
Data Structures
and

Program Design
Using C++

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, production, accompanying algorithms, code, or computer pro-
grams (“the software”), and any accompanying Web site or software of the Work, can-
not and do not warrant the performance or results that might be obtained by using
the contents of the Work. The author, developers, and the Publisher have used their
best efforts to insure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The Work is sold
“as is” without warranty (except for defective materials used in manufacturing the book
or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the algo-
rithms, source code, computer programs, or textual material contained in this publica-
tion. This includes, but is not limited to, loss of revenue or profit, or other incidental,
physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Data Structures
and

Program Design
Using C++

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

A Self-Teaching Introduction

Dheeraj Malhotra
Neha Malhotra

Copyright © 2019 by Mercury Learning and Information LLC.
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

D. Malhotra and N. Malhotra. Data Structures and Program Design Using C++.
ISBN: 978-1-68392-370-1

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2018913035

181920321	 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service Dept.
at (800) 232-0223(toll free). Digital versions of our titles are available at:
www.authorcloudware.com and other electronic vendors.

The sole obligation of Mercury Learning and Information to the purchaser is to replace the
book and/or disc, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

Dedicated to our
loving parents and beloved students.

Dedicated to our
loving parents and beloved students.

Preface� xv
Acknowledgments� xvii

1 Introduction to Data Structures� 1
1.1	 Introduction� 1
1.2	 Types of Data Structures� 3

1.2.1	 Linear and Non-linear Data Structures� 3
1.2.2	 Static and Dynamic Data Structures� 3
1.2.3	 Homogeneous and Non-homogeneous Data Structures� 4
1.2.4	 Primitive and Non-Primitive Data Structures� 4
1.2.5	 Arrays� 5
1.2.6	 Queues� 6
1.2.7	 Stacks� 7
1.2.8	 Linked List� 8
1.2.9	 Trees� 9
1.2.10	 Graphs� 11

1.3	 Operations on Data Structures� 12
1.4	 Algorithms� 13

1.4.1	 Developing an Algorithm� 14
1.5	 Approaches for Designing an Algorithm� 14
1.6	 Analyzing an Algorithm� 15

1.6.1	 Time-Space Trade-off� 17
1.7	 Abstract Data Types� 17
1.8	 Big O Notation� 18
1.9	 Summary� 18
1.10	 Exercises� 20
1.11	 Multiple Choice Questions� 21

CONTENTS

viii • Contents

2 Introduction to the C++ Language� 25
2.1	 Introduction� 26
2.2	 C++ and Its Characteristics� 26
2.3	 Features of Object-Oriented Programming� 27
2.4	 Character Set Used in C++� 34
2.5	 C++ Tokens� 34
2.6	 Data Types in C++� 36
2.7	 Structure of a C++ Program� 37

2.7.1	 Structure of a C++ Program without Classes� 37
2.7.2	 Structure of a C++ Program with Classes� 37

2.8	 Operators in C++� 39
2.9	 Decision Control Statements in C++� 45
2.10	 Looping Statements in C++� 55
2.11	 Break and Continue Statements� 61
2.12	 Functions in C++� 64

2.12.1	 Passing Arguments to Functions� 66
2.13	 Structures in C++� 68
2.14	 Reference Variables in C++� 69
2.15	 Pointers� 70
2.16	 Arrays and Pointers� 70
2.17	 Summary� 72
2.18	 Exercises� 75

2.18.1	 Theory Questions� 75
2.18.2	 Programming Questions� 77
2.18.3	 Multiple Choice Questions� 78

3 Arrays� 81
3.1	 Introduction� 82
3.2	 Definition of an Array� 82
3.3	 Array Declaration� 83
3.4	 Array Initialization� 84
3.5	 Calculating the Address of Array Elements� 85
3.6	 Operations on Arrays � 86
3.7	 2-D Arrays/ Two-Dimensional Arrays� 110
3.8	 Declaration of Two-Dimensional Arrays� 110
3.9	 Operations on 2-D Arrays� 113
3.10	 Multidimensional Arrays/ N-Dimensional Arrays� 118
3.11	 Calculating the Address of 3-D Arrays� 118
3.12	 Arrays and Pointers� 121
3.13	 Array of Pointers� 122
3.14	 Arrays and their Applications� 123
3.15	 Sparse Matrices� 124

Contents • ix

3.16	 Types of Sparse Matrices� 124
3.17	 Representation of Sparse Matrices� 125
3.18	 Summary� 127
3.19	 Exercises� 129

3.19.1	 Theory Questions � 129
3.19.2	 Programming Questions � 130
3.19.3	 Multiple Choice Questions� 131

4 Linked Lists� 135
4.1	 Introduction� 135
4.2	 Definition of a Linked List� 136
4.3	 Memory Allocation in a Linked List� 138
4.4	 Types of Linked Lists� 139

4.4.1	 Singly Linked List� 139
4.4.2	 Operations on a Singly Linked List� 140
4.4.3	 Circular Linked Lists� 159
4.4.4	 Operations on a Circular Linked List� 160
4.4.5	 Doubly Linked List� 173
4.4.6	 Operations on a Doubly Linked List� 174

4.5	 Header Linked Lists� 192
4.6	 Applications of Linked Lists� 207
4.7	 Polynomial Representation� 207
4.8	 Summary� 207
4.9	 Exercises� 208

4.9.1	 Theory Questions� 208
4.9.2	 Programming Questions� 209
4.9.3	 Multiple Choice Questions� 209

5 Queues� 213
5.1	 Introduction� 213
5.2	 Definition of a Queue� 214
5.3	 Implementation of a Queue � 214

5.3.1	 Implementation of Queues Using Arrays� 214
5.3.2	 Implementation of Queues Using Linked Lists� 215

5.3.2.1	 Insertion in Linked Queues� 215
5.3.2.2	 Deletion in Linked Queues� 217

5.4	 Operations on Queues� 222
5.4.1	 Insertion � 222
5.4.2	 Deletion � 223

5.5	 Types of Queues� 227
5.5.1	 Circular Queue� 227

5.5.1.1	 Limitation of Linear Queues� 228

x • Contents

5.5.1.2	 Inserting an Element in a Circular Queue� 230
5.5.1.3	 Deleting an Element from a Circular Queue� 232

5.5.2	 Priority Queue� 237
5.5.2.1	 Implementation of a Priority Queue� 239
5.5.2.2	 Insertion in a Linked Priority Queue� 241
5.5.2.3	 Deletion in a Linked Priority Queue� 242

5.5.3	 De-queues (Double-Ended Queues)� 246
5.6	 Applications of Queues� 252
5.7	 Summary� 252
5.8	 Exercises� 253

5.8.1	 Theory Questions� 253
5.8.2	 Programming Questions� 253
5.8.3	 Multiple Choice Questions� 254

6 Searching and Sorting� 257
6.1	 Introduction to Searching� 257
6.2	 Linear Search or Sequential Search� 258

6.2.1	 Drawbacks of a Linear Search� 261
6.3	 Binary Search� 263

6.3.1	 Binary Search Algorithm � 263
6.3.2	 Complexity of a Binary Search Algorithm� 266
6.3.3	 Drawbacks of a Binary Search� 266

6.4	 Interpolation Search� 269
6.4.1	 Working of the Interpolation Search Algorithm� 269
6.4.2	 Complexity of the Interpolation Search Algorithm� 271

6.5	 Introduction to Sorting � 273
6.5.1	 Types of Sorting Methods	 � 274

6.6	 External Sorting� 299
6.7	 Summary� 300
6.8	 Exercises� 301

6.8.1	 Theory Questions � 301
6.8.2	 Programming Questions � 302
6.8.3	 Multiple Choice Questions� 303

7 Stacks� 305
7.1	 Introduction� 305
7.2	 Definition of a Stack� 306
7.3	 Overflow and Underflow in Stacks� 307
7.4	 Operations on Stacks� 308
7.5	 Implementation of Stacks� 314

7.5.1	 Implementation of Stacks Using Arrays� 314
7.5.2	 Implementation of Stacks Using Linked Lists� 315

Contents • xi

7.5.2.1	 Push Operation in Linked Stacks� 315
7.5.2.2	 Pop Operation in Linked Stacks� 316

7.6	 Applications of Stacks� 320
7.6.1	 Polish and Reverse Polish Notations and Their Need� 321
7.6.2	 Conversion from Infix Expression to Postfix Expression� 321
7.6.3	 Conversion from Infix Expression to Prefix Expression� 329
7.6.4	 Evaluation of a Postfix Expression� 335
7.6.5	 Evaluation of a Prefix Expression� 340
7.6.6	 Parenthesis Balancing� 344

7.7	 Summary� 348
7.8	 Exercises� 348

7.8.1	 Theory Questions� 348
7.8.2	 Programming Questions� 350
7.8.3	 Multiple Choice Questions� 350

8 Trees� 353
8.1	 Introduction� 353
8.2	 Definitions� 355
8.3	 Binary Tree� 357

8.3.1	 Types of Binary Trees� 358
8.3.2	 Memory Representation of Binary Trees� 359

8.4	 Binary Search Tree� 362
8.4.1	 Operations on Binary Search Trees� 363
8.4.2	 Binary Tree Traversal Methods� 379
8.4.3	 Creating a Binary Tree Using Traversal Methods� 387

8.5	 AVL Trees� 391
8.5.1	 Need of Height-Balanced Trees� 392
8.5.2	 Operations on an AVL Tree� 393

8.6	 Summary� 404
8.7	 Exercises� 406

8.7.1	 Theory Questions � 406
8.7.2	 Programming Questions � 409
8.7.3	 Multiple Choice Questions� 410

9 Multi-Way Search Trees� 415
9.1	 Introduction� 415
9.2	 B-Trees� 416
9.3	 Operations on a B-Tree� 417

9.3.1	 Insertion in a B-Tree� 418
9.3.2	 Deletion in a B-Tree� 420

9.4	 Application of a B-Tree� 426

xii • Contents

9.5	 B+ Trees� 426
9.6	 Summary� 428
9.7	 Exercises� 428

9.7.1	 Review Questions � 428
9.7.2	 Multiple Choice Questions� 429

10 Hashing� 433
10.1	 Introduction� 433

10.1.1	 Difference between Hashing and Direct Addressing� 435
10.1.2	 Hash Tables� 436
10.1.3	 Hash Functions� 437
10.1.4	 Collision� 440
10.1.5	 Collision Resolution Techniques� 440

10.1.5.1	 Chaining Method� 440
10.1.5.2	 Open Addressing Method� 446

10.2	 Summary� 462
10.3	 Exercises� 463

10.3.1	 Review Questions� 463
10.3.2	 Multiple Choice Questions� 464

11 Files� 467
11.1	 Introduction � 467
11.2	 Terminologies� 468
11.3	 File Operations� 468
11.4	 File Classification� 469
11.5	 C vs C++ File Handling� 470
11.6	 File Organization� 471
11.7	 Sequence File Organization� 471
11.8	 Indexed Sequence File Organization� 473
11.9	 Relative File Organization� 474
11.10	 Inverted File Organization� 475
11.11	 Summary� 475
11.12	 Exercises� 476

11.12.1	 Review Questions � 476
11.12.2	 Multiple Choice Questions� 477

12 Graphs� 479
12.1	 Introduction� 479
12.2	 Definitions� 481
12.3	 Graph Representation � 486

12.3.1	 Adjacency Matrix Representation � 486
12.3.2	 Adjacency List Representation� 489

Contents • xiii

12.4	 Graph Traversal Techniques� 492
12.4.1	 Breadth First Search� 492
12.4.2	 Depth First Search� 496

12.5	 Topological Sort� 500
12.6	 Minimum Spanning Tree� 504

12.6.1	 Prim’s Algorithm� 505
12.6.2	 Kruskal’s Algorithm� 508

12.7	 Summary� 512
12.8	 Exercises� 513

12.8.1	 Theory Questions � 513
12.8.2	 Programming Questions � 516
12.8.3	 Multiple Choice Questions� 517

Appendix A� 519
Answers to Selected Exercises� 519

Appendix B� 525
References/ Books/ Webliography� 525

Index� 533

Data structures are the building blocks of computer science. The objective of
this text is to emphasize the fundamentals of data structures as an introductory
subject. It is designed for beginners who would like to learn the basics of data
structures and their implementation using the C++ programming language. With
this focus in mind, we present various fundamentals of the subject, well sup-
ported with real-world analogies to enable a quick understanding of the technical
concepts and to help in identifying appropriate data structures to solve specific,
practical problems. This book will serve the purpose of a text/reference book and
will be of immense help especially to undergraduate or graduate students of vari-
ous courses in information technology, engineering, computer applications, and
information sciences.

Key Features:

•	 Practical Applications: Real world analogies as practical applications are given
throughout the text to quickly understand and connect the fundamentals
of data structures with day to day, real-world scenarios. This approach, in
turn, will assist the reader in developing the capability to identify the most
appropriate and efficient data structure for solving a specific, real-world
problem.

•	 Frequently Asked Questions: Frequently asked theoretical/practical
questions are integrated throughout the content of the book, within related
topics to assist readers in grasping the subject.

•	 Algorithms and Programs: To better understand the fundamentals of data
structures at a generic level-followed by its object-oriented implementation

PREFACE

xvi • PREFACE

in C++, syntax independent algorithms, as well as implemented programs
in C++, are discussed throughout the book. This presentation will assist the
reader in getting both algorithms and their corresponding implementation
within a single book.

•	 Numerical and Conceptual Exercises: To assist the reader in developing a
strong foundation of the subject, various numerical and conceptual problems
are included throughout the text.

•	 Multiple Choice Questions: To assist students for placement-oriented exams
in various IT fields, several exercises are suitably chosen and are given in an
MCQ format.

Dheeraj Malhotra
Neha Malhotra

November 2018

ACKNOWLEDGMENTS

It is our pleasure to take this opportunity to sincerely thank the people who have
extended their kind help and support to us throughout this project.

We are indeed grateful to Chairman VIPS- Dr. S.C. Vats, respected management,
faculty and staff members of Vivekananda Institute of Professional Studies (GGS
IP University). They are always a source of inspiration for us, and we feel honored
because of their faith in us.

We also take this opportunity to extend our gratitude to our mentors Dr. O.P. Rishi
(University of Kota), Dr. Jatinder Singh (IKG Punjab Technical University) and
Dr. Udyan Ghose (GGS IP University) for their motivation to execute this project.

We are profoundly thankful to Mr. Deepanshu Gupta (VIPS, GGSIPU) for helping
us in compiling the codes in this manuscript.

It is not possible to complete a book without the support of a publisher. We are
thankful to David Pallai and Jennifer Blaney of Mercury Learning and Information
for their enthusiastic involvement throughout the tenure of this project.

Our heartfelt regards to our parents, siblings and family members who cheered us
in good times and encouraged us in bad times.

Lastly, we have always felt inspired by our students. Their questioning minds
enriched our knowledge, which we have presented in this book.

Dheeraj Malhotra
Neha Malhotra

November 2018

C H A P T E R1
INTRODUCTION TO DATA
STRUCTURES

In This Chapter

ll 	 Introduction
ll 	 Types of data structures
ll 	 Operations on data structures
ll 	 Algorithms
ll 	 Approaches for designing an algorithm
ll 	 Analyzing an algorithm
ll 	 Abstract data types
ll 	 Big O notation
ll 	 Summary

1.1  Introduction

A data structure is an efficient way of storing and organizing the
data elements in the computer memory. Data means a value or a collec-
tion of values. Structure refers to a method of organizing the data. The
mathematical or logical representation of data in the memory is referred
as a data structure. The objective of a data structure is to store, retrieve,
and update the data efficiently. A data structure can be referred to as

2 • Data Structures and Program Design Using C++

elements grouped under one name. The data elements are called mem-
bers, and they can be of different types. Data structures are used in
almost every program and software system. There are various kinds of
data structures that are suited for different types of applications. Data
structures are the building blocks of a program. For a program to run ef-
ficiently, a programmer must choose appropriate data structures. A data
structure is a crucial part of data management. As the name suggests,
data management is a task which includes different activities like collec-
tion of data, organization of data into structures, and much more. Some
examples where data structures are used include stacks, queues, arrays,
binary trees, linked lists, hash tables, and so forth.

A data structure helps us to understand the relationship of one element
to another element and organize it within the memory. It is a mathematical
or logical representation or organization of data in memory. Data structures
are extensively applied in the following areas:

■■ Compiler Design

■■ Database Management Systems (DBMS)

■■ Artificial Intelligence

■■ Network and Numerical Analysis

■■ Statistical Analysis Packages

■■ Graphics

■■ Operating Systems (OS)

■■ Simulations

As we see in the previous list, there are many applications in which dif-
ferent data structures are used for their operations. Some data structures
sacrifice speed for efficient utilization of memory, while others sacrifice
memory utilization and result in faster speed. In today’s world program-
mers aim not just to build a program, but instead to build an effective pro-
gram. As previously discussed, for a program to be efficient, a programmer
must choose appropriate data structures. Hence, data structures are classi-
fied into various types. Now, let us discuss and learn about different types
of data structures.

Introduction To Data Structures • 3

Frequently Asked Questions

Q1. Define the term data structure.

Answer.
A data structure is an organization of data in a computer’s memory or disk
storage. In other words, a logical or mathematical model of a particular
organization of data is called a data structure. A data structure in computer
science is also a way of storing data in a computer so that it can be used
efficiently. An appropriate data structure allows a variety of important
operations to be performed using both resources, that is, memory space and
execution time, efficiently.

1.2  Types of Data Structures

Data structures are classified into various types.

1.2.1 Linear and Non-Linear Data Structures
A linear data structure is one in which the data elements are stored

in a linear, or sequential, order; that is, data is stored in consecutive
memory locations. A linear data structure can be represented in two
ways; either it is represented by a linear relationship between various
elements utilizing consecutive memory locations as in the case of arrays,
or it may be represented by a linear relationship between the elements
utilizing links from one element to another as in the case of linked lists.
Examples of linear data structures include arrays, linked lists, stacks,
queues, and so on.

A non-linear data structure is one in which the data is not stored in any
sequential order or consecutive memory locations. The data elements in this
structure are represented by a hierarchical order. Examples of non-linear
data structures include graphs, trees, and so forth.

1.2.2 Static and Dynamic Data Structures
A static data structure is a collection of data in memory which is fixed

in size and cannot be changed during runtime. The memory size must be

4 • Data Structures and Program Design Using C++

known in advance, as the memory cannot be reallocated later in a program.
One example is an array.

A dynamic data structure is a collection of data in which memory can
be reallocated during execution of a program. The programmer can add or
remove elements according to his/her need. Examples include linked lists,
graphs, trees, and so on.

1.2.3 Homogeneous and Non-Homogeneous Data Structures
A homogeneous data structure is one that contains data elements of the

same type, for example, arrays.

A non-homogeneous data structure contains data elements of different
types, for example, structures.

1.2.4 Primitive and Non-Primitive Data Structures
Primitive data structures are the fundamental data structures or pre-

defined data structures which are supported by a programming language.
Examples of primitive data structure types are short, integer, long, float,
double, char, pointers, and so forth.

Non-primitive data structures are comparatively more complicated
data structures that are created using primitive data structures. Examples
of non-primitive data structures are arrays, files, linked lists, stacks, queues,
and so on.

Classification of different data structures is shown in Figure 1.1.

FIGURE 1.1 Classification of different data structures.

Introduction To Data Structures • 5

We know that C++ supports various data structures. So, we will now
introduce all these data structures, and they will be discussed in detail in
the upcoming chapters

1.2.5 Arrays
An array is a collection of homogeneous (similar) types of data ele-

ments in contiguous memory. An array is a linear data structure because all

Frequently Asked Questions

Q2. �Write the difference between primitive data structures and
non-primitive data structures.

Answer.
Primitive data structures – The data structures that are typically directly
operated upon by machine-level instructions, that is, the fundamental
data types such as int, float, char, and so on, are known as primitive data
structures.

Non-primitive data structures – The data structures which are not
fundamental are called non-primitive data structures.

Frequently Asked Questions

Q3. �Explain the difference between linear and non-linear data
structures.

Answer.
The main difference between linear and non-linear data structures lies in
the way in which data elements are organized. In the linear data structure,
elements are organized sequentially, and therefore they are easy to implement
in a computer’s memory. In non-linear data structures, a data element can
be attached to several other data elements to represent specific relationships
existing among them.

6 • Data Structures and Program Design Using C++

elements of an array are stored in linear order. The various elements of the
array are referenced by their index value, also known as the subscript. In
C++, an array is declared using the following syntax:

Syntax – <Data type> array name [size];

The elements are stored in the array as shown in Figure 1.2.

FIGURE 1.2 Memory representation of an array.

Arrays are used for storing a large amount of data of similar type. They
have various advantages and limitations.

Advantages of using arrays

1.	Elements are stored in adjacent memory locations; hence, searching is
very fast, as any element can be easily accessed.

2.	Arrays do not support dynamic memory allocation, so all the memory
management is done by the compiler.

Limitations of using arrays

1.	Insertion and deletion of elements in arrays is complicated and very
time-consuming, as it requires the shifting of elements.

2.	Arrays are static; hence, the size must be known in advance.

3.	Elements in the array are stored in consecutive memory locations which
may or may not be available.

1.2.6 Queues
A queue is a linear collection of data elements in which the element

inserted first will be the element that is taken out first; that is, a queue is a
FIFO (First In First Out) data structure. A queue is a popular linear data
structure in which the first element is inserted from one end called the
REAR end (also called the tail end), and the deletion of the element takes
place from the other end called the FRONT end (also called the head).

Introduction To Data Structures • 7

FIGURE 1.3 Memory representation of a queue.

In a computer’s memory queues can be implemented using arrays or
linked lists. Figure 1.3 shows the array implementation of a queue. Every
queue has FRONT and REAR variables which point to the positions where
deletion and insertion are done respectively.

Practical Application:

For a simple illustration of a queue, there is a line of people standing at the
bus stop and waiting for the bus. Therefore, the first person standing in the
line will get into the bus first.

Practical Application:

A real-life example of a stack is if there is a pile of plates arranged on a table.
A person will pick up the first plate from the top of the stack.

1.2.7 Stacks
A stack is a linear collection of data elements in which insertion and

deletion take place only at the top of the stack. A stack is a Last In First Out
(LIFO) data structure, because the last element pushed onto the stack will
be the first element to be deleted from the stack. Three operations can be
performed on the stack, which include PUSH, POP, and PEEP operations.
The PUSH operation inputs an element into the top of the stack, while the
POP operation removes an element from the stack. The PEEP operation
returns the value of the topmost element in the stack without deleting it
from the stack. Every stack has a variable TOP which is associated with it.
The TOP pointer stores the address of the topmost element in the stack.
The TOP is the position where insertion and deletion take place.

8 • Data Structures and Program Design Using C++

FIGURE 1.5 Memory representation of a linked list.

FIGURE 1.4 Memory representation of a stack.

1.2.8 Linked List
The major drawback of the array is that the size or the number of ele-

ments must be known in advance. Thus, this drawback gave rise to the new
concept of a linked list. A linked list is a linear collection of data elements.
These data elements are called nodes, which point to the next node using
pointers. A linked list is a sequence of nodes in which each node contains
one or more than one data field and a pointer which points to the next node.
Also, linked lists are dynamic; that is, memory is allocated as and when
required.

In a computer’s memory stacks can be implemented using arrays or
linked lists. Figure 1.4 shows the array implementation of a stack.

In the previous figure we have made a linked list in which each node is
divided into two slots:

1.	The first slot contains the information/data.

2.	The second slot contains the address of the next node.

Introduction To Data Structures • 9

The address part of the last node stores a special value called NULL,
which denotes the end of the linked list. The advantage of a linked list
over arrays is that now it is easier to insert and delete data elements, as
we don’t have to do shifting each time. Yet searching for an element has
become difficult. Also, more time is required to search for an element,
and it also requires high memory space. Hence, linked lists are used
where a collection of data elements is required but the number of data
elements in the collection is not known to us in advance.

1.2.9 Trees
A tree is a popular non-linear data structure in which the data elements

or the nodes are represented in a hierarchical order. Here, one of the nodes
is shown as the root node of the tree, and the remaining nodes are parti-
tioned into two disjointed sets such that each set is a part of a subtree. A
tree makes the searching process very easy, and its recursive programming
makes a program optimized and easy to understand.

Practical Application:

A simple real-life example is a train; here each coach is connected to its
previous and next coach (except the first and last coach).

Frequently Asked Questions

Q4. Define the term linked list.

Answer.
A linked list or one-way list is a linear collection of data elements called nodes,
where pointers give the linear order. It is a popular dynamic data structure.
The nodes in the linked list are not stored in consecutive memory locations.
For every data item in a node of the linked list, there is an associated pointer
that gives the address location of the next node in the linked list.

10 • Data Structures and Program Design Using C++

A binary tree is the simplest form of a tree. A binary tree consists of a
root node and two subtrees known as the left subtree and the right subtree,
where both subtrees are also binary trees. Each node in a tree consists of
three parts, that is, the extreme left part stores a pointer which points to the
left subtree, the middle part consists of the data element, and the extreme
right part stores a pointer which points to the right subtree. The root is the
topmost element of the tree. When there are no nodes in a tree, that is,
when ROOT = NULL, then it is called an empty tree.

For example, consider a binary tree where R is the root node of the
tree. LEFT and RIGHT are the left and right subtrees of R respectively.
Node A is designated as the root node of the tree. Nodes B and C are the
left and right child of A respectively. Nodes B, D, E, and G constitute the
left subtree of the root. Similarly, nodes C, F, H, and I constitute the right
subtree of the root.

FIGURE 1.6 A binary tree.

Advantages of a tree

1.	The searching process is very fast in trees.

2.	Insertion and deletion of the elements have become easier as compared
to other data structures.

Introduction To Data Structures • 11

1.2.10 Graphs
A graph is a general tree with no parent-child relationship. It is a non-

linear data structure which consists of vertices, also called nodes, and the
edges which connect those vertices to one another. In a graph, any complex
relationship can exist. A graph G may be defined as a finite set of V vertices
and E edges. Therefore, G = (V, E) where V is the set of vertices and E is
the set of edges. Graphs are used in various applications of mathematics
and computer science. Unlike a root node in trees, graphs don’t have root
nodes; rather, the nodes can be connected to any node in the graph. Two
nodes are termed as neighbors when they are connected via an edge.

For example, consider a graph G with six vertices and eight edges.
Here, Q and Z are neighbors of P. Similarly, R and T are neighbors of S.

Frequently Asked Questions

Q5. Define the term binary tree.

Answer.
A binary tree is a hierchical data structure in which each node has at most
two children, that is, a left and right child. In a binary tree, the degree of each
node can be at most two. Binary trees are used to implement binary search
trees, which are used for efficient searching and sorting.A variation of BST is
an AVL tree where height of left and right sub tree differs by one . A binary
tree is a popular subtype of a k-ary tree, where k is 2..

Practical Application:

A real-life example of a graph can be seen in workstations where several
computers are joined to one another via network connections.

12 • Data Structures and Program Design Using C++

1.3  Operations on Data Structures

Here we will discuss various operations which are performed on data
structures.

•	 Creation – It is the process of creating a data structure. Declaration
and initialization of the data structure are done here. It is the first
operation.

•	 Insertion – It is the process of adding new data elements in the data
structure, for example, to add the details of an employee who has
recently joined an organization.

•	 Deletion – It is the process of removing a particular data element
from the given collection of data elements, for example, to remove the
name of an employee who has left the company.

•	 Updating – It is the process of modifying the data elements of a data
structure. For example, if the address of a student is changed, then it
should be updated.

•	 Searching – It is used to find the location of a particular data element
or all the data elements with the help of a given key, for example, to
find the names of people who live in New York.

•	 Sorting – It is the process of arranging the data elements in some
order, that is, either ascending or descending order. An example is
arranging the names of students of a class in alphabetical order.

•	 Merging – It is the process of combining the data elements of two
different lists to form a single list of data elements.

FIGURE 1.7 A graph.

Introduction To Data Structures • 13

•	 Traversal – It is the process of accessing each data element exactly
once so that it can be processed. An example is to print the names of
all the students of a class.

•	 Destruction – It is the process of deleting the entire data structure. It
is the last operation in the data structure.

1.4  Algorithms

An algorithm is a systematic set of instructions combined to solve
a complex problem. It is a step-by-finite-step sequence of instructions,
each of which has a clear meaning and can be executed in a minimum
amount of effort in finite time. In general, an algorithm is a blueprint for
writing a program to solve the problem. Once we have a blueprint of the
solution, we can easily implement it in any high-level language like C,
C++, and so forth. It solves the problem into the finite number of steps.
An algorithm written in a programming language is known as a program.
A computer is a machine with no brain or intelligence. Therefore, the
computer must be instructed to perform a given task in unambiguous
steps. Hence, a programmer must define his problem in the form of an
algorithm written in English. Thus, such an algorithm should have fol-
lowing features:

1.	An algorithm should be simple and concise.

2.	It should be efficient and effective.

3.	It should be free of ambiguity; that is, the logic must be clear.

Similarly, an algorithm must have following characteristics:

•	 Input – It reads the data of the given problem.

•	 Output – The desired result must be produced.

•	 Process/Definiteness – Each step or instruction must be
unambiguous.

•	 Effectiveness – Each step should be accurate and concise. The
desired result should be produced within a finite time.

•	 Finiteness – The number of steps should be finite.

14 • Data Structures and Program Design Using C++

1.4.1 Developing an Algorithm
To develop an algorithm, some steps are suggested:

1.	Defining or understanding the problem.

2.	Identifying the result or output of the problem.

3.	Identifying the inputs required by the problem and choosing the best input.

4.	Designing the logic from the given inputs to get the desired output.

5.	Testing the algorithm for different inputs.

6.	Repeating the previous steps until it produces the desired result for all
the inputs.

1.5  Approaches for Designing an Algorithm

A complicated algorithm is divided into smaller units which are called
modules. Then these modules are further divided into sub-modules.
Thus, in this way, a complex algorithm can easily be solved. The process of
dividing an algorithm into modules is called modularization. There are two
popular approaches for designing an algorithm:

•	 Top-Down Approach

•	 Bottom-Up Approach

Now let us understand both approaches.

1.	Top-Down Approach – A top-down approach states that the complex/
complicated problem/algorithm should be divided into a smaller number

FIGURE 1.8 Top-down approach.

Introduction To Data Structures • 15

1.6  Analyzing an Algorithm

An algorithm can be analyzed by two factors, that is, space and time.
We aim to develop an algorithm that makes the best use of both these
resources. Analyzing an algorithm measures the efficiency of the algorithm.
The efficiency of the algorithm is measured in terms of speed and time
complexity. The complexity of an algorithm is a function that measures the
space and time used by an algorithm in terms of input size.

Time Complexity – The time complexity of an algorithm is the
amount of time taken by an algorithm to run the program completely.
It is the running time of the program. The time complexity of an algo-
rithm depends upon the input size. The time complexity is commonly

FIGURE 1.9 Bottom-up approach.

of one or more modules. These smaller modules are further divided into
one or more sub-modules. This process of decomposition is repeated
until we achieve the desired output of module complexity. A top-down
approach starts from the topmost module, and the modules are incre-
mented accordingly until a level is reached where we don’t require any
more sub-modules, that is, the desired level of complexity is achieved.

2.	Bottom-Up Approach – A bottom-up algorithm design approach is the
opposite of a top-down approach. In this kind of approach, we first start
with designing the basic modules and proceed further toward designing
the high-level modules. The sub-modules are grouped together to form a
module of a higher level. Similarly, all high-level modules are grouped to
form more high-level modules. Thus, this process of combining the sub-
modules is repeated until we obtain the desired output of the algorithm.

16 • Data Structures and Program Design Using C++

represented by using big O notation. For example, the time complexity of
a linear search is O(n).

Space Complexity – The space complexity of an algorithm is the
amount of memory space required to run the program completely. The
space complexity of an algorithm depends upon the input size.

Time Complexity is categorized into three types:

1.	Best Case Running Time – The performance of the algorithm will
be best under optimal conditions. For example, the best case for a
binary search occurs when the desired element is the middle element
of the list. Another example can be of sorting; that is, if the elements are
already sorted in a list, then the algorithm will execute in best time.

2.	Average Case Running Time – It denotes the behavior of an
algorithm when the input is randomly drawn from a given collection or
distribution. It is an estimate of the running time for “average” input. It
is usually assumed that all inputs of a given size are likely to occur with
equal probability.

3.	Worst Case Running Time – The behavior of the algorithm in this
case concerns the worst possible case of input instance. The worst case
running time of an algorithm is an upper bound on the running time for
any input. For example, the worst case for a linear search occurs when
the desired element is the last element in the list or the element does not
exist in the list.

Frequently Asked Questions

Q6. Define the time complexity.

Answer.
Time complexity is a measure which evaluates the count of the operations
performed by a given algorithm as a function of the size of the input. It is the
approximation of the number of steps necessary to execute an algorithm. It is
commonly represented with asymptotic notation, that is, O(g) notation, also
known as big O notation, where g is the function of the size of the input data.

Introduction To Data Structures • 17

1.6.1 Time-Space Trade-Off
In computer science, time-space trade-off is a way of solving a partic-

ular problem either in less time and more memory space or in more time
and less memory space. But if we talk in practical terms, designing such an
algorithm in which we can save both space and time is a challenging
task. So, we can use more than one algorithm to solve a problem. One
may require less time, and the other may require less memory space
to execute. Therefore, we sacrifice one thing for the other. Hence,
there exists a time-space or time-memory trade-off between algo-
rithms. Thus, this time-space trade-off gives the programmer a ratio-
nal choice from an informed point of view. So, if time is a big concern
for a programmer, then he or she might choose a program which takes
less or the minimum time to execute. On the other hand, if space is a
prime concern for a programmer, then, in that case, he or she might
choose a program that takes less memory space to execute at the cost
of more time.

1.7  Abstract Data Types

An abstract data type (ADT) is a popular mathematical model of
the data objects which define a data type along with various functions
that operate on these objects. To understand the meaning of an abstract
data type, we will simply break the term into two parts, that is, “data
type” and “abstract.” The data type of a variable is a collection of values
which a variable can take. There are various data types in C++ that
include integer, float, character, long, double, and so on. When we talk
about the term “abstract” in the context of data structures, it means
apart from detailed specification. It can be considered as a description
of the data in a structure with a list of operations to be executed on the
data within the structure. Thus, an abstract data type is the specifica-
tion of a data type that specifies the mathematical and logical model
of the data type. For example, when we use stacks and queues, then at
that point of time our prime concern is only with the data type and the
operations to be performed on those structures. We are not worried
about how the data will be stored in the memory. Also, we don’t bother
about how push() and pop() operations work. We just know that we
have two functions available to us, so we have to use them for insertion
and deletion operations.

18 • Data Structures and Program Design Using C++

1.8  Big O Notation

The performance of an algorithm, that is, time and space requirements,
can be easily compared with other competitive algorithms using asymp-
totic notations such as the big O notation, the Omega notation, and the
Theta notation. The algorithmic complexity can be easily approximated
using asymptotic notations by simply ignoring the implementation-depen-
dent factors. For instance, we can compare various available sorting algo-
rithms using big O notation or any other asymptotic notation.

Big O notation is one of the popular analysis characterization schemes,
since it provides an upper bound on the complexity of an algorithm. In big
O, O(g) is representative of the class of all functions that grow no faster than
g. Therefore, if f(n) = O(g(n)) then f(n) <= c(g(n)) for all n> n0 where n0
represents a threshold and c represents a constant.

An algorithm with O(1) complexity is referred to as a constant comput-
ing time algorithm. Similarly, an algorithm with O(n) complexity is referred
to as a linear algorithm, O(n2) for quadratic algorithms, O(2n) for exponen-
tial time algorithms, O(nk) for polynomial time algorithms, and O (log n) for
logarithmic time algorithms.

An algorithm with complexity of the order of O(log2n) is considered as
one of the best algorithms, while an algorithm with complexity of the order
of O(2n) is considered as the worst algorithm. The complexity of computa-
tions or the number of iterations required in various types of functions may
be compared as follows:

O(log2n) < O(n) < O (n log2n) < O(n2)<O(n3) < O(2n)

1.9  Summary

•	 A data structure determines a way of storing and organizing the
data elements in the computer memory. Data means a value or a
collection of values. Structure refers to a way of organizing the data.
The mathematical or logical representation of data in the memory is
referred as a data structure.

•	 Data structures are classified into various types which include linear
and non-linear data structures, primitive and non-primitive data
structures, static and dynamic data structures, and homogeneous and
non-homogeneous data structures.

Introduction To Data Structures • 19

•	 A linear data structure is one in which the data elements are stored
in a linear or sequential order; that is, data is stored in consecutive
memory locations. A non-linear data structure is one in which the
data is not stored in any sequential order or consecutive memory
locations.

•	 A static data structure is a collection of data in memory which is
fixed in size and cannot be changed during runtime. A dynamic data
structure is a collection of data in which memory can be reallocated
during execution of a program.

•	 Primitive data structures are fundamental data structures or
predefined data structures which are supported by a programming
language. Non-primitive data structures are comparatively more
complicated data structures that are created using primitive data
structures.

•	 A homogeneous data structure is one that contains all data elements
of the same type. A non-homogeneous data structure contains data
elements of different types.

•	 An array is a collection of homogeneous (similar) types of data elements
in contiguous memory.

•	 A queue is a linear collection of data elements in which the element
inserted first will be the element taken out first, that is, a FIFO data
structure. A queue is a linear data structure in which the first element
is inserted from one end called the REAR end and the deletion of the
element takes place from the other end called the FRONT end.

•	 A linked list is a sequence of nodes in which each node contains one or
more than one data field and a pointer which points to the next node.

•	 A stack is a linear collection of data elements in which insertion
and deletion take place only at one end called the TOP of the stack.
A stack is a Last In First Out (LIFO) data structure, because the last
element added to the top of the stack will be the first element to be
deleted from the top of the stack.

•	 A tree is a non-linear data structure in which the data elements or the
nodes are represented in a hierarchical order. Here, an initial node
is designated as the root node of the tree, and the remaining nodes
are partitioned into two disjointed sets such that each set is a part of a
subtree.

20 • Data Structures and Program Design Using C++

•	 A binary tree is the simplest form of a tree. A binary tree consists
of a root node and two subtrees known as the left subtree and right
subtree, where both the subtrees are also binary trees.

•	 A graph is a general tree with no parent-child relationship. It is a
non-linear data structure which consists of vertices or nodes and the
edges which connect those vertices with one another.

•	 An algorithm is a systematic set of instructions combined to solve a
complex problem. It is a step-by-finite-step sequence of instructions,
each of which has a clear meaning and can be executed in a minimum
amount of effort in finite time.

•	 The process of dividing an algorithm into modules is called
modularization.

•	 The time complexity of an algorithm is described as the amount of
time taken by an algorithm to run the program completely. It is the
running time of the program.

•	 The space complexity of an algorithm is the amount of memory space
required to run the program completely.

•	 An ADT (Abstract Data Type) is a mathematical model of the data
objects which define a data type as well as the functions to operate on
these objects.

•	 Big O notation is one of the most popular analysis characterization
schemes, since it provides an upper bound on the complexity of an
algorithm.

1.10  Exercises

1.		 What do you understand by a good program?

2.		 Explain the classification of data structures.

3.		 What is an algorithm? Discuss the characteristics of an algorithm.

4.		� What are the various operations that can be performed on the data
structures? Explain each of them with an example.

5.		 Differentiate an array with a linked list.

6.		 Explain the terms time complexity and space complexity.

Introduction To Data Structures • 21

7.		 What do you understand by the complexity of an algorithm?

8.		 Write a short note on graphs.

9.		 What is the process of modularization?

10.	Differentiate between stacks and queues with examples.

11.	What is meant by abstract data types (ADT)? Explain in detail.

12.	�Discuss the worst case, best case, and average case time complexity of
an algorithm.

13.	Write a brief note on trees.

14.	Explain how you can develop an algorithm to solve a complex problem.

15.	Explain time-memory trade-off in detail.

1.11  Multiple Choice Questions

1.		 Which of the following data structures is a FIFO data structure?

a.	 Array

b.	 Stacks

c.	 Queues

d.	 Linked List

2.		 How many maximum children can a binary tree have?

a.	 0

b.	 2

c.	 1

d.	 3

3.		 Which of the following data structures uses dynamic memory allocation?

a.	 Graphs

b.	 Linked Lists

c.	 Trees

d.	 All of these

22 • Data Structures and Program Design Using C++

4.		 In a queue, deletion is always done from the ______

a.	 Front end

b.	 Rear end

c.	 Middle

d.	 None of these

5.		� Which data structure is used to represent complex relationships be-
tween the nodes?

a.	 Linked Lists

b.	 Trees

c.	 Stacks

d.	 Graphs

6.		� Which of the following is an example of a heterogeneous data
structure?

a.	 Array

b.	 Structure

c.	 Linked list

d.	 None of these

7.		 In a stack, insertion and deletion takes place from the ______

a.	 Bottom

b.	 Middle

c.	 Top

d.	 All of these

8.		� Which of the following is not part of the Abstract Data Type (ADT) de-
scription?

a.	 Operations

b.	 Data

c.	 Both (a) and (b)

d.	 None of the above

Introduction To Data Structures • 23

9.		� Which of the following data structures allows deletion at both ends of
the list but insertion at one end only?

a.	 Stack

b.	 Input Restricted Dequeue

c.	 Output Restricted Dequeue

d.	 Priority Queue

10.	Which of the following data structures is a linear type?

a.	 Trees

b.	 Graphs

c.	 Queues

d.	 None of the above

11.	�Which one of the following is beneficial when the data is stored and has
to be retrieved in reverse order?

a.	 Stack

b.	 Linked List

c.	 Queue

d.	 All of the above

12.	�A binary search tree whose left and right subtree differ in height by
1 at most is a ____

a.	 Red Black Tree

b.	 M way search tree

c.	 AVL Tree

d.	 None of the above

13.	The operation of processing each element in the list is called ________

a.	 Traversal

b.	 Merging

c.	 Inserting

d.	 Sorting

24 • Data Structures and Program Design Using C++

14.	�Which of the following are the two primary measures of the efficiency
of an algorithm?

a.	 Data & Time

b.	 Data & Space

c.	 Time & Space

d.	 Time & Complexity

15.	�Which one of the following cases does not exist/occur in complexity
theory?

a.	 Average Case

b.	 Worst Case

c.	 Best Case

d.	 Minimal Case

C H A P T E R2

In This Chapter

●● 	 Introduction
●● 	 C++ and Its Characteristics
●● 	 Features of Object-Oriented Programming
●● 	 Character Set Used in C++
●● 	 C++ Tokens
●● 	 Data Types in C++
●● 	 Structure of a C++ Program
●● 	 Operators in C++
●● 	 Decision Control Statements in C++
●● 	 Looping Statements in C++
●● 	 Break and Continue Statements
●● 	 Functions in C++
●● 	 Structures in C++
●● 	 Reference Variables in C++
●● 	 Pointers
●● 	 Arrays and Pointers
●● 	 Summary
●● 	 Exercises

INTRODUCTION TO THE
C++ LANGUAGE

26 • Data Structures and Program Design Using C++

2.1  Introduction

A programming language like C++ is a set of commands that are spe-
cifically designed for instructing the computer devices to perform specific
tasks. There are three levels of programming languages, which are com-
monly known as high-level, middle-level, and low-level languages. The level
determines the degree of closeness of the programming language with the
hardware. Generally, high-level languages are portable, which means they
can operate in different machines with fewer modifications. A high-level
language, instead of being machine-dependent, is oriented toward prob-
lem-solving, whereas a low-level language is limited by the characteristics
of the hardware. Each programming language is chosen to solve a particular
class of problems depending upon the type of program. However, the C++
language is a middle-level language that directly interacts with the hard-
ware with almost no limitations and can abstract lower layers, and thus it
can work as one of the powerful high level-languages.

2.2  C++ and Its Characteristics

The C++ language was created and developed by Bjarne Stroustrup, a Dan-
ish computer scientist at Bell Labs, in New Jersey in 1979. The C++ language
supports all the features, flexibilities, and attributes of C language. It also in-
troduces various new features that were designed to support object-oriented
programming. C++ was initially known with the new name of “C with Classes.”
Thus, C++ is the object-oriented version of C. When creating C++, Stroust-
rup successfully accomplished his goal of retaining the efficiency, flexibility, and
philosophy of C while also adding new features for OOP (Object Oriented Pro-
gramming). The following characteristics distinguish C++ from other program-
ming languages:

•	 C++ is object-oriented programming that allows the program to
interact with the help of the objects. It allows greater usability of code
in a productive way.

•	 C++ is portable; that is, the code written in C++ can be compiled in
any of the computer systems without any modifications.

•	 Codes written in C++ are short in comparison with other languages.

•	 C++ is compatible with the C language; that is, any code written in C
can easily be included in C++ with little or no modifications, but the
reverse is not possible.

Introduction to the C++ Language • 27

2.3  Features of Object-Oriented Programming

The following are the various features or characteristics of object-ori-
ented programming:

•	 Objects – An object is a container in which the data is stored in the
combination of variables, functions, and data structures. An object
is that component of a program that interacts with the other parts/
pieces of the program. They are the fundamental runtime entities of
a program.

•	 Classes – The building block of C++ that leads to object-oriented
programming is a class. A class is actually a user-defined data type that
holds its own data members and member functions. It is a way to bind
the data members and its functions together. A class can be accessed
by creating an object of that class. When a class is defined, we can
create any number of objects as an instance of the class. Thus, a class
is a collection of objects of similar types. Classes provide a convenient
method for packing together a group of logically related data items
and functions that work on them. The classes are declared by using
the keyword “class” with the following syntax:

class class_name
{
access specifier: //can be public, private or protected
data members ;

member functions()
{

}

};

Where class_name is the name of the class, data members are the vari-
ables to be used, and the member functions are the methods to access the
data members.

28 • Data Structures and Program Design Using C++

•	 Encapsulation – Encapsulation is a process of wrapping up of data
members and member functions into a single unit. It is the mechanism
which keeps the code and the data safe from external interference.
It implies that there is no direct access granted to the data; that is,
it is hidden. So, in order to access that data, we must interact with
the object that is responsible for the data. This is also known as data
hiding. The process of encapsulation makes the data of the system
more secure and reliable.

Frequently Asked Questions

Q1. What is the difference between the base and derived class?

Answer.
When creating a class, instead of writing completely new data members and
member functions, the programmer can designate that the new class should
inherit the members of an existing class. This existing class is known as a base
class, and the new class is known as a derived class. A class can be derived
from more than one class, which means it can inherit data and functions
from multiple base classes.

Practical Application:

The most common example of encapsulation is a capsule. In a capsule, all
the medicines are encapsulated inside a single capsule.

Introduction to the C++ Language • 29

•	 Inheritance – Inheritance is the process of deriving a new class from
the existing one. The existing class is known as the “base class” or
“parent class” or “superclass.” The new class is known as the “derived
class” or “child class” or “subclass.” The process of inheritance allows
the child classes to inherit all the features, that is, variables and
methods, of their parent class. Thus, the derived classes will have all
the features of their base class, and the programmer can add some
new features specific to the derived class. There are five types of
inheritances supported in C++, which are as follows:

1.	Single Inheritance –A class derived from a single base class is known as
single inheritance.

FPO

2.	Multilevel Inheritance – Classes derived from the already derived
classes are known as multilevel inheritance.

3.	Multiple Inheritance – A class derived from more than one base class
is known as multiple inheritance.

30 • Data Structures and Program Design Using C++

4.	Hybrid Inheritance – Hybrid inheritance refers to the combination of
one or more types of inheritances.

5.	Hierarchical Inheritance – When more than one class is derived from
a single base class, it is known as hierarchical inheritance.

Practical Application:

The most common real-life example of inheritance is your family, in which
your grandfather is the head of the family (base class/ parent class), your
father is the child of the grandfather (derived class/ child class), and you are
the child of your father (another derived class).

Introduction to the C++ Language • 31

•	 Polymorphism – The word polymorphism is derived from the word
poly, which means many, and the word morph, which means forms.
Therefore, anything that exists in more than one form is referred to
as a polymorph. Thus, polymorphism means the ability to make more
than one form. Polymorphism usually occurs when there is a hierarchy
of classes and the classes are related by inheritance. Polymorphism is
considered as one of the most important features of object-oriented
programming. Polymorphism is of two types:

1.	Compile Time Polymorphism (Static Polymorphism) – It is done
using function overloading and operator overloading.

2.	Runtime Polymorphism (Dynamic Polymorphism) – It is done us-
ing method overriding or virtual functions.

•	 Abstraction – The process of abstraction is somewhat related to the
idea of hiding data that is not essential. Abstraction refers to the act
of displaying only the essential features and hiding the background
details and explanations that are not needed for the presentation.
This is also known as data abstraction. Abstraction is one of the vital
features provided by the object-oriented C++ programming language.
Since the classes use the concept of data abstraction, they are known
as Abstract Data Types (ADT). An abstract data type is a popular
mathematical model of the data objects which define a data type along
with various functions that operate on these objects. The process of
abstraction in C++ is implemented using classes. The class decides
which data member will be visible to the outside world and vice versa.

Practical Application:

A person exhibits different roles in different situations; that is, he/she is a
child for his/her father, he/she is a student for his/her teachers, he/she is a
friend for his/her friends, and so on.

32 • Data Structures and Program Design Using C++

•	 Message Passing – Message passing is the process of communication
between objects. An object-oriented program consists of objects that
communicate by sending and receiving information from each other.
A message for an object is a request for the execution of a procedure,
and thus it will invoke a method in the receiving object that generates
the desired results. Message passing involves three things: the name
of the object, the name of the function, and the data/information to
be sent.

•	 Dynamic Binding – Dynamic binding is the process by which the
code that has to be executed for a given procedure call is known at
runtime rather than at the compile time. It is also known as dynamic
dispatch. It is an object-oriented programming concept, and it is also
related to inheritance and polymorphism.

Frequently Asked Questions

Q2. �Explain the differences between abstraction and
encapsulation.

Answer.
Data abstraction refers to providing only essential information to the outside
world and hiding the background details, that is, representing the needed
information in the program without presenting all the details. On the other
hand, encapsulation is an object-oriented programming concept that binds
together the data and the functions that manipulate the data and thus keeps
them safe from the outside world.

Practical Application:

Consider a man driving a bus. The man only knows that pressing the
accelerator will increase the speed of the bus and that applying the brakes
decreases the speed of the bus. The man does not know how pressing the
accelerator increases the speed or how applying the brakes decreases the
speed. Hence, he does not know the inner mechanism of the bus.

Introduction to the C++ Language • 33

Frequently Asked Questions

Q3. Explain how one can achieve data hiding in C++.

Answer.
Encapsulation supports data hiding by making use of three access specifiers
of a class.

1.	Public – If a class member is declared as public, it can be used any-
where without the class restrictions.

2.	Private – If a class member is declared as private, it can be used by
the members of the class.

3.	Protected – If a class member is declared as protected, it can only
be used by the members of the class and the members of the class
derived from the class.

FIGURE 2.1 Features of object-oriented programming.

34 • Data Structures and Program Design Using C++

2.4  Character Set Used in C++

The character set allowed in C++ consists of the following characters:

1.	Alphabets – It includes uppercase as well as lowercase letters of
English, i.e., {A, B, C... ., Z} and {a, b, c... ., z}.

2.	Digits – It includes decimal digits, i.e. {0, 1, 2 . . ., 9}.

3.	White Spaces – It includes spaces, enters, and tabs.

4.	Special Characters – It consists of special symbols which include {, !, ?,
#, <, >, (,), %, “, &, ^, *, <<, >>, [,], +, =, /, -, _, :, ;, }.

2.5  C++ Tokens

C++ tokens help us to write a program in C++. C++ supports various
types of tokens:

•	 Keywords

•	 Identifiers

•	 Constants

•	 Variables

FIGURE 2.2 Various C++ tokens.

Now, let us discuss all of them.

Keywords – Keywords in C++ are the reserved words which have
a special meaning. They are written in lower case. Keywords cannot be
used as identifiers. Examples are auto, int, float, char, break,
switch, continue, double, long, short, unsigned, signed,
while, for, else, new, delete, void, and so forth.

Introduction to the C++ Language • 35

Identifiers – An identifier is a name which is given to a constant, variable,
function, or array. The rules which are used to define identifiers are as follows:

1.	An identifier can have letters, digits, or underscores.

2.	It should not start with a digit.

3.	It can start with an underscore or a letter.

4.	An identifier cannot have special symbols.

5.	A keyword cannot be used as an identifier.

For example:

Acceptable Identifiers Unacceptable Identifiers

a345_ au to

yourname34 12d

c_65 n 3_

average 5rf_t3

Constants – Constants are the fixed values in C++ that can never be
changed. Constants are also known as literals. For example, the value of pi
is always fixed. A constant can be of any basic data types. C++ has two types
of constants, which are as follows:

•	 Numeric Constant – It is a constant to which only the integer values are
assigned. It consists of an integer constant, float constant, or real constant.

•	 Character Constant – It is a constant to which only the character
values are assigned.

Variables – A variable is a name which is used to refer to some memory
location. While working with a variable, we refer to the address of the mem-
ory where the data is stored. C++ supports two types of variables, which
include character variables and numeric variables.

•	 Numeric Variables – These are used to store the integer or floating-
type values.

•	 Character Variables – In this variable, single characters are enclosed
in single quotes.

36 • Data Structures and Program Design Using C++

2.6  Data Types in C++

Data types are the special keywords which define the type of data and
the amount of data a variable is holding. There are five basic data types
available in C++, which are as follows:

•	 Integer (int), that is, 23, -98, +786, etc.

•	 Character (char), that is, ‘A’, ‘x’, ‘u’, etc.

•	 Void, that is, valueless, which has no value.

•	 Boolean, that is, either true/false or 1/0.

•	 Floating point (float), that is, 1.7, -4.6, +9.6, etc.

–– Double floating point (double), that is, -87.55653, +9867.3467, etc.

There are various modifiers which are used to alter the meaning of
the basic data types, except for void. These modifiers are signed, unsigned,
short, and long. All these modifiers can be applied to integers. However,
only signed and unsigned can be applied to characters. Further classifica-
tion is shown in the following table.

Data Type Bytes (in
memory)

Range

int 2 -32,768 to 32,767
char 1 -128 to 127

double 8 -1.7 X 10-308 to 1.7 X 10+308

float 4 -3.4 X 10-38 to 3.4 X 10+38

unsigned int 2 0 to 65535
signed int 2 -32,768 to 32,767
short int 2 -32,768 to 32,767
long int 4 -2147483648 to 2147483647

unsigned short int 2 o to 65535
signed short int 2 -32,768 to 32,767
unsigned long int 4 0 to 4294967294
signed long int 4 -2147483648 to 2147483647
unsigned char 1 0 to 255

Introduction to the C++ Language • 37

signed char 1 -128 to 127
long double 10 -3.4 X 10-493 to 1.1 X 10+493

Boolean 1 true or false

2.7  Structure of a C++ Program

There are two ways to design a C++ program, which are as follows:

1.	C++ program without classes.

2.	C++ program with classes.

Now, let us see both of them with the help of simple programs.[B]

2.7.1  Structure of a C++ Program without Classes

#include <iostream.h> // Header Files included

#include <conio.h>

void main() //Main function
{
int a, b, sum; //Variable Declaration
cout<<“Enter two numbers:”; //�cout statement is used

for printing on screen.
cin>>a; //�cin statement is for

taking input from keyboard.
cin>>b;
sum = a + b;
cout<<“After addition, the sum is:”<<sum;
getch();

} //End Main

2.7.2  Structure of a C++ Program with Classes

#include <iostream.h> //Header Files included

#include <conio.h>

class Example //�A Class is created having data
members and member functions.

38 • Data Structures and Program Design Using C++

{
private:
int a, b, sum; //�a, b and sum are declared as private

data members of the class.
public:
void input() //�input() and sum() functions are

declared as public.
{
cout<<“Enter the values:”;
cin>>a;
cin>>b;

}
void sum()
{
sum = a + b;
cout<<“Sum =”<<sum;

}
};

void main() //Main Function
{
Example obj; //�obj is the object of the class

Example.
obj.input();
obj.sum();
getch();

}

Frequently Asked Questions

Q4. �How is input taken and how is output displayed in C++?
Explain.

Answer.
In C++, input and output operators are used to take input and display output.
The operator used for taking the input is known as the extraction or get from
operator (>>), while the operator used for displaying the output is known as
the insertion or put the operator (<<). The statements used for inputting and
outputting are cin and cout respectively.

Introduction to the C++ Language • 39

2.8  Operators in C++

Operators in C++ are used to perform some specific operations between
the different variables and constants. C++ supports a variety of operators,
which are given as follows:

■■ Arithmetic Operators

■■ Logical Operators

■■ Assignment Operators

■■ Relational Operators/ Comparison Operators

■■ Condition Operators/ Ternary Operators

■■ Bitwise Operators

■■ Comma Operators

■■ Unary Operators

■■ Sizeof Operator

■■ New and Delete Operators

■■ Scope Resolution Operator

Now, let us discuss all of these operators.

Arithmetic Operators
Arithmetic operators are those operators which are used in mathemati-

cal computation or calculation. The valid arithmetic operators in C++ are
given in the following table.

Let x and y be the two variables.

Operator Operation Example
+ Addition x + y
- Subtraction x – y
* Multiplication x * y
% Remainder/ Modulus x % y
/ Division x / y

40 • Data Structures and Program Design Using C++

Logical Operators
C++ supports three types of logical operators, which are given as fol-

lows:

Operator Description Example
! Logical NOT !x, !y

&& Logical AND x && y
|| Logical OR x || y

Logical NOT – It is a unary operator. This operator takes a single
expression, and it inverts the result such that true becomes false and vice
versa. The truth table for logical NOT is given as follows:

x y !x !y
0 1 1 0
1 0 0 1

Logical AND – It is a binary operator. Hence, it takes two inputs or
expressions. If both the inputs are true, then the whole expression is true.
If both or even any one of the inputs is false, then the whole expression will
be false. The truth table for logical AND is given as follows:

X Y X & Y
0 0 0
0 1 0
1 0 0

1 1 1

Logical OR – It is also a binary operator; that is, it also takes two
expressions. If both the inputs are false, then the output is false. If a single
input or both of the inputs are true, then the output will be true. The truth
table for logical OR is given as follows:

X Y X || Y
0 0 0
0 1 1

Introduction to the C++ Language • 41

1 0 1

1 1 1

Assignment Operators
Assignment operators are ones which are responsible for assigning val-

ues to the variables. These operators are always evaluated from right to left.
C++ supports various assignment operators, which are given in the follow-
ing table:

Operators Example
= x = 5, y = 8

+= x += y
:- x = x + y

-= x -= y
:- x = x – y

*= x *= y
:- x = x * y

%= x %= y
:- x = x % y

/= x /= y
:- x = x / y

Relational Operators
Relational operators are used for comparison between two values or

expressions. They are also known as comparison operators. These opera-
tors are always evaluated from left to right. The various relational operators
used in C++ are as follows:

Operators Description Example
> Greater than x > y
< Less than x < y

== Equal to x == y

>= Greater than equal to x >= y

<= Less than equal to x <= y

!= Not equal to x != y

42 • Data Structures and Program Design Using C++

Conditional Operators
The conditional operator is also known as a ternary operator regarding

input; it accepts three operands. The syntax of this operator is as follows:

Syntax – (Expression 1) ?(Expression 2) :(Expression 3) ;

Where expression 1 is first evaluated. If expression 1 is true, then
expression 2 is evaluated and expression 2 will be the answer of this whole
expression, else expression 3 is evaluated and expression 3 will be the
answer of this whole expression. Conditional operators can be used to find
the larger of two numbers.

Greatest = (x > y) ?x : y ;

Here, if x > y is true, then x is greater than y; that is, (greatest = x) else
y is greater than x, that is, (greatest = y).

Bitwise Operators
Bitwise operators are the special operators that are used to perform

operations at the bit level. C++ supports various types of bitwise operators,
which include the following:

Operator Description
<< Left shift
>> Right shift
& Bitwise AND

| Bitwise OR

^ Bitwise XOR

Comma Operator
The comma operator is used to chain together some expressions. First,

it evaluates the first expression and discards its value. It then evaluates the
second expression, and the calculated result of this expression is returned
as the final output. The expressions separated by a comma operator are
evaluated in a sequence starting from the left to the right. For example, the
following statement is given:

Introduction to the C++ Language • 43

Hence, in the previous example, y has been assigned a value 10. Now
y is decremented by 7. So, the value of the expression (y – 7) will be 3 and
is assigned to x. Thus, the final value of x = 3.

Unary Operators
A unary operator is one which requires only a single operand to work.

C++ supports two unary operators, which are increment (++) and decre-
ment (--) operators. These operators are used to increase or decrease the
value of a variable by one respectively. The two variants of increment and
decrement operators are postfix and prefix. In a postfix expression, the
operator is applied after the operand. On the other hand, in a prefix expres-
sion, the operator is applied before the operand.

Operator Postfix Prefix
Increment (++) x++ ++x
Decrement (--) --x --x

Remember, x++ is not same as ++x; in x++ the value is returned first,
and then the value is incremented. In ++x, the value is returned after it
is incremented. Similarly, x-- is not same as --x. It is true that both these
operators increment or decrement the value by 1. For example, b = a ++ is
equivalent to:

1.	b = a,

2.	a = a + 1.

Similarly, b = -- a is equivalent to:

1.	a = a – 1,

2.	b = a.

44 • Data Structures and Program Design Using C++

Sizeof Operator
The sizeof operator is a unary operator that returns the size of an object,

a variable, or a data type in bytes. It is used to determine the amount of
memory storage a variable or a data type will take. It is written in the fol-
lowing manner: the keyword sizeof is followed by a variable/ expression.
A sizeof operator has the same precedence as that of unary operators. For
example, if we have,

int x = 100;

Then, answer = sizeof(x) = 2;

Therefore, the final answer will be 2 as x is an integer, so it takes 2 bytes
of storage space.

New and Delete Operators
The new and delete operators are used for dynamic memory allocation

and de-allocation respectively. The new operator is used to create objects of
any type. It is similar to the standard library function malloc.

Syntax: Pointer-variable = new data type;

For example,

int * obj = new int;

or obj = new int;

The delete operator is used to de-allocate the memory which was
allocated by the new operator.

Syntax: delete pointer-variable

For Example,

delete obj;

Scope Resolution Operator
The scope resolution operator is used to access a global variable from a

function in which a local variable is defined with the same name as that of
a global variable.

It is represented by : : (double dots).

Introduction to the C++ Language • 45

2.9  Decision Control Statements in C++

Whenever we talk of a program written in the C++ language, we know
that a C++ program will always execute sequentially, that is, line by line.
Initially, the first line will be executed. Then, the second line will execute
after the execution of the first line and so on. Control statements are those
that enable a programmer to execute a particular block of code and spec-
ify the order in which the various instructions of code are required to be
executed. They determine the flow of control. Control statements define
how the control is transferred to other parts of a program. Hence, they are
also called decision control statements. A decision control statement is one
that helps us to jump from one point of a program to another. A decision
control statement is executed in C++ using the following:

•	 If statement

•	 If-else statement

•	 Nested if-else statement

•	 Switch Case statement

Now, let us discuss all of them.

