return function in the implementation of which the
function was once called by the call unit and three times by itself. In the next exam-
ple, a void function calls itself.

5.6. Example. Using the recursive technique, write a function named Back() to re-
ceive an integer n which is supposed < 9 and print the integers 9 backward to n.

Solution. In the basic body of the required void function, using an if-else template,
we call the function itself for n + 1if n < 9. Otherwise, we print n. This sub-algorithm

Coseim D
o>

Back(n+1)

Fig. 5.6(a): Printing the numbers 9 backward to n.

146 —— Sub-algorithms and subprograms

is displayed in Flowchart 5.6(a). The main algorithm in Flowchart 5.6(a) calls the sub-
algorithm Back() for the argument of 7. Programs P5_6 demonstrate the translation
of Flowchart 5.6(a) into C++ and Java codes.

C++ codes: Java codes:
// Program P5_6 a recursive subprogram // Program P5_6 a recursive subprogram
// printing 9 backwards to n // printing 9 backwards to n
#include <iostream> import java.util.Scanner;
using namespace std; class P5_6 {
void Back(int n) { static void Back(int n) {
if (n<9) if (n<9)
Back(n+1); Back(n+1);
cout<<n<<endl; System.out.println(n);
3 ¥
// //
int main() { public static void main(String[] args) {
int n; Scanner read=new Scanner(System.in);
cout<<"Enter an integer:"; System.out.print("Enter an integer:");
cin>>n; int n=read.nextInt();
Back(n); Back(n);
return 0; read.close();
3 }
}
Input/output:
Input/output:
Enter an integer:7+
9 Enter an integer:7¢
8 9
7 8

7

Based on what was mentioned at the beginning of the section, Figure 5.6(b) depicts
the self-calling process in the void function of Flowchart 5.6(a) from the call unit up
to the reflexing point and then back to the call unit printing the integers 9 backward
ton=7. The part of the program below the dotted lines is incomplete in the downward
direction while it is completed in the upward direction. This illustration is for the C++
codes. Moreover, the same is true for Java codes.

The program starts executing from the back(n) call statement in the main pro-
gram and the direction of the arrows clearly displays the execution direction of the
program reaching the reflexing point. In this direction, the main program calls the
subprogram once and the subprogram calls itself twice. In each of the three above-
mentioned calls, one layer is created in the stack memory. In the reflexing point, the
subprogram is completely executed printing the value 9 of the concerned layer in the
stack memory. Then, the execution control goes back to the uncompleted part of the
penultimate subprogram and the procedure is continued printing 8 and then 7 until
the return 0 statement terminates the main program.

int main() {
cout<<"Backward printing"<<endl;
Back(7);

return 0; <=

}

!}

void Back(int n)

Self-calling (recursive) functions = 147

stack memory

-~

if (n<9)
Back(n+1);

cout<<n<<endl;

Ly

i

void Back(int n)

-~

if (n<9)
Back(n+1);

cout<<n<<endl;

)

i

void Back(int n) {

if (n<9)
Back(n+1);

cout<<n<<endl;

—)

reflexing point

Fig. 5.6(b): Self-calling process in the recursive void function Back().

Question. There should be a reflexing point in every self-calling subprogram. What

happens if we write the statement

Back(n+1);

in the functions of Programs P5_6 instead of the following if statement?

if n<9 then
Back(n+1);

Answer. In this case, there is no reflexing point and the subprogram frequently calls
itself. However, considering that the capacity of the stack memory is limited, the
memory overflows after a while and the stack overflow error is encountered since one
layer is created in the stack memory in each calling.

148 = Sub-algorithms and subprograms

Tower A Tower B Tower C

Fig. 5.7: Puzzle of Hanoi Towers.

Additionally, the historical puzzle of the Hanoi towers is another popular example of
the self-calling void functions.

5.7. Example (Puzzle of Hanoi Towers). Consider three towers and several disks of
distinct sizes on a tower, say A, as shown in Figure 5.7.

In this puzzle, we move the disks from Tower A to Tower C using Tower B as an
auxiliary tower subject to the following conditions:
1. Only the top disk can be picked up in every move;
2. The disk should be placed on another Tower if it is picked up;
3. Abig disk fails to be placed on a smaller disk.

This puzzle, which is attributed to the monks of the Brahma temple, includes three
golden towers and sixty-four golden disks. Considering the above-mentioned condi-
tions, it was believed that upon moving all the sixty-four disks from one tower to an-
other the world would end if every move takes one second. In his book [14], Georges
Gamow proves that life on the earth ends much sooner than that time.

Write an algorithm named move to receive the number n of disks and the char type
variables pegA, pegB, and pegC and then moves the n disks from Tower pegA to Tower
pegC using Tower pegB as an auxiliary tower. Each movement is by printing its direc-
tion.

Solution. The required algorithm is described below.
1. If n=1then, move the single disk from Tower A to Tower C with one move;
2. Else, the movement is performed by recursive techniques as follows:

2.1. Move n - 1 disks from Tower A to Tower B employing Tower C;

2.2. Move the only remaining (biggest) disk in Tower A to Tower C with one

move;

2.3. Move n - 1disks from Tower B to Tower C utilizing Tower A.

Self-calling (recursive) functions =—— 149

It is recommended to experiment the above-mentioned moves for the cases n = 2, 3,
and 4 by yourself. You can observe that the moves of the previous case are repeated
twice (once in step 2.1 and once again in step 2.3) in each case.

Considering the clear algorithm described above, the program can be directly
written without the need for drawing a flowchart. To do this, the defining statement
of the function is first written:

C++ codes: void move(int n, char pegA, char pegB, char pegC)
Java codes: static void move(int n, char pegA, char pegB, char pegC)

We only need an if-else statement. The above description puts forward the fact that
we are dealing with a recursive process hanging on the if-range (case n = 1) in which
case the move direction is printed as follows:

C++ codes: cout<<"Move a disk from "<<pegA<<" to "<<pegC<<endl;
Java codes: System.out.println("Move a disk from " + pegA + " to " + pegC);

Now, the else-range is clear if we pay attention to the order of the origin, destination,
and auxiliary towers in the defining statements of the function. We are ready now to
write the required function. The main units of Programs P5_7 read the number n of
the disks and call the function move for n and the corresponding character arguments
‘A’, ‘B’, and ‘C’ to character parameters pegA, pegB, and pegC, respectively.

C++ codes: Java codes:

// Program P5_7 The recursive manner for // Program P5_7 The recursive manner for
// movements of TOWERS OF HANOI puzzle. // movements of TOWERS OF HANOI puzzle.

#include <iostream.h> import java.util.Scanner;
using namespace std; class P5_7 {
void move(int n, char pegA, static void move(int n, char pegA,
char pegB, char pegC) { char pegB, char pegC) {
if (n==1) if (n==1)
cout<<"Move a disk from " System.out.println("Move a disk from "
<<pegA<<" to "<<pegC<<endl; + pegA + " to " + pegC);
else { else {
move(n-1, pegA, pegC, pegB); move(n-1, pegA, pegC, pegB);
move(1, pegA, pegB, pegC); move(1, pegA, pegB, pegC);
move(n-1, pegB, pegA, pegC); move(n-1, pegB, pegA, pegC);
} }
return; }
} //
// public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);
int n; int n;

cout<<"Enter the number System.out.print("Enter the number

150 —— Sub-algorithms and subprograms

<<"of disks: "; + "of disks: ");
cin>>n; n=read.nextInt();
move(n, ’A’, 'B’, 'C’); move(n, 'A', 'B', 'C");
return 0; read.close();
} 3
}
Input/output:
Input/output:

Enter the number of disks: 4+

Move a disk from A to B Enter the number of disks: 4¢
Move a disk from A to C Move a disk from A to B
Move a disk from B to C Move a disk from A to C
Move a disk from A to B Move a disk from B to C
Move a disk from C to A Move a disk from A to B
Move a disk from C to B Move a disk from C to A
Move a disk from A to B Move a disk from C to B
Move a disk from A to C Move a disk from A to B
Move a disk from B to C Move a disk from A to C
Move a disk from B to A Move a disk from B to C
Move a disk from C to A Move a disk from B to A
Move a disk from B to C Move a disk from C to A
Move a disk from A to B Move a disk from B to C
Move a disk from A to C Move a disk from A to B
Move a disk from B to C Move a disk from A to C
Move a disk from B to C

As shown, the first seven moves transfers three disks from A to B using C. In addition,
the eighth move transfers the biggest disk from A to C. Finally, the last seven moves
transfer the three disks from B to C employing A.

5.7.3. Exercise. Illustrate the process of executing the programs P5_7 as displayed in
Figures 5.5(c) and 5.5(h).

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, and (3) Provide appropriate input notifications and output
headings, if any. In addition, the user-defined functions in the texts of the current
and previous chapters may be used unless otherwise is explicitly specified.

5.1. The number of digits of a positive integer n can be calculated using the following
formula.

d(n) = [logo(M)] + 1.

where, [x] refers to the nearest integer less than or equal to x. Write a function named
digits() to receive the positive integer n and then calculate and return the number
of digits of n using the above formula. Next, write a main algorithm to read the integer

Exercises == 151

m and calling the function digits(), print the number of its digits if m is positive;
otherwise, print the message Not positive.

5.2. Write a function to receive two real numbers and return the integers 1, -1, or 0 if
their multiplication is positive, negative or zero, respectively. Finally, call this func-
tion in an appropriate main algorithm.

5.3. Write a function to read the positive integer n and determine whether it is an en-
tire square or not by returning one of the two numbers 1 or O, respectively. Eventually,
call this function in an appropriate main algorithm.

5.4. Write a function to receive the integer n and determine whether it is odd or even
by returning the characters ‘o’ or ‘e’, respectively. Ultimately, call this function in an
appropriate main algorithm.

5.5. Write a function for defining the Kronecker function below (take i and j as real
numbers):

(L, ifi=],
K("D—{o, ifi#].

Then, call this function in an appropriate main algorithm.

5.6. Write a function to receive a real number and return its integer and decimal part
to the call unit. Then, call this function in an appropriate main algorithm.

5.7. Write a function named Tri() to receive three positive real numbers A, B, and C
and return 1 if they form the sides of a triangle; otherwise, return 0. Next, call this
function in an appropriate main algorithm.

5.8. Write a function named R_Tri () to receive three positive real numbers A, B, and
C and return 1 if they form the sides of a right triangle; otherwise, return 0. Finally,
call this function in an appropriate main algorithm.

5.9. Write a main algorithm to read three positive real numbers A, B, and C. Next,
print the message Not all positive if none of these numbers are positive (at least
one of them is negative or zero); otherwise, calling the function Tri(), print the Not
triangle message if they are not the sides of a triangle; otherwise, calling the R_Tri
algorithm, print the message Right triangle if they are the sides of a right triangle;
otherwise, print the message Trinangle.

152 —— Sub-algorithms and subprograms

5.10. Write a function to receive the two numbers m and d as months and days, re-
spectively, and then calculate and return the number of a day in a year which corre-
sponds to the d-th day of the m-th month (e.g., by receiving 2 and 21, return: 52).

5.11. Write a function to receive the first day f of the current year and the count n of a
day in the year and then determine and return which day of the week that day is. Next,
write a main algorithm to read a number (from O to 6) as the first day of the year and
determine what day of the week the first day of every month is, calling the above-
mentioned function.

5.12. Write a function to receive a number f (from O to 6), a pair of integers m and d,

as the first day of the year, the month, and the day, respectively, and calculate and

return a day of the week with is in correspondence with the d-th day of the m-th

month. Next, write a main algorithm to read an integer g (from O to 6), as the first day

of the year. Then, each time read a pair of integers n, as the month, and ¢, as the day,

and

— Terminate the algorithm if both n and t are equal to O;

— Print the message error if one of the numbers n or t is out of its legal range;

— Otherwise, calculate a day of the week which is related to the t-th day of the n-th
month by calling the above function and then print it as one of the days of the
week.

5.13. The Fibonacci sequence is a sequence in which the first two terms are equal to 1
and from the third term each term is the sum of the two previous terms before that
term:

fl = f2 = 1'and fOTTL = 3' fn = fn—l +fn—2-
Some of the terms of this sequence are:
1, 1, 2, 3, 5, 8, 13, 21,..

Write a function to receive a positive integer n and then calculate and return the n-th
term of the sequence using the self-calling technique. Next, write a main algorithm to
read a positive integer n and print the message Not positive if it is not positive and
if it is positive, calculate and print the n-th term of the sequence using the above-
mentioned function.

5.14. The terms of the sequence f are recursively defined as:

fl = 1' fZ = Z'Qnd forn = 3' fn = fn—lz +fn—22-

Exercises == 153

Using the self-calling technique, write a function to receive a positive integer n and
then calculate and return the n-th term of the sequence. Now, write a main algorithm
to read a positive integer n. Next, print the message Not positive if it is not positive;
otherwise, calculate and print the n-th term of the sequence using the above function.

5.15. The polynomials P, at the point x, with —1 < x < 1, are calculated by the following
recurrence relations.

2n-1

Py(x) =1, P,(x) =x,and forn =3, B,(x) = P,_1(x)— nT_an_z ().

Arrange a function to receive n and x and then calculate and return B, (x). Next, write
a main algorithm to read the values of n and x and, calling the above function, calcu-
late and print the value of P, (x) in the format below if n >0 and -1<x<1:

the value of n -th polynomial at x is: the returnvalue
Otherwise, print the message below:
Error: illegal value x or n

5.16. Considering that x° = 1, and for a positive integer n, x™ = xx"® !, and x~* =
1/x, define a recursive function f to receive the real number x and the integer n and
calculate and return the value of f,(x) = x™. Assume that the receiving values of x
and n are such that x™ is not undefined. Next, write a main algorithm to read the value
of x and n and print the following message in the undefined cases x =0 and n < O:

the value of x * the value of n is not defined
Otherwise, print the value of x™ with the following format calling the function above:
the value of x " the value of n = the recursive value

5.17. The number of combinations of r distinct objects from n objects, with 0 < r < n,
denoted by C(n, r), is calculated by the following recursive function:

1, ifr=norr=0,
C(n,r) =4n, ifr=1
Cln—1,r)+Cn—-1,r—1), otherwise.

Write a function to receive the integer values n and r and then calculate and return
the value C(n, r) using the self-calling technique. It is assumed that the receiving val-
ues n and r satisfy the inequality O < r < n. Next, write a main algorithm which reads

154 —— Sub-algorithms and subprograms

the two values n and r. Afterwards, prints the following format if the condition 0 < r <
n is not established:

C(the value of n , the value of r) is not defined
Otherwise, print C(n, r) in the following format calling the above function:

C(the value of n , the value of r) = recursive value

6 Automated loops

Any process that repeatedly implements a set of instructions, called the range of a
loop, is called a loop. Designing this range is the most fundamental part of the job in
creating a loop. In other words, knowing what to do in each repetition of the loop and
how to use such repetition properly to design the algorithm is of great importance.

A kind of loop is based on one or several variables so that, first, the initial values
are often assigned to them before starting the loop. Then, a process is performed on
the variables in each repetition of the loop. Finally, repeating or exiting the loop is
determined by a condition called the repetition (or exiting) condition of the loop. This
kind of loop is known as the conditional loop which is discussed in the next chapter.

Another kind of loop is called the automated loop which depends on a counter.
Three tasks are automatically performed by the compiler in this type of loop:

1. The initial value for the counter is assigned;

2. A constant (positive or negative) amount, called the growth of the loop, is added
to the previous amount of the counter in each repetition of the loop;

3. The number r of the repetitions is calculated by the compiler and the range of the
loop repeats to the number of r times.

That is why this kind of loop is named the automated loop.

6.1 The for template

The automated loop template, called hereafter the “for template”, or the “for loop”
is used in the flowcharts with the shape displayed below.

loop range

L

The translation of this template into both C++ and Java codes, which is called the for
statement, is as follows.

for (i=a; i<=b; i=i+step) {
loop range

The loop range, in the case of more than one statement, should be grouped by {3}.

https://doi.org/10.1515/9783110616484-006

156 —— Automated loops

The items “i, a, b”, and “step” are called the “variable, initial value, final value”, and
“growth value” of the loop, respectively. The phrase “i=a, b, step” is called the spec-
ification of the loop and is written in the font of the codes without any spacing after
commas. Moreover, only after the semicolon will be used the space; for instance, we
write: for (i=k+1; i<=n; i=+2).

For running the mentioned for statement, the compiler first calculates the num-
ber r of repetitions using the following formula:

{[b —a + step }
r = max{[———¢,
step

where, [k] stands for the least integer close to k. Then, the run process is performed in
the following way: repeat the loop range to the number of r times, starting from i = q,
in such a way to add the amount of the step to the previous amount of i in each repe-
tition.

For example, consider the specification i=1, 3, 9. The number of repetitions is r =
3 and hence the loop range is run 3 times. The first time, 1 is assigned to i and the
range is run. The second time, 3 units is added to the previous amount of i, and the
range is run for i = 4. Finally, the amount of i is increased to 7 and the range is run the
third time for i = 7. Several notes should be considered in this respect.

— The growth increment i=i+step can be written as i+=step using the compound addition assign-
ment +=. Especially, one-unit increasing is written as i++ and one-unit decreasing as i--.

— Theinitial, final, and growth values should not vary inside the loop range.

— The variable of the loop should not be manipulated.

— The initial value is always used in the first repetition for assigning to the variable. However, the
final value may be useless. This value, indeed, plays the role of a border so that the exit from the
loop happens upon passing the value of the variable from this amount.

— From now on, if the growth is not written in the flowcharts, then it will be assumed as 1 for simplic-
ity.

There are two circumstances in which incompatibility occurs in the variables of a
loop:

1) a<bandstep<O0, forexample i=1,3,-1;

2) a>bandstep >0, for example i=4,1,2;

In these cases, the number of repetitions is equal to zero and, therefore, the range of
the loop never runs. It is as though there is no loop whatsoever.

The for template = 157

L

G
cpecp+l

Fig. 6.1: Determining the number of positive integers among 20 integers.

Two issues are highlighted in constructing of the for loops, properly recognizing the
specification of the loop, and determining the range of the loop.

6.1. Example. Write an algorithm to read 20 integers, and then determine and print
the number of positive integers among these integers.

Solution. Denote the number of positive and read integers by cp and cx, respectively.
Here, we need a for loop with 20 repetitions since 20 numbers should be read. The
specification of this loop is: cx=1,20. What should be processed in each repetition of
the loop? Well, first a number x is read. Then, one unit is added to the cp if this num-
ber is positive. Assigning an initial value to cp is missing. This should be conducted
before starting the loop. Why? Arrange the implementation table for four or five vari-
ous data in order to get the answer to this question and assign the initial value to cp
in duplicate before starting the loop and inside the loop and then compare the results.
The resulted flowchart is illustrated in Figure 6.1. Programs P6_1 are the translation
of this flowchart into both C++ and Java codes.

C++ codes: Java codes:
// Program P6_1 to determine the number // Program P6_1 to determine the number
// of positive integers using a for loop // of positive integers using a for loop
#include <iostream> import java.util.Scanner;
using namespace std; class P6_1 {
int main() { public static void main(String[] args) {
int x, cp=0, cx; Scanner read=new Scanner(System.in);
for (cx=1; cx<=20; cx++) { int x, cp=0, cx;
cout<<"Enter an integer: "; for (cx=1; cx<=20; cx++) {

cin>>x; System.out.print("Enter an "

158 = Automated loops

if (x>0) + "integer: ");
cptt; x=read.nextInt();
} if (x>0)
cout<<"Number of positive integers: "<<cp; cpt+;
return 0; }
3 System.out.print("Number of "
+ "positive integers: " + cp);
read.close();
¥
}

In chapter 5, the factorial of a non-negative integer was calculated using a recursive
subprogram. In the next example, we calculate directly this factorial.

6.2. Example. Write an algorithm to read a non-negative integer n and then calculate
and print n! using the following formula:

n'=1x2x--xn.

Solution. Here, we are dealing with a normal count from 1 to n. Therefore, an auto-
mated loop with the specification c=1, n is constructed.

When n equals to 1 we expect the output 1;
When n equals to 2 we expect the output 1 x 2;
When n equals to 3 we expect the output 1 x 2 x 3, and the like.

As seen, we have a repetitive multiplication which is taken as the fact. Furthermore,
the new number in each repetition of the loop is multiplied to the previous amount of
the fact and substituted for it. Therefore, the instruction which is implemented in
each repetition of the loop is:

!

fact«fact*c
)

In fact, this is the range of our loop. Finally, assigning the initial value 1 to the fact is
the only process left to finish the loop. Why 1? The implementation table reveals the
answer. The result of our discussion is depicted in Figure 6.2(a).

The implementation table of this algorithm for n = 4 is presented in Table 6.2(a).

— Ifavariableis read only once, then it is not necessary to place itin the implementation table. Thus,
we did not written n in Table 6.2(a).

— It would be better to write the details of the calculation in the implementation table in order to
compare the requested calculation in the problem with the results of the implementation table. In
Table 6.2(a), the details of the calculation are written instead of writing only the resulted numbers
in the fact column. In this case, the output column is not necessary.

The for template =—— 159

factel
fact facte<factxc

Fig. 6.2(a): Factorial main algorithm.

Tab. 6.2(a): Implementation table of Flowchart 6.2(a) for n = 4.

position c fact output
before the loop 1

first repetition 1 1=1x1

second repetition 2 21=11x2

third repetition 3 31=2Ix3

fourth repetition 4 4 =31x4

after the loop 24

Does Table 6.2(a) work either for n = 0? The answer is yes. This is due the existence of
an incompatibility. As a result, the loop never runs. However, the initial number of
fact is 1 which is accidentally 0! The translation of Flowchart 6.2(a) into both C++ and
Java codes can be seen in Programs P6_2_A.

The long type has a higher capacity in the calculations compared to the int type.
Accordingly, one can use this type in order to use the maximum capacity.

The for statement is used in various types. One of these types which is not mostly
used is employed for the infinite repetitions:

for (5;)
loop range

160 —— Automated loops

C++ codes:

// Program P6_2_A to compute the
// factorial of a non-negative number
#include <iostream>
using namespace std;
int main() {
long fact;
int c, n;
cout<<"Enter an integer: ";
cin>>n;
fact=1;
for (c=1; c<=n; c++)
fact*=c;
cout<<n<<"!="<<fact;
return 0;

Input/output:

Enter an integer: 4+
10! = 3628800

Java codes:

// Program P6_2_A to compute the
// factorial of a non-negative number
import java.util.Scanner;
class P6_2_A {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
long fact;
int c, n;
System.out.print("Enter an integer: ");
n=read.nextInt();
fact=1;
for (c=1; c<=n; c++)
fact=factxc;

System.out.print(n + "!=" + fact);
read.close();

}

}

Input/output:

Enter an integer: 4+
10! = 3628800

In this case, a combination of control buttons is used in different systems to exit the
infinite loop. For example, pushing the two buttons “ctr]” and “break” terminates the

loop in most systems.

The for statement used so far is in the following form:

assignment statements related to the loop

for (i=a; i<=b; step)
loop range

Here, the “assignment statements related to the loop” may be displaced before i=a.
Moreover, the loop range may be moved after i=a, in which case the for statement is
ended and thus a semicolon must be added after the closed parenthesis. Note that,
except for the two semicolon separators in the specification of the loop, the other
statements must be separated by the commas. Given the above explanations, the fol-
lowing four group of statements are equivalent in both C++ and Java languages.

fact=1;
for (c=1; c<=n; c++)
fact * =c;

for (fact=1, c=1; c<=n; c++)
fact * =c;

The for template =—— 161

factel

Fig. 6.2(b): Factorial function; the carrier and function have the same name.

fact=1;
for (c=1; c<=n; fact*=c, c++);

for (fact=1, c=1; c<=n; fact*=c, c++);

We modify Flowchart 6.2(a) to a sub-algorithm named fact () (Fig. 6.2(b)).

We respected two essential points in the process of modifying this sub-algorithm

from Algorithm 6.2(a).

— Considering the fact that there exists exactly one return, we choose a function
named fact and determine its only parameters as n. This function receives a non-
negative number n and then calculates and returns its factorial.

— Theinstructions of reading n and printing fact are removed. Instead, n is received
from the call unit to the subprogram and the fact returns to that unit.

The name of the carrier and function are the same in Flowchart 6.2(b). However, they
may be different, as in Figure 6.2(c).

Fig. 6.2(c): Factorial function; the carrier and function have different names.

162 —— Automated loops

k

| "negative" | fact(n) |

Fig. 6.2(d): A main algorithm calling fact.

The function sub-algorithm fact() is applied several times in this book. The corre-
sponding subprogram (method) can be saved in the memory of the computer for fur-
ther uses. The translation of Flowchart 6.2(c) into C++ and Java codes is represented
in the following methods:

C++ codes: Java codes:
long fact(int n) { static long fact(int n) {
int c; int c;
long f; long f;
for (f=1, c=1; c<=n; f*=c, ct+); for (f=1, c=1; c<=n; f*=c, c++) ;
return f; return f;
} }

The main algorithm 6.2(d) reads first the positive integer k. Then, it reads k integers
one by one. After each reading, if the read number is non-negative, it calculates and
prints the factorial of the number using the sub-algorithm fact(); otherwise, it prints
a message. Programs P6_2_B hold the translation of this main algorithm, as well as
the sub-algorithm fact() into both C++ and Java codes.

C++ codes: Java codes:

// Program P6_2_B to investigate the // Program P6_2_B to investigate the

// factorial of k read integers // factorial of k read integers
// using the function fact() // using the function fact()
#include <iostream> import java.util.Scanner;

using namespace std; class P6_2_B {

long fact(int); public static void main(String[] args) {

The for template =—— 163

int main() { Scanner read=new Scanner(System.in);
int i, k, n; int i, k, n;
cout<<"Enter the number of " System.out.print("Enter the number of "
<<"read integers: "; + "read integers: ");
cin>>k; k=read.nextInt();
for (i=1; i<=k; i++) { for (i=1; i<=k; i++) {
cout<<"Enter an integer: "; System.out.print("Enter an integer: ");
cin>>n; n=read.nextInt();
if (n>=0) if (n>=0)
cout<<n<<"!="<<fact(n)<<"\n"; System.out.println(n + "!=" + fact(n));
else else
cout<<n<<" is negative \n"; System.out.println(n + " is negative");
3 }
return 0; read.close();
} }
// [] *FFIKFKKIKFIKFKKIKFIIKIKKKK KK HK*K
long fact(int n) { static long fact(int n) {
int c; int c;
long f; long f;
for (f=1, c=1; c<=n; f*=c, ct++); for (f=1, c=1; c<=n; f*=c, ct++) ;
return f; return f;
3 }
}
Input/output:
Input/output:
Enter the number of read integers: 3+
Enter an integer: -2+ Enter the number of read integers: 3+
-2 is negative Enter an integer: -2+
Enter an integer: 0+ -2 is negative
o!=1 Enter an integer: 0+
Enter an integer: 10+ 0!=1
10!=3628800 Enter an integer: 10+
10!1=3628800

6.3. Example. Write an algorithm to read the positive integer n and calculate and then
print the following sum.

1W4+214 3+ 4n!

Solution. In this algorithm, as well as both the oncoming Algorithms 6.5 and 6.6,
where a factorial calculation is involved, a simple way is to write an algorithm in
which the fact() sub-algorithm is used. However, we will consider these three algo-
rithms using direct techniques.

Concentrating on Table 6.2(a), we will notice that the factorial of the new number
is calculated in each repetition of the loop. Therefore, the requested algorithm will be
achieved if we consider this factorial as the general term of a repetitive sum and place
the calculation of this repetitive sum after the calculation of this factorial. Accord-
ingly, we only need to put the initial value of sum, which we consider as 0, before the
loop. The above-mentioned discussion is summarized in Figure 6.3.

164 = Automated loops

factel
sum<0
c=1,n
factefact*c
sum sumesum+fact

Fig. 6.3: Calculating the sum 1! + 2! + ... + nl.

Implementing the above algorithm for n = 4 is demonstrated in Table 6.3. The output
column is removed since the calculation for sum is written in details.

Tab. 6.3: Implementation table of Algorithm 6.3 for n = 4.

position C fact sum

before the loop 1 0

first repetition 1 11=1x1 1!

second repetition 2 20=11x2 11+ 2!

third repetition 3 31=21x3 11+ 21+ 3!
fourth repetition 4 41=3Ix4 11+ 20+ 31+ 3!

Programs P6_3 represents this algorithm in both C++ and Java codes.

C++ codes: Java codes:

// Program P6_3 to compute the sum // Program P6_3 to compute the sum

/710 + 20+ .. +n! // 10+ 20+ .. +n!

#include <iostream> import java.util.Scanner;

using namespace std; class P6_3 {

int main() { public static void main(String[] args) {
long fact, sum; Scanner read=new Scanner(System.in);
int ¢, n; long fact, sum;

cout<<"Enter an integer: "; int ¢, n;
cin>>n; System.out.print("Enter an integer: ");

The for template =—— 165

for (fact=1, sum=0, c=1; c<=n; n=read.nextInt();
fact*=c, sum+=fact, c++); for (fact=1, sum=0, c=1; c<=n;

cout<<"sum="<<sum; factx=c, sumt=fact, c++);

return 0; System.out.print("sum="+sum);
} read.close();

}
3

Input/output:
Enter an integer: 4+ Input/output:

sum=33
Enter an integer: 4+
sum=33

The importance of the order in writing the instructions inside the rectangle is empha-
sized. Therefore, to realize this importance, swap the position of both instructions
inside the rectangle in the range of the loop and rearrange the implementation table
anew!

6.4. Example. Write an algorithm to read the positive integer n and then calculate and
print the following sum.

1+A+2)+@A+2+3)++A+2++n).

Solution. Comparing this formula with that provided in Example 6.3, we will notice
that the calculation operator of the general term is multiplication in Example 6.3
whereas the operator is an addition here. As a result, at first glance, it seems obvious
that we only need to change the multiplications operator in Example 6.3 to addition
operator. How much do you agree with this obvious assumption? Arrange the imple-
mentation table! In the first repetition, it is found that the algorithm does not work.
By looking at the problem occurred in the table, it is found that we only need to take
0 instead of 1 as the initial value of fact in order to fix this problem

The implementation table should be rearranged anew even for the most obvious changes in the
flowchart.

6.4.1. Exercise. Draw the complete flowchart and arrange the implementation table
for n = 3. In addition, translate the resulted flowchart into both C++ and Java codes.

6.5. Example. Write an algorithm to read the positive integer n and calculate and print
the sum below.

166 —— Automated loops

factel
sum<0@
signe-1

signe -sign
factefact*c
sumesum+sign/fact

Fig. 6.5: Calculatingthe sum1-1/2!'+1/3!- ... (=)™ / nl.

Solution. Ignoring the signs for a moment, the difference between the above sum and
that of Example 6.3 is that the general term is added to the previous repetitive sum in
each stage in Example 6.3 and is reversed here. How do we apply the signs? There are
two general techniques to do this. In the first technique, we consider a new variable
named sign and take -1 as its initial value before the loop. Then, before calculating
the sum in each repetition of the loop, we change the sign of the sum with the instruc-
tion sign < -sign and then multiply it to the general term. Accordingly, the sign of the
general term turns positive and negative alternatively. This algorithm is illustrated in
Figure 6.5.

6.5.1. Exercise. Arrange the implementation table for n = 3. Further, translate
Flowchart 6.5 into both C++ and Java codes.

In the second technique, we change the factorial instruction in the form below:
fact « -fact*c

Furthermore, the initial value of the fact should be changed to —1; otherwise, the first
term obtains the negative sign.

6.5.2. Exercise. Draw the complete flowchart in this case and arrange the implemen-
tation table for n = 3. Moreover, translate the obtained flowchart into both C++ and
Java codes.

The for template =—— 167

factel
sume1
sign«l

sign<(-sign)
factefact*(c-1)*c
sumesumtsign/fact

Fig. 6.6: Calculating the sum1-1/3!+1/5! —... (-1)®0/21 / n!,

6.6. Example. Write an algorithm to read a positive odd integer n. Then calculate and
print the sum

1 1 n+1 1
1—§+§—---+(—1) 2 y
Solution. There is more difference this time. The counter increases two units and this
causes some complexity. Consider Flowchart 6.5 and change the growth amount to 2.
Now, assume that the third repetition with ¢ = 3 is implemented and the result 3! is
obtained for the fact. Increasing the growth amount by 2, the new amount of c gets 5.
Certainly, the result of factx*c, that is, 3! X 5 will not be 5!. Something is missing.
What should be put instead of the dots in 3! x --- X 5 to arrive at 5!? Obviously it is 4
which is ¢ - 1. Therefore, the factorial instruction should be changed to

factefact*(c-1)*c

Now, implementing the recent instruction for ¢ = 1 leads to 0, which is problematic.
As aresult, we should take 3 as the initial value of the loop and assign the initial value
1 (the first term) to the sum, instead of 0 in order to fix this problem. Now, the repeti-
tive sum starts with the second term and thus the initial value of the sign should be
changed to 1. More importantly, all these changes are inspired by the implementation
table. Flowchart 6.6 depicts the result of the above argument and Table 6.6 is the im-
plementation table for n = 5.

168 = Automated loops

Tab. 6.6: Implementation table of Algorithm 6.6 for n = 5.

position c fact sign sum

before the loop 1 1 1

first repetition 3 3l=1%x2x3 -1 1-1/3!
second repetition 5 51=3Ix4x5 1 1-1/31+1/5!

Flowchart 6.6 is displayed in C++ and Java codes in Programs P6_6.

C++ codes:

// Program P6_6 to compute the sum
/7 1-1/31+1/5!1-.. . +(=1)*((n+1)/2)*1/n!
#include <iostream>
using namespace std;
int main() {
int ¢, sign, n;
long fact;
float sum;
cout<<"Enter a positive odd integer: ";
cin>>n;
for (fact=1, sum=1, sign=1, c=3;
c<=n; sign=-sign, fact*=(c-1)*c,
sum+=(float)sign/fact, c+=2);
cout<<"sum="<<sum;
return 0;

Input/output:

Enter a positive odd integer: 5+
sum=0.841667

Java codes:

// Program P6_6 to compute the sum
// 1-1/31+41/5!1-. . . +(=1)*((n+1)/2)*1/n!
import java.util.Scanner;
class P6_6 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int ¢, sign, n;
long fact;
float sum;
System.out.print(
"Enter a positive odd integer: ");
n=read.nextInt();
for (fact=1, sum=1, sign=1, c=3; c<=n;
sign=-sign, fact*=(c-1)*c,
sumt=(float) sign/fact, c+=2);
System.out.print("sum=" + sum);
read.close();

Input/output:

Enter a positive odd integer: 5«
sum=0.84166664

6.7. Example (Khayyam-Pascal triangle). The binomial coefficients are calculated us-

ing the following formula:

. J!
c(i,j) = m ,

i=0,1,..,j

Starting with j = 0, consecutively increase the amount of j, and write the results for
each j in a separate row. Accordingly, a number of integers arrayed in the shape of a
triangle are obtained, called the Khayyam-Pascal triangle. The following pattern il-
lustrates this triangle forj =0, 1, 2, 3, 4, 5, and 6.

The for template = 169

cefact(j)/(fact(i)*fact(j-i))

EQ

Fig. 6.7: Khayyam-Pascal triangle algorithm.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Write an algorithm to read the positive integer m and produce this triangle. then, print
it like the above shape using the function fact().

Solution. Clearly, two for loops produce and print this triangle. The for loop with the
j variable organizes the rows and that with the i variable calculates and prints the
numbers of each row (Fig. 6.7).

In addition, the inner loop produces and prints one row of the triangle for each
value of j received from the outer loop. Further, an appropriate space should be con-
sidered between the two outputs in this printing. Then, the current row is broken,
using the statement cout<<endl and the process is continued. The break in the row is
displayed in the flowchart by an empty print. The result is programs P6_7.

C++ codes: Java codes:

// Program P6_7 to produce // Program P6_7 to produce
// Khayyam_Pascal triangle // Khaiyam_Pascal triangle
#include <iostream> import java.util.Scanner;

#include <iomanip> class P6_7 {

170 = Automated loops

using namespace std; public static void main(String[] args) {
long fact(int); Scanner read=new Scanner(System.in);
int main() { int i, j, m;
int i, j, m; long c;
long int c; System.out.print(
cout<<"Enter the number of the rows: "; "Enter the number of rows: ");
cin>>m; m=read.nextInt();
for (j=0; j<=m; j++) { for (j=0; j<=m; j++) {
for (i=0; i<=j; it++) { for (i=0; i<=j; i++) {
c=fact(j)/(fact(i)*fact(j-i)); c=fact(j)/(fact(i)*fact(j-i));
cout<<setw(4)<<c; System.out.printf("%-4d", c);
} }
cout<<endl; System.out.println();
3 3
return 0; read.close();
3 }
// //
long fact(int n) { static long fact(int n) {
int c; int c;
long f; long f;
for (f=1, c=1; c<=n; f*=c, ct+); for (f=1, c=1; c<=n; f=f*xc, ct++);
return f; return f;
} }
}
Input/output:
Input/output:
Enter the number of the rows: 6+
1 Enter the number of rows: 6+
1 1
1 2 1 1 1
1 3 3 1 1 2 1
1 4 6 4 1 1 3 3 1
1 5 10 10 5 1 1 4 6 4 1
1 6 15 20 15 6 1 1 5 10 10 5 1
1 6 15 20 15 6

There is a function named pow() with two arguments in the list of library functions
which takes the first argument to the power of the second. In the following example,
we design a sub-algorithm with the same action.

6.8. Example. Write a function to get the real number x and integer n and then calcu-
late and return x™.

Solution. Choose a function named power () for this mean. Recall that the name of a
function, as an identifier cannot be any keyword. A clear idea in this calculation is
that, whether n is negative or positive, x is multiplied |n| times by itself. This is con-
ducted in Figure 6.8(a).

The output of the for template is p = n/™, Now, return 1/ p if n is negative, and p
otherwise using an if-else template. The complete function is illustrated in Figure
6.8(b). Of course, the direction selected for n = 0 is not a matter of importance due to
the incompatibility which occurs in the loop.

The for template =—— 171

pel

pep*x

Fig. 6.8(a): Part of power algorithm (x to the power of |n|)

What does happen when n = 0? In this condition, there is an incompatibility of in the
for loop and thus the result of the amount of p will be the initial amount 1. Therefore,
there is no difference between selecting to put this condition in one path of the if-
then template or the other. We placed it here in the F-path.

Comparing Flowchart 6.8(a) with the factorial calculation part of Flowchart
6.2(a), the logic in both parts is found to be equivalent while they differ only in the
contents.

As shown in Flowchart 6.8(a), the variable of the loop totally failed to appear in
its range. The completed flowchart is illustrated in Figure 6.8(b).

The variable of the loop takes the role of counting. It may appear in the range or not.

In mathematics, the form x™ is called the indeterminate form if x = 0 and n < 0. The
main Algorithm 6.8(c) reads the real number x and the integer n. Then, if x" is in the

pel

pep*x

@0@

Fig. 6.8(b): Completed power algorithm (x to the power of n).

172 = Automated loops

power(x,n)

Fig. 6.8(c): A Main algorithm calling the power algorithm.

indeterminate form, it prints a message; otherwise, the amount of x™ is calculated
and printed calling the function power (). Programs P6_8 demonstrate this algorithm.

C++ codes

// Program p6_8 for integer power
#include <iostream>
#include <math.h>
using namespace std;
float power(float, int);
int main() {
int n;
float x;
cout<<"Enter x and n: ";
cin>>x>>n;
if (x==0 && n<=0)
cout<<"Not defined";
else
cout<<power(x, n);
return 0;
}
//
float power(float x, int n) {
float p;
int j;
for (p=1, j=1; j<=abs(n); p*=x, j++);
if (n<0)
return 1/p;
else
return p;

Java codes:

// Program P6_8 for integer power
import java.util.Scanner;
class P6_8 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int n;
float x;
System.out.print("Enter x and n: ");
x=read.nextFloat();
n=read.nextInt();
if (x==0 && n<=0)
System.out.print("Not defined");
else
System.out.print(power(x, n));
read.close();
3
//
static float power(float x, int n) {
float p;

int j;
for (p=1, j=1; j<=Math.abs(n);
p*=x, j++);
if (n<@)
return 1/p;
else
return p;

The for template = 173

max1<0
max2<0

! ¥

<::: i=1,n l
' ¢

max1et

Fig. 6.9(a): Main tasks in the ranking algorithm.

6.9. Example. In a class of n students, two students with the top grade are to be se-

lected to receive awards. Assuming that all the grades are distinct, write an algorithm

to read each time the ID number and grade of a student and then print the top two
grades together with their ID numbers.

Solution. Let us first describe and analyse an equivalent problem in a simple way:
Determine two students from a class of n students who are the tallest between
their classmates and announce their height together with their ID numbers, as-
suming there are no two students with the same height.

We examine the solution of this problem as follows. Consider two empty places and

mark them as the max1 and max2 students. Assume the empty places as students with

zero heights. Now implement the following instructions:

1. Call a student named the t student

2. If the t student is taller than the maxl student, then substitute the maxI student
for the max2 and the ¢ student for the max1.

3. Otherwise, if the t student is taller than the max2 student, then substitute the ¢
student for the max2.

Suppose that after implementing the above instructions, the student who takes no
place or loses its place is asked to leave the class.

Examining all the students this way, the maxI and max2 students are the required
ones.

As shown in Flowchart 6.9(a), the three above instructions are the range of a for
template with 40 repetitions. The empty places considered at first are indeed the zero
initial values of maxI and max2.

174 = Automated loops

max1«0
d1<0o
max2<0
d2<0

max2«max1
d2«d1

maxlet
dled

max2«t
d2«d >

Fig. 6.9(b): Completed ranking algorithm.

What about the ID numbers? We know that the grade and the ID number are two re-
lated quantities, as if they are two faces of a coin. Therefore, in correspondence with
the three variables t, max1, and max2, we select the other three variables for their ID
number, as d, dI and d2, respectively. The complete flowchart is depicted in Figure
6.9(b). Programs P6_9 is the translation of Flowchart 6.9(b) into C++ and Java codes.

C++ codes: Java codes:
// Program P6_9 for ranking the // Program P6_9 for ranking the
// first two students among n students // first two students among n students
#include <iostream> import java.util.Scanner;
using namespace std; class P6_9 {
int main() { public static void main(String[] args) {
float t, max1=0, max2=0; Scanner read=new Scanner(System.in);
int n, i, d, d1=0, d2=0; float t, max1=0, max2=0;
cout<<"Enter the number of students: "; int n, i, d, d1=0, d2=0;
cin>>n; System.out.print("Enter the number "
for (i=1; i<=n; i++) { + "of students: ");
cout<<"Enter the ID and average: "; n=read.nextInt();
cin>>d>>t; for (i=1; i<=40; i++) {
if (t>max1) { System.out.print(
max2=max1; d2=d1; "Enter the ID and average: ");

max1=t; di1=d; d=read.nextInt();

The for template = 175

} t=read.nextFloat();
else if (t>max2) { if (t>max1) {
max2=t; d2=d; max2=max1; d2=d1;
} max1=t; di=d;
3 3
cout<<"First rank: "<<max1l else if (t>max2) {
<<" with ID: "<<d1<<endl; max2=t; d2=d;
cout<<"Second rank: "<<max2 }
<<" with ID: "<<d2; }
return 0; System.out.println("First rank: "
} + max1 + " with ID: " + d1);
System.out.print("Second rank: "
Input/output: + max2 + " with ID: " + d2);
read.close();
Enter the number of students: 4+ })
Enter the ID and average: 19221001 12.75¢
Enter the ID and average: 19221002 19.25+
Input/output:
Enter the ID and average: 19221003 14+
Enter the ID and average: 19221004 18.5¢
First rank: 19.25 with ID: 19221002 Enter the number of students: 4+
Second rank: 18.5 with ID: 19221004 Enter the ID and average: 19221001 12.75+

Enter the ID and average: 19221002 19.25«
Enter the ID and average: 19221003 14+
Enter the ID and average: 19221004 18.5+
First rank: 19.25 with ID: 19221002
Second rank: 18.5 with ID: 19221004

6.9.1. Exercise. Arrange the implementation table of the previous flowchart for five
students with various inputs.

6.9.2. Exercise. Repeat Example 6.9, this time without the assumption that all the
grades are distinct.

6.9.3. Exercise. Repeat Example 6.9 for three top ranks instead of the two, first, by
assuming that all the grades are distinct and the second time in a general case.

We briefly and usefully explain the jumping statements of the continue and break.
In Chapter 4, we used the statement break to break out of the switch statement. This
statement can be employed in the loops as well. When the break statement is encoun-
tered inside a loop, the loop is immediately terminated and the program control con-
tinues at the next statement following the loop. However, the continue statements
are only used in the loops. In the case where the continue statement is in the range
of a loop, the control is shifted to the first statement of the loop and the loop is con-
tinued. As an example, the direction of the run control is demonstrated in the follow-
ing parts for both the continue and break statements.

176 —— Automated loops

The continue statement in C++ and Java The break statement in C++ and Java
for (...) { <—— for (...) {

t;(;|:1tinue; — l.)r.'(;_'ak; [
3 3}

out of loop <—

On the other hand, the Java programming language supports more facilities for the
continue and break statements using the suffix label with the syntax below:

The labelled continue statement in Java The labelled break statement in Java
continue label; break label;
Effect: continue from the label posited up. Effect: break and run from the label posited down.

Several notes should be considered in this regard.

— As mentioned above, the label in the continue statement should be placed up while it may appear
up or down for the break statement.

— The statement after the label should be a loop or a block.

— In the loops, the above-mentioned syntax is the same as the statement without the suffix if the
label is exactly before the loop where the statement is in.

— We can have the statements before the labels whereas no statement should exist between a label
and the loop or block after that.

A prototype for the continue and break statements (with or without the label) can be
found in the following model in which some comments are explained on the run flow
in the literature of the codes in the loops.

outer:
outer loop {
inner:
inner loop {
continue; // go to the label ‘inner’ and continue
continue inner; // the same as continue (above)
continue outer; // go to the label ‘outer’ and continue

break; // break out of inner loop
break inner; // the same as break (above)
break outer; // break out of the outer loop

The for template = 177

Fig. 6.10(a): The function prime() (the first technique: returning 0 upon divisibility).

