ILE

SAGHI NANDAN MOHANTY
PABITRA KUMAR TRIPATHY

Scrivener
Publishing
7 j |
% \

“ STRUCTURE :
‘woRLGORITHMS

USING G+
Aoy

Cover
File Attachment
Thumbnails.jpg

Data Structure and Algorithms
Using C++

Scrivener Publishing
100 Cummings Center, Suite 541]
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Data Structure
and Algorithms Using C++

A Practical Implementation

Edited by
Sachi Nandan Mohanty

ICFAI Foundation For Higher Education, Hyderabad, India
and

Pabitra Kumar Tripathy

Kalam Institute of Technology, Berhampur, India

7

Sc/rivener

Publishing

WILEY

This edition first published 2021 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
and Scrivener Publishing LLC, 100 Cummings Center, Suite 541], Beverly, MA 01915, USA

© 2021 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, except as permitted by law. Advice on how to obtain permission to reuse material from this title
is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley prod-
ucts visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no rep-
resentations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchant-
ability or fitness for a particular purpose. No warranty may be created or extended by sales representa-
tives, written sales materials, or promotional statements for this work. The fact that an organization,
website, or product is referred to in this work as a citation and/or potential source of further informa-
tion does not mean that the publisher and authors endorse the information or services the organiza-
tion, website, or product may provide or recommendations it may make. This work is sold with the
understanding that the publisher is not engaged in rendering professional services. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a specialist
where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.
Further, readers should be aware that websites listed in this work may have changed or disappeared
between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data
ISBN 978-1-119-75054-3

Cover image: Pixabay.Com
Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines
Printed in the USA

10987 654321

Contents

Preface xi
1 Introduction to Data Structure 1
1.1 Definition and Use of Data Structure 1

1.2 Types of Data Structure 2

1.3 Algorithm 3

1.4 Complexity of an Algorithm 6

1.5 Efficiency of an Algorithm 7

1.6 Asymptotic Notations 8

1.7 How to Determine Complexities 9

1.8 Questions 13

2 Review of Concepts of ‘C++ 15
2.1 Array 15
2.1.1 One-Dimensional Array 16

2.1.2 Multi-Dimensional Array 17

2.1.3 String Handling 20

2.2 Function 26
2.2.1 User Defined Functions 26

2.2.2 Construction of a Function 27

2.2.3 Actual Argument and Formal Argument 31

2.2.4 Call by Value and Call by Reference 32

2.2.5 Default Values for Parameters 34

2.2.6 Storage Class Specifiers 35

2.3 Pointer 37
2.3.1 Declaration of a Pointer 37

2.3.2 [Initialization of a Pointer 37

2.3.3 Arithmetic With Pointer 38

2.3.4 Passing of a Pointer to Function 39

2.3.5 Returning of a Pointer by Function 40

2.3.6 C++ Null Pointer 41

vi

CONTENTS
2.4 Structure
2.4.1 The typedef Keyword
2.5 Questions
Sparse Matrix
3.1 What is Sparse Matrix
3.2 Sparse Matrix Representations
3.3 Algorithm to Represent the Sparse Matrix
3.4 Programs Related to Sparse Matrix
3.5 Why to Use Sparse Matrix Instead of Simple Matrix?
3.6 Drawbacks of Sparse Matrix
3.7 Sparse Matrix and Machine Learning
3.8 Questions
Concepts of Class
4.1 Introduction to CLASS
42 Access Specifiers in C++
4.3 Declaration of Class
44 Some Manipulator Used In C++
4.5 Defining the Member Functions Outside of the Class
4.6 Array of Objects
4.7 Pointer to Object
4.8 Inline Member Function
4.9 Friend Function
49.1 Simple Friend Function
4.9.2 Friend With Inline Substitution
49.3 Granting Friendship to Another Class
(Friend Class)
49.4 More Than One Class Having the Same
Friend Function
4,10 Static Data Member and Member Functions
4.11 Constructor and Destructor
4.11.1 Constructor
4.11.1.1 Empty Constructor
4.11.1.2 Default Constructor
4.11.1.3 Parameterized Constructors
4.11.1.4 Copy Constructor
4.11.2 Destructor
4.12 Dynamic Memory Allocation
4.13 'This Pointer
4.14 Class Within Class
4.15 Questions

42
46
47

49
49
49
51
52
56
57
57
58

59
59
60
60
62
64
64
66
67
69
69
70

71

73
75
78
78
79
79
80
81
83
84
86
87
89

5 Stack
STACK

Operations Performed With STACK
ALGORITHMS

Applications of STACK

Programming Implementations of STACK
Questions

6 Queue

5.1
5.2
5.3
5.4
55
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7 Linked List

7.1
7.2
7.3
7.4

Queue

CONTENTS

Types of Queue
Linear Queue
Circular Queue
Double Ended Queue
Priority Queue
Programs

Questions

Why Use Linked List?

Types of Link List

Single Link List

Programs Related to Single Linked List

7.4.1
7.4.2

7.4.3

7.4.4

7.4.5

7.4.6

7.4.7

7.4.8

7.4.9

/* Creation of a Linked List */

/* Insert a Node Into a Simple Linked List at
the Beginning */

/* Insert a Node Into a Simple Linked List at
the End of the List */

/* Insert a Node Into a Simple Linked List
When the Node Is Known */

/* Insert a Node Into a Simple Linked List
Information Is Known and Put After Some
Specified Node */

/* Deleting the First Node From a Simple
Linked List */

/* Deleting the Last Node From a Simple
Linked List */

/* Deleting a Node From a Simple Linked
List When Node Number Is Known */
Deleting a Node From a Simple Linked List
When Information of a Node Is Given

vii

91
91
91
93
96
106
126

129
129
129
129
134
138
139
142
165

167
167
167
168
177
177
178
180

182

184

187

189

191

193

viii CONTENTS

7.4.10 /* SEARCH A NODE INTO A SIMPLE LINKED

LIST WITH INFORMATION IS KNOWN*/ 197
7.4.11 /*Sorting a Linked List in Ascending Order */ 199
7.4.12 /* Reversing a Linked List */ 202
7.4.13 Program for Student Data Using Linked List 203
7.5 Double Link List 210
7.6 Programs on Double Linked List 216
7.6.1 /* Creation of Double Linked List */ 216
7.6.2 /*Inserting First Node in the Doubly
Linked List */ 218
7.6.3 [*Inserting a Node in the Doubly Linked List
When Node Number Is Known*/ 220
7.6.4 [*Inserting a Node in the Doubly Linked List
When Information Is Known*/ 223

7.6.5 /* Delete First Node From a Double Linked List */ 226
7.6.6 [*Delete the Last Node From the Double

Linked List*/ 229

7.7 Header Linked List 231
7.7.1 /* Inserting a Node Into a Header Linked List */ 233

7.8 Circular Linked List 235
7.9 Application of Linked List 239
7.9.1 Addition of Two Polynomial 239

7.9.2 /* Polynomial With Help of Linked List */ 240

7.9.3 Program for Linked Queue 241

7.9.4 Program for Linked Stack 243

7.10 Garbage Collection and Compaction 245
7.11 Questions 247
8 TREE 249
8.1 Tree Terminologies 249
8.2 Binary Tree 251
8.3 Representation of Binary Tree 253
8.3.1 Array Representation of a Tree 253

8.3.2 Linked List Representation of a Tree 254

8.4 Operations Performed With the Binary Tree 254
8.4.1 /*Creation of a Tree*/ 255

8.5 Traversing With Tree 256
8.5.1 /* Binary Tree Traversal */ 259

8.6 Conversion of a Tree From Inorder and Preorder 262

10

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Types of Binary Tree
Expression Tree
Binary Search Tree
Height Balanced Tree (AVL Tree)
Threaded Binary Tree
Heap Tree

Huffman Tree
Decision Tree

B-Tree

B + Tree

General Tree
Red-Black Tree
Questions

Graph

9.1
9.2
9.3

9.4

9.5

9.6
9.7
9.8

Graph Terminologies
Representation of Graph
Traversal of Graph

9.3.1 Breadth First Search (BFS)
9.3.2 Depth First Search
Spanning Tree

9.4.1 Kruskal Algorithm

9.42 Prims Algorithm

Single Source Shortest Path

9.5.1 Bellman-Ford Algorithm
9.5.2 Dijkstra’s Algorithm

All Pair Shortest Path

Topological Sorting

Questions

Searching and Sorting

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Linear Search
Binary Search
Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
Radix Sort
Heap Sort