If Statement
An if statement is a bidirectional control statement which is used to test

the condition and take one of the possible actions. It is the simplest deci-
sion control statement and is used very frequently in decision making. The
general syntax of an if statement is as follows:

if (condition)
{
Statement Block of if; //�If condition is true, execute

the statements of if.
}

Statements Block under if;

46 • Data Structures and Program Design Using C++

An if statement will check the condition, and if the condition is true, then
only the set of statements inside the if block will be executed; However the
set of statements outside the if block will always be executed independent
of the condition. The if block can have one or multiple statements enclosed
within curly brackets. Also, the else block is optional in a simple if statement
because if the condition is false, then the control directly jumps to the next
statement. Remember, there is no semicolon after the condition, because the
condition and the statement should be used as a single statement.

For example:

Write a program to show the use of the if statement.

FIGURE 2.3 If statement flow diagram.

#include <iostream.h>
#include <conio.h>
void main()
{
int x, y ;
cout<<“Enter two values:” ;
cin>>x ;
cin>>y ;
if (y > x)

Introduction to the C++ Language • 47

{

cout<<“\nY is greater”<<y ;
}
cout<<“\n End of the program” ;
getch() ;

}
The output of the program is shown as:

If-Else Statement
After discussing the usage of the if statement, we learned that the

if statement does nothing when the condition is false. It just passes the
control to the next statement outside of if block. The if-else statement
takes care of this aspect. The general syntax of the if-else statement is as
follows:

if (condition)
{
Statements X; //If condition is true, execute the statements X

}

else
{
Statements Y; //If condition is false, execute the statements Y

}

48 • Data Structures and Program Design Using C++

#include <iostream.h>
#include <conio.h>
void main()
{
int x, y ;
cout<<“\n Enter two values:” ;
cin>>x ;
cin>>y ;
if (y < x)

The if-else statement will check the condition. If the condition is true,
then the set of statements X is executed, and the else block is not executed.
Otherwise, if the condition is false, then the set of statements Y is executed
and the if block is not executed. The if or else blocks can contain one or
multiple statements.

For example:

Write a program to show the use of if-else.

FIGURE 2.4 If-else statement flow diagram.

Introduction to the C++ Language • 49

{
cout<<“\n y is smaller”<<y ;

}
else
{

cout<<“x is smaller”<<x ;
}
getch() ;

}
The output of the program is shown as:

Nested If-Else Statement
The nested if-else statement is also known as the if-else-if ladder. The

if-else-if statement works the same way as that of a normal if statement. The
general syntax of the if-else-if statement is as follows:

if (condition 1)
{
Statements 1; //�If condition 1 is true, execute the

statements of If.
}
else if (condition 2)
{
Statements 2; //�If condition 2 is true, execute the

statements of else if.
}

50 • Data Structures and Program Design Using C++

FIGURE 2.5 Nested if-else statement flow diagram.

An if-else-if ladder works in the following manner. First, the if condi-
tion is checked. If the condition is true, then the set of statements 1 is
executed. If the condition is false, then the else-if condition is checked.
If the else-if condition is true, then the set of statements 2 is executed.
Otherwise, the set of statements 3 is executed. Remember, after the first if
expression, we can have as many else-if branches as are needed, depending
upon the number of expressions to be tested.

For Example:

Write a program to show the use of nested if-else.

else
{
Statements 3; //�If condition 2 is false, execute the

statements of else.
}

Introduction to the C++ Language • 51

#include <iostream.h>
#include <conio.h>
void main()
{
int x, y, z ;
cout<<“\n Enter three values:” ;
cin>>x ;
cin>>y ;
cin>>z ;
if (x > y && x > z)
{

cout<<“\n x is greater”<<x ;
}
else if (y > x && y > z)
{

cout<<“y is greater”<<y ;
}
else
{

cout<<“z is greater”<<z ;
}

getch() ;
}

The output of the program is shown as:

52 • Data Structures and Program Design Using C++

SWITCH Statement
As we all know, an if statement is used to check the given condition and

choose one option depending upon whether the condition is true or false.
But if we have several options to choose from, then it will not be a good
thing to use if statements for each option, as it will become very complex.
Hence, to avoid such a problem, a switch statement is used. The switch
statement is a multidirectional conditional control statement. It is a simpli-
fied version of an if-else-if statement. It selects one option from the number
of options available to us. Thus, it is also known as a selector statement.
Its execution is faster than an if-else-if construct. Also, a switch statement
is comparatively easy to understand and debug. The general syntax of the
switch statement is as follows:

switch (choice)
{
case constant 1:
Statements 1 ;
break ;

case constant 2:
Statements 2 ;
break ;

case constant 3:
Statements 3 ;
break ;
.
.
.

case constant n:
Statements n ;
break ;

default:
Statements D ;

}

Introduction to the C++ Language • 53

A switch statement works as follows:

•	 Initially, the value of the expression is compared with the case
constants of the switch construct.

•	 If the value of the expression and the switch statement match, then its
corresponding block is executed until a break is encountered. Once a
break is encountered, the control comes out of the switch statement.

•	 If there is no match in the switch statements, then the set of statements
of default is executed.

•	 All the values of the case constants must be unique.

•	 There can be only one default statement in the entire switch
statement. A default statement is optional; if it is not present and there
is no match with any of the case constants, then no action takes place.
The control simply jumps out of the switch statement.

FIGURE 2.6 Switch statement flow diagram.

54 • Data Structures and Program Design Using C++

include <iostream.h>
include <conio.h>
void main()
{
int choice ;
cout<<“\n Enter your choice:” ;
cin>>choice ;
switch(choice)
{

case 1 :
cout<<“First Case!!” ;
break ;

case 2 :
cout<<“Second Case!!” ;
break ;

case 3 :
cout<<“Third Case!!” ;
break ;

default :
cout<<“wrong choice” ;

}
getch() ;

}
The output of the program is shown as:

For example:

Write a program to demonstrate switch case.

Introduction to the C++ Language • 55

Frequently Asked Questions

Q5. Which one is better—a switch case or an else-if ladder?

Answer.

1. �The switch permits the execution of more than one alternative, whereas an
if statement does not. Various alternatives in an if statement are mutually
exclusive, whereas alternatives may or may not be mutually exclusive within
a switch statement.

2. �A switch can only perform equality tests involving integer type or character
type constants; an if statement, on the other hand, allows for a more
general comparison involving other data types as well.

When there are more than three or four conditions, use the switch case
rather than a long nested if statement.

2.10  Looping Statements in C++

Looping statements, also known as iterative statements, are the sets
of instructions which are repeatedly executed until a certain condition or
expression becomes false. This kind of repetitive execution of the statements
in a program is called a loop. Loops can be categorized into two categories:
pre-deterministic loops and deterministic loops. Pre-deterministic loops
are ones in which the number of times a loop will execute is known. On the
contrary, loops in which the number of times they will execute is not known
are called deterministic loops. C++ supports three types of loops, which
include the following:

■■ While Loop

■■ Do-while Loop

■■ For Loop

Now, let us discuss these loops in detail.

56 • Data Structures and Program Design Using C++

while (condition)
{
block of statements/ body of loop ;
increment/ decrement ;

}

WHILE Loop
A while loop is a loop which is used to repeat a set of one or more instruc-

tions/ statements until a particular condition becomes false. In a while loop,
the condition is checked before executing the body of the loop or any state-
ments in the statements block. Hence, a while loop is also called an entry
control loop. A while loop is a deterministic loop, as the number of times it
will execute is known to us. The general syntax of a while loop is as follows:

FIGURE 2.7 While loop flow diagram.

A while loop is executed as follows:

1.	The condition is tested.

2.	If the condition is true, then the statement is executed and step 1 is re-
peated.

3.	If the condition is false, then the loop is terminated, and the control
jumps out to execute the rest of the program.

For Example:

Write a program to execute a while loop.

Introduction to the C++ Language • 57

include <iostream.h>
include <conio.h>
void main()
{
int i = 1 ;
while (i < 10)
{

cout<<“\n”<<i ;
i = i + 1 ;

}
getch() ;

}
The output of the program is shown as:

In the previous example, i is initialized to 1 and 1 is less than 10, and
therefore the condition is true. Hence, the value of i is printed and is incre-
mented by 1. The condition will become false when i becomes 10; thus, at
that condition, the loop will end.

DO-WHILE Loop
A do-while loop is similar to a while loop. The only difference is that,

unlike a while loop in which a condition is checked at the start of the loop,
in a do-while loop the condition is checked at the end of the loop. Hence,
it is also called an exit control loop. This implies that in a do-while loop the
statements must be executed at least once, even if the condition is false,

58 • Data Structures and Program Design Using C++

do
{
block of statements/ body of loop ;
increment/ decrement ;

} while (condition);

The do-while loop continues to execute until the condition evaluates to
false. A do-while loop is usually employed in situations where we require
the program to be executed at least once, for instance, menu-driven pro-
grams. One of the major disadvantages of using a do-while loop is that a
do-while loop will always execute at least once even if the condition is false.
Therefore, if the user enters some irrelevant data, it will still execute.

For Example:

Write a program to illustrate a do-while loop.

because the condition is checked at the end of the loop. The general syntax
for a do-while loop is as follows:

FIGURE 2.8 Do-while loop flow diagram.

include<iostream.h>
include<conio.h>
void main()
{
int i = 1 ;

Introduction to the C++ Language • 59

In the previous code, i is initialized to 0, so the value of i is printed and
is incremented by 1. After executing the loop once, now the condition will
be checked. Now i = 1 and the condition is true. Therefore, the loop will
execute. The condition will become false when i becomes equal to 10. In
that case, the loop will be terminated.

FOR Loop
A for loop is a pre-deterministic loop; that is, it is a count-controlled

loop such that the programmer knows in advance how many times the for
loop is to be executed. In the for loop, the loop variable is always initialized
exactly once. The general syntax for the for loop is as follows:

do
{

cout<<“\n”<< i ;
i = i + 1 ;

} while (i < 10) ;
getch() ;

}
The output of the program is shown as:

for (initialization; condition; increment/decrement)
{
block of statements/ body of loop ;

}

60 • Data Structures and Program Design Using C++

In a for loop, the condition is always checked at the top of the loop.
Also, with every iteration of the loop, the variable and the condition are
checked. If the condition is true, then the statements written within the for
loop are executed; otherwise, the control moves out of the loop, and the for
loop is terminated. As we have seen in the syntax, initialization means to as-
sign a particular value to a variable initially. Second, the condition specifies
whether the loop will continue to execute or will terminate. The condition
is checked with every iteration of the loop. Iteration means to update the
value of a variable either by incrementing it or decrementing it. Also, each
section in a for loop is separated by a semicolon. So, it is possible that one
of the sections may be empty. For loops are widely used to execute a par-
ticular set of statements a limited number of times.

For example:

Write a program to demonstrate a for loop.

FIGURE 2.9. For loop flow diagram.

Introduction to the C++ Language • 61

include <iostream.h>
include <conio.h>
void main()
{
int x ;
for (x = 1 ; x <= 10 ; x++)
{

cout<<“\n”<< x ;
}
getch() ;

}
The output of the program is shown as:

In the previous example, x is a counter variable which is initialized to
1. Now, the condition is checked because 1 is less than 10. Thus, the condi-
tion is true, so the value of x is printed. After every iteration, the value of
x is incremented, and the condition is checked. The condition will become
false when i becomes 11, so at that time the for loop will be terminated, and
the control will come out of the loop.

2.11  Break and Continue Statements

In C++, break statements are used for loops and switch statements.
They are used to terminate the execution of the loop. A break statement
causes an intermediate exit from the loop in which the statement appears.
We have already seen its use in switch statements, as it is used to exit from
a switch statement. When a break is encountered, the control jumps out of
the loop. The break statement is usually used in a situation in which either

62 • Data Structures and Program Design Using C++

there is some error or if we don’t want to execute the rest of the loop. It has
a very simple syntax:

Syntax – break;

For example:

Write a program to illustrate the use of the break statement.

include <iostream.h>
include <conio.h>
void main()
{
int num = 0 ;
while(num < 5)
{

if(num == 2)
{

cout<<“Hello!!” ;
break ;

}
cout<<“\n Number =”<<num ;
num = num + 1 ;

}
getch() ;

}
The output of the program is shown as:

Introduction to the C++ Language • 63

In the previous code, when the value of num is equal to two, the break
statement is executed, and the control jumps out of the while loop following
the next statement after the while loop. Hence, the break statement is used
to exit from a loop at any point.

As we see a break statement is used to exit a particular loop, while a con-
tinue statement is used for doing the next iteration of the loop. Continue state-
ments are also used with loops. Unlike with a break statement, the loop does
not terminate when a continue statement is encountered. A continue state-
ment skips rest of the statements, and the control is transferred to the loop-
continuation portion of the loop. Therefore, the execution of the loop resumes
with the next iteration. The syntax of the continue statement is as follows:

Syntax –continue ;

For example:

Write a program to illustrate the use of the continue statement.

include <iostream.h>
include <conio.h>
void main()
{
int n ;
for(n = 0 ; n <= 8 ; n++)
{

if(n == 4)
continue ;
cout<<n ;

}
getch() ;

}
The output of the program is shown as:

64 • Data Structures and Program Design Using C++

In the previous code, as soon as the value of n becomes equal to four,
the continue statement is executed, and the cout statement is skipped. The
control is transferred to the expression, which increments the value of n.
Hence, a control statement is the opposite of the break statement.

2.12  Functions in C++

As C++ programmers, we often experience that the size of our program
becomes too large and its complexity also increases. So, at that time it is
very difficult for a programmer to read the entire code and also to check for
any errors in it. Hence, to overcome this problem, C++ language enables us
to break the entire program into a smaller number of modules or segments.
These modules or segments are called functions. Therefore, a function is a
predefined block of code designed to perform a particular task. Functions
are used to improve the efficiency of the program. Functions can reduce
redundancy and help so that the code is easily understood. Each function
is designed to perform a particular task. Functions are separated into two
categories:

1.	Library Functions – Library functions are those functions which are
predefined in C++ under various libraries. These are the ready-made
functions available in C++. These ready-made functions do not require
any coding to execute any operation. These functions can be directly
used by just including the related header files, for example, sin(x),
log(x), islower(c), strcpy(), and so on.

2.	User-Defined Functions – Unlike predefined library functions, these
functions can be defined by the programmer or user. We can easily cre-
ate these types of functions. The general form of a user-defined function
is as follows:

[return type] <Function name> [parameters/ arguments]
{
Statements;
return();

}

a)	Return Type – Return types are used to identify which kind of val-
ue is going to be returned by the functions. Return types are the data
types. If a function does not return any value, then the return type
is void.

Introduction to the C++ Language • 65

b)	Function Name – It identifies the name of a function. The name of
the function should not be reserved in the C++ libraries.

c)	Parameters/Arguments – These are the variables or values passed
with their data types to the functions for performing various opera-
tions.

d)	Statements – Statements are the particular steps that are per-
formed by the functions.

There are three things associated with functions, which are as follows:

1)		 Declaring a Function/ Function Declaration
A function must be declared before it is used. Declaring a function
means the compiler must know in advance the number of parameters
or arguments and the types of arguments which the function expects to
receive and also the data type that the function will return to the call-
ing program. The general form of declaring a function is [return type]
<Function name> [parameters/ arguments], which has already been
discussed.

2)		 Calling a Function/ Function Call
A function call is that call which transfers the control to the called
function to execute the set of statements in that particular block/func-
tion. After calling a function and executing it, the control again jumps
back to the calling function. There are two types of functions, that is,
a calling function and a called function. A calling function is one that
calls the function, and the called function is one which is called by the
calling function. The general syntax for calling a particular function is –
<function name> (arguments/parameters). Arguments may be passed
in the form of expressions to the called function.

3)		 Defining a Function/ Function Definition
After a function is called, then the function must be defined. Defining
a function means space is allocated in the memory for that function.
The number of arguments and their order must be the same as given
in the function declaration. It comprises two parts, that is, the head-
er of the function and the body of the function, where [return type]
<Function name> [parameters/ arguments] is the function header,
and the set of statements is the function body.

66 • Data Structures and Program Design Using C++

2.12.1  Passing Arguments to Functions
There are two ways to pass arguments or parameters to a function.

These two ways are as follows:

1.	Call by Value

2.	Call by Reference

Let us now discuss both in detail.

Call by Value
This is a method in which the values are passed from the calling function

to the called function. In this method, the called function creates copies of
the actual values of the calling function’s argument into its formal param-
eters. So, in this case, if the called function is supposed to change/modify the
actual values of the parameters, then the changes will only be reflected in
the called function. These changes will not be reflected in the calling func-
tion. This is because the changes which are made to the variables are not the
actual variables, but the copies of the actual variables. Hence, this is known
as call by value.

For example:

Write a program to demonstrate the use of call by value.

#include <iostream.h>
#include <conio.h>
void swap(int, int) ; //Declaration
void main() //Main function
{
int a = 10, b = 20 ;
swap(a, b) ; //Calling function

}
void swap(int a, int b)
{
int temp ;
temp = a ;
a = b ;
b = temp ;

cout<<“\n After swapping a=”<<a ;
cout<<“\n After swapping b=”<<b ;

}

Introduction to the C++ Language • 67

The output of the program is shown as:

The major drawback of the call by value technique is that a lot of mem-
ory space is consumed since a copy of the variables is created. Also, copying
data consumes a lot of time in this technique. On the other hand, the big-
gest advantage of this technique is that any expressions or variables can be
passed as arguments.

Call by Reference
This is a method in which the addresses of the variables are passed

from the calling function to the called function. In this method, function
arguments are declared as references rather than normal variables. So,
in this case, any changes done by the called function in the arguments
will also be reflected in the calling function. An asterisk (*) is placed
after the data type in the argument list to indicate that the parameters
are passed by call by reference. In this method, no copies of the actual
variables are created. Hence, the changes are also reflected in the call-
ing function.

For example:

Write a program to demonstrate the use of call by reference.

#include <iostream.h>

#include <conio.h>
void swap(int &a, int &b) ; //Declaration
void main() //Main function

68 • Data Structures and Program Design Using C++

{
int a = 10, b = 20 ;
swap(a, b) ; //Calling function

}

void swap(int &a, int &b)
{
int temp ;
temp = a ;
a = b ;
b = temp ;
cout<<“\n After swapping a =”<<a ;
cout<<“\n After swapping b =”<<b ;

}
The output of the program is shown as follows –

One of the most significant advantages of the call by reference tech-
nique is that it provides greater time as well as space complexity, as in this
method no copies of data are created. Also, the changes are reflected in the
calling function as well.

2.13  Structures in C++

A structure is a user-defined or custom data type which is used in stor-
ing related information, that is, data of different data types. A structure is
like an array, but the main difference is that an array contains only infor-
mation about the same data types. Therefore, a structure is a collection of
one or more different variables or data types grouped under a single name.

Introduction to the C++ Language • 69

Each variable in a structure is known as a member variable. A structure is
declared as follows:

Syntax –

struct structure_name
{
data type variable name 1;
data type variable name 2;
.
.
.
Block of statements

};

A structure is always declared using the keyword struct followed by the
name of the structure. Structure_name is the name of a user-defined data
type and will further be used to identify the structure and declare variables/
objects of the struct type.

For Example:

struct Student
{
char name[25];
int age ;
float height ;

};

2.14  Reference Variables in C++

When a variable is declared as a reference, it becomes an alternative
name for an existing variable. The reference variable is declared by putting
an ampersand (&) before the variable.

For example:

int x = 50 ;

Now, the reference variable i for x will be declared as follows:

int & i = x;

70 • Data Structures and Program Design Using C++

Reference variables are used for function argument lists and function
return values. Also, references are less powerful than pointers, and thus
they cannot be used in C++ for implementing data structures such as trees,
linked lists, stacks, queues, and so on.

2.15  Pointers

A pointer is a special type of variable that is used to store the address
of another variable rather than some simple value. Pointers can be used to
access the data stored in the memory. Pointers are frequently used with
arrays because pointers are more efficient in handling arrays and data ta-
bles. A pointer is a variable used to store the address of another variable
and is used to perform various operations. Pointers give power as well as
flexibility to C++ programmers. Pointers can directly access memory loca-
tions and can easily manipulate addresses.

Practical Application:

An example of a pointer is the address of the home of a human being which
can be used to reach the destination easily.

Declaration of a pointer – Data type *variable name;

For Example:

int *ptr ;
int i = 3 ;
ptr = &i ;

Therefore, ptr will store the address of the memory location where i is
stored.

2.16  Arrays and Pointers

The concept of arrays is very much bound to the concept of pointers.
Now let us take an example; if we have an array of 10 elements declared as

int array[10] = { 10, 20 ,32, 7, 19, 89, 60, 54, 12, 77 }

Introduction to the C++ Language • 71

the previous array will be stored in the memory as shown in the follow-
ing figure:

FIGURE 2.10 Memory representation of arr[].

Here the starting address of the array (100) is the base address of the
array. The base address is the address of the first element in the array. Now
we will use a pointer variable to store the address of the first element, and
ptr will point to the first element of the array.

int * ptr ;
ptr = &array[0] ;

Similarly, we can store the addresses of the other elements. If the
pointer variable holds the address of the first element in the array, then the
address of the successive elements can be calculated by ptr++.

int * ptr ;
ptr = &array[0] ;
ptr++ ;
cout<<“ The value of second element is<< *ptr ;

A pointer variable can be prefixed or postfixed with increment or decre-
ment operators. Increment or decrement will depend upon the data type,
for example, int – 2 bytes, float – 4 bytes, char – 1 byte,
and so on.

Here, data type identifies the type of data that the pointer points to.
An asterisk (*) identifies that the variable is going to store and point toward
some address. The variable name gives the unique name to the pointer.

72 • Data Structures and Program Design Using C++

2.17  Summary

•	 C++ is a middle-level programming language which was developed by
Bjarne Stroustrup, a scientist at Bell Labs, in New Jersey in early 1979.

•	 The C++ language supports all the features, flexibilities, and attributes
of the C language. It also introduces various new features that were
designed to support object-oriented programming. C++ was initially
known with the new name of “C with Classes.” Thus, C++ is the
object-oriented version of C.

•	 An object is a container in which the data is stored in a combination of
variables, functions, and data structures.

•	 A class is basically a user-defined data type that holds its own data
members and member functions. It is a way to bind the data members
and its functions together. A class can be accessed by creating an
object of that class.

•	 Encapsulation is a process of wrapping up data members and member
functions into a single unit. It is the mechanism which keeps the code
and the data safe from external interference.

•	 Inheritance is the process of deriving a new class from the existing
one. The existing class is known as the “base class,” “parent class,”
or “superclass.” The new class is known as the “derived class,” “child
class,” or “subclass.”

•	 There are five types of inheritances that C++ supports, which are
single inheritance, multilevel inheritance, multiple inheritance,
hierarchical inheritance, and hybrid inheritance.

•	 The word polymorphism is derived from the word poly, which means
many, and the word morph, which means forms. Polymorphism means
the ability to make more than one form.

•	 There are two types of polymorphism, which are compile time and
runtime polymorphism.

•	 Abstraction refers to the act of displaying only the essential features
and hiding the background details and explanations which are not
needed for the presentation. This is also known as data abstraction.

•	 Keywords in C++ are the reserved words which have a special
meaning. They are written in lower case. Keywords cannot be used

Introduction to the C++ Language • 73

as an identifier. An identifier is a name which is given to a constant,
variable, function, or array.

•	 Data types in C++ are the special keywords which define the type of
data and amount of data a variable is holding.

•	 The five basic data types used in C++ are int, char, float, boolean, and
void.

•	 Operators in C++ are used to perform some specific operations
between the different variables and constants.

•	 Arithmetic operators are those operators which are used in
mathematical calculation.

•	 Assignment operators are used for assigning values to the variables.
These operators are always evaluated from right to left.

•	 Relational operators are used for comparison between two values or
expressions. They are also known as comparison operators.

•	 A conditional operator is also known as a ternary operator because it
takes three operands.

•	 Bitwise operators are the special operators that are used to perform
operations at the bit level.

•	 The comma operator is used to chain together some expressions.

•	 The sizeof operator is a unary operator that returns the size of a
variable or a data type in bytes.

•	 A unary operator is one which requires only a single operand to work.
C++ supports two unary operators, which are the increment (++) and
decrement (--) operators. These operators are used to increase or
decrease the value of a variable by one respectively.

•	 The new and delete operators are used for dynamic memory allocation
and de-allocation respectively.

•	 The scope resolution operator is used to access a global variable from
a function in which a local variable is defined with the same name as
that of a global variable.

•	 Control statements are those that enable a programmer to execute
a particular block of code specifying the order in which the various

74 • Data Structures and Program Design Using C++

instructions in a program are required to be executed. They determine
the flow of control.

•	 The if statement is a bidirectional control statement which is used to
test the condition and take one of the possible actions.

•	 Nested if-else statements are also known as if-else-if ladders.

•	 A switch statement is a multidirectional conditional control statement.
It is a simplified version of an if-else-if statement.

•	 Looping statements, also known as iterative statements, are a set of
instructions which are repeatedly executed until a certain condition or
expression becomes false.

•	 A while loop is a loop which is used to repeat a set of one or more
instructions/ statements until a particular condition becomes false.

•	 A do-while loop is similar to a while loop. The only difference is that,
unlike a while loop in which a condition is checked at the start of the
loop, in a do-while loop the condition is checked at the end of the
loop.

•	 A for loop is a pre-deterministic loop; that is, it is a count-controlled
loop such that the program knows in advance how many times the
loop is to be executed.

•	 A break statement causes an intermediate exit from that loop in
which the statement appears. A continue statement skips rest of the
statements, and the control is transferred to the start of the loop.

•	 C++ language enables us to break the entire program into a smaller
number of modules or segments. These modules or segments are
called functions. Therefore, a function is a predefined block of code
designed to perform a particular task.

•	 Call by value is a method in which the values are passed from the
calling function to the called function. In this method, the called
function creates copies of the actual values of the calling function’s
argument into its formal parameters.

•	 Call by reference is a method in which the addresses of the variables
are passed from the calling function to the called function. In this
method, function arguments are declared as references rather than
normal variables.

Introduction to the C++ Language • 75

•	 A structure is a collection of one or more different variables or data
types grouped under a single name.

•	 When a variable is declared as a reference, it becomes an alternative
name for an existing variable.

•	 A pointer is a special type of variable that is used to store the address
of another variable.

•	 An asterisk (*) identifies that the variable is going to store and point
toward some address. A variable name gives the unique name to the
pointer.

2.18  Exercises

2.18.1  Theory Questions

1.	Explain the various characteristics of the C++ programming language.

2.	What is meant by the term inheritance? Discuss all the types in detail.

3.	Define the term data abstraction. Give the difference between data
hiding and data abstraction.

4.	What is a class in C++?

5.	Define polymorphism. What are the various types of polymorphism?

6.	What is the purpose of the cin and cout statements?

7.	What are the different operators used in C++? Discuss all of them in
detail.

8.	What are the data types in C++? Explain in detail.

9.	Explain the benefits of object-oriented programming (OOP).

10.	What are the features of an object-oriented programming language?

11.	What do you understand about C++ tokens? Discuss in detail.

12.	�Define the term identifiers. What are various rules for identifying an
identifier? Give examples.

13.	What are the new and delete operators?

76 • Data Structures and Program Design Using C++

14.	�What do you understand about the conditional operator? Explain with
the help of an example.

15.	What are decisional control statements in C++?

16.	Differentiate between while and do-while loops. Give examples.

17.	�What is the difference between simple if and if-else statements? Ex-
plain with the help of an example.

18.	�Write the syntax of a for loop. Can we skip any part in the for loop or not?

19.	Explain the concept of dynamic binding in C++.

20.	What do you mean by structure? Give an example.

21.	�Make a class in which two members should be declared as private and
three members should be declared as public.

22.	�Explain switch case. What are the various advantages of using a switch
case?

23.	What is meant by pointers? How are they initialized?

24.	�What is the use of the scope resolution operator in the C++ program-
ming language?

25.	�What do you understand about iterative statements in C++? Briefly,
discuss all the types.

26.	�Give the difference between break and continue statements with suit-
able examples.

27.	�Differentiate between call by value and call by reference. Give suitable
examples.

28.	What do you understand about reference variables?

29.	Write a short note on arrays and pointers.

30.	�Explain how objects help us in accessing the private data members of a
class.

31.	Differentiate between pre-increment and post-increment operators.

Introduction to the C++ Language • 77

2.18.2  Programming Questions

1.	Write a C++ program to print “Hello World” on the screen.

2.	Write a program that reads five integer values and displays them.

3.	Write a C++ program to add two floating-point numbers with and with-
out classes. Accept the numbers from the user.

4.	Write a program to calculate simple interest using classes.

5.	Write a program to check whether the given number is even or odd.

6.	Write a program to find the largest of three given numbers.

7.	Write a menu driven program performing addition, subtraction, multi-
plication, and division of two numbers using functions.

8.	Write a program for dynamic binding in C++ using classes.

9.	Write a C++ program to print the following pattern using a for loop:

a)	*
**

b)	1
2 3
4 5 6
7 8 9 10

10.	Write a program to add two numbers using pointers and classes.

11.	�Write a program where both if and else statements are executed in a
program using classes.

12.	Write a program to find the factorial of a number using a for loop.

13.	�Write a program to accept a string from the user and to check whether
the string is a palindrome or not using a user-defined function.

14.	�Write a C++ program to print the numbers from 1 to 10 excluding 5 us-
ing a continue statement.

15.	Write a C++ program to print a Fibonacci series up to 200.

78 • Data Structures and Program Design Using C++

2.18.3  Multiple Choice Questions
1.	�______ is used to bind the data members and member functions

together.

a)	 Object

b)	 Class

c)	 Pointer

d)	 None of the above

2.	A conditional operator is also called a ternary operator as it has _______
operands.

a)	 1

b)	 3

c)	 2

d)	 4

3.	The process by which different objects communicate with each other is
termed as ______.

a)	 Message Passing

b)	 Dynamic binding

c)	 Communication

d)	 Polymorphism

4.	Which of the following operator is used to declare a pointer?

a)	 >

b)	 <

c)	 *

d)	 &

5.	The process of deriving a new class from an existing class is termed as
_____.

a)	 Polymorphism

b)	 Abstraction

c)	 Inheritance

d)	 Encapsulation

Introduction to the C++ Language • 79

6.	Which of the following is a valid identifier in C++?

a)	 a_43

b)	 cd bd

c)	 apple

d)	 both (a) and (c)

7.	Which operator is used for mathematical computation?

a)	 Assignment Operators

b)	 Arithmetic Operators

c)	 Bitwise Operators

d)	 Relational Operators

8.	Which operator is used for comparison between values?

a)	 Logical Operator

b)	 Relational Operator

c)	 Assignment Operator

d)	 Unary Operator

9.	In which of the following loops will a block of statements be executed at
least once without checking the condition?

a)	 For loop

b)	 While loop

c)	 Do-while loop

d)	 All of the above

10.	�A data structure which is used to store related information together is
called a(n) ______.

a)	 Structure

b)	 Array

c)	 Linked List

d)	 String

80 • Data Structures and Program Design Using C++

11.	�The process of wrapping up of data members and member function
into a single unit is known as ______.

a)	 Polymorphism

b)	 Abstraction

c)	 Inheritance

d)	 Encapsulation

12.	An ampersand(&) is used to declare a ______.

a)	 Reference variable

b)	 Pointer

c)	 Both

d)	 None of the above

13.	By default, the members of a class are ______ in nature.

a)	 Protected

b)	 Private

c)	 Public

d)	 None of the above

14.	1*(&variable) is equal to:

a)	 &variable

b)	 *variable

c)	 &(*variable)

d)	 Variable

15.	�Class A, Class B, Class C, and Class D are derived from Class BASE.
This is ______ inheritance.

a)	 Hybrid

b)	 Hierarchical

c)	 Multiple

d)	 Multilevel

C H A P T E R3
ARRAYS

In This Chapter

ll 	 Introduction
ll 	 Definition of an array
ll 	 Array declaration
ll 	 Array initialization
ll 	 Calculating the address of array elements
ll 	 Analyzing an algorithm
ll 	 Abstract data types
ll 	 Declaration of two-dimensional arrays
ll 	 Operations on 2-D arrays
ll 	 Multidimensional arrays/ N-dimensional arrayys
ll 	 Calculating the address of 3-D arrays
ll 	 Arrays and pointers
ll 	 Array of pointers
ll 	 Arrays and their applications
ll 	 Sparse matrices
ll 	 Types of sparse matrices
ll 	 Representation of sparse matrices
ll 	 Summary
ll 	 Exercises

82 • Data Structures and Program Design Using C++

3.1   Introduction

We have already studied the basics of programming in data structures
and C++ in the previous chapter in which we aimed to design good pro-
grams, where a good program refers to a program which runs correctly and
efficiently by occupying less space in the memory, and also takes less time
to run and execute. Undoubtedly, a program is said to be efficient when it
executes with less memory space and also in minimal time. In this chapter,
we will learn about the concept of arrays. An array is a user-defined data
type that stores related information together. Arrays are discussed in detail
in the following sections.

3.2   Definition of an Array

An array is a collection of homogeneous (similar) types of data ele-
ments in contiguous memory. An array is a linear data structure because
all elements of the array are stored in linear order. Let us take an exam-
ple in which we have ten students in a class, and we have been asked to
store the marks of all ten students; then we need a data structure known
as an array.

In the previous example, the data elements are stored in the succes-
sive memory locations and are identified by an index number (also known
as the subscript), that is, Ai or A[i]. A subscript is an ordinal number
which is used to identify an element of the array. The elements of an array
have the same data type, and each element in an array can be accessed
using the same name.

FIGURE 3.1. Representation of an array of 10 elements.

Arrays • 83

3.3   Array Declaration

We know that all variables must be declared before they are used in the
program. Therefore, the same concept also holds with array variables. An
array must be declared before it is used. During the declaration of an array,
the size of the array has to be specified. Declaring an array involves the fol-
lowing specifications:

nn Data Type – The data type means the different kinds of values it can store.
The data type can be an integer (int), float, char, or any other
valid data type.

nn Array Name – The name refers to the name of the array which will be
used to identify the array.

nn Size – The size of an array refers to the maximum number of values an
array can hold.

Syntax – data_type array_name [size] ;

Frequently Asked Questions

Q. What is an array? How can we identify an element in the array?

Answer.
An array is a collection of homogeneous (similar) types of data elements in
contiguous memory. An element in an array can be identified by its index
number, which is also known as a subscript.

84 • Data Structures and Program Design Using C++

The previous example declares salary to be an array which has ten ele-
ments. In C++, the array index starts from zero. The first element of this ar-
ray will be stored in salary[0], the second element will be stored in salary[1],
and so on. Similarly, the last element will be stored in salary[9]. In memory,
the array will be shown as in the following figure.

During the initialization of arrays, we may omit the size of the array.
For example,

int age[] = { 25 , 28, 34 } ;

FIGURE 3.2. Memory representation of an array.

Here 0, 1, 2, . . . 9 written in square brackets represent the subscripts
which we use to identify a particular element in the array.

3.4   Array Initialization

The initialization of arrays can be done in the following ways:

1.	Initialization at Compile Time – Initialization of elements of the array
at compile time refers to the same way we initialize the normal or ordinary
variables at the time of their declaration. When an array is initialized, there
is a need to provide a specific value for every element in the array.

The general form of initializing arrays is as follows:

data_type array_name[size] = { list of values } ;

An example of initialization of arrays at compile time is as follows:

Arrays • 85

In the previous example, the compiler will automatically allocate mem-
ory for all the initialized elements of the array. If the number of values is
less than the size provided, then such elements will take zeroes as their
assigned values. For example,

int marks[10] = { 56, 69, 40, 99, 82, 96, 72 } ;

Here the size of the array is 10, but there are only seven elements;
hence, the remaining elements will be considered to be zeroes.

2.	Initialization at Runtime – Initialization of elements of the array
at runtime refers to the method of inputting the values from the key-
board. In this method, a while, do-while, or for loop is taken to input
the values of the array.

FIGURE 3.4. Code for inputting the values.

In the previous code, the index i is at 0, and the values will be input for
the index values from 0 to 14, as the array has 15 elements.

3.5   Calculating the Address of Array Elements

The address of the elements in the 1-D array can be calculated very
easily, because the array stores all its data elements in contiguous mem-
ory locations, storing the base address (address of the first element of the

FIGURE 3.3. Initialization of array marks[10].

#include<iostream.h>
#include<conio.h>
void main()
{

int i, salary[15] ;
for(i=0 ; i<15 ; i++)
{

cin>>salary[i] ; //Inputting the values in array

} //End of for loop
}//End of main

86 • Data Structures and Program Design Using C++

array). Hence, the address of the other data elements can easily be calcu-
lated using the base address. The formula to find the address of elements
in a 1-D array is as follows:

Address of data element, A[i] = Base Address (BA) + w (i – lower bound)

where A is the array, i is the index of the element for which the address
is to be calculated, BA is the base address of the array A, and w is the size of
each element (e.g., the size of int is 2 bytes, the size of char is 1 byte, etc.)

Frequently Asked Questions

Q. �An array is given int marks[6] = { 34, 53, 87, 100,
98, 65 }; calculate the address of marks[3] if the base
address is 3000.

Answer.
It is given that the base address of the array is 3000 and we know that the size
of an integer is 2 bytes. Hence, we can easily find the address of marks[3].

By putting into the formula –

Address of marks[3] = 3000 + 2 (3 – 1)

 = 3000 + 2 (2)

 Address of marks[3] = 3004

3.6   Operations on Arrays

This section discusses various operations that can be performed on
arrays. These operations include:

•	 Traversing an array

•	 Inserting an element in an array

•	 Deleting an element in an array

Arrays • 87

•	 Searching an element in an array

•	 Merging of two arrays

•	 Sorting an array

1.	Traversing an Array
Traversing an array means to access every element in an array exactly

once so that it can be processed. Examples are counting all the data ele-
ments, performing any process on these elements, and so on. Traversing
the elements of the array is a very simple process because of the linear
structure of the array (all the elements are stored in the contiguous mem-
ory locations).

Practical Application:

If there is a line of people standing one after the other, and one boy is
distributing advertisement pamphlets one by one to each person standing
in the line.

include<iostream.h>
include<conio.h>
void main()
{

clrscr();
int i, num[5] ;
cout<<"Enter the elements of array: \n" ;
for(i=0 ; i<5 ; i++)
{
	cin>>num[i] ;
} //End of for loop_1
cout<<"\nThe elements of array are: \n" ;
for(i=0 ; i<5 ; i++)
{
	cout<<"\t"<<num[i] ;
} //End of for loop_2
getch();

} //End of main

88 • Data Structures and Program Design Using C++

In the previous code, the traversing of elements of the array is shown.
In the first for loop, all the elements are inputted into the array. Second,
all the elements are traversed and counted in the second for loop. Hence,
traversing of an array is done.

2.	Inserting an Element in an Array
Inserting an element in an array refers to the operation of adding an

element to the array. In the case of insertion, we assume that there is enough
memory space still available in the array. For example, if we have an array
that can hold 20 elements and the array contains only 15 elements, then we
have space to accommodate five more elements. However, if the array can
hold 15 elements, then we will not be able to insert other elements into the
array. Insertion in arrays can be done in three ways:

a.	Insertion at the beginning

b.	Insertion at a specified position

c.	 Insertion at the end
Now let us discuss all of these cases in detail.

a.	Insertion at the beginning – In this case, the new element to
be inserted is inserted at the beginning of the array. To insert an
element at the beginning, all the elements stored in the array must

The output of the program is shown as:

Arrays • 89

After shifting all the existing elements towards right and inserting new
element 10 into the first slot of the array, the new array will be:

Algorithm for Insertion in the Beginning
We assume ARR is an array with N elements in it. The maximum ele-

ments that can be stored in the array is defined by SIZE. We should first
check if the array has an empty space available to store any element in it or
not, and then we proceed with the insertion process.

Step 1: START
Step 2: IF N = SIZE,

PRINT OVERFLOW
ELSE
N = N + 1

Step 3: SET I = N
Step 4: Repeat Step 5 while I>=0
Step 5: SET ARR[I+1] = ARR[I]

[END OF LOOP]
Step 6: SET ARR[0] = New_Element
Step 7: EXIT

move one place forward to vacate the first position in the array. For
example, if an array is declared to hold 10 elements and it contains
only seven elements, and also if it is given that the new element is
to be inserted at the beginning of the array, then all the stored ele-
ments must move one place ahead which is shown as follows:

90 • Data Structures and Program Design Using C++

Algorithm for Insertion at a Specified Position
We assume ARR is an array with N elements in it. The maximum

elements that can be stored in the array is defined by SIZE. Let POS
define the position at which the new element is to be inserted. We
should first check if the array has an empty space available to store any
element in it or not, and then we proceed with the insertion process.

Practical Application:

It is just like if there are people standing in a line and one person just joins the
line from the middle, so now every person has to shift one place backward
from the middle so that the person can come in the line; hence it is insertion
at the middle.

After shifting the elements from the middle position and inserting new
element 30 into the middle of the array, the new array will be:

b.	Insertion at a specified position – In this case the new element
to be inserted is inserted at a specified location/position which is
entered by the user. In order to insert a new element in the array, the
previously stored elements in the array must move one place forward
from their current place until the element at the specified position is
reached. For example, if an array is declared to hold 10 elements and
it contains only eight elements, and it is also given that the new ele-
ment is to be inserted at the fifth position of the array, then the stored
elements must move one place ahead as shown in the following:

Arrays • 91

Step 1: START
Step 2: IF N = SIZE,

PRINT OVERFLOW
ELSE
N = N + 1

Step 3: SET I = N
Step 4: Repeat Step 5 while I>=POS
Step 5: SET ARR[I+1] = ARR[I]

[END OF LOOP]
Step 6: SET ARR[POS] = New_Element
Step 7: EXIT

c.	 Insertion at the end – In this case the new element to be inserted is
inserted at the end of the array. So, there is no need for swapping the
elements in this case. We are just required to check whether there is
enough space available in the array or not. For example, if an array is
declared to hold 10 elements and it contains only nine elements, then
the insertion can take place.

Now the last element will be inserted at the last position, which is at
arr[9] and is vacant. Therefore, the new array after insertion will be:

92 • Data Structures and Program Design Using C++

Step 1: START
Step 2: IF N = SIZE,

PRINT OVERFLOW
ELSE
N = N + 1

Step 3: SET ARR[N] = New_Element
Step 4: EXIT

Algorithm for Insertion at the End
We assume ARR is an array with N elements in it. The maximum ele-

ments that can be stored in the array is defined by SIZE. We should first
check if the array has an empty space available to store any element in it
or not, and then we proceed with the insertion process.

Write a menu-driven program to implement insertion in a 1-D array
discussing all three cases.

#include <iostream.h>
#include<conio.h>
void main()
{

int i, n, pos, choice, value, arr[10];
clrscr();
cout<<"\nEnter the number of elements in array:" ;
cin>>n ;
cout<<"\nEnter the elements of array" ;

for(i=0 ; i<n ; i++)
{
 	 cin>>arr[i] ; //Accepting the elements of array
}

cout<<"\n ***MENU***" ;
cout<<"\n 1. Insertion in beginning" ;

Practical Application:

It is just like a normal line where a person comes and joins the line at the end;
hence, there is no need for any shifting in this process.

Arrays • 93

cout<<"\n 2. Insertion at specified location" ;
cout<<"\n 3. Insertion at end" ;
cout<<"\n Enter your choice:" ;
cin>>choice ;
if(n==10)
{ 	
 	 cout<<"Overflow error" ;
 	 exit(0);
}
else
switch(choice)
{
 	 case 1:
 	 for(i=n-1 ; i>=0 ; i--)
 	 {
 		 arr[i+1] = arr[i] ;
 	 }
 	 cout<<"\n Enter new value:" ;
 	 cin>>value ;
 	 arr[0] =value;
 	 cout<<"\n After insertion array is" ;
 	 for(i=0 ; i<=n ; i++)
 	 {
 		 cout<<"\t"<<arr[i] ;
 	 }
 	 break ;

 	 case 2:
 	 cout<<"\n Enter position:" ;
 	 cin>>pos ;
 	 for(i=n-1 ; i>=pos-1 ; i--)
 	 {
 		 arr[i+1] = arr[i] ;
 	 }
 	 cout<<"\n Enter new value:" ;
 	 cin>>value ;
 	 arr[pos-1] =value;
 	 cout<<"\n After insertion array is" ;
 	 for(i=0 ; i<=n ; i++)
 	 {
 		 cout<<"\t"<<arr[i] ;
 	 }

94 • Data Structures and Program Design Using C++

 	 break ;

 	 case 3:
 	 cout<<"\n Enter new value:" ;
 	 cin>>value ;
 	 arr[n] =value;
 	 cout<<"\n After insertion array is" ;
 	 for(i=0 ; i<=n ; i++)
 	 {
 		 cout<<"\t"<<arr[i] ;
 	 }	
 	 break ;	

 	 default :
 	 cout<<"Wrong Choice" ;
 	 exit(0) ;
} //End of switch case

	getch() ;
} //End of main

The output of the program is shown as:

Arrays • 95

3.	Deleting an Element in an Array
Deleting an element from an array refers to the operation of the re-

moval of an element from an array. Deletion in an array can be done in
three ways:

a.	Deletion from the beginning

b.	Deletion from a specified position

c.	 Deletion from the end

Now let us discuss all of these cases in detail.

a.	Deletion from the beginning – In this case the element to be
deleted is deleted from the beginning of the array. In order to delete
an element from the beginning, all the elements stored in the array
must move one place backward in the array. For example, if an array
is declared to hold 10 elements and it contains only seven elements,
and it is also given that the element is to be deleted from the begin-
ning of the array, then all the stored elements must move one place
back as shown in the following array:

In order to delete the first element, 23, from the array, we must
swap all the stored elements backward so that the first element gets
deleted as shown. After the deletion of 23 from the array, the new
array will be:

96 • Data Structures and Program Design Using C++

Practical Application:

It is just like if there is a pile of books and a person just picks up the book
from the end, so now all the books will be shifted one place forward from
where they were placed; hence, this is deletion from the beginning.

Algorithm for Deletion from the Beginning
We assume ARR is an array with N elements in it.

Step 1: START
Step 2: SET I = 0
Step 3: Repeat Step 4 while I<N-1
Step 4: SET ARR[I] = ARR[I+1]

[END OF LOOP]
Step 5: EXIT

b.	Deletion from a specified position – In this case the element to
be deleted is deleted from the specified location/position in the array
which is entered by the user. In order to delete an element from the
specified position, the elements stored in the array must move one
place backward to their existing place in the array until the element
is deleted at the specified position. For example, if an array is de-
clared to hold 10 elements and it only contains eight elements, and
it is also given that the element is to be deleted from the specified
position which is the fourth position of the array, then the stored ele-
ments must move one place back as shown in the following:

Arrays • 97

Step 1: START
Step 2: SET I = POS
Step 3: Repeat Step 4 while I<=N-1
Step 4: SET ARR[I] = ARR[I+1]

[END OF LOOP]
Step 5: EXIT

c.	Deletion from the end – In this case the deletion is quite sim-
ple. Here we are just required to count all the elements except
the last one, as we want to delete the last element. For example,
if an array is declared to hold 10 elements and it contains
only six elements, and it is also given that the element is to be
deleted from the end of the array, then the deletion is shown as
follows:

In order to delete the fourth element, 7, from the array, we must
swap the stored elements backward so that the given element gets de-
leted as shown. After the deletion of 7 from the array, the new array
will be:

Algorithm for Deletion from a Specified Position
We assume ARR is an array with N elements in it. Let POS define the

position from which the element is to be deleted.

98 • Data Structures and Program Design Using C++

Step 1: START
Step 2: SET N = N-1
Step 3: Repeat Step 4 for I=0 to N
Step 4: Print ARR[I]

[END OF LOOP]
Step 5: EXIT

Write a menu-driven program to implement deletion in a 1-D array
discussing all three cases.

Practical Application:

It is just like if there is a pile of books and a person just picks the first book
from the pile; hence, we can say that one book is deleted or removed from
the pile, and therefore it is deletion from the end.

#include <iostream.h>
#include <conio.h>
void main()
{

int i, n, pos, choice, value, arr[10];
clrscr();
cout<<"\n Enter the number of elements in array:" ;
cin>>n ;
cout<<"\n Enter the elements of array" ;

for(i=0 ; i<n ; i++)

After deleting 11 from the array the new array will be:

Algorithm for Deletion from the End
We assume ARR is an array with N elements in it.

Arrays • 99

{
 	 cin>>arr[i] ; //Accepting the elements of array
}	

cout<<"\n ***MENU***" ;
cout<<"\n 1. Deletion from beginning" ;
cout<<"\n 2. Deletion from specified location" ;
cout<<"\n 3. Deletion from end" ;
cout<<"\n Enter your choice:" ;
cin>>choice ;
if(n==10)
{
 	 cout<<"Overflow error" ;
 	 exit(0);
}
else
switch(choice)
{

case 1:
for(i=0 ; i<n-1 ; i++)
{

arr[i] = arr[i+1] ;
}	
cout<<"\n After deletion array is" ;
for(i=0 ; i<n-1 ; i++)
{

cout<<"\t"<<arr[i] ;
}
break ;

case 2:
cout<<"\n Enter position" ;
cin>>pos ;
for(i=pos-1 ; i<n-1 ; i++)
{

arr[i] = arr[i+1] ;
}	
cout<<"\n After deletion array is" ;
for(i=0 ; i<n-1 ; i++)

100 • Data Structures and Program Design Using C++

{
cout<<"\t"<<arr[i] ;

}
break ;

case 3:
n = n-1 ;
cout<<"\n After deletion array is" ;
for(i=0 ; i<n ; i++)
{

cout<<"\t"<<arr[i] ;
}
break ;

default :
cout<<"Wrong Choice" ;
exit(0) ;

} //End of switch case

getch() ;
} //End of main

The output of the program is shown as:

Arrays • 101

1.		 Searching for an Element in an Array
Searching for an element in an array means to find whether a particu-

lar value exists in an array or not. If that particular value is found, then the
searching is said to be successful and the position/location of that particular
value is returned. If the value is not found, then searching will be said to be
unsuccessful. There are two methods for searching, linear search and binary
search. In this chapter we will only discuss linear search in detail, and the bi-
nary search technique will be discussed in upcoming chapters. Now, we will
learn how linear search works.

Linear Search
Linear search is a very simple technique used to search a particu-

lar value in an array. It is also called a sequential search, as it works by
comparing the values to be searched with every element of the array in a
sequence until a match is found.

For example, let us take an array of 10 elements which is
declared as:

int array[10] = { 23, 15, 47, 9, 30, 33, 90, 77,
100, 11 }

and search for 90 in the array; then every element of the array will be
compared to 90 until 90 is found.

In this way linear search is used to search for a particular value in the
array. The following is the program for a linear search.

102 • Data Structures and Program Design Using C++

Write a program to search an element in an array using the linear search
technique.

include <iostream.h>
include <conio.h>
int linear_search(int arr[], int n, int value) ;
void main()
{

int arr[10], n, i, r, value ;
clrscr() ;
cout<<"\n***LINEAR SEARCH***" ;
cout<<"\nEnter no of elements" ;
cin>>n ;
cout<<"\nEnter the elements of array" ;
for(i=0 ; i<n ; i++)
{

cin>>arr[i] ;
}
cout<<"\nEnter value to search" ;
cin>>value ;
r = linear_search(arr, n, value) ;
if(r == -1)

cout<<"\n Value not found" ;
else

cout<<"\n"<<Value<<" found at "<<r+1<<"position" ;
getch() ;

}

int linear_search(int arr[], int n, int value)
{

int i;
for(i=0 ; i<n ; i++)
{

if(arr[i] == value)
return i ;
}
return (-1);

}

Arrays • 103

The output of the program is shown as:

2.	Merging of Two Arrays
The merging of two arrays means copying the elements of the first and

second array into the third array. Here we will take two sorted arrays, and
the resultant merged array will also be sorted. The concept of merging is
explained as follows:

Let us consider two sorted arrays, Array 1 and Array 2, and an Array 3
in which the elements will be placed after sorting.

Array – 1

Array – 2

104 • Data Structures and Program Design Using C++

#include<iostream.h>
#include<conio.h>
void main()
{
	 int arr1[10], arr2[10], arr3[20] ;
 	 int m1, m2, s ;
 	 int i=0, j=0 , k=0 ;
 	 clrscr();
 	 cout<<"\nEnter number of elements in array 1:" ;
 	 cin>>m1 ;
 	 cout<<"\nEnter elements of array 1:" ;

Practical Application:

A real life example of merging would be if there are two different lines and
both lines need to be merged according to the height of the people standing
in that line, then merging would be done into a new line where the new line
would consist of people from both lines in which people would be standing
in order according to their heights.

Array – 3

Array 3 shows how the merged array is formed using the sorted Arrays 1
and 2. Here we compare the elements of the two arrays. First, the first element
of Array 1 is compared with the first element of Array 2, and as 6 is less than 7 (6
< 7), therefore 6 will be the first element in the merged array. Now the second
element of Array 1 is compared to the first element of Array 2, and as 7 is less
than 12 (7 < 12), therefore 7 will be the second element in the merged array.
Now the second element of Array 1 is compared with the second element of
Array 2, and as 12 is less than 14 (12 < 14), therefore 12 will be the third ele-
ment in Array 3. This procedure is repeated until the elements of both Arrays
1 and 2 are placed in the right positions in the merged array, that is, Array 3.

Write a program to merge two sorted arrays.

Arrays • 105

 	 for(s=0 ; s<m1 ; s++)
 	 {
 		 cin>>arr1[s] ;
 	 }	
 	 cout<<"\nEnter number of elements in array 2:" ;
 	 cin>>m2 ;
 	 cout<<"\nEnter elements of array 2:" ;
 	 for(s=0 ; s<m2 ; s++)
 	 {
 		 cin>>arr2[s] ;
 	 }
 	 while(i<m1 && j<m2)
 	 {
 		 if(arr1[i] < arr2[j])
 		 {
 			 arr3[k]= arr1[i] ;
 			 k++ ;
 			 i++ ;
 		 }
 		 else if(arr2[j] < arr1[i])
 		 {
 			 arr3[k] = arr2[j] ;
 			 j++ ;
 			 k++ ;
 		 }
 		 else
 		 {
 			 arr3[k] = arr1[i] ;
 			 k++ ;
 			 i++ ;
 			 arr3[k] = arr2[j] ;
 			 k++ ;
 			 j++ ;
 		 }
 	 }// End of while loop

	 while(i<m1)
 	 {
 		 arr3[k] = arr1[i] ;
 		 k++ ;
 		 i++ ;

106 • Data Structures and Program Design Using C++

	 }
 	 while(j<m2)
 	 {
 		 arr3[k] = arr2[j] ;
 		 k++ ;
 		 j++ ;
 	 }
 	 cout<<"\nAfter merging new array is:" ;
 	 for(s=0 ; s<(m1 + m2) ; s++)
 	 {
 		 cout<<"\t"<<arr3[s] ;
 	 }
 	 getch() ;
}// End of main

The output of the program is shown as:

3.	Sorting an Array
Sorting an array means arranging the data elements of a data struc-

ture in a specified order either in ascending or descending order. Sort-
ing refers to the process where, for example, in a class of 60 students
who have gotten grades on their examination, now the names of the

Arrays • 107

students will be counted according to their grades either in ascending
or descending order.

For example – If we have an array of 10 elements declared as

int array[10] = { 78, 12, 47, 55, 61, 6, 99, 84,
32, 10 }

then after sorting, the new array will be:

array[10] = { 6, 10, 12, 32, 47, 55, 61, 78, 84,
99 }

There are various types of sorting techniques which include Selection
Sort, Insertion Sort, and Merge Sort; we will learn about selection sort in
this chapter, and the other techniques will be discussed in an upcoming
chapter.

Selection Sort
Selection Sort is a sorting technique that works by finding the smallest

value in the array and placing it in the first position. After that, it then finds
the second smallest value and places it in the second position. This process
is repeated until the whole array is sorted. It is a very simple technique, and
it is also easier to implement than any other sorting technique. Selection
Sort is generally used for sorting large records.

Selection Sort Technique
Consider an array with N elements.

Pass 1 – Find the position POS of smallest value in the array of
N elements and interchange ARR[POS] with ARR[0]. Thus, A[0] is
sorted.

Pass 2 – Find the position POS of smallest value in the array of
N-1 elements and interchange ARR[POS] with A[1]. Thus, A[1] is
sorted.

.

.

.

108 • Data Structures and Program Design Using C++

Pass N-1 – Find the position POS of the smaller of the elements
ARR[N-2] and ARR[N-1] and interchange ARR[POS] with ARR[N-2].
Thus, ARR[0], ARR[1], . . . ARR[N-1] is sorted.

For Example – Sort the given array using selection sort.

This is the way the selection sort technique works. The following is the
program given for selection sort.

Write a program to sort an array using the selection sort technique.

include <iostream.h>
include <conio.h>
void main()
{
 	 int i, j, min, pos, arr[10], n, temp;
 	 clrscr();
 	 cout<<"\nEnter no of elements in the array:" ;
 	 cin>>n ;
 	 cout<<"\nElements in the array are: " ;
 	 for(i=0 ; i<n ; i++)
 	 {
 		 cin>>arr[i] ;
 	 }
 	 cout<<"\n***Selection Sort***" ;

Pass POS Array[0] Array[1] Array[2] Array[3] Array[4] Array[5]
1 5 9 82 48 34 75 16
2 5 9 16 48 34 75 82
3 3 9 16 34 48 75 82
4 3 9 16 34 48 75 82
5 4 9 16 34 48 75 82
6 5 9 16 34 48 75 82

Arrays • 109

 	 for(i=1 ; i<n ; i++)
 	 {
 		 min = arr[i-1] ;
 		 pos = i-1;
 		 for(j=i ; j<n ; j++)
 		 {
 			 if(arr[j] < min)
 			 {
 				 min = arr[j] ;
 				 pos = j ;
 			 }
 		 }
 		 if(pos != i-1)
 		 {
 			 temp = arr[pos] ;
 			 arr[pos] = arr[i-1] ;
 			 arr[i-1] = temp ;
 		 }
 	 }
 	 cout<<"\nAfter sorting new array is:") ;
 	 for(i=0 ; i<n ; i++)
 	 {
 		 cout<<"\t"<<arr[i] ;
 	 }
 	 getch() ;
}

The output of the program is shown as:

110 • Data Structures and Program Design Using C++

3.7   2-D Arrays/Two-Dimensional Arrays

We have already discussed 1-D arrays/ one-dimensional arrays and
their various types and operations. Now, we will learn about two-dimen-
sional arrays. Unlike one-dimensional arrays, 2-D arrays are organized
in the form of grids or tables. They are a collection of 1-D arrays. One-
dimensional arrays are linearly organized in the memory. A 2-D array
consists of two subscripts:

1.	first subscript – which denotes the row

2.	second subscript – which denotes the column

A 2-D array is represented as shown in the following figure:

FIGURE 3.5. Representation of a 2-D array.

3.8   Declaration of Two-Dimensional Arrays

As we declared 1-D arrays, similarly we can declare two-dimensional
arrays. For declaring two-dimensional arrays we must know the name of the
array, the data type of each element, and the size of each dimension (size of
rows and columns).

Syntax– data_type array_name [row_size][column_size] ;

A two-dimensional array is also called an m X n array, as it contains m
X n elements where each element in the array can be accessed by i and j,
where i<=m and j<=n, and where i, j, m, n are defined as follows:

i, j = subscripts of array elements,

m = number of rows,
n = number of columns.

Arrays • 111

For Example – Let us take an array of 3 X 3 elements. Therefore, the
array is declared as:

int marks [3][3] ;

In the previous diagram the array has 3 rows and 3 columns. The first
element in the array is denoted by marks[0][0]. Similarly, the second
element will be denoted by marks[0][1], and so on. Also, data elements
in an array can be stored in the memory in two ways:

1.	Row Major Order
In row major order the elements of the first row are stored before the

elements of the second, third, and n rows. Here the data elements are
stored in a row-by-row basis:

00 01 02 10 11 12 20 21 22

2.	Column Major Order
In column major order the elements of the first column are stored

before the elements of the second, third, and n columns. Here the data ele-
ments are stored in a column-by-column basis:

00 10 20 01 11 21 02 12 22

Now, we will calculate the base address of elements in a 2-D array, as
the computer does not store the address of each element. It just stores
the address of the first element and calculates the addresses of other
elements from the base address of the first element of the array. Hence,
the addresses of other elements can be calculated from the given base
address.

112 • Data Structures and Program Design Using C++

Frequently Asked Questions

Q. �Consider a 25 X 5 two-dimensional array of students which
has a base address 500 and where the size of each element is
2. Now calculate the address of the element student[15][3]
assuming that the elements are stored in

a) Row major order

b) Column major order

Answer.

a) Row major order
Here we are given that w = 2, base address = 500, n = 5, i = 15, j = 3.

Address(A[i][j]) = Base address(BA) + w (n(i-1) + (j-1))

Address(student[15][3]) = 500 + 2 (5(15-1) + (3-1))

= 500 + 2 (5(14) + 2)

= 500 +2 (72)

= 500 + 144

Address(student[15][3]) = 644

b) Column major order
Here we are given that w = 2, base address = 500, m = 25, i = 15, j = 3

Address(A[i][j]) = Base address(BA) + w (m(j-1) + (i-1))

Address(student[15][3]) = 500 + 2 (25(3-1) + (15-1))

 = 500 + 2 (25(2) + 14)

 = 500 +2 (64)

Address(student[15][3]) = 500 + 128 = 628

1.	Elements in Row Major Order
Address(A[i][j]) = Base address(BA) + w(n(i-1) + (j-1))

2.	Elements in Column Major Order
Address(A[i][j]) = Base address(BA) + w (m(j-1) + (i-1))

where w is the size in bytes to store one element.
m is the total number of rows in the array,
n is the total number of columns in the array

Arrays • 113

3.9   Operations on 2-D Arrays

There are various operations that are performed on two-dimensional
arrays, which include:

•	 Sum – Let Aij and Bij be the two matrices which are to be added
together, storing the result into the third matrix Cij. Two matrices will
be added when they are compatible with each other; that is, they
should have the same number of rows and columns.

C
ij
= A

ij
 + B

ij

•	 Difference – Let Aij and Bij be the two matrices which are to be
subtracted together, storing the result into a third matrix Cij. Two
matrices will be subtracted when they are compatible with each other;
that is, they should have same number of rows and columns.

C
ij
= A

ij
 - B

ij

•	 Product – Let Aij and Bij be the two matrices which are to be multiplied
together, storing the result into a third matrix Cij. Two matrices will be
multiplied with each other if the number of columns in the first matrix
is equal to the number of rows in the second matrix. Therefore, m X n
matrix A can be multiplied with a p X q matrix B if n=p.

