


Data Structures in Depth Using C++



Mahmmoud Mahdi

Data Structures in Depth Using
C++

A Comprehensive Guide to Data Structure
Implementation and Optimization in C++



Mahmmoud Mahdi
Zagazig, Egypt

ISBN-13(pbk): 979-8-8688-0801-2 ISBN-13(electronic): 979-8-8688-0802-9
https://doi.org/10.1007/979-8-8688-0802-9

© Mahmmoud Mahdi 2025

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor
the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image by Mahmmoud Mahdi

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A. Phone 1-800-
SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.
For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please
e-mail bookpermissions@springernature.com.
Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for
most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.
Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub
(https://github.com/Apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/979-8-8688-0802-9
booktranslations@springernature.com
bookpermissions@springernature.com
http://www.apress.com/bulk-sales
https://github.com/Apress
https://www.apress.com/gp/services/source-code


To my dear father, may God forgive him.



Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction 2
1.1.1 What Are Data Structures and Algorithms? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Interplay Between Data Structures and Algorithms . . . . . . . . . . . . . . . . . . . . 2
1.1.3 The Significance of Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Selecting the Appropriate Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Types of Data Structures 5

1.3 Fundamentals of Algorithms 6
1.3.1 Distinguishing Programming and Algorithmic Problems . . . . . . . . . . . . . . . . 6
1.3.2 Algorithm Design Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Common Algorithmic Problem Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Analyzing Algorithm Efficiency 8
1.4.1 Understanding Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



viii Contents

1.4.2 Evaluating Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Analyzing Time Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 Understanding Growth Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.5 Evaluating Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.6 Asymptotic Growth Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Summary 11

Problems 11

2 Primary Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Principles of Software Design 16

2.2 Data Structure Interfaces 16
2.2.1 Benefits of Using Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Interface vs. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Interface Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Templates 19
2.3.1 Templates and Type Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Template Usage in Practical Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Templates in Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Considerations and Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Core Data Structure and Interfaces 21
2.4.1 List Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Sets Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Advanced Data Structure Interfaces 26
2.5.1 Tree Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Summary 30

Problems 31

3 Arrays and Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Arrays and Pointers 34
3.1.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Pointers to Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Stack vs. Heap Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.5 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Dynamic Arrays 41
3.2.1 Resizable Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Contents ix

3.2.3 Dynamic Array Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Resizing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Optimization 48
3.3.1 An Optimized Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Optimized Dynamic Array Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Summary 50

Problems 50

4 Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction to Linked Pointers 58
4.1.1 Pointers to Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Creating Linked Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.4 Why Pointers Matter in Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 A Singly-Linked List (SLList) 63
4.2.1 Anatomy of a Singly-Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Creating a Singly-Linked List Without Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Creating a Singly-Linked List with a Tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Accessing Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.5 Traversing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 A Doubly-Linked List (DLList) 80
4.3.1 Anatomy of a Doubly-Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 A Circular Doubly-Linked List with Dummy Node . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Implementing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.4 Insert and Remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.5 Accessing Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.6 Traversing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Performance Analysis 90
4.4.1 Linked Lists vs. Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Linked List Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.3 Best Practices and Common Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Summary 93

Problems 95

5 Stack and Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Stack 100
5.1.1 Introduction to Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Array-Based Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



x Contents

5.1.3 Linked List Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Queue (Single-Ended Queue) 103
5.2.1 Introduction to Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Array-Based Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.3 Linked List Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Deque (Double-Ended Queue) 114
5.3.1 Introduction to Deque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Array-Based Deque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Linked List Deque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Performance Analysis 121
5.4.1 Stack Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Queue Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.3 Deque Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.4 Choosing the Right Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Summary 122

Problems 122

6 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Hashing Introduction 130
6.1.1 Array vs. Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.2 Introducing Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.3 Applications of Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1.4 Usage Example: Management and Analysis of Access Logs . . . . . . . . . 131

6.2 Hash Functions 133
6.2.1 Use of Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.2 Multiplicative Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.3 Generating Hash Codes for Various Data Types . . . . . . . . . . . . . . . . . . . . 135
6.2.4 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Hash Table Techniques 140
6.3.1 Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Open Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Hash Table Implementation 147
6.4.1 Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.2 Linear Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.3 Hash Table Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Summary 159

Problems 159



Contents xi

7 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1 Binary Trees 166
7.1.1 Introduction to Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1.2 Properties of Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1.3 Types of Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.1.4 Representation of Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.5 Computing Size, Height, and Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.6 Destroying a Binary Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.1.7 Binary Tree Traversal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.8 Implementation of Traversal Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.9 Traversing Binary Trees – Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.10 Comparison of Tree Traversal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Binary Search Trees (BSTs) 179
7.2.1 Introduction to Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2.2 Properties of Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.3 Basic Operations in BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.2.5 Class Implementation of BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Balanced Binary Trees 187
7.3.1 Unbalanced Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.2 Self-Balancing Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.4 AVL Trees 190
7.4.1 Introduction to AVL Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4.2 AVL Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4.3 Balanced and Unbalanced AVL Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.4.4 Rotations in AVL Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.4.5 Implementation of AVL Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.5 Summary 201

Problems 203

8 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.1 Introduction to Graphs 208
8.1.1 What Is a Graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.1.2 Graph Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1.3 Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1.4 Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.1.5 Difference Between Graph and Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



xii Contents

8.2 Graph Representations 212
8.2.1 Basic Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.2.2 Abstract Interface for Graph Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2.3 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.2.4 Adjacency List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.2.5 Other Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.3 Graph Traversals and Advanced Operations 236
8.3.1 Depth-First Traversal (DFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.3.2 Breadth-First Traversal (BFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.3.3 Advanced Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.3.4 Graph Traversal Class Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.4 Performance Considerations 243
8.4.1 Time Complexity of Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.4.2 Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.4.3 Choosing the Right Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.5 Summary 244

Problems 246

9 Specialized Data Structures and Techniques . . . . . . 249

9.1 Introduction 250

9.2 Heaps 250
9.2.1 Introduction to Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.2.2 Binary Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9.2.3 Optimizing Binary Heap Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.2.4 Customizing Binary Heaps with HeapType . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.3 Priority Queues 267
9.3.1 Introduction to Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.3.2 Implementing a Priority Queue with a Heap . . . . . . . . . . . . . . . . . . . . . . . 267
9.3.3 Priority Queue Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

9.4 Maps 272
9.4.1 Introduction to Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
9.4.2 Key-Value Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
9.4.3 Map Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.4.4 Implementing a Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9.5 A Space-Efficient Linked List 279
9.5.1 Structure of a Space-Efficient Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



Contents xiii

9.5.2 Node Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.5.3 Implementation of Space-Efficient Linked List . . . . . . . . . . . . . . . . . . . . . . 282

9.5.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.5.5 Advantages and Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.6 Skip Lists 294
9.6.1 Introduction to Skip Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

9.6.2 Skip List Structure and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

9.6.3 Node Structure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9.6.4 Skip List Class Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9.6.5 Implementing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

9.6.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.7 Summary 306

Problems 307

10 Applications and Real-World Examples . . . . . . . . . . . . 311

10.1 Task Scheduling System 312
10.1.1 Solution and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

10.1.3 Method Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

10.1.4 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

10.1.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

10.1.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

10.2 Social Network Friend Recommendations 324
10.2.1 Solution and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

10.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

10.2.3 Method Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

10.2.4 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

10.2.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

10.2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

10.3 Library Management System 338
10.3.1 Solution and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10.3.3 Method Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

10.3.4 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

10.3.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

10.3.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352



xiv Contents

10.4 Summary 352

10.5 Book Summary 352

Problems 353

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357



About the Author

Mahmmoud A. Mahdi, Ph.D., is a seasoned computer science professional with exten-
sive experience in academia, research, and software development since 2005. His expertise
spans machine learning, natural language processing, and programming, with a strong em-
phasis on C++. Over the course of his career, he has developed enterprise-grade solutions,
led pioneering projects in big data analytics and Arabic natural language processing, and
designed a custom compiler for robotic simulation that serves as both a technical innova-
tion and an educational tool.

He has a profound focus on algorithm design and analysis, tackling complex compu-
tational challenges with innovative solutions. His research interests, published in leading
journals and conferences, reflect his dedication to advancing the fields of computational
research and scalable systems.

As an experienced educator, Dr. Mahdi has designed and delivered courses on data
structures, algorithms, machine learning, and software testing, emphasizing the practical
application of theoretical concepts. His book, Data Structures in Depth Using C++, re-
flects his decades of teaching, research, and hands-on experience, providing readers with a
seamless integration of foundational knowledge and real-world insights.

Beyond his academic and research endeavors, Dr. Mahdi is dedicated to fostering
innovation, collaboration, and excellence in programming and software development. He
continues to inspire the next generation of technologists, equipping them to bridge the gap
between theory and practice and drive progress in the field of computer science.



About the Technical Reviewer

Wael Said received his M.Sc. degree in Computer Science from
Helwan University in 2004 and his Ph.D. degree in Computer
Science in 2011 from Technical University Darmstadt. He is As-
sociate Professor in the Department of Computer Science, Fac-
ulty of Computers and Informatics, at Zagazig University and
currently is Assistant Professor in the Department of Computer
Science, College of Computer Science and Engineering, Taibah
University, Saudi Arabia. His research interests are in the areas
of machine and deep learning, text and data mining, data analy-
sis and data science, cloud and mobile computing, information
and database security, as well as cryptography and cryptanaly-
sis.



Acknowledgments

The journey of writing this book has been a rewarding and enlightening experience, and it
would not have been possible without the support and encouragement of many individuals
who contributed in various ways.

I would like to express my deepest gratitude to my family for their unconditional love,
patience, and support. Your encouragement has been my greatest motivation throughout
this process, and I am forever grateful for your belief in me.

A special thanks to Dr. Wael Said, whose insightful reviews and constructive feedback
greatly enriched the quality of this book. Your expertise and guidance were invaluable in
refining the content and ensuring its accuracy.

A special acknowledgment goes to my outstanding student, Fatma Omara, whose metic-
ulous revisions and thoughtful suggestions greatly improved the clarity and coherence of
the material. I am also deeply thankful toMenna Jaheen for her creative contributions to the
book’s visual appeal, particularly her work on the engaging cartoon graphics. I would also
like to extend my heartfelt appreciation to the team at Apress. Managing Director, Wel-
moed Spahr, Acquisitions Editor, Melissa Duffy, Development Editor, James Markham,
and Coordinating Editor, Gryffin Winkler, your professionalism, dedication, and attention
to detail were instrumental in bringing this book to life. I am deeply thankful for your
guidance and support throughout the publishing process.

Finally, I wish to thank you, the reader, for choosing this book. I hope it serves as
a valuable resource on your journey to mastering data structures and algorithms in C++.
Your enthusiasm for learning inspires the creation of works like this, and I am honored to
be a part of your educational journey.

Thank you all for your support.



Introduction

Welcome to Data Structures in Depth Using C++, a comprehensive guide designed to help
you master the fundamental and advanced concepts of data structures and algorithms. This
book is your gateway to understanding how to efficiently organize, manage, and manipu-
late data to solve complex computational problems. Whether you are a student, educator, or
professional, this book will equip you with the knowledge and skills to implement and op-
timize data structures using C++, one of the most powerful and widely used programming
languages in the software industry.

The content below already serves as the introduction, addressing what the book is about,
its target audience, the structure, and learning outcomes. It includes:

Who This Book Is For
Structure of the Book
Learning Outcomes

Who This Book Is For
This book is intended for students, educators, and professionals alike who wish to deepen
their understanding of data structures and algorithms using C++. Whether you’re a begin-
ner looking to get started with the basics or an experienced developer aiming to refine your
skills, this book offers something valuable for every reader. The content is particularly
suited for those preparing for technical interviews, academic examinations, or looking to
enhance their problem-solving abilities in software development.



xxii Introduction

Structure of the Book
The book is structured to take the reader on a journey from the basic concepts to the more
advanced topics in data structures. Each chapter follows a structured approach:

• Introduction: Each chapter begins with an overview of the data structure, including
its definition, characteristics, and common use cases.

• Implementation: This section provides a step-by-step guide to implementing the
data structure using C++. The code examples are thoroughly explained, ensuring
that readers understand every line of code.

• Performance Analysis and Optimization: This section analyzes the efficiency of
the data structures and explores techniques to optimize their performance.

• Exercises: To reinforce learning, each chapter concludes with a set of exercises,
ranging from basic to challenging, designed to test the reader’s understanding and
encourage further exploration.

The chapters are organized as follows:
• Chapter 1: Introduction – Covers the fundamentals of data structures and algo-
rithms, their significance, and the interplay between them

• Chapter 2: Primary Building Blocks – Discusses the principles of software design,
data structure interfaces, and the use of templates

• Chapter 3: Arrays and Dynamic Arrays – Focuses on array structures, including
static and dynamic arrays, their implementation, and optimization techniques

• Chapter 4: Linked List – Explores singly- and doubly-linked lists, their memory
management, and performance analysis

• Chapter 5: Stack and Queue – Introduces stack and queue structures, including
array-based and linked list implementations, and their performance considerations

• Chapter 6: Hash Tables – Discusses hashing techniques, hash functions, and hash
table implementation strategies

• Chapter 7: Trees – Delves into binary trees, binary search trees, and AVL trees,
covering their properties, operations, and performance analysis

• Chapter 8: Graphs – Covers graph theory, graph representations, and advanced
operations like traversals and graph algorithms

• Chapter 9: Specialized Data Structures and Techniques – Introduces advanced
data structures like heaps, skip lists, and space-efficient linked lists

• Chapter 10: Applications and Real-World Examples – Provides case studies and
real-world examples that demonstrate the application of data structures in practical
scenarios, such as task scheduling, social network analysis, and library management
systems

By reading this book, you will:
• Gain a deep understanding of data structures and their implementation in C++
• Learn how to optimize data handling and storage for efficient software performance
• Develop the ability to solve complex programming problems using appropriate data
structures

• Understand best practices in data structure design and performance analysis



Introduction xxiii

How to Use This Book
Each chapter includes detailed explanations, code snippets, and exercises to reinforce learn-
ing. The code examples are designed to be run in a standard C++ development environment,
and the exercises at the end of each chapter provide opportunities to test your understand-
ing. Whether you are reading sequentially or jumping to specific topics, this book aims to
provide both theoretical insights and practical skills. Use the exercises to practice and the
case studies to see how these data structures are applied in real-world scenarios.

Final Remarks
Data Structures in Depth Using C++ is more than a textbook; it is a practical guide de-
signed to help you transition from understanding basic concepts to mastering advanced
data structures. The book encourages experimentation with code, exploration of exercises,
and deeper engagement with C++ programming. By the end, you will have built a strong
foundation in data structures, preparing you for advanced studies or professional develop-
ment in computer science.

Enjoy your journey into the world of data structures with C++!



Acronyms

ADT Abstract Data Type
API Application Programming Interface
ASCII American Standard Code for Information Interchange
AVL Adelson-Velsky and Landis
BFS Breadth-First Search
BST Binary Search Tree
DLList Doubly-Linked List
DFS Depth-First Search
FIFO First In, First Out
GUI Graphical User Interface
IDE Integrated Development Environment
LIFO Last In, First Out
LR Left Rotation
LRR Left-Right Rotation
OOP Object-Oriented Programming
RLR Right-Left Rotation
RR Right Rotation
SEList Space-Efficient List
SLList Singly-Linked List
UML Unified Modeling Language



1. Introduction

Objectives
In this chapter, I will introduce you to the world of data structures and algorithms, laying
the foundation for understanding how these elements are pivotal in crafting efficient
software solutions. Together, we will explore

• The basic concepts of data structures and how they are utilized to organize and
store data efficiently

• The distinction between data structures and algorithms, illustrating their inter-
dependence and individual roles in problem-solving

• Core algorithms and their functioning, setting the stage for deeper dives into
algorithmic strategies and complexities

• Algorithm analysis and design techniques, including an introduction to com-
plexity analysis, to equip you with the skills necessary to evaluate and choose the
right algorithmic approach

By the end of this chapter, you will have a solid understanding of the foundational
concepts of data structures and algorithms, preparing you to delve deeper into more
complex structures and computational strategies in the subsequent chapters.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_1

1

https://doi.org/10.1007/979-8-8688-0802-9_1


2 Chapter 1. Introduction

1.1 Introduction
In this section, I’ll introduce you to the core concepts of data structures and algorithms, the
fundamental elements in computer science and software engineering. We’ll explore what
data structures and algorithms are, their interplay, and why understanding this relationship
is critical for creating efficient and effective software solutions.

1.1.1 What Are Data Structures and Algorithms?
Data structures are essential constructs that organize and store data within a computer’s
memory. They form the backbone of effective software development, enabling efficient
data management to facilitate easy access, modification, and maintenance. Unlike file or-
ganization, which arranges data on disk storage, or data warehousing and databases, which
are designed for large-scale data storage and retrieval across multiple platforms, data struc-
tures are primarily concerned with the optimization of performance and efficiency for spe-
cific algorithmic requirements in real-time processing environments. The design and se-
lection of data structures are critical, focusing on leveraging the characteristics of memory
usage to enhance application performance.

An algorithm is a finite sequence of well-defined, computer-implementable instruc-
tions, typically used to solve a class of problems or to perform a computation. Algorithms
are essential for specifying how tasks are executed and in what order. They take one or
more inputs, process them through a series of steps, and produce an output or a solution to
the problem.

1.1.2 Interplay Between Data Structures and Algorithms
Data structures are the building blocks of algorithms, and the choice of a data structure can
significantly impact the performance of an algorithm. In some cases, using the wrong data
structure can make an algorithm unusable.

The relationship between data structures and algorithms can be likened to a “well-oiled
machine”: data structures provide the framework or the infrastructure, much like the gears
and cogs in a machine, while algorithms act like the engine that drives these components
to solve problems efficiently (see Figure 1.1). This synergy ensures that the overall system
(or the solution developed) operates smoothly and effectively, maximizing performance
and minimizing resource usage.

Illustrating the Relationship
Imagine a scenario where workers (representing data structures) are tasked with organiz-
ing and storing boxes in a warehouse. Alongside, a spider handler (symbolizing an algo-
rithm) navigates through the warehouse, solving problems and collaborating with workers
to optimize the arrangement and retrieval of boxes.



1.1 Introduction 3

Figure 1.1: Illustration of a spider handler (algorithm) solving problems and collaborating
with workers (data structures) to efficiently organize and access data

Data structures and algorithms complement each other, with the efficacy of data han-
dling and processing relying on their synergistic relationship.

Refer to Table 1.1 for a side-by-side comparison of algorithms and data structures,
which will help you understand their unique characteristics and how they complement
each other in the realm of computing.

1.1.3 The Significance of Data Structures
Data structures play an indispensable role in computer science and software development,
transcending simply data storage to encompass efficient organization and management of
data. These structures are crucial for enabling quick data access and manipulation, thereby
forming the bedrock upon which algorithms operate. This, in turn, significantly influences
the performance and scalability of software solutions.

The significance of data structures manifests in three key areas:
• Enable Efficient Data Storage and Retrieval: Data structures allow data to be
stored in a way that enables fast retrieval. This is essential for managing and access-
ing information effectively.

• Facilitate Algorithm Design: Efficient data structures are the foundation of many
algorithms. They allow one to design and implement algorithms that perform tasks
more quickly and with fewer resources.

• Key to Solving Complex Problems: Many real-world problems require complex
data manipulation. Effective data structures provide the tools to solve these problems
efficiently.



4 Chapter 1. Introduction

Table 1.1: Comparison Between Algorithms and Data Structures

Aspect Algorithm Data Structure

Definition A step-by-step procedure or for-
mula for solving a problem

A particular way of organizing and
storing data in a computer so that
it can be accessed and modified ef-
ficiently

Purpose To outline the process of solving
a specific problem or performing a
computation

To efficiently manage and orga-
nize data to enhance the perfor-
mance of algorithms

Focus Process and steps to achieve a task
or solve a problem

Organization, management, and
storage of data

Examples Sorting algorithms (quick sort,
merge sort), search algorithms (bi-
nary search, linear search)

Arrays, linked lists, trees, hash ta-
bles, stacks, queues

Operations Executed to perform a task like
searching, sorting, processing in-
formation

Include operations like insertion,
deletion, traversal, and accessing
data

Performance
Measure

Time complexity and space com-
plexity (efficiency of the algo-
rithm)

Time complexity of operations
(how quickly data can be accessed
or modified)

1.1.4 Selecting the Appropriate Data Structure
Choosing the right data structure is a decision that can greatly influence the efficiency of
your software. We will discuss the key factors to consider when selecting a data structure,
ensuring you make informed decisions that enhance your application’s performance and
manageability.

There are many different types of data structures, each with its strengths and weak-
nesses. Choosing the right data structure for a particular application requires careful con-
sideration of the following factors:

• Access Patterns: How often will the data be accessed? Will it be accessed randomly,
sequentially, or both?

• Insertion and Deletion Frequency: How often will new elements be added to the
data structure? How often will elements be removed?

• Memory Constraints: How much memory is available to store the data?
• Performance Requirements: How important are fast access times? How important
is it to have efficient insertion and deletion operations?

Understanding these considerations helps in developing software that is both efficient
and effective, capable of solving complex problems with optimal resource utilization. Once
a data structure is chosen, its implementation should be both efficient and easy to under-
stand.



1.2 Types of Data Structures 5

1.2 Types of Data Structures
Data structures are essential for organizing, managing, and storing data in a computer. They
are categorized into primitive and composite types, each serving specific computational
purposes.

As you can see in Figure 1.2, data structures are divided based on their complexity
and the operations they support, ranging from simple primitive types to more complex
composite structures.

Data structures can be categorized into several types depending on their characteristics
and functionality. Below is a detailed examination of these types.

Figure 1.2: Types of data structures

Primitive Data Structures
In programming, you’ll frequently encounter basic types essential for handling data. To
give you a clear picture of these types, I’ve detailed them in Table 1.2, which includes
examples to illustrate their practical applications.

Table 1.2: Examples of Primitive Data Structures in C++

Type Use Example

Integer For whole numbers int age = 30

Float For single-precision floating numbers float temperature = 26.3f

Double For double-precision floating numbers double balance = 98765.43

Char For character representation char initial = ’A’

Boolean For true or false values bool isFullTime = true

Pointer For memory address referencing int* ptr = &age



6 Chapter 1. Introduction

As you can see in Table 1.2, primitive data structures are the building blocks of data
handling in programming, with each serving a specific and essential function in software
development.

Composite Data Structures
Composite or non-primitive data structures build on the basics to enable more complex and
efficient data organization. These structures can be broadly classified by their organization
style:

• Linear: Data elements are stored in a sequential manner, facilitating ordered access.
Common examples are arrays, stacks, queues, and linked lists.

• Nonlinear: Data elements are structured in a nonsequential arrangement, often to
reflect hierarchical or interconnected relationships. This category includes trees,
graphs, and sets.

Understanding the diverse types and functionalities of data structures allows you as a
developer to choose the most suitable options to effectively address specific computational
challenges and optimize the performance of applications.

1.3 Fundamentals of Algorithms
In this section, I will guide you through the realm of algorithms, differentiating between
straightforward programming challenges and complex algorithmic problems. We’ll ex-
plore various algorithm design strategies and delve into common types of algorithmic prob-
lems that you might encounter.

1.3.1 Distinguishing Programming and Algorithmic Problems
Let’s begin by understanding the key differences between simple programming tasks and
more complex algorithmic problems.

Simple Programming Problems
Simple programming tasks are often characterized by

• Ease of Implementation: Solutions are usually straightforward, requiring basic pro-
gramming skills.

• Direct Approach: Problems can often be solved through a linear process or direct
methods without the need for complex algorithms.

• Limited Optimization: These problems typically have a clear solution path, leaving
little scope for significant performance improvements.

Examples:
• A script to calculate the sum of two numbers.
• A script to convert temperature from Celsius to Fahrenheit.
• Using a loop, print the first ten natural numbers.



1.3 Fundamentals of Algorithms 7

Algorithmic Problems
In contrast, algorithmic problems require a more in-depth approach:

• Complex Solution Paths: Finding a solution requires abstract thinking and strategic
planning, often without a clear-cut path.

• Execution Challenges: Implementing solutions to these problems can be complex
and requires advanced algorithmic strategies to optimize performance.

• Optimization Opportunities: There is a significant scope to improve solutions, en-
hance efficiency, and reduce resource consumption.

• Algorithm Development: Such problems may necessitate the development of be-
spoke algorithms or the innovative adaptation of existing ones.

• Efficiency Analysis: A key element is the evaluation and enhancement of the algo-
rithm’s efficiency to guarantee its scalability and performance.

Examples:
• Design an algorithm to sort a large dataset efficiently.
• Find the shortest path in a graph, such as querying the quickest route between two
cities.

Given the importance of each difference, you can use the best method for such a prob-
lem, whether a simple programming task or a complex algorithmic challenge.

1.3.2 Algorithm Design Strategies
Developing effective algorithms is essential to solving challenging problems. Here are
some of the basic strategies:

• Brute Force: Finding the best solution to the problem by testing all possible solu-
tions

• Divide and Conquer: Breaking down the original problem into smaller subprob-
lems until they can be solved, then merging the solutions

• Greedy Method: Choosing the best choice available at each step, aiming to find the
best or a near-optimal solution

• Dynamic Programming: Solving overlapping subproblems once and reusing their
solutions

• Iterative Enhancement: Gradually improving an available solution through repeated
changes

• Backtracking: Exploring all potential solutions systematically and discarding paths
that fail to meet the criteria

• Branch and Bound: Systematically exploring subproblems to find the optimal solu-
tion while pruning non-promising paths

• Randomized Algorithms: Using randomness in decision-making to simplify and
speed up complex problems

• Heuristic Algorithms: Employing practical methods that may not guarantee an op-
timal solution but provide acceptable outcomes



8 Chapter 1. Introduction

These strategies are not stand-alone and can be combined to create efficient algorithms
for solving complex computational problems. For example, dynamic programming can
complement divide and conquer techniques, or heuristics can be used to improve greedy
methods.

When choosing an algorithm design strategy, several factors should be considered:
• Problem Nature: The inherent characteristics and constraints of the problem
• Solution Requirements: The desired accuracy and optimality of the solution
• Computational Resources: The available time and memory for executing the algo-
rithm

• Scalability: The algorithm’s ability to handle increasing input sizes efficiently
• Ease of Implementation: The complexity of implementing the algorithm and the
possibility of errors

By carefully evaluating these factors, you can choose the strategy or combination of
strategies that is most appropriate to effectively meet the computational challenge at hand.

1.3.3 Common Algorithmic Problem Types
An understanding of different algorithmic problems is crucial for applying the appropriate
algorithmic strategy. Here are some common types:

• Sorting: Organizing data in a specified order, such as numerical or alphabetical
• Searching: Identifying the existence or position of an element within a data structure
• String Manipulation: Performing operations on strings, such as matching, search-
ing, and transformation

• Graph Theory: Solving problems involving nodes and the connections between
them

• Combinatorial Logic: Dealing with the selection and arrangement of items from a
set based on specified rules

• Geometrical Computation: Addressing issues related to spatial figures, measure-
ments, and properties

• Numerical Analysis: Engaging in methods and operations involving numerical cal-
culations

1.4 Analyzing Algorithm Efficiency
In this section, I will introduce you to the concept of algorithm analysis, where we delve
into understanding how algorithms perform in terms of resource usage, specifically time
and space. Let’s explore how to evaluate and choose the most efficient algorithm for a
given problem.

1.4.1 Understanding Algorithm Analysis
Algorithm analysis is the process of evaluating algorithms based on their resource con-
sumption, focusing on time and space requirements. The goal here is to select the most
efficient algorithm for our needs, ensuring optimal performance in our applications.



1.4 Analyzing Algorithm Efficiency 9

1.4.2 Evaluating Algorithms
When we talk about evaluating an algorithm, two primary aspects come into play:

1. Time Efficiency: This refers to how quickly an algorithm can solve the given prob-
lem.

2. Space Efficiency: This concerns the amount of memory required by the algorithm
to execute.

Beyond performance, we also look into potential for enhancement:
1. Lower Bounds: What are the theoretical limitations on an algorithm’s efficiency for

this problem?
2. Optimality: Is there a possibility to devise an algorithm that surpasses current time

and space efficiencies?

1.4.3 Analyzing Time Efficiency
In our journey to understand algorithms, it’s crucial to delve into how time efficiency is
evaluated. Let me guide you through this process, focusing on the basic operations and
their impact on the algorithm’s running time.

Calculating Running Time
The running time T (n) of a program that implements an algorithm can be estimated using
the formula:

T (n)≈ cop×C(n) (1.1)

Here’s what each term in Equation 1.1 represents:
• cop: The time taken by the basic operation of the algorithm
• C(n): The count of how often this basic operation is executed for an input size n
This calculation is pivotal as it helps us understand the time it takes for an algorithm to

run and allows us to gauge its efficiency effectively.

1.4.4 Understanding Growth Orders
Growth order is a framework that helps us articulate how an algorithm’s time complexity
escalates with increasing input size. It’s about comprehending the scalability of algorithms
and their behaviors in extensive problem contexts.

Key considerations in growth order include
• The scalability of algorithm performance on enhanced hardware or with larger input
sizes

• The implications of increasing the problem size on the algorithm’s execution time
Recognizing these factors is essential in identifying the primary elements that influence

algorithm efficiency, which is crucial for real-world applications.



10 Chapter 1. Introduction

1.4.5 Evaluating Algorithm Performance
To gain a well-rounded understanding of an algorithm’s performance, we explore it under
different conditions:

• Worst-Case (Cworst(n)): This scenario assesses the maximum resource usage across
all possible inputs of size n.

• Best-Case (Cbest(n)): Conversely, this scenario evaluates the minimum resource us-
age for any input of size n.

• Average-Case (Cavg(n)): This considers the expected resource usage across a spec-
trum of inputs of size n.

These perspectives offer a comprehensive view of an algorithm’s efficiency and are
instrumental in crafting robust and scalable algorithmic solutions.

1.4.6 Asymptotic Growth Orders
We use asymptotic notations such as O(g(n)), Θ(g(n)), and Ω(g(n)) to generalize the
growth patterns of algorithms, focusing on the leading factors that affect their scalability
with large inputs. These notations are indispensable for contrasting different algorithms
and understanding their relative efficiencies.

Asymptotic Efficiency Classes
The concept of asymptotic efficiency classes categorizes algorithms based on their growth
behavior, shedding light on their scalability. Table 1.3 outlines these classes, offering a
glance at how different algorithms perform as their input size expands.

Table 1.3: Summary of Asymptotic Efficiency Classes

Class Name Examples

1 Constant Operations with fixed execution time
logn Logarithmic Searching in a sorted array
n Linear Traversing an array or list
n logn Linearithmic Merge sort or heap sort
n2 Quadratic Nested loops on two-dimensional array
n3 Cubic Nested loops on three-dimensional array
2n Exponential Solving subsets or combinations
n! Factorial Determining all permutations

In essence, understanding the asymptotic growth orders and efficiency classes is crucial
for predicting how an algorithm will perform, especially as we deal with increasingly large
datasets or complex problem domains.



1.5 Summary 11

1.5 Summary
In this chapter, I introduced you to the basics of data structures and algorithms, crucial
for building efficient software. We explored what data structures are and how they help in
organizing data, alongside the concept of algorithms as processes for solving problems.

The relationship between data structures and algorithms was highlighted, showing how
the choice of data structure can affect the efficiency of an algorithm. We looked at differ-
ent types of problems and how various algorithmic approaches address them, setting the
foundation for more advanced topics to come.

We also touched on the importance of algorithm analysis and different strategies used in
algorithm design, preparing you for deeper discussions in the following chapters. Moving
forward to the next chapter, we will delve into the foundations of data structure design.
You will uncover the principles guiding the design of robust and efficient data structures,
such as modularity, encapsulation, and abstraction.

Problems

Discussion
Understanding Data Structures and Algorithms

1. Define an algorithm and explain its key characteristics. Provide an example of a
real-world problem that can be solved using an algorithm.

2. Distinguish between simple programming problems and algorithm problems. De-
scribe the characteristics of each and give an example of a problem for each cate-
gory.

3. Discuss the importance of recognizing the distinctions between simple program-
ming problems and algorithm problems when approaching problem solving. How
can understanding these distinctions improve problem-solving strategies?

4. Categorize the following problems into the appropriate problem types:
• Sorting a list of names
• Finding the shortest path in a network
• Checking if a given string is a palindrome
• Determining the prime factors of a number

Justify your categorization.

Analyzing Algorithm Efficiency
1. What is the primary objective of algorithm analysis, and why is it essential in the

field of computer science?
2. Explain the distinction between time efficiency and space efficiency in algorithm

analysis. Provide examples to illustrate each concept.
3. Describe the importance of lower bounds and optimality in algorithm analysis.

How do they relate to evaluating algorithm performance?



12 Chapter 1. Introduction

4. What are the two main approaches to evaluating algorithms and how do they dif-
fer? Provide scenarios in which each approach is particularly useful.

5. Arrange the following classes of algorithms in ascending order of their growth
rates, from the lowest growth rate to the highest:

• O(
√
n)

• O(n)
• O(2n)
• O(n2)
• O(logn)
• O(n logn)
• O(2n)

Multiple Choice Questions
1. Which of the following data structures is linear?

(a) Tree
(b) Graph
(c) Stack
(d) Set

2. What is the purpose of the Big-O notation in algorithm analysis?
(a) To represent the best-case scenario
(b) To indicate the exact running time of an algorithm
(c) To describe the upper bound on the growth rate of an algorithm
(d) To measure the space complexity of an algorithm

3. In the context of algorithm efficiency, what does O(N2) represent?
(a) Linear time complexity
(b) Quadratic time complexity
(c) Logarithmic time complexity
(d) Constant time complexity

4. In the context of algorithmic complexity, what does “space complexity” refer to?
(a) The amount of memory an algorithm uses
(b) The number of operations an algorithm performs
(c) The time it takes for an algorithm to execute
(d) The size of the input data

5. Which of the following is an example of an algorithm with exponential time com-
plexity?
(a) O(N2)
(b) O(2N)
(c) O(logN)
(d) O(N logN)



1.5 Summary 13

6. What is the primary purpose of analyzing the time complexity of algorithms?
(a) To determine the amount of memory used by an algorithm
(b) To compare the performance of different algorithms
(c) To measure the speed of an algorithm on a specific machine
(d) To identify the best-case scenario for an algorithm’s execution time

7. What is the significance of algorithm analysis in the context of data structures?
(a) To design algorithms for data manipulation
(b) To evaluate the efficiency of algorithms in terms of time and space
(c) To implement data structures in a programming language
(d) To analyze the theoretical properties of data structures

8. What does “order of growth” refer to in the analysis of algorithm efficiency?
(a) The actual running time of an algorithm
(b) The space complexity of an algorithm
(c) The rate at which the algorithm’s performance grows with input size
(d) The number of operations performed by the algorithm

9. In the context of algorithm efficiency analysis, what do best-case, average-case,
and worst-case scenarios represent?
(a) Different types of algorithms
(b) Different input scenarios that affect algorithm performance
(c) Various stages of algorithm execution
(d) Different measures of space complexity

10. Why is the understanding of asymptotic order of growth important in algorithm
analysis?
(a) To measure the actual running time of an algorithm
(b) To compare the efficiency of different algorithms
(c) To focus on the dominant term that determines algorithm performance with large

inputs
(d) To analyze the best-case scenario of algorithm execution

11. What is the primary importance of data structures in computer science?
(a) To determine the time complexity of algorithms
(b) To analyze the space efficiency of algorithms
(c) To organize and manage data for efficient access and modification
(d) To evaluate the worst-case scenario of algorithm execution

12. What is the primary purpose of theoretical analysis of time efficiency in algorithm
design?
(a) To determine the best-case scenario
(b) To evaluate the worst-case scenario
(c) To understand the mathematical properties of algorithm performance
(d) To analyze the time complexity under different input scenarios



14 Chapter 1. Introduction

13. When analyzing the order of growth in algorithm efficiency, why is it important
to consider the asymptotic order of growth rather than the exact running time?
(a) Asymptotic analysis provides a more accurate representation of real-world perfor-

mance.
(b) Asymptotic analysis focuses on the dominant term that determines performance with

large inputs.
(c) Exact running time is difficult to calculate in most cases.
(d) Exact running time is only relevant for small input sizes.

14. In the context of data structures, why is understanding the best-case, average-case,
and worst-case scenarios important for algorithm analysis?
(a) To identify the most common use case for the data structure
(b) To analyze the time and space complexity of algorithms under different conditions
(c) To determine the types of data structures suitable for a specific problem
(d) To evaluate the speed of data structure operations in a controlled environment



2. Primary Building Blocks

Objectives
In this chapter, I will guide you through the foundational principles of data structure
design and the essential interfaces that facilitate efficient and effective data management.
Here are the key objectives we aim to achieve:

• Explore Design Principles: Understand the core principles of software design,
such as modularity, encapsulation, and abstraction, and their impact on data struc-
ture development.

• Discover Data Structure Interfaces: Learn about the significance of interfaces
in data structures, focusing on how they abstract the functionality and provide a
blueprint for implementation.

• Implement Core Interfaces: Delve into the IList and ISet interfaces, under-
standing their operations, usage, and how they enforce a structured approach to
data management.

• Advanced Structure Interfaces: Investigate the ITree interface, exploring how
trees organize and manage hierarchical data efficiently.

By the end of this chapter, you should have a comprehensive understanding of the
principles that guide the design of efficient data structures and the interfaces that form
the backbone of these structures.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_2

15

https://doi.org/10.1007/979-8-8688-0802-9_2


16 Chapter 2. Primary Building Blocks

2.1 Principles of Software Design
In software development, design principles are fundamental to constructing robust, main-
tainable, and scalable systems. These guidelines shape the architectural and operational
framework, ensuring the software’s functionality, efficiency, and adaptability:

• Cohesion and Coupling: I emphasize designing with high cohesion within compo-
nents and loose coupling between them to simplify management and enhance scala-
bility.

• Abstraction and Encapsulation: Abstraction reduces complexity by revealing only
the necessary operations, while encapsulation safeguards the internal state of compo-
nents, thus promoting integrity and security.

• Separation of Concerns: By decomposing the system into distinct, functional sec-
tions, complexity is reduced, enabling focused improvement and clearer understand-
ing of each part.

• Design Patterns: Utilizing established design patterns offers efficient solutions to
common design challenges, providing structured templates for system architecture.

These principles are essential for developing software that is not only functional but
also efficient and manageable over time.

The development of an efficient data structure library relies on a solid grasp of object-
oriented programming (OOP) concepts. OOP provides a robust framework, emphasizing
code reusability, maintainability, and scalability – qualities particularly advantageous in
the realm of data structures where functions often share commonalities.

2.2 Data Structure Interfaces
Data structure interfaces define standardized operations across various data structures, bridg-
ing the gap between a data structure’s capabilities and an algorithm’s requirements:

• Consistency: Interfaces guarantee uniform access and manipulation across different
data structures, enhancing system coherence.

• Interoperability: By enabling various data structures to be used interchangeably,
interfaces promote flexibility in algorithm design.

2.2.1 Benefits of Using Interfaces
Employing interfaces in data structure design offers significant benefits:

• Abstraction: Interfaces separate operational definitions from their implementations,
focusing on available operations rather than their internal mechanics.

• Reusability: Through interface standardization, various implementations of the same
data structure can be interchanged seamlessly, simplifying code adaptation and en-
hancement.



2.2 Data Structure Interfaces 17

• Testability: Defined interfaces facilitate straightforward testing by enabling the cre-
ation of tests that specifically target the operations of the interface.

Interfaces play a key role in the development of extensible and maintainable software
architectures, streamlining the management, testing, and evolution of data structures.

2.2.2 Interface vs. Implementation
In the context of data structures, understanding the roles of interfaces is crucial. Distin-
guishing between interface and implementation is key in software design:

• The interface acts as a contract outlining accessible operations, dictating how the
functionalities of a data structure or component are presented and used within the
system.

• The implementation involves the specific logic and data management that execute
these operations, adaptable without impacting the predefined interface.

This distinction significantly enhances the software’s adaptability and maintainability,
allowing for modifications in the implementation without disrupting the system’s interface
interactions.

Figure 2.1: Illustration of different worker characters in a store, each organizing boxes
in unique ways, representing the concept of data storage interfaces (how data should be
stored) and implementations (the actual method of storing). This analogy helps to under-
stand that while the interface (the storage requirement) remains constant, the implementa-
tion (how the workers store the boxes) can vary

As illustrated in Figure 2.1, the workers depict various implementation strategies of a
storage interface. Each worker handles the boxes differently, symbolizing the flexibility in
implementing the data storage methods while adhering to the specified storage interface.
This reflects the principle that different implementations can fulfill the requirements of a
single interface, highlighting the separation between what needs to be done and how it can
be done.



18 Chapter 2. Primary Building Blocks

2.2.3 Interface Example
To deepen our understanding of interfaces, let us explore the IExecuter interface, which
represents a task execution contract:

1 class IExecuter {
2 public:
3 virtual void execute() = 0;
4 };

IExecuter Interface Definition

This interface requires an execute() method, embodying a single responsibility: to
execute an action.

Interface and Virtual Functions
The use of the virtual keyword in C++ signifies that the method execute() is meant
to be overridden in derived classes. This is a fundamental aspect of interfaces in C++: they
define a set of virtual functions without providing their implementations.

Pure Virtual Functions
A function declared as virtual ... = 0 is known as a pure virtual function. This
declaration makes the class abstract, meaning that it cannot be instantiated directly. In our
IExecuter interface, the execute() method is a pure virtual function, indicating that
any concrete class that implements this interface must provide its own implementation of
the execute() method.

Now, let us examine how different classes can implement this interface to fulfill specific
roles. When classes like LogExecuter and CalExecuter implement the IExecuter
interface, they provide specific behaviors for the execute() method, tailored to their re-
spective functionalities:

1 class LogExecuter : public IExecuter {
2 public:
3 void execute() override {
4 std::cout << "Logging an action..." ;
5 }
6 };
7
8 class CalExecuter : public IExecuter {
9 public:
10 void execute() override {
11 std::cout << "Performing a calculation..." ;
12 }
13 };

Implementations of IExecuter Interface



2.3 Templates 19

The IExecuter interface and its implementations by classes like LogExecuter
and CalExecuter demonstrate the practical application of interfaces, virtual functions,
and pure virtual functions in C++. This architecture facilitates polymorphic behavior and
abstraction, which are cornerstones of effective object-oriented design and software engi-
neering principles.

2.3 Templates
In this section, we will explore the concept of templates in C++, a fundamental feature that
facilitates generic programming. Templates allow you to define functions and classes with
placeholder types, making it possible to create flexible and reusable data structures and
algorithms. This section will cover the basics of templates, their role in type abstraction,
and their benefits in software design.

2.3.1 Templates and Type Abstraction
Templates in C++ provide a mechanism for type abstraction, allowing the creation of
generic and reusable code components. This feature aligns with the principle of abstraction
in software design, as it lets you define a template for a data structure or algorithm with-
out specifying the exact data type. This abstraction leads to several important capabilities,
which can be utilized in different ways:

• Generic Data Structures: With templates, you can design data structures that are
type independent, such as lists, trees, and graphs, which can then be instantiated with
any data type.

• Compile-Time Polymorphism: Templates enable compile-time polymorphism, al-
lowing functions and classes to operate with different data types without sacrificing
performance.

The use of templates directly contributes to the reusability and flexibility of code, key
aspects of efficient software design:

• Code Reusability: Templates allow for the writing of a single generic code segment
that can be reused with different data types, reducing code duplication and errors.

• Design Flexibility: They provide the flexibility to create data structures and algo-
rithms that can be adapted to various needs and data types without changing the
underlying codebase.

2.3.2 Template Usage in Practical Scenarios
Templates are not just theoretical constructs; they have practical applications in everyday
programming tasks. For instance, consider a generic function to swap two values:

1 template<typename T>
2 void Swap(T& a, T& b) {
3 T temp = a;
4 a = b;



20 Chapter 2. Primary Building Blocks

5 b = temp;
6 }

Generic Swap Function in C++

This Swap function exemplifies how templates can be used to create flexible and
reusable code segments that can operate on a wide range of data types.

Consider a generic C++ template for a simple Node class, which is a building block for
many data structures like linked lists and trees:

1 template<typename T>
2 class Node {
3 public:
4 T data;
5 Node* next;
6 };

Template for a Generic Node Class

This Node class uses templates to allow for storage of any data type, making it a
versatile component in various data structures. Here, T represents the data type stored in
each node, and next points to the subsequent node in the structure, illustrating a basic
linked list node.

Templates, as demonstrated in the Node class, provide the flexibility to work with dif-
ferent data types, facilitating the creation of generic and reusable data structures. They
embody the concept of type abstraction and compile-time polymorphism, essential for ef-
ficient and scalable software design.

2.3.3 Templates in Interface Design
In the context of data structure interfaces, C++ templates play a crucial role in defining
flexible and robust interfaces. Specifically, templates offer the following benefits:

• Interface Standardization: Templates contribute to the standardization of inter-
faces, enabling the consistent definition of operations across diverse data structures.

• Efficient Implementation: By facilitating type-safe implementations at compile
time, templates help in creating efficient and error-free data structures.

2.3.4 Considerations and Best Practices
While leveraging the power of templates, it is vital to follow best practices to maximize
their benefits and minimize potential drawbacks, such as

• Avoid overengineering: Use templates judiciously to keep the codebase simple and
maintainable.

• Optimize for readability and maintenance: Ensure that template use does not obscure
the code’s logic and intent.

Some best practices include



2.4 Core Data Structure and Interfaces 21

• Use templates only when necessary, and prefer non-template versions for simple
cases.

• Keep template implementations concise and well documented.
• Consider the impact of templates on compile time and executable size, especially in
large projects.

2.4 Core Data Structure and Interfaces
In this section, we explore the foundational interfaces that define the operations of core data
structures, such as Lists and Sets, which are essential in computer science and software
development.

2.4.1 List Data Structure
Before delving into the specifics of the IList interface, it is essential to comprehend the
List as a fundamental data structure in computer science. A List is an ordered collection
of elements, where each element can be accessed and manipulated based on its position
within the collection.

Lists are characterized by the following properties:
• Ordered Collection: The elements in a List are arranged in a specific sequence,
allowing for ordered data manipulation and retrieval.

• Dynamic Size: Lists are dynamic and can grow or shrink, accommodating the addi-
tion and removal of elements.

• Element Access: Lists provide the ability to access, insert, and remove elements at
specific positions, facilitating versatile data management.

Understanding these characteristics of Lists lays the foundation for exploring how they
are represented and managed through interfaces in software development.

Figure 2.2 depicts the conceptual model of a List, illustrating how elements are indexed
and arranged.

Figure 2.2: Conceptual illustration of a List: a sequence indexed by 0,1,2, . . . ,n−1

List Interface: IList
The IList abstract template class represents a list of elements of type T. It provides a set
of abstract member functions for accessing, modifying, and managing the elements of the
list. The concrete subclasses of IList must implement these abstract member functions
to provide the actual implementation of the list operations.



22 Chapter 2. Primary Building Blocks

In Figure 2.3, we unravel the IList interface further, demonstrating fundamental oper-
ations such as topFront, topBack, pushFront, pushBack, popFront, popBack,
insertAt, and removeAt.

Figure 2.3: Operational visualization of an IList, highlighting essential methods

The code block below defines the IList interface template:

1 template <typename T>
2 class IList {
3 public:
4 IList() : size(0) {}
5
6 virtual size_t getSize() const {
7 return size;
8 }
9 virtual bool isEmpty() const {
10 return size == 0;
11 }
12
13 virtual void clear() = 0;
14 virtual void print() const = 0;
15
16 virtual T& get(size_t index) = 0;
17 virtual void set(size_t index, const T item) = 0;
18 virtual T& operator[](size_t index) = 0;
19 virtual int indexOf(const T item) const = 0;
20
21 virtual void insertAt(size_t index, const T item) = 0;
22 virtual void removeAt(size_t index) = 0;
23 virtual void pushFront(const T item) = 0;
24 virtual void pushBack(const T item) = 0;
25 virtual T popFront() = 0;



2.4 Core Data Structure and Interfaces 23

26 virtual T popBack() = 0;
27 virtual T topFront() const = 0;
28 virtual T topBack() const = 0;
29
30 protected:
31 size_t size;
32 };

IList Abstract Interface Definition

The class has the following abstract member functions:
• getSize(): Retrieves the number of elements currently stored in the list
• isEmpty(): Returns true if the list is empty and false otherwise
• clear(): Removes all elements from the list and resets its size to zero
• print(): Prints the elements of the list
• get(size_t index): Returns the element at the specified position in the list
• set(size_t index, const T item): Sets the value of the element at the
specified position to the specified element

• operator[](size_t index): Returns a reference to the element at the speci-
fied index

• indexOf(const T item): Returns the position of the first occurrence of the
specified element in the list or –1 if the element is not present

• insertAt(size_t index, const T item): Inserts the specified element
into the list at the specified position

• removeAt(size_t index): Removes the element at the specified position
from the list

• pushFront(const T item): Adds the specified element to the front of the list

• pushBack(const T item): Adds the specified element to the end of the list
• popFront(): Removes and returns the element from the front of the list
• popBack(): Removes and returns the element from the end of the list
• topFront(): Returns the element at the front of the list without removing it
• topBack(): Returns the element at the back of the list without removing it
Figure 2.4 is a UML class diagram that presents the relationship and structure of the

IList interface.
The IList interface provides a comprehensive set of operations for managing lists,

enabling developers to build various data structures and algorithms with ease. Concrete
subclasses of IList can specialize the interface to suit specific needs while adhering to
the fundamental principles of ordered list management.



24 Chapter 2. Primary Building Blocks

Figure 2.4: The IList UML class diagram showing the interface’s blueprint

2.4.2 Sets Data Structure
Sets, in computer science, represent a collection of unique elements, where each element
occurs only once. Unlike arrays or lists where order and element duplication are significant,
Sets focus on the presence or absence of values, making them ideal for operations involving
uniqueness and membership determination.

Characteristics of Sets include
• Uniqueness: Sets do not allow duplicate elements, ensuring that each element in the
set is distinct.

• Unordered: The elements in a set do not have a defined order, which differentiates
sets from sequence-based data structures like arrays or lists.

• EfficientMembership Checking: Sets provide efficient operations to check whether
an element is present, making them ideal for applications like data deduplication,
membership testing, and set-based operations (union, intersection, difference).



2.4 Core Data Structure and Interfaces 25

Figure 2.5 provides an illustration of key operations on an ISet, showcasing opera-
tions such as add and remove.

Figure 2.5: Key operations on a Set, illustrating the process of adding and removing ele-
ments

Sets Interface: ISet
The ISet interface abstracts the functionality of a mathematical set into a series of opera-
tions that can be performed on any set data structure.

This interface defines the essential operations for managing a set, including adding and
removing elements, checking for their existence, and determining the set’s size.

The ISet interface provides a concise set of operations for managing unordered sets,
enabling developers to implement and utilize various algorithms and data structures effi-
ciently.

Essential Operations
The ISet interface mandates the implementation of fundamental set operations, facilitat-
ing the essential characteristics of Sets:

• Addition and Removal: These operations modify the Set’s contents, adhering to
the uniqueness property.

• Membership Testing: Determines if an element is part of the Set, enabling efficient
lookup.

• Size and Clear: Provide information about the Set’s size and allow for resetting its
contents.

The code block below defines the ISet interface template, laying out the contractual
methods that a concrete set implementation must fulfill:

1 template <typename T>
2 class ISet {
3 public:
4 ISet() : size(0) {}
5



26 Chapter 2. Primary Building Blocks

6 virtual size_t getSize() const {
7 return size;
8 }
9 virtual bool isEmpty() const {
10 return size == 0;
11 }
12
13 virtual void clear() = 0;
14 virtual void print() const = 0;
15
16 virtual bool add(const T) = 0;
17 virtual bool remove(const T) = 0;
18 virtual bool contains(const T) const = 0;
19
20 protected:
21 size_t size;
22 };

ISet Abstract Interface Definition

Outlined below are the core operations defined in the ISet interface:
• getSize(): Retrieves the number of elements currently stored in the set
• isEmpty(): Returns true if the set is empty and false otherwise
• clear(): Removes all elements from the set and resets its size to zero
• print(): Prints the elements of the set
• add(x): Adds the element x to the set if not already present. Returns true if x
was added to the set and false otherwise

• remove(x): Removes the element x from the set. Returns true if x was removed
from the set and false otherwise

• contains(x): Asserts the presence or absence of the element x in the set
Complementing the operational definitions, Figure 2.6 presents the ISet UML class

diagram, which encapsulates the interface’s structure and provides insights into its integra-
tion with implementing classes.

2.5 Advanced Data Structure Interfaces
After exploring the core interfaces, we delve into more complex data structures, focusing
on hierarchical and linked structures.

2.5.1 Tree Data Structure
Trees are a fundamental data structure in computer science, used to represent hierarchical
relationships and structures. Trees are essential in representing hierarchical data, such as
file systems, organizational structures, and decision processes. Unlike arrays and linked



2.5 Advanced Data Structure Interfaces 27

Figure 2.6: The ISet UML class diagram showing the interface’s blueprint

lists, which are linear, trees are hierarchical and branch out in multiple directions. A tree
consists of nodes connected by edges, and it has a unique starting node called the root.

As illustrated in Figure 2.7, a typical tree structure consists of several key components
such as the root, nodes, edges, and leaves.

Understanding these fundamental aspects of Trees is vital for comprehending their role
in organizing and storing data in a hierarchical manner.

Tree Terminology
Characteristics of Trees include

• Node: The fundamental unit of a tree, containing data and links to other nodes
• Edge: The connection between two nodes
• Root: The topmost node of a tree, with no parent
• Leaf: A node with no children
• Depth: The length of the path from the root to the node
• Height: The length of the longest path from the node to a leaf
• Subtree: A tree formed by a node and all its descendants
• Internal Node: A node with at least one child

Types of Trees
Trees come in various forms, each serving specific purposes in computer science:

• General Trees: Trees where nodes can have any number of children, useful in rep-
resenting non-binary hierarchical structures

• Binary Trees: Trees where each node has at most two children, commonly used in
sorting and searching algorithms

• Balanced Trees: Trees that maintain a low height even as they grow, critical to
optimizing search operations in large datasets



28 Chapter 2. Primary Building Blocks

Figure 2.7: Illustration of tree structure and terminology

• Binary Search Trees: A specialized binary tree in which nodes are organized in an
ordered manner, facilitating efficient searching, insertion, and deletion

• AVL Trees, Red-Black Trees: Examples of self-balancing binary search trees, en-
suring that the tree remains efficient for operations regardless of the data inserted

• Other Tree Types: Additional types such as Trie, Segment Tree, or B-tree, each
having unique characteristics and applications

Tree Interface: ITree
The ITree interface abstracts the concept of a tree into a series of operations that can be
performed on any tree data structure, ensuring a standardized way of interacting with and
managing hierarchical data.

This interface defines essential operations for tree manipulation, including node addi-
tion and removal, tree traversal, and search functionalities.



2.5 Advanced Data Structure Interfaces 29

• Node Addition and Removal: Functions like insert() and remove() facilitate
the dynamic structure of the tree, allowing nodes to be added or removed.

• Traversal Operations: Methods such as traverse() enable the examination of
all nodes in the tree, following specific orders like pre-order, in-order, or post-order.

• Search and Query: Operations like find() and getSize() are used to locate
nodes and determine the tree’s properties, respectively.

• Clear Operation: The clear() method allows for the complete removal of all
nodes from the tree, effectively resetting it.

These operations are critical for managing and interacting with tree data structures,
allowing for flexible implementation while maintaining the fundamental characteristics of
a tree.

Here is a template declaration for the ITree interface, which outlines the basic struc-
ture and essential operations of a tree:

1 template <typename N, typename T>
2 class ITree {
3
4 public:
5 virtual ~ITree() {}
6 ITree() {}
7
8 virtual size_t depth(N* node) const = 0;
9 virtual size_t height() const = 0;
10 virtual size_t height(N* node) const = 0;
11
12 virtual size_t getSize() const = 0;
13 virtual size_t getSize(N* node) const = 0;
14
15 virtual N* getRoot() const = 0;
16
17 virtual bool insert(const T) = 0;
18 virtual bool remove(const T) = 0;
19 virtual N* find(const T) const = 0;
20 virtual void traverse() const = 0;
21 virtual void clear() = 0;
22 };

ITree Abstract Interface Definition



30 Chapter 2. Primary Building Blocks

Outlined below are the core operations defined in the ITree interface:
• getRoot(): Retrieves the root node of the tree
• insert(const T value): Inserts a node with the specified value into the tree,
returning true if successful

• remove(const T value): Removes the node with the specified value from the
tree, returning true if successful

• find(const T value): Searches for a node with the specified value and re-
turns it

• traverse(): Performs a traversal of the tree, such as pre-order, in-order, post-
order, or level-order, and applies a function or action to each node

• getSize(): Returns the total number of nodes in the tree
• getSize(N* node): Returns the number of nodes in the subtree rooted at the
specified node

• isEmpty(): Indicates whether the tree is empty (i.e., contains no nodes)
• depth(N* node): Calculates the depth of a specified node in the tree
• height(): Determines the height of the tree, defined as the length of the longest
path from the root to a leaf

• height(N* node): Determines the height of the specified node
• clear(): Removes all nodes from the tree, effectively resetting it to an empty state

Complementing the operational definitions, Figure 2.8 presents the ITree UML class
diagram.

In this interface, Node<T> represents a generic node in the tree, which contains data
of type T. The ITree interface provides a foundation for implementing various types of
tree, such as binary trees, AVL trees, or B-trees, offering a standardized approach to tree
operations and management.

2.6 Summary
In this chapter, we explored the foundational principles of data structure design, beginning
with essential software design principles and progressing to the details of data structure
interfaces. We highlighted the importance of templates in C++ for crafting generic and
reusable components, enabling the development of flexible data structures such as lists and
sets.

We examined the core data structure interfaces, focusing on the mechanics and applica-
tions of IList and ISet. This was followed by a discussion on advanced data structure
interfaces, particularly the ITree interface, which underscored the dynamic nature of hi-
erarchical data management.



2.6 Summary 31

Figure 2.8: The ITree UML class diagram showing the interface’s blueprint

By encapsulating the principles, interfaces, and practical implementations of data struc-
tures, this chapter lays the groundwork for a more detailed exploration of each data struc-
ture in the subsequent chapters. This foundational knowledge equips you with the under-
standing needed to utilize and adapt these structures in various software design contexts.

Problems

Discussion
1. What is the primary purpose of using data structure interfaces, and how do they

contribute to software design?



32 Chapter 2. Primary Building Blocks

2. Explain the concept of template in C++ and discuss how it facilitates generic
programming in data structure implementation.

3. How can the principles of software design such as encapsulation and abstraction
be applied in the context of data structure interfaces?

Multiple Choice Questions
1. Which of the following best describes the purpose of data structure interfaces?

(a) To provide specific implementation details of data structures
(b) To define a set of operations that can be performed on a data structure
(c) To increase the computational complexity of data structures
(d) To serve as the actual storage mechanism for data elements

2. What does the principle of abstraction in software design primarily focus on?
(a) Removing all details from a class to make it abstract
(b) Providing a simple interface to complex underlying structures
(c) Encouraging direct interaction with the data structure’s internals
(d) Ensuring that all data structures are concrete and well-defined

3. In the context of C++ templates, what is template specialization?
(a) Creating a unique template that cannot be reused
(b) Adapting a generic template to serve a specific type more efficiently
(c) Removing all templates from the code to reduce complexity
(d) Copying the same template multiple times for different data types

4. Which of the following is true about the ISet interface in data structure design?
(a) It allows duplicate elements in the set.
(b) It orders elements based on their insertion sequence.
(c) It ensures that each element in the set is unique.
(d) It only supports numeric data types.

5. What is the primary benefit of using templates in data structure design?
(a) To reduce the execution time of the program
(b) To increase the size of the compiled binary
(c) To provide type independence and reusability in code
(d) To eliminate the need for virtual functions in classes



3. Arrays and Dynamic Arrays

Objectives
In this chapter, I will guide you through the essential topics of pointers and arrays in
C++. You will discover the pivotal roles these structures play in memory management
and data manipulation. Here are the key objectives we will cover:

• Pointer Review: I will review the fundamental concept of pointers in C++, em-
phasizing their importance in memory management and data manipulation.

• Array Features and Disadvantages: You will learn the features of arrays as
data structures and understand their advantages and disadvantages, especially in
terms of memory usage and runtime performance. We will also look into their
operational costs in different scenarios.

• Dynamic Array Operations: I will explain the operations associated with dy-
namic arrays, such as insertion, deletion, and access. You will understand how
dynamic arrays resize to accommodate growing data.