It is worth mentioning that the labelled continue and break statements are only used
in Java. We will employ the continue and break statements in various examples in the
remaining chapters of the book.

6.10. Example. Design a function sub-algorithm named prime() in order to receive an
integer n, assuming that n > 1. Then, determine whether or not the number is a prime
number by returning one of the integers 1 or 0, respectively (one can return the Bool-
ean values true or false instead of 1 or 0, respectively).

Solution. Recall that a positive integer n > 1is called prime if its only divisors are 1and
n. Furthermore, all the prime numbers are odd except for 2. Therefore, we should
work on the divisors of the number n in a for template. To this end, it suffices to con-
sider the divisibility of n to the numbers from 2 to n — 1 or, even less, to [\/H], where
[k] stands for the least integer close to k. Accordingly, four various techniques are
recommended for solving this problem.

First technique. Consider the divisibility of n by the variable of the loop inside it.
Upon reaching the first divisibility, return 0. However, the loop applies all the repeti-
tions if no divisibility occurs. This implies that the number n is prime and hence 1
should be returned after exiting the loop. Flowchart 6.10(a) visualizes this technique.
The translation of the first technique is represented below.

C++ codes: Java codes:
int prime(int n) { static int prime(int n) {
int i; int i;
for (i=2; i<=floor(sqrt(n)); i++) for (i=2; i<=Math.floor(Math.sqrt(n)); i++)
if (n%i==0) if (n%i==0)
return 0; return 0;
return 1; return 1;

} }

178 =—— Automated loops

p<l

Fig. 6.10(b): The function prime() (the second technique: breaking upon divisibility).

Second technique. At first, assume that n is prime and assign 1 to p, which is the
carrier of the function. If the divisibility occurs, then substitute O for p which means
that n is not prime. After exiting the loop, the value of p returns the result of prime-
testing. This technique is demonstrated in Flowchart 6.10(b) in which a break instruc-
tion prevents unnecessary repetitions. The subprogram in accord with the flowchart
is similar to that of the first technique.

The subprogram in accord with the Flowchart 6.10(b) is presented below:

C++ codes: Java codes:
int prime(int n) { static int prime(int n) {
int i, p; int i, p;
p=1; p=1;
for (i=2; i<=floor(sqrt(n)); i++) for (i=2; i<=Math.floor(Math.sqrt(n)); i++)
if (n%i==0) { if (n%i==0) {
p=0; break: p=0; break:
3 3
return p; }
3

Third technique. The number of divisors except for 1 is counted by the variable t in
this technique. The value zero for ¢t implies that the number n is prime after exiting
the loop; otherwise, it is not prime. Figure 6.10(c) is the flowchart of this technique.
The corresponding subprogram of the third technique is:

The for template =—— 179

Fig. 6.10(c): The function prime() (the third technique: counting the divisors).

C++ codes: Java codes:
int prime(int n) { static int prime(int n) {
int i, t; int i, t ;
t=0, t=0,
for (i=2; i<=floor(sqrt(n)); i++) for (i=2; i<=Math.floor(Math.sqrt(n)); i++)
if (n%i==0) t++; if (n%i==0) t++;
if (t==0) if (t==0)
return 1 return 1
else else
return 0; return 0;
3 3

Fourth technique. Use a variable named s as a switch. By a switch we mean a varia-
ble which records a conversion of status related to a condition in the loop, possibly
after one or several instructions. We assign O to s (switch off) before starting the loop.
Upon the occurrence of divisibility, the value of s changes to 1 (switch on). Then, we
return the result based on whether the switch is off or on. Flowchart 6.10(d), analogy
to Flowchart 6.10(b), illustrates this technique.

Comparing Flowcharts 6.10(c) and 6.10(d), an equivalency is observed between their
logic and their codes.

C++ codes: Java codes:
int prime(int n) { static int prime(int n) {
int i, s; int i, s;
s=0; s=0;
for (i=2; i<=floor(sqrt(n)); i++) for (i=2; i<=Math.floor(Math.sqrt(n)); i++)

if (n%i==0) { if (n%i==0) {

180 —— Automated loops

5«0

Fig. 6.10(d): The function prime() (the forth technique: using a switch).

p=0; p=0;
break: break:
} }
if (s==0) if (s==0)
return 1 return 1
else else
return 0; return 0;
} 3

Have you thought that how the function prime () (any technique) deals with the cases
n =2 or 3? You can find the answer in the incompatibilities of the loop.

6.11. Example. Write a main algorithm to read a an integer n with n > 2. Then, deter-
mine and print the prime numbers smaller than n using the function prime().
Solution. Figure 6.11 displays the required flowchart and Programs P6_11 hold its
translation into C++ and Java codes.

C++ codes: Java codes:
// Program P6_11 to determine and // Program P6_11 to determine and
// print the prime numbers less // print the prime numbers less
// than k using the function fact() // than k using the function fact()
#include <iostream> import java.util.Scanner;
#include <math.h> class P6_11 {
using namespace std; public static void main(String[] args) {
int prime(int); Scanner read=new Scanner(System.in);
int main() { int k, n;
int k, n; System.out.println("Enter an integer k>2: ");
cout<<"Enter an integer k>2: "; k=read.nextInt();
cin>>k; for (n=2; n<k; n++)

for (n=2; n<k; n++) if (prime(n)==1)

The for template = 181

prime(n)=1

Fig. 6.11: Printing the prime numbers less than 100 calling the function prime().

if (prime(n)==1) System.out.println(n);
cout<<n<<endl; read.close();
return 0; }
3 //
// static int prime(int n) {
int prime(int n) { int i, p;
int i, p; p=1;
p=1; for (i=2; i<=Math.floor(Math.sqrt(n)); i++)
for (i=2; i<=floor(sqgrt(n)); i++) if (n%i==0)
if (n%i==0) return 0;
return 0; return p;
return p; }
} }
Input/output: Input/output:
Enter an integer k>2: 10+ Enter an integer k>2: 10+
2 2
3 3
5 5
7 7

In Flowchart 6.11, we can write the condition as the prime(n). In this case, the return
integer values 1 and 0 should be replaced by the Boolean values true and false, re-
spectively, in the right Java program while, in the left C++ program, there is no need
to perform this change. Recall that in C++, the integers 1 and O are equivalent to the
Boolean values true and false, respectively.

182 —— Automated loops

sum<0@

sum<sum+Ai

Fig. 6.12(a): Calculating single series.

6.2 Series

6.12. Series via the for template. The for templates are widely used in the algorithms
and programs concerned with the series calculations due to their counting nature. In
general, to calculate the single series

we can construct Flowchart 6.12(a). In the series above, assume that Ai is the general
term of the series which is normally dependent on i. Moreover, the algorithm of the
following double series can be constructed as Flowchart 6.12(b).

b d
22
i=a j=c
)
sum<0@
) i
<:: i=a,b 1 [
l j=c,d
sum<sum+Ai j

Fig. 6.12(b): Calculating double series.

Series =—— 183

pel

¢
@ Computing p

!

sumtesumt+p

Fig. 6.13(a): Sketch of calculating the single series in Example 6.13.

Here again, Aij is assumed as the general term of the series which depends on both i
and j. The double series pattern can be naturally extended to the multi series.

6.13. Example. Write an algorithm to read the positive integer i and then calculate and
print the following series.

8
Z(iz + t2)i+t.
t=1

Solution. Combine Flowcharts 6.8(a) and 6.12(a) and add the input and output tem-
plates to it. Accordingly, change the name of the general term from Ai to p in
Flowchart 6.12(a) and add it to the repetitive sum, which we name sumt (Fig. 6.13(a)).

Considering that the power of i + t is positive, we use a special form of Flowchart
6.8(a) shown in Figure 6.13(b) to calculate p = (i + t?)'*t. The completed algorithm
is obtained by putting Flowchart 6.13(b) in its position in Flowchart 6.13(a) (Fig.
6.13(c)).

6.13.1. Exercise. Write the programs of the completed Algorithm 6.13(c) in both C++
and Java codes.

184 = Automated loops

pei

pepx(i*xi+t*xt)

Fig. 6.13(b): Calculating /*+ t* to the power of i + t.

The above algorithm can be written in a more simple way using the library function
pow(), or calling the function power () in Example 6.8. This is performed in Flowchart
6.13(d). Programs P6_13 are the translation of Flowchart 6.13(d) into C++ and Java
codes.

C++ codes: Java codes:

// Program P6_13 to compute a // Program P6_13 to compute a

// single series // single series

#include <iostream> import java.util.Scanner;

#include <math.h> class P6_13 {

using namespace std; public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);

1

pel

pép*(i*i+t*t)

sumtesumt+p

Fig. 6.13(c): Calculating the single series in example 6.13 (complete algorithm).

Series = 185

sumt<0

sumtesumt+pow(i*i+txt,i+t)

Fig. 6.13(d): Calculating the single series in Example 6.13 (using the pow() function).

int i, t; int i, t;

double sumt; double sumt;

cout<<"Enter a positive integer: "; System.out.print("Enter a positive "

cin>>i; + "integer: ");

sumt=0; i=read.nextInt();

for (t=1; t<=8; t++) sumt=0;

sumt+=pow(i*i+t*xt, i+t); for (t=1; t<=8; t++)

cout<<"The answer is: "<<sumt; sumt+=Math.pow(i*i+txt, i+t);

return 0; System.out.print("The answer is: " + sumt);
3 read.close();

}

Input/output: 3

Enter a positive integer: 3+« Input/output:

The answer is: 3.14158e+020
Enter a positive integer: 3+
The answer is: 3.141582482478335E20

6.14. Example. Write an algorithm to calculate and print the following series.

8

Z(iz 4 2)itt

t=1

Solution. As shown in Flowchart 6.14, this double series can be created using the pat-
tern of Flowchart 6.12(b).

186 —— Automated loops

sum<@

< t=1,8

sum

sumesumtpow(i*xi+t*t, i+t)

Fig. 6.14: Calculating the double series in Example 6.14 (using the pow() function).

Tab. 6.14: Implementation table of Flowchart 6.14 fori=1,2and t=1, 2, 3.

it sumt sum

1 0
1 (12 + 12)1+1
2 (12 + 12)1+1 + (12 + 22)1+2
3 (12+ 12)1+1+(12+22)1+2+(1Z+32)1+3 (1Z+12)1+1+(12+22)1+Z+(12+32)1+3

2 0
1 (2415
2 (2 + 12)2+1 + (22 + 22)2+2
3 (2+12)2+1+(22+22)2+2+(22+32)2+3 (12+12)1+1+(12+22)1+2+(12+32)1+3
+(2 + 12)2+1 4 (22 4 22)2¥2 4 (22 4 32)2+3

The details of implementing Flowchart 6.14 for i from 1 to 2 and ¢ from 1 to 3 are sum-
marized in Table 6.14. The following rule should be highlighted in arranging the im-
plementation table for the nested loops.

The rule of implementation table for nested loops. The best technique to arrange an implementation
table for the nested loops is to allocate necessary parts of the table each for a repetition of the outer
loop and write the results of implementing the range of the inner loop in the related part.

Programs P6_14 translate Flowchart 6.14 into C++ and Java codes.

C++ codes:

// Program P6_14 to compute a
// double series
#include <iostream>
#include <math.h>
using namespace std;
int main() {
double sum=0;
for (int i=1; i<=10; i++)
for (int t=1; t<=8; t++)
sum+=pow(i*i+txt, i+t);
cout<<"The answer is: "<<sum;
return 0;

3
Output:

The answer is: 7.37964e+039

Series =—— 187

Java codes:

// Program P6_14 to compute a
// double series
class P6_14 {
public static void main(String[] args) {
double sum=0;
for (int i=1; i<=10; i++)
for (int t=1; t<=8; t++)
sum+=Math.pow(i*xi+txt, i+t);
System.out.println("The answer is: " + sum);
3
3

Output:

The answer is: 7.37963600959878E39

6.15) Trapezoidal approximated integration. The trapezoidal method is one of the
methods for the approximation integration of the definite integral

fbf(x)dx.

As shown in Figure 6.15(a), the integration interval [a, b] is divided into n equal parts
and the split points are marked as a = x, x; , ..., X,_1 , X, = b in this method.

The mentioned integral is the area under the curve of y = f(x) which restricted
between the two lines x = a and x = b. Additionally, the amount of this integral is
approximately equal to the sum of the areas related to the trapezoids created by the
division subintervals of the integration interval. Given a straightforward calculation,
it can be checked that this sum can be obtained by the formula:

1
T=5h(f(@)+2f(x) +2f () + -+ 2f Ctpa) + £ (D)),

e .

a=xo X1 v Xn-1

Fig. 6.15(a): The sum of the trapezoids’ areas is the approximated integral.

188 = Automated loops

sum<0@

sumesum+f (a+i*h)

Fig. 6.15(b): Calculating the series of the trapezoid method.

where h is the length of each division subinterval. To calculate the approximated in-
tegral

sketch an algorithm including the following parts using the trapezoidal technique.

1. The function sub-algorithm f () which receives a real value x and returns e™*".

2. The function sub-algorithm Trap() which receives the integration endpoints a
and b as well as the number of division points n, and returns the approximated
integral

fbf(x)dx

calling the function f () in the first part.

3. The main algorithm which reads the values of the endpoints a and b as well as
the division points n and, calling the function Trap(), prints the approximated
value of the integral

b
f e~ dx.
a

Solution. The required approximated value is the sum of the areas of the above-men-
tioned trapezoids, denoted by T. Note that x; = a + ih in the above-mentioned for-
mula for T. Therefore, the formula can be rewritten as:

T = %h <f(a) +2 Z f(a+ih) + f(b)).

The calculation of the series

@ Trap(a.b.n)

a,b,c he(b-a)/n

1

Trap(a,b,n) sum<0

Series = 189

return exp(-x*x)

sumesum+f (a+ixh)

tel/2xh*(f(a)+2xsum+f (b))

Fig. 6.15(c): Integral approximation by the trapezoid method (completed algorithm).

is the basic part in the above formula. This is conducted in Flowchart 6.15(b).
The three required parts are illustrated in Flowchart 6.15(c). Programs P6_15 are the
corresponding programs in C++ and Java codes. Programs P6_15 can be used for any

function provided that the rule of fis changed in the program.

C++ codes: Java codes

// Program P6_15 to approximate a // Program P6_15 to approximate a definite

// definite integral by the

// integral by the Trapezoid technique.

// Trapezoid technique. To use, // To use, replace the involved function
// replace the involved function import java.util.Scanner;
#include <iostream> class P6_15 {
#include <math.h> public static void main(String[] args) {
using namespace std; Scanner read=new Scanner(System.in);
double Trap(double, double, int); double a, b;
int main() { int n;
double a, b; System.out.print("Enter the end points: ");
int n; a=read.nextDouble();
cout<<"Enter the end points: "; b=read.nextDouble();
cin>>a>>b; System.out.print("and number of divisions: ");
cout<<"and number of divisions: "; n=read.nextInt();
cin>>n; System.out.print("Approximated amount is: "

cout<<"Approximated amount is:
<<Trap(a, b, n); read.c
return 0; }

lose();

+ Trap(a, b, n));

190 — Automated loops

3 //
// static double f(double x) {
double f(double x) { return Math.exp(-x*x);
return exp(-x*x); }
} //
1/ static double Trap(double a, double b,
double Trap(double a, double b, int n) {
int n) { double h;
double h, sum; double sum;
h=(b-a)/n; h=(b-a)/n;
sum=0; sum=0;
for (int i=1; i<=(n-1); i++) for (int i=1; i<=(n-1); i++)
sum+=f (a+ixh); sum+=f (a+ixh);
return 1.0/2*h*(f(a)+2xsum+f(b)); return 1.0/2*h*(f(a)+2xsum+f(b));
3 3
}
Input/output:
Input/output:

Enter the end points: 1 10+
and number of divisions: 50+
Approximated amount is: 0.141392

Enter the end points: 1 10+
and number of divisions: 50+
Approximated amount is: 0.14139148362689577

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, (3) Provide appropriate input notifications and output head-
ings, if any. In addition, the user-defined functions in the text of the current and the
previous chapters may be used unless otherwise is explicitly specified.

6.1. Write an algorithm to read a positive integer n and then calculate and print the
sum of the numbers from 1 to n.

6.2. Write an algorithm to read a positive integer n and then calculate and print the
sum of the first n even numbers.

6.3. Write an algorithm to read a positive integer n and then calculate and print the
sum of the odd numbers smaller than n.

6.4. The square of a positive integer n can be derived from the sum of n consecutive
positive odd numbers. For example,

6’=1+3+5+7+9+11.

Write an algorithm to read a positive integer n and then calculate its square using the
above-mentioned method and print it together with n itself.

Exercises =—— 191

6.5. Write an algorithm to read two positive integers m and n and then calculate and
print their multiplication using the following consecutive sum:

nm=m+m+ ... + m (n times).

6.6. Write an algorithm to read a positive integer n, which is a multiple of 4, and then
calculate and print the sum of the multiples of 4, from 4 to n.

6.7. Write an algorithm to read the three positive integers a, b, and m (a < b) and then
determine and print the number of the multiples of m from a and b.

6.8. Write an algorithm to read the ID number and grade of 20 students and then de-
termine the students with grade < 12 and print them together with their ID numbers.
Finally, print the number of these students.

6.9. An airplane at an altitude of h passes above the point P. If its speed is v, then its
distance from the point P at the moment ¢ can be calculated using the formula d =
\/h? + (vt)?. Write an algorithm to read the speed v and altitude h and then calculate
and print the distance of the airplane at the moments t =1, 2, ..., 60.

6.10. Write an algorithm to read the employee number n, the monthly working hours
h, and the hourly wage s of the employees in an office including 300 members one by
one and then calculate and print the monthly salary of these employees. If an em-
ployee has worked over 200 hours per month, the hourly wage will be multiplied by
1.5 for their overtime hours.

6.11. Write an algorithm to read 50 numbers and then separately calculate and print
the following items.

— The positive numbers;

— The sum of the positive numbers;

- The number of positive numbers;

- The negative numbers;

— The sum of the negative numbers;

— The number of negative numbers;

- The number of zeroes.

6.12. Write an algorithm to read a positive integer n. Then read n real numbers and
determine and print their maximum and minimum.

6.13. Write an algorithm to read the positive integer n and then print the prime num-
bers smaller than n.

192 — Automated loops

6.14. Write an algorithm to calculate and print the number of primes smaller than
1000 and in the form 4n + 1.

6.15. Write an algorithm to read the positive even integer n and the real number x and
then calculate and print the following sum.

In Exercises 6.16 to 6.23, write the requested algorithm using the necessary user-de-
fined functions in the current chapter, and once again without using such a functions.

6.16. Write an algorithm to read a positive n and then calculate and print the follow-
ing sum.

n

Z it

i=1
6.17. Write an algorithm to calculate and print the following sum.

Z i,

i=1
6.18. Write an algorithm to read a positive odd integer n and then calculate and print
the following sum.

3! 51 nlo
1-33+5"%—..+(=1)2 n™

6.19. Write an algorithm to calculate and print the following sum:

5
Z it

i=1

6.20. Write an algorithm to read a positive odd integer n and then calculate and print
the following sum.

n-1
1-3B455— .4+ (=1)Z n™

6.21. Write an algorithm to read the real number x and calculate and print the follow-

ing sum.
7
Z(_l)HliZ Xi.
i=1

Exercises =—— 193

6.22. Write an algorithm to calculate and print the following sum.

zs: i(i" + nb).

n=1i=1

6.23. Write an algorithm to read the positive integer n and then calculate and print
the following sum.

n

Sor (5

i=1 i=1

6.24. Write an algorithm to calculate and print the following sum.

6.25. The approximated integration of the definite integral

b
f fx)dx
using the Simpson method is calculated by the formula

1
S= §h(f(a) +4f (xy) + 2f (xz) + -+ 2f (x_5) + 4f (xy—1) + f(D)) .

where a, b, n, and h are the same as in the trapezoidal method in Example 6.15. Here,
n is assumed even. To calculate the approximated integral

b 2
J e X dx
a

by the Simpson method, design an algorithm including the three parts mentioned in
Example 6.15. Denote the function of the approximated integration by Simp() instead
of Trap.

6.26. Consider the following continued 3-fraction.

1+—
1
1+3

Write an algorithm to read the value of the real number x and the positive integer n
and then calculate and print a similar continued n-fraction.

194 —— Automated loops

6.27. Write an algorithm to read the positive integer n and the real number x and then
calculate and print the first n terms of the following series.

1 + 1 1
1
1+§

1
—+
X

6.28. Write an algorithm to read the real number x and then calculate and print the
first 10 terms of the following series.

1 1 1
—_— + — +...
x x+2x%2 x4+ 2x%2+4+3x3 x4+ 2x2%+ 3x3 + 4x*

6.29. Write an algorithm to read a positive integer n and then calculate and print all
of its positive divisors smaller than n.

6.30. A perfect number is defined to be a positive integer n which is equal to the sum
of its positive divisors smaller than n. For example, 28 is a perfect number since 28 =
1+2+4+7 + 14. Write a function named perfect() to receive a positive integer n and
then return 1 if n is perfect and 0 otherwise. Afterwards, write a main algorithm to
read a positive integer n and specify whether it is a perfect number by printing an
appropriate message. Use the function perfect() in the main algorithm.

Supplementary exercises

6.1*. Consider the following six 4-line patterns.

* *x k k% % * *x k k% % * *x k k% %

* % * k % *x k * k % * % * k %

* k% % * % *x k* % * % *x k% % * %

*x k% *x % * *x k% % % * *x k% % % *
) @ 3) 4 (5) (6)

Now, write a program for each pattern to read a positive integer n and print the n-line
corresponding pattern.

6.2*, Write an algorithm to read the positive integer n and print an n-row triangle as
follows.

Exercises =—— 195

] S WY
N

24

1 n!

6.3*. Modify Algorithm 6.7 so that upon reading 6 for m, print the Khayyam-Pascal
triangle in the following pattern.

6.4 *. Write an algorithm to read the positive integer n and then determine and print
the digits of n from right to left.

6.5*. Write an algorithm to determine and print the four-digit positive integers in
which the first two digits from left are even while the other two digits are odd. Further,
the number of such integers should be printed.

6.6*. Write an algorithm to read a positive integer n and take it to the power of its
largest prime divisor and finally, print this integer. For example, if 20 is read then
print 2045.

6.7*. The sum of all the divisors of the positive integer n, except for n itself, is denoted
by o(n). The number n is called perfect, abundant, and deficient if o(n) = n, o(n)> n,
and o(n) < n, respectively. Write an algorithm to separately determine and print the
perfect, abundant, and deficient numbers less than 100. Furthermore, the number of
perfect, abundant, and deficient numbers are printed.

6.8*. For a positive integer n, the Euler phi function, namely, ¢(n), is defined as the
number of all the positive integers smaller than n, which are coprime to n. For exam-
ple, p(14) = 6 since 1, 3, 5, 9, 11, and 13 are the only positive integers less than 14 being
coprime to 14. Moreover, this function can be calculated using the following formula.

o =n <1 - %) <1 - %) (1 - %) - (plp: 1) (pzp: 1) (prp: 1)’

196 —— Automated loops

where p;, p,, .., pr are distinct prime factors of n. Write an algorithm to read the pos-
itive integer n and then calculate and print ¢(n) using the above formula and once
again, directly without using it.

6.9*. Write a main algorithm to read a positive number k and then determine and
print the perfect numbers less than k using the function perfect() in Exercise 6.30.

7 Conditional loops

7.1 The while and do-while templates

In Chapter 6, we observed that the automated loops perform three processes includ-
ing giving the initial value to the variable of the loop, increasing the growth value in
each repetition, and controlling the repetition of the loop automatically which in the
algorithm (programming) an instruction (a statement) is used for this purpose. On the
other hand, in the conditional loops, which we will study in the present chapter, the
situation is somehow different. Especially, the repetition of the loop is controlled by
a condition named the condition of loop repetition or simply the condition of the loop.

Depending on whether this condition is at the beginning or the end of the loop,
the conditional loops are divided into two templates called the while or do-while
templates or loops. In fact, the position of the condition is as the position of the
while keyword in the name of the template. In this chapter, these two templates are
thoroughly investigated. Normally, the following steps are used in creating the con-
ditional loop templates regardless of their order.

The first step. Determining the initial values of the loop, if there are any. These initial
values exist in most loops and the first repetition of the loop is created with their help.
The best location for the initial values is before the start of the loop. In some loops,
however, we distinguish these values after the second or even the third repetition.

The second step. Designing the range of the loop based on the processes performed
in each repetition of the loop. Sometimes, especially when the initial values of the
loop are not specified, writing the range of the loop from the second repetition on-
wards is feasible. In such circumstances, we first create the range of the loop and then
look for initial values which can create the first repetition using this range. This step,
like the automated loops, is of great importance.

The third step. Evaluating the condition for the repetition of the loop and its appro-
priate location. Clearly, we can place the condition of the loop either at the start or
the end in most loops. However, in some loops we are bound to use only one of the
start-condition (while) or end-condition (do-while) templates of the loop.

7.1. Example. Write an algorithm to read 20 integers and then determine and print the
number of positive integers among these integers.

Solution. This is exactly the first example in Chapter 6 (Example 6.1) for which we
wrote an algorithm (Flowchart 6.1) using a for loop. In this loop, the initial values,
growth value, and controlling the repetition of the loop were automatically deter-
mined and a single instruction corresponded to all these three tasks.

https://doi.org/10.1515/9783110616484-007

198 — Conditional loops

cxel
cp<0

x>0

cpecptl

cxecx+1

<o >
KN
<D

cp

Fig. 7.1(a): Flowchart of Example 6.1 using the do-while template.

In this chapter, we decided to write this algorithm using a conditional loop. There-
fore, the three above-mentioned tasks should now be performed using three individ-
ual instructions.

1. Before the loop, where no integer has yet been read, take the initial value of cx as
0.

2. We already know the basic instructions of the range of the loop, namely, those
which were implemented in each repetition. Often, the best place for increasing
the growth value is after these basic instructions of the range of the loop. Never-
theless, we can occasionally put the growth value increment before the basic in-
structions of the range or even insert it among such instructions.

3. Finally, the condition of the repetition is located at the end of the loop so that the
loop repeats until 20 counts for the read numbers is completed.

The flowchart obtained based on the do-while template is illustrated in Figure 7.1(a).
In this flowchart, the above-mentioned instructions are demonstrated in bold font.

The while and do-while templates =—— 199

cxel
cp<0

>
;n

x>0
cpecp+l
cxecx+1

Fig. 7.1(b): Flowchart 7.1(a) using the while template.

Finally, the implementation table is arranged for the following 5 data, instead of 20.

-2,0,19,-23,14

Tab. 7.1: Implementation table of Flowchart 7.1(a) for 5 data instead of 20.

position X [#'¢ cp output
before the loop 1 0

first repetition -2 2

second repetition 0 3

third repetition 19 4 1

forth repetition -23 5

fifth repetition 14 6 2

after the loop 2

In Flowchart 7.1(a), the condition is located at the end of the loop. Flowchart 7.1(b) is
designed for the same algorithm in a way that the condition is at the start of the loop.

200 — Conditional loops

we leave the reader to arrange the implementation table for Flowchart 7.1(b) with the
same input data as above for better understanding.

The other template can be created by changing the location related to the condition of the loop from
the start of the loop to the end or vice versa using one of the conditional loop templates. Accordingly,
several other changes need to be made. After replacing the template, it is strongly recommended to
arrange an implementation table for the resulted template in order to be assured the correctness of
the algorithm.

7.1.1. Exercise. Modify Example 7.1 in such a way that the integers themselves along
with the number of positive integers are printed. Apply this change in both flowcharts
7.1(a) and 7.1(b).

7.1.2. Exercise. Now, modify the algorithm so that it calculates and prints the number
of positive and negative integers and zeroes together with appropriate output head-

ings.

In general, the flowcharts of the while and do-while templates along with their iden-
tical codes in C++ and Java are summarized as follows.

C++ and Java codes:
w while (Ccondition) {

loop range

loop range 3

1}

The while template

!

loop range

C++ and Java codes:

do {

loop range
} while (condition)

The do-while template

Implementation of the while template: Implement (repeat the implementation of)
the loop range while the condition is true. Thus, exit the loop as soon as the condition
is false.

The while and do-while templates = 201

Implementation of the do-while template: Do implement the loop range and repeat
its implementation while the condition is true. Therefore, exit the loop as soon as the
condition is false.

In fact, every logical condition has a negation having the opposite logical value. As a
result, both while and do-while loops can be made in such a way that the T- and F-
paths on these templates stay on the same directions as the above flowchart pattern.
Of course, there are nearly similar flowcharts for these two conditional loop templates
in all the programming languages.

The loop range should be grouped by {} if it contains more than one statement.

Programs P7_1_A translate Flowchart 7.1(a) into C++ and Java codes.

C++ codes: Java codes:
// Program P7_1_A to determine the // Program P7_1_A to determine the
// number of positive integers // number of positive integers
// using the do-while statement // using the do-while statement
#include <iostream> import java.util.Scanner;
using namespace std; class P7_1_A {
int main() { public static void main(String[] args) {
int x, cp=0, cx=1; Scanner read=new Scanner(System.in);
do { int x, cp=0, cx=1;
cout<<"Enter an integer: "; do {
cin>>x; System.out.print("Enter an "
if (x>0) +"integer: ");
cpt+; x=read.nextInt();
CX++; if (x>0)
} while (cx<=20); cpt+;
cout<<"Number of positive integers: "<<cp; Ccx+t;
return 0; } while (cx<=20);
3 System.out.print("Number of "
+ "positive integers: " + cp);
read.close();
}
}

Furthermore, Programs P7_1_B translate Flowchart 7.1(b) into C++ and Java codes.

C++ codes: Java codes:

// Program P7_1_B to determine the // Program P7_1_B to determine the
// number of positive integers // number of positive integers

// using the while statement // using the while statement
#include <iostream> import java.util.Scanner;

using namespace std; class P7_1_B {

int main() { public static void main(String[] args) {

202 — Conditional loops

int x, cp=0, cx=1; int x, cp=0, cx=1;
while (cx<=20) { Scanner read=new Scanner(System.in);
cout<<"Enter a number: "; while (cx<=20) {
cin>>x; System.out.print("Enter an "
if (x>0) +"integer: ");
cptt; x=read.nextInt();
CX++; if (x>0)
3 cptt;
cout<<"Number of positive integers: "<<cp; cx++;
return 0; }
3 System.out.println("Number of "
+ "positive integers: " + cp);
read.close();
}
}

As shown, despite the position regarding the condition of the loop, there is another
major difference between these two loops in their flowcharts.

The basic difference between the two conditional loop templates. In the while template, the range
of the loop may never be implemented while the range of the loop is implemented at least once in the
do-while template. This is exactly due to the position of the conditions of the loops.

Comparing Flowcharts 7.1(a) and 7.1(b) with Flowchart 6.1, it is observed that the fol-
lowing three flowcharts are equivalent from the implementation point of view.

| |
cel cel
1

loop range

loop range
—
v

The algorithm in Example 7.1 is an instance indicating that writing the algorithms is
possible using any loop template including the automated or either of the conditional
loop templates. In particular, the automated loop templates can be transferred to ei-
ther of the conditional loops.

Due to the simplicity of the automated loops both in flowchart and programming codes, it is strongly
recommended to use automated loops whenever possible, unless the problem requires employing
the conditional loops.

The while and do-while templates =—— 203

As previously mentioned, before Example 6.10 in Chapter 6, the continue and break
statements may appear in the loops. A general application of these statements in the
nested loops are represented in a prototype, accompanied by some notes, in which
any loop may be one of the three loops of for, while, or do-while. Recall that the
labelled continue and break statements are exclusively used in Java programming
language.

Furthermore, the direction of the run control was demonstrated for both the con-
tinue and break statements in the for template. In the following parts, this direction
is shown for the while and do-while templates.

The continue statement in C++ and Java The break statement in C++ and Java
while (...) { while (...) {
é<')r.1tinue; :| l.)r."t'eak; —
X e X .
out of loop «——

The continue statement in C++ and Java The break statement in C++ and Java

do { do {

continue; break; —
} while (...)<_—| } while (...)

out of loop «—

7.2. Example. Several exam marks out of 20 will be read from the input unit. However,
the number of marks is not known. Write an algorithm to read all the marks and then
calculate and print their average.

Solution. Define the variables x, n, and sum for the read marks, number of read marks,
and their repetitive sum, respectively. Then, assign the initial values of O to both n
and sum before using any loop since no mark is yet read.

Since the read marks are from 0 to 20, we attempt to use a while template so that,
while 0 < x < 20, first, an x (a mark) is read. Then, the number n is increased one unit
and the x is added to the sum, namely, the repetitive sum. Moreover, it suffices to
enter either a negative number or a number greater than 20 in order to exit the loop.
Then, the average, which is sum / n, is printed. The obtained flowchart is displayed
in Figure 7.2. Programs P7_2 represent the codes of Flowchart 7.2.

204 = Conditional loops

sum<@
n<Q

0<x && xs21

nen+1
sumesum+x

Fig. 7.2: Determining the average of unknown number of marks.

C++ codes: Java codes:

// Program P7_2 to compute the mean
// value of an unknown number of exam
// marks using the do-while statement

// Program P7_2 to compute the mean
// value of an unknown number of exam
// marks using the do-while statement

#include <iostream>
using namespace std;
int main() {
int n=0;
float sum=0, x;
while ((0<=x)&&(x<=20)) {

import java.util.Scanner;
class P7_2 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int n=0;
float sum=0, x;

cout<<"Enter an exam mark: "; while ((0<=x)&&(x<=20)) {
cin>>x; System.out.print("Enter an exam mark: ");
n++; x=read.nextFloat();
sum+=x; n++;
} sum+=x;
cout<<"The mean value is: "<<sum/n; }
return 0; System.out.print("The mean value is: "
} + sum/n);
read.close();
Input/output: b
3
Enter an exam mark: 12+
Enter an exam mark: 14.5+« Input/output:
Enter an exam mark: 19.25¢

Enter an exam mark: 12+
Enter an exam mark: 14.5+«
Enter an exam mark: 19.25+«
Enter an exam mark: 8+«
Enter an exam mark: 21+
The mean value is: 14.95

Enter an exam mark: 8¢
Enter an exam mark: 21+
The mean value is: 14.95

The while and do-while templates = 205

a1l
b<1

l

;[generate the term ? }

>
<>

Fig. 7.3(a): Sketch of the Fibonacci sequence algorithm.

As seen, it is difficult to solve Example 7.2 using the for template. However, we
can easily use the for template if the upper bound of the number of marks is
known.

7.2.1. Exercise. Assume that the number of marks is at most 40. Using the for tem-
plate, write an algorithm for Example 7.2 and then write the programs.

The following paragraph is another example in which it is impossible to employ the
for template.

7.3. Example. The Fibonacci sequence in one of the famous sequences in which the
first and second terms are 1 and from the third item onward, each item is the sum of
the two previous terms. A few terms of this sequence are as follows.

1,1,3,5,8,13, 21, ...

Write an algorithm to generate and print the terms of this sequence which are smaller
than 50.
Solution. First, take two variables a and b with the initial value 1. These are the first
two terms of the sequence. We intend to generate the terms smaller than 50. We do
this in a do-while template while the term is less than 50. So far, we have Flowchart
7.3(a).

Take one of the variables a or b, say a, as the sequence generator. Then, add a to
b and substitute the result for a. An implementation table indicates that if we con-
tinue this way, we are stuck after two repetitions. Additionally, the table represents
that a and b should be swapped after adding up to overcome this problem (Fig. 7.2(b)).

206 —— Conditional loops

a<l
b<1

a<atb

a<>b

a<50

Fig. 7.3(b): Generating the terms of Fibonacci sequence without print.

Arrange the implementation table again (Tab. 7.3(a)). This time it generates the se-
quence. In this table, we generated the terms less than 7, instead of 50.

Tab. 7.3(a): Generating the terms of the Fibonacci sequence less than 7.

position a (generator) b
before the loop 1 1
first repetition 2

1 2
second repetition 3

2 3
third repetition 5

3 5
forth repetition

5 8

Concentrating on the underlined terms in the table, we can guess the location of the
print template. It should be at the start of the loop. Now, the required flowchart is
completed. Figure 7.3(c) depicts the completed flowchart. Programs P7_3_A represent
the codes of the completed flowchart 7.3(c).

a<l
b<1

a<atb

aesb

Fig. 7.3(c): Completed Fibonacci algorithm.

C++ codes:

// Program P7_3_A to write down the terms
// of Fibonachi sequence less than 50
#include <iostream>
using namespace std;
int main() {

int a=1, b=1, h;

cout<<"Fibanacci sequence"

<<" less than 50:"<<endl;

do {
cout<<a<<endl;
a+=b;
h=a; a=b; b=h;
} while (a<50);
return 0;
}
Output:

Fibanacci sequence less than 50
11 2 3 5 8 13 21 34

The while and do-while templates = 207

Java codes:

// Program P7_3_A to write down the terms
// of Fibonachi sequence less than 50
class P7_3_A {
public static void main(String[] args) {
int a=1, b=1, h;
System.out.println("Fibanacci sequence"
+ " less than 50:");
do {
System.out.print(a + "
at=b;
h=a; a=b; b=h;
} while (a<50);
}
}

")

Output:

Fibanacci sequence less than 50
1T 1 2 3 5 8 13 21 34

208 — Conditional loops

- e
b<1

6

i

Fibo(k) "Out of range"

a<atb

a<>b

0

Fig. 7.3(d): Calling Fibonacci sub-algorithm in a main algorithm.

Next, we divide Algorithm 7.3(c) into a sub-algorithm and a main algorithm so that
the sub-algorithm, named Fibo(), receives the positive integer i and prints all the
terms of the Fibonacci sequence smaller than i. Moreover, the main algorithm reads
an integer k from the input and prints a message if k < 2. Otherwise, this algorithm
prints all the terms smaller than k using the sub-algorithm Fibo(). The result is rep-
resented in Flowchart 7.3(d). Programs P7_3_B indicate the translation of these two
units into C++ and Java codes.

C++ codes: Java codes:
// Program P7_3_B to write down the // Program P7_3_B to write down the
// terms of Fibonachi sequence less // terms of Fibonachi sequence less
// than an integer using a subprogram // than an integer using a subprogram
#include <iostream> import java.util.Scanner;
using namespace std; class P7_3_B {
void Fibo(int); public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);
int k; System.out.print("Enter an integer: ");
cout<<"Enter an integer: "; int k=read.nextInt();
cin>>k; if (k<2)
if (k<2) System.out.println("Out of range");
cout<<"Out of range"; else
else Fibo(k);
Fibo(k); read.close();
return 0; }
} //

// static void Fibo(int i) {

The while and do-while templates =—— 209

void Fibo(int i) { System.out.println("The Fibonacci "
cout<<"The Fibonacci sequence less " +"sequence less than " + i + ":");
<<"than "<<i<<":\n"; int a=1, b=1, h;
int a=1, b=1, h; do {
do { System.out.print(a + " ");
cout<<a<<" "; at+=b;
a+=b; h=a; a=b; b=h;
h=a; a=b; b=h; } while (a<i);
} while (a<i); }
return; }
3
Input/output:
Input/output:
Enter an integer: 50+
Enter an integer: 50+ The Fibonacci sequence less than 50:
The Fibonacci sequence less than 50: 11 2 3 5 8 13 21 34

1 1 2 3 5 8 13 21 34

Writing an algorithm to generate the n-th term of the Fibonacci sequence by recursive
method would be easier for any positive integer n. If we denote the n-th term by f,,,
then we have the following recursive relations

fo=Jfo-1t fa2s fi=1, =1,
or, equivalently, as a recursive function,

(L ifn=1o0r2
fo = {f(n — 1)+ f(n—2), otherwise.

The generating function of this sequence, named Fib, is illustrated in Flowchart 7.3(e)
using the above-mentioned method. This function receives a positive integer n and
then calculates and returns the n-th term of the Fibonacci sequence. Additionally, the
main algorithm of this flowchart reads an integer k from the input and prints a mes-
sage if k is not positive. Otherwise, it determines and prints the k-th term of the se-
quence using the function Fib(). Programs P7_3_C are considered the translation of
these two units into C++ and Java codes.

C++ code: Java codes:

// Program P7_3_C to generate the // Program P7_3_C to generate the
// k-th terms of Fibonachi sequence // k-th terms of Fibonachi sequence

// by recursive method // by recursive method

#include <iostream> import java.util.Scanner;

using namespace std; class P7_3_C {

int Fib(int); public static void main(String[] args) {

int main() { Scanner read=new Scanner(System.in);
int k; int k;
cout<<"Enter an integer: "; System.out.print("Enter an integer: ");
cin>>k; k=read.nextInt();

if (k<=0) if (k<=0)

210 — Conditional loops

return
Fib(n-1)+Fib(n-2)

positive"

a(_.

Fig. 7.3(e): Generator the n-th term of Fibonacci sequence by recursive method.

cout<<"Not positive"; System.out.println("Not positive");
else else
cout<<k<<"-th term: "<<Fib(k); System.out.print(k + "-th term: " + Fib(k));
return 0; read.close();
3 3
// //
int Fib(int n) { static int Fib(int n) {
if (n==1 || n==2) if (n==1 || n==2)
return 1; return 1;
else else
return Fib(n-1)+Fib(n-2); return Fib(n-1)+Fib(n-2);
3 3
}
Input/output:
Input/output:

Enter an integer: 9+
9-th term: 34 Enter an integer: 9+
9-th term: 34

7.4. Example. Write an algorithm to read an integer and print its reverse. For exam-
ple, —491 is the reverse of —194.

Solution. The brain reaction is first analyzed in order to get an insight on how to write
the algorithm for a positive integer. Then, the algorithm is extended to any integer.

The while and do-while templates = 211

The details regarding the process of working with number 234 are described in Table
7.4(a).

Tab. 7.4(a): The brain reaction and issued commands for reversing the number 234.

status the number being processed last digit new number
the number 234

first step 23 4 4
second step 2 3 43
third step 0 2 432

The brain reaction and the issued commands in each step are analyzed:

1. Take the last digit from 234; what is left is 23; write the removed digit (as the new
number): 4.

2. Take the last digit from 23; what is left is 2; put the removed number in front of
the recent 4: 43.

3. Take the last digit from 2 (2 itself); what is left is 0 (nothing); put the removed
number in front of the recent 43: 432.

Now the mentioned analysis is steered to reach an algorithm. To do this, we need to

approach some of the above actions to equivalent actions from the algorithm view-

point:

— Last digit: the remainder of the division by 10;

- What is left: the quotient of the division by 10;

— Putting the digit r in front of the recent number x: substituting the number x * 10
+ r for x.

To continue, define some variables:
n: the number being processed;
newn: the new number obtained by putting a digit in front of a certain number;
r: the remainder of the division by 10.

We are now going to rewrite the three commands issued from the brain reaction in
the literature of the algorithm as follows.

1. Assignn %10 to r; substitute n / 10 for n; assign r to newn.

2. Assignn %10 to r; substitute n / 10 for n; substitute newn * 10 + r for newn.

3. Assign n %10 to r; substitute n / 10 for n; substitute newn * 10 + r for newn.

212 — Conditional loops

!

newn<Q

1

ren%10
n<n/10
newn<newn*10+r

>

Fig. 7.4(a): The do-while template constructed so far for reversing a positive integer.

As seen, there is a loop which is repeated three times and the following instructions
are implemented in each repetition of the loop (Note that assigning zero to the initial
value of newn, the instruction “assign r to newn” becomes equivalent to “substitute
newn * 10 + r for newn”).

l

r<n%10
nen/10
newn<newnx10+r

|

How long should we continue this loop? Until there is a (positive) number, that is,
until n # 0. As shown in Flowchart 7.4(a), so far, we have constructed a do-while tem-
plate with the initial value of O for newn.

Table 7.4(a) is only displayed for explaining the brain reaction and the issued
commands. Table 7.4(b) is the real implementation table for 234.

Tab. 7.4(b): Implementation table of Flowchart 7.4(a) for n = 234.

status n r newn
before the loop 234

first repetition 23 4

second repetition 2 3 43

third repetition 0 2 432

The while and do-while templates = 213

n<|no|

1

newn<Q

)

ren%10
n<n/10
newn<newnx10+r

Fig. 7.4(b): Completed algorithm to reverse an integer.

Flowchart 7.4(a) is the most essential part on which the algorithm is based. This
flowchart displays a positive integer. Assume that we do not know whether or not the
given integer is positive. Take the original number as n0O and substitute its absolute
value for n. Continue the process of Flowchart 7.4(a). Upon the exit of the loop, print
newn if the original number is positive; otherwise —newn is printed. Flowchart 7.4(b)
is the completed algorithm.

7.4.1. Exercise. Transform the do-while template in Flowchart 7.4(b) into the while
template and arrange the implementation table for both positive and negative inte-
gers in duplicate.

Now the process of Flowchart 7.4(a) is considered as the main body of a function sub-
algorithm, named rev(). In fact, the function rev() is taken into account for calcu-
lating and returning the reverse of the positive integer n. Finally, the remaining duties
are assigned to a main algorithm. Figure 7.4(c) includes these two units.

214 — Conditional loops

n<|no|

newn<o

1}

ren%10
nen/10
newn<newn*10+r

Fig. 7.4(c): Reversing an integer using the rev() function.

Programs P7_4 translate the two units of Flowchart 7.4(d) into C++ and Java codes.