10.10 Questions

CONTENTS ix

265
265
268
272
277
279
282
286
287
292
293
293
294

295
295
301
305
305
311
315
315
318
322
323
327
335
345
347

349
349
351
355
359
361
363
366
369
372
389

x CONTENTS

11 Hashing

11.1
11.2
11.3
11.4
11.5

Index

Hash Functions

Collisions

Collision Resolution Methods
Clustering

Questions

391
391
393
393
394
395

397

Preface

Welcome to the first edition of Data Structures and Algorithms Using C++.
A data structure is the logical or mathematical arrangement of data in
memory. To be effective, data has to be organized in a manner that adds to
the efficiency of an algorithm and also describe the relationships between
these data items and the operations that can be performed on these items.
The choice of appropriate data structures and algorithms forms the funda-
mental step in the design of an efficient program. Thus, a deep understand-
ing of data structure concepts is essential for students who wish to work
on the design and implementation of system software written in C++, an
object-oriented programming language that has gained popularity in both
academia and industry. Therefore, this book was developed to provide
comprehensive and logical coverage of data structures like stacks, queues,
linked lists, trees and graphs, which makes it an excellent choice for learn-
ing data structures. The objective of the book is to introduce the concepts
of data structures and apply these concepts in real-life problem solving.
Most of the examples presented resulted from student interaction in the
classroom. This book utilizes a systematic approach wherein the design of
each of the data structures is followed by algorithms of different operations
that can be performed on them and the analysis of these algorithms in
terms of their running times.

This book was designed to serve as a textbook for undergraduate engi-
neering students across all disciplines and postgraduate level courses in
computer applications. Young researchers working on efficient data storage
and related applications will also find it to be a helpful reference source to
guide them in the newly established techniques of this rapidly growing
research field.

Dr. Sachi Nandan Mohanty and

Prof. Pabitra Kumar Tripathy
December 2020

xi

1

Introduction to Data Structure

1.1 Definition and Use of Data Structure

Data structure is the representation of the logical relationship existing
between individual elements of data. In other words the data structure is a
way of organizing all data items that considers not only the elements stored
but also their relationship to each other.

Data structure specifies

« Organization of data

o Accessing methods

o Degree of associativity

o Processing alternatives for information

The data structures are the building blocks of a program and hence the
selection of a particular data structure stresses on

o The data structures must be rich enough in structure to
reflect the relationship existing between the data, and

o The structure should be simple so that we can process data
effectively whenever required.

In mathematically ~Algorithm + Data Structure = Program
Finally we can also define the data structure as the “Logical and mathe-
matical model of a particular organization of data”

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (1-14) © 2021 Scrivener Publishing LLC

2 DATA STRUCTURE AND ALGORITHMS USING C++

1.2 Types of Data Structure

Data structure can be broadly classified into two categories as Linear and
Non-Linear

DATA STRUCTURE

A4 A4

LINEAR NON LINEAR

v v v v \ 4 \ 4 \ 4
| ARRAY | | QUEUE | | STACK | | TREE | | GRAPH | | TABLES | | SETS |

Linear Data Structures

In linear data structures, values are arranged in linear fashion. Arrays,
linked lists, stacks, and queues are the examples of linear data structures in
which values are stored in a sequence.

Non-Linear Data Structure

This type is opposite to linear. The data values in this structure are not
arranged in order. Tree, graph, table, and sets are the examples of non-
linear data structure.

Operations Performed in Data Structure
In data structure we can perform the operations like

o Traversing
« Insertion

« Deletion
o Merging
o Sorting

 Searching

INTRODUCTION TO DATA STRUCTURE 3

1.3 Algorithm

The step by step procedure to solve a problem is known as the ALGORITHM.
An algorithm is a well-organized, pre-arranged, and defined computational
module that receives some values or set of values as input and provides a
single or set of values as out put. These well-defined computational steps
are arranged in sequence, which processes the given input into output.

An algorithm is said to be accurate and truthful only when it provides
the exact wanted output.

The efficiency of an algorithm depends on the time and space complex-
ities. The complexity of an algorithm is the function which gives the run-
ning time and/or space in terms of the input size.

Steps Required to Develop an Algorithm

 Finding a method for solving a problem. Every step of an
algorithm should be defined in a precise and in a clear man-
ner. Pseudo code is also used to describe an algorithm.

 The next step is to validate the algorithm. This step includes
all the steps in our algorithm and should be done manually
by giving the required input, perform the required steps
including in our algorithm and should get the required
amount of output in a finite amount of time.

« Finally implement the algorithm in terms of programming
language.

Mathematical Notations and Functions

+ Floor and Ceiling Functions

Floor function returns the greatest integer that does not exceed
the number.

Ceiling function returns the least integer that is not less than
the number.

|_n(ﬂ denotes the floor function
|_no denotes the ceil function

Ex:

[523] =5 523 | —6]

4 DATA STRUCTURE AND ALGORITHMS USING C++

% Remainder Function
To find the remainder “mod” function is being used as

A modB

+ To find the Integer and Absolute value of a number
INT(5.34) =5 This statement returns the integer part of
the number
INT(-6.45) =6 This statement returns the absolute as well
as the integer portion of the number

% Summation Symbol
To add a series of numberasal+a2+a3 +............ + an the
symbol X is used

n
i=1

+ Factorial of a Number
The product of the positive integers from 1 to n is known as
the factorial of n and it is denoted as n!.

0l=1

Algorithemic Notations

While writing the algorithm the comments are provided with in [].
The assignment should use the symbol “: =” instead of “=”
For Input use Read : variable name

For output use write : message/variable name
The control structures can also be allowed to use inside an algorithm but
their way of approaching will be some what different as
Simple If

If condition, then:
Statements
[end of if structure]

INTRODUCTION TO DATA STRUCTURE 5

If...else
If condition, then:
Statements
Else
Statements

[end of if structure]

If...else ladder

If conditionl, then:

Statements

Else If condition2, then:
Statements

Else If condition3, then:
Statements

Else If conditionN, then:
Statements

Statements
[end of if structure]

LOOPING CONSTRUCT

Repeat for var = start value to end value by
step value
Statements
[end of loop]

Repeat while condition:
Statements
[end of loop]
Ex : repeat for I = 1 to 10 by 2
Write: 1
[end of loopl]

OUTPUT
135729

6 DATA STRUCTURE AND ALGORITHMS USING C++

1.4 Complexity of an Algorithm

The complexity of programs can be judged by criteria such as whether
it satisfies the original specification task, whether the code is readable.
These factors affect the computing time and storage requirement of the
program.

Space Complexity

The space complexity of a program is the amount of memory it needs to
run to completion. The space needed by a program is the sum of the fol-
lowing components:

A fixed part that includes space for the code, space for sim-
ple variables and fixed size component variables, space for
constants, etc.

o A variable part that consists of the space needed by com-
ponent variables whose size is dependent on the particular
problem instance being solved, and the stack space used by
recursive procedures.

Time Complexity

The time complexity of a program is the amount of computer time it needs
to run to completion. The time complexity is of two types such as

« Compilation time
o Runtime

The amount of time taken by the compiler to compile an algorithm is
known as compilation time. During compilation time it does not calculate
for the executable statements, it calculates only the declaration statements
and checks for any syntax and semantic errors.

The run time depends on the size of an algorithm. If the number of
instructions in an algorithm is large, then the run time is also large, and if
the number of instructions in an algorithm is small, then the time for exe-
cuting the program is also small. The runtime is calculated for executable
statements and not for declaration statements.

INTRODUCTION TO DATA STRUCTURE 7

Suppose space is fixed for one algorithm then only run time will be con-
sidered for obtaining the complexity of algorithm, these are

o Best case
o« Worst case
o Average case

Best Case

Generally, most of the algorithms behave sometimes in best case. In this
case, algorithm searches the element for the first time by itself.