C
ij
= A

ik
 X B

kj
for k=1 to n

•	 Transpose – The transpose of an m X n matrix A is equal to an n X m
matrix B, where

B
ij
 = A

ji.

Write a program to read and display a 3 X 3 array.

#include<iostream.h>
#include<conio.h>
void main()
{
 	 int array[3][3], i, j ;
 	 clrscr() ;
 	 cout<<"Enter the elements of array:" ;
 	 for(i=0 ; i<3 ; i++)

114 • Data Structures and Program Design Using C++

 	 {
 		 for(j=0 ; j<3 ; j++)
 		 {
 	 		 cin>>array[i][j] ;
 		 }
 	 }
 	 cout<<"\nThe array is:" ;
 	 for(i=0 ; i<3 ; i++)
 	 {
 		 cout<<"\n" ;
 		 for(j=0 ; j<3 ; j++)
 		 {

cout<<"array["<<i<<"]"<<"["<<j<<"]"<<" =
"<<array[i][j] ;

 		 }
 	 }
 	 getch() ;
}

The output of the program is shown as:

Arrays • 115

#include<iostream.h>
#include<conio.h>
void main()
{
 	 int i, j ;
 	 int A[2][2], B[2][2], C[2][2] ;
 	 clrscr() ;
 	 cout<<"Enter the elements of A matrix:" ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 cin>>A[i][j] ;
 		 }
 	 }
 	 cout<<"\nEnter the elements of B matrix:" ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 cin>>B[i][j] ;
 		 }
 	 }
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 C[i][j] = A[i][j] + B[i][j] ;
 		 }
 	 }
 	 cout<<"\nResultant matrix is :" ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {	
 			 cout<<"\n"<<C[i][j] ;
 		 }
 	 }
} //End of main

Write a program to find the sum of two matrices.

116 • Data Structures and Program Design Using C++

The output of the program is shown as:

Write a program to find the transpose of a 3 X 3 matrix.

#include<iostream.h>
#include<conio.h>
void main()
{
	 int i, j ;
 	 int matrix[2][2], transpose[2][2] ;
 	 clrscr() ;
 	 cout<<"Enter the elements of the matrix: " ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 cin>>matrix[i][j] ;
 		 }
 	 }
 	 cout<<"\nThe elements of matrix are:" ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 cout<<"\n" ;

Arrays • 117

 		 for(j=0 ; j<2 ; j++)
 		 {
 			 cout<<"\t"<<matrix[i][j] ;
 		 }
 	 }
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 transpose[i][j] = matrix[j][i] ;
 		 }
 	 }
 	 cout<<"\n \nElements of transposed matrix are:" ;
 	 for(i=0 ; i<2 ; i++)
 	 {
 		 cout<<"\n" ;
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 cout<<"\t"<<transpose[i][j] ;
 		 }
 	 }
 	 getch();
} //End of main

The output of the program is shown as:

118 • Data Structures and Program Design Using C++

Frequently Asked Questions

Q. �Let us take a 3-D array A(4:12, -2:1, 8:14) and calculate the
address of A(5, 4, 9) using row major order and column major
order where the base address is 500 and w = 4.

Answer.
Length of three dimensions of A –

L1 = 12 – 4 + 1 = 9

L2 = 1 – (-2) + 1 = 4

L3 = 14 – 8 = 6

3.10   Multidimensional Arrays/ N-Dimensional Arrays

A multidimensional array is also known as an n-dimensional array. It is an
array of arrays. It has n indices in it which also justifies its name of n-dimensional
array. An n-dimensional array is an m1 X m2 X m3 X . . . X mn array, as it contains
m1 X m2 X m3 X . . . X mn elements. Multidimensional arrays are declared and
initialized in the same way as one-dimensional and two-dimensional arrays.

3.11   Calculating the Address of 3-D Arrays

Just like 2-D arrays we can store 3-D arrays in two ways, Row Major
Order and Column Major Order.

1.		 Elements in Row Major Order

Address ([i][j][k]) = Base Address (BA) + w (L3(L2 (E1) + E2) + E3)

2.		 Elements in Column Major Order

Address ([i][j][k]) = Base Address (BA) + w ((E3 L2 + E2)L1 + E1)

Where L is length of index, L = Upper bound – Lower bound + 1,

 E is effective address, E = i – Lower bound.

Arrays • 119

Therefore, A contains 9 X 4 X 6 = 216 elements

Now, E1 = 5 – 4 = 1

 E2 = 4 - (-2) = 8

 E3 = 9 -8 = 1

a)	 Row Major Order

 Address (5, 4, 9 = 500 + 4 (6 (4(1) + 8) + 1)

 = 500 + 4 (6 (12) + 1)

 = 500 + 4 (73)

 Address (5, 4, 9) = 500 + 292 = 792

b)	 Column Major Order
 Address (5, 4, 9) = 500 + 4 ((1.4 + 8) 9 + 1)

 = 500 + ((12)9 + 1)

 Address (5, 4, 9) = 500 + 145 = 645

#include<iostream.h>
#include<conio.h>
void main()
{
 	 int array[2][2][2], i, j, k ;
	 clrscr() ;
 	 cout<<"Enter the elements of array:" ;
 	 for(i=0 ; i<2 ; i++)
	 {	
 		 for(j=0 ; j<2 ; j++)
 		 {
 			 for(k=0 ; k<2 ; k++)
 			 {

 cin>>array[i][j][k] ;
 			 }
 		 }
 	 }
 	 cout<<"\nThe array is:" ;

Write a program to read and display a 2 X 2 X 2 array.

120 • Data Structures and Program Design Using C++

 	 for(i=0 ; i<2 ; i++)
 	 {
 		 cout<<"\n" ;
 		 for(j=0 ; j<2 ; j++)
 	 	 {
 			 cout<<"\n" ;
 			 for(k=0 ; k<2 ; k++)
 			 {
cout<<"\�narray["<<i<<"]"<<"["<<j<<"]"<<"["<<k<<"]"

<<array[i][j][k] ;
 			 }
 		 }
 	 }
 	 getch() ;
}

The output of the program is shown as:

Arrays • 121

3.12   Arrays and Pointers

A pointer is a special type of variable that is used to store addresses.
Pointers can be used to access and manipulate data stored in the memo-
ry.Pointers are very frequently used in arrays, because pointers are more
efficient in handling arrays and data tables. A pointer can be referred
to as the address of a person’s home, which can help us easily reach the
destination. The concept of arrays is very much bound to the concept of
pointers. Now let us take an example: if we have an array of 10 elements
declared as

int array[10] = { �10, 20 ,32, 7, 19, 89, 60, 54,
12, 77 }

the previous array will be stored in the memory as shown in the follow-
ing figure:

FIGURE 3.6. Memory representation of array[].

The starting address of the array (100) is the base address of the array.
The base address is the address of the first element in the array. Now we
will use a pointer variable to store the address of the first element; in other
words, ptr will point to the first element of the array.

int * ptr ;

ptr = &array[0] ;

We can also store the addresses of other elements. If the pointer vari-
able holds the address of the first element in the array, then the address of
the successive elements can be calculated by ptr++.

122 • Data Structures and Program Design Using C++

#include<iostream.h>
#include<conio.h>
void main()
{
 	clrscr() ;
 	int i, j, k, l, m ;
 	int * arr[4] ;
 	i = 25 ;
 	j = 50 ;
 	k = 75 ;
 	l = 100 ;
 	arr[0] = &i ;
 	arr[1] = &j ;
 	arr[2] = &k ;
 	arr[3] = &l ;
 	for(m=0 ; m<4 ; m++)
 	{
 		 cout<<"\n"<<arr[m] ;
 	}
 	getch();
}

int * ptr ;
ptr = &array[0] ;
ptr++ ;
cout<<"The value of second element is"<<*ptr ;

A pointer variable can be prefixed or postfixed with increment or decre-
ment operators. Increment or decrement will depend upon the data type, for
example, int – 2 bytes, float – 4 bytes, char – 1 byte,
and so on.

3.13   Array of Pointers

An array of pointers is declared as int * ptr[10].

Therefore, from the previous statement an array of 10 pointers is
declared where each of the pointers points to a variable. Code for an array
of pointers is given as follows:

Arrays • 123

3.14   Arrays and Their Applications

Arrays are very frequently used in C++ as they have various applica-
tions which are very useful. These applications include the following:

•	 Arrays are used for sorting the elements in ascending or descending
order.

•	 Arrays are also used to implement various other data structures like
stacks, queues, hash tables, etc.

•	 Arrays are widely used to implement matrices, vectors, and various
other kinds of rectangular tables.

•	 Various other operations can be performed on the arrays, which
include searching, merging, sorting, and so forth.

The output of the program is shown as:

Frequently Asked Questions

Q. List some of the applications of arrays.

Answer.
1.	 Arrays are very useful in storing the data in contiguous memory locations.

2.	 �Arrays are used for implementing various other data structures such as
stacks, queues, and so on.

3.	 Arrays are very useful as we can perform various operations on them.

124 • Data Structures and Program Design Using C++

3.15   Sparse Matrices

A sparse matrix is a matrix with a relatively high proportion of zero
entries in it. A sparse matrix utilizes the memory space efficiently. Storing
of null elements in the matrix is a waste of memory, so we adopt a technique
to store only not-null elements in the sparse matrices.

For Example:

FIGURE 3.7. Representation of a sparse matrix.

3.16 Types of Sparse Matrices

There are three types of sparse matrices, which are:

1.		Lower-triangular matrix – In this type of sparse matrix, all the elements
above the main diagonal must have a zero value, or in other words we can say
that all the elements below the main diagonal should contain non-zero ele-
ments only. This type of matrix is called a lower-triangular matrix.

FIGURE 3.8. Lower-triangular matrix.

2.		Upper-triangular matrix – In this type of sparse matrix, all the elements
above the main diagonal should contain non-zero elements only, or in other
words we can say that all the elements below the main diagonal should have
a zero value. This type of matrix is called an upper-triangular matrix.

Arrays • 125

FIGURE 3.9. Upper-triangular matrix.

3.	Tri-diagonal matrix – In this type, elements with a non-zero value can
appear only on the diagonal or adjacent to the diagonal. This type of matrix
is a tri-diagonal matrix.

FIGURE 3.10. Tri-diagonal matrix.

3.17   Representation of Sparse Matrices

There are two ways in which the sparse matrices can be represented,
which are:

1.	Array Representation/ 3-Tuple Representation – This representation
contains three rows in which the first row represents the number of rows, col-
umns, and non-zero entries/values in the sparse matrix. Elements in the other
rows give information about the location and value of non-zero elements.

For example, let us consider a sparse matrix.

FIGURE 3.11. A sparse matrix.

126 • Data Structures and Program Design Using C++

An array representation of the previous sparse matrix will be:

Row Column Non-Zero
Value

0 4 1
2 2 3
3 1 5

2.	Linked Representation – A sparse matrix can also be represented in a
linked way. In this representation we store the number of rows, columns,
and non-zero entries in a single node, and there is a pointer which points to
the next location. Let us consider an example to understand more clearly.

Let us consider a sparse matrix:

Linked representation of the previous sparse matrix will be as follows:

FIGURE 3.12. Linked representation of a sparse matrix.

Arrays • 127

3.18   Summary

•	 An array is a collection of homogeneous (similar) types of data
elements in contiguous memory. An array is a linear data structure
because all elements of an array are stored in linear order.

•	 An array must be declared before it is used.

•	 The initialization of the elements of an array at compile time is done in
the same way as when we initialize the normal or ordinary variables at
the time of their declaration.

•	 Initialization of elements of an array at runtime refers to the method
of inputting the values from the keyboard.

•	 The address of the elements in a 1-D array can be calculated very
easily, as an array stores all its data elements in contiguous memory
locations, storing the base address.

•	 Traversing an array means to access each and every element in an
array exactly once so that it can be processed.

•	 Insertion of an element in an array refers to the operation of adding an
element to the array. It can be done in three ways.

Frequently Asked Questions

Q. Explain the sparse matrix.

Answer.
A matrix in which the number of zero entries is much higher than the
number of non-zero entries is called a sparse matrix. The natural method
of representing matrices in memory as two-dimensional arrays may not be
suitable for sparse matrices. One may save space by storing only non-zero
entries. We can represent a sparse matrix by using a three-tuple method of
storage:

1.	 Row Major Method

2.	 Column Major Method

128 • Data Structures and Program Design Using C++

•	 Deleting an element from an array refers to the operation of the removal
of an element from an array. Deletion is also done in three ways.

•	 Searching for an element in an array means finding whether a
particular value exists in an array or not. If that particular value is
found, then the searching is said to be successful and the position/
location of that particular value is returned. If the value is not found,
then searching will be said to be unsuccessful.

•	 A linear search is a very simple technique used to search for a
particular value in an array.

•	 The merging of two arrays means copying the elements of the first and
second arrays into a third array.

•	 Sorting an array means arranging the data elements of a data structure
in a specified order either in ascending or descending order.

•	 Selection sort is a sorting technique that works by finding the
smallest value in the array and placing it in the first position. After
that, it then finds the second smallest value and places it in the
second position. This process is repeated until the whole array is
sorted.

•	 Unlike one-dimensional arrays, 2-D arrays are organized in the form
of grids or tables. They are collections of 1-D arrays.

•	 For declaring two-dimensional arrays, we must know the name of the
array, the data type of each element, and the size of each dimension
(size of row and column).

•	 A multidimensional array is also known as an n-dimensional array. It is
an array of arrays. It has n indices in it, which also justifies its name of
an n-dimensional array.

•	 A pointer is a special type of variable that is used to store addresses.
Pointers can be used to access and manipulate data stored in the
memory.

•	 A sparse matrix is a matrix with a relatively high proportion of zero
entries in it. A sparse matrix is used because it utilizes the memory
space efficiently.

Arrays • 129

3.19   Exercises

3.19.1 Theory Questions

1.		� What do you mean by an array and how is it represented in the
memory?

2.		� What are the various operations that can be performed on arrays? Dis-
cuss in detail.

3.	�	 Explain the concept of two-dimensional arrays.

4.	�	 Briefly explain how arrays are related to pointers.

5.	�	 In how many ways can arrays be initialized? Explain in detail.

6.	�	 What do you understand about multidimensional arrays?

7.	�	� Consider a one-dimensional array declared as intarr[10], and calculate
the address of arr[7] if the base address is 200 and the size of each ele-
ment is 2.

8.	What do you mean by sorting an array? Explain.

9.	Write an algorithm to perform the selection sort technique.

10.	Explain the process of merging two arrays along with the algorithm.

11.	�Consider a two-dimensional array declared as intarray[10][10], and calcu-
late the address of the element array[5][6] if the base address = 10000 and
the size of each element = 2 assuming the elements are to be stored in
column major order.

12.	Give some of the applications of arrays.

13.	What do you understand by a linear search? Give the algorithm.

14.	�Give the advantages of using the selection sort technique for sorting the
elements in an array.

15.	What is a sparse matrix? Also explain its types.

16.	�Consider a three-dimensional array A(2:6, -1:7, 9:10), and calculate the ad-
dress of A(9, 6, 8) using row major order and column major order where
the base address is 2000 and w = 4.

130 • Data Structures and Program Design Using C++

17.	Explain the linked representation of sparse matrices in detail.

18.	�Write the formulae for calculating the addresses of elements in row major
and column major order in 2-D and 3-D arrays.

3.19.2 Programming Questions

1.	Write a C++ program to traverse an entire array.

2.	Write a C++ program to perform insertion at a specified position in a one-
dimensional array with the help of classes.

3.	Write a C++ program to multiply two matrices.

4.	Write a C++ program which reads a matrix and displays the

a)	Sum of its rows’ elements

b)	Sum of its columns’ elements

c)	Sum of its diagonal’s elements

5.	Write an algorithm to show the concept of an array of pointers.

6.	Write a C++ program to perform the deletion of an element from the
beginning.

7.	Write a menu-driven C++ program to perform various insertions and dele-
tions in an array using the switch case.

8.	Write a program to read and display a square matrix using class.

9.	Write an algorithm for reversing the array.

10.	�Write a program which reads an array of 50 integers. Display all the pairs
of elements whose sum is 25.

11.	�Write a C++ program to read an array of 10 integers and then find the
smallest and largest numbers in the array.

12.	Write a C++ program to add two sparse matrices using classes.

Arrays • 131

3.19.3 Multiple Choice Questions

1.		� If an array is declared as intarray[20][20], then how many elements can it
store?

a)	20

b)	40

c)	400

d)	None of these

2.		� The elements of an array are always stored in ________ memory locations.

a)	Random

b)	Sequential

c)	Both

d)	None of these

3.		� What will be the output of the given program?
#include<iostream.h>
main()
{
int arr[5] = {5, 1, 15, 20, 25} ;
int a, b, c, i=3;
a = ++arr[1] ;
b = arr[1]++ ;
c = arr[i++] ;
cout<<a<<”,”<<b<<”,”<<c ;
return 0 ;
}

a)	1, 2, 5

b)	2, 1, 15

c)	3, 2, 15

d)	2, 2, 20

132 • Data Structures and Program Design Using C++

4.		 What will be the output of the following program after execution?
void main()

{
int array[5] = {2, 4, 6, 8, 10} ;
cout<< array[6];
}

a)	0

b)	10

c)	Garbage value

d)	None of these

5.		� If an array is declared as int array[n], then the nth element can be
accessed by:

a)	array[n]

b)	 *(array + n)

c)	 *(n + array)

d)	None of these

e)	All of these

6.		� Array[5] = 19 initializes the __________ element of the array with value 19.

a)	4th

b)	5th

c)	6th

d)	7th

7.		 By default, the first subscript of the array is _____

a)	2

b)	1

c)	-1

d)	0

Arrays • 133

8.		 A multidimensional array, in simple terms, is an

a)	array of arrays

b)	array of pointers

c)	array of addresses

9.		 A loop is used to access all the elements of an array.

a)	False

b)	True

c)	None of the above

10.	�Declaring an array means specifying the _______, ________, and
________.

a)	Data type, name, size

b)	Data elements, name, data type

c)	Name, size, address

d)	All of the above

11.	A sparse matrix has a _________.

a)	High proportion of zeroes

b)	Low proportion of zeroes

c)	Both (a) and (b)

d)	None of the above

C H A P T E R4
LINKED LISTS

In This Chapter

●● 	 Introduction
●● 	 Definition of a linked list
●● 	 Memory allocation in a linked list
●● 	 Types of linked lists
●● 	 Header linked lists
●● 	 Applications of linked lists
●● 	 Polynomial representation
●● 	 Summary
●● 	 Exercises

4.1  Introduction

We have already learned that an array is a collection of data elements
stored in contiguous memory locations. Also, we studied that arrays were
static in nature; that is, the size of the array must be specified when de-
claring an array, which limits the number of elements to be stored in the
array. For example, if we have an array declared as int array[15], then the
array can contain a maximum of 15 elements and not more than that. This
method of allocating memory is good when the exact number of elements

136 • Data Structures and Program Design Using C++

is known, but if we are not sure of the number of elements then there will
be a problem, as in data structures our aim is to make programs efficient by
consuming less memory space along with minimal time. To overcome this
problem, we will use linked lists.

4.2  Definition of a Linked List

A linked list is a linear collection of data elements. These data ele-
ments are called nodes, and they point to the next node by means of
pointers. A linked list is a data structure which can be used to implement
other data structures such as stacks, queues, trees, and so on. A linked list
is a sequence of nodes in which each node contains one or more than one
data field and a pointer which points to the next node. Also, linked lists
are dynamic in nature; that is, memory is allocated as and when required.
There is no need to know the exact size or exact number of elements as
in the case of arrays. The following is an example of a simple linked list
which contains five nodes:

FIGURE 4.1 A linked list.

In the previous figure, we have made a linked list in which each node is
divided into two parts:

1)	The first part contains the information/data.

2)	The second part contains the address of the next node.

The last node will not have any next node connected to it, so it will
store a special value called NULL. Usually NULL is defined by -1. There-
fore, the NULL pointer represents the end of the linked list. Also, there
is another special pointer START that stores the address of the first node
of the linked list. Therefore, the START pointer represents the beginning
of the linked list. If START = NULL then it means that the linked list is

Linked Lists • 137

empty. A linked list, since each node points to another node which is of
the same type, is known as a self-referential data type or a self-referential
structure.

The self-referential structure in a linked list is as follows:

struct node
{
int info ;
struct node * next ;

} ;

Practical Application:

.. A simple real-life example is how each coach on a train is connected
to its previous and next coach (except the first and last). In terms of
programming, consider the coach body as a node and the connectors
as links to the previous and next nodes.

.. The brain is also a good example of a linked list. In the initial stages of
learning something by heart, the natural process is to link one item to
another item. It’s a subconscious act. Also, when we forget something
and try to remember, then our brain follows associations and tries to
link one memory with another and so on until we finally recall the lost
memory.

Frequently Asked Questions

Q1. Define linked list.

Answer.
A linked list is a linear collection of data elements, called nodes, where the
linear order is given by means of pointers. It is a dynamic data structure. For
every data item in a linked list, there is an associated pointer that gives the
memory location of the next data item in the linked list. The data items in
the linked list are not in consecutive memory locations.

138 • Data Structures and Program Design Using C++

4.3  Memory Allocation in a Linked List

The process or concept of linked lists supports dynamic memory
allocation. Now, what is meant by dynamic memory allocation? The an-
swer to this simple question is that the process of allocating memory dur-
ing the execution of the program or the process of allocating memory to
the variables at runtime is called dynamic memory allocation. Until now
we have studied arrays in which we declared the size of the array initially
such as array[50]. This statement after execution allocates the memory
for 50 integers. But there can be a problem if we use only 30% of the
memory and the rest of the allocated memory is wasted. Therefore, to
overcome this problem of wastage of memory space or in other words to
utilize the memory efficiently, dynamic memory allocation is used, which
allows us to allocate/reserve the memory that is actually required. Hence,
it will overcome the problem of wastage of memory space as in the case of
arrays. Dynamic memory allocation is best when we are not aware of the

Frequently Asked Questions

Q2. List the advantages and disadvantages of a linked list.

Answer.

Advantages of linked lists
1. �Linked lists are dynamic data structures; that is, they can grow or shrink

during the execution of the program.

2. �Linked lists have efficient memory utilization. Memory is allocated whenever
it is required, and it is de-allocated whenever it is no longer needed.

3. Insertion and deletion are easier and efficient.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists
1. �They consume more space because every node requires an additional

pointer to store the address of the next node.

2. Searching a particular element in the list is difficult and time-consuming.

Linked Lists • 139

memory requirements in advance. C++ language provides some functions
which are used to dynamically allocate memory, as shown in the following
table:

Function Use of the Function Syntax

new Allocates the requested
memory space

ptr = new node;

delete De-allocates the previously
allocated memory space.

delete(ptr);

4.4  Types of Linked Lists

There are different types of linked lists that will be discussed in this
section. These include:

1.	Singly Linked List

2.	Circular Linked List

3.	Doubly Linked List

4.	Header Linked List

Now we will discuss all of them in detail.

4.4.1  Singly Linked List
A singly linked list is the simplest type of linked list in which each node

contains some information/data and only one pointer which points to the
next node in the linked list. The traversal of data elements in a singly linked
list can be done only in one way.

FIGURE 4.2 Singly linked list.

140 • Data Structures and Program Design Using C++

4.4.2  Operations on a Singly Linked List
Various operations can be performed on a singly linked list, which

include:

•	 Traversing a linked list

•	 Searching for a given value in a linked list

•	 Inserting a new node in a linked list

•	 Deleting a node from a linked list

•	 Concatenation of two linked lists

•	 Sorting a linked list

•	 Reversing a linked list
Let us now discuss all these operations in detail.

a) Traversing a linked list

Traversing a linked list means accessing all the nodes of the linked list
exactly once. A linked list will always contain a START pointer, which stores
the address of the first node of the linked list and which also represents the
beginning of the linked list, and a NULL pointer which represents the end
of the linked list. For traversing a linked list, we will use another pointer
variable PTR which will point to the node which is currently being accessed.
The algorithm for traversing a linked list is shown as follows:

Algorithm for traversing a linked list

Step 1: Set PTR = START
Step 2: Repeat Steps 3 & 4 while PTR != NULL
Step 3: Print PTR -> INFO
Step 4: Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Exit

b) Searching for a given value in a linked list

Searching for a value in a linked list means to find a particular
element/value in the linked list. As we discussed earlier, a node in a linked
list contains two parts; one part is the information part and the other is the

Linked Lists • 141

address part. Hence, searching refers to the process of finding whether
or not the given value exists in the information part of any node. If the
value is present, then the address of that particular value is returned and
the search is said to be successful; otherwise, the search is unsuccess-
ful. A linked list will always contain a START pointer which stores the
address of the first node of the linked list and also represents the begin-
ning of the linked list, and a NULL pointer which represents the end of
the linked list. There is another variable PTR which will point to the cur-
rent node being accessed. SEARCH_VAL is the value to be searched in
the linked list, and POS is the position/address of the node at which the
value is found. The algorithm for searching a value in a linked list is given
as follows:

Algorithm to search a value in a linked list

Step 1: Set PTR = START
Step 2: Repeat Step 3 while PTR != NULL
Step 3: IF SEARCH_VAL = PTR -> INFO
 Set POS = PTR
 Print Successful Search!!
 Go to Step 5
 [End of If]
 ELSE
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 4: Print Unsuccessful Search!!
Step 5: Exit

For example, if we have a linked list and we are searching for 15 in the
list, then the steps are shown as follows:

(Continue...)

142 • Data Structures and Program Design Using C++

c) Inserting a new node in a linked list

Here, we will learn how a new node is inserted in an existing linked list.
We will discuss three cases in the insertion process which include:

1)	A new node is inserted at the beginning of the linked list.

2)	A new node is inserted at the end of the linked list.

3)	A new node is inserted after the given node in a linked list.

Let us now discuss all of these cases in detail.

1. Inserting a new node in the beginning of a linked list

In the case of inserting a new node in the beginning of a linked
list, we will first check the overflow condition, which is whether the
memory is available for a new node. If the memory is not available,
then an overflow message is displayed; otherwise, the memory is
allocated for the new node. Now, we will initialize the node with its
info part, and its address part will contain the address of the first
node of the list which is the START pointer. Hence, the new node is
added as the first node in the list and the START pointer will point
to the first node of the list. Now to understand better let us take an
example. Consider a linked list as shown in the following figure with five
nodes; a new node will be inserted in the beginning of the linked list.

FIGURE 4.3 An example of searching a linked list.

Linked Lists • 143

From the previous example, it is clear how a new node will be
inserted in an already existing linked list. Let us now understand its
algorithm:

Algorithm for inserting a new node in the beginning of a linked list

FIGURE 4.4 Inserting a new node at the beginning of a linked list.

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 8
 [End of If]
Step 3: Set NEW NODE = PTR
Step 4: Set PTR = PTR -> NEXT
Step 5: Set NEW NODE -> INFO = VALUE
Step 6: Set NEW NODE -> NEXT = START
Step 7: Set START = NEW NODE
Step 8: EXIT

144 • Data Structures and Program Design Using C++

2. Inserting a new node at the end of a linked list

To insert the new node at the end of the linked list, we will first check
the overflow condition, which is whether the memory is available for a
new node. If the memory is not available, then an overflow message is
displayed; otherwise, the memory is allocated for the new node. Then a
PTR variable is made which will initially point to START and will be used
to traverse the linked list until it reaches the last node. When it reaches
the last node, the NEXT part of the last node will store the address of the
new node, and the NEXT part of the NEW NODE will contain NULL,
which will denote the end of the linked list. Let us understand this with
the help of an algorithm:

Algorithm for inserting a new node at the end of a linked list

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 10
 [End of If]
Step 3: Set NEW NODE = PTR
Step 4: Set PTR = PTR -> NEXT
Step 5: Set NEW NODE -> INFO = VALUE
Step 6: Set NEW NODE -> NEXT = NULL
Step 7: Set PTR = START
Step 8: Repeat Step 8 while PTR -> NEXT != NULL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 9: Set PTR -> NEXT = NEW NODE
Step 10: EXIT

From the previous algorithm we understand how to insert a new node
at the end of already existing linked list. Now we will study further with
the help of an example. Consider a linked list as shown in the following
figure with four nodes, and a new node will be inserted at the end of the
linked list:

Linked Lists • 145

3. Inserting a new node after a node in a linked list

In this case, a new node is inserted after a given node in a linked list. As
in the other cases, we will again check the overflow condition. If the mem-
ory for the new node is available, it will be allocated; otherwise, an overflow
message is printed. Then a PTR variable is made which will initially point
to START, and the PTR variable is used to traverse the linked list until it
reaches the value/node after which the new node is to be inserted. When
it reaches that node/value, then the NEXT part of that node will store the
address of the new node and the NEXT part of the NEW NODE will store
the address of its next node in the linked list. Let us understand this with

FIGURE 4.5 Inserting a new node at the end of a linked list.

146 • Data Structures and Program Design Using C++

From the previous example, we learned how a node can be inserted
after a given node. Now we will understand this with the help of an algo-
rithm.

Algorithm for inserting a new node after a given node in a linked list

FIGURE 4.6 Inserting a new node after a given node in a linked list.

the help of an example. Consider a linked list with four nodes, and a new
node is to be inserted after the given node:

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 10
 [End of If]

Linked Lists • 147

Step 3: Set NEW NODE = PTR
Step 4: Set PTR = PTR -> NEXT
Step 5: Set NEW NODE -> INFO = VALUE
Step 6: Set PTR = START
Step 7: Set PREV = PTR
Step 8: Repeat Step 8 while PREV -> INFO != GIVEN_VAL
 Set PREV = PTR
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 9: Set PREV -> NEXT = NEW NODE
Step 10: Set NEW NODE -> NEXT = PTR
Step 11: EXIT

d) Deleting a node from a linked list

In this section, we will learn how a node is deleted from an already ex-
isting linked list. We will discuss three cases in the deletion process which
include:

1.	A node is deleted from the beginning of the linked list.

2.	A node is deleted from the end of the linked list.

3.	A node is deleted after a given node from the linked list.

Let us now discuss all of these cases in detail.

1. Deleting a node from the beginning of the linked list

In the case of deleting a node from the beginning of a linked list,
we will first check the underflow condition, which occurs when we try
to delete a node from a linked list which is empty. This situation exists
when the START pointer is equal to NULL. If the condition is true,
then the underflow message is printed on the screen; otherwise, the
node is deleted from the linked list. Consider a linked list as shown in
the following figure with five nodes; the node will be deleted from the
beginning of the linked list.

148 • Data Structures and Program Design Using C++

In the previous algorithm, first we check for the underflow condition,
that is, whether there are any nodes present in the linked list or not. If there
are no nodes, then an underflow message will be printed; otherwise, we
move to Step 3 where we are initializing PTR to START, that is, PTR will
now store the address of the first node. In the next step START is moved to
the second node, as now START will store the address of the second node.
Hence, the first node is deleted and the memory which was occupied by
PTR (initially the first node of the list) is free.

From the previous example, it is clear how a node is deleted from an
already existing linked list. Let us now understand its algorithm:

Algorithm for deleting a node from the beginning of a linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Set START = START -> NEXT
Step 5: FREE PTR
Step 6: EXIT

FIGURE 4.7 Deleting a node from the beginning of a linked list.

Linked Lists • 149

2. Deleting a node from the end of the linked list

In the case of deleting a node from the end of the linked list, we will
first check the underflow condition. This situation exists when the START
pointer is equal to NULL. Hence, if the condition is true, then the under-
flow message is printed on the screen; otherwise, the node is deleted from
the linked list. Consider a linked list as shown in the following figure with
five nodes; the node will be deleted from the end of the linked list.

FIGURE 4.8 Deleting a node from the end of a linked list.

Let us now understand the algorithm of deleting a node from the end
of a linked list.

Algorithm for deleting a node from the end of a linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> NEXT != NULL
 Set PREV = PTR
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set PREV -> NEXT = NULL
Step 6: FREE PTR
Step 7: EXIT

150 • Data Structures and Program Design Using C++

In the previous algorithm, we again check for the underflow condition.
If the condition is true, then the underflow message is printed; otherwise,
PTR is initialized to the START pointer, that is, PTR is pointing to the first
node of the list. In the loop we have taken another pointer variable PREV
which will always point to one node before the PTR node. After reaching
the last node of the list, we will set the next part of PREV to NULL. There-
fore, the last node is deleted, and the memory which was occupied by the
PTR node is now free.

3. Deleting a node after a given node from the linked list

In the case of deleting a node after a given node from the linked list, we
will again check the underflow condition as we checked in both the other
cases. This situation exists when the START pointer is equal to NULL.
Hence, if the condition is true, then the underflow message is printed; oth-
erwise, the node is deleted from the linked list. Consider a linked list as
shown in the following figure with five nodes initially; the node will be de-
leted after a given node from the linked list.

FIGURE 4.9 Deleting a node after a given node from the linked list.

Linked Lists • 151

Now let us understand the previous case with the help of an algorithm.

Algorithm for deleting a node after a given node from the linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Set PREV = START
Step 5: Repeat while PREV -> INFO != GIVEN_VAL
 Set PREV = PTR
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 6: Set PREV -> NEXT = PTR -> NEXT
Step 7: FREE PTR
Step 8: EXIT

In the previous algorithm, we are first checking for the underflow
condition. If the condition is true then the underflow message is print-
ed; otherwise, PTR is initialized to the START pointer, that is, PTR is
pointing to the first node of the list. In the loop we have taken another
pointer variable PREV which will always point one node before the PTR
node. After reaching the node containing the given value which is to be
deleted, we will set the next pointer of the node containing the given
value to the address contained in the next part of the succeeding node.
Therefore, the node is deleted and the memory which was being occu-
pied by PTR is now free.

e) Concatenation of two linked lists

A concatenated linked list is created by the process of concatenating
two different-sized linked lists into one linked list. Let us understand the
concept of concatenation with the help of a function:

void concatenate(struct node *head1, struct node
*head2)
{
struct node *ptr;
ptr = head1;
while(ptr->next != NULL)

152 • Data Structures and Program Design Using C++

f) Sorting a linked list

Sorting is the process of arranging the data elements in a sequence,
either in ascending order or in descending order. In this we are arranging
the information of the linked list in a sequence. Let us understand it with
the help of a function:

void sorting()
{
int new;
struct node *ptr, *temp;
ptr = start;
while(ptr->next != NULL)
{

temp = ptr->next;
while(temp != NULL)
{

if(ptr->info > temp->info)
{

temp = ptr->info;
ptr->info = temp->info;
temp->info = new;

}
temp = temp->next;

}
ptr = ptr->next;

}
}

g) Reversing a linked list

In the process of reversing a linear linked list, we will take three pointer
variables, that is, PREV, PTR, and NEW, which will hold the addresses
of the previous node, current node, and the next node respectively in the
linked list. We will begin with the address of the first node which is held

{
ptr = ptr->next ;

}
ptr->next = head2 ;

}

Linked Lists • 153

void reverse_list()
{
ptr = start;
prev = NULL;
while(ptr != NULL)
{

new = ptr->next;
ptr->next = prev;
prev = ptr;
ptr = new;

}
}

Write a menu-driven program for singly linked lists performing inser-
tion and deletion of all cases.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
int info ;
struct node *next ;

} *start;
class Singlylist
{
public:
Singlylist()
{
start = NULL;

}
node *create_list(int);	
void insertion_at_beginning();
void insertion_at_position();
void insertion_at_end();
void deletion_from_position();
void display();

};

in another pointer variable START which is assigned to PTR, and PREV is
assigned to NULL. Now, let us understand it with the help of a function:

154 • Data Structures and Program Design Using C++

void main()
{
Singlylist obj;
int i, choice, value, position;
clrscr();
while(1)
{

cout<<“\n***MENU***”;
cout<<“\n1. Insertion at Beginning”;
cout<<“\n2. Insertion at Specified Position”;
cout<<“\n3. Insertion at End”;
cout<<“\n4. Deletion from Specified Position”;
cout<<“\n5. Display”;
cout<<“\n6. Exit”;
cout<<“\nEnter your choice: ”;
cin>>choice;
switch(choice)
{

case 1:
obj.insertion_at_beginning();
break;

case 2:
obj.insertion_at_position();
break;

case 3:
obj.insertion_at_end();
break;

case 4:
obj.deletion_from_position();
break;

case 5:
obj.display();
break;

case 6:
exit(0);
default:

Linked Lists • 155

cout<<“Wrong choice”;
break;

}
}
getch();

}
node * Singlylist :: create_list(int item)
{
struct node *ptr;
ptr = new(struct node);
if(ptr == NULL)
{

cout<<“The memory is not allocated”;
return 0;

}
else
{

ptr->info = item;
ptr->next = NULL;
return ptr;

}
}
void Singlylist :: insertion_at_beginning()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
if(start == NULL)
{

start = temp;
start->next = NULL;

}
else
{

ptr1 = start;
start = temp;
start->next = ptr1;

}

156 • Data Structures and Program Design Using C++

cout<<“\nInserted Successfully at beginning!!”;
getch();

}
void Singlylist :: insertion_at_position()
{
struct node *temp, *temp1, *ptr;
int item, position, count=0, i;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
while(temp1 != NULL)
{

temp1 = temp1->next;
count++;

}
if(position == 1)
{

if(start == NULL)
{

start = temp;
start->next = NULL;

}
else
{

ptr = start;
start = temp;
start->next = ptr;

}
}
else if(position > 1 && position <= count)
{

temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}

Linked Lists • 157

ptr->next = temp;

temp->next = temp1;
}
else
{

cout<<“Invalid Position”;
exit(0);

}
cout<<“\nInserted Successfully!!”;
getch();

}
void Singlylist :: insertion_at_end()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
ptr1 = start;
while(ptr1->next != NULL)
{

ptr1 = ptr1->next;
}
temp->next = NULL;
ptr1->next = temp;
cout<<“\nInserted Successfully at end!!”;
getch();

}
void Singlylist :: deletion_from_position()
{
struct node *ptr, *temp1;
int i, position, count=0;
if(start == NULL)
{

cout<<“Empty List”;
return;

}

158 • Data Structures and Program Design Using C++

cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
if(position == 1)

{
start = temp1 -> next;

}
else
{

while(temp1 != NULL)
{

temp1 = temp1->next;
count++;

}
if(position > 0 && position <= count)
{

temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}
ptr->next = temp1->next;

}
else
{

cout<<“Invalid position”;
}
free(temp1);
cout<<“\nDeleted Successfully!!”;

}
}
void Singlylist :: display()
{
struct node *disp;
if(start == NULL)

Linked Lists • 159

{
cout<<“Empty List”;
return;

}

disp = start;
cout<<“Linked List is: ”;
while(disp != NULL)
{

cout<<disp->info<<“ -> ”;
disp = disp -> next;

}
cout<<“NULL”;

}
The output of the program is shown as:

After discussing the singly linked list, we will now learn about another
type of linked list, the circular linked list.

4.4.3  Circular Linked Lists
Circular linked lists are a type of singly linked list in which the

address part of the last node will store the address of the first node,
unlike in singly linked lists in which the address part of the last node

160 • Data Structures and Program Design Using C++

FIGURE 4.10 Circular linked list.

stores a unique value, NULL. While traversing a circular linked list we
can begin from any node and we traverse the list in any direction, be-
cause a circular linked list does not have a first or last node. The memory
declarations for representing a circular linked list are the same as for a
linear linked list.

4.4.4  Operations on a Circular Linked List
Various operations can be performed on a circular linked list, which

include:

a.	Inserting a new node in a circular linked list

b.	Deleting a node from a circular linked list
Let us now discuss both these cases in detail.

a) Inserting a new node in a circular linked list

Here, we will learn how a new node is inserted in an existing linked list.
We will discuss two cases in the insertion process which include:

1.	A new node is inserted at the beginning of the circular linked list.

2.	A new node is inserted at the end of the circular linked list.

3.	A new node is inserted after a given node (same as that for a singly
linked list).

1. Inserting a new node in the beginning of a circular linked list

In the case of inserting a new node in the beginning of a circular
linked list, we will first check the overflow condition, that is, whether the
memory is available for a new node. If the memory is not available then
an overflow message is printed; otherwise, the memory is allocated for

Linked Lists • 161

the new node. Now we will initialize the node with its info part, and its
address part will contain the address of the first node of the list which is
the START pointer. Hence, the new node is added as the first node in the
list, and the START pointer will point to the first node of the list. Now
let us take an example. Consider a linked list as shown in the following
figure with four nodes; a new node is to be inserted in the beginning of
the circular linked list.

FIGURE 4.11 Inserting a new node in the beginning of a circular linked list.

162 • Data Structures and Program Design Using C++

Now let us understand the previous case with the help of an algorithm.

Algorithm for inserting a new node in the beginning of a circular linked list

Step 1: START
Step 2: IF TEMP = NULL
 Print OVERFLOW
 [End Of If]
Step 3: Set NEW NODE = TEMP
Step 4: Set NEW NODE -> INFO = VAL
Step 5: Set PTR = START
Step 6: Repeat while PTR -> NEXT != START
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 7: Set NEW NODE -> NEXT = START
Step 8: Set PTR -> NEXT = NEW NODE
Step 9: Set START = NEW NODE
Step 10: EXIT

2. Inserting a new node at the end of a circular linked list

In this case, we will first check the overflow condition, that is, wheth-
er the memory is available for a new node. If the memory is not available,
then an overflow message is printed; otherwise, the memory is allocated
for the new node. Then a PTR variable is made which will initially point to
START, and the PTR variable will be used to traverse the linked list until
it reaches the last node. When it reaches the last node, the NEXT part of
the last node will store the address of the new node and the NEXT part of
the NEW NODE will contain the address of the first node of the linked
list, which is denoted by START. Let us understand it with the help of an
algorithm:

Algorithm for inserting a new node at the end of a circular linked list

Step 1: START
Step 2: IF TEMP = NULL
 Print OVERFLOW
 [End Of If]
Step 3: Set NEW NODE = TEMP

Linked Lists • 163

Step 4: Set NEW NODE -> INFO = VAL
Step 5: Set NEW NODE -> NEXT = START
Step 6: Set PTR = START
Step 7: Repeat while PTR -> NEXT != START
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 8: Set PTR -> NEXT = NEW NODE
Step 9: EXIT

Let us take an example to understand it. Consider a linked list as shown
in the following figure with four nodes; a new node is to be inserted at the
end of the circular linked list.

FIGURE 4.12 Inserting a new node at the end of a circular linked list.

164 • Data Structures and Program Design Using C++

b) Deleting a node from a circular linked list

In this section, we will learn how a node is deleted from an already ex-
isting circular linked list. We will discuss two cases in the deletion process
which include:

1)	 A node is deleted from the beginning of the circular linked list.

2)	 A node is deleted from the end of the circular linked list.

3)	 A node is deleted after a given node (same as that for a singly linked list).

1. Deleting a node from the beginning of a circular linked list

In the case of deleting a node from the beginning of a linked list, we
will first check the underflow condition which occurs when we try to delete
a node from the linked list which is empty. This situation exists when the
START pointer is equal to NULL. Hence, if the condition is true, then an
underflow message is displayed; otherwise, the node is deleted from the
linked list. Consider a linked list as shown in the following figure with four
nodes; the first node will be deleted from the linked list.

FIGURE 4.13 Deleting a node from the beginning of a circular linked list.

Linked Lists • 165

From the previous example, it is clear how a node will be deleted from
an already existing linked list. Let us now understand its algorithm:

Algorithm for deleting a node from the beginning of a circular linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> NEXT != START
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set PTR -> NEXT = START -> NEXT
Step 6: FREE START
Step 7: Set START = START -> NEXT
Step 8: EXIT

The previous algorithm shows how a node is deleted from the begin-
ning of the linked list. First, we check with the underflow condition. Now
a pointer variable PTR is used which will traverse the entire list until it
reaches the last node of the list. Now, we change the next part of PTR to
store the address of the second node of the list. Hence, the memory that
occupied the first node is freed. Finally, the second node now becomes the
first node of the linked list.

2. Deleting a node from the end of a circular linked list

In this case, we will first check the underflow condition, which is
when we try to delete a node from the linked list which is empty. This
situation occurs when the START pointer is equal to NULL. Hence, if
the condition is true, then an underflow message is printed; otherwise,
the node is deleted from the linked list. Consider a linked list as shown
in the following figure with four nodes; the last node will be deleted from
the linked list.

166 • Data Structures and Program Design Using C++

FIGURE 4.14 Deleting a node from the end of a circular linked list.

Let us now understand its algorithm:

Algorithm for deleting a node from the end of a circular linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> NEXT != START
 Set PREV = PTR
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set PREV -> NEXT = START
Step 6: FREE PTR
Step 7: EXIT

Linked Lists • 167

The previous algorithm shows how a node is deleted from the end of
the linked list. First, we are checking with the underflow condition. Now a
pointer variable PTR is used to traverse the entire list until it reaches the
last node of the list. In the while loop we will use another pointer variable
PREV, which will always point to the node preceding PTR. When we reach
the last node and its preceding node, that is, the second to last node, we will
now change the next part of PREV to store the address of START. Hence,
the memory occupied by the last node is freed. Finally, the second to last
node now becomes the last node of the linked list. In this way, deletion of a
node from the end is done in a circular linked list.

Write a menu-driven program for circular linked lists performing inser-
tion and deletion of all the cases.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
int info ;
struct node *next ;

}*end;
class Circularlist
{
public:
Circularlist()
{

end = NULL;
}
void create_list();
void insertion_at_beginning();
void insertion_at_position();
void insertion_at_end();
void deletion();
void display();

};
void main()
{
Circularlist obj;
int choice;

168 • Data Structures and Program Design Using C++

clrscr();
while(1)
{

cout<<“\n***MENU***”;
cout<<“\n1. Create List”;
cout<<“\n2. Insertion at Beginning”;
cout<<“\n3. Insertion at Specified Position”;
cout<<“\n4. Insertion at End”;
cout<<“\n5. Deletion”;
cout<<“\n6. Display”;
cout<<“\n7. Exit”;
cout<<“\nEnter your choice: ”;
cin>>choice;
switch(choice)
{

case 1:
obj.create_list();
break;

case 2:
obj.insertion_at_beginning();
break;

case 3:
obj.insertion_at_position();
break;

case 4:
obj.insertion_at_end();
break;

case 5:
obj.deletion();
break;

case 6:
obj.display();
break;

case 7:
exit(0);

Linked Lists • 169

default:
cout<<“Wrong choice”;
break;

}
}
getch();

}
void Circularlist :: create_list()
{
int item;
struct node *ptr;
ptr = new(struct node);
cout<<“\nEnter the value: ”;
cin>>item;
ptr->info = item;
if(end == NULL)
{

end = ptr;
ptr->next = end;

}
else
{

ptr->next = end->next;
end->next = ptr;
end = ptr;

}
cout<<“\nList created Successfully!!”;
getch();

}
void Circularlist :: insertion_at_beginning()
{
struct node *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
if(end == NULL)
{

cout<<“List is not created”;
return;

}
else

170 • Data Structures and Program Design Using C++

{
ptr1 = new(struct node);
ptr1->info = item;
ptr1->next = end->next;
end->next = ptr1;
cout<<“\nInserted Successfully at beginning!!”;
getch();

}
}
void Circularlist :: insertion_at_position()
{

struct node *temp, *temp1;
int item, position, i;
if(end == NULL)
{

cout<<“List is not created”;
return;

}
cout<<“\nEnter value of node: ”;
cin>>item;
cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = end->next;
for(i=0 ; i<(position-1) ; i++)
{

temp1 = temp1->next;
if(temp1 = end->next)
{

cout<<“Invalid Position”;
return;

}
}
temp = new(struct node);
temp->next = temp1->next;
temp->info = item;
temp1->next = temp;
cout<<“\nInserted Successfully!!”;
getch();

}

Linked Lists • 171

void Circularlist :: insertion_at_end()
{
struct node *temp;

int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = new(struct node);
end = temp;
cout<<“\nInserted Successfully!!”;
getch();

}
void Circularlist :: deletion()
{
struct node *ptr, *temp1;
int i, item;
cout<<“\nEnter value of node to be deleted: ”;
cin>>item;
temp1 = end->next;
if(end->next == end && end->info == item)
{

ptr = end;
end = NULL;
free(ptr);
cout<<“\nDeleted Successfully!!”;
return;
getch();

}
if(temp1->info == item)
{

ptr = temp1;
end->next = temp1->next;
free(ptr);
cout<<“\nFirst element is deleted successfully”;
return;

}
while(temp1->next != end)
{

if((temp1->next)->info == item)
{
ptr = temp1->next;
temp1->next = ptr->next;

172 • Data Structures and Program Design Using C++

free(ptr);
cout<<“\nElement Deleted is: ”<<item;
getch();

return;
}
temp1 = temp1->next;

}
if((temp1->next)->info == item)
{

ptr = temp1->next;
temp1->next = end->next;
free(ptr);
cout<<“\nDeleted Successfully”;
end = temp1;
return;

}
cout<<“Element not found”;
getch();

}
void Circularlist :: display()
{
struct node *disp;
if(end == NULL)
{

cout<<“Empty List”;
return;

}
disp = end->next;
cout<<“\nLinked List is: ”;
while(disp->next != start)
{

cout<<disp->info<<“ ->”;
disp = disp -> next;

}
cout<<disp->info;

}

Linked Lists • 173

The output of the program is shown as:

4.4.5  Doubly Linked List
A doubly linked list is also called a two-way linked list; it is a special

type of linked list which can point to the next node as well as the previous
node in the sequence. In a doubly linked list each node is divided into three
parts:

1)	The first part is called the previous pointer, which contains the address
of the previous node in the list.

2)	The second part is called the information part, which contains the infor-
mation of the node.

3)	The third part is called the next pointer, which contains the address of
the succeeding node in the list.

FIGURE 4.15 Doubly linked list.

174 • Data Structures and Program Design Using C++

The structure of a doubly linked list is given as follows:

struct node
{
struct node *prev ;
int info ;
struct node *next ;

};

The first node of the linked list will contain a NULL value in the previ-
ous pointer to indicate that there is no element preceding in the list; simi-
larly, the last node will also contain a NULL value in the next pointer field
to indicate that there is no element succeeding it in the list. Doubly linked
lists can be traversed in both directions.

4.4.6  Operations on a Doubly Linked List
Various operations can be performed on a circular linked list, which

include:

•	 Inserting a New Node in a Doubly Linked List

•	 Deleting a Node from a Doubly Linked List

Let us now discuss both these operations in detail.

a) Inserting a New Node in a Doubly Linked List

In this section, we will learn how a new node is inserted into an already
existing doubly linked list. We will consider four cases for the insertion pro-
cess in a doubly linked list.

1)	 A new node is inserted at the beginning.

2)	 A new node is inserted at the end.

3)	 A new node is inserted after a given node.

4)	 A new node is inserted before a given node.

1. Inserting a new node in the beginning of a doubly linked list

In this case of inserting a new node in the beginning of a doubly linked
list, we will first check with the overflow condition, that is, whether the
memory is available for a new node. If the memory is not available, then an

Linked Lists • 175

overflow message is displayed; otherwise, the memory is allocated for the
new node. Now, we will initialize the node with its info part, and its address
part will contain the address of the first node of the list, which is the START
pointer. Hence, the new node is added as the first node in the list, and the
START pointer will point to the first node of the list. Now to understand
better let us take an example. Consider a linked list as shown in the follow-
ing figure with four nodes; a new node will be inserted in the beginning of
the linked list.

From the previous example, it is clear how a new node will be
inserted in an already existing doubly linked list. Let us now understand its
algorithm:

Algorithm for inserting a new node in the beginning of a doubly linked list

FIGURE 4.16 Inserting a new node in the beginning of a doubly linked list.

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 9
 [End of If]
Step 3: Set NEW NODE = PTR
Step 4: Set NEW NODE -> INFO = VALUE
Step 5: Set NEW NODE -> PREV = NULL

176 • Data Structures and Program Design Using C++

2. Inserting a new node at the end of a doubly linked list
In the case of inserting the new node at the end of the linked list,

we will first check the overflow condition, which is whether the mem-
ory is available for a new node. If the memory is not available, then an
overflow message is printed; otherwise, the memory is allocated for
the new node. Then a PTR variable is made which will initially point
to START, and a PTR variable will be used to traverse the list until it
reaches the last node. When it reaches the last node, the NEXT part
of the last node will store the address of the new node, and the NEXT
part of the NEW NODE will contain NULL, which will denote the end
of the linked list. The PREV part of the NEW NODE will store the
address of the node pointed to by PTR. Let us understand it with the
help of an algorithm:

Algorithm for inserting a new node at the end of a linked list

Step 6: Set NEW NODE -> NEXT = START
Step 7: Set START -> PREV = NEW NODE
Step 8: Set START = NEW NODE
Step 9: EXIT

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 [End of If]
Step 3: Set NEW NODE = PTR
Step 4: Set PTR = PTR -> NEXT
Step 5: Set NEW NODE -> INFO = VALUE
Step 6: Set NEW NODE -> NEXT = NULL
Step 7: Set PTR = START
Step 8: Repeat while PTR -> NEXT != NULL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 9: Set PTR -> NEXT = NEW NODE
Step 10: Set NEW NODE -> PREV = PTR
Step 11: EXIT

From the previous algorithm we understand how to insert a new node
at the end of a doubly linked list. Now, we will study this further with the

Linked Lists • 177

help of an example. Consider a linked list as shown in the following fig-
ure with four nodes; a new node will be inserted at the end of the doubly
linked list:

FIGURE 4.17 Inserting a new node after a given node in a doubly linked list.

3. Inserting a new node after a given node in a doubly linked list

In this case, a new node is inserted after a given node in a doubly
linked list. As in the other cases, we will again check the overflow con-
dition in it. If the memory for the new node is available, then it will be
allocated; otherwise, an overflow message is displayed. Then a PTR
variable is made which will initially point to START, and the PTR vari-
able is used to traverse the linked list until its value becomes equal to
the value after which the new node is to be inserted. When it reaches
that node/value, then the NEXT part of that node will store the address
of the new node, and the PREV part of the NEW NODE will store the
address of the preceding node. Let us understand it with the help of
the following algorithm:

Algorithm for inserting a new node after a given node in a linked list

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 10
 [End of If]

178 • Data Structures and Program Design Using C++

Step 3: Set NEW NODE = PTR
Step 4: Set NEW NODE -> INFO = VALUE
Step 5: Set PTR = START
Step 6: Repeat while PTR -> INFO != GIVEN_VAL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 7: Set NEW NODE -> NEXT = PTR -> NEXT
Step 8: Set NEW NODE -> PREV = PTR
Step 9: Set PTR -> NEXT = NEW NODE
Step 10: EXIT

Now, we will understand more about the same with the help of an ex-
ample. Consider a doubly linked list as shown in the following figure with
four nodes; a new node will be inserted after a given node in the linked list:

FIGURE 4.18 Inserting a new node at the end of a doubly linked list.

4. Inserting a new node before a given node in a doubly linked list

In this case, a new node is inserted before a given node in a dou-
bly linked list. As in the other cases, we will again check the overflow
condition in it. If the memory for the new node is available, then it will

Linked Lists • 179

be allocated; otherwise, an overflow message is displayed. Then a PTR
variable is made which will initially point to START, and the PTR vari-
able is used to traverse the linked list until its value becomes equal to
the value before which the new node is to be inserted. When it reaches
that node/value, then the PREV part of that node will store the address
of the NEW NODE, and the NEXT part of the NEW NODE will store
the address of the succeeding node. Now to understand better let us
take an example. Consider a linked list as shown in the following figure
with four nodes; a new node will be inserted before a given node in the
linked list.

FIGURE 4.19 Inserting a new node before a given node in a doubly linked list.

Algorithm for inserting a new node before a given node in a doubly linked list

Step 1: START
Step 2: IF PTR = NULL
 Print OVERFLOW
 Go to Step 10
 [End of If]

From the previous example, it is clear how a new node will be in-
serted in an already existing doubly linked list. Let us now understand its
algorithm:

180 • Data Structures and Program Design Using C++

Step 3: Set NEW NODE = PTR
Step 4: Set NEW NODE -> INFO = VALUE
Step 5: Set PTR = START
Step 6: Repeat while PTR -> INFO != GIVEN_VAL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 7: Set NEW NODE -> NEXT = PTR
Step 8: Set NEW NODE -> PREV = PTR -> PREV
Step 9: Set PTR -> PREV = NEW NODE
Step 10: EXIT

b) Deleting a Node from a Doubly Linked List

In this section, we will learn how a node is deleted from an already ex-
isting doubly linked list. We will consider four cases for the deletion process
in a doubly linked list.

1)	 A node is deleted from the beginning of the linked list.

2)	 A node is deleted from the end of the linked list.

3)	 A node is deleted after a given node from the linked list.

4)	 A node is deleted before a given node from the linked list.

Now let us discuss the previous cases in detail.

1. Deleting a node from the beginning of the doubly linked list

In the case of deleting a node from the beginning of the doubly linked
list, we will first check the underflow condition, which occurs when we
try to delete a node from the linked list which is empty. This situation ex-
ists when the START pointer is equal to NULL. Hence, if the condition
is true, then the underflow message is displayed; otherwise, the node is
deleted from the linked list. Consider a linked list as shown in the follow-
ing figure with five nodes; the node will be deleted from the beginning of
the linked list.

Linked Lists • 181

Let us understand this with the help of an algorithm:

Algorithm for deleting a node from the beginning of a doubly linked list

FIGURE 4.20 Deleting a node from the beginning of the doubly linked list.

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Set START = START -> NEXT
Step 5: Set START -> PREV = NULL
Step 6: FREE PTR
Step 7: EXIT

In the previous algorithm, first we are checking for the underflow con-
dition, which is whether there are any nodes present in the linked list or
not. If there are no nodes, then an underflow message will be printed; oth-
erwise, we move to Step 3 where we are initializing PTR to START, that is,
PTR will now store the address of the first node. In the next step START
is moved to the second node, as now START will store the address of the
second node. Also, the PREV part of the second node will now contain a
value NULL. Hence, the first node is deleted and the memory that occu-
pied PTR is freed (initially the first node of the list).

2. Deleting a node from the end of a doubly linked list

In the case of deleting a node from the end of a linked list, we
will first check the underflow condition. This situation exists when the

182 • Data Structures and Program Design Using C++

START pointer is equal to NULL. Hence, if the condition is true, then
the underflow message is printed on the screen; otherwise, the node is
deleted from the linked list. Consider a linked list as shown in the fol-
lowing figure with five nodes; the node will be deleted from the end of
the linked list.

From the previous example, it is clear how a node will be deleted
from an already existing doubly linked list. Let us now understand its
algorithm:

FIGURE 4.21 Deleting a node from the end of the doubly linked list.

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> NEXT != NULL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set PTR -> PREV -> NEXT= NULL
Step 6: FREE PTR
Step 7: EXIT

Algorithm for deleting a node from the end in a doubly linked list

Linked Lists • 183

In the previous algorithm, again we are checking for the underflow
condition. If the condition is true, then the underflow message is print-
ed; otherwise, PTR is initialized to the START pointer, that is, PTR is
pointing to the first node of the list. In the loop PTR is traversed until it
reaches the last node of the list. After reaching the last node of the list,
we can also access the second to last node by taking the address from
the PREV part of the last node. Therefore, the last node is deleted, and
the memory that occupied PTR is now freed.

3. Deleting a node after a given node from the doubly linked list

In the case of deleting a node after a given node from the linked list, we
will again check the underflow condition as we checked in both the other
cases. This situation exists when the START pointer is equal to NULL.
Hence, if the condition is true, then the underflow message is displayed;
otherwise, the node is deleted from the linked list. Consider a linked list as
shown in the following figure with five nodes; the node will be deleted after
a given node from the linked list.

FIGURE 4.22 Deleting a node after a given node from the doubly linked list.

184 • Data Structures and Program Design Using C++

Algorithm for deleting a node after a given node from the linked list

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> INFO != GIVEN_VAL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set TEMP = PTR -> NEXT
Step 6: Set PTR -> NEXT = TEMP -> NEXT
Step 7: Set TEMP -> NEXT ->PREV = PTR
Step 8: FREE TEMP
Step 9: EXIT

In the previous algorithm, first we are checking for the underflow
condition. If the condition is true, then the underflow message is print-
ed; otherwise, PTR is initialized to the START pointer, that is, PTR is
pointing to the first node of the list. In the loop PTR is moved until
its info part becomes equal to the node after which the node is to be
deleted. After reaching that node of the list, we can also access the suc-
ceeding node by taking the address from the NEXT part of that node.
Therefore, the node is deleted and the memory is now free which was
being occupied by the TEMP.

4. Deleting a node before a given node from the doubly linked list

In the case of deleting a node before a given node from the linked list,
we will again check the underflow condition as we checked in both the oth-
er cases. This situation occurs when the START pointer is equal to NULL.
Hence, if the condition is true, then the underflow message is printed; oth-
erwise, the node is deleted from the linked list. Consider a linked list as
shown in the following figure with five nodes; the node will be deleted
before a given node from the linked list.

Now let us understand the previous case with the help of an algorithm.

Linked Lists • 185

From the previous example, it is clear how a node will be deleted
from an already existing doubly linked list. Let us now understand its
algorithm:

Algorithm for deleting a node before a given node in a doubly linked list

FIGURE 4.23 Deleting a node before a given node from the doubly linked list.

Step 1: START
Step 2: IF START = NULL
 Print UNDERFLOW
 [End Of If]
Step 3: Set PTR = START
Step 4: Repeat while PTR -> INFO != GIVEN_VAL
 Set PTR = PTR -> NEXT
 [End of Loop]
Step 5: Set TEMP = PTR -> PREV
Step 6: Set TEMP -> PREV -> NEXT = PTR
Step 7: Set PTR -> PREV = TEMP -> PREV
Step 8: FREE TEMP
Step 9: EXIT

186 • Data Structures and Program Design Using C++

In the previous algorithm, first we are checking for the underflow
condition. If the condition is true, then the underflow message is print-
ed; otherwise, PTR is initialized to the START pointer, that is, PTR is
pointing to the first node of the list. In the loop PTR is moved until
its info part becomes equal to the node before which the node is to
be deleted. After reaching that node of the list, we can also access the
preceding node by taking the address from the PREV part of that node.
Therefore, the node is deleted and the memory is now free which was
being occupied by the TEMP.