C++ codes:

// Program P7_4 to reverse an integer
// using the rev() function

#include <iostream>

#include <math.h>

using namespace std;

int rev(int);

int main() {

int n@, n;
cout<<"Enter an integer: ";
cin>>n0;
n=abs(n0);
if (n0>=0)
cout<<"The reversed form is: "
<<rev(n);
else
cout<<"The reversed form is: "
<<-rev(n);
return 0;
3
//

int rev(int n) {
int newn=0, r;
do {
r=n%10;
n=n/10;
newn=newn*10+r;
} while (n!=0);

Java codes:

// Program P7_4 to reverse an integer
// using the reve() method
import java.util.Scanner;
class P7_4 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int n@, n;
System.out.print("Enter an integer: ");
n@=read.nextInt();
n=Math.abs(n@);
if (n0>=0)
System.out.print("The reversed "
+ "form is: " + rev(n));
else
System.out.print("The reversed "
+ "form is: " + -rev(n));
read.close();

}

[[*FKKKKIKKFKKKKKKK
static int rev(int n) {
int newn=0, r;
do {
r=n%10;
n=n/10;
newn=newn*10+r;
} while (n!=0);
return newn;

The while and do-while templates = 215

x<0

| x€x+10*r |

condition

Fig. 7.5(a): Putting digits in front of each other from left to right.

return newn; }
3 3
Input/output: Input/output:
Enter an integer: -1230456¢+ Enter an integer: -1230456+
The reversed form is: -6540321 The reversed form is: -6540321

7.5. Example. (a) We are given repeatedly a digit r and requested to put it in front of
the previous one from left to right while a condition holds. Write a part of the algo-
rithm for this purpose;

(b) Repeat part (a) putting the digits behind each other from right to left;

(c) Repeat part (a) after a decimal point.

Solution. Denote by x the number obtained by putting the digit r in each part. We
applied part (a) in the algorithm of Example 7.4. Figure 7.5(a) recalls this part. In fact,
we multiply x by 10 before putting the digit r in front of x in order to open up a place
for r. Then, r is inserted in its place by adding x * Oup to r.

For part (b) we use a positioner variable named p for ones, tens, hundreds, and
the like to arrange the digits from right to left behind each other. This time, we multi-
ply p by r before putting the digit r behind x to open up the right position of r. Then, r
is inserted in its position by adding the p * r up to x. Finally, the positioner is multi-
plied by 10 to create a new position for the next repetition. The obtained part is illus-
trated in Flowchart 7.5(b).

The arrangement of digits for part (c) is similar to part (a), namely, from left to
right. However, the real processing depends on part (b) with the difference that, this
time, the positioner variable p provides positions for the one tenth, one hundredth,
and the like. Flowchart 7.5(c) illustrates the algorithm for this part.

216 —— Conditional loops

o x
(l::T::}é O
-

Xextpxr
p<p*10

Fig. 7.5(b): Putting digits behind each other from right to left.

xex+p*r
p<p*0.1

i

Fig. 7.5(c): Putting digits in front of each other from left to right, after a decimal point.

7.2 More applications of the conditional loops

In this section, converting positive real numbers to the base-2 numeral system, Eu-
clidean algorithm (to find the greatest common divisor), the generalized Euclidean
algorithm, and primary decomposition of positive integers are examined.

7.6. Example. Write a function (method) to receive a positive real number, convert it
to the base-2 numeral system, and then return the result.

Solution. We start with the positive integer n. Theoretically, to convert n into the base-
2 numeral system one must divide it continuously by 2 and write the quotient and

More applications of the conditional loops = 217

remainder. This is repeated until the zero quotient appears. Now, the required num-
ber is obtained if the remainders are arranged behind each other from right to left.
Applying the mentioned process for n = 11 is summarized in Table 7.6(a).

Tab. 7.6(a): Converting 11 to the base-2 numeral system.

status quotient by 2 remainder by 2
first step 5 1
second step 2 1
third step 1 0
fourth step 0 1

The number 1011 is the required number. We analyze the problem further. As in Ex-

ample 7.4, the brain reaction and issued commands are analyzed in each step.

1. Divide 11 by 2; what is left (by removing the remainder) is 5; write the remainder
(as the new number): 1;

2. Divide 5 by 2; what is left (by removing the remainder) is 2; put the remainder
behind the recent 1: 11;

3. Divide 2 by 2; what is left (by removing the remainder) is 1; put the remainder
behind the recent 11: 011 = 11;

4, Divide 1 by 2; what is left (by removing the remainder) is 0 (nothing); put the
remainder behind the recent 011: 1011.

Further, the details of each step are provided. First, to approach some of the actions
to the equivalent actions from the algorithm viewpoint:

— What is left: the quotient of the division by 2;

- Putting the digit r behind the recent number x: Flowchart 7.5(b).

y

newn<@
p<l

1}

ren%2

nen/2
newn<newn+p*r

p<p*10

<>

Fig. 7.6(a): Merging Flowcharts 7.4(a) and 7.5(b).

218 — Conditional loops

newn<Q
p<1

1

ren%2
nen/2
newn<newn+p*r
p<p*10

<>
Cmm>

Fig. 7.6(b): A function to transfer an integer to the base-2 numeral system.

Define the following variables:
n: the number being processed;
newn: the new number obtained by putting a digit behind a certain number;
r: the remainder of the division by 2.

Now, inspired by Flowchart 7.4(a) and considering Flowchart 7.5(b) for putting a digit
behind each one from right to left, Flowchart 7.6(a) is the merge of these two
flowcharts.

The required function (method) for integers is represented by bin1. As visualized
in Flowchart 7.6(b), this function receives the integer n, converts it to the base-2 nu-
meral system and then returns the result with the carrier newn.

We arrange the implementation table for number 11 in order to test the correct-
ness of the function bin1().

Tab. 7.6(b): Implementation table for the function bin1() in Flowchart 7.6(b).

status n r p newn return
before the loop 11 1 0
first repetition 5 1 10 1
second repetition 2 1 100 11
third repetition 1 0 1000 011
fourth repetition 0 1 10000 1011 1011

More applications of the conditional loops =—— 219

7.6.1. Exercise. Furthermore, the function bin1() can be designed using the logic of
Flowchart 7.4(a) with an appeal to the function rev(): (a) Modify Flowchart 7.4(a) by
changing the division 10 to 2 in the remainder r and quotient n. Then, the returning
number from the function will be the reversed binary representation, (b) An appeal
to the function rev(), now, returns the binary representation. Write the completed
algorithm and test it for number 11.

Now we continue with a decimal number t. Mathematically, to convert a decimal
number t to the base-2 numeral system, one should multiply it continuously to 2 and
each time keep the integer part of the resulted number. This process is continued until
the number of the requested decimals is acquired. Now, the desired number is ob-
tained if we arrange the integers obtained in the above process from left to right after
the decimal point. The mentioned process is applied for ¢ = 0.863 and the result is
obtained up to four decimals precision in Table 7.6(c).

Tab. 7.6(c): Converting the number 0.863 to the base-2 numeral system.

status multiply the number by 2 integer part of the resulted number
first step 1.726 1
second step 1.452 1
third step 0.904 0
fourth step 1.808 1

The result is 0.1101. As the previous part, we analyze the brain reaction and issued

commands in each step.

1. Multiply 0.863 by 2; what is left is 0.726; take the integer part of the resulted num-
ber and put it after the decimal point (as a new number): 0.1;

2. Multiply 0.726 by 2; what is left is 0.452; take the integer part of the resulted num-
ber and put it in front of the recent decimal number: 0.11;

3. Multiply 0.452 by 2; what is left is 0.902; take the integer part of the resulted num-
ber and put it in front of the recent decimal number: 0.110;

4. Multiply 0.902 by 2; what is left is 0.808; take the integer part of the resulted
number and put it in front of the recent decimal number: 0.1101.

Like the previous part, we explain the details by stating the equivalent parts of some

actions from the algorithm viewpoint. The details regarding each step are provided.

First, to approach several actions to the equivalent actions:

- What is left: the decimal part of the number after multiplying by 2;

- Putting the digit r (the integer part of the number after multiplying by 2) in front
of the recent decimal number x: Flowchart 7.5(c).

220 — Conditional loops

!

newt<0
p<0.1

1}

ke2xt
b<int (k)
tek-b
newt<newt+p*b
p<p*0.1

!

Fig. 7.6(c): The tasks performed in each repetition regarding the discussions so far.

Define the following variables:
t: the number being processed;
newt: the new number obtained by putting a digit in front of the recent decimal
number;
b: the integer part of the number after multiplying by 2.

Now, considering the above discussion, the do-while loop can be written as depicted
in Flowchart 7.6(c).

The loop in Flowchart 7.6(c) terminates only if the decimal digits of the number
being processed ends; like 0.125 whose decimal digits terminates after three times
multiplying the number by 2. If this does not occur, the loop is terminated after a spe-
cific decimal precision determined by the user. To do this, consider a counter variable
i with the initial value of 0 and increase it in each repetition. Now, the loop repeats
while i < m. The function bin2() in Flowchart 7.6(d) receives a decimal number t and
an integer m. Finally, it converts t to the base-2 decimal system and returns it with m
decimal digits. The result of the implementation of Flowchart 7.6(d) for ¢ = 0.863 and
m = 4 is demonstrated in Table 7.6(d).

Tab. 2: implementation table for Flowchart 7.6(d) for t = 0.863 and m = 4.

status i t k b newt p return
before the loop 0 0.863 0 0.1
first repetition 1 0.726 1.726 1 0.1 0.01
second repetition 2 0.452 1.452 1 0.11 0.001
third repetition 3 0.904 0.904 0 0.110 0.0001
fourth repetition 4 0.808 1.808 1 0.1101 0.00001 0.1101

More applications of the conditional loops = 221

)

newt<o
p<0.1
i<0

1
iei+]
ke2xt
beint (k)
t<k-b
newt<newt+p*b
p<p*0.1

I

Fig. 7.6(d): A function to transfer a decimal number to the base-2 numeral system.

Now, we write a main algorithm which reads a positive real number u and a positive
integer m. The, it prints the representation of u in the base-2 decimal system with the
precision of m decimal digits using the two functions bin1() and bin2. To do this, the
integer and decimal parts of u are first separated and converted to the base-2 numeral
system. Then, the results are added and printed. Flowchart 7.6(e) and Programs P7_6
are the outcomes of this process (note the formatted prints in the programs).

&

neint(v)
tev-n

]

webinl(n)+bin2(t,m)

H

Fig. 7.6(e): Representing a real number in the base-2 numeral system with m precision digits.

222 — Conditional loops

C++ codes: Java codes:

// Program P7_6 to convert the positive // Program P7_6 to convert the positive
// number u to the base-2 numeral system // number u to the base-2 numeral system
// with the precision of m decimal digits // with the precision of m decimal digits

#include <iostream> import java.util.Scanner;
#include <math.h> class P7_6 {
#include<iomanip> public static void main(String[] args) {
using namespace std; Scanner read=new Scanner(System.in);
int bin1(int); int n, m;
double bin2(float, int); double u, w, t;
int main() { System.out.print("Enter u and m: ");
int n, m; u=read.nextFloat();
double u, w, t; m=read.nextInt();
cout<<"Enter u and m: "; n=(int)u;
cin>>u>>m; t=u-n;
n=int(u); w=bin1(n)+bin2(t, m);
t=u-n; System.out.printf(
w=bin1(n)+bin2(t, m); "The base-2 representation of %-20.4f"
cout<<"The base-2 representation of "<<u +" \nwith %1d"
<<"\nwith "<<m<<" decimal digits: " + " decimal digits: %-20.5f",
<<setprecision(10)<<w; u, m, w);
return 0; read.close();
} }
[HF*KKFIKKKKKKIKKKIKKEIKK KKK K KKK [/3 XKIKKKIKKIKKKIKKKIKK KKK KKK KK
int bin1(int n) { static int bin1(int n) {
int r, p=1, newn=0; int r, p=1, newn=0;
do { do {
r=n%2; n=n/2; r=n%2; n=n/2;
newn=newn+p*r; newn=newn+px*r;
p=p*10; p=p*10;
} while (n!=0); } while (n!=0);
return newn; return newn;
3 }
// [[*FFKFKKIKFKFKKIK KKK KK KK
double bin2(float t, int m) { static double bin2(double t, int m) {
double k, newt=0, p=0.1; double k, newt=0, p=0.1;
int i=0, b; int i=-0, b;
do { do {
i=i+1; i=i+1;
k=2xt; k=2xt;
b=int(k); b=(int)k ;
t=k-b; t=k-b;
newt=newt+p*b; newt=newt+p*b;
p=p*0.1; p=p*0.1;
} while (i<m); } while (i<m);
return newt; return newt;
3 }
}
Input/output:
Input/output:
Enter u and m: 27.0939 5«
The base-2 representation of 27.0939 Enter u and m: 27.0939 5«
with 5 decimal digits: 11011.00011 The base-2 representation of 27.0939

with 5 decimal digits: 11011.00011

More applications of the conditional loops = 223

r<b%s
bes
ser

<>

Fig. 7.7(a): Instructions implemented in each repetition of the Euclidean algorithm.

7.6.2. Exercise. The main Algorithm 7.6(e) converts the positive real numbers to the
base-2 numeral system. Modify this algorithm in such a way to work for any real num-
ber and write the programs.

In the previous examples, the loops had initial values for the variables. The variables
in the conditional loop template of the following example do not need any initial val-
ues.

7.7) The Euclidean algorithm to compute the greatest common divisor (gcd). Write
an algorithm to read the two positive integers b and s and then determine and print
their greatest common divisor using the Euclidean algorithm.

Solution. To get a general idea, we apply the Euclidean algorithm to compute the gcd
of two numbers 87 and 24. Define the larger and smaller numbers as the dividend and
divisor and denote them by b and s, respectively. Divide b by s and record the remain-
der, which is denoted by r. Next, substitute the divisor for the dividend and the re-
mainder for the divisor. Repeat this process while the remainder is non-zero. The last
non-zero remainder will be the gcd. Flowchart 7.7(a) and Table 7.7(a) summarizes the
above discussion.

Tab. 7.7(a): The Euclidean algorithm applied for 87 and 24.

status b (dividend) s (divisor) r (remainder)
first step 87 24 15
second step 24 15 9
third step 15 9 6
fourth step 9 3
fifth step 6 3 0

Considering the above-mentioned argument, the following instructions are imple-
mented in each repetition of a do-while template while the remainder is non-zero.

224 = Conditional loops

r<b%s

1}

bes
ser

<>

Fig. 7.7(b): Calculating the gcd using a do-while template.

Be careful not to misplace the two instructions b<s and s<r; otherwise the algorithm will be com-
pletely wrong. Verify this fact by arranging an implementation table!

After exiting the loop, which variable should we print as the gcd? We look for the
answer in the implementation Table 7.7(b).

Tab. 7.7(b): Implementation table for Flowchart 7.7(a).

status b s r
before the loop 87 24

first repetition 24 15 15
second repetition 15 9 9
third repetition 6 6
fourth repetition 3 3
fifth repetition 0 0

As shown in Table 7.7, the answer to the above question is b. Flowchart 7.7(b) displays
the resulted algorithm.

More applications of the conditional loops = 225

It is noteworthy that if we start with b = 24 and s = 87 in Table 7.7(b), the same
result is obtained. Examine it! Thus, the order of reading small or large numbers is
not important. The C++ and Java codes of Flowchart 7.7(b) can be observed in Pro-
grams P7_7_A.

C++ code: Java codes:
// Program P7_7_A to compute the // Program P7_7_A to compute the
// gcd of two integers // gcd of two integers
#include <iostream> import java.util.Scanner;
using namespace std; class P7_7_A {
int main() { public static void main(String[] args) {
int b, s, r; Scanner read=new Scanner(System.in);
cout<<"Enter two integer: "; int b, s, r;
cin>>b>>s; System.out.print("Enter two integers: ");
cout<<"gcd("<<b<<", "<<s<<")="; b=read.nextInt();
do { s=read.nextInt();
r=b%s; System.out.print("gcd(" + b+ "," + s+ ")=");
b=s; do {
s=r; r=b%s;
} while (r!=0); b=s;
cout<<b; s=r;
return 0; } while (r!=0);
} System.out.print(b);
read.close();
Input/output:) 3

Enter two integer: 87 24+
gcd(87,24)=3 Input/output:

Enter two integer: 87 24+
gcd(87,24)=3

If we change the do-while template in Flowchart 7.7(b) to a while template,
Flowchart 7.7(c) is obtained.

Should we still print b upon exiting the loop? The answer is again in the imple-
mentation Table 7.7(c).

Tab. 7.7(c): Implementation table for Flowchart 7.7(c).

status b s r
before the loop 87 24

first repetition 24 15 15
second repetition 15

third repetition 9

fourth repetition 6 3 3

226 —— Conditional loops

b« |b@ |
s<|s0|

r<b%s
bes
ser

I

Fig. 7.7(c): Calculating the gcd using a while template.

This time, we should print either s or r. At the beginning of this algorithm, we substi-
tute the absolute values of the read integers b0 and sO for b and s, respectively, to
avoid having a negative gcd. Of course, we can instead change the printing value to
positive (write the absolute value of r instead of r in the print statement).

7.7.1. Exercise. Write the programs of Flowchart 7.7(c).

When we transfer the condition of the loop from the start to the end or vice versa, the condition and/or
the outputs may change. Anyway, the implementation table should be arranged again to check the
correctness of the algorithm.

We transform the process of Flowchart 7.7(c) into a function, named gcd(), which
receives two arbitrary none-zero integers b and s and then calculates and returns their
greatest common divisor. This function is depicted in Flowchart 7.7(d).

The main unit in Programs P7_7_B reads the two integers b0 and sO. Then, it
prints a message if at least one of these integers is zero. Otherwise, using the function
gcd(), it calculates and prints the greatest common divisor.

C++ codes: Java codes:

// Program P7_7_B to compute the // Program P7_7_B to compute the
// gcd using the gcd() function // gcd using the gcd() method
#include <iostream> import java.util.Scanner;
#include <math.h> class P7_7_B {

using namespace std; public static void main(String[] args) {

More applications of the conditional loops = 227

gcd(b0,s0)

b« b0 |
s<|s0|

(b%s)#0

r<b%s

Fig. 7.7(d): A function to calculate the gcd.

int gcd(int, int); Scanner read=new Scanner(System.in);
int main() { int bo, s0;
int b0, s0; System.out.print("Enter two integers: ");
cout<<"Enter two integer: "; b@=read.nextInt();
cin>>b0>>s0; s@=read.nextInt();
if (b0*s0==0) if (b0*s0==0)
cout<<"Not both non-zero"; System.out.print("Not both non-zero");
else else
cout<<"gcd("<<bo<<", "<<s0<<")=" System.out.print("gcd(" + b0 + "," + s0O
<<gcd(bo, s0); + ")=" + gcd(b0, s0));
return 0; read.close();
} }
// //
int gcd(int b0, int s@) { static int gcd(int b@, int s@) {
int b, s, r; int b, s, r;
b=abs(b0); b=Math.abs(b0);
s=abs(s0); s=Math.abs(s0);
while (b%s!=0) { while (b%s!=0) {
r=b%s; r=b%s;
b=s; b=s;
s=r; s=r;
3 }
return s; return s;
} }
3
Input/output:
Input/output:

Enter two integer: 87 24+
gcd(87,24)=3 Enter two integer: 87 24+
gcd(87,24)=3

228 — Conditional loops

b<|b0|
s<|s0|

@ return gcd(s, b%s)

Fig. 7.7(e): A recursive function to Calculate the gcd.

Now, we transform the process in the function of Flowchart 7.7(d) into a function with
the same name as gcd() using the recursive method (Flowchart 7.7(e)). Concentrate
on Flowcharts 7.7(d) and 7.7(e) and find the analogy in their logic! The subprogram
associated with the function in Flowchart 7.7(e) is represented as follows.

C++ codes: Java codes:
int gcd(int b0, int s@) { static int gcd(int b@, int s0) {
b=abs(b0); b=Math.abs(b0);
s=abs(s0); s=Math.abs(s0);
if (b%s!=0) if (b%s!=0)
return gcd(s, b%s); return gcd(s, b%s);
else else
return s; return s;
3 }

7.8) The generalized Euclidean algorithm. Complete the algorithm of Flowchart 7.7(c)
so that, in addition to finding the gcd of the two non-zero integers b0 and s0, it calcu-
lates the two integers x and y leading to gcd(b0, sO) =r=b0 x + sO y.

Solution. First let bO and sO be positive. It suffices to find only one of the two required
integers, say x, since knowing b0, s0, r, and x, the integer y can be obtained from the
above relation as follows.

_r—xbO
y= s0

Furthermore, the Euclidean algorithm is described in two simultaneous processes in
order to further clarify the issue. In one process, calculate the algorithm itself to the
point of achieving the gcd result and in the other one, compute the remainders as a
linear combination of b and s. These two simultaneous processes are provided in Ta-
ble 7.8(a).

More applications of the conditional loops = 229

Tab. 7.8(a): calculating the remainders as a linear combination of b and s.

Euclidean algorithm remainders

b=sq+n r,=1b—q;s

S=1nq; t1; T, =S —(qarn = —qzb + A3s

T =Tq3 713 r3=1—q31, = (1 = (—q2)q3)b + A3s

T, =T34+ Ta =73 — qam3 = (—q2 — (1 + q293)q)b + A4s

This table aims to calculate the coefficients of b. Therefore, the coefficient of s is not
explained in details. The third row in the right column is reviewed in order to find
how the coefficients of b are calculated in each step:

13 =11 —q31 = (1= (—q2)q3)b + 43s.

From the algorithm viewpoint, we define the following variables to state the coeffi-
cient of b in this row:

— q: the quotient in the current row;

— CO: the coefficient of b in the current row;

— C1: the coefficient of b in the previous row;

— C2: the coefficient of b in the two rows before.

Now, as represented in Table 7.8(a), the coefficient in the current row is obtained from
the following relation:

€0 =C2-Clq.

As shown in the fourth row of Table 7.8(a), C1 and CO substitute for C2 and C1, respec-
tively, in order to transfer the calculation to the next rows. Precisely, the following
instructions are implemented in the quoted orders:

y

C0<C2-Cl*q
C2<C1
Cl<Co

!

Finally, the initial values of C2 and C1 are left to determine. These values should be
selected in such a way that in the first row, CO would be equal to 1, independent of
the quotient g. For this purpose, C2 and C1 should have the initial values 1 and 0,
respectively.

In Flowchart 7.7(c), there is a while template which calculates the gcd of the read
integers b0 and sO. Therefore, considering the simultaneous processes in the table 7.8

230 — Conditional loops

b<|b0|
s<|s0|

l

C2¢1
Cle0

x«C0O r<b%s
y<(r-xxb0)/s0

)

Co«C2-C1*q
C2¢C1
C1¢Co

Fig. 7.8(a): Euclidean algorithm and extended Euclidean algorithm simultaneously.

and the above arguments, we can extend the while template of this flowchart to
Flowchart 7.8(a) in which the new instructions are represented in a bold format. The
required integers are:

r — xb0
¥=00 y=E—gp

The implementation Table 7.8(b) is the extended version of Table 7.7(c) for Flowchart
7.8(a). As mentioned above, the required integer x is indeed CO.

Tab. 7.8(b): Simultaneous calculations of the coefficient of b and the gcd.

status b S r q c2 c1 co

before the loop 87 24 1 0

More applications of the conditional loops = 231

b<|b0|
s<|s0|
)
C2¢1
Cl¢0
b%s # 0
x<C0O r<b%s
y<(r-xx|b0|)/|s0])
v q¢b/s
x<sign(b0)*x
yesign(s0)x*y)
bes
ser
S, X,y
]
Co«C2-C1*q
C2¢C1
C1<Co

Fig. 7.8(b): Euclidean algorithm and extended Euclidean algorithm simultaneously (completed).

status b S r q Cc2 Cc1 co
first repetition 24 15 15 3 0 1 1
second repetition 15 9 9 1 1 -1 -1
third repetition 9 6 6 1 -1 2 2
fourth repetition 6 3 3 1 2 -3 -3

Now, let b0 and sO be any non-zero integers. Then the required integers x and y are:

_ 7 —x|b0]

= CO0,
* /0]

Moreover, in this case, the linear combination is as follows.

r= bO(x X sign(bO)) + sO(y X sign(sO))

232 — Conditional loops

The completed flowchart is illustrated in Figure 7.8(b) with the codes in Programs

P7_8.

C++ codes:

Java codes:

// Program p7_8 to extend the Euclidean// Program p7_8 to extend the Euclidean

// Algorithm: finding the integers
// x,y such that bx + sy = gcd(b,s)
#include <iostream>
#include <math.h>
using namespace std;
int sign(int k) {
return k/abs(k);
3
int main() {
int bo, s@, b, s, r, q, Co, C1,
C2, x, y;
cout<<"Enter two integers: ";
cin>>b0>>s0;
b=abs(b0); s=abs(s0);
C2=1; C1=0;
while (b%s!=0) {
r=b%s;
g=b/s;
b=s;
s=r;
C0=C2-C1*q;
C2=C1;
C1=C0;
3

cout<<"ged("<<b@<<", "<<s@<<")="<<s;

x=C0;

y=(r-abs(b0)*x)/abs(s0);

x=sign(b0)*x;

y=sign(s@)*y;

cout<<"=("<<x<<") ("<<bO<<")+("<<y
<<")("<<s0<<") "<<endl;

return 0;

Input/output:

Enter two integers: 87 24+«
gcd(87,24)=3=(-3)(87)+(11)(24)

// Algorithm: finding the integers
// x,y such that bx + sy = gcd(b,s)
import java.util.Scanner;
class P7_8 {
static int sign(int k) {
return k/Math.abs(k);
}
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int b@, s0, b, s, r=0, q, Co=0, C1,
C2, x, y;
System.out.print("Enter two integers: ");
b@=read.nextInt();
s@=read.nextInt();
b=Math.abs(b0); s=Math.abs(s0);
C2=1; C1=0;
while (b%s!=0) {
r=b%s;
g=b/s;
b=s;
s=r;
CO=C2-C1*q;
C2=C1;
C1=Co;
}
System.out.print("gcd(" + b0 + "," + s0@
+")=" 4 s);
x=C0;
y=(r-Math.abs(b0@)#*x)/Math.abs(s0);
x=sign(b0)*x;
y=sign(s@)*y;
System.out.print("=(" + x + ")(" + b0
R Ay (4 s+ "))
read.close();

Input/output:

Enter two integers: 87 24+
gcd(87,24)=3=(-3)(87)+(11)(24)

It is worth mentioning that we should initialize the variables r and CO to O in the right
Java program. However, in the left program this is not necessary.

More applications of the conditional loops = 233

c<0

Fig. 7.9(a): Counting the prime factor i.

7.8.1. Exercise. Write a function, named egcd() to receives two non-zero integers b0
and s0. Then, calculate and return the gcd of these two numbers as well as the two
integers x and y mentioned in the extended Euclidean algorithm. Afterwards, write a
main algorithm to read the two integers b0 and sO. Next, print a message if at least
one of them is zero. Otherwise, calculate and print the returned values, using the
function egcd(). Finally, write the complete programs.

7.8.2. Exercise. Repeat the previous exercise using a do-while template instead of
while template.

7.9. Example. Write an algorithm to read a positive integer n and decompose it as a
multiplication of its prime factors and then print it like the following output for the
input 504:

504=2"3%3%2%7"1

Solution. This problem needs more attention. We should look for the prime factors of
n in the range of integers from 2 to n. Accordingly, we perform the following tasks in
the range of a for loop with the specification i=2,n:

1. Passtheithrough the prime() function filter and count the number of the i inside
n in the F-path of an if template. To do this, define a counter named c with the
initial value of 0. Then, inside the range of a while template, while n is divisible
to i, first, increase ¢ by one and then, take an i from n by substituting the n /i for
n. Flowchart 7.9(a) displays this count.

2. How do we print the required format after exiting this while template? It is clear
that the i is the (prime) factor of n if it exists at least once inside n. Thus, we check
whether c is positive. If so, we attempt to print the required format in the F-path
of an if template with the rule as follows. What is clear is that in each repetition,

234 = Conditional loops

c>0

Fig. 7.9(b): Printing the required format.

the value of the factor i along with its power c is printed in the form i*c followed
by the * character except for the last repetition in which there is no asterisk. Ac-
cordingly, we divide the printing task into two sections due to whether or not the
repletion is the last one which is happened only when n is 1. Therefore, if n =1,
we terminate the program by printing the string:

Otherwise, the string:
i’ ||/\II’ C’ ll*"

is printed in each repetition. It is noteworthy that this printing formats are differ-
ent in C++ and Java (see Programs P7_9). Flowchart 7.9(b) illustrates this printing
design.

Only the part “504="is left from the required print format. This can be performed by
printing the string:

n,

before the for template. The above discussion, is summarized in the completed
Flowchart 7.9(c). Programs P7_9 is the translation of this algorithm into C++ and Java
codes.

More applications of the conditional loops = 235

prime(i)

i,

wan wgen
Gy F

Fig. 7.9(c): Primary decomposition of n along with the formatted print.

C++ code: Java codes:

// Program P7_9: Primary decomposition // Program P7_9: Primary decomposition

// of a positive integer // of a positive integer

#include <iostream> import java.util.Scanner;

#include <stdlib.h> class P7_9 {

#include <math.h> public static void main(String[] args) {
using namespace std; Scanner read=new Scanner(System.in);

int prime(int); int i, n, c;

236 — Conditional loops

int main() {
int i, n, c;
cout<<"Enter an integer: ";
cin>>n;
cout<<n<<"=";
for (i=2; i<=n; i++) {
if (prime(i)==1) {
c=0;
while (n%i==0) {
Ct++t;
n=n/i;
}
if (c>0) {
if (n==1) {
cout<<i<<"r"<<c;
exit(0);
3
cout<<i<<"A"<<e<"x";
}
3
3
return 0;
}
//
int prime(int n) {
int i, p=1;
for (i=2; i<=floor(sqrt(n)); i++)
if (n%i==0)
p=0;
return p;

3
Input/output:

Enter an integer: 504+
504=223%342%7"1

System.out.print("Enter an integer: ");
n=read.nextInt();
System.out.print(n+"=");
for (i=2; i<=n; i++) {
if (prime(i)==1) {
c=0;
while (n%i==0) {
Ct++;
n=n/i;
}
if (c>0) {
if (n==1) {
System.out.print(i + "*" + ¢);
System.exit(0);
}
System.out.print(i + "*" + c + "%");
3
}
}
read.close();
}
//
static int prime(int n) {
int i, p=1;
for (i=2; i<=Math.floor(Math.sqrt(n)); i++)
if (n%i==0)
p=0;
return p;
3
3

Input/output:

Enter an integer: 504+
504=223%3"2%7"1

7.9.1. Exercise. The completed Flowchart 7.9(c) as well as Programs 7_9 do not work
for 0, 1, and the negative integers. Modify the flowchart and the programs so that they

work for any integer.

In numerical computations, a certain quantity is often approximated in a series of
specific iterated procedures so that in each step the approximated amount becomes
more accurate compared to the previous step. In such computations, if we need an
accuracy of n decimal digits, then we have to repeat these steps until the absolute
value of two consecutive approximations is smaller than

n times

5x10~™+*D =0.00...05

More applications of the conditional loops = 237

bisect(a,b,n)

te<pow(10,-n-1)

1}

me(ath)/2

e
=

a m

k<int(a*pow(10,n))/(pow(10,n))

Fig. 7.10: Finding the approximated root of a function f using the bisection method.

This amount is called the tolerance. In this case, the last approximation, or the ap-
proximation before the last one, up to n decimal digits, is the desired approximation.

7.10. Example. The bisection method is one of the methods of finding the approxi-
mated root of a function f. In this method, an interval [a, b] is guessed in which f(a)
and f(b) have different signs, that is, f has a root. Now, we halve the interval and take
the half in which the values of the function at the endpoints have different signs (f
has a root). We may repeat this procedure as many times as needed. Write the algo-
rithm of a function to receive the endpoints a and b and the positive integer n and
then calculate and return the approximated root of f with the precision of n decimal
digits.

Solution. Take the tolerance as t. Find the middle point of the interval [a, b] in the
range of a do-while template and mark it as m. Now, take m as the end point of the
new interval (substitute m for b) if fla) and f(m) have different signs; otherwise, take
it as its start point (substitute m for a). Repeat this procedure while the value of b — a
is greater than or equals to the tolerance t. Now the value of either a or b with the
precision of n decimal digits is the required approximation. To separate this value

238 — Conditional loops

from, say a, it suffices to multiply it by 10", take the integer part of the obtained num-
ber, and finally, divide it by 10" again. The resulted algorithm is depicted in
Flowchart 7.10.

In the main unit of Programs P7_10, first, the amounts of a and b are read. If f(a)
and f(b) have the same signs, a message is printed. Otherwise, calling the function
bisect(), the approximated root of the functions f(x) = x® — x — 1is calculated and
printed with the precision of seven decimal precision.

C++ codes: Java codes:
// Program P7_10 to find the // Program P7_10 to find the
// approximated root of y=f(x) // approximated root of y=f(x)
// using the bisection method // using the bisection method
#include <iostream> import java.util.Scanner;
#include <math.h> class P7_10 {
#include <iomanip> public static void main(String[] args) {
using namespace std; Scanner read=new Scanner(System.in);
double f(double); float a, b;
double bisect(double, double, int); int n;
int main() { System.out.print("Enter the "
float a, b; + "endpoints: ");
int n; a=read.nextFloat();
cout<<"Enter the endpoints: "; b=read.nextFloat();
cin>>a>>b; System.out.print("Enter the number of "
cout<<"Enter the number of decimal " + "decimal precision: ");
<<"precision: "; n=read.nextInt();
cin>>n; if (f(a)*f(b)>=0)
if (f(a)*f(b)>=0) System.out.print("Illegal interval");
cout<<"Illegal interval"; else
else System.out.printf("%-10.7f",
cout<<setprecision(8) bisect(a, b, n));
<<bisect(a, b, n); read.close();
return 0; }
3 VR L L e T T
// static double f(double x) {
double f(double x) { return Math.pow(x, 6)-x-1;
return pow(x, 6)-x-1; }
3 //
// static double bisect(double a, double b,
double bisect(double a, double b, int n) {
int n) { double m, t, k;
double m, t, k; do {
do { t=Math.pow(10, -n-1);
t=pow(10, -n-1); m=(atb)/2;
m=(a+b)/2; if (f(a)*f(m)<o)
if (f(a)*f(m)<o) b=m;
b=m; else
else a=m;
a=m; } while (b-a>=t);
} while (b-a>=t); k=(int) (a*Math.pow(10, n))
k=int(a*pow(10, n))/(pow(10, n)); /(Math.pow(10, n));
return k; return k;

The if-goto loops (C++ only) == 239

}

Input/output:
Enter the endpoints: 1 2«

Enter the number of decimal precision: 7«

Enter the endpoints: 1 2«
1.1347241

Enter the number of decimal precision: 7+«
1.1347241

7.3 The if-goto loops (C++ only)

In the C++ language, the programs of the while and do-while templates can be writ-
ten using the two statements if and goto as in Figure 7.11.

Using the if-goto loops is not recommend since it confuses the reader of the pro-
gram. Recall that the goto statement is not defined for the compiler of Java language
although it is counted as a keyword. Practically, often there is no need to use the goto
statement, even in C++. To observe this fact, we provide several various examples in
the following patterns. The italic phrases are replaced by the real codes used by the
user in these examples. The first columns (from left), are valid codes in C++ using the
goto statement. In the second or third columns, which are valid in both C++ and Java,
the existence of label L is not needed in practice and it is written just for comparisons.

C++ codes:
@ 100: if (condition) {

loop range
loop range 3 goto 100;
)
The while template
!
C++ codes:
loop range
100: {

loop range
} if (condition) goto 100;

The do-while template

Fig. 7.11: The if-goto loops equivalent to the while and do-while templates.

240 — Conditional loops

A part with the goto statement: Equivalent part with the continue statement:

L: L:
while (condition 7) { while (condition 1) {
block 71 block 1
if (condition 2) if (condition 2)
goto L; continue;
block 2 block 2
} block 2 3

A part with the goto statement: Equivalent part with the break statement:

while (condition 7) { while (condition 1) {
block 1 block 1
if (condition 2) if (condition 2)
goto L; break;
block 2 block 2
} }
L: L:

A part with the goto statement: Equivalent part without the goto statement:

block 1 block 71
if (condition) if (!condition)
goto L; block 2
block 2 L: block 3
L: block 3

A part with the goto statement: Equivalent part with the do-while statement:

block 1 block 71
L: block 2 do {
block 3 L: block 2
if (condition) block 3} while (condition);
goto L;
A part with goto: Equivalent part without goto: Equivalent part without goto :
if (condition) if (condition) {3} if (lcondition) {
goto L; else { block 1
block 71 block 1 }
L: } L:
L:
A part with goto : Equivalent part without goto: Equivalent part without goto :
if (condition) if (Ycondition) {
goto L; block 71
else { block 2
block 71 }
} L:
block 2

Exercises == 241

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, (3) Provide appropriate input notifications and output head-
ings, if any. In addition, the user-defined functions in the text of the current and the
previous chapters may be used unless otherwise is explicitly specified.

7.1. The approximated amount of the number 7 is calculated using the following for-
mula.

Write an algorithm to calculate and print the approximated amount of 77 with the sum
of the ten first terms of this series.

7.2. Write an algorithm to calculate and print the approximated amount of 7 with the
precision of 4 decimal digits using the formula in Exercise 7.1.

7.3. The approximated amount of the Neperian logarithm of the positive number x is
calculated using the formula

x-1 1/x-1 2 1/x-1 3
GO = 2+ 5 () +3(5)
Write an algorithm to read the positive number x and print the undefined message if
it is non-positive; otherwise, calculate and print the amount of In(x) with the sum of
the first ten terms of the above series.

7.4. Repeat Exercise 7.3 with the precision of 4 decimal digits instead of the ten first
terms of the series.

7.5. Write an algorithm to read the two positive integers m and n and then calculate
and print the quotient and remainder of the division of m by n using the repeated
subtractions. For example, the equation 13 — 4 — 4 — 4 = 1 indicates that the quotient
of the division 13 by 4 is 3 and the remainder is 1.

7.6. The first two terms of a series are 1 and 2 and from the second term onwards, the
distance between the two terms is one more than the distance of the previous two
terms. Some of the terms of this series are:

242 — Conditional loops

Write an algorithm to read a positive integer n, where n is assumed greater than 2.
Then, calculate and print the n first terms of this series, as well as their sum.

7.7. Write a function to receive a positive integer n, where n is assumed greater than
2. Then, calculate and return the n-th term of the sequence in Exercise 7.6. To do this,
use the direct method and once again use the recursive method.

7.8. Write an algorithm to determine and print the terms of the Fibonacci sequence
between 100 and 150.

7.9. Write an algorithm to determine and print the number and sum of the terms of
the Fibonacci sequence smaller than 100.

7.10. Write an algorithm to produce and print the first 20 terms of the Fibonacci se-
quence.

7.11. Write a function named SumDig() to receive a positive integer n and then calcu-
late and return the sum of its digits.

7.12. Write an algorithm to read the positive integer n. Then, read n positive integers
and determine and print the numbers which the sum of their digits are greater than
45, Finally, print the number of these numbers.

7.13. Write an algorithm to read a positive integer n and then determine whether or
not n is divisible to the sum of its digits by printing an appropriate message.

7.14. Write an algorithm to read a positive integer n. Then, read n integers one by one
and each time print the reverse of the read number.

7.15. A symmetric integer is an integer which is equal to its reverse. For example, 1221
is symmetrical while 867 is not. Write an algorithm to read a positive integer n and
then determine whether or not n is symmetric by printing one of the messages YES or
NO after calculating its reverse.

7.16. Write an algorithm to calculate and print the four-digit symmetric integers and
the number of such integers.

7.17. Write a function named DecPart () to receive a real number ¢ and then calculate
and return the decimal part of ¢ as an integer by removing the decimal point.

7.18. Write an algorithm to find the reverse of an arbitrary real number ¢t. For example,
the reverse of 12.345 is 543.21.

Exercises == 243

7.19. Repeat the previous exercise directly without using Exercise 7.17.

7.20. Write an algorithm to read an integer n with n > 2. Then, read n integers from the
input one by one and calculate and print their greatest common divisor. It should be
mentioned that the greatest common divisor of a set of numbers is determined recur-
sively. For example

ged(a, b ,c)=gcd(ged(a, b),)

7.21. A polynomial is called primitive if its coefficients are prime to each other. Write
an algorithm to read the degree and the coefficients of a polynomial and determine
whether or not it is primitive by printing one of the messages Primitive or Not prim-
itive.

7.22. What is the possibility that a pair of integers from 1 to n are coprime? Write an
algorithm to read the positive integer n and then calculate and print this possibility.
For example, for n = 4, among 10 (= 2 + 3 + 4) pairs of numbers from 1 to 4, six of them
are coprime; therefore, the possibility is 0.6 (= 6 / 10).

7.23. Write an algorithm to read a positive integer n and then print the first prime
number to the n-th one.

7.24. Write an algorithm to read a positive integer n and then calculate and print the
n-th prime number.

7.25. A perfect integer is defined in Exercise 6.26. Write an algorithm to read a positive
integer n and print the perfect numbers from the first to the n-th one.

7.26. Write an algorithm to read a positive integer n and then calculate and print the
n-th perfect number.

7.27. Write an algorithm to read a positive integer n having at most eight digits. Then,
determine whether or not n is a factorial of an integer by printing an appropriate mes-
sage. If yes, determine the integer k for which k! = n.

7.28. For a positive integer n, the phi Euler function of n, denoted by ¢(n), is defined
to be the number of positive integers smaller than n and coprime to n. Write an algo-
rithm to read the positive integer n and then calculate and print ¢(n). Additionally,
print all the positive integers smaller than n and coprime to n.

7.29. Write a sub-algorithm to receive the two arbitrary integers b and s and find their
greatest common divisor, g, together with the two numbers x and y so that g = bx + sy.

244 = Conditional loops

Then, return g, x, and y to the caller unit. Write this sub-algorithm with two ways:
once using the while template and once again with the do-while template.

7.30. The approximated amount of the n-th root of the real number ¢ can be calculated
using the following repetitive way in which a presupposed root xo should be selected
beforehand.

1
Xit1 =z(n— Dx; toa o1
L

Write an algorithm to read the amount of ¢, n, and the presupposed root xo from the
input and then calculate the amount of the n-th root of ¢t and print it with three deci-

mal digits precision.

7.31. Solve Exercises 4.19, 4.20, 4.21, and 5.12 using either whole or do-while loop.

Supplementary exercises

7.1*, Write an algorithm to read the integers a, c, and m. Then, print a message if
gcd(a, m) is not divisible by c. Otherwise, solve the following congruent equation.

ax = ¢ (mod m).

7.2*, Write an algorithm to read the integers b, ¢, m, and n. Then, print an appropriate
message if gcd(m, n) = 1. Otherwise, solve the following congruent equations system.

x = b (mod m)
x = ¢ (mod n).

7.3*. Write a function named akmodm() to receive the integers a, k, and m and then
calculate and return the value of a* modulo m. The amounts of a and k are assumed
none-negative and smaller than m.
7.4*. Suppose that n is a positive integer. The set of positive integers less than and
coprime to n form a group with the multiplication modulo n. Assume that a is a mem-
ber of this group. Then,

gcd(a,n)=1,forall O<a<n.

The smallest positive integer k satisfying the

Exercises = 245

a¥ =1 (modn),

is called the order of a modulo n. Write a function named order () to receive two pos-
itive integers a and n, with the above properties, and calculate and return the order
of a modulo n. Next, write a main algorithm to read two positive integers a and n and
print a message if they do not possess the above properties. Otherwise, calculate and
print the order of a modulo n using the function order().

7.5*. Write a function to receive a positive integer and then determine and return its
reverse using the recursive method.

7.6*. Write a function named dec() to receive a positive integer n in the base-2 nu-
meral system, convert it into the base-10 numeral system, and return the result.

7.7*. Write an algorithm to read a positive integer n and group it in triples, from right
to left and then print this integer. For example, the read integer 5176254 is printed as
5,176,254. The solution for this exercise is simpler if the arrays are used (Exercise
8.13%).

7.8*. Do the following process to convert a positive integer n from the base-2 numeral
system to the base-8 numeral system: arrange n in the groups of threes from right to
left, convert each group to the base-10 (usual) numeral system, and put it in its loca-
tion. The resulting number is the representation of the number in the base-8 numeral
system. Write an algorithm to read a positive integer n in the base-2 numeral system,
convert it into the base-8 numeral system, and then print the result.

7.9*. To convert a number from the base-8 numeral system into the base-2 numeral
system do as in the previous exercise but in an opposite direction: convert each digit
into the base-2 numeral system using the bin1() function in Example 7.6 and place it
in its position. The obtained number is the representation of the number in the base-
2 numeral system. Write an algorithm to read the positive integer n in the base-8 nu-
meral system, convert it into the base-2 numeral system, and then print the result.

8 One-dimensional arrays

8.1 vectors

In previous chapters, we addressed independent and non-homonymous variables in
algorithm writing and programming. Now, we start working with variables named
arrays which include one or more indices. These variables have the same name but
different indices. In the process of solving certain problems, we have to deal with a
large number of variables having similar behaviours in the program. In these situa-
tions, defining all the variables independently consumes the time of the algorithm,
increases its size and thus makes it useless. Therefore, we use arrays which have ho-
monymous variables and different indices in order to overcome this problem. An im-
portant advantage of using arrays is in object-oriented programming: arrays, as the
predefined objects, pass by the reference. In the present chapter, we concentrate on
one-dimensional arrays and remove the phrase “one-dimensional”. This type of array
is occasionally regarded as a vector or a list. For example, an array of eight entries is
illustrated in the following diagram.

ull] uf2] u[3] ul4] u[5] ul6] ul7] u[8]

As shown, eight different variables exists in this diagram all having the same name
while different indices. In theoretical studies, these variables are written as wi, u, ...,
Us.