For example: In linear search, if it finds the element for the first time by
itself, then it behaves as the best case. Best case takes shortest time to exe-
cute, as it causes the algorithms to do the least amount of work.

Worst Case

In worst case, we find the element at the end or when searching of elements
fails. This could involve comparing the key to each list value for a total of
N comparisons.

For example in linear search suppose the element for which algorithm
is searching is the last element of array or it is not available in array then
algorithm behaves as worst case.

Average Case

Analyzing the average case behavior algorithm is a little bit complex than
the best case and worst case. Here, we take the probability with a list of
data. Average case of algorithm should be the average number of steps but
since data can be at any place, so finding exact behavior of algorithm is
difficult. As the volume of data increases, the average case of algorithm
behaves like the worst case of algorithm.

1.5 Efficiency of an Algorithm

Efficiency of an algorithm can be determined by measuring the time, space,
and amount of resources it uses for executing the program. The amount of
time taken by an algorithm can be calculated by finding the number of
steps the algorithm executes, while the space refers to the number of units
it requires for memory storage.

8 DATA STRUCTURE AND ALGORITHMS USING C++

1.6 Asymptotic Notations

The asymptotic notations are the symbols which are used to solve the dif-
ferent algorithms and the notations are

« Big Oh Notation (O)
« Little Oh Notation (o)
o Omega Notation (£2)
o Theta Notation (0)

Big Oh (O) Notation

This Notation gives the upper bound for a function to within a constant
factor. We write f(n) = O(g(n)) if there are +ve constants n0 and C such
that to the right of n0, the value of f(n) always lies on or below Cg(n)

Omega Notation (Q)

This notation gives a lower bound for a function to with in a constant fac-
tor. We write f(n) = Qg(n) if there are positive constants n0 and C such that
to the right of n0 the value of f(n) always lies on or above Cg(n)

Theta Notation (0)

This notation bounds the function to within constant factors. We say f(n) =
Og(n) if there exists +ve constants n0, C1 and C2 such that to the right of n0
the value of f(n) always lies between clg(n) and c2(g(n)) inclusive.

Little Oh Notation (o)
F(n) = o(g(n)) iff f(n) = O(g(n)) and f(n) != Og(n).

Introduction

An important question is: How efficient is an algorithm or piece of code?
Efficiency covers lots of resources, including:

CPU (time) usage
Memory usage
Disk usage
Network usage

INTRODUCTION TO DATA STRUCTURE 9

All are important but we will mostly talk about CPU time
Be careful to differentiate between:

Performance: how much time/memory/disk/... is actually used
when a program is running. This depends on the machine, compiler, etc.,
as well as the code.

Complexity: how do the resource requirements of a program or algorithm
scale, i.e., what happens as the size of the problem being solved gets larger.
Complexity affects performance but not the other way around. The time
required by a method is proportional to the number of “basic operations”
that it performs. Here are some examples of basic operations:

one arithmetic operation (e.g., +, *).
one assignment

one test (e.g., x == 0)

one read

one write (of a primitive type)

Note: As an example,

O(1) refers to constant time.

O(n) indicates linear time;

O(n*) (k fixed) refers to polynomial time;
O(log n) is called logarithmic time;
O(2") refers to exponential time, etc.

n? + 3n + 4 is O(n?), since n’ + 3n + 4 < 2n’ for all n > 10. Strictly speaking,
3n + 4 is O(n?), too, but big-O notation is often misused to mean equal to
rather than less than.

1.7 How to Determine Complexities

In general, how can you determine the running time of a piece of code?
The answer is that it depends on what kinds of statements are used.

1. Sequence of statements

statement 1;
statement 2;

statement k;

10 DATA STRUCTURE AND ALGORITHMS USING C++

Note: this is code that really is exactly k statements; this is not
an unrolled loop like the N calls to addBefore shown above.)
The total time is found by adding the times for all statements:

total time = time(statement 1) + time
(statement 2) + ... + time(statement k)

If each statement is “simple” (only involves basic opera-
tions) then the time for each statement is constant and the
total time is also constant: O(1). In the following examples,
assume the statements are simple unless noted otherwise.

2. if-then-else statements

if (cond) {
sequence of statements 1

else {
sequence of statements 2

Here, either sequence 1 will execute, or sequence 2 will execute.
Therefore, the worst-case time is the slowest of the two possi-
bilities: max(time(sequence 1), time(sequence 2)). For exam-
ple, if sequence 1is O(N) and sequence 2 is O(1) the worst-case
time for the whole if-then-else statement would be O(N).
3. for loops
for (i = 0; 1 < N; 1i++) {
sequernce of statements
!

The loop executes N times, so the sequence of statements also
executes N times. Since we assume the statements are O(1), the
total time for the for loop is N * O(1), which is O(N) overall.
4. Nested loops
for (i = 0; 1 < N; i++) {
for (3 = 0; j < M; Jj++) {
sequence of statements
}

}

The outer loop executes N times. Every time the outer loop
executes, the inner loop executes M times. As a result, the
statements in the inner loop execute a total of N * M times.
Thus, the complexity is O(N * M). In a common special case

INTRODUCTION TO DATA STRUCTURE 11

where the stopping condition of the inner loop is § < N
instead of 5 < M (i.e., the inner loop also executes N times),
the total complexity for the two loops is O(N?).
5. Statements with method calls:

When a statement involves a method call, the complexity of
the statement includes the complexity of the method call.
Assume that you know that method f takes constant time,
and that method g takes time proportional to (linear in) the
value of its parameter k. Then the statements below have the
time complexities indicated.

// O(1)
// 0O(k)

£(k);

g(k);

When a loop is involved, the same rule applies. For example:
for (j = 0; j < N; j++) g(N);

has complexity (N?). The loop executes N times and each
method call g (N) is complexity O (N).

Examples

Q1. What is the worst-case complexity of the each of the following code
fragments?

Two loops in a row:

for (i = 0; i < N; i++) {
sequence of statements

for (j = 0; 3 < M; J++) {
sequence of statements
}

Answer: The first loop is O(N) and the second loop is O(M). Since you
do not know which is bigger, you say this is O(N+M). This can
also be written as O(max(N,M)). In the case where the second
loop goes to N instead of M the complexity is O(N). You can
see this from either expression above. O(N+M) becomes O(2N)
and when you drop the constant it is O(N). O(max(N,M))
becomes O(max(N,N)) which is O(N).

12 DATA STRUCTURE AND ALGORITHMS USING C++

Q2. How would the complexity change if the second loop went to N
instead of M?
A nested loop followed by a non-nested loop:

for (1 = 0; 1 < N; i++)

for (j = 0; J < N; j++) {
sequence of statements
}
}

for (k = 0; k < N; k++) {
sequence of statements
}

Answer: The first set of nested loops is O(N?) and the second loop is
O(N). This is O(max(N?N)) which is O(N?).

Q3. A nested loop in which the number of times the inner loop executes
depends on the value of the outer loop index:
for (i = 0; 1 < N; i++) {
for (j = i; 3 < N; j++) {
sequence of statements
}

Answer: When i is 0 the inner loop executes N times. When i is 1 the
inner loop executes N-1 times. In the last iteration of the outer
loop when i is N-1 the inner loop executes 1 time. The number
of times the inner loop statements execute is N + N-1 + ... + 2 +
1. This sum is N(N+1)/2 and gives O(N?).

Q4. For each of the following loops with a method call, determine the
overall complexity. As above, assume that method f takes constant time,
and that method g takes time linear in the value of its parameter.

a. for (j
b. for (3
c. for (3

0; j < N; j++) £(3);
0; Jj < N; j++) g(j);
0; j < N; j++) g(k);

Answer: a. Each call to (j) is O(1). The loop executes N times so it is N x
O(1) or O(N).

b. The first time the loop executes j is 0 and g(0) takes “no oper-
ations” The next time j is 1 and g(1) takes 1 operations. The
last time the loop executes j is N-1 and g(N-1) takes N-1 oper-
ations. The total work is the sum of the first N-1 numbers and
is O(N?).

INTRODUCTION TO DATA STRUCTURE

c. Each time through the loop g(k) takes k operations and the

loop executes N times. Since you do not know the relative size
of k and N, the overall complexity is O(N x k).