• Resize Implementation: You will study the details of how dynamic arrays are
resized, including strategies to minimize data copying and optimize the resizing
process.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_3

33

https://doi.org/10.1007/979-8-8688-0802-9_3


34 Chapter 3. Arrays and Dynamic Arrays

3.1 Arrays and Pointers
In this section, you will learn about arrays and pointers, two fundamental concepts in
programming. Arrays are ordered collections of elements of the same data type, allow-
ing for efficient storage and access of multiple values. Pointers, on the other hand, are
variables that store memory addresses and are crucial for memory management and data
manipulation.

3.1.1 Arrays
An array is a structured collection of elements, each of the same data type, allocated in a
contiguous block of memory. The consistent size of elements and their sequential arrange-
ment allow for efficient indexing and access using a simple mathematical calculation. We
represent arrays visually to enhance understanding; Figure 3.1 depicts an array’s structure,
and Figure 3.2 shows the array’s allocation in memory, particularly within a program’s
stack space.

The stack space is a region of memory that stores temporary variables created by each
function (including main) during program execution. In contrast, the heap space is
used for dynamic memory allocation, where blocks of memory can be allocated and
freed in an arbitrary order, offering more flexibility than the stack.

Figure 3.1: A simple array representation

In Figure 3.2, you can see how an array with seven elements is placed in the stack
segment of memory. The starting memory address for this array is indicated as 0x01155f.
The contiguity principle of arrays means that the subsequent elements are sequentially
stored at addresses immediately following the first, facilitating rapid access and calculation
of any element’s position.

Static Arrays

Static arrays are defined with a specific size at compile time. Here’s how you can declare
a static array in C++:

// Declaration of a static array
int array[10000];

Static Array Declaration Example



3.1 Arrays and Pointers 35

These arrays have a fixed size and are allocated on the stack. They are limited by the
available stack size, making them suitable for smaller-sized arrays.

Dynamically Allocated Arrays
Dynamically allocated arrays, on the other hand, are created at runtime and offer more
flexibility in terms of memory management. Here is how you can dynamically allocate an
array in C++:

Figure 3.2: Visualization of an array within the stack segment of program memory, starting
at address 0x01155f

// Dynamically allocate an array
int *array = new int[size];

Dynamically Allocated Array Example

Unlike static arrays, dynamically allocated arrays reside on the heap. This allows for
dynamic memory allocation and the ability to adjust the array size during the execution of
the program, free from the limitations of the stack size.



36 Chapter 3. Arrays and Dynamic Arrays

3.1.2 Pointers to Arrays
Pointers provide a powerful way to access and manipulate arrays in C++. There are pri-
marily two types of arrays you’ll work with:

1. Pointers to Stack-Based Arrays
Let’s start with a simple example of a pointer to a stack-based array. This approach
involves declaring an array that resides on the stack and then using a pointer to access
this array.
Consider the following example where a pointer is used to access a stack-based ar-
ray:

// Declaring a stack-based array
int stackArray[7];
// Creating a pointer to the array
int* stackArrayPointer = stackArray;

Pointer to Stack-Based Array Example

The array stackArray and the pointer stackArrayPointer are both stored
in the stack section of the program. The pointer holds the address of the array, as
shown in Figure 3.3.

2. Pointers to Heap-Based Arrays
We will now look into pointers to heap-based arrays, which involve dynamically
allocating an array on the heap and then accessing it through a pointer.

// Dynamically allocating an array on the heap
int* heapArray = new int[7];

Pointer to Heap-Based Array Example

In this case, heapArray is a pointer to an array that is allocated on the heap using
new. This approach is suitable for arrays whose size may need to be adjusted during
runtime or that must persist beyond the lifespan of a single function.
As shown in Figure 3.4, the array is allocated on the heap, while the pointer that
references this array is stored on the stack.

3.1.3 Stack vs. Heap Arrays
Let us delve into the differences between stack-based and heap-based arrays to understand
their distinct characteristics and when to use each type. Table 3.1 provides a comparison
of these two array types.

This table highlights the key differences between stack-based and heap-based arrays,
illustrating their strengths and limitations to help you make informed decisions in your
programming projects.



3.1 Arrays and Pointers 37

Stack-Based Array
Stack-based arrays are stored directly in stack memory, as shown in Figure 3.3. These
arrays are particularly useful for managing local variables and function call management.
They are confined to the function scope, with memory automatically managed (allocated
and deallocated) as the function is called and returns. This automatic management leads to
fast access times due to the stack’s nature.

Heap-Based Array
Conversely, heap-based arrays reside in the heap memory, as shown in Figure 3.4. These
arrays require manual management for allocation and deallocation, typically using new
and delete. While they offer flexibility and the ability to extend the scope beyond a
single function or block, the trade-off is a slightly slower access speed due to the overhead
of dynamic allocation.

Table 3.1: Comparison Between Stack-Based and Heap-Allocated Arrays

Aspect Stack-Based Array Heap-Based Array

Memory
Location

Resides on the stack, ideal for
function call management and lo-
cal variables

Resides on the heap, suitable for
dynamic memory allocation

Memory
Management

Automatically allocated and deal-
located with the function’s scope

Requires explicit allocation and
deallocation, typically using new
and delete

Scope Limited to the function’s scope
where it is declared

Extends beyond the function’s
scope, accessible throughout the
program

Size Fixed size determined at compile
time

Flexible size, can be modified at
runtime

Access
Speed

Generally faster, due to the nature
of stack allocation

May be slower due to the overhead
of dynamic memory management

3.1.4 Performance Analysis
In this subsection, you will learn how quickly common operations on arrays can be per-
formed. Direct access to an array element is a straightforward operation, involving only
the calculation of the element’s memory address. This is typically a single-step process,
with the access time mainly dependent on how quickly the address can be calculated. Let’s
look at the equation that represents this calculation in Equation 3.1:

Access Address = Array Address+(Element Size× Index) (3.1)



38 Chapter 3. Arrays and Dynamic Arrays

Figure 3.3: An array allocated on the stack at address 0x01155f, with a pointer located
at address 0x025acf referencing it. Both the array and pointer are stored within the
program’s stack

Let us break down each component in Equation 3.1:
• Access Address: The memory address where the desired element is located.
• Array Address: The address of the first element in the array.
• Element Size: The size of each element of the array, determined by the data type.

For instance, if the array is of type int and each int occupies 4 bytes, then the
element size would be 4 bytes.

• Index: The position of the desired element within the array, starting from 0.
This formula demonstrates that the time to access an element is primarily determined

by how quickly the access address can be calculated, which is a fast and efficient process.



3.1 Arrays and Pointers 39

Figure 3.4: An array allocated on the heap at address 0x013a5f, with a pointer located
on the stack at address 0x025acf storing the array’s address

Complexity Analysis

Let’s take a closer look at the time complexities for common array operations, which reflect
their efficiency. Table 3.2 summarizes these complexities, excluding the time it might take
to resize the array.

Insertion and Removal
The duration to insert or remove elements within an array depends on the position of the
operation. Inserting or removing elements at the beginning or in the middle requires time
proportional to the number of subsequent elements to shift, denoted as O(n− i), where
i is the operation’s index. This means the operation time increases with the number of
elements to be moved. Conversely, inserting or removing elements at the array’s end is
much quicker, occurring in constant time, represented as O(1).



40 Chapter 3. Arrays and Dynamic Arrays

Modification
Modifying an element in an array is generally a quick operation, with a constant time
complexity of O(1), indicating that the required time remains the same regardless of the
size of the array.

Table 3.2: Complexity Analysis of Common Array Operations

Insertion Removal Modification

Beginning O(n− i) O(n− i) O(1)
End O(1) O(1) O(1)
Middle O(n− i) O(n− i) O(1)

3.1.5 Advantages and Limitations
Arrays offer several advantages that make them a preferred choice for efficient and effec-
tive data storage. The main advantages include

• Constant-Time Access: Arrays allow fast access to elements, providing constant-
time retrieval for any element.

• Efficient End Operations: Operations like adding or removing elements at the end
of an array are efficient, as they are independent of the array’s overall size.

• Linear-Time Arbitrary Operations: Performing operations at arbitrary positions
within an array takes linear time, proportional to the number of elements to be shifted
or processed.

However, arrays also have certain limitations that can impact their efficiency and flex-
ibility. The main limitations include

• Insertion and Removal Complexity: Inserting or removing elements, particularly
in the middle of an array, often requires shifting many elements, with the time com-
plexity depending on the array’s size and the operation’s position.

• Fixed Capacity: Arrays have a predetermined capacity. Exceeding this capacity
necessitates allocating a new array and copying the existing elements, which can be
resource-intensive and time-consuming.

While arrays are known for their speed and efficiency in direct access and end opera-
tions, they present challenges in insertions, deletions, and resizing. These characteristics
underscore the importance of choosing the right data structure based on the specific needs
of your application. In the following sections, we will explore dynamic arrays, which ad-
dress some of the limitations of traditional arrays by offering flexible resizing capabilities
and potentially more efficient management of insertions and deletions.



3.2 Dynamic Arrays 41

3.2 Dynamic Arrays
3.2.1 Resizable Array

One major limitation of static arrays is their fixed size. For example, declaring a static
array with a large predetermined size might look like this:

int array[1000000000];

Static Array Declaration Example

While static arrays are useful, they can be impractical if the maximum needed size is
unknown. A partial solution is the use of dynamic memory allocation:

int *array = new int[size];

Dynamic Memory Allocation Example

However, this approach has its own problem. You might not always know the maximum
size you’ll need when allocating an array.

The solution to this problem lies in dynamic arrays (resizable arrays). These are arrays
whose size can be adjusted dynamically based on your needs. The fundamental idea is to
store a pointer to a dynamically allocated array and replace it with a newly-allocated array
when needed.

3.2.2 Advantages and Limitations
Dynamic arrays present several benefits over static arrays, particularly regarding memory
efficiency and flexibility. However, they also have their limitations.

Advantages
• Efficient Memory Usage: Dynamic arrays allocate memory only as needed, which

makes them more memory-efficient compared to static arrays, where a large amount
of memory may be allocated regardless of actual usage.

• Adaptability: They can resize during runtime, offering flexibility when the number
of elements is unknown or variable. This ability to grow or shrink helps optimize
memory usage.

• Constant-Time Access: Dynamic arrays retain the benefit of constant-time access
to elements, akin to static arrays, making element retrieval fast and efficient.

Limitations
• Resizing Overhead: They may require frequent memory reallocation to grow or

shrink, involving copying elements to a new array, which can be a resource-intensive
operation, particularly for large arrays.



42 Chapter 3. Arrays and Dynamic Arrays

• Insertion and Removal Complexity: Like static arrays, dynamic arrays can incur
performance penalties for insertions and removals in the middle of the array due to
the need to shift elements, affecting efficiency based on the array’s size and operation
location.

In conclusion, dynamic arrays provide a flexible and memory-efficient solution for data
storage when the amount of data varies. However, they introduce complexities such as
resizing overhead and potential inefficiencies in mid-array insertions or removals.

3.2.3 Dynamic Array Implementation
Dynamic arrays are a cornerstone of efficient data handling in programming, typically im-
plemented using pointers and allowing for memory reallocation as needed. In this section,
we delve into the design of a dynamic array class, highlighting the critical methods and
attributes essential for its functionality.

Dynamic Array Interface
For the implementation, we introduce the DynamicArray class, which extends the IList.
This class is characterized by key data members essential for dynamic array operation:

• arr: A pointer to the dynamically allocated storage area for the array elements
• capacity: Represents the total available space in the array, indicating how many

elements it can hold before needing to resize
• size: Tracks the current number of elements in the array, which is inherited from

the IList interface
Below is the interface of the DynamicArray class, which outlines its structure and

core functionalities. The accompanying UML class diagram in Figure 3.5 provides a visual
representation of the relationship between DynamicArray and the IList interface.

1 template <typename T>
2 class DynamicArray : public IList<T> {
3 public:
4 // Default constructor
5 DynamicArray() : IList<T>(),
6 arr(new T[getDefaultCapacity()]),
7 capacity(getDefaultCapacity()) {}
8
9 // Constructor with specified capacity

10 DynamicArray(size_t capacityValue)
11 : IList<T>(),
12 arr(new T[capacityValue]),
13 capacity(capacityValue) {}
14
15 // Constructor with capacity and initial value
16 DynamicArray(size_t capacityValue,
17 const T initialValue)



3.2 Dynamic Arrays 43

18 : IList<T>(),
19 arr(new T[capacityValue]),
20 capacity(capacityValue)
21 {
22 for (size_t i = 0; i < capacityValue; ++i) {
23 arr[i] = initialValue;
24 }
25 size = capacityValue;
26 }
27
28 // Destructor
29 virtual ~DynamicArray(){
30 delete [] arr;
31 }
32
33 // Copy constructor
34 DynamicArray(const DynamicArray<T>& other);
35
36 // Interface Methods
37 virtual void resize();
38 DynamicArray& operator=(const DynamicArray<T>& other);
39
40 // Accessor for capacity
41 virtual size_t getCapacity() const {
42 return capacity;
43 }
44
45 // IList Interface Methods
46 virtual void insertAt(size_t index, const T item);
47 virtual void removeAt(size_t index);
48 virtual void pushFront(const T item);
49 virtual void pushBack(const T item);
50 virtual T popFront();
51 virtual T popBack();
52 virtual void clear();
53 virtual void print() const;
54 // ... Other Abstract Interface methods
55
56 protected:
57 T* arr; // Pointer to array data
58 size_t capacity; // Total capacity of the array
59
60 // To allow derived classes to change default capacity
61 virtual size_t getDefaultCapacity() const {
62 return 8;



44 Chapter 3. Arrays and Dynamic Arrays

63 }
64
65 // Inherited members to use directly
66 using IList<T>::size;
67 };

DynamicArray Class Interface

Figure 3.5: The DynamicArray UML class diagram details the composition of the dy-
namic array class and its relationship with the IList interface

The DynamicArray comprehensively defines the essential methods and attributes
for creating, manipulating, and managing dynamic arrays. The class facilitates dynamic
resizing, element access, and various operations to add and remove elements.

Array Operations
Accessing Elements
The get function allows you to access elements in the dynamic array by index. It checks
that the provided index is within a valid range and returns a reference to the element at that
index.

1 template <typename T>
2 T& DynamicArray<T>::get(size_t i) {
3 assert(i >= 0 && i < size);
4 return arr[i];
5 }

get Function: Access Array Element by Index



3.2 Dynamic Arrays 45

The set function is used to modify elements in the dynamic array by providing an
index and a new value. It verifies that the specified index is within bounds and then updates
the element at that index with the provided value.

1 template <typename T>
2 void DynamicArray<T>::set(size_t i, const T item) {
3 assert(i >= 0 && i < size);
4 arr[i] = item;
5 }

set Function: Update Array Element by Index

Accessing Elements Using operator[]

You can also access and modify elements in the dynamic array using the operator[].

1 template <typename T>
2 T& DynamicArray<T>::operator[](size_t i) {
3 return arr[i];
4 }

operator[] Overload: Array Access and Modification

Using operator[] provides a more concise way of getting and setting elements
within the dynamic array. Make sure the index is within the valid range to avoid errors.

Insertion and Removal
The insertAt function adds an element at a specified location in the dynamic array. It
checks if the array is at full capacity and resizes it if necessary. It shifts elements to make
room for the new element and then assigns the new value to the specified index. Finally, it
increments the array’s size.

1 template <typename T>
2 void DynamicArray<T>::insertAt(size_t i, const T item) {
3 assert(i >= 0 && i <= size);
4 if (size == capacity)
5 resize();
6 for (size_t j = size; j > i; --j)
7 arr[j] = arr[j - 1];
8 arr[i] = item;
9 ++size;

10 }

insertAt Function: Insert Element at Specific Index



46 Chapter 3. Arrays and Dynamic Arrays

The removeAt function deletes an element from the dynamic array based on the spec-
ified index. It verifies that the index is valid and then shifts elements to remove the selected
item. If the array’s size becomes significantly smaller than its capacity, it triggers a resizing
operation to optimize memory usage.

1 template <typename T>
2 void DynamicArray<T>::removeAt(size_t i) {
3 assert(i >= 0 && i < size);
4 for (size_t j = i; j < size - 1; ++j)
5 arr[j] = arr[j + 1];
6 --size;
7 if (capacity >= 3 * size)
8 resize();
9 }

removeAt Function: Remove Element at Specific Index

Appending Elements
The pushBack function adds an element to the end of the dynamic array. It first checks
if the array is at full capacity and triggers a resizing operation if needed. Then, it appends
the new element to the end of the array and increments the array’s size.

1 template <typename T>
2 void DynamicArray<T>::pushBack(const T item) {
3 if (size == capacity)
4 resize();
5 arr[size++] = item;
6 }

pushBack Function: Append Element to End of Array

Note: The following operations are easily sufficient to implement using insertAt
and removeAt:

• pushFront(x)⇒ insertAt(0,x)
• popFront()⇒ removeAt(0)
• pushBack(x)⇒ insertAt(size,x)
• popBack()⇒ removeAt(size−1)



3.2 Dynamic Arrays 47

1
2 template <typename T>
3 void DynamicArray<T>::pushBack(const T item) {
4 insertAt(size, item);
5 }
6
7 template <typename T>
8 void DynamicArray<T>::pushFront(const T item) {
9 insertAt(0, item);

10 }
11
12 template <typename T>
13 T DynamicArray<T>::popFront() {
14 assert(size > 0);
15 T& frontData = arr[0];
16 removeAt(0);
17 return frontData;
18 }
19
20 template <typename T>
21 T DynamicArray<T>::popBack() {
22 assert(size > 0);
23 T& backData = arr[size - 1];
24 --size;
25 return backData;
26 }

Push and Pop Operations in DynamicArray

3.2.4 Resizing Operation
Resize Rules
Dynamic arrays require resizing under specific conditions. The resizing operation is trig-
gered by the following rules:

• On Add: If the current size of the array equals its capacity, just before inserting a
new element

• On Remove: If the capacity of the array is greater than or equal to three times the
current size of the array, right after removing an element



48 Chapter 3. Arrays and Dynamic Arrays

Resize Function
The resizing operation, performed by the resize function, ensures that the dynamic array
can accommodate new elements without exceeding its capacity. The function doubles
the current capacity of the array and copies the existing elements to the newly allocated
memory space. Here is the code for the resize function:

1 template <typename T>
2 void DynamicArray<T>::resize() {
3 size_t new_capacity
4 = std::max(2 * static_cast<int>(size), 2);
5 T* brr = new T[new_capacity];
6 for (size_t i = 0; i < size; i++)
7 brr[i] = arr[i];
8 delete[] arr;
9 arr = brr;

10 capacity = new_capacity;
11 }

resize Function: Adjust Capacity of DynamicArray

The resize function effectively manages the capacity of the dynamic array, ensuring
it can adapt to changing data storage requirements.

3.3 Optimization
3.3.1 An Optimized Copy

Optimizing dynamic arrays involves making the data shifting and copying processes more
efficient. Much of the work performed by dynamic arrays, particularly during insertAt(i,x),
removeAt(i), and resize() operations, revolves around the shift and copying of data. Tradi-
tionally, these operations were implemented using for loops, but it turns out that many pro-
gramming environments provide highly efficient functions for copying and moving blocks
of data.

In C++, for instance, there is the std::copy(a0, a1, b) algorithm. This func-
tion is specifically designed for efficient data copying, often utilizing special machine in-
structions that outperform conventional for loop implementations.

3.3.2 Optimized Dynamic Array Operations
Optimization of dynamic arrays can significantly enhance their performance by replacing
conventional for loops with more efficient data copying functions.

Resize
For resizing, we can replace manual element copying with the std::copy function for
efficient data transfer:



3.3 Optimization 49

1 template <typename T>
2 void DynamicArray<T>::resize() {
3 size_t new_capacity
4 = std::max(2 * static_cast<int>(size), 2);
5 T* brr = new T[new_capacity];
6 std::copy(arr, arr + size, brr);
7 delete[] arr;
8 arr = brr;
9 capacity = new_capacity;

10 }

resize Function: Optimized Resizing of DynamicArray

Instead of manually copying data with a for loop, we employ the efficient std::copy
function to move data from the old array to the new one.

Insert
Optimizing insertion involves using std::copy_backward to shift existing elements
and create space for the new element:

1 template <typename T>
2 void DynamicArray<T>::insertAt(size_t i, const T item) {
3 assert(i >= 0 && i <= size);
4 if (size == capacity)
5 resize();
6 std::copy_backward(arr + i,
7 arr + size,
8 arr + size + 1);
9 arr[i] = item;

10 size++;
11 }

insertAt Function: Optimized Insertion in DynamicArray

Utilizing std::copy_backward, we efficiently shift elements to make room for
the new value while optimizing the operation.

Remove
For removal, std::copy can be employed to efficiently condense the array after an ele-
ment is taken out:

1 template <typename T>
2 void DynamicArray<T>::removeAt(size_t i) {
3 assert(i >= 0 && i < size);



50 Chapter 3. Arrays and Dynamic Arrays

4 std::copy(arr + i + 1,
5 arr + size,
6 arr + i);
7 --size;
8 if (capacity >= 3 * size)
9 resize();

10 }

removeAt Function: Optimized Removal from DynamicArray

We efficiently move the elements beyond the removed one using std::copy, ensur-
ing an optimized removal process.

3.4 Summary
This chapter has explored the intricacies of arrays and dynamic arrays, highlighting their
structure, usage, and optimization. Here are the key points we covered:

• Dynamic arrays overcome the limitations of static arrays by allowing dynamic re-
sizing, adapting seamlessly to changing data storage needs.

• Operations on dynamic arrays are generally efficient, with append actions usually
executing in constant time. However, occasional resizing may require O(n) time
complexity.

• Despite their adaptability, dynamic arrays can lead to some wasted space, but this is
typically capped at half the array’s capacity, ensuring memory efficiency.

• Through optimization, particularly in data copying and shifting, dynamic arrays
become even more efficient and suited for various computational tasks.

As we have seen, dynamic arrays are foundational in managing collections of data,
allowing for both flexibility and efficiency. Moving forward, we will delve into linked
lists in the next chapter, exploring another fundamental data structure that offers different
advantages and is particularly useful in scenarios where dynamic arrays may not be the
most efficient choice.

Problems

Discussion
Understanding Arrays and Pointers

1. What is an array in programming, and how does it differ from a pointer?
2. Explain the characteristics of static arrays, including their declaration and memory

location.



3.4 Summary 51

3. How are dynamically allocated arrays different from static arrays, and why are
they more flexible?

4. What are the two primary ways to use pointers to access arrays, and how do they
differ?

Comparative Analysis of Array Types
1. Compare stack-based arrays and heap-based arrays in terms of memory location,

memory management, scope, size determination, and access speed. Discuss the
strengths and limitations of each approach.

2. What is the primary limitation of static arrays, and can you provide an example
that illustrates this limitation?

3. Why might dynamically allocated arrays be considered a partial solution to the
limitation of static arrays, and what common issue is associated with this ap-
proach?

4. Explain the advantages of dynamic arrays over static arrays in terms of memory
usage and adaptability.

Optimizing Dynamic Array Operations
1. What are the key operations in dynamic arrays that benefit from optimization, and

why are they important?
2. How are data shifting and copying traditionally implemented in dynamic arrays,

and what are the limitations of this approach?
3. Explain the advantages of using std::copy for data copying in dynamic arrays

during the resizing operation.
4. How does the use of std::copy_backward improve the efficiency of the

insert operation in dynamic arrays?

Multiple Choice Questions
1. What is an array?

(a) An unordered collection of elements
(b) An ordered collection of elements of the same data type
(c) A variable that stores memory addresses
(d) None of the above

2. What is a pointer?
(a) A variable that stores memory addresses
(b) A data type to represent real numbers
(c) An ordered collection of elements of the same data type
(d) None of the above

3. What is a dynamic array?
(a) An array declared with a fixed size at compile time
(b) An array that resides on the stack



52 Chapter 3. Arrays and Dynamic Arrays

(c) An array whose size can be dynamically adjusted based on needs
(d) An array that requires explicit deallocation using functions like new

4. What is the main limitation of static arrays addressed by dynamic arrays?
(a) Constant-time access
(b) Efficient memory usage
(c) Fixed size
(d) Stack-based allocation

5. What is the primary advantage of dynamic arrays over static arrays?
(a) Efficient memory usage
(b) Fixed size
(c) Constant-time access
(d) Adaptability to changing data size

6. What is the overhead associated with dynamic arrays?
(a) Constant-time access
(b) Memory wastage
(c) Efficient memory usage
(d) Resizing overhead

7. When do dynamic arrays require reallocation of memory?
(a) Only when the program starts
(b) Periodically, based on the program’s execution time
(c) When they need to expand or shrink
(d) Never, as they have a fixed memory allocation

8. What is a disadvantage of dynamic arrays related to insertion and removal opera-
tions?
(a) Constant-time access
(b) Stack-based allocation
(c) Shifting a significant number of elements during certain operations
(d) Efficient memory usage

9. What is the primary reason for dynamic arrays having constant-time access?
(a) Efficient memory usage.
(b) Pre-allocated memory.
(c) Periodic reallocation.
(d) Array elements can be directly accessed regardless of their position within the

array.
10. How do dynamic arrays compare to static arrays in terms of memory allocation?

(a) Dynamic arrays pre-allocate memory.
(b) Dynamic arrays have fixed memory allocation.
(c) Dynamic arrays adjust their memory footprint dynamically based on needs.
(d) Dynamic arrays always use more memory than needed.

11. How are dynamically allocated arrays created?
(a) By using the malloc function.
(b) By declaring with a fixed size at compile time.



3.4 Summary 53

(c) By using the new operator during runtime.
(d) Dynamically allocated arrays are not created.

12. Where does a stack-based array reside?
(a) On the heap.
(b) On the stack.
(c) In a global memory pool.
(d) Nowhere; stack-based arrays do not reside in memory.

13. How is the scope of a heap-allocated array different from a stack-based array?
(a) Heap-allocated arrays have a more limited scope.
(b) Heap-allocated arrays have a broader scope.
(c) Both have the same scope.
(d) Arrays don’t have a scope.

14. What is the primary factor determining access time for array elements?
(a) The array’s size
(b) The number of elements in the array
(c) The calculation of the access address
(d) The element’s index in the array

15. What is a major advantage of arrays?
(a) Constant-time access to any element
(b) Efficient resizing operations
(c) Variable capacity
(d) Slow access speed

16. In the DynamicArray class, what does the capacity attribute represent?
(a) The current size of the array
(b) The maximum number of elements the array can hold
(c) The number of elements currently in the array
(d) The default capacity of the array

17. How does the pushBack operation differ from the insertAt operation in a dy-
namic array?
(a) pushBack adds an element to the beginning, while insertAt adds at the end.
(b) pushBack always triggers a resize, while insertAt may not.
(c) insertAt adds an element at a specified index, while pushBack adds at the end.
(d) There is no difference; they perform the same operation.

18. What is the purpose of the setDefaultCapacity function in the DynamicArray

class?
(a) To set the default size of the array.
(b) To change the capacity of the array at runtime.
(c) To allow derived classes to change default capacity.
(d) There is no such function in the DynamicArray class.



54 Chapter 3. Arrays and Dynamic Arrays

19. When is the resize function triggered during array operations?
(a) Only on adding elements.
(b) Only on removing elements.
(c) Both on adding and removing elements.
(d) Never; the array size is fixed during initialization.

20. What is the role of the assert function in the insertAt method of the Dynamic

Array class?
(a) To check for memory leaks
(b) To ensure the array is not empty
(c) To verify the validity of the index
(d) To stop the execution of the program

21. In the removeAt method, why is the condition capacity>=3*size used for
triggering a resize?
(a) It ensures that resizing only occurs when the array is almost full.
(b) It prevents resizing if the array is less than one-third full.
(c) It guarantees that resizing happens when the array is significantly larger than needed.
(d) It has no significance; the resizing always occurs.

22. What advantage does using std::copy provide in dynamic array operations com-
pared to traditional for loops?
(a) Improved readability of the code.
(b) Faster and more efficient data copying.
(c) Compatibility with all programming languages.
(d) It allows for copying data in reverse order.

True/False Questions
1. Static arrays and dynamic arrays both have a fixed memory allocation.
2. The primary advantage of dynamic arrays over static arrays is efficient memory

usage.
3. The scope of a heap-allocated array is more limited than that of a stack-based

array.
4. Arrays do not have a scope; their elements can be accessed from any part of the

program.
5. The pushBack operation always triggers a resize in a dynamic array.
6. The time complexity of the insertAt operation in a dynamic array is always

O(1).
7. The resize function in a dynamic array doubles the current capacity of the array

each time it is called.
8. Dynamic arrays are more memory-efficient than linked lists when it comes to

storage overhead.



3.4 Summary 55

9. The popFront operation in a dynamic array is equivalent to the removeAt(0)
operation.

10. In a dynamic array, the time complexity of the pushBack operation is always
equal to or better than the time complexity of the insertAt operation.

Challenge Questions
1. In a real-time system with strict memory constraints, you need a structure to store

and frequently manipulate a collection of integers. Would you opt for a stack-
based array or a heap-allocated array? Justify your choice based on memory man-
agement, access speed, and system flexibility.

2. Optimizing: Design a dynamic array that efficiently manages memory, particu-
larly focusing on minimizing wasted space during resizing. How can you reduce
memory overhead when elements are removed? Detail the design and implemen-
tation considerations.

3. Advanced Resizing Strategy: The typical resize function doubles the array’s
capacity, but what if we change this factor, say to tripling the capacity? Develop a
resizing mechanism that alters the array size by a different factor and discuss the
potential benefits or drawbacks of this method.

4. CustomCopyingMechanism: Beyond std::copy, investigate alternative tech-
niques for copying data in dynamic arrays. Craft a custom function to copy ele-
ments and compare its performance and simplicity with standard library functions.
What are the trade-offs involved in using a custom copying function vs. built-in
ones?



4. Linked List

Objectives
In this chapter, I will guide you through the essential topics of linked lists in C++. You
will discover the pivotal roles these structures play in data organization and manipulation.
Here are the key objectives we will explore together:

1. Linked Pointers: Understand the concept of linked pointers and how they are
used to connect elements in a linked list data structure.

2. Singly-Linked List: Implement and operate on a singly-linked list, including
insertion, deletion, and traversal techniques.

3. Doubly-Linked and Circular Linked Lists: Recognize the advantages of doubly-
linked lists over singly-linked lists, including bidirectional traversal and its impact
on operations. Explore the concept, implementation, and practical use cases of
circular linked lists.

4. Performance Analysis: Analyze the performance characteristics and trade-offs
of different types of linked lists, and determine when to use each type according
to specific requirements.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_4

57

https://doi.org/10.1007/979-8-8688-0802-9_4


58 Chapter 4. Linked List

4.1 Introduction to Linked Pointers
Linked lists are a fundamental data structure in computer science and programming. They
provide a flexible and efficient way to manage dynamic collections of elements. Each
element, or node, contains a reference to the next node, creating a chain-like structure.
This interconnected nature allows linked lists to excel in scenarios where elements need to
be frequently inserted or removed, making them powerful tools for various applications.

Pointers play a fundamental role in programming and data structures, enabling us to
establish relationships between data elements. This capability is important for creating
complex structures, such as linked lists.

In this section, we will explore how pointers work with objects and how they are used
in linked lists.

4.1.1 Pointers to Objects
Consider the following example using a simple structure:

struct Node {
int x;
int y;

};

Node Structure Definition

Creating Instances
You can create an instance of this structure or a pointer to an object of type Node:

Node obj; // Instance
Node *ptr = new Node; // Pointer to an object

Creating an Instance and Pointer to a Node

Accessing Members
To access the x and ymembers from ptr, you can use the arrow operator or the traditional
dereference operator:

// Using the arrow operator
ptr->x = 1000;
// OR, using the traditional dereference operator
(*ptr).x = 1000;

Accessing Members of a Node Using Pointers



4.1 Introduction to Linked Pointers 59

As shown in Figure 4.1, a pointer to an object can be used to store and access values.
What if the object contains pointers? Consider the following structure:

struct Node {
int x, y;
int *pz;

};

Node Structure with an Internal Pointer

Figure 4.1: A pointer on the stack with address 0x05a5aff, storing the start address of a
new node allocated on heap memory with address 0x0fa12f



60 Chapter 4. Linked List

Working with Pointers Inside Objects
To access the pointer inside the object and allocate memory for it:

Node *ptr = new Node; // Pointer to the object
ptr->pz = new int; // Access pointer inside object

Allocating Memory for a Pointer Inside a Node

Storing Values
To store a value in the allocated space:

// Storing the value 1000 in the allocated space

*(ptr->pz) = 1000;

Storing a Value in the Allocated Pointer

As shown in Figure 4.2, a pointer to an object can contain another pointer. Figure 4.3
provides a simplified view.

4.1.2 Creating Linked Objects
Now, consider the scenario where you need to create a list of objects of the same type
connected together. To achieve this, store pointers of the same type inside the objects,
allowing you to link the objects together in memory.

struct Node {
int data;
Node *next = nullptr;

};

Creating a Linked Node Structure

Ensure that the next pointer is initialized to nullptr when a Node object is created.
This practice ensures a default state for the object.

In this structure, the next member is a pointer to the next node in the list. As shown
in Figure 4.4, linked objects in memory use pointers.

Figure 4.5 provides a simplified view with traversal.



4.1 Introduction to Linked Pointers 61

Figure 4.2: Pointer to an object containing an additional pointer member (*next) to allow
linking to the next object

Figure 4.3: Simple representation of a pointer (ptr) pointing to a node, accessing it using
*(ptr). The node is represented as a box with an arrow pointing to the next node

To access any node in this linked list, you start from the previous node.

// Pointer to the first node object
Node *ptr = new Node;
// Allocate a new node linked to the first node
ptr->next = new Node;



62 Chapter 4. Linked List

Figure 4.4: Linked objects in heap memory. Each node’s *next pointer holds the address
of the next node, creating a chain in memory, illustrating the dynamic linking of objects

Figure 4.5: Simplified view of linked objects with traversal. Nodes are represented as
boxes linked by arrows, showing the conceptual structure of linked lists

// Allocate a new node linked to the second node
ptr->next->next = new Node;

Creating Linked Nodes in a List

4.1.3 Memory Management
Memory management is a critical aspect of working with linked lists. As you create and
manipulate nodes, it’s essential to allocate and deallocate memory efficiently. Each node in
a linked list is allocated on the heap to ensure dynamic growth and flexibility. However, it’s
equally important to release memory properly when nodes are removed to avoid memory
leaks and maintain system resources.



4.2 A Singly-Linked List (SLList) 63

4.1.4 Why Pointers Matter in Linked Lists
Pointers are fundamental to linked lists, as they enable the creation of a dynamic structure
where each element (node) references the next one. This interconnected structure gives
linked lists their name and power.

It is important to note that all nodes are created using pointers because they are stored
in the heap (as opposed to the stack). Using the heap ensures that the data isn’t automati-
cally deleted when the scope ends. This allows linked lists to be dynamic and flexible, as
they can grow or shrink as needed during program execution.

4.2 A Singly-Linked List (SLList)
In this section, I will guide you through the concept of singly-linked lists (SLLists), which
are fundamental data structures. SLLists consist of nodes, each containing data and a
reference to the next node, enabling dynamic collections that can efficiently grow or shrink.

4.2.1 Anatomy of a Singly-Linked List
A singly-linked list comprises nodes, with each node consisting of two key elements:

1. Data: This field holds the actual information or value associated with the node.
2. Next Pointer: This field is a reference to the next node, forming the linked structure.

If a node is the last in the list, its next pointer is set to nullptr.
A node can be defined as follows:

1 template <class T>
2 struct Node {
3 T data;
4 Node* next;
5
6 Node() : next(nullptr) {}
7 Node(const T& item) : data(item), next(nullptr) {}
8 };

Node Structure Definition for Singly-Linked List

In this definition, data represents the value stored in the node, and next is a pointer
to the next node in the list, as illustrated in Figure 4.6.

Figure 4.6: A simple view of a singly-linked list. The head points to the first node, and
each node points to the next node in the sequence



64 Chapter 4. Linked List

Example: Creating a Singly-Linked List
To illustrate the creation of a singly-linked list, let’s create a list of integers and add a few
elements to it, as shown in Figure 4.7:

Node<int>* head = new Node<int>;
head->data = 1;

Node<int>* second = new Node<int>;
second->data = 2;
head->next = second;

Node<int>* third = new Node<int>;
third->data = 3;
second->next = third;

Creating a Singly-Linked List of int Nodes

Figure 4.7: Example of a singly-linked list, illustrating the code and structure of a simple
list with nodes linked sequentially

4.2.2 Creating a Singly-Linked List Without Tail
To implement a singly-linked list, we define a class called SinglyLL with the following
essential data members:

• head: A pointer to the first node in the list (composed from Node)
• size: The number of nodes in the list (inherited from IList)
The interface code is presented below. Figure 4.8 illustrates the UML Class Diagram

of SinglyLL, Node, and the IList interface.

1 template <typename T>
2 class SinglyLL : public IList<T> {
3 public:
4 SinglyLL() : IList<T>(),
5 head(nullptr) {}



4.2 A Singly-Linked List (SLList) 65

6
7 virtual ~SinglyLL(){
8 clear();
9 }
10
11 // IList Interface Methods
12 virtual void pushFront(const T item);
13 virtual void pushBack(const T item);
14 virtual T popBack();
15 virtual T popFront();
16 // ..... Other Abstract Interface methods
17
18 protected:
19 Node<T>* head;
20
21 // Inherited members to use directly
22 using IList<T>::size;
23 };

SinglyLL Class Interface

This interface defines the core methods and attributes needed to work with a singly-
linked list.

Figure 4.8: SinglyLL UML class diagram, showing the inheritance from IList<T>
and composition with Node<T>

To create a singly-linked list, you typically start with a pointer to the head node, which
is the first element in the list. Here’s how you can initialize an empty list:

1 SinglyLL() : IList<T>(),
2 head(nullptr) {}

Initializing an Empty Singly-Linked List



66 Chapter 4. Linked List

PushFront and PushBack
PushFront
The pushFront function adds an element to the beginning of the linked list. It creates a
new node, links it to the current head, and updates the head pointer to the new node. The
time complexity of pushFront is O(1) (see Figure 4.9).

1 template <typename T>
2 void SinglyLL<T>::pushFront(const T item) {
3 Node<T>* newNode = new Node<T>(item);
4
5 // (1) Link the new node to the current head.
6 newNode->next = head;
7
8 // (2) Update the head pointer to the new node.
9 head = newNode;
10
11 ++size;
12 }

pushFront Function: Add Element to Front of List

Figure 4.9: Visualizing the pushFront operation, showing steps to link a new node to
the current head and update the head pointer

PushBack
The pushBack function adds an element to the end of the linked list. It iterates through
the list to find the last node and appends the new element to it. Therefore, the time com-
plexity of pushBack is O(n), where n is the number of elements in the list.



4.2 A Singly-Linked List (SLList) 67

Figure 4.10: PushBack operation with no head. The new node is set as the head, illus-
trating the initial insertion into an empty list

When adding an element to the end of the linked list using pushBack, two scenarios
may occur:

• Case 1: If there is no existing head, the new element becomes the first and only node
in the list (Figure 4.10).

• Case 2: If there are existing nodes in the list, the new element is appended to the last
node. This involves two steps (Figure 4.11):
1. Seeking to the last node
2. Appending the new element to the last node

1 template <typename T>
2 void SinglyLL<T>::pushBack(const T item) {
3 Node<T>* newNode = new Node<T>(item);
4
5 // CASE 1: If there is no head
6 if (!head) {
7 // (1) Set the new node as the head.
8 head = newNode;
9 }
10 // CASE 2: If there are existing nodes
11 else {
12 Node<T>* current = head;
13 // (1) Seek to the last node.



68 Chapter 4. Linked List

Figure 4.11: PushBack operation with existing nodes. The process shows locating the
current last node and appending the new node to the end

14 while (current->next) {
15 current = current->next;
16 }
17 // (2) Append the new element to the last node.
18 current->next = newNode;
19 }
20 ++size;

Figure 4.12: Visualizing the popFront operation, showing steps to update the head
pointer and remove the first node from the list



4.2 A Singly-Linked List (SLList) 69

21 }

pushBack Function: Add Element to End of List

PopFront and PopBack

PopFront
The popFront function removes the element from the beginning of the linked list. It
updates the head pointer to the next node and deletes the old head (Figure 4.12). The time
complexity of popFront is O(1).

1 template <typename T>
2 T SinglyLL<T>::popFront() {
3 assert(head && size > 0);
4
5 // (1) Save a reference to the current head node.
6 Node<T>* temp = head;
7 // (2) Update the head pointer to the next node.
8 head = head->next;
9 T frontData = temp->data;
10 // (3) Delete the old head node.
11 delete temp;
12 --size;
13 return frontData;
14 }

popFront Function: Remove Element from Front of List

PopBack
The popBack function removes the element from the end of the linked list. It iterates
through the list to find the second-to-last node, updates its next pointer to null, and deletes
the last node.

When removing an element from the end of the linked list using popBack, two sce-
narios may occur:

• Case 1: If there’s only one element (head) in the list (Figure 4.13), popBack re-
moves this element, and the list becomes empty. This involves two steps:
1. Deleting the head node (the only node in this case)
2. Updating the head pointer to null, indicating an empty list

• Case 2: If there are multiple nodes in the list (Figure 4.14), popBack removes the
last element while preserving the rest of the list’s structure. This involves three steps:
1. Traversing the list to locate the second-to-last node
2. Deleting the last node
3. Updating the second-to-last node’s next pointer to null, indicating the new

end of the list



70 Chapter 4. Linked List

Figure 4.13: PopBack operation with only one head node. The process shows deleting
the head node and setting the head pointer to nullptr

Figure 4.14: PopBack operation with existing nodes. The process shows traversing to the
second-to-last node and updating the pointers to remove the last node



4.2 A Singly-Linked List (SLList) 71

1 template <typename T>
2 T SinglyLL<T>::popBack() {
3 // Ensure the list is not empty
4 assert(head && size > 0);
5
6 T backData;
7 // Case 1: If there’s only one element in the list
8 if (head->next == nullptr) {
9 backData = head->data;
10 // (1) Delete the head node.
11 delete head;
12 // (2) Update the head pointer to null.
13 head = nullptr;
14 }
15 // Case 2: If there are multiple nodes in the list
16 else {
17 Node<T>* current = head;
18 // (1) Traverse to the second-to-last node.
19 while (current->next->next) {
20 current = current->next;
21 }
22 backData = current->next->data;
23
24 // (2) Delete the last node.
25 delete current->next;
26 // (3) Update the node’s ’next’ pointer to null.
27 current->next = nullptr;
28 }
29 --size;
30 return backData;
31 }

popBack Function: Remove Element from End of List

4.2.3 Creating a Singly-Linked List with a Tail
In this section, I will introduce the concept of a tail pointer that points to the last node in
the list (Figure 4.15). This enhancement simplifies and optimizes operations that involve
the end of the list, such as appending elements.

To implement a singly-linked list with a tail, we inherit from the SinglyLL class and
introduce an additional essential data member:

• tail: A pointer to the last node in the list (composed from Node)
The interface code is presented below. Figure 4.16 illustrates the UML class diagram

of SinglyLLTailed, Node, and the IList interface.



72 Chapter 4. Linked List

Figure 4.15: A simple view of a singly-linked list with a tail pointer. The head points to
the first node, and the tail points to the last node

1 template <typename T>
2 class SinglyLLTailed : public SinglyLL<T> {
3 public:
4 SinglyLLTailed() : SinglyLL<T>(),
5 tail(nullptr) {}
6
7 virtual ~SinglyLLTailed();
8
9 // IList Interface Methods
10 virtual void clear();
11 virtual void pushBack(const T item);
12 virtual void pushFront(const T item);
13 virtual T popBack();
14 virtual T popFront();
15 virtual T topBack() const;
16
17 protected:
18 Node<T>* tail;
19
20 using SinglyLL<T>::size;
21 using SinglyLL<T>::head;
22 };

SinglyLLTailed Class Interface

This updated interface now includes the tail pointer. Initialization of the list is per-
formed as follows:

1 SinglyLLTailed() : SinglyLL<T>(),
2 tail(nullptr) {}

Initializing a Singly-Linked List with a Tail



4.2 A Singly-Linked List (SLList) 73

Figure 4.16: SinglyLLTailed UML class diagram, showing the inheritance from
SinglyLL<T> and composition with Node<T>, highlighting the addition of a tail
pointer

Enhancing with a Tail Pointer

Introducing the tail pointer significantly improves the efficiency of the pushBack op-
eration, allowing for constant time (O(1)) insertion at the end of the linked list. The other
fundamental operations, including pushFront, popFront, and popBack, remain un-
affected and continue to operate in the same way as in linked lists without a tail pointer.

It’s important to note that while the popBack operation does not directly rely on the
tail pointer to find the second-to-last node in the list, it requires adjusting the tail
pointer when removing the last element.

PushBack

The pushBack function adds an element to the end of the linked list in constant time,
achieving a time complexity of O(1).

When using pushBack to add an element to the end of the linked list, two scenarios
may occur:

1. Case 1: No Existing Head: In this scenario, the new element becomes the first and
only node in the list.

2. Case 2: Existing Nodes (see Figure 4.17): When there are already existing nodes in
the list, the new element is appended to the last node using the following steps:
(a) Updating the current tail’s next pointer to point to the new element
(b) Updating the tail pointer to the new node



74 Chapter 4. Linked List

Figure 4.17: PushBack operation in SinglyLLTailed with existing nodes. The new
node is linked to the end of the list, and the tail pointer is updated

1 template <typename T>
2 void SinglyLLTailed<T>::pushBack(const T item) {
3 Node<T>* newNode = new Node<T>(item);
4
5 // Case 1: If there is no head
6 if (!head) {
7 // (1) Set the new node as the head.
8 head = newNode;
9 // (2) Set the new node as the tail.
10 tail = newNode;
11 }
12 // Case 2: If there are existing nodes
13 else {
14 // (1) Append the new element to the current tail.
15 tail->next = newNode;
16 // (2) Update the tail to the new node.
17 tail = newNode;
18 }
19 ++size;
20 }

pushBack Function: Add Element to End of List with Tail Pointer



4.2 A Singly-Linked List (SLList) 75

PopBack

The popBack operation is responsible for removing the last element in a linked list. When
the last element is removed, it’s important to update the tail pointer to maintain a reference
to the new last node.

When using popBack, two scenarios may occur:
1. Case 1: Only One Element (Head) Exists: In this scenario, popBack removes the

only element, and the list becomes empty.
2. Case 2: Multiple Elements Exist: In this scenario, popBack removes the last

element, and the tail pointer is updated to the new last node.

1 template <typename T>
2 T SinglyLLTailed<T>::popBack() {
3 // Ensure the list is not empty
4 assert(head && size > 0);
5
6 T backData;
7
8 // Case 1: If there’s only one element in the list
9 if (head->next == nullptr) {

10 backData = head->data;
11 // (1) Delete the head node.
12 delete head;
13 // (2) Update the head and tail pointers to null.
14 head = tail = nullptr;
15 }
16 // Case 2: If there are multiple nodes in the list
17 else {
18 Node<T>* current = head;
19 // (1) Traverse to the second-to-last node.
20 while (current->next->next) {
21 current = current->next;
22 }
23 backData = current->next->data;
24 // (2) Delete the last node.
25 delete current->next;
26 // (3) Update the tail pointer to
27 // the second-to-last node.
28 current->next = nullptr;
29 tail = current;
30 }
31 --size;
32 return backData;
33 }

popBack Function: Remove Element from End of List with Tail Pointer



76 Chapter 4. Linked List

Insertion and Removal
Insert
The insertAt function adds an element at a specified location in the linked list. It verifies
that the index is valid and updates the node connections to accommodate the new element
(see Figure 4.18). This function operates in O(n) time complexity in the worst case.

Figure 4.18: InsertAt operation with existing nodes. The new node is inserted within
the sequence by updating pointers to link it correctly

1 template <typename T>
2 void SinglyLL<T>::insertAt(size_t index, const T item) {
3 // Check if the index is within valid range
4 assert(index >= 0 && index <= size);
5
6 // Case 1: Inserting at the beginning of the list
7 if (index == 0) {
8 pushFront(item);
9 }
10 // Case 2: Inserting in the middle or end of the list
11 else {
12 Node<T>* newNode = new Node<T>(item);
13 Node<T>* current = head;



4.2 A Singly-Linked List (SLList) 77

14 // (1) Traverse to the node before the index
15 for (size_t i = 1; i < index; i++) {
16 current = current->next;
17 }
18 // (2) Update the new node’s ‘next‘.
19 newNode->next = current->next;
20 // (3) Update the previous node’s ‘next‘.
21 current->next = newNode;
22 ++size;
23 }
24 }

insertAt Function: Add Element at a Specific Index

Remove
The removeAt function deletes an element from the linked list based on the specified
index. It checks if the index is valid and updates the node connections to remove the
selected item (see Figure 4.19). The time complexity of removeAt is O(n) in the worst
case.

Figure 4.19: RemoveAt operation with existing nodes. The links are updated to exclude
the current node, which is then removed from the list

1 template <typename T>
2 void SinglyLL<T>::removeAt(size_t index) {
3 // Check if the index is within valid range
4 assert(index >= 0 && index < size);
5
6 // Case 1: Removing the first element



78 Chapter 4. Linked List

7 if (index == 0) {
8 popFront();
9 }
10 // Case 2: Removing from the middle or end of the list
11 else {
12 Node<T>* prev = head;
13 // (1) Traverse to the node before the
14 // one to be removed
15 for (size_t i = 1; i < index; i++) {
16 prev = prev->next;
17 }
18 Node<T>* current = prev->next;
19 // (2) Update the previous node’s ‘next‘.
20 prev->next = current->next;
21 // (3) Delete the element at the specified index.
22 delete current;
23 --size;
24 }
25 }

removeAt Function: Remove Element at a Specific Index

4.2.4 Accessing Elements
You can also access and modify elements in the singly-linked list using the operator[]
and the get function. The time complexity is O(n) in the worst case.

1 template <typename T>
2 T& SinglyLL<T>::get(size_t index) {
3 assert(index >= 0 && index < size);
4 Node<T>* current = head;
5 for (size_t i = 0; i < index; ++i) {
6 current = current->next;
7 }
8 return current->data;
9 }
10
11 template <typename T>
12 T& SinglyLL<T>::operator[](size_t i) {
13 return get(i);
14 }

Accessing Elements in a Singly-Linked List



4.2 A Singly-Linked List (SLList) 79

4.2.5 Traversing
To interact with the elements within a singly-linked list, you need to traverse it from the
head to the desired node. This process allows you to examine and print the contents of the
list.

Printing the Singly-Linked List

A fundamental operation is to print the elements in the singly-linked list, providing a visual
representation of its contents. The time complexity of the print function is O(n).

1 template <typename T>
2 void SinglyLL<T>::print() const {
3 Node<T>* current = head;
4 while (current) {
5 std::cout << current->data << " ";
6 current = current->next;
7 }
8 std::cout << std::endl;
9 }

print Function: Display Contents of the List

Destructor for Proper Memory Management

The destructor ensures that all allocated memory for the singly-linked list is properly re-
leased when the list goes out of scope or is explicitly destroyed, preventing memory leaks
and promoting efficient resource management. The time complexity of the destructor is
O(n).

1 template <typename T>
2 void SinglyLLTailed<T>::clear() {
3 while (head != nullptr) {
4 Node<T>* temp = head;
5 head = head->next;
6 delete temp;
7 }
8 // Release ‘tail‘ pointer.
9 tail = nullptr;
10 }
11
12 template <typename T>
13 SinglyLLTailed<T>::~SinglyLLTailed() {
14 clear();
15 }

clear and Destructor: Proper Memory Management



80 Chapter 4. Linked List

The clear method performs the same logic as your original destructor, cleaning up
the list by deleting each node and releasing associated memory. By calling clear from
the destructor, you ensure that the cleanup process is consistent, making your code more
maintainable and reducing the chances of errors related to memory management.

4.3 A Doubly-Linked List (DLList)
A doubly-linked list (DLList) is similar to a singly-linked list (SLList) but with an added
feature: each node in a DLList not only points to the next node in the sequence but also
has a reference to the previous node in the list (Figure 4.20). This additional backward
reference provides more flexibility and convenience when navigating the list.

4.3.1 Anatomy of a Doubly-Linked List
A doubly-linked list comprises nodes, with each node consisting of three key elements:

1. Data: This field holds the actual information or value associated with the node.
2. Next Pointer: This field is a reference to the next node in the sequence.
3. Previous Pointer: This field is a reference to the previous node in the sequence.
Here is a typical structure for a node in a DLList, defined as DNode:

1 template <class T>
2 struct DNode : public Node<T> {
3 DNode* prev;
4 DNode* next;
5
6 DNode() : Node<T>(),
7 prev(nullptr), next(nullptr) {}
8 DNode(const T& item) : Node<T>(item),
9 prev(nullptr), next(nullptr) {}
10 };

DNode Structure Definition for Doubly-Linked List

In this definition, data represents the value stored in the node, while next and prev
are pointers to the next and previous nodes in the list, respectively, as illustrated in Fig-
ure 4.20.

This structure allows each node to maintain connections to both its successor and pre-
decessor, creating a bidirectional linkage. This bidirectional connection enhances list navi-
gation, making it easy to traverse the list in both directions.

4.3.2 A Circular Doubly-Linked List with Dummy Node
In SLLists, we encountered situations that required special consideration, such as removing
the last element or adding an element to an empty list. Ensuring that the head and tail
pointers are updated correctly in these scenarios can be complex. In DLLists, the number
of such special cases increases, making efficient management of the list more challenging.



4.3 A Doubly-Linked List (DLList) 81

Figure 4.20: A simple view of a doubly-linked list. The head points to the first node, the
tail points to the last node, and each node has next and prev pointers

To address these complexities and simplify DLList operations, a practical solution is
to introduce a dummy node. This node does not contain any data but acts as a placeholder.
It plays a pivotal role in simplifying list management by ensuring that there are no special
cases. Each node in the DLList is linked (double-linked) in a cycle, as shown in Figure 4.21,
where the dummy node acts as the node that follows the last node in the list and precedes
the first node in the list. This methodology establishes a more uniform structure and eases
the navigation of challenging scenarios within DLLists.

Figure 4.21: A simple view of a circular doubly-linked list with a dummy node. The
dummy node links the first and last nodes, facilitating a continuous structure

Here, we define the circular DLList class that includes the dummy node (see Fig-
ure 4.22):

1 template <typename T>
2 class DLList : public IList<T> {
3 public:
4 DLList() : IList<T>() {
5 dummy = new DNode<T>();
6 dummy->next = dummy;
7 dummy->prev = dummy;
8 }
9



82 Chapter 4. Linked List

10 virtual ~DLList();
11
12 // IList Interface Methods
13 virtual void insertAt(size_t index, const T item);
14 virtual void removeAt(size_t index);
15 virtual void pushFront(const T item);
16 virtual void pushBack(const T item);
17 virtual T popFront();
18 virtual T popBack();
19 virtual T topFront() const;
20 virtual T topBack() const;
21
22 virtual void clear();
23 virtual void print() const;
24 // ..... Other Abstract Interface methods
25
26 private:
27 DNode<T>* dummy;
28
29 DNode<T>* jumpTo(size_t index) const;
30 };

DLList Class Interface with Dummy Node

Figure 4.22: An empty circular DLList with only a dummy node, illustrating the initial
state of the list

The class diagram (see Figure 4.23) illustrates the relationships and inheritance among
Node, DNode, and DLList.

4.3.3 Implementing Operations
PushBack
The pushBack function adds an element to the end of the doubly-linked list. The time
complexity of pushBack is O(1).

1 template <typename T>
2 void DLList<T>::pushBack(const T item) {



4.3 A Doubly-Linked List (DLList) 83

Figure 4.23: UML class diagram of DLList showing inheritance and relationships with
Node and DNode

3 // (1) Create a new node
4 DNode<T>* newNode = new DNode<T>(item);
5
6 // (2) Link the new node with the
7 // current last node and dummy node
8 newNode->prev = dummy->prev;
9 newNode->next = dummy;
10 dummy->prev->next = newNode;
11 dummy->prev = newNode;
12
13 // (3) Increment the size of the list
14 ++size;
15 }

pushBack Function: Add Element to End of List

PopBack
The popBack function removes an element from the end of the doubly-linked list. The
time complexity of popBack is O(1).

1 template <typename T>
2 T DLList<T>::popBack() {
3 assert(dummy->prev != dummy && size > 0);
4
5 // (1) Save a reference to the last node
6 DNode<T>* temp = dummy->prev;
7 T backData = temp->data;
8



84 Chapter 4. Linked List

9 // (2) Update the dummy’s previous node
10 dummy->prev = temp->prev;
11 temp->prev->next = dummy;
12
13 // (3) Delete the last node
14 delete temp;
15 --size;
16
17 return backData;
18 }

popBack Function: Remove Element from End of List

PushFront
The pushFront function adds an element to the beginning of the doubly-linked list. The
time complexity of pushFront is O(1).

1 template <typename T>
2 void DLList<T>::pushFront(const T item) {
3 // (1) Create a new node
4 DNode<T>* newNode = new DNode<T>(item);
5
6 // (2) Link the new node with
7 // the dummy node and the first node
8 newNode->next = dummy->next;
9 newNode->prev = dummy;
10 dummy->next->prev = newNode;
11 dummy->next = newNode;
12
13 // (3) Increment the size of the list
14 ++size;
15 }

pushFront Function: Add Element to Front of List

PopFront
The popFront function removes an element from the beginning of the doubly-linked list.
The time complexity of popFront is O(1).

1 template <typename T>
2 T DLList<T>::popFront() {
3 assert(dummy->next != dummy && size > 0);
4
5 // (1) Save a reference to the first node



4.3 A Doubly-Linked List (DLList) 85

6 DNode<T>* temp = dummy->next;
7 T frontData = temp->data;
8
9 // (2) Update the dummy’s next node
10 dummy->next = temp->next;
11 temp->next->prev = dummy;
12
13 // (3) Delete the first node
14 delete temp;
15 --size;
16
17 return frontData;
18 }

popFront Function: Remove Element from Front of List

4.3.4 Insert and Remove
In doubly-linked lists, both insertAt and removeAt operations can be optimized
to O(n/2) by leveraging the ability to traverse the list from either the head or the tail,
whichever is closer to the target index. This effectively reduces the number of steps needed
to reach the desired node by half on average, improving the overall performance of these
operations.

Implementing this optimization involves checking the target index against the midpoint
of the list. If the index is closer to the head, traverse from the head; if it is closer to the tail,
traverse from the tail. This approach effectively balances the traversal time and enhances
the efficiency of the doubly-linked list operations.

Jumping to Element at Index
For instance, with n elements, jumping to an element at index i involves

• Traversing from the dummy’s next (Head) if i is less than or equal to n/2
• Traversing from the dummy’s previous (Tail) if i is greater than n/2
The use of a dummy node in doubly-linked lists further simplifies these operations.

The dummy node acts as a placeholder, ensuring that the list is never truly empty and that
there are no special cases for inserting or removing the first or last elements. This uniform
structure allows for consistent traversal and manipulation of nodes, enhancing both code
simplicity and efficiency (see Figure 4.24).

JumpTo
The jumpTo function navigates to a specified index in the doubly-linked list. This function
helps in optimizing the insertAt and removeAt operations by providing a starting
point closer to the target index. The time complexity of jumpTo is O(n/2) in the worst
case.



86 Chapter 4. Linked List

Figure 4.24: Jumping process in a DLList, showing how to move left or right through
nodes based on the location of the target node

1 template <typename T>
2 DNode<T>* DLList<T>::jumpTo(size_t index) const {
3 assert(index >= 0 && index < size);
4
5 DNode<T>* current;
6
7 // (1) Determine the direction to traverse
8 if (index < size / 2) {
9 // (2) Traverse from the head
10 // if the index is in the first half
11 current = dummy->next;
12 for (size_t i = 0; i < index; ++i) {
13 current = current->next;
14 }
15 } else {
16 // (3) Traverse from the tail
17 // if the index is in the second half
18 current = dummy;
19 for (size_t i = size; i > index; --i) {
20 current = current->prev;
21 }
22 }
23 return current;
24 }

jumpTo Function: Navigate to Specified Index

Insert

The insertAt function adds an element at a specified location in the doubly-linked list.
It verifies that the index is valid and updates the node connections to accommodate the new
element (see Figure 4.25). This function operates in O(n/2) time complexity in the worst
case.