All of the entries of an array should be of the same data type which is then asso-
ciated with the array data type. For instance, an array is integer if all of its entries are
integers. The declaration of arrays in programming is as follows.

declaration of arrays in C++: declaration of arrays in Java:
data type array name[array length]; data type_array name[J=new_data typelarray length];

For example, the statement

in C++: in Java:
int ul87; int u[J=new int[8];

declares the variable u as a one-dimensional integer array with a length of 9. As re-
gards the entry u, in programs, we write uln]. By default, the index of the entries
starts from O in both C++ and Java compilers. However, we may start from index 1 if
necessary, in which case, the length should be added up by one unit (for the zero

https://doi.org/10.1515/9783110616484-008

vectors =—— 247

index). For example, if we want to work with uo, uj, ..., u7 we introduce u as above. On
the other hand, we introduce u with a length of 9 if we want to work with wi, us, ..., Us:

in C++: in Java:
int ul91; int u[J=new int[9];

In algorithm writing, we may declare an array in different ways inside a rectangle
with dashed border, depending on what feature we need. For example, there are three
patterns in the following figure. In the leftmost pattern, the name, along with the
starting and ending indices are declared. In the middle one, the data type, name, and
the length are the user’s emphasis and finally, in the rightmost pattern, the declara-
tion focuses on the data type, name, as well as the starting and ending indices.

8.1. Example. The mean M and the variance V for n numbers are calculated using the
following formulae.

M= =1 X ' V=Z?=1xi2—nM2

n n—1

Write an algorithm to read an integer n > 1. Then, read n real numbers and calculate
and print their mean and variance.
Solution. We first write an algorithm without using the arrays. To do this, denote the
number which is supposed to be read each time as x and use the variables sum1 and
sum? for the repetitive sums of the x and the x? respectively.

Use a for template and assign O as the initial value of sum1 and sum2 before the
loop. At each repetition of the loop we should calculate the repetitive sums suml and
sum? after reading x. Then, calculate and print M and V upon exiting the loop. These
discussions are displayed in the form of an algorithm in Flowchart 8.1(a).

Programs P7_8_A indicate the codes of Flowchart 8.1(a).

C++ codes: Java codes:

// Program P8_1_A to calculate the // Program P8_1_A to calculate the
// mean and variance of n numbers // mean and variance of n numbers

// without using the arrays // without using the arrays

#include <iostream> import java.util.Scanner;

using namespace std; class P8_1_A {

int main() { public static void main(String[] args) {
double x, suml, sum2, M, V; Scanner read=new Scanner(System.in);
int i, n; double x, suml, sum2, M, V;
cout<<"Enter an integer n>1: "; int i, n;

cin>>n; System.out.print("Enter an integer n>1: ");

248 = One-dimensional arrays

sum1<0
sum2<0

<:: i=1,n
¥

Mesum1/n X
Ve (sum2-n*M*M)/(n-1)

sumlesuml+x
M,V Sum2¢sum2+x*x

L |
<D

Fig. 8.1(a): Calculating the mean and variance without using the arrays.

sum1=sum2=0; n=read.nextInt();
for (i=1; i<=n; i++) { sum1=sum2=0;
cout<<"Enter a numbers: "; for (i=1; i<=n; i++) {
cin>>x; System.out.print("Enter a numbers: ");
suml+=x; x=read.nextDouble();
SUM2+=X*X; suml+=x;
} SUM2+=X*X;
M=sum1/n; }
V=(sum2-n*M*M)/(n-1); M=sum1/n;
cout<<"Mean: "<<M<<", Variance: " V=(sum2-n*M*M)/(n-1);
<V; System.out.print("Mean: " + M
return 0; + ", Variance: " + V);
3 read.close();
3
Input/output: 3
Enter an integer n>1: 4¢ Input/output:

Enter a numbers: 14.5¢

Enter a numbers: 25.5¢ Enter an integer n>1: 4+
Enter a numbers: 89+« Enter a numbers: 14.5¢
Enter a numbers: 50+« Enter a numbers: 25.5¢
Mean: 44.75, Variance: 1090.42 Enter a numbers: 89+

Enter a numbers: 50+
Mean: 44.75, Variance: 1090.4166666666667

Now, arrays are used to write this algorithm. To achieve this, an array named x is
defined with 100 hypothetical entries (a hypothetical length of 101) and the indexed

vectors = 249

| 1
@ --1 float x[1...1007 |
S, 1

sum1<0
sum2<0
) ¥
<:: i=1,n
)
Mesum1/n x[1i]
Ve(sum2-n*M*M)/(n-1)
sumlesuml+x[1i]
M,V sum2<sum2+x[1Jxx[1]

Fig. 8.1(b): Calculating the mean and variance using the arrays.

variable entries of this array are applied in the calculation. Accordingly, Flowchart

8.1(b) is obtained.

Maybe one objects that the appearance of the flowchart is now a little complicated!
Therefore, what is the benefit of using the arrays? Well, a similar initial idea which is
used to write the algorithm without using the arrays may not always occur in every-
one’s mind. Further, the speed of running the program is normally higher while less
space is occupied in the memory when using the arrays. Furthermore, writing the al-
gorithm without using the arrays is often difficult when facing a large number of data
of the same type. For example, can you write an algorithm m) without using the arrays
to read two 100-component vectors, add them (componentwise), and store the result
of this victor addition in the third 100-component vector? How many variables are
used? How many assignment statements?

Programs P8_1_B are related to Flowchart 8.1(b).

C++ codes: Java codes:

// Program P8_1_B to calculate the // Program P8_1_B to calculate the

// mean and variance of n numbers // mean and variance of n numbers

// using the arrays // using the arrays

#include <iostream> import java.util.Scanner;

using namespace std; class P8_1_B {

int main() { public static void main(String[] args) {
double x[101], suml, sum2, M, V; Scanner read=new Scanner(System.in);
int i, n; double x[J=new double[1011];

cout<<"Enter an integer n>1: "; double suml, sum2, M, V;

250 — One-dimensional arrays

cin>>n;

suml=sum2=0;

for (i=1; i<=n; i++) {
cout<<"Enter a numbers: ";
cin>>x[i];
suml+=x[i];
sum2+=x[i]xx[i];

int i, n;

System.out.print("Enter an integer n>1: ");

n=read.nextInt();

suml=sum2=0;

for (i=1; i<=n; i++) {
System.out.print("Enter a numbers: ");
x[il=read.nextDouble();

} suml+=x[i];
M=sum1/n; sum2+=x[1]*x[1i];
V=(sum2-n*MxM)/(n-1); }
cout<<"Mean: "<<M<<", Variance: " M=sum1/n;
<V, V=(sum2-n*M*M)/(n-1);
return 0; System.out.print("Mean: " + M
} + " Variance: " + V);
read.close();
Input/output: }
}
Enter an integer n>1: 4+«
Input/output:

Enter a numbers: 14.5¢

Enter a numbers: 25.5¢
Enter a numbers: 89+« Enter an integer n>1: 4+

Enter a numbers: 50« Enter a numbers: 14.5«

Mean: 44.75, Variance: 1090.42 Enter a numbers: 25.5¢
Enter a numbers: 89«

Enter a numbers: 50+
Mean: 44.75, Variance: 1090.4166666666667

Note that, at least two inputs should be entered when running these programs. Oth-
erwise, we encounter the “division by zero” error in C++ and NaN (not a number) result
in Java when calculating the variance.

The next example confirms the fact that it is occasionally difficult to write the
algorithm without employing the arrays.

8.2. Example. Write an algorithm to read 20 integer entries of an array and put them
reversely (from the end to the start) in another array. Then, print the two arrays sep-
arately.
Solution. We arrange the algorithm so that it reads 20 entries of an array named a by
a for template. Then, the algorithm puts these entries reversely in another array
named b by another for template. To this end, we only need to assign a; to b,;_; in
the range of the loop. Finally, the algorithm prints both arrays separately using two
for templates. The obtained flowchart is displayed in Figure 8.2(a) with the Programs
P8_2in C++ and Java codes.

Of course, as shown in Flowchart 8.2(b), the two first loops can be merged. Pro-
grams P8_2 depict Flowchart 8.2(b) in both C++ and Java codes.

C++ codes: Java codes:
// Program P8_2 to put the entries of // Program P8_2 to put the entries of
// an array to another array reversely // an array to another array reversely

start -- a,bl1...

ali]

i=1,20

i
bl21-ilali]

i=1,20

vectors =—— 251

Fig. 8.2(a): Reversely putting the entries of an array in another one.

#include <iostream>
using namespace std;
int main() {
int a[211, b[211, i;
cout<<"Enter the array a: \n";
for (i=1; i<=20; i++) {
cin>>alil;
bl[21-i]=alil;
b
cout<<"The array a is: \n";
for (i=1; i<=20; i++)
cout<<alil<<" ";
cout<<"\nThe array b is: \n";
for (i=1; i<=20; i++)
cout<<b[il<" ";
return 0;

import java.util.Scanner;
class P8_2 {
public static void main(String[] args) {

Scanner read=new Scanner(System.in);

int all=new int[21];

int b[J=new int[21];

int i;

System.out.println("Enter the array a: ");

for (i=1; i<=20; i++) {
alil=read.nextInt();
b[21-i]=alil;

3

System.out.println("The array a is: ");

for (i=1; i<=20; i++)
System.out.println(alil + " ");

System.out.println("\nThe array b is: ");

for (i=1; i<=20; i++)
System.out.print(b[i] + " ");

read.close();

252 — One-dimensional arrays

i alil /

b[21-iJ<«alil]

Fig. 8.2(b): Merging the two first arrays in Flowchart 8.2(a).

As displayed in Flowcharts 8.2(a) and 8.2(b), printing the array using a for template
is repeated two times in Programs P8_2. From now on, sub-algorithms (subprograms)
are employed for reading and printing the entries of the arrays (vectors) in order to
reduce the time and size of writing algorithms (programs) involved with the arrays.
The following flowcharts illustrate the sub-algorithms for reading and writing the in-
teger vectors having n entries started from index 1. We refer to these sub-algorithms
as readIvec() and writelIvec() (I for int).

< i=1,n) < i=1,n 1

Additionally, similar sub-algorithms named readFvec() and writeFvec() (F for
float) will be used in the case of real entries (The same can be written for double data
type). The subprograms of these sub-algorithms are as follows.

vectors =— 253

C++ codes for readIvec: Java codes for readIvec:
void readIvec(int u[], int n) { static void readIvec(int u[], int n) {
for (int i=1; i<=n; i++) Scanner read=new Scanner(System.in);
cin>>ulil]; for (int i=1; i<=n; i++)
return; u[iJ=read.nextInt();
3 read.close();
}
C++ codes for readFvec: Java codes for readFvec:
void readFvec(float ul[], int n) { static void readFvec(float u[], int n) {
for (int i=1; i<=n; i++) Scanner read=new Scanner(System.in);
cin>>uli]; for (int i=1; i<=n; i++)
return; u[il=read.nextFloat();
3 read.close();
}
C++ codes forwritelvec: Java codes for writeIvec:
void writeIvec(int ull], int n) { static void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; it++)
cout<<ul[il<<" "; System.our.print(ufi] + " ");
return;
’ }
3
C++ codes for writeFvec: Java codes for writeFvec:
void writeFvec(float u[], int n) { static void writeFvec(float u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cin>>ulil; System.our.print(ufi] + " ");
return;
! 3
}

We can write the length of a one-dimensional array in the open form [] when using it as the parameter
of a subprogram. More importantly, the number of entries of the array, which is one less than the real
length when starting with index 1, should appear as one of the parameters of the subprogram. Even-
tually, depending on the need, select an appropriate printing format when using the subprograms
writeIvec and writeFvec.

Consider the codes of the above-mentioned readIvec() method. If we use this
method more than once, the error is encountered when inputting the data. The reason
is that in the first using of readIvec() method, the facility for inputting the data (of
int type) is closed by executing the statement

read.reset();

254 = One-dimensional arrays

writelvec(a,20)

1

writelvec(b,20)

Fig. 8.2(c): Redrawing Flowchart 8.2(a) using the subprograms readIvec() and writeIvec().

at the end of the method. One way to resolve this problem is to use the hasNext()
built-in method as follows.

static void readIvec(int ul[], int n) {
Scanner read = new Scanner(System.in);
for (int i=1; i<=n; i++) {
if (read.hasNext())
uli] = read.nextInt();
read.reset();

}

The hasNext() is a built-in method of Java Scanner class which returns true if this
scanner has another token in its input.
Nevertheless, there are other ways which can be found in the following rule.

The rule of multi-using the reading methods. There are three ways to prevent any input error when
we use a reading method with the read. close() statement at the end:

1. Usingthe hasNext() built-in method as explained above.

2. Inactivating the read.close() statement by adding double slashes:

// read.close();

3. Changingthe read.close() statement to the the read. reset() statement for resetting the Java
Scanner class.

vectors == 255

alile»al21-1]

Fig. 8.3: Reversing the positions of the entries of an array.

4. Transferringthe read.close() statement to another appropriate place where there is no reading
item

As displayed in Figure 8.2(c), Flowchart 8.2(a) can now be written in the simple form.
8.2.1. Exercise. Write the programs of Flowchart 8.2(c).

8.3. Example. Write a sub-algorithm, named revive(), to receive the n-entry integer
array a, reverse the position of entries (from the end to the beginning) and return the
reversed array a.
Solution. The method which we are going to use is to swap the values of the entries
a; and a,,_; in pairs, appealing to the swap algorithm. The entries a; and a,,_; should
be swapped in the range of a for template with the specification i=1,n/2 due to the
nature of swapping in pairs. It is noteworthy that one may write the similar subpro-
gram named revFvec() for the arrays of float types. It suffices to change int to
float.

Flowchart 8.3 illustrates the above discussion. Programs P8_3 read a 20-entry in-
teger array and then print the reversed array using the sub-algorithm revive().

Question. What would be the result if we wrote n instead of n / 2 as the final value of
the loop?
Answer. No task is performed since the reversion is repeated.

C++ codes: Java codes:

// Program P8_3 to reverse the // Program P8_3 to reverse the

// order of the entries of an array // order of the entries of an array

// without using any other array // without using any other array

#include <iostream> import java.util.Scanner;

using namespace std; class P8_3 {

void writelIvec(int ul], int n) { static void writeIvec(int ul], int n) {
int i; for (int i=1; i<=n; i++)
for (i=1; i<=n; i++) System.out.print(ufi]l + " ");

cout<<ufil<<" "; System.out.println();

256 —— One-dimensional arrays

cout<<endl; }
return; //
3 static void readIvec(int u[], int n) {
// Scanner read=new Scanner(System.in);
void readIvec(int ul[], int n) { for (int i=1; i<=n; it++) {
for (int i=1; i<=n; i++) ulil=read.nextInt();
cin>>ulil; 3
return; read.close();
3 }
// //
void revIvec(int a[], int n) { static void revIvec(int a[J], int n) {
int i, t; int i, t;
for (i=1; i<=10; i++) { for (i=1; i<=10; i++) {
t=alil; t=alil;
alil=al21-i1; alil=al21-i1;
a[21-i]=t; a[21-i]=t;
3 3
} }
// //
int main() { public static void main(String[] args) {
int a[21]; Scanner read=new Scanner(System.in);
cout<<"Enter the array a:"<<endl; int a[J]=new int[21];
readIvec(a, 20); System.out.println("Enter the array a: ");
revivec(a, 20); readIvec(a, 20);
cout<<"The reordered array: "<<endl; revivec(a, 20);
writelvec(a, 20); System.out.println("The reordered array : ");
return 0; writelvec(a, 20);
3 read.close();
}
3

The rule of calling the array-return methods. The number of the entries of the array should be deter-
mined when calling a subprogram which returns an array. In addition, the length of the array should
be identified while declaring an array in the call unit.

8.4. Example. Write an algorithm to read 20 entries of an integer array named a. Then,
put the negative and none-negative entries in the arrays named b and c, respectively.
Finally, print the entries of the arrays b and c.

Solution. Since it is not clear how many entries b and ¢ have, we will declare them as
20-entry arrays. First, the array a is read using the sub-algorithm readIvev(). The
way we use is to take an entry a; in each repetition of a for template with the specifi-
cation i=1, 20. Next, we put g; in b if it is negative; otherwise we put it in c. In which
index of b or c do we put the entry a; in each case? For this purpose, two index maker
variables nb and nc are employed to make indices for b and c, respectively. Further,
we assign O to these variables before the loop in order to use them. Then, we first
make an index in the involved case by increasing the previous value of the related
index maker variable by one unit and then put the taken a; in the index just made.
The obtained flowchart is displayed in Figure 8.4. Programs P8_4 translate this algo-
rithm into C++ and Java codes.

vectors =— 257

nb<0
nc<0

1

readIvec(a,20)

< i=1,20

ncenc+1 nb<nb+1
c[ncl<«alil b[nbl<alil]

writeIvec(b,nb)

1}

writelvec(c,nc)

Fig. 8.4: Putting the negative and none-negative entries of a in b and c, respectively.

C++ codes: Java codes:

// Program P8_4 to put the negative // Program P8_4 to put the negative

// and non-negative entries of an // and non-negative entries of an
// array in two separate arrays // array in two separate arrays
#include <iostream> import java.util.Scanner;
using namespace std; class P8_4 {
void writeIvec(int ul], int n) { static void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cout<<uf[il<<" "; System.out.print(uli] + " ");
cout<<endl; System.out.println();
return; }
} // *xkK
// static void readIvec(int u[], int n) {
void readIvec(int ul[], int n) { Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++) {
cin>>ulil; ulil=read.nextInt();
return; }
3 read.close();

// }

258 = One-dimensional arrays

int main() { //
int nb, nc, a[21], b[21], c[21]; public static void main(String[] args) {
nb=nc=0; Scanner read=new Scanner(System.in);
cout<<"Enter the array a: \n"; int nb, nc;
readIvec(a, 20); int alJ=new int[217;
for (int i=1; i<=20; i++) int b[J=new int[211];
if (alil<e) { int c[J=new int[21];
nb+=1; nb=nc=0;
b[nbl=alil; System.out.println("Enter the array a: ");
} readIvec(a, 20);
else { for (int i=1; i<=20; i++)
nc+=1; if (alil<0) {
c[ncl=alil; nb+=1;
3 blnbl=alil;
cout<<"The array b: \n"; }
writeIvec(b, nb); else {
cout<<"The array c: \n"; nc+=1;
writeIvec(c, nc); c[ncl=alil;
return 0; }
} System.out.println("The array b: ");

writeIvec(b, nb);
System.out.println("The array c: ");
writeIvec(c, nc);

read.close();

8.4.1. Exercise. Modify Flowchart 8.4 and Programs 8_4 so that the entries of a are
read inside the used for loop instead of reading the array a using the subprogram
readIvec().

8.5. Example. In Flowchart 1.8(c), we first read the first number and assigned it to
the variable max to find the maximum number between 50 read integers. Next, we
performed the necessary process using a do-while loop. Do the same tasks using the
arrays. Employ the for template instead of the do-while template.

Solution. Given the generality of this algorithm in mind, Flowchart 8.5(a) can easily
be drawn. Programs P8_5_A are related to Flowchart 8.5(a).

C++ codes: Java codes:
// Program P8_5_A to determine the // Program P8_5_A to determine the
// maximum element of an array // maximum element of an array
#include <iostream> import java.util.Scanner;
using namespace std; class P8_5_A {
void readIvec(int [], int); public static void main(String[] args) {
int main() { int u[J=new int[511];
int u[51], i, max; int i, max;
cout<<"Enter the array: "; System.out.println("Enter the array: ");
readIvec(u, 50); readIvec(u, 50);
max=ul[11]; max=ul[1];

for (i=2; i<=50; i++) for (i=1; i<=50; i++)

vectors =—— 259

readIvec(u,50)

1}

max<ul[1]

uli]>max

max<«uli]

]

Fig. 8.5(a): Calculating the maximum of 50 numbers.

if (uliI>max) if (ulil>max)
max=uli]; max=ulil;
cout<<"Maximum is: "<<max; System.out.println("Maximum is: " + max);
return 0; }
3 //
/7 static void readIvec(int u[], int n) {

Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++) {
u[iJ=read.nextInt();

void readIvec(int u[], int n) {
for (int i=1; i<=n; i++)
cin>>uli];

return; b
} read.close();

3

As shown in Flowchart 8.5(b), Flowchart 8.5(a) is divided into a function named max()
which is responsible for finding the maximum member and a main algorithm.

8.5.1. Exercise. Write a similar function named min() for finding the minimal entries
of the received array u.

Programs P8_5_B are the translation of Flowchart 8.5(b) into C++ and Java codes.

260 —— One-dimensional arrays

P mm———— 1
1

max<ul1] readIvec(u,50)

max(u,50)

uliJI>max

max<«ul[i]

]

return max

Fig. 8.5(b): A function to calculate the maximum of an n-entry array and a main algorithm.

C++ codes: Java codes:

// Program P8_5_B to determine the // Program P8_5_B to determine the

// maximum member of an array, // maximum member of an array,
// using the max() function // using the max() method
#include <iostream> import java.util.Scanner;
using namespace std; class P8_5_B {
void readIvec(int [], int); public static void main(String[] args) {
int max(int [], int); Scanner read=new Scanner(System.in);
int main() { int n, ulJ=new int[517;
int n, ul51]; System.out.print("Enter the size of array: ");
cout<<"Enter the size of array: "; n=read.nextInt();
cin>>n; System.out.print("Now enter the array: ");
cout<<"Now enter the array: \n"; readIvec(u, n);
readIvec(u, n); System.out.print("Maximum is: " + max(u, n));
cout<<"Maximum is: "<<max(u, n); read.close();
} }
// // KEKKKHKKKHKKKKKRK
void readIvec(int ul[], int n) { static void readIvec(int u[], int n) {
for (int i=1; i<=n; i++) Scanner read=new Scanner(System.in);
cin>>ulil; for (int i=1; i<=n; i++) {
return; ul[iJ=read.nextInt();
} }
// read.close();
int max(int ull, int n) { }
int max=ul[1]; //
for (int i=2; i<=n; i++) static int max(int ull], int n) {
if (ulil>max) int max=ul1];
max=uli]; for (int i=2; i<=n; i++)
return max; if (uliI>max)
} max=ulil];
return max;
Input/output:) 3

Enter the size of array: 5+

vectors = 261

max<uli] |-

max<«uli] |

Fig. 8.5(c): Combining the comparing and assigning tasks of flowchart 8.5(a).

Now enter the array: Input/output:
2 -59 -12 4+

Maximum is: 9 .
Enter the size of array: 5¢

Now enter the array:
2 -5 9 -12 4+
Maximum is: 9

In the algorithm of Figure 8.5(a), the entries of the array were first read by the sub-
algorithm readIvec(). Then, the first entry was assigned to the variable max and the
comparing and assigning were processed by a for template. All these processes can
be combined in a single for template (Fig. 8.5(c)).

Since the F-paths of the two conditions in Flowchart 8.5(c) are the same, we can
modify Flowchart 8.5(c) to Flowchart 8.5(d) appealing to the rule of merging the con-
ditions by the | | operator in Chapter 4.

8.5.2. Exercise. Write the programs of Flowcharts of 8.5(c) and 8.5(d) in both C++ and
Java codes.

8.5.3. Exercise. Modify each of Flowcharts 8.5(a), 8.5(c) and 8.5(d) in such a way that
they print the location of the maximum and the maximum itself. In the case where
the maximum is repeated, print the first location of the maximum. Finally, write the
programs in both C++ and Java codes.

262 —— One-dimensional arrays

i=1 ||
uliJI>max

max<uli]

Fig. 8.5(d): Merging the conditions of Flowchart 8.5(c) using the | | operator.

8.5.4. Exercise. Repeat Exercise 8.5.3 with the difference that print all the locations if
the maximum is repeated.

8.6. Example. Write an algorithm to read the identification number (ID) and grade of
40 students of a class one by one. Then, read an ID number and print the grade of that
student if it is between the 40 read ID numbers. Otherwise, print the message Not in
list.
Solution. First the ID numbers and grades of the students are read and saved in the
arrays N and G, respectively. Then, the intended number by the name m is read and
searched for among the entries of the array N using the switch variable s with the
initial value of 0 (switch off). Next, 1 to s is assigned (switch on) in the range of a for
loop and the index i is instantly stored in the memory with the name j upon matching
m with an ID number N;.

Finally, after exiting the loop, the quoted message is printed if the switch is off;
otherwise, the grade of the student corresponding to the number N, that is G;, is
printed. The result of the above process is illustrated in Flowchart 8.6(a).

Question. Suppose that we take out the instruction j<i and then print G; instead of
G; after exiting the loop. What is printed? Find the answer by examining.

Programs P8_6_A are the translations of Flowchart 8.6(a) into both C++ and Java
codes.

vectors =—— 263

| int N[41]
start ~7 float G[41]1
1

N[i],G[i]

Fig. 8.6(a): Searching a specific student among 40 students and printing its average.

C++ codes: Java codes:
// Program P8_6_A to search a // Program P8_6_A to search a student
// student among 40 student and // among 40 student and print the
// print the corresponding // corresponding grade, if exists
// grade, if exists import java.util.Scanner;
#include <iostream> class P8_6_A {
using namespace std; public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);
int N[417; int N[J=new int[411];
float G[411; float G[J=new float[41];
int i, j, s, m; int i, j=0, s, m;
for (i=1; i<=40; i++) { for (i=1; i<=40; i++) {
cout<<"Enter ID and grade: "; System.out.print("Enter ID and grade: ");
cin>>N[i]>>G[i]; N[il=read.nextInt();
3 G[iJ=read.nextFloat();
cout<<"Enter the ID for search: "; 3
cin>>m; System.out.print("Enter the ID for "
s=0; + "search: ");
for (i=1; i<=40; i++) m=read.nextInt();
if (N[iJ==m) { s=0;
s=1; for (i=1; i<=40; i++)
Jj=1i; if (N[il==m) {

3 s=1;

264 = One-dimensional arrays

if (s==0) j=i;
cout<<"The ID is not in the list"; }
else if (s==0)
cout<<"The grade of "<<N[j] System.out.print("The ID is not in "
<" is: "<<G[jI; + "the list ");
return 0; else
3 System.out.print("The grade of " + N[j]
+ " is: "+ G[j1);
Input/output for four students:) read.close();
}

Enter the size of array: 5+

Enter ID and grade: 19221003 12.5+

Enter ID and grade: 19221004 9+

Enter ID and grade: 19221006 18.75¢

Enter ID and grade: 19221009 14.5< Enter the size of array: 5+

Enter the ID for search: 19221006+ Enter ID and grade: 19221003 12.5<

The grade of 19221006 is: 18.75 Enter ID and grade: 19221004 9+
Enter ID and grade: 19221006 18.75«
Enter ID and grade: 19221009 14.5¢
Enter the ID for search: 19221006+
The grade of 19221006 is: 18.75

Input/output for four students:

In is noteworthy that initiating the variable to 0 is necessary for the right Java pro-
gram.

There is a simple way to solve this example: in the range of the for loop, print the
grade of the student and terminate the algorithm upon matching the number m with

1

| int N[41]
__: float G[41]
1

< i=1,40 1

N[il,Gli]
m

Fig. 8.6(b): A simple way for Example 8.6 instead of Flowchart 8.6(a).

vectors =—— 265

an ID number N;. Otherwise, the quoted message is printed after exiting the loop. The
result is Flowchart 8.6(b) and Programs P8_6_B.

C++ codes: Java codes:
// Program P8_6_B to search a // Program P8_6_B to search a student
// student among 40 student and // among 40 student and print the
// print the corresponding // corresponding grade, if exists
// grade, if exists import java.util.Scanner;
#include <iostream> class P8_6_B {
#include <stdlib.h> public static void main(String[] args) {
using namespace std; Scanner read=new Scanner(System.in);
int main() { int N[J=new int[411];
int N[411; float G[J]=new float[411];
float G[411]; int i, m;
int i, m; for (i=1; i<=40; i++) {
for (i=1; i<=40; i++) { System.out.print("Enter ID and grade: ");
cout<<"Enter ID and grade: "; N[il=read.nextInt();
cin>>N[iI>>G[i]; G[iJ=read.nextFloat();
3 }
cout<<"Enter the ID for search: "; System.out.print("Enter the ID for search: ");
cin>>m; m=read.nextInt();
for (i=1; i<=40; i++) for (i=1; i<=40; i++)
if (N[il==m) { if (N[il==m) {
cout<<"The grade of "<<N[i] System.out.print("The grade of " + N[i]
<" is: "<<G[il; + " is: " + G[i]);
exit(0); System.exit(0);
} 3
cout<<"The ID is not in list"; System.out.print("The ID is not in list ");
return 0; read.close();
3 }
3

8.7. Example. Write a function named search() to receive an integer m and the n en-
tries of the integer array named a. Then, it returns 1 if m exists among the entries of
a; otherwise, it returns 0. Afterwards, write a main algorithm to read the ID number
and grade of 40 students of a class. Next, read a single ID number and print the mes-
sage Founded if it is between the 40 students; otherwise, print the message Not
founded. One may return the Boolean literals true or false instead of 1 and 0, respec-
tively. This function may be modified to any data type of the m and the array a.
Solutions. We use a switch, say s. First, turn the switch off (assign O to s). Then, in the
range of a for template, turn the switch on (assign 1 to s) upon matching m with an
entry a;. Finally, return the value of s after exiting the loop. These processes are all
summarized in Flowchart 8.7(a).

The main algorithm in Figure 8.7(b) is as required. Programs P8_7 combined both
flowcharts 8.7(a) and 8.7(b) in the literature of codes.

266 —— One-dimensional arrays

s<0

Fig. 8.7(a): Searching a number among the entries of an array.

v

1 int N[41] H

 float G[411 1~
1

s(m.N.40)=0

"Founded" "Not founded"

Fig. 8.7(b): Searching an ID number among 40 numbers using the search() function.

C++ codes: Java codes:

// Program P8_7 to search a student // Program P8_7 to search a student

// among 40 student and print the // among 40 student and print the
// result, using the search function // result, using the search method
#include <iostream> import java.util.Scanner;

using namespace std; class P8_7 {

int s(int, int [, int); public static void main(String[] args) {

vectors = 267

int main() { Scanner read=new Scanner(System.in);
int N[41]; int N[J=new int[41];
float G[411]; float G[]=new float[41];
int i, m; int i, m;
for (i=1; i<=40; i++) { for (i=1; i<=40; i++) {
cout<<"Enter ID and grade: "; System.out.print("Enter ID and grade: ");
cin>>N[iI>>G[i]; N[iJ=read.nextInt();
} G[il=read.nextFloat();
cout<<"Enter the ID that want " }
<<"to be searched: "; System.out.print("Enter the ID that want "
cin>>m; + "to be searched: ");
if (s(m, N, 40)==0) m=read.nextInt();
cout<<"The ID is not founded"; if (s(m, N, 40)==0)
else System.out.print("The ID is not founded ");
cout<<"The ID is founded"; else
return 0; System.out.print("The ID is founded ");
3 read.close();
// }
int s(int m, int G[J1, int n) { //
int s=0; static int s(int m, int G[J1, int n) {
for (int i=1; i<=n; i++) int s=0;
if (m==G[i]) for (int i=1; i<=n; i++)
s=1; if (m==G[i])
return s; s=1;
} return s;
}
}

8.7.1. Exercise. Modify the main program in Figure 8.7(b) in such a way to determine
and print the index in which the matching happens if the number m is found in the
array a. Then, redraw Flowchart 8.7(b) and rewrite Programs P8_7 with this idea.

8.8. Example. Write an algorithm to read 20 entries of an integer array named a. Then
remove the repetitive entries and put the remained entries in another integer array
named b, respectively. In other words, the entries of the array b are the same as the
array a without the repeating ones. Finally, separately print the arrays a and b.
Solution. The method used in writing this algorithm is as follows. The n is regarded
as the index maker variable of the array b. First, a, is substituted for b,. Then, the
entry a; is considered in a for template with the specification i=2, 20 and, using the
search() function, this entry is searched for among the entries of b which are created
to this point. If a; is not found between the entries of b, the index maker of b creates
anew index and the picked entry is placed in the array b with the created index. This
method is visualized in Flowchart 8.8(a).

268 = One-dimensional arrays

readIvec(a,20)

l
b[1]<«al1]

s(alil,b,n)=0

writeIvec(a,20)

l

nen+1
b[nl<«alil]

writeIvec(b,n)

Fig. 8.8(a): Removing the repeated entries of an array.

s(alil,b,n)=0

writelvec(a,20)

l

nen+1

b[nl<alil]

writeIvec(b,n)

Fig. 8.8(b): Removing the repeated entries of an array (improved version).

vectors —— 269

Now, let us improve the above algorithm. Remove the instruction b[1]<a[1], take O
as the initial value of the index maker variable n, and then start the for template with
the initial value of 1. Accordingly, the incompatibility in the for loop of the search()
function causes the index maker nto be equal to1and a, substitutes for b,. Flowchart
8.8(b) illustrates the improved version of the algorithm. Programs P8_8 are the codes
of the improved Flowchart 8.8(b) in the C++ and Java languages.

C++ codes: Java codes:
// Program P8_8 to remove the // Program P8_8 to remove the
// repeated entries of an array // repeated entries of an array
#include <iostream> import java.util.Scanner;
using namespace std; class P8_8 {
void writeIvec(int u[], int n) { static void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cout<<ul[il<<" "; System.out.print(u[i]l + " ");
cout<<endl; System.out.println();
return; }
} //
// static void readIvec(int ul], int n) {
void readIvec(int ul[], int n) { Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cin>>ulil]; uliJ=read.nextInt();
return; read.close();
} 3
// [[HFKKFIKKIKKKIKKHKKKIKRKKKIKK KKK
int s(int m, int a[], int n) { static int s(int m, int a[], int n) {
int s=0; int s=0;
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
if (m==alil) if (m==alil)
s=1; s=1;
return s; return s;
} }
// //
int main() { public static void main(String[] args) {
int a[21], b[211]; int all=new int[211];
int i, n; int b[J=new int[211];
cout<<"Enter the array a: \n"; int i, n;
readIvec(a, 20); System.out.println("Enter the array a: ");
n=0; readIvec(a, 20);
for (i=1; i<=20; i++) n=0;
if (s(alil,b,n)==0) { for (i=1; i<=20; i++)
n=n+1; if (s(alil,b,n)==0) {
b[nl=alil; n=n+1;
¥ blnl=alil;
cout<<"Array a: \n"; }
writelvec(a, 20); System.out.println("Array a: ");
cout<<"Array b: \n"; writeIvec(a, 20);
writeIvec(b, n); System.out.println("Array b: ");
return 0; writeIvec(b, n);
} 3
}

Input/output (for ten numbers):

270 = One-dimensional arrays

readIvec(a,20)

1}

m<0

i=1,19

j=i+1,20

writeIvec(b,m) alil=alil

mem+1
@ bImJ<ali]

]

Fig. 8.9(a): Storing the repeated numbers of an array in another array in a special case.

Input/output (for ten numbers):
Enter the array a:

- -4 34
12452952-43 Enter the array a:

Array a: - : .

12452952 -43 12452952-43

Array b: Array a:

-12459 -43 -12452952-43
Array b:

-12459 -43

8.9. Example. Write an algorithm to read the entries of a 20-entry integer array a and
store its repetitive entries in another array b. Then print the array b. Note that the
repeated prints are not allowed.
Solution. First, we work with a simple case: it is supposed that the entries of a are not
repeated more than once. In an outer for template with the specification i=1,19, we
pick an entry a; and compare it with the entries of a after a; in an inner for loop with
the specification j=i+1,n. Then, we store it in b if a; matches with an a;. Therefore,
we make a new index by increasing the index maker variable m by one unit, and then
store the picked a; in b with the new index. The result is displayed in Flowchart 8.9(a).

Now, we examine the general case where the entries of a may be repeated any
times. In this case, we nominate the picked a; in the matching path a; = a; to be stored
in b and store it in b using the above-mentioned method only if it has not already
stored in b. Flowchart 8.9(b) depicts this procedure.

Next, we attempt to improve the algorithm. An appeal to the rule of merging the
conditions using the && operator (Chapter 4) leads to the improved Flowchart 8.9(c).

vectors =—— 271

@ --1 a,b[1...201 !
b e 1
readIvec(a,20)

m<0

l/
i=1,19 I
f 2

s(alil,b,m)=0

mem+1
b[mJl<«ali]

writeIvec(b,m)

Fig. 8.9(b): Storing the repeated numbers of an array in another array in the general case.

Programs P8_9 represent the codes of the improved Flowchart 8.9(c) together with all
of its subprograms.

C++ codes: Java codes:

// Program P8_9 to store the // Program P8_9 to store the

// repeated numbers of an array // repeated numbers of an array

// in another array // in another array

#include <iostream> import java.util.Scanner;

using namespace std; class P8_9 {

void writelIvec(int ul], int n) { static void writelIvec(int u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)

cout<<ul[il<<" "; System.out.print(ufi]l + " ");

cout<<endl; System.out.println();
return; }

} //

// static void readIvec(int ul], int n) {

void readIvec(int u[], int n) { Scanner read=new Scanner(System.in);

for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)

272 = One-dimensional arrays

cin>>ulil]; ulil=read.nextInt();
return; read.close();
3 }
// //
int s(int m, int a[], int n) { static int s(int m, int a[l, int n) {
int s=0; int s=0;
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
if (m==a[il) if (m==alil)
s=1; s=1;
return s; return s;
} }
[/ *xFkkkkkkkkhkhkhhhhhhkhkhkkkkk //

int main() { public static void main(String[] args) {

int al211, b[21];
int i, j, m;
cout<<"Enter the array a: \n";
readIvec(a, 20);
m=0;
for (i=1; i<=19; i++)
for (j=i+1; j<=20; j++)
if (alil==alj]
&& s(alil, b, m)==0) {
m=m+1; b[m]=ali];
3
cout<<"The repeated entries
<<"in the array b: \n";

int alJ=new int[211];
int b[J=new int[211];
int i, j, m;
System.out.println("Enter the array a: ");
readIvec(a, 20);
m=0;
for (i=1; i<=19; i++)
for (j=i+1; j<=20; j++)
if (alil==alj] && s(alil, b, m)==0) {
m=m+1; b[ml=alil;

3

System.out.println("The repeated entries
+ "in the array b: ");

writeIvec(b, m); writeIvec(b, m);

return 0; }

Input/output (for ten numbers): Input/output (for ten numbers):

Enter the array a: Enter the array a:
-12452952 -4 3 -12452952 -4 3+
The repeated entries in the array b: The repeated entries in the array b:

25 25

8.9.1. Exercise. Modify Algorithm 8.9 and Programs 8_9 so that they print the number
of repetitions along with the repetitive entries.

8.10. Example. Write an algorithm to read the entries of the two integer arrays a and
b, each with 20 entries and then store their common entries in another integer array
named c. Finally, print the entries of c.

Solution. First, in a simple case, we assume that none of the arrays a and b have re-
petitive entries. We consider m as the index maker variable for the array c. In each
repetition of a for loop with the specification i=1, 20, we take an entry a; of a and
search for it among the entries of b, using the search() function in Example 8.7. Then,
we store the q; in the array c if we find it in the array b. To do this, as before, we make
a new index by increasing the index maker variable m by one unit, and then store the
picked q; in b with the created index.

vectors =—— 273

readIvec(a,20)

1

m<0

writeIvec(b,m)

alil=al[j] &&
s(alil,b,m)=0

mem+1
b[ml<«ali]

Fig. 8.9(c): Improvement Flowchart 8.9(b) by merging the conditions using the && operator.

Flowchart 8.10(a) displays the result to this point.

readIvec(a,20)

1

readIvec(b,20)

s(alil,b,20)=1

writelvec(c,m) mem+1

b[ml<alil]
<D '

Fig. 8.10(a): Storing the common entries of two arrays in another array in a special case.

274 = One-dimensional arrays

readIlvec(a,20)

]

readIvec(b,20)

1

writeIvec(c,m)

s(alil,b,20)=1
&&
s(alil,c,m)=0

mem+1
b[mleali]

Fig. 8.10(b): Storing the common entries of two arrays in another array in the general case.

Now, we consider the general case in which the arrays a and b can have repeating
entries. In this case, we store the picked entry a; in the array c only if it is not already
stored in c; that is, if a; is in b but not in c. Flowchart 8.10(b) illustrates the result. The
general case 8.10(b) is translated into C++ and Java codes in Programs P8_10.

C++ codes: Java codes:
// Program P8_10 to store the // Program P8_10 to store the
// common entries of two arrays // common entries of two arrays
// a and b in the array c // a and b in the array c
#include <iostream> import java.util.Scanner;
using namespace std; class P8_10 {
void writeIvec(int ul], int n) { static void writeIvec(int ul[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cout<<uf[il<<" "; System.out.print(ufi]l + " ");
cout<<endl; System.out.println();
return; 3
} //
// static void readIvec(int u[], int n) {
void readIvec(int u[], int n) { Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cin>>ulil]; if (read.hasNext())
return; uliJ=read.nextInt();
3 read.reset();
// }

int s(int m, int a[], int n) { //

More applications of the arrays = 275

int s=0; static int s(int m, int a[l, int n) {
for (int i=1; i<=n; i++) int s=0;
if (m==alil) for (int i=1; i<=n; i++)
s=1; if (m==alil)
return s; s=1;
} return s;
// 3
int main() { //
int a[21]1, b[21], c[21]; public static void main(String[] args) {

int m=0;
cout<<"Enter the array a: \n";
readIvec(a, 20);
cout<<"Enter the array b: \n";
readIvec(b, 20);
for (int i=1; i<=20; i++)

if (s(alil, b, 20)==1 &&

s(alil, ¢, m)==0) {

int a[J=new int[211];

int b[J=new int[211];

int c[J=new int[21];

int m=0;

System.out.println("Enter the array a: ");
readIvec(a, 20);

System.out.println("Enter the array b: ");
readIvec(b, 20);

m=m+1; for (int i=1; i<=20; i++)
c[ml=alil; if (s(alil, b, 20)==1 && s(alil, c, m)==0) {
} m=m+1;
cout<<"The common entries : \n"; cm]=ali];
writeIvec(c, m); 3}
return 0; System.out.println("The common entries: ");
} writeIvec(c, m);
}
Input/output (for ten numbers): 3

Enter the array a: Input/output (for ten numbers):

-1294-45732-1<
Enter the array b:
57-13472-13-1<
The common entries :
-124573

Enter the array a:
-1294-45732-1<
Enter the array b:
57-13472-13-1<
The common entries :

-124573

8.2 More applications of the arrays

In this section, two sorting methods for numbers are considered. Then, the Lagrange
interpolation polynomial for finding the approximated root of a function is examined.
Finally, a method for computing the factorial of large positive integers is exhibited.

8.11. Example (The bubble sorting method). One of the common methods is the bub-
ble method. We used it for sorting three numbers in the algorithm of Example 4.10.
Write an algorithm to read first the size m (at most 40) of the integer array a. Then,
read the m entries of a and sort them in ascending order using the bubble method.

Solution. In this method, we sort m numbers in ascending order in m-1 steps in a way
that in each step a number is compared with the latter number such that if it is larger,
then their amounts are swapped using the swap algorithm. As a result, the larger

276 =—— One-dimensional arrays

alil>ali+1]

alile=ali+1]

Fig. 8.11(a): Sketch of the bubble sorting algorithm in ascending order.

number rises upward (moves to the end) like a bubble and is put aside. Then the re-
cent procedure is performed with the remaining numbers. In order to clarify this pro-
cedure, take the four integers:

12 9 24 5

Following the above-mentioned procedure, in the first step,

12 is swapped with 9: 9 12 24 5
12 is not swapped with 24: 9 12 24 5
24 is swapped with 5: 9 12 5 24

readIvec(a,m)

j=m-1,1,-1

writeIvec(a,m)

alil>ali+1]

alile»ali+1]

oD

Fig. 8.11(b): Another way for the bubble sorting algorithm in ascending order.

More applications of the arrays = 277

readIvec(a,m)

j=1,m-1
i

writeIvec(a,m)

alil>ali+1]

@ aliJesali+1]

Fig. 8.11(c): Another way for the bubble sorting algorithm in ascending order.

Now, 24 is put aside (underlined) and in the second step, we work on the three re-
maining numbers. Thus,

9 is not swapped with 12: 9 12 5
12 is swapped with 5: 9 5 12

(NN

The number 12 is put aside and the two remaining numbers are compared in the third
step:

9 is swapped with 5: 5 9 12

|M
~

As seen, several steps are repeated and several processes are performed in each step.
Therefore, we need two nested for loops. The outer loop gives the number j, as the
times of processes in each step, to the inner loop. Now, the inner loop takes an index
i from 1 to the received number j (the times of processes in each step) and compares
the entry a; with a;,, such that it swaps them if a; > a;,,. Up to this point, we have
Flowchart 8.11(a).

Next, the specification of the outer loop is remained to find. To do this, we look
at the indices that are used in each step:

278 = One-dimensional arrays

First step: 1 2 3
Second step: 1 2
Third step: 1

The number of processes which are performed in each step is written in the bold font:
3, 2, 1. Considering the number of entries used in the above pattern, namely 4, we
found the specification of the outer for loop to this pattern: j=3,1,-1. Accordingly,
the required algorithm for the m entries is now illustrated in Figure 8. 11(b). Programs
P8_11 are the translations of Flowchart 8.11(b).

C++ codes: Java codes:
// Program P8_11 to sort the // Program P8_11 to sort the
// entries of an array in ascending // entries of an array in ascending
// order by the bubble method // order by the bubble method
#include <iostream> import java.util.Scanner;
using namespace std; class P8_11 {
void writeIvec(int u[], int n) { static void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++) for (int i=1; i<=n; i++)
cout<<ul[il<<" "; System.out.print(uli] + " ");
cout<<endl; System.out.println();
return; }
} [] *FFIKFIKKIKFIKFKK KKK KKK KKK KKK
W T e e Ty static void readIvec(int u[], int n) {
void readIvec(int u[], int n) { Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++) for (int i=1; i<=n; it++)
cin>>uli]; u[iJ=read.nextInt();
return; read.close();
3 }
// //
int main() { public static void main(String[] args) {
int al41]; Scanner read=new Scanner(System.in);
int i, j, t, m; int a[J]=new int[41];
cout<<"Entre the size of the array: "; int i, j, t, m;
cin>>m; System.out.print("Enter the size "
cout<<"Enter the array: "; + "of the array: ");
readIvec(a, m); m=read.nextInt();
for (j=m-1; j>=1; j--) System.out.print("Enter the array: ");
for (i=1; i<=j; i++) readIvec(a, m);
if (alil>ali+1]1) { for (j=m-1; j>=1; j--)
t=alil; for (i=1; i<=j; i++)
alil=ali+1]; if (alil>ali+1]) {
ali+1]=t; t=alil;
3 alil=ali+1];
cout<<"The sorted array: "; ali+11=t;
writeIvec(a, m); 3
return 0; System.out.print("The sorted array: ");
3 writelvec(a, m);
read.close();
}

More applications of the arrays =—— 279

!
k=1,m
R[m+1]<0
GLm+1 1«21

!