Write a menu-driven program for doubly linked lists performing inser-
tion and deletion of all cases.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
struct node *prev;
int info;
struct node *next;

}*start ;
class Doublylist
{
public:
Doublylist()
{

start = NULL;
}
void create_list();
void insertion_at_beginning();
void insertion_at_position();
void deletion();
void display();

};
void main()
{
Doublylist obj;
int choice;
clrscr();
while(1)

Linked Lists • 187

{
cout<<“\n***MENU***”;
cout<<“\n1. Create List”;
cout<<“\n2. Insertion at Beginning”;
cout<<“\n3. Insertion at Specified Position”;
cout<<“\n4. Deletion”;
cout<<“\n5. Display”;
cout<<“\n6. Exit”;
cout<<“\nEnter your choice: ”;
cin>>choice;
switch(choice)
{

case 1:
obj.create_list();
break;

case 2:
obj.insertion_at_beginning();
break;

case 3:
obj.insertion_at_position();
break;

case 4:
obj.deletion();
break;

case 5:
obj.display();
break;

case 6:
exit(0);

default:
cout<<”Wrong choice”;
break;

}
}

188 • Data Structures and Program Design Using C++

getch();
}
void Doublylist :: create_list()
{
int item;
struct node *ptr, *temp;
ptr = new(struct node);
cout<<“\nEnter the value: ”;
cin>>item;
ptr->info = item;
ptr->next = NULL;
if(start == NULL)
{

ptr->prev = NULL;
start = ptr;

}
else
{

temp = start;
while(temp->next != NULL)
temp = temp->next;
temp->next = ptr;
ptr->prev = ptr;

}
cout<<“\nList created Successfully!!”;
getch();

}
void Doublylist :: insertion_at_beginning()
{
if(start == NULL)
{

cout<<“List is not created”;
return;

}
struct node *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
ptr1 = new(struct node);

Linked Lists • 189

ptr1->prev = NULL;
ptr1->info = item;

ptr1->next = start;
start->prev = ptr1;
start = ptr1;
cout<<“\nInserted Successfully at beginning!!”;
getch();

}
void Doublylist :: insertion_at_position()
{

struct node *temp, *ps;
int item, position, i;
if(start == NULL)
{

cout<<“List is not created”;
return;

}
cout<<“\nEnter value of node: ”;
cin>>item;
cout<<“\nEnter position of node: ”;
cin>>position;
ps = start;
for(i=0 ; i<(position-1) ; i++)
{

ps = ps->next;
if(ps == NULL)
{

cout<<“Invalid Position”;
return;

}
}

temp = new(struct node);
temp->info = item;
temp->next = temp;
if(ps->next == NULL)
{

ps->next = temp;
temp->next = NULL;

190 • Data Structures and Program Design Using C++

temp->prev = ps;
}
else
{

temp->next = ps->next;
(temp->next)->prev = temp;
ps->next = temp;
temp->prev = ps;

}
cout<<”\nInserted Successfully!!”;
getch();

}
void Doublylist :: deletion()
{
struct node *ptr1, *temp1;
int i, item;
cout<<“\nEnter value of node to be deleted: ”;
cin>>item;
if(start->info == item)
{

temp1 = start;
start = start->next;
start->prev = NULL;
cout<<”\nDeleted Successfully!!”;
free(temp1);
return;
getch();

}
ptr1 = start;
while((ptr1->next)->next != NULL)
{

if((ptr1->next)->info == item)
{

temp1 = ptr1->next;
ptr1->next = temp1->next;
temp1->next->prev = ptr1;
cout<<“\nDeleted successfully”;

Linked Lists • 191

free(temp1);
return;
getch();

}
ptr1 = ptr1->next;

}
if(ptr1->next->info == item)
{

temp1 = ptr1->next;
free(temp1);
ptr1->next = NULL;
cout<<“\nDeleted Successfully”;
getch();
return;

}
cout<<“Element not found”;
getch();

}
void Doublylist :: display()
{
struct node *disp;
if(start == NULL)
{

cout<<“Empty List”;
return;

}
disp = start;
cout<<“\nLinked List is: ”;
while(disp != NULL)
{

cout<<disp->info<<“ -> ”;
disp = disp -> next;

}
cout<<“NULL”;

}

192 • Data Structures and Program Design Using C++

The output of the program is shown as:

Now let us discuss header linked lists.

4.5  Header Linked Lists

Header linked lists are a special type of linked list which always contain
a special node, called the header node, at the beginning. This header node
usually contains vital information about the linked list, like the total number
of nodes in the list, whether the list is sorted or not, and so on. There are
two types of header linked lists, which include:

1)	Grounded Header Linked List – This linked list stores a unique
value NULL in the address field (next part) of the last node of the list.

FIGURE 4.24 Grounded header linked list.

Linked Lists • 193

2)	Circular Header Linked List – This linked list stores the address of
the header node in the address field (next part) of the last node of the list.

FIGURE 4.25 Circular header linked list.

Frequently Asked Questions

Q3. What are the uses of a header node in a linked list?

Answer.
The header node is a node of a linked list which may or may not have the same
data structure of that of a typical node. The only common thing between a
typical node and a header node is that they both have a pointer pointing to a
typical node. Such a node can be used to store some extra pointers.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
int info ;
struct node *next ;

} *start, *header;
class Headerlist
{
public:
Headerlist()
{

start = NULL;
header = NULL;

}

Write a program to implement a header linked list.

194 • Data Structures and Program Design Using C++

node *create_list(int);
void insertion_at_beginning();
void insertion_at_position();
void insertion_at_end();
void deletion_from_position();
void display();

};
void main()
{
Headerlist obj;
int i, choice, value, position;
clrscr();
while(1)
{

cout<<“\n***MENU***”;
cout<<“\n1. Insertion at Beginning”;
cout<<“\n2. Insertion at Specified Position”;
cout<<“\n3. Insertion at End”;
cout<<“\n4. Deletion from Specified Position”;
cout<<“\n5. Display”;
cout<<“\n6. Exit”;
cout<<“\nEnter your choice: ”;
cin>>choice;
switch(choice)
{

case 1:
obj.insertion_at_beginning();
break;

case 2:
obj.insertion_at_position();
break;

case 3:
obj.insertion_at_end();
break;

case 4:
obj.deletion_from_position();
break;

Linked Lists • 195

case 5:
obj.display();
break;

case 6:
exit(0);

default:
cout<<”Wrong choice”;
break;

}
}
getch();

}
node * Headerlist :: create_list(int item)
{
struct node *ptr;
ptr = new(struct node);
if(ptr == NULL)
{

cout<<“The memory is not allocated”;
return 0;

}
else
{

ptr->info = item;
ptr->next = NULL;
return ptr;

}
cout<<“\nHeader Linked List Created!!”;

}
void Headerlist :: insertion_at_beginning()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
if(start == NULL)
{

start = temp;

196 • Data Structures and Program Design Using C++

start->next = NULL;
}
else
{

ptr1 = start;
start = temp;
start->next = ptr1;

}
cout<<“\nInserted Successfully at beginning!!”;
getch();

}
void Headerlist :: insertion_at_position()
{
struct node *temp, *temp1, *ptr;
int item, position, count=0, i;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
while(temp1 != NULL)
{

temp1 = temp1->next;
count++;

}
if(position == 1)
{

if(start == NULL)
{

start = temp;
start->next = NULL;

}
else
{

ptr = start;
start = temp;
start->next = ptr;

}
}

else if(position > 1 && position <= count)

Linked Lists • 197

{
temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}
ptr->next = temp;
temp->next = temp1;

}
else
{

cout<<“Invalid Position”;
exit(0);

}
cout<<“\nInserted Successfully!!”;
getch();

}
void Headerlist :: insertion_at_end()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
ptr1 = start;
while(ptr1->next != NULL)
{

ptr1 = ptr1->next;
}
temp->next = NULL;
ptr1->next = temp;
cout<<“\nInserted Successfully at end!!”;
getch();

}
void Headerlist :: deletion_from_position()
{
struct node *ptr, *temp1;
int i, position, count=0;
if(start == NULL)

198 • Data Structures and Program Design Using C++

{
cout<<“Empty List”;
return;

}
cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
if(position == 1)
{

start = temp1 -> next;
}
else
{

while(temp1 != NULL)
{

temp1 = temp1->next;
count++;

}
if(position > 0 && position <= count)
{

temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}
ptr->next = temp1->next;

}
else
{

cout<<“Invalid position”;
}
free(temp1);
cout<<“\nDeleted Successfully!!”;

}
}
void Headerlist :: display()
{
int count=0, total;
struct node *disp, *temp;
if(start == NULL)

Linked Lists • 199

{
cout<<“Empty List”;
return;

}
temp = start;
while(temp != NULL)
{

count++;
temp=temp->next;

}
total = count;
if(header == NULL)
{

header -> info = total;
header -> next = start;

}
disp = start;
cout<<“Linked List is: ”;
cout<<header->info<<“ -> ”; //�Displaying total nodes

in the linked list
while(disp!=NULL)
{

cout<<disp->info<<“ -> ”;
disp = disp -> next;

}
cout<<“NULL”;

}
The output of the program is shown as:

200 • Data Structures and Program Design Using C++

Write a program to implement a circular header linked list.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
int info ;
struct node *next ;

} *start, *header, *end;
class CircularHeaderlist
{
public:
CircularHeaderlist()
{

start = NULL;
header = NULL;
end = NULL;

}
node *create_list(int);
void insertion_at_beginning();
void insertion_at_position();
void insertion_at_end();
void deletion_from_position();
void display();

};
void main()
{
CircularHeaderlist obj;
int i, choice, value, position;
clrscr();
while(1)
{

cout<<“\n***MENU***”;
cout<<“\n1. Insertion at Beginning”;
cout<<“\n2. Insertion at Specified Position”;
cout<<“\n3. Insertion at End”;
cout<<“\n4. Deletion from Specified Position”;
cout<<“\n5. Display”;

Linked Lists • 201

cout<<“\n6. Exit”;
cout<<“\nEnter your choice: ”;
cin>>choice;
switch(choice)
{

case 1:
obj.insertion_at_beginning();
break;

case 2:
obj.insertion_at_position();
break;

case 3:
obj.insertion_at_end();
break;

case 4:
obj.deletion_from_position();
break;

case 5:
obj.display();
break;

case 6:
exit(0);

default:
cout<<”Wrong choice”;
break;

}
}
getch();

}
node * CircularHeaderlist :: create_list(int item)
{
struct node *ptr;
ptr = new(struct node);
if(ptr == NULL)

202 • Data Structures and Program Design Using C++

{
cout<<“The memory is not allocated”;
return 0;

}
else
{

ptr->info = item;
ptr->next = NULL;
return ptr;

}
cout<<“\nHeader Linked List Created!!”;

}
void CircularHeaderlist :: insertion_at_beginning()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
if(start == NULL)
{

start = temp;
start->next = NULL;

}
else
{

ptr1 = start;
start = temp;
start->next = ptr1;

}
cout<<“\nInserted Successfully at beginning!!”;
getch();

}
void CircularHeaderlist :: insertion_at_position()
{
struct node *temp, *temp1, *ptr;
int item, position, count=0, i;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);

Linked Lists • 203

cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
while(temp1 != NULL)
{

temp1 = temp1->next;
count++;

}
if(position == 1)
{

if(start == NULL)
{

start = temp;
start->next = NULL;

}
else
{

ptr = start;
start = temp;
start->next = ptr;

}
}
else if(position > 1 && position <= count)
{

temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}
ptr->next = temp;
temp->next = temp1;

}
else
{
cout<<“Invalid Position”;

exit(0);
}
cout<<“\nInserted Successfully!!”;

204 • Data Structures and Program Design Using C++

getch();
}
void CircularHeaderlist :: insertion_at_end()
{
struct node *temp, *ptr1;
int item;
cout<<“\nEnter value of node: ”;
cin>>item;
temp = create_list(item);
ptr1 = start;
while(ptr1->next != NULL)
{

ptr1 = ptr1->next;
}
end = temp;
end->next = start;
ptr1->next = end;
cout<<“\nInserted Successfully at end!!”;
getch();

}
void CircularHeaderlist :: deletion_from_position()
{
struct node *ptr, *temp1;
int i, position, count=0;
if(start == NULL)
{

cout<<“Empty List”;
return;

}
cout<<“\nEnter position of node: ”;
cin>>position;
temp1 = start;
if(position == 1)
{

start = temp1 -> next;
}
else

{
while(temp1 != NULL)

Linked Lists • 205

{
temp1 = temp1->next;
count++;

}
if(position > 0 && position <= count)
{

temp1 = start;
for(i=1 ; i<position ; i++)
{

ptr = temp1;
temp1 = temp1->next;

}
ptr->next = temp1->next;

}
else
{

cout<<“Invalid position”;
}
free(temp1);
cout<<“\nDeleted Successfully!!”;

}
}
void CircularHeaderlist :: display()
{
int count=0, c;
struct node *disp, *temp;
if(start == NULL)
{

cout<<“Empty List”;
return;

}
temp = start;
while(temp->next != start)
{

count++;
temp=temp->next;

}
c = count;
if(header == NULL)

206 • Data Structures and Program Design Using C++

{
header -> info = c;
header -> next = start;

}
disp = start;
cout<<“Linked List is: ”;
cout<<header->info<<“ -> ”;
while(disp->next!=start)
{

cout<<disp->info<<“ -> ”;
disp = disp -> next;

}
}

The output of the program is shown as:

Linked Lists • 207

4.6  Applications of Linked Lists

Linked lists have various applications, but one of the most important
applications of linked lists is polynomial representation; linked lists can be
used to represent polynomials, and there are different operations that can
be performed on them. Now let us see how polynomials can be represented
in the memory using linked lists.

4.7  Polynomial Representation

Consider a polynomial 10x2 + 6x + 9. In this polynomial, every indi-
vidual term consists of two parts: first, a coefficient, and second, a power.
Here, the coefficients of the expression are 10, 6, and 9, and 2, 1, and 0 are
the respective powers of the coefficients. Now, every individual term can be
represented using a node of the linked list. The following figure shows how
a polynomial expression can be represented using a linked list:

FIGURE 26: Linked representation of a polynomial

4.8  Summary

•	 A linked list is a sequence of nodes in which each node contains one or
more than one data field and a pointer which points to the next node.

•	 The process of allocating memory during the execution of the program
or the process of allocating memory to the variables at runtime is
called dynamic memory allocation.

•	 A singly linked list is the simplest type of linked list, in which each
node contains some information/data and only one pointer which
points to the next node in the linked list.

•	 Traversing a linked list means accessing all the nodes of the linked list
exactly once.

208 • Data Structures and Program Design Using C++

•	 Searching for a value in a linked list means to find a particular element/
value in the linked list.

•	 A circular linked list is also a type of singly linked list in which the
address part of the last node will store the address of the first node.

•	 A doubly linked list is also called a two-way linked list; it is a special
type of linked list which can point to the next node as well as the
previous node in the sequence.

•	 A header linked list is a special type of linked list which always contains
a special node, called the header node, at the beginning. This header
node usually contains vital information about the linked list like the
total number of nodes in the list, whether the list is sorted or not, and
so forth.

•	 One of the most important applications of linked lists is polynomial
representation, because linked lists can be used to represent
polynomials and there are different operations that can be performed
on them.

4.9  Exercises

4.9.1  Theory Questions

1.	What is a linked list? How it is different from an array?

2.	How many types of linked lists are there? Explain in detail.

3.	What is the difference between singly and doubly linked lists?

4.	List the various advantages of linked lists over arrays.

5.	What is a circular linked list? What are the advantages of a circular
linked list over a linked list?

6.	Define a header linked list and explain its utility.

7.	Give the linked representation of the following polynomial: 10x2y – 6x + 7

8.	Specify the use of a header node in a header linked list.

9.	List the various operations that can be performed in linked lists.

Linked Lists • 209

4.9.2  Programming Questions

1.	Write an algorithm/program to insert a node at a desired position in a
circular linked list.

2.	Write a C++ program to insert and delete the node at the beginning in a
doubly linked list using classes.

3.	Write an algorithm to reverse a singly linked list.

4.	Write a C++ program to delete a node from a header linked list.

5.	Write an algorithm to concatenate two linked lists.

6.	Write a C++ program to implement a circular header linked list.

7.	Write a C++ program to count the non-zero values in a header linked
list using classes.

8.	Write a C++ program that inserts a node in the linked list before a given
node.

9.	Write an algorithm to search for an element from a given linear linked
list.

10.	Write a program that inserts a node in a doubly linked list after a given
node.

4.9.3  Multiple Choice Questions

1.	Linked lists are best suited for:

a)	 Data structure

b)	 Size of structure and data are constantly changing

c)	 Size of structure and data are fixed

d)	 None of these

2.	Each node in a linked list must contain at least ______ field(s).

a)	 Four

b)	 Three

c)	 One

d)	 Two

210 • Data Structures and Program Design Using C++

3.	Which type of linked list stores the address of the header node in the
address field of the last node?

a)	 Doubly linked list

b)	 Circular header linked list

c)	 Singly linked list

d)	 Header linked list

4.	The situation in a linked list when START = NULL is:

a)	 Overflow

b)	 Underflow

c)	 Both

d)	 None of these

5.	Linked lists can be implemented in what type of data structures?

a)	 Queues

b)	 Trees

c)	 Stacks

d)	 All of these

6.	Which type of linked list contains a pointer to the next as well as the
previous nodes?

a)	 Doubly linked list

b)	 Singly linked list

c)	 Circular linked list

d)	 Header linked list

7.	The first node in the linked list is called _______.

a)	 End

b)	 Middle

c)	 Start

d)	 Begin

Linked Lists • 211

8.	A linked list cannot grow and shrink during compile time.

a)	 False

b)	 It might grow

c)	 True

d)	 None of the above

9.	Data elements in the linked list are known as _______.

a)	 Nodes

b)	 Pointers

c)	 Lists

d)	 All of the above

10.	What does NULL represent in the linked list?

a)	 Start of list

b)	 End of list

c)	 None of the above

C H A P T E R5
QUEUES

In This Chapter

ll 	 Introduction
ll 	 Definition of a queue
ll 	 Implementation of a queue
ll 	 Operations on queues
ll 	 Types of queues
ll 	 Applications of queues
ll 	 Summary
ll 	 Exercises

5.1 Introduction

A queue is an important data structure which is widely used in many
computer applications. A queue can be visualized with many examples from
our day-to-day life with which we are already familiar. A very simple il-
lustration of queue is a line of people standing outside to enter a movie
theater. The first person standing in the line will enter the movie theater
first. Similarly, there are many daily life examples in which we can see the
queue being implemented. Hence, we observe that whenever we talk about
a queue, we see that that the element at the first position will be served
first. Thus, a queue can be described as a FIFO (first in, first out) data
structure; that is, the element which is inserted first will be the first one to
be taken out. Now, let us discuss more about queues in detail.

214 • Data Structures and Program Design Using C++

5.2 Definition of a Queue

A queue is a linear collection of data elements in which the element
inserted first will be the element taken out first (i.e., a queue is a FIFO
data structure). A queue is an abstract data structure, somewhat similar to
stacks. Unlike stacks, a queue is open on both ends. A queue is a linear data
structure in which the first element is inserted on one end called the REAR
end (also called the tail end), and the deletion of the element takes place
from the other end called the FRONT end (also called the head). One end is
always used to insert data and the other end is used to remove data.

Queues can be implemented by using arrays or linked lists. We will dis-
cuss the implementation of queues using arrays and linked lists in this section.

5.3 Implementation of a Queue

Queues can be represented by two data structures:

1.	Representation of queues using arrays.

2.	Representation of queues using linked lists.

Now, let us discuss both of them in detail.

5.3.1 Implementation of Queues Using Arrays
Queues can be easily implemented using arrays. Initially the front end

(head) and the rear end (tail) of the queue point at the first position or loca-
tion of the array. As we insert new elements into the queue, the rear keeps
on incrementing, always pointing to the position where the next element
will be inserted, while the front remains at the first position. The represen-
tation of a queue using an array is as follows:

Practical Application:

•	 A real-life example of a queue is people moving on an escalator. The
people who got on the escalator first will be the first ones to step off of it.

•	 Another illustration of a queue is a line of people standing at the bus stop
waiting for the bus. Therefore, the first person standing in the line will get
into the bus first.

Queues • 215

FIGURE 5.1. Array representation of a queue.

5.3.2 Implementation of Queues Using Linked Lists
We have already studied how a queue is implemented using an array.

Now let us discuss the same using linked lists. We already know that in
linked lists, dynamic memory allocation takes place; that is, the memory is
allocated at runtime. But in the case of arrays, memory is allocated at the
start of the program. This we have already discussed in the chapter about
linked lists. If we are aware of the maximum size of the queue in advance,
then implementation of a queue using arrays will be efficient. But if the
size is not known in advance, then we will use the concept of a linked list, in
which dynamic memory allocation takes place. As we all know a linked list
has two parts, in which the first part contains the information of the node
and the second part stores the address of the next element in the linked list.
Similarly, we can also implement a linked queue. The START pointer in
the linked list will become the FRONT pointer in a linked queue, and the
end of the queue will be denoted by REAR. All insertion operations will be
done at the rear end only. Similarly, all deletion operations will be done at
the front end only.

FIGURE 5.2 A linked queue.

5.3.2.1 Insertion in Linked Queues

Insertion is the process of adding new elements in the already existing
queue. The new elements in the queue will always be inserted from the rear
end. Initially, we will check whether FRONT = NULL. If the condition is
true, then the queue is empty; otherwise, the new memory is allocated for
the new node. We will understand it further with the help of an algorithm:

216 • Data Structures and Program Design Using C++

Algorithm for inserting a new element in a linked queue

Step 1: START
Step 2: Set NEW NODE -> INFO = VAL

IF FRONT = NULL
Set FRONT = REAR = NEW NODE
Set FRONT -> NEXT = REAR -> NEXT = NEW NODE

ELSE
Set REAR -> NEXT = NEW NODE
Set NEW NODE -> NEXT = NULL
Set REAR = NEW NODE

End of If]
Step 3: EXIT

In the previous algorithm, first we are allocating the memory for the
new node. Then we are initializing it with the information to be stored in
it. Next, we are checking if the new node is the first node of the queue
or not. If the new node is the first node of the queue, then we are storing
NULL in the address part of the new node. In this case, the new node is
tagged as FRONT as well as REAR. However, if the new node is not the
first node of the queue, then in that case it is inserted at the REAR end
of the queue.

For Example – Consider a linked queue with five elements; a new ele-
ment is to be inserted in the queue.

FIGURE 5.3 Linked queue before insertion.

After inserting the new element in the queue, the updated queue be-
comes as shown in the following figure:

FIGURE 5.4 Linked queue after insertion.

Queues • 217

5.3.2.2 Deletion in Linked Queues

Deletion is the process of removing elements from the already existing
queue. The elements from the queue will always be deleted from the front
end. Initially, we will check with the underflow condition, that is, whether
FRONT = NULL. If the condition is true, then the queue is empty, which
means we cannot delete any elements from it. Therefore, in that case an
underflow error message is displayed on the screen. We will understand it
further with the help of an algorithm:

Algorithm for deleting an element from a queue

Step 1: START
Step 2: IF FRONT = NULL

Print UNDERFLOW ERROR
[End of If]

Step 3: Set TEMP = FRONT
Step 4: Set FRONT = FRONT -> NEXT
Step 5: FREE TEMP
Step 6: EXIT

In the previous algorithm, we first check with the underflow condition,
that is, whether the queue is empty or not. If the condition is true, then an
underflow error message will be displayed; otherwise, we will use a pointer
variable TEMP which will point to the FRONT. In the next step, FRONT
is now pointing to the second node in the queue. Finally, the first node is
deleted from the queue.

For Example – Consider a linked queue with five elements; an ele-
ment is to be deleted from the queue.

FIGURE 5.5 Linked queue before deletion.

After deleting an element from the queue, the updated queue becomes
as shown in the following figure:

FIGURE 5.6 Linked queue after deletion.

218 • Data Structures and Program Design Using C++

Write a menu-driven program implementing a linked queue perform-
ing insertion and deletion operations.

include<iostream.h>
include<conio.h>
include<stdlib.h>
struct node
{
int info ;
struct node *next ;

};
class lqueue
{
struct node *front, *rear;
public:
lqueue()
{

front = NULL;
rear = NULL;

}
void insertion() ;
void deletion() ;
void display() ;

};
void lqueue :: insertion()
{
int item;
struct node *temp ;
cout<<”\nEnter value to insert: “;
cin>>item;
temp = new node;
temp -> info = item ;
temp -> next = NULL ;
if(front == NULL)
{

front = temp;
}
rear -> next = temp ;
rear = temp ;
cout<<”\nInserted Successfully!!\n”;
getch();

}

Queues • 219

void lqueue :: deletion()
{
struct node *ptr;
if(front == NULL)
{

cout<<”\nQueue is empty”;
getch();

}
else
{

ptr = front ;
front = front->next ;
cout<<”\nDeleted value is: “<<ptr->info ;
delete ptr ;
getch() ;

}
}
void lqueue :: display()
{
struct node *newnode = front ;
if(front == NULL)
{

cout<<”\nQueue is Empty” ;
getch();

}
while(newnode != NULL)
{

cout<<newnode->info<<” -> “ ;
newnode = newnode->next ;

}
cout<<”NULL” ;
getch() ;

}
void main()
{
lqueue obj;
int choice ;
clrscr();
while(1)

220 • Data Structures and Program Design Using C++

{
cout<<”\n***MENU***” ;
cout<<”\n1. INSERTION” ;
cout<<”\n2. DELETION”;
cout<<”\n3. DISPLAY” ;
cout<<”\n4. EXIT” ;
cout<<”\nEnter your choice: “ ;
cin>>choice ;
switch(choice)
{

case 1 :
obj.insertion() ;
break ;

case 2 :
obj.deletion() ;
break ;

case 3 :
obj.display() ;
break ;

case 4 :
cout<<”!!Exit!!” ;
exit(0) ;

default :
cout<<”wrong choice” ;
exit(0);

}
}

}

Queues • 221

Frequently Asked Questions

Q. Define queues; in what ways can a queue be implemented?

Answer.
A queue is a linear data structure in which the first element is inserted from
one end called the REAR end (also called the tail end) and the deletion of the
element takes place from the other end called the FRONT end (also called
the head). Each type of queue can be implemented in two ways:

1.	 Array Representation (Static Representation)

2.	 Linked List Representation (Dynamic Representation)

The output of the program is shown as:

222 • Data Structures and Program Design Using C++

5.4 Operations on Queues

The two basic operations that can be performed on queues are as follows:

5.4.1 Insertion
Insertion is the process of adding new elements in the queue. However,

before inserting any new element in the queue, we must always check for
the overflow condition, which occurs when we try to insert an element in
a queue which is already full. An overflow condition can be checked as fol-
lows: If REAR = MAX – 1, where MAX is the size of the queue. Hence,
if the overflow condition is true, then an overflow message is displayed on
the screen; otherwise, the element is inserted into the queue. Insertion is
always done at the rear end. Insertion is also known as en-queue.

For Example – Let us take a queue which has five elements in it. Suppose
we want to insert another element, 50, in it; then REAR will be incremented by
1. Thus, a new element is inserted at the position pointed to by REAR. Now, let
us see how insertion is done in the queue in the following figure:

FIGURE 5.7 Queue after inserting a new element.

Algorithm for inserting a new element in a queue

After inserting 50 in it, the new queue will be:

Step 1: START
Step 2: IF REAR = MAX – 1

Print OVERFLOW ERROR
[End of If]

Queues • 223

Step 3: IF FRONT = -1 && REAR = -1
Set FRONT = 0
Set REAR = 0
ELSE
REAR = REAR + 1

[End of If]
Step 4: Set QUE[REAR] = ITEM
Step 5: EXIT

In the previous algorithm, first we check for the overflow condition. In
Step 2, we are checking to see whether the queue is empty or not. If the
queue is empty, then both FRONT and REAR are set to zero; otherwise,
REAR is incremented to the next position in the queue. Finally, the new
element is stored in the queue at the position pointed to by REAR.

5.4.2 Deletion
Deletion is the process of removing elements from the queue. However,

before deleting any element from the queue, we must always check for the
underflow condition, which occurs when we try to delete an element from
a queue which is empty. An underflow condition can be checked as follows:
If FRONT > REAR or FRONT = -1. Hence, if the underflow condition is
true, then an underflow message is displayed on the screen; otherwise, the
element is deleted from the queue. Deletion is always done at the front
end. Deletion is also known as de-queue.

For Example – Let us take a queue which has five elements in it.
Suppose we want to delete an element, 7, from a queue; then FRONT will
be incremented by 1. Thus, the new element is deleted from the position
pointed to by FRONT. Now, let us see how deletion is done in the queue
in the following figure:

224 • Data Structures and Program Design Using C++

Algorithm for deleting an element from a queue

Step 1: START
Step 2: IF FRONT > REAR or FRONT = -1

Print UNDERFLOW ERROR
[End of If]

Step 3: Set ITEM = QUE[FRONT]
Step 4: Set FRONT = FRONT + 1
Step 5: EXIT

In the previous algorithm, first we check for the underflow condition,
that is, whether the queue is empty or not. If the queue is empty, then no
deletion takes place; otherwise, FRONT is incremented to the next position
in the queue. Finally, the element is deleted from the queue.

FIGURE 5.8 Queue after deleting an element.

Write a menu-driven program for a linear queue performing insertion
and deletion operations.

include<iostream.h>
include<conio.h>
include<stdlib.h>
define MAX 50
class queue
{
private:
int item, i;
int arr[MAX] ;
int front ;
int rear;
public:
queue()

After deleting 7 from it, the new queue will be:

Queues • 225

{
front = 0 ;
rear = 0;

}
void insertion()
{
if(rear == MAX-1)
{
cout<<”\nQueue is full” ;

}
else
{
cout<<”\nEnter value to insert: “;
cin>>item;
arr[rear++] = item ;
cout<<”\nInserted Successfully!!\n” ;
getch() ;

}
}

void deletion()
{
if(front == rear)
{
cout<<”\nQueue is empty”;

}
else
{
cout<<”\nDeleted Value : \n”<<arr[front];
front++;
getch();

}
}

void display()
{
for(i = front ; i < rear ; i++)
{
cout<<arr[i]<<”\t” ;

}
getch() ;

}
};

226 • Data Structures and Program Design Using C++

void main()
{
queue obj ;
int ch;
clrscr();
while(1)
{
cout<<”\n***MENU***” ;
cout<<”\n1. INSERTION” ;
cout<<”\n2. DELETION” ;
cout<<”\n3. DISPLAY” ;
cout<<”\n4. EXIT” ;
cout<<”\nEnter your choice: “ ;
cin>>ch ;
switch(ch)
{
case 1 :
obj.insertion() ;
break ;

case 2 :
obj.deletion() ;
break ;

case 3 :
obj.display() ;
break ;

case 4 :
cout<<”!!Exit!!” ;
exit(0) ;

default :
cout<<”wrong choice” ;
exit(0);

}
}

}

Queues • 227

The output of the program is shown as:

5.5 Types of Queues

This section discusses various types of queues which include:

1.	Circular Queue

2.	Priority Queue

3.	De-Queue (Double-ended queue)

Let us discuss all of them one by one in detail.

5.5.1 Circular Queue
A circular queue is a special type of queue which is implement-

ed in a circular fashion rather than in a straight line. A circular queue is
a linear data structure in which the operations are performed based

228 • Data Structures and Program Design Using C++

on the FIFO (First In First Out) principle and the last position is
connected to the first position to make a circle. It is also called a “ring buffer.”

5.5.1.1 Limitation of Linear Queues

In linear queues, we studied how insertion and deletion takes place. We
discussed that inserting a new element in the queue is only done at the rear
end. Similarly, deleting an element from the queue is only done at the front
end. Now let us consider a queue of 10 elements given as follows:

The queue is now full, so we cannot insert any more elements in it. If
we delete three elements from the queue, now the queue will be:

Thus, we can see that even after the deletion of three elements from
the queue, the queue is still full, as REAR = MAX – 1. We still cannot insert
any new elements in it as there is no space to store new elements. There-
fore, this is a major drawback of the linear queue.

To overcome this problem we can shift all the elements to the left so
that the new elements can be inserted from the rear end, but shifting all
the elements of the queue can be a very time-consuming procedure, as the
practical queues are very large in size. Another solution to this problem is

Queues • 229

FIGURE 5.9 A circular queue.

In a circular queue, the elements are stored in a circular form such that
the first element is next to the last element in the queue, as shown in the fig-
ure. A circular queue will be full when FRONT = 0 and REAR = MAX – 1
or FRONT = REAR + 1. In that case an overflow error message will be
displayed on the screen. Similarly, a circular queue will be empty when
both FRONT and REAR are equal to zero. In that case, an underflow error
message will be displayed on the screen. Now, let us study both insertion
and deletion operations on a circular queue.

Practical Application:

A circular queue is used in operating systems for scheduling different
processes.

Frequently Asked Questions

Q. �What is a circular queue? List the advantages of a circular
queue over a simple queue.

Answer.
A circular queue is a particular kind of queue where new items are added to
the rear end of the queue and items are read off from the front end of the

a circular queue. First of all let us see how a circular queue looks, as in the
following figure:

230 • Data Structures and Program Design Using C++

5.5.1.2  Inserting an Element in a Circular Queue
While inserting a new element in the already existing queue, we will

first check for the overflow condition, which occurs when we are trying
to insert an element in the queue which is already full, as previously dis-
cussed. The position of the new element to be inserted can be calculated
by using the following formula:

REAR = (REAR + 1) % MAX, where MAX is equal to the size of the queue.

For Example – Let us consider a circular queue with three elements
in it. Suppose we want to insert an element 56 in it. Let us see how insertion
is done in the circular queue.

Step 1: Initially the queue contains three elements. FRONT denotes the be-
ginning of the circular queue, and REAR denotes the end of the circular queue.

FIGURE 5.10 Initial circular queue without insertion.

Step 2: Now, the new element is to be inserted in the queue. Hence,
REAR = REAR + 1; that is, REAR will be incremented by 1 so that it points
to the next location in the queue.

queue, so there is constant stream of data flowing in and out of the queue.
A circular queue is also known as a “circular buffer.” It is a structure that
allows data to be passed from one process to another, making the most
efficient use of memory. The only difference between a linear queue and
circular queue is that in a linear queue when the rear points to the last
position in the array, we cannot insert data even if we have deleted some
elements. But in a circular queue we can insert elements as long as there is
free space available. The main advantage of a circular queue as compared to
a linear queue is that it avoids the wastage of space.

Queues • 231

FIGURE 5.11 REAR is incremented by 1 so that it points to the next location.

Step 3: Finally, in this step the new element is inserted at the location
pointed to by REAR. Hence, after insertion the queue is shown as in the
following figure:

FIGURE 5.12 Final queue after inserting a new element.

Algorithm for inserting an element in a circular queue

Here QUEUE is an array with N elements. FRONT and REAR point to
the front and rear elements of the queue. ITEM is the value to be inserted.

Step 1: START
Step 2: IF (FRONT = 0 && REAR = MAX – 1) OR (FRONT = REAR + 1)

Print OVERFLOW ERROR
Step 3: ELSE

IF (FRONT = -1)
Set FRONT = 0
Set REAR = 0

Step 4: ELSE
IF (REAR = MAX - 1)
Set REAR = 0
ELSE

232 • Data Structures and Program Design Using C++

In the previous algorithm, first we check with the overflow condi-
tion. Second, we check if the queue is empty or not. If the queue is
empty, then FRONT and REAR are set to zero. In Step 4, if REAR
has reached its maximum capacity, then we set REAR = 0; otherwise,
REAR is incremented by 1 so that it points to the next position where
the new element is to be inserted. Finally, the new element is inserted
in the queue.

5.5.1.3 Deleting an Element from a Circular Queue

While deleting an element from the already existing queue, we will first
check for the underflow condition, which occurs when we are trying to de-
lete an element from the queue which is empty. After deleting an element
from the circular queue, the position of the FRONT end can be calculated
by the following formula:

FRONT = (FRONT +1) % MAX, where MAX is equal to the size of the
queue.

For Example – Let us consider a circular queue with seven elements
in it. Suppose we want to delete an element 45 from it. Let us see how dele-
tion is done in the circular queue.

Step 1: Initially the queue contains seven elements. FRONT denotes
the beginning of the circular queue, and REAR denotes the end of the
circular queue.

FIGURE 5.13 Initial circular queue without deletion.

REAR = REAR + 1
[End of If]

[End of If]
Step 5: Set CQUEUE[REAR] = ITEM
Step 6: EXIT

Queues • 233

Step 2: Now, the element is to be deleted from the queue. Hence,
FRONT = FRONT + 1, that is, FRONT will be incremented by 1 so that it
points to the next location in the queue. Also, the value is deleted from the
queue. Thus, the queue after deletion is shown as follows:

FIGURE 5.14 Final queue after deleting an element.

Algorithm for deleting an element from a circular queue

Here CQUEUE is an array with N elements. FRONT and REAR point
to the front and rear elements of the queue. ITEM is the value to be deleted.

Step 1: START
Step 2: IF (FRONT = -1)

Print UNDERFLOW ERROR
Step 3: ELSE

Set ITEM = CQUEUE[FRONT]
Step 4: IF (FRONT = REAR)

Set FRONT = -1
Set REAR = -1

Step 5: ELSE IF (FRONT = MAX – 1)
Set FRONT = 0
ELSE
FRONT = FRONT + 1
[End of If]
[End of If]

Step 6: EXIT

234 • Data Structures and Program Design Using C++

In the previous algorithm, we first check with the underflow condition.
Second, we store the element to be deleted in ITEM. Third, we check to
see if the queue is empty or not after deletion. Also, if FRONT has reached
its maximum capacity, then we set FRONT = 0; otherwise, FRONT is in-
cremented by 1 so that it points to the next position. Finally, the element is
deleted from the queue.

Write a menu-driven program for a linear circular queue performing
insertion and deletion operations.

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
define MAX 10
class cqueue
{
int arr[MAX], item;
int front;
int rear;
public :
cqueue()
{

front = -1;
rear = -1;

}
void insertion();
int deletion();
void display();

};
void cqueue :: insertion()
{
if((front==0 && rear==MAX-1) || (rear+1==front))
{

cout<<”\nCircular Queue is Full”;
}
else
{

cout<<”\nEnter value to insert: “;
cin>>item;
if(rear == MAX-1)

Queues • 235

{
rear=0;

}
else
rear++;
arr[rear]=item;
cout<<”\nInserted Successfully!!\n”;
getch();

}
if(front== -1)
{

front=0;
}

}
int cqueue :: deletion()
{
int temp;
if(front == -1)
cout<<”\nCircular Queue is Empty”;
else
{

temp = arr[front];
if(front==rear)
{

front = -1;
rear = -1;

}
else
{

if(front==MAX-1)
front=0;
else
front++;

}
}
return temp;

}
void cqueue :: display()
{
int i;
if(front == -1)

236 • Data Structures and Program Design Using C++

cout<<”\nCircular Queue is Empty”;
else
{

if(rear < front)
{

for(i=front;i<=MAX-1;i++)
cout<<arr[i]<<”\t”;
for(i=0;i<=rear;i++)
cout<<arr[i]<<”\t”;

}
else
{

for(i=front;i<=rear;i++)
cout<<arr[i]<<”\t”;

}
}

}
void main()
{
cqueue obj;
clrscr();
int choice, item;
while(1)

{
cout<<”\n***MENU***”;
cout<<”\n1.INSERTION”;
cout<<”\n2.DELETION”;
cout<<”\n3.DISPLAY”;
cout<<”\n4.EXIT”;
cout<<”\nEnter Your Choice: “;
cin>>choice;
switch(choice)
{

case 1 :
obj.insertion();
break;

case 2 :
item = obj.deletion();
cout<<”\nDeleted Element: “<<item;
break;

Queues • 237

case 3 :
obj.display();
break;

case 4:
exit(0);

default:
cout<<”\nWrong Choice”;
exit(0);
}

}
}

The output of the program is shown as:

5.5.2 Priority Queue
A priority queue is another variant of a queue in which elements are

processed on the basis of assigned priority. Each element in a priority queue
is assigned a special value called the priority of the element. The elements
in the priority queue are processed based on the following rules:

238 • Data Structures and Program Design Using C++

1.	An element with higher priority is processed first, and then the element
with lower priority is processed.

2.	If the two elements have the same priority, then the elements are pro-
cessed on the First Come First Served basis. The priority of the element
is selected by its value called the implicit priority, and the priority num-
ber given with each element is called the explicit priority.

A priority queue is like a modified queue or stack data structure, but
where additionally each element has a “priority” associated with it. In a
priority queue, insertion and deletion operations are also done accord-
ing to the assigned priority. If we want to delete an element from the
priority queue, then the element with the highest priority is processed
first and is deleted. The case is the same with insertion. The priority
given to the elements in the queue is based on several factors. Priority
queues are commonly used in operating systems for executing higher
priority processes first. The priority assigned to these processes may be
based on the time taken by the CPU to execute these processes com-
pletely.

Now the priority queues are further divided into two types which are:

1.	Ascending Priority Queue – In this type of priority queue, elements
can be inserted in any order, but at the time of deletion of elements from
the queue, the smallest element is searched and deleted first.

2.	Descending Priority Queue – In this type of priority queue, elements
can be inserted in any order. But at the time of deletion of elements from
the queue, the largest element is searched and deleted first. For example
– Operating systems, Routing.

Practical Application:

In an operating system, if there are four processes to be executed where
the first process needs 3 ns to complete, the second process needs 5 ns to
complete, the third process needs 9 ns to complete, and the fourth needs 8
ns to complete, then the first process will be given the highest priority and
will be the first to be executed among all the processes.

Queues • 239

Frequently Asked Questions

Q. Define Priority Queue.

Answer.
A priority queue is a collection of elements such that each element has been
assigned a priority and such that the order in which elements are deleted and
processed comes from the following rules:

a)	 �An element of higher priority is processed before any element of lower
priority.

b)	 �Two elements with same priority are processed according to the order in
which they were added to the queue.

The array elements in a priority queue can have the following structure:

struct data
{
 int item ;
 int priority ;
 int order ;
} ;

5.5.2.1 Implementation of a Priority Queue
A priority queue can be implemented in two ways:

1.	Array Representation of a Priority Queue

2.	Linked Representation of a Priority Queue

Let us now discuss both these implementations in detail.

1.	Implementation of a priority queue using arrays
While implementing a priority queue using arrays, the following points

must be considered:

•	 Maintain a separate queue for each level of priority or priority number.

•	 Each queue will appear in its own circular array and must have its own
pairs of pointers, that is, FRONT AND REAR.

240 • Data Structures and Program Design Using C++

•	 If each queue is allocated the same amount of memory, then a 2D
array can be used instead of a linear array.

For example – FRONT [K] and REAR [K] are the pointers containing
the front and rear values of row “K” of the queue, where K is the priority
number. If we want to insert an element with priority K, then we will add
the element at the REAR end of row K; K is the row as well as the prior-
ity number of that element. If we add F with priority number 4, then the
queue will be given as shown in the following:

FRONT REAR
2 2
1 3
0 0
5 1
4 4

FIGURE 5.15 Priority queue after inserting a new element.

2.	Implementation of a priority queue using linked lists
A priority queue can be implemented using a linked list. While imple-

menting the priority queue using a linked list, every node will have three
parts:

a)	Information part

b)	Priority number of the element

Queues • 241

c)	Address of the next element
An element with higher priority will precede the element having low-

er priority. Also, priority number and priority are opposite to each other;
that is, an element having a lower priority number means it has higher
priority. For example, if there are two elements X and Y with priority
numbers 2 and 7 respectively, then X will be processed first because it has
higher priority.

FIGURE 5.16 A linked priority queue.

5.5.2.2 Insertion in a Linked Priority Queue

While inserting a new element in a linked priority queue, first we will
traverse the entire queue until we find a node which has a lower priority
than the new element. Thus, the new element is inserted before the ele-
ment with the lower priority. Also, if there is an element in the queue which
has same priority as that of the new element, then in that case the new ele-
ment is inserted after that element.

For Example – Consider a priority queue with four elements given as
follows:

FIGURE 5.17 Linked priority queue before insertion.

Now, a new element with information A and priority number 3 is to
be inserted; hence, the element will be inserted before R that has priority
number 4, which is lower than that of the new element. The priority queue
after inserting a new element is shown as follows:

FIGURE 5.18 Linked priority queue after inserting a new element.

242 • Data Structures and Program Design Using C++

5.5.2.3 Deletion in a Linked Priority Queue

Deleting an element from a linked priority queue is a very simple pro-
cess. In that case, the first node from the priority queue is deleted and the
information of that node is processed first.

For Example – Consider a priority queue with five elements given as
follows:

FIGURE 5.19 Linked priority queue before deletion.

Now, the first node from the queue is deleted. So, the priority queue
after deletion is shown as follows:

 FIGURE 5.20 Linked priority queue after deleting the first node.

Write a menu-driven program for a priority queue performing insertion
and deletion operations.

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
struct node
{
int prior;
int info;
struct node *next;

};
class pqueue
{
node *front;
public:
pqueue()
{

front = NULL ;
}

Queues • 243

void insertion(int value, int prior)
{

node *temp, *ptr;
temp = new node;
temp->info = value;
temp->prior = prior;
if (front == NULL || prior <= front->prior)
{

temp->next = front;
front = temp;

}
else
{

ptr = front;
while (ptr->next != NULL && (ptr->next)->prior
<= prior)
{

ptr=ptr->next;
}
temp->next = ptr->next;
ptr->next = temp;
cout<<”\nInserted Successfully”;

}
getch();

}
void deletion()
{

node *ptr1;
if(front == NULL)
{

cout <<”Underflow error\n”;
}
else
{

ptr1 = front;
cout<<”\nDeleted value: “<<ptr1->info;
front = front->next;
free(ptr1);

}
}

244 • Data Structures and Program Design Using C++

void display()
{

node *disp;
disp = front;
if (front == NULL)
{

cout<<”Empty queue\n”;
}
else
{

cout<<”Priority\t\tValue\n”;
while(disp != NULL)
{

cout<<” “<<disp->prior<<”\t\t\t”<<” “<<disp-
>info <<endl;
disp = disp->next;

}
}

}
};
int main()
{
int ch, value, prior=0;
pqueue obj;
clrscr();
while(1)
{

cout<<”\n***MENU***\n”;
cout<<”\n1. INSERTION”;
cout<<”\n2. DELETION”;
cout<<”\n3. DISPLAY”;
cout<<”\n4. EXIT”;
cout<<”\nEnter your choice: “;
cin>>ch;
switch(ch)
{

case 1:
cout<<”Enter the value to be inserted: “;
cin>>value;
cout<<”Enter its priority: “;
cin>>prior;

Queues • 245

obj.insertion(value, prior);
break;

case 2:
obj.deletion();
break;

case 3:
obj.display();
break;

case 4:
exit(0);

default :
cout<<”Wrong choice\n”;
exit(0);

}
}
return 0;
getch();

}
The output of the program is shown as:

246 • Data Structures and Program Design Using C++

5.5.3 De-queues (Double-Ended Queues)
A double-ended queue (de-queue, pronounced “deck”) is a special type

of data structure in which insertion and deletion of elements is done at ei-
ther end, that is, either at the front end or at the rear end of the queue. It is
often called a head-tail linked list because elements are added or removed
from either the head (front) end or tail (end). De-queues are implemented
using circular arrays in the computer’s memory. The LEFT and RIGHT
pointers are maintained in the de-queue, which point to either end of the
queue.

FIGURE 5.21 A double-ended queue.

Practical Application:

A real life example of a de-queue is that in a train station, the entry and exit
of passengers can take place from both sides.

FIGURE 5.22 An input restricted double-ended queue.

There are two types of double-ended queues, which include:

1.	Input Restricted De-Queue – In this, the deletion operation can be
performed at both ends (i.e., both front and rear end) while the inser-
tion operation can be performed only at one end (i.e., rear end).

Queues • 247

2.	Output Restricted De-Queue – In this, the insertion operation can be
performed at both ends while the deletion operation can be performed
only at one end (i.e., front end).

FIGURE 5.23 An output restricted double-ended queue.

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#define MAX 10
class dqueue
{
int arr[MAX];
int front, rear;
int value, i;
public:
dqueue()
{

front = -1;
rear = -1;

}
void insertion_at_beginning();
void insertion_at_end();
void deletion_from_beginning();
void deletion_from_end();
void display();

};
void dqueue :: insertion_at_beginning()
{
cout<<”\nEnter the element to be inserted at beginning:
“;
cin>>value;

Write a menu-driven program for a double-ended queue performing
insertion and deletion operations.

248 • Data Structures and Program Design Using C++

if(front==-1)
{

front = 0;
arr[++rear] = value;
cout<<”\nInserted Successfully!!”;

}
else if(front!=0)
{

arr[--front] = value;
cout<<”\nInserted Successfully!!”;

}
else
{
cout<<”\nOverflow Error”;

}
}
void dqueue :: insertion_at_end()
{
cout<<”\nEnter the element to be inserted at end: “;
cin>>value;
if(rear >= MAX-1)
{

cout<<”\nOverflow Error”;
}
else
{

if(front==-1)
{

front = front+1;
rear = rear+1 ;

}
else
{

rear = rear+1;
}
arr[rear]=value;
cout<<”\nInserted Successfully!!”;

}
}

Queues • 249

void dqueue :: display()
{
if(front==-1)
{

cout<<”Empty Queue”;
}
else
{

for(i=front ; i<=rear ; i++)
{

cout<<arr[i]<<”\t”;
}

}
}
void dqueue :: deletion_from_beginning()
{
if(front==-1)
{

cout<<”Empty Queue”;
return;

}
else
{

cout<<”\nDeleted element: “<<arr[front];
if(front == rear)
{

front = -1;
rear = -1;
return;

}
else
front = front+1;

}
}
void dqueue :: deletion_from_end()
{
if(front == -1)
{

cout<<”Empty Queue”;
return;

}

250 • Data Structures and Program Design Using C++

else
{
cout<<”\nDeleted element: “<<arr[rear];
if(front == rear)
{
front = -1;
rear = -1;

}
else
rear = rear-1;

}
}
int main()
{
int ch ;
dqueue obj;
clrscr();
while(1)
{

cout<<”\n***MENU***”;
cout<<”\n 1. Insertion at Beginning”;
cout<<”\n 2. Insertion at End”;
cout<<”\n 3. Display”;
cout<<”\n 4. Deletion from Beginning”;
cout<<”\n 5. Deletion from End”;
cout<<”\n 6. Exit”;
cout<<”\nEnter your choice: “;
cin>>ch;
switch(ch)
{

case 1:
obj.insertion_at_beginning();
break;

case 2:
obj.insertion_at_end();
break;

case 3:
obj.display();
break;

Queues • 251

case 4:
obj.deletion_from_beginning();
break;

case 5:
obj.deletion_from_end();
break;

case 6:
exit(0);

default:
cout<<”Wrong choice”;
exit(0);

}
}
getch();

}

The output of the program is shown as:

252 • Data Structures and Program Design Using C++

5.6 Applications of Queues

•	 In real life, call center phone systems use queues to hold people
calling them in an order until a service representative is free.

•	 The handling of interrupt in real-time systems uses the concept of
queues. The interrupts are handled in the same order as they arrive,
that is, First Come First Served.

•	 The round-robin technique for processor scheduling is implemented
using queues.

•	 Queues are often used as buffers on portable CD players, MP3
players, and in iPod playlists.

5.7	 Summary

•	 A queue is a linear collection of data elements in which the element
inserted first will be the element taken out first (i.e., a queue is a FIFO
data structure).

•	 A queue is a linear data structure in which the first element is inserted
from one end called the REAR end, and the deletion of the element
takes place from the other end called the FRONT end.

•	 The implementation of queues can be done in two ways, which are
implementation through arrays and implementation through linked
lists.

•	 Insertion and deletion are the two basic operations which are
performed on the queues.

•	 A circular queue is a linear data structure in which the operations are
performed based on a FIFO (First In First Out) principle and the first
index comes after the last index.

•	 A priority queue is a queue in which elements are processed on the
basis of assigned priority. Each element in a priority queue is assigned
a special value called priority of the element.

•	 When a priority queue is implemented using linked lists, then every
node of the list will have three parts, that is, a data part, priority
number of the element, and the address of the next element.

Queues • 253

•	 A double-ended queue is a special type of data structure in which
insertion and deletion of elements is done at either end, that is, either
at the front end or at the rear end of the queue.

•	 An input restricted de-queue is a queue in which deletion can be done
at both ends, but insertion is done only at the rear end.

•	 An output restricted de-queue is a queue in which insertion can be
done at both ends, but deletion is done only at the front end.

5.8 Exercises

5.8.1 Theory Questions

1.	What is a linear queue? Give its real-life example.

2.	What is a circular queue and how it is different from a linear queue?

3.	Define priority queues.

4.	Discuss various operations which can be performed on the queues.

5.	Define queues and in what ways a queue can be implemented. What
do you understand about double-ended queues? Discuss the different
types of de-queues in detail.

6.	Give some of the applications of queues.

7.	Why are queues known as First-In-First-Out structures?

8.	Explain the concept of a linked queue and also discuss how insertion
and deletion take place in it.

5.8.2 Programming Questions

1.	Write a C++ program to create a linear queue containing nine elements
using classes.

2.	Write an algorithm to implement a priority queue.

3.	Write a code for insertion and deletion in a queue.

4.	Give an algorithm for insertion of an element in a circular queue. Write
a C++ program to implement a queue which allows insertion and dele-
tion at both ends.

254 • Data Structures and Program Design Using C++

5.	Write an algorithm that reverses the elements of a queue.

6.	Write an algorithm for insertion and deletion in a queue using pointers.
Write the functions for insertion and deletion operations performed in a
de-queue. Consider all possible cases.

7.	Write a code for deleting an element from a circular queue.

8.	Write a C++ program to implement a priority queue using a linked list
and classes.

5.8.3 Multiple Choice Questions

1.	New elements in the queue are always inserted from:

a)	Front end

b)	Middle

c)	Rear end

d)	Both (a) and (c)

2.	A queue is a _______ data structure.

a)	FIFO

b)	LIFO

c)	FILO

d)	LILO

3.	The overflow condition in the circular queue exists when:

a)	Front = MAX – 1 and Rear = 0

b)	Front = 0 and Rear = MAX – 1

c)	Front = 0 and Rear = 0

d)	Front = MAX – 1 and Rear = MAX – 1

4.	If the elements P, Q, R, and S are placed in a queue and are deleted one
by one, in what order will they be deleted?

a)	PQRS

b)	SRQP

Queues • 255

c)	PRQS

d)	SRQP

5.	A data structure in which elements are inserted or deleted from the
front as well as from the rear end is:

a)	Linear queue

b)	De-queue

c)	Priority Queue

d)	Circular Queue

6.	A line outside a movie theater represents a ___________.

a)	Linked List

b)	Array

c)	Queue

d)	Stack

7.	In a queue, deletion is always done at the ______.

a)	Top end

b)	Back end

c)	Front end

d)	Rear end

8.	In a priority queue, two elements with the same priority are processed
on a FCFS basis.

a)	False

b)	True

9.	The function that inserts the elements in a queue is called ________.

a)	Push

b)	En-queue

c)	Pop

d)	De-queue

256 • Data Structures and Program Design Using C++

10.	Which of the implementation of queues is better when the size of the
queue is not known in advance?

a)	Linked List Representation

b)	Array Representation

c)	Both

d)	None of the above

C H A P T E R6
SEARCHING AND SORTING

In This Chapter

ll 	 Introduction to searching
ll 	 Linear search or sequential search
ll 	 Binary search
ll 	 Interpolation search
ll 	 Introduction to sorting
ll 	 External sorting
ll 	 Summary
ll 	 Exercises

6.1  Introduction to Searching

As we all know, computer systems are often used to store large num-
bers. We require some search mechanism to retrieve a specific record
from the large amounts of data stored in our computer system. Search-
ing means to find whether a particular data item exists in an array/list
or not. The process of finding a particular value in a list or an array is
called searching. If that particular value is present in the array, then the
search is said to be successful and the location of that particular value is
returned by the searching process. However, if the value does not exist

258 • Data Structures and Program Design Using C++

then searching is said to be unsuccessful. There are many different
searching algorithms, but three of the popular searching techniques are
as follows:

•	 Linear Search or Sequential Search

•	 Binary Search

•	 Interpolation Search

Here, we will discuss all these methods in detail.

6.2  Linear Search or Sequential Search

A linear search is also called a sequential search. This is a very simple
technique used to search for a particular value in an array. A linear search
works by comparing the value of the key being searched for with every ele-
ment of the array in a linear sequence until a match is found. A search will
be unsuccessful if all the data elements are read and the desired element is
not found. The following are some important points:

•	 It is the simplest way to search an element in a list.

•	 It searches the data element sequentially, no matter whether the array
is sorted or unsorted.

For example – Let us take an array of ten elements, which is declared as
follows:

int array[10] = {87, 25, 14, 39, 74, 1, 99, 12, 30, 67};

and the value to be searched for in the array is VALUE = 74, and then
search to find whether 74 exists in the array or not. If the value is present,
then its position is returned. Here the position of VAL = 74 is POS = 4
(index starting from zero), which has been shown by the following figures:

Pass 1 – 87 is compared with 74. Since 87 is not equal to 74, we will
move to the next pass.

Searching and Sorting • 259

Pass 2 – 25 is compared with 74. Since 25 is not equal to 74, we will
move to the next pass.

Pass 3 – 14 is compared with 74. Since 14 is not equal to 74, we will
move to the next pass.

Pass 4 – 39 is compared with 74. Since 39 is not equal to 74, we will
move to the next pass.

Pass 5 –74 is compared with 74. Since 74 is equal to 74, we will return
the position on which 74 is present, which in this case is 4.

FIGURE 6.1 Working of a linear search.

In this way, a linear search is used to search for a particular value in the
array. Now let us understand it further with the help of an algorithm.

260 • Data Structures and Program Design Using C++

Algorithm for a Linear Search

Let ARR be an array of n elements, ARR[1], ARR[2], ARR[3], . . .
ARR[n] such that VAL is the element to be searched. Then the algorithm
will find the position POS of the VAL in the array ARR.

Practical Application:

A simple and a real-life example of a linear search is that a person is searching
for another person’s contact number in a telephone directory. So, if the
person does not know the exact name of that person but knows that the
name starts with A, then he/she will start searching from the beginning of the
telephone directory.

Step 1: START
Step 2: Set I = 0, POS = -1
Step 3: Repeat while I<N

IF (ARR[I] = VAL)
POS = I
PRINT POS
Go to Step 5
[End of IF]
[End of Loop]

Step 4: IF (POS = -1)
PRINT “VALUE NOT FOUND, SEARCH
UNSUCCESSFUL”
[End of IF]

Step 5: EXIT

In Step 2 of the algorithm, we are initializing the values of I and
POS. In Step 3 a while loop is executed in which a check is made to see
whether a match is found between the current array element and VAL.
If the match is found, then the position of that element is printed. In
the last step, if all the elements have been compared and there is no
match found, the search will be unsuccessful; that is, the value is not
present in the array.

Searching and Sorting • 261

Complexity of a Linear Search Algorithm

The execution time of a linear search is O(n), where n is the number
of elements in the array. The algorithm is called a linear search because its
complexity can be expressed as a linear function, which is that the number of
comparisons to find the target item increases linearly with the size of the data.
The best case of a linear search is when the data element to be searched for is
equal to the first element of the array. Obviously, the worst case will happen
when the data element to be searched for is equal to the last element in the
array. However, in both the cases n comparisons have to be made.

6.2.1  Drawbacks of a Linear Search

•	 It is a very time-consuming process, as it works sequentially.

•	 It can be applied only to a small amount of data.

•	 It is a very slow process as almost every data element is accessed in
this process, especially when the data element is located near the end.

Write a program to search an element in an array using a linear search
technique.

include<iostream.h>
include<conio.h>
class linearsearch
{
public:
int arr[20], n, value, i;
void input();
void display();

};
void linearsearch :: input()
{
cout<<”\nEnter no of elements of array: “;
cin>>n;
cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}

262 • Data Structures and Program Design Using C++

cout<<”\nEnter value to search: “;
cin>>value;

}
void linearsearch :: display()
{
int flag;
for(i=0 ; i<n ; i++)
{

if(value == arr[i])
{

cout<<”\n”<<value<<” found at “<<(i+1)<<” position”;
flag++;

}
}
if(flag==0)
cout<<”\nValue not found”;

}
void main()
{
clrscr();
linearsearch obj;
obj.input();
obj.display();
getch();

}
The output of the program is shown as:

Searching and Sorting • 263

6.3  Binary Search

A binary search is an extremely efficient searching algorithm when it is
compared to a linear search. A binary search works only when the array/list
is already sorted. In a binary search, we first compare the value VAL with
the data element in the middle position of the array. If the match is found,
then the position POS of that element is returned; otherwise, if the value is
less than that of the middle element, then we begin our search in the lower
half of the array and vice versa. So, we repeat this process on the lower and
upper half of the array.

6.3.1  Binary Search Algorithm
Let us now understand how this binary search algorithm works in an

array.

1.	Find the middle element of the array, that is, n/2 is the middle element
of the array containing n elements.

2.	Now, compare the middle element of the array with the data element to
be searched.

Frequently Asked Questions

Q. �Explain how a linear search technique is used to search for an
element.

Answer.
Suppose that ARR is an array having N elements. ITEM is the value to be
searched. Then we have the following cases:

Case 1: Unsorted List – The ITEM is compared with every element of
the array. If the element is found, then no further comparison is required.
If all the elements are compared and checked, then the ITEM is not found.

Case 2: Sorted List – The ITEM is greater than the first element and
smaller than the last element of the list, so searching is performed by com-
paring each element in the list with ITEM; otherwise, ITEM is reported
as “Not Found.”

264 • Data Structures and Program Design Using C++

a) � If the middle element is the desired element, then the search is suc-
cessful.

b) � If the data element to be searched for is less than the middle ele-
ment of the array, then search only the lower half of the array,
that is, those elements which are on the left side of the middle
element.

c) � If the data element to be searched for is greater than the middle
element of the array, then search only the upper half of the array,
that is, those elements which are on the right side of the middle
element.

Repeat these steps until a match is found.

Algorithm for a Binary Search

Practical Application:

A real-life application of a binary search is that when we search for a
particular word in a dictionary, we first open the dictionary somewhere in the
middle. Now we will compare the desired word with the first word on that
page. If the desired word comes after the first word on an open page, then
we will look in the second half of the dictionary; otherwise, we will look in
the first half. Now, we will again open a page in the second half and compare
the desired word with the first word on that page, and the same process is
repeated until we have found the desired word.

Binary_Search(ARR, Lower_bound, Upper_bound, VAL)

Step 1: START
Step 2: Set BEG = lower_bound, END = upper_bound, POS = -1
Step 3: Repeat Steps 4 & 5 while BEG <= END
Step 4: Set MID = (BEG+END)/2
Step 5: IF (ARR[MID] = VAL)

POS = MID
PRINT POS
Go to Step 7

Searching and Sorting • 265

In Step 2 of the algorithm, we are initializing the values of BEG, END,
and POS. In Step 3 a while loop is executed. In Step 3, the value of MID is
calculated. In Step 4 we will check if the value to be searched for is equal
to the array value at MID. If the match is found, then the position of that
element is printed. If the match is not found and the value to be searched
for is less than that of the array value at MID, then the END is modified;
otherwise, if the value to be searched for is greater than that of the array
value at MID, then the BEG is modified. In the last step, if all the elements
have been compared and there is no match found, the search has been un-
successful; that is, the value is not present in the array.

For Example:

Let us now consider an example to search for a particular value in a
sorted array.