4.3 A Doubly-Linked List (DLList) 87

Figure 4.25: InsertAt operation with existing nodes in DLList, showing the steps to
link the new node within the sequence by updating pointers

1 template <typename T>
2 void DLList<T>::insertAt(size_t index, const T item) {
3 assert(index >= 0 && index < size);
4
5 // (1) Create a new node
6 DNode<T>* newNode = new DNode<T>(item);
7
8 // (2) Jump to index location
9 DNode<T>* current = jumpTo(index);
10
11 // (3) Insert the new node
12 newNode->next = current;
13 newNode->prev = current->prev;
14 current->prev->next = newNode;
15 current->prev = newNode;
16
17 // (4) Increment the size of the list
18 ++size;
19 }

insertAt Function: Add Element at Specific Index



88 Chapter 4. Linked List

Remove

The removeAt function deletes an element from the doubly-linked list based on the spec-
ified index. It checks if the index is valid and updates the node connections to remove the
selected item (see Figure 4.26). The time complexity of removeAt is O(n/2) in the worst
case.

Figure 4.26: RemoveAt operation with existing nodes in DLList, showing the steps to
update the links to exclude the current node and delete it

1 template <typename T>
2 void DLList<T>::removeAt(size_t index) {
3 assert(index >= 0 && index < size);
4
5 // (1) Jump to index location
6 DNode<T>* current = jumpTo(index);
7
8 // (2) Update the links
9 current->prev->next = current->next;
10 current->next->prev = current->prev;
11
12 // (3) Delete the current node
13 delete current;
14 --size;
15 }

removeAt Function: Remove Element at Specific Index



4.3 A Doubly-Linked List (DLList) 89

4.3.5 Accessing Elements
You can also access and modify elements in the doubly-linked list using the operator[].
The time complexity is O(n/2) in the worst case, as it can be optimized by starting the
traversal from the nearest end (head or tail).

1 template <typename T>
2 T& DLList<T>::get(size_t index) {
3 assert(index >= 0 && index < size);
4 // (1) Jump to the specified index location
5 DNode<T>* curr = jumpTo(index);
6 // (2) Return the data at the index
7 return curr->data;
8 }
9
10 template <typename T>
11 T& DLList<T>::operator[](size_t index) {
12 return get(index);
13 }
14
15 template <typename T>
16 void DLList<T>::set(size_t index, const T item) {
17 assert(index >= 0 && index < size);
18 DNode<T>* curr = jumpTo(index);
19 curr->data = item;
20 }

Access Elements using get and operator[] Functions

4.3.6 Traversing
To interact with the elements within a doubly-linked list, you need to traverse it from the
dummy to the desired node. This process allows you to examine and print the contents of
the list.

Printing the Doubly-Linked List
A fundamental operation is to print the elements in the doubly-linked list, providing a
visual representation of its contents. The time complexity of the print function is O(n).

1 template <typename T>
2 void DLList<T>::print() const {
3 DNode<T>* current = dummy->next;
4 while (current != dummy) {
5 std::cout << current->data << " ";
6 current = current->next;



90 Chapter 4. Linked List

7 }
8 std::cout << std::endl;
9 }

print Function: Display Contents of the List

Destructor

The destructor ensures that all allocated memory for the doubly-linked list is properly re-
leased when the list goes out of scope or is explicitly destroyed, preventing memory leaks
and promoting efficient resource management. The time complexity of the destructor is
O(n).

1 template <typename T>
2 void DLList<T>::clear() {
3 DNode<T>* current = dummy->next;
4 while (current != dummy) {
5 DNode<T>* temp = current;
6 current = current->next;
7 delete temp;
8 }
9 dummy->next = dummy;
10 dummy->prev = dummy;
11 size = 0;
12 }
13
14 template <typename T>
15 DLList<T>::~DLList() {
16 clear();
17 delete dummy;
18 }

Destructor: Proper Memory Management

4.4 Performance Analysis
4.4.1 Linked Lists vs. Arrays

In the context of linked lists, there are pros and cons compared to arrays for managing lists
of items.

Advantage: Flexibility
Linked lists are flexible. If you have a reference to a specific item in the list, you can easily
delete that item or insert a new item next to it, no matter where it is located in the list. This
operation takes a constant amount of time.



4.4 Performance Analysis 91

Disadvantage: Slower Access
On the downside, linked lists aren’t as efficient when it comes to quickly accessing a spe-
cific item by its position (like using get(i) or set(i,x) in an array). With a linked
list, you have to start at the beginning and walk through the list one item at a time until you
reach the desired position, which takes more time.

4.4.2 Linked List Performance Comparison
The performance of linked lists varies based on whether they are singly-linked, singly-
linked with a tail, or doubly-linked. Table 4.1 compares the time complexity of various
operations for these types of linked lists and arrays.

Table 4.1: Time Complexity Comparison for Different Data Structures: Array, Singly-
Linked List, Singly-Linked List with Tail, and Doubly-Linked List

Operation Array SLList SLList with Tail DLList

pushFront(item) O(n) O(1) O(1) O(1)
topFront() O(1) O(1) O(1) O(1)
popFront() O(n) O(1) O(1) O(1)
pushBack(item) O(1) O(n) O(1) O(1)
topBack() O(1) O(n) O(1) O(1)
popBack() O(1) O(n) O(n) O(1)
indexOf(item) O(n) O(n) O(n) O(n)
set(index, item) O(1) O(n) O(n) O(n/2)
get(index) O(1) O(n) O(n) O(n/2)
insertAt(index, item) O(n) O(n) O(n) O(n/2)
removeAt(index) O(n) O(n) O(n) O(n/2)

Performance Insights
The presence of a tail pointer in singly-linked lists simplifies and optimizes certain opera-
tions, particularly those related to adding elements at the end of the list, such as pushBack.
In singly-linked lists without a tail, operations involving the end of the list, such as pushBack,
topBack, and popBack, have a time complexity ofO(n) because they require traversing
the entire list to reach the last node.

Operations like topBack() can be particularly inefficient in a singly-linked list with-
out a tail because, to access the last element, the entire list must be traversed, resulting in an
O(n) time complexity. However, when a tail pointer is introduced, this operation becomes
O(1) because the tail pointer provides direct access to the last node.

Similarly, the operations set, get, indexOf, and removeAt also have O(n) com-
plexity in singly-linked lists, regardless of whether a tail is present, due to the potential
need to traverse the entire list to locate or manipulate elements.

With the introduction of a tail pointer, the time complexity of appending an element at
the end of the list (pushBack) improves significantly to O(1). Additionally, topBack



92 Chapter 4. Linked List

operations also become O(1) due to direct access to the last element. Operations such
as popBack, set, get, insertAt, and removeAt remain O(n) as they still require
traversing the list.

In contrast, the performance of doubly-linked lists (DLLists) is enhanced due to the
additional backward reference (prev) in each node, allowing for more efficient operations
in certain scenarios. For example, operations like popBack can be performed in O(1)
time because the prev pointer provides direct access to the preceding node. This reduces
the need to traverse the entire list to find the second-to-last node, unlike in singly-linked
lists.

Additionally, the insertAt and removeAt operations in doubly-linked lists benefit
from the ability to traverse from either the head or the tail, depending on which is closer
to the target index. This optimization allows these operations to achieve a time complexity
of O(n/2) in the worst case, effectively halving the average traversal distance compared to
singly-linked lists.

By optimizing these operations to O(n/2), doubly-linked lists offer a balanced and
efficient solution for dynamic data structures that require flexible insertion and deletion
capabilities, while maintaining manageable access times.

4.4.3 Best Practices and Common Use Cases
When working with linked lists, whether they are singly-linked, doubly-linked, or circu-
lar, adhering to best practices is crucial for efficient and error-free usage. Consider the
following recommendations:

1. Initialize Pointers: Always initialize pointers correctly. Ensure that pointers to the
next and previous nodes, as appropriate, are set to the correct initial values. For
instance, in singly-linked lists, set the next pointer of the last node to nullptr to
indicate the end of the list. In doubly-linked lists, initialize both the next and prev
pointers properly.

2. Memory Management: Exercise caution and diligence in memory management.
When deleting nodes or the entire list, release memory to prevent memory leaks.

3. Consider Time Complexity: Be mindful of the time complexity of your operations.
Recognize that accessing elements by index in a singly-linked list is not efficient,
as it requires traversing the list. If you require frequent random access, consider
alternative data structures like dynamic arrays or doubly-linked lists, which offer
faster indexing capabilities.

4. Error Handling: Implement robust error handling. Account for edge cases, such
as attempting to delete a node that does not exist or accessing elements beyond the
bounds of the list. Proper error handling ensures that your code behaves predictably
and is more robust.

Additionally, understanding common use cases for each type of linked list can help you
choose the appropriate data structure for your specific application. Consider the following
use cases:

• Singly-Linked List: Ideal for applications where insertion and deletion operations
are frequent and occur mostly at the beginning or the end of the list. Examples



4.5 Summary 93

include implementing stacks, queues, or managing a sequence of elements in a one-
way traversal.

• Doubly-Linked List: Useful when there is a need for bidirectional traversal of the
list. This makes it suitable for applications like navigation systems (e.g., browser
history, undo-redo functionality in text editors) and implementing dequeues (double-
ended queues).

• Circular Linked List: Best suited for applications that require a cyclic iteration
over elements. Examples include implementing round-robin scheduling in operating
systems, managing a playlist of songs, or designing a circular buffer.

4.5 Summary
In this chapter, we thoroughly explored various types of linked lists and their implementa-
tions. We examined the anatomy and operations of singly-linked lists, singly-linked lists
with a tail, and doubly-linked lists. The introduction of a tail pointer in singly-linked lists
significantly improved the efficiency of operations such as pushBack and popBack,
making these operations more practical for real-world applications.

Doubly-linked lists (DLLists) provided enhanced flexibility with bidirectional traversal
capabilities, allowing operations to be performed more efficiently by traversing the list
from either end. This bidirectional nature is particularly advantageous for operations like
popBack, insertAt, and removeAt, where accessing nodes closer to the tail can
reduce the time complexity.

The complete class diagram for the data structures covered in this chapter, shown in
Figure 4.27, illustrates the relationships and inheritance among the different linked list
classes discussed in this chapter.

This comprehensive diagram provides a clear overview of the hierarchical structure
and interaction between different linked list implementations, showcasing their design and
functionality.

Our analysis of linked list performance reveals that while arrays offer faster access
times due to their contiguous memory allocation, linked lists provide superior flexibility
for insertion and deletion operations. Singly-linked lists with a tail pointer significantly
enhance the efficiency of appending elements at the end of the list, making them more
suitable for applications requiring frequent additions.

Doubly-linked lists, with their bidirectional traversal capabilities, offer further perfor-
mance enhancements. The ability to traverse from either the head or the tail, depend-
ing on which is closer to the target index, optimizes operations such as insertAt and
removeAt. This optimization allows these operations to achieve a time complexity of
O(n/2) in the worst case, effectively halving the average traversal distance compared to
singly-linked lists.

By leveraging these bidirectional traversal strategies, doubly-linked lists offer a bal-
anced and efficient solution for dynamic data structures that require flexible insertion and
deletion capabilities, while maintaining manageable access times. This balance makes
doubly-linked lists a robust choice for various applications, highlighting the importance of
choosing the appropriate data structure based on specific operational requirements.



94 Chapter 4. Linked List

Figure 4.27: Full class diagram illustrating the relationships and inheritance among Node,
DNode, SinglyLL, SinglyLLTailed, and DLList



4.5 Summary 95

Problems

Discussion
1. Explain how pointers enable the creation of linked data structures like linked lists.

Provide examples to highlight the importance of pointers in building dynamic data
structures.

2. Discuss the concept of nested pointers within data structures. Describe how
nested pointers are created and accessed, and provide examples of their real-world
applications in programming.

3. Explain why dynamic memory allocation is crucial in linked data structures that
use the heap for storage. Discuss how dynamic allocation affects the flexibility
and efficiency of linked lists and compare heap and stack memory allocation in
linked data structures.

4. Describe the significance of the tail pointer in singly-linked lists. Explain how the
tail pointer enhances the efficiency of certain operations like appending elements.

Multiple Choice Questions
1. What is the primary role of pointers in programming and data structures?

(a) Enabling constant-time access
(b) Establishing relationships between data elements
(c) Allocating fixed-size memory blocks
(d) Enhancing code readability

2. When creating a pointer to an object, how is the object’s member accessed?
(a) Using the . operator
(b) By using the arrow operator (->) or the traditional dereference operator
(c) Through a separate accessor function
(d) By directly modifying the memory address

3. What does the arrow operator (->) represent when working with pointers to ob-
jects?
(a) Direct assignment operator
(b) Indirection operator
(c) Pointer-to-member operator
(d) Member access operator for pointers

4. In the structure Node containing int* pz, how do you allocate memory for
pz?
(a) pz = new int;
(b) Node.pz = new int;
(c) (*Node).pz = new int;
(d) ptr->pz = new int;



96 Chapter 4. Linked List

5. Why is it good practice to initialize the next pointer to nullptr in a linked list
node?
(a) It avoids using uninitialized memory.
(b) It prevents accidental pointer arithmetic.
(c) It ensures a default state for the object.
(d) It speeds up the linked list traversal.

6. In a linked list, what does the next member of a node typically point to?
(a) The previous node in the list
(b) The first node in the list
(c) The last node in the list
(d) The next node in the list

7. Why are linked lists created using pointers and stored in the heap?
(a) To ensure constant-time access
(b) To enable automatic memory deallocation
(c) To allow dynamic growth and flexibility during program execution
(d) To simplify memory management

8. What is a potential consequence of not properly deallocating memory in a linked
list?
(a) Improved program performance
(b) Memory leaks and resource wastage
(c) Increased code readability
(d) Automatic memory cleanup by the system

9. In the context of linked lists, what is the significance of a doubly-linked list com-
pared to a singly-linked list?
(a) Doubly-linked lists have a faster traversal time.
(b) Singly-linked lists are more memory-efficient.
(c) Doubly-linked lists allow traversal in both directions.
(d) Singly-linked lists provide better random access performance.

10. How does the presence of a dummy node simplify operations in a doubly-linked
list (DLList)?
(a) It reduces the overall memory usage of the DLList.
(b) It eliminates the need for a tail pointer in the DLL.
(c) It serves as a placeholder, ensuring a uniform structure and simplifying edge cases.
(d) It enhances bidirectional traversal capabilities.

11. What is the primary advantage of having a dummy node in a doubly-linked list
(DLList) when compared to a DLList without a dummy node?
(a) It reduces the overall time complexity of DLList operations.
(b) It simplifies edge cases and eliminates the need for head and tail pointers.
(c) It improves the memory efficiency of the DLList.
(d) It enhances bidirectional traversal capabilities.



4.5 Summary 97

12. What is the primary purpose of the prev pointer in a doubly-linked list (DLList)?
(a) It points to the next node in the list.
(b) It indicates the node with the maximum value.
(c) It allows bidirectional traversal by pointing to the previous node in the list.
(d) It is not a standard pointer used in DLList.

13. In a doubly-linked list with a dummy node, how can you efficiently add an element
to the end of the list?
(a) Use the pushFront method for constant-time insertion.
(b) Iterate through the list to find the last node and append the new element to it.
(c) Utilize the tail pointer for direct access to the last node.
(d) Directly link the new element to the dummy node, updating the dummy node as the

last node.
14. What is the time complexity of the pushBack operation in a doubly-linked list

with a dummy node?
(a) O(1)
(b) O(n)
(c) O(logn)
(d) O(n logn)

15. In a doubly-linked list with a dummy node, how would you efficiently remove the
last element?
(a) Iterate through the list to find the second-to-last node and update its next pointer.
(b) Utilize the tail pointer for direct access to the last node.
(c) Directly link the dummy node to the second-to-last node, updating the dummy node

as the new last node.
(d) Traverse to the last node using the prev pointers and update the prev pointers

accordingly.
16. In a doubly-linked list with a dummy node, what is the role of the dummy node in

the popBack operation?
(a) It is not involved in the popBack operation.
(b) It serves as the placeholder for the removed element.
(c) It is linked directly to the last node, facilitating constant-time removal.
(d) It ensures a consistent structure by updating as the new last node after removal.

Challenge Questions
1. Write a C++ function to perform an in-place reversal of a singly-linked list. The

function should take the head of the list as an argument and return the new head
of the reversed list. After implementation, analyze the time and space complexity
of the reversal operation.

2. Implement a C++ function that removes the first occurrence of a given value in a
singly-linked list. If the value is not present in the list, the function should have
no side effect. After implementation, analyze the time and space complexity of
this deletion operation.



98 Chapter 4. Linked List

3. Write a C++ function that accepts two sorted singly-linked lists as input and
merges them into a single sorted list. Analyze the time and space complexity
of the merging process.

4. Write a function that finds the kth node from the end of a singly-linked list.
5. Implement a function to split a singly-linked list into two equal-sized lists. If the

original list has an odd number of nodes, the extra node can be part of either of
the two resulting lists.

Programming Problems
1. DLList Palindrome Check

Write a c++ DLList method, isPalindrome(), that returns true if the list
is a palindrome, i.e., the element at position i is equal to the element at position
n− i−1 for all i ∈ {0, . . . ,n−1}. Your code should run in O(n) time.

2. DLList Rotation
Implement a c++ method, rotate(r), that “rotates” a DLList so that list item
i becomes list item (i+r) mod n. This method should run inO(1+min{r,n−
r}) time and should not modify any nodes in the list.

3. DLList Truncation
Write a c++ method, truncate(i), that truncates a DLList at position i.
After executing this method, the size of the list will be i, and it should contain
only the elements at the indices 0, . . . ,i−1. The return value is another DLList
that contains the elements in the indices i, . . . ,n−1. This method should run in
O(min{i,n−i}) time.



5. Stack and Queue

Objectives
In this chapter, I will guide you through the essential concepts and operations of stack,
queue, and deque data structures. We will explore their implementations, performance
characteristics, and practical applications. Here are the key objectives we will cover:

1. Stack: We will explore the concept of a stack data structure and its utility in
managing data. You will understand the basic push and pop operations in both
array and singly-linked list implementations, and we will discuss the advantages
and disadvantages of each approach.

2. Queue: We will understand the role of a queue in managing data access pat-
terns. You will explore its array and singly-linked list implementations, covering
enqueue and dequeue operations and highlighting their specific applications.

3. Deque: You will learn how to build a deque (double-ended queue) using arrays
and understand the importance of efficient insertions and removals from both ends.

4. Fast Implementations: We will discuss techniques and optimizations for achiev-
ing fast implementations of stack, queue, and deque data structures. You will
consider strategies such as amortized analysis, resizing, and other improvements
to enhance performance in each context.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_5

99

https://doi.org/10.1007/979-8-8688-0802-9_5


100 Chapter 5. Stack and Queue

5. Performance Analysis: We will analyze the performance characteristics of stack,
queue, and deque implementations in both array and linked list structures, taking
into account the fast implementation techniques.

5.1 Stack
5.1.1 Introduction to Stack

A stack is a fundamental data structure that you will find very useful in managing data. It
follows the Last In, First Out (LIFO) principle, meaning you add elements to the top and
remove them from the top, just like a stack of plates. The primary operations you need
to know are push (to add an element) and pop (to remove the top element). Figure 5.1
visually demonstrates these operations.

Figure 5.1: Illustration of stack operations: pushing and popping elements, demonstrating
the Last In, First Out (LIFO) principle

5.1.2 Array-Based Stack
An array-based stack is a simple and efficient way to implement stack operations using
an array. The top of the stack is indicated by a marker (called top), starting from –1.
Figures 5.2 and 5.3 illustrate the process of pushing and popping elements onto and off the
stack, respectively.



5.1 Stack 101

Figure 5.2: Array-based stack: push operation. The process starts with an empty array, and
elements are added sequentially, updating the top marker

Figure 5.3: Array-based stack: pop operation. Elements are removed sequentially from the
top of the stack

Implementation Interface
The StackArray class, inheriting from the DynamicArray class, implements the re-
quired functionalities. The class diagram in Figure 5.4 showcases the relationships and
functions.

1 template <typename T>
2 class StackArray : public DynamicArray<T> {
3 public:
4 StackArray() : DynamicArray<T>() {}
5 virtual ~StackArray(){}
6



102 Chapter 5. Stack and Queue

Figure 5.4: StackArray and StackLL UML class diagram. StackArray inherits
from DynamicArray<T>, and StackLL inherits from SinglyLL<T>

7 // Stack-specific functions
8 virtual void push(const T item) {
9 this->pushBack(item);
10 }
11 virtual T pop() {
12 return this->popBack();
13 }
14 };

StackArray Class Interface

Note:
In the DynamicArray base class, pushBack appends an element to the end of the
array, and popBack removes the last element. In the context of the StackArray,
these operations are synonymous with pushing and popping from the top of the stack.

While the top is not explicitly managed as a separate variable in the implementa-
tion, the end of the array effectively represents the top of the stack.

5.1.3 Linked List Stack
The linked list stack efficiently leverages a singly-linked list (SinglyLL), where elements
are inserted and removed from the front. The operations, pushFront and popFront,
offer constant time complexity (O(1)), making it an efficient alternative to the array-based
implementation.



5.2 Queue (Single-Ended Queue) 103

Implementation Interface
The StackLL class inherits from a singly-linked list and implements the stack operations.
Figure 5.4 shows the class diagram for StackLL.

1 template <typename T>
2 class StackLL : public SinglyLL<T> {
3 public:
4 StackLL() : SinglyLL<T>() {}
5 virtual ~StackLL(){}
6
7 // Stack-specific functions
8 virtual void push(const T item) {
9 this->pushFront(item);
10 }
11 virtual T pop() {
12 return this->popFront();
13 }
14 };

StackLL Class Interface

Note:
In the StackLL class, the top is not explicitly defined because the SinglyLL base
class inherently manages the stack’s top via its linked list structure. The pushFront
and popFront methods add and remove elements at the front of the linked list, which
effectively represents the top of the stack.

In the SinglyLL, the order of items in the stack will be reversed compared to the
StackArray. This is because pushFront in SinglyLL adds new elements to the
front, while pushBack in StackArray adds them to the end.

5.2 Queue (Single-Ended Queue)
5.2.1 Introduction to Queue

A queue is a fundamental data structure that adheres to the First In, First Out (FIFO)
principle. Elements are queued in the rear and dequeued from the front, creating a struc-
ture similar to a queue of people waiting in line. The primary operations on a queue are
enqueue (to add an element) and dequeue (to remove the front element). Figure 5.5
visually demonstrates these operations.

5.2.2 Array-Based Queue
An array-based queue efficiently implements queue operations using an array. The front
and rear of the queue are indicated by markers (front and rear), and elements are



104 Chapter 5. Stack and Queue

Figure 5.5: Illustration of queue operations: enqueuing and dequeuing elements, demon-
strating the First In, First Out (FIFO) principle

enqueued at the rear and dequeued from the front. Figures 5.6 and 5.7 illustrate the process
of handling an array as a circular list to represent a queue.

Circular Representation
• Front and Rear Indices

– The front index (front) represents the position from where elements are de-
queued.

– The rear index (rear) represents the position at which elements are enqueued.
• Circular Increment

– When enqueuing (enqueue), the rear index is incremented, and if it reaches
the end of the array, it wraps around to the beginning.

– When dequeuing (dequeue), the front index is incremented similarly.
– This circular behavior ensures efficient space utilization.

Empty and Full Cases
• Empty Queue

– In an empty queue, the front and rear indices are initially set to a specific value
(e.g., 0) to indicate that the queue is empty.

– When dequeuing, if front equals rear, the queue is empty.
• Full Queue

– In a full queue, the rear index is about to catch up with the front index.



5.2 Queue (Single-Ended Queue) 105

Figure 5.6: Array-based queue: enqueue and dequeue operations (I). The array is initially
empty with front and rear markers at the start. Elements are enqueued at the rear

– To differentiate between a full and empty queue, one approach is to leave one
slot unoccupied. This means that the maximum number of elements that can
be stored is one less than the actual array size.

– When enqueuing, if rear is one less than front, the queue is full.
The figures (Figures 5.6 and 5.7) illustrate these operations:
• Enqueue operation is shown, demonstrating how rear is incremented in a circular
fashion. The green arrow highlights the position where the next element will be
enqueued.

• Dequeue operation is shown, demonstrating how front is incremented in a circu-
lar fashion. The red arrow indicates the position from which the elements will be
dequeued.

These circular operations help manage the indices efficiently, ensuring a continuous
representation of the queue within the array.

Implementation Interface

The QueueArray class, inheriting from the DynamicArray class, implements the re-
quired functionalities to manage a queue using an array-based approach. The class dia-
gram in Figure 5.8 showcases the relationships and key functions of the QueueArray
and QueueLL classes.



106 Chapter 5. Stack and Queue

Figure 5.7: Array-based queue: enqueue and dequeue operations (II). When the queue is
full, elements are dequeued from the front, and the front marker is updated accordingly

1 template <typename T>
2 class QueueArray : public DynamicArray<T> {
3 public:
4 QueueArray() : DynamicArray<T>(), front(0) {}
5 virtual ~QueueArray(){}
6
7 // DynamicArray functions
8 virtual void resize();
9 virtual void insertAt(size_t index, const T item);
10 virtual void removeAt(size_t index);
11 // Queue-specific functions
12 virtual void enqueue(const T item);
13 virtual T dequeue();
14 // ... Other relevant functions
15 protected:
16 size_t front;
17
18 // Inherited members to use directly
19 using DynamicArray<T>::size;



5.2 Queue (Single-Ended Queue) 107

Figure 5.8: QueueArray and QueueLL UML class diagram. QueueArray inherits
from DynamicArray<T>, and QueueLL inherits from SinglyLL<T>

20 using DynamicArray<T>::capacity;
21 using DynamicArray<T>::arr;
22 };

QueueArray Class Interface

Resize Operation
The resizing of the queue is illustrated in Figure 5.9. When capacity needs to be increased,
the following steps are performed:

• Create a new array with the new capacity.
• Copy elements from the existing array to the new array in a circular fashion, starting
from the front index.

• Delete the existing array.
• Update the array pointer to point to the new array.
• Update the capacity to the new capacity.
• Reset front to 0, and set rear to the current size.



108 Chapter 5. Stack and Queue

Note:
Instead of explicitly maintaining a separate rear index, you can dynamically calculate
the rear index using the size of the queue. The rear index is calculated as

rear = (front + size) % capacity

(Figure 5.10).

Figure 5.9: Resize queue operation. Demonstrating the process of resizing an array-based
queue from a smaller capacity to a larger capacity, maintaining the order of elements

Figure 5.10: Queue’s rear calculation. Showing how the rear index can be dynamically
calculated using the front index and the current size of the queue



5.2 Queue (Single-Ended Queue) 109

1 template <typename T>
2 void QueueArray<T>::resize() {
3 size_t new_capacity =
4 std::max(2*static_cast<int>(size), 2);
5 T* brr = new T[new_capacity];
6 for (size_t i=0; i< size; i++)
7 brr[i] = arr[(front+i)% capacity];
8
9 delete [] arr;

10 arr = brr;
11 capacity = new_capacity;
12 front = 0; // rear = size;
13 }

resize Function: Adjust Capacity of Queue

Enqueue and Dequeue Operations
The enqueue operation adds an element to the rear of the queue. The enqueue function
first checks if the size plus one is greater than the capacity, triggering a resize operation if
necessary. The rear index is then updated to the next circular position, and the element is
added to the updated rear index.

1 template <typename T>
2 void QueueArray<T>::enqueue(const T item) {
3 if (size+1 > capacity)
4 resize();
5 // calc rear position
6 size_t rear=(front+size)%capacity;
7 arr[rear] = item;
8 // rear = (rear + 1) % capacity; // calculated
9 ++size;
10 }

enqueue Function: Add Element to Queue

The dequeue operation removes and returns the front element of the queue. It first
retrieves the element at the front index, updates the front index to the next circular po-
sition, and reduces the size of the queue. If the size becomes significantly smaller than
the capacity, it triggers a resize operation to conserve space. The removed element is then
returned.

1 template <typename T>
2 T QueueArray<T>::dequeue() {



110 Chapter 5. Stack and Queue

3 // Ensure the queue is not empty
4 assert(size > 0);
5 T item = arr[front];
6 front = (front + 1) % capacity;
7 --size;
8 if (3 * size < capacity)
9 resize();
10 return item;
11 }

dequeue Function: Remove Element from Queue

Insertion and Removal
The insertAt operation efficiently inserts an element at a specified position in the queue.
The improved implementation takes advantage of the circular nature of the queue, reducing
the number of operations needed to shift elements (Figure 5.11).

One of the fast implementation methods we utilize here is amortized analysis, which
helps in understanding the average performance of the insertion operations. When the
queue needs resizing, the entire queue is copied to a new larger array, ensuring that subse-
quent insertions are handled efficiently.

1 template <typename T>
2 void QueueArray<T>::insertAt(size_t i, const T item) {
3 assert(i <= size);
4 if (size+1 > capacity)
5 resize();
6 if (i < size/2) {
7 // Update front
8 front = (front == 0) ? capacity - 1 : front - 1;
9 // shift arr[0],..,arr[i-1] left one position
10 for (size_t k = 0; k < i; k++) {
11 arr[(front + k) % capacity]
12 = arr[(front + k + 1) % capacity];
13 }
14 } else {
15 // shift arr[i],..,arr[n-1] right one position
16 for (size_t k = size; k > i; k--) {
17 arr[(front + k) % capacity]
18 = arr[(front + k - 1) % capacity];
19 }
20 }
21 arr[(front+i)% capacity] = item;
22 ++size;



5.2 Queue (Single-Ended Queue) 111

23 }

insertAt Function: Add Element at Specific Index

Figure 5.11: insertAt explanation. Demonstrating the process of inserting an element
at a specific position in the queue, shifting elements as needed

This operation provides the flexibility to add elements at a specified position (insertAt)
in the circular array-based queue with improved efficiency.

The removeAt operation removes an element at a specified position in the queue. The
function efficiently shifts elements according to the removal position (i) (Figure 5.12).

Using a fast implementation method, such as the efficient use of circular indexing,
ensures that the number of shifts required to remove an element is minimized. This is
particularly beneficial in maintaining the overall performance of the queue.

1 template <typename T>
2 void QueueArray<T>::removeAt(size_t i) {
3 assert(i < size);
4 if (i < size/2) {
5 // shift arr[0],..,arr[i-1] right one position
6 for (size_t k = i; k > 0; k--){
7 arr[(front + k) % capacity]
8 = arr[(front + k - 1) % capacity];
9 }



112 Chapter 5. Stack and Queue

10 // Update front index after shifting
11 front = (front + 1) % capacity;
12 } else {
13 // shift arr[i+1],..,arr[n-1] left one position
14 for (size_t k = i; k < size - 1; k++){
15 arr[(front + k) % capacity]
16 = arr[(front + k + 1) % capacity];
17 }
18 }
19 --size;
20 if (3 * size < capacity)
21 resize();
22 }

removeAt Function: Remove Element at Specific Index

Figure 5.12: removeAt explanation. Demonstrating the process of removing an element
at a specific position in the queue, shifting elements as needed

These removal operations provide the flexibility to remove elements at a specified po-
sition in the queue based on circular arrays. Using fast implementation methods, such as
efficient circular indexing and resizing strategies, these operations maintain high perfor-
mance even under varying load conditions.



5.2 Queue (Single-Ended Queue) 113

Note:
The insertAt and removeAt methods are available in the QueueArray class be-
cause they come from the DynamicArray class, which QueueArray inherits. How-
ever, queues are designed to work in a First In, First Out (FIFO) manner, meaning
elements should be added at the back and removed from the front. Using insertAt
and removeAt in a queue can mix up this order and cause the queue to behave incor-
rectly. Therefore, it is important to handle these methods carefully to make sure the
queue works as expected.

5.2.3 Linked List Queue
The QueueLL is implemented using a singly-linked list (SinglyLLTailed) with a tail
pointer. Elements are added at the rear (tail) and removed from the front, making it an
efficient data structure for queue operations. The enqueue operation, which inserts ele-
ments at the rear, is optimized with constant time complexity due to the presence of the tail
pointer.

Implementation Interface
The QueueLL class inherits from the SinglyLLTailed class and implements the re-
quired functionalities. The class diagram in Figure 5.8 showcases the relationships and
functions.

The following are the implementations for the queue operations using the parent class
methods:

1 template <typename T>
2 class QueueLL : public SinglyLLTailed<T> {
3 public:
4 QueueLL() : SinglyLLTailed<T>() {}
5 virtual ~QueueLL(){}
6
7 // Queue-specific functions
8 virtual void enqueue(const T item) {
9 this->pushBack(item);
10 }
11 virtual T dequeue() {
12 return this->popFront();
13 }
14 };

QueueLL Class Interface

This implementation takes advantage of the parent class methods pushBack and
popFront to provide efficient enqueue and dequeue operations. The enqueue func-
tion adds an element to the rear of the queue, while the dequeue function removes and
returns the front element of the queue.



114 Chapter 5. Stack and Queue

5.3 Deque (Double-Ended Queue)
5.3.1 Introduction to Deque

A double-ended queue (deque) is a versatile data structure that facilitates insertion and
deletion from both ends. Unlike a regular queue, a deque supports operations at both
the front and rear, providing enhanced flexibility in managing data. Figure 5.13 visually
illustrates these operations.

• Enqueue Front Operation: Adds an element to the front of the deque
• Dequeue Front Operation: Removes and returns the element from the front of the
deque

• Enqueue Rear Operation: Adds an element to the rear of the deque
• Dequeue Rear Operation: Removes and returns the element from the rear of the
deque

The deque utilizes two markers, front and rear, to signify its two ends. These mark-
ers enable efficient manipulation of the deque’s elements from both sides. The front
marker indicates the position from which elements are dequeued or enqueued at the front.
Conversely, the rear marker signifies the position where elements are enqueued or de-
queued from the rear.

Figure 5.13: Visualizing operations on a deque. The figure demonstrates the operations
of enqueueFront(A), enqueueRear(B), and enqueueFront(C). Elements are
added to both the front and rear of the deque, showcasing the versatility and flexibility of
the deque data structure



5.3 Deque (Double-Ended Queue) 115

The circular representation of a deque efficiently handles scenarios where markers
reach the end of the underlying array, ensuring a continuous and space-efficient structure.
This design choice enhances the deque’s performance and adaptability in various applica-
tions.

5.3.2 Array-Based Deque
An array-based deque efficiently implements deque operations using an array. Both the
front and rear of the deque are indicated by markers (front and rear), allowing elements
to be added or removed from either end.

Circular Representation

• Front and Rear Indices
– The front index represents the position from where elements are dequeued
or enqueued at the front.

– The rear index represents the position where elements are enqueued or de-
queued from the rear.

• Circular Increment
– When enqueuing at the rear (enqueueRear), the rear index is incremented,
and if it reaches the end of the array, it wraps around to the beginning.

– When dequeuing from the front (dequeueFront), the front index is incre-
mented similarly.

– When enqueuing at the front (enqueueFront), the front index is decre-
mented, and if it goes below zero, it wraps around to the end of the array.

– When dequeuing from the rear (dequeueRear), the rear index is decre-
mented similarly.

Empty and Full Cases

• Empty Deque
– In an empty deque, the front and rear indices are initially set to a specific
value (e.g., 0) to indicate that the deque is empty.

– When dequeuing, if front equals rear, the deque is empty.
• Full Deque

– In a full deque, the rear index is about to catch up with the front index.
– To differentiate between a full and empty deque, one approach is to leave one
slot unoccupied. This means that the maximum number of elements that can
be stored is one less than the actual array size.

– When enqueuing, if rear is one less than front, the deque is full.

Implementation Interface

The DequeArray class, inheriting from the DynamicArray class, implements the re-
quired functionalities. The class diagram in Figure 5.14 shows the relationships and func-
tions.



116 Chapter 5. Stack and Queue

Figure 5.14: DequeArray and DequeLL UML class diagram

1 template <typename T>
2 class DequeArray : public DynamicArray<T> {
3 public:
4 DequeArray() : DynamicArray<T>(),
5 front(0), rear(0) {}
6 virtual ~DequeArray(){}
7
8 // Deque-specific functions
9 virtual void enqueueFront(const T item);
10 virtual T dequeueFront();
11 virtual void enqueueRear(const T item);
12 virtual T dequeueRear();
13 // ... Other relevant functions
14 virtual void print() const;
15 virtual void resize();
16 protected:
17 size_t front;
18 size_t rear;
19
20 // Inherited members to use directly



5.3 Deque (Double-Ended Queue) 117

21 using DynamicArray<T>::size;
22 using DynamicArray<T>::capacity;
23 using DynamicArray<T>::arr;
24 };

DequeArray Class Interface

Enqueue and Dequeue Operations
Enqueue Front
The enqueueFront operation adds an element to the front of the deque. It first checks
if the size plus one is greater than the capacity, triggering a resize operation if necessary.
The front index is then decremented to the previous circular position, and the element is
added to the updated front index.

1 template <typename T>
2 void DequeArray<T>::enqueueFront(const T item) {
3 if (size+1 > capacity)
4 resize();
5 // decrement front position circularly
6 front = (front == 0) ? capacity-1 : front - 1;
7 arr[front] = item;
8 ++size;
9 }

enqueueFront Function: Add Element to Front of Deque

Dequeue Front
The dequeueFront operation removes and returns the front element of the deque. It first
retrieves the element at the front index (front), updates the front index to the next circular
position, and reduces the size of the deque. If the size becomes significantly smaller than
the capacity, it triggers a resize operation to conserve space. The removed element is then
returned.

1 template <typename T>
2 T DequeArray<T>::dequeueFront() {
3 T item = arr[front];
4 front = (front + 1) % capacity;
5 --size;
6 if (3 * size < capacity)
7 resize();
8 return item;
9 }

dequeueFront Function: Remove Element from Front of Deque



118 Chapter 5. Stack and Queue

Enqueue Rear
The enqueueRear operation adds an element to the rear of the deque. It first checks
if the size plus one is greater than the capacity, triggering a resize operation if necessary.
The rear index is then updated to the next circular position, and the element is added to the
updated rear index.

1 template <typename T>
2 void DequeArray<T>::enqueueRear(const T item) {
3 if (size+1 > capacity)
4 resize();
5 // calc rear position
6 size_t rear =(front + size) % capacity;
7 arr[rear] = item;
8 ++size;
9 }

enqueueRear Function: Add Element to Rear of Deque

Dequeue Rear
The dequeueRear operation removes and returns the rear element of the deque. It first
retrieves the element at the rear index (rear), updates the rear index to the previous cir-
cular position, and reduces the size of the deque. If the size becomes significantly smaller
than the capacity, it triggers a resize operation to conserve space. The removed element is
then returned.

1 template <typename T>
2 T DequeArray<T>::dequeueRear() {
3 size_t rear = (front + size - 1) % capacity;
4 T item = arr[rear];
5 --size;
6 if (3 * size < capacity)
7 resize();
8 return item;
9 }

dequeueRear Function: Remove Element from Rear of Deque

Note:
By utilizing the insertAt and removeAtmethods from the parent DynamicArray
class, the enqueueFront, dequeueFront, enqueueRear, and dequeueRear
operations can be implemented efficiently. This approach utilizes the inherited function-
alities to maintain efficient.



5.3 Deque (Double-Ended Queue) 119

1 template <typename T>
2 void DequeArray<T>::enqueueFront(const T item) {
3 this->insertAt(0, item);
4 }
5
6 template <typename T>
7 T DequeArray<T>::dequeueFront() {
8 T item = arr[front];
9 this->removeAt(0);
10 return item;
11 }
12
13 template <typename T>
14 void DequeArray<T>::enqueueRear(const T item) {
15 this->insertAt(size, item);
16 }
17
18 template <typename T>
19 T DequeArray<T>::dequeueRear() {
20 T item = arr[rear];
21 this->removeAt(size - 1);
22 return item;
23 }

Alternative Implementation Using Parent Methods

5.3.3 Linked List Deque
The Linked List Deque is implemented using a doubly-linked list (DLList). This
implementation allows for efficient insertion and deletion at both ends of the deque. The
enqueueFront and enqueueRear operations insert elements at the front and rear,
respectively, while the dequeueFront and dequeueRear operations remove elements
from the front and rear.

The DequeLL class inherits from the DLList class, providing an intuitive and effi-
cient implementation for deque operations.

Implementation Interface
The following are the implementations for the deque operations using the parent class
methods:

1 template <typename T>
2 class DequeLL : public DLList<T> {
3 public:
4 DequeLL() : DLList<T>() {}



120 Chapter 5. Stack and Queue

5 virtual ~DequeLL(){}
6
7 // Deque-specific functions
8 virtual void enqueueFront(const T item) {
9 this->pushFront(item);
10 }
11 virtual T dequeueFront() {
12 return this->popFront();
13 }
14 virtual void enqueueRear(const T item) {
15 this->pushBack(item);
16 }
17 virtual T dequeueRear() {
18 return this->popBack();
19 }
20 };

DequeLL Class Interface

Operation Descriptions
• enqueueFront: Inserts an element at the front of the deque using the inherited
pushFront method, which operates in O(1) time

• dequeueFront: Removes and returns the front element using the inherited
popFront method, also in O(1) time

• enqueueRear: Adds an element to the rear of the deque via the pushBack
method, ensuring efficient appending in constant time

• dequeueRear: Removes and returns the rear element using the popBackmethod,
allowing for constant-time removal at the deque’s end

Note:
In the DequeLL class, there is no need to define explicit front and rear pointers.
This is because DequeLL inherits from DLList, which already manages the front and
rear of the list internally. The doubly-linked nature of DLList ensures that all deque
operations are performed efficiently, utilizing the existing pointers for optimal access
and manipulation.

Advantages of Using DLList for Deque
• Efficiency: Both front and rear operations (enqueue and dequeue) are performed
in constant time (O(1)), making the doubly-linked list an ideal choice for a deque
implementation.

• Bidirectional Access: The use of a doubly-linked list enables efficient traversal from
both ends, enhancing the flexibility of the deque for various use cases.

• No Special Cases: The presence of prev and next pointers in each node elimi-
nates the need for special cases when adding or removing elements at either end of
the deque, simplifying code maintenance and reducing error-prone scenarios.



5.4 Performance Analysis 121

5.4 Performance Analysis
5.4.1 Stack Performance Analysis

The stack operations have the following time complexities:
• Push Operation: O(1) – Constant time complexity for adding an element to the top
of the stack

• Pop Operation: O(1) – Constant time complexity for removing the top element
from the stack

5.4.2 Queue Performance Analysis
The queue operations have the following time complexities:

• Enqueue and Dequeue Operations: O(1) – Constant time complexity for adding
an element to the rear and removing the front element of the queue

• InsertAt and RemoveAt Operations: O(min(i,n− i)) – Efficiently inserts or re-
moves an element at a specified position in the queue, where n is the current size of
the queue and i is the insertion or removal position

5.4.3 Deque Performance Analysis
The deque operations have the following time complexities:

• Enqueue and Dequeue Operations: O(1) – Constant time complexity for adding
or removing an element from the front or rear of the deque

• InsertAt and RemoveAt Operations: O(min(i,n− i)) – Efficiently inserts or re-
moves an element at a specified position in the deque, where n is the current size of
the deque and i is the insertion or removal position

5.4.4 Choosing the Right Data Structure
The choice between array-based and linked list–based implementations of stacks, queues,
and deques depends on the specific requirements of the application, such as expected size,
the need for dynamic resizing, and the importance of random access.

• Array-Based Structures
– Advantages: Efficient random access due to array indexing
– Disadvantages: Requires resizing when the array reaches capacity
– Use Case: Suitable for scenarios with a known or bounded maximum capacity

• Linked List Structures
– Advantages: Dynamic structure with no need for resizing
– Disadvantages: Overhead of maintaining and traversing linked nodes
– Use Case: Suitable for scenarios with unpredictable or fluctuating sizes



122 Chapter 5. Stack and Queue

5.5 Summary
In this chapter, we have explored the essential data structures of stacks, queues, and deques,
delving into their array-based and linked list–based implementations, performance charac-
teristics, and practical applications. The choice between these implementations depends
on specific use cases and requirements, such as the need for dynamic resizing, memory
efficiency, and access patterns.

In scenarios where there is no need to resize the underlying structure, the implemen-
tation of linked lists is particularly advantageous. The linked list can dynamically allo-
cate memory for each element without requiring pre-allocation. Additionally, in situations
where the size of the stack is unpredictable or varies significantly, the linked list imple-
mentation shines, as it adapts dynamically to the changing number of elements without
incurring the cost of resizing an array. The decision between array-based and linked list–
based implementations depends on the specific requirements of the application.

Queues can be implemented using two main data structures: a linked list with a tail
pointer or an array. In both implementations, key operations (enqueue and dequeue)
exhibit a constant time complexity of O(1), ensuring efficient performance to add and
remove elements from the queue. The choice between linked list and array-based queues
depends on the specific requirements of the application, such as the expected queue size,
the need for dynamic resizing, and the importance of random access.

Deques can be implemented using two main approaches: an array or a doubly-linked
list. Each implementation provides constant time complexity for fundamental deque oper-
ations while offering unique advantages and trade-offs. The choice between these imple-
mentations depends on the specific requirements of the application, such as the expected
deque size, the need for dynamic resizing, and the importance of random access or the
simplicity of implementation.

The full class diagram for the data structures covered in this chapter is shown in Fig-
ure 5.15.

This comprehensive diagram showcases the hierarchical structure and interaction be-
tween different stack, queue, and deque implementations, providing a clear overview of
their design and functionality.

Problems

Discussion
1. Explain LIFO and FIFO data structures. Compare how stacks and queues are used

in real-world situations.
2. Explore how stacks are implemented using arrays and linked lists. Discuss their

efficiency and when to use one over the other.
3. Investigate dynamic resizing in array-based stacks and queues. Describe its im-

portance and how it affects overall efficiency.



5.5 Summary 123

Figure 5.15: Full class diagram illustrating the relationships and inheritance among
StackArray, StackLL, QueueArray, QueueLL, DequeArray, and DequeLL



124 Chapter 5. Stack and Queue

4. Understand circular representation in array-based queues. Explain how circular
indexing works and its advantages in memory efficiency.

5. Compare linked list–based queues with array-based queues. Discuss their strengths
and weaknesses, considering factors like resizing and memory usage.

Multiple Choice Questions
1. What does the Last In, First Out (LIFO) principle mean in the context of a stack?

(a) Elements are added to the top and removed from the bottom.
(b) Elements are added to the bottom and removed from the top.
(c) Elements are added to the top and removed from the top.
(d) Elements are added to the bottom and removed from the bottom.

2. Which of the following operations is used to add an element to the top of a stack?
(a) enqueue
(b) pop
(c) push
(d) dequeue

3. What is the primary purpose of the push operation in a stack?
(a) Remove the top element
(b) Add an element to the top
(c) Remove the bottom element
(d) Add an element to the bottom

4. Which of the following is true regarding the time complexity of the push operation
in an array-based stack?
(a) O(n)
(b) O(logn)
(c) O(1)
(d) O(n2)

5. What is the purpose of resizing the underlying array in an array-based stack?
(a) To increase the time complexity of operations
(b) To decrease the overall capacity of the stack
(c) To efficiently manage the storage of elements
(d) To prevent the stack from becoming empty

6. What principle does a queue follow in terms of element removal?
(a) Last In, First Out (LIFO)
(b) First In, First Out (FIFO)
(c) Random Access
(d) Stack Order

7. How are elements added to a queue?
(a) At any random position
(b) At the top
(c) At the rear
(d) At the front



5.5 Summary 125

8. What is a deque?
(a) A data structure that follows the LIFO principle
(b) A data structure that follows the FIFO principle
(c) A versatile data structure allowing insertion and deletion from both ends
(d) A data structure with efficient random access

9. Which implementation ensures efficient space utilization in a deque?
(a) Linear representation
(b) Circular representation
(c) Stack implementation
(d) Queue implementation

10. What is the purpose of the front marker in a deque?
(a) Indicates the end of the deque
(b) Represents the position for enqueuing at the front
(c) Points to the middle of the deque
(d) Specifies the position for dequeuing from the front

11. What operation adds an element to the front of the deque?
(a) Enqueue Front
(b) Dequeue Front
(c) Enqueue Rear
(d) Dequeue Rear

12. Which operation removes and returns the element from the front of the deque?
(a) Enqueue Front
(b) Dequeue Front
(c) Enqueue Rear
(d) Dequeue Rear

13. Which type of deque operation adds an element to the rear?
(a) Enqueue Front
(b) Dequeue Front
(c) Enqueue Rear
(d) Dequeue Rear

14. Which of the following operations removes and returns the element from the rear
of the deque?
(a) Enqueue Front
(b) Dequeue Front
(c) Enqueue Rear
(d) Dequeue Rear

15. In a deque, what happens when markers reach the end of the underlying array?
(a) Deque becomes empty.
(b) Deque performs a resizing operation.
(c) Circular representation ensures continuous structure.
(d) Elements are shifted to a new array.

16. The deque supports operations at both ends, making it suitable for:
(a) Implementing a stack
(b) Implementing a queue



126 Chapter 5. Stack and Queue

(c) Both implementing a stack and a queue
(d) Random access operations

17. What type of data structure is a deque?
(a) Linear data structure
(b) Tree data structure
(c) Graph data structure
(d) Hash data structure

Challenge Questions
1. Develop a data structure that efficiently supports the operations of both a stack

and a queue. Analyze the time complexity of each operation and justify the design
choices.

2. Design an algorithm to simulate the behavior of a double-ended queue (deque)
using two stacks. Discuss the efficiency of your implementation in terms of time
and space complexity.

3. Implement a stack using two queues. Explore different strategies for the push and
pop operations and analyze the time complexity of each operation. Compare this
approach with a traditional array-based stack.

Programming Problems
1. Dyck Words

A Dyck word is a sequence of +1s and −1s with the property that the sum of any
prefix of the sequence is never negative. For example, +1,−1,+1,−1 is a Dyck
word, but +1,−1,−1,+1 is not a Dyck word since the prefix +1− 1− 1 < 0.
Consider the relationship between Dyck words and stack operations.
Provide a C++ code solution demonstrating how Stack push(x) and pop()
operations can be related to Dyck words.

2. Matched Strings
A matched string is a sequence of {,},(,), [,and] characters that are properly
matched. For example, ()[] is a matched string, but {()]} is not, since the sec-
ond { is matched with a ]. Utilize a Stack to determine if a given string of
length n is a matched string.
Provide a C++ code solution with a time complexity of O(n).

3. Reversing Stack Order
Suppose you have a Stack, s, that supports only the push(x) and pop()
operations. Using only a FIFO Queue, reverse the order of all elements in a
given Stack s, which supports only push(x) and pop() operations.
Provide a C++ code solution for the reversal.



5.5 Summary 127

4. Efficient addAll Operation
The List method insertAll(i, c) inserts all elements of the
Collection c into the list at position i. (The insertAt(i, x) method
is a special case where c={x}.) Explain why it is not efficient to implement
insertAll(i, c) by repeated calls to insertAt(i, x). Design and im-
plement a more efficient implementation.

5. RandomQueue Design and Implementation
Design and implement a RandomQueue. This is an implementation of the
Queue interface in which the remove() operation removes an element that
is chosen uniformly at random among all the elements currently in the queue.
(Think of a RandomQueue as a bag in which we can add elements or reach in
and blindly remove some random element.) The add(x) and remove() opera-
tions in a RandomQueue should run in constant time per operation.

6. Treque Design and Implementation
Design and implement a Treque (triple-ended queue). This is a List
implementation in which get(i) and set(i, x) run in constant time, and
insertAt(i, x) and removeAt(i) run in time O(1+min{i,n− i, |n/2−
i|}). In other words, modifications are fast if they are near either end or near the
middle of the list.

7. Array Rotation
Implement a method rotate(a, r) that “rotates” the array a so that a[i]
moves to a[(i+r) mod a.length], for all i in {0, ..., a.length}.

8. List Rotation
Implement a method rotate(r) that “rotates” a List so that list item i be-
comes list item (i+r) mod n. When run on an QueueArray, rotate(r)
should run in O(1+min{r,n− r}) time.

9. Optimizing QueueArray Operations
Modify the QueueArray implementation so that the shifting done by
insertAt(i, x), removeAt(i), and resize() is done using the faster
std::copy method.



6. Hash Tables

Objectives
In this chapter, we will explore hash tables, an incredibly efficient data structure for
storing and retrieving data. By the end of this chapter, you will have a thorough un-
derstanding of hash tables and their practical applications. Here’s what you can look
forward to:

1. Introduction to Hashing: We’ll start with the basics of hashing and its impor-
tance in computer science.

2. Comparison of Data Structures: You’ll learn to compare traditional data struc-
tures like arrays and linked lists in terms of storage efficiency and access speed,
highlighting their strengths and weaknesses.

3. Hash Functions: We will delve into the properties of hash functions, understand
what makes a good hash function, and see how they are used in hash tables.

4. Collision Resolution: Handling collisions is critical in hash tables. You’ll explore
different techniques such as chaining and open addressing and understand how
they work.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_6

129

https://doi.org/10.1007/979-8-8688-0802-9_6


130 Chapter 6. Hash Tables

5. Implementation of Hash Tables: We’ll guide you through the implementation of
hash tables using both chaining and open addressing techniques, with step-by-step
code examples.

6. Performance Analysis: You’ll learn to analyze the performance of hash tables,
considering factors like time complexity, space complexity, and load factor.

6.1 Hashing Introduction
Hashing is a fundamental technique in computer science, providing an efficient way to map
data to a fixed-size array for rapid data access. This process plays a crucial role in achieving
a delicate balance between storage efficiency and quick data access. When confronted
with the challenge of efficiently storing a large dataset or database while requiring speedy
access, traditional data structures like arrays or linked lists may not be optimal choices. In
this section, we will compare linked lists and arrays to highlight their efficiency trade-offs.

6.1.1 Array vs. Linked List
Arrays excel in providing constant-time direct access (O(1)), but their static allocation
limits adaptability. Conversely, linked lists dynamically adjust to accommodate elements
but can compromise search speed (O(n)) due to their sequential traversal nature. Table 6.1
offers a detailed comparison, highlighting these characteristics.

Table 6.1: Comparison Between Arrays and Linked Lists

Aspect Array Linked List

Access Time Constant Time Variable Time
Space Efficiency Fixed Size Dynamic Size
Adaptability Limited Flexible
Insertion/Deletion May require resizing No resizing needed
Memory Overhead Minimal Slightly higher (due to pointers)

The choice between arrays and linked lists depends on specific application needs, con-
sidering factors such as access patterns, adaptability, and memory efficiency.

6.1.2 Introducing Hash Tables
Hash tables emerge as a powerful solution to surpass the constraints of both arrays and
linked lists. These tables adeptly store a small number, n, of integers from a broad range
U = {0, . . . ,2w − 1}, with w representing the bit width. At the heart of hash tables is
hashing, which employs hash functions to map data efficiently to designated locations
within the table.



6.1 Hashing Introduction 131

6.1.3 Applications of Hashing
Hashing finds diverse applications across various domains, providing efficient solutions to
problems such as

• Data Retrieval: Hash tables are widely employed for quick and efficient data re-
trieval. They allow rapid access to stored information by mapping keys to specific
locations, making them crucial for databases and data management systems.

• Caching Mechanisms: Hashing is used in caching mechanisms to store data that
are frequently accessed. By associating data with unique hash codes, systems can
quickly retrieve cached information, reducing latency and improving overall perfor-
mance.

• Symbol Tables: Hash tables are fundamental in implementing symbol tables, map-
ping keys to values. This is particularly useful in compilers, interpreters, and other
language processing applications.

• File Systems: Hashing is instrumental in managing file locations on disk, facilitating
swift and organized access to stored data.

6.1.4 Usage Example: Management and Analysis of Access Logs
Imagine you are managing access logs for a web service and need to efficiently analyze
these logs to quickly retrieve information about access counts from specific IP addresses
within a defined timeframe. This can be quite challenging, especially when you need to
answer queries promptly. Let’s dive into how we can tackle this.

Consider the task of analyzing access logs and promptly answering queries such as the
following.

IP Access Log Queries
To effectively manage and analyze these logs, you might need to answer several critical
questions:

1. Identifying Access from Specific IPs in the Last Hour: How can we quickly de-
termine if any user accessed the service from a particular IP address during the last
hour?

2. Counting Access Occurrences: How can we efficiently calculate the number of
times the service was accessed from a specific IP within a given time period?

3. Unique IPs Accessed in the Last Hour: How can we determine the count of distinct
IP addresses that accessed the service during the last hour?

Given that one hour of logs can contain millions of lines, processing each query in real
time would be impractical. To address this challenge, we need a way to keep track of how
many times each IP appears in the last hour of the access log. Let’s call this data structure
C, which will store the mapping from IPs to their respective counters.

Addressing Challenges: IP Conversion
One effective approach is to convert IP addresses into a more manageable format, such as
32-bit integers. This conversion allows us to create an integer array for direct addressing,



132 Chapter 6. Hash Tables

significantly improving the efficiency of tasks like access list updates and hourly access
analysis.

Direct Addressing
Consider the fact that there are 232 different IPv4 addresses. By converting each IP to a
32-bit integer, we can create an integer array A of size 232. This array can be used for direct
addressing.

Analysis
• Add: The operation takes O(1) time.
• Update: Each log line update takes O(1) time.
• Access: Accessing an element also takes O(1) time.
• Memory Usage: The space complexity is O(N), where N is the size of the array.

List-Based Mapping
Direct addressing, however, requires an excessive amount of memory. An alternative is to
store only active IPs in a list, retaining only the last occurrence of each IP and preserving
the order of occurrence.

Analysis
If n is the number of active IPs:

• Append: The operation takes Θ(1) time.
• Update: Updating the list per log line takes Θ(n) time.
• Access: Accessing an element also takes Θ(n) time.
• Memory Usage: The space complexity is Θ(n).

Drawbacks of Array and Linked List–Based Approaches
When dealing with access log data, using arrays for direct addressing and linked lists for
storing access counts comes with specific challenges:

First, consider the array-based approach. While employing an array to store access
counts for each IP allows for constant time complexity in access, it requires a substantial
amount of memory to encompass the entire IP address range. This becomes impractical
when dealing with a large number of potential IP addresses, especially in scenarios such as
IPv6, where the address space is significantly larger.

Next, think about the linked list–based approach. Utilizing linked lists to store access
counts involves time-consuming processes of finding and erasing entries, with a time com-
plexity of Θ(n), where n is the number of active IPs. This inefficiency becomes more
pronounced with a substantial number of access log entries.

Hashing: A Compact Solution
Even with IP conversions, the sheer size of IP address spaces poses a memory challenge.
This is where hashing comes into play as an elegant solution. Hashing allows for a more
compact representation of IP-related data, minimizing memory usage while maintaining
fast access times. By employing hash functions, you can efficiently map IP addresses to



6.2 Hash Functions 133

hash codes and store corresponding access counts. This approach strikes a balance between
memory efficiency and query response time.

Using hashing, we can optimize both time and space complexities, enabling efficient
management and analysis of large-scale access logs in real-time scenarios. This makes
hashing an invaluable tool for handling extensive datasets with the need for quick access
and minimal memory overhead.

6.2 Hash Functions
Hash functions play a fundamental role in the efficacy of hash tables. A hash function,
denoted as h : S → {0,1, . . . ,m− 1} for any set of objects S and an integer m > 0 (where
m is referred to as the cardinality of the hash function h), should possess the following
desirable properties:

• Fast Computation: The hash function should be computationally efficient, facilitat-
ing the swift mapping of objects to hash values.

• Uniqueness: Different objects should map to distinct hash values, thereby prevent-
ing unnecessary collisions.

• Limited Memory Usage: The memory consumption of the hash function should
ideally fall within the bounds of O(m) space complexity.

6.2.1 Use of Hash Functions
In practice, hash functions are essential for efficient data storage and retrieval. They are
used to convert data into hash codes, which serve as indices in a hash table. This pro-
cess ensures quick access to data, making hash functions a cornerstone of effective data
management.

One common application of hash functions is in databases, where they index data for
rapid retrieval. For example, a database might use a hash function to convert a string
(such as a username) into a numerical index, allowing for fast lookups. Hash functions are
also crucial in caching, mapping data to cache slots for quick retrieval, thereby reducing
latency and improving performance. Additionally, they are fundamental in implementing
associative arrays, which store key-value pairs and use hash functions to compute indices
into an array of buckets or slots.

In summary, hash functions are indispensable tools in computer science, enabling ef-
ficient data storage and retrieval across various applications. Their ability to quickly map
data to specific locations in a hash table makes them vital for high-performance comput-
ing.