1.8 Questions

o=

N Uk w

What is data structure?

What are the types of operations that can be performed with
data structure?

What is asymptotic notation and why is this used?

What is complexity and its type?

Find the complexity of 3n* + 5n.

Distinguish between linear and non-linear data structure.

Is it necessary is use data structure in every field? Justify
your answer.

13

2

Review of Concepts of ‘C++’

2.1 Array

Whenever we want to store some values then we have to take the help of a
variable, and for this we must have to declare it before its use. If we want
to store the details of a student so for this purpose we have to declare the
variables as

char name [20], add[30] ;
int roll, age, regdno ;
float total, avg ;

for a individual student.

If we want to store the details of more than one student than we have to
declare a huge amount of variables and which are too much difficult to access
it. Le/ the programs length will increased too faster. So it will be better to
declare the variables in a group. I.e/ name variable will be used for more than
one student, roll variable will be used for more than one student, etc.

So to declare the variable of same kind in a group is known as the Array
and the concept of array is used for this purpose only.

Definition: The array is a collection of more than one element of same
kind with a single variable name.

Types of Array:

The arrays can be further classified into two broad categories such as:

o One Dimensional (The array having one boundary
specification)

o Multi dimensional (The array having more than one bound-
ary specification)

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (15-48) © 2021 Scrivener Publishing LLC

15

16 DATA STRUCTURE AND ALGORITHMS USING C++

2.1.1 One-Dimensional Array

Declaration:

Syntax :
Data type variable_name[bound] ;

The data type may be one of the data types that we are studied. The
variable name is also same as the normal variable name but the bound is
the number which will further specify that how much variables you want
to combine into a single unit.

Ex:int roll[15];

In the above example roll is an array 15 variables whose capacity is to
store the roll_number of 15 students.

And the individual variables are
roll[0] , roll[1], roll[2], roll[3] ,......cutnn..... ,;roll[14]

Array Element in Memory

The array elements are stored in a consecutive manner inside the memory.
i.e./ They allocate a sequential memory allocation.

For Ex : int x[7];

Let the x[0] will be at the memory address 568 then the entire array can
be represented in the memory as

x[0] X[1] X[2] X[3] X[4] X[5] X[6]
568 570 572 574 576 578 580
Initialization:

The array is also initialized just like other normal variable except that
we have to pass a group of elements with in a chain bracket separated by
commas.

Ex:int x[5]={ 24,23,5,67,897 } ;

In the above statement x[0] = 24, x[1] = 23, x[2]=5, x[3]=67,x[4]=897

ReviEw oF CONCEPTS OF ‘C++ 17

Retrieving and Storing Some Value From/Into the Array

Since array is a collection of more than one elements of same kind so while
performing any task with the array we have to do that work repeatedly.
Therefore while retrieving or storing the elements from/into an array we
must have to use the concept of looping.

Ex: Write a Program to Input 10 Elements Into an Array and
Display Them.

#include<iostream.h>
void main ()

{
int x[10],1;
cout<<“\nEnter 10 elements into the array”;
for(i=0 ; 1<10; i++)
cin>>x[1];
cout<<“\n THE ENTERED ARRAY ELEMENTS ARE :”;
for(i=0 ; 1<10; i++)
cout<<” “<<x[1];

OUTPUT
Enter 10 elements into the array
12
36
89
54
6
125
35
87
49
6
THE ENTERED ARRAY ELEMENTS ARE : 12 36
89 54 6 125 35 87 49 6

2.1.2 Multi-Dimensional Array

The array having more than one boundary specification is known as multi
dimensional array. The total number of elements to be stored in side a
multi dimensional array is equals to the product of its boundaries.

18 DATA STRUCTURE AND ALGORITHMS USING C++

But we do use the two dimensional array to handle the matrix opera-
tions. The two dimensional array having two boundary specifications.

Declaration of Two-Dimensional Array

The declaration of the two dimensional array is just like the one dimen-
sional array except that instead of using a single boundary we have to use
two boundary specification.

SYNTAX

data_type variable_name[boundaryl][boundary2];

Ex : int x[3][4];
In the above example x is the two dimensional array which has the capacity
to store (3x4) 12 elements. The individual number of elements are

x[0][0] x[0][1] x[0][2] x[0][3]

x[1][0] x[1][1] x[1][2] x[1][3]

x[2][0] x[2][1] x[2][2] x[2][3]
INITIALIZATION

The array can also be initialized as like one dimensional array.
Ex: int x[3][4] = {{3,5,7,8}, {45,12,34,3}, {56,89,56,23}};
OR

int x[3][4] = {3,5,7,8,45,12,34,3,56,89,56,23};
After the above initialization

x[0][0]=3 x[0][1]=5 x[0]

x[1][0]=45 x[1][1]=12 x[1]
x[2][0]=56 x[2][1]=89 x[2

—

Processing of a Two-Dimensional Array

While processing a two-dimensional array we have to use two loops.

ReviEw oF CONCEPTS OF ‘C++ 19

Example : WAP to input a 3 x 3 matrix and find out the sum of

lower triangular elements.

#include<iostream.h>
void main ()

{

int mat[3] [3],1,],sum=0;

/*INPUT THE ARRAY */

i++)
j<3 ;

for(i=0 ; 1i<3 ;
for(j=0 ;
{
cout<<“\nEnter a number”;
cins>mat [1] [J];

}

J++)

A[0][0] A[O][1] AfQ][2] i ;g
ALJ(0] AT ADJE2) 12 24 7
AR)O) AR AR)2)

The sum will be
A[DJ[0] + ARIO]+ AR+ ARJO]+ AR+ A2
That means ineach case the value of “’ >=¢j’
So the condition will be
+alll[j)y

The result will be sum = 5+2+6+12+24+7 =56

if(i>=j) { sum=sum

/* LOGIC TO SUM THE LOWER TRIANGULAR ELEMENTS */

for(i=0 ; i<3 ; 1i++)
for(j=0 ; j<3 ;
{
if (i>=73)
sum=sum+mat [1] [];

}

J++)

/* PRINT THE ARRAY */

cout“"\nTHE ENTERED MATRIX IS\n”;

for(i=0 ; i++4)

{

for (j

i<3 ;

=0 ; J<3 ; J++)
{

“ecmat [1] [3] ;
}

cout<<“\n”;

}

cout<<”

cout<<“\nSum of the lower triangular matrix is”<<sum;

}

20 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

Enter a number 5
Enter a number 7
Enter a number 9
Enter a number 2
Enter a number 6
Enter a number 8
Enter a number 12
Enter a number 24
Enter a number 7

THE ENTERED MATRIX IS
5 7 9
2 6 8

12 24 7

Sum of the lower triangular matrix is 56

2.1.3 String Handling

The string is a collection of more than one character. So it can also be called
as a character array. The approaching to the string/character array is some-
what different compare to the normal array due to its speciality nature.

The speciality is that the string always terminates with a NULL (‘\0’)
character. So while accessing the string there is no need to use the loop
frequently(We may access it as a array with the help of loop).

When we will access it with the loop (like int, float etc. array) than the
NULL character will not be assigned at the end of it, so while printing it
we are bound to use the loop again. If we want to convert the character
array to a string so we have to assign the NULL character at the end of it,

manually.
Representation of a string and a Character Array

Let char x[10]="India”; /* Representation of a string*/

I |n|d|i |a|\O

ReviEw oF CONCEPTS OF ‘C++ 21

char x[10] = {T)nd}iva’}; /* Character Array */

I [n|d|i |a

Declaration of a Character Array
The declaration of the string/character array is same as the normal array,
except that instead of using other data type the data type ‘char’ is used.

Syntax : Data_type var_name[size] ;

Ex: char name[20];
Initialization of a String

Let char x[10]="India”; /* Representation of a string*/

I |n|d|i [a [|\O
0 1 2 3 4 5 6 7 8 9

char x[10] = {Tn)d}iva’}; /* Character Array */

Example: Wap to Input a string and display it.