Consider an array of ten elements which is declared as:

int array[10] = �{0, 10, 20, 30, 40, 50, 60, 80,
90, 100};

and the value to be searched for is VAL = 20. Then the algorithm will
proceed as follows:

Solution

Pass 1 –
BEG = 0, END = 10
MID = (BEG + END)/2
 = (0 + 10)/2 = 5

ELSE IF (ARR[MID] > VAL)
Set END = MID – 1
ELSE
Set BEG = MID + 1
[End of If]
[End of Loop]

Step 6: IF (POS = -1)
PRINT “VALUE NOT FOUND, SEARCH UNSUCCESSFUL”
[End of IF]

Step 7: EXIT

266 • Data Structures and Program Design Using C++

Now, VAL = 20 and ARR[MID] = ARR[5] = 50

As ARR[5] = 50 > VAL = 30, therefore we will now search for the value
in the lower half of the array. So now the values of END and MID are
modified, and we move to the next pass.

Pass 2 –

Now, END = MID – 1 = 4
MID = (0 + 4)/2 = 2

Now VAL = 20 and ARR[MID] = ARR[2] = 20.
Figure 6.2. Working of a binary search.

Hence, the search is successful and VAL = 20 is found at POS = 2.

6.3.2  Complexity of a Binary Search Algorithm
In a binary search algorithm, we can see that with each comparison,

the size of the search area is reduced by half. So, we can claim that the effi-
ciency of the binary search in the worst case is O(log10n), where n is the total
number of elements in the array. Obviously, the best case will happen when
the value to be searched for is equal to the value of the array in the middle.

6.3.3  Drawbacks of a Binary Search
•	 A binary search requires that the data elements in the array be sorted;

otherwise, a binary search will not work.

•	 A binary search cannot be used where there are many insertions and
deletions of data elements in the array.

Searching and Sorting • 267

Write a program to search for an element in an array using the binary
search technique.

include<iostream.h>
include<conio.h>
class binarysearch
{
public:
int arr[20], n, value, i, start, end, mid;
void input();
int display();

};
void binarysearch :: input()
{
cout<<”\nEnter no of elements of array: “;
cin>>n;
cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}
cout<<”\nEnter value to search: “;
cin>>value;

}
int binarysearch :: display()
{
start = 0, end = n-1;
while(start <= end)
{

mid = (start+end)/2 ;
if(arr[mid] == value)
{

cout<<”\n”<<value<<” found in the array”;
break;

}
else if(arr[mid] <value)
start=mid+1 ;
else
end=mid-1 ;

}
}

268 • Data Structures and Program Design Using C++

void main()
{
clrscr();
binarysearch obj;
obj.input();
obj.display();
getch();

}

The output of the program is shown as:

Frequently Asked Questions

Q. What is a binary search? Explain.

Answer.
A binary search is one of the searching techniques which is used to find an
element in an array. It works very efficiently with a sorted list. In a binary
search, the element to be searched for is compared with the middle element
of the array. If the value to be searched for is less than the middle element, we
will search in the lower half of the array and vice versa.

Searching and Sorting • 269

6.4  Interpolation Search

An interpolation search, also known as an extrapolation search, is
a technique for searching for a particular value in an ordered array. This
searching technique is more efficient than a binary search if the elements
in the array are sorted. The technique of an interpolation search is similar to
when we are searching for “Abhishek” in the telephone directory; we don’t
start in the middle, because we know that it will be near the extreme left,
so we start from the front and work from there. That is the main idea of an
interpolation search; that is, instead of dividing the list into fixed halves, we
cut it by an amount that seems most likely to succeed.

6.4.1  Working of the Interpolation Search Algorithm
In each step of this searching technique, the remaining search area for

the value to be searched for is calculated. The calculations are done on
the values at the bounds of the search area and the value which is to be
searched. Therefore, the value found at this position will now be compared
with the value to be searched. If both values are equal, then the search is
said to be successful. If both values are unequal, then depending upon the
comparison done, the remaining search area is reduced to the part just be-
fore or after the initial position.

Consider an array ARR of n elements in which the elements are ar-
ranged in a sorted manner. Initially low is set to 0 and high is set to n-1.
Now we are searching a value VAL in ARR between ARR[LOW] and
ARR[HIGH]. Then, in this case, MID will be calculated by the following
formula:

MID = LOW + (HIGH - LOW) X ((VAL – ARR[LOW] / ARR[HIGH]
– ARR[LOW]))

If the value VAL is found at MID, then the search is complete; other-
wise, if the value is lower than ARR[MID], reset HIGH = MID – 1, and if

Practical Application:

If we want to search for “Ayush” in the directory, then we will always search
in the extreme left of the directory.

270 • Data Structures and Program Design Using C++

the value is greater than ARR[MID], reset LOW = MID + 1. Repeat these
steps until the value is found.

Hence, we can say that the interpolation search is very similar to the
binary search technique. The main difference between the techniques is
that in a binary search the value selected is always the middle value of the
list, and it discards half the values based on the comparison between the
value to be searched for and the value found at the estimated position. Let
us understand the interpolation search with the help of an algorithm:

Algorithm for an Interpolation Search

INTERPOLATION_SEARCH(ARR, Lower_bound, Upper_bound, VAL)

Step 1: START
Step 2: Set LOW = lower_bound, HIGH = upper_

bound,POS = -1
Step 3: Repeat Steps 4 & 5 while LOW<= HIGH
Step 4: Set MID = LOW + (HIGH - LOW) X ((VAL –

ARR[LOW] / ARR[HIGH] – ARR[LOW]))
Step 5: IF (ARR[MID] = VAL)

POS = MID
PRINT POS
Go to Step 7
ELSE IF (ARR[MID] > VAL)
Set HIGH = MID – 1
ELSE
Set LOW = MID + 1
[End of If]
[End of Loop]

Step 6: IF (POS = -1)
PRINT “VALUE NOT FOUND, SEARCH UNSUCCESSFUL”
[End of IF]

Step 7: EXIT

For Example: Consider an array of seven numbers which is declared as:

int array[] = {5, 16, 23, 34, 45, 56, 65} ;

and the value to be searched for is 45.

Searching and Sorting • 271

Solution

Pass 1 –

LOW = 0, HIGH = 7 - 1= 6, VAL =45

ARR[LOW] = ARR[0] = 5, ARR[HIGH] = ARR[6] = 65

Now MID = LOW + (HIGH - LOW) X ((VAL – ARR[LOW]) /
(ARR[HIGH] – ARR[LOW]))

	 = 0 + (6 – 0) X ((45 – 5) / (65 – 5)

	 = 0 + 6 X (40 / 60) = 4

If(VAL == ARR[MID]) i.e. 45 == ARR[4] =45, 45 = 45
Figure 6.3. Working of the interpolation search.

Hence, the value is found.

6.4.2  Complexity of the Interpolation Search Algorithm
The interpolation search makes about log10(log10 n) comparisons when

there are n elements in the list and the elements are uniformly distrib-
uted. Obviously, the worst case will happen when the number of elements
is increased exponentially; in that case, the algorithm can take up to O(n)
comparisons.

Write a program to search for an element in an array using the interpo-
lation search technique.

include<iostream.h>
include<conio.h>
class interpolationsearch
{
public:
int arr[20], n, value, i, low, high, mid;

272 • Data Structures and Program Design Using C++

void input();
void display();

};
void interpolationsearch :: input()
{
cout<<”\nEnter no of elements of array: “;
cin>>n;
cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}
cout<<”\nEnter value to search: “;
cin>>value;

}
void interpolationsearch :: display()
{
low = 0, high = n-1;
while(low <= high)
{

mid = low+((value-arr[low])*(high-low))/(arr[high]-
arr[low]);
if(arr[mid] == value)
{

cout<<”\n”<<value<<” found in the array”;
break;

}
else if(arr[mid] <value)
low=mid+1 ;
else
high=mid-1 ;

}
}
void main()
{
clrscr();
interpolationsearch obj;
obj.input();
obj.display();
getch();

}

Searching and Sorting • 273

The output of the program is shown as:

6.5  Introduction to Sorting

Sorting refers to the process of arranging the data elements of an array
in a specified order, that is, either in ascending or descending order. For ex-
ample, it will be practically impossible for us to find a name in the telephone
directory if the names in it are not in alphabetical order. However, the same
can be true for dictionaries, book indexes, bank accounts, and so on. Hence,
the convenience of having sorted data is unquestionable. Retrieval of infor-
mation becomes much easier when the data is stored in some specified order.
Therefore, sorting is a very important application in computer science.

Let us take an array which is declared and initialized as:

int array[] = {10, 25, 17, 8, 30, 3} ;

Then, the array after applying the sorting technique is:

array[] = {3, 8, 10, 17, 25, 30} ;

A sorting algorithm can be defined as an algorithm which puts the data
elements of an array/ list in a certain order, that is, either numerical order
or any predefined order. There are many sorting algorithms which are avail-
able and are widely used according to the different environments required
by the different sorting methods.

274 • Data Structures and Program Design Using C++

The two basic categories of sorting methods are:

1.	Internal Sorting – It refers to the sorting of the data elements stored in
the computer’s main memory.

2.	External Sorting – It refers to the sorting of the data elements stored
in the files. It is applied when the amount of data is large and cannot be
stored in the main memory.

6.5.1  Types of Sorting Methods

The various sorting methods are:

1.	Selection Sort

2.	Insertion Sort

3.	Merge Sort

4.	Bubble Sort

5.	Quick Sort

Let us discuss all of them in detail.

1.  Selection Sort

Selection sort is a sorting technique that works by finding the smallest
value in the array and placing it in the first position. After that, it then finds
the second smallest value and places it in the second position. This process
is repeated until the whole array is sorted. Thus, the selection sort works
by finding the smallest unsorted element remaining in the entire array and
then swapping it with the element in the next position to be filled. It is a
very simple technique, and it is also easier to implement than other sorting
techniques. Selection sort is used for sorting files with large records.

Selection Sort Technique

Let us take an array ARR with N elements in it. Now, the selection sort
technique works as follows:

First of all, we will find the smallest value in the entire array, and we
will place that value in the first position of the array. Then, we will find
the second smallest value in the array, and we will place it in the second
position of the array. Now, we will repeat this process until the whole
array is sorted.

Searching and Sorting • 275

Pass 1 – Find the position POS of the smallest value in the array of
N elements and interchange ARR[POS] with ARR[0]. Hence, ARR[0] is
sorted.

Pass 2 – Find the position POS of the smallest value in the array
of N-1 elements and interchange ARR[POS] with A[1]. Hence, A[1] is
sorted.

.

.

.
Pass N-1 – Find the position POS of the smaller of the elements of

ARR[N-2] and ARR[N-1] and interchange ARR[POS] with ARR[N-2].
Hence, ARR[0], ARR[1], . . . ARR[N-1] is sorted.

Let us discuss it with the help of a detailed algorithm.

Algorithm for a Selection Sort

Consider an array ARR having N elements from ARR[0] to ARR[N-1].
I and J are the looping variables, and POS is the swapping variable.

SELECTION SORT(ARR, N)

Step 1: START
Step 2: Repeat Steps 3 & 4 for I = 1 to N - 1
Step 3: Call MIN(ARR, I, N, POS)
Step 4: Swap ARR[I] with ARR[POS]

[End of Loop]
Step 5: EXIT

MIN(ARR, I, N, POS)

Step 1: Set SMALLEST = ARR[I]
Step 2: Set POS = I
Step 3: Repeat Step 4 for J = I + 1 to N – 1
Step 4: IF (ARR[J] < SMALLEST)

Set SMALLEST = ARR[J]
Set POS = J
[End of IF]
[End of Loop]

Step 5: Return POS

276 • Data Structures and Program Design Using C++

For Example – Sort the given array using selection sort.

Solution:

Figure 6.4. Working of selection sort.

Hence, after sorting the new array is:

Complexity of the Selection Sort Algorithm

Selection sort is the simple technique of sorting. In this method, if there
are n elements in the array, then (n-1) comparisons or iterations are made.
Thus, the selection sort technique has a complexity of O(n2).

Write a program to sort an array using the selection sort method.

include<iostream.h>
include<conio.h>
class selectionsort
{
public:
int arr[20], n, i, j;
void input();
void display();
void ssort();

};
void selectionsort :: input()
{
cout<<”\nEnter no of elements of array: “;

Searching and Sorting • 277

cin>>n;
cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}
}
void selectionsort :: display()
{
cout<<”\nAfter sorting new array is” ;

for(i=0 ; i<n ; i++)
{
cout<<”\t”<<arr[i] ;
}

}
void selectionsort :: ssort()
{
int temp, min;
for(i=0 ; i<n ; i++)
{

min = i;
for(j=(i+1) ; j<n ; j++)
{

if(arr[min] > arr[j])
{

min = j;
}

}
temp = arr[min];
arr[min] = arr[i];
arr[i] = temp;

}
}
void main()
{
clrscr();
selectionsort obj;
obj.input();
obj.ssort();
obj.display();

278 • Data Structures and Program Design Using C++

2.  Insertion Sort

Insertion Sort is another very simple sorting algorithm which works
just like its name suggests; that is, it inserts each element into its proper po-
sition in the concluding list. To limit the wastage of memory or, we can say,
to save memory, most implementations of an insertion sort work by moving
the current element past the already sorted elements and repeatedly swap-
ping or interchanging it with the preceding element until it is placed in its
correct position.

Frequently Asked Questions

Q. Define the selection sort technique.

Answer.
Selection sort is a sorting technique which works by finding the smallest
element from the array and placing it in the first position. It then finds the
second smallest element and places it in the second position. Hence, this
procedure is repeated until the whole array is sorted.

getch();

}
The output of the program is shown as:

Searching and Sorting • 279

Insertion Sort Technique

Pass 1 – Initially there is only one element in the list which is already
sorted. Hence, we proceed to the next steps.

Pass 2 – During the first iteration, the first and the second element of
the list are compared. The smaller value occupies the first position of the list.

Pass 3 – During the second iteration, the first three elements of the list
are compared. The smaller value will occupy the first position in the list. The
second position will be occupied by the second smallest element, and so on.

.

.

This procedure is repeated for all the elements of the array up to (n-1)
iterations.

Algorithm for an Insertion Sort

Practical Application:

We usually use this technique while ordering a deck of cards while playing a
game called bridge.

INSERTION SORT(ARR, N)

Step 1: START
Step 2: Repeat Steps 3 to 6 for I = 1 to N – 1
Step 3: Set POS = ARR[I]
Step 4: Set J = I - 1
Step 5: Repeat while POS <= ARR[J]

Set ARR[J + 1] = ARR[J]
Set J = J – 1
[End of Inner while loop]

Step 6: Set ARR[J + 1] = POS
[End of Loop]

Step 7: EXIT

In the previous algorithm, in Step 2, a for loop is executed which will be
repeated for every element in the array. In Step 3, we are storing the value

280 • Data Structures and Program Design Using C++

of the Ith element in POS. In Step 5, again a loop is executed in which the
new elements after sorting are placed. At last, the element is stored at the
(J+1)th position.

For Example – Consider the following array. Sort the given values in
the array using the insertion sort technique.

Solution –

Pass 1 – Initially, ARR[0] is sorted. Move to the next pass.

39 54 10 28 95 7

Pass 2 – Now 39 and 54 are compared. 39 < 54, so ARR[0] = 39 and
ARR[1] = 54.

39 54 10 28 95 7

Pass 3 – 39, 54, and 10 are compared. 10 < 39 and 54, so ARR[0] = 10,
now 39 < 54 hence ARR[1] = 39 and ARR[2] = 54.

10 39 54 28 95 7

Pass 4 – As 28 < 39 and 54, so ARR[1] = 28.

10 28 39 54 95 7

Pass 5 – In this case, 95 is greater than all the values, so there is no
need for swapping.

10 28 39 54 95 7

Pass 6 – 7 is the smallest value, so ARR[0] = 7.

Therefore, after sorting the new array is:

7 10 28 39 54 95

Figure 6.5. Working of an insertion sort.

Searching and Sorting • 281

Complexity of an Insertion Sort

In an insertion sort, the best case will happen when the array is already
sorted, and in that case the running time of the algorithm is O(n) (i.e., lin-
ear running time). Obviously, the worst case will happen when the array is
sorted in the reverse order. Thus, in that case the running time of the algo-
rithm is O(n2) (i.e., quadratic running time).

Write a program to sort an array using the insertion sort method.

include<iostream.h>
include<conio.h>
class insertionsort
{
public:
int arr[20], n, i, j;
void input();
void display();
void insort();

};
void insertionsort :: input()
{
cout<<”\nEnter no of elements of array: “;
cin>>n;
cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}
}
void insertionsort :: display()
{
cout<<”\nAfter Insertion sort new array is” ;
for(i=0 ; i<n ; i++)
{

cout<<”\t”<<arr[i] ;
}

}
void insertionsort :: insort()
{
int temp, min;

282 • Data Structures and Program Design Using C++

for(i=1 ; i<n ; i++)
{

temp = arr[i] ;
j = i -1;
while(temp < arr[j] && (j >= 0))
{

arr[j + 1] = arr[j] ;
j-- ;

}
arr[j + 1] = temp ;

}
}
void main()
{
clrscr();
insertionsort obj;
obj.input();
obj.insort();
obj.display();
getch();

}

The output of the program is shown as:

Searching and Sorting • 283

3.  Merge Sort

Merge sort is a sorting method which follows the divide and conquer
approach. The divide and conquer approach is a very good approach in
which divide means partitioning the array having n elements into two sub-
arrays of n/2 elements each. However, if there are no elements present
in the list/array or if an array contains only one element, then it is already
sorted. However, if an array has more elements, then it is divided into two
sub-arrays containing equal elements in them. Conquer is the process of
sorting the two sub-arrays recursively using merge sort. Finally, the two
sub-arrays are merged into one single sorted array.

Merge Sort Technique

1.	If the array has zero or one element in it, then there is no need to sort
that array as it is already sorted.

2.	Otherwise, if there are more elements in the array, then divide the array
into two sub-arrays containing equal elements.

3.	Each sub-array is now sorted recursively using merge sort.

4.	Finally, the two sub-arrays are merged into a single sorted array.

Algorithm of Merge Sort

MERGE SORT(ARR, BEG, END)

Step 1: START
Step 2: IF (BEG < END)
Step 3: Set MID = (BEG + END)/2

Call MERGE SORT (ARR, BEG, ENDMID)
Call MERGE SORT (ARR, MID + 1, END)
Call MERGE (ARR, BEG, MID, END)
[End of If]

Step 4: EXIT

MERGE(ARR, BEG, MID, END)

Step 1: START
Step 2: Set I = BEG, J = MID + 1, K = 0
Step 3: Repeat while (I <= MID) && (J <= END)

284 • Data Structures and Program Design Using C++

IF (ARR[I] > ARR[J])
Set TEMP[K] = ARR[J]
Set J = J + 1
Set K = K + 1
ELSE IF (ARR[J] > ARR[I])
Set TEMP[K] = ARR[I]
Set I = I + 1
Set K = K + 1
ELSE
Set TEMP[K] = ARR[J]
Set J = J + 1
Set K = K + 1
Set TEMP[K] = ARR[I]
Set I = I + 1
Set K = K + 1
[End of If]
[End of Loop]

Step 4: (Copying the remaining elements of left sub
array if any)

Repeat while (I <= MID)
Set TEMP[K] = ARR[I]
Set I = I + 1
Set K = K + 1
[End of Loop]

Step 5: (Copying the remaining elements of right
sub array if any)

Repeat while (J <= END)
Set TEMP[K] = ARR[J]
Set I = I + 1
Set K = K + 1
[End of Loop]

Step 6: Set IND = 0
Step 7: Repeat while (IND < K)

Set ARR[IND] = ARR[IND]
Set IND = IND + 1
[End of Loop]

Step 8: EXIT

Searching and Sorting • 285

For Example – Sort the following array using merge sort.

int array[] = { 40, 10, 86, 44, 93, 26, 69, 17 }

Solution –

Divide and Conquer Process �Merging the sub arrays into one sorted array

Figure 6.6. Working of a merge sort.

From the previous example, we can see how the merge sort algorithm
works. First, the merge sort algorithm recursively divides the array into
smaller sub-arrays. After dividing the array into smaller parts, we call the
function Merge() to merge all the sub-arrays to form a single sorted array.

Complexity of Merge Sort

The running time of the merge sort algorithm is O(n log10n). This run-
time remains the same in the average as well as in the worst case of the
merge sort algorithm. Although it has an optimal time complexity, some-
times this runtime can be O(n).

Write a program to sort an array using the merge sort method.

include<iostream.h>
include<conio.h>
include<stdlib.h>
define MAX 10

286 • Data Structures and Program Design Using C++

void mergesort(int, int)
void merge(int, int, int, int);
int arr[MAX];
void mergesort(int beg, int end)
{
int mid;
if(beg < end)
{

mid = (beg + end)/2;
mergesort(beg, mid) ;
mergesort(mid+1, end);
merge(beg, mid, mid+1, end);

}
}
void merge(int i1, int j1, int i2, int j2)
{
int temp[20];
int i, j, k;
beg = i1;
end = i2;
k = 0;
while(beg <= j1 && end <= j2)
{

if(arr[beg] < arr[end])
{

temp[k] = arr[beg] ;
k++ ;
beg++ ;

}
else if(arr[beg] > arr[end])
{

temp[k] = arr[end] ;
k++ ;
end++ ;

}
else
{

temp[k] = arr[end] ;
k++ ;
end++ ;

Searching and Sorting • 287

temp[k] = arr[beg] ;
k++ ;
beg++ ;

}
}
while(beg < j1)
{

temp[k] = arr[beg] ;
k++ ;
beg++ ;

}
while(end < j2)
{

temp[k] = arr[end] ;
k++ ;
end++ ;

}
for(beg=i1, end=0 ; beg<=j2 ; beg++, end++)
{

arr[beg] = temp[end] ;
}

}
void main()
{
int i, n;
clrscr() ;
cout<<”Enter”<< MAX <<”Elements for Sorting: “ ;
for(i=0; i<MAX; i++)
{

cin>>arr[i] ;
}
mergesort(0, MAX-1) ;
cout<<”\nAfter merge sort array is:” ;
for(i=0; i<MAX; i++)
{

cout<<”\t”<<arr[i] ;
}
getch();

}

288 • Data Structures and Program Design Using C++

The output of the program is shown as:

4.  Bubble Sort

Bubble sort, also known as exchange sort, is a very simple sorting meth-
od. It works by repeatedly moving the largest element to the highest position
of the array. In bubble sort, we are comparing two elements at a time, and
swapping is done if they are wrongly placed. If the element at a lower index
or position is greater than the element at a higher index, then in that case
both the elements are interchanged so that the smaller element is placed
before the bigger one. This process is repeated until the list becomes sorted.
Bubble sort gets its name from the way that the smaller elements “bubble” to
the top of the array. This sorting technique only uses comparisons to operate
on the elements. Hence, we can also call it a comparison sort.

Bubble Sort Technique

The basic idea applied for a bubble sort is to let us assume if an array
ARR contains n elements, then the number of iterations required to sort the
array will be (n – 1).

Pass 1 – During the first iteration, the largest value in the array is
placed at the last position.

Pass 2 – During the second iteration, the second largest value of the
array is placed in the second last position.

Pass 3 – During the third iteration, the third largest value of the array
is placed in the third last position and so on.

Searching and Sorting • 289

This procedure is repeated until all the elements in the array are
scanned and are placed in their correct position, which means that the ar-
ray is sorted.

Algorithm of a Bubble Sort

BUBBLE SORT(ARR, N)

Step 1: START
Step 2: Repeat Step 3 for I = 0 to N - 1
Step 3: Repeat for J = 0 to N - 1
Step 4: IF (ARR[J] > ARR[J+1])

INTERCHANGE ARR[J] & ARR[J + 1]
[End of Inner Loop]
[End of Outer Loop]

Step 5: EXIT

For Example – Consider the following array. Sort the given values in
the array using the bubble sort technique.

Solution – In the given array, the number of elements in the array is 5,
so the number of iterations will be (n – 1) = 4.

Pass 1 –

a) 40 and 50 are compared. Since 40 < 50, no swapping is done.

b) 50 and 20 are compared. Since 50> 20, swapping will be done.

c) 50 and 90 are compared. Since 50 < 90, no swapping is done.

290 • Data Structures and Program Design Using C++

d) 90 and 30 are compared. Since 90 > 30, swapping is done.

At the end of the first pass, the largest element in the array is placed
at the highest position in the array, but all the other elements are still un-
sorted. Let us now proceed to Pass 2.

Pass 2 –

a) 40 and 20 are compared. Since 40 > 20, swapping is done.

b) 40 and 50 are compared. Since 40 < 50, no swapping will be done.

c) 50 and 30 are compared. Since 50 > 30, swapping is done.

At the end of the second pass, the second largest element in the array
is placed at the second last position in the array, but all the other elements
are still unsorted. Let us now proceed to Pass 3.

Pass 3 –

a) 20 and 40 are compared. Since 20 < 40, no swapping is done.

b) 40 and 30 are compared. Since 40 > 30, swapping will be done.

Searching and Sorting • 291

At the end of the third pass, the third largest element in the array is
placed at the third largest position in the array, but all the other elements
are still unsorted. Let us now proceed to Pass 4.

Pass 4 –

a) 20 and 40 are compared. Since 20 < 40, no swapping is done.

At the end of the fourth pass, we can see that all the elements in the list
are sorted. Hence, after sorting the new array will be:

Figure 6.7. Working of bubble sort.

Complexity of the Bubble Sort

In the best case, the running time of the bubble sort is O(n), that is,
when the array is already sorted. Otherwise, its level of complexity in
average and worst cases is, O(n2).

Write a program to sort an array using the bubble sort method.

include<iostream.h>
include<conio.h>
class bubblesort
{
public:
int arr[20], n, i, j;
void input();
void display();
void bsort();

};
void bubblesort :: input()
{
cout<<”\nEnter no of elements of array: “;
cin>>n;

292 • Data Structures and Program Design Using C++

cout<<”\nEnter the elements of array: “;
for(i=0 ; i<n ; i++)
{

cout<<”\nEnter element “<<(i+1)<<” : “ ;
cin>>arr[i];

}
}
void bubblesort :: display()
{
cout<<”\nAfter Bubble sort new array is” ;
for(i=0 ; i<n ; i++)
{

cout<<”\t”<<arr[i] ;
}

}
void bubblesort :: bsort()
{
int temp;
for(i=0 ; i<n ; i++)
{

for(j=0 ; j<n ; j++)
{

if(arr[j] >arr[j+1])
{

temp= arr[j]
arr[j] = arr[j+1] ;
arr[j+1] = temp ;

}
}

}
}
void main()
{
clrscr();
bubblesort obj;
obj.input();
obj.bsort();
obj.display();
getch();

}

Searching and Sorting • 293

The output of the program is shown as:

5.  Quick Sort

Quick sort, also known as partition exchange sort and developed by C. A.
R. Hoare, is a widely used sorting algorithm which also uses the divide and
conquer approach as we have discussed in merge sort. Here also, we will divide
a single unsorted array into its two smaller sub-arrays. The divide and conquer
method means dividing the bigger problem into two smaller problems, and
then those two smaller problems into smaller problems, and so on. Like merge
sort, if there are no elements in the array or if an array contains only one ele-
ment, then it is already sorted. A quick sort algorithm is faster than all the other
sorting algorithms which have time complexity O(n log10n).

Working of Quick Sort

1.	An element called pivot is selected from the array elements.

2.	After choosing the pivot element, all the elements of the array are rearranged
such that all the elements less than the pivot element will be on left side, and
all the elements greater than the pivot element will be placed on the right
side of the pivot element. After rearranging all the elements, the pivot is now
placed in its final position. Thus, this process is known as partitioning.

3.	Now, the two sub-arrays obtained will be recursively sorted.

Quick Sort Technique

1.	Initially set the index of the first element to LEFT and POS. Similarly,
set the index of the last element to RIGHT. Now, LEFT = 0, POS = 0,
RIGHT = N – 1 (assuming n elements in the array).

294 • Data Structures and Program Design Using C++

2.	We will start with the last element which is pointed to by RIGHT, and we
will traverse each element in the array from right to left, comparing each
element with the first element pointed to by POS. ARR[POS] should
always be less than ARR[RIGHT].

		� If ARR[POS] is less than ARR[RIGHT], then continue comparing until
RIGHT = POS. If RIGHT = POS then it means that pivot is placed in
its correct position.

		� If ARR[RIGHT] < ARR[POS], then swap the two values and go to the
next step.

		 Set POS = RIGHT.

3.	We will start from the first element which is pointed to by LEFT, and
we will traverse every element in the array from left to right, comparing
each element with the element pointed to by POS. ARR[POS] should
always be greater than ARR[LEFT].

		� If ARR[POS] is greater than ARR[RIGHT], then continue comparing
until LEFT = POS. If LEFT = POS then it means that pivot is placed in
its correct position.

		� If ARR[LEFT] > ARR[POS], then swap the two values and go to the
previous step.

		 Set POS = LEFT.

Algorithm of Quick Sort

QUICK SORT(ARR, BEG, END)

Step 1: START
Step 2: IF (BEG < END)

Call PARTITION (ARR, BEG, END, POS)
Call QUICK SORT (ARR, BEG, POS - 1)
Call QUICK (ARR, POS + 1, END)
[End of If]

Step 3: EXIT

Searching and Sorting • 295

PARTITION(ARR, BEG, END, POS)

Step 1: START
Step 2: Set LEFT = BEG, RIGHT = END, POS = BEG,TEMP = 0
Step 3: Repeat Steps 4 to 7 while TEMP = 0
Step 4: Repeat while ARR[RIGHT] >= ARR[POS]&& POS

!= RIGHT
Set RIGHT = RIGHT - 1
[End of Loop]

Step 5: IF (POS = RIGHT)
Set TEMP = 1
ELSE IF (ARR[POS] > ARR[RIGHT])
INTERCHANGE ARR[POS] with ARR[RIGHT]
Set POS = RIGHT
[End of If]

Step 6: IF TEMP = 0
Repeat while ARR[POS] >= ARR[LEFT] &&
POS != LEFT
Set LEFT = LEFT + 1
[End of Loop]

Step 7: IF (POS = LEFT)
Set TEMP = 1
ELSE IF (ARR[LEFT] > ARR[POS])
INTERCHANGE ARR[POS] with ARR[LEFT]
Set POS = LEFT
[End of If]
[End of If]
[End of Loop]

Step 8: EXIT

For Example – Sort the values given in the array using the quick sort
algorithm.

Solution –

Step 1 – First element is chosen as the pivot. Now, set POS = 0, LEFT = 0,
RIGHT = 5.

296 • Data Structures and Program Design Using C++

Step 2 – Traverse the list from right to left. Since ARR[POS]
< ARR[RIGHT], that is, 25 < 52, RIGHT = RIGHT – 1 = 4.

Step 3 – Since ARR[POS] < ARR[RIGHT], that is, 25 < 30, RIGHT
= RIGHT – 1 = 3.

Step 4 – Since ARR[POS] > ARR[RIGHT], that is, 25 < 17, we will
swap the two values and set POS = RIGHT.

Step 5 – Traverse the list from left to right. Since ARR[POS]
> ARR[LEFT], that is, 25 > 17, LEFT = LEFT + 1.

Step 6 – Since ARR[POS] > ARR[LEFT], that is, 25 > 7, LEFT
= LEFT + 1.

Step 7 – Since ARR[POS] < ARR[LEFT], that is, 25 < 39, we will swap
the values and set POS = LEFT.

(Continue...)

Searching and Sorting • 297

Step 8 – Traverse the list from right to left. Since ARR[POS]
< ARR[LEFT], RIGHT = RIGHT - 1.

Figure 6.8. Working of quick sort.

Now, RIGHT = POS, so now the process is over and the pivot element
of the array, that is, 25, is placed in its correct position. Therefore, all the
elements which are smaller than 25 are placed before it and all the ele-
ments greater than 25 are placed after it. Hence, 17 and 7 are the elements
in the left sub-array and 39, 30, and 52 are the elements in the right sub-
array, which both are sorted.

Complexity of Quick Sort

The running time efficiency of quick sort is O(n log10n) in the aver-
age and the best case. However, the worst case will happen if the array is
already sorted and the leftmost element is selected as the pivot element. In
the worst case, its efficiency is O(n2).

Write a program to sort an array using the quick sort method.

#include<iostream.h>
#include<conio.h>
class Quicksort
{
public:

int arr[20], n;
void input();
void sort(int [], int, int);
void partition(int [],int ,int,int &);
void display();

};
void Quicksort :: input()
{
cout<<”\nEnter the number of elements: “;
cin>>n;
cout<<”\nEnter the elements of array: “;
for(int i=0 ; i<n ; i++)

298 • Data Structures and Program Design Using C++

{
cout<<”\nEnter element “<<(i+1)<<” : “;
cin>>arr[i];

}
}
void Quicksort :: sort(int arr1[], int beg, int end)
{
int pos;
if(beg >= end)
return;
partition(arr1, beg, end, pos);
sort(arr1, beg, pos-1);
sort(arr1, pos+1, end);

}
void Quicksort :: partition(int arr1[], int beg, int
end, int &a)
{
int x, low, temp, high;
x = arr1[beg];
high = end;
low = beg;
while(low < high)
{

while(arr1[low] <= x)
low++;
while(arr1[high] > x)
high--;
if(low < high)
{

temp = arr1[low];
arr1[low] = arr1[high];
arr1[high] = temp;

}
}
arr1[beg] = arr1[high];
rr1[high] = x;
a = high;

}
void Quicksort :: display()
{
for(int i=0 ; i<n ; i++)

Searching and Sorting • 299

{
cout<<”\t”<<arr[i];

}
}
int main()
{
clrscr();
Quicksort obj;
obj.input();
obj.sort(obj.arr, 0, obj.n-1);
cout<<”\nAfter Quick Sort new array is: “;
obj.display();
getch();
return 0;

}

The output of the program is shown as:

6.6  External Sorting

External Sorting is a sorting technique which is used when the amount
of data is massive. When a large amount of data has to be sorted, it is not
possible to bring it into main memory (RAM). Therefore, in that situa-
tion a secondary memory needs to be used. Also, at the same time, some

300 • Data Structures and Program Design Using C++

portion of data is brought into the main memory from the secondary
memory for sorting based on the availability of storage space of the main
memory. After the data is sorted, it is sent back to the secondary memory.
Now, the next portion of the data is brought into the main memory, and
after sorting it is sent back to the secondary memory. This procedure is re-
peated until all the data is sorted. Here, each portion is called a segment.
The time required for sorting is greater because time will be spent trans-
ferring the data from secondary memory to main memory. The merge
sort algorithm is widely and commonly used in external sorting, which has
already been discussed.

External sorting is used in database applications for performing differ-
ent kinds of operations like join, union, projection, and many more. It is also
used to update a master file from a transaction file. For example, if we are
updating the company file based on the new employees, existing employ-
ees, locations, and so on. Duplicate records or data can also be removed
from external sorting.

6.7  Summary

•	 The process of finding a particular value in a list or an array is called
searching. If that particular value is present in the array, then the
search is said to be successful, and the location of that particular value
is retrieved by the searching process.

•	 Linear search, binary search, and interpolation search are the
commonly used searching techniques.

•	 Linear search works by comparing the values to be searched for with
every element of the array in a linear sequence until a match is found.

•	 Binary search works efficiently when the list is sorted. In a binary
search, we first compare the value VAL with the data element in the
middle position of the array.

•	 Interpolation search, also known as extrapolation search, is a
technique for searching for a particular value in an ordered array. In
each step of this searching technique, the remaining search area for
the value to be searched for is calculated. The calculations are done
on the values at the bounds of the search area and the value which is
to be searched.

Searching and Sorting • 301

•	 Sorting refers to the technique of arranging the data elements of an
array in a specified order, that is, either in ascending or descending
order.

•	 Selection sort is a sorting technique that works by finding the smallest
value in the array and placing it in the first position. After that, it then
finds the second smallest value and places it in the second position.
This process is repeated until the whole array is sorted.

•	 Insertion sort works by moving the current data element past the
already sorted data elements and repeatedly interchanging it with the
preceding element until it is in the correct place.

•	 Merge sort is a sorting method which follows the divide and conquer
approach. Divide means partitioning the array having n elements into
two sub-arrays of n/2 elements each. Conquer is the process of sorting
the two sub-arrays recursively using merge sort. Finally, the two sub-
arrays are merged into one single sorted array.

•	 Bubble sort, also known as exchange sort, is a very simple sorting
method. It works by repeatedly moving the largest element to the
highest position of the array.

•	 Quick sort is an algorithm which selects a pivot element and
rearranges the values in such a way that all the elements less than the
pivot element appear before it and the elements greater than the pivot
appear after it.

•	 External sorting is a sorting technique which is used when the amount
of data is massive.

6.8  Exercises

6.8.1  Theory Questions

1.		� Define sorting. Write the importance of sorting.

2.		� What are the different types of sorting techniques? Discuss each of
them in detail.

3.		� Define searching. Which searching technique will you prefer while
searching for an element in an array?

302 • Data Structures and Program Design Using C++

4.		� Explain selection sort and merge sort with suitable examples. Show var-
ious stages.

5.		� How is linear search used to find an element? Explain the working of
insertion sort with a suitable example.

6.		� Explain different types of searching techniques. Give a suitable
example to illustrate binary search.

7.		 Why is quick sort known as “quick”?

8.		 Explain the concept of external sorting.

9.		� Differentiate between binary search and interpolation search. Give a
suitable example.

10.	Discuss the limitations and advantages of insertion sort.

11.	�Explain the working of bubble sort with a suitable example. Why is
bubble sort called “bubble”?

6.8.2  Programming Questions

1.		 Write a C++ program to implement the bubble sort technique.

2.		 Write an algorithm to implement the interpolation search technique.

3.		� Write an algorithm to perform a merge sort. Show various stages in
merge sorting over the data: 11, 2, 9, 13, 57, 25, 17, 1, 90, 3.

4.		 Write a C++ program to implement an insertion sort.

5.		� Write a program to search for an element using the binary search
technique.

6.		 Write a C++ program to perform a comparison sort.

7.		� Write an algorithm to perform a partition exchange sort technique.
Show various stages over the data: 24, 52, 98, 12, 45, 6, 59, 90.

8.		 Write an algorithm/program to implement a linear search technique.

Searching and Sorting • 303

6.8.3  Multiple Choice Questions

1.		 A binary search algorithm cannot be applied to an ________.

a)	Sorted array

b)	Sorted linked list

c)	Binary Search trees

d)	All of the above

2.	In a merge sort algorithm, which term refers to “sorting the sub-arrays
recursively”?

a)	Conquer

b)	Combine

c)	Divide

d)	All of these

3.	The time complexity of a bubble sort algorithm is:

a)	O(log n)

b)	O(n)

c)	O(n.log n)

d)	O(n2)

4.	Which sorting algorithm is known as a partition and exchange sort?

a)	Selection Sort

b)	Merge Sort

c)	Quick Sort

d)	Bubble Sort

5.	Which case would exist when the element to be searched for using linear
search is equal to the first element of the array?

a)	Best Case

b)	Worst Case

c)	Average Case

d)	None of these

304 • Data Structures and Program Design Using C++

6.	Quick sort is faster than ___________.

a)	Bubble Sort

b)	Selection Sort

c)	Insertion Sort

d)	All of the above

7.	When the amount of data is massive, which type of sorting is preferred?

a)	Internal Sorting

b)	External Sorting

c)	Both of these

d)	None of these

8.	Which of the searching techniques will be best when the value to be
searched for is present in the middle?

a)	Linear Search

b)	Interpolation Search

c)	Binary Search

d)	All of these

9.	The complexity of a binary search algorithm is _______.

a)	O(n2)

b)	O(log n)

c)	O(n)

d)	O(n log n)

10.	Selection sort has a linear running time complexity.

a)	True

b)	False

c)	Not possible to comment

C H A P T E R7
STACKS

7.1 Introduction

A stack is an important data structure which is widely used in many
computer applications. A stack can be visualized with many familiar ex-
amples from our day-to-day lives. A very simple illustration of a stack is
a pile of books where one book is placed on top of another as in Figure
7.1. When we want to remove a book, we remove the topmost book first.
Hence, we can add or remove an element (i.e., book) only at or from one
position, which is the topmost position. There are many other daily life
examples in which we can see how a stack is implemented. We observe
that whenever we talk about a stack, we see that the element at the last
position will be served first. Thus, a stack can be described as a LIFO
(last in, first out) data structure; that is, the element which is inserted

In This Chapter

ll 	 Introduction
ll 	 Definitions of a stack
ll 	 Overflow and underflow in stacks
ll 	 Operations on stacks
ll 	 Implementation of stacks
ll 	 Applications of stacks
ll 	 Summary
ll 	 Exercises

306 • Data Structures and Program Design Using C++

7.2 Definition of a Stack

A stack is a linear collection of data elements in which the element
inserted last will be the element taken out first (i.e., a stack is a LIFO data
structure). The stack is an abstract data structure, somewhat similar to
queues. Unlike queues, a stack is open only on one end. The stack is a lin-
ear data structure in which the insertion and deletion of elements is done
only from the end called TOP. One end is always closed, and the other end
is used to insert and remove data.

Stacks can be implemented by using arrays or linked lists. We will discuss
the implementation of stacks using arrays and linked lists in this section.

FIGURE 7.1 Stack of books.

FIGURE 7.2 Representation of a stack.

last will be the first one to be taken out. Now, let us discuss stacks in
detail.

Stacks • 307

7.3 Overflow and Underflow in Stacks

Let us discuss both overflow and underflow in stacks in detail:

1.	Overflow in stacks – The overflow condition occurs when we try to
insert elements in a stack, but the stack is already full. If an attempt
is made to insert a value in a stack that is already full, an overflow
message is printed. It can be checked by the following formula:

If TOP = MAX – 1, where MAX is the size of the stack.

2.	Underflow in stacks – The underflow condition occurs when we try
to remove elements from a stack, but the stack is already empty. If an
attempt is made to delete a value from a stack that is already empty,
an underflow message is printed. It can be checked by the following
formula:

If TOP = NULL, where MAX is the size of the stack.

Practical Application:

1.	A real-life example of a stack is a pile of dishes where one dish is
placed on top of another. Now, when we want to remove a dish,
we remove the topmost dish first.

2.	Another real-life example of a stack is a pile of disks where one
disk is placed on top of another. Now, when we want to remove
a disk, we remove the topmost disk first.

308 • Data Structures and Program Design Using C++

7.4 Operations on Stacks

The three basic operations that can be performed on stacks are:

1.	PUSH

The push operation is the process of adding new elements in the stack.
However, before inserting any new element in the stack, we must always
check for the overflow condition, which occurs when we try to insert an ele-
ment in a stack which is already full. An overflow condition can be checked
as follows, if TOP = MAX – 1, where MAX is the size of the stack. Hence, if
the overflow condition is true, then an overflow message is displayed on the
screen; otherwise, the element is inserted into the stack.

For Example – Let us take a stack which has five elements in it. Suppose
we want to insert another element, 10, in it; then TOP will be incremented by
1. Thus, the new element is inserted at the position pointed to by TOP. Now,
let us see how a push operation occurs in the stack in the following figure:

Frequently Asked Questions

Q. �Define a stack and list the operations performed on
stacks.

Answer.
A stack is a linear data structure in which the insertion and deletion of an
element is done only from the end called TOP. It is LIFO in nature (i.e., Last
In First Out). Different operations that can be performed on stacks are:

a)	 Push operation

b)	 Pop Operation

c)	 Peek Operation

Stacks • 309

After inserting 10 in it, the new stack will be:

Step 1: START
Step 2: IF TOP = MAX – 1

Print OVERFLOW ERROR
Go to Step 5
[End of If]

Step 3: Set TOP = TOP + 1
Step 4: Set STACK[TOP] = ITEM
Step 5: EXIT

FIGURE 7.3 Stack after inserting a new element.

In the previous algorithm, first we check for the overflow condition. In
Step 3, TOP is incremented so that it points to the next location. Finally,
the new element is inserted in the stack at the position pointed to by TOP.

2.	POP

The pop operation is the process of removing elements from a stack.
However, before deleting an element from a stack, we must always check
for the underflow condition, which occurs when we try to delete an ele-
ment from a stack which is already empty. An underflow condition can be
checked as follows, if TOP = NULL. Hence, if the underflow condition is
true, then an underflow message is displayed on the screen; otherwise, the
element is deleted from the stack.

For Example – Let us take a stack which has five elements in it. Sup-
pose we want to delete an element, 35, from the stack; then TOP will be
decremented by 1. Thus, the element is deleted from the position pointed

Algorithm for a push operation in a stack

310 • Data Structures and Program Design Using C++

After deleting 35 from it, the new stack will be:

FIGURE 7.4 Stack after deleting an element.

Step 1: START
Step 2: IF TOP = NULL

Print UNDERFLOW ERROR
Go to Step 5
[End of If]

Step 3: Set ITEM = STACK[TOP]
Step 4: Set TOP = TOP - 1
Step 5: EXIT

In the previous algorithm, first we check for the underflow condition,
that is, whether the stack is empty or not. If the stack is empty then no dele-
tion takes place; otherwise, TOP is decremented to the previous position in
the stack. Finally, the element is deleted from the stack.

3.	PEEK

Peek is an operation that returns the value of the topmost element of
the stack. It does so without deleting the topmost element of the array.
However, the peek operation first checks for the underflow condition.

Algorithm for the pop operation in a stack

to by TOP. Now, let us see how the pop operation occurs in the stack in the
following figure:

Stacks • 311

An underflow condition can be checked as follows, if TOP = NULL.
Hence, if the underflow condition is true, then an underflow mes-
sage is displayed on the screen; otherwise, the value of the element is
returned.

FIGURE 7.5 Stack returning the topmost value.

Step 1: START
Step 2: IF TOP = NULL

Print UNDERFLOW ERROR
Go to Step 4
[End of If]

Step 3: Return STACK[TOP]
Step 4: EXIT

include<iostream.h>
include<conio.h>
include<stdlib.h>
define MAX 10
class stack
{

private:
int item, i;
int arr[MAX] ;
int top ;

public:
stack()

Write a menu-driven program for stacks performing all the operations.

Algorithm for the pop operation in a stack

312 • Data Structures and Program Design Using C++

{
top = 0 ;

}
void push()
{

if(top == MAX)
cout<<“Stack is full”;
else
{

cout<<“\nEnter value to push:”;
cin>>item;
cout<<“\nInserted successfully!!”;
arr[top++] = item;
getch();

}
}

void pop()
{

if(top == 0)
cout<<“Stack is empty”;
else
{

cout<< \n Popped value: “ << arr [top];
top--;
getch();

}
}

void display()
{

for(i=(top - 1) ; i>=0 ; i--)
{

cout<<“\n”<<arr[i];
getch();

}
}

};

Stacks • 313

int main()
{

stack obj ;
int ch;
while(1)
{

clrscr() ;
cout<<“\n***MENU***” ;
cout<<“\n1. PUSH” ;
cout<<“\n2. POP” ;
cout<<“\n3. DISPLAY” ;
cout<<“\n4. EXIT” ;
cout<<“\nenter your choice: “ ;
cin>>ch ;
switch(ch)
{

case 1 :
obj.push() ;
break ;

case 2 :
obj.pop() ;
break ;

case 3 :
obj.display() ;
break ;

case 4 :
cout<<“!!Exit!!” ;
exit(0) ;

default :
cout<<“wrong choice” ;
exit(0);

}
}

}

314 • Data Structures and Program Design Using C++

The output of the program is shown as:

FIGURE 7.6 Array representation of a stack.

7.5 Implementation of Stacks

Stacks can be represented by two data structures:

1.	Representation of stacks using arrays.

2.	Representation of stacks using a linked list.

Now, let us discuss both of them in detail.

7.5.1 Implementation of Stacks Using Arrays
Stacks can be easily implemented using arrays. Initially, the TOP point-

er of the stack points at the first position or location of the array. As we
insert new elements into the stack, the TOP keeps on incrementing, always
pointing to the position where the next element will be inserted. The repre-
sentation of a stack using an array is shown as follows:

Stacks • 315

FIGURE 7.7 Linked representation of a stack.

7.5.2 Implementation of Stacks Using Linked Lists
We have already studied how a stack is implemented using an array.

Now let us discuss the same using linked lists. We already know that in
linked lists, dynamic memory allocation takes place; that is, the memory is
allocated at runtime. But in the case of arrays, memory is allocated at the
start of the program. If we are aware of the maximum size of the stack in
advance, then implementation of stacks using arrays will be efficient. But if
the size is not known in advance, then we will use the concept of a linked list
in which dynamic memory allocation takes place. As we all know a linked
list has two parts; the first part contains the information of the node, and
the second part stores the address of the next element in the linked list.
Similarly, we can also implement a linked stack. Now, the START pointer in
the linked list will become the TOP pointer in a linked stack. All insertion
and deletion operations will be done at the node pointed to by TOP only.

7.5.2.1 Push Operation in Linked Stacks
The push operation is the process of adding new elements in the already

existing stack. The new elements in the stack will always be inserted at the
topmost position of the stack. Initially, we will check whether TOP = NULL.
If the condition is true, then the stack is empty; otherwise, the new memory
is allocated for the new node. We will understand it further with the help
of an algorithm:

Step 1: START
Step 2: Set NEW NODE -> INFO = VAL

IF TOP = NULL
Set NEW NODE -> NEXT = NULL
Set TOP = NEW NODE

ELSE
Set NEW NODE -> NEXT = TOP
Set TOP = NEW NODE

[End of If]
Step 3: EXIT

Algorithm for inserting a new element in a linked stack

316 • Data Structures and Program Design Using C++

FIGURE 7.8 Linked stack before insertion.

FIGURE 7.9 Linked stack after inserting new node.

For Example – Consider a linked stack with four elements; a new ele-
ment is to be inserted in the stack.

Algorithm for deleting an element from a linked stack

After inserting the new element in the stack, the updated stack be-
comes as shown in the following figure:

7.5.2.2 Pop Operation in Linked Stacks
The pop operation is the process of removing elements from an

already existing stack. The elements from the stack will always be
deleted from the node pointed to by TOP. Initially, we will check
whether TOP = NULL. If the condition is true, then the stack is emp-
ty, which means we cannot delete any elements from it. Therefore, in
that case an underflow error message is displayed on the screen. We
will understand it further with the help of an algorithm:

Step 1: START
Step 2: IF TOP = NULL

Print UNDERFLOW ERROR
[End of If]

Step 3: Set TEMP = TOP
Step 4: Set TOP = TOP -> NEXT
Step 5: FREE TEMP
Step 6: EXIT

Stacks • 317

FIGURE 7.10 Linked stack before deletion.

FIGURE 7.11 Linked stack after deleting topmost node/element.

For Example – Consider a linked stack with five elements; an element
is to be deleted from the stack.

After deleting an element from the stack, the updated stack becomes as
shown in the following figure:

Write a menu-driven program implementing a linked stack performing
push and pop operations.

include<iostream.h>
include<conio.h>
include<stdlib.h>
define MAX 10
struct node
{

int info ;
struct node *next ;

};
class stack
{

struct node *top ;
public:

stack() //Default Constructor
{

top = NULL ;
}

318 • Data Structures and Program Design Using C++

void push();
void pop();
void display();

};

void stack :: push()
{

int item;
struct node *ptr;
cout<<“\nEnter value to push: “ ;
cin>>item;
ptr -> info = item;
ptr -> next = NULL;
if(top != NULL)
ptr -> next = top ;
top = ptr;
cout<<“\nInserted successfully!!” ;
getch();

}

void stack :: pop()
{

struct node *temp;
if(top == NULL)
cout<<“Empty stack”;
else
{

temp=top ;
top = top -> next;
cout<<“\nPopped value : “<<temp->info;
delete temp ;
getch();

}
}

void stack :: display()
{

struct node *disp = top;
while(disp!=NULL)
{

Stacks • 319

cout<<“ -> “<<disp -> info ;
disp = disp -> next;

}
cout<<“NULL”;
getch();

}

int main()
{

stack obj ;
int ch;
while(1)
{

clrscr() ;
cout<<“\n***MENU***” ;
cout<<“\n1. PUSH” ;
cout<<“\n2. POP” ;
cout<<“\n3. DISPLAY” ;
cout<<“\n4. EXIT” ;
cout<<“\nEnter your choice: “ ;
cin>>ch ;
switch(ch)

{
case 1 :
obj.push() ;
break ;

case 2 :
obj.pop() ;
break ;

case 3 :
obj.display() ;
break ;

case 4 :
cout<<“!!Exit!!” ;
exit(0) ;

default :
cout<<“wrong choice” ;

320 • Data Structures and Program Design Using C++

7.6 Applications of Stacks

In this section, we will discuss various applications of stacks. The topics
that will be covered in this section are the following:

•	 Polish and Reverse Polish Notations and their need

•	 Conversion from Infix Expression to Postfix Expression

•	 Conversion from Infix Expression to Prefix Expression

•	 Evaluation of Postfix Expression

•	 Evaluation of Prefix Expression

•	 Parenthesis Balancing

Now, let us understand each one of them in detail.

exit(0);
}

}
}

The output of the program is shown as:

Stacks • 321

7.6.1 Polish and Reverse Polish Notations and Their Need

a.	 Polish Notations

Polish notation refers to a notation in which the operator is placed
before the operands. Polish notation was named after Polish mathemati-
cian Jan Lukasiewicz. We can also say that the transforming of an expres-
sion into a form is called a polish notation. An algebraic expression can be
represented in three forms. All these forms refer to the relative position of
operators with respect to the operands.

1.	Prefix Form – In an expression, if the operator is placed before the
operands, that is, +XY, then it is said to be in prefix form.

2.	Infix Form – In an expression, if the operator is placed in the mid-
dle of the operands, that is, X + Y, then it is said to be in infix form.

3.	Postfix Form – In an expression, if the operator is placed after the
operands, that is, XY+, then it is said to be in postfix form.

b.	 Reverse Polish Notation

This notation frequently refers to the postfix notation or suffix notation.
It refers to the notation in which the operator is placed after its two oper-
ands, that is, XY + AF BC*.

c.	 Need for Polish and Reverse Polish Notation

It is comparatively easy for a computer system to evaluate an expres-
sion in polish notation as the system need not check for priority-wise
execution of various operators (like the BODMAS rule), as all the opera-
tors in prefix or postfix expressions will automatically occur in their order
of priority.

7.6.2 Conversion from Infix Expression to Postfix Expression
In any expression, we observe that there are two types of parts/

components clubbed together. They are operands and operators. The
operators are the ones that indicate the operation to be carried out,
and the operands are ones on which the operators operate. Operators
have their priority of execution. For simplicity of the algorithm, we will
use only addition (+), subtraction (-), modulus (%), multiplication (*),

322 • Data Structures and Program Design Using C++

and division (/) operators. The precedence of these operators is given
as follows:

*, ^, /, % (Higher priority) +, - (Lower priority)

The order of evaluation of these operators can be changed by using pa-
rentheses. For example, an expression X * Y + Z can be solved, as first X *
Y will be done and then the result is added to Z. But if the same expression
is written with parentheses as X * (Y + Z), now Y + Z will be evaluated first,
and then the result is multiplied by X.

We can convert an infix expression to a postfix expression using a stack.
First, we start to scan the expression from the left side to the right side. In an
expression, there may be some operators, operands, and parentheses. Hence,
we have to keep in mind some of the basic rules, which are as follows:

•	 Each time we encounter an operand, it is added directly to the postfix
expression.

•	 Each time we get an operator, we should always check the top of the
stack to check the priority of the operators.

•	 If the operator at the top of the stack has higher precedence or the
same precedence as that of the current operator, then, in that case,
it is repeatedly popped out from the stack and added to the postfix
expression. Otherwise, it is pushed into the stack.

•	 Each time when an opening parenthesis is encountered, it is directly
pushed into the stack, and similarly, if a closing parenthesis is
encountered, we will repeatedly pop it out from the stack and add the
operators in the postfix expression. Also, the opening parenthesis is
deleted from the stack.

Now, let us understand it with the help of an algorithm in which the
first step is to push a left parenthesis in the stack and also add a closing pa-
renthesis at the end of the infix expression. The algorithm is repeated until
the stack becomes empty.

Stacks • 323

Step 1:	START
Step 2:	�Add ‘)’ parenthesis to the end of infix expres-

sion.
Step 3:	Push’’parenthesis on the stack.
Step 4:	�Repeat the steps until each character in the in-

fix expression is scanned.
a) �IF ‘(’ parenthesis is found, push it

onto the stack.
b) �If an operand is encountered, add it to

the postfix expression.
c) �IF ‘)’ parenthesis is found, then follow

these steps –
- �Continually pop from the stack and add

it to the postfix expression until a
‘(’ parenthesis is encountered.

- Eliminate the ‘(’ parenthesis.
d) �If an operator is found, then follow

these steps –
- �Continually pop from the stack and add

it to the postfix expression which has
same or high precedence than the current
operator.

- Push the current operator to the stack.
Step 5:	�Continually pop from the stack to the postfix ex-

pression until the stack becomes empty.
Step 6:	EXIT

For Example – Convert the following infix expression into a postfix
expression.

■■ a)	 (A + B) * C / D

■■ b)	 [((A +B) * (C – D)) + (F – G)]

Algorithm to convert an infix expression into a postfix expression

324 • Data Structures and Program Design Using C++

Solution:
■■ a)

Character Stack Expression
((
A (A
+ (+ A
B (+ AB
) AB+
* * AB+
C * AB+C
/ / AB+C*

D AB+C*D/
Answer = AB+C*D/

Character Stack Expression
[[
([(
([((
A [((A
+ [((+ A
B [((+ AB
) [(AB+
* [(* AB+
([(*(AB+
C [(*(AB+C
- [(*(- AB+C
D [(*(- AB+CD
) [(* AB+CD-
) [AB+CD-*
+ [+ AB+CD-*
([+(AB+CD-*
F [+(AB+CD-*F
- [+(- AB+CD-*F
G [+(- AB+CD-*FG
) [+ AB+CD-*FG-
] AB+CD-*FG-+

Answer = AB+CD-
*FG-+

■■ b)

Stacks • 325

// Write a program to convert an infix expression to a postfix expression.

#include<iostream.h>
#include<ctype.h>
#include<string.h>
#include<conio.h>
const int SIZE = 100;
class InfixtoPostfix
{
char tar[SIZE],stack[SIZE];
char *src, *tgt;
int top, i;
public:
InfixtoPostfix();
void set_exp(char *str);
void push(char c);
char pop();
void convert() ;
int priority(char c);
void display();

};
InfixtoPostfix :: InfixtoPostfix()
{
top = -1;
strcpy(tar, “”);
strcpy(stack, “”);
tgt = tar;
src = “”;

}
void InfixtoPostfix :: set_exp(char *str)
{
src = str;

}
void InfixtoPostfix :: display()
{
cout<<tar;

}
void InfixtoPostfix :: push(char c)
{
top++;
stack[top] = c;

}

326 • Data Structures and Program Design Using C++

char InfixtoPostfix :: pop()
{
char ch = stack[top];
top--;
return(ch);

}
void InfixtoPostfix :: convert()
{

while(*src)
{

if(*src == ‘ ‘ || *src == ‘\t’)
{
src++;
continue;

}
if(isdigit (*src) || isalpha(*src))

{
while(isdigit(*src) || isalpha(*src))
{
*tgt = *src;
src++;
tgt++;

}
}

if(*src == ‘(‘)
{
push(*src) ;
src++ ;

}
char opr ;
if(*src == ‘*’ || *src == ‘+’ || *src == ‘/’ || *src
== ‘%’ || *src == ‘-’ || *src == ‘^’)
{
if(top != -1)
{
opr = pop();
while(priority(opr) >= priority(*src))
{
*tgt = opr;
tgt++;
opr = pop();

}

Stacks • 327

push(opr);
push(*src);

}
else
push(*src);
src++;

}
if(*src == ‘)’)
{
opr = pop();
while((opr) != ‘(‘)
{
*tgt = opr;
tgt++;
opr = pop();

}
src++;

}
}

while(top != -1)
{
char opr =pop();
*tgt = opr;
tgt++;

}
*tgt = ‘\0’;

}
int InfixtoPostfix :: priority(char c)
{
if(c == ‘^’)
return 3;
if(c == ‘*’ || c == ‘/’|| c == ‘%’)
return 2;
else
{
if(c == ‘+’ || c == ‘-’)
return 1;
else
return 0;

}
}

328 • Data Structures and Program Design Using C++

void main()
{
clrscr();
char exp[SIZE];
InfixtoPostfix obj;
cout<<“\nEnter Infix expression: “;
cin.getline(exp, SIZE);
obj.set_exp(exp);
obj.convert();
cout<<“\nThe Postfix expression is:\n “;
obj.display();
getch();

}

The output of the program is shown as:

Frequently Asked Questions

Q. �Convert the following infix expression into a postfix
expression.

(A + B) ^ C – (D * E) / F

Stacks • 329

Answer.

Character Stack Expression
((
A (A
+ (+ A
B (+ AB
) AB+
^ ^ AB+
C ^ AB+C
- - AB+C^
(-(AB+C^
D -(AB+C^D
* -(* AB+C^D
E -(* AB+C^DE
) - AB+C^DE*
/ -/ AB+C^DE*
F -/ AB+C^DE*

Answer = AB+C^DE*F/-

Algorithm to convert an infix expression into a prefix expression

Step 1:START
Step 2:�Reverse the infix expression. Also, interchange

leftand right parenthesis on reversing the infix
expression.

Step 3:�Obtain the postfix expression of the reversed in-
fix expression.

Step 4:�Reverse the postfix expression so obtained in
Step 3. Finally, the expression is converted
into prefix expression.

Step 5:	EXIT

For Example – Convert the following infix expression into a prefix
expression.

7.6.3 Conversion from Infix Expression to Prefix Expression
We can convert an infix expression to its equivalent prefix expression

with the help of the following algorithm.

330 • Data Structures and Program Design Using C++

■■ a)	 (X - Y) / (A + B)

■■ b)	 (X – Y / Z) * (A / B – C)

Solution:

■■ a)	 After reversing the given infix expression ((B + A) / Y – X)

■■ 	 Find the postfix expression of (B + A) / (Y – X)

■■ 	 Now, reverse the postfix expression so obtained, that is, X/Y+AB

■■ 	 Hence, the prefix expression is –X/Y+AB

■■ b)	 After reversing the given infix expression (C – B / A) * (Z / Y – X)

■■ Find the postfix expression of (C – B / A) * (Z / Y – X)

Character Stack Expression
((
(((
B ((B
+ ((+ B
A ((+ BA
) (BA+
/ (/ BA+
Y (/ BA+Y
- (- BA+Y/
X (- BA+Y/X
) BA+Y/X-

BA+Y/X-

Character Stack Expression
((
C (C
- (- C
B (- CB
/ (-/ CB
A (-/ CBA
) CBA/-
* * CBA/-

Stacks • 331

#include<iostream.h>
#include<ctype.h>
#include<string.h>
#include<conio.h>
const int SIZE = 100;
class InfixtoPrefix
{
char tar[SIZE],stack[SIZE];
char *src, *tgt;
int top, i;
public:
InfixtoPrefix();
void set_exp(char *str);
void push(char c);
char pop();
void convert() ;
int priority(char c);
void display();

};
InfixtoPrefix :: InfixtoPrefix()
{
top = -1;
strcpy(tar, “”);
strcpy(stack, “”);
i = 0;

}

(*(CBA/-
Z *(CBA/-Z
/ *(/ CBA/-Z
Y *(/ CBA/-ZY
- *(- CBA/-ZY/
X *(- CBA/-ZY/X
) * CBA/-ZY/X-

CBA/-ZY/X-*

■■ Now, reverse the postfix expression so obtained, that is, *–X/ZY-/ABC

■■ Hence, the prefix expression is *–X/ZY-/ABC

// Write a program to convert an infix expression to a prefix expression.