6.2.2 Multiplicative Hash Function
The multiplicative hash function is a widely used method for generating hash values for
integers, taking advantage of modular arithmetic and integer division for efficient computa-
tion. The hash table utilized in this method has a size of 2d, where d is an integer known as
the dimension. The hash function is designed to hash an integer x ∈ {0, . . . ,2w−1} using



134 Chapter 6. Hash Tables

the formula:

hash(x)=
(z · x) mod 2w

2w−d
(6.1)

where

z is a randomly chosen odd integer in [1,2w−1].

w is the word size in bits (e.g., 32 or 64 bits), representing the size of the input domain.

d is the number of bits representing the size of the hash table, where the table size is 2d.

The integer values in the range [0,2w−1] are mapped to corresponding hash values in
the hash table, where hash(x) resides in the range [0,2d−1].

Note:
The multiplicative hash function takes advantage of the default integer operations being
modulo 2w, where w represents the number of bits in an integer. Additionally, the divi-
sion by 2w−d is effectively performed by right-shifting the bits by w−d, which discards
the least significant bits, leaving the most significant bits as the hash value.

1 int hash(int x, int w, int d, int z) {
2 return ((long long)(z * x)) >> (w - d);
3 }

Multiplicative Hash Function Implementation

This code efficiently computes the hash value by performing the multiplication and
right shift operations, where w and d represent the word size and the hash table dimension,
respectively.

� Example 6.1 Consider an input value x= 15, with a word size w= 32, table size
parameter d= 8, and a randomly chosen odd integer z= 4102541685.
Substitute the values into the formula:

hash(15)= (x ·z) mod 232 � (32−8)

= (x ·z) mod 232 � 24

= 83



6.2 Hash Functions 135

Breaking it down into binary operations:

Binary representation of z : 11110100100001111101000101110101
Binary representation of x : 00001111
Multiplication x ·z : 111001010011111101010100010111011011
Modulo 232 : 01010011111101010100010111011011
Right shift 24 : 01010011

Therefore, the hash value for the input x= 15 using the multiplicative hash function
is 83. �

� Example 6.2 Let us assume we have an input value x= 27 and the randomly chosen
odd integer z= 3221225473.

Substitute the values into the formula:

hash(27)= (x ·z) mod 232 � (32−8)

= (x ·z) mod 232 � 24

= 64

Breaking it down into binary operations:

Binary representation of z : 11000000000000000000000000000001
Binary representation of x : 00011011
Multiplication x ·z : 1010001000000000000000000000000011011
Modulo 232 : 01000000000000000000000000011011
Right shift 24 : 01000000

Therefore, the hash value for the input x= 27 using the multiplicative hash function
with w= 32 and d= 8 is 64. �

6.2.3 Generating Hash Codes for Various Data Types
Hash functions are not limited to hashing integers; they can be extended to generate hash
codes for strings, numbers, and other data types. Ensuring that different data types can be
efficiently hashed is essential for the versatility and robustness of hash tables.

Hashing Strings
Hashing a string involves treating the string as a sequence of characters and then combining
their ASCII values in a way that produces a unique hash code. A common method is to use
polynomial rolling hash functions (see Equation 6.2).

hash(s)=

(|s|−1

∑
i=0

s[i] · pi
)

mod m (6.2)



136 Chapter 6. Hash Tables

where

s[i] is the ASCII value of the i-th character in the string s.

p is a small prime number, typically 31 or 37.

m is a large prime number to avoid overflow.

Here’s how you can implement this in code:

1 unsigned int hashString(const std::string &s) {
2 int p = 31; // Prime number base
3 int m = 691; // Large prime modulus
4 unsigned int hash_value = 0;
5 unsigned int p_pow = 1;
6 for (char c : s) {
7 hash_value =
8 (hash_value + (c - ’a’ + 1) * p_pow) % m;
9 p_pow = (p_pow * p) % m;
10 }
11 return hash_value;
12 }

Polynomial Rolling Hash for Strings

This code computes a polynomial hash for the input string s, using p as the base and m
to avoid overflow, ensuring unique hash values for different strings.

� Example 6.3 Let us assume that we have a string "hash" and use p = 31 and
m= 691.
Substitute the values into the formula:

hash("hash")= (h ·310+a ·311+ s ·312+h ·313) mod 691

= (8 ·1+1 ·31+19 ·312+8 ·313) mod 691

= (8+31+18259+238328) mod 691

= 256

Breaking it down into steps:

Character “h” (ASCII 104): 104−96= 8, contributes 8 ·310 = 8.
Character “a” (ASCII 97): 97−96= 1, contributes 1 ·311 = 31.
Character “s” (ASCII 115): 115−96= 19, contributes 19 ·312 = 18259.
Character “h” (ASCII 104): 104−96= 8, contributes 8 ·313 = 238328.



6.2 Hash Functions 137

Summing up:

8+31+18259+238328= 256626.

Finally, taking modulo 691:

256626 mod 691= 256.

Therefore, the hash value for the string “hash” is 256. �

Hashing Floating-Point Numbers
Hashing floating-point numbers involves considering the bitwise representation of the floating-
point value. Since floating-point numbers can have different representations due to preci-
sion issues, care must be taken to ensure that the hash function accounts for these.

The hash function for floating-point numbers can be expressed as

hash(f)=
n−1

∑
i=0

(hash[i−1] · p+byte(i)) (6.3)

where

byte(i) is the i-th byte of the floating-point representation.

n is the number of bytes in the floating-point representation.

p is a small prime number (commonly 31 or 37).

hash[−1] = 0.

This approach sequentially processes each byte of the floating-point number, combin-
ing them with a prime multiplier to produce a unique hash code. Additionally, we can use
the multiplicative method to ensure that the hash value fits within the table size.

1 unsigned int hashFloat(float f) {
2 unsigned int hash_value = 0;
3 unsigned char *p = reinterpret_cast<unsigned char*>(&f);
4 for (size_t i = 0; i < sizeof(f); ++i) {
5 hash_value = hash_value * 31 + p[i];
6 }
7 return hash_value;
8 }

Hashing Floating Point Numbers

This code processes each byte of the floating-point number’s binary representation,
multiplying the accumulated hash value by 31 (a small prime) and adding the current byte
value, ensuring that the floating-point representation is uniquely hashed.



138 Chapter 6. Hash Tables

� Example 6.4 Let us assume we have a floating-point number 3.14.
Substitute the value into the function:

Binary representation of 3.14 : 01000000010010001111010111000011

Byte values:{195,245,72,64}
Hash value computation:

0 ·31+195= 195,

195 ·31+245= 6290,

6290 ·31+72= 195062,

195062 ·31+64= 6046986.

Therefore, the hash value for the floating-point number 3.14 is 6046986. �

Hashing Compound Data Types
For compound data types, such as structures or classes, we can hash each member and com-
bine their hash values. This can be achieved by using a combination of different hashing
techniques to ensure that the resulting hash value is unique.

A common method to combine hash values is by using a prime multiplier, ensuring that
the order and values of the fields uniquely determine the resulting hash code.

1 struct Point {
2 int x, y;
3 };
4
5 int zz = 31; // A small prime number for combination
6
7 unsigned int hashPoint(const Point &p) {
8 // Compute hash for x-coordinate
9 unsigned int hash_x = hash(p.x);
10 // Compute hash for y-coordinate
11 unsigned int hash_y = hash(p.y);
12 // Combine using prime multiplier
13 return hash_x * zz + hash_y;
14 }

Hashing Compound Data Types

In this implementation, each member of the compound data type (e.g., coordinates of a
point) is hashed individually, and their hash values are combined using a prime multiplier.



6.2 Hash Functions 139

� Example 6.5 Let us assume we have a point (3, 4).
Substitute the values into the function:

Assume hash(3)= 83,

and hash(4)= 110.

Then, hashPoint((3, 4))= 83 ·31+110= 2563+110= 2673.

Therefore, the hash value for the point (3, 4) is 2673. �

By leveraging these techniques, we can generate efficient and reliable hash codes for
various data types, ensuring that our hash tables are versatile and robust enough to handle
different kinds of data effectively.

6.2.4 Collisions
Collisions occur when two distinct objects yield the same hash value, i.e., when h(o1) =
h(o2) and o1 �= o2. Collisions are an inherent issue in hash tables because the finite number
of hash values (m) often cannot uniquely represent every possible input from a much larger
set (S). The effective handling of collisions is crucial for maintaining the integrity of a hash
table.

Criteria for Good Hash Functions
A good hash function is indispensable to achieve efficient data retrieval and minimize col-
lisions. It should exhibit the following characteristics:

• Random Values: The hash function should generate hash values with a broad distri-
bution, minimizing clustering and promoting a uniform spread across the hash table.

• Deterministic and Fast Computation: The function must be deterministic, produc-
ing the same hash value for the same input every time it is used.

• Uniform Distribution: A good hash function ensures that hash values are uniformly
distributed across the range.

• Minimal Collisions: The goal is to minimize collisions as much as possible. By
reducing the frequency of collisions, the hash table can maintain efficient operations,
preserving the constant time complexity (O(1)) that makes hash tables attractive for
data storage and retrieval.

Note:
Collisions are unavoidable, especially when the input domain is much larger than the
hash value range. However, a well-designed hash function reduces the number of colli-
sions and spreads them evenly, ensuring that no single area of the hash table becomes a
bottleneck.



140 Chapter 6. Hash Tables

In the next section, we will delve deeper into handling collisions through various tech-
niques, such as chaining and open addressing. These strategies optimize hash table perfor-
mance by efficiently resolving collisions, enhancing both the speed and reliability of data
retrieval in real-world applications.

6.3 Hash Table Techniques
In this section, we will explore two primary techniques for implementing hash tables, each
designed to address the challenge of collisions – instances where two different data items
map to the same location.

6.3.1 Chaining
Chaining utilizes linked lists to efficiently store colliding elements. In this approach,
linked lists are created at each hash table index to store colliding elements, allowing multi-
ple items to coexist at the same index. This technique provides an effective way to handle
collisions.

Figure 6.1 illustrates the concept of chaining in hashing. Each bucket in the hash table
contains a linked list. When multiple items hash to the same index, they are added to the
corresponding linked list. The hash key value and the length of the chain (denoted as c) are
depicted to demonstrate how chaining accommodates collisions.

Figure 6.1: Chaining: hashing with linked list and collision handling



6.3 Hash Table Techniques 141

� Example 6.6 Consider the following problem: inserting elements (73, 15, 65, 41, 30,
69, 50) into a hash table using the hash function h(x) = x mod 7. Figure 6.2 illustrates
the chaining technique in action. Each item is hashed to the corresponding index, and
when a collision occurs, it is added to the linked list at that index. The figure shows the
resulting linked lists and their contents, demonstrating how chaining effectively handles
collisions. �

6.3.2 Open Addressing
Open addressing, also known as probing, seeks alternative locations within the table for
placement when a collision occurs. This method involves linearly searching for the next
available slot or employing more sophisticated probing strategies.

Linear probing is a straightforward example of open addressing. When a collision oc-
curs, linear probing searches for the next available slot in a linear sequence. This technique
can lead to clustering, where a group of consecutive slots is filled, increasing the chances
of future collisions.

Figure 6.3 illustrates the concept of linear probing in hashing. When a collision occurs,
probing searches for alternative locations to place the item within the hash table. The
hash key values and the probing sequence are depicted to demonstrate how linear probing
handles collisions.

Figure 6.2: Chaining example: inserting 73, 15, 65, 41, 30, 69, 50 using hash function
h(x) = x mod 7

� Example 6.7 Consider the following problem: inserting elements (73, 15, 65, 41, 30,
69, 50) into a hash table using the hash function h(x) = x mod 7. Figure 6.4 illustrates



142 Chapter 6. Hash Tables

Figure 6.3: Probing: hashing with linear collision resolution

the probing technique in action. Probes occur when attempting to insert 30 at a location
(2) already occupied, and the technique searches for the next available slot. The figure
showcases the probing sequence and the corresponding hash key values, demonstrating
how the technique efficiently resolves collisions. �

Probing Variants

Open addressing involves several variants of probing techniques to handle collisions, in-
cluding linear probing, quadratic probing, and double hashing.

Linear Probing
In linear probing, the probe sequence searches the table in a linear manner. When a colli-
sion occurs, the next index is checked in a sequential order.

hash(k, i) = (h(k)+ i) mod m (6.4)



6.3 Hash Table Techniques 143

Figure 6.4: Probing example: inserting 73, 15, 65, 41, 30, 69, 50 using hash function
h(x) = x mod 7

where
• h(k) is the initial hash value.
• i is the probe number.
• m is the size of the table.

� Example 6.8 Consider a hash table of size m = 10 and a hash function h(k) = k
mod m. For an element k = 7:

hash(7,0) = (7+0) mod 10= 7

hash(7,1) = (7+1) mod 10= 8

hash(7,2) = (7+2) mod 10= 9

If index 7 is occupied, the algorithm will try 8, then 9, and so on until an empty slot is
found. �



144 Chapter 6. Hash Tables

Quadratic Probing
In quadratic probing, the probe sequence follows a quadratic function, which helps avoid
primary clustering (consecutive filled slots).

hash(k, i) = (h(k)+ c1 · i+ c2 · i2) mod m (6.5)

where c1 and c2 are constants chosen to avoid primary clustering.

� Example 6.9 For k = 7, c1 = 1, c2 = 3:

hash(7,0) = (7+1 ·0+3 ·02) mod 10= 7

hash(7,1) = (7+1 ·1+3 ·12) mod 10= 1

hash(7,2) = (7+1 ·2+3 ·22) mod 10= 7

If index 7 is occupied, the algorithm will try 1, then 7 again, and so on until an empty
slot is found. �

Double Hashing
Double hashing uses a secondary hash function to calculate the step size for the probe
sequence, reducing the chances of clustering and providing a more uniform distribution of
probes.

hash(k, i) = (h1(k)+ i ·h2(k)) mod m (6.6)

where h1 and h2 are two different hash functions.

� Example 6.10 Let h1(k) = k mod 10 and h2(k) = 1+(k mod 5):

hash(7,0) = (7+0 · (1+7 mod 5)) mod 10= 7

hash(7,1) = (7+1 · (1+7 mod 5)) mod 10= 0

hash(7,2) = (7+2 · (1+7 mod 5)) mod 10= 3

If index 7 is occupied, the algorithm will try 0, then 3, and so on until an empty slot
is found. �

6.3.3 Performance Analysis
Understanding the performance of hash tables involves assessing their time and space com-
plexity. Let us consider the analysis for both chaining and probing approaches.



6.3 Hash Table Techniques 145

Before diving into the specifics, let’s define the key parameters involved in the analysis:
• n: The number of different keys currently in the hash table
• m: The cardinality of the hash function, which is also the size of the hash table
• c: The length of the longest chain in the hash table
• α: The load factor, which indicates the average number of elements per bucket

Chaining Analysis
Chaining is a technique to implement a hash table by using linked lists to handle collisions.

Space Complexity
The space complexity of chaining is O(n+m):

• O(n) to store n pairs (key, value)
• O(m) to store the array A of size m

Time Complexity
The time complexity of chaining is O(c+ 1), where c is the length of the longest chain.
This time complexity arises because, in the worst case, you may need to traverse the longest
chain to find, insert, or delete an element.

To optimize both m and c, consider
• Improving the hash function to generate more unique hash codes
• Redistributing elements between buckets
• Using techniques such as dynamic resizing

Advantages
• Simple and straightforward to implement.
• Handles collisions dynamically by growing the linked lists, allowing for a flexible
table size.

• Deletion is straightforward as it involves removing an element from a linked list.

Disadvantages
• May result in unevenly distributed chains, especially if the hash function does not
distribute values uniformly.

• Linked lists introduce additional memory overhead due to pointer storage.
• Performance degrades as the load factor increases, especially if chains grow signifi-
cantly longer.

Probing Analysis
The time complexity of probing depends on the specific probing strategy employed. In the
worst case, with linear probing, the time complexity can degrade to Θ(m) when the table
is nearly full. Let’s examine the advantages and disadvantages of the different probing
variants.



146 Chapter 6. Hash Tables

Linear Probing
Advantages

• Simple to implement.
• Requires only one hash function.

Disadvantages
• Prone to primary clustering.
• Performance degrades as the load factor increases.

Quadratic Probing
Advantages

• Reduces primary clustering compared to linear probing.
• Effective for moderate load factors.

Disadvantages
• Secondary clustering can still occur.
• Requires careful selection of constants to ensure all slots are visited.
• May not find an empty slot if the table is more than half full.

Double Hashing
Advantages

• Minimizes clustering by using two independent hash functions.
• Provides a uniform distribution of probes.

Disadvantages
• More complex to implement due to the need for two hash functions.
• Requires careful selection of hash functions to avoid common multiples.
• Requires two good hash functions.

Load Factor

The load factor (α) is a critical parameter that influences the performance of hash tables. It
is defined as

α =
n
m

(6.7)

Note:
A high load factor indicates a high table occupancy, potentially leading to more colli-
sions. Maintaining a balanced load factor is crucial for efficient hash table performance.
Generally, keeping α below 0.7 helps balance performance and memory usage.

Comparison

While chaining has a relatively constant time complexity, probing’s time complexity can
degrade as the table occupancy increases. Chaining often outperforms probing in terms
of average-case performance, but the choice between them depends on factors such as
expected data distribution and the specific use case (see Table 6.2).



6.4 Hash Table Implementation 147

Table 6.2: Comparison Between Chaining and Probing Techniques

Aspect Chaining Probing

Time Complexity Consistent May degrade with higher occupancy
Space Complexity Higher (linked lists) Lower
Load Factor Tolerance More tolerant May suffer from increased collisions
Dynamic Resizing Suitable May require rehashing

Understanding these techniques and their performance implications is crucial for effec-
tively using hash tables in various applications. In the next chapter, we will delve into ad-
vanced hash table techniques, further exploring their implementation details, performance
characteristics, and practical applications.

6.4 Hash Table Implementation
Implementing a hash table involves translating the abstract concepts discussed earlier into
concrete code. This section will guide you through implementing a hash table using two
common techniques: chaining and open addressing.

6.4.1 Chaining
In the chaining implementation, we use an array of linked lists. Specifically, we utilize
an array of dynamic arrays, where each dynamic array holds a linked list of elements.
This approach helps in managing collisions by storing multiple elements in the same index
through linked lists.

The ChainedHashTable class, inheriting from the ISet interface, implements the
required functionalities using the composition of SinglyLL and DynamicArray. The
class diagram in Figure 6.5 showcases the relationships and functions.

1 template <typename T>
2 class ChainedHashTable : public ISet<T> {
3
4 public:
5 ChainedHashTable(size_t initialCapacity = 1024)
6 : table(initialCapacity, SinglyLL<T>()),
7 D((int)(std::log2(initialCapacity))) {}
8
9 // ..... Other Abstract Interface methods

10 private:
11 DynamicArray<SinglyLL<T>> table;
12
13 // Multiplicative hash parameters
14 static const int W = 32;



148 Chapter 6. Hash Tables

Figure 6.5: UML class diagram of ChainedHashTable. The ChainedHashTable
class inherits from ISet and is composed of SinglyLL and DynamicArray

15 int D;
16
17 // A randomly chosen odd number in [1:2^W-1]
18 static const long long Z = 2654435769;
19
20 // Hash function using multiplicative hashing
21 unsigned int hash(const T item) const {
22 unsigned int x = convertToInt(item);
23 return ((Z * x) >> (W - D)) % table.getCapacity();
24 }
25
26 // Conversion based on the problem
27 unsigned int convertToInt(const T x) const;
28 };

ChainedHashTable Class Interface



6.4 Hash Table Implementation 149

The ChainedHashTable class incorporates a DynamicArray named table to
store linked lists. The hash function, using multiplicative hashing, is implemented with
parameters such as W (word size), D (table size), and Z (a randomly chosen odd number).

Lookup Operation
The contains function searches for an element in the hash table. It looks for the element
in the linked list at the computed index. The average-case time complexity is O(1), but it
can degrade to O(c) in the worst case.

1 template <typename T>
2 bool ChainedHashTable<T>::contains(const T item) const {
3 size_t index = hash(item);
4 // Ensure the index is within the bounds
5 assert(index < table.getCapacity());
6
7 // Using indexOf to check if item exists
8 const SinglyLL<T>& bucket = table[index];
9 return bucket.indexOf(item) != -1;

10 }

contains Function: Check Element Existence

Add Operation
The add function is responsible for adding an element to the hash table. It checks if the
element is already present using the contains function and adds it to the linked list at the
computed index. The average-case time complexity is O(1) due to uniform distribution,
but it can degrade to O(c) in the worst case, where c is the length of the longest chain.

1 template <typename T>
2 bool ChainedHashTable<T>::add(const T x) {
3 size_t index = hash(x);
4 // Ensure the index is within the bounds
5 assert(index < table.getCapacity());
6
7 // Using indexOf to check if x exists
8 if (table[index].indexOf(x) == -1) {
9 table[index].pushFront(x);
10 ++size;
11 return true;
12 }
13 return false;
14 }

add Function: Insert Element



150 Chapter 6. Hash Tables

Remove Operation
The remove function removes an element from the hash table. It searches for the element
in the linked list at the computed index and removes it if found. The average-case time
complexity is O(1), but it can degrade to O(c) in the worst case.

1 template <typename T>
2 bool ChainedHashTable<T>::remove(const T x) {
3 size_t index = hash(x);
4 // Ensure the index is within the bounds
5 assert(index < table.getCapacity());
6 int pos = table[index].indexOf(x);
7
8 // Using indexOf to check if x exists
9 if (pos != -1) {

10 --size;
11 // Remove specific element in SinglyLL
12 table[index].removeAt(pos);
13 return true;
14 }
15 return false;
16 }

remove Function: Delete Element

6.4.2 Linear Probing
In the probing implementation, we use an array of elements represented by Dynamic
Array. In a LinearHashTable, there are three types of entries that can be stored:

• DATA: Actual values in the ISet that we are representing
• FREE values: At array locations where no data has ever been stored
• DELETED values: At array locations where data was once stored but has since been
deleted

We introduce an additional array named status to keep track of the status of each
slot in the table. The status array uses 0 to represent FREE slots, 1 for OCCUPIED slots,
and 2 for slots that have been marked as DELETED. This enables us to distinguish between
null values and deleted values.

1 template <typename T>
2 class LinearHashTable : public ISet<T> {
3 public:
4 // Constructor
5 LinearHashTable(size_t capacity)
6 : table(new DynamicArray<T>(capacity)),
7 status(new DynamicArray<SlotStatus>(capacity,FREE)) {}
8



6.4 Hash Table Implementation 151

9 virtual ~LinearHashTable() {
10 delete table;
11 delete status;
12 }
13 // ..... Other Abstract Interface methods
14 private:
15 // 0 for free, 1 for occupied, 2 for deleted
16 enum SlotStatus { FREE, OCCUPIED, DELETED };
17
18 DynamicArray<T> *table;
19 DynamicArray<SlotStatus> *status;
20
21 // Hash function using Modulo
22 int hash(const T item) const {
23 unsigned int x = convertToInt(item);
24 return x % table->getCapacity();
25 }
26
27 // Conversion based on the problem
28 unsigned int convertToInt(const T item) const;
29
30 void resize();
31
32 protected:
33 // Inherited members to use directly
34 using ISet<T>::size;
35 };

LinearHashTable Class Interface

To efficiently handle the operations, we maintain the invariant that the table’s capacity
is greater than or equal to twice the number of non-null values (capacity - size).

The class diagram in Figure 6.6 shows the relationships and functions of LinearHash
Table, which inherits from ISet and is composed of DynamicArray.

Let’s delve into the operations of linear probing in hash tables with a series of illustra-
tive examples and corresponding figures to provide clarity.

First, consider the initial state of the table where all slots are marked as FREE. When
we add the element 73, the hash function computes its index as hash(73) = 73 % 7
= 3. As shown in Figure 6.7, index 3 becomes OCCUPIED and the count of non-FREE
slots, size, is incremented to 1.

Next, we demonstrate the process of adding another element, 30. The hash function
determines the initial index as 2, which is already OCCUPIED. Linear probing directs us
to the next index, 3, which is also OCCUPIED. Continuing the search, we find index 4 is
FREE. Hence, 30 is inserted at index 4, changing its state to OCCUPIED, and size is
updated to 5, as illustrated in Figure 6.8.



152 Chapter 6. Hash Tables

Figure 6.6: LinearHashTable UML class diagram. LinearHashTable inherits
from ISet and is composed of DynamicArray<T>

When an element needs to be removed, such as 73, the hash function locates it at index
3, which is in the OCCUPIED state. After removal, index 3’s state is changed to DELETED,
as depicted in Figure 6.9.

Lastly, Figure 6.10 showcases the addition of the element 50. The hash function calcu-
lates the index as hash(50) = 50 % 7 = 1. Both indexes 1 and 2 are OCCUPIED.
The probing continues until it reaches index 3, which is DELETED. Therefore, 50 is in-
serted at index 3, and its state is updated to OCCUPIED.

Figure 6.7: Initial state of the table with all slots marked as FREE and the state changed
after adding 73



6.4 Hash Table Implementation 153

Figure 6.8: Adding the element 30. Initial index 2 is OCCUPIED, continuing to index 3
(OCCUPIED), and finally inserting 30 at index 4 (FREE), changing its state to OCCUPIED
and setting size = 5

Figure 6.9: Removing the element 73. Located at index 3 with state OCCUPIED. After
removal, index 3’s state becomes DELETED



154 Chapter 6. Hash Tables

Figure 6.10: Adding the element 50. The hash value is calculated as hash(50) = 50
% 7 = 1, but indexes 1 and 2 are OCCUPIED. The first non-OCCUPIED index found is 3,
which has a state of DELETED. Therefore, 50 is inserted at index 3, and its state is changed
to OCCUPIED

Tracking the state of each slot in the hash table is essential for efficient operation of the
hash table. It allows for proper handling of insertions, deletions, and searches, ensuring
that the table remains effective even as elements are added and removed.

Lookup Operation
The contains operation in a LinearHashTable is straightforward. We start at array
entry t[i], where i = hash(x), and search entries t[i], t[(i+1) mod capacity],
t[(i+2) mod capacity], and so on, until we find an index i’ such that either
t[i’] = x or t[i’] = null. In the former case, we return t[i’], and in the latter
case, we return null.

When searching for an element, the following scenarios may occur:
• Case 1: The desired element is found at the initial index i, and its status is not
DELETED. In this case, the element is returned directly.

• Case 2: We encounter DELETED slots or OCCUPIED slots that do not match the
desired element. We continue the search by incrementing the index until a FREE
slot is found, indicating that the element is not present.



6.4 Hash Table Implementation 155

The worst-case time complexity for contains is O(size), as it depends on the num-
ber of slots traversed during the search.

1 template <typename T>
2 bool LinearHashTable<T>::contains(const T x) const {
3 size_t i = hash(x);
4 // Loop until an unoccupied slot is found
5 while ((*status)[i] != SlotStatus::FREE) {
6 // Case 1: Found and status is not DELETED
7 if ((*status)[i] != SlotStatus::DELETED
8 && (*table)[i] == x)
9 return true;

10
11 // Case 2: DELETED or OCCUPIED, continue the search
12 i = (i + 1) % table->getCapacity();
13 }
14 // Element not found
15 return false;
16 }

contains Function: Check Element Existence

Add Operation
The add operation in a LinearHashTable aims to insert an element into the hash
table. It checks if the element is already present using contains(x). The operation
then searches for the next available slot and stores x at that location, incrementing size
if necessary.

When adding an element using add, the following scenarios may occur:
• Case 1: The desired element is already present in the table. The find operation
identifies a match, and the function returns false, indicating that the addition was
unsuccessful.

• Case 2: The table exceeds 80% occupancy. In this situation, the table is resized to
accommodate more elements efficiently.

• Case 3: The next available slot for insertion is found by probing through the table.
The element is added to the table, and the counter size is updated accordingly.

The average-case time complexity is O(1), but in the worst case, it can degrade to O(n),
where n is the table capacity.

1 template <typename T>
2 bool LinearHashTable<T>::add(const T x) {
3 // Case 1: Check if the element is already present
4 if (contains(x))
5 return false;



156 Chapter 6. Hash Tables

6
7 // Case 2: Resize the table if it exceeds 80% occupancy
8 if (size >= 0.8 * table->getCapacity())
9 resize();
10
11 // Case 3: Find the next available slot for insertion
12 size_t i = hash(x);
13 // Loop until an unoccupied slot is found
14 while ((*status)[i] == SlotStatus::OCCUPIED) {
15 i = (i + 1) % table->getCapacity();
16 }
17
18 // Update counters and insert the element
19 ++size;
20 (*table)[i] = x;
21 (*status)[i] = SlotStatus::OCCUPIED;
22 // Successfully added the element
23 return true;
24 }

add Function: Insert Element

Remove Operation
The remove operation removes an element from the hash table. It searches for the element
and sets the corresponding entry to DELETED. The average-case time complexity is O(1),
but in the worst case, it can degrade to O(n).

1 template <typename T>
2 bool LinearHashTable<T>::remove(const T x) {
3 size_t i = hash(x);
4 // Loop until an unoccupied slot is found
5 while ((*status)[i] != SlotStatus::FREE) {
6 T y = (*table)[i];
7 if ((*status)[i] != SlotStatus::DELETED && x == y) {
8 (*status)[i] = SlotStatus::DELETED;
9 --size;
10 // Min 12.5% occupancy
11 if (8 * size < table->getCapacity())
12 resize();
13 return true;
14 }
15 i = (i + 1) % table->getCapacity();
16 }
17 // Element not found



6.4 Hash Table Implementation 157

18 return false;
19 }

remove Function: Delete Element

Resize Operation
The resize operation is responsible for resizing the hash table when needed. The new
capacity (newCapacity) is determined based on the current number of elements (size),
ensuring sufficient space to maintain efficient performance. A new array tnew is created
with the updated size, and all occupied elements from the existing array table are re-
hashed and inserted into tnew.

1 template <typename T>
2 void LinearHashTable<T>::resize() {
3 size_t newCapacity = 1;
4 while (newCapacity < 3 * size) newCapacity <<= 1;
5
6 DynamicArray<T>* newTable
7 = new DynamicArray<T>(newCapacity);
8 DynamicArray<SlotStatus>* newStatus
9 = new DynamicArray<SlotStatus>(newCapacity, FREE);
10
11 // Insert everything into newTable
12 for (size_t k = 0; k < table->getCapacity(); ++k) {
13 if ((*status)[k] == SlotStatus::OCCUPIED) {
14 size_t i = hash((*table)[k]);
15 while ((*newStatus)[i] == SlotStatus::OCCUPIED) {
16 i = (i + 1) % newTable->getCapacity();
17 }
18 (*newTable)[i] = (*table)[k];
19 (*newStatus)[i] = SlotStatus::OCCUPIED;
20 }
21 }
22
23 // Update arrays
24 delete table;
25 delete status;
26
27 table = newTable;
28 status = newStatus;
29 }

resize Function: Resizes and Rehashes Elements in LinearHashTable



158 Chapter 6. Hash Tables

The resize operation ensures that the new size accommodates at least three times
the number of elements (3 * size). This approach helps in maintaining a balanced load
factor, minimizing collisions, and ensuring efficient performance. The resizing process
involves

• Calculating the new capacity by left-shifting («) until it is at least three times the
current size

• Creating new arrays for table and status, both initialized with the new capacity
• Rehashing and reinserting all elements from the old table to the new one, ensuring
that each element is placed correctly in the resized array

• Deleting the old arrays and updating the class pointers to reference the new, resized
arrays

The time complexity for resize is O(n), where n is the number of elements in the
hash table, as each element must be rehashed and inserted into the new table.

6.4.3 Hash Table Performance Comparison
The performance of hash tables varies based on the collision resolution strategy used, such
as chaining or probing. Table 6.3 compares the worst-case time complexity of various
operations for chaining and probing techniques, highlighting the potential performance
differences between these approaches.

Table 6.3: Worst-Case Time Complexity Comparison for Hash Table Operations Using
Chaining and Probing

Operation Chaining Probing

add(item) O(c) O(n)
contains(item) O(c) O(n)
remove(item) O(c) O(n)

• Chaining: The time complexity for operations such as add, contains, and remove
is O(c), where c is the length of the longest chain in the hash table. This is because
each operation may need to traverse the linked list (chain) to find, add, or remove the
desired item.

• Probing: In probing, the worst-case time complexity for the operations can degrade
to O(n), where n is the number of elements in the table. This degradation occurs due
to the linear search required to find an open slot or the desired element, especially
when the table is nearly full.

While chaining provides relatively consistent performance by managing collisions
through linked lists, probing can suffer from performance degradation as the table occu-
pancy increases, making it more suitable for scenarios with low to moderate load factors.



6.5 Summary 159

6.5 Summary
In this chapter, we have explored hash tables, a fundamental data structure in computer sci-
ence that allows for efficient data storage and retrieval. We began by comparing traditional
data structures, such as arrays and linked lists, highlighting their respective advantages and
limitations. This comparison set the stage for understanding why hash tables are a superior
choice in many scenarios.

We then introduced the concept of hashing, discussing the properties of good hash func-
tions, including fast computation, uniqueness, and minimal memory usage. Understanding
these properties is crucial for implementing effective hash tables.

Next, we examined different methods for handling collisions, such as chaining and
open addressing. Detailed explanations, examples, and illustrations were provided to clar-
ify these techniques. We also delved into the implementation of hash tables using both
chaining and open addressing. The code examples and diagrams offered a practical guide
to these implementations.

Performance analysis of hash tables was another key focus, emphasizing the impor-
tance of the load factor and the impact of different collision resolution strategies on time
and space complexity. This analysis helps to select the most appropriate technique based
on specific requirements.

Finally, we explored the applications of hashing in various domains, demonstrating its
versatility and efficiency in tasks such as data retrieval, caching, and managing symbol
tables and file systems.

Overall, this chapter has equipped you with a solid understanding of hash tables, their
implementation, and their applications. You are now well prepared to leverage hash tables
in your own projects, ensuring efficient data management and retrieval.

The class diagram in Figure 6.11 provides an overview of the hash table implementa-
tions discussed in this chapter, highlighting the relationships and interactions between the
various components.

Problems

Discussion
1. What are the trade-offs inherent in traditional data structures such as arrays and

linked lists in terms of storage efficiency and access speed?
2. How do hash tables efficiently store a small number of integers from an extensive

range, and what role do hash functions play in this process?
3. What are the essential characteristics of good hash functions, and why is collision

resolution crucial to maintaining the integrity of a hash table?
4. Explain the concept of a multiplicative hash function and describe its implemen-

tation involving modular arithmetic and integer division.
5. Compare and contrast the collision resolution techniques of chaining and linear

probing in hash tables.



160 Chapter 6. Hash Tables

Figure 6.11: Class diagram for hash table implementations. This diagram includes
ChainedHashTable, LinearHashTable, and their relationships with other classes



6.5 Summary 161

6. What factors should be considered when evaluating the strengths and weaknesses
of chaining and linear probing, including time complexity, space complexity, load
factor tolerance, and dynamic resizing?

7. How does hashing find applications in various domains, including data retrieval,
caching mechanisms, symbol tables, and file systems?

8. Describe the key components of a hash function, including fast computation,
uniqueness, and limited memory usage. Why are these properties important for
efficient hash functions?

9. Walk through the steps of the multiplicative hash function for a given input value
and the randomly chosen odd integer, demonstrating the calculation of the hash
value.

10. Discuss the potential impact of a poorly designed hash function on the perfor-
mance of a hash table. Provide examples of hash functions that might lead to
suboptimal results and explain why.

11. Why is it important to track the status of slots in a hash table? Discuss how
marking slots as DELETED can impact performance and future insertions.

12. Describe the process and challenges of resizing a hash table. What considerations
should be taken into account to maintain efficiency?

13. How do probing techniques like quadratic probing and double hashing differ from
linear probing in terms of handling collisions?

Multiple Choice Questions
1. In the context of hashing, what is the role of hash functions?

(a) Determine the load factor
(b) Map data to specific locations in a fixed-size array
(c) Perform arithmetic operations
(d) Sort the data

2. Which technique involves using linked lists to handle collisions in hash tables?
(a) Probing
(b) Chaining
(c) Clustering
(d) Hash folding

3. What is the advantage of a multiplicative hash function in generating hash values?
(a) Limited distribution
(b) Slow computation
(c) Modular arithmetic
(d) Fixed hash table size

4. When comparing arrays and linked lists in terms of space efficiency, which state-
ment is correct?
(a) Arrays have dynamic size, while linked lists have a fixed size.
(b) Arrays have constant access time, while linked lists have variable time.



162 Chapter 6. Hash Tables

(c) Arrays have limited adaptability, while linked lists are flexible.
(d) Arrays have minimal memory overhead, while linked lists have higher overhead.

5. What is a key characteristic of a good hash function?
(a) Slow computation
(b) Limited memory usage
(c) Frequent collisions
(d) Deterministic

6. In a hash table with open addressing, what happens when all slots are occupied,
and an insertion is attempted?
(a) Dynamic resizing occurs automatically.
(b) The hash table rejects the insertion.
(c) Collision resolution strategy is applied.
(d) The insertion is delayed until a slot is available.

7. How does dynamic resizing contribute to the efficiency of a hash table?
(a) Reduces the need for a good hash function
(b) Eliminates collisions entirely
(c) Adjusts the table size to maintain a suitable load factor
(d) Increases the space complexity

8. Consider a hash table with a load factor close to 1. What impact does this high
load factor have on the table’s performance?
(a) Improved adaptability
(b) Reduced number of collisions
(c) Increased likelihood of collisions
(d) Faster access times

9. Which of the following is a disadvantage of using chaining for collision resolution
in hash tables?
(a) Increased memory usage due to linked lists
(b) Difficulty in handling deletions
(c) Inability to store different data types
(d) Complexity of the hash function

10. In linear probing, what is the primary cause of performance degradation as the
hash table fills up?
(a) Hash function complexity
(b) Clustering
(c) Dynamic resizing
(d) Load factor

11. Which of the following best describes quadratic probing?
(a) Probing linearly to resolve collisions
(b) Using two hash functions for probing
(c) Probing using a quadratic function to resolve collisions
(d) Probing randomly to resolve collisions

12. What is a common characteristic of double hashing?
(a) Using a single hash function twice
(b) Using two independent hash functions



6.5 Summary 163

(c) Applying a quadratic function to the hash values
(d) Probing with a constant interval

13. Why is it essential to reset the status array during the resize operation in a hash
table?
(a) To free up memory
(b) To reinitialize hash values
(c) To ensure accurate tracking of slot statuses
(d) To improve hash function efficiency

Challenge Questions
1. Investigate the concept of cuckoo hashing. Explain how it works, its advantages,

and scenarios where it outperforms other collision resolution strategies. Discuss
any potential challenges or limitations associated with cuckoo hashing.

2. Consider the implementation of a distributed hash table (DHT) in a peer-to-peer
network. Discuss the key challenges involved in designing and maintaining a
DHT, including issues related to scalability, fault tolerance, and load balancing.

3. Delve into the world of cryptographic hash functions. Explain the properties that
make a hash function suitable for cryptographic applications. Discuss common
cryptographic hash functions, their use cases, and any vulnerabilities or attacks
associated with them.

Programming Problems
1. Basic Multiplicative Hash Function Calculation

Given an input value x and a predefined odd integer z, calculate the hash value
using the multiplicative hash function. Assume w= 32 and d= 10.

• Input value x= 12345
• Odd integer z= 2654435769

Calculate the hash value and provide a step-by-step breakdown of the computa-
tion, including the binary representation of each step.

2. Implementing and Analyzing Hash Function Distribution
Implement a multiplicative hash function in C++ and analyze the distribution of
hash values. Use the following parameters for the hash function:

• Odd integer z= 2654435769 (simplified for ease of calculation)
• Parameters w= 32, d= 8
• A series of input values: x= 1,2,3, . . . ,100

(a) Implement the multiplicative hash function in C++.
(b) Compute the hash values for each input value from x= 1 to x= 100.
(c) Analyze and discuss the distribution of the hash values.



164 Chapter 6. Hash Tables

3. Hash Table Operations
Implement a hash table using chaining and linear probing in C++. Perform the
following operations and analyze their performance:
(a) Insert elements: 5, 28, 19, 15, 20, 33, 12, 17, 10
(b) Find elements: 19, 20, 99
(c) Remove elements: 28, 15, 33

Compare the time complexity of each operation in both implementations and dis-
cuss any differences observed.

4. Load Factor and Performance
Design an experiment to analyze the impact of the load factor on the performance
of a hash table with linear probing. Vary the load factor from 0.1 to 0.9 and
measure the average time taken for insertion, search, and deletion operations. Plot
the results and provide an analysis.

5. Evaluating Hash Functions
Given two hash functions:

• h1(k) = k mod 11
• h2(k) = 1+(k mod 10)

Evaluate the performance of double hashing using these hash functions. Imple-
ment the hash table and perform a series of insertions, searches, and deletions.
Compare the results with those of linear and quadratic probing.

6. Optimal Hash Code Assignment
A certain university assigns sequential integers as student numbers, starting from
zero and now in the millions. For a class of 100 first-year students, we need to
determine whether it is more sensible to use the first two digits or the last two
digits of their student numbers to generate hash codes. Provide a C++ solution
and justify your choice based on efficiency and potential issues.

7. Designing a Hash Table for Usernames
A social media platform needs to design a hash table to store user profiles, each
identified by a unique username. The usernames are alphanumeric and can be up
to 15 characters long. Design a hash function that minimizes collisions and justi-
fies your choice. Implement the hash function in C++ and simulate the insertion
of the following usernames: “alice123,” “bob_smith,” “charlie789,” “david456,”
and “eve_jones.” Analyze the distribution of these usernames in the hash table.



7. Trees

Objectives
In this chapter, we will explore binary search trees (BSTs) and AVL trees, essential
data structures for efficient data storage, retrieval, and manipulation. By the end of
this chapter, you will have a thorough understanding of these tree structures and their
practical applications. Here’s what you can look forward to:

1. Fundamentals of Binary Search Trees: We will start with the basics of BSTs,
their structure, and their importance in computer science. You will understand how
BSTs maintain an ordered structure that facilitates efficient search operations.

2. Basic Operations in BSTs: You will learn how to perform insertion, deletion,
and searching operations in BSTs. We will delve into the mechanics of these
operations, ensuring you understand how they maintain the BST properties.

3. Properties and Variants of Binary Trees: We will explore different types of
binary trees, including full, complete, and perfect binary trees. You will learn
their unique properties and how these properties impact their applications.

4. Introduction to AVL Trees: AVL trees are introduced as a solution to the unbal-
ancing problem in BSTs. You will understand their self-balancing property and
how it ensures logarithmic operation times.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_7

165

https://doi.org/10.1007/979-8-8688-0802-9_7


166 Chapter 7. Trees

5. Rotations in AVL Trees: Handling imbalances in AVL trees involves rotations.
We will discuss different rotation techniques, such as left rotation, right rotation,
left-right rotation, and right-left rotation, and see how they maintain the AVL prop-
erty.

6. Implementation of AVL Trees: We will guide you through the implementation
of AVL trees, covering class definitions and methods for insertion, deletion, and
balancing the tree. Step-by-step code examples will help you solidify your under-
standing.

7. Performance Analysis: Finally, you will learn to analyze the performance of
AVL trees, considering factors like time complexity and space complexity. We
will compare the efficiency of operations in AVL trees to those in unbalanced
BSTs.

7.1 Binary Trees
A tree is a nonlinear data structure that consists of nodes connected by edges. It is defined
as a collection of nodes, where each node can have zero or more child nodes, and there is
exactly one root node with no parent. In this section, we will delve into a specific type of
tree known as a binary tree.

7.1.1 Introduction to Binary Trees
Binary trees are a type of data structure where each node has at most two children, referred
to as the left child and the right child. This structure allows for efficient data storage, re-
trieval, and manipulation. Binary trees are used in various applications, such as expression
parsing, decision-making processes, and data sorting.

Figure 7.1 illustrates a typical binary tree structure, showing the parent and the left and
right children of a node u in a binary tree.

7.1.2 Properties of Binary Trees
Before we explore different types of binary trees, let’s first understand some fundamental
properties they possess.

Binary trees possess several key properties that make them useful:
• Maximum Nodes: A binary tree of height h has at most 2h+1−1 nodes.
• Minimum Height: A binary tree with n nodes has a minimum height of �log2(n+
1)�−1.

• Leaf Nodes: A binary tree with n nodes has at least �n2� leaf nodes.

7.1.3 Types of Binary Trees
Binary trees come in several varieties, each with its unique properties and applications:

• Full Binary Trees: Every node has either zero or two children.



7.1 Binary Trees 167

Figure 7.1: The parent, left child, and right child of the node u in a BinaryTree

• Complete Binary Trees: All levels are fully filled except possibly for the last level,
which is filled from left to right.

• Perfect Binary Trees: All internal nodes have exactly two children, and all leaf
nodes are at the same level.

Figures 7.2, 7.3, and 7.4 illustrate these types of binary trees.

Figure 7.2: An example of a full binary tree where every node has either zero or two
children



168 Chapter 7. Trees

Figure 7.3: An example of a complete binary tree where all levels are fully filled except
possibly for the last level, which is filled from left to right

7.1.4 Representation of Binary Trees
Binary trees can be represented in various ways in memory, primarily using arrays or linked
lists.

Using Arrays
In an array representation, a binary tree is stored in a sequential manner. For a node at
index i:

Figure 7.4: An example of a perfect binary tree where all internal nodes have exactly two
children, and all leaf nodes are at the same level

• The left child is at index 2i+1.
• The right child is at index 2i+2.
• The parent is at index � i−1

2 �.
This representation is particularly efficient for complete binary trees. Figure 7.5 shows the
array representation of a binary tree.



7.1 Binary Trees 169

Figure 7.5: Array representation of a binary tree. The left child of the node at index i is at
index 2i+1, and the right child is at index 2i+2. The parent is at index � i−1

2 �

To implement a binary tree using a dynamic array class, consider the following code:

1 template<typename T>
2 class BinaryTreeArray : public DynamicArray<T> {
3 public:
4 BinaryTreeArray(size_t initialCapacity = 8)
5 : DynamicArray<T>(initialCapacity) {}
6
7 T getLeftChild(size_t index) {
8 size_t leftIndex = 2 * index + 1;
9 return (leftIndex < this->capacity) ?
10 this->get(leftIndex) : T();
11 }
12
13 T getRightChild(size_t index) {
14 size_t rightIndex = 2 * index + 2;
15 return (rightIndex < this->capacity) ?
16 this->get(rightIndex) : T();
17 }
18
19 T getParent(size_t index) {
20 return (index == 0) ?
21 T() : this->get((index - 1) / 2);
22 }
23 };

BinaryTreeArray Class Interface



170 Chapter 7. Trees

Using Linked Lists
In a linked list representation, each node is an object containing four fields: the data, a
pointer to the left child, a pointer to the right child, and a pointer to the parent. This
representation is flexible and supports dynamic binary trees where the structure can change
frequently.

Figure 7.6 shows the structure of a node in a linked list representation.

Figure 7.6: A node in a linked list representation of a binary tree, containing data, pointers
to the left and right children, and a pointer to the parent

Each node in a binary tree can be represented by a struct, which includes pointers to
the left child, right child, and the parent:

1 template<typename T>
2 struct BTreeNode {
3 T key;
4 BTreeNode *parent, *left, *right;
5 int height;
6
7 BTreeNode(T data) : key(data), parent(nullptr),
8 left(nullptr), right(nullptr),
9 height(0) {}
10 };

BTreeNode Struct Definition

Figure 7.7 illustrates a node in a binary tree with its left and right pointers pointing to
new nodes, while the parent pointer is set to nullptr, indicating that it is the root node.



7.1 Binary Trees 171

Figure 7.7: A binary tree node with left and right pointers pointing to new nodes. The
parent pointer is set to nullptr, indicating it is the root node

The binary tree itself can be represented by a pointer to its root node, denoted as root.

1 template <typename T=int>
2 class BinaryTree : public ITree<BTreeNode<T>, T> {
3 public:
4 BinaryTree() : root(nullptr) {}
5
6 virtual ~BinaryTree();
7
8 // ... Other relevant functions
9
10 protected:
11 BTreeNode<T> *root;
12 };

BinaryTree Class Interface

7.1.5 Computing Size, Height, and Depth
In binary trees, certain properties, such as the size, height, and depth of the nodes, are
important metrics. These can be computed using recursive algorithms.



172 Chapter 7. Trees

Depth of a Node
The depth of a node is the number of edges from the node to the tree root node. The
implementation of the depth computation is shown below:

1 template <typename T>
2 size_t BinaryTree<T>::depth(BTreeNode<T> *u) const {
3 size_t d = 0;
4 while (u != nullptr) {
5 u = u->parent;
6 d++;
7 }
8 return d;
9 }

depth Function: Node Depth Calculation

For an array representation, the depth of a node at index i can be computed using the
formula �log2(i+1)�.

1 #include <cmath>
2
3 int depth(int i) {
4 return std::floor(std::log2(i + 1));
5 }

depth Function: Array Representation

Size of the Tree
The size of a tree is the total number of nodes present in the tree. The following recursive
implementation computes the size of the tree:

1 template <typename T>
2 size_t BinaryTree<T>::getSize(BTreeNode<T> *u) const {
3 if (u == nullptr) return 0;
4 return 1 + getSize(u->left) + getSize(u->right);
5 }
6
7 template <typename T>
8 size_t BinaryTree<T>::getSize() const {
9 return getSize(root);

10 }

getSize Function: Tree Size Calculation

For an array representation, the size of the tree is simply the length of the array.



7.1 Binary Trees 173

Height of a Node
The height of a node is the number of edges on the longest path from the node to a leaf.
The following code implements the height computation:

1 template <typename T>
2 size_t BinaryTree<T>::height(BTreeNode<T> *u) const {
3 if (u == nullptr) return -1;
4 return 1 + std::max(height(u->left), height(u->right));
5 }
6
7 template <typename T>
8 size_t BinaryTree<T>::height() const {
9 return height(root);

10 }

height Function: Node Height Calculation

For an array representation, the height of the tree can be computed using the formula
�log2(n)�, where n is the number of nodes. The following code for this calculation is

1 #include <cmath>
2
3 int height() {
4 return std::floor(std::log2(this->capacity));
5 }

height Function: Array Representation

7.1.6 Destroying a Binary Tree
Properly destroying a binary tree is crucial to avoid memory leaks, especially in dynamic
tree structures where nodes are allocated on the heap. Destruction involves recursively
deleting all nodes, starting from the leaves and progressing up to the root.

The following destructor method ensures that the binary tree is safely and completely
deleted:

1 template <typename T>
2 BinaryTree<T>::~BinaryTree() {
3 clear();
4 }
5
6 template <typename T>
7 void BinaryTree<T>::clear() {
8 deleteSubTree(root);



174 Chapter 7. Trees

9 root = nullptr;
10 }
11
12 template <typename T>
13 void BinaryTree<T>::deleteSubTree(BTreeNode<T> *node) {
14 if (node != nullptr) {
15 deleteSubTree(node->left);
16 deleteSubTree(node->right);
17 delete node;
18 }
19 }

Destructor and Deletion of a Binary Tree

The deleteSubTree function recursively deletes the left and right subtrees of a node
before deleting the node itself, ensuring that all allocated memory is released properly.

7.1.7 Binary Tree Traversal Methods
Traversing a binary tree involves visiting all its nodes in a specific order to perform var-
ious operations such as search, sort, or modify the tree. Traversal strategies are broadly
classified into two categories: Depth-First Search (DFS) and Breadth-First Search (BFS).

Depth-First Traversal

Depth-First Traversal explores as deep as possible down each branch before backtracking.
This category includes the following methods, as illustrated in Figure 7.8:

• In-Order Traversal (Left-Root-Right): Processes the left subtree, the current node,
and then the right subtree. It is especially useful for binary search trees to retrieve
data in sorted order.

• Pre-order Traversal (Root-Left-Right): Visits the current node before its subtrees.
This method is advantageous for cloning a tree or evaluating prefix expressions.

• Post-Order Traversal (Left-Right-Root): Accesses the current node after its sub-
trees. It is typically employed for deleting a tree or evaluating postfix expressions.

Recursion is an intuitive and efficient way to implement tree traversals due to the recur-
sive nature of trees themselves.

Breadth-First Traversal

Breadth-First Traversal, or Level-Order Traversal, visits nodes across each level before
proceeding to the next. This approach is executed using a queue and is ideal when all
nodes at one level must be processed before moving to the next, as shown in Figure 7.9.

• Level-Order Traversal: Begins at the root, moving level by level and from left to
right across the tree. It is often used in scenarios that require processing at each level,
such as in Breadth-First Search algorithms.



7.1 Binary Trees 175

7.1.8 Implementation of Traversal Techniques
There are four primary methods of traversal that suit different needs, detailed below.

Figure 7.8: Illustration of Depth-First Traversal methods on a binary tree

Figure 7.9: Illustration of Breadth-First (Level-Order) Traversal on a binary tree

Pre-order Traversal
In Pre-order Traversal, each node is processed before its child nodes. It is particularly
useful for copying the tree or constructing prefix expressions. The order of visitation is as
follows: root, left subtree, right subtree.



176 Chapter 7. Trees

1 template <typename T>
2 void BinaryTree<T>::
3 preOrderTraversal(BTreeNode<T>*node) const{
4
5 if (node == nullptr) return;
6 // Process the root
7 std::cout << node->key << " ";
8 // Traverse left subtree
9 preOrderTraversal(node->left);
10 // Traverse right subtree
11 preOrderTraversal(node->right);
12 }

preOrderTraversal Function: Performs Pre-order Traversal of a BinaryTree

In-Order Traversal
In In-Order Traversal, nodes are visited in a manner that results in visiting them in an
ascending order, which is especially beneficial in binary search trees to retrieve data in
sorted order. The order is as follows: left subtree, root, right subtree.

1 template <typename T>
2 void BinaryTree<T>::
3 inOrderTraversal(BTreeNode<T>*node) const{
4
5 if (node == nullptr) return;
6 // Traverse left subtree
7 inOrderTraversal(node->left);
8 // Process the root
9 std::cout << node->key << " ";
10 // Traverse right subtree
11 inOrderTraversal(node->right);
12 }

inOrderTraversal Function: Performs In-order Traversal of a BinaryTree

Post-Order Traversal
Post-Order Traversal processes a node after its child nodes have been processed, making it
suitable for operations like tree deletions or evaluating postfix expressions. The sequence
is as follows: left subtree, right subtree, root.

1 template <typename T>
2 void BinaryTree<T>::
3 postOrderTraversal(BTreeNode<T>*node) const{



7.1 Binary Trees 177

4
5 if (node == nullptr) return;
6 // Traverse left subtree
7 postOrderTraversal(node->left);
8 // Traverse right subtree
9 postOrderTraversal(node->right);
10 // Process the root
11 std::cout << node->key << " ";
12 }

postOrderTraversal Function: Performs Post-order Traversal of a
BinaryTree

Level-Order Traversal

Level-Order Traversal visits each level of the tree from left to right and is typically imple-
mented using a queue. This method is ideal for scenarios that require visiting nodes in a
breadth-first manner.

1 template <typename T>
2 void BinaryTree<T>::
3 levelOrderTraversal(BTreeNode<T>*root) const{
4
5 if (root == nullptr) return;
6 QueueArray<BTreeNode<T>*> q;
7 q.enqueue(root);
8 while (!q.isEmpty()) {
9 BTreeNode<T>* node = q.dequeue();
10 // Process the current node
11 std::cout << node->key << " ";
12 if (node->left != nullptr)
13 // Enqueue left child
14 q.enqueue(node->left);
15 if (node->right != nullptr)
16 // Enqueue right child
17 q.enqueue(node->right);
18 }
19 }

levelOrderTraversal Function: Performs Level-order Traversal of a
BinaryTree

7.1.9 Traversing Binary Trees – Examples
To illustrate the practical use and distinct order of visits of each traversal method, consider
the binary tree shown in Figure 7.10.



178 Chapter 7. Trees

Figure 7.10: A binary tree example

Example of Pre-order Traversal

� Example 7.1 For the given tree (Figure 7.10), in Pre-order Traversal, we first visit
the node, then the left subtree, and finally the right subtree. The Pre-order Traversal
would be

A, B, D, E, C, F

�

Example of In-Order Traversal

� Example 7.2 For the given tree (Figure 7.10), in In-Order Traversal, we first visit the
left subtree, then the node, and finally the right subtree. The In-Order Traversal would
be

D, B, E, A, C, F

�

Example of Post-Order Traversal

� Example 7.3 For the given tree (Figure 7.10), in Post-Order Traversal, we first visit
the left and right subtrees and then the node itself. The Post-Order Traversal would be

D, E, B, F, C, A

�



7.2 Binary Search Trees (BSTs) 179

Example of Level-Order Traversal

� Example 7.4 For the given tree (Figure 7.10), in Level-Order Traversal, we visit the
nodes level by level from left to right. The Level-Order Traversal would be

A, B, C, D, E, F

�

7.1.10 Comparison of Tree Traversal Methods
Table 7.1 compares the DFS and BFS traversal methods based on the order in which nodes
are visited and their typical applications.

Table 7.1: Comparison of Depth-First and Breadth-First Tree Traversal Methods

Traversal Type Order of Visitation Typical Applications

In-Order Left subtree, Node, Right
subtree

Retrieving data in sorted order in bi-
nary search trees

Pre-order Node, Left subtree, Right
subtree

Cloning trees, evaluating prefix ex-
pressions

Post-Order Left subtree, Right subtree,
Node

Deleting trees, evaluating postfix ex-
pressions

Level-Order Across each level, from
Left to Right

Processing nodes level by level, as
in Breadth-First Search algorithms

Each traversal strategy is tailored to specific applications, making the understanding of
their order of visitation and use cases essential for effectively working with binary trees.

This section has provided an overview of binary trees, their properties, and traversal
methods. The next section will delve into binary search trees, their properties, and the
primary operations that can be performed on them, including insertion, searching, and
deletion.

7.2 Binary Search Trees (BSTs)
In this section, we will explore the properties of BSTs, their basic operations (insertion,
searching, and deletion), and the underlying tree structure that enables efficient data ma-
nipulation.

7.2.1 Introduction to Binary Search Trees
A binary search tree is a binary tree that maintains a specific order among its elements to
facilitate efficient search, insertion, and deletion operations. Each node in a BST follows
the rule that its left child’s value is less than its own value, and its right child’s value is



180 Chapter 7. Trees

greater than or equal to its own. This property makes BSTs efficient for various operations,
ensuring that the tree remains ordered and allows for fast data retrieval and modification.

7.2.2 Properties of Binary Search Trees
BSTs possess the following properties:

• Ordering Property: For any node u in a BST, all keys in the left subtree are less
than or equal to the key of u, and all keys in the right subtree are greater than the key
of u.

• Unique Path: There is a unique path from the root to any other node.
• Efficient Search: The ordering property allows for efficient searching, with average
and worst-case time complexities of O(logn) and O(n), respectively, depending on
the tree’s balance.

7.2.3 Basic Operations in BST
BSTs are capable of efficient data manipulation through fundamental operations:

• Insertion: Inserts new elements while maintaining the BST’s ordered property. The
insertion finds the correct position for the new node to keep the tree sorted.

• Deletion: Handles three scenarios: deleting a leaf node, a node with a single child,
or a node with two children. Each case is managed to preserve the BST’s ordered
structure.

• Searching: Involves comparing the target value with the nodes, starting from the
root and traversing the tree accordingly. This process repeats until the target is found
or the search reaches a leaf node.

BST Insertion
Insertion in a BST follows an ordered approach to find the correct node position. The
element is inserted as a leaf, with the traversal from the root directed left or right based on
the new element’s value, until the appropriate insertion point is found.

� Example 7.5 Consider starting with an empty BST. We sequentially insert nodes
with the values 15, 10, 20, 8, 12, 17, 25 in that order. Each insertion is made by compar-
ing the value to be inserted with the existing nodes, starting from the root, and finding
the appropriate position so that the left child is always less than the parent node, and the
right child is greater than or equal to the parent node.

The resulting BST after these insertions is illustrated in Figure 7.11. �

1 template <typename T>
2 BTreeNode<T>* BinarySearchTree<T>::
3 insertNode(BTreeNode<T>* node, T key) {
4
5 if (node == nullptr)



7.2 Binary Search Trees (BSTs) 181

Figure 7.11: A binary search tree after inserting elements 15, 10, 20, 8, 12, 17, and 25

6 return new BTreeNode<T>(key);
7 if (key < node->key)
8 node->left = insertNode(node->left, key);
9 else if (key > node->key)

10 node->right = insertNode(node->right, key);
11 return node;
12 }
13
14 template <typename T>
15 bool BinarySearchTree<T>::insert(const T key) {
16 root = insertNode(root, key);
17 return true;
18 }

insert Functions: Insertion of a Node

BST Searching

Searching for a value in a BST follows a specific path from the root, based on binary search
principles.