GLiI>G[i+1]

GliJe»ali+1]
N[iJesn[i+1]

RO1IR[2]+1 RL11«RL2]

| RLj+11eR[j+2]1+1 | | RLj+11«R[j+2] |

R[iJ,N[i]

Fig. 8.12(a): Ranking the grades of 40 students.

280 = One-dimensional arrays

8.11.1. Exercise. Write a similar algorithm and programs as above for the descending
order.

In Algorithm 8.11(b), the largest number is transferred to the end in each step (each
repetition of the outer loop). Moreover, in Flowchart 8.11(c), the smallest amount is
transferred to the start in each step (each repetition of the outer loop). The results are
the same, that is, sorting in ascending order using the bubble method.

8.11.2. Exercise. Arrange the implementation table for both flowcharts 8.11(b) and
8.11(c) using five various integers.

8.12. Example. Design an algorithm in a way that each time it reads the ID number
and grade of one of the m students of a class which m is assumed to be at most 40.
Then, it ranks the students and prints the ranks together with the ID numbers in order
from top rank downwards. Trivially, two equal grades have the same ranks.
Solution. Denote the arrays of ID numbers, grades, and ranks by N, G, and R, respec-
tively. We assume the grades out of 20. Recall that the larger number is transferred to
the end in each step in the algorithm of ascending sorting using the bubble method
(Fig. 8.11(b)). We construct the main process of this algorithm based on this concept.
More precisely, we transfer the largest grade, together with the corresponding ID to
the end in each step in the inner for loop of the bubble sorting algorithm. These are
actually the grade G;., and the corresponding ID, N;,,. Then, we determine the ranks
after exiting from the inner loop: we compare the grades G;,, and Gj,, to perform the
ranking process such that it takes the rank of G;,, , namely R;,,, if the grade G;,, is
equal to G;,,; otherwise, it takes one rank more than the recent one R .

We have two gaps in the ranks. First, there is no rank to compare with R,,. To fill
this gap, we assign the virtual initial rank O to R,,,; and simultaneously assign the
virtual initial grade 21 to G,,,; and locate these initial values before the outer for loop.

Additionally, R, has not yet been determined. To fill this gap, use the same rank-
ing process as above, taking j = 0 after exiting the outer loop.

Now, it is time to print. The printing is performed from top rank downwards.
Flowchart 8.12(a) covers what has been mentioned so far.

The length of these arrays are declared one unit more than their real length since the virtual values
other than the real values are used for the grade and rank.

The second gap can more easily be filled. It suffices to remove the ranking process for
j =0 after exiting the outer loop and, instead, change the initial value of the outer for
loop from 1 to 0. In fact, it is the incompatibility in the inner for loop that settles the
rank R,. The improved flowchart is shown in Figure 8.12(b). The codes of Flowchart
8.12(b) can be found in Programs P8_12.

More applications of the arrays = 281

R[m+1]<0
GLm+1 1«21

GLiI>G[i+1]

G[iJe»ali+1]
N[iJesn[i+1]

R[i1,N[i]

| RLj+1JeR[j+27+1 | | RLj+11<R[§+2] |

Fig. 8.12(b): Ranking the grades of 40 students (improved version).

C++ codes: Java codes:

// Program P8_12 to rank the grades // Program P8_12 to rank the grades

// of m students and print them // of m students and print them

// from top downward // from top downward

#include <iostream> import java.util.Scanner;

#include <iomanip> class P8.12 {

using namespace std; public static void main(String[] args) {

int main() { Scanner read=new Scanner(System.in);

282 — One-dimensional arrays

int N[411, R[42], i, j, k, t, m;
float G[42], s;
cout<<"Entre the number of Students:
cin>>m;
for (k=1; k<=m; k++) {
cout<<"Enter the ID and grade: ";
cin>>N[kI>>G[k];
3
R[m+11=0;
GLm+11=21;
for (j=m-1; j>=0; j--) {
for (i=1; i<=j; i++)
if (GLiI>GLi+1]1) {
t=N[i]; N[il=N[i+1]1; N[i+1]=t;
s=G[i]; G[il=G[i+1]; G[i+1]=s;
3
if (GLj+11==G[j+21)
R[j+11=R[j+2];
else
RLj+11=R[j+2]+1;

3
cout<<"Rank ID"<<endl;
cout<<"---- -----——- "<<endl;

for (i=m; i>=1; i--)
cout<<setw(4)<<R[i]<<setw(10)
<<N[il<<endl;
return 0;

Input/output:

the number of Students: 4+
the ID and grade:
the ID and grade:
Enter the ID and grade:
Enter the ID and grade:
Rank ID
1 19221002
2 19221004
3 19221001
4 19221003

Entre
Enter
Enter 19221002 16+

19221003 7+

19221001 12.5+«

19221004 14.25+«

int N[J=new int[41];

int R[J=new int[42];

int i, j, k, t, m;

float G[J=new float[42];

float s;

System.out.print("Enter the number
+ "of Students: ");

m=read.nextInt();
for (k=1; k<=m; k++) {
System.out.print("Enter the ID "

+ "and grade: ");
N[kJ=read.nextInt();
GLk]=read.nextFloat();

}
RLm+11=0;
G[m+11=21;
for (j=m-1; j>=0; j-—-) {
for (i=1; i<=j; i++)
if (GLiI>GLi+1]1) {
t=N[iJ; N[iJ=N[i+1]; N[i+1]=t;
s=G[i]; G[il=G[i+1]; G[i+1]=s;
}
if (GLj+11==G[j+21)
RLj+11=R[j+21;
else
RLj+11=R[j+21+1;
3
System.out.println("Rank
System.out.println("----
for (i=m; i>=1; i--)
System.out.printf("%4d %9d\n",

R[iJ, N[iD);
read.close();
3
Input/output:
Entre the number of Students: 4«
Enter the ID and grade: 19221001 12.5¢
Enter the ID and grade: 19221002 16+
Enter the ID and grade: 19221003 7+
Enter the ID and grade: 19221004 14,25+
Rank D
1 19221002
2 19221004
3 19221001
4 19221003

More applications of the arrays = 283

al3]ex
y ¥
<:::; i=3,m l
ali+1]«ali]
L

Fig. 8.13(a): Wrong attempt to insert x between the second and third entry.

8.13. Example. Write an algorithm to read first the size m (at most 40) of an integer
array a and then, read the entries of a. Next, read an integer x and insert it between
the second and third entry. Finally, print the new entries of the (m + 1)-entry array a.
Solution. There are two important points in this algorithm. First, we should declare
the array a with a length of at most 42 since one entry is going to be added to the
number of the entries of a. The second point is how to insert the read integer x be-
tween the second and third entry of the array. We want the read integer x to be ac-
commodated as the third entry, the third entry as the fourth entry, the fourth entry as
the fifth entry and the like.

We must be careful in the process of replacing these entries. Only a small care-
lessness will disarrange the algorithm. For example, we will end up with Flowchart
8.13(a) if we intend to write an algorithm based exactly on the above argument.

This flowchart leads to an algorithm which is completely wrong. We arrange the
implementation table of Flowchart 8.13(a) for m = 5 and the value of x as in Table
8.13(a) in order to observe the incorrectness.

Tab. 8.13(a): Implementation table for Flowchart 8.13(a) for m = 5.

status X a[1] af2] a[3] af4] a[5] afeé]
data in the memory 100 10 20 30 40 50

before the loop 100

first repetition 100

second repetition 100

third repetition 100

As illustrated, the algorithm does not work right. Therefore, the insertion process
should be started from the final cell of the array which is empty in order to overcome
this error. The entries pulled one back, up to the third entry using a for template with
the specification i=3, 5. Finally, x is substituted for a; after exiting the loop. The result
can be observed in Flowchart 8.13(b).

284 = One-dimensional arrays

))
< i=m,3,-1 1
l ali+1]«ali]
al[3]ex
)

Fig. 8.13(b): Right attempt to insert x between the second and third entry.

Now the implementation Table 8.13(b) is rearranged which guarantees the correct-
ness of Flowchart 8.13(b).

Tab. 8.13(b): Implementation table for Flowchart 8.13(b) for m = 5.

status X a[1] af2] a[3] af4] a[5] afeé]
data in the memory 100 10 20 30 40 50

first repetition 50
second repetition 40

third repetition 30

after the loop 100

readIvec(a,m)

VS
< i=m,3,-1
l

|
ali+1]<«ali]
al[3]ex
1

writeIvec(a,m+1)

Fig. 8.13(c): Algorithm for reading x and inserting it between the second and third entry.

More applications of the arrays = 285

The codes for the completed Flowchart 8.13(c) can be found in Programs P8_13.

C++ codes:

// Program P8_13 to insert the

// read number x between the second

// and third entries of the array
#include <iostream>
using namespace std;
void writelIvec(int ul], int n) {
for (int i=1; i<=n; i++)
cout<<ul[il<<" ";
cout<<endl;
return;
}
//
void readIvec(int u[], int n) {
for (int i=1; i<=n; i++)

cin>>ulil;
return;
}
[/ Fxdok ke kkk ek kok ok ko ek ko ko ok ko

int main() {
int a[42], i, x, m;
cout<<"Entre the size of array:
cin>>m;
cout<<"Enter the array a: ";
readIvec(a, m);
cout<<"Enter the integer x: ";
cin>>x;
for (i=m; i>=3; i--)

ali+1]=alil;

al3]=x;
writelvec(a, m+1);
return 0;

Input/output:

Enter an integer n>1: 3

Entre the size of array: 5+
Enter the array a: 1 2 3 4 5+

Enter the integer x: 100+
12100 3 45

Note that in the right Java program, the read.
multi-use of the readIvec() method.

Java codes:

// Program P8_13 to insert the
// read number x between the second
// and third entries of the array
import java.util.Scanner;
class P8_13 {
static void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++)
System.out.print(ul[i] + " ");
System.out.println();
}
//
static void readIvec(int u[], int n) {
Scanner read=new Scanner(System.in);
for (int i=1; i<=n; i++)
u[iJ=read.nextInt();
read.reset();
}
//
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int a[J=new int[42];
int i, x, m;
System.out.print("Enter the size
+ "of array: ");

m=read.nextInt();
System.out.print("Enter the array a: ");
readIvec(a, m);

System.out.print("Enter the integer x: ");

x=read.nextInt();

for (i=m; i>=3; i--)
ali+1]=alil;

a[3]1=x;

writeIvec(a, m+1);

read.close();

Input/output:
Enter an integer n>1: 3

Entre the size of array: 5¢
Enter the array a: 1 2 3 4 5+«
Enter the integer x: 100+
12100345

reset() method is used due to the

286 —— One-dimensional arrays

|

-——-
Q
=%
—_
N
iy
()
L - -

readIvec(a,m)

/ alm+1] /

!

writeIvec(a,m+1)

alil>ali+1]

aliJerali+1]

[

Fig. 8.14: linserting a read number in an ascending array preserving the order.

8.14. Example. Write an algorithm to read the m entries of an integer array sorted in
ascending order followed by the reading m. Then, read an integer and insert it inside
the array preserving the ascending order. In other words, the m + 1 entries of the mod-
ified array are still in ascending order.
Solution. This problem is somehow similar to the algorithm of Figure 8.13(c). The
main difference is that in Figure 8.13(c) it is known that the read number is to be in-
serted between the second and third entry; therefore, we can easily design the
flowchart. However, the position in which the number is to be inserted is not clear in
the present problem. A simple way is to place the read number in the (m + 1)-st empty
cell. Then use the first step of Flowchart 8.11(c) for m numbers here instead of the 40
numbers there. It means that we use the inner for loop with the specification
i=40,1,-1. As shown in Flowchart 8.11(c), this loop which starts from i = 40 down-
wards, compares the entry a; with a;,; and swaps them if a; > a;,, in each repetition.
Accordingly, the entry a,; sits in the required place by necessary iterated one-back
movements. Flowchart 8.14 is as required.

We arrange the implementation table of Flowchart 8.14 m = 4 and the read numbe
as in Table 8.14.

Tab. 8.14: Implementation table for Flowchart 8.14 for m = 4.

status al1] al2] a[3] af4] a[5]

before the loop 10 20 30 40 25

More applications of the arrays = 287

status a[1] a[2] a[3] a[4] a[5]
first repetition 25 40
second repetition 25 30

third repetition

fourth repetition

8.14.1. Exercise. Write the codes of Flowchart 8.14 in both languages C++ and Java.

8.14.2. Exercise. As demonstrated in Table 8.14, implementing the algorithm has no
effect on the result from the third repetition onwards. Modify Flowchart 8.14(a) in
such a way that these extra repetitions are not processed. In addition, write the pro-
grams of the obtained flowchart. Think of modifying the if template.

8.15. Example (The insertion sorting method). The insertion is another method of
sorting a set of numbers in ascending or descending order. In this method, the num-
bers are read one by one and inserted inside the previously sorted numbers preserv-
ing the order. Write an algorithm to read first the size m of the integer array a having
at most 40 entries. Then, read the entries of a one by one and sort them in ascending
order using the insertion method.

Fo=—==mm—- 1
@ --1 int a[41] !
e o e e e e e — a

i=3-1,1,-1

alil>ali+1]

writeIvec(a,m)

alilesali+1]

_—

Fig. 8.15: Sorting an array in ascending order by the insertion sorting method.

288 = One-dimensional arrays

Solution. The idea in Flowchart 8.14 is used for this algorithm. To be precise, the en-
tries are read one by one with a for template. Upon reading an entry, it is inserted
inside the previously sorted numbers preserving the ascending order. The above dis-
cussion is summarized in Flowchart 8.15. It should be mentioned that, the basic sort-
ing is started from the second entry. Actually, the first entry is read due to the occur-
rence of incompatibility in the inner loop. Programs P8_15 are codes of this algorithm.

C++ codes: Java codes:

// Program P8_15 to sort 20 entries // Program P8_15 to sort 20 entries
// of an array by insertion method // of an array by insertion method

#include <iostream>

using namespace std;

void writeIvec(int u[], int n) {
for (int i=1; i<=n; i++)

import java.util.Scanner;
class P8_15 {
static void writelIvec(int u[], int n) {
for (int i=1; i<=n; i++)

cout<<ulil<<" "5 System.out.print(ufi] + " ");
cout<<endl; System.out.println();
return; 3
3 //
// public static void main(String[] args) {

int main() {
int a[41], i, j, t, m;

cout<<"Entre the size of array:

cin>>m;
cout<<"Enter "<<m<< "integer "
<<"entries one by one: \n";
for (3=1; j<=m; j++) {
cin>>aljl;
for (i=j-1; i>=1; i--)
if (alil>ali+1]1) {

Scanner read=new Scanner(System.in);
int a[l=new int[41];
int i, j, t=0, m;

System.out.print("Enter the size of array:

m=read.nextInt();
System.out.println("Enter m integer "
+ "entries, one by one: ");
for (j=1; j<=m; j++) {
a[jJl=read.nextInt();
for (i=j-1; i>=1; i--) {

t=alil; if (alil>ali+1]) {
alil=ali+11]; t=alil;
ali+1]=t; a[iJ=ali+1];
} ali+11=t;
3 3
cout<<"The sorted entries: "; }
writelvec(a, m); 3}
return 0; System.out.print("The sorted entries: ");
} writeIvec(a, m);
read.close();
Input/output: ¥
3
Entre the size of array: 4+
Enter 4 integer entries one by one: Input/output:
2!
9 Entre the size of array: 4+«
6 Enter 4 integer entries one by one:
3+ 2+
The sorted entries: 2 3 6 9 9+
6
3

The sorted entries: 2 3 6 9

");

More applications of the arrays = 289

sum<@
) i

<:: k=0,n 1
l L1

sumesum+f (x[k1)*L Lelx(z-x[11)/(x[kI-x[i]1)

Fig. 8.16: The n-degree Lagrange interpolation polynomial.

8.15.1. Exercise. Modify the previous algorithm and the programs so that all the en-
tries are read and then sorted in ascending order using the insertion method. How
many arrays do you use? One or two? Attack to both cases!

8.15.2. Exercise. Split Flowchart 8.15 into a sub-algorithm and a main algorithm. In
fact, the sub-algorithm receives an array, sorts it in ascending order using the inser-
tion method, and then returns the sorted array.

8.16. Example (The Lagrange interpolation polynomial). One way to approximate the
function fat a point z is to use the n-degree Lagrange interpolation polynomial of the
function fbased on the knots x,, x;, ..., x,, at the point z which is defined as follows.

n

() =) felL@, L@ =]][
k=0

X — X;
i=0 k i
ik

The knots should be accumulated in the neighborhood of the point z. Write a function
to receive the knots x, x4, ..., x,, as the entries of the (n + 1)-entry real array x as well
as the value of the point z and then calculate and return p(z).

Solution. The structure of this algorithm is clear: we have an additive series the com-
mon term of which is a multiplicative series. Just note the conditional common term
in the multiplicative series. The resulted function is depicted in Figure 8.16. We use
this method in the main unit of Programs P8_16 to approximate the function f(x) =

290 — One-dimensional arrays

sin(x) + cos(x). To do this, the main unit first reads the value of n. Then, it reads the
Xg, X1, ---, Xn. Finally, the value of z is read. Now, the method p() is called for z as well
as the n-entry array x and then the return value is printed. Eventually, the exact
amount of f(1) is computed and printed for comparison with the above approximated
value.

C++ codes: Java codes:
// Program P8_16 to approximate a // Program P8_16 to approximate a
// function at a point by the // function at a point by the
// Lagrange interpolation polynomial // Lagrange interpolation polynomial
#include <iostream> import java.util.Scanner;
#include <math.h> class P8_16 {
#include <iomanip> static double f(double x) {
using namespace std; return Math.sin(x)+Math.cos(x);
inline double f(double x) { }
return sin(x)+cos(x); //
} static double p(double z, double x[1],
// KKk int n) {
double p(double z, double x[], double sum=0, L;
int n) { for (int k=0; k<=n; k++) {
double sum=0, L; L=1;
for (int k=0; k<=n; k++) { for (int i=0; i<=n; i++)
L=1; if (i!'=k)
for (int i=0; i<=n; i++) L=L*(z-x[i1)/(xCk]I-x[i]);
if (i!=k) sum=sum+f (x[k1)*L;
L=L*(z-x[1]1)/(x[k]1-x[i1); 3
sum=sum+f (x[k]1)*L; return sum;
3 }
return sum; // *kkk
3 public static void main(String[] args) {
// Scanner read=new Scanner(System.in);
int main() { int n;
int n; double z, x[J=new double[211];
double z, x[21]; System.out.print("Enter a positive "
cout<<"Enter a positive integer n: "; + "integer n: ");
cin>>n; n=read.nextInt();
cout<<"Enter the notes x[0] to " System.out.println("Enter the notes x[0] "
<<"x["<<n<<"J: \n"; + "to x[" +n+ "] "),
for (int i=0; i<=n; i++) for (int i=0; i<=n; i++)
cin>>x[i]; x[iJ=read.nextDouble();
cout<<"Enter the point z: "; System.out.print("Enter the point z: ");
cin>>z; z=read.nextDouble();
cout<<"The approximated amount: " System.out.println("The approxiamted "
<<p(z, x, n)<<endl; + "amount: " + p(z, x, 5));
cout<<"The computer amount: " System.out.print("The exact amount: "
<<setprecision(8)<<f(1); + £(1));
return 0; read.close();
} }
3
Input/output:

Input/output:

More applications of the arrays = 291

Enter a positive integer n: 5« Enter a positive integer n: 5«

Enter the notes x[0] to x[5]: Enter the notes x[0] to x[5]:

0.1 0.2 0.3 0.40.50.6+ 0.1 0.2 0.3 0.4 0.5 0.6+

Enter the point z: 1+ Enter the point z: 1+

The approximated amount: 1.38188 The approxiamted amount: 1.38188464485998
The exact amount: 1.3817733 The exact amount: 1.3817732906760363

We studied two methods of writing algorithms for calculating the factorial of non-
negative integers, the recursive and direct ways in Chapters 5 and 6, respectively. The
programs of these algorithms are practically usable for calculating the factorial of
small numbers in most of the computers and compilers in both C++ and Java lan-
guages. In the next example we will use the arrays to write an algorithm usable for
determining the factorial of large integers.

8.17. Example. Design a sub-algorithm named LargFact() to calculate and print the
factorial of a rather large number m using the arrays.
Solution. Here, the usual formula is employed:

ml=1x2x3x..xm.

We use the idea behind the multiplication of a digit to a positive integer, taught to the
students in the primary schools. Let us explain this manner for the multiplication of
859 x 7. To have a clear explanation, insert a valueless zero to the left of 859, and put
the digits of 0859 from left to right, respectively, into the 1-st, 2-nd, 3-rd, and 4-th
entry of an array as follows.

1-stentry 2-nd entry 3-rd entry 4-th entry

0 8 5 9

The explanation is as follows.

1. Multiply the 4-th entry 9 to 7 (= 63); write the right digit 3; hold on the transferring
digit 6;

2. Multiply the 3-rd entry 5 to 7 and add the result to the previous transferring digit
(= 41); write the right digit 1; hold on the transferring digit 4;

3. Multiply the 2-nd entry 8 to 7 and add the result to the previous transferring digit
(= 60); write the right digit 0; hold on the transferring digit 6;

4, Multiply the 1-st entry O to 7 and add the result to the previous transferring digit
(= 6); write the right digit 6; hold on the transferring digit 0.

Now, if we stored the “right digits” in an array, say a, in each step from the 4-th entry
downwards, we would have the following entries of a:

292 — One-dimensional arrays

u<0

tealjl*7+u
aljlet%10
u<t/10

L

Fig. 8.17(a): The multiplication of an integer by 7 using the primary idea.

Arranging the entries from left to right, we get the real value of the multiplication 859

x 7 = 6013. Two points should be noticed here. First, we may use the above idea for

any number instead of 7, provided that the necessary valueless zero digits are inserted

to the left of 879. Second, nothing is lost if we take the original array the same as a.
Now, we steer the idea in the above multiplication, which is mentioned in four

steps, to reach an algorithm. To do this, we need to approach some of the above ac-

tions to the equivalent actions from the algorithm viewpoint:

- Right digit: the remainder of the division by 10;

- Transferring digit: the quotient of the division by 10;

To continue, define some variables:
t: the amount of the multiplication of an entry to 7 and adding the result to the
previous transferring digit;
u: the quotient of the division by 10.

Now, we rewrite the above-mentioned four steps in the literature of algorithm as fol-

lows.

1. Assign a, X 7 to t; substitute the remainder of ¢ / 10 for a,; assign the quotient of
t/ 10 tou;

2. Assignas X 7 + u to t; substitute the remainder of t / 10 for a5; assign the quotient
oft /10 to u;

3. Assigna, X 7 + u to t; substitute the remainder of t / 10 for a,; assign the quotient
of t /10 to u;

4, Assign a; X 7 + u to t; substitute the remainder of t / 10 for a;; assign the quotient
of t /10 to u.

More applications of the arrays = 293

LargeFact(m,a,r)

{
i=1,r-1
)
alil<o
alrl<l I—

u<@

j=r,1,-1

tealjlxi+u
aljlet%1o
u<t/10

L

Fig. 8.17(b): Calculating the factorial of a large number and storing the digits in an array.

It is noteworthy that the constructions in the first step would be the same as the other
steps by assigning the initial value zero to u. As shown, we have a for loop repeated
four times and the above steps can now be settled down in Flowchart 8.17(a).

Now, take 720 = 6! instead of the above number 859. Then, the multiplication
above will be 6! = 720 x 7 = 5040 = 7! Therefore, if we take the array a as:

ay as a; a;

and consider Flowchart 8.17(a) (with replacing 7 by i) as the range of an outer for loop
with the specification i=1,7, we will get the amount of 5040 = 7! upon exiting this
outer loop. To extend this for m instead of 7 and r instead of 4, we arrive at Flowchart
8.17(b) of the required sub-algorithm. The number m is a positive integer which we
want to calculate its factorial and r is the number of digits of m! This number is not
often known and an upper bound should be guesstimated for it. The sub-algorithm
LargFact() receives the positive integer m and the guesstimated integer r. Then it
calculates and returns the array a including the digits of m! in the natural order.

Table 8.17 thoroughly demonstrated the implementation table of the sub-algo-
rithm LargFact() form=5andr=3.

294 = One-dimensional arrays

--1 int a[31] |
e e e e e e - 1

LargeFact(20,a,19)

Fig. 8.17(c): Calculating 20! using the sub-algorithm LargeFact ().

Tab. 8.17: Implementation table of the sub-algorithm LargFact() for m=5 and r=3.

status i i t u a[1l] a[2] a[3]
before the outer loop 0 0 1
before the inner loop 1 0

first repetition 3 1 1
second repetition 2 0

third repetition 1

before the inner loop 2 0

first repetition 3 2 2
second repetition 2 0

third repetition 1

before the inner loop 3 0

first repetition 3 6 6
second repetition 2 0

third repetition 1

before the inner loop 4

first repetition 3 24 2 4
second repetition 2 2 0 2

third repetition 1 0

before the inner loop 5 0

first repetition 3 20 2 0
second repetition 2 12 1 2

third repetition 1 1 0 1

In the main algorithm of Flowchart 8.17(c), the amount of 20!, is calculated, using the
sub-algorithm LargeFact (). Of course, we know that 20! is a 19-digit number. These

More applications of the arrays = 295

--1 int a[311 |
N, 1

al1]=0
rer-1 alk-1]<«alk]
[]

Fig. 8.17(d): Calculating the m! (for large m) and printing it removing the leftmost zero digits.

digits, which are the entries of the array a, are printed successively, without any
space. This may be performed in any programming language.

8.17.1. Exercise. Write the complete programs of Flowchart 8.17(c) in both C++ and
Java codes.

It is worth mentioning that, in general, the number of digits of m! is not always known
and an upper bound should be guessed for this purpose. Some valueless zeroes
mainly appear on the left of the real amount of m! For example, we will have the fol-
lowing output if we write 22 instead of 19 in the main algorithm of Figure 7,18(c):

0002432902008176640000

The main algorithm in Figure 8.17(d), reads the values of m and r and then receives
the amount of m! within the r-entry array a by calling the sub-algorithm LargeFac().
Next, using a while template, while the first entry of a (the leftmost digit of m!) is zero,
it is removed and then all the other entries are pulled one back in each repetition.
Finally, the guesstimated number of digits, r, is decreased by 1.

The codes of Flowchart 8.17(d) in both C++ and Java languages can be observed
in Programs P8_17.

296 —— One-dimensional arrays

C++ codes: Java codes:
// Program P8_17 to calculate the // Program P8_17 to calculate the
// factorial of large integers // factorial of large integers
// using the subprogram LargFact() // using the method LargFact()
#include <iostream> import java.util.Scanner;
using namespace std; class P8_17 {
void LargeFact(int, int [], int); public static void main(String[] args) {
int main() { Scanner read=new Scanner(System.in);
int a[311]; int a[J=new int[31];
int m, r, k; int m, r, k;
cout<<"Enter the number m: "; System.out.print("Enter the number m: ");
cin>>m; m=read.nextInt();
cout<<"Guess a maximum length for " System.out.print("Guess a maximum "
<<m<" "y + "length for " + m + "!: ");
cin>>r; r=read.nextInt();
LargeFact(m, a, r); LargFact(m, a, r);
while (a[1]==0) { while (a[1]==0) {
for (k=1; k<=r; k++) for (k=1; k<=r; k++)
alk-11=alk1; alk-11=alk1;
r=r-1; r=r -1;
3 }
cout<<m<<"!="; System.out.print(m + "!=");
for (k=1; k<=r; k++) for (k=1; k<=r; k++)
cout<<alk]; System.out.print(alk]);
return 0; read.close();
3 }
// //
void LargeFact(int m, int a[], static void LargFact(int m, int al],
int r) { int r) {
int u, t, i, j; int u, t, i, j;
for (i=1; i<=r-1; it++) for (i=1; i<=r-1; i++)
alil=o; alil=0;
alrl=1; alrl=1;
for (i=1; i<=m; i++) { for (i=1; i<=m; i++) {
u=0; u=0;
for (j=r; 3>=1; j--) { for (3=r; 3>=1; j--) {
t=aljl*i+u; t=aljl*xi+u;
aljl=t%10; aljl=t%10;
u=t/10; u=t/10;
} }
3 }
return; }
} }
Input/output: Input/output:
Enter the number m: 27+ Enter the number m: 27+
Guess a maximum length for 27!: 30+ Guess a maximum length for 27!: 30+

27!=10888869450418352160768000000 27!=10888869450418352160768000000

Exercises =—— 297

A point about the length (upper bound) of the guesstimated value should be noticed.

Extra care should be taken upon assigning the guessed length! We will not achieve a correct answer
if this length is smaller than the necessary one.

8.17.2. Exercise. Another way for preventing the appearance of the meaningless dig-
its on the left side of the number is to replace a possible meaningless zero digit with
a space character in the main algorithm. Write a main algorithm to perform this print.

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, (3) Provide appropriate input notifications and output head-
ings, if any. In addition, the user-defined functions in the text of the current and the
previous chapters may be used unless otherwise is explicitly specified.

8.1. Write an algorithm to produce the first 20 terms of the Fibonacci sequence and
save them in the array F. Then, read the positive integer n (which is less than 20) and
calculate and print the sum

n
Z iF;

i=1

where F;is the i-th term of the Fibonacci sequence.

8.2. Write a sub-algorithm named FibArray () to receive a positive integer n, calculate
the first n terms of the Fibonacci sequence, and return them as the entries of an inte-
ger array, say F. Then, write a main algorithm to calculate and print the first 20 terms
of the Fibonacci sequence using the above sub-algorithm.

8.3. Write a sub-algorithm to receive the n-entry integer array a and an integer t. Then
determine and return the first position of the occurrence of ¢ in the array. If t does not
occur in the array, announce its position as 0.

8.4. Write an algorithm to read the ID number and grade of 40 students and then store
them in the arrays N and G, respectively. Next, read a grade g and print the Not in
list message if it is not in the list of grades. Otherwise, print the ID numbers with this
grade and the number of these students.

298 = One-dimensional arrays

8.5. Write an algorithm to read 20 integers, sort them in ascending order after remov-
ing the repeating elements, and print the sorted numbers.

8.6.Write an algorithm to read the 20-entry integer arrays a and b. Then, put those
entries in the array a, which are not equal to any entry of the array b in the array c.
Repetition is not allowed. Finally, print the three arrays separately.

8.7. Write an algorithm to read the positive integers m and n which are at most 100.
Then, read the m-entry array A and n-entry array B and combine them in a new array
C so that it is discarded if a number from B exists in A. Finally, print C. An example is
demonstrated below.

A:3,7,2,5,9,3,6
B:12,4,6,2,3,9, 8
C:3,7,2,509,3,6,12,4,8

8.8.In Exercise 8.7, sort the resulted numbers in both ascending and descending or-
ders and then print them separately.

8.9. Write a function named repeat() to receive the n-entry integer array a and the
integer x and calculate and return the number of repetitions of x in the array.

8.10. Write an algorithm to read the entries of a 20-entry integer array and determine
the first repeated number, its position, and the number of its repetitions. Then, print
them separately. An appropriate message should be printed if there is no such num-
ber.

8.11. Write a sub-algorithm to receive an integer array with n entries named u. Then,
determine and return the number with the most repetition. Additionally, determine
and print the largest one if there is more than one entry with this property. For exam-
ple, the output for the following inputs should be 7 since it is the last number which
is most repeated (three times).

2 47 49 46 6 7 12671

8.12, Divide Algorithm 8.11, sorting in ascending order by the bubble sorting method,
into a sub-algorithm named Sort and a main algorithm. In other words, the sub-algo-
rithm Sort() receives an n-entry array, sorts it in the ascending order by the bubble
sorting method, and then returns the sorted array.

Exercises == 299

8.13. Write an algorithm to read the 40 entries of an integer array and, using the bub-
ble sorting method, sort the first 20 entries in ascending order and the second 20 en-
tries in descending order and print them separately. The entries should be sorted into
ascending and descending orders simultaneously and in the same loop.

8.14. Write an algorithm to read two 20-entry integer arrays a and b which are sorted
in a descending order. Then, combine them in the 40-entry array c and sort ¢ in as-
cending order. Finally, print the sorted array c.

8.15. Write a sub-algorithm named Rank() to receive the ID number and grade of n
students with the names N and G, respectively. Then, determine a rank for each stu-
dent and return the ranks in an integer array, say R. For the same grades consider the
same ranks. Next, write a main algorithm to read the ID number and grade of 40 stu-
dents and then print three separate lists by calling the sub-algorithm rank(): the first
list in the ascending order of the ID numbers (the array N), the second one in the as-
cending order of the grades (the array G), and finally, the third list in the ascending
order of the ranks (the array R). Every list contains 40 rows and in each row, the ID
number, grade, and rank of each student are positioned, respectively.

8.16. Write an algorithm to read 40 entries of a real array a. Then read the integer m
(1 < m <39) and the real number t and insert the number t between the m-th and (m +
1)-th entries of the array a.

8.17.Write an algorithm to read 40 real numbers and save them in the real array a.
Then, read 7 real numbers one by one and insert them between the fifth and sixth
entry.

8.18. Write an algorithm to read the 40 entries of the real array a. Then, read a positive
integer g (1 < g < 19) as the count of the numbers which will be inserted. Afterwards,
in g steps, each step read the two numbers m and t and insert t in the position between
m and m + 1in the array (1 < m < g). Finally, print the new (40 + g)-entry array a.

8.19. Write an algorithm to read the 20 entries of an ascending real array a. Then, read
a number n (1 < n < 19) as the count of numbers which will be read. Next, in n steps,
each step read a real number and insert it in the array a so that the ascending order
of the array is preserved.

8.20. Repeat Exercise 8.12 for the insertion sorting method.

300 — One-dimensional arrays

8.21. Write a sub-algorithm named Bin() to receive the positive integer n, convert it
to the base-2 numeral system, and return the result in the k-entry integer array e. Com-
pare the solution to the sub-algorithm of Figure 7.6(b) which is written without using
the arrays.

8.22. Write a sub-algorithm to receive the positive integer k, transfer it to the base-16
numeral system, and return the result to the calling unit. Then, write a main algo-
rithm to read a positive integer k, convert it to the base-16 numeral system, and print
it using the above sub-algorithm.

8.23. Write an algorithm to read the 20 entries of the integer array a. Then, calculate
and print the greatest common divisor of the entries. Finally, compare this exercise
with Exercise 7.21 which is written without using the arrays.

Supplementary exercises

8.1*, Write an algorithm to read the ID number and grade of 40 students with the
names N and G, respectively. Then, store the ranks of the students with the name R
using the sub-algorithm rank() in Exercise 8.15. Next, ask the user to enter one of the
following numbers for the stated purposes within the input announcement as fol-
lows:

Enter one of the following numbers:
0: exit the program
1: print an ascending list of the array N together with G and R

2: print a descending list of the array G together with N and R
3: print an ascending list of the array R together with N and G
4: read an ID number and print it together with its grade and rank

After entering one of the above numbers, the algorithm performs the task stated in
front of that number and the implementation continues until the user enters the zero
number. If the user enters any number other than the above-mentioned numbers, the
algorithm prints the message Wrong number and continues from the beginning.

8.2*, Repeat the previous exercise, this time for the following input announcement:

Enter one of the following numbers:

0: exit the program

1: print the average of the grades

2: print the standard deviation of the grades

3: print the maximal grade and the related ID number(s)

Exercises = 301

print the minimal grade and the related ID number(s)

print the number of grades equal to the average

print the number of grades less than the average

print the number of grades greater than the average

print the grade with the most repetition and the related ID numbers

0 N O O N

8.3*. Write an algorithm to read thirty real numbers and determine whether or not
these numbers are orderly sorted and if so, are they sorted in ascending or descending
order? It is supposed that not all the numbers are zero.

8.4*, Write an algorithm to read the entries of the 40-entry integer array a. Then, read
an integer x and remove that entry and pull all the subsequent entries one back if it
matches an entry of the array. Finally, print the deformed array a with possibly less
entries.

8.5*. Write an algorithm to read the entries of a 20-entry integer array and remove its
repeated entries without using another array. Then, print the deformed array.
For example:

input array: 2 5 6 5 2 3 7 6

outputarray: 2 5 6 3 7

8.6*. Write an algorithm to read the entries of the 40-entry integer array a. Then de-
termine the repeated entries of this array followed by the number of repetition for
each case. Repetition for the repeated entries is not allowed.

8.7*. Write a sub-algorithm named prim_dec() to read a positive integer n. Then, in
the primary decomposition

j— T T T,
n=p;"p;"? ... Pk

store the prime factors in an array named p and the multiplicity of each factor in an-
other array named r.

8.8*. Consider the two numbers m and n having the following primary decomposi-
tions:

— T T T j— S S S
m=p;"ip;"? .. Pk, n=p;"p;7? .. pk

Then, their greater common divisor and their least common multiple (gcd and lcm,
respectively) are obtained from the formulas

302 — One-dimensional arrays

ged = pipp™2 o p, lem = pip, T2 L pUE,

where, forany i (1<i <k), u; is the minimum of r; and s;, and v; is the maximum of r;
and s;. Write an algorithm to read the two numbers m and n and then calculate and
print their gcd and lcm using the mentioned manner.

8.9*. For a positive integer n, the Mobius function y is defined as follows.

1, ifn=1,
u(n) =10, if p%|n, for some prime p,
(=Dk, if n=pp, .. b, for distinct primes p;.

Write a function, named mu(), to receive the positive integer n and then calculate and
return the Mobius function u(n).

8.10*. Write an algorithm to read the degrees m and n of two polynomials

f) =fo+ fix+ -+ frx™ gx) =go+ gix + -+ gpx™

Then, read the coefficients of the functions fand g, separately. Finally, calculate their
sum and print it in the standard form of a polynomial. The following is an example
for the output:

f(x)+g(x)=5+T*x"2+2*x*5

8.11*, Repeat the previous exercise, this time for multiplication instead of summation.
Recall that for the two polynomials f(x) and g(x) as in Exercise 8.10*, the multiplica-
tion is defined as the function h by the following rules.

m+n

h(x) = Z hixi , hy= Zfsgi—S'
i=1 s=0

8.12*, Given the positive integers a and n, an efficient technique for calculating a™ is
to transfer n to the base-2 numeral system:

Now we can write:

K

ol

b=a"=| |a%?.
=0

i

Exercises = 303

Write an algorithm to read the positive integers a, n, and m and then calculate and
print a™ modulo m.

8.13*. Solve Exercise 7.7* using the arrays.

9 Two-dimensional arrays

At the beginning of Chapter 8, some information was provided regarding introducing
one-dimensional arrays in algorithms and programs. This information is also true for
two-dimensional arrays, which we will refer to as matrices from now on. In particular,
as the one-dimensional case, the two-dimensional arrays, as predefined objects, pass
by reference. The only difference is that here, we are dealing with double indices in-
stead of a single index and each index is used inside a pair of []. In this chapter,
matrices are studied in more details and then solving linear equations systems are
examined.

9.1 Matrices

The first step in matrix related programming is how to read and write the matrices. In
other words, how to read matrices row by row, as they are, from the input and write
them based on the matrix structure in the output. To this end the simplest pattern is
to use two nested for loops for row-reading the matrix A = (4;;)mxn in the C++ and
Java codes as follows:

C++ codes: Java codes:
for (int i=1; i<=m; i++) { for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++) for (int j=1; j<=n; j++)
cin>>A[i][j1]; ALil[jJ=read.nextInt();

This pattern satisfies our need for row-reading (reading row by row) matrices alt-
hough matrices can be entered in any form by running this part provided that the row
order of the entries is kept. For example, all the rows of a matrix can be continuously
entered in a single input row. In addition, each entry could enter in one row.

From now on, the following subprograms named readImat() and readFmat() are
used to read the integer and real (floating point) matrices, respectively:

C++ codes: Java codes:
void readImat(int A[][6], static void readImat(int A[I[],
int m, int n) { int m, int n) {
for (int i=1; i<=m; i++) { Scanner read=new Scanner(System.in);
for (int j=1; j<=n; j++) for (int i=1; i<=m; it++)

cin>>A[i][j1; for (int j=1; j<=n; j++)

} ALil[jJ=read.nextInt();
read.close();
3

https://doi.org/10.1515/9783110616484-009

Matrices = 305

C++ codes: Java codes:
void readFmat(float A[][6], static void readFmat(float A[1[],
int m, int n) { int m, int n) {
for (int i=1; i<=m; i++) { Scanner read=new Scanner(System.in);
for (int j=1; j<=n; j++) for (int i=1; i<=m; i++)

cin>>A[i][j1; for (int j=1; j<=n; j++)

3 ALil[jJ=read.nextInt();
read.close();
3

The rule of multi-using the reading methods in Chapter 8 is held for two-dimensional
arrays. Moreover, the following notes should be highlighted regarding the two-di-
mensional arrays.

— Whenever two-dimensional arrays are applied as the parameters of a subprogram in the C++ lan-
guage, the length of the first dimension can be written in an open way [] while the length of the
second dimension should be determined. Further, we may change the value of the length of the
second dimension depending on our need upon calling the involved subprogram.

— The lengths of both dimensions may be written in an open way [1[]in Java language.

— The values of the lengths within the integer variables should be part of the parameters in both
languages.

— The real length of both dimensions should be determined in the main program.

Now, the writing pattern of a matrix in the form of matrix structure (row by row) is
investigated. Consider the following parts for writing the matrix A = (4;;),xn, in the
C++ and Java codes:

C++ codes: Java codes:
for (int i=1; i<=m; i++) { for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++) for (int j=1; j<=n; j++)
cout<<A[il[j]; System.out.print(ALi1[j1);

Then, all the entries are written in a single row, which is not what we desire. There-
fore, we should break a row after exiting it using the cout<<endl statement in C++
(the System.out.println() statement in Java) and then transfer it to the beginning
of the next row:

C++ codes: Java codes:
for (int i=1; i<=m; i++) { for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++) for (int j=1; j<=n; j++)
cout<<A[il[j]; System.out.print(ALil1[j1);

cout<<endl; System.out.println();

306 — Two-dimensional arrays

Suppose that a 2 x 4 matrix is previously saved in the memory as follows.

Then, running the above parts of the program result in the following output:

1234
5678

Furthermore, we can add one or several space characters after writing A[i1[j] in or-
der to create spaces between the entries:

C++ codes: Java codes:
cout<<A[il[jI<" "; for (int i=1; i<=m; i++) {
cout<<endl; for (int j=1; j<=n; j++)
System.out.print(A[iI[j]1 + " ™);

System.out.println();
However, the problem generally fails to be solved by doing this. For example, if we
had the number 22222 instead of the entry a;; in the above matrix, then we would end

up with the following scrambled print even with the use of space characters:

1..22222_.3._.4
5..6..7_.8

We use an appropriate formats for spacing in prints in order to solve this problem. For
example, if we use the formats:

C++ codes: Java codes:
cout<<setw(7)<<A[il[j]; System.out.format("%7d",A[i1[j]);

in the above parts, then we will have the following output:

This visualization satisfies our desire. Generally, from now on, we use the following
subprograms named writeImat() for printing the integer m x n matrices:

Matrices = 307

C++ codes: Java codes:
void writeImat(int A[][6], static void writeImat(int A[I[],
int m, int n) { int m, int n) {
for (int i=1; i<=m; i++) { for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++) for (int j=1; j<=n; j++)
cout<<setw(7)<<A[iI[jI; System.out.format("%7d", A[il[j1);

cout<<endl; System.out.println();

3 }
} 3

Moreover, the following subprograms named writeFmat() are used for printing the
real m x n matrices:

C++ codes: Java codes:
void writeFmat(float A[J[6], static void writeFmat(float A[I[],
int m, int n) { int m, int n) {
for (int i=1; i<=m; i++) { for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++) for (int j=1; j<=n; j++)
cout<<setw(10)<<A[i][j]; System.out.format("%10f", ALiI[j1);
cout<<endl; System.out.println();
3 }
3 }

The width of the spacing format in the above patterns of printing is changed depending on the size
of the necessary length.

9.1. Example. Write an algorithm to produce and print the 5 x 5 identity matrix in the
name of U.
Solution. The identity matrix is defined in a way that the entries on the main diagonal
are considered 1 while the remaining entries are 0. We have two variable indices (rows
and columns) in this definition. Therefore, we produce the identity matrix inside two
nested for loops in as displayed in Flowchart 9.1(a).

Programs P9_1_A translate Flowchart 9.1(a) into the C++ and Java codes. The fea-
ture of the ? operator is used in these programs.

C++ codes: Java codes:
// Program P9_1_A to produce and // Program P9_1_A to produce and
//print the identity 5 * 5 matrix //print the identity 5 * 5 matrix
#include <iostream> class P9_1_A {
#include <iomanip> public static void main(String[] args) {
using namespace std; int ULJ[]=new int[61[6];
void writeImat(int [1[6], int, int); for (int i=1; i<=5; i++)
int main() { for (int j=1; j<=5; j++)
int UL61[6]; ULiI0j1=(i==j) ? 1 : 0,

for (int i=1; i<=5; i++) System.out.println("The identity 5 x 5 "

308 — Two-dimensional arrays

<

writeImat(U,5,5)

ULilljl<e

ULi1031«1

Fig. 9.1(a): Producing the 5 x 5 identity matrix.

for (int j=1; j<=5; j++)
ULid[j1=(i==3) ? 1

: 0,

cout<<"The identity 5 * 5 matrix:\n";
writeImat(U, 5, 5);
return 0;

}

//

void writeImat(int A[][6],

for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(3)<<A[il[jI;
cout<<endl;

}
3

Output:

The identity 5 * 5 matrix:

1

(SSRGS IS

Now, a sub-algorithm named idImat() is written to produce the n x n identity matrix
and then return it within the integer array U. Flowchart 9.1(b) is the required sub-

0

(SIS RIS

0

(SIS I S

0

SIS IS

algorithm.

int m, int n) {

oo 0o

//
static void writeImat(int ALIL],

int m, int n) {
for (int i=1; i<=m; i++) {

writeImat(U, 5, 5);

for (int j=1; j<=n; j++)

System.out.format("%-3d", A[i1[j1);

System.out.println();

Output:

The identity 5 * 5 matrix:

oo 0o =

LSRRGS TS S

0

o0 = o

0

(SR S I

o000

+ "matrix:");

Matrices =—— 309

II!II <::: j=1,n

ULiljl<0 ULi1[j1<1

Fig. 9.1(b): A sub-algorithm to produce the n x n identity matrix.