332 • Data Structures and Program Design Using C++

void InfixtoPrefix :: set_exp(char *str)
{
src = str;
strrev(src);
i = strlen(src);
tgt = tar + (i-1);

}
void InfixtoPrefix :: display()
{
while(*tgt)

{
cout<<“ “<<*tgt;
tgt++;

}
}
void InfixtoPrefix :: push(char c)
{
top++;
stack[top] = c;

}

char InfixtoPrefix :: pop()
{
char ch = stack[top];
top--;
return(ch);

}
void InfixtoPrefix :: convert()
{
while(*src)
{
if(*src == ‘ ‘ || *src == ‘\t’)
{
src++;
continue;

}
if(isdigit (*src) || isalpha(*src))
{
while(isdigit(*src) || isalpha(*src))
{
*tgt = *src;
src++;
tgt--;

Stacks • 333

}
}

if(*src == ‘)’)
{
push(*src) ;
src++ ;

}
char opr ;
if(*src == ‘*’ || *src == ‘+’ || *src == ‘/’ || *src
== ‘%’ || *src == ‘-’ || *src == ‘^’)
{
if(top != -1)
{
opr = pop();
while(priority(opr) > priority(*src))
{
*tgt = opr;
tgt--;
opr = pop();

}
push(opr);
push(*src);

}
else
push(*src);
src++;

}
if(*src == ‘(‘)
{
opr = pop();
while((opr) != ‘)’)
{
*tgt = opr;
tgt--;
opr = pop();

}
src++;

}
}

while(top != -1)
{
char opr =pop();
*tgt = opr;

334 • Data Structures and Program Design Using C++

tgt--;
}

tgt++;
}
int InfixtoPrefix :: priority(char c)
{
if(c == ‘^’)
return 3;
if(c == ‘*’ || c == ‘/’|| c == ‘%’)
return 2;
else
{
if(c == ‘+’ || c == ‘-’)
return 1;
else
return 0;

}
}
void main()
{
clrscr();
char exp[SIZE];
InfixtoPrefix obj;
cout<<“\nEnter Infix expression: “;
cin.getline(exp, SIZE);
obj.set_exp(exp);
obj.convert();
cout<<“\nThe Prefix expression is:\n “;
obj.display();
getch();

}
The output of the program is shown as:

Stacks • 335

Character Stack Operation
2 2 PUSH 2
3 2, 3 PUSH 3
4 2, 3, 4 PUSH 4
+ 2, 7 POP 4, 3

ADD(4 + 3 = 7)
PUSH 7

* 14 POP 7, 2
MUL(7 * 2 = 14)

PUSH 14
5 14, 5 PUSH 5
6 14, 5, 6 PUSH 6
7 14, 5, 6, 7 PUSH 7
8 14, 5, 6, 7, 8 PUSH 8

7.6.4 Evaluation of a Postfix Expression
With the help of stacks, any postfix expression can easily be evaluated.

Every character in the postfix expression is scanned from left to right. The
steps involved in evaluating a postfix expression are given in the algorithm.

Algorithm for evaluating a postfix expression

Step 1:START
Step 2:�IF an operand is encountered, push it onto the

stack.
Step 3:�IF an operator “op1” is encountered, then follow

these steps –
a)	�Pop the two topmost elements from the stack,

where X is the topmost element and Y is the
next top element below X.

b)	Evaluate X op1 Y.
c)	Push the result onto the stack.

Step 4:�Set the result equal to the topmost element of
the stack.

Step 5:EXIT

For Example – Evaluate the following postfix expressions.

■■ a)	 2 3 4 + * 5 6 7 8 + * + +
■■ b)	T F T F AND F F F XOR OR AND T XOR AND OR

Solution:
■■ a)

336 • Data Structures and Program Design Using C++

+ 14, 5, 6, 15 POP 8, 7
ADD(8 + 7 = 15)

PUSH 15
* 14, 5, 90 POP 15, 6

MUL(15 * 6 = 90)
PUSH 90

+ 14, 95 POP 90, 5
ADD(90 + 5 = 95)

PUSH 95
+ 109 POP 95, 14

ADD(95 + 14 = 109)
PUSH 109

Answer = 109

■■ b)

Character Stack Operation
T T PUSH T
F T, F PUSH F
T T, F, T PUSH T
F T, F, T, F PUSH F

AND T, F, F POP F, T
AND(F AND T = F)

PUSH F
F T, F, F, F PUSH F
F T, F, F, F, F PUSH F
F T, F, F, F, F, F PUSH F

XOR T, F, F, F, T POP F, F
XOR(F XOR F = T)

PUSH T
OR T, F, F, T POP T, F

OR(T OR F = T)
PUSH T

AND T, F, F POP T, F
AND(T AND F = F)

PUSH F
T T, F, F, T PUSH T

XOR T, F, F POP T, F
XOR(T XOR F = F)

PUSH F

Stacks • 337

AND T, F POP F, F
AND(F AND F = F)

PUSH F
OR T POP F, T

OR(F OR T = T)
PUSH T

Answer = T

#include<iostream.h>
#include<ctype.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>
const int SIZE = 100;
class Expression
{
char stack[SIZE];
char *src ;
int top, i;
public:
Expression();
void set_exp(char *str);
void push(int value);
char pop();
void cal();
void display();

};
Expression :: Expression()
{
top = -1;

}
void Expression :: set_exp(char *str)
{
src = str;

}
void Expression :: display()
{
	 i = pop();
	 cout<<“\nAfter evaluating result is: “<<i;
}

Write a program for evaluation of a postfix expression.

338 • Data Structures and Program Design Using C++

void Expression :: push(int value)
{
	 top++;
	 stack[top] = value;
}

char Expression :: pop()
{
int item = stack[top];
top--;
return(item);

}
void Expression :: cal()
{
int a, b, c;
while(*src)
{

if(*src == ‘ ‘ || *src == ‘\t’)
{
src++;
continue;

}
if(isdigit (*src))

{
i = *src - ‘0’;
push(i);

}
else
{
a = pop();
b = pop();
switch(*src)

{
case ‘+’:
c = b + a;
break;
case ‘-’:
c = b - a;
break;

case ‘*’:
c = b * a;
break;

Stacks • 339

case ‘/’:
c = b / a;
break;

case ‘%’:
c = b % a;
break;

case ‘^’:
c = pow(b, a);
break;

default:
cout<<“Wrong or unknown operator”;
exit(0);
}
push(c);
}

src++;
}

}

void main()
{
clrscr();
char exp[SIZE];
Expression obj;
cout<<“\nEnter Postfix expression: “;
cin.getline(exp, SIZE);
obj.set_exp(exp);
obj.cal();
obj.display();
getch();

}
The output of the program is shown as:

340 • Data Structures and Program Design Using C++

Frequently Asked Questions

Q. Evaluate the given postfix expression.

2 3 4 * 6 / +

Answer.
Character Stack

2 2
3 2, 3
4 2, 3, 4
* 2, 12
6 2, 12, 6
/ 2, 2
+ 4

Answer = 4

7.6.5 Evaluation of a Prefix Expression
There are a variety of techniques for evaluating a prefix expression. But

the simplest of all the techniques is explained in the following algorithm.

Algorithm for evaluating a prefix expression

Step 1:START
Step 2:Accept the prefix expression.
Step 3:�Repeat the steps 4 to 6 until all the characters

have been scanned.
Step 4:The prefix expression is scanned from the right.
Step 5:�IF an operand is encountered, push it onto the

stack.
Step 6:�IF an operator is encountered, then follow these

steps –
a)	Pop two elements from the operand stack.
b)	�Apply the operator on the popped operands.
c)	Push the result onto the stack.

Step 7:EXIT

Stacks • 341

■■ b)

Character Stack Operation
7 7 PUSH 7
6 7, 6 PUSH 6
+ 13 POP 6, 7

ADD(7 + 6 = 13)
PUSH 13

5 13, 5 PUSH 5
4 13, 5, 4 PUSH 4
3 13, 5, 4, 3 PUSH 3
2 13, 5, 4, 3, 2 PUSH 2

For Example – Evaluate the given prefix expressions.

■■ a)	 + - 4 6 * 9 /10 50

■■ b)	 + * * + 2 3 4 5 + 6 7

Solution:

■■ a)

Character Stack Operation
50 50 PUSH 50
10 50, 10 PUSH 10
/ 5 POP 10, 50

DIV(50 / 10 = 5)
PUSH 5

9 5, 9 PUSH 9
* 45 POP 9, 5

MUL(5 * 9 = 45)
PUSH 45

6 45, 6 PUSH 6
4 45, 6, 4 PUSH 4
- 45, 2 POP 4, 6

SUB(6 – 4 = 2)
PUSH 2

+ 47 POP 2, 45
ADD(45 + 2 = 47)

PUSH 47
Answer = 47

342 • Data Structures and Program Design Using C++

Write a program for evaluation of a prefix expression.

#include<iostream.h>
#include<conio.h>
#include<string.h>
int stack[10];
int top=-1;
void push(int);
int pop();
void main()
{
char pref[20];
int length,item,i,op1,op2,result;
clrscr();
cout<<“Enter the prefix Expression :” ;
cin>>pref[i];
length=strlen(pref);
for(i=length-1;i>=0;i--)
{
switch (get(pref[i]))
{
case 0:
item=pref[i]-‘0’;
push(item);
break;

case 1:
op1=pop();

+ 13, 5, 4, 5 POP 2, 3
ADD(3 + 2 = 5)

PUSH 5
* 13, 5, 20 POP 5, 4

MUL(4 * 5 = 20)
PUSH 20

* 13, 100 POP 20, 5
MUL(5 * 20 = 100)

PUSH 100
+ 113 POP 100, 13

ADD(13 + 100 = 113)
PUSH 113

Answer = 113

Stacks • 343

op2=pop();
switch(pref[i])
{
case ‘+’:
result=op1+opr;
break;

case ‘-’:
result=op1-op2;
break;

case ‘*’:
result=op1*op2;
break;

case ‘/’:
result=op1/op2;
break;

}
push(result);

}
}

cout<<“Result is “<<stack[0] ;
getch();

}

void push(int item)
{
stack[++top]=item;

}

int pop()
{
return(stack[top--]);

}
int get(char ch)

{
if(ch==‘+’||ch==‘-’||ch==‘*’||ch==‘/’)
return 1;
else
return 0;

}

344 • Data Structures and Program Design Using C++

The output of the program is shown as:

7.6.6 Parenthesis Balancing
Stacks can be used to check the validity of parentheses in any arithmetic

or algebraic expression. We are already aware that in a valid expression, the
parentheses or the brackets occur in pairs, that is, if a parenthesis is opening
then it must be closed in an expression. Otherwise, the expression would
be invalid. For example, (X + Y – Z is invalid. But (X + Y – Z) looks a valid
expression. Hence, there are some key points which are to be kept in mind:

•	 Each time a “(’’ parenthesis is encountered, it should be pushed onto
the stack.

•	 Each time a “)” parenthesis is encountered, the stack is examined.

•	 If the stack is already an empty stack, then the “)” parenthesis does not
have a “(” parenthesis, and hence the expression is therefore invalid.

•	 If the stack is not empty, then we will pop the stack and check whether
the popped element corresponds to the “)” parenthesis.

•	 When we reach the end of the stack, the stack must be empty. Otherwise,
one or more “(” parenthesis, does not have a corresponding “)”
parenthesis and, therefore, the expression will become invalid.

For Example – Check whether the following given expressions are
valid or not.

■■ a)	 ((A – B) * Y

■■ b)	[(A + B) – {X + Y} * [C – D]]

Stacks • 345

Symbol Stack
1. ((
2. ((, (
3. A (, (
4. - (, (
5. B (, (
6.) (
7. * (
8. Y (
9. (

Symbol Stack
1. [[
2. ([, (
3. A [, (
4. + [, (
5. B [, (
6.) [
7. - [
8. { [, {
9. X [, {
10. + [, {
11. Y [, {
12. } [
13. * [
14. [[, [
15. C [, [
16. - [, [
17. D [, [
18.] [
19.]

Answer - As the stack is not empty, the expression is not a valid expression.

■■ b)

Solution:

■■ a)

346 • Data Structures and Program Design Using C++

#include<iostream.h>
#include<conio.h>
#include<string.h>
define SIZE 30
int stack[SIZE];
int top = -1;
void push(char);
char pop();
void main()
{
char express[SIZE], val;
int i , temp=1;
clrscr();
cout<<“Enter the Expression:” ;
cin>>express;
for(i=0; i<strlen(express); i++)
{
if (express[i]== ‘(’ || express[i]== ‘{’ ||
express[i]== ‘[’)
push(express[i]);
if(express[i]== ‘)’ || express[i]== ‘}’ ||
express[i]== ‘]’){}
if(top== -1){}
else

{
val = pop();
if (express[i]== ‘)’ && (val == ‘{’ || val== ‘[’))
temp = 0;
if (express[i]== ‘}’ && (val == ‘(’ || val== ‘[’))
temp = 0;
if (express[i]== ‘}’ && (val == ‘(’ || val== ‘{’))
temp = 0;

}
}

Answer – As the stack is empty, the given expression is a valid
expression.

// Write a program to implement parenthesis balancing.

Stacks • 347

if(top>=0)
temp=0;
if(temp==1)
cout<<“\n Expression is valid” ;
else
cout<<“\n Expression is invalid” ;

}

void push(char c)
{
if(top == (SIZE-1))
cout<<“\n Overflow of stack” ;
else
{
top = top+1 ;
stack[top] = c;

}
}
char pop()
{
if(top==-1)
cout<<“\n Underflow of stack” ;
else
return(stack[top--]);

}
The output of the program is shown as –

348 • Data Structures and Program Design Using C++

7.7 Summary

•	 A stack is a linear collection of data elements in which the element
inserted last will be the element taken out first (i.e., a stack is a LIFO
data structure). The stack is a linear data structure, in which the
insertion as well as the deletion of an element is done only from the
end called TOP.

•	 In computer memory, stacks can be implemented by using either
arrays or linked lists.

•	 The overflow condition occurs when we try to insert the elements in
the stack, but the stack is already full.

•	 The underflow condition occurs when we try to remove the elements
from the stack, but the stack is already empty.

•	 The three basic operations that can be performed on the stacks are
push, pop, and peek operations.

•	 A push operation is the process of adding new elements in the
stack.

•	 A pop operation is the process of removing elements from the
stack.

•	 A peek operation is the process of returning the value of the topmost
element of the stack.

•	 Polish notation refers to a notation in which the operator is placed
before the operands.

•	 Infix, prefix, and postfix notations are three different but equivalent
notations of writing algebraic expressions.

7.8 Exercises

7.8.1 Theory Questions

1.	 What is a stack? Give its real-life example.

2.	 What do you understand about stack overflow and stack underflow?

3.	 What is a linked stack, and how it is different from a linear stack?

Stacks • 349

4.	 Discuss various operations which can be performed on the stacks.

5.	 Explain the terms polish notation and reverse polish notation.

6.	 Define stacks and in what ways a stack can be implemented.

7.	 What are the various applications of a stack? Explain in detail.

8.	 Why is a stack known as a Last-In-First-Out structure?

9.	 �What are different notations to represent an algebraic expression?
Which one is mostly used in computers?

10.	�Explain the concept of linked stacks and also discuss how insertion
and deletion takes place in it.

11.	�Draw the stack structure when the following operations are per-
formed one after another on an empty stack.

a)	Push 1, 2, 6, 17, 100

b)	Pop three numbers

c)	Peek

d)	Push 50, 23, 198, 500

e)	Display

12.	�Convert the following infix expressions to their equivalent postfix
expressions.

a)	A + B + C – D * E / F

b)	[A – C] + {D * E}

c)	[X / Y] % (A * B) + (C % D)

d)	[(A – C + D) % (B – H + G)]

e)	18 / 9 * 3 – 4 + 10 / 2

13.	Check the validity of the given algebraic expressions.

a)	(([A – V – D] + B)

b)	[(X – {Y * Z})]

c)	[A + C + E)

350 • Data Structures and Program Design Using C++

14.	�Convert the following infix expressions to their equivalent prefix
expressions.

a)	18 / 9 * 3 – 4 + 10 / 2

b)	X * (Z / Y)

c)	[(A + B) – (C + D)] * E

15.	Evaluate the given postfix expressions.

a)	1 2 3 * * 4 5 6 7 + + * *

b)	12 4 / 45 + 2 3 * +

7.8.2 Programming Questions

1.	Write a C++ program to implement a stack using arrays.

2.	Write a program to convert an infix expression to a prefix expres-
sion.

3.	Write a program to copy the contents from one stack to another us-
ing classes.

4.	Write a C++ program to convert the expression “x + y” into “xy+”
using classes.

5.	Write a program to evaluate a postfix expression.

6.	Write a program to evaluate a prefix expression.

7.	Write a program to convert “b - c” into “-bc” using classes.

8.	Write a function that performs a push operation in a linked stack.

7.8.3 Multiple Choice Questions

1.	New elements in the stack are always inserted from:

a)	Front end

b)	Top end

c)	Rear end

d)	Both (a) and (c)

Stacks • 351

2.	A stack is a _______ data structure.

a)	FIFO

b)	LIFO

c)	FILO

d)	LILO

3.	The overflow condition in the stack exists when:

a)	TOP = NULL

b)	TOP = MAX

c)	TOP = MAX – 1

d)	None of the above

4.	The function that inserts the elements in a stack is called ________.

a)	Push()

b)	Peek()

c)	Pop()

d)	None of the above

5.	Disks piled up one above the other represent a _______.

a)	Queue

b)	Stack

c)	Tree

d)	Linked List

6.	Reverse Polish notation is the other name for a ________.

a)	Postfix expression

b)	Prefix expression

c)	Infix expression

d)	All of the above

352 • Data Structures and Program Design Using C++

7.	Stacks can be represented by:

a)	Linked List only

b)	Arrays only

c)	Both a) and b)

d)	None of the above

8.	If the numbers 10, 45, 13, 50, and 32 are pushed onto a stack, what
does pop return?

a)	10

b)	45

c)	50

d)	32

9.	Which data structure is required for implementing a parenthesis
balancer?

a)	Queue

b)	Tree

c)	Stack

d)	Heap

10.	�The postfix representation of the expression (2 – b) * (a + 10) / (c * 8)
will be:

a)	8 a * c 10 + b 2 - * /

b)	/ 2 a c * + b 10 * 9 –

c)	2 b – a 10 + * c 8 * /

d)	10 a + * 2 b - / c 8 *

C H A P T E R8
TREES

8.1    Introduction

In earlier chapters we learned about various data structures such as
arrays, linked lists, stacks, and queues. All these data structures are linear
data structures. Although linear data structures are flexible, it is quite diffi-
cult to use them to organize data into a hierarchical representation. Hence,
to overcome this problem or limitation, we create a new data structure
which is called a tree. A tree is a data structure that is defined as a set of one
or more nodes which allows us to associate a parent-child relationship. In
trees, one node is designated as the root node or parent node, and all the
remaining nodes can be partitioned into non-empty sets, each of which is
a subtree of the root. Unlike natural trees, a tree data structure is upside
down, having a root at the top and leaves at the bottom. Also, there is no
parent of the root node. A root node can only have child nodes. On the

In This Chapter

ll 	 Introduction
ll 	 Definitions
ll 	 Binary tree
ll 	 Binary search tree
ll 	 AVL trees
ll 	 Summary
ll 	 Exercises

354 • Data Structures and Program Design Using C++

contrary, leaf nodes or leaves are those that have no children. When there
are no nodes in the tree, then the tree is known as a null tree or empty tree.
Trees are widely used in various day-to-day applications. Also, the recur-
sive programming of trees makes the programs optimized and easily under-
standable. Trees are also used to represent the structure of mathematical
formulas. Figure 8.1 represents a tree. In the following tree, A is the root
node of the tree. X, Y, and Z are the child nodes of the root node A. They
also form the subtrees of the tree. Also, B, C, Y, D, and E are the leaf nodes
of the tree as they have no children.

FIGURE 8.1. A tree.

Practical Application:

1.	The members of a family can be visualized as a tree in which the
root node can be visualized as a grandfather. His two children
can be visualized as the child nodes. Then the grandchildren
form the left and the right subtrees of the tree.

2.	Trees are used to organize information in database systems and
also to represent the syntactic structure of the source programs
in compilers.

Trees • 355

8.2   Definitions

•	 Node – A node is the main component of the tree data structure.
It stores the actual data along with the links to the other nodes.

•	 Root – The root node is the topmost node of the tree. It does not have
a parent node. If the root node is empty, then the tree is empty.

•	 Parent – The parent of a node is the immediate predecessor of that
node. In the following figure, X is the parent of the Y and Z nodes.

FIGURE 8.2. Structure of a node.

FIGURE 8.3. Parent node.

•	 Child – The child nodes are the immediate successors of a node. They
must have a parent node. A child node placed at the left side is called
the left child, and similarly, a child node placed at the right side is
called a right child. Y is the left child of X and Z is the right child of X.

FIGURE 8.4. Child nodes.

356 • Data Structures and Program Design Using C++

•	 Leaf / Terminal nodes – A leaf node is one which does not have any
child nodes.

•	 Subtrees – The nodes B, X, and Y form the left subtree of root A.
Similarly, the nodes C and Z form the right subtree of A.

FIGURE 8.5. Subtrees.

FIGURE 8.6. Path.

FIGURE 8.7. Node Level Numbers.

•	 Path – It is a unique sequence of consecutive edges which is required
to be followed to reach the destination from a given source. The path
from root node A to Y is given as A-B, B-Y.

•	 Level number of a node – Every node in the tree is assigned a
level number. The root is at level 0, the children of the root node are
at level 1, and so on.

Trees • 357

•	 Height –The height of the tree is the maximum level of the node + 1.
The height of a tree containing a single node will be 1. Similarly, the
height of an empty tree will be 0.

•	 Ancestors – The ancestors of a node are any predecessor nodes on
the path between the root and the destination. There are no ancestors
for the root node. The nodes A and B are the ancestors of node X.

•	 Descendants – The descendants of a node are any successor nodes
on the path between the given source and the leaf node. There are no
descendants of the leaf node. Here, B, X, and Y are the descendants
of node A.

•	 Siblings – The child nodes of a given parent node are called siblings.
X and Y are the siblings of B in Figure 8.8.

FIGURE 8.8. Siblings.

•	 Degree of a node – It is equal to the number of children that a node has.

•	 Out-degree of a node – It is equal to the number of edges leaving
that node.

•	 In-degree of a node – It is equal to the number of edges arriving at
that node.

•	 Depth – It is given as the length of the path from the root node to the
destination node.

8.3   Binary Tree

A binary tree is a collection of nodes where each node contains three
parts, that is, left pointer, right pointer, and the data item. The left pointer
points to the left subtree and the right pointer points to the right subtree.
The topmost element of the binary tree is known as a root node. The root
pointer points to the root node. As the name suggests, a binary tree can

358 • Data Structures and Program Design Using C++

have at most two children, that is, a parent can have zero, one, or at most
two children. Also, if root = NULL, then it means that the tree is empty.
Figure 8.9 represents a binary tree.

In the following figure, A represents the root node of the tree. B and C
are the children of root node A. Nodes B, D, E, F, and G constitute the left
subtree. Similarly, nodes C, H, I, and J constitute the right subtree. Now,
nodes G, E, F, I, and J are the terminal/leaf nodes of the binary tree, as they
have no children. Hence, node A has two successors B and C. Node B has
two successors D and G. Similarly, node D also has two successors E and F.
Node G has no successor. Node C has only one successor H. Node H has
two successors I and J. Since nodes E, F, G, I, and J have no successors, they
are said to have empty subtrees.

FIGURE 8.9. A binary tree.

8.3.1 Types of Binary Trees
There are two types of binary trees:

1.	Complete Binary Trees – A complete binary tree is a type of binary
tree which obeys/satisfies two properties:

a.	First, every level in a complete binary tree except the last one must
be completely filled.

Trees • 359

b.	Second, all the nodes in the complete binary tree must appear left as
much as possible.

In a complete binary tree, the maximum number of nodes at level n is
2n nodes. Also, the total number of nodes in a complete binary tree of depth
d is equal to the sum of all nodes present at each level between 0 and d.

FIGURE 8.10. Complete binary trees.

2.	Extended Binary Trees – Extended binary trees are also known as 2T-
trees. A binary tree is said to be an extended binary tree if and only if
every node in the tree has either zero children or two children. In an
extended binary tree, nodes having two children are known as internal
nodes. On the contrary, nodes having no children are known as exter-
nal nodes. In the following figure, the internal nodes are represented by
I and the external nodes are represented by E.

FIGURE 8.11. Extended binary trees.

8.3.2 Memory Representation of Binary Trees
Binary trees can be represented in a computer’s memory in either of

the following ways:

1.	Array Representation of Binary Trees

2.	Linked Representation of Binary Trees

360 • Data Structures and Program Design Using C++

Now, let us discuss both of them in detail.

Array Representation of Binary Trees

A binary tree is represented using an array in the computer’s memory.
It is also known as sequential representation. Sequential representation of
binary trees is done using one-dimensional (1-D) arrays. This type of rep-
resentation is static and hence inefficient, as the size must be known in
advance and thus requires a lot of memory space. The following rules are
used to decide the location of each node in the memory:

a.	The root node of the tree is stored in the first location.

b.	If the parent node is present at location k, then the left child is stored
at location 2k, and the right child is stored at location (2k + 1).

c.	The maximum size of the array is given as (2h – 1), where h is the
height of the tree.

For Example – A binary tree is given as follows. Give its array repre-
sentation in the memory.

FIGURE 8.12. Binary tree and its array representation.

Trees • 361

Linked Representation of Binary Trees

A binary tree can also be represented using a linked list in a com-
puter’s memory. This type of representation is dynamic, as memory is
dynamically allocated, that is, when it is needed, and thus it is efficient
and avoids wastage of memory space. In linked representation, every
node has three parts:

1.	The first part is called the left pointer, which contains the address of the
left subtree.

2.	The second part is called the data part, which contains the information
of the node.

3.	The third part is called the right pointer, which contains the address of
the right subtree.

The structure of the node is declared as follows:

struct node
{

struct node *leftchild ;
int information ;
struct node *rightchild ;

}

The representation of a node is given in Figure 8.2. When there are no
children of a node, the corresponding pointer fields are NULL.

For Example –A binary tree is given as follows. Give its linked repre-
sentation in the memory.

362 • Data Structures and Program Design Using C++

8.4   Binary Search Tree

A binary search tree (BST) is a variant of a binary tree. The special
property of a binary search tree is that all the nodes in the left subtree have
a value less than that of the root node. Similarly, all the nodes in the right
subtree have a value more than that of the root node. Hence, the binary
search tree is also known as an ordered binary tree, because all the nodes
in a binary search tree are ordered. Also, the left and the right subtrees are
also binary search trees, and thus the same property is applicable on every
subtree in the binary search tree. Figure 8.14 represents a binary search
tree in which all the keys are ordered.

FIGURE 8.14. Binary search tree.

FIGURE 8.13. Binary tree and its linked representation.

Trees • 363

In the previous figure the root node is 50. The left subtree of the root
node consists of the nodes 19, 7, 32, 25, and 43. We can see that all these
nodes have smaller values than the root node, and hence it constitutes
the left subtree. Similarly, the right subtree of the root node consists of
the nodes 75, 87, 80, and 99. Here also, we can see that all these nodes
have higher values than the root node and hence it constitutes the right
subtree. Also, each of the subtrees is ordered. Thus, it becomes easier to
search for an element in the tree, and as a result, time is also reduced by
a great margin. Binary search trees are very efficient regarding searching
for an element. These trees are already sorted in nature. Thus, these trees
have a low time complexity. Various operations which can be performed on
binary search trees will be discussed in the upcoming section.

8.4.1 Operations on Binary Search Trees
In this section, we will discuss different operations that are performed

on binary search trees, which include:

•	 Searching a node/key in the binary search tree

•	 Inserting a node/key in the binary search tree

•	 Deleting a node/key from the binary search tree

•	 Deleting the entire binary search tree

•	 Finding the mirror image of the binary search tree

•	 Finding the smallest node in the binary search tree

•	 Finding the largest node in the binary search tree

•	 Determining the height of the binary search tree

Now, let us discuss all of these operations in detail.

1.	Searching a node/key in the binary search tree – The search-
ing operation is one of the most common operations performed in
the binary search tree. This operation is performed to find whether a
given key exists in the tree or not. The searching operation starts at
the root node. First, it will check whether the tree is empty or not.
If the tree is empty, then the node/key for which we are searching is
not present in the tree, and the algorithm terminates there by dis-
playing the appropriate message. If the tree is not empty and the

364 • Data Structures and Program Design Using C++

nodes are present in it, then the search function checks the node/value
to be searched and compares it with the key value of the current node.
If the node/key to be searched is less than the key value of the current
node, then in that case, we will recursively call the left child node. On
the other hand, if the node/key to be searched is greater than the key
value of the current node, then we will recursively call the right child
node. Now, let us look at the algorithm for searching for a key in a
binary search tree.

Algorithm for searching for a node/key in a binary search tree

SEARCH(ROOT, VALUE)
Step 1: START
Step 2: IF(ROOT == NULL)

Return NULL
Print "Empty Tree"
ELSE IF(ROOT -> INFO == VALUE)
Return ROOT
ELSE IF(ROOT -> INFO > VALUE)
SEARCH(ROOT -> LCHILD, VALUE)
ELSE IF(ROOT -> INFO < VALUE)
SEARCH(ROOT -> RCHILD, VALUE)
ELSE
Print "Value not found"
[End of IF]
[End of IF]
[End of IF]
[End of IF]

Step 3: END

In the previous algorithm, first we check whether the tree is empty or
not. If the tree is empty, then we return NULL. If the tree is not empty, then
we check whether the value stored at the current node (ROOT) is equal to
the node/key we want to search or not. If the value of the ROOT node is
equal to the key value to be searched, then we return the current node of
the tree, that is, the ROOT node. Otherwise, if the key value to be searched
is less than the value stored at the current node, we recursively call the left
subtree. If the key value to be searched is greater than the value stored at the
current node, then we recursively call the right subtree. Finally, if the value is
not found, then an appropriate message is printed on the screen.

Trees • 365

For Example –We have been given a binary search tree. Now, search
the node with the value 20 in the binary search tree.

Initially the binary search tree is given as:

FIGURE 8.15(a)

FIGURE 8.15(b)

Step 1: First, the root node, that is, 41, is checked.

Step 2: Second, as the value stored at the root node is not equal to the
value to be searched, but we know that 20 < 41, thus we will traverse the
left subtree.

366 • Data Structures and Program Design Using C++

Step 3: We know that 10 is not the value to be searched, but 20 > 10;
thus, we will now traverse the right subtree with respect to 10.

FIGURE 8.15(c)

FIGURE 8.15(d)

Step 4: Again 25 is not the value to be searched, but 20 < 25; thus, we
will now traverse the left subtree w.r.t to 25.

FIGURE 8.15. Searching a node with value 20 in the binary search tree.

Trees • 367

Finally, a node having value 20 is successfully searched for in the binary
search tree.

2.	Inserting a node/key in the binary search tree – The insertion
operation is performed to insert a new node with the given value in
the binary search tree. The new node is inserted at the correct posi-
tion following the binary search tree constraint. It should not violate
the property of the binary search tree. The insertion operation also
starts at the root node. First, it will check whether the tree is empty
or not. If the tree is empty, then we will allocate the memory for the
new node. If the tree is not empty, then we will compare the key
value to be inserted with the value stored in the current node. If the
node/key to be inserted is less than the key value of the current node,
then the new node is inserted in the left subtree. On the other hand,
if the node/key to be inserted is greater than the key value of the cur-
rent node, then the new node is inserted in the right subtree. Now,
let us discuss the algorithm for inserting a node in the binary search
tree.

Algorithm for inserting a node/key in a binary search tree

INSERT(ROOT, VALUE)
Step 1: START
Step 2: IF(ROOT == NULL)

Allocate memory for ROOT node
Set ROOT -> INFO = VALUE
Set ROOT -> LCHILD = ROOT -> RCHILD = NULL

[End of IF]
Step 3: IF(ROOT -> INFO > VALUE)

INSERT(ROOT -> LCHILD, VALUE)
ELSE

INSERT(ROOT -> RCHILD, VALUE)
[End of IF]

Step 4: END

In the previous algorithm, first we check whether the tree is empty or
not. If the tree is empty, then we will allocate memory for the ROOT node.
In Step 3, we are checking whether the key value to be inserted is less than
the value stored at the current node; if so, we will simply insert the new
node in the left subtree. Otherwise, the new child node is inserted in the
right subtree.

368 • Data Structures and Program Design Using C++

For Example – We have been given a binary search tree. Now, insert
a new node with the value 7 in the binary search tree.

Initially, the binary search tree is given as:

FIGURE 8.16(a)

Step 1: First, we check whether the tree is empty or not. So, we
will check the root node. As the root node is not empty, we will begin the
insertion process.

FIGURE 8.16(b)

Trees • 369

Step 2: Second, we know that 7 < 41; thus, we will traverse the left
subtree to insert the new node.

FIGURE 8.16(c)

Step 3: Third, we know that 7<10; thus, we will again traverse the left
subtree to insert the new node.

FIGURE 8.16(d)

Step 3: Now, we know that 7> 3, thus the new node with value 7 is
inserted as the right child of the parent node 3.

370 • Data Structures and Program Design Using C++

Finally, the new node with the value 7 is inserted as a right child in the
binary search tree.

3.	Deleting a node/key from a binary search tree – Deleting a node/
key from a binary search tree is the most crucial process. We should
be careful when performing the deletion operation; while deleting the
nodes, we must be sure that the property of the binary search tree is not
violated so that we don’t lose necessary nodes during this process. The
deletion operation is divided into three cases as follows:

Case 1: Deleting a node having no children

This is the simplest case of deletion, as we can directly remove or delete
 a node which has no children. Look at the binary search tree given in
Figure 8.17 and see how deletion is done in this case.

For Example – We have been given a binary search tree. Now, delete
a node with the value 61 from the binary search tree.

Initially the binary search tree is given as:

FIGURE 8.16: Inserting a new node with value 7 in the binary search tree.

FIGURE 8.17(a)

Trees • 371

Step 1: First, we will check whether the tree is empty or not by check-
ing the root node.

FIGURE 8.17(b)

Step 2: Second, as the root node is present, we will compare the value
to be deleted with the value stored at the current node. As 61 > 24, we will
recursively traverse the right subtree.

FIGURE 8.17(c)

Step 3: Again, we will compare the value to be deleted with the value
stored at the current node. As 61 > 42, we will recursively traverse the right
subtree.

FIGURE 8.17(d)

372 • Data Structures and Program Design Using C++

Step 4: Finally, a node having value 61 is deleted from the binary
search tree.

FIGURE 8.17. Deleting the node with value 61 from the binary search tree.

Case 2: Deleting a node having one child

In this case of deletion, the node which is to be deleted, the parent
node, is simply replaced by its child node. Look at the binary search tree
given in Figure 8.18 and see how deletion is done in this case.

For Example – We have been given a binary search tree. Now, delete
a node with the value 10 from the binary search tree.

Initially the binary search tree is given as:

FIGURE 8.18(a)

Step 1: First, we will check whether the tree is empty or not by check-
ing the root node.

Trees • 373

Step 2: Second, as the root node is present, we will compare the value
to be deleted with the value stored at the current node. As 10 < 24, we will
recursively traverse the left subtree.

FIGURE 8.18(b)

FIGURE 8.18(c)

Step 3: Now, as the node to be deleted is found and has one child, the
node to be deleted is now replaced by its child node, and the actual node
is deleted.

FIGURE 8.18. Deleting the node with value 10 from the binary search tree.

374 • Data Structures and Program Design Using C++

Case 3: Deleting a node having two children

In this case, the node which is to be deleted is simply replaced by
its in-order predecessor, that is, the largest value in the left subtree, or by
its in-order successor, that is, the smallest value in the right subtree. Also,
the in-order predecessor or in-order successor can be deleted using any
of the two cases. Now, look at the binary search tree shown in Figure 8.19
and see how the deletion will take place in this case.

Now, let us discuss the algorithm for deleting a node from a binary
search tree.

For Example – We have been given a binary search tree. Now, delete
a node with the value 42 from the binary search tree.

Initially, the binary search tree is given as:

FIGURE 8.19(a)

Step 1: First, we will check whether the tree is empty or not by check-
ing the root node.

FIGURE 8.19(b)

Trees • 375

Step 2: Second, as the root node is present, we will compare the value
to be deleted with the value stored at the current node. As 42 <>24, we will
recursively traverse the right subtree.

FIGURE 8.19(c)

Step 3: As the node to be deleted is found and has two children, now
we will find the in-order predecessor of the current node (42) and replace
the current node with its in-order predecessor so that the actual node 42 is
deleted.

FIGURE 8.19. Deleting the node with value 42 from the binary search tree.

DELETE_NODE(ROOT, VALUE)
Step 1: START
Step 2: IF(ROOT == NULL)

Print "Error"
[End of IF]

Step 3: IF(ROOT -> INFO > VALUE)
DELETE_NODE(ROOT -> LCHILD, VALUE)
ELSE IF(ROOT -> INFO < VALUE)

Algorithm for deleting a node/key from a binary search tree

376 • Data Structures and Program Design Using C++

DELETE_NODE(ROOT -> RCHILD, VALUE)
ELSE IF(ROOT -> LCHILD = NULL & ROOT -> RCHILD
= NULL)

FREE(ROOT)
ELSE IF(ROOT -> LCHILD & ROOT -> RCHILD)
TEMP = FIND_LARGEST(ROOT -> LCHILD)

OR
TEMP = FIND_SMALLEST(ROOT -> RCHILD)
Set ROOT -> INFO = TEMP -> INFO
FREE(TEMP)
ELSE
IF(ROOT -> LCHILD != NULL)
Set TEMP = ROOT -> LCHILD
Set ROOT -> INFO = TEMP -> INFO
FREE(TEMP)
ELSE
Set TEMP = ROOT -> RCHILD
Set ROOT -> INFO = TEMP -> INFO
FREE(TEMP)
[End of IF]
[End of IF]
[End of IF]

Step 4: END

In the previous algorithm, first we check whether the tree is empty or
not. If the tree is empty, then the node to be deleted is not present. Oth-
erwise, if the tree is not empty, we will check whether the node/value to
be deleted is less than the value stored at the current node. If the value to
be deleted is less, then we will recursively call the left subtree. If the value
to be deleted is greater than the value stored at the current node, then we
will recursively call the right subtree. Now, if the node to be deleted has no
children, then the node is simply freed. If the node to be deleted has two
children, that is, both a left and right child, then we will find the in-order
predecessor by calling (TEMP = FIND_LARGEST(ROOT -> LCHILD)
or in-order successor by calling (TEMP = FIND_SMALLEST(ROOT ->
RCHILD) and replace the value stored at the current node with that of
the in-order predecessor or in-order successor. Then, we will simply delete
the initial node of either the in-order predecessor or in-order successor.
Finally, if the node to be deleted has only one child, the value stored at the
current node is replaced by its child node and the child node is deleted.

Trees • 377

4.	Deleting the entire binary search tree – It is very easy to delete
the entire binary search tree. First, we will delete all the nodes present
in the left subtrees followed by the nodes present in the right subtree.
Finally, the root node is deleted, and the entire tree is deleted.

Algorithm for deleting an entire binary search tree

FIGURE 8.20. Binary search tree and its mirror image.

5.	Finding the mirror image of a binary search tree – This is an
exciting operation to perform in a binary search tree. The mirror
image of the binary search tree means interchanging the right subtree
with the left subtree at each and every node of the tree.

DELETE_BST(ROOT)
Step 1: START
Step 2: IF(ROOT != NULL)

DELETE_BST(ROOT -> LCHILD)
DELETE_BST(ROOT -> RCHILD)
FREE(ROOT)
[End of IF]

Step 3: END

MIRROR_IMAGE(ROOT)
Step 1: START
Step 2: IF(ROOT != NULL)

MIRROR_IMAGE(ROOT -> LCHILD)
MIRROR_IMAGR(ROOT -> RCHILD)
Set TEMP = ROOT -> LEFT
ROOT -> LEFT = ROOT -> RIGHT
Set ROOT -> RIGHT = TEMP

[End of IF]
Step 3: END

Algorithm for finding the mirror image of a binary search tree

378 • Data Structures and Program Design Using C++

6.	Finding the smallest node in a binary search tree – We know that it
is the basic property of the binary search tree that the smallest value al-
ways occurs in the extreme left of the left subtree. If there is no left sub-
tree, then the value of the root node will be the smallest. Hence, to find
the smallest value in a binary search tree, we will simply find the value of
the node present at the extreme left of the left subtree.

Algorithm for finding the smallest node in a binary search tree

SMALLEST_VALUE(ROOT)

Step 1: START
Step 2: IF(ROOT = NULL OR ROOT -> LCHILD = NULL)

Return NULL
ELSE

Return SMALLEST_VALUE(ROOT)
[End of IF]

Step 3: END

7.	Finding the largest node in a binary search tree – We know that it
is the basic property of the binary search tree that the largest value al-
ways occurs in the extreme right of the right subtree. If there is no right
subtree, the value of the root node will be the largest. Hence, to find
the largest value in a binary search tree, we will simply find the value of
the node present at the extreme right of the right subtree.

Algorithm for finding the largest node in a binary search tree

LARGEST_VALUE(ROOT)
Step 1: START
Step 2: IF(ROOT = NULL OR ROOT -> RCHILD = NULL)

Return NULL
ELSE

Return LARGEST_VALUE(ROOT)
[End of IF]

Step 3: END

8.	Determining the height of a binary search tree –The height of a
binary search tree can easily be determined. We will first calculate the
heights of the left subtree and the right subtree. Whichever height is
greater, 1 is added to that height; that is, if the height of the left subtree is

Trees • 379

greater, then 1 is added to the height of the left subtree. Similarly, if the
height of the right subtree is greater, then 1 is added to the height of the
right subtree.

Algorithm for determining the height of a binary search tree

CALCULATE_HEIGHT(ROOT)
Step 1: START
Step 2: IF ROOT = NULL

Print "Can’t find height of the tree."
ELSE

Set LHEIGHT = CALCULATE_HEIGHT(ROOT -> LCHILD)
Set RHEIGHT = CALCULATE_HEIGHT(ROOT -> RCHILD)

IF(LHEIGHT < RHEIGHT)
Return (RHEIGHT) + 1

ELSE
Return (LHEIGHT) + 1

[End of IF]
[End of IF]

Step 3: END

8.4.2 Binary Tree Traversal Methods
Traversing is the process of visiting each node in the tree exactly once

in a particular order. We all know that a tree is a non-linear data structure,
and therefore a tree can be traversed in various ways. There are three types
of traversals, which are:

•	 Pre-Order Traversal

•	 In-Order Traversal

•	 Post-Order Traversal

Now, we will discuss all of these traversals in detail.

Pre-Order Traversal

In pre-order traversal, the following operations are performed recur-
sively at each node:

1.	Visit the root node.

2.	Traverse the left subtree.

3.	Traverse the right subtree.

380 • Data Structures and Program Design Using C++

The word “pre” in pre-order determines that the root node is accessed
before accessing any other node in the tree. Hence, it is also known as a
DLR traversal, that is, Data Left Right. Therefore, in a DLR traversal, the
root node is accessed first followed by the left subtree and right subtree.
Now, let us see an example for pre-order traversal.

For Example – Find the pre-order traversal of the given binary tree of
the word EDUCATION.

The pre-order traversal of the previous binary tree is:

E D C A U T I O N

Now, let us look at the function for pre-order traversal.

Function for pre-order traversal

void pre-order(struct BST * root)
{
if(root != NULL)
{
cout<< root->info;

Trees • 381

pre-order(root ->lchild) ;
pre-order(root ->rchild) ;

}
}

In-Order Traversal

In in-order traversal, the following operations are performed recursively
at each node:

1.	Traverse the left subtree.

2.	Visit the root node.

3.	Traverse the right subtree.

The word “in” in “in-order” determines that the root node is accessed in
between the left and the right subtrees. Hence, it is also known as an LDR
traversal, that is, Left Data Right. Therefore, in an LDR traversal, the left
subtree is traversed first followed by the root node and the right subtree.
Now, let us see an example for an in-order traversal.

For Example – Find the in-order traversal of the given binary tree of
the word EDUCATION.

382 • Data Structures and Program Design Using C++

The in-order traversal of the previous binary tree is:

A C D E I N O T U

Now, let us look at the function for an in-order traversal.

Function for an in-order traversal

void in-order(struct BST * root)
{
if(root != NULL)
{

in-order(root ->lchild) ;
cout<< root->info;
in-order(root ->rchild) ;

}
}

Post-Order Traversal

In a post-order traversal, the following operations are performed recur-
sively at each node:

1.	Traverse the left subtree.

2.	Traverse the right subtree.

3.	Visit the root node.

The word “post” in post-order determines that the root node will
be accessed last after the left and the right subtrees. Hence, it is also
known as an LRD traversal, that is, Left Right Data. Therefore, in an
LRD traversal, the left subtree is traversed first followed by the right
subtree and the root node. Now, let us see an example for a post-order
traversal.

For Example – Find the post-order traversal of the given binary tree
of the word EDUCATION.

Trees • 383

void post-order(struct BST * root)
{
if(root != NULL)
{

post-order(root ->lchild) ;
post-order(root ->rchild) ;
cout<< root->info;

}
}

The post-order traversal of the previous binary tree is:

A C D N O I T U E

Now, let us look at the function of the post-order traversal.

Function for post-order traversal

Write a program to create a binary search tree and perform different
operations on it.

#include<iostream.h>
#include<conio.h>
class BinarySearchTree
{
	 struct node

384 • Data Structures and Program Design Using C++

	 {
int info;
node* lchild;
node* rchild;

	 };
	 node* root;
	 node* insertion(int value, node* tree)
	 {

if(tree == NULL)
		 {

tree = new node;
tree->info = value;
tree->lchild = tree->rchild = NULL;

		 }
		 else if(value < tree->info)

�tree->lchild = insert(value, tree->lchild);
		 else if(x > t->info)

�tree->rchild = insert(value, tree->rchild); 		
return tree;

	 }
	 node* remove(int value, node* tree)
	 {
		 node* ptr;
		 if(tree == NULL)

		 return NULL;
		 else if(value < tree->info)

�tree->lchild = remove(value, tree->lchild);
		 else if(value > tree->info)

�tree->rchild = remove(value, tree->rchild);
		 else if(tree->lchild && tree->rchild)
		 {

		 ptr = findMin(tree->rchild);
		 tree->info = ptr->info;
		� tree->rchild = remove(tree->info, tree-

>rchild);
		 }
		 else

Trees • 385

		 {
			 ptr = tree;
			 if(tree->lchild == NULL)
			 tree = tree->rchild;
			 else if(tree->rchild == NULL)
				 tree = tree->lchild;
				 delete ptr;
		 }
	 	 return tree;
	 }
	 void inorder_traversal(node* tree)
	 {
		 if(tree == NULL)
		 return;
		 inorder_traversal(tree->lchild);
		 cout << tree->info << " ";
		 inorder_traversal(tree->rchild);
	 }
	 node* find(node* tree, int value)
	 {
		 if(tree == NULL)
		 return NULL;
		 else if(value < tree->info)
		 return find(tree->lchild, value);
		 else if(value > tree->info)
		 return find(tree->rchild, value);
		 else
		 return tree;
	 }
public:
	 BinarySearchTree()
	 {
		 root = NULL;
	 }
	 void insertion(int value)
	 {
		 root = insertion(value, root);
	 }
	 void remove(int value)

386 • Data Structures and Program Design Using C++

	 {
		 root = remove(value, root);
	 }
	 void display()
	 {
		 inorder_traversal(root);
		 cout << endl;
	 }
	 void search(int value)
	 {
		 root = find(root, value);
	 }
};
int main()
{
	 clrscr();
	 BST obj;
	 obj.insertion(50);
	 obj.insertion(20);
	 obj.insertion(5);
	 obj.insertion(75);
	 obj.insertion(100);
	 cout<<"After insertion binary search tree:\n";
	 obj.display();
	 obj.remove(50);
	 cout<<"\nAfter deletion binary search tree:\n";
	 obj.display();
	 obj.remove(20);
	 cout<<"\nAfter deletion binary search tree:\n";
	 obj.display();
	 obj.remove(100);
	 cout<<"\nAfter deletion binary search tree:\n";
	 obj.display();
	 obj.search(75);
	 getch();
}

Trees • 387

8.4.3 Creating a Binary Tree Using Traversal Methods
A binary tree can be constructed if we are given at least two of the

traversal results, provided that one traversal should always be an in-order
traversal and the second is either a pre-order traversal or a post-order tra-
versal. An in-order traversal determines the left and right child nodes of the
binary tree. A Pre-order or post-order traversal determines the root node
of the binary tree. Hence, there are two different ways of creating a binary
tree, which are:

1.	In-order and pre-order traversal

2.	In-order and post-order traversal

Now, we have pre-order and in-order traversal sequences. Then, the
following steps are followed to construct a binary tree:

Step 1: The pre-order traversing sequence is used to determine the
root node of the binary tree. The first node in the pre-order sequence will
be the root node.

Step 2: The in-order traversing sequence is used to determine the left
and the right subtrees of the binary tree. Keys toward the left side of the
root node in the in-order sequence form the left subtree. Similarly, keys
toward the right side of the root node in the in-order sequence form the
right subtree.

The output of the program is shown as:

388 • Data Structures and Program Design Using C++

Step 3: Now, each element from the pre-order traversing sequence is
recursively selected and the left and the right subtrees are created from the
in-order traversing sequence.

For Example – Create a binary tree from the given traversing
sequences.

In-order – A C D E I N O T U

Pre-order – E DCAU T I O N

Now, we will construct the binary tree.

1.	The first node in the pre-order sequence is the root node of the tree.
Hence, E is the root node of the binary tree.

2.	Now, we can easily determine the left and right subtrees from the in-
order sequence. Keys toward the left side of the root node, that is, A, C,
and D, form the left subtree. Similarly, elements on the right side of the
root node, that is, I, N, O, T, and U, form the right subtree.

3.	Now, the left child of the root node will be the first node in the
pre-order traversing sequence after the root node E. Thus, D is
the left child of the root node E.

Trees • 389

4.	Similarly, the right child of the root node will be the first node in the pre-
order traversing sequence after the nodes of the left subtree. Thus, U is
the right child of the root node E.

5.	In the in-order sequence, A and C are on the left side of D. So, A and C
will form the left subtree of D.

6.	Now, the next elements in the pre-order sequence are T and I. Also, in
the in-order sequence, T and I are on the left side of U. So, T and I will
form the left subtree of U.

390 • Data Structures and Program Design Using C++

7.	The next element in the pre-order sequence is O. In the in-order
sequence, O is on the right side of I. So, O will form the right
subtree of I. The last element in the pre-order sequence is N. N is on the left
side of O in the in-order sequence. Thus, N will form the left subtree of O.

Finally, the binary tree is created from the given traversing sequences.

Frequently Asked Questions

Q. Create a binary tree from the given traversing sequences.

In-order – d b e a f c g

Pre-order – a b d e c f g

Answer.

Step 1: a is the root node of the binary tree.

Trees • 391

8.5   AVL Trees

The AVL tree was invented by Adelson-Velski and Landis in 1962.
The AVL tree is so named in honor of its inventors. The AVL tree was
the first balanced binary search tree. It is a self-balancing binary search
tree. The AVL tree is also known as a height-balanced tree because of its
property that the heights of the two subtrees of a node can differ at most
by one. AVL trees are very efficient in performing searching, insertion,
and deletion operations, as they take O(log n) time to perform all these
operations.

Step 2: d, b, and e are on the left side of the a node in the in-order sequence.
Hence, d, b, and e are the left subtrees of root a. Also, d is the left subtree of
b and e is the right subtree of b.

Step 3: f, c, and g are on the right side of root a in the in-order sequence.
Hence, f, c, and g are the right subtrees of root a. Also, f is the left subtree of
c and g is the right subtree of c.

392 • Data Structures and Program Design Using C++

8.5.1 Need of Height-Balanced Trees
AVL trees are very similar to binary search trees but with a small

difference. AVL trees have a special variable known as a balance
factor associated with them. Every node in the AVL tree has a balance
factor associated with it. The balance factor is determined by subtracting
the height of the right subtree from the height of the left subtree. Thus,
a node with a balance factor of -1, 0, or 1 is said to be a height-balanced
tree. The primary need for the height-balanced tree is that the process
of searching becomes very fast. This balancing condition also ensures
that the depth of the tree is O(logn). The balance factor is calculated as
follows:

Balance Factor = Height(Left sub-tree) – Height(Right sub-tree)

•	 If the balance factor of the tree is -1, then it means that the height of
the right subtree of that node is one more than the height of the left
subtree of that node.

•	 If the balance factor of the tree is 0, then it means that the height of
the left and the right subtrees of a node are equal.

•	 If the balance factor of the tree is 1, then it means that the height of
the left subtree of that node is one more than the height of its right
subtree.

Thus, the overall benefit of the height-balanced tree is to assist in fast
searching.

FIGURE 8.21. Balanced AVL tree.

Trees • 393

8.5.2 Operations on an AVL Tree
In this section, we will discuss various operations which are performed

on AVL trees. These are:

•	 Searching a node in an AVL Tree

•	 Inserting a new node in an AVL Tree

Now, let us discuss both of them in detail.

1.		 Searching a node in an AVL Tree
The process of searching a node in an AVL tree is the same as for a

binary search tree.

2.		 Inserting a new node in an AVL Tree
The process of inserting a new node in an AVL tree is quite similar to

that of binary search trees. The new node is always inserted as a terminal/
leaf node in the AVL tree. But the insertion of a new node can disturb the
balance of the AVL tree, as the balance factor may be disturbed. Thus, for
the tree to remain balanced, the insertion process is followed by a rota-
tion process. The rotation process is usually done to restore the balance
factor of the tree. If the balance factor of each node is -1, 0, or 1 after the
insertion process, then the rotation is not required, as the tree is already
balanced; otherwise, rotation is required. Now, let us look at the given
example and see how insertion is done without rotations.

�For Example – In the given AVL tree, insert a new node with value
60 in the tree.

Initially, the AVL tree is given as:

FIGURE 8.22. AVL tree before insertion.

394 • Data Structures and Program Design Using C++

Now, we will insert 60 into the AVL tree.

FIGURE 8.23. AVL tree after inserting 60.

Hence, after insertion, there are no nodes in the tree which
are unbalanced. Thus, there is no need to apply rotation here.
However, now we will discuss how the rotation process is performed in
AVL trees.

AVL Rotations

Rotation is done when the balance factor of the node becomes dis-
turbed after inserting a new node. We know that the new node which is
inserted will always have a balance factor of 0, as it will be a leaf node.
Hence, the nodes whose balance factors will be disturbed are the ones
which lie in the path of the root node to the newly inserted node. So,
we will perform the rotation process only on those nodes whose balance
factors will be disturbed. In the rotation process, our first work is to find
the critical node in the AVL tree. The critical node is the nearest ancestor
node from the newly inserted node to the root node which does not has
a balance factor of -1, 0, or 1. First, let us understand the concept of the
critical node with the help of an example.

Trees • 395

For Example – Find the critical node in the given AVL tree.

Initially, the AVL tree is given as follows:

FIGURE 8.24. AVL tree.

Now, we will insert a new node with value 42 in the tree.

FIGURE 8.25. AVL tree.

396 • Data Structures and Program Design Using C++

After inserting 42 in the AVL tree, we can see that there are three
nodes in the tree which have balance factors equal to -2, 2, and 2. Now,
the critical node is the one which is the nearest to the newly inserted
node with a disturbed balance factor. We can see that 50 is the nearest
node to 42, and 50 has a balance factor of 2. Thus, 50 is the critical node
in this AVL tree. However, to restore the balance factor of the previ-
ous AVL tree, rotations are performed. There are four types of rotations
which are:

1.	Left-Left Rotation (LL Rotation) – New node is inserted in the left
subtree of the left subtree of the critical node.

2.	Right-Right Rotation (RR Rotation) – New node is inserted in the
right subtree of the right subtree of the critical node.

3.	Right-Left Rotation (RL Rotation) – New node is inserted in the left
subtree of the right subtree of the critical node.

4.	Left-Right Rotation (LR Rotation) – New node is inserted in the right
subtree of the left subtree of critical node.

Now, let us discuss all of these rotations in detail.

LL Rotation

The LL rotation is also known as the Left-Left rotation, as the new
node is inserted in the left subtree of the left subtree of the critical
node. It is a single rotation. Let us take an example and perform an LL
rotation in it.

For Example –

Initially, the AVL tree is given as:

FIGURE 8.26(a)

Trees • 397

Insert new node 5 in the AVL tree.

FIGURE 8.26(b)

After inserting 5 in the AVL tree, the balance factor of 25 is disturbed.
Thus, 25 is the critical node. Hence, we will apply the LL rotation to restore
the balance factor of the tree. After rotation node 12 becomes the root
node, node 5 and node 25 become the left and the right child of the tree
respectively.

FIGURE 8.26. Showing an LL rotation in an AVL tree.

Therefore, the LL rotation is performed, and the balance factor of each
node is also restored.

RR Rotation
The RR rotation is also known as a Right-Right rotation, as the new

node is inserted in the right subtree of the right subtree of the critical
node. It is also a single rotation. Let us take an example and perform an
RR rotation in it.

398 • Data Structures and Program Design Using C++

For Example –

Initially the AVL tree is given as follows:

FIGURE 8.27(a)

Insert new node 25 in the AVL tree.

FIGURE 8.27(b)

After inserting 25 in the AVL tree, the balance factor of 5 is disturbed.
Thus, 5 is the critical node. Hence, here we will apply an RR rotation to
restore the balance factor of the tree. After rotation node 12 becomes the
root node, node 5 and node 25 become the left and the right child of the
tree respectively.

FIGURE 8.27. Showing an RR rotation in an AVL tree.

Therefore, the RR rotation is performed, and the balance factor of each
node is also restored.

Trees • 399

RL Rotation

The RL rotation is also known as a Right-Left rotation, as the new node
is inserted in the left subtree of the right subtree of the critical node. It is a
double rotation. Let us take an example and perform an RL rotation in it.

For Example –

Initially, the AVL tree is given as follows:

FIGURE 8.28(a)

Insert new node 15 in the AVL tree.

FIGURE 8.28(b)

After inserting 15 in the AVL tree, the balance factor of 12 is disturbed. Thus,
12 is the critical node. Hence, here we will apply an RL rotation to restore the
balance factor of the tree. After rotation node 15 becomes the root node, node 12
and node 25 become the left and the right child of the tree respectively.

FIGURE 8.28. Showing an RL rotation in an AVL tree.

400 • Data Structures and Program Design Using C++

Therefore, the RL rotation is performed, and the balance factor of each
node is also restored.

LR Rotation

The LR rotation is also known as a Left-Right rotation, as the new node
is inserted in the right subtree of the left subtree of the critical node. It is also
a double rotation. Let us take an example and perform an LR rotation in it.

For Example –

Initially, the AVL tree is given as follows:

FIGURE 8.29(a)

Insert new node 15 in the AVL tree.

FIGURE 8.29(b)

After inserting 15 in the AVL tree, the balance factor of 25 is disturbed.
Thus, 25 is the critical node. Hence, here we will apply an LR rotation to restore
the balance factor of the tree. After rotation node 15 becomes the root node, and
node 12 and node 25 become the left and the right child of the tree respectively.

FIGURE 8.29. Showing an LR rotation in an AVL tree.

Trees • 401

Frequently Asked Questions

�Q. Create an AVL tree by inserting the following elements.

60, 10, 20, 30, 19, 120, 100, 80, 19

Answer.
Step 1: Insert 60.

Step 2: Insert 10. Further, no rebalancing is required.

Step 3: Insert 20. Now, rebalancing is required. We will perform LR rotation.

Step 4: After performing LR rotation, the AVL tree is given as:

Therefore, an LR rotation is performed, and the balance factor of each
node is also restored.

402 • Data Structures and Program Design Using C++

Step 5: Insert 30. No rebalancing is required.

Step 6: Insert 19. Further, no rebalancing is required.

Step 7: Insert 120. No rebalancing is required.

Trees • 403

Step 8: Insert 100. No rebalancing is required.

Step 9: Insert 80. Now, rebalancing is required. We will perform LL rotation.

Step 10: After performing LL rotation, the AVL tree is given as –

404 • Data Structures and Program Design Using C++

8.6   Summary

•	 A tree is defined as a collection of one or more nodes where one node is
designated as a root node, and the remaining nodes can be partitioned
into the left and the right subtrees. It is used to store hierarchical data.

•	 The root node is the topmost node of the tree. It does not have a
parent node. If the root node is empty, then the tree is empty. A leaf
node is one which does not have any child nodes.

Step 10: Insert 19. Now, rebalancing is required. We will perform RR
rotation.

Step 11: After performing RR rotation, the AVL tree is given as –

Trees • 405

•	 A path is a unique sequence of consecutive edges which is required to
be followed to reach the destination from a given source.

•	 The degree of a node is equal to the number of children that a node has.

•	 A binary tree is a collection of nodes where each node contains three
parts, that is, a left pointer, a right pointer, and the data item. A binary
tree can have at most 2 children; that is, a parent can have either 0, 1,
or 2 children.

•	 There are two types of binary trees, that is, complete binary trees and
extended binary trees.

•	 In a complete binary tree, every level except the last one must be
completely filled. Also, all the nodes in the complete binary tree must
appear left as much as possible.

•	 Extended binary trees are also known as 2T-trees. A binary tree is said
to be an extended binary tree if and only if every node in the binary
tree has either 0 children or 2 children.

•	 Binary trees can be represented in the memory in two ways, which
are array representation of binary trees and linked representation
of binary trees. Array representation, also known as sequential
representation, of binary trees is done using one-dimensional (1-D)
arrays. Linked representation of binary trees is done using linked lists.

•	 A binary search tree (BST) is a variant of a binary tree in which all the
nodes in the left subtree have a value less than that of a root node.
Similarly, all the nodes in the right subtree have a value more than that
of a root node. It is also known as an ordered binary tree.

•	 The searching operation is one of the most common operations
performed in a binary search tree. This operation is performed to find
whether a particular key exists in the tree or not.

•	 An insertion operation is performed to insert a new node with the
given value in a binary search tree.