182 Chapter 7. Trees

� Example 7.6 Assume we need to find the value 12 in a BST. The search process is
as follows:

1. Starting at the root, compare 12 with 15. Since 12 is smaller, move to the left
child.

2. Compare 12 with 10. As 12 is larger, proceed to the right child.
3. The search leads us to 12, successfully locating it in the tree.
This process is visually depicted in Figure 7.12, showing each step in the search

path. �

Figure 7.12: A step-by-step illustration of searching for the value 12 in a BST

1 template <typename T>
2 BTreeNode<T>* BinarySearchTree<T>::
3 searchNode(BTreeNode<T>* root, T key) const{
4
5 if (root == nullptr || root->key == key)
6 return root;
7 if (key < root->key)
8 return searchNode(root->left, key);
9 return searchNode(root->right, key);

10 }
11
12 template <typename T>
13 BTreeNode<T>* BinarySearchTree<T>::
14 find(const T key) const {
15
16 return searchNode(root, key);
17 }

searchNode and find Functions: Searching for a Node



7.2 Binary Search Trees (BSTs) 183

BST Deletion
Deletion in a BST depends on the structure of the node to be deleted, which can be a leaf
node, a node with one child, or a node with two children. The deletion process in a BST
involves three primary cases:

1. Leaf Node: Direct removal from the tree.
2. One Child: The node is replaced by its child.
3. Two Children: The node’s value is replaced with its inorder successor or predeces-

sor, and then the successor/predecessor is deleted, simplifying to one of the first two
cases.

This method preserves the BST’s properties during deletion. Figure 7.13 illustrates the
three cases of deletion.

Figure 7.13: An illustration of the three cases of deletion in a BST: (case 1) deleting a
leaf node, (case 2) deleting a node with one child, and (case 3) deleting a node with two
children

� Example 7.7 In our example tree, to delete the node with the value 10, which has
two children, we replace it with its inorder successor, which is 12. The process involves
two steps: first, replacing the value 10 with 12 in its position and then removing the
node originally containing the value 12. This process ensures the BST properties are
preserved after deletion.

The detailed steps of this deletion process are illustrated in Figure 7.14. �

1 template <typename T>
2 BTreeNode<T>* BinarySearchTree<T>::
3 deleteNode(BTreeNode<T>* root, T key) {



184 Chapter 7. Trees

Figure 7.14: Step-by-step illustration of deleting the value 10 in a BST, highlighting the
replacement with the inorder successor (value 12)

4
5 // Base case: If the root is nullptr, the tree is empty
6 if (root == nullptr) return root;
7
8 // Recur down the tree to find the node to delete
9 if (key < root->key) {

10 // The key to be deleted is in the left subtree
11 root->left = deleteNode(root->left, key);
12 } else if (key > root->key) {
13 // The key to be deleted is in the right subtree
14 root->right = deleteNode(root->right, key);
15 } else {
16 // Case 1: Node with only one child or no child
17 if (root->left == nullptr) {
18 // Node has no left child (or is a leaf node),
19 // replace it with the right child
20 BTreeNode<T>* temp = root->right;
21 delete root;
22 return temp;
23 } else if (root->right == nullptr) {



7.2 Binary Search Trees (BSTs) 185

24 // Node has no right child,
25 // replace it with the left child
26 BTreeNode<T>* temp = root->left;
27 delete root;
28 return temp;
29 }
30
31 // Case 2: Node with two children
32 // Get the inorder predecessor
33 BTreeNode<T>* temp = this->findMax(root->left);
34
35 // Replace with the inorder predecessor’s key
36 root->key = temp->key;
37
38 // Delete the inorder predecessor
39 root->left = deleteNode(root->left, temp->key);
40 }
41 return root;
42 }
43
44 template <typename T>
45 bool BinarySearchTree<T>::remove(const T key) {
46 size_t initialSize = this->getSize();
47 root = deleteNode(root, key);;
48 return this->getSize() < initialSize;
49 }

deleteNode and remove Functions: Deletion of a Node

Finding Min and Max Nodes
When working with BSTs, it is often necessary to find the minimum or maximum value
within a subtree. These helper functions are particularly useful during the deletion process.

1 // Find the minimum value node
2 template <typename T>
3 BTreeNode<T>* BinarySearchTree<T>::
4 findMin(BTreeNode<T>* node) const {
5
6 BTreeNode<T>* current = node;
7 while (current && current->left != nullptr)
8 current = current->left;
9 return current;

10 }
11



186 Chapter 7. Trees

12 // Find the maximum value node
13 template <typename T>
14 BTreeNode<T>* BinarySearchTree<T>::
15 findMax(BTreeNode<T>* node) const {
16
17 BTreeNode<T>* current = node;
18 while (current && current->right != nullptr)
19 current = current->right;
20 return current;
21 }

findMin and findMax Functions: Finding Minimum and Maximum Nodes

These functions are integral to maintaining the structure and properties of the BST
during complex operations like deletion.

7.2.4 Performance Analysis
The performance of basic operations in a BST (insertion, searching, and deletion) depends
on the height of the tree (h). The time complexity of insertion, searching, and deletion
operations is O(h). In the best case, where the tree is balanced, this complexity is O(logn),
where n is the number of nodes in the tree. In the worst-case scenario, where the tree
degenerates into a linked list, the complexity becomes O(n).

7.2.5 Class Implementation of BST
A typical implementation of a BST in C++, along with functions for insertion, deletion,
searching, and traversal:

1 template <typename T=int>
2 class BinarySearchTree : public BinaryTree<T> {
3 public:
4 BinarySearchTree() : BinaryTree<T>() {}
5 virtual ~BinarySearchTree() {}
6
7 // Implementation of the pure virtual functions
8 virtual bool insert(const T key);
9 virtual bool remove(const T key);

10 virtual BTreeNode<T>* find(const T key) const ;
11 virtual void traverse() const;
12
13 private:
14 // Helper functions to implement the required operations
15 BTreeNode<T>* insertNode(BTreeNode<T>* node, T key);
16 BTreeNode<T>* deleteNode(BTreeNode<T>* node, T key);
17 BTreeNode<T>* searchNode(BTreeNode<T>* node, T key)const;



7.3 Balanced Binary Trees 187

18
19 protected:
20 // Inherited members to use directly
21 using BinaryTree<T>::root;
22
23 BTreeNode<T>* findMin(BTreeNode<T>* node) const;
24 BTreeNode<T>* findMax(BTreeNode<T>* node) const;
25 };

BinarySearchTree Class Interface

7.2.6 Summary
The efficiency of a BST, akin to a binary search in an array, relies on the tree’s balance. A
well-balanced BST minimizes depth, optimizing search operations. If the tree becomes un-
balanced, performance can degrade to O(n) in the worst case. Self-balancing trees address
this issue by maintaining balance automatically.

This section has covered the fundamental aspects of binary search trees, including their
properties, basic operations, and structural efficiency. The next section will explore self-
balancing binary search trees, which ensure that the tree remains balanced for optimal
performance.

7.3 Balanced Binary Trees
Binary search trees (BSTs) are highly efficient for search operations due to their ordered
structure. However, their performance can degrade significantly when the tree becomes
unbalanced. In an unbalanced BST, where the height difference between the left and right
subtrees is significant, the tree’s height can become linear with respect to the number of
nodes. This leads to inefficiencies, as the time complexity for search, insertion, and dele-
tion operations can degrade to O(n) instead of O(logn).

To address this issue, balanced binary trees are employed. These trees use various
balancing techniques to ensure that the tree maintains a low height, regardless of the order
of insertions and deletions. By keeping the tree balanced, we can guarantee consistent
efficient operations with time complexities close to O(logn).

Balancing techniques are crucial for maintaining the operational efficiency of BSTs.
They ensure that the tree does not degenerate into a linear structure, thus preserving the
advantages of the binary search algorithm.

7.3.1 Unbalanced Binary Search Trees
Unbalanced binary search trees can take various shapes, leading to inefficient operations.
Below are common shapes of unbalanced BSTs.



188 Chapter 7. Trees

Skewed Trees
A skewed tree is a degenerate form of a binary tree where each node has only one child.
This can happen when elements are inserted in a strictly increasing or decreasing order.

In a right-skewed BST, all nodes have only a right child, forming a structure similar to
a linked list, as shown in Figure 7.15. Conversely, a left-skewed BST, where each node has
only a left child, forms when elements are inserted in decreasing order (Figure 7.16).

Sparse Trees
A sparse tree has nodes that are not uniformly distributed, leading to significant height
differences between subtrees. This irregular shape can result from random insertions and
deletions over time without rebalancing.

Figure 7.15: A right-skewed BST (inserting elements in increasing order)

Figures 7.15, 7.16, and 7.17 illustrate examples of unbalanced BSTs, highlighting how
their structures can degrade operational efficiency. These unbalanced shapes emphasize
the need for balancing techniques to maintain a low height and ensure efficient operations.

7.3.2 Self-Balancing Binary Search Trees
Self-balancing binary search trees are a category of BSTs designed to maintain a balanced
structure, ensuring optimal time complexity for search, insertion, and deletion operations.
By automatically balancing the tree after modifications, these trees prevent performance
degradation that can occur with unbalanced BSTs.



7.3 Balanced Binary Trees 189

Figure 7.16: A left-skewed BST (inserting elements in decreasing order)

Figure 7.17: A sparse BST with irregular node distribution



190 Chapter 7. Trees

In the next section, we will explore a type of balanced binary trees, such as AVL trees,
which implement specific rules and rotations to maintain balance after every insertion and
deletion.

7.4 AVL Trees
In this section, you will learn how to create an AVL tree class, understand the basic oper-
ations necessary for maintaining the AVL properties, and see how insertion and deletion
operations are performed to keep the tree balanced.

7.4.1 Introduction to AVL Trees
AVL trees, named after their inventors Adelson-Velsky and Landis, are a type of self-
balancing binary search tree. In AVL trees, the heights of the two child subtrees of any
node differ by no more than one. Rebalancing is performed whenever this property is vio-
lated during insertions or deletions, ensuring that the tree remains balanced and operations
remain efficient.

7.4.2 AVL Property
The AVL property is defined by the balance factor of a node, which is the difference in
height between its right and left subtrees. The permissible balance factors for a node in an
AVL tree are –1, 0, or 1, ensuring a balanced height across all nodes.

The defining characteristic of AVL trees is

For any node N in an AVL tree, the absolute difference in heights between its left and
right subtrees is at most one: |N.Le f t.Height−N.Right.Height| ≤ 1.

This property guarantees the tree’s balanced nature, allowing operations to run in logarith-
mic time.

Proof of AVL Balance Property
The AVL balance property ensures that the tree’s height is logarithmic relative to its number
of nodes. This can be demonstrated as follows:

• A node at height h in an AVL tree has a subtree of size at least 2h/2. Therefore, a tree
of height h has a minimum number of nodes that grows exponentially with h.

• Inversely, if a tree contains n nodes, its height h is bounded by h≤ 2log2(n), which
is O(log(n)).

This height-node relationship is fundamental to AVL trees’ efficiency. Since the height of
an AVL tree with n nodes isO(log(n)), all basic operations, such as insertion, deletion, and
searching, can be performed in O(log(n)) time.



7.4 AVL Trees 191

7.4.3 Balanced and Unbalanced AVL Trees
The following figures illustrate examples of balanced and unbalanced AVL trees, showing
the height of the children at each node:

• Figure 7.18 represents a balanced AVL tree, where the height of the subtrees of each
node differs by no more than one.

• Figure 7.19 illustrates a left-unbalanced AVL tree, where the height difference be-
tween the left and right subtrees of node 30 is more than one.

• Figure 7.20 shows a right-unbalanced AVL tree, where the height difference between
the right and left subtrees of node 30 is more than one.

Figure 7.18: A balanced AVL tree. The height of the subtrees of each node differs by no
more than one

7.4.4 Rotations in AVL Trees
To maintain balance, AVL trees perform rotations when the balance factor of a node be-
comes –2 or 2. There are four types of rotations used to rebalance the tree:

• Left Rotation (LR): Applied when the right subtree is taller than the left subtree
• Right Rotation (RR): Applied when the left subtree is taller than the right subtree
• Left-Right Rotation (LRR): A combination of left and right rotations used when
the left subtree’s right child is taller

• Right-Left Rotation (RLR): A combination of right and left rotations used when
the right subtree’s left child is taller

Left Rotation
A left rotation (LR) is applied when the right subtree is taller than the left subtree. This
operation moves the root of the right subtree to the root position, and the original root
becomes the left child of the new root (Figure 7.21). The steps for a left rotation are as
follows:



192 Chapter 7. Trees

Figure 7.19: A left-unbalanced AVL tree. The height difference between the left and right
subtrees of node 30 is more than one

Figure 7.20: A right-unbalanced AVL tree. The height difference between the right and
left subtrees of node 30 is more than one



7.4 AVL Trees 193

1. The right child of x, denoted as y, becomes the new root.
2. The left child of y, denoted as z, becomes the right child of x.
3. x becomes the left child of y.
4. Update the right child of x to be z.
5. Update the heights of x and y.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::leftRotate(BTreeNode<T>* x) {
3 // (1) The right child of x, pointer as y
4 BTreeNode<T>* y = x->right;
5 // (2) The left child of y, pointer as z
6 BTreeNode<T>* z = y->left;
7 // (3) x becomes the left child of y
8 y->left = x;
9 // (4) Update the right child of x to be z
10 x->right = z;
11 // (5) Update the heights of x and y
12 updateHeight(x);
13 updateHeight(y);
14 // Return new root
15 return y;
16 }

leftRotate Function: Performs Left Rotation in an AVLTree

Figure 7.21: Left rotation: applied when the right subtree is taller than the left subtree

Right Rotation
A right rotation (RR) is applied when the left subtree is taller than the right subtree. This
operation moves the root of the left subtree to the root position, and the original root be-
comes the right child of the new root (Figure 7.22). The steps for a right rotation are as
follows:



194 Chapter 7. Trees

1. The left child of y, denoted as x, becomes the new root.
2. The right child of x, denoted as z, becomes the left child of y.
3. y becomes the right child of x.
4. Update the left child of y to be z.
5. Update the heights of y and x.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::rightRotate(BTreeNode<T>* y) {
3 // (1) The left child of y, pointer as x
4 BTreeNode<T>* x = y->left;
5 // (2) The right child of x, pointer as z
6 BTreeNode<T>* z = x->right;
7 // (3) y becomes the right child of x
8 x->right = y;
9 // (4) Update the left child of y to be z
10 y->left = z;
11 // (5) Update the heights of y and x
12 updateHeight(y);
13 updateHeight(x);
14 // Return new root
15 return x;
16 }

rightRotate Function: Performs Right Rotation in an AVLTree

Figure 7.22: Right rotation: applied when the left subtree is taller than the right subtree

Left-Right Rotation
A left-right rotation (LRR) is a combination of left and right rotations used when the left
subtree’s right child is taller. This operation first performs a left rotation on the left child,



7.4 AVL Trees 195

then a right rotation on the root (Figure 7.23). The steps for a left-right rotation are as
follows:

1. Perform a left rotation (LR) on the left child of the root.
2. Perform a right rotation (RR) on the root.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::leftRightRotate(BTreeNode<T>* u) {
3 // (1) Perform a LR on the left child of the root
4 u->left = leftRotate(u->left);
5 // (2) Perform a RR on the root
6 return rightRotate(u);
7 }

leftRightRotate Function: Performs Left-Right Rotation in an AVLTree

Figure 7.23: Left-right rotation: a combination of left and right rotations used when the
left subtree’s right child is taller

Right-Left Rotation
A right-left rotation (RLR) is a combination of right and left rotations used when the right
subtree’s left child is taller. This operation first performs a right rotation on the right child,
then a left rotation on the root (Figure 7.24). The steps for a right-left rotation are as
follows:

1. Perform a right rotation on the right child of the root.
2. Perform a left rotation on the root.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::rightLeftRotate(BTreeNode<T>* u) {
3 // (1) Perform a RR on the right child of the root
4 u->right = rightRotate(u->right);
5 // (2) Perform a LR on the root



196 Chapter 7. Trees

6 return leftRotate(u);
7 }

rightLeftRotate Function: Performs Right-Left Rotation in an AVLTree

Figure 7.24: Right-left rotation: a combination of right and left rotations used when the
right subtree’s left child is taller

7.4.5 Implementation of AVL Tree
Let’s begin by defining our AVLTree class. This class will inherit from the
BinarySearchTree class, which already provides basic BST functionalities such as
insertion, deletion, and searching. The AVL tree implementation enhances these opera-
tions by ensuring the tree remains balanced after every insertion or deletion.

AVL Tree Class Definition

1 template<typename T=int>
2 class AVLTree : public BinarySearchTree<T> {
3 public:
4 AVLTree() : BinarySearchTree<T>() {}
5 virtual ~AVLTree() { }
6
7 // Override interface methods from the base class
8 virtual bool remove(const T);
9 virtual bool insert(const T);

10 virtual void print() const
11 {
12 this->inOrderTraversal(this->root);
13 }
14
15 private:
16 // Rotation methods for balancing the tree



7.4 AVL Trees 197

17 BTreeNode<T>* rightRotate(BTreeNode<T>* u);
18 BTreeNode<T>* leftRotate(BTreeNode<T>* u);
19 BTreeNode<T>* leftRightRotate(BTreeNode<T>* u);
20 BTreeNode<T>* rightLeftRotate(BTreeNode<T>* u);
21 BTreeNode<T>* balanceTree(BTreeNode<T>* u);
22
23 // Insertion and deletion methods with balancing
24 BTreeNode<T>* insertAVL(BTreeNode<T>* u, T key);
25 BTreeNode<T>* deleteAVL(BTreeNode<T>* u, T key);
26
27 protected:
28 using BinarySearchTree<T>::root;
29
30 // Utility methods to manage node heights and balance
31 void updateHeight(BTreeNode<T>* node);
32 int getBalance(BTreeNode<T>* node) const;
33 };

AVLTree Class Interface

Basic Operations
The following basic operations are essential for maintaining the AVL tree properties: deter-
mining the balance factor of a node, updating the height of a node, and balancing the tree
after insertions or deletions.

Determining Balance Factor
The balance factor of a node is the difference in heights between the left and right subtrees.
It helps in determining whether the node is balanced.

1 template<typename T>
2 int AVLTree<T>::getBalance(BTreeNode<T>* u) const {
3 if (u == nullptr) return 0;
4 return this->height(u->left) - this->height(u->right);
5 }

getBalance Function: Calculates Balance Factor in an AVLTree

Updating Height
The height of a node is updated based on the heights of its left and right children. This is
essential after insertion and deletion operations.

1 template<typename T>
2 void AVLTree<T>::updateHeight(BTreeNode<T>* u) {
3 if (u != nullptr) {



198 Chapter 7. Trees

4 u->height = 1 + std::max(height(u->left),
5 height(u->right));
6 }
7 }

updateHeight Function: Updates the Height of a Node in an AVLTree

Balancing the AVL Tree
Balancing the AVL tree involves performing rotations to maintain the AVL property, which
ensures that the tree remains balanced after insertions or deletions. The balanceTree
function is responsible for this process.

Steps for Balancing
1. Get the balance factor of the node.
2. If the balance factor indicates the tree is unbalanced, perform the necessary rotation:

• Right rotation if the left subtree is taller and unbalanced.
• Left rotation if the right subtree is taller and unbalanced.
• Left-right rotation if the left subtree’s right child is taller.
• Right-left rotation if the right subtree’s left child is taller.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::balanceTree(BTreeNode<T>* u) {
3 int balance = getBalance(u);
4
5 if (balance > 1) {
6 // Left subtree is taller
7 if (getBalance(u->left) >= 0) {
8 return rightRotate(u);
9 } else {
10 return leftRightRotate(u);
11 }
12 } else if (balance < -1) {
13 // Right subtree is taller
14 if (getBalance(u->right) <= 0) {
15 return leftRotate(u);
16 } else {
17 return rightLeftRotate(u);
18 }
19 }
20 return u;
21 }

balanceTree Function: Balances the Nodes in an AVLTree



7.4 AVL Trees 199

Insertion in AVL Trees
Insertion in an AVL tree follows the same steps as in a binary search tree (BST), with
the additional step of updating the balance factors and performing rotations to maintain
balance.

Steps for Insertion
1. Perform standard BST insertion.
2. Update the height of the ancestor node.
3. Get the balance factor of the ancestor node to check if it became unbalanced.
4. If unbalanced, perform the appropriate rotation.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::
3 insertAVL(BTreeNode<T>* u, T key) {
4
5 // Step 1: Perform standard BST insertion
6 if (u == nullptr) {
7 return new BTreeNode<T>(key);
8 }
9
10 if (key < u->key) {
11 u->left = insertAVL(u->left, key);
12 } else if (key > u->key) {
13 u->right = insertAVL(u->right, key);
14 } else {
15 // Duplicate keys are not allowed
16 return u;
17 }
18
19 // Step 2: Update the height of the current node
20 updateHeight(u);
21
22 // Step 3: Check and Balance the tree
23 return balanceTree(u);
24 }
25
26 template<typename T>
27 bool AVLTree<T>::insert(const T key) {
28 root = insertAVL(root, key);
29 return true;
30 }

insert Functions: Insertion and Balancing in an AVLTree



200 Chapter 7. Trees

Deletion in AVL Trees
Deletion in an AVL tree also follows the same path as in a BST, with balance factor updates
and rotations to maintain the AVL property.

Steps for Deletion
1. Perform standard BST deletion.
2. Update the height of the ancestor node.
3. Get the balance factor of the ancestor node to check if it became unbalanced.
4. If unbalanced, perform the appropriate rotation.

1 template<typename T>
2 BTreeNode<T>* AVLTree<T>::
3 deleteAVL(BTreeNode<T>* root, T key) {
4
5 if (root == nullptr) return root;
6
7 // Step 1: Perform standard BST deletion
8 if (key < root->key) {
9 root->left = deleteAVL(root->left, key);
10 } else if (key > root->key) {
11 root->right = deleteAVL(root->right, key);
12 } else {
13 // Node with only one child or no child
14 if (root->left == nullptr ||
15 root->right == nullptr) {
16 BTreeNode<T>* temp = root->left ?
17 root->left : root->right;
18 if (temp == nullptr) {
19 // No child case
20 temp = root;
21 root = nullptr;
22 } else {
23 // One child case
24 *root = *temp;
25 }
26 delete temp;
27 } else {
28 // Node with two children
29 // Get the inorder successor
30 BTreeNode<T>* temp = this->findMin(root->right);
31 root->key = temp->key;
32 root->right = deleteAVL(root->right, temp->key);
33 }
34 }
35



7.5 Summary 201

36 if (root == nullptr) return root;
37
38 // Step 2: Update the height of the current node
39 updateHeight(root);
40
41 // Step 3: Check and balance the tree
42 return balanceTree(root);
43 }
44
45 template<typename T>
46 bool AVLTree<T>::remove(const T key) {
47 size_t initialSize = this->getSize();
48 root = deleteAVL(root, key);
49 return this->getSize() < initialSize;
50 }

remove Functions: Deletion and Balancing in an AVLTree

7.4.6 Performance Analysis
The performance of basic operations in an AVL tree (insertion, deletion, and searching)
depends on the height of the tree (h). Since AVL trees are balanced, the height is O(logn),
where n is the number of nodes in the tree. Therefore, the time complexity for insertion,
searching, and deletion operations is O(logn).

7.5 Summary
In this chapter, we delved into the world of binary trees, specifically focusing on binary
search trees (BSTs) and AVL trees. We started with an introduction to binary trees, dis-
cussing their structure, properties, and various types. Then, we moved on to the basic
operations in BSTs, including insertion, deletion, and searching, emphasizing how these
operations ensure that the BST remains ordered and efficient for data manipulation.

We then examined AVL trees, a type of self-balancing binary search tree. AVL trees
automatically maintain their balance through rotations, ensuring that the height difference
between the left and right subtrees of any node is no more than one. This balancing act
guarantees that all basic operations – such as insertion, deletion, and searching – are per-
formed in logarithmic time, enhancing the tree’s overall efficiency.

A key part of this chapter was the comparison between balanced and unbalanced trees.
We discussed how unbalanced BSTs can degrade to a linear structure, similar to linked lists,
resulting in inefficient operations with time complexities of O(n) for insertion, deletion,
and searching. Conversely, AVL trees maintain their balance, ensuring that the tree’s height
remains logarithmic in relation to the number of nodes, which results in O(logn) time
complexity for all basic operations, thereby significantly improving performance.

Lastly, we implemented the AVL tree class, demonstrating its inheritance structure. The
AVL tree class inherits from the BinarySearchTree class, which in turn inherits from



202 Chapter 7. Trees

the BinaryTree class. The BinaryTree class itself inherits from the ITree interface
and includes a root node of type BTreeNode<T>. This structure enables the AVL tree to
efficiently manage tree operations while maintaining balance, providing a robust solution
for dynamic data storage and retrieval.

Figure 7.25: Class diagram for AVL tree implementations. This diagram illustrates the in-
heritance relationships between AVLTree, BinarySearchTree, BinaryTree, and
ITree classes

The class diagram in Figure 7.25 provides an overview of the AVL tree implementa-
tion discussed in this chapter, highlighting the relationships and interactions between the
various components. This diagram underscores the hierarchical structure that allows AVL
trees to maintain balance and ensure efficient performance.



7.5 Summary 203

Problems

Discussion
1. What is a binary search tree (BST)? Describe the fundamental structure and prop-

erties of a BST.
2. How do In-Order, Pre-order, Post-Order, and Level-Order traversals differ in a

binary search tree? Compare these traversal methods in terms of their order of
visiting nodes and their typical applications in BSTs.

3. How does the insertion operation work in a BST? Explain the steps involved in
inserting a new element into a BST.

4. What are the challenges associated with an unbalanced BST? Discuss how an
unbalanced BST can affect the performance of search operations.

5. How do AVL trees ensure balance? Describe the mechanism AVL trees use to
maintain balance after insertions and deletions.

6. What is the balance factor in an AVL tree, and what are its permissible values?
Explain the concept of balance factor and its importance in AVL trees.

7. Describe the process of searching for a value in a BST.
8. What are the different scenarios for the deletion operation in a BST? Explain how

deletion is handled in the cases of a leaf node, a node with one child, and a node
with two children.

9. How does the balance property of AVL trees contribute to their efficiency?
10. In the context of BSTs, compare and contrast insertion, deletion, and searching in

terms of their complexity. Discuss how these operations differ in terms of their
execution and complexity.

11. Why are balancing techniques important in BSTs, particularly in AVL trees? Ex-
plain the role of balancing techniques in maintaining the efficiency of BST opera-
tions.

12. Insertion and Deletion in BSTs: Given the following sequence of numbers: 15,
10, 20, 8, 12, 17, 25, insert them into an initially empty BST. Then, delete the
node with value 10 and provide the resulting tree.

13. Balancing an AVL Tree: Insert the following sequence of numbers into an ini-
tially empty AVL tree: 30, 20, 40, 10, 25, 35, 50, 5. Show the tree after each
insertion and the necessary rotations to maintain balance.

Multiple Choice Questions
1. What property must be satisfied by all nodes in a binary search tree (BST)?

(a) Each node must have exactly two children.
(b) The left child’s value is always greater than its parent’s value.
(c) The left child’s value is less than its parent’s, and the right child’s value is greater.
(d) Each node must have at least one child.



204 Chapter 7. Trees

2. Which traversal method visits the left subtree, the node, and then the right subtree in that
order?
(a) Pre-order Traversal
(b) Post-Order Traversal
(c) In-Order Traversal
(d) Level-Order Traversal

3. What is the height of a node in a binary tree?
(a) The number of edges from the root to the node
(b) The number of edges on the longest path from the node to a leaf
(c) The total number of descendants of the node
(d) The number of edges from the node to the deepest leaf

4. In AVL trees, what is the maximum allowable difference in heights of the left and right
subtrees of any node?
(a) 0
(b) 1
(c) 2
(d) There is no specific limit.

5. Which type of traversal in a binary tree visits all the nodes at a given depth level before
moving to the next level?
(a) In-Order Traversal
(b) Pre-order Traversal
(c) Post-Order Traversal
(d) Level-Order Traversal

6. What does the size of a binary tree represent?
(a) The height of the tree
(b) The depth of the deepest node
(c) The number of nodes in the tree
(d) The number of leaf nodes

7. When deleting a node with two children in a BST, what node is typically used to replace
the deleted node?
(a) The leftmost child of the left subtree
(b) The rightmost child of the right subtree
(c) The inorder successor or predecessor
(d) Any leaf node

8. What is a primary advantage of keeping a binary tree balanced?
(a) Increases the number of leaf nodes
(b) Enhances the visual appeal of the tree
(c) Ensures all operations are performed in linear time
(d) Optimizes search, insertion, and deletion operations to logarithmic time

9. In a balanced binary tree, what is the relationship between the number of nodes (n) and
the height (h) of the tree?
(a) h= n
(b) h= log2(n)
(c) h= n2

(d) h= 2n



7.5 Summary 205

10. Which of the following best describes the Pre-order Traversal in a binary tree?
(a) Visits the node, then the left subtree, and finally the right subtree
(b) Visits the left subtree, then the node, and finally the right subtree
(c) Visits the left subtree, then the right subtree, and finally the node
(d) Visits nodes level by level, from left to right

11. What is the balance factor of a node in an AVL tree?
(a) The difference between the heights of its left and right subtrees
(b) The number of nodes in its left and right subtrees
(c) The depth of the node in the tree
(d) The height of the node in the tree

12. What happens if the balance factor of a node in an AVL tree is outside the range [–1, 1]?
(a) The tree remains unchanged.
(b) The node is removed from the tree.
(c) The tree is rebalanced using rotations.
(d) The tree is converted into a linked list.

13. Which of the following is a self-balancing binary search tree?
(a) Binary tree
(b) Binary search tree
(c) AVL tree
(d) Linked list

14. What type of rotation is performed when the right subtree is taller than the left subtree
and a new node is inserted into the right subtree of the right child?
(a) Left rotation
(b) Right rotation
(c) Left-right rotation
(d) Right-left rotation

15. What is the time complexity of insertion in an AVL tree?
(a) O(1)
(b) O(n)
(c) O(logn)
(d) O(n logn)

16. Which of the following operations is not directly affected by the balance factor of a node
in an AVL tree?
(a) Insertion
(b) Deletion
(c) Searching
(d) Rotations



206 Chapter 7. Trees

Programming Problems
1. Find Kth Smallest Element: Implement a function to find the kth smallest ele-

ment in a BST, and analyze its complexity. Consider both recursive and iterative
approaches.

2. Range Sum Query: Implement a function to calculate the sum of all nodes’ val-
ues within a given range [L,R] in a BST, and analyze its complexity. Discuss the
efficiency of your approach.

3. Validate BST: Implement a function to check if a given binary tree is a valid BST,
and analyze its complexity. Explain the approach used for validation.

4. Find Closest Element: Implement a function to find the value in a BST that is
closest to a given target, and analyze its complexity. Discuss how your implemen-
tation handles ties.

5. Inorder Predecessor and Successor: Implement functions to find the inorder
predecessor and successor of a given node in a BST. Provide the theoretical time
complexity of each function.

6. Merge Two BSTs: Implement a function to merge two BSTs into a single bal-
anced BST. Analyze the complexity of your merging algorithm.

7. Count Nodes in Range: Implement a function to count the number of nodes
within a given range [L,R] in a BST. Analyze the time complexity of your solution.

8. Convert BST to Greater Sum Tree: Implement a function to convert a BST into
a Greater Sum Tree, where each node contains the sum of all nodes greater than
itself. Analyze the complexity of your algorithm.

9. Find Lowest Common Ancestor: Implement a function to find the lowest com-
mon ancestor (LCA) of two nodes in a BST. Provide an analysis of the time com-
plexity.

10. Check AVL Property: Implement a function to check if a given BST is also an
AVL tree (i.e., it is balanced). Analyze the complexity of your function.

11. Balance Factor Calculation: Implement a function to calculate and print the
balance factor of each node in an AVL tree. Discuss the time complexity of your
implementation.

12. Depth of Deepest Odd Level Leaf: Implement a function to find the depth of the
deepest odd level leaf node in a BST. Analyze the complexity of your solution.

13. Convert Sorted Array to BST: Implement a function to convert a sorted array
into a height-balanced BST. Analyze the time complexity of the conversion pro-
cess.

14. Maximum Path Sum: Implement a function to find the maximum path sum in
a BST. The path can start and end at any node. Provide a complexity analysis of
your solution.

15. Find Nodes at K Distance: Implement a function to find all nodes at distance K
from a given target node in a BST. Analyze the time complexity of your algorithm.



8. Graphs

Objectives
In this chapter, we will explore the versatile and powerful world of graph data structures.
Graphs are essential for modeling relationships and connections in various domains. By
the end of this chapter, you will have a comprehensive understanding of graph structures
and their practical applications. Here’s what you can look forward to:

1. Fundamentals of Graphs: We will start with the basic concepts and terminology
associated with graphs. You will understand the significance of vertices, edges,
and the different types of graphs, such as directed, undirected, weighted, and un-
weighted.

2. Graph Representations: Learn about various ways to represent graphs, includ-
ing adjacency matrices and adjacency lists. You will discover how to implement
essential operations on graphs, such as adding and removing vertices and edges
efficiently, and understand their impact on the graph structure.

3. Graph Traversal Techniques: We will delve into Depth-First Search (DFS) and
Breadth-First Search (BFS), two fundamental algorithms for exploring graphs.
You will learn how these algorithms work, their applications, and how to imple-
ment them.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_8

207

https://doi.org/10.1007/979-8-8688-0802-9_8


208 Chapter 8. Graphs

4. Advanced Graph Operations: Explore more complex graph operations, includ-
ing checking connectivity and performing path existence queries. These opera-
tions are crucial for many real-world applications and algorithms.

5. Performance Analysis: Finally, you will analyze the performance of different
graph representations and operations. We will discuss the time and space com-
plexity of various algorithms and provide guidelines for optimizing graph-related
tasks.

8.1 Introduction to Graphs
In this section, we introduce graphs, a fundamental data structure used to model pairwise
relations between objects. A graph G is defined as a set of vertices V and a set of edges E,
where each edge connects two vertices.

8.1.1 What Is a Graph?
A graph G can be represented as G= (V,E), where

• V is a finite set of vertices.
• E is a finite set of edges.

Figure 8.1: Graph with three vertices, v1, v2, v3, and three types of edges: e1 is directed, e2

is undirected, and e3 is bidirectional weighted

As shown in Figure 8.1, a graph consists of vertices and edges, which can have vari-
ous properties such as direction and weight. These properties, including the distinctions
between directed, undirected, and bidirectional edges, will be discussed in detail in the
following subsection.



8.1 Introduction to Graphs 209

8.1.2 Graph Terminology
Graph terminology includes the following key terms and properties:

Terms
• Vertices (Nodes): The fundamental units represented as points or circles in a graph.

A vertex can represent a physical object, concept, or abstract entity. In Figure 8.1,
v1, v2, and v3 are vertices.

• Edges (Links): The connections between vertices, represented as lines connecting
pairs of vertices. Edges can be directed, undirected, or bidirectional. In Figure 8.1,
e1 is a directed edge from v1 to v2, e2 is an undirected edge between v1 and v3, and
e3 is a bidirectional weighted edge between v2 and v3.

• Weight: A value assigned to an edge, representing the cost or distance between
vertices. In Figure 8.1, the edge e3 has an associated weight.

• Degree: The number of edges incident to a vertex. In Figure 8.1, the degree of v1 is
2 (edges e1 and e2).

• Path: A sequence of edges that connect a sequence of vertices. For example, in
Figure 8.1, v1 → v2 → v3 forms a path.

• Cycle: A path that starts and ends at the same vertex with no other repetitions of
vertices and edges. An example cycle in Figure 8.1 is v1 → v2 → v3 → v1 if such
edges exist.

Properties
• Connectedness: A graph is connected if there is a path between any pair of vertices

(see Figure 8.2(1)).
• Planarity: A graph is planar if it can be drawn on a plane without any edges crossing

(see Figure 8.2(2)).
• Bipartiteness: A graph is bipartite if its vertices can be divided into two disjoint sets

such that no two vertices within the same set are adjacent (see Figure 8.2(3)).

8.1.3 Types of Graphs
Using graphs, you can model a variety of relationships. Graphs can be classified into
several types based on their properties:

• Directed Graphs: These graphs model one-way relationships where edges have a
direction, indicating the relationship flows from one vertex to another.

• Undirected Graphs: Represent two-way relationships where edges have no direc-
tion, signifying mutual connections.



210 Chapter 8. Graphs

Figure 8.2: Graph properties: (1) Example of a connected graph. This graph shows four
vertices A, B, C, and D with paths between each pair of vertices. (2) Example of a planar
graph. This graph demonstrates six vertices A, B, C, D, E, and F with edges that do not
cross each other. (3) Example of a bipartite graph. This graph displays six vertices divided
into two sets: A, B, C on the left and D, E, F on the right. Edges only connect vertices
from one set to the other

• Weighted Graphs: By assigning weights to edges, these graphs model the cost or
distance between vertices.

• Unweighted Graphs: These simpler models represent uniform cost or distance be-
tween vertices, with all edges treated equally.

• Simple Graphs: Simple graphs avoid loops and multiple edges between the same
pair of vertices, creating straightforward structures.

• Multigraphs: Multigraphs allow multiple edges between the same vertices, repre-
senting complex or redundant connections.

Graph Density
Graphs can also be classified based on their density, which is the ratio of the number of
edges to the number of possible edges:

• Sparse Graph: A graph with relatively few edges compared to the number of pos-
sible edges, meaning most vertices are connected to only a few other vertices (see
Figure 8.3(1)).

• Dense Graph: A graph with a number of edges close to the maximum possible,
which is V (V − 1)/2 for an undirected graph or V (V − 1) for a directed graph, im-
plying most vertices are connected to many other vertices (see Figure 8.3(2)).

• Complete Graph: A special case of a dense graph where every pair of distinct
vertices is connected by a unique edge, representing the maximum edge density
V (V −1)/2 for an undirected graph (see Figure 8.3(3)).



8.1 Introduction to Graphs 211

Figure 8.3: Graph density. (1) Sparse graph: Most vertices are connected to only a few
other vertices. (2) Dense graph: Most vertices are connected to many other vertices. (3)
Complete graph: Every pair of distinct vertices is connected by a unique edge

Understanding graph density helps in selecting the most appropriate data structure for
representing a graph, optimizing performance for various graph operations.

8.1.4 Examples and Applications
Using graphs, you can solve various real-world problems:

• Computer Networks: Represent computers as nodes and network connections as
edges to model network topologies.

• Social Networks: By representing individuals as nodes and their relationships as
edges, you can analyze social structures.

• Road Maps: Model intersections as nodes and roads as edges to find the shortest
paths or optimize routes.

Figure 8.4: Example of a graph showing source, destination, and cost on every edge



212 Chapter 8. Graphs

As shown in Figure 8.4, graphs can represent various types of information such as
source, destination, and cost.

8.1.5 Difference Between Graph and Tree
Graphs and trees are both important data structures but have key differences that make
them suitable for different applications. Table 8.1 provides a comparison of their main
differences.

In the next section, you will explore various ways to represent graphs, perform opera-
tions on them, and understand their applications in different domains.

8.2 Graph Representations
Graphs can be represented in several ways, each with its own advantages and disadvantages.
The choice of representation affects the efficiency of graph operations such as traversal,
insertion, and deletion. By understanding different representations, you can choose the
most appropriate one for your specific use case.

In general, a graph can be stored as a 2D matrix. In the case of an unweighted graph, a
1 or 0 is used to represent the presence or absence of a connection between vertices. In the
case of a weighted graph, a value w is used to represent the connection with weight.

Figure 8.5 shows a simple graph with its equivalent matrix representation.

Table 8.1: Key Differences Between Graph and Tree

Feature Graph Tree

Definition A collection of vertices and
edges

A hierarchical structure with
nodes

Structure Can have cycles Acyclic (no cycles)
Connectedness Not necessarily connected Always connected
Edges Can have multiple edges be-

tween nodes
Only one edge between nodes

Root Node No root node Has a root node
Relationship General Hierarchical
Examples Computer networks, social net-

works
File system hierarchy, organiza-
tional chart

8.2.1 Basic Graph Operations
Below are the basic operations on graphs:

• Addition of Nodes: Adding a new vertex v to the graph involves updating the graph
structure to include the new vertex.

• Removal of Nodes: Removing a vertex v involves deleting the vertex and all edges
connected to it.



8.2 Graph Representations 213

Figure 8.5: A simple graph with its equivalent matrix representation. The graph consists of
vertices connected by edges with weights. The adjacency matrix on the right illustrates the
connections between vertices, where non-zero values represent the weights of the edges

• Addition of Edges: Adding a new edge e = (u,v) between two vertices involves
updating the adjacency structure to reflect the new edge.

• Removal of Edges: Removing an existing edge e = (u,v) involves updating the
adjacency structure to remove the specified edge.

• Searching: Finding whether a particular vertex v ∈ V or edge e = (u,v) ∈ E exists
in the graph.

• Traversal: Visiting all the vertices and edges in the graph, typically using Depth-
First Search (DFS) or Breadth-First Search (BFS).

• Pathfinding: Determining a path P = {v1,v2, . . . ,vk} between two vertices v1 and
vk.

• Connectivity Checking: Verifying if the graph is connected, i.e., if there is a path
between any pair of vertices u,v ∈V .

8.2.2 Abstract Interface for Graph Class
To ensure that different graph representations follow a consistent structure, we define an
abstract interface called IGraph. This interface specifies the operations that any graph
class should implement, providing a uniform way to interact with different graph represen-
tations.

In this interface, we use template parameters L1 and L2 to allow for flexible customiza-
tion of the internal list structures. L1 represents the outer list structure, and L2 represents
the inner list structure. By using these template parameters, different graph implemen-
tations can customize L1 and L2 as needed. For example, using Array with L2 will
represent an adjacency matrix, while using Linked List will represent an adjacency
list.

The combination of L1 and L2 (i.e., L1 × L2) allows for flexible and efficient graph
representations. The outer list L1 represents all vertices (0 to V − 1), while the inner list
L2 represents the vertices connected to each vertex, as illustrated in Figure 8.6.

Figure 8.7 shows the UML class diagram that presents the structure of the IGraph
interface.



214 Chapter 8. Graphs

1 template <typename T,
2 template <typename> class L1,
3 template <typename> class L2>
4 class IGraph {
5 protected:
6 L1<L2<T>*> graph;
7 // Number of Vertices
8 size_t V;
9 public:

10 IGraph(size_t num_vertices) :
11 V(num_vertices),
12 graph(num_vertices) {}
13 virtual ~IGraph() {}
14
15 // Add/Remove a vertex
16 virtual void addVertex() = 0;
17 virtual void removeVertex(int i) = 0;
18
19 // Add/Remove an edge between vertices i and j
20 virtual void addEdge(int i, int j) = 0;
21 virtual void removeEdge(int i, int j) = 0;
22
23 // Check if there is an edge between two vertices
24 virtual bool hasEdge(int i, int j) const = 0;
25
26 // Get the number of edges in the graph
27 virtual int edgeCount() const = 0;
28
29 // Get a list of all integers j such i->j is an edge
30 virtual L1<int> outEdges(int i) const = 0;
31
32 // Get a list of all integers j such j->i is an edge
33 virtual L1<int> inEdges(int i) const = 0;
34
35 // Print the graph representation
36 virtual void printGraph() const = 0;
37
38 // Get the number of vertices in the graph
39 int vertexCount() const;
40
41 // Access the graph data structure
42 const L1<L2<T>>& getGraph() const{
43 return graph;
44 }



8.2 Graph Representations 215

45
46 // Get the degree of a vertex
47 virtual int getDegree(int v) const;
48 virtual int getOutDegree(int v) const = 0;
49 virtual int getInDegree(int v) const = 0;
50 };

IGraph Abstract Interface Definition

Figure 8.6: Illustration of L1 and L2 in a graph representation. The outer list (L1) repre-
sents all vertices, and the inner lists (L2) represent the vertices connected to each vertex.
This structure allows for flexible customization of the internal list structures. For instance,
L2 can be an Array or Linked List, facilitating the representation of graphs as adja-
cency matrices or adjacency lists, respectively

The IGraph interface defines the following virtual and pure functions:
• addVertex(): Adds a new vertex to the graph
• removeVertex(int i): Removes the vertex i and all its associated edges from

the graph
• addEdge(int i, int j): Adds an edge between vertices i and j
• removeEdge(int i, int j): Removes the edge between vertices i and j
• hasEdge(int i, int j) const: Checks if there is an edge between vertices
i and j



216 Chapter 8. Graphs

Figure 8.7: UML class diagram of the IGraph interface

• printGraph() const: Prints the graph representation
• vertexCount() const: Returns the number of vertices in the graph
• edgeCount() const: Returns the number of edges in the graph
• outEdges(int i) const: Returns a list of vertices that are directly reachable

from vertex i
• inEdges(int i) const: Returns a list of vertices from which vertex i is di-

rectly reachable
• getGraph() const: Returns a constant reference to the underlying graph data

structure
• getDegree(int v) const: Returns the degree of the vertex v
• getOutDegree(int v) const: Returns the out-degree of the vertex v (for

directed graphs)
• getInDegree(int v) const: Returns the in-degree of the vertex v (for di-

rected graphs)



8.2 Graph Representations 217

By using the IGraph interface with the L1 and L2 template parameters, you can
implement various graph representations while ensuring they all adhere to the same set of
operations.

Vertex Count
The vertexCount function returns the number of vertices in the graph. This operation
is O(1) as it simply returns the value of V .

1 int vertexCount() const {
2 return V;
3 }

vertexCount Function: Counts the Number of Vertices in a Graph

Finding Degree of Vertices
The degree of a vertex is the number of edges connected to it. For directed graphs, this
includes both in-degree and out-degree.

1 int getDegree(int v) const {
2 return getInDegree(v) + getOutDegree(v);
3 }

getDegree Function: Calculates the Degree of a Vertex in a Graph

Next, you will explore specific implementations of this interface using different graph
representations.

8.2.3 Adjacency Matrix
The adjacency matrix is a 2D array of size V ×V , where V is the number of vertices in the
graph. Each cell in the matrix A[i][ j] indicates whether there is an edge from vertex i to
vertex j.

Definition: An adjacency matrix for a graph G with vertices V and edges E is a V ×V
matrix A where A[i][ j] = 1 if there is an edge from vertex i to vertex j, and A[i][ j] = 0
otherwise. For weighted graphs, A[i][ j] can store the weight of the edge.

Symmetric for Undirected Graphs: For undirected graphs, the adjacency matrix
is symmetric, i.e., A[i][ j] = A[ j][i].

The structure of an adjacency matrix using Array for both L1 and L2 is illustrated in
Figure 8.8.



218 Chapter 8. Graphs

Figure 8.8: Illustration of an adjacency matrix where both L1 and L2 are represented using
Array

Implementing IGraph with Adjacency Matrix
The following code demonstrates how to implement the IGraph interface using an adja-
cency matrix representation by customizing the L1 and L2 templates:

1 template <typename T>
2 class GraphAdjMatrix :
3 public IGraph<T, DynamicArray, DynamicArray> {
4 public:
5 GraphAdjMatrix(int nVertices) :
6 IGraph<T, DynamicArray, DynamicArray>(nVertices) {
7 // Initialize graph with the given number of vertices
8 for (int i = 0; i < nVertices; ++i) {
9 graph.pushBack(new DynamicArray<T>(nVertices,0));

10 }
11 }
12
13 ~GraphAdjMatrix(){}
14



8.2 Graph Representations 219

15 // IGraph Interface Methods
16 void addVertex();
17 void removeVertex(int i);
18 void addEdge(int i, int j);
19 void addEdge(int i, int j, T w = 1);
20
21 void removeEdge(int i, int j);
22 bool hasEdge(int i, int j) const;
23 void print() const;
24 int edgeCount() const;
25 DynamicArray<int> outEdges(int i) const;
26 DynamicArray<int> inEdges(int i) const;
27 int getOutDegree(int v) const;
28 int getInDegree(int v) const;
29
30 protected:
31 // Inherited members to use directly
32 using IGraph<T, DynamicArray, DynamicArray>::V;
33 using IGraph<T, DynamicArray, DynamicArray>::graph;
34 };

GraphAdjMatrix Class Interface

In this implementation, we define a class GraphAdjMatrix where both L1 and L2
are arrays, making it an adjacency matrix to store graph edges.

The class diagram in Figure 8.9 shows the relationships and functions where
GraphAdjMatrix inherits from IGraph, with composition of DynamicArray.

Figure 8.9: Class diagram of GraphAdjMatrix inheriting from IGraph with
DynamicArray<int>



220 Chapter 8. Graphs

Addition of Vertices
The addVertex function adds a new vertex to the graph. This process involves two key
steps: resizing all existing edge lists to include the new vertex and adding the new vertex
to the vertex list itself, as shown in Figure 8.10. The time complexity for adding a vertex
is O(V ) due to the need to resize each row in the adjacency matrix.

Figure 8.10: Adding a vertex. (1) Resizing the edge lists to accommodate the new vertex.
(2) Adding the new vertex to the vertex list

1 template <typename T>
2 void GraphAdjMatrix<T>::addVertex() {
3 V++;
4 // (1) Resize all existing edge lists to accommodate
5 // the new vertex by adding 0 to represent no edge
6 for (size_t i = 0; i < graph.getSize(); ++i) {
7 graph[i]->pushBack(0);
8 }
9 // (2) Add the new vertex and initialize its row with 0s

10 DynamicArray<T>* newRow = new DynamicArray<T>(V,0);
11 graph.pushBack(newRow);
12 }

addVertex Function: Adds a New Vertex



8.2 Graph Representations 221

Removal of Vertices
The removeVertex function removes a vertex and all its associated edges from the
graph. This process involves two main steps: removing the row corresponding to the
vertex and removing the column corresponding to the vertex from all other edge lists, as
shown in Figure 8.11. The time complexity for removing a vertex is O(V ) because each
column in the adjacency matrix must be updated.

Figure 8.11: Removing a vertex. (1) Removing the row corresponding to the vertex. (2)
Removing the column corresponding to the vertex

1 template <typename T>
2 void GraphAdjMatrix<T>::removeVertex(int i) {
3 if (i < 0 || (size_t)i >= V) return;
4 // (a) Remove the row of the vertex
5 graph.removeAt(i);
6
7 for (size_t j = 0; j < graph.getSize(); ++j) {
8 // (b) Remove the column of the vertex
9 graph[j]->removeAt(i);

10 }
11 V--;
12 }

removeVertex Function: Removes a Vertex



222 Chapter 8. Graphs

Addition and Removal of Edges
The addEdge function adds an edge from vertex i to vertex j, with an optional weight
parameter w. For unweighted graphs, w defaults to 1. The removeEdge function removes
the edge by setting the corresponding matrix entry to zero. Both operations run in O(1)
time. Figure 8.12 illustrates the process of changing the edge status.

Figure 8.12: Changing the edge status: 0 represents no connection (removing an edge),
and 1 or w represents a connection (adding an edge)

1 template <typename T>
2 void GraphAdjMatrix<T>::addEdge(int i, int j) {
3 (*graph[i])[j] = 1;
4 }
5
6 template <typename T>
7 void GraphAdjMatrix<T>::addEdge(int i, int j, T w) {
8 (*graph[i])[j] = w;
9 }

10
11 template <typename T>
12 void GraphAdjMatrix<T>::removeEdge(int i, int j) {
13 (*graph[i])[j] = 0;
14 }

addEdge and removeEdge Functions: Manipulating Edges



8.2 Graph Representations 223

Edge Existence Check
The hasEdge function checks if there is an edge from vertex i to vertex j. It returns true
if the matrix entry is non-zero, indicating the presence of an edge. This operation runs in
O(1) time.

1 template <typename T>
2 bool GraphAdjMatrix<T>::hasEdge(int i, int j) const {
3 return graph[i][j] != 0;
4 }

hasEdge Function: Checks for the Existence of an Edge

Graph Printing
The printGraph function prints the adjacency matrix, providing a visual representation
of the graph. Each row corresponds to a vertex, and each column within a row represents
the edges from that vertex to other vertices. The time complexity of this function is O(V 2).

1 template <typename T>
2 void GraphAdjMatrix<T>::print() const {
3 for (size_t i = 0; i < V; ++i) {
4 for (size_t j = 0; j < V; ++j) {
5 std::cout << (*graph[i])[j] << " ";
6 }
7 std::cout << std::endl;
8 }
9 }

print Function: Displays the Adjacency Matrix

Edge Count
The edgeCount function counts and returns the number of edges in the graph by iterating
through the adjacency matrix and counting non-zero entries. The time complexity of this
function is O(V 2).

1 template <typename T>
2 int GraphAdjMatrix<T>::edgeCount() const {
3 int count = 0;
4 for (size_t i = 0; i < V; ++i) {
5 for (size_t j = 0; j < V; ++j) {
6 if ((*graph[i])[j] != 0) {
7 count++;
8 }
9 }



224 Chapter 8. Graphs

10 }
11 return count;
12 }

edgeCount Function: Counts the Number of Edges

Outgoing and Incoming Edges
The outEdges function returns a list of vertices that are directly reachable from vertex
i (i.e., outgoing edges). It iterates through the row corresponding to vertex i and collects
all vertices j where the matrix entry A[i][ j] is non-zero. The inEdges function returns a
list of vertices from which vertex i is directly reachable (i.e., incoming edges). It iterates
through the column corresponding to vertex i and collects all vertices j where the matrix
entry A[ j][i] is non-zero. The time complexity for both functions is O(V ).

1 template <typename T>
2 DynamicArray<int> GraphAdjMatrix<T>::outEdges(int i) const {
3 DynamicArray<int> edges;
4 for (size_t j = 0; j < V; ++j) {
5 if ((*graph[i])[j] != 0) {
6 edges.pushBack(j);
7 }
8 }
9 return edges;

10 }
11
12 template <typename T>
13 DynamicArray<int> GraphAdjMatrix<T>::inEdges(int i) const {
14 DynamicArray<int> edges;
15 for (size_t j = 0; j < V; ++j) {
16 if ((*graph[j])[i] != 0) {
17 edges.pushBack(j);
18 }
19 }
20 return edges;
21 }

outEdges and inEdges Functions: Retrieves Outgoing and Incoming Edges

Finding Degrees of Vertices
The getOutDegree function returns the out-degree of a vertex v by counting the number
of non-zero entries in the row corresponding to v. The getInDegree function returns
the in-degree of a vertex v by counting the number of non-zero entries in the column corre-
sponding to v. The time complexity for both functions is O(V ).



8.2 Graph Representations 225

1 template <typename T>
2 int GraphAdjMatrix<T>::getOutDegree(int v) const {
3 int outDegree = 0;
4 for (size_t j = 0; j < V; ++j) {
5 if ((*graph[v])[j] != 0) {
6 outDegree++;
7 }
8 }
9 return outDegree;

10 }
11
12 template <typename T>
13 int GraphAdjMatrix<T>::getInDegree(int v) const {
14 int inDegree = 0;
15 for (size_t i = 0; i < V; ++i) {
16 if ((*graph[i])[v] != 0) {
17 inDegree++;
18 }
19 }
20 return inDegree;
21 }

getOutDegree and getInDegree Functions: Calculates the Out-Degree and In-
Degree of a Vertex

Example
Figure 8.13 illustrates an example of an adjacency matrix representation for a simple graph.
Each cell in the matrix contains the weight of the edge between two vertices, with 0 repre-
senting no connection.

Figure 8.13: Example of an adjacency matrix. This figure shows a simple graph repre-
sented as an adjacency matrix, where each cell contains the weights of the edges



226 Chapter 8. Graphs

1 int main() {
2 GraphAdjMatrix<int> g(5);
3
4 g.addEdge(0, 1, 4);
5 g.addEdge(0, 3, 5);
6 g.addEdge(2, 1, 1);
7 g.addEdge(2, 0, 2);
8 g.addEdge(2, 2, 6);
9 g.addEdge(3, 2, 3);

10
11 std::cout << "Graph adjacency matrix:" << std::endl;
12 g.print();
13
14 std::cout << "Number of vertices: "
15 << g.vertexCount() << std::endl;
16 std::cout << "Number of edges: "
17 << g.edgeCount() << std::endl;
18
19 std::cout << "Outgoing edges from vertex 0: ";
20 DynamicArray<int> outEdges = g.outEdges(0);
21 for (size_t i = 0; i < outEdges.getSize(); ++i) {
22 std::cout << outEdges[i] << " ";
23 }
24 std::cout << std::endl;
25
26 std::cout << "Incoming edges to vertex 3: ";
27 DynamicArray<int> inEdges = g.inEdges(3);
28 for (size_t i = 0; i < inEdges.getSize(); ++i) {
29 std::cout << inEdges[i] << " ";
30 }
31 std::cout << std::endl;
32
33 return 0;
34 }

Example usage of a graph using an adjacency matrix



8.2 Graph Representations 227

Output
The following output displays the adjacency matrix of the graph, the total number of ver-
tices and edges, and lists the outgoing edges from vertex 0 and the incoming edges to
vertex 3:

Graph adjacency matrix:
0 4 0 5 0
0 0 0 0 0
2 1 6 0 0
0 0 3 0 0
0 0 0 0 0
Number of vertices: 5
Number of edges: 6
Outgoing edges from vertex 0: 1 3
Incoming edges to vertex 3: 0

8.2.4 Adjacency List
The adjacency list is an array of lists. The size of the array is equal to the number of vertices.
Each element of the array is a list containing all adjacent vertices of the corresponding
vertex, along with the weight of the edges.

Definition: An adjacency list for a graph G with vertices V and edges E consists of an
array of V lists. Each list at index i contains pairs ( j,w), where j is a vertex such that
there is an edge from vertex i to vertex j, and w is the weight of the edge.

The structure of an adjacency list using Array for L1 and SinglyLL for L2 is illus-
trated in Figure 8.14.

Implementing with Adjacency List
The following code demonstrates how to implement the IGraph interface using an adja-
cency list representation by customizing the L1 and L2 templates:

1 template <typename T>
2 struct Vertex{
3 T weight;
4 int index;
5
6 // Default constructor
7 Vertex() : weight(T()), index(-1) {}
8 Vertex(T w, int idx) : weight(w), index(idx) {}
9

10 operator int() const { return index; }
11 };

Vertex Struct Definition



228 Chapter 8. Graphs

Figure 8.14: Illustration of an adjacency list where L1 is represented using Array and L2
is represented using Linked List. Each element of the array (L1) contains a type of
linked list (L2) of vertices adjacent to the corresponding vertex, along with the weights of
the edges

1 template <typename T>
2 class GraphAdjList :
3 public IGraph<Vertex<T>, DynamicArray, DLList> {
4
5 public:
6 GraphAdjList(int nVertices)
7 : IGraph<Vertex<T>, DynamicArray, DLList>(nVertices) {
8 // Initialize graph with the given number of vertices
9 for (int i = 0; i < nVertices; ++i) {

10 graph.pushBack(new DLList<Vertex<T>>(););
11 }
12 }
13 ~GraphAdjList() {
14 for (size_t i = 0; i < graph.getSize(); ++i) {
15 if (graph[i] != nullptr) {
16 graph[i]->clear(); // Clear the list
17 delete graph[i]; // Delete the list
18 graph[i] = nullptr;



8.2 Graph Representations 229

19 }
20 }
21 }
22
23 // IGraph Interface Methods
24 void addVertex();
25 void removeVertex(int i);
26 void addEdge(int i, int j);
27 void addEdge(int i, int j, T w);
28 void removeEdge(int i, int j);
29 bool hasEdge(int i, int j) const;
30 void print() const;
31 int edgeCount() const;
32 DynamicArray<int> outEdges(int i) const;
33 DynamicArray<int> inEdges(int i) const;
34 int getOutDegree(int v) const;
35 int getInDegree(int v) const;
36 };

GraphAdjList Class Interface

In this implementation, we define a class GraphAdjList that uses an adjacency list
to store graph edges by customizing the L1 and L2 templates as DynamicArray and
DLList, respectively. The IGraph interface methods are inherited and implemented in
the parent class.

The class diagram in Figure 8.15 illustrates the relationships and functions where
GraphAdjList inherits from IGraph, with composition of DynamicArray<int>
and DLList<int>.