#include<iostream.h>
void main ()
{
char x[20];
cout<<"\nEnter a string";
gets (x) ;
cout<<"\n THE ENTERED STRING IS "<<x;

}

OUTPUT
Enter a string Hello
THE ENTERED STRING IS Hello

OR

22 DATA STRUCTURE AND ALGORITHMS USING C++

This process of Input is not preferable because forcibly we are bound to
input the 10 characters, not less than 10 or above 10 characters.

#include<iostream.h>
void main()
char x[20];
int i;
cout<<"\nEnter a string";
for(i=0;1i<10;i++)
cins>>x[1];
X[i]='\0'; /* CONVERTING THE CHARACTER ARRAY

TO STRING */
cout<<"\n THE ENTERED STRING IS "<<Xx;

}

OR

#include<iostream.h>

void main ()

char x[20];
int 1i;

cout<<"\nEnter a string";
gets (x) ;
cout<<"\n THE ENTERED STRING IS ";

for(i=0; x[1]1!="\0"';i++)

cout<<x[i];

}

OUTPUT
Enter a string Hello

THE ENTERED STRING IS Hello

NOTE : If we want to scan a string as individual characters then we
have to use theloopas for (i=0; str[i]l!='\0';i++)

This is fixed for all the strings after input it.

ReviEw oF CONCEPTS OF ‘C++ 23

Example - 2
Write a program to input a string and count how many vowels are in it.

#include<iostream.h>
void main ()
char x[20];
int 1,count=0;
cout<<"\n Enter a string";

gets (x) ;

cout<<"\n The entered string is"<<x;
for(i=0; x[1i]!="\0";i++)

if (toupper (x[1i])=="A" || toupper (x[i])=='E"
|| toupper(x[i]l)=='I' || toupper(x[i])=='0" ||
toupper (x[i))=='TU")

count++;

cout<<"\n The string"<<x<< "having"<<count<<"num-
bers of vowels";

}

OUTPUT

Enter a string Wel Come

The entered string is Wel Come

The string Wel Come having 3 numbers of vowels.

Example :
Write a program to find out the length of a string.

#include<iostream.h>
void main ()
{
char x[20];
int i,len=0;
cout<<"\n Enter a string";
gets (x) ;
for(i=0;x[1]1!="\0";i++)
len++;
cout<<"\n THE LENGTH OF"<<x<<"IS"<<len;

}

24 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT
Enter a string hello India
THE LENGTH OF hello India IS 11

OR

#include<iostream.h>
void main ()

{

char x[20];
int 1i;

cout<<"\n Enter a string";

gets (x) ;

for(i=0;x[1i]1!="\0";i++) ;

cout<<"\n THE LENGTH OF"<<x<<"IS"<<len;

}

OUTPUT
Enter a string hello India
THE LENGTH OF hello India IS 11

String Manipulation

The strings cannot be manipulated with the normal operators, so to have
some manipulation we have to use the help of certain string handling
functions. ’C’-language provides a number of string handling functions
amongst them the most popularly used functions are

Strlen()
Strrev()
Strcat()
Stremp()
Strepy()
Strupr()
Strlwr()

@ He a0 o

These functions prototypes are declared inside the header file string.h
% Strlen()
Purpose : Used to find out the length of a string.
Syntax : integer_variable = strlen(string);

ReviEw OF CONCEPTS OF ‘C++ 25

% Strrev()
Purpose : Used to find out the reverse of a string.
Syntax : strrev(string);

% Strcat()
Purpose: Used to concatenate(Join) two strings. It will
append the source string at the end of the destination. The
length of the destination will be the length of source + length
of destination
Syntax: strcat(destination,source);

s Strcmp()

Purpose: Used to compare two strings.

Process: The string comparison always starts with the first
character in each string and continuous with subsequent
characters until the corresponding characters differ or until
the end of a string is reached.

This function returns an integer value that is

£ ASCII VALUES
Oiee A =65 a=97
——.1s ==s2 0 = 48
>0if sl >s2

The string comparison is always based upon the ASCII values of the
characters.
Syntax : integer_variable = strcmp(s1,s2);

% Strcpy()
Purpose :To copy a string to other.
Syntax : strcpy(destination,source);

¢ Strupr()
Purpose : To convert all the lower case alphabets to its cor-
responding upper-case.
Syntax : strupr(string);

% Strlwr()
Purpose : To convert all the upper case alphabets to its cor-
responding lower-case.
Syntax : strlwr(string);

26 DATA STRUCTURE AND ALGORITHMS USING C++

2.2 Function

Definition: One or more than one statements combined together to form
a block with a particular name and having a specific task.
The functions in ‘C’ are classified into two types as

a. Library Function or Pre defined function
b. User defined function

Thelibrary functions are already comes with the ‘C’ compiler(Language).

Ex : printf(), scanf(), gets(), clrscr(), strlen() etc.

The user defined functions are defined by the programmer when ever
required.

2.2.1 User Defined Functions

We will develop the functions just comparison with the library functions,
i.e/ All the library functions can be categorized into four types as

1. integer variable = strlen(string/string variable)
[The strlen() takes a string ,find its length and returns it to a
integer variable]

2. gets(string variable);
[the gets() takes a variable and stores string inside that which
will be entered by the user]

3. character variable = getch();
[The getch() does not take any value/variable but it stores a
character into the character variable which will be entered
by the user]

4. clrscr();
[This function does not take argument and not return also,
but it does its work that means it clears the screen]

So by studying the above four types of functions we concluded that by
considering the arguments taken by the function and the values returned
by the functions the functions can be categorized into four types as

The function takes argument and also returns value.

The function does not take argument but returns value.

The function takes argument but not return value.

The function does not take argument and also not return values.

Ll

ReviEwW OF CONCEPTS OF ‘C++

Parts of a Function

A function has generally three parts as

1. Declaration (Specifies that how the function will work, it
prepares only the skeleton of the function)

2. Call [It call the function for execution]

3. Definition [It specifies the work of the function i./ it is the
body part of the function]

2.2.2 Construction of a Function

1. Function takes argument and also returns value.

DECLARATION
Return_type function_name(data type, data_type, data_
tYPe, vuvverinennnn);
Ex: int sum(int,int);
CALL
Variable = function_name(varl,var2,var3,.................);

Ex: x = sum(a,b);
Where a,b,x are the integer variables
DEFINITION

Return_type function_name(data_type varl, data_type

Body of the function ;
Return (value/variable/expression) ;

}

Ex:
int sum(int p, int q)
int z;
z = p+q;
return(z) ;

}

2. Function does not take argument but returns value.
DECLARATION
Return_type function_name();
Or

27

28 DATA STRUCTURE AND ALGORITHMS USING C++

Return_type function_name(void);
Ex : int sum();
CALL
Variable = function_name();
Ex: x = sum();
Where x is an integer.
DEFINITION
Return_type function_name()
{
Body of function;
Return (value/variable/expression) ;

}
Ex:
int sum()
{
int a,b;
cout<<"\nEnter 2 numbers";
cins>>a>>b;

return (a+b) ;

}

3. Function takes argument but not returns value
DECLARATION
void function_name(data typel,data type2,...............);

Ex : void sum(int,int);
CALL
function_name(varl,var2,var3............);

Ex: sum(x,y);
Where x and y is an integer.

DEFINITION
Void function_name (data_typel v1, data_type2 v2,.........)

{

}
Ex:
void sum(int x, int y)

{
}

Body of function ;

cout<<"\nSum = "<<x+y;

ReviEw OoF CONCEPTS OF ‘C++ 29

4. Function does not take arguments and not returns value.
DECLARATION
void function_name(void);
Ex : void sum();
CALL
function_name();

Ex: sum();
DEFINITION
Void function name ()

{

}
Ex:
void sum/()

{
int x,vy;
cout<<"\n Enter two numbers";
cin>>x>>y;

cout<<"\nSum = "<<xX+y;
}

ARGUMENTS : Based upon which the function works.
RETURN TYPE: The value returned /given by the function to its calling part.