•	 The mirror image of a binary search tree means interchanging the
right subtree with the left subtree at every node of the tree.

•	 Traversing is the process of visiting each node in the tree exactly once
in a particular order. A tree can be traversed in various ways, which are
pre-order traversal, in-order traversal, and post-order traversal.

406 • Data Structures and Program Design Using C++

•	 The word “pre” in “pre-order” determines that the root node is
accessed before accessing any other node in the tree. Hence, it is also
known as a DLR traversal, that is, Data Left Right.

•	 The word “in” in “in-order” determines that the root node is accessed
in between the left and the right subtrees. Hence, it is also known as
an LDR traversal, that is, Left Data Right.

•	 The word “post” in “post-order” determines that the root node will
be accessed last after the left and the right subtrees. Hence, it is also
known as an LRD traversal, that is, Left Right Data.

•	 A binary tree can be constructed if we are given at least two of the
traversal results, provided that one traversal should always be an
in-order traversal and the second can be either a pre-order traversal or
post-order traversal.

•	 An AVL is a self-balancing binary search tree. Every node in the
AVL tree has a balance factor associated with it. The balance factor
is calculated by subtracting the height of the right subtree from the
height of the left subtree. Thus, a node with a balance factor of -1, 0,
or 1 is said to be a height-balanced tree.

8.7   Exercises

8.7.1 Theory Questions

1.	What is a tree? Discuss its various applications.

2.	Differentiate between height and level in a tree.

3.	Explain the concept of binary trees.

4.	In what ways can a binary tree be represented in the computer’s
memory?

5.	What do you understand about 2-T trees? Explain.

6.	What do you mean by a binary search tree?

7.	List the various operations performed on binary search trees.

8.	What are complete binary trees?

Trees • 407

9.	 �How can a node be deleted from a binary search tree? Discuss all the
cases in detail with examples.

10.	�Create a binary search tree by inserting the following keys – 76, 12, 56,
31, 199, 17, 40, 76, 75. Also, find the height of the binary search tree.

11.	Create a binary search tree by performing following operations:

1.	Insert 50, 34, 23, 87, 100, 67, 43, 51, 18, and 95.

2.	Delete 100, 34 and 95, 50 from the binary search tree.

3.	Find the smallest value in the binary search tree.

12.	How can we find the mirror image of a binary search tree?

13.	List the various traversal methods of a binary tree.

14.	What do you understand about an AVL tree?

15.	Explain the concept of balance factor in AVL trees.

16.	List the advantages of an AVL tree.

17.	�Consider the following binary search tree and perform the following
operations:

1.	Find the pre-order and post-order traversals of the tree.

2.	Insert 25, 32, 50, 75, 87 in the tree.

3.	Find the largest value in the tree.

4.	Delete the root node.

408 • Data Structures and Program Design Using C++

18.	Give the linked representation of the previous binary search tree.

19.	�Construct a binary search tree of the word VIVEKANANDA. Find its
pre-order, in-order, and post-order traversal.

20.	�Create an AVL tree by inserting the following keys, 50, 19, 59, 90, 100,
12, 10, and 150, into the tree.

21.	�Consider the following AVL search tree and perform various operations
in it:

1.	Insert 100, 58, 93, 40, and 7 into the tree.

2.	Search for 93 in the AVL tree.

22.	Discuss the various types of rotations performed in AVL trees.

23.	�Which one of the following is better and why? i) AVL Trees or
ii) Binary Search Trees

24.	Consider the following tree and answer the following:

1.	Determine the height of the tree.

2.	Name the leaf nodes.

3.	Siblings of C.

4.	Level number of the node J.

5.	Root node of the tree.

6.	Left and right subtrees.

Trees • 409

7.	Depth of the tree.

8.	Ancestors of E.

9.	Descendants of H.

10.		Path from node A to F.

8.7.2 Programming Questions

1.	Write a function to find the height of a binary search tree.

2.	Write a C++ program to insert and delete nodes from a binary search
tree.

3.	Write a C++ program to show insertion in AVL trees using classes.

4.	Write a function to calculate the total number of nodes in a tree.

5.	Write a C++ program to traverse a binary search tree showing all the tra-
versal methods using classes.

6.	Write a function to find the largest value in a binary search tree.

7.	Write an algorithm showing post-order traversal of a binary search tree.

8.	Write an algorithm to find the total number of internal nodes in a binary
search tree.

9.	Write a function to search for a node in a binary search tree.

410 • Data Structures and Program Design Using C++

8.7.3 Multiple Choice Questions

1.	The maximum height of a binary tree with n number of nodes is ______.

a)	0

b)	n

c)	n+1

d)	n-1

2.	The degree of a terminal node is always ______.

a)	1

b)	2

c)	0

d)	3

3.	A binary tree is a tree in which ______.

a)	Every node must have two children

b)	Every node must have at least two children

c)	No node can have more than two children

d)	All of these

4.	What is the post-order traversal of the binary search tree having pre-
order traversal as DBAEFGCH and in-order traversal as BEAFDCHG?

a)	EFBAHGCD

b)	EFBAHCGD

c)	EFABHGCD

d)	EFABHCGD

5.	How many rotations are required during the construction of an AVL tree
if the following keys are to be added in the order given?

36, 51, 39, 24, 29, 60, 79, 20, 28

a)	3 Left rotations, 3 Right rotations

b)	2 Left rotations, 2 Right rotations

Trees • 411

c)	2 Left rotations, 3 Right rotations

d)	3 Left rotations, 2 Right rotations

6.	A binary tree of height h has at least h nodes and at most ______ nodes.

a)	2

b)	2h

c)	2h – 1

d)	2h + 1

7.	How many distinct binary search trees can be created out of four
distinct keys?

a)	5

b)	12

c)	14

d)	23

8.	Nodes at the same level that also share same parent are called ________.

a)	Cousins

b)	Siblings

c)	Ancestors

d)	Descendants

9.	The balance factor of a node is calculated by _______.

a)	Heightleft sub-tree – HeightRight sub-tree

b)	HeightRight sub-tree – HeightLeft sub-tree

c)	Heightleft sub-tree + HeightRight sub-tree

d)	HeightRight sub-tree + HeightLeft sub-tree

412 • Data Structures and Program Design Using C++

10.	The following sequence is inserted into an empty binary search tree:

6 11 26 12 5 7 16 8 35

What is the type of traversal is given by:

6 5 11 7 26 8 12 35 16

a)	Pre-order traversal

b)	In-order traversal

c)	Post-order traversal

d)	None of these

11.	�In tree creation, which one will be the most suitable and effective data
structure?

a)	Stack

b)	Linked list

c)	Queue

d)	Array

12.	Binary tree can be represented as:

a)	Linked List

b)	Arrays

c)	Both of the above

d)	None of the above

13.	A binary tree of n nodes has exactly n+1 edges.

a)	True

b)	False

c)	Not possible to comment

Trees • 413

14.	�The in-order traversal of a tree will yield a sorted listing of the
elements of trees in

a)	Binary heaps

b)	Binary trees

c)	Binary search trees

d)	All of these

15.	�Which is the nearest ancestor node on the path from the root node to the
newly inserted node of the AVL tree having balance factor -1, 0, or 1?

a)	Parent node

b)	Child node

c)	Root node

d)	Critical node

C H A P T E R9

9.1  Introduction

We have already studied binary search trees and have discussed that
every node in a binary search tree contains three parts, that is, an informa-
tion part and two pointers LEFT and RIGHT which point to the left and
right subtrees. The same concept is used for multi-way search trees. An
M-way search tree is a tree which contains (M – 1) values per node. It also
has M subtrees. In an M-way search tree, M is called the degree of the
node. For example, if the value of M = 3 in an M-way search tree, then
the tree will contain two values per node and it will have three subtrees.
When an M-way search tree is not empty, it has the following properties:

1.	Each node in an M-way search tree is of the following structure:

n P0 K0 P1 K1 P2 K2 _ _ _ _ _ _ Pn-1 Kn-1 Pn

MULTI-WAY SEARCH TREES

In This Chapter

ll 	 Introduction
ll 	 B–trees
ll 	 Operations on a B-tree
ll 	 Application of a B-tree
ll 	 B+ trees
ll 	 Summary
ll 	 Exercises

416 • Data Structures and Program Design Using C++

where P0, P1, P2, . . . Pn are the pointers to the node’s subtrees and K0,
K1, K2, . . . Kn are the key values stored in the node.

2.	The key values in a node are stored in ascending order, that is, Ki < Ki+1,
where i = 0, 1, 2, . . . n-2.

3.	All the key values stored in the left subtree are always less than the root
node.

4.	All the key values stored in the right subtree are always greater than the
root node.

5.	The subtrees pointed to by Pi for i = 0, 1, 2, . . . n are also M-way search
trees.

FIGURE 9.1. M-way search tree of order 4.

9.2  B–Trees

A B-tree is a specialized multi-way tree which is widely used for
disk access. The B-tree was developed in 1970 by Rudolf Bayer and
Ed McCreight. In a B-tree each node may contain large number of
keys. A B-tree is designed to store a large number of keys in a single
node so that the height remains relatively small. A B-tree of order m
has all the properties of a multi-way search tree. In addition, it has
the following properties:

1.	All leaf nodes are at the bottom level or at the same level.

2.	Every node in a B-tree can have at most m children.

3.	The root node can have at least two children if it is not a leaf node, and it
can obviously have no children if it is a leaf node.

Multi-Way Search Trees • 417

4.	Each node in a B-tree can have at least (m/2) children except the root
node and the leaf node.

5.	Each leaf node must contain at least ceil [(m/2) – 1] keys.

For example – A B-tree of order 5 can have at least ceil [5/2] = 3
children and ceil [(5/2) – 1] = 2 keys. Obviously, the maximum number of
children a node can have is 5. Each leaf node must contain at least 2 keys.

FIGURE 9.2. B-tree of order 4.

9.3  Operations on a B-Tree

A B-tree stores sorted data, and we can perform on it the following
operations:

•	 Inserting a new element in a B-tree

•	 Deleting an element from a B-tree

So, let’s discuss both these operations in detail.

Practical Application:

In database programs, the data is too large to fit in memory; therefore, it is
stored in secondary storage, that is, tapes or disks in the form of tree structure.

418 • Data Structures and Program Design Using C++

9.3.1 Insertion in a B-Tree
First of all, insertions in a B-tree are done at the leaf-node level. The

following are the steps for inserting an element in a B-tree:

Step 1 – In Step 1, we will search the B-tree to find the leaf node
where the new key is to be inserted.

Step 2 – Now, if the leaf node is full, that is, if it already contains (m – 1)
keys, then follow these steps:

i.	 Insert the new key into the existing set of keys in order.

ii.	Now, the node is split into two halves.

iii.	Finally, push the middle (median) element upward to its parent node.
Also, if the parent node is full, then split the parent node by following
these steps.

Step 3 – If the leaf node is not full, that is, it contains (m – 1) keys,
then insert the new key into the node, keeping the elements of the node
in order.

Frequently Asked Questions

Q. �Construct a B-tree of order 5 and insert the following values
into it:

Values to be inserted – B, N, G, A, H, E, J, Q, M, D, V, L, T, Z

Answer.
1.	 Since order = 5, we can store at least 3 values and at most 4 values in a single

node. Hence, we will insert B, N, G, A into the B-tree in sorted order.

FIGURE 9.3 (a)

Multi-Way Search Trees • 419

2.	 �Now H is to be inserted between G and N, so now the order will be A B G
H N, which is not possible, as at most 4 values can be accommodated in a
single node. So now we will split the node, and the middle element G will
become the root node.

FIGURE 9.3 (b)

3.	 Now we will insert E J and Q into the B-tree.

FIGURE 9.3 (c)

4.	 �M is to be inserted in the right subtree. But at most 4 values can be stored in
the node, so now we will push the middle element, that is, M, into the root
node. Thus, the node is split into two halves.

FIGURE 9.3 (d)

420 • Data Structures and Program Design Using C++

5.	 Now we will insert D V L T into the tree.

FIGURE 9.3 (e)

6.	 Finally, Z is to be inserted. It will be inserted in the right subtree. Hence, the
last node will split into two halves, and the middle element, that is, T, will
push up to the root node.

FIGURE 9.3 (f)

9.3.2  Deletion in a B-Tree
Deletion of keys in a B-tree also first requires traversal in the B-tree; that

is, after reaching a particular node, we can come across two cases which are:

1.	Node is a leaf node.

2.	Node is not a leaf node.

Now, let us discuss both these cases in detail.

1. Node is a leaf node

If the node has more than a minimum number of keys, then deletion
can be done very easily. But if the node has a minimum number of keys,
then first we will check the number of keys in the adjacent leaf node. If the

Multi-Way Search Trees • 421

number of keys in the adjacent node is greater than the minimum number
of keys, then the first key of the adjacent leaf node will go to the parent
node and the key present in the parent node will be combined in a single
leaf node. If the parent node also has less than the minimum number of
keys, then the same steps will be repeated until we get a node which has
more than the minimum number of keys present in it.

2. Node is not a leaf node

In this case the key from the node is deleted, and its place will be oc-
cupied by either its successor or predecessor key. If both predecessor and
successor nodes have keys less than the minimum number, then the keys of
the successor and predecessor are combined.

For Example – Consider a B-tree of order 5.

FIGURE 9.4(a)

1.	Delete J from the tree. J is in the leaf node, so it is simply deleted from
the B-tree.

FIGURE 9.4(b)

422 • Data Structures and Program Design Using C++

4.	Now we want to delete E. In this case we will also borrow keys from an
adjacent node. But we can see that there are no free keys in an adjacent
node, so the leaf node has to be combined with one of its two siblings.
This includes moving down the parent’s key that was between those two
leaves.

FIGURE 9.4(c)

3.	Now delete R; in this case we will borrow keys from the adjacent leaf
node.

2.	Now T is to be deleted, but it is not in the leaf node, so we will replace T
with its successor, that is, W. Hence, T is deleted.

FIGURE 9.4(d)

Multi-Way Search Trees • 423

But we can see that H is still unstable according to the definition.
Therefore, the final tree after all deletions is shown as follows:

FIGURE 9.4(e)

FIGURE 9.4(f)

Frequently Asked Questions

Q. �Consider the following B-tree of order 5 and insert 81, 7, 49,
61, and 30 in it.

424 • Data Structures and Program Design Using C++

Answer.
1.	 Insert 81

2.	 Insert 7 and 49

3.	 Insert 61 and 30

FIGURE 9.5. Insertion in a B-tree.

Multi-Way Search Trees • 425

Frequently Asked Questions

Q. �Consider the following B-tree of order 5 and delete the values
95, 200, 176, and 70 from it.

Answer.
1.	 Delete 95

2.	 Delete 200

426 • Data Structures and Program Design Using C++

3.	 Delete 176

4.	 Delete 70

FIGURE 9.6. Deletion in a B-tree.

9.4  Application of a B-Tree

The main application of a B-tree is the organization of a large amount
of data or a huge collection of records into a file structure. A B-tree should
search the records very efficiently, and all the operations such as insertion,
deletion, searching, and so on should be done very efficiently; therefore,
the organization of records should be very good.

9.5  B+ Trees

A B+ tree is a variant of a B-tree which also stores sorted data like a
B-tree. The structure of a B-tree is the standard organization for indexes in
database systems. Multilevel indexing is done in a B+ tree; that is, leaf nodes
constitute a dense index, while non-leaf nodes constitute a sparse index.

Multi-Way Search Trees • 427

A B+ tree is a slightly different data structure which allows sequential pro-
cessing of data and stores all the data in the lowest level of the tree. A B-
tree can store both records and keys in its interior nodes, while a B+ tree
stores all the records in its leaf nodes and the keys in its interior nodes. In
a B+ tree, the leaf nodes are linked to one another like a linked list. A B+
tree is usually used to store big amounts of data which cannot be stored in
the primary memory. Hence, in a B+ tree the leaf nodes are stored in the
secondary storage, while the internal nodes are stored in the main memory.

In a B+ tree, all the internal nodes are called index nodes because they
store the index values. Similarly, all the external nodes are called data nodes
because they store the keys. A B+ tree is always balanced and is very ef-
ficient for the searching of data, as all the data is stored in the leaf nodes.
Various advantages of a B+ tree are as follows:

a.	A B+ tree is always balanced, and the height of the tree always remains
less.

b.	All the leaf nodes are linked to one another, which make it very efficient.

c.	The leaf nodes are also linked to the nodes at an upper level; thus, it can
be easily used for a wide range of search queries.

d.	The records can be fetched in equal number of disk access.

e.	 The records can be accessed either sequentially or randomly.

f.	 Searching of data becomes very simple, as all the information is stored
only in leaf nodes.

g.	Similarly, deletion is also very simple, as it will only take place in the leaf nodes.

FIGURE 9.7. B+ tree of order 3.

428 • Data Structures and Program Design Using C++

9.6  Summary

•	 An M-way search tree has M – 1 values per node and M subtrees. M is
called the degree of the node.

•	 A B-tree is a specialized multi-way tree which is widely used for disk
access. The B-tree was developed in 1970 by Rudolf Bayer and Ed
McCreight.

•	 A B-tree of order m has all the properties of a multi-way search tree.

•	 The main application of a B-tree is the organization of a large amount
of data or a huge collection of records into a file structure.

•	 A B+ tree is a variant of a B-tree which also stores sorted data like
a B-tree. The structure of a B-tree is the standard organization for
indexes in database systems. A B+ tree is a slightly different data
structure which allows sequential processing of data and stores all the
data in the lowest level of the tree.

9.7  Exercises

9.7.1  Review Questions

1.	Define

a)	M-way search tree

b)	B-tree

c)	B+ tree

2.	Write a difference between B-trees and B+ trees.

3.	Give some important applications of a B-tree.

4.	Write down some advantages of a B+ tree over a B-tree.

5.	Construct a B-tree of order 3, inserting the keys 10, 20, 50, 60 40,
80, 100, 70, 130, 90, 30, 120, 140, 25, 35, 160, 180 in a left-to-right
sequence. Show the trees on deleting 190 and 60.

6.	Explain the insertion and deletion of a node in a B-tree.

Multi-Way Search Trees • 429

7.	Explain B+ tree indexing with the help of an example.

8.	What do you know about B-trees? Write the steps to create a B-tree.
Construct an M-way search tree of order 4 and insert the values 34, 45,
98, 1, 23, 41, 78, 100, 234, 122, 199, 10, 40.

9.	Why do we always prefer a higher value of m in a B-tree?
Explain.

10.	Are B-trees of order 2 full binary trees? Explain.

9.7.2  Multiple Choice Questions

1.	B+ trees are preferred to binary trees in databases because:

a)	Disk capacities are greater than memory capacities.

b)	Disk access is slower than memory access.

c)	Disk data transfer rates are less than the memory data
transfer rates.

d)	Disks are more reliable than memory.

2.	In an M-way search tree, M stands for ________.

a)	Degree of the node

b)	External nodes

c)	Internal nodes

d)	None of these

3.	A B-tree of order 4 is built. What is the maximum number of keys
that a node may accommodate before splitting operations take place?

a)	5

b)	2

c)	4

d)	3

430 • Data Structures and Program Design Using C++

4.	In a B-tree of order m, every node has at the most __________ children.

a)	M + 1

b)	M – 1

c)	M/2

d)	M

5.	Which is the best data structure to search the keys in less time?

a)	B-tree

b)	M-way search tree

c)	B+ tree

d)	Binary search tree

6.	The best case of searching a value in a binary search tree is:

a)	O(n2)

b)	O(log n)

c)	O(n)

d)	O(n log n)

7.	External nodes are also called ________.

a)	Index nodes

b)	Data nodes

c)	Value nodes

d)	None of the above

8.	A B-tree of order 5 can store at most how many keys?

a)	3

b)	4

c)	5

d)	6

Multi-Way Search Trees • 431

9.	A B+ tree stores redundant keys.

a)	False

b)	True

c)	Not possible to comment

10.	A B-tree of order 3 can store at least how many keys?

a)	0

b)	1

c)	2

d)	3

C H A P T E R10
HASHING

In This Chapter

●● Introduction
●● Summary
●● Exercises

10.1  Introduction

In Chapter 6, we discussed three types of searching techniques: linear
search, binary search, and interpolation search. Linear search has a run-
ning time complexity of O(n), whereas binary search has a running time
proportional to O(log n), where n is equal to the number of elements in the
array. The searching algorithms discussed within Chapter 6 are efficient.
However, their search time is dependent on the number of elements in
the array, and none of them can search for an element within the constant
time equal to O(1). But it is very difficult to achieve in all the searching al-
gorithms like linear search, binary search, and so on, as all these algorithms
are dependent on the number of elements present in the array. Also, there
are many comparisons involved while searching for an element using the
previous searching algorithms. Therefore, our primary need is to search for
the element in a constant time along with less key comparisons. Now, let
us take an example. Suppose there is an array of size N and all the keys to
be stored in the array are unique and also are in the range 0 to N-1. Now,

434 • Data Structures and Program Design Using C++

we will store all the records in the array based on the key where array index
and keys are same. Thus, in that case we can access the records in a con-
stant time along with no key comparisons involved in it. This can be further
explained by the following figure:

In the previous figure, there is an array containing five elements. Note
that the keys and the array index numbers are the same; that is, the record
with the key value 3 can be directly accessed by array index arr[3]. Similarly,
all the records can be accessed through key values and the array index.
Thus, this can be done by hashing, where we will convert the key into an
array index and store the records in the array. This can be done as follows:

FIGURE 10.1. An array.

FIGURE 10.2. Array index generation using hashing.

The process of array index generation uses a hash function which is
used to convert the keys into an array index. The array in which such re-
cords are stored is known as a hash table.

Hashing • 435

10.1.1  Difference between Hashing and Direct Addressing
In direct addressing, we store the key at the same address as the value

of the key as shown in Figure 10.3. However, in hashing, as shown in Figure
10.4, the address of the key is determined by using a mathematical func-
tion known as a hash function. The hash function will operate on the key to
determine the address of the key. Direct addressing may result in a more
random distribution of the key throughout the memory, and hence some-
times leads to more wastage of space when compared with hashing.

Practical Application:

1.	 �A simple real-life example is when we search for a word in the dictionary
and then find the definition or meaning with the help of a key and its
index.

2.	 �Driver’s license numbers and insurance card numbers are created using
hashing from data items that never change, that is, date of birth, name,
and so on.

Frequently Asked Questions

Q. Explain the term hashing.
Answer.
Hashing is the process of mapping keys to their appropriate locations in the
hash table. It is the most effective technique of searching the values in an
array or in a hash table.

436 • Data Structures and Program Design Using C++

10.1.2  Hash Tables
A hash table is a data structure which supports one of the efficient

searching techniques, that is, hashing. A hash table is an array in which the
data is accessed through a special index called a key. In a hash table, keys
are mapped to the array positions by a hash function. A hash function is a
function or mathematical formula which, when applied to a key, produces an
integer which is used as an index to find a key in the hash table. Thus, a value
stored in a hash table can be searched in O(1) time with the help of a hash
function. The main idea behind a hash table is to establish direct mapping
between the keys and the indices of the array.

FIGURE 10.3. Mapping of keys using a direct addressing method.

Hashing • 437

10.1.3  Hash Functions
A hash function is a mathematical formula which, when applied to a

key, produces an integer which is used as an index to find a key in the hash
table.

Characteristics of the Hash Function

There are four main characteristics of hash functions which are:

1.	The hash function uses all the input data.

2.	The hash function must generate different hash values.

3.	The hash value is fully determined by the data being hashed.

4.	The hash function must distribute the keys uniformly across the entire
hash table.

FIGURE 10.4. Mapping of keys to the hash table using hashing.

438 • Data Structures and Program Design Using C++

Different Types of Hash Functions

In this section, we will discuss some of the common hash functions:

1.	Division Method – In the division method, a key k is mapped into one
of the m slots by taking the remainder of k divided by m. In simple terms,
we can say that this method divides an integer, say x, by m and then uses
the remainder so obtained. It is the simplest method of hashing. The
hash function is given by:

For Example, if m = 5 and the key k = 10, then h(k) = 2. Thus, the division
method works very fast, as it requires only a single division operation. Although
this method is good for any value of m, consider that if m is an even number
then h(k) is even when the value of k is even, and similarly h(k) is odd when the
value of k is odd. Therefore, if the even and odd keys are almost equal, then
there will be no problem. But if there is a larger number of even keys, then the
division method is not good, as it will not distribute the keys uniformly in the
hash table. Also, we avoid certain values of m; that is, m should not be a power
of 2, because if h(k) = k mod 2x, then h(k) will extract the lowest x bits of k. The
main drawback of the division method is that many consecutive keys map to
consecutive hash values, which means that consecutive array locations will be
occupied, and hence there will be an effect on the performance.

Frequently Asked Questions

Q. �Given a hash table of 50 memory locations, calculate the hash
values of keys 20 and 75 using the division method.
Answer.
m = 50, k1 = 10, k2 = 75 hash values are calculated as:

h(10) = 10 % 50 = 10

h(75) = 75 % 50 = 25

Hashing • 439

2.	Mid Square Method – In the mid square method, we will calculate the
square of the given key. After getting the number, we will extract some
digits from the middle of that number as an address.

For Example, if key k = 5025, then k2 = 25250625. Thus, h(5025) = 50.

This method works very well, as all the digits of the key contribute to
the output; that is, all the digits contribute in producing the middle dig-
its. In addition, the same r digits must be chosen from all the keys in this
method.

3.	Folding Method – In the folding method, we will break the key into
pieces such that each piece has the same number of digits except the last
one, which may have fewer digits as compared to the other pieces. Now,
these individual pieces are added. We will ignore the carry if it exists.
Hence, the hash value is formed.

For example, if m = 100 and the key k = 12345678, then the indices
will vary from 0 to 99, and thus each piece of the key must have two digits.
Therefore, the given key will be broken into four pieces, that is, 12, 34, 56,
and 78. Now we will add all these, that is, 12 + 34 + 56 + 78 = 180. Thus,
the hash value will be 80 (ignore the last carry).

Frequently Asked Questions

Q. �Given a hash table of 100 memory locations, calculate the
hash values of keys 2045 and 1357 using the mid square
method.
Answer.
Now, there are 100 memory locations where indices will be from 0 to 99.
Hence, only two digits will be taken to map the keys. So, the value of r is
equal to 2.

k = 2045, k2 = 4182025, h(2045) = 20

k = 1357, k2= 1841449, h(1357) = 14

Note: The third and fourth digits are chosen to start from the right.

440 • Data Structures and Program Design Using C++

10.1.4  Collision
A collision is a situation which occurs when a hash function maps two

different keys to a single/same location in the hash table. Suppose we want
to store a record at one location. Now, another record cannot be stored at
the same location as it is obvious that two records cannot be stored at the
same location. Thus, there are methods to solve this problem, which are
called collision resolution techniques.

10.1.5  Collision Resolution Techniques
As already discussed, collision resolution techniques are used to over-

come the problem of collision in hashing. There are two popular methods
which are used for resolving collisions:

1.	Collision Resolution by Chaining Method

2.	Collision Resolution by Open Addressing Method

Now, we will discuss these methods in detail.

10.1.5.1  Chaining Method

In the chaining method, a chain of elements is maintained
which have the same hash address. The hash table here be-
haves like an array of pointers. Each location in the hash table
stores a pointer to the linked list, which contains all the key ele-

Frequently Asked Questions

Q. �Given a hash table of 100 memory locations, calculate the
hash values of keys 2486 and 179 using the folding method.
Answer.
Now, there are 100 memory locations where indices will be from 0 to 99.
Hence, each piece of the key must have two digits.

h(2486) = 24 + 86 = 110

h(2486) = 10 (ignore the last carry)

h(179) = 17 + 9 = 26

h(179) = 26

Hashing • 441

ments that were hashed to that location. For example, location 5
in the hash table points to the key values that hashed to location 5.
If no key value hashes to location 5, then in that case location 5 will con-
tain NULL. The following figure shows how the key values are mapped
to the hash table and also how they are stored in the linked list.

FIGURE 10.5. Keys being hashed by chaining method.

Operations on a Chained Hash Table

1.	Insertion in a Chained Hash Table – The process of inserting an ele-
ment is quite simple. First, we get the hash value from the hash function,
which will map to the hash table. After mapping, the element is inserted
in the linked list. The running time complexity of inserting an element in
a chained hash table is O(1).

2.	Deletion from a Chained Hash Table – The process of deleting an
element from the chained hash table is same as we used in the singly
linked list. First, we will perform a search operation, and then the delete
operation as in the case of the singly linked list is performed. The run-
ning time complexity of deleting an element from a chained hash table
is O(m), where m is the number of elements present in the linked list at
that location.

442 • Data Structures and Program Design Using C++

3.	Searching in a Chained Hash Table – The process of searching for an
element in a chained hash table is also very simple. First, we will get the
hash value of the key by the hash function in the hash table. Then we will
search for the element in the linked list. The running time complexity of
searching for an element in a chained hash table is O(m), where m is the
number of elements present in the linked list at that location.

Frequently Asked Questions

Q. �Insert the keys 4, 9, 20, 35, and 49 in a chained hash table of
10 memory locations. Use hash function h(k) = k mod m.

Answer.
Initially, the hash table is given as:

Now, we will insert 4 in the hash table.

Step 1:
Key to be inserted = 4

h(4) = 4 mod 10

h(4) = 4

Now, we will create a linked list for location 4, and the key element 4 is stored
in it.

Hashing • 443

Step 2:
Key to be inserted = 9

h(9) = 9 mod 10

h(9) = 9

Now, we will create a linked list for location 9, and the key element 9 is stored
in it.

444 • Data Structures and Program Design Using C++

Step 3:
Key to be inserted = 20

h(20) = 20 mod 10

h(20) = 2

Now, we will create a linked list for location 2, and the key element 20 is
stored in it.

Step 4:
Key to be inserted = 35

h(35) = 35 mod 10

h(35) = 5

Now, we will create a linked list for location 5, and the key element 35 is
stored in it.

Hashing • 445

Step 5:
Key to be inserted = 49

h(49) = 49 mod 10

h(49) = 9

Now, we will insert 49 at the end of the linked list of location 9.

446 • Data Structures and Program Design Using C++

Advantages and Disadvantages of the Chained Method

The main advantage of this method is that it completely resolves the
problem of collision. It remains effective even when the key elements to be
stored in the hash table are higher than the number of locations in the hash
table. However, it is quite obvious that with the increase in the number of
key elements, the performance of this method will decrease.

The disadvantage of this method is the wastage of storage space as
the key elements are stored in the linked list; in addition, the pointers are
required for each element to get accessed, which in turn are consuming
more space.

10.1.5.2  Open Addressing Method

In the open addressing method, all the elements are stored in the hash
table itself. There is no need to provide the pointers in this method, which
is the biggest advantage of this method. Once a collision takes place, open
addressing computes new locations using the probe sequence, and the next
element or next record is stored on that location. Probing is the process of
examining the memory locations in the hash table. When we perform the
insertion operation in the open addressing method, we first successively
probe/examine the hash table until we find an empty slot in which the new
key can be inserted. The open addressing method can be implemented
using the following:

•	 Linear Probing

•	 Quadratic Probing

•	 Double Hashing

Now, let us discuss all of them in detail.

Linear Probing

Linear probing is the simplest approach to resolving the problem of
collision in hashing. In this method, if a key is already stored at a location
generated by the hash function h(k), then the situation can be resolved by
the following hash function:

Hashing • 447

Now, let us understand the working of this technique. For a given key
k, first the location generated by (h(k) + 0) mod m is probed, because for
the first time i = 0. If the location generated is free, then the key is stored
in it. Otherwise, the second probe is generated for i = 1 given by the hash
function (h(k) + 1) mod m. Similarly, if the location generated is free, then
the key is stored in it; otherwise, subsequent probes are generated such as
(h(k) + 2) mod m, (h(k) + 3) mod m, and so on, until we find a free location.

Frequently Asked Questions

Q. �Given keys k = 13, 25, 14, and 35, map these keys into a hash
table of size m = 5 using linear probing.

Answer.
Initially, the hash table is given as:

Step 1:
i = 0

Key to be inserted = 13

h’(k) = (k mod m + i) mod m

h’(13) = (13 % 5 + 0) % 5

h’(13) = (3 + 0) % 5

h’(13) = 3 % 5 = 3

448 • Data Structures and Program Design Using C++

Now, since location T[3] is free, 13 is inserted at location T[3].

Step 2:
i = 0

Key to be inserted = 25

h’(25) = (25 % 5 + 0) % 5

h’(25) = (0 + 0) % 5

h’(13) = 0 % 5 = 0

Now, since location T[0] is free, 25 is inserted at location T[0].

Step 3:
i = 0

Key to be inserted = 14

h’(14) = (14 % 5 + 0) % 5

h’(14) = (4 + 0) % 5

h’(14) = 4 % 5 = 4

Now, since location T[4] is free, 14 is inserted at location T[4].

Step 4:
i = 0

Key to be inserted = 35

h’(35) = (35 % 5 + 0) % 5

h’(35) = (0 + 0) % 5

h’(35) = 0 % 5 = 0

Hashing • 449

Write a program to show the linear probing technique of the collision
resolution method.

Now, since location T[0] is not free, the next probe sequence, that is, i = 1, is
computed as:

i = 1

h’(35) = (35 % 5 + 1) % 5

h’(35) = (0 + 1) % 5

h’(35) = 1 % 5 = 1

Now, since location T[1] is free, 35 is inserted at location T[1].

Thus, the final hash table is shown as:

include<iostream.h>
include<conio.h>
include<stdlib.h>
define SIZE 10

int arr[SIZE];
void insertion(int, int[]);
void lprob(int k, int arr[SIZE]);
void display(int arr[SIZE]);
void main()
{
int i, k , choice ;
clrscr();
for (i=0; i<SIZE; i++)
{
arr[i]= NULL;
while(1)
{
cout<<“\n MENU” ;
cout<<“\n 1. Insert Keys” ;
cout<<“\n 2. Search Keys” ;
cout<<“\n 3. Display Keys” ;
cout<<“\n 4. Exit ” ;

450 • Data Structures and Program Design Using C++

cout<<“\n\nSelect Operation: ” ;
cin>>choice ;
switch(choice)
{
case 1:
cout<<“\nEnter values of key: “ ;
cin>>k ;
if(k!=-1)
{
insertion(k,arr);

}
cout<<“\nInserted Successfully!!!”;
break;

case 2:
cout<<“\nEnter key value to search: “ ;
cin>>k ;
lprob(k, arr);
break;

case 3:
display(arr);
break;

case 4:
exit(0);

default:
cout<<“Wrong Choice” ;
exit(0);

}
}

}
}

void insertion(int k, int arr[SIZE])
{
int position ;
position = k % SIZE;
while(arr[position]!= NULL)
{
position = ++ position % SIZE;

Hashing • 451

}
arr[position] = k;

}

void lprob(int k, int arr[SIZE])
{
int position ;
position = k % SIZE;
while ((arr[position] != k) && (arr[position] != NULL))
{
position = ++ position % SIZE;

}
if(arr[position]!= NULL)
cout<<“\nSuccessfully searched at: “<<position ;
else
cout<<“\nUnsuccessfull search” ;

}

void display(int arr[SIZE])
{
int i ;
cout<<“\n List of keys :\n” ;
for(i=0; i<SIZE; i++)
cout<<“\t”<<arr[i] ;

}
The output of the program is shown as:

452 • Data Structures and Program Design Using C++

Advantages and Disadvantages of Linear Probing

Linear probing is a very good technique, as the algorithm provides good
memory caching through good locality of address. But the main disadvan-
tage of this method is that it results in clustering. Due to clustering, there is
a higher risk of collisions taking place. Also, the time required for searching
also increases with the size of the clusters. Now, we can say that the higher
the number of collisions, the higher the number of probes are required to
find a vacant location, and the performance is lessened. This is known as
primary clustering. We can avoid this clustering by using other techniques
such as quadratic probing and double hashing.

Quadratic Probing

Quadratic probing is another approach to resolving the problem of col-
lision in hashing. In this method, if a key is already stored at a location gen-
erated by the hash function h(k), then the situation can be resolved by the
following hash function:

The quadratic probing method is better than linear probing, as it termi-
nates the phenomenon of primary clustering because of its searching speed;
that is, it is doing a quadratic search. For a given key k, first the location
generated by (h(k) + 0 + 0) mod m is probed, because for the first time i = 0.
If the location generated is free, then the key is stored in it. Otherwise, sub-
sequent positions probed are offset by the amounts/factors that depend in
a quadratic manner on the probe number i. The quadratic probing method
works better than linear probing, but to maximize the use of the hash table,
the values of m, c1, and c2 are constrained.

Hashing • 453

Frequently Asked Questions

Q. �Given keys k = 25, 13, 14, and 35, map these keys into a hash
table of size m = 5 using quadratic probing with c1 = 1 and c2 = 3.

Answer.
Initially, the hash table is given as follows:

Step 1:
i = 0

c1 = 1, c2 = 3

Key to be inserted = 25

h’(k) = (k mod m + c1i + c2i
2) mod m

h’(25) = (25 % 5 + 1 X 0 + 3 X (0)2) % 5

h’(25) = (0 + 0) % 5

h’(13) = 0 % 5 = 0

Now, since location T[0] is free, 25 is inserted at location T[0].

Step 2:
i = 0

c1 = 1, c2 = 3

Key to be inserted = 13

h’(13) = (13 % 5 + 1 X 0 + 3 X (0)2) % 5

h’(13) = (3 + 0) % 5

h’(13) = 3 % 5 = 3

Now, since location T[3] is free, 13 is inserted at location T[3].

454 • Data Structures and Program Design Using C++

Step 3:
i = 0

c1 = 1, c2 = 3

Key to be inserted = 14

h’(14) = (14 % 5 + 1 X 0 + 3 X (0)2) % 5

h’(14) = (4 + 0) % 5

h’(14) = 4 % 5 = 4

Now, since location T[4] is free, 14 is inserted at location T[4].

Step 4:
i = 0

c1 = 1, c2 = 3

Key to be inserted = 35

h’(35) = (35 % 5 + 1 X 0 + 3 X (0)2) % 5

h’(35) = (0 + 0) % 5

h’(35) = 0 % 5 = 0

Now, since location T[0] is not free, the next probe sequence, that is, i = 1, is
computed as:

i = 1

h’(35) = (35 % 5 + 1 X 1 + 3 X (1)2) % 5

h’(35) = (0 + 1 + 3) % 5

h’(35) = 4 % 5 = 4

Again, since location T[4] is not free, the next probe sequence, that is, i = 2,
is computed as:

i = 2

h’(35) = (35 % 5 + 1 X 2 + 3 X (2)2) % 5

h’(35) = (0 + 2 + 12) % 5

h’(35) = 14 % 5 = 4

Hashing • 455

Write a program to show the quadratic probing technique of the col-
lision resolution method.

Again, since location T[4] is not free, the next probe sequence, that is, i = 3,
is computed as:

i = 3

h’(35) = (35 % 5 + 1 X 3 + 3 X (3)2) % 5

h’(35) = (0 + 3 + 27) % 5

h’(35) = 30 % 5 = 0

Again, since location T[0] is not free, the next probe sequence, that is, i = 4,
is computed as:

i = 4

h’(35) = (35 % 5 + 1 X 4 + 3 X (4)2) % 5

h’(35) = (0 + 4 + 48) % 5

h’(35) = 52 % 5 = 2

Now, since location T[2] is free, 35 is inserted at location T[2].

Thus, the final hash table is shown as:

include<iostream.h>
include<conio.h>
include<stdlib.h>
define SIZE 5

int arr[SIZE];
void insertion(int , int[]);
void qprob(int k, int arr[SIZE]);
void display(int arr[SIZE]);
void main()
{
int i, k , choice ;
clrscr();

456 • Data Structures and Program Design Using C++

for (i=0; i<SIZE; i++)
{
arr[i]= NULL;
while(1)
{
cout<<“\nMENU” ;
cout<<“\n1. Insert Keys” ;
cout<<“\n2. Search Keys” ;
cout<<“\n3. Display Keys” ;
cout<<“\n4. Exit” ;
cout<<“\n\nSelect Operation: “ ;
cin>>choice;
switch(choice)
{
case 1:
cout<<“\nEnter values of key: “ ;
cin>>k ;
if(k!=-1)
{
insertion(k,arr);

}
cout<<“\nInserted Successfully!!!\n” ;
break;

case 2:
cout<<“\nEnter value of search key: “ ;
cin>>k ;
qprob(k, arr);
break;

case 3:
display(arr);
break;

case 4:
exit(0);

Hashing • 457

default:
cout<“wrong choice”;
exit(0);

}
}

}
}
void insertion(int k, int arr[SIZE])
{
int position, i=1;
position = k % SIZE;
while(arr[position]!= NULL)
{
position = (k % SIZE + i*i) % SIZE;
i++;

}
arr[position] = k;

}
void qprob(int k, int arr[SIZE])
{
int position ;
position = k % SIZE;
while ((arr[position] != k)&& (arr[position] !=-1))
position = ++ position %SIZE;
if(arr[position]!= NULL)
cout<<“\nSuccessfully searched at: “<<position ;
else
cout<<“\n Unsuccessful search” ;

}
void disp(int arr[SIZE])
{
int i ;
cout<<“\nList of keys” ;
for(i=0; i<SIZE; i++)
cout<<“\t”<<arr[i] ;

}

458 • Data Structures and Program Design Using C++

The output of the program is shown as:

Advantages and Disadvantages of Quadratic Probing

As previously discussed, one of the biggest advantages of quadratic prob-
ing is that it eliminates the phenomenon of primary clustering. Yet one of the
major disadvantages of this method is that a sequence of successive probes may
only cover some portion of the hash table, and this portion may be quite small.
Therefore, if such a situation occurs, then it will be difficult for us to find an
empty location in the hash table, despite the fact that the table is not full. Hence,
quadratic probing encounters a problem which is known as secondary cluster-
ing. In this method, the chance of multiple collisions increases as the hash table
become full. This type of situation can be overcome by double hashing.

Double Hashing

Double hashing is one of the best methods available for open address-
ing. As the name suggests, this method uses two hash functions to operate
rather than a single hash function. The hash function is given as follows:

h’(k) = (h1(k) + ih2(k)) mod m,

where h1(k) = k mod m and h2(k) = k mod m’ are the two hash func-
tions, m is the size of the hash table, m’ is less than m (can be (m – 1) or
(m – 2)), and i is the probe number that varies from 0 to (m – 1).

Hashing • 459

Now, let us understand the working of this technique. For a given key
k, first the location generated by (h1(k) mod m) is probed, because for the
first time i = 0. If the location generated is free, then the key is stored in
it. Otherwise, subsequent probes generate locations that are at an offset of
(h2(k) mod m) from the previous location. Also, the offset may vary with
every probe depending upon the value generated by the second hash func-
tion, that is, (h2(k) mod m). As a result, the performance of double hashing
is very near to the performance of the “ideal” scheme of uniform hashing.

Frequently Asked Questions

Q. �Given keys k = 71, 29, 38, 61, and 100, map these keys into a hash
table of size m = 5 using double hashing. Take h1 = (k mod 5)
and h2 = (k mod 4).

Answer.
Initially, the hash table is given as:

Step 1:
i = 0

h’(k) = (h1(k) + ih2(k)) mod m

h’(k) = (k mod m + (i k mod m’)) mod m

h’(71) = (71 % 5 + (0 X 71 % 4)) % 5

h’(71) = (1 + (0 X 3)) % 5

h’(71) = 1 % 5 = 1

Now, since location T[1] is free, 71 is inserted at location T[1].

460 • Data Structures and Program Design Using C++

Step 2:
i = 0

Key to be inserted = 29

h’(k) = (k mod m + (i k mod m’)) mod m

h’(29) = (29 % 5 + (0 X 29 % 4)) % 5

h’(29) = (4 + (0 X 1)) % 5

h’(29) = 4 % 5 = 4

Now, since location T[4] is free, 29 is inserted at location T[4].

Step 3:
i = 0

Key to be inserted = 38

h’(k) = (k mod m + (i k mod m’)) mod m

h’(38) = (38 % 5 + (0 X 38 % 4)) % 5

h’(38) = (3 + (0 X 2)) % 5

h’(38) = 3 % 5 = 3

Now, since location T[3] is free, 38 is inserted at location T[3].

Step 4:
i = 0

Key to be inserted = 61

h’(k) = (k mod m + (i k mod m’)) mod m

h’(61) = (61 % 5 + (0 X 61 % 4)) % 5

h’(61) = (1 + (0 X 1)) % 5

h’(61) = 1 % 5 = 1

Hashing • 461

Advantages and Disadvantages of Double Hashing

The double hashing method is free from all the problems of primary
clustering and secondary clustering. It also minimizes repeated colli-
sions.

Now, since location T[1] is not free, the next probe sequence, that is, i = 1, is
computed as:

i = 1

h’(61) = (61 % 5 + (1 X 61 % 4)) % 5

h’(61) = (1 + (1 X 1)) % 5

h’(61) = (1 + 1) % 5

h’(61) = 2% 5 = 2

Now, since location T[2] is free, 61 is inserted at location T[2].

Step 5:
i = 0

Key to be inserted = 100

h’(k) = (k mod m + (i k mod m’)) mod m

h’(100) = (100 % 5 + (0 X 100 % 4)) % 5

h’(100) = (0 + (0 X 0)) % 5

h’(100) = 0 % 5 = 0

Now, since location T[0] is free, 100 is inserted at location T[0].

Thus, the final hash table is shown as:

462 • Data Structures and Program Design Using C++

10.2  Summary

•	 A hash table is an array in which the data is accessed through a special
index called a key. In a hash table, keys are mapped to the array
positions by a hash function.

•	 A hash function is a mathematical formula which when applied to a
key produces an integer which is used as an index to find a key in the
hash table.

•	 There are different types of hash functions which use numeric keys.
Popular methods are the division method, the mid square method,
and the folding method.

•	 In the division method, a key k is mapped into one of the m slots by
taking the remainder of k divided by m. The main drawback of the
division method is that many consecutive keys map to consecutive hash
values respectively, which means that consecutive array locations will
be occupied, and hence there will be an effect on the performance.

•	 In the mid square method, we will calculate the square of the given
key. After getting the number, we will extract some digits from the
middle of that number as an address.

•	 In the folding method, we will break the key into pieces such that each
piece has the same number of digits except the last one, which may
have lower digits as compared to other pieces. Now, these individual
pieces are added. Hence, the hash value is formed.

•	 A collision is a situation which occurs when a hash function maps two
different keys to a single/same location in the hash table.

•	 Collision resolution techniques are used to overcome the problem of
collision in hashing. There are two popular methods which are used
for resolving collisions, which are collision resolution by the chaining
method and collision resolution by the open addressing method.

•	 In the chaining method, a chain of elements is maintained which
have same hash address. Hash tables here behave like an array of
pointers. Each location in the hash table stores a pointer to the
linked list which contains all the key elements that were hashed
to that location. The disadvantage of this method is the wastage of
storage space as the key elements are stored in the linked list; in

Hashing • 463

addition, pointers are required for each element to get accessed,
which in turn consume more space.

•	 In an open addressing method, all the elements are stored in the hash
table itself. There is no need to provide the pointers in this method,
which is the biggest advantage of this method. Once a collision takes
place, open addressing computes new locations using the probe
sequence, and the next element or next record is stored in that location.

•	 Probing is the process of examining the memory locations in the hash
table.

•	 Linear probing is the simplest approach to resolving the problem
of collision in hashing. In this method, if a key is already stored at a
location generated by the hash function h(k), then the situation can be
resolved by the following hash function:

h’(k) = (h(k) + i) mod m

•	 Quadratic probing is another approach to resolving the problem
of collision in hashing. In this method, if a key is already stored at a
location generated by the hash function h(k), then the situation can be
resolved by the following hash function:

h’(k) = (h(k) + c1i + c2i
2) mod m

•	 Double hashing is one of the best methods available for open addressing.
As the name suggests, this method uses two hash functions to operate
rather than a single hash function. The hash function is given as:

h’(k) = (h1(k) + ih2(k)) mod m

10.3  Exercises

10.3.1  Review Questions

1.	What are hash tables?

2.	What is hashing? Give some of its practical applications.

3.	�Define the hash function and also explain the various characteristics of
a hash function.

4.	What is a collision in hashing and how it can be resolved?

5.	Explain the different types of hash functions along with examples.

464 • Data Structures and Program Design Using C++

6.	Discuss the collision resolution techniques in hashing.

7.	What is clustering in hashing? What are the two types of clustering?

8.	What do you understand about double hashing?

9.	Define the following terms:

a)	Quadratic Probing

b)	Linear Probing

10.	�What is the chaining method in hashing and how it can help in resolv-
ing collisions?

11.	�Consider a hash table of size 10. Using linear probing, insert the keys
12, 45, 67, 122, 78, and 34 in it.

12.	�Consider a hash table of size 9. Using double hashing, insert the keys 4,
17, 30, 55, 90, 11, 54, and 77 in it. Take h1 = k mod 9 and h2 = k mod 6.

13.	�Consider a hash table of size 11. Using quadratic probing, insert the
keys 10, 45, 56, 97, 123, and 1 in it.

14.	How can the open addressing method be used in resolving collisions?

15.	�Write a C++ function to retrieve an item from the hash table using
linear probing and quadratic probing.

10.3.2  Multiple Choice Questions

1.	Which of the following collision resolution techniques is free from the
clustering phenomenon?

a)	Linear Probing

b)	Quadratic Probing

c)	Double hashing

d)	None of these

2.	The process of examining a memory location is called ________.

a)	Probing

b)	Hashing

c)	Chaining

d)	Addressing

Hashing • 465

3.	A hash table with chaining as a collision resolution technique degener-
ates to a:

a)	Tree

b)	Graph

c)	Array

d)	Linked List

4.	Which of the probing techniques suffers from the problem of primary
clustering?

a)	Quadratic Probing

b)	Linear Probing

c)	Double Hashing

d)	All of these

5.	Given the hash function h(k) = k mod 6, what is the number of colli-
sions to store the following sequence of keys, 16, 20, 45, 68 using open
addressing?

a)	1

b)	3

c)	2

d)	5

6.	In a hash table, an element with the key k is stored at ________.

a)	k

b)	h(k2)

c)	h(k)

d)	log h(k)

7.	A good hash function eliminates the problem of collision.

a)	True

b)	False

c)	Not possible to comment

466 • Data Structures and Program Design Using C++

8.	Given the hash function of size 7 and hash function h(k) = k mod 7,
what is the number of collisions with linear probing for insertion of the
following keys: 29, 36, 16, and 30?

a)	1

b)	2

c)	3

d)	4

9.	________ is the process of mapping keys to appropriate locations in
the hash table.

a)	Probing

b)	Hashing

c)	Collision

d)	Addressing

10.	When there is no free location in the hash table, then ______ occurs.

a)	Underflow

b)	Overflow

c)	Collision

d)	None of the above

C H A P T E R11

11.1  Introduction

We all know that nowadays in most organizations, a large amount of
data is collected in one form or another. Some of the organizations use
various types of data collection applications for collecting the data. When
we talk about an organization, it is not only the big ones like schools, col-
leges, and companies, but also a small bakery at the corner of the street;
it can be observed that collection and exchange of data take place every-
where. For example, when we get admitted into a school, a lot of data is

FILES

In This Chapter

ll 	 Introduction
ll 	 Terminologies
ll 	 File operations
ll 	 File classification
ll 	 C vs C++ File Handling
ll 	 File organization
ll 	 Sequence file organization
ll 	 Indexed sequence file organization
ll 	 Relative file organization
ll 	 Inverted file organization
ll 	 Summary
ll 	 Exercises

468 • Data Structures and Program Design Using C++

collected by the school such as name, age, address, parent’s name, blood
type, and so on. We all know that in the past data was collected in the
form of paper documents which were very difficult to handle and store.
Therefore, to efficiently and effectively analyze the collected data, com-
puters are used to store the data in the form of files. A file in computer
terminology is defined as a block of useful data in a persistent storage
medium; that is, the file is available for future use. The data is organized
in a hierarchical order in the files. The hierarchical order includes items
such as records, fields, and so forth, which all are defined as follows.

11.2   Terminologies

•	 Data Field – A data field is a unit which stores a unary fact. It is
usually characterized by its type and size. For example, “employee’s
name” is a data field that stores the names of employees.

•	 Record – The collection of related data fields is called a record. For
example, an employee’s record may contain various data fields such as
name, id, address, contact number, and so on.

•	 File – The collection of related records is called a file. An example is a
file of the employees working in an organization.

•	 Directory – The collection of related files is called a directory. Every
file in a computer system is stored in a directory.

•	 File Name – The name of a file is a string of characters.

•	 Read-only – A file named read-only cannot be modified or deleted. If
we try to delete the file, then a particular message is displayed.

•	 Hidden – A file marked as hidden is not displayed in the directory.

11.3   File Operations

There are various operations which can be performed on the files.

1.	File Creation – It is the first operation to be performed on the files if the
file has not been created. A file is created by specifying its name and mode.
The records are inserted into the file by opening the file in writing mode.
Once all the records are inserted into the file, the file can be used for

Files • 469

future read and write operations. For example, we create a new file
named EMPLOYEE.

2.	Updating a File – It means changing the contents of a file. It is usually
done in the following ways:

a.	Inserting into a File – The new record is inserted into the file. For
example, if a new employee joins an organization, his/her record is
inserted in the EMPLOYEE file.

b.	Modifying a File – The existing records are modified in the file.
For example, if the address of an employee is changed, then the new
address must be modified in the EMPLOYEE file.

c.	Deleting from a File – The existing record is deleted from the
file. For example, if an employee quits a job, then his/her record is
deleted from the EMPLOYEE file.

3.	Retrieving from a File – It refers to the process of extracting
some useful data from a file. It is usually done in the following ways:

a.	Enquiring – It retrieves a low amount of data from the file.

b.	Generating a Report – It retrieves a huge amount of data from
the file.

11.4   File Classification

FIGURE 11.1 Operations on files.

470 • Data Structures and Program Design Using C++

A file is classified into two types, which are:

1.	Text Files – A text file, often called a flat file, is a file that stores all
the numeric or non-numeric data using its corresponding ASCII values.
The data can be a string of letters, numbers, or special symbols. There-
fore, it is also known as an ASCII file. Usually, a text file has a special
marker known as the end of file marker which denotes the end of the file.

2.	Binary Files – A binary file is a file that contains all the data in the bina-
ry form of 1s and 0s. It stores the data in the same form as that of primary
memory. Thus, a binary file is not readable by human beings. Binary files
are read by computer programs, and they decode the binary files into
something meaningful. Data is efficiently stored in binary files.

11.5   C vs C++ File Handling

File handling is an important process, and one must be aware about the
file handing process irrespective of any languages. But especially when it
comes to C and C++ file handling, it becomes a little bit tough to under-
stand the operations and processes on files as both these languages possess
similar kinds of functions/ operators. Hence, there are some main points to
remember while working with files, which are discussed as follows:

C C++
•	 In C, fopen, fclose, fwrite, fread,

fseek, fprint, fscanf, and various
other functions are called directly
without any help of an object.

•	 In C++, open, close, and other
functions are called with the help
of an object that is, for example,
fstream f. Here, f is the object
of the stream class, and all the
functions will be called with the
help of objects like f.open, f.close,
f.read, f.write, and so on.

•	 In C, the modes are r(read),
w(write), and a(append), and
these can be used directly.

•	 In C++, the modes are in, out,
bin, and so on, and these are used
with the help of scope resolution
operators like ios::in, ios::out, and
so forth.

Files • 471

11.6   File Organization

File organization refers to the way in which records are physically
arranged on a storage device. Further, there may be a single key or multiple
keys associated with it. Therefore, based on its physical storage and the keys
used to access the records, files are classified as sequential files, relative
files, indexed sequential files, and inverted files. There are various factors
which should be taken into consideration while choosing a particular type
of file organization which are:

1.	Ease of retrieval of the records.

2.	Economy of storage.

3.	Reliability, that is, whether a file organization is reliable or not.

4.	Security, that is, whether a file organization is secured or not.

Now, we will discuss some of the techniques which are commonly used
for file organization.

11.7   Sequence File Organization

Sequence file organization is the most basic way to organize a collec-
tion of records in a file. Sequence file organization is when the file is cre-
ated when the records are written, one after the other in order, and can be
accessed only in that order in which they are written when the file is used
for input. All the records are numbered from zero onward. Thus, if there
are N records in a file, then the first record is numbered as 0, and the last
record will be numbered as N-1. In some cases, records of sequential files
are sorted by the value of some field in each record. The field whose value
is used to sort the records is known as a sort key. If a file is sorted by the
value of a field named “key field,” then the record i proceeds record j if
and only if the value of “key field” in record i is less than or equal to the
value of “key field” in record j. Also, a file can be sorted in either ascend-
ing or descending order by a sort key comprising one or more fields. As
the records in a sequential file can only be accessed sequentially, these
files are used more commonly in batch processing than in interactive pro-
cessing. For example, the records of a sequential file are used to gener-
ate the white pages of a telephone directory that will be sorted by the
subscriber’s last name.

472 • Data Structures and Program Design Using C++

FIGURE 11.2 Structure of a sequence file organization.

Advantages of a Sequence File Organization

1.	It is easy to handle.

2.	It does not involve extra overheads/problems.

3.	Records can be of varying lengths in this organization.

4.	It can be stored on magnetic disks as well as tapes.

Disadvantages of Sequence File Organization

1.	Records can be accessed only in sequence.

2.	It does not support the update operation in between the files.

3.	It does not support interactive applications.

Files • 473

11.8   Indexed Sequence File Organization

An indexed sequential file organization is an efficient way of organizing
the records when there is a need to access both sequentially by some key
values and also to access the records individually by the same key value. It
provides the combination of access types that are supported by a sequential
file or a relative file. The index has been structured as a binary search tree.
This index is used to serve as a request for access to a particular record, and
the sequential data file alone is used to support sequential access to the entire
collection of records. Because of its capability to support both sequential and
direct access, indexed sequence file organization is used to support applica-
tions that require both batch and interactive processing.

Advantages of Indexed Sequence File Organization

1.	Records can be accessed sequentially and randomly.

2.	It supports batch as well as interactive oriented applications.

3.	It supports the update operation in between records in the file.

Disadvantages of Indexed Sequence File Organization

1.	In this organization, files can only be stored on magnetic disks.

2.	It involves extra overhead in the form of maintenance.

3.	Records can only be of a fixed length, as we maintain the structure of
each node like a linked list.

FIGURE 11.3 Use of BST and sequential files to provide indexed sequential access.

474 • Data Structures and Program Design Using C++

11.9   Relative File Organization

Relative file organization provides an effective way of accessing indi-
vidual records directly. In relative file organization, there is a predictable
relationship between the key and the record’s location in the file. The
records do not necessarily appear physically in sorted order by their keys.
Then how is a given record found? The relationship that will be used to
translate between key value and the physical address is designated, for
example, R(Key value → address). When a record is to be written into
a relative file, the mapping function R is used to translate the record’s
key to an address, which indicates where the record is to be stored.
The fundamental techniques that are used for mapping function R are
directory lookup and address calculation (hashing).

•	 Directory Lookup Technique – It is the simplest technique
for implementing a mapping function R. The basic idea of this
technique is to keep a directory of key values: address pairs. To find
a record in a relative file, one locates its key value in the directory,
and then the indicated address is used to find the record on the
storage device. The directory can be organized as a binary search
tree.

•	 Address Calculation Technique – Another common technique
for implementing a mapping function R is to perform a calculation
on the key value (hashing) such that the result is a relative
address.

Advantages of Relative File Organization

1.	Records can be accessed out of sequence.

2.	It is well suited for interactive applications.

3.	It supports an update operation in between the files.

Disadvantages of Relative File Organization

1.	It can be stored only on magnetic disks.

2.	It also involves extra overhead in the form of maintenance
of indexes.

Files • 475

11.10   Inverted File Organization

One fundamental approach for providing a linkage between an index and a
file is called inversion. A key’s inversion index contains all the values that the key
presently has in records of the file. Each key-value entry in the inversion index
points to all the data records that have the corresponding value. Then, the file is
said to be inverted on that key. The inversion approach for providing multi-key
access has been used as the basis for a physical data structure in commercially
available relational DBMS such as Oracle, DB2, and so on. These systems were
designed to provide rapid access to the records via as many inversion keys as
the designer cares to identify. They have user-friendly, natural-language-like
query languages to assist the user in formulating inquiries. A complete inverted
file has an inversion index for every data field. If a file is not completely inverted
but has at least one inversion index, then it is said to be a partially inverted file.

Advantages of Inverted File Organization

1.	The Boolean query requires only one access per record satisfying the
query along with some access to process the indexes.

2.	Records can be stored in any way, for example, sequentially ordered by
primary key, randomly linked ordered by primary key, and so forth.

3.	It also results in space saving as compared with the other file structures.

Disadvantages of Inverted File Organization

Since the index entries are of variable lengths, index maintenance
becomes more complex.

11.11   Summary

•	 A file is a collection of records. It is usually stored on a secondary
storage device.

•	 The data is organized in a hierarchical order in the files. The
hierarchical order includes items such as records, fields, and so on.

•	 File creation is the first operation to be performed on the files if the
file is not created. A file is created by specifying its name and mode.

•	 A file is classified into two types, which are text files and binary files.

476 • Data Structures and Program Design Using C++

•	 A text file, often called a flat file, is a file that stores all the numeric or
non-numeric data using its corresponding ASCII values. The data can
be a string of letters, numbers, or special symbols.

•	 A binary file is a file that contains all the data in the binary form of 1s
and 0s. It stores the data in the same form as that of primary memory.

•	 A file organization refers to the way in which records are physically
arranged on a storage device.

•	 Sequence file organization is the most basic way to organize a
collection of records in a file. In sequence file organization the file
is created when the records are written, one after the other in order,
and can be accessed only in that order in which they are written
when the file is used for input. All the records are numbered from
zero onward.

•	 An indexed sequential file organization is an effective way of organizing
the records when there is a need to access both sequentially by some
key values and also to access the records individually by the same key
value. It provides the combination of access types that are supported
by a sequential file or a relative file.

•	 Relative file organization provides an effective way of accessing
individual records directly. In a relative file organization, there is a
predictable relationship between the key and the record’s location in
the file.

•	 One fundamental approach for providing a linkage between an index
and a file is called inversion. The inversion approach for providing
multi-key access has been used as the basis for the physical data
structure.

11.12   Exercises

11.12.1  Review Questions

1.	 What is a file?

2.	 Why there is a need to store the data in the files? Explain.

3.	 What do you understand about the terms record and field?

Files • 477

4.	 Discuss various operations that can be performed on files.

5.	 Differentiate between a text file and a binary file.

6.	 Write a short note on file attributes.

7.	 What do you understand about file organization? Discuss in detail.

8.	 Explain sequential file organization.

9.	 What are inverted files? Discuss.

10.	 Explain indexed sequential file organization.

11.	 Give the merits and drawbacks of indexed sequential file organization.

12.	 �What is relative file organization? Also, discuss the advantages and dis-
advantages of relative file organization.