Addition of Vertices
The addVertex function adds a new vertex to the graph by adding a new list to the
adjacency list, as shown in Figure 8.16. This operation is efficient, with a time complexity
of O(1).

1 template <typename T>
2 void GraphAdjList<T>::addVertex() {
3 // Add new vertex
4 graph.pushBack(new DLList<Vertex<T>>());
5 ++V;
6 }

addVertex Function: Adds a New Vertex



230 Chapter 8. Graphs

Figure 8.15: Class diagram of GraphAdjList inheriting from IGraph with
DynamicArray and DLList

Removal of Vertices
The removeVertex function removes a vertex and all its associated edges from the
graph. This involves two main steps: removing the list for the vertex and searching through
all other lists to remove references to the removed vertex, as shown in Figure 8.17. The
time complexity for removing a vertex is O(V +E) due to the need to update all lists.

1 template <typename T>
2 void GraphAdjList<T>::removeVertex(int i) {
3 if (i < 0 || (size_t)i >= V) return;
4 // (1) Remove the list for the vertex
5 graph.removeAt(i);
6 V--;
7 // (2) Search through all vertices to
8 // remove the removed vertex
9 for (size_t j = 0; j < V; ++j) {

10 for (size_t k = 0; k < graph[j]->getSize(); ++k) {
11 auto& glist = *graph[j];
12 // Find the index of the vertex and remove it
13 if (glist[k].index == i) {
14 graph[j]->removeAt(k);
15 --k; // Ensure we don’t skip elements
16 } else if (glist[k].index > i) {
17 // Adjust indices after the removed one



8.2 Graph Representations 231

Figure 8.16: Adding a vertex: adding a new list for the new vertex in the adjacency list

Figure 8.17: Removing a vertex. (1) Removing the list for the vertex. (2) Searching
through all other lists to remove references to the removed vertex



232 Chapter 8. Graphs

18 glist[k].index--;
19 }
20 }
21 }
22 }

removeVertex Function: Removes a Vertex

Edge Existence Check
The hasEdge function checks if there is an edge from vertex i to vertex j. It iterates
through the list at index i and returns true if vertex j is found. This operation runs in O(E)
in the worst case.

1 template <typename T>
2 bool GraphAdjList<T>::hasEdge(int i, int j) const {
3 if (i < 0 || i >= V || j < 0 || j >= V) {
4 return false; // Invalid indices
5 }
6 for (size_t k = 0; k < graph[i].getSize(); ++k) {
7 if ((*graph[i])[k].index == j) {
8 return true;
9 }

10 }
11 return false;
12 }

hasEdge Function: Checks for the Existence of an Edge

Addition and Removal of Edges
The addEdge function in the GraphAdjList class adds an edge between two vertices i
and j, with an optional weight parameter w. For an unweighted graph, w defaults to 1. The
removeEdge function removes the edge between the specified vertices.

The time complexity for adding an edge is O(1), as it involves appending a new element
to the adjacency list. The time complexity for removing an edge is O(E/V ) on average, as
it may require searching through the adjacency list of vertex i to find and remove the edge
to vertex j.

1 // Add a unweighted edge from vertex i to vertex j
2 template <typename T>
3 void GraphAdjList<T>::addEdge(int i, int j) {
4 addEdge(i,j,1);
5 }
6



8.2 Graph Representations 233

7 // Add a weighted edge from vertex i to vertex j
8 template <typename T>
9 void GraphAdjList<T>::addEdge(int i, int j, T w) {

10 if (i >= 0 && i < V && j >= 0 && j < V) {
11 graph[i]->pushBack(Vertex<T>(w, j));
12 }
13 }
14
15 // Remove the edge between vertices i and j
16 template <typename T>
17 void GraphAdjList<T>::removeEdge(int i, int j) {
18 if (i >= 0 && i < V) {
19 for (size_t k = 0; k < graph[i]->getSize(); ++k) {
20 if ((*graph[i])[k].index == j) {
21 graph[i]->removeAt(k);
22 return;
23 }
24 }
25 }
26 }

addEdge and removeEdge Functions: Manipulating Edges

Graph Printing
The print function prints the adjacency list, providing a visual representation of the
graph. Each index corresponds to a vertex, and the list at each index represents the edges
from that vertex to other vertices. The time complexity of this function is O(V +E).

1 template <typename T>
2 void GraphAdjList<T>::print() const {
3 for (size_t i = 0; i < V; ++i) {
4 std::cout << "Vertex " << i << ": ";
5 for (size_t j = 0; j < graph[i]->getSize(); ++j) {
6 std::cout << (*graph[i])[j].index << " ";
7 }
8 std::cout << std::endl;
9 }

10 }

print Function: Displays the Adjacency List

Edge Count
The edgeCount function counts and returns the number of edges in the graph by iterating
through all the adjacency lists and counting their elements. The time complexity of this
function is O(V +E).



234 Chapter 8. Graphs

1 template <typename T>
2 int GraphAdjList<T>::edgeCount() const {
3 int count = 0;
4 for (size_t i = 0; i < V; ++i) {
5 count += graph[i]->getSize();
6 }
7 return count;
8 }

edgeCount Function: Counts the Number of Edges

Outgoing and Incoming Edges
The outEdges function returns a list of vertices that are directly reachable from ver-
tex i (i.e., outgoing edges). It iterates through the list at index i and collects all vertices.
The inEdges function returns a list of vertices from which vertex i is directly reachable
(i.e., incoming edges). The time complexity for outEdges is O(E) and for inEdges is
O(V + E).

1 template <typename T>
2 DynamicArray<int> GraphAdjList<T>::outEdges(int i) const {
3 DynamicArray<int> edges;
4 for (size_t j = 0; j < graph[i]->getSize(); ++j) {
5 edges.pushBack((*graph[i])[j].index);
6 }
7 return edges;
8 }
9 template <typename T>

10 DynamicArray<int> GraphAdjList<T>::inEdges(int i) const {
11 DynamicArray<int> edges;
12 for (size_t j = 0; j < V; ++j) {
13 for (size_t k = 0; k < graph[j]->getSize(); ++k){
14 if ((*graph[j])[k].index == i) {
15 edges.pushBack(j);
16 }
17 }
18 }
19 return edges;
20 }

outEdges and inEdges Functions: Retrieves Outgoing and Incoming Edges

Finding Degrees of Vertices
The getOutDegree function simply returns the size of the adjacency list of vertex v.
The getInDegree function iterates through all vertices and counts how many times the



8.2 Graph Representations 235

given vertex v appears in their adjacency lists. The time complexity for getInDegree is
O(V +E), and for getOutDegree, it is O(1).

1 template <typename T>
2 int GraphAdjList<T>::getOutDegree(int v) const {
3 if (v >= 0 && v < V) {
4 return graph[v]->getSize();
5 }
6 return 0;
7 }
8 template <typename T>
9 int GraphAdjList<T>::getInDegree(int v) const {

10 int inDegree = 0;
11 for (size_t i = 0; i < V; ++i) {
12 for (size_t j = 0; j < graph[i]->getSize(); ++j){
13 if ((*graph[i])[j].index == v) {
14 inDegree++;
15 }
16 }
17 }
18 return inDegree;
19 }

getOutDegree and getInDegree Functions: Calculates the Out-Degree and In-
Degree of a Vertex

Example
Here is an example of an adjacency list representation for a simple graph.

Figure 8.18: Example of an adjacency list. This figure shows a simple graph represented
as an adjacency list, where each vertex points to a list of its adjacent vertices

Figure 8.18 illustrates an adjacency list for a graph with vertices connected by edges.
Each vertex has a list of adjacent vertices, showcasing the connections in the graph.



236 Chapter 8. Graphs

8.2.5 Other Representations
Edge List
The edge list is a straightforward representation of a graph that consists of a list of all
edges. Each edge is represented as a pair of vertices (i, j), and for weighted graphs, each
pair can also include the edge’s weight (i, j,w).

This representation is simple and efficient for graphs with a relatively small number of
edges compared to vertices, making it particularly useful for sparse graphs.

Incidence Matrix
The incidence matrix is a 2D array of size V ×E, where V is the number of vertices and
E is the number of edges. Each cell A[i][ j] indicates whether vertex i is incident to edge j.
Specifically, A[i][ j] = 1 if vertex i is an endpoint of edge j, and 0 otherwise.

This representation is particularly useful in applications that require direct manipula-
tion of edges based on their relationship to vertices, such as network flows and bipartite
graph algorithms.

8.2.6 Conclusion
In this section, we covered various representations of graphs, specifically using the adja-
cency matrix and adjacency list. Each representation has its advantages and trade-offs,
depending on the type of operations and the characteristics of the graph being modeled.

In the next section, we will delve deeper into specific operations and modifications for
these graph representations, focusing on graph traversals and advanced operations such as
checking connectivity and performing path existence queries.

8.3 Graph Traversals and Advanced Operations
In this section, we will explore the fundamental operations used to navigate through the
vertices and edges of a graph. Two primary traversal techniques are Depth-First Traversal
(DFS) and Breadth-First Traversal (BFS). Additionally, we will delve into advanced opera-
tions such as checking connectivity and performing path existence queries. Let’s start with
the basics and build up to more complex functionalities.

8.3.1 Depth-First Traversal (DFS)
Depth-First Traversal (DFS) is a method of exploring a graph by starting at a source
vertex and exploring as far as possible along each branch before backtracking.

Concept and Uses
DFS follows the Last In, First Out (LIFO) principle using a stack (either explicitly or via
recursion). It is particularly useful in various scenarios, such as

• Pathfinding and maze-solving algorithms
• Topological sorting
• Detecting cycles in graphs
• Finding connected components in a graph



8.3 Graph Traversals and Advanced Operations 237

Implementing DFS in Graphs
Let’s see how DFS can be implemented using an adjacency list. We’ll use a utility function
DFSUtil that performs the actual traversal. This function uses a stack to manage the
vertices to be explored, ensuring a LIFO order of traversal. The DFS function initializes
a visited array and calls DFSUtil for the specified start vertex. The DFS() function
iterates through all vertices to handle disconnected components, calling DFSUtil for any
unvisited vertex.

The time complexity of DFS is O(V +E). Each vertex V is pushed and popped from
the stack once, and each edge E is considered once.

1 // Utility function for DFS traversal
2 template <typename T>
3 void GraphAdjList<T>::
4 DFSUtil(int v, DynamicArray<bool>& visited) const {
5 StackArray<int> stack;
6 stack.push(v);
7
8 while (!stack.isEmpty()) {
9 int current = stack.pop();

10
11 if (!visited[current]) {
12 std::cout << current << " ";
13 visited[current] = true;
14 }
15
16 const auto& adjList = *graph[current];
17 for (size_t i = 0; i < adjList.getSize(); ++i) {
18 int neighbor = adjList[i].index;
19 if (!visited[neighbor]) {
20 stack.push(neighbor);
21 }
22 }
23 }
24 }
25
26 // Perform DFS starting from a given vertex
27 template <typename T>
28 void GraphAdjList<T>::DFS(int v) const {
29 DynamicArray<bool> visited(V, false);
30 DFSUtil(v, visited);
31 }
32
33 // Perform DFS for the entire graph to
34 // handle disconnected components



238 Chapter 8. Graphs

35 template <typename T>
36 void GraphAdjList<T>::DFS() const {
37 DynamicArray<bool> visited(V, false);
38 for (size_t v = 0; v < V; ++v) {
39 if (!visited[v]) {
40 DFSUtil(v, visited);
41 }
42 }
43 }

DFS Function: Depth-First Search Traversal

Figure 8.19 shows an example of Depth-First Search starting at node 0. Nodes are
numbered with the order in which they are added to the stack, from 0 to 9. The edges used
to add the next nodes to the stack are colored in red.

Figure 8.19: Example of Depth-First Search starting at node 0. Nodes are numbered with
the order in which they are added to the stack, from 0 to 9. Edges used to add the next
nodes to the stack are colored in red

8.3.2 Breadth-First Traversal (BFS)
Breadth-First Traversal (BFS) explores a graph level by level. Imagine that you are spread-
ing out from a central point, covering all neighboring areas before moving further out. This
technique is ideal for finding the shortest path in unweighted graphs.



8.3 Graph Traversals and Advanced Operations 239

Concept and Uses
BFS follows the First In, First Out (FIFO) principle using a queue. It is used in various
applications, including

• Finding the shortest path in unweighted graphs
• Level-Order Traversal in trees
• Checking bipartiteness of a graph

Implementing BFS in Graphs
Now, let’s implement BFS using an adjacency list. This function uses a queue to manage
the vertices to be explored, ensuring a FIFO order of traversal. The function initializes a
visited array and starts from the specified vertex s. It processes each vertex by marking it
visited and enqueuing its unvisited neighbors.

The time complexity of BFS is O(V+E). Each vertex is enqueued and dequeued once,
and each edge is considered once.

1 template <typename T>
2 void GraphAdjList<T>::BFS(int s) const {
3 DynamicArray<bool> visited(V, false);
4 QueueArray<int> queue;
5 visited[s] = true;
6 queue.enqueue(s);
7
8 while (!queue.isEmpty()) {
9 int current = queue.dequeue();

10
11 std::cout << current << " ";
12
13 const auto& adjList = *graph[current];
14 for (size_t i = 0; i < adjList.getSize(); ++i) {
15 int neighbor = adjList[i].index;
16 if (!visited[neighbor]) {
17 visited[neighbor] = true;
18 queue.enqueue(neighbor);
19 }
20 }
21 }
22 }

BFS Function: Breadth-First Search Traversal



240 Chapter 8. Graphs

Figure 8.20 shows an example of Breadth-First Search starting at node 0. The nodes
are numbered with the order in which they are added to the queue, from 0 to 9. The edges
used to add the next nodes to the queue are colored in red.

8.3.3 Advanced Graph Operations
Beyond basic traversals, graphs often require more sophisticated operations. Let’s enhance
the functionality of graph data structures by checking for connectivity and performing path
existence queries.

Checking for Connectivity
Checking for connectivity involves determining if there is a path between any two vertices
in the graph. This can be achieved using graph traversal algorithms like DFS or BFS.

In this implementation, isConnected checks if all vertices are reachable from the
starting vertex (0). It uses DFS to mark all reachable vertices and then verifies if all vertices
are visited.

The time complexity for checking connectivity is O(V +E), as it uses DFS which
traverses all vertices and edges.

Figure 8.20: Example of Breadth-First Search starting at node 0. Nodes are numbered with
the order in which they are added to the queue, from 0 to 9. Edges used to add the next
nodes to the queue are colored in red

1 template <typename T>
2 bool GraphAdjList<T>::isConnected() const {
3 DynamicArray<bool> visited(V, false);
4 // Start DFS from vertex 0
5 DFSUtil(0, visited);
6
7 for (size_t i = 0; i < V; ++i) {
8 if (!visited[i]) {



8.3 Graph Traversals and Advanced Operations 241

9 // If any vertex isn’t visited
10 // the graph isn’t connected
11 return false;
12 }
13 }
14 return true;
15 }

isConnected Function: Checks Connectivity of the GraphAdjList

Path Existence Queries
Path existence queries determine whether there is a path between two vertices. This is
useful in many real-world applications, like finding if there is a route between two locations
on a map.

In this implementation, pathExists uses DFS to determine if there is a path from
src to dest. The recursive function marks the source vertex as visited and explores its
neighbors. If it reaches the destination, it returns true.

The time complexity for path existence queries is O(V +E), as it uses DFS which
traverses all vertices and edges.

1 template <typename T>
2 bool GraphAdjList<T>::DFS(int src, int dest,
3 DynamicArray<bool>& visited) const {
4
5 visited[v] = true;
6 if (v == dest) return true;
7
8 for (size_t i = 0; i < graph[v]->getSize(); ++i) {
9 int neighbor = (*graph[v])[i].index;

10 if (!visited[neighbor] &&
11 DFS(neighbor, dest, visited)) {
12 return true;
13 }
14 }
15 return false;
16 }
17
18 template <typename T>
19 bool GraphAdjList<T>::pathExists(int src, int dest) const {
20 DynamicArray<bool> visited(V, false);
21 return DFS(src, dest, visited);
22 }

DFS and pathExists Functions: Path Existence Check using DFS



242 Chapter 8. Graphs

8.3.4 Graph Traversal Class Updates
To summarize, here is the updated class definition for GraphAdjList, which includes
methods for both DFS and BFS, as well as advanced operations like checking connectivity
and path existence queries:

1 template <typename T>
2 class GraphAdjList :
3 public IGraph<T, DynamicArray, DLList> {
4
5 public:
6 void BFS(int) const;
7 void DFS(int) const;
8 void DFS() const;
9 bool isConnected() const;

10 bool pathExists(int, int) const;
11
12 // Other Methods ...
13 private:
14 void DFSUtil(int, DynamicArray<bool>& ) const;
15 bool DFS(int, int, DynamicArray<bool>&) const;
16
17 // Other Methods ...
18 };

Update GraphAdjList Class Interface with Traversal

Design Considerations
When designing DFS and BFS for a graph, consider the following points:

• Ensure the graph’s vertices and edges are accurately represented.
• Handle disconnected graphs by initiating traversal from all unvisited vertices.
• Avoid stack overflow in deep or infinite graphs by using an iterative approach for

DFS if necessary.
• Optimize space usage by keeping track of visited vertices to avoid reprocessing

in BFS.

In this section, we covered both fundamental and advanced graph operations. We ex-
plored the concepts, implementations, and design considerations for Depth-First Traversal
(DFS), Breadth-First Traversal (BFS), checking connectivity, and path existence queries.
With these tools, you can effectively navigate and manipulate graph data structures in your
applications.



8.4 Performance Considerations 243

8.4 Performance Considerations
This section discusses the performance considerations for graph operations, storage require-
ments, and the trade-offs involved in choosing different graph representations, specifically
adjacency matrix vs. adjacency list.

8.4.1 Time Complexity of Graph Operations
The time complexity of graph operations varies depending on the representation of the
graph. Table 8.2 summarizes the time complexities for insertion, deletion, and search
operations in different graph representations.

Table 8.2: Comparison of Time Complexity for Different Graph Operations

Operation Adjacency Matrix Adjacency List

Insertion of Vertex O(V 2) O(1)
Removal of Vertex O(V 2) O(V +E)
Insertion of Edge O(1) O(1)
Removal of Edge O(1) O(E/V ) on average, O(E) worst case

Check Edge Existence O(1) O(E/V ) on average, O(E) worst case
Iterate Over All Edges O(V 2) O(V +E)

Summary of Key Operations
• Adjacency Matrix: Efficient for dense graphs where the number of edges is close

toV 2. Operations such as insertion, deletion, and edge existence checks are very fast.
However, inserting or removing a vertex requires resizing the entire matrix, which is
time-consuming.

• Adjacency List: Efficient for sparse graphs where the number of edges is much less
thanV 2. Allows for fast insertion of vertices and edges. However, removing a vertex
or an edge can be slower compared to the adjacency matrix due to the need to update
multiple lists.

8.4.2 Space Complexity
The space complexity of a graph depends on its representation and the density of the graph
(i.e., the number of edges relative to the number of vertices). Table 8.3 compares the space
complexity for adjacency matrix and adjacency list representations.

Table 8.3: Comparison of Space Complexity for Different Graph Representations

Representation Space Complexity Suitability

Adjacency Matrix O(V 2) Dense Graphs (E ≈V 2)
Adjacency List O(V +E) Sparse Graphs (E �V 2)



244 Chapter 8. Graphs

8.4.3 Choosing the Right Representation
Choosing the appropriate graph representation depends on the graph’s density and the spe-
cific requirements of the operations to be performed. For dense graphs with a high number
of edges, the adjacency matrix is beneficial due to its constant-time edge operations. For
sparse graphs, the adjacency list is preferred due to its lower space complexity and efficient
edge iteration capabilities.

When to Use Which Representation
Use Adjacency Matrix If

• The graph is dense (i.e., the number of edges is close to V 2).
• Quick edge existence checks are crucial.
• The graph structure does not change frequently, and space is not a constraint.

Use Adjacency List If
• The graph is sparse (i.e., the number of edges is much less than V 2).
• Efficient memory usage is necessary.
• The graph structure changes frequently, requiring dynamic edge insertions and dele-

tions.
Understanding the trade-offs between different graph representations allows for in-

formed decisions based on the specific requirements of the application. Each representation
has its advantages and disadvantages, making it suitable for different scenarios.

This section provided an overview of performance considerations for graph data struc-
tures, including time complexity, space complexity, and trade-offs when choosing different
graph representations.

8.5 Summary
In this chapter, we explored the versatile and powerful data structure known as graphs.
We began with an introduction to the basic concepts and terminology of graphs, covering
vertices, edges, and various graph properties such as connectedness, planarity, and bipar-
titeness.

We then delved into different ways to represent graphs, focusing on adjacency matri-
ces and adjacency lists. These representations were thoroughly discussed, including their
implementation and the trade-offs involved in terms of time and space complexity.

Graph traversal techniques, specifically Depth-First Search (DFS) and Breadth-First
Search (BFS), were covered in detail. We provided implementations and discussed their
uses, concepts, and complexities.

Advanced graph operations were also examined, such as checking connectivity and
determining the path existence between vertices. These operations are crucial for real-
world applications such as network analysis and pathfinding.

Finally, we discussed performance considerations, comparing the efficiency of various
graph operations and representations. This comprehensive understanding equips you with
the knowledge to choose the appropriate graph representation and perform efficient graph
operations based on the specific requirements of your application.



8.5 Summary 245

Figure 8.21: Class diagram for graph implementations. This diagram includes
GraphAdjMatrix, GraphAdjList, and their relationships with other classes

The class diagram in Figure 8.21 provides an overview of the graph implementations
discussed in this chapter, showcasing the relationships and interactions between the various
components.



246 Chapter 8. Graphs

Problems

Discussion
1. Explain the differences between directed and undirected graphs. Provide exam-

ples of real-world scenarios where each type would be applicable.
2. Compare and contrast adjacency matrices and adjacency lists. What are the main

advantages and disadvantages of each representation?
3. Describe the Depth-First Search (DFS) algorithm. What are its main uses and in

what scenarios is it most effective?
4. Explain the Breadth-First Search (BFS) algorithm. How does it differ from DFS,

and what are its primary applications?
5. In what situations would it be more beneficial to use an adjacency matrix over an

adjacency list? Explain your reasoning with examples.
6. What are the key considerations when designing a graph data structure for a dy-

namic environment where edges and vertices are frequently added or removed?
7. How can graph traversal algorithms like DFS and BFS be used to check for con-

nectivity in a graph? Provide a step-by-step explanation.
8. Discuss the time and space complexities of graph operations (insertion, deletion,

and search) for both adjacency matrices and adjacency lists.
9. Describe a real-world application where path existence queries are crucial. How

would you implement this in a graph data structure?
10. How do the concepts of graph density and connectivity influence the choice of

algorithms and data structures for graph traversal and modification?

Multiple Choice Questions
1. Which of the following graph representations is more space-efficient for a sparse graph?

(a) Adjacency matrix
(b) Incidence matrix
(c) Adjacency list
(d) Edge list

2. What is the time complexity of checking if an edge exists between two vertices in an
adjacency matrix?
(a) O(1)
(b) O(V )
(c) O(E)
(d) O(logV )

3. In which graph representation are all neighbors of a vertex stored in a list associated with
that vertex?
(a) Adjacency matrix
(b) Incidence matrix



8.5 Summary 247

(c) Adjacency list
(d) Edge list

4. Which of the following algorithms can be used to detect cycles in a graph?
(a) Depth-First Search (DFS)
(b) Breadth-First Search (BFS)
(c) Dijkstra’s Algorithm
(d) Prim’s Algorithm

5. What is the space complexity of an adjacency matrix for a graph with V vertices?
(a) O(V )
(b) O(E)
(c) O(V +E)
(d) O(V 2)

6. In a Breadth-First Search (BFS), what data structure is typically used to manage the ver-
tices to be explored?
(a) Stack
(b) Queue
(c) Priority queue
(d) Linked list

7. Which graph traversal algorithm is best suited for finding the shortest path in an un-
weighted graph?
(a) Depth-First Search (DFS)
(b) Breadth-First Search (BFS)

8. What is the primary advantage of using an adjacency list over an adjacency matrix?
(a) Faster edge existence checks
(b) Lower space complexity for sparse graphs
(c) Easier to implement
(d) Better suited for dense graphs

9. How can you determine if a graph is connected?
(a) By performing a Depth-First Search (DFS) or Breadth-First Search (BFS) and check-

ing if all vertices are visited
(b) By counting the number of edges
(c) By checking the degree of each vertex

10. Which of the following is a key characteristic of a dense graph?
(a) The number of edges is close to the square of the number of vertices.
(b) The number of edges is much less than the number of vertices.
(c) There are no cycles.
(d) All vertices have the same degree.

11. What is the time complexity of iterating over all edges in an adjacency list?
(a) O(V )
(b) O(E)
(c) O(V 2)
(d) O(V +E)

12. Which of the following is not a typical use of Depth-First Search (DFS)?
(a) Pathfinding in mazes
(b) Topological sorting



248 Chapter 8. Graphs

(c) Finding connected components
(d) Finding shortest paths in weighted graphs

13. What is the primary disadvantage of using an adjacency matrix for representing sparse
graphs?
(a) Difficult to implement
(b) High space complexity
(c) Slow edge existence checks
(d) Inefficient iteration over edges

14. Which of the following graph traversal algorithms is guaranteed to visit all vertices exactly
once in a connected graph?
(a) Depth-First Search (DFS)
(b) Breadth-First Search (BFS)
(c) Both DFS and BFS
(d) Neither DFS nor BFS

15. In an undirected graph, how many edges are present if the adjacency matrix is fully pop-
ulated (i.e., dense graph)?
(a) V
(b) V 2

(c) V (V −1)/2
(d) V (V −1)

Programming Problems
1. Graph Connectivity: Write a function that determines if a graph is connected

using Depth-First Search (DFS). Discuss the time complexity of your solution.
2. Shortest Path in Unweighted Graph: Implement a function to find the shortest

path between two vertices in an unweighted graph using BFS. Analyze the time
complexity of your solution.

3. Detect Cycle in Directed Graph: Write a function to detect a cycle in a directed
graph using Depth-First Search (DFS). Provide a complexity analysis of your
approach.

4. Connected Components: Implement a function to find all connected compo-
nents in an undirected graph using DFS. Explain the logic and analyze its time
complexity.

5. Topological Sort: Write a function to perform a topological sort on a directed
acyclic graph (DAG). Discuss the applications of topological sorting and analyze
its time complexity.

6. Graph Coloring: Implement a function to determine if a graph can be colored
using two colors such that no two adjacent vertices share the same color (i.e.,
bipartite graph). Analyze the complexity of your solution.



9. Specialized Data Structures
and Techniques

Objective
In this chapter, we will explore specialized data structures that offer unique solutions to
specific computational problems. These structures are designed to enhance performance
in terms of speed and memory usage in scenarios where fundamental data structures may
not be sufficient. By the end of this chapter, you will have a comprehensive understand-
ing of these advanced data structures and their practical applications. Here’s what you
can look forward to:

1. Exploring Heaps: We will begin with heaps, both Max-Heaps and Min-Heaps,
discussing their properties, applications, and operations like insertion, deletion,
and heapification.

2. Priority Queues: Learn about priority queues, which are often implemented us-
ing heaps, and understand how they manage tasks efficiently by always keeping
the highest (or lowest) priority element accessible. You will explore their structure,
operations, and performance in various use cases.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_9

249

https://doi.org/10.1007/979-8-8688-0802-9_9


250 Chapter 9. Specialized Data Structures and Techniques

3. Building and Using Maps: Learn about map data structures, focusing on key-
value pairs, hash functions, and collision handling using chained hash tables. You
will understand how to implement and utilize maps efficiently.

4. Space-Efficient Linked Lists: Discover how space-efficient linked lists minimize
pointer overhead by storing multiple elements in each node. We will cover their
structure, operations, and performance benefits.

5. Understanding Skip Lists: Dive into skip lists, a probabilistic data structure that
allows fast search, insertion, and deletion operations. You will learn about their
layered structure, rules, and implementation.

6. Performance Analysis and Applications: Finally, we will analyze the perfor-
mance of these specialized data structures and explore their applications in vari-
ous real-world scenarios. This will include a comparison with other data structures
and a discussion on their advantages.

9.1 Introduction
In the world of computer science, data structures play a crucial role in organizing and man-
aging data efficiently. While basic structures like arrays, linked lists, and trees form the
foundation, specialized data structures offer unique solutions to complex problems. In this
chapter, we will explore a variety of advanced data structures designed to enhance perfor-
mance regarding speed and memory usage in specific scenario. By diving into heaps, maps,
space-efficient linked lists, and skip lists, you will learn how to optimize algorithms and
tackle computational challenges more effectively. Let’s explore the functionality of these
specialized data structures, their implementation specifics, and their real-world uses. By
the conclusion of this chapter, you will have the expertise to select and apply the appropri-
ate data structure for any problem, guaranteeing that your solutions are both effective and
refined.

9.2 Heaps
9.2.1 Introduction to Heaps

Heaps are specialized tree-based data structures that satisfy the heap property, making
them ideal for implementing priority queues.

Heaps are commonly used in scenarios where quick access to the largest or smallest
element is required, such as in scheduling algorithms, graph algorithms (like Dijkstra’s
shortest path), and efficient priority queues. Therefore, there are two types of heaps: Max-
Heap andMin-Heap.



9.2 Heaps 251

In a Max-Heap, for any given node u, the value of u is greater than or equal to the values
of its children (successors), ensuring that the largest element is at the root. Mathematically:

∀nodeu, value(u)≥ value(successor(u))

Conversely, in a Min-Heap, the value of u is less than or equal to the values of its
children (successors), ensuring that the smallest element is at the root. Mathematically:

∀nodeu, value(u)≤ value(successor(u))

As shown in Figure 9.1, the structure of a heap can either be a Max-Heap (1) or a
Min-Heap (2) depending on whether the root is the maximum or minimum element in the
heap.

Figure 9.1: An illustration of (1) a Max-Heap where the value of node u is greater than or
equal to the values of its successors and (2) a Min-Heap where the value of node u is less
than or equal to the values of its successors. This ensures the root of the heap is the largest
element in a Max-Heap and the smallest element in a Min-Heap

Properties of Heaps
Heaps have several essential properties:

• Complete Binary Tree: A heap is a complete binary tree, meaning all levels are
fully filled except possibly for the last level, which is filled from left to right (see
“Types of Binary Trees” in Chapter 7).

• Heap Property: The specific heap property (max or min) must be satisfied by every
parent-child (successor) relationship.

Max-Heap
A Max-Heap ensures that the largest element is always at the root. Each parent node has a
value greater than or equal to its children’s values.



252 Chapter 9. Specialized Data Structures and Techniques

Figure 9.2: An example of a Max-Heap

� Example 9.1 Max-Heap Property
In the example shown in Figure 9.2:

• The root node (15) is the largest element.
• The value of the root node (15) is greater than its children (10 and 12).
• The value of node 10 is greater than its children (8 and 9).
• The value of node 12 is greater than its child (11).
• The value of node 8 is greater than its children (4 and 7).

�

Min-Heap
A Min-Heap ensures that the smallest element is always at the root. Each parent node has
a value less than or equal to its children’s values.

Figure 9.3: An example of a Min-Heap



9.2 Heaps 253

� Example 9.2 Min-Heap Property
In the example shown in Figure 9.3:

• The root node (1) is the smallest element.
• The value of the root node (1) is less than its children (3 and 6).
• The value of node 3 is less than its children (5 and 9).
• The value of node 6 is less than its children (8 and 7).
• The value of node 5 is less than its children (10 and 12).

�

9.2.2 Binary Heaps
Binary heaps are the most common form of heaps, implemented using arrays for efficient
access and manipulation.

As shown in Figure 9.4, binary heaps can be efficiently represented using arrays. The
array representation allows easy access to the parent and child nodes. For a node at index i:

• The parent node is at index �(i−1)/2�.
• The left child is at index 2i+1.
• The right child is at index 2i+2.
The following code defines a BinaryHeap class with basic functions to access parent

and child nodes, as well as other essential heap operations:

Figure 9.4: A representation of binary heaps using trees and corresponding arrays. (1) The
Max-Heap tree on the right has the root node 15 and is represented by the array. (2) The
Min-Heap tree on the left has the root node 1 and is represented by the array

1 template <typename T>
2 class BinaryHeap {
3 public:
4 // Inserts a new element into the heap
5 virtual void add(const T value);



254 Chapter 9. Specialized Data Structures and Techniques

6
7 // Removes an element by value
8 virtual void remove(const T value);
9
10 // Deletes the root element
11 virtual void deleteRoot();
12
13 // Builds a heap from an arbitrary array of elements
14 virtual void buildHeap();
15
16 // Sorts the elements
17 virtual void heapSort();
18
19 // Heapifies the array
20 virtual void heapify(DynamicArray<T>& arr);
21
22 // Utility function to print the heap
23 virtual void print() const;
24
25 // Returns the element at the root
26 virtual T peek() const;
27
28 virtual size_t getSize() const {
29 return heap.getSize();
30 }
31 protected:
32 DynamicArray<T> heap;
33
34 // Maintains the heap by "bubbling down" at index i to n
35 void heapifyDown(int i, int n);
36
37 // Maintains the heap by "bubbling up" at index i
38 void heapifyUp(int i);
39 private:
40 // Returns the index of the parent/children node
41 int parent(int i) const { return (i - 1) / 2; }
42 int left(int i) const { return 2 * i + 1; }
43 int right(int i) const { return 2 * i + 2; }
44 };

BinaryHeap Class Interface



9.2 Heaps 255

The class diagram (refer to Figure 9.5) provides an overview of the structure and rela-
tionships within the BinaryHeap class.

Figure 9.5: Class diagram of BinaryHeap

Heap Operations
Heaps support several fundamental operations, including insertion, deletion, and heapifica-
tion. The following are typical implementations for binary heaps.

Insertion
Insertion in a heap involves adding a new element at the end of the heap (tree or array)
to maintain the complete tree property and then “bubbling up” the element to its correct
position to restore the heap property. This process is also known as “heapify-up.”

� Example 9.3 Inserting a Value into a Min-Heap
As shown in Figure 9.6, inserting the element 2 into the Min-Heap starts by adding the
new element at the end of the array. It then bubbles up to maintain the heap property.
Initially, 2 is swapped with 9, then with 3, ensuring the heap property is maintained.
The root node (1) remains the smallest element. �



256 Chapter 9. Specialized Data Structures and Techniques

Figure 9.6: Insertion of the element 2 into a Min-Heap. The new element 2 is added at the
end of the array and then bubbled up to its correct position. Initially, 2 is swapped with
9, then with 3, ensuring the heap property is maintained. The root node (1) remains the
smallest element

1 template <typename T>
2 void BinaryHeap<T>::heapifyUp(int i) {
3 while (i != 0 && heap[parent(i)] > heap[i]) {
4 std::swap(heap[i], heap[parent(i)]);
5 i = parent(i);
6 }
7 }
8
9 template <typename T>
10 void BinaryHeap<T>::add(const T value) {



9.2 Heaps 257

11 heap.pushBack(value);
12 heapifyUp(heap.getSize() - 1);
13 }

heapifyUp and add Functions: Adding and Maintaining Order in a BinaryHeap

The add function inserts a new element at the end of the heap array and then calls
heapifyUp to ensure the heap property is maintained by swapping the new element with
its parent until it is in the correct position.

Deletion (Remove Min/Max)
Deletion typically involves removing the root element, which is either the maximum or
minimum element in the heap, depending on whether it is aMax-Heap orMin-Heap. The
last element in the heap is then moved to the root position, and the heap property is restored
by “bubbling down” this element. This process is known as “heapify-down.”

� Example 9.4 Deletion in a Min-Heap
As illustrated in Figure 9.7, the root element (1) is removed from the Min-Heap. The
last element (7) is moved to the root position, and then the heap property is restored by
“bubbling down” the new root. Initially, 7 is swapped with 3, then with 5, ensuring the
heap property is maintained. �

1 template <typename T>
2 void BinaryHeap<T>::deleteRoot() {
3 if (heap.getSize() == 0)
4 return;
5 heap[0] = heap.popBack();
6 heapifyDown(0, heap.getSize());
7 }
8
9 template <typename T>
10 void BinaryHeap::heapifyDown(int i, int n) {
11 int lChild = left(i);
12 int rChild = right(i);
13 int smallest = i;
14
15 if (lChild < n && heap[lChild] < heap[smallest])
16 smallest = lChild;
17
18 if (rChild < n && heap[rChild] < heap[smallest])
19 smallest = rChild;
20
21 if (smallest != i) {



258 Chapter 9. Specialized Data Structures and Techniques

Figure 9.7: Removal of the minimum element (1) from a Min-Heap. The root element (1)
is swapped with the last element (7), and then the heap property is restored by “bubbling
down” the new root. The new root (7) is swapped with 3 and then with 5 to maintain the
Min-Heap property

22 swap(heap[i], heap[smallest]);
23 heapifyDown(smallest, n);
24 }
25 }

deleteRoot and heapifyDown Functions: Removing the Root and Reordering in
a BinaryHeap

The deleteRoot function removes the root element by swapping it with the last
element in the heap, then calling heapifyDown to restore the heap property.



9.2 Heaps 259

Remove an Element
This operation removes a specific value from the heap and maintains the heap property.

Figure 9.8: Removal of the element 3 from a Min-Heap. The element 3 is located and
replaced with the last element (7). The heap property is restored by “bubbling down” the
new value (7), which is swapped with 5 to maintain the Min-Heap property

� Example 9.5 Removing an Element in a Min-Heap
As illustrated in Figure 9.8, the element 3 is removed from the Min-Heap. After locat-
ing the element 3, it is replaced with the last element (7). To maintain the Min-Heap
property, the new value (7) is bubbled down by swapping it with 5. �

Here is the code that performs the remove operation:

1 template <typename T>
2 void BinaryHeap<T>::remove(const T value) {
3 int index = heap.indexOf(value);
4 if (index == -1) return;
5



260 Chapter 9. Specialized Data Structures and Techniques

6 heap[index] = heap.popBack();
7 heapifyDown(index, heap.getSize());
8 }

remove Function: Removes a Specified Value

In the remove function, the element to be removed is first located using the indexOf
function. If the element is found, it is replaced with the last element in the heap array. The
heapifyDown function is then called to restore the heap property by bubbling down the
replaced element to its correct position.

Heapify

The heapify operation is used to build a heap from an arbitrary array of elements. It ensures
that the heap property is satisfied for all elements in the array. The heapify process can be
performed efficiently in O(n) time using a bottom-up approach.

� Example 9.6 Heapify
As illustrated in Figure 9.9, the heapify operation transforms an arbitrary array into a
Min-Heap. Initially, the element 3 at index 2 is swapped with 1, its smaller child. Next,
the element 8 at index 1 is swapped with 2, maintaining the Min-Heap property. Finally,
the root element 7 is bubbled down, resulting in a valid Min-Heap. �

1 template <typename T>
2 void BinaryHeap<T>::buildHeap() {
3 int n = heap.getSize();
4 for (int i = (n / 2) - 1; i >= 0; i--) {
5 heapifyDown(i, n);
6 }
7 }
8
9 template <typename T>
10 void BinaryHeap<T>::heapify(DynamicArray<T>& arr) {
11 heap = arr;
12 buildHeap();
13 }

buildHeap and heapify Functions: Constructing and Reordering a BinaryHeap

The buildHeap function starts from the last non-leaf node and applies the heapify
Down function to each node in a bottom-up manner. This ensures that all subtrees are valid
heaps, resulting in an overall heapified array.

Note: When building the heap from an array, avoid unnecessary copying of the array.
Use the original array and build the heap in place.



9.2 Heaps 261

Figure 9.9: Illustration of the heapify operation. Starting with the array representation of a
tree, the heapify operation adjusts the elements to maintain the heap property. The process
involves “bubbling down” elements to their correct positions

Peek
The peek function retrieves the root element of the heap without removing it. This func-
tion is particularly useful in priority queues (discussed in the next section) where you want
to inspect the highest priority element without modifying the heap.



262 Chapter 9. Specialized Data Structures and Techniques

1 template <typename T>
2 T BinaryHeap<T>::peek() const {
3 assert(heap.getSize() > 0 && "Heap is empty");
4 return heap[0];
5 }

peek Function: Returns the Top Element Without Removing It

Heap Sort Algorithm
Heap sort is a comparison-based sorting algorithm that leverages the heap data structure to
sort elements. The algorithm involves building a heap from the input data and then repeat-
edly extracting the maximum (for a Max-Heap) or minimum (for a Min-Heap) element
from the heap and placing it at the end of the sorted array.

� Example 9.7 Heap Sort with a Min-Heap
Consider the array [4,10,3,5,1]. The heap sort process is as follows:

• Build a Min-Heap: [1,4,3,10,5]
• Swap the root with the last element and reduce the heap size: [5,4,3,10,1]
• Heapify the root: [3,4,5,10,1]
• Repeat the process:

– Swap: [3,4,5,10,1]→ [10,4,5,3,1]
– Heapify: [4,10,5,3,1]
– Swap: [4,10,5,3,1]→ [5,10,4,3,1]
– Heapify: [4,10,5,3,1]
– Swap: [4,10,5,3,1]→ [10,5,4,3,1]
– Heapify: [5,10,4,3,1]

The sorted array in descending order is [10,5,4,3,1]. Reversing this gives the sorted
array in ascending order: [1,3,4,5,10]. �

1 template <typename T>
2 void BinaryHeap<T>::heapSort() {
3 buildHeap(); // First build the heap
4 for (int i = heap.getSize() - 1; i >= 0; i--) {
5 std::swap(heap[0], heap[i]);
6 heapifyDown(0, i);
7 }
8 }

heapSort Function: Performs Heap Sort



9.2 Heaps 263

In the heapSort function, the smallest element (root of the heap) is swapped with
the last element in the heap and removed from the heap. The heapifyDown function is
called to restore the heap property, and this process is repeated until all elements are sorted.

Performance Analysis
Heap sort is an efficient sorting algorithm with a time complexity of O(n logn). This
efficiency comes from the heap operations, which ensure that both insertion and removal
operations run in O(logn) time. The algorithm performs well with large datasets and is not
sensitive to the initial ordering of the data.

• Time Complexity: The heap construction phase takes O(n) time, and each of the
n removal operations takes O(logn) time, leading to an overall time complexity of
O(n logn).

• Space Complexity: Heap sort has a space complexity of O(1) because it is an in-
place sorting algorithm that requires no additional storage beyond the input array.

9.2.3 Optimizing Binary Heap Operations
Optimizing the performance of binary heap operations can lead to significant improve-
ments in efficiency, particularly for large data or frequent operations.

Optimized HeapifyDown
In the heapifyDown function, our aim is to minimize the number of swaps by deter-
mining the smallest (or largest, in the case of a Max-Heap) among the current node and
its children before performing any swaps. This approach ensures that only the necessary
swaps are made, reducing the overall number of swaps.

Implementing heapifyDown iteratively avoids the overhead associated with recur-
sive function calls and eliminates the risk of stack overflow in deep-recursion scenarios.
The iterative approach uses a loop that continues until the heap property is restored, mak-
ing it generally more efficient than a recursive implementation.

1 void BinaryHeap<T>::heapifyDown(int i, int n) {
2 while (true) {
3 int lChild = left(i);
4 int rChild = right(i);
5 int smallest = i;
6
7 if (lChild < n && heap[lChild] < heap[smallest])
8 smallest = lChild;
9
10 if (rChild < n && heap[rChild] < heap[smallest])
11 smallest = rChild;
12
13 if (smallest == i) break;
14



264 Chapter 9. Specialized Data Structures and Techniques

15 std::swap(heap[i], heap[smallest]);
16 i = smallest;
17 }
18 }

Optimized Iterative heapifyDown Function

The function starts by checking the children on the left and right of the current node to
determine the smallest element. If either child is smaller than the current node, a swap is
performed, and the process continues iteratively. The loop ends when the current node is
smaller than both of its children, ensuring that the heap property is maintained.

Batch Insertions
If multiple elements need to be inserted, consider inserting them all at once and then per-
forming a single buildHeap operation. This reduces the number of heapify operations
needed and optimizes the overall insertion time.

9.2.4 Customizing Binary Heaps with HeapType

In the previous section, we discussed the standard implementation of binary heaps, which
could be either a Min-Heap or a Max-Heap. To make our BinaryHeap class more cus-
tomizable, we introduce an enumeration HeapType that allows the heap to be configured
as either a Min-Heap or a Max-Heap at the time of creation.

HeapType Enumeration
The HeapType enumeration is defined as follows:

1 enum class HeapType { MIN_HEAP, MAX_HEAP };

HeapType Enumeration: Defines Types of Heaps

This enumeration enables the user to specify the desired heap type when instantiating
a BinaryHeap object. Depending on the HeapType provided, the heap will either
maintain the smallest element at the root (Min-Heap) or the largest element at the root
(Max-Heap).

Customizing the BinaryHeap Class
The BinaryHeap class has been modified to include a HeapType member, which is
initialized through the constructor. The class now supports both Min-Heaps and Max-
Heaps using the same underlying implementation, with the behavior controlled by the
HeapType.

1 template <typename T>
2 class BinaryHeap {
3 public:



9.2 Heaps 265

4 // Constructor to initialize the desired type
5 BinaryHeap(HeapType type = HeapType::MIN_HEAP);
6
7 // Other functions (add, remove, deleteRoot, etc.)
8
9 protected:
10 // Heap type: MIN_HEAP or MAX_HEAP
11 HeapType type;
12
13 private:
14 // Helper function for comparison
15 bool compare(int i, int j) const;
16 };
17
18 template <typename T>
19 BinaryHeap<T>::BinaryHeap(HeapType type)
20 : type(type) {}

Customized BinaryHeap Class Interface

Helper Functions for Comparison
A key change in this implementation is the introduction of a comparison helper function,
compare, which determines the correct order of elements based on the heap type.

1 template <typename T>
2 bool BinaryHeap<T>::compare(int i, int j) const {
3 if (type == HeapType::MIN_HEAP) {
4 // Min-heap: Parent should be less than children
5 return heap[i] > heap[j];
6 } else {
7 // Max-heap: Parent should be greater than children
8 return heap[i] < heap[j];
9 }

10 }

compare Function: Compares Elements in the BinaryHeap Based on HeapType

Updating Heapify Functions
The heapifyUp and heapifyDown functions have been updated to use the compare
function, ensuring that elements are correctly ordered according to the specified heap type.

1 template <typename T>
2 void BinaryHeap<T>::heapifyUp(int i) {
3 while (i != 0 && compare(parent(i), i)) {



266 Chapter 9. Specialized Data Structures and Techniques

4 std::swap(heap[i], heap[parent(i)]);
5 i = parent(i);
6 }
7 }
8 template <typename T>
9 void BinaryHeap<T>::heapifyDown(int i, int n) {
10 while (true) {
11 int lChild = left(i);
12 int rChild = right(i);
13 int target = i;
14
15 if (lChild < n && compare(target, lChild))
16 target = lChild;
17
18 if (rChild < n && compare(target, rChild))
19 target = rChild;
20
21 if (target == i) break;
22
23 std::swap(heap[i], heap[target]);
24 i = target;
25 }
26 }

Updated heapifyUp and heapifyDown Functions Using compare in
BinaryHeap

These changes ensure that the BinaryHeap class is flexible and can be used to imple-
ment Min-Heaps and Max-Heaps efficiently, depending on the needs of the application.

Benefits of Customization
This customization allows for a single, unified implementation of the BinaryHeap class
that can cater to different use cases. Whether the application requires a priority queue
that prioritizes the smallest or the largest element, this flexible implementation provides
a robust solution. The use of the HeapType enumeration enhances code readability and
maintainability, as the heap’s behavior is clearly defined and controlled through the con-
structor.

Overall, this update makes the BinaryHeap class a more powerful and adaptable data
structure, suitable for a wide range of applications that rely on heap-based algorithms.



9.3 Priority Queues 267

9.3 Priority Queues
9.3.1 Introduction to Priority Queues

A priority queue is a data structure that manages elements based on their priority rather
than their insertion order. This makes priority queues particularly useful in scenarios such
as task scheduling, where tasks with higher priority need immediate attention.

Priority queues are commonly implemented using a heap, a dynamic structure that
efficiently maintains the highest (or lowest) priority element at the root. This arrangement
allows for quick access and modification of elements based on their priority.

9.3.2 Implementing a Priority Queue with a Heap
As shown in Figure 9.10, the priority queue is built using a Max-Heap, where each ele-
ment is represented as a PQNode that contains data and its associated priority. The heap
structure ensures that the node with the highest priority is always at the root, facilitating
efficient operations on the highest priority elements.

Figure 9.10: An illustration of a Max-Heap with an array representation where each ele-
ment is a PQNode containing data and priority. The heap orders nodes by priority, keeping
the highest priority node at the root



268 Chapter 9. Specialized Data Structures and Techniques

Node Structure Definition
The PQNode class represents each element in the priority queue, storing both data and
its priority. This structure supports comparison operations, ensuring that the heap can
correctly organize nodes by priority.

1 template <typename T>
2 class PQNode {
3 public:
4 T data;
5 int priority;
6
7 // Constructors
8 PQNode() : data(T()), priority(0) {}
9 PQNode(T data, int priority) :
10 value(data), priority(priority) {}
11
12
13 // Assignment operator
14 PQNode<T>& operator=(const PQNode<T>& other) {
15 if (this != &other) {
16 data = other.data;
17 priority = other.priority;
18 }
19 return *this;
20 }
21
22 // Equality operator
23 bool operator==(const PQNode<T>& other) const {
24 return data == other.data
25 && priority == other.priority;
26 }
27
28 // Operator overloading to compare PQNode objects
29 bool operator<(const PQNode& other) const {
30 return this->priority < other.priority;
31 }
32
33 bool operator>(const PQNode& other) const {
34 return this->priority > other.priority;
35 }
36 };

PQNode Class Interface



9.3 Priority Queues 269

Priority Queue Class Definition
The PriorityQueue class uses a customized BinaryHeap with a MAX_HEAP config-
uration. This ensures that the highest priority element is always at the root, making it ideal
for scenarios where tasks with the highest priority need to be processed first.

1 template <typename T>
2 class PriorityQueue {
3 public:
4 PriorityQueue();
5 ~PriorityQueue();
6
7 // Inserts a new element into the priority queue
8 void add(const T& data, int priority);
9
10 // Removes the highest priority element
11 T pop();
12
13 // Returns the highest priority element
14 T peek() const;
15
16 // Checks if the priority queue is empty
17 bool isEmpty() const;
18
19 // Clears all elements in the priority queue
20 void clear();
21
22 // Prints all elements in the priority queue
23 void print() const;
24 private:
25 BinaryHeap<PQNode<T>> heap;
26 };
27
28 template <typename T>
29 PriorityQueue<T>::PriorityQueue()
30 : heap(HeapType::MAX_HEAP) {} // Initialize max-heap

PriorityQueue Class Interface

Figure 9.11 shows the class diagram of the PriorityQueue and its relationship with
BinaryHeap and PQNode.

9.3.3 Priority Queue Operations
The following sections describe the key operations of the PriorityQueue class, includ-
ing insertion, removal, and peeking at the highest priority element.



270 Chapter 9. Specialized Data Structures and Techniques

Insertion
The add function inserts a new PQNode into the heap based on its priority, maintaining the
heap property. This operation runs in O(logn) time due to the underlying heap structure.

Figure 9.11: Class diagram of PriorityQueue showing its composition with
BinaryHeap and its relationship with PQNode



9.3 Priority Queues 271

1 template <typename T>
2 void PriorityQueue<T>::add(const T& data, int priority) {
3 PQNode<T> node(data, priority);
4 heap.add(node);
5 }

add Function: Adds an Element with Priority

Pop Operation
The pop function removes and returns the element with the highest priority, adjusting the
heap to maintain the Max-Heap property. This operation is efficient with a time complexity
of O(logn).

1 template <typename T>
2 T PriorityQueue<T>::pop() {
3 assert(!isEmpty() && "Priority queue is empty");
4 T val = heap.peek().data;
5 heap.deleteRoot();
6 return val;
7 }

pop Function: Removes and Returns the Highest Priority Element

Peek Operation
The peek function retrieves the element with the highest priority without removing it,
allowing you to inspect the top element of the priority queue efficiently. This operation
runs in O(1) time.

1 template <typename T>
2 T PriorityQueue<T>::peek() const {
3
4 assert(!isEmpty() && "Priority queue is empty");
5 return heap.peek().data;
6 }

peek Function: Returns the Highest Priority Element Without Removing It

9.3.4 Performance Analysis
The efficiency of a priority queue implemented with a heap is closely related to the perfor-
mance of the underlying heap operations:

• Insertion: O(logn) due to reordering the heap when adding new elements
• Pop: O(logn) as it involves removing the root and rebalancing the heap
• Peek: O(1) as it simply accesses the root without modifying the heap



272 Chapter 9. Specialized Data Structures and Techniques

Note: The use of a Max-Heap configuration allows the PriorityQueue to efficiently
manage elements based on their priority, ensuring that the highest priority element is
always quickly accessible.

This structure provides an efficient and scalable approach to managing elements based
on priority, making it suitable for a variety of high-performance applications

9.4 Maps
9.4.1 Introduction to Maps

Maps, also known as dictionaries or associative arrays, are data structures that store key-
value pairs. They provide an efficient way to associate data (values) with unique identifiers
(keys). Maps are widely used in various applications, such as implementing databases,
caching mechanisms, etc.

9.4.2 Key-Value Pairs
A key-value pair consists of a unique key and its associated value. The key acts as a
unique identifier for the associated value. Keys are used to identify and access values
quickly, making them essential for the efficient performance of maps. Keys must be unique
within a map to ensure that each value can be accurately and efficiently retrieved. Examples
of keys include

• Employee IDs
• Product codes
• Usernames
The value is the data associated with a specific key. When a key is provided, the map

uses it to quickly locate and retrieve the corresponding value. Values can be any type of
data, such as

• Names of employees
• Descriptions of products
• User profiles

Figure 9.12: Example of key-value pairs: each unique key (Employee ID) is associated
with a value (Employee Name)



9.4 Maps 273

As shown in Figure 9.12, each unique key (Employee ID) is associated with a value
(Employee Name). This demonstrates how maps store and retrieve data efficiently. For
instance, keys 101, 102, and 103 are associated with values "Alice," "Bob," and "Charlie,"
respectively.

Figure 9.13: The structure of a key-value pair

Figure 9.13 illustrates the structure of a key-value pair. The separation of the key and
value into distinct components allows maps to perform efficient lookups, updates, and
deletions. This structure is fundamental in various applications, from databases to caching
systems.

9.4.3 Map Structure
The primary operations supported by maps include insertion, deletion, and lookup of key-
value pairs. The efficiency of these operations is crucial for the performance of applications
that rely on maps.

As shown in Figure 9.14, the map structure consists of an array of buckets, each point-
ing to the head of a linked list. This approach, known as separate chaining, is used to
handle collisions. When multiple keys hash to the same bucket, their key-value pairs are
stored in the linked list associated with that bucket.

� Example 9.8 Key-Value Pairs in Map
In this example (see Figure 9.14):

• "Alice" with key 101 and "David" with key 111 are both stored in bucket 0.
• "Bob" with key 102 is stored in bucket 3.
• "Charlie" with key 103 is stored in bucket 4.

�

The array contains a fixed number of buckets, typically denoted by m. The array can be
resized, but this requires rehashing to ensure keys are placed in their proper new locations.

9.4.4 Implementing a Map
We will build a simple map data structure in C++ using a ChainedHashTable for sep-
arate chaining to handle collisions. The ChainedHashTable class was implemented in
Chapter 6 and will be used here as part of the Map implementation.

Pair Implementation
Let’s start by defining the Pair structure that holds the key-value pairs. The Pair struc-
ture encapsulates a key and its corresponding value, providing constructors for initializa-
tion, operator overloading for comparisons, and implicit conversion for easy access.



274 Chapter 9. Specialized Data Structures and Techniques

Figure 9.14: Structure of the map with array of buckets and linked lists for separate chain-
ing

1 template <typename K, typename V>
2 struct Pair {
3 K key;
4 V value;
5
6 // Constructors
7 Pair() : key(K()), value(V()) {}
8 Pair(K k, V v) : key(k), value(v) {}
9
10 // Overloading equality operator for comparison
11 bool operator==(const Pair& other) const {
12 return key == other.key;
13 }
14
15 // Implicit conversion to key type
16 operator K() const {
17 return key;



9.4 Maps 275

18 }
19 };

Pair Structure Definition

The Pair structure ensures that each key is unique and can be efficiently compared
and stored within the ChainedHashTable.

Map Class Definition
Next, we define the Map class, which uses ChainedHashTable with templates to han-
dle the Pair structure, allowing for flexible key-value pair storage. This class provides
essential operations such as adding, removing, and retrieving key-value pairs.

1 template <typename K, typename V>
2 class Map {
3 public:
4 Map(int buckets=64) : table(buckets) {}
5
6 // Add a key-value pair into the map
7 void add(K key, V value);
8
9 // Removes a key-value pair from the map

10 void remove(K key);
11
12 // Looks up the value associated with a key
13 V get(K key) const;
14
15 // Get all key-value pairs
16 DynamicArray<Pair<K, V>> getAll() const;
17
18 // Print the contents of the map
19 void print() const;
20
21 size_t getSize() const {
22 return table.getSize();
23 }
24 private:
25 ChainedHashTable<Pair<K, V>> table;
26 };

Map Class Interface

The Map class leverages the underlying ChainedHashTable for efficient manage-
ment of key-value pairs, utilizing separate chaining to handle collisions.



276 Chapter 9. Specialized Data Structures and Techniques

The class diagram (refer to Figure 9.15) provides an overview of the structure and
relationships within the Map class. In this implementation, the Map class is composed of
a ChainedHashTable, a generic structure that implements the ISet interface. This
allows it to store collections of Pair objects, where each Pair encapsulates a key-value
relationship.

Figure 9.15: Class diagram of Map showing its relationship with ChainedHashTable,
Pair, and ISet

Add Operation
Next, let’s implement the add operation. This function adds a key-value pair to the map,
handling collisions by appending the pair to the appropriate linked list.

1 template <typename K, typename V>
2 void Map<K, V>::add(K key, V value) {
3 table.add(Pair<K, V>(key, value));
4 }

add Function: Adds a Key-Value Pair

In this code, the add function creates a new Pair object with the given key and value
and then calls the add method on the ChainedHashTable to insert it.

Deletion Operation
The deletion operation removes a key-value pair from the map. It involves finding the
appropriate linked list using the hash function and then removing the pair from the linked
list.



9.4 Maps 277

1 template <typename K, typename V>
2 void Map<K, V>::remove(K key) {
3 Pair<K, V> temp(key, V());
4 table.remove(temp);
5 }

remove Function: Removes a Key-Value Pair

In this code, the remove function creates a temporary Pair object with the given key
and a default value and then calls the remove method on the ChainedHashTable to
remove the pair.

Lookup Operation
The lookup operation retrieves the value associated with a given key. It uses the hash
function to find the appropriate linked list and then searches for the key in that list.

1 template <typename K, typename V>
2 V Map<K, V>::get(K key) const {
3 Pair<K, V> temp(key, V());
4 if (table.contains(temp)) {
5 auto& bucket = table.get(temp);
6
7 for (size_t i = 0; i < bucket.getSize(); ++i) {
8 if (bucket.get(i).key == key) {
9 return bucket.get(i).value;

10 }
11 }
12 }
13 throw std::runtime_error("Key not found");
14 }

get Function: Retrieves the Value Associated with a Key

In this code, the get function creates a temporary Pair object with the given key and
a default value, checks if the ChainedHashTable contains the pair, and then iterates
through the linked list at the appropriate bucket to find and return the value associated with
the key. If the key is not found, an exception is thrown.

Display Operation
Finally, let’s implement a function to print the contents of the map. This function iterates
through each bucket and prints the key-value pairs.



278 Chapter 9. Specialized Data Structures and Techniques

1 template <typename K, typename V>
2 void Map<K, V>::print() const {
3 table.print();
4 }

print Function: Displays the Contents of the Map

In this code, the print function calls the printmethod of the ChainedHashTable,
which iterates through each bucket and prints the key-value pairs stored in that bucket.