Each of the Programs P9_1_B first reads the size of the identity matrix with the name
n which is assumed to be at most 10. Then, it prints the n x n identity matrix calling
the subprogram idImat(). Eventually, the subprograms idImat in both programs are

written without using the ? operator.

C++ codes:

// Program P9_1_B to produce and
// print the identity 5 * 5 matrix
// using the idImat subprogram
#include <iostream>
#include <iomanip>
using namespace std;
void writeImat(int [1[11], int, int);
float idImat(int [J[11], int);
int main() {
int n, UC11][11];
cout<<"Enter the size of "
<<L"identity matrix: ";
cin>>n;
idImat(U, n);
cout<<"The identity n * n matrix:\n";
writeImat(U, n, n);
return 0;
}
//
void writeImat(int A[J[111],
int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(3)<<A[il[jI;
cout<<endl;

}

Java codes:

// Program P9_1_B to produce and
// print the identity 5 * 5 matrix
// using the idImat subprogram
import java.util.Scanner;
class P9_1_B {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
int n, ULI[J=new int[11][11];
System.out.print("Enter the size of "
+ "identity matrix: ");
n=read.nextInt();
System.out.println("The identity n * n "
+ "matrix:");
idImat(U, n);
writeImat(U, n, n);
read.close();
b
//
static void writeImat(int A[LI[],
int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; jt++)
System.out.format("%-3d", ALiI[j1);
System.out.println();
}
3

310 — Two-dimensional arrays

3 //
// static void idImat(int ULI[], int n) {
float idImat(int ULI[11], int n) { for (int i=1; i<=n; i++)
for (int i=1; i<=n; i++) for (int j=1; j<=n; j++)
for (int j=1; j<=n; j++) if (i==3)
if (i==3) ULiILj1=1;
ULi1[31=1; else
else ULiICj1=0;
Ulilljl=e; 3}
3 3
Input/output: Input/output:

Enter the size of identity ma-trix: 3« Enter the size of identity ma-trix: 3+

The identity n x n ma-trix: The identity n x n ma-trix:
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

Recall that the arrays are passed by reference in both C++ and Java languages. This is
why we write no return value in the return instruction at the end of the sub-algo-
rithms. Nevertheless, we do write the return instruction in sub-algorithms to keep
their standard structure although the return statement is not written in the subpro-
grams.

The main process of the sub-algorithm idImat() is to produce the identity matrix,
denoted in the standard texts by I, and assign it to the integer matric U. This is anal-
ogous to the assignment instruction:

U<l

A float version idFmat () of the subprogram idImat () may be written by replacing the
data type float instead of int.

An alternative method to produce the identity matrix is to define the entries U;;
as 0 in the range of an inner for loop and define the diagonal entry U;; as 1 after exit-
ing that loop. This idea is directly used in Figure 9.1(c) to produce a 5 x 5 identity
matrix in an algorithm. The codes related to the algorithm of Figure 9.1(c) can be
found in Programs P9_1_C.

C++ codes: Java codes:

// Program P9_1_C to produce and // Program P9_1_C to produce and

// print the identity 5 * 5 matrix // print the identity 5 * 5 matrix

// using an alternative way // using an alternative way

#include <iostream> class P9_1_C {

#include <iomanip> public static void main(String[] args) {
using namespace std; int ULI[]=new int[61[6];

void writeImat(int [1[6], int, int); for (int i=1; i<=5; i++) {

Matrices = 311

writeImat(U,5,5)

Fig. 9.1(c): Producing a 5 x 5 identity matrix using an alternative manner.

ULillj]<0

int main() { for (int j=1; j<=5; j++)
int UL61[6]; ulilfjl=e;
for (int i=1; i<=5; i++) { ULi[il=1;
for (int j=1; j<=5; j++) }
ULil[jI=o0; System.out.println("The identity 5 * 5 "
ULiIEi=T; + "matrix:");
} writeImat(U, 5, 5);
cout<<"The identity 5 * 5 matrix:\n"; }
writeImat(U, 5, 5); //
return 0; static void writeImat(int A[IL],
} int m, int n) {
// for (int i=1; i<=m; i++) {
void writeImat(int A[J[6], for (int j=1; j<=n; j++)
int m, int n) { System.out.format("%-3d", ALil[j1);
for (int i=1; i<=m; i++) { System.out.println();
for (int j=1; j<=n; j++) }
cout<<setw(3)<<A[il[jI; }
cout<<endl; 3
3
}

9.2. Example. Write an algorithm to read a 6 x 6 integer matrix named A and then
print the message Symmetric if A is equal with its transpose; otherwise, print the mes-
sage Not symmetric.

Solution. The transpose of the matrix A is a matrix in which the (i, j)-entry is equal to
the (j, i)-entry of A. Therefore, as depicted in Flowchart 9.2, the algorithm is arranged
in a way that as soon as an opposition case of the equality of the (i, j)-entry with the
(j , D)-entry is found, prints the Not symmetric message and terminates the program
using an if template. The other case occurs when, the (i , j)-entry would be equal to

312 — Two-dimensional arrays

readImat(A,6,6)

i=1,6
>] {
j=1,6
"Symmetric"

end

"Not symmetric"

Fig. 9.2: Checking whether or not a 6 x 6 matrix is symmetric.

the corresponding (j , i)-entry for each i and j. In this case, the nested loops is com-
pletely implemented and the Symmetric message is printed after the natural exit from
the outer loop. Programs P9_2 are the translation of this algorithm into C++ and Java

codes.

C++ codes:

// Program P9_2 to check whether or not
// a 6 * 6 integer matrix is symmetric
#include <iostream>
#include <stdlib.h>
using namespace std;
void readImat(int []J[7], int, int);
int main() {
int AL71[71];
cout<<"Enter an integer 6 * 6 "
<<"matrix A:\n";
readImat(A, 6, 6);
for (int i=1; i<=6; i++)
for (int j=1; j<=6; j++)
if (ACLILJ1'=ALIC0iD) {
cout<<"Not symmetric";
exit(0);
3
cout<<"symmetric";
return 0;

Java codes:

// Program P9_2 to check whether or not
// a 6 * 6 integer matrix is symmetric
import java.util.Scanner;
class P9_2 {
public static void main(String[] args) {
int A[L1[J=new int[71[7];
System.out.println("Enter an integer
+ "6 * 6 matrix A:");
readImat(A, 6, 6);
for (int i=1; i<=6; it++)
for (int j=1; j<=6; j++)
if (ACiI[j] '=ALJI0iD) {
System.out.print("Not symmetric");
System.exit(0);
}

System.out.print("symmetric");

}
//
static void readImat(int A[I[],
int m, int n) {
Scanner read=new Scanner(System.in);

addFmats(A,B,C,m,n,k)

Matrices =—— 313

i=1,m

j=1

<

,m

CLiI[11«A[i][11+B[11C35]

L |

Fig. 9.3: Adding two matrices.

void readImat(int A[1[7],
int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i1[3];

Input/output:

Enter an integer n>1: 3«

Enter an integer 6 * 6 matrix A:
1234564

23456 7+

34567 8-

4567 89+

567 89 0+

678901+

symmetric

for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
ALi1[jl=read.nextInt();
read.close();
}
3

Input/output:

Enter an integer n>1: 3+

Enter an integer 6 * 6 matrix A:
123456+

23456 7+

34567 8+

456789+

56789 0+

678901+

symmetric

9.3. Example. Write a sub-algorithm named addFmats() to receive the two real m x n
matrices named A and B and then calculate and return the matrix sum C = A + B.
Solution. The sum C = A + B of two matrices is defined as follows.

Cij = Al] + BU)

i=1,..,m, j=1,..,n

As shown in Figure 9.3, this definition can be performed with two nested for loops
due to the existence of two variable indices. The codes of this sub-algorithm are as

follows.

314 = Two-dimensional arrays

C++ codes:

float addFmats(float A[J[5]1, float B[1[5], float C[L1[5], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
CLilCj] = ACiI03]1 + BLill31;

Java codes:

static void addFmats(float A[I[], float B[LI[], float CLI[], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
CLi1[j1 = A[i103]1 + BLill31;

The subprogram addFmat() may be written in alternative forms in various systems and versions of
compilers. In particular, in some compilers in C++, the statement return a[i][j] is written at the
end in order to return the entries of C. Additionally, in some compilers of C++, the data type void is

accepted for the subprogram.

A similar subprogram named addImats() can be written for adding the integer matri-

ces. It suffices to replace the keyword float by int.

The main units in Program P9_3 read two real 3 x 4 matrices and then calculate

and print their sum using the subprogram addFmats().

C++ codes:

// Program P9_3 to add two 3 * 4 real matrices
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [J[5], int, int);
void writeFmat(float [1[5], int, int);
float addFmats(float [1[5], float [1[5], float [1[5]1, int, int);
int main() {
float A[41[5], B[41[5]1, C[41[5];
cout<<"Enter the matrix A:"<<endl;
readFmat(A, 3, 4);
cout<<"Enter the matrix B:"<<endl;
readFmat(B, 3, 4);
addFmats(A, B, C, 3, 4);
cout<<"The matrix C = A + B is:"<<endl;
writeFmat(C, 3, 4);
return 0;

Matrices == 315

void readFmat(float A[LJ[5], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i1[j];
}
[HFXKKIKKKKKKKKKKIKKEIKK KKK K KKK
void writeFmat(float A[J[5], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(6)<<A[il[j];
cout<<endl;

}

3
//
float addFmats(float A[J[5], float B[1[5]1, float CLI[5], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
CLi1C3] = ALiI[31 + BLi1(D;

Input/output:

Enter the matrix A:

111 4+

6 66 3+

777 9+

Enter the matrix B:

4 4 41+

3336+

9997+

The matrix C = A + B is:
5 5 5 5
9 9 9 9
16 16 16 16

Java codes:

// Program P9_3 to add two 3 * 4 real matrices
import java.util.Scanner;
class P9_3 {
public static void main(String[] args) {
float ALI[] = new float[4][5];
float BLI[] = new float[4][5];
float CLI[] = new float[41[5];
System.out.println("Enter the matrix A: ");
readFmat(A, 3, 4);
System.out.println("Enter the matrix B: ");
readFmat(B, 3, 4);
addFmats(A, B, C, 3, 4);
System.out.println("The matrix C = A + B is: ");
writeFmat(C, 3, 4);
3
//
static void readFmat(float A[1[]1, int m, int n) {

316 —— Two-dimensional arrays

Scanner read = new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
A[i1[j] = read.nextFloat();
//read.close();
3
//
static void writeFmat(float A[J[], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; jt++)
System.out.format("%-7.2f", ALi1[j1);
System.out.println();
}
3
//
static void addFmats(float A[J[], float B[LJ[], float CLI[], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
C[i1[j]1 = A[i103]1 + BLil[31;

Input/output:

Enter the matrix A:

111 4+

666 3+

7779+

Enter the matrix B:

4 4 41+

3336+

9997+

The matrix C = A + B is:
5.0 5.00 5.00 5.00
9.00 9.00 9.00 9.00
16.00 16.00 16.00 16.00

9.4. Example. Write a sub-algorithm named productFmats() in order to receive the
two real m x n matrix A and n x k matrix B and then calculate and return their multi-
plication matrix C, which is a real m x k matrix.

Solution. The multiplication C = AB of the two matrices A and B is defined as follows.

n
Cij=zAilBlj' i=1,...,m,]=1,,n
=1

As shown, we are dealing with a series. On the other hand, we have two variable in-
dices. Therefore, we calculate this series and assign its result to C[i][j] inside two
nested for loops. The result of this process is displayed in Figure 9.4. This subpro-
gram is called in Programs P9_4.

Matrices = 317

productFmats(A,B,C,m,n, k)

i=1,m
{
< j=1,k >—l
return
Q sum<0Q
1=1,n
sumesum+A[iJ[1]*BL1]1[]]
CLil[jJesu

Fig. 9.4: Multiplying two matrices.

C++ codes:

// Program P9_4 to multiply the 3 * 4 real matrix A by the 4 *x 4 real matrix B
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [1[5], int, int);
void writeFmat(float [][5], int, int);
float productFmats(float A[LJ[5], float BL1[5], float CLI[5], int m, int n, int k);
int main() {

float A[41[5], B[51[5]1, C[4][5];

cout<<"Enter the matrix A:"<<endl;

readFmat(A, 3, 4);

cout<<"Enter the matrix B:"<<endl;

readFmat(B, 4, 4);

productFmats (A, B, C, 3, 4, 4);

cout<<"The matrix C = AB is:"<<endl;

writeFmat(C, 3, 4);

return 0;
3
//
void readFmat(float A[I[5]1, int m, int n) {

for (int i=1; i<=m; i++)

for (int j=1; j<=n; j++)
cin>>A[i1[j];

3

//

void writeFmat(float A[LI[5],int m,int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(6)<<A[il[jI;

318 = Two-dimensional arrays

cout<<endl;

3
}
//
float productFmats(float A[LJ[5], float BLI[5], float CLI[5]1, int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1l<=n; 1++)
sum += A[i][1] = B[11[j];
CLi1[j1=sum;
}

Input/output:

Enter the matrix A:

1111+

2222+

3330+

Enter the matrix B:

033 3+

03 3 3+

033 3+

033 3+

The matrix C = AB is:
0 12 12 12
0 24 24 24
0 27 27 27

Java codes:

// Program P9_4 to multiply the 3 * 4 real matrix A by the 4 x 4 real matrix B
import java.util.Scanner;
class P9_4 {
public static void main(String[] args) {
float ALJL] = new float[4]1[5];
float BLI[] = new float[5][5];
float CLI[] = new float[4][5];
System.out.println("Enter the matrix A: ");
readFmat(A, 3, 4);
System.out.println("Enter the matrix B: ");
readFmat(B, 4, 4);
productFmats (A, B, C, 3, 4, 4);
System.out.println("The matrix C = AB is: ");
writeFmat(C, 3, 4);
3
//
static void readFmat(float A[I[], int m, int n) {
Scanner read=new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; jt++)
ALi1[j] = read.nextFloat();

Matrices =—— 319

//read.close();
3
//
static void writeFmat(float ALI[], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
System.out.format("%-8.2f",A[i1[j1);
System.out.println();
}
3
//
static void productFmats(float A[][]1, float B[I[], float C[][],
int m, int n, int k) {

float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1<=n; 1++)
sum += A[i1[1] * B[11[j];
C[i1[j] = sum;
3

Input/output:

Enter the matrix A:

1111+

2222+

3330+

Enter the matrix B:

033 3+

033 3+

033 3+

033 3+

The matrix C = AB is:

0.00 12.00 12.00 12.00
0.00 24.00 24.00 24.00
0.00 27.00 27.00 27.00

9.5. Example. The sum of the entries on the main diagonal of a square matrix is called
the trace of the matrix. Write a program to read a 5 x 5 real matrix named T without
the need to draw any flowchart while using the previous sub-programs and then cal-
culate and print the trace of the matrix T3.

Solution. We denote the multiplication of T and T as well as T and T2 by T2 and T3,
respectively. Now, T3 is the matrix T3. Next, using a for loop, we calculate the sum
of the entries on the main diagonal of T3 which is:

5
Trace(T3) = Z T3 .
i=1

320 — Two-dimensional arrays

Programs P9_5 are the requested programs.

C++ codes:

// Program P9_5 to read the 5 * 5 matrix T
// and then compute the trace of T*3
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [J[6], int, int);
float productFmats(float [1[6], float [I[6]1, float [J[6]1, int, int, int);
int main() {

float Trace;

float TL61[6], T2[61[61, T3[61[6];

cout<<"Enter the matrix T:"<<endl;

readFmat(T, 5, 5);

productFmats(T, T, T2, 5, 5, 5);

productFmats(T, T2, T3, 5, 5, 5);

Trace = 0;

for (int i=1; i<=5; i++)

Trace += T3[i][i];

cout<<"The trace of T*3 is: "<<Trace;

return 0;
}
//
void readFmat(float A[][6], int m, int n) {

for (int i=1; i<=m; i++)

for (int j=1; j<=n; j++)
cin>>A[i1[j];

}
//
float productFmats(float A[LJ[6], float BLI[6], float CLI[6], int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1l<=n; 1++)
sum += A[i][1] = B[11[j];
CLil[3] = sum;
}

Input/output:

Enter the matrix T:
10101+
01010+
10101+

0101 0+

10101+

The trace of T#3 is: 35

Matrices = 321

Java codes:

// Program P9_5 to read the 5 * 5 matrix T
// and then compute the trace of T*3
import java.util.Scanner;
class P9_5 {
public static void main(String[] args) {
int i;
float Trace;
float TLI[] = new float[61[6];
float T2[J1[] = new float[6][61];
float T3[1[] = new float[6][61];
System.out.println("Enter the matrix T: ");
readFmat(T, 5, 5);
productFmats(T, T, T2, 5, 5, 5);
productFmats(T, T2, T3, 5, 5, 5);
Trace = 0;
for (i=1; i<=5; i++)
Trace += T3[i][i];

System.out.print("The trace of T*3 is: " + Trace);
3
//
static void readFmat(float A[I[], int m, int n) {
int i, j;

Scanner read=new Scanner(System.in);
for (i=1; i<=m; it++)
for (j=1; j<=n; j++)
A[i][j] = read.nextFloat();
//read.close();
3
//
static void productFmats(float A[J[], float B[I[], float CLIL],
int m, int n, int k) {

float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1<=n; 1++)
sum += A[i1[1] % B[11[]1;
CLilCj] = sum;
}

Input/output:

Enter the matrix T:

01+

1 0+

0 1+

1 0+

01+
race of T*3 is: 35.0

L O =) ® =

322 — Two-dimensional arrays

pel

pep*x

Fig. 9.6(a): Calculating the number x to the power of k (recalling Flowchart 6.8(a)).

In Programs P9_5, we used the technique of repetitive multiplications for calculating
the low powers of a matrix. This technique is not an efficient technique for high pow-
ers. The next sub-algorithm calculates any power of a square matrix.

9.6. Example. Write a sub-algorithm named powerFmat () to receive an n x n real ma-
trix T and a positive integer k and then calculate and return T*.
Solution. Recall the algorithm of Figure 6.8(a) for taking the number t to the positive
integer power of k, as in Figure 9.6(a).

We use the idea behind the algorithm of Figure 9.6(a). Two points should be
noted. First, the analogy to the assignment

in the matrix point of view is:

where, I is the identity matrix. This is known for us. In fact, the float version of the
sub-algorithm in Figure 9.1(b) performs this assignment.

RePX
P<R

Fig. 9.6(b): Calculating the matrix Xto the power of k.

Matrices = 323

assignFmat(A,B,m,n)

ALi1031«BLi105]

L

Fig. 9.6(c): Assigning the matrix B to the matrix A.

The second note is that we are unable to directly store the matrix product PX in P due
to the nature of the matrix multiplication defined in Example 9.4. Instead, we can
store PX in another matrix, say R, and then assign R to P. By the discussion provided
so far, we can draw Flowchart 9.6(b).

Finally, we provide Flowchart 9.6(c) to assign any m x n matrix B to the matrix A
of the same size. Now, we gather the three above flowcharts in Programs 9_6.

C++ codes:

// Program P9_6 to take a 4 * 4 matrix A to the positive integer power of 4
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [1[5], int, int);
void writeFmat(float [][5], int, int);
void powerFmat(float [J[5], int, float [I[5], int);
void productFmats(float A[J[5], float B[1[5], float C[1[5], int m, int n, int k);
void assignFmat(float [][5], float [1[5], int , int);
void idFmat(float [][5], int);
int main() {
int k;
float A[51[5], A4[51[5];
cout<<"Enter the matrix A:"<<endl;
readFmat(A, 4, 4);
powerFmat(A, 4, A4, 4);
cout<<"The matrix A4 = A*4 is:"<<endl;
writeFmat(A4, 4, 4);
return 0;
3
//
void readFmat(float A[][5], int m, int n) {
for (int i=1; i<=m; i++)

324 = Two-dimensional arrays

for (int j=1; j<=n; j++)
cin>>A[i1[j];
}

//
void writeFmat(float A[LI[5], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(6)<<A[il[j];
cout<<endl;
3
3

//******************************
void productFmats(float A[J[5], float B[1[5]1, float C[L1[5], int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum = 0;
for (int 1=1; 1<=n; 1++)
sum += A[i1[11*B[11[j1;
C[iI[31 = sum;
}
3
//
void powerFmat(float X[1[5]1, int n, float P[I[5]1, int k) {
float R[5][5];
idFmat(P,4);
for (int t=1; t<=k; t++) {
productFmats(P, X, R, n, n, n);
assignFmat(P, R, 4, 4);

3

3

[/ HF*KKIKKIKKKIKKKIKKKIKK KKK KKRK

void assignFmat(float A[J[5], float B[1[5], int m, int n) {
int i,3j;

for (i=1; i<=m; i++)
for (3=1; j<=n; j++)
A[i10j]1 = BLillj1;
3
//
void idFmat(float ULI[5], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (1 ==13)
UCi1031 = 1;
else
ULil[3] = o;
}
Input/output:

Enter the matrix A:
2020+
020 2+
2020+
0202+

Matrices == 325

The matrix A4 = A*4 is:
128 0 128 0
0 128 0 128
128 0 128 0
0 128 0 128

Java codes:

// Program P9_6 to take a 4 * 4 matrix A to the positive integer power of 4
import java.util.Scanner;
class P9_6 {
public static void main(String[] args) {
float ALJL] = new float[5]1[51];
float A4[1[] = new float[5][51;
System.out.println("Enter the matrix A: ");
readFmat(A, 4, 4);
powerFmat(A, 4, A4, 4);
System.out.println("The matrix A4 = A*4 is:");
writeFmat(A4, 4, 4);
3
//**‘k***************************
static void readFmat(float A[I[], int m, int n) {
Scanner read = new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
ALi1[j] = read.nextFloat();
read.close();
3
//
static void writeFmat(float A[LJ[], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
System.out.format("%-9.2f", ALil[j]1);
System.out.println();
}
3
//
static void productFmats(float A[1[]1, float B[I[], float C[IL],
int m, int n, int k) {

float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum = @;
for (int 1=1; 1<=n; 1++)
sum += A[iJ[11*B[11[j];
CLi1[j] = sum;
}
3
//
static void powerFmat(float X[JI[J], int n, float P[J[], int k) {
float R[LI[] = new float[5][5];
idFmat(P,4);
for (int t=1; t<=k; t++) {
productFmats(P, X, R, n, n, n);
assignFmat(P, R, 4, 4);

326 —— Two-dimensional arrays

3
}

//

static void assignFmat(float A[1[], float B[LI1[], int m, int n) {

int i, j;
for (i=1; i<=m; i++)

for (3=1; j<=n; j++)
AL[i103] = BLi1[51;

}

//

static void idFmat(float ULJI[], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (i ==13)
ULi1[31 = 1;
else
ULil[3] = o;
3
3
Input/output:

Enter the matrix A:

2020+

020 2+

2020+

020 2+

The matrix A4 = A*4 is:
128.00 0.00 128.00
0.00 128.00 0.00
128.00 0.00 128.00
0.00 128.00 0.00

0.00
128.00
0.00
128.00

9.7. Example. Write a program to read two 4 x 4 real matrices A and B. Then, calculate
and print the following matrix using the needed subprograms which were already

studied.

AB°® + BA°.

Solution. Denote the B®, AB°, A%, BA®, and AB> + BA®* by C, D, E, F, and G, respectively.
The requested calculations are performed in Programs P9_7.

C++ codes:

// Program P9_7 to read two real 4 * 4 matrices
// A and B and then compute and print A*B*5+B*A*5

#include <iostream>
#include <iomanip>
using namespace std;

void readFmat(float [][5], int, int);
void writeFmat(float [1[5]1, int, int);

Matrices =—— 327

void addFmats(float [J[5], float [1[5], float [1[5], int, int);
void productFmats(float [J[5], float [1[5], float [I[5], int, int, int);
void powerFmat(float [1[5], int, float [1[5], int);
void assignFmat(float [1[5], float [1[5], int, int);
void idFmat(float [][5], int);
int main() {

float A[51[5], B[51[5]1, C[51[51, DC51C5]1, EL51C5]1, FL51C51, GL51[5];

cout<<"Enter the matrix A:"<<endl;

readFmat(A, 4, 4);

cout<<"Enter the matrix B:"<<endl;

readFmat(B, 4, 4);

powerFmat(B, 4, C, 5);

productFmats(A, C, D, 4, 4, 4);

powerFmat(A,4,E,5);

productFmats(B, E, F, 4, 4, 4);

addFmats(D, F, G, 4, 4);

cout<<"The matrix A*B*5+B*A*5 is:"<<endl;

writeFmat(G,4,4);

return 0;
3
//
void readFmat(float A[LI[5]1, int m, int n) {

for (int i=1; i<=m; i++)

for (int j=1; j<=n; j++)
cin>>A[i1[j];

3
//
void writeFmat(float A[]J[5], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(6)<<A[iI[jI;
cout<<endl;

}

}
//
void addFmats(float A[LJ[5], float BLI[5], float CLI[5], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
CLillj]1 = ALiIC3] + BLilM3T;

}
//
void productFmats(float A[LJ[5], float BLI[5], float CLI[5], int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1<=n; 1++)
sum += A[i][1] * B[11[]];
CLil[3] = sum;
}

3
//
void powerFmat(float X[]1[5], int n, float P[J[5]1, int k) {
float R[5][5];
idFmat(P, 4);
for (int t=1; t<=k; t++) {

328 — Two-dimensional arrays

productFmats(P, X, R, n, n, n);
assignFmat(P, R, 4, 4);
}
}
//
void assignFmat(float A[J[5], float B[I[5], int m, int n) {
int i, j;
for (i=1; i<=m; i++)
for (3=1; j<=n; j++)
ALi1[j] = BLilLj1;

}

//******************************
void idFmat(float UL1[5], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (1 ==13)
ULilfjl = 1;
else
ULi1[j] = o;
}
Input/output:

Enter the matrix A:

101 0«
0101+
101 0«
0101+
Enter the matrix B:
300 0+
030 0+
003 0+
000 3+
The matrix A*BA5+B*A*5 is:
291 0 291 0
0 291 0 291
291 0 291 0
0 291 0 291

Java codes:

// Program P9_7 to read two real 4 * 4 matrices
// A and B and then compute and print Ax*B*5+B*A*5
import java.util.Scanner;
class P9_7 {
public static void main(String[] args) {
float ALIL] = new float[5]1[51];
float BLI[L] = new float[51[5];
float CLI[] = new float[5][5];
float DLI[] = new float[5]1[5];
float E[LJL] = new float[5]1[51];
float FLIL] = new float[5]1[51];
float GLI[] = new float[51[5];
System.out.println("Enter the matrix A: ");

readFmat(A, 4, 4);
System.out.println("Enter the matrix B: ");
readFmat(B, 4, 4);

powerFmat(B, 4, C, 5);

productFmats(A, C, D, 4, 4, 4);
powerFmat(A, 4, E, 5);

productFmats(B, E, F, 4, 4, 4);

addFmats(D, F, G, 4, 4);

System.out.println("The matrix A*B*5+B*A*5 is:

writeFmat(G, 4, 4);
3

//******************************

static void readFmat(float A[I[], int m, int n) {

Scanner read = new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; jt++)
A[i1[j] = read.nextFloat();
3
//

")

static void writeFmat(float ALI[], int m, int n) {

for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
System.out.format("%-9.2f", ALil[j1);
System.out.println();
3

}
//

Matrices =—— 329

static void addFmats(float A[J[], float B[I[], float C[]I[], int m, int n) {

for (int i=1; i<=m; i++)
for (int j=1; j<=n; jt++)
CLillj1 = ALilCj] + BLilLjd;
3
//

static void productFmats(float A[J[], float B[][], float C[I[],
int m, int n, int k) {

float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum=0;
for (int 1=1; 1<=n; 1++)
sum += A[iJ[1] * B[11[jT;
CLilCj] = sum;
}

3
//

static void powerFmat(float X[JI[], int n, float P[J[], int k) {

float R[I[]=new float[51[51];

idFmat(P, 4);

for (int t=1; t<=k; t++) {
productFmats(P, X, R, n, n, n);
assignFmat(P, R, 4, 4);

}

}
//

static void assignFmat(float A[1[], float B[I1[], int m, int n) {

int i,j;

330 — Two-dimensional arrays

for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
A[i10j] = BLi1LjI;
3
//
static void idFmat(float ULJI[], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (1 ==13
ULil0j1 = 1;
else
ULiI03] = e;
3
3
Input/output:

Enter the matrix A:

101 0

0101+

101 0«

0101+

Enter the matrix B:

300 0+

030 0+

00 3 0+

000 3+

The matrix A*B*5+B*A*5 is:

291.00 0.00 291.00 0.00
0.00 291.00 0.00 291.00
291.00 0.00 291.00 0.00
0.00 291.00 0.00 291.00

There are three elementary row operations on an m x n matrix as follows.

1. Multiplying one row of A by a nonzero number z;

2. Replacing the r-th row of A by row r plus z times row s where z is any number and
r#s;

3. Interchanging the two rows of A.

In the following two challenging Examples 9.8 and 9.9, we use the elementary row
operations to calculate the determinant and the inverse of a square matrix, respec-
tively. There may exist simpler manners to solve these examples. However, exhibited
manners aim to examine and apply several previously taught techniques.

9.8. Example. Write a function named det () to receive an n x n real matrix A and then
calculate and return its determinant.

Matrices == 331

Case 1

ACk]Ck]=0

Alillk1#0
ACkI[j1e»A[11[3]
L |
de -d
Case 2

ded*ALk1lk] |

| L1103 1«AL1 103 1-Z%ATK 1[5]

L

Fig. 9.8: Calculating the determinant of an n x n matrix using the elementary row operations.

Solution. This is a challenging example. Represent the carrier of the function as d
with the initial value of 1. The strategies for calculating the determinant is to trans-
form the given matrix to an upper triangular matrix using the elementary row opera-
tions and then exhibit the multiplication of the (main) diagonal entries as the deter-
minant. To do this, we take the diagonal entry A, in each repetition, using a leader

332 — Two-dimensional arrays

for loop with the specification k=1, n and then check whether or not 4y, is zero with
an if template. We continue the algorithm in two cases depending on this condition.

Case 1. 4;; = 0. In this case, we look for a nonzero entry below A4, in the same col-
umn using a for loop with the specification i=k+1,n. All the corresponding entries of
rows i and k are swapped by a for loop if there is such a nonzero entry in some repe-
tition of the recent loop. Then, the sign of d is changed by the preliminary properties
of determinant and finally, goes to Case 2. However, the non-existence of such a non-
zero entry in any repetition implies that the entry in this position of the upper trian-
gular matrix is zero. Therefore, the sub-algorithm is terminated returning the zero
value for the determinant.

Case 2. A, # 0. In this case, which starts with the label b, we turn all the entries
below A4, in the same column, to zeroes. To do this, it suffices to perform the follow-
ing substitution inside a for loop with the specification i=k+1,n.

IOW i €< 1oWi—z xrowk,

where z = A; /Ay As seen, the row is fixed while only the columns vary. Therefore,
a for loop with the specification j=k, n is used to perform this substitution since the
entries A;; to A;,_,have already become zero.

Finally, we should multiply the value of the current diagonal entry to the previ-
ous repetitive multiplication of d before ending the current repetition of the leader
loop. The above discussions are summarized in Flowchart 9.8.

Each of Programs P9_8 reads the size of the matrix A as n which is at most 10.
Then, reads an n x n matrix. Eventually, calculates and prints the determinant of A
calling the function det ().

C++ codes:

// Program P9_8 to compute the determinant of a 4 * 4 matrix using elementary
// row operations. To use for another size n, change the length 5 to n+1
#include <iostream>
using namespace std;
void readFmat(float [J[11], int, int);
float det(float [1[11], int);
float A[111[111];
int main() {
int n;
cout<<"Enter the size of the matrix A: ";
cin>>n;
cout<<"Now enter the matrix A: \n";
readFmat(A, n, n);
cout<<"The determinant of A is: "<<det(A, n);
return 0;

Matrices = 333

//
void readFmat(float ALI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i1[j];
3
//
float det(float A[]J[11], int n) {
float d, t, z;
int i, j, k;
d=1;
for (k=1; k<=n; k++) {
if (ACkICk] == 0) {
for (i=k+1; i<=n; i++)
if (ALil[k] !'=0) {
for (j=1; j<=n; j++) {
t = ALKICj1; ACKIC3T = ACi1031; ACilC3] = t;
}
d = -d;
goto b;
3
return 0;
}
b: for (i=k+1; i<=n; i++) {
z = (float)(A[i1[k] / ALKICKkI);
for (3=k; j<=n; j++)
A[i1[3] = A[L103] - z = ACKI[3T;

}

d = d * A[kI[k];
3
return d;

}
Input/output:

Enter the dimension of the matrix A: 4«
Now enter the matrix A:

302-1+

120 -2+

406 -3+

5020+

The determinant of A is: 20

Java codes:

// Program P9_8 to compute the determinant of a 4 * 4 matrix using elementary
// row operations. To use for another size n, change the length 5 to n+1
import java.util.Scanner;
class P9_8 {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
double ALIL] = new double[11][111];
System.out.print("Enter the size of matrix A: ");
int n = read.nextInt();

334 = Two-dimensional arrays

System.out.println("Enter the matrix A: ");

readFmat(A, n, n);

System.out.println("The determinant of A is: " + det(A, n));
read.close();

b

o

static void readFmat(double ALI[], int m, int n) {
int i, j;

Scanner read = new Scanner(System.in);
for (i=1; i<=m; i++)
for (3=1; j<=n; j++)
A[i1[j] = read.nextDouble();
read.close();
b
//
static double det(double A[LI[], int n) {
double d, t, z;
int ¢, h, i, j, k;
d=1;
for (k=1; k<=n; kt++) {
b: {

if (ACkI[k] == 0) {
for (h=k+1; h<=n; h++)
if (AChICk] !'=0) {
for (c=1; c<=n; c++) {
t = A[kI[cl; ALkI[c] = ALhILcl; ALhI[c] = t;
3
d=-d;
break b;
3
return 0;
3
}
for (i=k+1; i<=n; i++) {
z = (double)(ALil[k] /7 ALkICkD);
for (j=k; j<=n; j++)
A[i10j] = ALiI03] - z = ALKILGD;

}
d =d * ALkICk];
}

return d;
3
}

Input/output:

Enter the dimension of the matrix A: 4«
Now enter the matrix A:

302 -1+

120 -2+

406 -3+

5020+

The determinant of A is: 20.0

Matrices == 335

9.9. Example. Write a subprogram named invFmat() to receive the n x n real matrix A
and then calculate and return its inverse if it is invertible; otherwise, prints a message.
Solution. One of the techniques of finding the inverse of the invertible matrix A is to
transform A to the identity matrix, using the elementary row operations. Then, apply
exactly the same elementary row operations to the identity matrix I in the same order.
The final matrix I is the inverse of A.

Further, the same strategies as in Example 9.8 with a little differences is simulta-
neously applied for A and I. Then, the real identity matrix is generated using the sub-
algorithm idFmat() and is assigned to I. Next, as in Example 9.8, we take the diago-
nal entry Ay, in each repetition using a leader for loop with the specification k=1,n
and check whether or not A, is zero. Finally, we continue the algorithm in two cases
depending on this condition.

Case 1. 4;;, = 0. This case goes the same line as Case 1 in Example 9.8 and the ele-
mentary row operations are simultaneously applied for A and I.

Case 2. Ay, # 0. This case, which starts with the label b, is divided into two parts. In
Part 1, we divide rows k of both A and I by the diagonal entry 4,,. Since this entry may
vary, we store it in a variable, say p, and divide the mentioned rows by p. In Part 2,
we change all the entries below and above 4,,, in the same column, to zeroes. In other
words, we annihilate all the entries A;; with i # j. To do this, we jump over row k using
an if template and apply the following substitution for both A and I.

TOW i €< rowi—z x rowk,

where, this time z = A;;, since the division by A, has already been conducted. As
before, this substitution is performed using a for loop with the specification j=k,n,
since the entries A;; to A;,_,have already reached zero.

Concentrating on the sub-algorithm det () in Example 9.8, exactly in the position
where the determinant was announced as zero by the instruction return 0, we termi-
nate our sub-algorithm and return to the caller unit by printing a message mentioning
that the matrix is not invertible. The above discussions are summarized in Flowchart
9.9.

Each of Programs P9_9 reads the size of the matrix A as n which is at most 10.
Then, it reads the n x n matrix A and, calling the subprogram invFmat(), it calculates
and prints the inverse of A if A is invertible; otherwise, it prints a message.

To check the correctness of the inverse matrix I in Programs P9_9, we multiplied
it by the matrix A which was assigned in the matrix AO using the assignFmat subpro-
gram in Example 9.6. The inverse matrix is correct if the result of the multiplication is
the identity matrix. It is worth mentioning that, we may encounter with the approxi-
mated results for the 0- and 1-entries of the identity matrix due to the approximated
computations for the real numbers in the system of the computers.

336 —— Two-dimensional arrays

invMat(A,B,n)

| | idFmat(I,n) | |

k=1,n Case 1

AlkI[k]1=0

i=k+1,n

ALil[k]#0
return

j=1,n

"Not invertible"

O BLkI[31-BLi1j]
b
|

ALKI[jJ«>AL[1][5]

Case 2,

Part 1

ACKI[jI«A[KI[j1/p
BLkI[j1«BLkI[j1/p

z<A[1][k]

Case 2,

Part 2

A[11031«AL1103]-2*ATK]IL5]
BLi1[j1«BLi1051-z*BLk1L5]

I

Fig. 9.9: Calculating the inverse of a matrix using the elementary row operations.

Matrices =—— 337

C++ codes:

// Program P9_9 to compute the inverse of an n * n matrix A,
// using the elementary row operations
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [J[11], int, int);
void writeFmat(float [1[11], int, int);
void productFmats(float [1[11], float [1[11], float [I[11], int , int , int);
void invMat(float [1[11]1, float [J[11], int);
void idFmat(float [J[11], int);
void assignFmat(float [J[11], float [J[11], int , int);
int main() {
float A[111[11]1, I[111011], IdC111011], AQC111[111];
int n;
cout<<"Enter the size of the matrix A: ";
cin>>n;
cout<<"Now enter the matrix A: \n";
readFmat(A, n, n);
cout<<"\nThe matrix A: \n\n";
writeFmat(A, n, n);
assignFmat(AQ, A, 4, 4);
invMat(A, I, n);
cout<<"\nThe inverse of A: \n\n";
writeFmat(I, n, n);
cout<<"\nThe multiplication A by its inverse:\n\n";
productFmats(A@, I, Id, n, n, n);
writeFmat(Id, n, n);
3
//
void readFmat(float ALI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i1[j];

3
//
void writeFmat(float A[J[11], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(14)<<A[i][j1;
cout<<endl;

}

3
//
void productFmats(float A[LJ[11], float B[1[11], float CLI1[11], int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum = 0;
for (int 1=1; 1l<=n; 1++)
sum += A[iJ[1] = B[11[j];
CLiI[31 = sum;
}

338 = Two-dimensional arrays

void idFmat(float ULI[11], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; jt++)

if (1 ==j)
ULi10j]1 = 1,
else
ULillj] = o;
}
//

void assignFmat(float A[JI[11], float BLI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
A[i103] = BLil[j];
3
//
void invMat(float A[LI[11], float I[1[11], int n) {
float t, p, z;
int i, j, k;
idFmat(I, 5);
for (k=1; k<=n; k++) {
if (ALCkICk] == 0) {
for (i=k+1; i<=n; i++)
if (ALi1Lk] !'=0) {
for (j=1; j<=n; j++) {

t = A[kI[j]; ALKIC3] = ALi1031; ALLI[3] = t;
t = I[kI[31; ICKIC3] = I0i1033; ICiI03] = ¢
}
goto b;
3
cout<<"The matrix A is not invertible!";exit(0);

}
b: p = A[kI[kI;
for (int j=1; j<=n; j++) {
ALkIC3] = ALKICG] 7 p;
I[k1C3] = ICkIC3] /7 p;
}
for (i=1; i<=n; i++)
if (1 !=k){
z = A[i][k];
for (3=1; j<=n; j++) {
ACiI[3] = ALL103] - z = ALKIL]D;
I[i103] = I0iI03] - z » ILKIG3S;

}
}
}
}

Input/output:

Enter the size of the matrix A: 3¢
Now enter the matrix A:

11 3+

2 4 9+

130+

The

-0.

The

inverse of A:

2.25 -0.75 0.25
-0.75 0.25 0.25
166667 0.166667 -0.166667

matrix A:
1 1 3
2 4 9
1 3 0

1 0 0
0 1 0
0 0 1

Java codes:

// Program P9_9 to compute the inverse of an n * n matrix A,
// using the elementary row operations
import java.util.Scanner;
class P9_9 {
public static void main(String[] args) {

}

//

Scanner read = new Scanner(System.in);

float ALJL] = new float[11][111];

float I[JL] = new float[11]1[111];

float Id[I[] = new float[111[11];

float AOLI[] = new float[11]1[111];

int n;

System.out.print("Enter the size of matrix A: ");
n = read.nextInt();

System.out.println("Now enter the matrix A: ");
readFmat(A, n, n);

System.out.println("\nThe matrix A: \n");
writeFmat(A, n, n);

assignFmat(A@, A, n, n);

invMat(A, I, n);

System.out.println("\nThe inverse of A is: \n");
writeFmat(I, n, n);

System.out.println("\nThe multiplication A by its inverse: \n");
productFmats(A@, I, Id, n, n, n);

writeFmat(Id, n, n);

read.close();

static void readFmat(float A[LI[], int m, int n) {

}

int i, j;
Scanner read = new Scanner(System.in);
for (i=1; i<=m; i++)
for (3=1; j<=n; j++)
A[i1[j] = read.nextFloat();
read.close();

Matrices == 339

340 — Two-dimensional arrays

//

static void writeFmat(float A[LJ[], int m, int n) {

for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
System.out.format("%-12f", A[i1[j1);
System.out.println();

3
}
//

static void productFmats(float A[L1[]1, float B[I[], float C[IL],

float sum;

for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {

sum = 0@;

for (int 1=1; 1l<=n; 1++)
sum += A[i][1] = BL11[j];
CLilCj] = sum;

}
}

//

static void idFmat(float ULJI[], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (1 ==3)
ULi1[31 = 1;
else
ULil[j] = o;
3
//

int m, int n, int k) {

static void assignFmat(float A[I[], float B[I[], int m, int n) {

for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
A[i103] = BLil[jD;

}

//

static void invMat(float A[]J[], float I[1[], int n) {

float t, z, p;

int i, j, k;
idFmat(I, 4);

for (k=1; k<=n; k++) {

b: {

if (ACkICk] == 0) {
for (i=k+1; i<=n; i++)
if (A[i1[k] !'= @) {
for (j=1; j<=n; j++) {

}

}
p =

t = A[kI[j1; ACKIC3] = ACi1031; ACiI05] = t;
t = I[kI[3]; ICkIC3T = I0i1031; ICi105] = ¢t;

}

break b;

3

System.out.println("The matrix A is not invertible!");

System.exit(0);

ALk1Ck1;

Solving linear equations system = 341

for (3=1; j<=n; j++) {
ALKIC3] = ALKIL3T / p;
I[k1[3] = ICKIC3] / p;
}
for (i=1; i<=n;
if (i !1=k) {
z = A[i][k];
for (3=1; j<=n; j++) {
ACiI031 = ALi103] - z * ALKILGD;
I[i103] = I[i103] - z * ILKILGT;

i++)

Input/output:

Enter the size of the matrix A: 3¢
Now enter the matrix A:

11 3+

2 4 9+

13 0+

The matrix A:

1.000000 1.000000 3.000000
2.000000 4.000000 9.000000
1.000000 3.000000 0.000000
The inverse of A is:

2.250000 -0.750000 ©.250000
-0.750000 ©.250000 0.250000
-0.166667 0.166667 -0.166667
The multiplication A by its inverse:
1.000000 0.000000 0.000000

0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

9.2 Solving linear equations system

Consider the following system of linear equations including n equations in n un-
knowns.

Ay + Appxy + o+ Ay = 34

Agixy + Agoxy + o+ AppXy =

342 — Two-dimensional arrays

Anlxl + An2x2 + et Annxn =Yn
This system can be expressed as the following matrix multiplication.
Ax = y.

where A = (4;;)nxn is supposed the coefficients matrix and

X1 V1
_1*2 N B4
X = H) y - .

le yn

It is noteworthy that every column matrix can be regarded as a row matrix and vice
versa. Moreover, a row or column matrix can be considered a vector.

The condition for the existence of a solution to this system is that A must be in-
vertible. In other words, its determinant should be nonzero. We study the solution of
the system Ax = y in two parts.

9.2.1 Direct ways

9.10. Example (Matrix method). If we multiply both sides of the relation Ax = y from
left to the inverse of A, we obtain the unknown matrix x = A~!y including the solu-
tions. Using the previously mentioned subprograms, write programs in both C++ and
Java codes in order to read the of the n x n coefficients matrix A, as well as the n x 1
matrix y, and then calculate the solutions, if any; otherwise, print a message.