Body of function ;

WAP TO FIND OUT THE SUM OF TWO NUMBERS
Category - 1

#include<iostream.h>
void main ()
{
int sum(int,int) ;
int x,v,2z;
cout<<"\n Enter two numbers";
cin>>x>>y;
z = sum(x,Vy) ;

ft<<"\rw of "<<x<<"and"<<y<<"is"<<z;
int sum(int int q)

P,
{

int r;
r = p+q;
return (r) ;

}

30 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

Enter two numbers 5

6

Addition of 5 and 6 is 11

Category - 2
#include<iostream.h>
void main ()
{
int sum() ;
int z;
z = sum() ;
tout<<"\n Addition is"<<z;

}

int sum()

int x,y;

cout<<"\n Enter two numbers";
cins>>x>>y;

return (x+y) ;

}

OUTPUT

Enter two numbers 5
6

Addition is 11

Category - 3
#include<iostream.h>
void main ()
{
void sum(int,int) ;
int x,y;
cout<<"\n Enter two numbers";
cin>>x>>y;

sum(x,y)_;
void sum(int ©p,int q)

Cout<<“\n Addition
of”<<p<<”and”<<qg<<”is” <<p+Jg;

}
OUTPUT
Enter two numbers 5
6
Addition of 5 and 6 is 11

ReviEw oF CONCEPTS OF ‘C++ 31

Category - 4
#include<iostream.h>
void main ()
void sum() ;
sum () ;
———pvoid sum()
int x,vy;
cout<<"\n Enter two numbers";
cin>>x>>y;
cout<<"Addition of"<<x<<"and"<<y<<"is"<<xX+y;

}

OUTPUT

Enter two numbers 5

6

Addition of 5 and 6 is 11

2.2.3 Actual Argument and Formal Argument

Those arguments kept inside the function call is known as actual argument
and those arguments kept inside the function definition is known as the
formal arguments (Because these are used to maintain the formality just to
store the values of the actual arguments).

Ex:

#include<iostream.h>
void main ()
{

int sum(int,int) ;

int x,v,2z;

cout<<"\n Enter two numbers";

cin>>x>>y;
z = sum(x,y); /* Here x and y are called as the
actual argument*/

cout<<"\n Addition of'"<<x<<"and"<<y<<"ig"<<z;

}

int sum(int p, int q) /* Here p and g are called as the formal
argument */

int r;

r = p+d;

return (r) ;

}

32 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

Enter two numbers 5

6

Addition of 5 and 6 is 11

If a function is to use arguments, it must declare variables that accept the
values of the arguments. These variables are called the formal parameters
of the function.

The formal parameters behave like other local variables inside the func-
tion and are created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be
passed to a function:

Call Type Description

Call by value This method copies the actual value of an argument into
the formal parameter of the function. In this case,
changes made to the parameter inside the function
have no effect on the argument.

Call by pointer This method copies the address of an argument into the
formal parameter. Inside the function, the address is
used to access the actual argument used in the call.
This means that changes made to the parameter affect
the argument.

Call by reference This method copies the reference of an argument into the
formal parameter. Inside the function, the reference
is used to access the actual argument used in the call.
This means that changes made to the parameter affect
the argument.

By default, C++ uses call by value to pass arguments. In general, this
means that code within a function cannot alter the arguments used to call
the function and above mentioned example while calling max() function
used the same method.

2.2.4 Call by Value and Call by Reference

When a function is called by its value then that function call is known as
call by value.

When a function is called by its reference/address then that function call
is known as call by reference.

http://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm
http://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
http://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

ReviEw oF CONCEPTS OF ‘C++ 33

Difference Between Call by Value and Call by Reference

In call by value if the value of the variable is changed inside the function
than that will not effect to its original value, because the value of the actual
parameters are copied to the formal arguments so there is no interlink
between them.

But in call by reference if the value of the variable is changed inside
the function then that will be effected to its original value, because in call
by reference the addresses of the actual arguments are copied to the for-
mal arguments that’s why there is a interlink between them. So any change
made with the formal argument then that will effect to the actual value.

Ex:

Call by value
#include<iostream.h>
void main ()
int x=5,y=6;
void change (int, int) ;
cout<<“\n X="<<x<<"and Y="<<y;
change (x,v) ;
cout<<“\n X="<<x<<"and Y="<<y;
void change (int a,int b)
a=a+5;
b=b+5;
cout<<“\n X="<<a<<"and Y="<<b;

}

OUTPUT
X = 5 and Y=6
X=10 and Y=11

X=5 and Y=6 /

Call by REFERENCE
#include<iostream.h>
void main ()

{
int x=5,y=6;
void change (int *,int *);

AA

34 DATA STRUCTURE AND ALGORITHMS USING C++

cout<<“\n X="<<x<<”and Y="<<y;
change (&x, &y) ;
cout<<“\n X="<<x<<”and Y="<<y;
void change (int *a,int *b)
*a=*a+5;
*b= *b+5;
cout<<“\n X="<<*a<<”and Y="<<*b;

}

OUTPUT
X = 5 and Y=6
X=10 and Y=11

X=10 and Y=11 «—

<
X T
&
<

2.2.5 Default Values for Parameters

When you define a function you can specify a default value for each of the
last parameters. This value will be used if the corresponding argument is
left blank when calling to the function.

This is done by using the assignment operator and assigning values for
the arguments in the function definition. If a value for that parameter is
not passed when the function is called, the default given value is used, but
if a value is specified this default value is ignored and the passed value is
used instead. Consider the following example:

#include <iostreams>

int sum(int a, int b=20)

{

int result;
result = a + b;

return (result) ;

int main ()
{
// local variable declaration:
int a = 100;
int b = 200;
int result;

REevViEwW OF CONCEPTS OF ‘C++ 35
// calling a function to add the values.
result = sum(a, b);
cout << "Total value is :" << result << endl;
// calling a function again as follows.
result = sum(a) ;

cout << "Total value is :" << result << endl;

return 0O;

When the above code is compiled and executed, it produces following

result:

Total value is :300
Total value is :120

2.2.6 Storage Class Specifiers

The storage class specifiers are the keywords which are used to declare the
variables. Without the help of storage class specifier we cannot declare the
variables but till now we declare the variables without using the storage
class specifier. Because by default the c-language includes the variable into

‘auto’ storage class.

‘C++’-language supports four storage class specifiers as auto, static,

extern, register

AUTO
Initial Value
Storage Area
Life
Scope

STATIC
Initial Value
Storage Area
Life

Scope

EXTERN
Initial Value
Storage Area
Life

Scope

Garbage value

Memory

With in the block where it is declared
Local

Zero

Memory

With in the block where it is declared
The value of the wvariable will persist
between different function calls

Zero

Memory

The variable can access any where of
the program

Global

36 DATA STRUCTURE AND ALGORITHMS USING C++

REGISTER

Initial Value : Garbage

Storage Area : CPU Memory

Life : With in the block where it is declared
Scope : Local

Difference between STATIC and AUTO
#include<stdio.h>

void main ()

{

void change () ;

change () ;

change () ;

change () ;

}

Void change ()

{
auto int x=0;

printf (“\n X= %4d”,x);
X++;

}

OUTPUT
X=0
X=0
X=0

#include<stdio.h>
void main ()
{
void change () ;
change () ;
change () ;
change () ;

}

Void change ()
{
static int x;
printf ("\n X= %d4d",x);
X++;
}
OUTPUT
X=0
X=1
X=2

ReviEw orF CONCEPTS OF ‘C++ 37

2.3 Pointer

The pointer is a variable which can store the address of another variable.
Whatever changed with the value of the variable with the help of the
pointer that will directly effect to it.

2.3.1 Declaration of a Pointer

Like other variables the pointer variable should also be declared before its
use
SYNTAX

Data_type *variable_name;

Example: int *p;

2.3.2 Initialization of a Pointer

Initialization means to assign an initial value, since the pointer can store
only the address so during its initialization we have to assign an address of
another variable.
Ex: int *x,p;
X=&p; /* INITIALIZATION */

NOTE : After declaration of the pointer variable, if we write simply
the variables name than it will represent to address and *variable
will represent to value. But in C++ always we have to use *variable
since it deals with object.

Example : (IN C)
WRITE A PROGRAM TO INPUT A NUMBER AND DISPLAY IT.