Complete Example
Here is a complete example that demonstrates the usage of the Map class:

1 int main() {
2 Map<int, string> map(10);
3
4 // Inserting key-value pairs
5 map.add(1, "One");
6 map.add(2, "Two");
7 map.add(3, "Three");
8
9 // Display the map
10 std::cout << "Map contents:\n";
11 map.print();
12
13 // Looking up a value
14 try {
15 std::cout << "Value for key 2: "
16 << map.get(2) << "\n";
17 } catch (const std::runtime_error& e) {
18 std::cout << e.what() << "\n";
19 }
20
21 // Removing a key-value pair
22 map.remove(2);
23 std::cout << "Map after removing key 2:\n";
24 map.print();
25
26 return 0;
27 }

Map Usage Example

In the main function, we create a Map object with ten buckets, insert key-value pairs,
print the map, look up a value, and remove a key-value pair.



9.5 A Space-Efficient Linked List 279

Performance Analysis
The performance of the map operations is crucial for many applications. Here is a brief
analysis:

• Insertion: The average time complexity for insertion is O(1) due to the efficient
handling of collisions using separate chaining. However, in the worst case, it can
degrade to O(c), where c is the length of the longest chain.

• Deletion: The average time complexity for deletion is O(1) for similar reasons. In
the worst case, the time complexity can also degrade to O(c).

• Lookup: The average time complexity for lookup is O(1), making maps highly
efficient for quick data retrieval. As with insertion and deletion, the worst-case time
complexity is O(c).

In conclusion, maps are versatile and efficient data structures that are widely used in
various applications. By understanding their implementation and performance character-
istics, you can make better decisions when designing systems that require efficient data
storage and retrieval.

9.5 A Space-Efficient Linked List
A space-efficient linked list is a variation of traditional linked lists designed to reduce
pointer overhead by storing multiple elements in each node. Instead of each node con-
taining a single data value and pointers, each node contains an array of data values. This
design minimizes the number of pointers, thereby reducing memory usage and potentially
improving cache performance.

9.5.1 Structure of a Space-Efficient Linked List
In a space-efficient linked list, each node contains an array of data values and pointers to
both the next and previous nodes. This structure reduces the number of pointers needed, as
multiple data values are stored within each node.

Figure 9.16: Structure of a space-efficient linked list node. Each node contains an array of
data values and pointers to the next and previous nodes



280 Chapter 9. Specialized Data Structures and Techniques

As shown in Figure 9.16, each node stores an array of data values, effectively reducing
the number of nodes and pointers compared to traditional linked lists. This compact design
not only lowers memory usage but also improves cache locality, enhancing performance
during traversal and manipulation.

Example: Pointer Complexity
To understand the benefits of a space-efficient linked list, let’s compare the number of
pointers needed for storing 1000 records in singly-linked lists, doubly-linked lists, and
space-efficient linked lists with different array sizes.

In a singly-linked list, each node contains a single data value and a pointer to the next
node. Therefore, for 1000 records, we need 1000 pointers. In a doubly-linked list, each
node contains a single data value and pointers to both the next and previous nodes. There-
fore, for 1000 records, we need 2000 pointers (1000 next pointers + 1000 previous point-
ers).

In a space-efficient linked list, each node contains an array of data values. Let’s con-
sider two scenarios: using an array size of m= 50 and m= 200. If we divide 1000 records
into arrays of size 50, we will have 20 nodes, each containing 50 data values. The num-
ber of pointers needed is 40 (20 next pointers + 20 previous pointers). If we divide 1000
records into arrays of size 200, we will have 5 nodes, each containing 200 data values. The
number of pointers needed is 10 (5 next pointers + 5 previous pointers).

Table 9.1: Comparison of Space Complexity for Different Linked Lists

Linked List Type Pointers per
Node

Total Number of
Pointers

Additional
Space Complex-
ity

Singly-Linked List 1 1000 O(n)
Doubly-Linked List 2 2000 O(2n)≈ O(n)
Space-Efficient (m= 50) 2 40 O(n/m)
Space-Efficient (m= 200) 2 10 O(n/m)

As shown in Table 9.1, a singly-linked list with 1000 records requires 1000 pointers.
A doubly-linked list with 1000 records requires 2000 pointers. A space-efficient linked
list with an array size of m = 50 requires 40 pointers, significantly reducing the pointer
overhead. A space-efficient linked list with an array size of m = 200 requires only 10
pointers, further reducing the pointer overhead.

It is important to note that the additional space complexity shown in the table is in
addition to the space required for storing the data itself. By reducing the number of pointers
through the use of space-efficient linked lists, we achieve lower memory overhead and
potentially better cache performance, especially for large datasets. However, it’s important
to balance the node array size and the complexity of operations to suit the specific needs
of the application.



9.5 A Space-Efficient Linked List 281

9.5.2 Node Definition
A node in a space-efficient linked list stores multiple data elements in an array within each
node, reducing the number of pointers required. This section defines the ListNode class
used in the implementation of a space-efficient linked list.

1 template <typename T>
2 struct ListNode {
3 T* dataArray; // Array of data values
4 size_t size; // Number of elements in the array
5 size_t capacity; // Array Capacity
6 ListNode* next; // Pointer to the next node
7 ListNode* prev; // Pointer to the previous node
8
9 ListNode(int arraySize);

10 ~ListNode();
11 };

ListNode Structure Definition

In this implementation, each ListNode contains:
• dataArray: A dynamically allocated array of data values
• size: The current number of elements stored in the array
• capacity: The maximum number of elements the array can hold
• next and prev: Pointers to the next and previous nodes, respectively, allowing
bidirectional traversal of the list

Constructor and Destructor for ListNode

The constructor initializes the node by allocating memory for the data array and setting the
size and pointer fields appropriately. The destructor releases the memory allocated for the
data array, ensuring proper resource management.

1 template <typename T>
2 ListNode<T>::ListNode(int arraySize)
3 : size(0), capacity(arraySize),
4 next(nullptr), prev(nullptr) {
5 dataArray = new T[arraySize];
6 }
7
8 template <typename T>
9 ListNode<T>::~ListNode() {
10 delete[] dataArray;
11 }

Constructor and Destructor of ListNode



282 Chapter 9. Specialized Data Structures and Techniques

9.5.3 Implementation of Space-Efficient Linked List
The operations on a space-efficient linked list are similar to those on a traditional linked
list, but they need to account for the fact that each node contains an array of data values.

Class Definition for SEList

We define the SEList class, which inherits from the IList interface and uses a dummy
node to simplify edge cases, such as insertion and deletion at the boundaries.

1 template <typename T>
2 class SEList : public IList<T> {
3 public:
4 SEList(int arraySize);
5 ~SEList();
6
7 // Space-Efficient List-specific function
8 void printSubLists(const std::string& sep = "->") const;
9
10 // Abstract Interface methods implementation...
11
12 private:
13 ListNode<T>* dummy;
14 size_t nodeArraySize;
15 };

SEList Class Interface

The class diagram (refer to Figure 9.17) provides an overview of the structure and rela-
tionships within the SEList class. The SEList class inherits from the IList interface
and is composed of multiple ListNode objects.

Figure 9.17: Class diagram of SEList, illustrating its inheritance from IList and its
composition with ListNode



9.5 A Space-Efficient Linked List 283

Constructor and Destructor
The constructor initializes the list with a dummy node and sets the node array size. The
destructor clears the list and deletes the dummy node, ensuring all allocated memory is
properly released.

1 template <typename T>
2 SEList<T>::SEList(int arraySize)
3 : nodeArraySize(arraySize) {
4 dummy = new ListNode<T>(arraySize);
5 dummy->next = dummy;
6 dummy->prev = dummy;
7 }
8
9 template <typename T>
10 SEList<T>::~SEList() {
11 // Clear all nodes
12 clear();
13 // Delete the dummy node
14 delete dummy;
15 }

Constructor and Destructor of SEList

Clear and Print Functions
The clear function removes all nodes from the list, resetting it to an empty state. The
print function displays the elements of the list sequentially, while printSubLists
provides a more structured view, showing the elements within each sublist separated by a
custom delimiter.

1 template <typename T>
2 void SEList<T>::clear() {
3 ListNode<T>* curr = dummy->next;
4 while (curr != dummy) {
5 ListNode<T>* nextNode = curr->next;
6 delete curr;
7 curr = nextNode;
8 }
9 dummy->next = dummy;
10 dummy->prev = dummy;
11 this->size = 0;
12 }
13
14 template <typename T>
15 void SEList<T>::print() const {



284 Chapter 9. Specialized Data Structures and Techniques

16 ListNode<T>* curr = dummy->next;
17 while (curr != dummy) {
18 for (int i = 0; i < curr->size; ++i) {
19 std::cout << curr->dataArray[i] << " ";
20 }
21 curr = curr->next;
22 }
23 std::cout << std::endl;
24 }
25
26 template <typename T>
27 void SEList<T>::printSubLists(const std::string& sep) const{
28 ListNode<T>* curr = dummy->next;
29
30 while (curr != dummy) {
31 std::cout << "[";
32 for (size_t i = 0; i < curr->size; ++i) {
33 std::cout << curr->dataArray[i];
34 if (i < curr->size - 1) {
35 std::cout << ", ";
36 }
37 }
38 std::cout << "]";
39 if (curr->next != dummy) {
40 std::cout << sep;
41 }
42 curr = curr->next;
43 }
44 std::cout << std::endl;
45 }

clear, print, and printSubLists Functions: Managing and Displaying Ele-
ments

Accessing Operations
In a space-efficient linked list, elements are distributed across multiple nodes, each con-
taining an array. When accessing an element, the list is viewed as a contiguous array, but
the actual storage is split among nodes. For example, consider an array of size n divided
into two nodes, each with an array size m.

As shown in Figure 9.18, Node 1 contains elements indexed from 0 to m−1, and Node
2 contains elements indexed from m to 2m− 1. To access the element at index 5, it is
located in Node 2 at local index 1 (since 5−m= 1).



9.5 A Space-Efficient Linked List 285

Figure 9.18: Illustration of array indexing in a space-efficient linked list

Array indexing is calculated by first navigating to the correct node and then using the
local index within that node.

The operator[] function provides a convenient mechanism for accessing elements
by their index. By overloading the operator[], we can retrieve elements similarly to
standard arrays. The get function leverages this operator to return the element at the speci-
fied index, ensuring consistent range checking to prevent out-of-bounds errors. Conversely,
the set function identifies the appropriate node and the specific index within that node to
update the value, maintaining the list structure’s integrity.

1 template <typename T>
2 T& SEList<T>::operator[](size_t index) {
3 assert(index <= this->size && "Index out of range");
4
5 ListNode<T>* curr = dummy->next;
6 while (curr != dummy && index >= curr->size) {
7 index -= curr->size;
8 curr = curr->next;
9 }
10 return curr->dataArray[index];
11 }
12
13 template <typename T>
14 T SEList<T>::get(size_t index) const {
15 return const_cast<SEList<T>&>(*this)[index];
16 }
17
18 template <typename T>
19 void SEList<T>::set(size_t index, const T item) {



286 Chapter 9. Specialized Data Structures and Techniques

20 assert(index <= this->size && "Index out of range");
21
22 ListNode<T>* curr = dummy->next;
23 while (curr != dummy && index >= curr->size) {
24 index -= curr->size;
25 curr = curr->next;
26 }
27 curr->dataArray[index] = item;
28 }

operator[], get, and set Functions: Accessing and Modifying Elements in the
SEList

Lookup Operation
The indexOf function finds the index of the specified item in the list by traversing the
list, checking each element in the node’s array. If the item is found, it returns the index. If
the item is not found, it returns –1.

1 template <typename T>
2 int SEList<T>::indexOf(const T item) const {
3 ListNode<T>* curr = dummy->next;
4 int currIndex = 0;
5
6 while (curr != dummy) {
7 for (size_t i = 0; i < curr->size; ++i) {
8 if (curr->dataArray[i] == item) {
9 return currIndex + i;
10 }
11 }
12 currIndex += curr->size;
13 curr = curr->next;
14 }
15 return -1; // Item not found
16 }

indexOf Function: Finds the Index of an Item in the SEList

Insertion Operation
In traditional linked lists, inserting a node at a specific position involves navigating to the
desired location and adjusting a few pointers. However, in a space-efficient linked list
where each node contains an array of elements, the process becomes more complex due
to the need to manage array boundaries and potentially shift elements. To simplify the
shifting of all elements, we can opt to split the array if it is full. Figure 9.19 illustrates the
steps involved in the insertAt operation.



9.5 A Space-Efficient Linked List 287

The insertAt function performs the following steps:
1. Navigate to the Appropriate Node: Traverse the list to find the node that contains

the desired index.
2. Handle Cases

• Case 1: If the List Is Empty: If the list is empty, insert into a new node.
• Case 2: If Inserting at the End: If inserting at the end of the list, either append
to the last node or create a new one.

• Case 3: Split the Node If Full: If the node is full, split it into two nodes and
adjust pointers accordingly.

• Case 4: Shift Elements and Insert: If the node is not full, shift elements
within the node to make room for the new element and insert it at the correct
position.

1 template <typename T>
2 void SEList<T>::insertAt(size_t index, const T item) {
3 // Ensure the index is within valid range
4 assert(index <= size && "Index out of range");
5
6 // CASE 1: Inserting into an empty list
7 if (size == 0) {
8 ListNode<T>* newNode
9 = new ListNode<T>(nodeArraySize);
10 newNode->dataArray[0] = item;
11 newNode->size = 1;
12 newNode->next = dummy;
13 newNode->prev = dummy;
14 dummy->next = newNode;
15 dummy->prev = newNode;
16 ++this->size;
17 return;
18 }
19
20 // Navigate to the appropriate node for insertion
21 ListNode<T>* curr = dummy->next;
22 size_t count = 0;
23
24 while (curr != dummy && count + curr->size <= index) {
25 count += curr->size;
26 curr = curr->next;
27 }
28
29 // CASE 2: If inserting at the end of the list
30 if (curr == dummy && count == index) {
31 curr = dummy->prev;



288 Chapter 9. Specialized Data Structures and Techniques

Figure 9.19: Illustration of the Insert At operation. If the node is full, the steps are as
follows: (1) create a new ListNode, (2) calculate the middle point, (3) copy the right
half to the new ListNode, (4) adjust the current ListNode size, and (5) adjust pointers

32
33 if (curr->size < curr->capacity) {
34 // Insert at the end of the last
35 // node if it has space
36 curr->dataArray[curr->size] = item;
37 ++curr->size;
38 ++this->size;
39 } else {
40 // Create a new node if the last node is full



9.5 A Space-Efficient Linked List 289

41 ListNode<T>* newNode
42 = new ListNode<T>(nodeArraySize);
43 newNode->dataArray[0] = item;
44 newNode->size = 1;
45 newNode->prev = curr;
46 newNode->next = dummy;
47 curr->next = newNode;
48 dummy->prev = newNode;
49 ++this->size;
50 }
51 return;
52 } else {
53 assert(curr != dummy &&
54 "Unexpected dummy node encountered");
55 }
56
57 // CASE 3: If the node is full, splitting it
58
59 // Calculate the local index within the node
60 size_t localIndex = index - count;
61
62 if (curr->size == curr->capacity) {
63 // (1) Create a new ListNode
64 ListNode<T>* newNode =
65 new ListNode<T>(nodeArraySize);
66 // (2) Calculate the middle point
67 size_t mid = curr->capacity / 2;
68 // (3) Copy the right half to the new ListNode
69 std::copy(curr->dataArray + mid,
70 curr->dataArray + curr->size,
71 newNode->dataArray);
72
73 newNode->size = curr->size - mid;
74 // (4) Adjust the current ListNode size
75
76 curr->size = mid;
77
78 // (5) Adjust pointers
79 newNode->next = curr->next;
80 newNode->prev = curr;
81 if (curr->next != nullptr) {
82 curr->next->prev = newNode;
83 }
84 curr->next = newNode;
85



290 Chapter 9. Specialized Data Structures and Techniques

86 // (6) Determine whether to insert in
87 // the new node or the current one
88 if (localIndex >= mid) {
89 curr = newNode;
90 localIndex -= mid;
91 }
92 }
93
94 // CASE 4: If the node is not full
95 // shift elements to free space for the new item
96
97 for (size_t i = curr->size; i > localIndex; --i) {
98 curr->dataArray[i] = curr->dataArray[i - 1];
99 }
100
101 // Insert the new item
102 curr->dataArray[localIndex] = item;
103 ++curr->size;
104 ++this->size;
105 }

insertAt Function: Inserts an Item at a Specific Index in the SEList

Removal Operation
The removeAt function removes an item at a specified index. It performs the following
steps:

1. Navigate to the Appropriate Node: Traverse the list to find the node that contains
the desired index.

2. Shift Elements: Shift elements within the node to fill the gap created by the removed
element.

3. Delete the Node If Empty: If the node becomes empty after removal, delete it and
adjust the pointers accordingly.

1 template <typename T>
2 void SEList<T>::removeAt(size_t index) {
3 // Ensure the index is within valid range
4 assert(index < this->size && "Index out of range");
5
6 ListNode<T>* curr = dummy->next;
7 size_t count = 0;
8
9 // Navigate to the appropriate node
10 while (curr != dummy && count + curr->size <= index) {
11 count += curr->size;
12 curr = curr->next;



9.5 A Space-Efficient Linked List 291

13 }
14
15 // Ensure we have found a valid node
16 assert(curr != dummy &&
17 "Unexpected dummy node encountered");
18
19 // Calculate the local index within the node
20 size_t localIndex = index - count;
21
22 // Shift elements within the node
23 for (size_t i = localIndex; i < curr->size - 1; ++i) {
24 curr->dataArray[i] = curr->dataArray[i + 1];
25 }
26
27 --curr->size;
28 --this->size;
29
30 // Delete the node if it becomes empty
31 if (curr->size == 0) {
32 curr->prev->next = curr->next;
33 curr->next->prev = curr->prev;
34 delete curr;
35 }
36 // Optional: Handle merging of nodes if necessary
37 }

removeAt Function: Removes an Item at a Specific Index in the SEList

Push Front and Push Back
The pushFront and pushBack functions insert items at the beginning and end of the
list, respectively. These operations are essential for efficiently managing elements in a
space-efficient linked list, allowing for dynamic growth at both ends.

1 template <typename T>
2 void SEList<T>::pushFront(const T item) {
3 insertAt(0, item);
4 }
5
6 template <typename T>
7 void SEList<T>::pushBack(const T item) {
8 insertAt(size, item);
9 }

pushFront and pushBack Functions: Adds an Item to the Front or End of the
SEList



292 Chapter 9. Specialized Data Structures and Techniques

Pop Front and Pop Back
The popFront and popBack functions remove items from the beginning and end of
the list, respectively. These functions are crucial for manipulating the list from both ends,
providing flexibility in managing the elements.

1 template <typename T>
2 T SEList<T>::popFront() {
3 assert(!this->isEmpty() && "List is empty");
4
5 T item = get(0);
6 removeAt(0);
7 return item;
8 }
9
10 template <typename T>
11 T SEList<T>::popBack() {
12 assert(!this->isEmpty() && "List is empty");
13
14 T item = get(size - 1);
15 removeAt(size - 1);
16 return item;
17 }

popFront and popBack Functions: Removes and Returns an Item from the Front or
End of the SEList

Top Front and Top Back
The topFront and topBack return items at the beginning and end of the list without
removing them. These functions are useful for peeking at the elements at both ends of the
list, allowing access to the front and back elements efficiently.

1 template <typename T>
2 T SEList<T>::topFront() const {
3 assert(!this->isEmpty() && "List is empty");
4
5 return dummy->next->dataArray[0];
6 }
7
8 template <typename T>
9 T SEList<T>::topBack() const {
10 assert(!this->isEmpty() && "List is empty");
11
12 return get(this->size - 1);



9.5 A Space-Efficient Linked List 293

13 }

topFront and topBack Functions: Returns an Item from the Front or End Without
Removing It

9.5.4 Performance Analysis
In an optimized linked list, each node holds an array of elements, which decreases the num-
ber of pointers required compared to conventional linked lists. This lowers memory usage
and can enhance performance efficiency. Nonetheless, some operations, like inserting or
deleting elements at particular positions, may become more complex due to the need to
manage arrays within nodes.

• Time Complexity
– Insertion or Removal at Specific Location: O(n/m+m) – Navigating to the
appropriate node takes O(n/m) time, and shifting elements within the node
takes O(m) time. This combined time accounts for both traversal and adjust-
ment within nodes.

– Access (Get, Set): O(n/m) – Accessing elements requires locating the cor-
rect node, which takes O(n/m) time, as nodes store multiple elements, making
access faster compared to traditional linked lists.

• Space Complexity: O(n+ n/m) – The number of pointers needed is reduced to
O(n/m), in addition to the space required for storing the data itself. In comparison,
a traditional singly-linked list requires 2n pointers (one for each element and one for
the next pointer), and a doubly-linked list requires 3n pointers (one for each element,
one for the next pointer, and one for the previous pointer).

9.5.5 Advantages and Trade-Offs
The space-efficient linked list offers several advantages over traditional linked lists:

• Reduced Pointer Overhead: By storing multiple data values in each node, the num-
ber of pointers is significantly reduced, leading to lower memory overhead.

• Improved Cache Performance: Accessing an array of data values within a node can
lead to better cache performance compared to accessing individual nodes scattered
in memory.

However, there are also some trade-offs:
• Complexity of Operations: Insertion, deletion, and traversal operations become
more complex due to the need to manage arrays within nodes.

• Memory Allocation: Nodes require dynamic memory allocation for their arrays,
which can cause increased complexity in memory management.

In summary, a space-efficient linked list provides a balance between the flexibility of
linked lists and the space efficiency of arrays. By understanding the structure and opera-
tions of this data structure, developers can make informed decisions about when and how
to use it in their applications. The reduction in pointer overhead and improved cache perfor-
mance make it a compelling choice for scenarios where space efficiency and performance
are crucial, though it requires careful management of insertion and deletion operations.



294 Chapter 9. Specialized Data Structures and Techniques

9.6 Skip Lists
Skip lists are a probabilistic data structure that allows fast search, insertion, and deletion
operations within an ordered sequence of elements. They are an alternative to balanced
trees and are often easier to implement. Skip lists use a layered linked list structure, where
each layer skips multiple elements to enable faster traversal.

9.6.1 Introduction to Skip Lists
Skip lists use multiple levels of linked lists to maintain order and allow for efficient search
operations. The idea is to have multiple layers where each layer is a subset of the previ-
ous one, with the bottom layer containing all the elements in sorted order. Higher layers
provide “shortcuts” to speed up the search process.

Figure 9.20: Structure of a skip list. The bottom layer contains all elements in sorted order,
while higher layers provide shortcuts

As illustrated in Figure 9.20, a skip list consists of multiple levels. The lowest level
contains all the elements, and each higher level acts as an express lane, skipping multiple
elements of the lower level.

9.6.2 Skip List Structure and Rules
The structure and behavior of a skip list are governed by the following rules.

Levels and Nodes
The skip list consists of multiple levels of linked lists, and each node within these levels
has specific characteristics:



9.6 Skip Lists 295

• Multiple Levels: The bottom level (level 0) contains all the elements in sorted order.
Each higher level acts as an express lane that skips multiple elements.

• Nodes: Each node in a skip list contains a value and multiple forward pointers, one
for each level (see Figure 9.21).

• Number of Levels: The number of levels for each node is determined randomly,
typically using a geometric distribution with a fixed probability p. For example,
with p= 0.5, the probability that a node appears in level i is pi.

• Maximum Level: The maximum level of any node is capped by a predefined limit,
which is usually logarithmic to the number of elements in the skip list.

Note: The maximum number of levels in a skip list grows logarithmically with the
number of elements n. Approximately half of the nodes are at level 1, a quarter at level
2, an eighth at level 3, and so forth. This distribution ensures that operations like search,
insertion, and deletion can be performed in O(logn) time on average.

Figure 9.21: Illustration of a skip list node. Each node contains a value and multiple for-
ward pointers, with the number of forward pointers determined randomly. In this example,
the node has forward pointers at levels L0, L1, L2, and L3. The pointer at level L1 skips to
Node X , the pointer at level L2 skips to Node Y , and the pointer at level L3 skips to Node
Z. The data values maintain the order such that Data(X)< Data(Y )< Data(Z)

Insertion Rules
The following rules must be followed when inserting a new element into a skip list:

• Insert at All Levels: When inserting a new element, it is added to all levels from
level 0 up to the randomly assigned level.

• Maintain Order: Each level must maintain the order of elements. The forward
pointers of the nodes are updated to ensure that the new node is correctly placed at
each level.



296 Chapter 9. Specialized Data Structures and Techniques

Search Rules
To search for an element in a skip list, the following rules are followed:

• Start from the Top: To search for an element, the process starts from the highest
level and moves forward as long as the next element is less than the search value.

• Drop Down a Level: If moving forward is not possible (either the next element is
greater than or equal to the search value, or the end of the level is reached), the search
drops down to the next lower level and continues.

• Reach the Target: This process continues until the search either finds the target
element or reaches level 0 and confirms the element is not present.

Deletion Rules
The following rules must be observed when deleting an element from a skip list:

• Remove from All Levels: When deleting an element, it is removed from all levels
where it appears.

• Update Pointers: The forward pointers of the preceding nodes are updated to bypass
the deleted node and maintain the skip list structure.

9.6.3 Node Structure Definition
First, we define the SKNode structure that contains a value and an array of forward point-
ers. The forward array stores pointers to nodes at different levels, allowing each node to
participate in multiple layers of the skip list.

1 template <typename T>
2 struct SKNode {
3 T value;
4 DynamicArray<SKNode*> forward;
5
6 // Constructor
7 SKNode(int level, T val) : value(val),
8 forward(level + 1) {
9 for (int i = 0; i <= level; ++i) {
10 forward[i] = nullptr;
11 }
12 }
13 };

SKNode Structure Definition

9.6.4 Skip List Class Definition
Next, we define the SkipList class, which manages the nodes and provides the necessary
operations for searching, insertion, and deletion. The SkipList class inherits from the
ISet interface.



9.6 Skip Lists 297

1 template <typename T>
2 class SkipList : public ISet<T> {
3 public:
4 SkipList(int maxLevel, float probability);
5 ~SkipList();
6
7 // Inserts a value into the skip list
8 bool add(const T value);
9
10 // Removes a value from the skip list
11 bool remove(const T value);
12
13 // Searches for a value in the skip list
14 bool contains(const T value) const;
15
16 // Clears the skip list
17 void clear();
18
19 // Displays the contents of the skip list
20 void print() const;
21
22 private:
23 int maxLevel;
24 float probability;
25 SKNode<T>* head;
26
27 // To determine the random level
28 int randomLevel();
29 };

SkipList Class Interface

The class diagram (refer to Figure 9.22) provides an overview of the structure and re-
lationships within the SkipList class. The SkipList class inherits from the ISet
interface and is composed of multiple SKNode objects, each containing an array of for-
ward pointers.

9.6.5 Implementing Operations
Constructor and Destructor
The constructor initializes the skip list with a maximum level and probability, setting up the
head node and seeding the random number generator. The destructor cleans up allocated
memory by deleting the head node.



298 Chapter 9. Specialized Data Structures and Techniques

Figure 9.22: Class diagram of SkipList showing its inheritance from ISet and its
composition with SKNode

1 template <typename T>
2 SkipList<T>::SkipList(int maxLevel, float probability)
3 : maxLevel(maxLevel), probability(probability) {
4 // Initialize head node with dummy value
5 head = new SKNode<T>(maxLevel, T());
6 // Seed the random number generator
7 srand(time(nullptr));
8 }
9
10 template <typename T>
11 SkipList<T>::~SkipList() {
12 clear();
13 delete head;
14 }

Constructor and Destructor for SkipList

Random Level Generation
The randomLevel function generates a random level for node insertion based on the
specified probability. This function helps maintain the probabilistic balancing of the skip
list.

1 template <typename T>
2 int SkipList<T>::randomLevel() {
3 int level = 0;
4 while ((rand() / double(RAND_MAX)) < probability
5 && level < maxLevel) {
6 level++;



9.6 Skip Lists 299

7 }
8 return level;
9 }

randomLevel Function: Generate Levels

Lookup Operation
Searching in a skip list involves traversing the express lanes at higher levels and dropping
down to lower levels as needed. This process allows for efficient location of the target
element.

The step-by-step lookup process is as follows:
1. Start from the Top Level: Begin the search at the highest level of the skip list.
2. Traverse Forward: Move forward in the current level as long as the next node’s

value is less than the target value.
3. Drop Down a Level: If moving forward is not possible, drop down to the next lower

level and continue the search.
4. Check the Bottom Level: Once at the bottom level, check if the current node’s

forward pointer points to the target value.

Figure 9.23: Example of skip list with element lookup. The element 19 is found by travers-
ing the levels and moving forward

� Example 9.9 Lookup Operation
Consider a skip list with levels 0 to 3 and the following elements: 1, 3, 7, 9, 12, 19,
25, 30. Let’s go through an example where we search for an element (e.g., 19) in the
existing skip list (see Figure 9.23).



300 Chapter 9. Specialized Data Structures and Techniques

• Start from the Top Level: At level 3, the head’s forward[3] points to node 9,
which is less than 19, so we skip to the node with value 9.

• Traverse Forward: Since there is no forward[3] from node 9, we drop down
to level 2.

• Drop Down a Level: At level 2, node 9 does not have a forward[2] pointer,
so we drop down to level 1.

• Traverse Forward: At level 1, node 9’s forward[1] points to node 12, which
is less than 19, so we skip to node 12.

• Drop Down a Level: At level 1, node 12’s forward[1] points to node 25,
which is greater than 19, so we drop down to level 0.

• Check the Bottom Level: Finally, at level 0, the forward[0] pointer from
node 12 points to node 19, confirming the target value.

In this process, the element 19 is found by traversing the levels and moving forward,
skipping unnecessary nodes.

�

1 template <typename T>
2 bool SkipList<T>::contains(const T value) const {
3 SKNode<T>* curr = head;
4 for (int i = maxLevel; i >= 0; i--) {
5 while (curr->forward[i] != nullptr
6 && curr->forward[i]->value < value) {
7 curr = curr->forward[i];
8 }
9 }
10 curr = curr->forward[0];
11 return curr != nullptr && curr->value == value;
12 }

contains Function: Lookup in Skip List

Insertion Operation
Inserting a new element into a skip list involves several critical steps to ensure the element
is placed correctly across multiple levels, maintaining the skip list’s efficiency and order.
The process also includes checks to prevent duplicate entries.

The step-by-step insertion process is as follows:
1. Navigate to the Insert Position: Start at the highest level and traverse the skip list

to find the appropriate position for the new element at each level.
2. Handle Duplicate Check: Before insertion, check if the value already exists in the

skip list to prevent duplicates.



9.6 Skip Lists 301

3. Determine the Level: Use a random level assignment to determine the number of
levels for the new node.

4. Insert the Node: Insert the new node by updating the forward pointers at each level
where the node should appear.

Figure 9.24: Example of skip list with element insertion. The new element 15 is added at
levels 0 and 1, and the pointers are updated accordingly

� Example 9.10 Skip List Operations
Consider a skip list with levels 0 to 3 and the following elements: 1, 3, 7, 9, 12, 19,
25, 30. Let’s go through an example where we insert a new element (e.g., 15) into the
existing skip list (see Figure 9.24).

1. Random Level Assignment: Suppose the random level assigned to the new node
with value 15 is 1.

2. Find Insert Position:
• Start at the highest level (level 3). The head’s forward[3] points to node
9, which is less than 15, so we skip to the node with value 9.

• At level 3, there are no further forward pointers, so we drop down to level 2.
• At level 2, node 9 does not have a forward[2] pointer, so we drop down
to level 1.



302 Chapter 9. Specialized Data Structures and Techniques

• At level 1, node 9’s forward[1] points to node 12, which is less than 15,
so we skip to node 12.

• Drop down to level 0. Node 12’s forward[0] points to node 19, which is
greater than 15, so the correct position for 15 is between nodes 12 and 19.

3. Insert the Node: Update the forward pointers at levels 0 and 1 to include the
new node with value 15. At level 1, node 12’s forward[1] now points to the
new node 15, and node 15’s forward[1] points to node 25. Similarly, at level 0,
node 12’s forward[0] points to the new node 15, and node 15’s forward[0]
points to node 19.

During this process, update[i] arrays are used to track the nodes where updates
are needed for each level.

After insertion, the structure of the skip list is updated, and the forward pointers are
adjusted to maintain the correct order. �

1 template <typename T>
2 bool SkipList<T>::add(const T value) {
3 DynamicArray<SKNode<T>*> update(maxLevel + 1);
4 SKNode<T>* curr = head;
5
6 // Find the position to insert
7 for (int i = maxLevel; i >= 0; i--) {
8 while (curr->forward[i] != nullptr
9 && curr->forward[i]->value < value) {
10 curr = curr->forward[i];
11 }
12 update[i] = curr;
13 }
14 curr = curr->forward[0];
15
16 // If value already exists, return false
17 if (curr != nullptr && curr->value == value) {
18 return false;
19 }
20
21 // Determine the level for the new node
22 int level = randomLevel();
23 SKNode<T>* newNode = new SKNode<T>(level, value);
24
25 // Insert the new node and update forward pointers
26 for (int i = 0; i <= level; i++) {
27 newNode->forward[i] = update[i]->forward[i];
28 update[i]->forward[i] = newNode;
29 }



9.6 Skip Lists 303

30 this->size++;
31 return true;
32 }

add Function: Insert in Skip List

Deletion Operation
Deletion in a skip list involves removing the element from all levels where it appears.
This operation ensures that the skip list structure remains consistent after the element is
removed.

The step-by-step deletion process is as follows:
1. Find the Element: Starting from the highest level, traverse the skip list to locate the

node that precedes the element to be deleted at each level.
2. Check for Existence: Confirm that the element exists in the skip list before proceed-

ing with the deletion.
3. Update Pointers: Adjust the forward pointers of the preceding nodes to bypass the

node being deleted.
4. Remove the Node: Delete the node from memory to complete the deletion process

and decrease the size of the list.

Figure 9.25: Example of skip list with element deletion. The element 15 is removed, and
the pointers are updated accordingly

� Example 9.11 Deletion in a Skip List
Consider a skip list with levels 0 to 3 and the following elements: 1, 3, 7, 9, 12, 15, 19,
21, 25, 30. Let’s go through an example where we delete an element (e.g., 15) from the
existing skip list (see Figure 9.25).



304 Chapter 9. Specialized Data Structures and Techniques

1. Find the Element:
• Start at the highest level (level 3). Since the head’s forward[3] points to
node 9, which is less than 19, move to node 9.

• At level 3, there are no further forward pointers, so we drop down to level 2.
• At level 2, node 9 does not have a forward[2] pointer to node 15, so drop
down to level 1.

• At level 1, traverse through nodes 12 to find the position before 15.
• Finally, at level 0, locate the node immediately before 15.

2. Check for Existence: Ensure that the element 15 exists in the list before proceed-
ing.

3. Update Pointers: Adjust the forward pointers at each level to bypass the node
containing 15.

4. Remove the Node: Delete the node from memory and update the size of the skip
list.

After deletion, the structure of the skip list is updated, and the forward pointers are
adjusted to maintain the correct order. �

1 template <typename T>
2 bool SkipList<T>::remove(const T value) {
3 DynamicArray<SKNode<T>*> update(maxLevel + 1);
4 SKNode<T>* curr = head;
5
6 // Find the position to remove
7 for (int i = maxLevel; i >= 0; i--) {
8 while (curr->forward[i] != nullptr
9 && curr->forward[i]->value < value) {
10 curr = curr->forward[i];
11 }
12 update[i] = curr;
13 }
14
15 curr = curr->forward[0];
16 if (curr == nullptr || curr->value != value) {
17 return false; // Value not found
18 }
19
20 // Update forward pointers and delete the node
21 for (int i = 0; i <= maxLevel; i++) {
22 if (update[i]->forward[i] != curr) {
23 break;
24 }
25 update[i]->forward[i] = curr->forward[i];
26 }



9.6 Skip Lists 305

27
28 delete curr;
29 this->size--;
30 return true;
31 }

remove Function: Delete in Skip List

Display Operation

Finally, let’s implement a function to display the contents of the skip list. This function
prints each level of the skip list, showing the values contained at that level in sequence.

1 template <typename T>
2 void SkipList<T>::print() const {
3 for (int i = maxLevel; i >= 0; i--) {
4 SKNode<T>* current = head->forward[i];
5 std::cout << "Level " << i << ": ";
6 while (current != nullptr) {
7 std::cout << current->value << " ";
8 current = current->forward[i];
9 }
10 std::cout << std::endl;
11 }
12 }

print Function: Display Skip List

In this code, the print function prints the values at each level of the skip list, starting
from the highest level down to level 0. By iterating over the forward pointers at each
level, it displays the sequence of nodes in the skip list, providing a clear visualization of its
layered structure.

9.6.6 Performance Analysis
The performance of skip list operations is crucial for many applications. The average
time complexity for insertion, deletion, and lookup operations in a skip list is O(logn).
This efficiency is due to the random level assignment and the multiple levels that provide
shortcuts, allowing for quick traversal and access.

Comparison with Other Data Structures

Skip lists offer several advantages over other data structures, such as balanced trees:
• Simplicity: Skip lists are easier to implement and understand compared to balanced
trees.

• Efficiency: Skip lists offer similar average time complexity for search, insertion, and
deletion operations as balanced trees.



306 Chapter 9. Specialized Data Structures and Techniques

• Flexibility: Skip lists can easily handle concurrent updates and searches, making
them suitable for multithreaded applications.

In conclusion, skip lists are versatile and efficient data structures that offer an alterna-
tive to balanced binary search trees. Their simplicity, combined withO(logn) average time
complexity for common operations, makes them an attractive choice for many real-world
applications. By understanding their implementation and performance characteristics, you
can make better decisions when designing systems that require efficient data storage and
retrieval.

Note:
The performance of skip lists can be fine-tuned by adjusting the maximum level and
probability parameters, allowing you to optimize the structure for specific application
requirements.

9.7 Summary
This chapter presented a comprehensive examination of specialized data structures and
techniques, offering insights into their implementation and applications. We started with
an introduction to heaps, exploring both Max-Heaps and Min-Heaps, and their properties.
We then moved on to the implementation details, including insertion, deletion, and heapifi-
cation operations, highlighting their efficiency and performance benefits.

Following heaps, we delved into maps, focusing on their structure, key-value pairs, and
operations. We provided a step-by-step guide to building a map data structure in C++, using
a chained hash table for collision handling. The map section emphasized the importance
of efficient insertion, deletion, and lookup operations.

Next, we explored space-efficient linked lists, which minimize pointer overhead by
storing multiple elements in each node. The space-efficient linked list section included a
detailed explanation of the node structure, implementation of operations, and performance
analysis, showcasing the advantages and trade-offs of using space-efficient linked lists.

Finally, we introduced skip lists, a probabilistic data structure that allows fast search,
insertion, and deletion operations. We discussed the skip list’s layered structure and the
rules governing its operation and provided a complete implementation in C++. The per-
formance analysis section compared skip lists with other data structures, highlighting their
simplicity, efficiency, and flexibility.

By the end of this chapter, readers will have a solid understanding of these specialized
data structures, their implementation, and their practical applications. This knowledge will
enable the design of more efficient algorithms and data management solutions in various
computational scenarios.



9.7 Summary 307

Problems

Discussion
1. Discuss the advantages of using skip lists over balanced binary search trees. In

what scenarios might a skip list be preferred?
2. Explain how separate chaining helps in resolving collisions in hash tables. Pro-

vide examples of real-world applications where this technique is used.
3. Describe the process of inserting an element into a skip list. How does the random

level assignment affect the performance of the skip list?
4. Compare and contrast the use of maps and skip lists. What are the key differences

in their implementations and use cases?
5. Discuss the impact of the probability p in the random level assignment of skip

lists. How does changing p affect the performance and structure of the skip list?
6. Given a skip list with the following elements: 2, 4, 6, 8, 10, 12, 14, 16. Illustrate

the process of inserting the element 9. Show the skip list structure before and after
the insertion.

Multiple Choice Questions
1. Which of the following statements about skip lists is true?

(a) Skip lists use a single linked list to store elements.
(b) Skip lists guarantee O(1) time complexity for insertion.
(c) Skip lists are a probabilistic alternative to balanced binary search trees.
(d) Skip lists do not support deletion operations.

2. The time complexity of searching for an element in a skip list is:
(a) O(1)
(b) O(n)
(c) O(logn)
(d) O(n logn)

3. In the context of maps, which of the following is true?
(a) Maps can only store integer keys.
(b) Maps do not support deletion of key-value pairs.
(c) Maps associate unique keys with values for efficient retrieval.
(d) Maps cannot handle collisions.

4. Which of the following best describes the role of a key in a map data structure?
(a) It acts as a unique identifier for the associated value.
(b) It stores the data value.
(c) It determines the maximum size of the map.
(d) It links to the next key-value pair in the map.

5. What is the primary advantage of using skip lists over traditional linked lists?
(a) Skip lists are easier to implement.
(b) Skip lists provide faster search operations due to multiple levels.



308 Chapter 9. Specialized Data Structures and Techniques

(c) Skip lists use less memory.
(d) Skip lists do not require random level assignments.

6. In a skip list, what happens when the randomly assigned level of a new node is higher
than the current maximum level?
(a) The new node is assigned to the bottom level only.
(b) The new node is discarded.
(c) The skip list is resized.
(d) The maximum level of the skip list is increased to accommodate the new node.

7. Which of the following is NOT a typical application of maps?
(a) Storing user profiles with unique IDs
(b) Implementing a stack data structure
(c) Creating a phone book with names and phone numbers
(d) Managing configurations with settings and values

8. In a hash table, what is the primary purpose of a hash function?
(a) To encrypt the data
(b) To map keys to bucket indices
(c) To sort the keys
(d) To resize the hash table

9. Which of the following best describes the purpose of forward pointers in a skip list node?
(a) They store the data values.
(b) They link nodes at different levels, allowing efficient traversal.
(c) They determine the node’s position in the skip list.
(d) They indicate the node’s level.

10. What is the main reason for using separate chaining in hash tables?
(a) To handle deletions efficiently
(b) To manage collisions by linking all elements that hash to the same bucket
(c) To minimize memory usage
(d) To improve the speed of search operations

11. How is the maximum level of a node in a skip list typically determined?
(a) By the number of elements in the skip list
(b) By a fixed value set during initialization
(c) Randomly, using a geometric distribution with a fixed probability p
(d) By the depth of the binary tree equivalent

12. In a skip list, what is the expected height of the tallest node when n elements are inserted?
(a) O(1)
(b) O(logn)
(c) O(n)
(d) O(

√
n)

13. Which of the following is the most significant disadvantage of using skip lists?
(a) Complexity in implementation
(b) Higher memory overhead compared to binary search trees
(c) Slower average-case performance compared to linked lists
(d) Requirement for external libraries



9.7 Summary 309

14. When using separate chaining in a hash table, what happens to the time complexity of
insertion when the load factor exceeds 1?
(a) It remains O(1).
(b) It degrades to O(n) in the worst case.
(c) It changes to O(logn).
(d) It changes to O(

√
n).

15. What is the amortized time complexity of resizing a dynamic array used in a hash table
during rehashing?
(a) O(1)
(b) O(logn)
(c) O(n)
(d) O(n logn)

16. In a skip list, if a node with a high level is removed, what is the impact on the search
efficiency of the skip list?
(a) It improves.
(b) It remains unchanged.
(c) It temporarily degrades until the list balances itself through insertions.
(d) It becomes unpredictable.

17. Which scenario could lead to the worst-case time complexity for searching in a skip list?
(a) High variance in node levels
(b) Extremely high probability value for level assignment
(c) Skewed distribution of node levels causing many nodes at the lowest level
(d) Uniform distribution of node levels

18. What is the primary benefit of using a geometric distribution for node level assignment in
skip lists?
(a) Simplifies implementation
(b) Ensures balance by making high levels exponentially less frequent
(c) Maximizes space efficiency
(d) Guarantees a fixed maximum level

19. How does the expected number of pointers in a skip list node relate to the total number of
nodes n?
(a) O(1)
(b) O(logn)
(c) O(n)
(d) O(n logn)

20. If the load factor of a hash table is kept constant by resizing, what is the amortized time
complexity of insertion?
(a) O(1)
(b) O(logn)
(c) O(n)
(d) O(n logn)



310 Chapter 9. Specialized Data Structures and Techniques

21. How does the choice of hash function affect the performance of a hash table with separate
chaining?
(a) It has no impact on performance.
(b) A poor hash function can cause many collisions, leading to O(n) time complexity.
(c) It affects only the space complexity.
(d) It guarantees O(1) performance if designed correctly.

Programming Problems
1. Implement a function in the priority queue class called removeByData that

deletes a specified element from the priority queue, adjusting the heap as neces-
sary to maintain order. Analyze the time complexity of your implementation and
provide test cases to validate the function.

2. Implement the getAll function in the Map class. The function should return
a DynamicArray containing all key-value pairs in the “Map.” Consider how
to efficiently traverse the internal data structure (a ChainedHashTable) to
collect all the pairs. Discuss the time complexity of your implementation and
provide test cases to validate the function.

3. Implement a skip list with a custom probability for level assignment and analyze
its performance compared to the standard probability of 0.5.

4. Design a hash table that uses quadratic probing for collision resolution and com-
pare its performance with separate chaining.

5. Modify the skip list implementation to support duplicate elements and ensure
efficient search, insertion, and deletion operations.

6. Implement a multilevel hash table where each level has a different hash function
and analyze its collision handling efficiency.

7. Develop a skip list with a maximum level determined dynamically based on the
number of elements and analyze its impact on performance.

8. Implement a hash table with a custom rehashing strategy that minimizes down-
time during resizing operations.

9. Implement a hash table with separate chaining that uses balanced binary trees
instead of linked lists for collision handling and compare its performance.

10. Modify the priority queue implementation to handle elements with the same pri-
ority by maintaining their insertion order. Implement a system that tracks the
insertion order using timestamps or sequence numbers, ensuring that elements
with the same priority are dequeued in the order they were added.



10. Applications and Real-
World Examples

Objective
In this chapter, we explore real-world case studies that demonstrate the effective use of
data structures in solving practical, everyday problems. Through these examples, you
will gain insights into how selecting the appropriate data structure can greatly enhance
performance and efficiency, offering optimized solutions tailored to specific challenges.
Here’s what you will learn:

1. Task Scheduling System: Discover how to build a task scheduling system that
efficiently manages tasks by assigning priorities and ensuring that the most critical
tasks are processed first. This case study highlights the use of priority queues and
heap structures to streamline task management.

2. Social Network Friend Recommendations: Explore the development of a friend
recommendation system, which identifies potential friends based on mutual con-
nections. This example demonstrates the application of graphs, maps, and priority
queues to efficiently suggest new connections and enhance user engagement.

3. Library Management System: Discover how to design a library management
system that manages book information, borrower details, and book loans effi-
ciently.

© Mahmmoud Mahdi 2025
M. Mahdi, Data Structures in Depth Using C++,
https://doi.org/10.1007/979-8-8688-0802-9_10

311

https://doi.org/10.1007/979-8-8688-0802-9_10


312 Chapter 10. Applications and Real-World Examples

10.1 Task Scheduling System
Problem Description
In this case study, we need to design a task scheduling system for a software development
team. The system should manage tasks, assign priorities, and ensure that high-priority
tasks are addressed first. The system should support adding new tasks, removing completed
tasks, retrieving the highest priority task, and clearing all tasks (Figure 10.1).

Figure 10.1: A cartoon representation of the task scheduling process, showcasing how
tasks are prioritized and processed in the system for efficient management

Challenges
Designing such a system involves several challenges:

• Priority Management: Ensuring that high-priority tasks are always addressed first
• Efficient Task Management: Quickly adding, removing, and accessing tasks
• Scalability: Handling a large number of tasks efficiently

10.1.1 Solution and Analysis
The solution involves designing a task scheduling system that efficiently manages opera-
tions such as adding new tasks, removing completed tasks, and fetching the highest-priority
task. This requires using data structures that provide fast access, insertion, and deletion ca-
pabilities.



10.1 Task Scheduling System 313

Data Structures Used
The task scheduling system is centered around the use of a heap (priority queue). Im-
plemented as a binary heap, the priority queue efficiently manages tasks according to their
priority, allowing for fast insertion (O(logn)) and extraction of the highest priority task
(O(logn)). Figure 10.2 illustrates the Max-Heap structure, where each node contains a
Task object, and the task with the highest priority is always placed at the root.

Using a priority queue is ideal for task management as it dynamically maintains task
order, ensuring efficient retrieval of the next task to be processed. Compared to other
structures

• Array: An array requires O(n) time for insertion and O(n) time to find the highest-
priority task, making it inefficient for frequent access and updates.

Figure 10.2: Priority queue representation using aMax-Heap structure. Each node contains
a Task object with task details and priority, where tasks are arranged such that the highest
priority task is at the root

• Linked List: A linked list, whether sorted or unsorted, also suffers from high in-
sertion (O(n)) and search times, similar to arrays, making it unsuitable for real-time
priority handling.

• Map: A map can store tasks with their priority as keys, but efficiently retrieving the
highest-priority task in a sorted manner still requires additional overhead and does
not provide the same level of performance as a priority queue.

The choice of a priority queue balances complexity and speed, optimizing both task
addition and retrieval and making it the preferred data structure for managing tasks where
priority handling is essential.



314 Chapter 10. Applications and Real-World Examples

Class Design
The task scheduling system is built around two primary classes:

• Task: Encapsulates the information of each task, such as task ID, description, and
priority

• TaskManager: Manages the tasks, including adding, removing, and fetching tasks
based on priority using the Map and PriorityQueue

Additionally, we include the TaskHandlerApp class to provide an interactive interface
for users to interact with the TaskManager. This class includes methods for displaying
menus, handling user input, and performing task management operations.

10.1.2 Implementation
Let us discuss how the different components of the task scheduling system can be imple-
mented.

Task Class
The Task class encapsulates the details of each task, including its ID, description, and
priority level. The class also overloads the == and « operators to facilitate task comparison
and output.

1 class Task {
2 public:
3 int Id;
4 std::string description;
5 int priority;
6
7 // Default constructor
8 Task()
9 : Id(0), description(""), priority(0) {}
10
11 // Parameterized constructor
12 Task(int id, std::string desc, int prio)
13 : Id(id), description(desc), priority(prio) {}
14
15 // Overload == operator for Task comparison
16 bool operator==(const Task& other) const {
17 return Id == other.Id &&
18 description == other.description &&
19 priority == other.priority;
20 }
21
22 // Overload << operator for Task output
23 friend std::ostream&
24 operator<<(std::ostream& os, const Task& task) {



10.1 Task Scheduling System 315

25 os << "Task ID: " << task.Id
26 << ", Description: " << task.description
27 << ", Priority: " << task.priority;
28 return os;
29 }
30 };

Task Class Implementation

TaskManager Class
The TaskManager class is responsible for managing tasks within the system. It handles
operations such as adding, removing, and fetching tasks using a PriorityQueue.

1 class TaskManager {
2 public:
3 // Default constructor
4 TaskManager();
5
6 // Adds a new task to the system
7 void addTask(const Task& task);
8
9 // Removes a completed task
10 void removeTask(int taskID);
11
12 // Fetches the highest-priority task
13 Task getNextTask() const;
14
15 // Displays all current tasks
16 void viewTasks() const;
17
18 // Checks if there are tasks
19 bool hasTasks() const;
20
21 // Clears all tasks from the system
22 void clearAllTasks();
23
24 // Returns the count of tasks
25 size_t getTaskCount() const;
26
27 // Completes and returns the highest priority task
28 Task completeHighestPriorityTask();
29 private:



316 Chapter 10. Applications and Real-World Examples

30 PriorityQueue<Task> taskQueue;
31 };

TaskManager Class Definition

10.1.3 Method Implementations
Adding a Task
The addTask function inserts the task into the taskQueue, ensuring prioritized process-
ing.

1 void TaskManager::addTask(const Task& task) {
2 taskQueue.add(task, task.priority);
3 }

addTask Function Implementation

Removing a Task
The removeTask function removes a task by its ID and then rebuilds the priority queue
to ensure that the queue remains correctly ordered.

1 void TaskManager::removeTask(int taskID) {
2 PriorityQueue<Task> newQueue;
3
4 // Rebuild the queue without the task to remove
5 while (!taskQueue.isEmpty()) {
6 Task currentTask = taskQueue.pop();
7 if (currentTask.Id != taskID) {
8 newQueue.add(currentTask,
9 currentTask.priority);
10 }
11 }
12 taskQueue = std::move(newQueue);
13 }

removeTask Function Implementation

Rebuilding the priority queue is necessary because the heap property (which ensures
that the highest priority task is always at the root) can be disrupted when tasks are removed
by their IDs. Unlike simple deletion, which occurs at the root, removing a specific element
in a heap requires adjusting the entire structure to maintain the heap properties.



10.1 Task Scheduling System 317

The process of rebuilding the queue has a time complexity of O(n logn), where n is
the number of tasks in the queue. This is because each task must be reinserted into a new
heap after identifying which task to exclude. This approach, while straightforward, is not
optimal due to its reliance on sequential processing and reinsertion.

Fetching the Highest-Priority Task
The getNextTask function retrieves the highest-priority task without removing it from
the queue.

1 Task TaskManager::getNextTask() const {
2 if (taskQueue.isEmpty()) {
3 throw std::runtime_error
4 ("No tasks available");
5 }
6 return taskQueue.peek();
7 }

getNextTask Function Implementation

Other Utility Methods

1 // Default constructor
2 TaskManager::TaskManager(): taskQueue() {}
3
4 void TaskManager::viewTasks() const {
5 if (!taskQueue.isEmpty()) {
6 taskQueue.print();
7 } else {
8 std::cout << "No tasks available."
9 << std::endl;
10 }
11 }
12
13 size_t TaskManager::getTaskCount() const {
14 return tasksMap.getSize();
15 }
16
17 // Completing the Highest-Priority Task
18 Task TaskManager::completeHighestPriorityTask(){
19 if (taskQueue.isEmpty()) {
20 throw std::runtime_error
21 ("No tasks available to complete.");
22 }
23 return taskQueue.pop();



318 Chapter 10. Applications and Real-World Examples

24 }
25
26 // Clearing All Tasks
27 void TaskManager::clearAllTasks() {
28 taskQueue.clear();
29 }

TaskManager Utility Methods Implementation

TaskHandlerApp Class
The TaskHandlerApp class provides a simple menu-driven interface for users to inter-
act with the task management system.

1 class TaskHandlerApp {
2 public:
3 TaskHandlerApp();
4 void run();
5
6 private:
7 TaskManager taskManager;
8
9 void displayMenu() const;
10 void handleAddTask();
11 void handleRemoveTask();
12 void handleDisplayTasks() const;
13 void handleCompleteHighestTask();
14 void handleGetNextTask() const;
15 void handleClearAllTasks();
16 void handleExit() const;
17
18 void printTaskCount() const;
19 };

TaskHandlerApp Class Definition

1 TaskHandlerApp::TaskHandlerApp() : taskManager() {}
2
3 void TaskHandlerApp::displayMenu() const {
4 std::cout << "\n=== Task Manager Menu ===\n";
5 std::cout << "1. Add Task\n";
6 std::cout << "2. Remove Task\n";
7 std::cout << "3. Display Tasks\n";
8 std::cout << "4. Complete Highest Priority Task\n";



10.1 Task Scheduling System 319

9 std::cout << "5. Get Next Highest Priority Task\n";
10 std::cout << "6. Exit\n";
11 std::cout << "Enter your choice: ";
12 }
13
14 void TaskHandlerApp::handleAddTask() {
15 int id, priority;
16 std::string description;
17 std::cout << "Enter Task ID: ";
18 std::cin >> id;
19 std::cin.ignore();
20 std::cout << "Enter Task Description: ";
21 std::getline(std::cin, description);
22 std::cout << "Enter Task Priority: ";
23 std::cin >> priority;
24 taskManager.addTask(Task(id, description, priority));
25 }
26
27 void TaskHandlerApp::handleRemoveTask() {
28 int id;
29 std::cout << "Enter Task ID to remove: ";
30 std::cin >> id;
31 taskManager.removeTask(id);
32 }
33
34 void TaskHandlerApp::handleDisplayTasks() const {
35 std::cout << "\n=== Current Tasks ===\n";
36 printTaskCount();
37 taskManager.viewTasks();
38 }
39
40 void TaskHandlerApp::handleCompleteHighestTask() {
41 try {
42 Task highestTask
43 = taskManager.completeHighestPriorityTask();
44 std::cout << "Completed task:\n"
45 << highestTask << std::endl;
46 } catch (const std::runtime_error& e) {
47 std::cerr << "Error: " << e.what() << std::endl;
48 }
49 }
50
51 void TaskHandlerApp::handleGetNextTask() const {
52 try {
53 Task nextTask = taskManager.getNextTask();



320 Chapter 10. Applications and Real-World Examples

54 std::cout << "Next highest-priority task:\n"
55 << nextTask << std::endl;
56 } catch (const std::runtime_error& e) {
57 std::cerr << "Error: " << e.what() << std::endl;
58 }
59 }
60
61 void TaskHandlerApp::handleExit() const {
62 std::cout << "Exiting Task Manager.\n";
63 }
64
65 void TaskHandlerApp::printTaskCount() const {
66 std::cout << "Total number of tasks: "
67 << taskManager.getTaskCount() << std::endl;
68 }
69
70 void TaskHandlerApp::run() {
71 int choice;
72 do {
73 displayMenu();
74 std::cin >> choice;
75
76 switch (choice) {
77 case 1:
78 handleAddTask();
79 break;
80 case 2:
81 handleRemoveTask();
82 break;
83 case 3:
84 handleDisplayTasks();
85 break;
86 case 4:
87 handleCompleteHighestTask();
88 break;
89 case 5:
90 handleGetNextTask();
91 break;
92 case 6:
93 handleExit();
94 break;
95 default:
96 std::cout << "Invalid choice. "
97 <<"Please try again.\n";
98 break;



10.1 Task Scheduling System 321

99 }
100 } while (choice != 6);
101 }

TaskHandlerAppMethods Implementation

10.1.4 Example Scenario
Scenario 1: Basic Task Management with TaskManager

Consider a scenario where the system manages the following tasks:
• Tasks: Task1 (ID: 1, Description: Complete homework, Priority: 5), Task2 (ID: 2,
Description: Buy groceries, Priority: 10), Task3 (ID: 3, Description: Call plumber,
Priority: 4)

In this scenario, Task2 is the highest-priority task, so it should be fetched and processed
first.

� Example 10.1 Scenario 1:
• Step 1: Add tasks Task1, Task2, and Task3 to the system.

1 TaskManager tm;
2 tm.addTask(Task(1, "Complete homework", 5));
3 tm.addTask(Task(2, "Buy groceries", 10));
4 tm.addTask(Task(3, "Call plumber", 4));
5 tm.viewTasks();

• Step 2: Fetch the highest-priority task (Task2).

1 Task highPriorityTask = tm.getNextTask();
2 std::cout << "Highest Priority Task: "
3 << highPriorityTask
4 << std::endl;

• Step 3: Complete the highest-priority task (Task2).

1 tm.completeHighestPriorityTask();

• Step 4: Fetch the next highest-priority task (Task1).

1 highPriorityTask = tm.getNextTask();
2 std::cout << "Next Highest Priority Task: "
3 << highPriorityTask
4 << std::endl;

Expected Console Output:

1 {Data: ID: 2, Description: Buy groceries, Priority: 10}
2 {Data: ID: 1, Description: Complete homework, Priority: 5}
3 {Data: ID: 3, Description: Call plumber, Priority: 4}
4



322 Chapter 10. Applications and Real-World Examples

5 Highest Priority Task:
6 ID: 2, Description: Buy groceries, Priority: 10
7 Next Highest Priority Task:
8 ID: 1, Description: Complete homework, Priority: 5

�

Scenario 2: Running the TaskHandlerApp

In this scenario, the TaskHandlerApp is used to interact with the task scheduling system
through a menu-driven interface.

� Example 10.2 Scenario 2:
• Step 1: Run the TaskHandlerApp and select options from the menu.

1 TaskHandlerApp app;
2 app.run();

• Step 2: Use the menu to add, remove, view, complete, and clear tasks as described
in the previous scenario.

�

10.1.5 Performance Analysis
The primary data structure used in the current task scheduling system is a priority queue
implemented as a binary heap. This structure is complemented by additional simple data
structures for managing tasks:

• Priority Queue (Heap-Based): The PriorityQueue is implemented using a
binary heap, which dynamically manages tasks based on their priority. This data
structure is essential for ensuring that the highest-priority task is always accessible
at the root of the heap.

– Complexity: Insertion and deletion operations (pop) are O(logn), where n is
the number of tasks in the queue. Accessing the highest-priority task (peek) is
O(1).

• Dynamic Array: Used internally within the priority queue to store tasks as heap
elements. This structure supports efficient resizing and access operations.