Solution. We have a simple matrix multiplication. Programs P9_10 are the requested
programs. In each program, the size of the system Ax =y, which is at most 10, is first
read. Then, after reading the coefficients matrix A and column vector y, the solutions
are calculated.

C++ codes:

// Program P9_10 to compute the solutions of a system of

// four equations in four unknowns by direct way

#include <iostream>

#include <iomanip>

using namespace std;

void readFmat(float [J[11], int, int);

void productFmats(float [1[11], float []J[11], float [J[11], int, int, int k);
void det(float [1[111], int);

void invMat(float [J[11]1, float [I[11], int);

Solving linear equations system =—— 343

void idFmat(float [1[11], int);
int main() {
int n;
float ALT11[111, Ainv[111[11]1, x[11]1011], y[111011];
cout<<"Enter the size of the system Ax=y: ";
cin>>n;
cout<<"Enter the coefficients matrix A:"<<endl;
readFmat(A, n, n);
cout<<"Enter the column matrix y: "<<endl;
readFmat(y, n, 1);
invMat(A, Ainv, n);
productFmats(Ainv, y, x, n, n, 1);
cout<<"\nThe solutions are: \n";
for (int i=1; i<=n; i++)
cout<<"x("<<i<<")="<<x[i][1]<<endl;
return 0;
3
//
void readFmat(float ALI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i][j1;

}
//
void productFmats(float A[LJ[11], float B[1[11]1, float CLI1[11], int m, int n, int k) {
float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum = 0;
for (int 1=1; 1l<=n; 1++)
sum += A[i][1] * BL11[j];
CLillj] = sum;
}

3
//
void invMat(float A[LI[11], float I[1[11], int n) {
float t, p, z;
int i, j, k;
idFmat(I, 5);
for (k=1; k<=n; k++) {
if (ALkI[k] == 0) {
for (i=k+1; i<=n; i++)
if (ALLI0k] !'=0) {
for (3=1; j<=n; j++) {
t = ALkI[31; ALKI[31 = ALi1031; ALi1C3] = t;

t = I[kICj1; ICKIC31 = ICi1031; ICAi103] = t;
}
goto b;
3
cout<<"The matrix A is not invertible!";exit(0);

}
b: p = A[kI[kI;
for (3=1; j<=n; j++) {
ALKICG] = ALKIC3] / p;
ICkIC3] = ICkICGD 7 p;
3

344 = Two-dimensional arrays

for (i=1; i<=n; i++)
if (i !'=k) {
z = ALi][k];
for (3=1; j<=n; j++) {
ACiI[3] = ALL103] - z = ALKI[]T;
I[i103] = I0i103] - z = ICkIC3D;
3

}
3
3
//
void idFmat(float U[LI[11], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (i ==13)
ULilfjl = 1;
else
ULi103] = o;
3
Input/output:

Enter the size of the system Ax=y: 3+
Enter the coefficients matrix A:
1114

43 -1

35 3+

Enter the column matrix y:

16 4+

The solutions are:
x(1)=1
x(2)=0.5

x(3)=-0.5

lava codes:

// Program P9_10 to compute the solutions of a system of
// four equations in four unknowns by direct way
import java.util.Scanner;
class P9_10 {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
float ALIL] = new float[111[11];
float Ainv[1[] = new float[11]1[1117;
float x[J1[] = new float[11][11];
float y[1[] = new float[11]1[111];
int i, n;
System.out.print("Enter the size of the system Ax=y: ");
n = read.nextInt();
System.out.println("Enter the coefficients matrix A:");
readFmat(A, n, n);
System.out.println("Enter the column matrix y: ");
readFmat(y, n, 1);

Solving linear equations system =—— 345

invMat(A, Ainv, n);
productFmats(Ainv, y, x, n, n, 1);
System.out.println("\nThe solutions are: \n");
for (i=1; i<=n; it++)

System.out.println("x(" + i + ")=" + x[i1[1]1);
read.close();

3

//

static void readFmat(float A[1[]1, int m, int n) {
int i, j;

Scanner read = new Scanner(System.in);
for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
A[i1[j] = read.nextFloat();
//read.close();
3
[[FXKFIKKIKKKIKKKKKKHKRK
static void productFmats(float A[1[]1, float B[I[], float C[I[],
int m, int n, int k) {

float sum;
for (int i=1; i<=m; i++)
for (int j=1; j<=k; j++) {
sum = 0;
for (int 1=1; 1<=n; 1++)
sum += A[i1[1] = B[11[j1;
CLilCj] = sum;
}
3
//
static void idFmat(float ULI[], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)

if (1==j)
ULil0j1 = 1;
else
ULi1[3]1 = o;
3
//

static void invMat(float A[I[], float I[1[]1, int n) {
float t, z, p;
int i, j, k;
idFmat(I, 4);
for (k=1; k<=n; k++) {
{
if (ALkICk] == 0) {
for (i=k+1; i<=n; i++)
if (ACil[k] !'= @) {
for (3=1; j<=n; j++) {
t = ALkICj1; ACkICj] = ACilCj1; ACilICj] = t;
t = I[kICj1; ICKIC3] = ICil1031; ICi103] = t;
3
break b;
}
System.out.println("The matrix A is not invertible!");
System.exit(0);
3

346 —— Two-dimensional arrays

3
p = ALkICKkI;
for (j=1; j<=n; j++) {
ALkI[3] = ALKI[3] / p;
I[kIC3] = ICkICG] 7 p;
}
for (i=1; i<=n; i++)
if (1 !'=k) {
z = A[i1[k];
for (3=1; j<=n; j++) {
ALLI03] = ALLI03] - z » ALKILD;
I[i1031 = I0i103] - z = I[KICGD;

Input/output:

Enter the size of the system Ax=y: 3+
Enter the coefficients matrix A:
111+

43 -1+

35 3+

Enter the column matrix y:

16 4+

The solutions are:
x(1)=0.9999999
x(2)=0.5
x(3)=-0.5

9.11. Example (Cramer method). In this method, the solutions are calculated as fol-
lows.

_ det(4))
Y= Get(a)

where the matrix 4; is obtained by replacing the i-th column of A by y.

Solution. This method is rarely used due to the more determinant calculations. How-
ever, we leave the reader to use the necessary subprograms and write a program in
order to read the n x n coefficients matrix A as well as the n x 1 matrix y and then
calculate the solutions, if any; otherwise, print a message.

9.2.2 Iterative methods

First, two special cases of the system related to linear equations are studied, which
are used in the sequel general methods. In this subsection, we deal with x and y as

Solving linear equations system = 347

backw(A,y,x,n)

x[nJey[n1/Aln]1ln]

sum<@

k=i+1,n

sumesum+A[iJ[kI*x[k]

L |

x[11€1/ALiI0i]*(y[i]-sum)

Fig. 9.12: Solving an upper triangular system of equations by the backward method.

vectors (one-dimensional arrays), write the coefficients matrix in the uppercase or
lowercase forms and then represent the system of linear equations in the form Ax =y.

9.12) Backward displacement method. Consider the following upper triangular sys-
tem of linear equations of n equations in n unknowns.

Apxg + Appxy + -+ Ay = 34

Agoxy + -+ AppXy = ¥,

ApnXn = Yn

This system can be easily solved. We get x,, from the n-th equation, obtain x,,_; plac-
ing x,, in the (n — 1)-th equation, and then continue this process backward. Finally,
we arrive at x,. The answers are as follows.

n
1
xn=y—n, xi=—\yi — Z Apxi | i=n-—1,..,2,1
Ann Aii Pt

Flowchart 9.12 displays a sub-algorithm which receives the coefficients matrix A and
the vector y and then calculates and returns the solutions vector x.

348 = Two-dimensional arrays

This flowchart is written in C++ and Java codes as follows.

C++ codes: Java codes:
void backw(float A[]1[4], float x[1], static void backw(float A[J[], float x[1,
float y[1, int n) { float y[1, int n)
float sum; {
x[nJ=y[n1/An1lnT; float sum;
for (int i=n-1; i>=1; i--) { x[nl=y[n1/A[n1[n];
sum=0; for (int i=n-1; i>=1; i--) {
for (int k=i+1; k<=n; k++) sum=0;
sum = sum+A[i][kJI*x[k]; for (int k=i+1; k<=n; k++)
x[i1=(y[iJ-sum)/AL[i][i]; sum=sum+A[i][kJ*x[k];
3 x[i]=Cy[i]-sum)/ALi]1[i];
} }
}

9.13. Forward displacement method. This time, we consider the lower triangular sys-
tem of linear equations of n equations in n unknowns..

A112q =N

Azrxy + Agox, =2

Ap1 Xy + Apaxy + o0+ AppXy = Yy

This system can be solved in a similar way as the backward system with the following
solutions.

i-1
1
x1=£, xi=—\y;, — Apxi | i=273,..,n
An a\" 4

We only write the subprogram with a slight changes in the flowchart and subprogram
of the backward method.

C++ codes: Java codes:
void forw(float A[1[4], float x[], static void forw(float A[I[]1, float x[1,
float y[1, int n) { float y[1, int n) {
float sum; float sum;
x[11=y[11/A[MI T, x[(11=y[11/A[TI0 T,
for (int i=2; i<=n; i++) { for (int i=2; i<=n; i++) {
sum=0; sum=0;
for (int k=1; k<=i-1; k++) for (int k=1; k<=i-1; k++)

sum=sum+A[i]J[kJ*x[k]; sum=sum+A[i][k JI*x[k];

Solving linear equations system =—— 349

x[il=(y[il-sum)/A[i1[i]; x[il=(y[il-sum)/A[i][i];
} 3
3 3

Now, we study the system of linear equations Ax = y in a general case in two methods
as follows.

9.14. Example (The Gauss elimination method). In this method, the system of linear

equations Ax = y is turned to an upper triangular system as in the backward displace-

ment method and then the solutions are calculated using the backward displacement
method. Write a sub-algorithm named Gauss () in order to receive the coefficients ma-
trix A and the vector y. Then, calculate and return the solutions vector x using the

Gauss elimination method.

Solution. We discuss the solution in four steps:

Form the augmented matrix with the same name A. This matrix is obtained by the
matrix A followed by the (column) vector y. This is easily implemented by a for loop.
1. Turnthe augmented matrix A to a matrix in which the square part corresponding

to the coefficients matrix is the upper triangular using the elementary row oper-
ations. This may be performed exactly in a similar manner as in the function
det() in Example 9.8 with only two slight differences. The process related to the
carrier d is removed. Additionally, the initial values related to the column from n
to n + 1 are changed.

2. Atthis point, we have the upper triangular system Ax = y where A is now an upper
triangular matrix and the new vector y is the deformation of the original one.
However, the current deformed matrix A includes both the mentioned upper tri-
angular matrix and thus, the new vector y and we should separate the vector y
from it. To this end, the substitution processes are performed opposite to those
in the first step.

3. The solutions are calculated and returned calling the subprogram backw().

Flowchart 9.14 includes all the above steps which clearly described. Programs P9_14
translate this flowchart into C++ and Java codes. Each program reads first the size of
the system which is supposed at most 10. Then, it reads the coefficients matrix A and
the column vector y and determine the solutions.

Each of the Programs P9_14 reads the size n of the system, whoch is at most 10,
coefficients matrix A, and the vector y. Then, calculates and prints the solution of the
linear system Ax = y using the Gauss method.

350 = Two-dimensional arrays

ALil[n+1]ey[i]

AlkI[k]1=0

O,

| ALKIL31e>ALi 1051 |
| I

< i=k+1,n

z<A[11[k1/ACkICKk] |

j=k,n+1

| ATiT031€ATi 103 1-2#ATK 105]

I

y[j1€A[illn+1]

| | backw(A,y,x,n) | |

Fig. 9.14: Solving a system of linear equations by the Gauss elimination method.

Solving linear equations system =—— 351

C++ codes:

// Program P9_14 to solve the system of linear equations of
// n equations in n un-knowns by the Gauss elimination method
#include <iostream>
#include <iomanip>
using namespace std;
void readFmat(float [J[11], int, int);
void Gauss(float [1[11]1, float []1, float [1, int);
void backw(float [1[11], float []1, float [1, int);
int main() {
float AL111[11]1, x[11]1, y[11];
int i, n;
cout<<"Enter the size of the system of the system Ax=y: ";
cin>>n;
cout<<"Enter the coefficients matrix A:"<<endl;
readFmat(A, n, n);
cout<<"Enter the column matrix y: "<<endl;
for (i=1; i<=n; i++)
cin>>y[il;
Gauss(A, y, x, n);
cout<<"The solutions are: "<<endl;
for (i=1; i<=n; i++)
cout<<"x("<<i<<")="<<x[i]<<endl;
return 0;

}

[/ HFXKKIKKFKKKIKKKIKKEIKK KKK K KKK
void readFmat(float ALI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>A[i1[j];

}

//******************************
void Gauss(float A[J[11], float y[], float x[], int n) {
float t, z;
int i, j, k;
for (i=1; i<=n; i++)
A[il[n+1] = y[ild;
for (k=1; k<=n; k++) {
if (ALkICk] == 0) {
for (i=k+1; i<=n; i++)
if (ALil[k] !'=0) {
for (j=1; j<=n+1; j++) {
t = ALKICj1; ALKIC3] = ACil(31; ACLil[3] = t;
}
goto b;
3
3
b: for (i=k+1; i<=n; i++) {
z = A[i][k] / ALKICkI;
for (j=k; j<=n+1; j++)
A[i10j] = ALLI03] - z = ALKIL3D;
3
b
for (i=1; i<=n; i++)
y[il = A[i1[n+1];

352 = Two-dimensional arrays

backw(A, y, x, n);
3
//
void backw(float A[J[11], float y[], float x[], int n) {
float sum;
x[n] = y[nl / Aln]ln];
for (int i=n-1; i>=1; i--) {
sum = 0;
for (int k=i+1; k<=n; k++)
sum = sum + A[il[k] * x[kJ;
x[i] =1 / ALiI[i] * (y[i] - sum);
3
3

Input/output:

Enter the size of the system of the system Ax=y: 3¢
Enter the coefficients matrix A:
111+

43 -1+
35 3¢+
Enter the column matrix y:
16 4+

The solutions are:
x(1)=1

x(2)=0.5
x(3)=-0.5

Java codes:

// Program P9_14 to solve the system of linear equations of
// n equations in n un-knowns by the Gauss elimination method
import java.util.Scanner;
class P9_14 {
public static void main(String[] args) {

Scanner read = new Scanner(System.in);

float ALI[] = new float[111[11];

float x[] = new float[11];

float y[] = new float[11];

int i, n;

System.out.print("Enter the size of the system Ax=y: ");

n = read.nextInt();

System.out.println("Enter the coefficients matrix A:");

readFmat(A, n, n);

System.out.println("Enter the column matrix y: ");

for (i=1; i<=n; i++)

y[i] = read.nextFloat();

Gauss(A, x, y, n);

System.out.println("\nThe solutions are: ");

for (i=1; i<=n; i++)

System.out.println("x(" + i + ")=" + x[i]);
read.close();

Solving linear equations system =—— 353

3
//
static void readFmat(float A[I[], int m, int n) {
Scanner read = new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
A[i1[j] = read.nextFloat();
//read.close();
3
//
static void Gauss(float A[I[], float x[], float y[], int n) {
float t, z;
int i, j, k;
for (i=1; i<=n; it++)
A[illn+1] = y[il;
for (k=1; k<=n; k++) {

b: {
if (ALkI[k] == 0) {
for (i=k+1; i<=n; i++)
if (ALil[k] !'=0) {
for (3=1; j<=nt+1; j++) {
t = ALKIL[j1; ACkICj] = ACiICj1; ALiI[j] = t;
3
break b;
3
3
}

for (i=k+1; i<=n; i++) {
z = A[i]1[k] / ACkICkI;
for (j=k; j<=n+1; j++)
ACi103] = ALLI05] - z x ALKILGT;
}
}
for (i=1; i<=n; i++)
y[il = A[i1[n+11;
backw(A, x, y, n);
3
//
static void backw(float A[LI[]1, float x[], float y[]1, int n) {
float sum;
x[n] = y[n] / Alnlln];
for (int i=n-1; i>=1; i--) {
sum = 0;
for (int k=i+1; k<=n; k++)
sum = sum + A[i][k] * x[kI;
x[il =1 / ALiI[i] * (y[i] - sum);
}
3
}

Input/output:

Enter the size of the system of the system Ax=y: 3+«
Enter the coefficients matrix A:

111+
43 -1+

354 = Two-dimensional arrays

3 5 3¢+
Enter the column matrix y:

16 4+

The solutions are:
x(1)=1

x(2)=0.5
x(3)=-0.5

9.15. Example (The triangular decomposition method). In this method, the coeffi-
cients matrix A is decomposed, in some ways which are latter explained, into two
upper triangular matrix U and lower triangular matrix L, that is, A = LU. Now, the
system Ax =y turns to LUx = y. Then, we get Lz = y putting Ux = z. As shown, we are
involved with the two systems of linear equations as follows.

Lz =y, Ux = z.

where L and U are regarded as lower and upper triangular matrices, respectively.
Therefore, having the vector y, we first solve the system Lz = y to achieve the required
solutions using the forward displacement method and then get the solutions vector z
of this system. Next, we solve the system Ux = z and obtain the required solution vec-
tor x using the backward displacement method.

Now, we explain the Doolittle manner of decomposition of the matrix A into two
upper and lower triangular matrices U and L, respectively. In addition, there are two
other decomposition manners, the Choleski manner and the Crout manner. We cite
[??] for more details about these manners. We omit the details of decomposition in the
following Doolittle manner.

Consider the matrices L and U as follows.

1 0 o0 0 [Ull U, U Um]

[L21 1 0 0] 0 Uzz U23 UZn
L= lL31 Lyp; 1 0} , U= | 0 0 Uss Usn
Lnl Ln2 Ln3 -1 I- 0 0 0 U.,mJ

It is proved that, for i = 1, ..., n, the i-th row of U is:
-1
U = Ay _ZLij Ujk , k=1i,..,n,
j=1

and the i-th column of L is:

i-1
1

1
Lki—U_ Aki_ Lk] Ujl.) k=l+1,,n
ii

j=

Solving linear equations system =—— 355

LUdecomp(A,L,U,n)

ULil[j1<0

Part 1

LLi10j3«

LLi10j]1<0

| sumesumtL[1 103 <UL 10K

| UL1 10k €A1 T0kT-sum |

Part 2

j=1,i-1

| sumesum+L[kIL1%UL310i] |

L

LLk][iJe(ALkILiJ-sum)/ULi][i]

Fig. 9.15: Solving a system of linear equations by the triangle decomposition method.

356 —— Two-dimensional arrays

Write a sub-algorithm named LUdecomp() to receive an n x n matrix A and then calcu-

late and return L and U based on the above relations. Next, write a main program to

read the coefficients matrix A of the system Ax = y as well as the vector y. Then, receive

the solutions vector z of the system Lz = y calling the sub-algorithm forw(). Finally,

receive the solutions vector x of the system Ux = z calling the sub-algorithm backw()

and print the entries of x as the required solutions.

Solutions. We write the sub-algorithm LUdecomp() in two parts as follows.

1. Produce the 0- and 1-entries of both matrices L and U (Part 1 in Fig. 9.15);

2. Generate the i-th row of U as well as the i-th column of L fori =1, ...,n (Part 2 in
Fig. 9.15).

The main unit in Programs P9_15,

1. reads the size n of the system Ax =y, the n x n coefficients matrix A of the system,
and the vector y, respectively;

2. calls the sub-algorithm LUdecomp() for A and receives the matrices L and U;

3. calls the sub-algorithm forw() for L and y and receives the solutions vector z of
the system Lz = y;

4. calls the sub-algorithm backw() for U and z and receives the solutions vector x of
the system Ux = z

5. prints the entries of x as the required solutions.

In each of the Programs P9_15, after reading the size n of the linear system (at most
10), coefficients matrix A, and the vector y, first, the lower and upper triangular ma-
trices L and U and then, the z-solutions of the system Lz = y, as well as the x-solutions
of the system Ux = z are calculated and printed. The x-solutions are indeed the solu-
tions of the linear system Ax =y

C++ codes:

// Program P9_15 to solve the system of linear equations of n equations
// in n unknowns by the triangular decomposition method
#include <iostream>
#include <iomanip>
using namespace std;
//
void readDmat(float ALI[11], int m, int n) {
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
cin>>Ali1[j];

}
//
void LUdecomp(float A[I[11], float L[I[11], float ULI[11], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)
if (i >)
ULi1[j] = o;

Solving linear equations system =—— 357

else if (i == j)

LLi103] = 15
else
L[i103] = o,

for (int i=1; i<=n; i++) {
for (int k=i; k<=n; k++) {
int sum = 0;
for (int j=1; j<=i-1; j++)
sum += (LLil[j1 » ULJICkD);
ULi1[k] = A[i1[k] - sum;
}
for (int k=i+1; k<=n; k++) {
int sum = 0;
for (int j=1; j<=i-1; j++)
sum += (LLkI[j1 = UL3I[iD);
LLkICi] = (ACKICi] - sum) / ULiI[iT;
}
3
3
//
void forw(float A[I[11], float x[1, float y[], int n) {
float sum;
x[11 = y[11 /7 A[MI0D;
for (int i=2; i<=n; i++) {
sum = 0;
for (int k=1; k<=i-1; k++)
sum = sum + A[il[k] * x[k1;
x[i] = (y[i] - sum) / A[iI[i];
3
3
//
void backw(float A[J[11], float x[], float y[], int n) {
float sum;
x[n] = y[nl / A[n1ln];
for (int i=n-1; i>=1; i--) {
sum = 0;
for (int k=i+1; k<=n; k++)
sum = sum + A[il[k] * x[k1;
x[i] = (y[i] - sum) / A[i1[i];
3
}
[/ HFXKEIKKIKKKIKKKIKKKIKKHKRKKKKKKIK KKK
void writeDmat(float A[J[11], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
cout<<setw(6)<<A[iI[jI;
cout<<endl;
3
}
//
int main() {
int i, n;
float AL11]1[111, LL111011], VL1011, xC111, yO11d, z[11];
cout<<"Enter the size of the system Ax=y: ";
cin>>n;
cout<<"Enter the coefficients matrix A:\n";

358 = Two-dimensional arrays

readDmat(A, n, n);
cout<<"Enter the vector y:\n";
for (i=1; i<=n; i++)
cin>>y[il];
LUdecomp(A, L, U, n);
cout<<"\nThe matix L:\n\n";
writeDmat(L, n, n);
cout<<"\nThe matix U:\n\n";
writeDmat(U, n, n);
forw(L, z, y, n);
cout<<"\nThe z-solutions are:\n\n";
for (i=1; i<=n; i++)
cout<<"z("<<i<<")="<<z[i]<<endl;
for (i=1; i<=n; i++)
backw(U, x, z, n);
cout<<"\nThe x-solutions are:\n\n";
for (i=1; i<=n; i++)
cout<<"x("<<i<<")="<<x[iJ<<endl;
return 0;

Input/Output:

Enter the size of the system Ax=y: 3+
Enter the coefficients matrix A:
1114

43 -1+

35 3+

Enter the vector y:

16 4+

The matix L:
1 0 0
4 1 0
3 -2 1

The matix U:
1 1 1
0 -1 -5
0 0 -10

The z-solutions are:

z(1)=1
z(2)=2
z(3)=5

The x-solutions are:

x(1)=1
x(2)=0.5
x(3)=-0.5

Solving linear equations system =—— 359

Java codes:

// Program 9_15 to solve the system of linear equations of n equations
// in n unknowns by the triangular decomposition method
import java.util.Scanner;
class P9_15 {
static void readFmat(float A[LI[], int m, int n) {
Scanner read = new Scanner(System.in);
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
A[i1[j] = read.nextFloat();
//read.close();
3
//
static void LUdecomp(float A[1[]1, float L[1[1, float ULI[], int n) {
for (int i=1; i<=n; i++)
for (int j=1; j<=n; jt++)

if (1 > 3)
ULil3] = o;
else if (i ==)
LLi1031 = 15

else
L[iI03] = o;

for (int i=1; i<=n; i++) {
for (int k=i; k<=n; k++) {
int sum = 0;
for (int j=1; j<=i-1; j++)
sum += (LLiI0j] * ULJICkD);
ULi1[k] = ALiICk] - sum;
3
for (int k=it+1; k<=n; k++) {
int sum = 0;
for (int j=1; j<=i-1; j++)
sum += (LLkICj1 * ULJICiD);
LCkI[i] = (ALKICi] - sum) / ULiI[il;
3
}
3
//
static void forw(float A[LI[], float x[]1, float y[], int n) {
float sum;
x[11 = y[11 /7 A[TI[1];
for (int i=2; i<=n; i++) {
sum = 0;
for (int k=1; k<=i-1; k++)
sum = sum + A[i][k] * x[kI;
x[i] = (y[i] - sum) / ALi][i];
}
3
//
static void backw(float A[LI[]1, float x[], float y[]1, int n) {
float sum;
x[n] = y[nl / Alnlln];
for (int i=n-1; i>=1; i--) {
sum = 0;
for (int k=i+1; k<=n; k++)

360 —— Two-dimensional arrays

sum = sum + A[iJ[k] * x[k1;
x[i] = (y[il - sum) / ALi1[i];
}
3
//
static void writeFmat(float ALJ[], int m, int n) {
for (int i=1; i<=m; i++) {
for (int j=1; j<=n; j++)
System.out.format("%9.2f", A[i1[j]1);
System.out.println(); 3}

}

//******************************
public static void main(String[] args) {

Scanner read = new Scanner(System.in);

float ALIL] = new float[11]1[111];

float LLI[] = new float[11]1[11];

float ULIL] = new float[11]1[11];

float x[] = new float[111];

float y[] = new float[111];

float z[] = new float[111];

System.out.print("Enter the size of the system Ax=y: ");

int n = read.nextInt();

System.out.println("Enter the coefficients matrix A:");

readFmat (A, 3, 3);

System.out.println("Enter the vector y:");

for (int i=1; i<=n; i++)
y[i] = read.nextFloat();

LUdecomp(A, L, U, n);

System.out.println("\nThe matix L:\n");

writeFmat(L, n, n);

System.out.println("\nThe matix U:\n");

writeFmat(U, n, n);

forw(L, z, y, n);

System.out.println("\nThe z-solutions are:\n");

for (int i=1; i<=n; i++)
System.out.println(z[il);

backw(U, x, z, n);

System.out.println("\nThe x-solutions are:\n");

for (int i=1; i<=n; i++)
System.out.println("z(" + i + ")=" + z[i]);

Input/Output:

Enter the size of the system Ax=y: 3+
Enter the coefficients matrix A:
111+

4 3 -1+

35 3+

Enter the vector y:

16 4+

The matix L:

Exercises —— 361

1.00 0.00 0.00

4.00 1.00 0.00
3.00 -2.00 1.00
The matix U:

1.00 1.00 1.00
0.00 -1.00 -5.00
0.00 0.00 -10.00

The z-solutions are:

oaNn =
(SRS I

The x-solutions are:

z(1)=1.0
z(2)=2.0
z(3)=5.0

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, and (3) Provide appropriate input notifications and output
headings, if any. In addition, the user-defined functions in the text of the current as
well as the previous chapters may be used unless otherwise is explicitly specified.

9.1. Write an algorithm to create the multiplication table of the numbers from 1 to 10
and print it with an appropriate format.

9.2. Write an algorithm to read an integer square matrix A and save its transpose on
itself.

9.3. Write a sub-algorithm to receive two integer matrices and determine whether or
not they are equal by returning one of the numbers 1, for the equal case, or 0, other-
wise.

9.4. Write an algorithm to print a 5 x 5 integer matrix A in which the entries on the
main and secondary diagonals are 1 whereas the remaining entries are considered 0.

9.5. Write an algorithm to read a 7 x 7 integer matrix and swap its main diagonal with
the secondary diagonal.

362 — Two-dimensional arrays

9.6. Write an algorithm to read an m x n real matrix A and swap the distinct rows r
and s of the matrix.

9.7. Repeat the previous exercise for columns instead of rows.

9.8. Write an algorithm to read an m x n real matrix A and apply the following substi-
tution. It is supposed that z = 0 and r # t.

r-th row < r-th row + z x t-th row.
9.9. Repeat the previous exercise for columns instead of the rows.

9.10. Write an algorithm to read an m x n real matrix and multiply its r-th row by the
real number z.

9.11. Repeat the previous exercise for columns instead of the rows.

9.12. Write an algorithm to read the two positive integers m and n which are at most
10 and then print all the base m x n integer matrices. A base matrix E;;is a matrix
where the (i, j)-entry is considered 1 while the remaining entries are 0.

9.13. Write an algorithm to read the entries of a 6 x 6 real matrix and convert it into
an upper triangular matrix using the elementary row operations.

9.14. Repeat the above exercise for the lower triangular case.

9.15. Write a function named searchFmat() to receive the m x n real matrix A and a
real number t. Then, return 1 if ¢ is an entry of A; otherwise, return 0. Now, write a
main algorithm to read a 4 x 6 real matrix as well as 10 real numbers one by one and
each time determine whether the number is a member of the matrix by printing one
of the messages Yes or No calling the function searchFmat().

9.16. Write an algorithm to read the student number and grade of 36 students and
save them in a 2 x 36 real matrix. Then, read a number and announce whether the
corresponding student passed or failed by printing one of the messages Passed or
Failed if this number is among the 36 student numbers. Otherwise, print the message
Not in list.

9.17. Using the Cramer method, write a program to solve the system AX = Y of 10 equa-
tions in 10 unknowns.

9.18. Repeat the previous exercise for the Gauss method.

Exercises =—— 363

Supplementary exercises

9.1*, Write a program for printing each of the patterns below. The logic of the program
should be in a way so that the pattern can be developed to larger sizes by changing
only a single number.

m (2 3)
1 1 109 8 7 6
2 3 2 3 2 109 8 7
3 45 3 45 4 3 109 8
4 5 6 7 4 5 6 7 6 5 4 10 9
5 6 7 8 9 5 6 7 8 9 8 7 6 5 10
4) (5 (6)
1 1 4 4 4 4 4 4 4
1 2 1 12 4 3 3 3 3 3 4
12 3 21 1 2 3 4 3 2 2 2 3 4
1.2 3 4 3 21 1 2 3 4 4 3 21 2 3 4
1 2 3 2 1 12 3 4 3 2 2 2 3 4
1 2 1 12 4 3 3 3 3 3 4
1 1 4 4 4 4 4 4 4

9.2*, Write an algorithm to read the 5 x 7 real matrix A. Then, calculate and print the
maximum entry in each row together with its position. Finally, print the last position
of the maximum entry if it is repeated.

9.3*, Write an algorithm to replace every entry of an integer matrix by its reverse us-
ing the rev() function in Example 7.4.

9.4*, Write an algorithm to read an 8 x 8 real matrix A and sort its rows alternately in
ascending and descending orders. Then, print the resulted matrix.

9.5*. A magic matrix is a square matrix in which the sum of the entries on each row
and each column is equal to the sum of the entries of the main diagonal and second-
ary diagonal. Write a sub-algorithm named Magic() to receive an n x n square integer
matrix and determine whether or not the matrix is a magic matrix by returning one of
the integers 1 or 0, respectively.

9.6*. Write a sub-algorithm named Aij() to receive an n x n square real matrix A4, a
row number i, and a column number j. Then, return an (n — 1) x (n — 1) matrix (with

364 —— Two-dimensional arrays

the same name Ahat) which is obtained from A by removing the row i and column j of
A.

9.7*. Write a function to receive a real n x n matrix A and then calculate and return its
determinant using the recursive method.

9.8*. Given an n x n real matrix A, the adjacent matrix adj(A) is defined as follows.

(adj(4));; = (-1 det(4y), i=1,2,..,n, j=1,2,..,n,

where the matrix A is obtained from A by removing row i and column j of A. The
adjacent matrix is used for calculating the inverse of a matrix A using the following
formula.

1

A7t = ——adj(A).
det(a) VA

Write a sub-algorithm to receive a real square matrix A and then calculate and return

A~ using this method.

9.9*, An m x n matrix A is called row-reduced if:

a) The first nonzero entry in each nonzero row of A is equal to 1;

b) Each column of A which contains the leading non-zero entry of some row has its
other entries 0.

Write an algorithm to read an m x n real matrix A. Then, convert A into a row-reduced
matrix and print it using the elementary row operations.

9.10*. An m x n matrix A is called a row-reduced echelon matrix if:

a) Aisrow-reduced;

b) Every row of A which has all its entries O occurs below every row which has a
nonzero entry;

c) Ifrowsl, 2, .., rare the nonzero rows of A and if the leading nonzero entry of row
ioccurs in column k;, i =1, 2, ..., 1, then k; < k; < ... < k;. In other words, no zero
row occurs above any nonzero row.

Write an algorithm to read a real m x n matrix A. Then, convert A into a row-reduced
echelon matrix using the elementary row operations and then print it. It is assumed
that there is no zero row in the resulted row-reduced echelon matrix.

Hints for the exercises

To solve the exercises, you fail to obtain a good result and you are unable to develop
your ability in algorithm writing and thus programming if you first refer to their solu-
tions without attacking these exercises. Therefore, you should draw the flowcharts of
the exercises by yourself and test them by arranging their implementation table.
Then, you should write their program and be assured of their correctness by running
it in the computer. It is worth mentioning that the algorithms and the programs
should work for various inputs rather than just certain ones. Next, you can take a look
at the hints of the exercises in this part. However, your technique may differ from the
technique used in the present part which is natural since the techniques suggested
here are not unique!

You can follow its hints in this section and solve it accordingly if you are really
unable to find the solution for a certain exercise. These hints are written such that
they offer the path for solving the exercise and the reader should complete the process
of solving the exercise by themselves. There is a hint for nearly all the exercises except
for the simple problems and repeated ideas. The codes of mathematical library func-
tions are often in C++. Therefore, in Java you should add the prefix ‘Math.’ to them.

4.2. A number is a multiple of n if the remainder of the division of that number by n
is zero.

4.3. Comparing the real value of v/n with the integer part of v/n is one way to find
whether or not the number n is square.

4.4, In a triangle, any pair of edges satisfy the condition: the sum of two edges is
greater than the third edge. Therefore, you should use an if template with the condi-
tion containing three parts separated by the && operator.

4.5. In a right-angle triangle, the pair of edges adjacent to the right angle satisfy the
Pythagorean relation. Thus, you should use an if template with the condition con-
taining three parts separated by the | | operator. Note that the establishment of the
Pythagorean relation is sufficient to conclude that the shape is a right-angle triangle.

4.6. Use an if template with a single condition checking the equality of the three
numbers.

4.7. Use an if template with the following condition.
(a==b && atb<c) || (a==c && atc<b) || (b=c && b+c<a)

4.8. The areas of a circle with the radius r as well as the inscribed and circumscribed
squares are wr2, r2, and r2 /2, respectively.

https://doi.org/10.1515/9783110616484-010

366 = Hints for the exercises

4.9. A number is even if the remainder of its division by 2 is zero.

4.10. The required number of digits for the arbitrary integer n is log10(abs(n))+1.
4.11. Use an if-else-if template.

4.12. Consider the divisibility of n-1980 by 4.

4.13. In an if-else-if template, print 31if 1 < n < 6; otherwise, print 30if 7 < n < 11.
Furthermore, print 29 if n = 12; otherwise, print the requested message. Moreover, you
can use the switch template.

4.14. Consider the first six months separately from the second six months in a two-
way branching. The required formula can be easily achieved by a manual calculation
of two or three cases: in the first six months the required number is (m - 1) x 31 + d
while in the second six months this number is equal to (m - 7) x 30 + d + 186.

4.15. Use an if-else-if template and locate the process in Exercise 4.14 in the else-
part.

4.16. The result of n + 3 modulo 7 is the required day.

4.17. The corresponding number for Saturday is 4. Therefore, the result of n + f - 1
modulo 7 is the required day.

4.18. Consider the quotient of n — 10 divided by 30.

There is no code for the following three exercises in Java language due to the exist-
ence of the goto statement if we fail to use the loops. However, the codes can be easily
written if either while or do-while loop is used (refer to Chapter 7) in which case,
there is no need for the goto statement even in C++. The following hints regarding the
above-mentioned exercises are valid in the C++ language.

4.19. Use the logic of Exercise 4.15. Label the input template as ‘100’ and add an if
template just after the if-else-if template such that the implementation control
goes to the label 100 if the condition m=0 && n=0 is true. Note that the if statement is
as follows in the C++ codes:

if (m==0 && m=0) goto 100;

4.20. Use the switch template. In the division case, print the message if the dividend
is zero (you can use the if-else template for this purpose). For repetition, see the
hint of the last part of Exercise 4.19.

Hints for the exercises =—— 367

4.21. Use a switch or an if-then-if template to provide the multi-way branching

process. Label the reading c construction as ‘100’. Then, print Quit? and label this

construction as 200°’. Read a character type variable, say p. Next, in an if-else-if

template,

— if one of the characters n or N is entered, terminate the algorithm using the
exit(@) construction;

- otherwise, transfer the implementation control to the label 100 if one of the char-
acters y or Y is entered;

- otherwise, transfer the control to the label 200.

5.3. Refer to the hint of Exercise 4.3.
5.4. Consider the remainder of the division n by 2.
5.7. Refer to the hint of Exercise 4.4.
5.8. Refer to the hint of Exercise 4.5.

5.9. Use the if-else-if template with three conditions. Additionally, the nested if-
else templates can be used.

5.10. Refer to the hint of Exercise 4.14.
5.11. Refer to the hint of Exercises 4.16 and 4.17.

5.12. Refer to the hint of Exercise 4.19 for the function (consider also the paragraph
before this exercise). Use an if-else-if template for the main algorithm. Perform the
repetition using the goto instruction. It is easier to use the switch template for print-
ing the names of the week.

5.13. The recursive equation for defining the n-th term of the sequence is as follows.

(1 ifn=1or?2,
f) = {f(n — 1)+ f(n—2), otherwise.

5.14. This is similar to the Fibonacci sequence (refer to the previous exercise) except
that here we are dealing with three cases.

5.15. The recursive function is as follows:

368 —— Hints for the exercises

1, if n=0,
X, ifn=1,
P(n,x) = o —1 f

n—
P(n—1,x) — TP(n —2,x), otherwise.

5.16. A recursive function for power is defined as below:

1, if n=0,

POWer(X, Tl) = X POWer(x,n - 1): Lf n> 0,

p Power(x,n + 1), otherwise.

In the main algorithm, print the message using an if-else template, if the undefined
case happens; otherwise, call the method.

5.17. Use the same way as Exercise 5.15.
6.4. You need to calculate the series).7; 2i — 1.
6.5. You need to calculate the series };I-; m.

6.6. Take the variable sum with the initial value of 0. In the range of a for template
with the specification i=1, n, replace sum by its addition to i if i is a multiple of 4. An
integer i is a multiplication of 4 if the remainder of division i / 4 is zero. Another way
is to calculate the series Z?z/f 4i.

6.7. Similar to the first way in the hint of Exercise 6.6.

6.8. Take the variables n and g for the ID number and grade. In addition, take the
counter variable c. Read n and g in the range of a for template. Then, increase c by 1
along with printing n and g if g < 12. Finally, Print c after exiting the loop.

6.9. You need to calculate the series 3,82, \/h? + (vt)2.

6.10. In the range of a for template with the specification i=1, 300, first read n, h, and
s, and then print 200s + 1.5(h — 200)s if h > 200; otherwise, print hs as salary.

6.11. Take the variables nP, nZ, and nN for the number of positive, zero, and negative
numbers, respectively. Further, take x for the read numbers as well as sumP and sumN
for the sum of positive and negative numbers, respectively. First read x in the range
of a for template with the specification i=1, 50. Then, using an if-else-is template,
print it with an appropriate heading if x > 0 and increase sumP and nP by x and 1,
respectively; Otherwise, if x < O, print it with an appropriate heading, increase sumN

Hints for the exercises =—— 369

and nN by x and 1, respectively; otherwise, increase nZ by 1. Eventually, print the re-
quired quantities with appropriate headings after exiting the loop.

6.12. Take the variables x, max, and min for the read number, maximum and mini-
mum, respectively. Read the first number and assign it for both max and min. Then,
in the range of a for template with the specification i=2, n, first read x. Next, substi-
tute x for max if x > max and substitute x for min if x < min. Note that these two if
templates are successive, not nested. After exiting the loop, max and min are the max-
imum and the minimum of all the numbers.

6.13. In the range of a for template with the specification i=2,n-1, print i if it is a
prime number.

6.14. In the range of a for template with the specification i=5,999, 4, print i if it is
prime. Or, in the range of a for template with the specification i=1,249, print 4i + 1 if
it is prime.

6.15. Use the logic of Example 6.4.

For Exercises 6.16 to 6.24 we hint for the case where we do not use the necessary user-
defined functions. Using these functions makes the algorithms easier.

6.16. Use the idea of Example 6.13.

6.17. The main body of Flowchart 6.2(c) calculates the factorial of n. However, the
main body of Flowchart 6.8(a) computes x™ if the absolute value is discarded. You
should compose these two flowcharts. First, apply the former flowchart replacing the
loop specification by k=1,1i and then apply the latter flowchart replacing the loop
specification and x by k=1, f and i, respectively. What p carries after leaving the latter
flowchart is i, Consider this as the common term of the required series and complete
it using a for loop with the specification i=1, 5.

6.18. Take the variables sum and sign for the repetitive sum and providing the signs,
respectively. Assign 0 and —1 for sum and sign, respectively. In the range of a for tem-
plate with the specification t=1,n, 2, first place the processes for calculating the com-
mon term i in the hint of Exercise 6.17. Then, change the sign by substituting —sign
for sign. Finally, substitute the addition of sum and p for sum.

6.19. Fix the former flowchart in the hint of Exercise 6.17 and change the latter one by
interchanging the roles of i and f.

6.20. See the hints of Exercises 6.18 and 6.19.

370 — Hints for the exercises

6.21. As mentioned in the hint of Exercise 6.17, the main body of Flowchart 6.8(a)
calculates x™ discarding the absolute value of n. In this flowchart, replace the loop
specification by k=1, i. Now change the sign by substituting —sign for sign and take
pi?sign as the common term of the given series using a for template with the speci-
fication i=1, 7. Bear in mind to assign —1 to sign as the initial value before the outer
loop.

6.22. Create the common term of the double series as follows. Take the variable p1
with the initial value of 0. Substitute the multiplication of p1 by i for p1 in the range
of a for template with the specification k=1, n. Take another variable p2 with the ini-
tial value of 0. Then, substitute the multiplication of p2 by i for p2 in the range of
another for template with the same specification. The common term is p1 + p2.

6.23. Calculate two series ¥}°, i" and Y12, i in a single for template with the specifi-
cation i=1, 15 with two repetitive sums, namely, suml and sum?2 for which the initial
value of 0 are assigned before the loop. The common terms of sum1 and sum?2 are the
p1 in the hint of Exercise 6.22 and i, respectively. After exiting the loop, calculate
(sum2)™ using Flowchart 6.8(a) discarding the absolute value of n. It suffices to re-
place x by sum2.

6.24. We focus on i/“since the other terms are known. Write pow(i,pow(j,k)) touse
the library function pow(). Then, take the variable p with the initial value of 1 in order
to be a common term of a series. Substitute the multiplication of p by j for p in the
range of a for template with the specification t=1,k. Here, p carries j* with itself.
Now, take the variable g with the initial value of 1 and substitute the multiplication
of g by i for g in the range of a for template with the specification t=1, p. At this point
g carries i/".

6.25. The same tasks as the trapezoid method are performed with only one replace-
ment in the range of the for loop in the series of function Trap() as follows. Substitute
the addition of sum and 4f (a + ih) for sum if i is odd (the remainder of i / 2 is 1);
otherwise, substitute the addition of sum and 2f (a + ih) for sum. Another way is to
substitute the addition of sum and 4f(a + 2ih) + 2f(a + (2i 4+ 1)h) for sum in the
range of a for template with the specification i=1,n/2-1.

6.26. Substitute x + 1/x for x in the range of a for template with the specification
i=1,n.

6.27. Take the series variable sum with the initial value of 1 / x. Substitute the inverse
of i + 1/x for x in the range of a for template with the specification i=1,n-1and then
take it as the common term of the series.

Hints for the exercises =—— 371

6.28. First work with positive signs. As shown, the denominator of the k-th term is the
seriess = ¥ , ix’. Now, 1/ s is the common term of the required 10-term series. Apply
the positive and negative signs using a sign maker variable.

6.29. Examine the divisibility of n by i in the range of a for template with the specifi-
cation i=1,n/2.

6.30. For the function, take the variable sum with the initial value of 0. In each repe-
tition of the for loop in the algorithm of the previous exercise, instead of printing the
divisor, add it to sum and substitute the result for sum. After exiting the loop, return
1if sum = n; otherwise return 0.

6.1*. We give hints for the odd numbers; for even numbers, it suffices to reverse the

specification of the outer loop.

1. In the range of two nested for loops with the specification i=1,n and j=1, i, re-
spectively, print “x_”. After exiting the inner loop, break the line. This is per-
formed by cout<<endl and System.out.println() statements in C++ and Java
codes, respectively.

3. Initem 1, before the inner loop, provide the necessary space using the following
statements:

cout<<setw(2*(n-i+1));

Do the following tasks in the rang of a for loop with the specification i=1,n in

Jave due to the different nature of the formats in C++ and Java:

I. Print a whitespace character using the statement System.out.print(" ") in
the range of a for loops with the specification j=1,2*(n-1i);

II. Print an asterisk followed by a whitespace character with the Sys-
tem.out.print("x ") statement in the range of a for loops with the specifi-
cation k=1, 1i;

III. Break the line using the System.out.println() statement.

5. Initems 3 as well as 3I, remove the coefficients 2.

6.2*. Use Example 6.7.

6.3*. Use the hint of part 5 in Exercise 6.1*.

6.4*. First, determine the number of digits of n using the function digits() of Exer-
cise 5.1and then assign it to k. Now, assign the remainder of the quotient of n/10%~1~

by 10! to an integer variable, say ¢, in the range of a for template with the specifica-
tion i=k-1,0,-1 and then print it.