#include<iostream.h>
void main() INSIDE MEMORY
{ P X
int *p,x; 1087 | |5 P=&X
p=&%; ~_
prlntf(t}n Enter a number”) ; 732 1087 P=1087,*P=5
scanf (“%d”, &x) ;
X=5 AND &X =1087

printf (“*\n THE VALUE OF X (THROUGH POINTER) IS %d”,*p);
printf (“\n THE VALUE OF X IS %d”,x);

}

38 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT
Enter a number 5

THE VALUE OF X (THROUGH POINTER) IS 5
THE VALUE OF X IS 5
(IN C++)

WRITE A PROGRAM TO INPUT A NUMBER AND DISPLAY IT.
#include<iostream.h>

void main() INSIDE MEMORY

{ P X
int *p,x; 1087 5 P=&X
p=6&x%;

cout<<”\n Enter a number”; 732 ‘\\1087 P = 1087. *P=5
cinz=t X=5 AND &X = 1087

cout<<”\n THE VALUE OF X (THROUGH POINTER) IS "<<*p;
cout<<”\n THE VALUE OF X IS"<<*Xx;

}

OUTPUT
Enter a number 5

THE VALUE OF X (THROUGH POINTER) IS 5
THE VALUE OF X IS 5

2.3.3 Arithmetic With Pointer

In general the arithmetic operations include Addition, Subtraction, Multi-
plication, and Division. But in case of pointer we can perform only the addi-
tion and subtraction operations. That means when we perform an addition/
subtraction operation with the pointer then it shifts the locations because
pointer means an address. If we add one to the integer pointer then it will
shift two bytes (int occupies two bytes in memory), so for float 4 bytes, char
1 byte, long double 4 bytes and accordingly it will shift the positions.

Ex: Let int *p,x ;

P=&x; X p
756
756~ 1065
Now p =756
P+1= 758
P +2 =760
P45 = 766

p-6 =754

ReviEw oF CONCEPTS OF ‘C++ 39

NOTE : Pointer means the address so we can perform any type of opera-
tion with *p (value at address)

2.3.4 Passing of a Pointer to Function

As like normal variables we can also pass a pointer to the function as its
argument.

DECLARATION
Return_type function_name(data_type *, data_type *,............);

CALL
Variable = function_name(ptrvar, ptrvar, ptrvar,.........);

DEFINITION
Return_type function_name(data_type *var, data_type *var,............)

{

body of function ;
return (value/var/exp) ;

}

Example:
WRITE A PROGRAM TO FINDOUT THE FACTORIAL OF A NUMBER
#include<iostream.h>
void main ()
{
long int fact (int *);
int *n;
long int f;
cout<<“\n Enter a number”;
cin>>*n;

r}f:fact (n) ;

cout<<“\n Factorial Is”<<f;
1

long int fact (int *p)

{

int i;

long int f=1;
for(i=1;i<=*p;i++)

f*x=1;
€4¢— return(f);

}

40 DATA STRUCTURE AND ALGORITHMS USING C++

When the function f=fact(n) is called then the address which is inside the
pointer variable n that will copied to the pointer variable p(formal argument)
So in this case what ever changes made with ‘p’ that will directly effect to ‘n’

OUTPUT
Enter a number 5
Factorial is 120

2.3.5 Returning of a Pointer by Function

Declaration
Return_type * function_name(data type,data type...............);
CALL
Ptr_Variable = function_name(varl,var2,............);
DEFINITION
Return_type* function_name(data_typevl,........c.ocoeivvinininneninn.n.
{
body of function
return(pointer_var);
}
EXAMPLE

WRITE A PROGRAM TO FINDOUT THE FACTORIAL OF A NUMBER
#include<iostream.h>
void main ()
{
long int * fact (int *);
int n;
long int *f;
cout<<“\n Enter a number”;
cins>>n;

r——}f:fact(&n);
cout<<“\n Factorial Is %1d”<<*f;
}
long int * fact (int *p)
{
int 1i;
long int f=1;
for(i=1;i<=*p;i++)
f*=1;
¢— return (&f) ;
}

ReviEw OF CONCEPTS OF ‘C++ 41

OUTPUT
Enter a number 5
Factorial is 120

2.3.6 C++ Null Pointer

It is always a good practice to assign the pointer NULL to a pointer variable
in case you do not have exact address to be assigned. This is done at the
time of variable declaration. A pointer that is assigned NULL is called a
null pointer.

The NULL pointer is a constant with a value of zero defined in several
standard libraries, including iostream. Consider the following program:

#include <iostream>
using namespace std;

int main ()

{

int *ptr = NULL;
cout << “The value of ptr is “ << ptr ;

return 0;

When the above code is compiled and executed, it produces the follow-
ing result:

The value of ptr is 0

On most of the operating systems, programs are not permitted to access
memory at address 0 because that memory is reserved by the operating
system. However, the memory address 0 has special significance; it signals
that the pointer is not intended to point to an accessible memory location.
But by convention, if a pointer contains the null (zero) value, it is assumed
to point to nothing.

To check for a null pointer you can use an if statement as follows:

if (ptr) // succeeds if p is not null
if (Iptr) // succeeds if p is null

Thus, if all unused pointers are given the null value and you avoid the
use of a null pointer, you can avoid the accidental misuse of an uninitial-
ized pointer. Many times uninitialized variables hold some junk values and
it becomes difficult to debug the program.

42 DATA STRUCTURE AND ALGORITHMS USING C++

2.4 Structure

A structure is a collection of data items(fields) or variables of different
data types that is referenced under the same name. It provides convenient
means of keeping related information together.

DECLARATION
struct tag name
{
Data type memberl ;
Data type member2;

The keyword struct tells the compiler that a structure template is being
defined, that may be used to create structure variables. The tag_name iden-
tifies the particular structure and its type specifier. The fields that comprise
the structure are called the members or structure elements. All elements in
a structure are logically related to each other.

Let us consider an employee data base, which consists of the fields like
name, age, and salary, so for this the corresponding structure declaration
will be

struct emp
{
char name[25];
int age;
float salary;

}i

Here the keyword struct defines a structure to hold the details of the
employee and the tag_name emp is the name of the structure.

Over all struct emp is a user defined data type.

So to use the members of this structure we must have to declare the vari-
able of struct emp type and the structure variable declaration is as same as
the normal variable declaration which takes the form as

struct tag_name variable_name;

Ex : struct emp e;

Here e is a structure variable which has the ability to hold name, age, and
salary and to access these individual members of the structure the way is

ReviEw OF CONCEPTS OF ‘C++ 43

Structure_variable . member_name;
i.e/ To access name,age,salary the variable will be e.name,e.age,e.salary

Example: WAP TO INPUT THE NAME,AGE AND SALARY OF A
EMPLOYEE AND DISPLAY.
#include<iostream.h>
struct emp //CREATION OF STRUCT EMP DATA TYPE
{
char name[25];
int age;
float salary;
}i
void main ()
{
struct emp e; //Declaration of the
structure variable
cout<<"\n Enter the name,age and salary";
gets (e.name) ; //Input the name
cin>>e.age>>e.salary; // Input the age
and salary

cout<<"\n NAME IS "<<e.name; //Display name
cout<<"\n AGE IS "<<e.age; //Display age
cout<<"\n SALARY IS "<<e.salary; //Display salary
}
OUTPUT

Enter the name ,age and salary
H.Narayanan

56

72000

NAME IS H.Narayanan
AGEIS 56
SALARY IS 72000.000000

The above discussed structure is usually used in ‘C’ but the ‘C++’ pro-
vides its structure with a little bit modification with the structure of ‘C’ that
is in C++ we may also store the member functions as a member of it.