– Complexity: Insertion and access are O(1) on average, but resizing the array
during capacity expansion is O(n).

Analysis of Key Operations
The performance of the main operations in the TaskManager class is closely tied to the
efficiency of the priority queue and its underlying heap structure:

• Adding a Task: Involves inserting a new task into the priority queue
– Complexity: O(logn), ensuring quick insertion while maintaining the heap
property that keeps the highest-priority task at the root



10.1 Task Scheduling System 323

• Removing a Task: Involves removing a specific task by its ID, requiring the entire
priority queue to be rebuilt to maintain heap properties

– Complexity: O(n logn), as each task must be reinserted into a new heap after
removing the specified task. This process is the most time-consuming operation
in the system and can be optimized.

• Fetching the Highest-Priority Task: Retrieves the task at the root of the priority
queue without removing it

– Complexity: O(1), allowing instant access to the next task that needs attention

10.1.6 Optimization
Improving the performance of the task scheduling system involves revising the design and
implementation of key functions within the TaskManager class. Below, we discuss
several strategies for optimizing task handling, particularly focusing on improving task
removal efficiency.

Using a Map for Efficient Removal
One major inefficiency in the current design is the complexity of removing tasks from the
priority queue, which requires rebuilding the queue to maintain heap properties. This can
be optimized using a Map (or hash map) to track the positions of tasks within the priority
queue.

• Direct Access: Introducing a map to track task IDs and their positions within the
heap can allow direct access and removal without rebuilding the entire queue. This
approach reduces the time complexity of removal from O(n logn) to O(logn), as it
eliminates the need to reinsert every task.

• Efficient Deletion: Once the task’s position is found using the map, it can be
swapped with the last element in the heap and removed, followed by re-heapifying
to restore the priority order. This reduces the task removal complexity to O(logn), a
significant improvement over the current O(n logn).

• Complexity Impact: This optimization balances the map’s constant time access
O(1) with the heap’s logarithmic adjustments O(logn), providing a much faster so-
lution for task deletions without fully rebuilding the queue.

Optimizing Task Addition and Retrieval
Further improvements can be made to enhance overall performance:

• Lazy Deletion: Instead of immediately rebuilding the queue upon task removal, a
lazy deletion strategy can mark tasks as removed without adjusting the heap imme-
diately. Only when necessary (e.g., during retrieval), the queue is cleaned up, saving
processing time during frequent deletions.

• Balanced Use of Data Structures: Combining the strengths of different data struc-
tures – such as using a sorted map to track priority or a balanced tree structure – can
improve both the insertion and retrieval times under different scenarios.



324 Chapter 10. Applications and Real-World Examples

10.2 Social Network Friend Recommendations
Problem Description
A social network requires a system to recommend friends to users based on mutual connec-
tions (Figure 10.3). The objective is to identify mutual friends efficiently and suggest new
connections to enhance user engagement.

Challenges
Designing such a system involves several challenges:

• Large Network Size: The social network may consist of millions of users and con-
nections, necessitating efficient data handling.

• Efficient Friend Recommendations: Quickly finding and suggesting friends based
on mutual connections.

• Scalability: Handling a growing number of users and connections efficiently.

10.2.1 Solution and Analysis
To solve this problem, we need to design a friend recommendation system that efficiently
handles various operations, such as finding mutual friends and suggesting new connections.

Figure 10.3: Social network friend recommendations: a visual representation of a social
network where nodes represent users and edges represent friendships. The system aims to
recommend friends based on the analysis of mutual connections

Data Structures Used
The system uses the following data structures to address the challenges, as illustrated in
Figure 10.4:

• Graph (Adjacency List): Represents the social network, where nodes are users and
edges signify friendships

• Map: Stores user details, enabling quick access to user information by user ID
• Dynamic Array: Manages dynamic collections of user recommendations efficiently



10.2 Social Network Friend Recommendations 325

• Priority Queue: Ranks potential friend recommendations based on the number of
mutual connections, ensuring that the most relevant suggestions are prioritized

Figure 10.4: An integrated view of the friend recommendation system showing the use of
a Map for storing user details, a Graph (Adjacency List) to represent user connections, and
a Priority Queue to rank friend recommendations based on mutual connections

Class Design
The friend recommendation system is built around two primary classes:

• User: Encapsulates user information such as user ID and name
• FriendManager: Manages users and their relationships, including adding users, es-
tablishing friendships, and recommending friends based on mutual connections us-
ing the Map and GraphAdjList

Additionally, the FriendsHandlerApp class provides an interactive interface, allowing
users to interact with the FriendManager. This class includes methods for displaying
menus, handling user input, and executing friend recommendation operations.



326 Chapter 10. Applications and Real-World Examples

10.2.2 Implementation
Below is an overview of the implementation of the different components of the friend
recommendation system.

User Class
The User class encapsulates the details of each user, including the user ID and name. It
includes necessary constructors, getter methods, and overloaded operators for equality and
output.

1 class User {
2 public:
3 int userID;
4 std::string name;
5
6 User();
7 User(int id, const std::string& userName);
8
9 // Equality operator
10 bool operator==(const User& other) const;
11
12 int getUserID() const;
13 std::string getName() const;
14 };

User Class Definition

FriendManager Class
The FriendManager class manages users and their relationships within the system. It
handles operations such as adding users, establishing friendships, and generating friend
recommendations based on mutual connections.

1 class FriendManager {
2 public:
3 // Constructors
4 FriendManager();
5 FriendManager(int initialGraphSize);
6
7 void addUser(const User& user);
8 User getUserByID(int userID) const;
9 void addFriendship(int userId1, int userId2);
10 DynamicArray<int> recommendFriends(int userID);
11 void display() const;
12 void displayRelationships() const;
13
14 private:



10.2 Social Network Friend Recommendations 327

15 // Map to store users by their IDs
16 Map<int, User> userMap;
17 // Graph to represent friendships
18 GraphAdjList<int> friendGraph;
19
20 // To check if a user exists in the map
21 bool userExists(int userID) const;
22 };

FriendManager Class Definition

10.2.3 Method Implementations
Adding a User
The addUser method adds a new user to the system and ensures that the user’s informa-
tion is stored in the userMap.

1 void FriendManager::addUser(const User& user) {
2 if (!userExists(user.getUserID())) {
3 userMap.add(user.getUserID(), user);
4 friendGraph.addVertex();
5 } else {
6 std::cerr << "User ID " << user.getUserID()
7 << " already exists." << std::endl;
8 }
9 }

Adding Users in FriendManager

Adding a Friendship
The addFriendship method establishes a bidirectional friendship between two users
by adding edges in both directions within the graph.

1 void FriendManager::addFriendship(int userId1, int userId2){
2 if (!userExists(userId1) || !userExists(userId2)) {
3 std::cerr <<
4 "Error: One or both users do not exist."
5 << std::endl;
6 return;
7 }
8
9 try {

10 // Add edge in one direction
11 friendGraph.addEdge(userId1, userId2);



328 Chapter 10. Applications and Real-World Examples

12 // Add edge in the opposite direction
13 friendGraph.addEdge(userId2, userId1);
14
15 } catch (const std::exception& e) {
16 std::cerr << "Graph Error: "
17 << e.what() << std::endl;
18 }
19 }

Friend Recommendations Method

Recommending Friends
The recommendFriends function suggests friends based on mutual connections using
a priority queue to rank potential friends. The function works as follows:

1. Check User Existence: The function begins by verifying whether the user exists
in the system. If the user does not exist, it immediately returns an empty list of
recommendations.

2. Retrieve Direct Friends: It fetches the direct friends of the user using the outEdges
function, which returns all vertices directly connected to the user.

3. Count Mutual Friends: For each direct friend, the function retrieves their friends
(i.e., friends of friends) and counts how often each friend appears, excluding the user
and their direct friends from this count.

4. Priority Queue for Sorting: The mutual friends are sorted using a priority queue,
where the number of mutual connections determines the priority. Friends with higher
mutual counts are considered stronger recommendations.

5. Return Recommendations: The final list of recommended friends is extracted from
the priority queue, ensuring that friends are ordered by the number of mutual con-
nections.

1 DynamicArray<int> FriendManager::
2 recommendFriends(int userID) {
3 DynamicArray<int> recommendations;
4
5 // (1) Check if the user exists
6 if (!userExists(userID)) {
7 std::cerr << "User ID not found"
8 << std::endl;
9 return recommendations;
10 }
11
12 // (2) Get the direct friends of the user
13 DynamicArray<int> directFriends
14 = friendGraph.outEdges(userID);



10.2 Social Network Friend Recommendations 329

15
16 // (3) Map to count mutual friends
17 Map<int, int> friendsOfFriendsCount;
18
19 // Iterate over each direct friend of the user
20 for (size_t i = 0; i < directFriends.getSize(); ++i) {
21 int friendID = directFriends[i];
22
23 // Get friends of each direct friend
24 DynamicArray<int> friendsOfFriend
25 = friendGraph.outEdges(friendID);
26
27 // Iterate over each friend of the direct friend
28 for(size_t j = 0;j < friendsOfFriend.getSize();++j){
29 int mutualFriendID = friendsOfFriend[j];
30
31 // Skip if the mutual friend is the user
32 // itself or already a direct friend
33 if(mutualFriendID == userID ||
34 directFriends.indexOf(mutualFriendID)!= -1){
35 continue;
36 }
37
38 // If mutual friend is not already counted
39 // add to the map with a count of 1
40 if(!friendsOfFriendsCount.contains(mutualFriendID)){
41 friendsOfFriendsCount.add(mutualFriendID, 1);
42 } else {
43 // If already counted, increment the count
44 int currentCount =
45 friendsOfFriendsCount.get(mutualFriendID);
46 friendsOfFriendsCount.add(mutualFriendID,
47 currentCount + 1);
48 }
49 }
50 }
51 // (4) Use a priority queue to sort friends
52 // based on the number of mutual friends
53 PriorityQueue<int> pq;
54
55 // Add each mutual friend to the priority queue
56 // with their count as the priority
57
58 DynamicArray<Pair<int, int>> allMutualFriends =
59 friendsOfFriendsCount.getAll();



330 Chapter 10. Applications and Real-World Examples

60 for (size_t i = 0;i < allMutualFriends.getSize();++i){
61 pq.add(allMutualFriends[i].key,
62 allMutualFriends[i].value);
63 }
64
65 // (5) Extract friends from the priority queue
66 // starting with the highest mutual count
67 while (!pq.isEmpty()) {
68 recommendations.pushBack(pq.pop());
69 }
70
71 // Return the list of recommended friends
72 return recommendations;
73 }

Get Recommendations
The getRecommendations function retrieves and displays friend recommendations for
a specific user.

1 void FriendManager::getRecommendations(int userID) {
2 std::cout << "\nFriend recommendations for "
3 << getUserByID(userID).getName()
4 << " (User ID " << userID << "):\n";
5 DynamicArray<int> recommendations =
6 recommendFriends(userID);
7
8 if (recommendations.getSize() > 0) {
9 std::cout << "Recommended friends: ";
10 for (size_t i = 0; i < recommendations.getSize();++i){
11 try {
12 User recommendedUser =
13 getUserByID(recommendations[i]);
14 std::cout << recommendedUser.getName() << " ";
15 } catch (const std::exception& e) {
16 std::cerr << "Error retrieving user details: "
17 << e.what() << std::endl;
18 }
19 }
20 std::cout << std::endl;
21 } else {
22 std::cout << "No recommendations available for User "
23 << userID << "." << std::endl;
24 }
25 }



10.2 Social Network Friend Recommendations 331

Other Utility Methods
The utility methods in the FriendManager class facilitate additional operations like
displaying user relationships, validating user existence, and managing user information.

1 void FriendManager::displayRelationships() const {
2 DynamicArray<Pair<int, User>> allUsers = userMap.getAll();
3 for (size_t i = 0; i < allUsers.getSize(); ++i) {
4 const User& user = allUsers[i].value;
5 std::cout << user.getName() << " (User ID "
6 << user.getUserID() << ") has friends: ";
7
8 // Get the friends of the user from the graph
9 DynamicArray<int> friends =
10 friendGraph.outEdges(user.getUserID());
11
12 if (friends.getSize() == 0) {
13 std::cout << "No friends";
14 } else {
15 for (size_t j = 0; j < friends.getSize(); ++j) {
16 int friendID = friends[j];
17
18 // Ensure the friend ID is valid
19 if (userExists(friendID)) {
20 try {
21 User friendUser = getUserByID(friendID);
22 std::cout << friendUser.getName();
23 if (j < friends.getSize() - 1) {
24 std::cout << ", ";
25 }
26 } catch (const std::exception& e) {
27 std::cerr <<"Error retrieving user details: "
28 << e.what() << std::endl;
29 }
30 } else {
31 std::cerr << "\nInvalid friend ID "
32 << friendID << " for user "
33 << user.getUserID() << std::endl;
34 }
35 }
36 }
37 std::cout << std::endl;
38 }
39 }
40



332 Chapter 10. Applications and Real-World Examples

41 bool FriendManager::userExists(int userID) const {
42 try {
43 userMap.get(userID);
44 return true;
45 } catch (const std::runtime_error&) {
46 return false;
47 }
48 }
49
50 void FriendManager::display()const {
51 DynamicArray<Pair<int, User>> allusers =
52 userMap.getAll();
53 for (size_t i = 0; i < allusers.getSize(); ++i) {
54 std::cout << allusers[i] << std::endl;
55 }
56 }
57
58 User FriendManager::getUserByID(int userID) const {
59 try {
60 return userMap.get(userID);
61 } catch (const std::runtime_error& e) {
62 throw std::runtime_error("User not found");
63 }
64 }
65
66 // Stream output operator for User
67 std::ostream& operator<<(std::ostream& os,
68 const User& user){
69 os << "User ID: " << user.userID
70 << ", Name: " << user.name;
71 return os;
72 }

FriendsHandlerApp Class
The FriendsHandlerApp class provides a menu-driven interface for users to interact
with the system, facilitating user input and executing friend recommendation operations.

1 class FriendsHandlerApp {
2 public:
3 FriendsHandlerApp();
4
5 void displayMenu() const;
6 void handleAddUser();
7 void handleAddFriendship();



10.2 Social Network Friend Recommendations 333

8 void handleDisplayUsers() const;
9 void handleDisplayRelationships();
10 void handleRecommendFriends() ;
11
12 void handleExit() const;
13 void run();
14
15 private:
16 FriendManager friendRel;
17 };

FriendsHandlerApp Class Definition

1 // Constructor
2 FriendsHandlerApp::FriendsHandlerApp() :
3 friendRel() {}
4
5 // Display the main menu
6 void FriendsHandlerApp::displayMenu() const {
7 std::cout << "\n== Friend Recommendation
8 System Menu ==\n";
9 std::cout << "1. Add User\n";
10 std::cout << "2. Add Friendship\n";
11 std::cout << "3. Display Users\n";
12 std::cout << "4. Display Relationships\n";
13 std::cout << "5. Recommend Friends\n";
14 std::cout << "6. Exit\n";
15 std::cout << "Enter your choice: ";
16 }
17
18 // Handle adding a new user
19 void FriendsHandlerApp::handleAddUser() {
20 int id;
21 std::string name;
22 std::cout << "Enter User ID: ";
23 std::cin >> id;
24 std::cin.ignore();
25 std::cout << "Enter User Name: ";
26 std::getline(std::cin, name);
27 friendRel.addUser(User(id, name));
28 }
29
30 // Handle adding a friendship



334 Chapter 10. Applications and Real-World Examples

31 void FriendsHandlerApp::handleAddFriendship() {
32 int userId1, userId2;
33 std::cout << "Enter first User ID: ";
34 std::cin >> userId1;
35 std::cout << "Enter second User ID: ";
36 std::cin >> userId2;
37 friendRel.addFriendship(userId1, userId2);
38 }
39
40 // Handle displaying all users
41 void FriendsHandlerApp::handleDisplayUsers() const {
42 std::cout << "\n=== Current Users ===\n";
43 friendRel.display();
44 }
45
46 // Handle recommending friends
47 void FriendsHandlerApp::handleRecommendFriends() {
48 int userID;
49 std::cout << "Enter User ID to get
50 friend recommendations: ";
51 std::cin >> userID;
52 friendRel.getRecommendations(userID);
53 }
54
55 // Handle displaying user relationships
56 void FriendsHandlerApp::handleDisplayRelationships() {
57 std::cout << "\n=== User Relationships ===\n";
58 friendRel.displayRelationships();
59 }
60
61 // Handle exiting the application
62 void FriendsHandlerApp::handleExit() const {
63 std::cout << "Exiting Friend
64 Recommendation System.\n";
65 }
66
67 // Main application loop
68 void FriendsHandlerApp::run() {
69 int choice;
70 do {
71 displayMenu();
72 std::cin >> choice;
73
74 switch (choice) {
75 case 1:



10.2 Social Network Friend Recommendations 335

76 handleAddUser();
77 break;
78 case 2:
79 handleAddFriendship();
80 break;
81 case 3:
82 handleDisplayUsers();
83 break;
84 case 4:
85 handleDisplayRelationships();
86 break;
87 case 5:
88 handleRecommendFriends();
89 break;
90 case 6:
91 handleExit();
92 break;
93 default:
94 std::cout << "Invalid choice.
95 Please try again.\n";
96 break;
97 }
98 } while (choice != 6);
99 }

FriendsHandlerAppMethods Implementation

10.2.4 Example Scenario
Consider a scenario where the system manages the following users and friendships:

• Users: User1 (ID: 1, Name: "Alice"), User2 (ID: 2, Name: "Bob"), User3 (ID: 3,
Name: "Charlie"), User4 (ID: 4, Name: "Diana")

• Friendships: (1, 2), (1, 3), (2, 3), (3, 4)

Scenario 1: Basic Friend Recommendation with FriendManager

In this scenario, the system recommends friends based on mutual connections.

� Example 10.3 Scenario 1:
• Step 1: Add users to the system.

1 FriendManager frSystem;
2 frSystem.addUser(User(1, "Alice"));
3 frSystem.addUser(User(2, "Bob"));
4 frSystem.addUser(User(3, "Charlie"));
5 frSystem.addUser(User(4, "Diana"));



336 Chapter 10. Applications and Real-World Examples

• Step 2: Establish friendships.

1 frSystem.addFriendship(1, 2);
2 frSystem.addFriendship(1, 3);
3 frSystem.addFriendship(2, 3);
4 frSystem.addFriendship(3, 4);

• Step 3: Recommend friends for a user (User 1).

1 frSystem.getRecommendations(1);

• Expected Console Output:

1 Friend recommendations for Alice (User ID 1):
2 Recommended friends: Diana

�

This example demonstrates how the system efficiently manages users and recommends
friends using mutual connections. It ensures scalability and performance for large net-
works.

Scenario 2: Running the FriendsHandlerApp

In this scenario, the FriendsHandlerApp is used to interact with the friend recommen-
dation system through a menu-driven interface.

� Example 10.4 Scenario 2:
• Step 1: Run the FriendsHandlerApp and select options from the menu.

1 FriendsHandlerApp app;
2 app.run();

• Step 2: Use the menu to add users, add friendships, display users and relation-
ships, and get friend recommendations as described in the previous scenario.

�

This scenario illustrates how FriendsHandlerApp provides an intuitive interface
for managing a social network, allowing users to interact with the system without needing
to understand the underlying code.

10.2.5 Performance Analysis
The main data structures used in the current implementation include a map, a graph with
adjacency lists, dynamic arrays, and a priority queue. Each plays a vital role in the system’s
overall performance:

• Map (Hash Map): The Map efficiently manages user information by storing user
data indexed by user IDs.

– Complexity: Average time for insertion, deletion, and access isO(1); however,
it can degrade to O(n) in the worst case due to hash collisions.



10.2 Social Network Friend Recommendations 337

• Graph (Adjacency List): The GraphAdjList models the social network, with
nodes representing users and edges representing friendships.

– Complexity: Adding a vertex: O(1); adding an edge: O(1); retrieving edges:
O(V +E), where V is the number of vertices and E is the number of edges.

• Dynamic Array: Used for storing collections of users, recommendations, and friends,
providing flexible and dynamic data handling.

– Complexity: Average insertion and access: O(1); resizing upon exceeding
capacity: worst-case O(n).

• Priority Queue (Heap-Based): Ranks friend recommendations by the number of
mutual connections, utilizing a heap to efficiently manage priorities.

– Complexity: Insertion: O(logn); deletion (pop): O(logn); peek: O(1).

Analysis of Key Operations
The performance of the main operations in the FriendManager class is influenced by
the underlying data structures:

• Adding a User: Involves adding the user to the map and a vertex in the graph.
Complexity: O(1) for both operations, making it highly efficient and scalable for
large networks.

• Adding a Friendship: Involves checking user existence and adding edges in both
directions in the graph. Complexity: Checking existence is O(1), and adding edges
is O(1), resulting in a highly efficient overall complexity.

• Recommending Friends: Involves retrieving direct friends, counting mutual friends,
and using a priority queue to rank recommendations. Complexity: Retrieving friends
O(V +E); counting mutual friends O(k×m), where k is the number of direct friends
and m is the average number of friends per direct friend; and ranking with priority
queue O(n logn), where n is the number of potential friends.

10.2.6 Optimization
Improving the friend recommendation system’s performance requires refining the design
and implementation of key functions within the FriendManager class. Below, we out-
line strategies to optimize data access and friend ranking.

Using Efficient Data Structures for Friend Management
The current system utilizes maps, dynamic arrays, and a priority queue to manage user
data and recommend friends. However, there are opportunities to further optimize these
operations by integrating more advanced data structures:

• Balanced Trees for Faster Access: Replacing the map with a balanced tree struc-
ture, such as AVL Tree, can enhance lookup, insertion, and deletion times. Balanced
trees offer consistent O(logn) access time, improving worst-case performance com-
pared to hash maps, which can degrade to O(n) under certain conditions.

• Skip Lists for Efficient Friend Recommendations: Incorporating skip lists can im-
prove the performance of mutual friend counting and sorting tasks. Skip lists offer
O(logn) for search, insertion, and deletion, similar to balanced trees but simpler to



338 Chapter 10. Applications and Real-World Examples

maintain in dynamic environments. This structure enhances performance in manag-
ing growing and frequently updated datasets.

Prioritizing Friend Recommendations with Optimized Priority Queues
The PriorityQueue plays a critical role in ranking friend recommendations based on
mutual connections. Optimizing this component can significantly boost the recommenda-
tion process.

• Optimized Heap Operations: Using a d-ary heap (where each node has d children)
reduces heap height, enhancing insertion and deletion from O(logn) to O(logd n)
for d > 2. This structural change improves efficiency in handling large datasets
compared to the binary heap currently used.

These optimization strategies ensure that the friend recommendation system remains
robust and efficient, even as the size and complexity of the social network grow.

10.3 Library Management System
Problem Description
Design a library management system that manages book information, borrower details, and
book loans (Figure 10.5). The system should efficiently handle book searches, issue/return
transactions, and borrower queries, ensuring smooth and organized operations within the
library.

Figure 10.5: A conceptual illustration of a library management system



10.3 Library Management System 339

Challenges
Designing such a system involves several challenges:

• Book Management: Ensuring efficient storage, search, and retrieval of book infor-
mation

• Borrower Management: Quickly accessing borrower details and loan history
• Transaction Management: Efficiently processing book issue and return transac-
tions

10.3.1 Solution and Analysis
To solve these challenges, we need to design a library management system that effectively
manages book and borrower data while processing transactions smoothly.

Data Structures Used
The system employs various data structures to handle different aspects of library manage-
ment efficiently:

• Map: Manages book and borrower details, providing quick access and updates based
on unique identifiers like book IDs and borrower IDs.

• Queue: Handles transaction requests, ensuring books are issued and returned in the
correct order, particularly useful during peak times.

• Priority Queue: Manages overdue books and borrowers by prioritizing transactions
based on due dates, ensuring overdue items are handled promptly.

• Dynamic Array: Manages borrower loan history, offering dynamic and flexible
storage for all current and past loans. Dynamic arrays provide quick access to loan
records and efficient resizing capabilities when more loans are added.

Class Design
The library management system is structured around three main classes:

• Book: Encapsulates information about each book, including book ID, title, author,
and availability status

• Borrower: Manages borrower details such as borrower ID, name, and loan history
using a dynamic array for efficient storage and access

• LibraryManager: Oversees book inventory, borrower data, and handles transac-
tions like issuing and returning books using a combination of maps, priority queues,
and dynamic arrays.

Additionally, the LibraryHandlerApp class offers an interactive interface for library
staff to manage the system. It includes methods for displaying menus, handling input, and
executing book and borrower operations.

10.3.2 Implementation
Below is an overview of the implementation of the different components of the library
management system.



340 Chapter 10. Applications and Real-World Examples

Book Class
The Book class encapsulates the details of each book, including its ID, title, author, and
availability status. It includes constructors, getter methods, and overloaded operators for
equality and output.

1 class Book {
2 public:
3 int bookID;
4 std::string title;
5 std::string author;
6 bool isAvailable;
7
8 Book();
9 Book(int id, const std::string& bookTitle,
10 const std::string& bookAuthor);
11
12 // Equality operator
13 bool operator==(const Book& other) const;
14
15 int getBookID() const;
16 std::string getTitle() const;
17 std::string getAuthor() const;
18 bool getAvailability() const;
19 void setAvailability(bool status);
20
21 // Overloaded stream output operator
22 friend std::ostream& operator<<
23 (std::ostream& os, const Book& book);
24 };
25
26 // Constructor
27 Book::Book() : bookID(0),
28 title(""), author(""),
29 isAvailable(true) {}
30 Book::Book(int id, const std::string& bookTitle,
31 const std::string& bookAuthor)
32 : bookID(id), title(bookTitle), author(bookAuthor),
33 isAvailable(true) {}
34
35 // Equality operator
36 bool Book::operator==(const Book& other) const {
37 return bookID == other.bookID;
38 }
39



10.3 Library Management System 341

40
41 // Overloaded stream output operator
42 std::ostream& operator<<
43 (std::ostream& os, const Book& book) {
44 os << "Book ID: " << book.bookID
45 << ", Title: " << book.title
46 << ", Author: " << book.author
47 << ", Available: " <<(book.isAvailable ?"Yes":"No");
48 return os;
49 }

Book Class Definition

Borrower Class
The Borrower class manages information about each borrower, including their ID, name,
and loan history, which is stored using a DynamicArray to allow efficient management
of the borrower’s loan records.

1 class Borrower {
2 private:
3 int borrowerID;
4 std::string name;
5 // Dynamic array for managing loan history
6 DynamicArray<int> loanHistory;
7
8 public:
9 Borrower();

10 Borrower(int id, const std::string& borrowerName);
11
12 // Equality operator
13 bool operator==(const Borrower& other) const;
14
15 int getBorrowerID() const;
16 std::string getName() const;
17 void addLoan(int bookID);
18 void removeLoan(int bookID);
19 bool isOverdue() const;
20 void printLoans() const;
21
22 // Overloaded stream output operator
23 friend std::ostream& operator<<
24 (std::ostream& os, const Borrower& borrower);
25 };
26



342 Chapter 10. Applications and Real-World Examples

27 // Overloaded stream output operator
28 std::ostream& operator<<(std::ostream& os,
29 const Borrower& borrower) {
30 os << "Borrower ID: "
31 << borrower.borrowerID
32 << ", Name: " << borrower.name
33 << ", Loans: ";
34 for (size_t i = 0;
35 i < borrower.loanHistory.getSize(); ++i) {
36 os << borrower.loanHistory.get(i) << " ";
37 }
38 return os;
39 }

Borrower Class Definition

LibraryManager Class
The LibraryManager class oversees all book and borrower operations within the li-
brary, including managing inventory, handling loans, and updating borrower information.

1 class LibraryManager {
2 public:
3 LibraryManager();
4
5 // Book and Borrower management
6 void addBook(const Book& book);
7 void addBorrower(const Borrower& borrower);
8 Book& getBookByID(int bookID);
9 Borrower& getBorrowerByID(int borrowerID);
10
11 // Book issue and return functions
12 void issueBook(int bookID, int borrowerID);
13 void returnBook(int bookID, int borrowerID);
14
15 // Display functions
16 void displayInventory() const;
17 void displayBorrowers() const;
18
19 // New functions for handling overdue books
20 void addOverdueBook(int bookID, int daysOverdue);
21 void handleMostOverdueBook();
22
23 private:
24 // Map for storing books



10.3 Library Management System 343

25 Map<int, Book> bookMap;
26 // Map for storing borrowers
27 Map<int, Borrower> borrowerMap;
28 // Priority Queue for managing overdue books
29 PriorityQueue<int> overdueQueue;
30
31 bool bookExists(int bookID) const;
32 bool borrowerExists(int borrowerID) const;
33 };

LibraryManager Class Definition

10.3.3 Method Implementations
Adding a Book
The addBook method adds a new book to the library’s inventory and updates the system
accordingly.

1 void LibraryManager::addBook(const Book& book) {
2 if (!bookExists(book.getBookID())) {
3 bookMap.add(book.getBookID(), book);
4 std::cout << "Book added: "
5 << book.getTitle() << std::endl;
6 } else {
7 std::cerr << "Book ID " << book.getBookID()
8 << " already exists." << std::endl;
9 }
10 }

Adding a Book in LibraryManager

Issuing a Book
The issueBook function handles the process of issuing a book to a borrower, updating
the availability status of the book and the borrower’s loan history.

1 void LibraryManager::issueBook(int bookID, int borrowerID) {
2 if (!bookExists(bookID) || !borrowerExists(borrowerID)) {
3 std::cerr << "Error: Book or Borrower not found."
4 << std::endl;
5 return;
6 }
7
8 Book& book = bookMap.get(bookID);
9 if (!book.getAvailability()) {



344 Chapter 10. Applications and Real-World Examples

10 std::cerr << "Book " << book.getTitle()
11 << " is currently unavailable." << std::endl;
12 return;
13 }
14
15 Borrower& borrower = borrowerMap.get(borrowerID);
16 borrower.addLoan(bookID);
17 book.setAvailability(false);
18 std::cout << "Book issued to "
19 << borrower.getName() << std::endl;
20 }

Issuing a Book in LibraryManager

Returning a Book
The returnBook function processes the return of a book, updating both the book’s status
and the borrower’s loan history.

1 void LibraryManager::returnBook(int bookID, int borrowerID) {
2 if (!bookExists(bookID) ||
3 !borrowerExists(borrowerID)) {
4 std::cerr << "Error: Book or Borrower not found."
5 << std::endl;
6 return;
7 }
8
9 Book& book = bookMap.get(bookID);
10 Borrower& borrower = borrowerMap.get(borrowerID);
11
12 borrower.removeLoan(bookID);
13 book.setAvailability(true);
14 std::cout << "Book returned: " << book.getTitle()
15 << std::endl;
16 }

Returning a Book in LibraryManager

Handling Overdue Books
The addOverdueBook and handleMostOverdueBook functions manage overdue
books by adding them to a priority queue and processing the most overdue book based on
priority.



10.3 Library Management System 345

1 // Adds an overdue book to the priority queue
2 void LibraryManager::
3 addOverdueBook(int bookID, int daysOverdue) {
4 if (!bookExists(bookID)) {
5 std::cerr << "Book does not exist in the inventory."
6 << std::endl;
7 return;
8 }
9 overdueQueue.add(bookID, daysOverdue);
10 std::cout << "Book ID: " << bookID
11 << " added to the overdue queue with "
12 << daysOverdue << " days overdue." << std::endl;
13 }
14
15 // Handles the most overdue book
16 void LibraryManager::handleMostOverdueBook() {
17 if (overdueQueue.isEmpty()) {
18 std::cout << "No overdue books to handle."
19 << std::endl;
20 return;
21 }
22
23 int mostOverdueBookID = overdueQueue.pop();
24 Book& overdueBook = getBookByID(mostOverdueBookID);
25 std::cout << "Handling the most overdue book: "
26 << overdueBook.getTitle() << std::endl;
27 }

Handling Overdue Books in LibraryManager

Other Utility Methods
The utility methods within the LibraryManager class provide additional operations,
including displaying all books, borrowers, and handling overdue items.

1 // Display all books in the inventory
2 void LibraryManager::displayInventory() const {
3 std::cout << "Library Inventory:\n";
4 DynamicArray<Pair<int, Book>> books = bookMap.getAll();
5 for (size_t i = 0; i < books.getSize(); ++i) {
6 std::cout << books[i].value << std::endl;
7 }
8 }
9



346 Chapter 10. Applications and Real-World Examples

10 // Display all borrowers
11 void LibraryManager::displayBorrowers() const {
12 std::cout << "Library Borrowers:\n";
13 DynamicArray<Pair<int, Borrower>>
14 borrowers = borrowerMap.getAll();
15 std::cout << "Total borrowers: "
16 << borrowers.getSize() << std::endl;
17 for (size_t i = 0; i < borrowers.getSize(); ++i) {
18 const Borrower& borrower = borrowers[i].value;
19 std::cout <<
20 "Borrower ID: " << borrower.getBorrowerID()
21 << ", Name: " << borrower.getName() << ", ";
22 borrower.printLoans();
23 }
24 }
25
26 // Check if a book exists in the map
27 bool LibraryManager::bookExists(int bookID) const {
28 try {
29 bookMap.get(bookID);
30 return true;
31 } catch (const std::runtime_error&) {
32 return false;
33 }
34 }
35
36 // Check if a borrower exists in the map
37 bool LibraryManager::borrowerExists(int borrowerID) const {
38 try {
39 borrowerMap.get(borrowerID);
40 return true;
41 } catch (const std::runtime_error&) {
42 return false;
43 }
44 }

Utility Methods in LibraryManager

LibraryHandlerApp Class
The LibraryHandlerApp class provides a user-friendly interface for library staff to
manage the system, perform transactions, and handle book and borrower records.



10.3 Library Management System 347

1 class LibraryHandlerApp {
2 public:
3 LibraryHandlerApp();
4
5 void displayMenu() const;
6 void handleAddBook();
7 void handleAddBorrower();
8 void handleIssueBook();
9 void handleReturnBook();

10 void handleDisplayInventory() const;
11 void handleDisplayBorrowers() const;
12 void handleExit() const;
13 void run();
14
15 private:
16 LibraryManager libraryManager;
17 };

LibraryHandlerApp Class Definition

1 #include "LibraryHandlerApp.h"
2 // Constructor
3 LibraryHandlerApp::LibraryHandlerApp()
4 : libraryManager() {}
5
6 // Display the main menu
7 void LibraryHandlerApp::displayMenu() const {
8 std::cout << "\n=== Library Management System ===\n";
9 std::cout << "1. Add Book\n";
10 std::cout << "2. Add Borrower\n";
11 std::cout << "3. Issue Book\n";
12 std::cout << "4. Return Book\n";
13 std::cout << "5. Display Inventory\n";
14 std::cout << "6. Display Borrowers\n";
15 std::cout << "7. Exit\n";
16 std::cout << "Enter your choice: ";
17 }
18
19 // Handle adding a new book
20 void LibraryHandlerApp::handleAddBook() {
21 int id;
22 std::string title, author;
23 std::cout << "Enter Book ID: ";



348 Chapter 10. Applications and Real-World Examples

24 std::cin >> id;
25 std::cin.ignore();
26 std::cout << "Enter Book Title: ";
27 std::getline(std::cin, title);
28 std::cout << "Enter Book Author: ";
29 std::getline(std::cin, author);
30 libraryManager.addBook(Book(id, title, author));
31 }
32
33 // Handle adding a new borrower
34 void LibraryHandlerApp::handleAddBorrower() {
35 int id;
36 std::string name;
37 std::cout << "Enter Borrower ID: ";
38 std::cin >> id;
39 std::cin.ignore();
40 std::cout << "Enter Borrower Name: ";
41 std::getline(std::cin, name);
42 libraryManager.addBorrower(Borrower(id, name));
43 }
44
45 // Handle issuing a book to a borrower
46 void LibraryHandlerApp::handleIssueBook() {
47 int bookID, borrowerID;
48 std::cout << "Enter Book ID to issue: ";
49 std::cin >> bookID;
50 std::cout << "Enter Borrower ID: ";
51 std::cin >> borrowerID;
52 libraryManager.issueBook(bookID, borrowerID);
53 }
54
55 // Handle returning a book
56 void LibraryHandlerApp::handleReturnBook() {
57 int bookID, borrowerID;
58 std::cout << "Enter Book ID to return: ";
59 std::cin >> bookID;
60 std::cout << "Enter Borrower ID: ";
61 std::cin >> borrowerID;
62 libraryManager.returnBook(bookID, borrowerID);
63 }
64
65 // Display all books in the inventory
66 void LibraryHandlerApp::
67 handleDisplayInventory() const {
68 libraryManager.displayInventory();



10.3 Library Management System 349

69 }
70
71 // Display all borrowers
72 void LibraryHandlerApp::
73 handleDisplayBorrowers() const {
74 libraryManager.displayBorrowers();
75 }
76
77 // Handle exiting the application
78 void LibraryHandlerApp::handleExit() const {
79 std::cout <<
80 "Exiting Library Management System.\n";
81 }
82
83 // Run the main application loop
84 void LibraryHandlerApp::run() {
85 int choice;
86 do {
87 displayMenu();
88 std::cin >> choice;
89
90 switch (choice) {
91 case 1:
92 handleAddBook();
93 break;
94 case 2:
95 handleAddBorrower();
96 break;
97 case 3:
98 handleIssueBook();
99 break;
100 case 4:
101 handleReturnBook();
102 break;
103 case 5:
104 handleDisplayInventory();
105 break;
106 case 6:
107 handleDisplayBorrowers();
108 break;
109 case 7:
110 handleExit();
111 break;
112 default:
113 std::cout << "Invalid choice.



350 Chapter 10. Applications and Real-World Examples

114 Please try again.\n";
115 break;
116 }
117 } while (choice != 7);
118 }

Main Function of LibraryHandlerApp

10.3.4 Example Scenario
Consider a scenario where the system manages the following books and borrowers:

• Books: "1984" (ID: 1), "To Kill a Mockingbird" (ID: 2), "The Great Gatsby" (ID: 3)
• Borrowers: John (ID: 1), Mary (ID: 2), Alice (ID: 3)

Scenario 1: Basic Library Management with LibraryManager

In this scenario, the system handles book additions, borrower registration, and the process
of issuing and returning books.

� Example 10.5 Scenario 1:
• Step 1: Add books to the system.

1 LibraryManager lm;
2 lm.addBook(Book(1,
3 "Clean Code", "Robert"));
4 lm.addBook(Book(2,
5 "The Programmer", "Andrew"));
6 lm.addBook(Book(3,
7 "Design Patterns", "Erich"));

• Step 2: Register borrowers.

1 lm.addBorrower(Borrower(1, "John"));
2 lm.addBorrower(Borrower(2, "Mary"));
3 lm.addBorrower(Borrower(3, "Alice"));

• Step 3: Issue a book to a borrower.

1 lm.issueBook(1, 1); // John borrows "Clean Code"

• Step 4: Return a book.

1 lm.returnBook(1, 1); // John returns "Clean Code"

• Expected Console Output:

1 Book added: Clean Code
2 Book added: The Programmer
3 Book added: Design Patterns
4 Borrower added: 1, John
5 Borrower added: 2, Mary



10.3 Library Management System 351

6 Borrower added: 3, Alice
7 Book issued to John
8 Book returned: Clean Code

�

This example demonstrates how the library management system effectively handles
book management, borrower interactions, and transactions, ensuring an organized and effi-
cient library operation.

Scenario 2: Running the LibraryHandlerApp

In this scenario, the LibraryHandlerApp is used to interact with the library manage-
ment system through a menu-driven interface.

� Example 10.6 Scenario 2:
• Step 1: Run the LibraryHandlerApp and select options from the menu.

1 LibraryHandlerApp app;
2 app.run();

• Step 2: Use the menu to add books, register borrowers, issue/return books, and
view inventory as described in the previous scenario.

�

This scenario illustrates how the LibraryHandlerApp provides an easy-to-use in-
terface for managing a library, making the system accessible to users who may not be
familiar with the underlying code.

10.3.5 Performance Analysis
The library management system leverages various data structures to efficiently manage
books, borrowers, and transactions. Each data structure is critical to the system’s perfor-
mance:

• Map: The Map stores book and borrower details, providing fast access and updates
based on unique identifiers such as book IDs and borrower IDs.

– Complexity: Average time for insertion, deletion, and access isO(1); however,
it can degrade to O(n) in the worst case due to hash collisions.

• Dynamic Array: Used for managing collections like borrower loan histories and
book listings, providing flexible and efficient data handling.

– Complexity: Average insertion and access time is O(1), with resizing upon
capacity being the worst-case O(n).

• Priority Queue (Heap-Based): Manages overdue books, prioritizing based on due
dates to ensure prompt handling of late returns.

– Complexity: Insertion: O(logn); deletion (pop): O(logn); peek: O(1).

Analysis of Key Operations
The performance of main operations in the LibraryManager class is influenced by the
efficiency of the underlying data structures:



352 Chapter 10. Applications and Real-World Examples

• Adding a Book or Borrower: Involves adding entries to the map, providing a fast
and efficient O(1) complexity on average, making the system scalable for large li-
braries.

• Issuing a Book: This operation checks the availability of the book and updates
both the book’s status and the borrower’s loan history. Checking and updating both
entities are O(1) complexity, allowing quick processing of transactions.

• Returning a Book: Similar to issuing, this operation updates the book’s status and
removes it from the borrower’s loan history. Both operations are executed in O(1)
time.

• Handling Overdue Books: Involves adding books to a priority queue based on
overdue status and retrieving the most overdue book. Insertion and retrieval both
have a complexity of O(logn), which efficiently prioritizes transactions.

10.3.6 Optimization
To further enhance the performance of the library management system, it is essential to opti-
mize data handling, minimize processing times, and ensure scalability. Below are strategies
for refining the key functions in the LibraryManager class.

Using Efficient Data Structures for Library Operations
While the current system effectively uses maps, dynamic arrays, and a priority queue, there
is potential for further optimization by incorporating more advanced data structures:

• Balanced Trees for Book and Borrower Management: Replacing the map with
balanced tree structures like AVL Trees can provide O(logn) access, insertion, and
deletion times. This approach ensures consistent performance, particularly under
high-load conditions that might degrade hash map performance.

• Enhanced Borrower Loan Tracking with Skip Lists: Implementing skip lists for
managing borrower loan histories can improve search, insertion, and deletion times,
maintainingO(logn) complexity while being more straightforward to handle dynam-
ically compared to balanced trees.

10.4 Summary
In this chapter, we took a deep dive into the practical applications of various data structures
through real-world case studies. Each case study highlighted the importance of selecting
the appropriate data structure to solve specific computational problems efficiently. By
examining these examples, you have seen firsthand how different data structures can be
used to optimize performance and ensure effective data management.

10.5 Book Summary
This book has provided you with a thorough introduction to data structures and their appli-
cations in solving real-world computational problems. We started with fundamental data
structures, such as arrays, linked lists, stacks, and queues, and progressively delved into



10.5 Book Summary 353

more complex structures, such as trees, heaps, graphs, and hash tables. Each chapter was
designed to build a solid understanding of the theoretical concepts followed by practical
implementations in C++.

By the end of this book, you will have a comprehensive understanding of data struc-
tures, their implementation in C++, and their practical applications. This knowledge will
enable you to design efficient algorithms and systems, making informed decisions about
data structure selection and usage in your projects.

Your journey through this book has equipped you with the skills to tackle a wide range
of computational problems. Whether you’re optimizing performance, managing large vol-
umes of data, or ensuring real-time processing, you now have the tools and insights to
succeed. Keep experimenting, keep learning, and continue to explore the fascinating world
of data structures.

Problems
Programming Problems

Figure 10.6: Scrambler ride reservation



354 Chapter 10. Applications and Real-World Examples

Figure 10.7: Scrambler ride reservation

1. Scrambler Ride Reservation System
You are tasked with designing a reservation system for a Scrambler ride at an
amusement park (Figure 10.6). The Scrambler ride consists of N arms, each with
K chairs, for a total of N×K chairs (see Figure 10.7 ). Your system must ensure
that reservations for chairs are balanced across all arms of the ride to maintain
its operational stability. The system must handle reservations, cancelations, and
check for ride availability efficiently.
(a) Data Structure Selection

i. What data structure would you use to manage the N ×K chairs and
why?

ii. How would you ensure that reservations are balanced across all arms?
(b) Implementation

i. Write a class definition for the Scrambler ride reservation system. In-
clude methods for reserving a chair, canceling a reservation, and check-
ing availability.

ii. Implement the method reserveChair() to add a reservation to a
chair, ensuring even distribution across the arms.



10.5 Book Summary 355

(c) Class Design
i. Design a class ScramblerRide that includes properties for the num-

ber of arms, number of chairs per arm, and methods for managing reser-
vations.

ii. Explain how your class design ensures operational stability of the ride.
(d) Testing

i. Write test cases to validate the functionality of your reservation system.
ii. How would you test for edge cases such as all chairs being reserved or

attempting to cancel a nonexistent reservation?
2. Online Examination System

Create an online examination system that manages exam schedules, question
banks, and student submissions. The system should handle exam creation, ques-
tion randomization, and automated grading.
(a) Data Structure Selection

i. What data structure would you use to manage the question bank and
why?

ii. How would you handle the randomization of questions for each exam?
(b) Implementation

i. Write a class definition for the online examination system. Include
methods for creating exams, randomizing questions, and grading sub-
missions.

ii. Implement the method createExam() that selects a random subset
of questions from the question bank.

(c) Class Design
i. Design a class OnlineExamSystem that includes properties for exam

schedules, question bank, and student submissions.
ii. Explain how your class design ensures efficient management of exams

and submissions.
(d) Testing

i. Write test cases to validate the functionality of your examination sys-
tem.

ii. How would you test the system’s ability to handle multiple exams and
large numbers of submissions?

3. Airline Reservation System
Create an airline reservation system that manages flight schedules, bookings, and
passenger information. The system should handle booking requests efficiently
and provide quick updates on flight availability.
(a) Data Structure Selection

i. What data structure would you use to manage flight schedules and book-
ings, and why?

ii. How would you handle efficient search and updates of flight availabil-
ity?



356 Chapter 10. Applications and Real-World Examples

(b) Implementation
i. Write a class definition for the airline reservation system. Include meth-

ods for booking a flight, canceling a booking, and checking flight avail-
ability.

ii. Implement the method bookFlight() to add a booking for a flight,
ensuring quick updates to availability.

(c) Class Design
i. Design a class AirlineReservationSystem that includes prop-

erties for flight schedules, bookings, and passenger information.
ii. Explain how your class design ensures efficient management of book-

ings and availability.
(d) Testing

i. Write test cases to validate the functionality of your reservation system.
ii. How would you test the system’s ability to handle multiple bookings

and flight cancelations?
4. Real-World Case Study: Ecommerce Inventory Management

Create an inventory management system for an ecommerce platform. The sys-
tem should track product availability, manage orders, and handle restocking effi-
ciently.
(a) Data Structure Selection

i. What data structure would you use to manage the inventory of millions
of products and why?

ii. How would you handle frequent updates and quick access for users?
(b) Implementation

i. Write a class definition for the ecommerce inventory management sys-
tem. Include methods for adding products, updating product informa-
tion, and searching for products.

ii. Implement the method addProduct() to add a new product to the
inventory.

(c) Class Design
i. Design a class EcommerceInventory that includes properties for

product information, inventory levels, and search functionality.
ii. Explain how your class design ensures efficient management of a large

and dynamic inventory.
(d) Testing

i. Write test cases to validate the functionality of your inventory manage-
ment system.

ii. How would you test the system’s ability to handle a large number of
products and frequent updates?


	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Acronyms
	1 Introduction
	1.1 Introduction
	1.1.1 What Are Data Structures and Algorithms?
	1.1.2 Interplay Between Data Structures and Algorithms
	1.1.3 The Significance of Data Structures
	1.1.4 Selecting the Appropriate Data Structure

	1.2 Types of Data Structures
	1.3 Fundamentals of Algorithms
	1.3.1 Distinguishing Programming and Algorithmic Problems
	1.3.2 Algorithm Design Strategies
	1.3.3 Common Algorithmic Problem Types

	1.4 Analyzing Algorithm Efficiency
	1.4.1 Understanding Algorithm Analysis
	1.4.2 Evaluating Algorithms
	1.4.3 Analyzing Time Efficiency
	1.4.4 Understanding Growth Orders
	1.4.5 Evaluating Algorithm Performance
	1.4.6 Asymptotic Growth Orders

	1.5 Summary
	Problems

	2 Primary Building Blocks
	2.1 Principles of Software Design
	2.2 Data Structure Interfaces
	2.2.1 Benefits of Using Interfaces
	2.2.2 Interface vs. Implementation
	2.2.3 Interface Example

	2.3 Templates
	2.3.1 Templates and Type Abstraction
	2.3.2 Template Usage in Practical Scenarios
	2.3.3 Templates in Interface Design
	2.3.4 Considerations and Best Practices

	2.4 Core Data Structure and Interfaces
	2.4.1 List Data Structure
	List Interface: IList

	2.4.2 Sets Data Structure
	Sets Interface: ISet


	2.5 Advanced Data Structure Interfaces
	2.5.1 Tree Data Structure
	Tree Terminology
	Types of Trees
	Tree Interface: ITree


	2.6 Summary
	Problems

	3 Arrays and Dynamic Arrays
	3.1 Arrays and Pointers
	3.1.1 Arrays
	Static Arrays
	Dynamically Allocated Arrays

	3.1.2 Pointers to Arrays
	3.1.3 Stack vs. Heap Arrays
	Stack-Based Array
	Heap-Based Array

	3.1.4 Performance Analysis
	Complexity Analysis

	3.1.5 Advantages and Limitations

	3.2 Dynamic Arrays
	3.2.1 Resizable Array
	3.2.2 Advantages and Limitations
	3.2.3 Dynamic Array Implementation
	Dynamic Array Interface
	Array Operations

	3.2.4 Resizing Operation
	Resize Rules
	Resize Function


	3.3 Optimization
	3.3.1 An Optimized Copy
	3.3.2 Optimized Dynamic Array Operations
	Resize
	Insert
	Remove


	3.4 Summary
	Problems

	4 Linked List
	4.1 Introduction to Linked Pointers
	4.1.1 Pointers to Objects
	Working with Pointers Inside Objects

	4.1.2 Creating Linked Objects
	4.1.3 Memory Management
	4.1.4 Why Pointers Matter in Linked Lists

	4.2 A Singly-Linked List (SLList)
	4.2.1 Anatomy of a Singly-Linked List
	Example: Creating a Singly-Linked List

	4.2.2 Creating a Singly-Linked List Without Tail
	PushFront and PushBack
	PopFront and PopBack

	4.2.3 Creating a Singly-Linked List with a Tail
	Enhancing with a Tail Pointer
	PushBack
	PopBack
	Insert
	Remove

	4.2.4 Accessing Elements
	4.2.5 Traversing
	Printing the Singly-Linked List
	Destructor for Proper Memory Management


	4.3 A Doubly-Linked List (DLList)
	4.3.1 Anatomy of a Doubly-Linked List
	4.3.2 A Circular Doubly-Linked List with Dummy Node
	4.3.3 Implementing Operations
	PushBack
	PopBack
	PushFront
	PopFront

	4.3.4 Insert and Remove
	Jumping to Element at Index
	JumpTo
	Insert
	Remove

	4.3.5 Accessing Elements
	4.3.6 Traversing
	Printing the Doubly-Linked List
	Destructor


	4.4 Performance Analysis
	4.4.1 Linked Lists vs. Arrays
	4.4.2 Linked List Performance Comparison
	4.4.3 Best Practices and Common Use Cases

	4.5 Summary
	Problems

	5 Stack and Queue
	5.1 Stack
	5.1.1 Introduction to Stack
	5.1.2 Array-Based Stack
	Implementation Interface

	5.1.3 Linked List Stack
	Implementation Interface


	5.2 Queue (Single-Ended Queue)
	5.2.1 Introduction to Queue
	5.2.2 Array-Based Queue
	Circular Representation
	Empty and Full Cases
	Implementation Interface
	Resize Operation
	Enqueue and Dequeue Operations

	5.2.3 Linked List Queue
	Implementation Interface


	5.3 Deque (Double-Ended Queue)
	5.3.1 Introduction to Deque
	5.3.2 Array-Based Deque
	Circular Representation
	Empty and Full Cases
	Implementation Interface
	Enqueue and Dequeue Operations

	5.3.3 Linked List Deque
	Implementation Interface
	Advantages of Using DLList for Deque


	5.4 Performance Analysis
	5.4.1 Stack Performance Analysis
	5.4.2 Queue Performance Analysis
	5.4.3 Deque Performance Analysis
	5.4.4 Choosing the Right Data Structure

	5.5 Summary
	Problems

	6 Hash Tables
	6.1 Hashing Introduction
	6.1.1 Array vs. Linked List
	6.1.2 Introducing Hash Tables
	6.1.3 Applications of Hashing
	6.1.4 Usage Example: Management and Analysis of Access Logs
	IP Access Log Queries
	Addressing Challenges: IP Conversion
	Direct Addressing
	List-Based Mapping
	Drawbacks of Array and Linked List–Based Approaches
	Hashing: A Compact Solution


	6.2 Hash Functions
	6.2.1 Use of Hash Functions
	6.2.2 Multiplicative Hash Function
	6.2.3 Generating Hash Codes for Various Data Types
	Hashing Strings
	Hashing Floating-Point Numbers
	Hashing Compound Data Types

	6.2.4 Collisions

	6.3 Hash Table Techniques
	6.3.1 Chaining
	6.3.2 Open Addressing
	Probing Variants

	6.3.3 Performance Analysis
	Chaining Analysis
	Probing Analysis
	Load Factor
	Comparison


	6.4 Hash Table Implementation
	6.4.1 Chaining
	Lookup Operation
	Add Operation
	Remove Operation

	6.4.2 Linear Probing
	Lookup Operation
	Add Operation
	Remove Operation
	Resize Operation

	6.4.3 Hash Table Performance Comparison

	6.5 Summary
	Problems

	7 Trees
	7.1 Binary Trees
	7.1.1 Introduction to Binary Trees
	7.1.2 Properties of Binary Trees
	7.1.3 Types of Binary Trees
	7.1.4 Representation of Binary Trees
	Using Arrays
	Using Linked Lists

	7.1.5 Computing Size, Height, and Depth
	Depth of a Node
	Size of the Tree
	Height of a Node

	7.1.6 Destroying a Binary Tree
	7.1.7 Binary Tree Traversal Methods
	Depth-First Traversal
	Breadth-First Traversal

	7.1.8 Implementation of Traversal Techniques
	Pre-order Traversal
	In-Order Traversal
	Post-Order Traversal
	Level-Order Traversal

	7.1.9 Traversing Binary Trees – Examples
	Example of Pre-order Traversal
	Example of In-Order Traversal
	Example of Post-Order Traversal
	Example of Level-Order Traversal

	7.1.10 Comparison of Tree Traversal Methods

	7.2 Binary Search Trees (BSTs)
	7.2.1 Introduction to Binary Search Trees
	7.2.2 Properties of Binary Search Trees
	7.2.3 Basic Operations in BST
	BST Insertion
	BST Searching
	BST Deletion
	Finding Min and Max Nodes

	7.2.4 Performance Analysis
	7.2.5 Class Implementation of BST
	7.2.6 Summary

	7.3 Balanced Binary Trees
	7.3.1 Unbalanced Binary Search Trees
	Skewed Trees
	Sparse Trees

	7.3.2 Self-Balancing Binary Search Trees

	7.4 AVL Trees
	7.4.1 Introduction to AVL Trees
	7.4.2 AVL Property
	7.4.3 Balanced and Unbalanced AVL Trees
	7.4.4 Rotations in AVL Trees
	Left Rotation
	Right Rotation
	Left-Right Rotation
	Right-Left Rotation

	7.4.5 Implementation of AVL Tree
	Basic Operations
	Balancing the AVL Tree
	Insertion in AVL Trees
	Deletion in AVL Trees

	7.4.6 Performance Analysis

	7.5 Summary
	Problems

	8 Graphs
	8.1 Introduction to Graphs
	8.1.1 What Is a Graph?
	8.1.2 Graph Terminology
	Terms
	Properties

	8.1.3 Types of Graphs
	Graph Density

	8.1.4 Examples and Applications
	8.1.5 Difference Between Graph and Tree

	8.2 Graph Representations
	8.2.1 Basic Graph Operations
	8.2.2 Abstract Interface for Graph Class
	Finding Degree of Vertices

	8.2.3 Adjacency Matrix
	Implementing IGraph with Adjacency Matrix
	Example

	8.2.4 Adjacency List
	Implementing with Adjacency List
	Example

	8.2.5 Other Representations
	Edge List
	Incidence Matrix

	8.2.6 Conclusion

	8.3 Graph Traversals and Advanced Operations
	8.3.1 Depth-First Traversal (DFS)
	Concept and Uses
	Implementing DFS in Graphs

	8.3.2 Breadth-First Traversal (BFS)
	Concept and Uses
	Implementing BFS in Graphs

	8.3.3 Advanced Graph Operations
	Checking for Connectivity
	Path Existence Queries

	8.3.4 Graph Traversal Class Updates

	8.4 Performance Considerations
	8.4.1 Time Complexity of Graph Operations
	8.4.2 Space Complexity
	8.4.3 Choosing the Right Representation
	When to Use Which Representation


	8.5 Summary
	Problems

	9 Specialized Data Structures and Techniques
	9.1 Introduction
	9.2 Heaps
	9.2.1 Introduction to Heaps
	Properties of Heaps

	9.2.2 Binary Heaps
	Insertion
	Deletion (Remove Min/Max)
	Remove an Element
	Heapify
	Peek
	Heap Sort Algorithm
	Performance Analysis

	9.2.3 Optimizing Binary Heap Operations
	Optimized HeapifyDown
	Batch Insertions

	9.2.4 Customizing Binary Heaps with HeapType
	HeapType Enumeration
	Customizing the BinaryHeap Class
	Benefits of Customization


	9.3 Priority Queues
	9.3.1 Introduction to Priority Queues
	9.3.2 Implementing a Priority Queue with a Heap
	Node Structure Definition
	Priority Queue Class Definition

	9.3.3 Priority Queue Operations
	Insertion
	Pop Operation
	Peek Operation

	9.3.4 Performance Analysis

	9.4 Maps
	9.4.1 Introduction to Maps
	9.4.2 Key-Value Pairs
	9.4.3 Map Structure
	9.4.4 Implementing a Map
	Pair Implementation
	Map Class Definition
	Add Operation
	Deletion Operation
	Lookup Operation
	Display Operation
	Complete Example
	Performance Analysis


	9.5 A Space-Efficient Linked List
	9.5.1 Structure of a Space-Efficient Linked List
	Example: Pointer Complexity

	9.5.2 Node Definition
	Constructor and Destructor for ListNode

	9.5.3 Implementation of Space-Efficient Linked List
	Class Definition for SEList
	Constructor and Destructor
	Clear and Print Functions
	Accessing Operations
	Lookup Operation
	Insertion Operation
	Removal Operation
	Push Front and Push Back
	Pop Front and Pop Back
	Top Front and Top Back

	9.5.4 Performance Analysis
	9.5.5 Advantages and Trade-Offs

	9.6 Skip Lists
	9.6.1 Introduction to Skip Lists
	9.6.2 Skip List Structure and Rules
	Levels and Nodes
	Insertion Rules
	Search Rules
	Deletion Rules

	9.6.3 Node Structure Definition
	9.6.4 Skip List Class Definition
	9.6.5 Implementing Operations
	Constructor and Destructor
	Random Level Generation
	Lookup Operation
	Insertion Operation
	Deletion Operation
	Display Operation

	9.6.6 Performance Analysis
	Comparison with Other Data Structures


	9.7 Summary
	Problems

	10 Applications and Real-World Examples
	10.1 Task Scheduling System
	10.1.1 Solution and Analysis
	10.1.2 Implementation
	10.1.3 Method Implementations
	Fetching the Highest-Priority Task

	10.1.4 Example Scenario
	10.1.5 Performance Analysis
	10.1.6 Optimization

	10.2 Social Network Friend Recommendations
	10.2.1 Solution and Analysis
	10.2.2 Implementation
	10.2.3 Method Implementations
	10.2.4 Example Scenario
	10.2.5 Performance Analysis
	10.2.6 Optimization

	10.3 Library Management System
	10.3.1 Solution and Analysis
	10.3.2 Implementation
	10.3.3 Method Implementations
	10.3.4 Example Scenario
	10.3.5 Performance Analysis
	10.3.6 Optimization

	10.4 Summary
	10.5 Book Summary
	Problems