11.12.2  Multiple Choice Questions

1.	A collection of related fields is called:

a)	Data

b)	Record

c)	Field

d)	File

2.	A file marked as _______ can’t be modified or deleted.

a)	Hidden

b)	Read-only

c)	Archive

d)	None of these

3.	Which of the following is often known as a flat file?

a)	Binary File

b)	Text File

c)	String File

d)	None of these

478 • Data Structures and Program Design Using C++

4.	________ is a collection of data organized in a fashion which facilitates
various operations such as updating, retrieving, and so forth.

a)	Record

b)	Data word

c)	Field

d)	File

5.	Can relative files be used both for random as well as sequential access?

a)	True

b)	False

c)	Not possible to comment

6.	A file marked as _______ is not displayed in the directory.

a)	Read-only

b)	Archive

c)	Hidden

d)	None of these

7.	A data field is characterized by:

a)	Type

b)	Size

c)	Mode

d)	Both (a) and (b)

8.	_______ is used to store a collection of files.

a)	Record

b)	Dictionary

c)	Directory

d)	System

C H A P T E R12
GRAPHS

In This Chapter

ll Introduction
ll Definitions
ll Graph representation
ll Graph traversal techniques
ll Topological sort
ll Minimum spanning tree
ll Summary
ll Exercises

12.1 Introduction

So far, we have studied various types of linear data structures which
are widely used in various applications. But the only non-linear data struc-
ture we have studied thus far is trees. In trees, we discussed the parent-
child relationship in which one parent can have many children. But in
graphs, this parent-child relationship is less restricted, that is, any com-
plex relationship can exist. Thus, a tree can be generalized as a special
type of graph. Therefore, a graph is a non-linear data structure which has
a wide range of real-life applications. A graph is a collection of some ver-
tices (nodes) and edges that connect these vertices. Figure 12.1 represents
a graph.

480 • Data Structures and Program Design Using C++

Thus, a graph G can be defined as an ordered set of vertices and edges
(V, E), where V(G) represents the set of vertices and E(G) represents the set
of edges that connect these vertices. In the previous figure, V(G) = {A, B, C,
D, P, Q} represents the set of vertices and E(G) = {(A, B), (B, D), (D, C),
(C, A), (C, Q), (Q, D), (A, P), (P, C)} represents the set of edges.

There are two types of graphs:

1.	Undirected Graph – In an undirected graph, the edges do not have
any direction associated with them. As we can see in the following fig-
ure, the two nodes A and B can be traversed in both the directions, that
is, from A to B or from B to A. Thus, an undirected graph does not give
any information about the direction.

Practical Application:

A simple illustration of a graph is that when we connect with our friends
on social media, say Facebook, where each user is a vertex and two users
connect with each other, it forms an edge.

FIGURE 12.1 A graph.

Graphs • 481

2.	Directed Graph – In a directed graph, the edges have directions asso-
ciated with them. As we can see in the following figure, the two nodes
A and B can be traversed in only one direction, that is, only from A to B
and not from B to A. Therefore, in the edge (A, B), the node A is known
as the initial node and node B is known as the final node.

12.2 Definitions

•	 Degree of a vertex/node – The degree of a node is the total number
of edges incident to that particular node. Here, the degree of node B
is three, as three edges are incident to the node B.

FIGURE 12.2 An undirected graph.

FIGURE 12.3 A directed graph.

FIGURE 12.4 Graph showing degree of node B.

482 • Data Structures and Program Design Using C++

•	 In-degree of a node – The in-degree of a node is equal to the
number of edges arriving at that particular node.

•	 Out-degree of a node – The out-degree is equal to the number of
edges leaving that particular node.

FIGURE 12.5 Graph showing in-degree and out-degree of node C.

•	 Isolated Node/Vertex – A node having zero edges is known as the
isolated node. The degree of such a node is zero.

FIGURE 12.6 Two isolated nodes X and Y.

•	 Pendant Node/Vertex – A node having one edge is known as a
pendant node. The degree of such a node is one.

FIGURE 12.7 Two pendant nodes X and Y.

•	 Adjacent Nodes – For every edge e = (A, B) that connect nodes A
and B, the nodes A and B are said to be the adjacent nodes.

•	 Parallel Edges – If there is more than one edge between the same
pair of nodes, then they are known as parallel edges.

Graphs • 483

•	 Loop – If an edge has a starting and ending point at the same node,
that is, e = (A, A), then it is known as a loop.

FIGURE 12.8 Parallel edges between A and B.

FIGURE 12.9 A loop.

•	 Simple Graph – A graph G(V, E) is known as a simple graph if it does
not contain any loop or parallel edge.

•	 Complete Graph – A graph G(V, E) is known as a complete graph if
and only if every node in the graph is connected to another node and
there is no loop on any of the nodes.

FIGURE 12.10 Complete graph.

484 • Data Structures and Program Design Using C++

•	 Regular Graph – A regular graph is a graph in which every node has
the same degree. If every node has a degree r, then the graph is called
a regular graph of degree r. In the given figure, all the nodes have the
same degree, that is, 2; hence, it is known as the 2-regular graph.

FIGURE 12.11. 2-Regular graph.

•	 Multi-graph - A graph G(V, E) is known as a multi-graph if it contains
either a loop, parallel edges, or both.

FIGURE 12.12 Multi-graph.

•	 Cycle – It is a path containing one or more edges which start from a
particular node and also terminate at the same node.

•	 Cyclic Graph – A graph which has cycles in it is known as a cyclic
graph.

•	 Acyclic Graph – A graph without any cycles is known as an acyclic
graph.

•	 Connected Graph – A graph G(V, E) is known as a connected graph
if there is a path from any node in the graph to another node in the
graph such that for every pair of distinct nodes, there must be a path.

Graphs • 485

•	 Strongly Connected Graph – A directed graph is said to be a
strongly connected graph if there exists a dedicated path between
every pair of nodes in the graph. For example, if there are two nodes,
say P and Q, and there is a dedicated path from P to Q, then there
must be a path from Q to P.

FIGURE 12.13 Connected graph.

FIGURE 12.14 Strongly connected graph.

•	 Size of a graph – The size of a graph is equal to the total number of
edges present in the graph.

•	 Weighted Graph – A graph G(V, E) is said to be a weighted graph if
all the edges in the graph are assigned some data. This data indicates
the cost of traversing the edge.

FIGURE 12.15 Weighted graph.

486 • Data Structures and Program Design Using C++

12.3 Graph Representation

Graphs can be represented in a computer’s memory in either of the
following ways:

1.	Sequential Representation of Graphs using Adjacency Matrix

2.	Linked Representation of Graphs using Adjacency List

Now, let us discuss both in detail.

12.3.1 Adjacency Matrix Representation
An adjacency matrix is used to represent the information of the nodes

which are adjacent to one another. The two nodes will only be adjacent
when there is an edge connecting those nodes. For any graph G having n
nodes, the dimension of the adjacency matrix will be (n X n). Let G(V, E)
be a graph having vertices V = {V1, V2, V3………Vn}, and then the adjacency
matrix representation (n X n) will be given by:

The adjacency matrix is also known as a bit matrix or Boolean matrix,
since it contains only 0s and 1s. Now, let us take few examples to discuss and
understand it more clearly.

Example 1 – Consider the given directed graph and find its adjacency
matrix.

FIGURE 12.16 A directed graph.

Graphs • 487

The adjacency matrix for the graph will be:

Example 2 – Now, consider the given undirected graph and find its
adjacency matrix.

FIGURE 12.17 An undirected graph.

The adjacency matrix for the graph will be:

Example 3 – Now, consider the given weighted graph and find its
adjacency matrix.

488 • Data Structures and Program Design Using C++

The adjacency matrix for the graph will be:

FIGURE 12.18 A directed weighted graph.

Example 4 – Consider the given undirected multi-graph and find its
adjacency matrix.

FIGURE 12.19 An undirected multi-graph.

Graphs • 489

The adjacency matrix for the graph will be:

From the previous examples, we conclude that:

•	 The memory space needed to represent a graph using its adjacency
matrix is n2 bits.

•	 The adjacency matrix for an undirected graph is always symmetric.

•	 The adjacency matrix for a directed graph needs not be symmetric.

•	 The adjacency matrix for a simple graph having no loops or parallel
edges will always contain 0s on the diagonal.

•	 The adjacency matrix for a weighted graph will always contain the
weights of the edges connecting the nodes instead of 0 and 1.

•	 The adjacency matrix for an undirected multi-graph will contain the
number of edges connecting the vertices instead of 1.

12.3.2 Adjacency List Representation
The adjacency matrix representation has some major drawbacks. First, it

is very difficult to insert and delete the nodes in/from the graph as the size of
the matrix needs to be changed accordingly, which is a very time-consuming
process. Also, sometimes the matrix may contain many zeroes (sparse matrix).
Hence, it is not a healthy representation. Therefore, adjacency list repre-
sentation is preferred for representing sparse graphs in the memory. In this
representation, every node is linked to its list of all the other nodes which
are adjacent to it. Adjacency list representation makes it easier to add or
delete nodes. Also, it shows the adjacent nodes of a particular node. Now, let
us take a few examples to discuss and understand it more clearly.

490 • Data Structures and Program Design Using C++

Example 1 – Consider the given undirected graph and find its adja-
cency list representation.

FIGURE 12.20 An undirected graph.

The adjacency list representation of the graph will be:

Example 2 – Consider the given directed graph and find its adjacency
list representation.

FIGURE 12.21 A directed graph.

Graphs • 491

The adjacency list representation of the graph will be:

Example 3 – Now, consider the given weighted graph and find its
adjacency list representation.

FIGURE 12.22 A directed weighted graph.

The adjacency list representation of the graph will be:

492 • Data Structures and Program Design Using C++

12.4 Graph Traversal Techniques

In this section, we will discuss various types of techniques to traverse
a graph. As we all know, a graph is a collection of nodes and edges. Thus,
traversing in a graph is the process of visiting each node and edge in some
systematic approach. Therefore, there are two types of standard graph tra-
versal techniques, which are:

1.	Breadth First Search (BFS)

2.	Depth First Search (DFS)

So now, we will discuss both of these techniques in detail.

12.4.1 Breadth First Search
Breadth first search is a traversal technique that uses the queue as an

auxiliary data structure for traversing all member nodes of a graph. In this
technique, first we will select any node in the graph as a starting node, and
then we will take all the nodes adjacent to the starting node. We will main-
tain the same approach for all the other nodes. Also, we will maintain the
status of all the traversed/visited nodes in a queue so that no nodes are tra-
versed again. Now, let us take a graph and apply BFS to traverse the graph.

FIGURE 12.23 A sample graph.

Now, we will start the traversal of the graph by taking node A as a start-
ing node of the previous sample graph. Then, we will traverse all the nodes
adjacent to the starting node A. As we can see, B, C, and E are the adjacent
nodes of A. So, we will traverse these nodes in any order, say E, C, B. So
the traversal is:

Graphs • 493

Now, we will traverse all the nodes adjacent to E. Node C is adjacent
to node E. But node C has already been traversed, so we will ignore it and
we will move to the next step. Now, we will traverse all the nodes adjacent
to node C. As we can see, D is the adjacent node of C. So we will traverse
node D and the traversal is:

Now, we can see that all the nodes have been traversed, and hence
this was the breadth first search traversal by taking node A as a starting
node.

Now, we will implement the breadth first search traversal technique
with the help of a queue. In this, we will maintain an array which will store
all the adjacent unvisited neighbor nodes of a given node under consider-
ation. Initially, the front and rear are set to -1. We will also maintain the
status of the visited nodes in a Boolean array, which will have value 1 if the
node is visited and 0 if it is not visited.

•	 First, we will en-queue/insert the starting node into the queue.

•	 Second, the first node/element in the queue is deleted from the queue
and all the adjacent unvisited nodes are inserted into the queue. This
is repeated until the queue becomes empty.

For Example – Consider the following sample graph and traverse the
graph using the breadth first search technique.

FIGURE 12.24 A sample graph.

494 • Data Structures and Program Design Using C++

Node Adjacency List
A B, C
B C
C D
D B

In this example, we are taking A as a starting node.

Step 1: First, node A is inserted into the queue.

Step 2: Node A is deleted from the queue and FRONT is incremented
by 1. Now, insert all the nodes adjacent to A, which are nodes B and C, by
incrementing REAR. Also, node A has been traversed.

Step 3: Similarly, node B is deleted from the queue and FRONT is
incremented by 1. Now, insert all the nodes adjacent to B, which is node C,
by incrementing REAR. But C has already been inserted in the queue. So

The appropriate adjacency list representation of the graph is given as
follows:

Graphs • 495

now in this case, node C is also deleted by incrementing FRONT by 1, and
the node adjacent to C, that is, D, is inserted into the queue. Therefore,
nodes A, B, and C are traversed.

Step 4: Now, we will again delete the front element from the queue
which is D. We will insert the adjacent node of D, that is, B. But it is already
traversed. Finally, as we delete the front element D, we notice that FRONT
> REAR, which is not possible. Hence, we have traversed all the nodes in
the graph.

Therefore, the breadth first search traversal of the graph is given as:

Now, let us look at the function for a breadth first search traversal.

496 • Data Structures and Program Design Using C++

Function for a breadth first search traversal

Breadth_First_Search(int node)
{
int i , front, rear;
int queue[SIZE];
front=rear= -1;
cout<<"node :"<<node ;
visited[node]= 1;
rear++;
front++;
queue[rear]= node ;
while(front<=rear)
{
node = queue[front];
front++;
for(i=1; i<=n; i++)
{
if(adjacent[node][i]==1)&&visited[node]==0)
{
cout<<“node :”<<node ;
visited[i]=1;
rear++;
queue[rear]= i ;

}
}

}
}

12.4.2 Depth First Search
Depth first search is another traversal technique that uses the stack as

an auxiliary data structure for traversing all the member nodes of a graph.
Also in this technique, we first select any node in the graph as a starting
node, and then we travel along a path which begins from the starting node.
We will visit the adjacent node of the starting node, and again the adjacent
node of the previous node, and so on. We will maintain the same approach
for all the other nodes. Now, let us take a graph and apply DFS to traverse
the graph.

Graphs • 497

Now, we will start the traversal of the graph by taking node A as a start-
ing node. Then, we will traverse any of the nodes adjacent to the starting
node A. As we can see, B, C, and E are the adjacent nodes of A. If we tra-
verse node E, then we will traverse the node adjacent to E, that is, C. After
traversing C, we will traverse the node adjacent to C which is D. Now, there
is no adjacent node to D; hence, we have reached the dead end. Thus, the
traversal until now is:

FIGURE 12.25 A Sample Graph.

Because of the dead end, we will move backward. Now, we reach node C.
We will check if there is any other node adjacent to C. There is no such node,
and thus we again move backward. Now, we reach E. We will again check if
there is any other node adjacent to E. There is no such node, and thus we
again move backward. Now, we reach A. We will check if there is any other
node adjacent to A. There are two nodes, B and C, adjacent to node A. As C is
already traversed, it will be ignored. Now, we will traverse node B. After tra-
versing B, we will traverse the node adjacent to B which is D, but D is already
traversed. We can’t move backward or forward. Thus, we have completed the
traversal. The final traversal is given as:

Now, we will implement the depth first search traversal technique with the
help of a stack. In this, we will maintain an array which will store all the adjacent
unvisited neighbor nodes of a given node. Initially, the top is set to -1. We will
also maintain the status of the visited nodes in a Boolean array, which will have
value 1 if the node is visited and 0 if it is not visited.

498 • Data Structures and Program Design Using C++

•	 First, we will push the starting node onto the stack.

•	 Second, the topmost node/element is popped out from the stack and
is traversed. If it is already traversed, then we will ignore it.

•	 Third, all the adjacent unvisited nodes of the popped node/element
are pushed onto the stack. This process is repeated until the queue
becomes empty. The steps are repeated until the stack becomes
empty.

For Example – Consider the following sample graph and traverse the
graph using the breadth first search technique.

FIGURE 12.26 A sample graph.

In this example, we are taking A as a starting node.

Step 1: Push A onto the stack.

Step 2: Now, pop the topmost element from the stack, that is, A. Thus,
A is traversed. Now, push all the nodes adjacent to A, that is, push B and C.

Step 3: Again, pop the topmost element from the stack, that is, C. Thus,
C is also traversed. Now, push all the nodes adjacent to C, that is, push D.

Graphs • 499

Step 4: Now, again pop the topmost element from the stack, that is, D.
Thus, D is also traversed. Now, push all the nodes adjacent to D, that is, push
B. But B is already in the stack. Therefore, no push is performed. Thus, the
stack becomes:

Step 5: Again, pop the topmost element from the stack, that is, B.
Thus, B is also traversed. Now, push all the nodes adjacent to B, that is,
push C. But C is already traversed; hence, the stack becomes empty.

Therefore, the depth first search traversal of the graph is given as fol-
lows:

Now, let us look at the function for the depth first search traversal.

Function for a depth first search traversal

Depth_First_Search(int node)
{
int i, stack[SIZE], top = -1, pop ;
top++ ;
stack[top] = node ;
while(top >= 0)
{
pop = stack[top] ;
top-- ;
if(visited[pop] == 0)
{

cout<<“pop :”<<pop ;
visited[pop] = 1;

}
else
continue
for(i=n; i>=1 ;i--)
{

if(adjacent[pop][node]==1 && visited[node]==0)

500 • Data Structures and Program Design Using C++

12.5 Topological Sort

Topological sort is a procedure to determine the linear ordering of the
nodes of an acyclic directed graph also known as (DAG) in which each node
comes before all those nodes which have zero predecessors. A topological
sort of a DAG is a linear ordering of the vertices of a graph G(V, E) such that
if (a, b) is an edge, then a must appear before b in the topological ordering.
The main idea behind this is that in a graph, if a vertex has in-degree 0, then
that vertex should be selected as the first element in the topological order.
Also, a topological sort is possible only in acyclic directed graphs. An acy-
clic graph is one which does not have any cycles in it. Topological sorting is
widely used in scheduling tasks, applications, and so on. Now, let us look at
the algorithm of topological sorting.

Algorithm for Topological Sort

{
top++ ;
stack[top] = node ;

}
}

}
}

Memory Aid:
To remember which of the data structures are used in implement-

ing a breadth first search and depth first search, we can use this memory
aid. Breadth first search is implemented using a queue data structure, and
depth first search is implemented using a stack data structure, as it can
be remembered by alphabetical order. B (Breadth First Search) and Q
(Queue) comes before than D (Depth First Search) and S (Stack) in alpha-
betical order.

Step 1: START
Step 2: Find the in-degree of every node.
Step 3: �Insert all the nodes/elements having in-degree

zero in the queue.
Step 4: �Repeat Steps 5 and 6 until the queue becomes

empty.
Step 5: �Delete the first node from the queue by increment-

ing FRONT by 1.

Graphs • 501

Step 6: Repeat for each neighbor P of node N –
a.		Delete the edge from P to M by decreasing the
in-degree by 1.

b.	If in-degree of P is zero, then add P to the
rear of the queue.

Step 7: END

For Example – Consider a given acyclic directed graph and find its
topological sort.

The appropriate adjacency list representation of the previous graph is
given as follows:

FIGURE 12.27 Acyclic directed graph.

Step 1: In-degree of all the nodes:

In-degree (A) – 0

In-degree (B) – 2

In-degree (C) – 1

In-degree (D) – 1

In-degree (E) – 1

502 • Data Structures and Program Design Using C++

Now, we have node A with in-degree = 0; thus A will be added to the
queue.

Step 2: Now, insert node A into the queue.

FRONT = 1, REAR = 1, QUEUE = A

Step 3: Now, delete node A from the queue. Also, delete all the edges
going from A.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A

Thus, the graph becomes:

Now, the in-degree of all the nodes:

In-degree (B) – 1

In-degree (C) – 0

In-degree (D) – 1

In-degree (E) – 1

Now, we have node C with in-degree = 0; thus, C will be added to the
queue.

Step 4: Now, insert node C into the queue.

FRONT = 1, REAR = 1, QUEUE = C

Step 5: Now, delete node C from the queue. Also, delete all the edges
going from C.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C

Graphs • 503

Now, the in-degree of all the nodes:

In-degree (B) – 0

In-degree (D) – 0

In-degree (E) – 1

Now, we have two nodes B and D with in-degree = 0; thus, B and D will
be added to the queue.

Step 6: Now, insert nodes B and D into the queue.

FRONT = 1, REAR = 2, QUEUE = B, D

Step 7: Now, delete node B from the queue. Also, delete all the edges
going from B. There will be no change in the in-degree of the nodes.

FRONT = 1, REAR = 1, TOPOLOGICAL SORT = A, C, B, QUEUE = D

Step 8: Now, delete node D from the queue. Also, delete all the edges
going from D.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C, B, D

Thus, the graph becomes:

Thus, the graph becomes:

504 • Data Structures and Program Design Using C++

Now, the in-degree of all the nodes:

In-degree (E) – 0

Now, we have node E with in-degree = 0. Thus, E will be added to the
queue.

Step 9: Now, insert node E into the queue.

FRONT = 1, REAR = 1, QUEUE = E

Step 10: Now, delete node E from the queue. Also, delete all the edges
going from E.

FRONT = 0, REAR = 0, TOPOLOGICAL SORT = A, C, B, D, E

Now, we have no nodes left in the graph. Thus, the topological sort of
the graph will be

12.6 Minimum Spanning Tree

A spanning tree of an undirected and connected graph G is a sub-
graph which contains all the vertices and edges that connect these
vertices and is a tree. The weights/costs can be assigned to the edges,
and these weights/costs can be used to calculate the weight/cost of the
spanning tree by calculating the sum of the weights/cost of each edge.
A graph can have many spanning trees. Thus, a minimum spanning tree
(MST) is defined as a spanning tree that has weights/costs associated
with the edges such that the total weights/costs of the spanning tree is
at a minimum. Although there are various approaches for determining
an MST, the two most popular approaches for determining a minimum
cost spanning tree of a graph are:

1.	Prim’s Algorithm

2.	Kruskal’s Algorithm

Now, let us discuss both of them in detail.

Graphs • 505

12.6.1 Prim’s Algorithm
Prim’s algorithm is the algorithm that is used to build a minimum cost

spanning tree. This algorithm works in such a way that it builds a tree edge
by edge. The next edge to be included is chosen according to some crite-
rion. The steps involved in Prim’s algorithm are:

Step 1: Select a starting vertex/node and add it to the spanning tree.

Step 2: During each iteration, select a vertex/node in such a way that
the edge connecting vertex Vi to another vertex Vj has the minimum cost/
weight assigned to it. Remember, the edge forming a cycle must not be
added.

Step 3: End the process when (n-1) number of edges have been
inserted into the tree.

Frequently Asked Questions

Q. �Consider the given graph and construct a minimum spanning
tree using Prim’s algorithm.

506 • Data Structures and Program Design Using C++

Answer.
Step 1: The starting node is F.

Step 2: The lowest weighted/cost edge is (F, A), that is, 1. Hence, it is added
to the tree.

Step 3: Now, the lowest weighted/cost edge is (F, D), that is, 4. Hence, it is
added to the tree.

Graphs • 507

Step 4: Now, the lowest weighted/cost edge adjacent to a node in so far
constructed tree to any of the leftovers nodes is (D, E), with weight, 2. Hence,
it is added to the tree.

Step 5: Similarly, the lowest weighted/cost edge adjacent to a node in so
far constructed tree to any of the leftovers nodes is (F, B), with weight, 5
followed by (B, C), with weight, 3 as shown in the next step. Hence, they are
step by step added to the tree.

508 • Data Structures and Program Design Using C++

12.6.2 Kruskal’s Algorithm
Kruskal’s algorithm is another approach for determining the minimum

cost spanning tree of a graph. In this approach also, the tree is built edge by
edge. The next edge to be included is chosen according to some criterion.
The steps involved in Kruskal’s algorithm are:

Step 1: The weights/costs assigned to the edges are sorted in ascending
order.

Step 2: In this step, the lowest weighted/cost edge is added to the tree.
Remember, the edge forming a cycle must not be added.

Step 3: End the process when (n-1) number of edges have been
inserted into the tree.

Step 6: Finally the minimum spanning tree is constructed.

Graphs • 509

Frequently Asked Questions

Q. �Consider the given graph and construct a minimum spanning
tree using Kruskal’s algorithm.

Answer.
Step 1: Initially the tree is given as:

510 • Data Structures and Program Design Using C++

Step 2: Choose edge (F, A).

Step 3: Choose edge (D, E).

Graphs • 511

Step 4: Choose edge (B, C).

Step 5: Choose edge (F, D).

512 • Data Structures and Program Design Using C++

12.7 Summary

Step 6: Choose edge (F, B).

Practical Application:

Graphs are used to find the shortest route using GPS, Google maps, and
Yahoo maps.

•	 A graph is a collection of vertices (nodes) and edges that connect these
vertices.

•	 The degree of a node is the total number of edges incident to that
particular node.

•	 A graph G(V, E) is known as a complete graph if and only if every node
in the graph is connected to another node and there is no loop on any
of the nodes.

Graphs • 513

•	 An adjacency matrix is usually used to represent the information of
the nodes which are adjacent to one another. The adjacency matrix is
also known as a bit matrix or Boolean matrix since it contains only 0s
and 1s.

•	 In adjacency list representation, every node is linked to its list of all
the other nodes which are adjacent to it.

•	 Traversing in a graph is the process of visiting each node and edge in
some systematic approach.

•	 Breadth first search is a traversal technique that uses the queue as
an auxiliary data structure for traversing all the member nodes of the
graph. In this technique, first we will select any node in the graph as
a starting node, and then we will take all the nodes adjacent to the
starting node. We will maintain the same approach for all the other
nodes.

•	 Depth first search is another traversal technique that uses the stack
as an auxiliary data structure for traversing all the member nodes of
the graph. In this also, first we will select any node in the graph as a
starting node, and then we will travel along a path which begins from
the starting node. We will visit the adjacent node of the starting node,
and again the adjacent node of the previous node, and so on.

•	 Topological sort is a procedure to determine linear ordering of the
nodes of an acyclic directed graph also known as (DAG) in which each
node comes before all those nodes which have zero predecessors.

•	 A minimum spanning tree (MST) is defined as a spanning tree that
has weights/costs associated with the edges such that the total weight/
cost of the spanning tree is at a minimum.

12.8 Exercises

12.8.1 Theory Questions

1.	What is a graph? Explain its features.

2.	What do you understand about a complete graph?

3.	What is a multi-graph?

514 • Data Structures and Program Design Using C++

4.	How can a graph be represented in the computer’s memory? Discuss.

5.	Differentiate between a directed and undirected graph with an exam-
ple of each.

6.	Consider the following graph and find the following:

a.	Adjacency Matrix Representation.

b.	Degree of each node.

c.	Is the graph complete?

d.	Pendant nodes.

7.	Explain why adjacency list representation is preferred for storing sparse
matrices over adjacency matrix representation.

8.	What are the different types of graph traversal techniques? Explain
each of them in detail with the help of an example.

9.	What do you understand about topological sort?

10.	In what kind of graphs can topological sorting be used?

Graphs • 515

11.	Differentiate between breadth first search and depth first search.

12.	Consider the following graph and find out its BFS and DFS traversal.

13.	What is a spanning tree?

14.	Why is a minimum spanning tree called a spanning tree? Discuss.

15.	Consider the given adjacency matrix and draw the directed graph.

516 • Data Structures and Program Design Using C++

16.	Write a short note on Prim’s algorithm.

17.	Explain Kruskal’s algorithm.

18.	List some of the real-life applications of graphs.

19.	�Consider the following graph and find the minimum spanning tree
using

a.	Prim’s algorithm

b.	Kruskal’s algorithm

12.8.2 Programming Questions

1.	Write a C++ program to create and display a graph.

2.	Write an algorithm to perform a topological sort on a graph.

3.	Write an algorithm to find the degree of a node N in a graph.

4.	Write a C++ program to traverse a graph using depth first search.

5.	Write an algorithm to traverse a graph using breadth first search.

6.	Write a C++ program to find the shortest path using Prim’s algorithm.

7.	Write a C++ program to find the shortest path using Kruskal’s
algorithm.

Graphs • 517

12.8.3 Multiple Choice Questions

1.	To implement breadth first search, the data structure used is:

a.	Stack

b.	Queue

c.	Trees

d.	Linked List

2.	A graph having multiple edges is known as a ______.

a.	Connected Graph

b.	Complete Graph

c.	Simple Graph

d.	Multi-graph

3.	An edge having initial and end points at the same node is called:

a.	Degree

b.	Cycle

c.	Loop

d.	Parallel Edge

4.	An adjacency matrix is also known as a:

a.	Bit Matrix

b.	Boolean Matrix

c.	Both of the above

d.	None of the above

5.	To implement depth first search, the data structure used is:

a.	Stack

b.	Queue

c.	Trees

d.	Linked List

518 • Data Structures and Program Design Using C++

6.	Topological Sort is performed only on:

a.	Cyclic Directed Graphs

b.	Acyclic Directed Graphs

c.	Both of the above

d.	None of the above

7.	Which one of the following nodes has a zero degree?

a.	Simple node

b.	Isolated node

c.	Pendant node

d.	None of the above

8.	________ is the total number of nodes in a graph.

a.	Degree

b.	In-degree

c.	Out-degree

d.	Size

9.	A graph G can have many spanning trees.

a.	True

b.	False

c.	Not possible to comment

10.	The memory use of an adjacency matrix is:

a.	O(log n)

b.	O(log n2)

c.	O(n)

d.	O(n2)

A P P E N D I X A
ANSWERS TO SELECTED
EXERCISES

Chapter 1: Introduction to Data Structures

Multiple Choice Questions	

1. (c)

3. (d)

5. (d)

7. (c)

9. (b)

11. (a)

13. (a)

15. (d)

Chapter 2: Introduction to the C++ Language

Multiple Choice Questions

1. (b)

3. (a)

5. (c)

7. (b)

9. (c)

520 • Data Structures and Program Design Using C++

11. (d)

13. (b)

15. (b)

Chapter 3: Arrays

Multiple Choice Questions

1. (c)

3. (d)

5. (e)

7. (d)

9. (b)

11. (a)

Chapter 4: Linked Lists

Multiple Choice Questions

1. (b)

3. (b)

5. (d)

7. (c)

9. (a)

Chapter 5: Queues

Multiple Choice Questions

1. (c)

3. (b)

5. (b)

7. (c)

9. (b)

Appendix A: Answers To Selected Exercises • 521

Chapter 6: Searching and Sorting

Multiple Choice Questions

1. (b)

3. (d)

5. (a)

7. (b)

9. (b)

Chapter 7: Stacks

Multiple Choice Questions

1. (b)

3. (c)

5. (b)

7. (c)

9. (c)

Chapter 8: Trees

Multiple Choice Questions

1. (d)

3. (c)

5. (d)

7. (c)

9. (a)

11. (b)

13. (b)

15. (d)

522 • Data Structures and Program Design Using C++

Chapter 9: –Multi-Way Search Trees

Multiple Choice Questions

1. (b)

3. (d)

5. (c)

7. (b)

9. (b)

Chapter 10: Hashing

Multiple Choice Questions

1. (c)

3. (d)

5. (a)

7. (b)

9. (b)

Chapter 11: Files

Multiple Choice Questions

1. (b)

3. (b)

5. (b)

7. (d)

Appendix A: Answers To Selected Exercises • 523

Chapter 12: Graphs

Multiple Choice Questions

1. (b)

3. (c)

5. (a)

7. (b)

9. (a)

A P P E N D I X B
Book

“Data Structures Using C” by D.Malhotra, N.Malhotra, Mercury
Learning and Information, May 2018, ISBN: 1683922077, ISBN13:
978-1683922077

Webliography

1.	 204.227.177.194

2.	 Adam Weintrit. “Development of the IMO eNavigation Concept – Common
Maritime Data Structure”, Communications in Computer and Informa-
tion Science, 2011

3.	 Advanced Topics in Java, 2014.

4.	 Ágnes Vathy-Fogarassy, János Abonyi. “Graph- Based Clustering and
Data Visualization Algorithms”, Springer Nature America, Inc., 2013

5.	 aguswaluyo27.blogspot.com

6.	 aka.e-whs.tk

7.	 andavancollege.ac.in

8.	 archive.mu.ac.in

9.	 archive.org

10.	 aroravikas.blogspot.com

REFERENCES/ BOOKS/
WEBLIOGRAPHY

526 • Data Structures and Program Design Using C++

11.	arts.nprcolleges.org

12.	assets.vmou.ac.in

13.	bhawanisharmacse.blogspot.com

14.	btechsmartclass.com

15.	bytes.com

16.	bzupages.net

17.	c-codetuning.blogspot.com

18.	cis.stvincent.edu

19.	codeaspirant.wordpress.com

20.	codeitaway.wordpress.com

21.	codingloverlavi.blogspot.in

22.	computerbooks4u.blogspot.com

23.	computinnovative.blogspot.com.ng

24.	cruiserselite.co.in

25.	csdeptstpious.blogspot.com

26.	davinci.fmph.uniba.sk

27.	deopsys.aegean.gr

28.	docplayer.net

29.	docslide.com.br

30.	documents.mx

31.	dogbirdkki.tistory.com

32.	ecomputernotes.com

33.	edutechlearners.com

34.	engineeringinterviewquestions.com

35.	giftians.com

36.	grd.org:8084

Appendix B: References/ Books/ Webliography • 527

37.	grietinfo.in

38.	gtucse.blogspot.com

39.	gurukpo.com

40.	iace.co.in

41.	iete-elan.ac.in

42.	“Illustrated C# 2008”, Springer Nature America, Inc, 2008

43.	ir.canterbury.ac.nz

44.	issuu.com

45.	itk.ppke.hu

46.	Ivor Horton, Ivor Horton’s Beginning Visual C++ 2005, 2006

47.	Ivor Horton. “Beginning C”, Springer Nature America, Inc, 2013

48.	Ivor Horton. “Beginning C++”, Springer Nature America, Inc, 2014

49.	Jack Purdum. “Beginning C for Arduino”, Springer Nature America, Inc,
2015

50.	Jayamohan, M., and K. Revathy. “Domain classification using B+ trees
in fractal image compression”, 2012 NATIONAL CONFERENCE ON
COMPUTING AND COMMUNICATION SYSTEMS, 2012.

51.	Jörg Arndt. “Matters Computational”, Springer Nature America, Inc., 2011

52.	kavediasir.yolasite.com

53.	Kishori Sharan, “Beginning Java 9 Fundamentals”, Springer Nature,
2017 Submitted to Punjab Technical University

54.	Kishori Sharan. “Beginning Java 8 Fundamentals”, Springer Nature
America, Inc, 2014

55.	knowshares.wordpress.com

56.	kvbarnala.org

57.	kvfarakka.org

58.	Lia Papadopoulos, Mason A Porter, Karen E Daniels, Danielle S Bas-
sett. “Network analysis of particles and grains”, Journal of Complex Net-
works, 2018

528 • Data Structures and Program Design Using C++

59.	m.kkhsou.in

60.	matrumandirit.blogspot.com

61.	mca.mit.asia

62.	mlrinstitutions.ac.in

63.	mlritm.ac.in

64.	msumca2012.blogspot.in

65.	mybestcode.blogspot.com

66.	ncdd.com.br

67.	only4programmers.blogspot.in

68.	pcpolytechnic.com

69.	Peter Jan Pahl. “Graphs”, Mathematical Foundations of Computational
Engineering, 2001

70.	prgmlabs.blogspot.com

71.	programmerstreet.blogspot.com

72.	programminglanguageforstudent.blogspot.com

73.	pt.scribd.com

74.	qa.geeksforgeeks.org

75.	“Question Papers and Solutions: DC-05 (Problem Solving through ‘C’)”,
IETE Journal of Education, 2003.

76.	rajtaya.blogspot.com

77.	rapidhow.com

78.	repo.palkeo.com

79.	Saumyendra Sengupta, Carl Phillip Korobkin. “C++”, Springer Nature
America, Inc, 1994

80.	Saumyendra Sengupta, Carl Phillip Korobkin. “C++”, Springer Nature
America, Inc, 1994

81.	Saumyendra Sengupta, Carl Phillip Korobkin. “C++”, Springer Nature
America, Inc, 1994

Appendix B: References/ Books/ Webliography • 529

82.	scanftree.com

83.	sdmp.ac.in

84.	sinhcafetravel.com.vn

85.	sskcet.org.in

86.	sspublications.co.in

87.	ssvps.com

88.	subashniroula.wordpress.com

89.	T KOSHY. “Graphs”, Discrete Mathematics with Applications, 2004

90.	tamilyoungsters.blogspot.in

91.	techforum4u.comi

92.	thar.co

93.	uniqueminds.in

94.	universenm.blogspot.com

95.	unleashmytalent.com

96.	varshit-love4you.blogspot.com

97.	vdesignourweb.com

98.	vdocuments.site

99.	Vinny Cahill. “Managing Collections of Data - Arrays in C#”, Learning to
Program the Object Oriented Way with C#, 2002

100.	w3professors.com

101.	www.allinterview.com

102.	www.anglesanddangles.com

103.	www.answers.com

104.	www.apcegbn.com

105.	www.c4learn.com

106.	www.c4swimmers.esmartguy.com

107.	www.careercup.com

530 • Data Structures and Program Design Using C++

108.	www.cfanatic.com

109.	www.chegg.com

110.	www.cis.famu.edu

111.	www.citizendia.org

112.	www.codechef.com

113.	www.codingbot.net

114.	www.coursehero.com

115.	www.cqueries.com

116.	www.cs.sfu.ca

117.	www.cse.iitd.ernet.in

118.	www.daniweb.com

119.	www.davcpscn.com

120.	www.docstoc.com

121.	www.dreamincode.net

122.	www.dutsecomputing.com

123.	www.editorialdigitaltec.com

124.	www.egyankosh.ac.in

125.	www.engrcs.com

126.	www.exforsys.com

127.	www.freewebs.com

128.	www.fsktm.upm.edu.my

129.	www.geeksforgeeks.org

130.	www.globalguideline.com

131.	www.ignou.ac.in

132.	www.inafriends.netfirms.com

133.	www.indiabix.com

Appendix B: References/ Books/ Webliography • 531

134.	www.indiastudychannel.com

135.	www.jsosoft.com

136.	www.kkhsou.in

137.	www.kvbsfjodhpur.nic.in

138.	www.minihowtos.net

139.	www.mu.ac.in

140.	www.mycsvtunotes.in

141.	www.no1tutorial.com

142.	www.penerbit.usm.my

143.	www.powershow.com

144.	www.ramanagowda.com

145.	www.richmath.org

146.	www.scribd.com

147.	www.slideshare.net

148.	www.smashwords.com

149.	www.studytonight.com

150.	www.tech-faq.com

151.	www.technary.com

152.	www.tourismnepalcomnp.blogspot.com

153.	www.tutorialspoint.com

154.	www.znc.es

155.	yotv.vn

156.	youku.io27

157.	Zhang, H.C.. “A hybrid-graph approach for automated setup planning in
CAPP” Robotics and Computer Integrated Manufacturing, 199902

index

A
Abstract data type (ADT), 17, 20, 31
Abstraction process, 31, 32, 72
Acyclic directed graph (DAG), 484, 500,

501
Address calculation technique, 474
Adelson-Velski and Landis (AVL) tree,

406
balance factor, 392
critical node in, 394–396
definition, 392
height-balanced trees, 392
operations

insertion, 393–394
rotation, see Rotation operations
searching, 393

Adjacency list representation, 489–491,
513

Adjacency matrix representation,
486–489, 513

Adjacent nodes, 482
ADT, see Abstract data type
Algorithms

analyzing an, 15–16
time-space trade-off, 17

approaches for designing an, 14–15
binary search, 263–266
bubble sort methods, 289–191
characteristics, 13
complexity, 15
definition, 13
deletion operations

array, 96–100

binary search trees, 375–379
circular linked lists, 165, 166
circular queue, 233–234
doubly linked list, 181, 182, 184, 185
in linked queues, 217
queue, 224
singly linked list, 148, 149, 151

developing an, 14
efficiency, 15
infix expression

to postfix expression, 323
to prefix expression, 329

insertion operations
array, 89–94
binary search trees, 367
circular linked lists, 162–163
circular queue, 231–232
doubly linked list, 175–180
in linked queues, 216
queue, 222–223
singly linked list, 143, 144, 146–147
sort method, 279

interpolation search technique, 270–271
for linear search, 260–261
merge sort method, 283–284
performance, 18
postfix expression, 335
prefix expression, 340
quick sort method, 293–295
searching process

binary search trees, 364
for a value, 141

for selection sort method, 275–276

534 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

space complexity, 16
stack

pop operations, 310, 311
push operations, 309

time complexity, 15–16
for topological sort, 500–501
for traversing a linked list, 140

Alphabet, character set, 34
Ancestors, of node, 357
Arithmetic operators, 39
Array, 4, 5–6

advantages, 6
applications, 123
concept, 70, 121
declaration, 83–84
definition, 82
drawback, 8
elements, 82, 83

address, 85–86
index, 434
initialization, 84–85
interpolation search technique, 271–273
limitations, 6
linked lists using, 306, 315–320
memory representation, 6, 71
multidimensional, 118
name, 83
operations, 86

deletion, 95–100, 128
insertion, 88–94
merging of two arrays, 103–106
searching, 101–103, 128
sorting, 106–109
traversing an array, 87–88

of pointers, 121–123
priority queue using, 239–240
queue using, 214–215
representation, 82
size, 83
sparse matrix, 124–125
stack using, 306, 314
three-dimensional, 118–120

two-dimensional, 110
using binary search, 267–268
using linear search, 261–262

Ascending priority queue, 238
ASCII file, 470
Assignment operators, 41
Asterisk, 67, 71, 75
Asymptotic notations, 18
Average case running time, 16
AVL tree, see Adelson-Velski and Landis

B
Balance factor, of AVL tree, 392
Base class, 28, 29
Bayer, Rudolf, 416
Best case running time, 16
BFS, see Breadth first search
Big O notation, 16, 18, 20
Binary files, 470, 476
Binary search, 433

algorithm for, 263–266
array using, 267–268
definition, 263, 300
drawbacks, 266
real-life application, 264

Binary search tree (BST), 405, 415
height, 378–379
largest node in, 378
mirror image, 377
operations

deletion, 370–377
insertion, 367–370
searching, 363–367

smallest node in, 378
Binary tree, 10, 11, 357–358, 405, see also

Binary search tree
array representation of, 360
complete, 358–359
extended, 359
linked representation of, 361–362
memory representation, 359–362
sequential representation of, 360

INDEX • 535

using traversal methods, 387–391
in-order traversal, 381–382
post-order traversal, 382–387
pre-order traversal, 379–381

Bit matrix, 486
Bitwise operators, 42
BODMAS rule, 321
Boolean array, 493, 497
Boolean matrix, 486
Bottom-up approach, 15
Breadth first search (BFS), 492–496, 513
Break statements, 61–64, 74
B+ tree

advantages, 427
definition, 426–427

B-tree, 416–417
application, 426, 428
operations

deletion, 420–423, 425–426
insertions, 418–420, 423–424

structure, 428
Bubble sort methods, 301

algorithm, 289–191
array using, 291–293
complexity, 291
definition, 288
technique, 288–289
working, 291

C
Call by reference method, 67–68, 74
Call by value method, 66–67, 74
Called function, 65–67
Calling function, 65–68
Chaining method, 462

advantages, 446
deletion process, 441
disadvantages, 446
insertion process, 441
searching process, 442

Character constant, 35
Character set in C++, 34

Character variables, 35
Child nodes, 355, 357
Circular buffer, see Circular queue
Circular header linked list, 193, 200–206
Circular linked lists, 208

definition, 159–160
operations

deletion, 164–173
insertion, 160–163, 167–173

Circular queue, 252
advantages, 229–230
definition, 227–228
deletion process, 232–237
insertion process, 230–232

C++ language
arrays and pointers, 70–71
break and continue statements, 61–64
and characteristics, 26
character set in, 34
data hiding in, 33
data types, 36–37
decision control statements

if-else statement, 47–49
if statement, 45–47
nested if-else statement, 49–51
switch statement, 52–54

features, 26
functions, see Functions
high-level languages, 26
looping statements, see Looping

statements
low-level language, 26
middle-level language, 26
object oriented programming, see

Object oriented programming
operators, 73

arithmetic, 39
assignment, 41
bitwise, 42
comma, 42–43
conditional, 42
logical, 40

536 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

new and delete, 44
relational, 41
scope resolution, 44
sizeof, 44
unary, 43

pointers, 70
reference variables in, 69–70
structures, 68–69

with classes, 37–38
without classes, 37

tokens types
constant, 35
identifier, 35
keywords, 34
variables, 35

Classes, 27
Collision, 440, 462
Collision resolution techniques, 440, 462

chaining method
advantages of, 446
deletion process, 441
disadvantages of, 446
insertion process, 441
searching process, 442

open addressing method, 446, 463
linear probing technique, 446–452
quadratic probing technique, 452–458

Comma operator, 42–43
Comparison operators, 41
Comparison sort, 288
Compile time, 32

arrays, 84–85
polymorphism, 31

Complete binary tree, 358–359, 405
Complete graph, 483, 512
Concatenation operation, singly linked

list, 151–152
Conditional operator, 42
Connected graph, 484
Consecutive memory locations, 3
Constant

computing time algorithm, 18

C++ tokens, 35
Continue statements, 61–64, 73
Control statements, 45
Creation process, 12
C vs. C++ file handling, 470
Cycle, definition of, 484
Cyclic graph, 484

D
DAG, see Acyclic directed graph
Data abstraction, 31, 32
Data field, 468
Data hiding, 28
Data Left Right (DLR) traversal, 380
Data management, 2
Data nodes, 427
Data structure

abstract data type, 17
algorithms, see Algorithms
array, see Array
big O notation, 18, 20
definition, 1–3
first-in first-out, 6
graphs, 11–12
last-in first-out, 7
linked list, 8–9
non-linear, 379
objective, 1
operations, 12–13
popular linear, 6
queues, 6–7
stack, 7–8
trees, 9–10
types, 2

classification, 4
homogeneous and non-homogeneous, 4
linear and non-linear, 3
primitive and non-primitive, 4–5
static and dynamic, 3–4

Data types, in C++, 36–37, 73, 83
De-allocation, 44
Decision control statements

INDEX • 537

definition, 45
if-else statement, 47–49
if statement, 45–47
nested if-else statement, 49–51
switch statement, 52–54

Declaring a function, 65
Degree of a node, 357, 405
Degree of a vertex/node, 481
Degree of the node, 415, 428
Deletion operations, 12, 44, 73

of array, 95–100
binary search trees, 370–378
B-tree, 420–423, 425–426
chained hash table, 441
circular linked lists, 164–173
circular queue, 232–237
double-ended queue, 247–251
doubly linked list, 180–192
in linked priority queue, 242–245
in linked queues, 217–220
queues, 223–227
singly linked list, 147–151, 153–159

Depth first search (DFS), 496–500, 513
Depth of a node, 357
De-queue, see Double-ended queue
Derived class, 28, 29
Descendants, of node, 357
Descending priority queue, 238
Destruction process, 13
Deterministic loops, 55, 56
DFS, see Depth first search
Difference of matrix, 113
Digits, character set, 34
Direct addressing, 435–436
Directed graph, 481, 485, 487, 490
Directed weighted graph, 491
Directory, 468
Directory lookup technique, 474
Divide and conquer approach, 283, 293
Division method, 438, 462
DLR traversal, see Data Left Right

traversal

Double-ended queue (de-queue), 223,
246–251, 253

input restricted, 246, 253
output restricted, 247, 253

Double hashing method, 458–461
Doubly linked list, 208

definition, 173–174
operations

deletion, 180–192
insertion, 174–180, 186–192

structure, 174
Do-while loop, 57–59
Dynamic binding, 32
Dynamic data structure, 4
Dynamic dispatch, 32
Dynamic memory allocation, 44, 138–

139, 207, 315
Dynamic polymorphism, 31

E
Else-if ladder, 55
Empty tree, 354
Encapsulation, 28, 32, 72
En-queue, 222
Entry control loop, 56
Exchange sort, see Bubble sort methods
Execution time, of linear search, 261
Exit control loop, 57
Explicit priority, 238
Extended binary trees, 359, 405
External nodes, 359, 427
External sorting, 274, 299–300, 301
Extrapolation search, see Interpolation

search technique

F
File(s), 468, see also File organization

classification, 469
in computer terminology, 468
creation, 468–469
name, 468
operations, 468–469

538 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

organization, 471
retrieving process, 469
updation, 469

File handling, C vs. C++, 470
File organization, 471, 476

indexed sequential, 473
inverted, 475
relative, 474
sequence, 471–472

First-in first-out (FIFO), see Queue
Flat file, see Text files
Folding method, 439–440
For loop, 59–61, 74
FRONT end, 6–7, 214, 221
Functions

calling, 65
declaration, 65
definition, 64, 65
for in-order traversal, 382
library, 64
name, 65
passing arguments to

call by reference, 67–68
call by value, 66–67

for post-order traversal, 383
for pre-order traversal, 380–381
user-defined, 64–65

G
Graphs, 11–12, 20, 512

acyclic, 484
complete, 483, 512
connected, 484
cyclic, 484
definition, 479
directed, 481, 485
minimum spanning tree, 504

Kruskal’s algorithm, 508–512
Prim’s algorithm, 505–508

multi-graph, 484
parent-child relationship, 479
regular, 484

representation
adjacency list, 489–491
adjacency matrix, 486–489

simple, 483
size of, 485
strongly connected, 485
topological sort, 500–504
traversal techniques, 492

breadth first search, 492–496, 513
depth first search, 496–500, 513

undirected, 480
weighted, 485

Grounded header linked list, 192

H
Hash function, 435, 436, 442–445, 458

characteristics, 437
definition, 437
types

division method, 438
folding method, 439–440
mid square method, 439

Hashing
array index generation using, 434
collision, 440
collision resolution techniques, see

Collision resolution techniques
definition, 435
and direct addressing, 435–436
double, 458–461
hash function using, see Hash function
hash table using, 434, 436–437, 440
simplest method, 438

Hash table, 434, 436–437, 440, 442
Head end, see FRONT end
Header linked lists, 192–199, 208

circular, 193, 200–206
grounded, 192

Header node, 192, 208
Head-tail linked list, 246
Height-balanced tree, 391, 392
Height, of tree, 357

INDEX • 539

Hidden, 468
Hierarchical inheritance, 30
High-level languages, 26
Homogeneous data structure, 4, 19
Hybrid inheritance, 30

I
Identifiers, C++ tokens, 35
If-else-if ladder, see Nested if-else

statement
If-else-if statement, 52
If-else statement, 47–49
If statement, 45–47, 74
Implicit priority, 238
In-degree of a node, 357, 481
Indexed sequential file organization, 473
Index nodes, 427
Index value, 6
Infix expression

to postfix expression, 321–329
to prefix expression, 329–334

Infix form, 321
Inheritance, 29–30, 72
In-order traversal, 381–382
Input restricted de-queue, 246, 253
Insertion operations, 12

of array, 88–94
AVL tree, 393–394
binary search trees, 367–370
B-tree, 418–420, 423–424
chained hash table, 441
circular linked lists, 160–163, 167–173
circular queue, 230–232
double-ended queue, 247–251
doubly linked list, 174–180, 186–192
linked priority queue, 241
in linked queues, 215–216
queues, 222–227
singly linked list, 142–147, 153–159

Insertion sort methods, 278–282, 301
Internal nodes, 359, 427
Internal sorting, 274

Interpolation search technique, 269–273,
300

Inverted file organization, 475
Isolated node/vertex, 482
Iterative statements, see Looping

statements

K
Key index, in hash table, 436–440
Keywords, C++ tokens, 34
Kruskal’s algorithm, 508–512

L
Last-in first-out (LIFO), see Stack
LDR traversal, see Left Data Right

traversal
Leaf/terminal nodes, 356
Left Data Right (LDR) traversal, 381
Left-Left rotation (LL Rotation),

396–397
Left Right Data (LRD) traversal, 382
Left-Right rotation (LR Rotation), 396,

400–401
Library functions, 64
Linear algorithm, 18
Linear data structure, 3, 5, 19
Linear probing technique, 446–452, 463
Linear queues, 228–229
Linear search, 16, 101–103, 128, 433
Linear search technique, 263

algorithm for, 260–261
array using, 261–262
best case, 261
definition, 258, 300
drawbacks, 261
execution time, 261
working, 259

Linked lists, 8–9, 19
advantages, 138
applications, 207
circular, see Circular linked lists
concept, 138

540 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

definition, 136–137
disadvantages, 138
header, see Header linked lists
header node in, 193
head-tail, 246
memory allocation in, 138–139
polynomial representation, 207
priority queue using, 240–245
queues using, 215–221
singly, see Singly linked list
using arrays, 306, 315–320

Linked representation, of sparse matrix, 126
Literals, 35
LL Rotation, see Left-Left rotation
Logical AND operator, 40
Logical NOT operator, 40
Logical operators, 40
Logical OR operator, 40
Loop edges, 483
Looping statements, 74

definition, 55
do-while loop, 57–59
for loop, 59–61
while loop, 56–57

Lower-triangular matrix, 124
Low-level language, 26
LRD traversal, see Left Right Data

traversal
LR Rotation, see Left-Right rotation
Lukasiewicz, Jan, 321

M
Mapping function, 474
McCreight, Ed, 416
Members, 2
Member variable, 69
Memory space, 360
Merge sort methods, 283–288, 300, 301
Merging of two arrays, 103–106
Merging process, 12
Message passing, 32
Middle-level language, 26

Mid square method, 439, 462
Minimum cost spanning tree, 505
Minimum spanning tree (MST), 504, 513

Kruskal’s algorithm, 508–512
Prim’s algorithm, 505–508

Modularization, 14
Modules, 14
MST, see Minimum spanning tree
Multidimensional array, 118, 128
Multi-graph, 484
Multilevel inheritance, 29
Multiple inheritance, 29
Multi-way (M-way) search tree

B-tree, 416–417
application, 426
deletion operation, 420–423, 425–426
insertions operation, 418–420,

423–424
concept, 415, 428
properties, 416
structure, 415–416

N
N-dimensional array, see

Multidimensional array
Nested if-else statement, 49–51, 74
New and delete operators, 44, 73
Nodes, 11, 136, 355

level numbers, 356
structure, 361

Non-homogeneous data structure, 4
Non-linear data structure, 3, 5, 9, 379
Non-primitive data structures, 4, 5
Null tree/empty tree, 354
NULL value, 9, 136
Numeric constant, 35
Numeric variables, 35

O
Object, 27
Object oriented programming (OOP), 26

features, 33

INDEX • 541

abstraction, 31
classes, 27
dynamic binding, 32
encapsulation, 28
inheritance, 29–30
message passing, 32
object, 27
polymorphism, 31

Omega notation, 18
One-dimensional (1-D) arrays, 85–86, 92,

110, 360
OOP, see Object Oriented

Programming
Open addressing method, 446, 463

advantages, 446
linear probing technique, 446–452
quadratic probing technique, 452–458

Operators
arithmetic, 39
assignment, 41
bitwise, 42
comma, 42–43
conditional, 42
logical, 40
new and delete, 44
relational, 41
scope resolution, 44
sizeof, 44
unary, 43

Ordered binary tree, 362
Out-degree of a node, 357, 481
Output restricted de-queue, 247, 253
Overflow in stacks, 307, 348

P
Parallel edges, 482
Parent-child relationship, 353, 479
Parenthesis balancing, 344–347
Parent node, 355
Partition exchange sort, see Quick sort

methods
Path, 356

Peek operations, 7, 310–311, 348
Pendant node/vertex, 482
Pointers, 70–71, 75

of array, 121–123, 128
Polish notation, 321, 348
Polymorphism, 31, 72
Polynomial representation, 207
Pop operations, 7, 17, 309–310, 317–320,

348
in linked stacks, 316–317

Postfix expression, 321, 335–340
infix expression to, 321–328

Post-order traversal, 382–387
Pre-deterministic loops, 55, 59
Prefix expression, 321, 340–344

infix expression to, 329–334
Pre-order traversal, 379–381
Primary clustering, 452, 458
Primitive data structures, 4, 5, 19
Prim’s algorithm, 505–508
Priority queue, 237–239, 252

implementation
using arrays, 239–240
using linked list, 240–245

Product of matrix, 113
Push operations, 7, 17, 308–309, 317–

320, 348
in linked stacks, 315–316

Q
Quadratic probing technique, 452–458
Queue, 6–7, 19, 213, 214

applications, 252
definition, 214
first-in, first-out data, 213
FRONT end, 214, 221
implementation, 221, 252

using arrays, 214–215
using linked lists, 215–221

operations
deletion, 223–227
insertion, 222–223

542 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

REAR end, 214, 221
types

circular queue, see Circular queue
double-ended queue, 246–251
linear queues, 228–229
priority queue, see Priority queue

Quick sort methods, 293–299, 301
algorithm, 293–295
array using, 295–299
definition, 293
technique, 293–294

R
Read-only, 468
Ready-made functions, 64
REAR end, 6–7, 214, 221
Records, 468
Reference variables, 69–70
Regular graph, 484
Relational operators, 41
Relative file organization, 474, 476
Return types, 64
Reverse polish notation, 321
Reversing operation, singly linked list,

152–159
Right-Left rotation (RL Rotation), 396,

399–400
Right-Right rotation (RR Rotation), 396,

397–398
Ring buffer, 228
RL Rotation, see Right-Left rotation
Root node, 353–354, 355, 357, 404
Rotation operations

definition, 394
by inserting, 401–404
types of

Left-Left rotation, 396–397
Left-Right rotation, 396, 400–401
Right-Left rotation, 396, 399–400
Right-Right rotation, 396, 397–398

Round-robin technique, 252
RR Rotation, see Right-Right rotation

Runtime
arrays, 85
complexity, 441

deletion process, 441
searching process, 442

polymorphism, 31

S
Scope resolution operator, 44, 73
Searching process, 12

algorithms, 433
binary, 433
binary search, 263–268
chaining method, 442
definition, 257
interpolation search, 269–273
linear/sequential search, 258–263, 433

algorithm for, 260–261
array using, 261–262
best case, 261
definition, 258, 300
drawbacks, 261
execution time, 261
working, 259

operations, 405
AVL trees, 393
binary search trees, 363–367
chained hash table, 442

singly linked list, 140–142
and sorting, see Sorting
techniques, 258

SEARCH_VAL, 141
Secondary clustering, 458
Secondary memory, 299–300
Segment, 300
Selection sort method, 301

algorithm for, 275–276
array using, 276–278
definition, 274
technique, 274–275, 278

Selection sort technique, 107–109, 128
Selector statement, 52

INDEX • 543

Self-balancing binary search tree, 391
Self-referential data type/structure, 137
Sequence file organization, 471–472, 476
Sequential order, 3
Sequential representation of binary tree,

360
Sequential search, see Linear search
Siblings, 357
Simple graph, 483
Single inheritance, 29
Singly linked list, 207

concatenation, 151–152
definition, 139
operations

deletion, 147–151, 153–159
insertion, 142–147, 153–159
reversing, 152–159

searching for, 140–142
sorting process, 152
traversing, 140

Size of array, 83, 89
Size of graph, 485
sizeof operator, 44, 73
Sorted list, 263
Sorting process, 12

algorithm, 273
definition, 273, 301
external, 274, 299–300
internal, 274
methods

bubble sort, 288–293
insertion sort, 278–282
merge sort, 283–288
quick sort, 293–299
selection sort, 274–278

operation
of array, 106–109
singly linked list, 152

technique, 273
topological, 500–504, 513

Sort key, 471
Space complexity of algorithm, 16

Sparse matrix, 124, 127, 489
representation

array/3-tuple, 125–126
linked, 126

types
lower-triangular matrix, 124
tri-diagonal matrix, 125
upper-triangular matrix, 124–125

Special Characters, character set, 34
Stack, 7–8, 19, 305

applications, 320
infix expression to postfix expression,

321–329
infix expression to prefix expression,

329–334
polish notation, 321
postfix expression, 335–340
prefix expression, 340–344
reverse polish notation, 321

of books, 306
definition, 305, 306
last-in, first-out, 305
operations, 311–314

peek, 310–311, 348
pop, 309–311, 317–320, 348
push, 308–309, 317–320, 348

overflow in, 307, 348
parenthesis balancing, 344–347
representation, 306
underflow in, 307, 348
using arrays, 306, 314
using linked lists, 315–317, 315–320

START value, 136
Static data structure, 3, 19
Static polymorphism, 31
Strongly connected graph, 485
Stroustrup, Bjarne, 26, 72
Sub-modules, 14, 15
Subscript, see Index value
Subtrees, 356
Sum of matrix, 113
Switch statement, 52–55

544 • DATA STRUCTURES AND PROGRAM DESIGN USING C ++

T
Tail end, see REAR end
Ternary operator, 42
Text files, 470, 476
Theta notation, 18
3-D/three-dimensional arrays, 118–120
3-tuple/array representation, of sparse

matrix, 125-126
Time complexity of algorithm, 15–16
Time-consuming procedure, 228, 261,

489
Time-space trade-off, 17
Tokens types

constant, 35
identifier, 35
keywords, 34
variables, 35

Top-down approach, 14–15
TOP end, 306
Topological sort, 500–504, 513
TOP pointer, 7
Transpose matrix, 113–117
Traversal methods, 387–391

in-order traversal, 381–382
post-order traversal, 382–387
pre-order traversal, 379–381

Traversal process, 13
Tree, 9–10, 19, 404

ancestors, 357
AVL tree, see Adelson-Velski and

Landis tree
binary, 357–358
binary search, see Binary search tree
child nodes, 355, 357
data structure, 9–10
definition, 353
degree of a node, 357, 405
depth of a node, 357

descendants of node, 357
height, 357
in-degree of node, 357, 481
leaf/terminal nodes, 356
M-way search, see Multi-way (M-way)

search tree
out-degree of a node, 357, 481
parent node, 355
path, 356
root node, 353–354, 355, 357, 404
siblings, 357
subtrees, 356

Tri-diagonal matrix, 125
Two-dimensional/2-D arrays, 110

declaration, 110–112
operations, 113–117

2-regular graph, 484
Two-way linked list, see Doubly linked list

U
Unary operator, 43, 73
Underflow in stacks, 307, 348
Undirected graph, 480, 481, 487, 490
Undirected multi-graph, 488, 489
Uniform hashing, 459
Unsorted list, 263
Updating process, 12
Upper-triangular matrix, 124–125
User-defined functions, 64–65

V
Variables, C++ tokens, 35

W
Weighted graph, 485
While loop, 56–57, 74
White Spaces, character set, 34
Worst case running time, 16

	Contents
	Preface
	Acknowledgments
	1. Introduction to Data Structures
	2. Introduction to the C++ Language
	3. Arrays
	4. Linked Lists
	5. Queues
	6. Searching and Sorting
	7. Stacks
	8. Trees
	9. Multi-Way Search Trees
	10. Hashing
	11. Files
	12. Graphs
	Appendix A. Answers to Selected Exercises
	Appendix B. References. Books. Webliography
	Index