372 — Hints for the exercises

6.5*. In the range of the for template mentioned in the hint of Exercise 6.4*, print t if
i=3or2andtiseven;or,i=1or0and tis odd. Count the number of such integers in
this path.

6.6*. In the range of a for template with the specification i=2,[n/2], assign i to an
integer variable, say k, if it is prime as well as a divisor of n. Here, [] stands for the
least integer closer to the number. Then, use the function prim() in Example 6.10 in
order to distinguish the primality. The integer i is a divisor of n if the remainder of n
by i is zero. After exiting the loop, k is the largest prime divisor of n.

6.7*. Use the hints of Exercises 6.29 and 6.30.

6.8*. You have to calculate two multiplicative series

T r
pr=[[p. P2=]Ja-p
i=1 i=1

in the same for loop with the specification i=1, r inside which, in the range of an
inner for loop with the specification j=1,vn, apply j as the common term of the first
series and 1 - j as the common term of the second series if j is a prime divisor of n. To
distinguish whether or not j is the prime divisor, refer to the hint of Exercise 6.6*.

6.9*, Use the hint of Exercise 6.13.

7.1. Take the counting variable i, summing variable sum with the initial value of 0,
and the sign making variable sign with the initial value of —1. In the range of a while
template, apply the following instructions while i < 19 (the denominator of the tenth
term):

1. Change the mark of sign;

2. Addsign x 4 / i to sum and substitute the result for sum;

3. Increaseiby 2.

Print sum after exiting the loop. You can solve this exercise using the for templates.
It suffices to put the first two above-mentioned instructions in the range of a for tem-
plate with the specification i=1,19, 2.

7.2. Use the tool of tolerance quoted before Example 7.10. This time use a do-while
template. Do the three instructions in the hint of Exercise 7.1 while 4 / i < 0.00005.
Note the absolute value of two consecutive approximations is 4 / i. If you have solved
Exercise 7.1 using a for template, select a large number instead of the initial value of
19 of the loop. At the end of the range, terminate the algorithm by printing sum if 4 /
i< 0.00005.

Hints for the exercises === 373
7.3. Use the hint of Exercise 7.1. Here, the increment of i is by 1 and the common term

in each repetition is
1 <x - 1>i
i\ x /J°

Use the library function pow() for powering. Note that the tenth term is the above term
fori=10.

7.4. Use the hint of Exercise 7.2.

7.5. Take the counter variable g with the initial value of 0 for the quotient. In a while
loop, perform the following instructions in each repetition while m = n:

1. Subtract n from m and substitute the result for m.

2. Increase g by one unit.

After exiting the loop, g and m are the quotient and remainder, respectively.

7.6. To generate the terms of this sequence, we observe that after the third term, each
term is equal to the double of the previous term subtracted by the term before the
previous one, plus 1. Now use Example 7.3 replacing the substitution of a + b for a, by
2a — b for a. Furthermore, you should change the initial values of a and b. From the
viewpoint of recursive functions, f,, = 2f,_; — fu_» + 1.

7.7. Considering the hint of Exercise 7.6, use the logic of Flowchart 7.3(e).
7.8. In Flowchart 7.3(c) replace 50 by 150 and print a if a > 100.

7.9. In Flowchart 7.3(c) replace 50 by 100. Then, taking two variables ¢ and sum with
initial values of 0, increase sum by a and c by 1 instead of printing a.

7.10. In Flowchart 7.3(c), first take the variable ¢ with initial value of 0. Then, increase
c by 1 after printing a. Finally, replace the loop condition by ¢ < 20.

7.11. Take the variables r and sum, with the initial values of 0, for the remainder and
sum of digits which are returned to the call unit. Then, perform the following instruc-
tions in the range of a do-while loop:

1. Assign the remainder of the division n by 10 to r;

2. Increase sum by r;

3. Substitute n /10 for n.

Repeat the above instructions while n > 0.

374 — Hints for the exercises

7.12. Use the function SumDig() of Exercise 7.11.
7.13. Use the function SumbDig() of Exercise 7.11.

7.14. Take the variable u for the number which is read each time. After reading n, read
u inside a for loop with the specification i=1,n and print the reverse of u using the
function rev() of Example 6.3.

7.16. In the range of a for loop with the specification i=1001,9999, print and count
the symmetric integers using the function rev() of Example 6.3.

7.17. Take the variable d for the decimal part of t. Then, d is equal to ¢ subtracted by
the integer part of t. Now, in the range of a do-while loop, substitute the multiplica-
tion of d by 10 and repeat this while d = 1. After exiting the loop, first store d in an
integer variable, say k, and then return it.

7.18. Use the sub-algorithm DecPart () in Exercise 7.17 to receive the decimal part of ¢
as an integer by removing the decimal point and name it as m in the main algorithm.
Moreover, name the integer part of t as n. Calculate the number of digits of m and n
and name them as nD and mD, respectively. Now, print first a minus sign if ¢ is nega-
tive (use the built-in System.out.print() method to do this in Java). Next, print con-
secutively the reverse of m in mD columns, the dot character, and the reverse of n in
nD columns using the function rev() of Example 7.4. Use appropriate formats in C++
and Java to print the above-mentioned items.

7.19. Take the counter integer c. Substitute the multiplication of ¢ by 10 for t and in-
crease ¢ by 1in the range of a do-while template. Repeat this range while the remain-
der of the integer part of ¢ by 10 is O, that is, while the decimal point moves to the
rightmost position. Upon exiting the loop, assign t in an integer variable, say k. Take
the number of digits of k subtract by c as u. Now the real value of the division of k by
10* is the required number.

7.20. The function gcd() in Example 7.7 is used in this algorithm. After reading n, first
read an integer and assign it to an integer variable, say g. Now, in the range of a for
loop with the specification i=2,n, read an integer, say s, each time and substitute
gcd(g, s) for g. The value of g is the required number after exiting the loop.

7.21. Use the hint of Exercise 7.20.

Hints for the exercises == 375

7.22. In the range of two nested for loops with the specification i=1,n and j=i+1,n,
respectively, count the pairs (i, j) which are coprime using the function gcd()in Exam-
ple 7.7. The requested probability follows from the division of this count by n(n +

1) /2.

7.23. Take the integer variables ¢ (for counting) and k with the initial values of 0 and
of 1, respectively. In the range of a do-while loop, first, increase k by 1to generate an
integer. Then, if k is prime, print it and increase the counter ¢ by 1. Repeat these in-
structions while ¢ < 20. Finally, use the function prime() to check the primality.

7.24. In the hint of Exercise 7.23, take the printing of k out of the loop.

7.25. Appealing to the function perfect() in Exercise 6.26, use the hint of Exercise
7.23.

7.26. Using the function perfect() in Exercise 6.26, use the hint of Exercise 7.24.

7.27. In the range of a do-while loop, create the factorial of the consecutive numbers
k and compare k! with n, while k < n.

7.28. In the range of a for loop with the specification i=1,n-1, printi and add 1 to the
counter of this number if gcd(i, n) = 1.

7.29. Combine Flowcharts 7.7(b) and 7.8(b), or, Flowcharts 7.7(b) and 7.8(b).

7.30. Use the hint of Exercise 7.2. Additionally, you can use the recursive method. The
return point is the estimated root of xo if the recursive methods is employed.

7.30. There are easy flowcharts and codes. It suffices to use the related hints as all or
part of the range.

7.1*. In the divisible case, examine i for being the answer (i is the answer if ai = ¢) in
the range of a for template with the specification i=0,m-1.

7.2*. If gcd(m, n) = 1, examine i and j for being the answers of the first and second
congruent equations in the range of two nested for templates with the specification
i=0,m-1 and j=0,n-1, respectively.

7.3*. The trivial way is to calculate the remainder of a* by m which is time consuming
for the large values of k and may cause the memory overlap error. The other way is to
take a variable p. Then, in the range of a for template with the specification i=0,m-1,
substitute the remainder of pa by m for p (compare the resulted flowchart with

376 = Hints for the exercises

Flowchart 6.8(a)). In this way, we do not have any memory overlap error, however, it
is still time-consuming.

7.4*. In the range of a for loop with the specification k=1, n, if a* modulo n is equal
to 1, terminate the sub-algorithm by returning k using the function akmodm() of Exer-
cise 7.3*. In addition, you can write this sub-algorithm using a do-while template
with the same range.

7.5*. In this sub-algorithm, use the idea that the reverse of a number is printed start-
ing from the rightmost digit backward. The contents of the sub-algorithm for the re-
ceiving number n is as follows. Using an if template print the remainder of n by 10 if
it is not zero (use the System.out.print() method in Java). Then, call the function
for the quotient of n by 10; otherwise return to the call unit.

7.6*. By assigning the initial values of 0 and 1 to the variables sum and p, respectively,
apply the following instructions in the range of a do-while loop:

1. Assign the remainder of the division n by 10 to r;

2. Add the r times p to sum and substitute the result for sum;

3. Substitute 2p for p;

4. Substitute the quotient of n by 10 for n.

Repeat this range while n is equal to zero (no number is left). Then, return sum after
exiting the loop.

7.7*. First, calculate the number of the digits of n using Exercise 4.10 and then assign
it to the variable d. Further, assign the quotient of d / 3 to the variable q. Now, print
the quotients of n by 10007 in the range of a for template with the specification
i=q, 0, -1 and then, substitute the remainder of n by 10009 for n. To print the comma
separator use an if template so that the item "," is printed if g = 0. The Sys-
tem.out.print() statement should be used in the Java codes.

7.8*. In the hint of Exercise 7.7*, instead of printing each group, convert that group
to the base-10 numeral system using the function dec() in Exercise 7.6* and print it
in its position. The System.out.print() statement should be used in the Java codes.

7.9*. First, calculate the number of digits of n and assign it to the variable d. Further,
assign the quotients of n by 104~ to the variable p in the range of a for template with
the specification i=d, 1,-1 and then replace n by the remainder of n by 104~*. Fur-
thermore, convert p to the base-2 numeral system using the function bin1() in Exam-
ple 7.6 and assign the result to g. Now, it is time to print. In Java, use the format "%03d"
followed by g as the print arguments in order to prevent loosing zeroes when g has

Hints for the exercises =—— 377

less than three digits. However, in C++, first, calculate the number of digits of g and
assign it to the variable e. Then, using an if-else-if template or a switch template,
- print 00 followed by g if e =1;

- print O followed by q if e =2;

— otherwise, print g itself

8.1. Use the function Fib() in Example 7.3.

8.2. A trivial way is to use the hint of Exercise 8.1. Further, another way is by a do-
while template using the idea of the function Fibo() in Example 7.3. The required
sub-algorithm FibArray() includes two arguments including the array F and the
number n of its entries. First, assign the initial value of 1 for the variables a and b and
0 for the counter variable i. Then, apply the following instructions in the range of a
do-while loop:

1. AssignatoF;;

2. Increaseiby1;

3. Substitute a + b for a;

4. Swapaandb.

Repeat these instructions while i < 20.

8.3. In the range of a for template with the specification i=1,n, terminate the sub-
algorithm by returning i as soon as t matches with an entry. Exiting the loop implies
that there is no matching and thus 0 should be returned.

8.4. Take the counting variable ¢ with the initial value of 0. In the range of a for tem-
plate with the specification i=1, 40, print N; and G; and increase c by 1if g = G,. After
exiting the loop, print the message if ¢ = 0; otherwise print c.

8.5. Follow Flowchart 8.8(b) until the exit from the loop. Now, use Algorithms 8.11(b)
or 8.11(c) for (b, n) instead of (a, 40). For the second part, you may call the sub-algo-
rithm Sort() in Exercise 8.12

8.6. Take the index maker variable m with the initial value of 0. In the range of a for
template with the specification i=1, 20, if a; is not in the array b, and if a; is not in the
m-entry array ¢, make a new index m (increase m by 1) and assign q; for c,, using the
search() function in Example 8.7.

In the above discussion, you can use two successive if templates or merge them
using the && operator. It is worth mentioning that in the second search (searching a;
in ¢,,), the inconsistency in the loop of the search() function causes the substitution
of a, for c;.

378 = Hints for the exercises

8.7. Take an index maker variable k. First put A in C: Substitute 4; for C; in the range
of a for template with the specification i=1,m. Now, in the range of a for template
with the specification i=1, n, if B; is not in the array A, make a new index (increase k
by 1) and put B; in C,, using the search() function in Example 8.7. After exiting the
loop, print the (m + k)-entry array C. Declare A and B with lengths 101 and C with
length 201.

8.8. Note that in each of the sorting Flowcharts 7.11(b) or 7.11(c) in ascending order,
changing the inequality >’ to ‘<’ turns it to descending order. Therefore, you can sort
C simultaneously in both orders. It suffices to use the same nested loops and the suc-
cessive if templates.

8.9. Take the counter variable ¢ with the initial value of 0. In the range of a for tem-
plate with the specification i=1,n, increase c by 1if x = a;.

8.10. In the range of a for templates with the specification i=1, 20, if the number of
repetitions of a; in the array a is greater than 1, print the required three items a;, i,
and the number of repetitions of a; in a and then terminate the algorithm using the
function repeat() in Exercise 8.9. Put the message printing after exiting the loop.

8.11. Using the repeat() function in Exercise 8.9, create another array named ¢ such
that t;, for 1 < i < n, is the number of repetitions of u; in the array u. Then, calculate
the maximum entry of the array ¢ and assign it in a variable, say e, using the function
max() in Example 8.5. Finally in the range of a for template with the specification
j=n,1,-1,if t; = e, print u;.

8.12. The array is returned to the call unit with the same name as it enters the sub-
algorithm. In Flowchart 8.11(b), remove the middle part including the basic process
of sorting and place the instruction of calling the sub-algorithm Sort() instead. Now
put the removed part as the basic process of the sub-algorithm Sort() changing 39 to
n-1.

8.13. First, it is worth mentioning that in each of the sorting Flowcharts 7.11(b) or
7.11(c) in ascending order, changing the inequality ‘>’ to ‘<’ turns it to descending or-
der. Take one of the above-mentioned flowcharts and replace 39 by 19 in its main part.
Then, after the if template in the range of the inner loop use another if template: if
Az04+i < A314i, then swap them. After exiting the nested loops, print the first half of
the array using the sub-algorithm writeIvec() and the second half directly from in-
dex 21 onwards.

Hints for the exercises === 379

8.14. First, combine the arrays a and b in the array c. To do this, in the range of a for
template with the specification i=1, 20, substitute a; and b; for ¢; and c,,,;, respec-
tively. Now use Algorithm 8.11(b) or Sub-algorithm Sort() in Exercise 8.12 to sort c.

8.15. In Flowchart 8.12(b), remove the middle part including the basic process of rank-
ing and place the instruction of calling the sub-algorithm Rank() instead. Now, put
the removed part as the basic process of the sub-algorithm Rank() changing 39 and
41ton - 1and n + 1, respectively.

Print the first, the second, and the third lists from N; to Nyq, G4 to G;, and R; to
R,, with appropriate headings in each case, respectively.

8.16. Use the logic of Algorithm 7.13(c) with the exception of replacing 3 by m + 1.

8.17 Substitute a; for a;,, in the range of a for loop with the specification i=40,6,-1.
After exiting the loop, read one number and assign it to a;, s in the range of another
for template with the specification i=1, 7. Declare the array a with the length of 48.

8.18. Apply the following instructions in the range of a for template with the specifi-

cation k=1,q:

1. Readtand m;

2. In the range of a for template with the specification i=39+k,m+1,-1, substitute
a; for a;,q;

3. Substitute ¢ for a,, ;.

8.19. First, read the 20-entry ascending array a. Now, use the main body of Flowchart
8.15 and change the specification of the outer loop to =21, 20+n. Finally, print the (20
+ n)-entry real array a using the sub-algorithm writeFvec() instead of printing the
20-entry integer array a using the sub-algorithm writeIvec().

8.20. Pay attention that in this exercise, the entries of the array should be read one
by one in the sub-algorithm itself.

8.21. Assign the initial value of -1 to the index maker variable k. In the sub-algorithm
of Figure 7.6(b) remove the instructions concerned with the variables new and p and
change the range of the do-while template to the following:

1. Make a new index (increase k by 1);

2. Assign the remainder of n by 2 to e;;

3. Substitute the quotient of n by 2 for n.

Now reverse the position of entries of the k-entry array e using the sub-algorithm re-
vive() in Example 8.3.

380 — Hints for the exercises

8.22. Use the hint of Exercise 8.21 with replacing 2 by 16. The final array b should be
converted to the string data, however, we perform this, along with the printing pro-
cesses. To do this, in the main algorithm, first, receive the array b from the sub-algo-
rithm. Then, use a switch (or if-else-if) template in the range of a for template
with the specification i=1, k such that in the cases b; = 10,11, 12, 13, 14, 15, print the
characters ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, respectively, and print b; itself in the default case.

8.23. Assign a, to a variable, say g. Then, using the function gcd() in Example 7.7,
each time substitute gcd(g, a;) for g in the range of a for template with the specifica-
tion i=2,20. The value of g is the required number after exiting the loop.

8.1*, Take the integer variables k and m. Then, perform the following instructions in

the range of a do-while template:

1. Print the pattern mentioned in the exercise;

2. Readk;

3. Ifkis 1, sort the array N in ascending order such that the entries of the arrays G
and R with the same indices are swapped in the swapping step in either
Flowcharts 8.11(b) or 8.11(c);

4. Otherwise, do the same tasks as in item 3 for the arrays G, N, and R, respectively,
if k is 2. Note that the sorting is in descending order here;

5. Otherwise, do the same works as in item 3 for the arrays R, N, and G, respectively,
if kis 3;

6. Otherwise, read m and in the range of a for template with the specification
i=1,40, if k is 4, print N;, G;, and R; if m = N; and then exit the loop using the
break statement. Finally, print the message Not in list after exiting the loop;

7. Otherwise, print the message Wrong number.

Repeat the above instructions while k = 0. You may use either an i f-else-if template
or a switch template for the instructions 3 to 7.

8.2*, Use the hint of Exercise 8.1*. Use the ideas in Example 8,1 for items 1 and 2. For
item 3, first find the maximum grade using the function max() in Example 8.5. Item 4
uses the same way as above, using the function min() in Exercise 8.5.1 in the text.

For item 5, first calculate the average and name it as M. Second, take a counter
variable, say ¢, with the initial value of 0. Third, in the range of a for template with
the specification i=1, 49, increase c by 1 if M = G;. Finally, print c after exiting the
loop. Items 6 and 7 have the same manner.

For item 8, first, create the array t as mentioned in the hint of Exercise 8.11. Then,
find the maximum of the array t and name it as x using the function max () in Example
8.5. Now, similar to item 5, count the number of the entries N; with x = N;.

Hints for the exercises = 381

8.3*. Read the thirty numbers as a real array, say a. Perform the following instructions

in the range of a for template with the specification i=1, 29:

1. Continue theloopifa; = a;,;

2. Otherwise, if a; < a;,4, print the message Not sorted in the range of a for tem-
plate with the specification j=i+1,29 and then terminate the algorithm if a; >
a;,1. Next, print the message Increasing array after exiting this loop.

3. Otherwise, print the message Not sorted in the range of a for template with the
specification j=i+1,29 and then terminate the algorithm if a; < a;,;. Finally,
print the message Decreasing array after exiting this loop.

8.4*, Take the variable n for the number of entries of the array a with the initial value
of 40 and the variable i for counting with the initial value 0. Perform the following
instructions in the range of a do-while template:
1. Increaseiby1;
2. Do the following if x = a;:

2.1. Substitute a;,, for a; in the range of a for template with the specification

j=i,n-1;
2.2. Decrease nby1;
2.3. Decreaseiby1;

Repeat the above instructions while i < n. Finally, print the n-entry deformed array a
after exiting the do-while loop.

8.5*, Take the variable n for the number of entries of the array a with the initial value
of 40 and the variables k and i for counting with the initial value of 0 for k. Use two
nested do-while loops as follows. Perform the following in the range of the outer do-
while loop:
1. Increase k by 1;
2. Assignktoi;
3. Perform the following instructions in the range of the inner do-while loop:
3.1. Increaseiby1;
3.2. Do the following if a; = a;:
3.2.1. Substitute a;,, for a; in the range of a for template with the specifi-
cation j=i,n-1;
3.2.2. Decrease nby 1;
3.2.3. Decreaseiby1;
Repeat the inner do-while loop (from 3.1) while i < n.
Repeat the outer do-while loop (from 1) while k < n.
Print the n-entry deformed array a after exiting the outer do-while loop.

8.6*. Create two integer arrays T and N for the repeated entries and the number of
their repetitions, respectively. Take an index maker variable k. In the range of a for

382 — Hints for the exercises

template with the specification i=1, 40, calculate the repetition of a; and assign it to
avariable, say r, using the function repeat () in Exercise 8.9. Then, make a new index
(increase k by 1) and store a; in T}, if r > 1 and a; has not already stored in the k-entry
array T. To check whether or not a; has already been stored in T, use the function
search() in Example 8.7 (see Example 8.9). Now, print T; and N; in the range of a for
template with the specification i=1, k.

8.7*. Take an index maker variable k. Modify Flowchart 7.9 as follows. Remove the
single print before the for loop. After exiting the while loop, make a new index (in-
crease k by 1) if ¢ > 0 and then store i and c in p, and 7, respectively. This is the k-
entry arrays p and r which are returned.

8.8*. Using the sub-algorithm prim_dec() in Exercise 8.7*, store the prime factors

and their multiplicities of the primary decomposition of m in the km-entry arrays pm

and rm, respectively, while storing those of n in the kn-entry arrays pn and rn, respec-

tively. Take the variables gcd and Icm with the initial values of 1. Furthermore, take

the variable Rm and Rn. Now, do the following in the range of a for template with the

specification i=2,max(m,n):

1. Assign O to Rm;

2. In the range of a for template with the specification j=1,km, if i = pm;, assign
rm; to Rm;

3. After exiting the recent for loop assign O to Rn;

4. In the range of a for template with the specification j=1,kn, assign rn; to Rn if
i =pn i

5. After exiting the recent for loop, multiply gcd by i to the power of minimum of
Rm and Rn and substitute the result for gcd;

6. Multiply lcm by i to the power of maximum of Rm and Rn and substitute the result
for Icm.

Finally, print gcd and Icm after exiting the outer for loop.

8.9*. Using an if-else template, return 1if n = 1; otherwise, do the following:

1. Call the sub-algorithm prim_dec() of Exercise 8.7* for n, and receive the k-entry
arrays p and r. Note that all entries of r are positive;

2. In the range of a for template with the specification i=1,k, the second case for
the function happens if r; > 1, thus, terminate the sub-algorithm by returning 0;

3. The natural exit of the for loop occurs when all the entries of r are 1. In this cir-
cumstance, return —1 to the power of k, or, return 1 instead if k is even (the re-
mainder of k by 2 is zero) using an if-else template; otherwise, return -1.

8.10*. Take the two arrays f and g and declare them with a large lengths, say 100 (or
larger if needed). Assign zero for the above arrays as follows. Assign O to both f; and

Hints for the exercises =——— 383

g; in the range of a for template with the specification i=1,100. Now, read m and n
and then read the coefficients of fand g: read f; in the range of a for template with
the specification i=0,mand read g; in the range of another for template with the spec-
ification i=0, n.

Denote the function f + g by h and let k be its degree which is the maximum of m
and n. Define the coefficients of h as follows. Assign f; + g; to h; in the range of a for
template with the specification i=0, k. Determine the first nonzero coefficient of h as
follows. In the range of a for template with the specification i=0, k, assign i to a vari-
able, say u if h; # 0. Now it is time to print the following:

1. Print the string f (x)+g(x)=;

2. PrintOifu=k(h=0);

3. Print h, and increase u by 1 if u=0 (the constant coefficient). Be careful not to
break the line after printing!

4, Print the following pattern in the range of a for template with the specification

i=u,kif h; # 0:

in C++ codes: In Java codes:
cout<<"+"<<h[il<<"x""<<i; System.out,print("+" + h[i] + "x*" + i)

8.11*, Use the hint of Exercise 8.10* with the following changes.

1. Assign m + n (not the maximum of them) to the degree k of h.

2. To define the coefficients of h, in the range of a for template with the specifica-
tion i=0, k, first calculate the series Z§=0 f;gi_s as sum (Section 6.2). Then, assign
sum for h;.

3. Print the string f(x)*g(x)= in the printing item 1.

8.12*, Receive the k-entry array e calling the sub-algorithm Bin() in Exercise 8.21 for
n. That is to say that,

k

n= Z eiZi.

i=0

Take 1 as the initial value of b. Take another variable p with the initial value of 1. In
the range of a for template with the specification i=0, k, do the following:

1. Substitute aP¢i for a;

2. Substitute the remainder of b x a by m for b;

3. Substitute 2p to p.

After exiting the loop, b is the required number to print.

384 — Hints for the exercises

8.13*. First, calculate the number of digits of n using Exercise 4.10 and assign it to a
variable, say d. Then, store the digits of n from left to right in a d-entry array named
D. To do this, store the quotients of n by 104~ in the entry D, ,_; in the range of a for
template with the specification i=d, 1, -1 and then replace n by the remainder of n by
104-1, Now, the required format for the output can be performed using the appropri-
ate formats in both C++ and Java.

9.2. Use the swap algorithm in Example 5.4 to swap the entries 4;; and A;; inside two
nested for templates. Pay attention to the final values of the loop (refer to Algorithm
7.3).

9.3. Compare the corresponding entries inside two nested for loops and return 0 as
soon as an inequality occurs. Moreover, return 1 after the (natural) exit from the outer
loop.

9.4. The entry A;; is on the secondary diagonal if i + j=6. Therefore, using an if tem-
plate, ifi=jori+j=6then, assign 1to 4;; inside two nested for templates; otherwise,
assign 0 to 4;;.

9.5. In a for template with the specification i=1, 7, swap the (i, i)- and (i, 8- i)-entries
using the swap algorithm.

9.6. In a for template with the specification j=1,m, swap the (r, j)- and (s, j)-entries of
A by the swap algorithm.

9.8. In a for template with the specification j=1,m, apply the following substitution.
Arj <« AT} + ZAL’]"

9.10. In a for template with the specification j=1,m, apply the following substitution.

Arj « ZA.,-]'

9.12. First, define E as a 10 x 10 matrix and, initialize zero to all of its entries using

two nested for loops. Then, perform the following three instructions respectively in

the range of two nested for loops with the variables i and j:

1. AssignltoA;j;

2. Print A using the sub-algorithm weiteImat();

3. AssignOto 4;;.

9.13. The algorithm of this exercise is similar to Flowchart 9.8. It suffices to change
the following two instructions in Case 1:

Hints for the exercises = 385

- Remove the instruction which substitutes —d to d;

— Transfer the implementation control to the beginning of the leading for loop
which is supposed to have the label ‘a’ instead of the instruction which returns
zero. This can be done by goto a and continue a statements in C++ and Java
codes, respectively.

9.15. Use a similar logic as in the search() function of Example 8.7. Here two nested
for templates should be used. The main algorithm can be achieved using a for tem-
plate.

9.16. Use the function searchFmat () of the previous exercise.

9.17. First, assign the coefficients matrix A in another matrix, say B. Then, apply the

following instructions in the range of a for template with the specification j=1, 10.

1. Swap the vector y and the i-th column of A. To do this, swap the entries y; and 4;;
using a for template with the specification i=1, 10;

2. Divide det(B) by det(4);

3. Printitas x;.

9.18. Use the idea in Programs P9_9.

9.1*, For parts 1, 2, and 3, use the hints of the parts 1, 5, and 2 of Exercise 6.1*, respec-
tively. The other parts have similar algorithms.

9.2*, Apply the following instructions in the range of a for template with the specifi-

cation i=1,5.

1. Assign A;; and 1 to the real variable max and integer variable p, respectively;

2. Intherange of a for template with the specification j=2, 7, substitute 4;; for max
if it is greater than or equal to max. Further, substitute j for p;

3. After exiting this inner loop, the (i, p)-entry is the position of the maximum entry
in row i. Print max together with this position with an appropriate design and
continue.

9.3*. Use the function rev() in Example 7.4

9.4*. Read the matrix A. Consider the main part of either of Algorithms 8.11(b) or
8.11(c) including the two nested loops. In that algorithm, replace 39, a;, and a;,,; by
7, Ayi, and Ay .1y, respectively. In the analogous algorithm for descending order, the
inequality ‘<’ is replaced by ‘>’. Accordingly, you have two algorithms, namely, one
for sorting in ascending order of 7 entries in row k and the other for sorting in de-
scending order of the same entries.

386 = Hints for the exercises

Now, in the range of a for template with the specification k=1, 8, place the above-
mentioned ascending algorithm if k is odd and descending algorithm otherwise. Fi-
nally, print the deformed matrix A after exiting this loop.

9.5*, First, simultaneously, calculate the sum of the main and the secondary diago-
nals. For this purpose, take two variables sD and sS with the initial values of 0. Then,
substitute the addition of A, and sD for sD and the addition of A+ and sS for
sS in the range of a for template with the specification k=1, n. Upon exiting this loop,
print the message Not magic and terminate the algorithm if sD = sS; otherwise, cal-
culate the sum of the entries in the k-th row and compare it with sD (or sS) in the range
of a for template with the specification i=1, n. To this end, take the variable sR with
the initial values of 0. Then, in the range of a for template with the specification
j=1,n, substitute the addition of 4;; and sR for sR. Upon exiting this loop, print the
message Not magic and terminate the algorithm if sD = sR.

Repeat the recent procedure for the column instead of row. Now, print the mes-
sage Magic after exiting the outer loop.

9.6*. Remove column j of A and pull the entries of the next columns one column back-
ward. To this aim, substitute A4;;,, for 4;, in the range of two nested for loops with
the specifications i=1,n and k=j,n-1, respectively. Similarely, remove row i of A.

9.7*. Define the determinant as follows if n = 2.
pet = Aj14z; — ApAyy

Otherwise, use the method of extending the determinant based on the first row (or the
first column). For this purpose, use the function of the previous exercise.

9.8*. Use the sub-algorithm Ai j() in Exercise 9.6* and the function det () in Example
9.8. Name the adjacent matrix as adjA and define it as follows. In the range of two
nested for loops with the specifications j=1,n and i=1, n, respectively, first, call the
sub-algorithm Aij() for A, i, and j and receive the return matrix in the name of Ahat.
Now, define the (j, i)-entry of adjA using the following formula.

adjA;; = —1'* det(Ahat), i=1,2,..,n, j=1,2,..,n

9.9*, Perform the following in the range of an outer for loop with the specification
k=1,n:
1. Using an if template, if A, = 0 then, perform the following instructions in the
range of an inner for loop with the specification i=k+1,n:
1.1. Using an if template, if A;, # 0 then, perform the instructions from the la-
bel ‘b’ onward in Case 2 (Part 1 and Part 2) of Flowchart 9.9;

Hints for the exercises =——— 387

1.2. Otherwise, continue the inner for loop;
2. Otherwise, continue the outer for loop.

9.10*. Use the idea in Flowchart 9.9 removing the instructions concerned the matrix
B. Moreover, transfer the control to the beginning of the leading for loop which is
supposed to have the label ‘a’ instead of the instructions after exiting the inner loop
in Case 1. This can be done by the goto a statement in C++ codes and continue a
statement in Java codes.

Bibliography

[1] Allain A. Jumping into C++. CProgramming.com 2013.

[2] Atzori R. (Online e-book containing more than 300 flowcharts): http://www.flowgorithm.org/

[3] Burd B. A. Beginning programming with Java for Dummies, 5% Edition. For Dummies 2017.

[4] Byrne P. and Lyons G. The Effect of Student Attributes on Success in Programming. Proceeding of
6th Annual Conference on Innovation and Technology in Computer Science Education ITiCSE
United Kingdom 49-52, 2001.

[5] Cadenhead R. Sams teach yourself Java in 21 days (Covering Java 8), 3" Edition. Sam Publishing
2016.

[6] Chaudhuri A. B. The art of programming through flowcharts and algorithms. Laxmi Publications
2005.

[7] Cook D. D. Flowgorithm: Principles for Teaching Introductory Programming Using Flowcharts.
Proceedings of the 2015 American Society for Engineering Education/Pacific South West. 158-
167, 2015.

[8] Davis G. B. Fortran 77: A structured disciplined style (ISE Editions). McGraw-Hill Education 1984.

[9] Deitel P.). and Deitel H. C++: How to program, 10" Edition. Pearson International 2017.

[10] Eckel B. Thinking in Java, 4" Edition. Prentice Hall 2006.

[11] Erosa A. M. and Hendren L. J. Taming control flow: a structured approach to eliminating goto
statements. Proceedings of the 994 IEEE International Conference on Computer Languages,
229-240, May1994.

[12] Flanagan D. Java in a Nutshell, 5*" Edition. O'Reilly Media Inc. 2005.

[13] Farrell). Computer Programming Logic Using Flowcharts. Boyd & Fraser Pub. Co. 1994.

[14] Gamow G. One, two, three...infinity facts and speculations of science (Dover Books on Mathe-
matics) Revised Edition (1947, revised 1961), Viking Press (copyright renewed by Barbara
Gamow, 1974), reprinted by Dover Publications, illustrated by the author; eBook edition, Dover
2012.

[15] Gomes A. and Mendes A.). Learning to program-difficulties and solutions. International Confer-
ence on Engineering Education-ICEE, 2007: http://icee2007.dei.uc.pt/proceedings/pa-
pers/411.pdf

[16] Gomes A. Carmo L. Bigotte E. and Mendes A.). Mathematics and programming problem solving.
Proceeding of the 3rd E-Learning Conference in Computer Science Education (CD-ROM), Coim-
bra, Portugal, September 2006.

[17] Janfada A. S. FORTRAN 77: Programming and comprehensive reference (a textbook in Persian
language). Urmia University Publications 1994.

[18] Janfada A. S. Elementary programming in Pascal, related by algorithm (a textbook in Persian
language). Urmia University Publications 2009.

[19] Janfada A. S. Elementary programming in C++, via algorithm (a textbook in Persian language).
Urmia University Publications 2018.

[20] Kernighan B. W. and Ritchie D. M. C Programming Language, 2" Edition. Prentice Hall 1988.

[21] Liberty). and Jones B. Sams teach yourself C++ in 21 days, 5" Edition. Sams Publishing, 2004.

[22] Merritt S. M. and Stix A. Migrating from Pascal to C++. Springer 1997.

[23] Moore D., Musciano C., Liebhaber M.)., Lott S. F., and Starr L. “goto considered harmful’ con-
sidered harmful’ considered harmful? Communications of the ACM 30(5): 351-355, 1987.

[24] Mueller F. and Whalley D. Avoiding unconditional jumps by code replication. Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and implementation, 322-
330, 1992.

https://doi.org/10.1515/9783110161484-011

390 — Bibliography

[25] Murphy J. Ridout D. and McShane B. Numerical analysis algorithms and computation. Halsted
Press 1988.

[26] Parhami B. Introduction to computer (in Persian language). Iran University of Science and Tech-
nology Publishing 1984.

[27] Peterson W., Kasami T., and Tokura N. On the capabilities of while, repeat, and exit statements.
Communications of the ACM 16(8): 503-512, 1973.

[28] Ramshaw L. Eliminating go to’s while preserving program structure. Journal of the ACM (JACM),
35(4): 893-920, 1988.

[29] Rubin F. ‘goto considered harmful’ considered harmful. Communications of the ACM, 30(3):
195-196, 1987.

[30] Savitch W. Problem solving with C++, 10" Edition. Pearson Education 2017.

[31] Scheid F. Computer science (Schaum’s Outline Series). McGraw-Hill Companies 1970.

[32] Scheinerman E. C++ for Mathematicians: An Introduction for students and professionals. CRC
Press 2006.

[33] Schildt H. C++: The complete reference, 4" Edition. McGraw-Hill Education 2002.

[34] Schildt H. Herb Schildt’s C++ programming cookbook. McGraw-Hill Education 2008.

[35] Sleeman, D. The Challenges of Teaching Computer Programming. Communications of the ACM.
29(9): 840-841, 1986.

[36] Sierra K. and Bates B. Head first Java, 2" Edition. O’Reilly Media Inc. 2005.

[37] Stroustrup B. The C++ programming language, 4™ Edition. Addison-Wesley Professional 2013.

[38] Stroustrup B. Programming: Principles and practice using C++, 2" Edition. Addison-Wesley
Professional 2014.

[39] Sutter H. and Alexandrescu A. C++ coding standards: 101 rules, guidelines, and best practices.
Addison-Wesley Professional 2004.

[40] Swan T. Mastering Turbo Pascal 5.5, 3" Edition. Hayden Books 1989.

[41] Wing). M. Computational thinking. Communications of the ACM. 49(3): 33-35, 2006.

[42] Wolfram, S. How to Teach Computational Thinking. Stephen Wolfram Blog: http://blog.ste-
phenwolfram.com/2016/09/how-to-teach-computational-thinking/.

Websites

[43] A Crash Course from C++ to Java: http: //www.horstmann.com/ccc/c_to_java.pdf

[44] artima Scala, consulting, training, books, and tools: https://www.artima.com/objectsandjava/

[45] BeginnersBook.com - Tutorials for Beginners: https://beginnersbook.com/

[46] Codequiz.in: http://www.codequiz.in/category/c-programs-2/

[47] Computer Science University of Toronto: http://www.cs.toronto.edu/

[48] Cprogramming.com: https://cboard.cprogramming.com/c-programming/

[49] GeeksforGeeks: https://www.geeksforgeeks.org/

[50] IncludeHelp.com: https://www.includehelp.com/

[51] infocodify.com: http://www.infocodify.com/

[52] javaTpoint: https://www.javatpoint.com/

[53] Learning a New Programming Language: Java for C++ Programmers:
http://pages.cs.wisc.edu/~hasti/cs368/)JavaTutorial/

[54] MathBits.com: https://mathbits.com/JavaMathBits/JavaResourcesOpening.html

[55] Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/java/

[56] Programize: https://www.programiz.com/java-programming/

[57] Simple Snippets, Quality Edu-Tech Videos & Tutorials: https://simplesnippets.tech/

[57] SitePoint Pty Ltd [AU]: https://www.sitepoint.com/

[59] Software Development & Entrepreneurship Tutorials: http://tutorials.jenkov.com/

Bibliography =—— 391

[60] StudyTonight: https://www.studytonight.com/

[61] Study.com: https://study.com/

[62] ThoughtCo.: https://www.thoughtco.com/

[63] Tutorial Dost: http://www.tutorialdost.com/

[64] TutorialsPoint simply easy learning: https://www.tutorialspoint.com/java/
[65] w3schools.com: https://www.w3schools.com/

Index

access specifier, 66 call unit, 122

- private, 66 character

- protected, 66 - control, 33, 55

- public, 66, 71 - conversion, 62
algorithm, 1, 2, 5, 15, 41, 61 - whitespace, 19, 49

— bubble sorting, 105 class, 64

— definition, 1 constant, 23

— designing, 3 - declaring, 23

- Euclidean, 223 constructor, 71

— features, 1 - calling, 73

- figurative form, 7 - copy, 73

- flow of, 8 — default, 71

- general steps of writing, 6 - parameterized, 72

— generalized Euclidean, 228

- good, 6 dangling else problem, 93

- implementing, 3, 4, 6,9 data, 19

- standard, 1 data member, 65

- swap, 11, 140 — static, 79

- symbolic form, 3 data type, 12, 19

— writing, 4, 6,7 - boolean, 49

- writing form, 3 - byte, 49
algorithm-writing, 86 - char, 20, 21, 49
al-Khawrizmi, 1 - const, 23
approximated integration - double, 19, 20, 49

- Simpson, 193 - float, 19, 20, 24, 49

- trapezoidal, 187 -int, 19, 20, 49
argument, 28, 53, 123, 126 - long, 19, 49
array - primitive, 50

— as parameter, 253, 305 - reference, 68

— declaring, 246 - short, 19, 49

- length, 246, 253, 280, 305, 307 - signed, 19

- one-dimensional, 246 - unsigned, 19

- two-dimensional, 304 - void, 21, 49, 50

Denis Ritchie, 17

base-2 decimal system, 221 destructor, 74
bisection method (for finding roots), 237
Bjarne Stroustrup, 17 elementary row operations, 330
block, 23 Enter key symbol, 38

- static, 79 escape sequence. See control sequence
brain, 2, 6 expression

- commands, 2, 3,12 - algebraic, 29

- process, 2,3, 6 — arithmetic, 29

- reaction, 2, 12
branching Fibonacci sequence, 152, 205

- multi-way, 85, 97, 109 flowchart, 7

- two-way, 26, 84 - shapes, 8,9

https://doi.org/10.1515/9783110616484-012

394 = Index

format (C++), 33, 40, 41
— setprecision, 42
- setw, 41
format (Java), 60, 61
format specifier (Java)
- flag, 61
— precision, 62
- width, 62
function, 125, 126, 130
— 1-return, 125
- body, 31, 32
- calling, 131
- int main(), 32
- library, 28, 52
— no-return, 125
— recursive, 141, 142
- self-calling. See recursive function
- void (calling), 133
- void main(), 33

Gosling, James, 47
greatest common divisor, 223
Green Team, 47

hanging problem, 86

IDE workspace

- C++,31

- Java, 53
identifier, 18
implementation table, 4, 9, 15

- arranging, 4, 6
incompatibility (in the for loop), 156
infinity value (in Java), 51
input

- entering, 38

- notification, 33, 41, 61

- unit, 38

keyword, 18, 19, 48

— const, 45

- static, 77, 128

- this, 82

- void, 128
Khayyam-Pascal triangle, 169

Lagrange interpolation polynomial, 289

literal, 50
- Boolean, 51

- character, 50
- numerical, 51
- string, 50
loop
- automated. See for loop
- conditional, 155, 197, 202
— do-while, 200
- for, 155
— infinite for, 159
- while, 200

matrix. See two-dimensional array
- determinant, 330
- identity, 307
- inverse, 335
- row-reduced, 364
- row-reduced echelon, 364
member function, 65, 71
method, 125, See member function
- class, 80, 128
- instance, 128
- main (Java), 54
— member. See class method
- static, 80

namespace, 75
- std, 77
NaN value (in Java), 52
Naughton, Patrick, 47
nested
- conditional statements, 92
- conditional templates, 92
- if-else templates, 102

object, 64, 67

- creating, 67

- scanner, 58
operator, 23

- &, 44

-* 44

-,, 27,52

-:,79

-2,26,52

— address-of, 44

— arithmetic, 23

— assignment, 26, 37

— comparative. See relational operator

- dereference, 44

- logical, 25

- relational, 25
- scope resolution, 79, See :: operator
- sizeof, 21, 27
output
- heading, 33, 41, 61
- unit, 33

package, 54
parameter, 126, 130, 137

- actual. See argument

- formal. See parameter

- pass-by-reference, 125

- pass-by-value, 125

- reference. See pass-by-reference

- value. See pass-by-value
pointer, 44

— const, 45

- declaring, 44
preprocessor directive, 35

- conio.h, 35

- iomanip.h, 35, 42

- iostream.h, 35

— math.h, 35
prime numbers, 177
priority of operators, 30
problem solving, 1, 5, 6, 11
program, 5, 19, 31

- C++,31

- complete, 125, 133

- Java, 53

- writing, 5, 6,12
programming, 3,5, 6

— object-oriented, 140

- styles, 23, 32
programming language, 5, 6, 8

-C 17,18

- C++,17

- Fortran, 92

- Java, 47
punch card, 10
Puzzle of Hanoi Towers, 148

reflexing point, 142, 143, 147
reserved word. See keyword
revisions
- C++,17
- Java, 47
rule
- 1of arranging implementation table, 4

Index =—— 395

- 2 of arranging implementation table, 15
- calling the array-return methods, 256
— calling 1-return function, 131

- calling a void function, 133

— constructing the sub-algorithms, 122

— directions, 8

- ending the sub-algorithms, 123

— grouping, 85

- implementation table for nested loops, 187

— intersection of the T- and F-paths, 90
— making the if-else-if template, 98

- merging the conditions, 103

- multi-using the reading methods, 254
- naming identifiers, 18

— parameter list in functions, 129

— parameter-argument, 124

- parameters of multi-return subprograms, 137

- priority of operators, 30
- starting the sub-algorithms, 122

series, 182
— double, 182
- single, 182
Sheridan, Mike, 47
slogan of the book, 3
solution analysing, 2, 6
solving linear equations system
- backward displacement method, 347
— Cramer method, 346
- forward displacement method, 348
- Gauss eliminated method, 349
— matrix method, 342
— triangular decomposition method, 354
sorting method
— bubble, 105, 275
— insertion, 287
specification (of the for loop), 156
statement, 31
— assignment, 26, 37
- break, 112, 115, 176, 203, 240
- cin, 38, 84
- clrscr, 35
- continue, 176, 203, 240
- cout, 33, 84
— do-while, 200
- exit(0), 112, 114
- frequent assignment, 37
- getch(), 35
- goto, 112, 115, 240

396 = Index

- if, 89 - namespace, 75

- if-else, 86 - output statement, 33

- if-else-if, 96 - switch, 110

- print, 55 - this keyword, 82

— printf, 61 - variable declaration, 21, 51

- println, 55 - while, 200

- return, 139

- return 0, 32 template

- switch, 111 — assignment, 37, 84

- System.exit(0), 114 - compound, 84

- using namespace std, 77 - conditional, 84

- while, 200 — do-while, 200
sub-algorithm, 122 - for, 155

— function. See function - if, 89, 112

— multi-return, 136 - if-else, 86
subprogram, 122, 124 - if-else-if, 96

— multi-return, 136 - input, 38
syntax, 5 - output, 33

- assignment statement, 37 - simple, 84

- constant declaration, 23 - switch, 109

- continue, 176 - while, 200

— creating an object, 67

- defining class, 65 variable, 21, 41, 51, 61

- do-while, 200 - class, 71

- for, 155 - declaring, 12, 21, 23, 37, 51

- formatted print, 61 - global, 71

- function (method) defining statement, 128 - instance, 70

- if-else, 86 - local, 70

- if-else-if, 96 - static local, 78

- input statement, 38 vector. See One-dimensional array