44 DATA STRUCTURE AND ALGORITHMS USING C++

Ex: WAP TO INPUT A NUMBER AND DISPLAY IT by using

FUNCTION

No doubt that this program is not efficiently used with the structure
because the structure is used when there is a requirement to handle more
than one element of different type. But in the above program only single
variable is to be used but for easy understanding the difference of structure

in ¢ and structure in ‘c++’ this one is better.
IN ‘C
#include<stdio.h>
struct print
{
int x;
b
void main ()
{
struct print p;
void display (struct print) ;
printf ("\n Enter the number") ;
scanf ("%d", &p.Xx) ;
display(p) ;

void display (struct print p)

{

printf ("THE ENTERED NUMBER IS %d",p.x);

}

OUTPUT
Enter the number 23
THE ENTERED NUMBER IS 23

IN C++
#include<iostream.h>
struct print
{
int x;
void display()//Arguments are

not

required

because both x and display() are in the same scope

{

cout<<"\n Enter the number";

cin>>x;
cout<<"THE ENTERED NUMBER IS "<<X;

ReviEw OF CONCEPTS OF ‘C++ 45

void main ()
print p;//In C++ to declare the structure vari-
able struct is not mandatory
p.display () ;

}

OUTPUT
Enter the number 23
THE ENTERED NUMBER IS 23

Observe that the C++-structure is better than the C-Structure but it
has also some limitation. That means the above program can also be writ-
ten as

Inside the void main() instead of calling the function as p.display() we
may also replace it as

cout<<”Enter the number”;

cin>>p.x;

cout<<”THE ENTERED NUMBER IS"<<p.x;

Which is not a small mistake it can make frustrate to the program-
mer that even if the programmer provides a function to does the work
but instead of using that we are using according to our logic. Here the
importance of the designer is Nill and this happens since the structure
allow all of its members to use any where of the program. But if the data
member X’ will not allowed to use inside the main() then we are bound
to use the function which is provided by the programmer.

So Finally the main drawback is that structure does not allow any
restriction to its members.

To overcome this problem C++ implements a new, abundantly used
data type as “class” which is very much similar to the structure but it
allows the security of members i.e/the programmer has a control over its
members.

NOTE: C++ structure also provides data hiding and encapsulation but
other properties like the Inheritance, Polymorphism are not supported by
it. So to overcome this C++ introduces the CLASS.

46 DATA STRUCTURE AND ALGORITHMS USING C++

2.4.1 The typedef Keyword

There is an easier way to define structs or you could “alias” types you create.
For example:

typedef struct

{
char titlel[50];
char author([50];
char subject[100];
int book id;

}Books;

Now you can use Books directly to define variables of Books type without
using struct keyword. Following is the example:

Books Bookl, Book2;
You can use typedef keyword for non-structs as well as follows:

typedef long int *pint32;

pint32 X, y, z;
X, ¥, and z are all pointers to long ints

UNION

The UNION is also a user defined data type just like the structure, which
can store more than one element of different data types. All the operations
are same as the structure. The only difference between the structure and
union is based upon the memory management i.e/ the structure data type
will occupies the sum of total number of bytes occupied by its individual
data members where as in case of union it will occupy the highest number
of byte occupied by its data members.

Example 7.11

Write a program to demonstrate the difference between the structure and
Union.

#include<iostream.h>
struct std

{

char name [20] ,add[30];

ReviEw OoF CONCEPTS OF ‘C++ 47

int roll, total;

}i

float avg;

union stdl

{

char name[20],add[30];
int roll, total;
float avg;

i

void main ()

{

struct std s;

union stdl si;
cout<<”\nThe no.of bytes occupied by the structure
is”<<sizeof (struct std)) ;
cout<<”\nThe no.of bytes occupied by the union
ig”<<sgizeof (union stdl)) ;

}

OUTPUT

The no.of bytes occupied by the structure is 58
The no.of bytes occupied by the structure is 30

NOTE: While using UNION we have used the values of the variables
immediately before entering any value to any member. Because the union
shares a single memory area for all the data members.

2.5 Questions

WX NG

10.

What are the advantages of unions over structures?

. What is a pointer and its types?

What is the difference between Library functions and User-
defined functions?

What is the difference between call by value and call by
reference.

What is the difference between array and pointer?

Is it better to use a macro or a function?

What is a string?

Discuss different types of storage class specifiers.

Discuss local and global variables.

Is it of benefit to use structure or array? Justify your answer.

3

Sparse Matrix

3.1 What is Sparse Matrix

In computer programming, a matrix can be defined with a two-
dimensional array. Any array with ‘m’ columns and ‘n’ rows represents a
mXn matrix. There may be a situation in which a matrix contains more
number of ZERO values than NON-ZERO values. Such matrix is known
as sparse matrix.

Sparse matrix is a matrix which contains very few non-zero elements.

When a sparse matrix is represented with two-dimensional array, we
waste lot of space to represent that matrix. For example, consider a matrix
of size 100 X 100 containing only 10 non-zero elements.

In this matrix, only 10 spaces are filled with non-zero values and remain-
ing spaces of matrix are filled with zero. That means, totally we allocate 100
X100 X 2 = 20000 bytes of space to store this integer matrix, and to access
these 10 non-zero elements we have to make scanning for 10,000 times.

3.2 Sparse Matrix Representations

A sparse matrix can be represented by using TWO representations, such as

1. Triplet Representation
2. Linked Representation

Method 1: Triplet Representation

In this representation, we consider only non-zero values along with their
row and column index values. In this representation, the 0+ row stores total
rows, total columns, and total non-zero values in the matrix.

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (49-58) © 2021 Scrivener Publishing LLC

49

50 DATA STRUCTURE AND ALGORITHMS USING C++

For example If a Matrix

7 0 0 1 0 2
0 1 9 0 0 0
0 0 0 7 0 0
0 0 0 0 0 0
8 0 0 0 0 0
0 0 3 0 0 0
Sparse Matrix of the Above array is

6 6 8

0 0 7

0 3 1

0 5 2

1 1 1

1 2 9

2 3 7

4 0 8

5 2 3

The elements arr[0][0] and arr[0][1] contain the number of rows and
columns of the sparse matrix respectively. The element arr[0][2] contains
the number of non zero elements in the sparse matrix.

The declaration of the sparse matrix takes the form

Data type sparse[terms + 1][3];

Where the term is the number of non zero elements in the matrix.

Method 2: Using Linked Lists
In linked list, each node has four fields. These four fields are defined as:

« Row: Index of row, where non-zero element is located

o Column: Index of column, where non-zero element is located

o Value: Value of the non zero element located at index —
(row,column)

o Next node: Address of the next node

SPARSE MATRIX 51

START
00304

00570

|::> of2]3 olala 1|2]s 1
00000 /
FIT LT v

| |

w

02600

NODE
STRUCTURE

Address of

ROW |COLUMN | VALUE
next node

3.3 Algorithm to Represent the Sparse Matrix

STEP-1 Input the array of mXn elements.
STEP-2 [COUNT THE NUMBER OF NON ZERO ELEMENTS]
REPEAT ForI=1tom
REPEAT Forj=1ton
If arr[i][j] !=0 THEN:
Count := count+ 1

[END OF IF]
[END OF LOOP]
[END OF LOOP]
STEP-3 SP[0][0] :=
SP[0][1]:=n
SP[0][2] := COUNT
STEP-4 K:=1

REPEAT ForI=0tom
REPEAT Forj=0ton
If arr[i][j] =0 THEN:
Splk][0] :=1
SpIk][1]:=j
Sp(k][2] := arr[i][j]
Ki=k+1
[END OF IF]
[END OF LOOP]
[END OF LOOP
STEP-5 REPEAT ForI=1 to k+1
REPEAT Forj=1to 3
Print sp[i] [j]
[END OF LOOP]
[END OF LOOP
STEP-6 EXIT

52 DATA STRUCTURE AND ALGORITHMS USING C++

3.4 Programs Related to Sparse Matrix

Program for Array Representation of Sparse Matrix

#include<iostream>
#include<iomanips>
using namespace std;
//driver program
int main()
{
int arr[10] [10],1,],row,col,count=0,k=0,sp[15] [3];
//ask user about the numbe o3f ows and columns sparse matx
cout<<” \nENTER HOW MANY ROWS AND COLUMNS”;
//read row and col
cin>>row>>col;
//loop to read the normal matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
{
cout<<endl<<”Enter a number”;
cinssarr([i] [j];
}
//loop to print the normal matrix that read from user
cout<<”\nTHE ENTERED ARRAY ELEMENTS ARE\n”;
for (i=0;i<row;i++)
{
for(j=0;j<col;j++)
cout<<setw(4)<<arr[i] [j];
cout<<endl;
}
//loop to count the number of non zero elements in the matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
if (arr[i] [j]!=0)//condition for non zero elements
count++; //increase the count

//set the first row of sparse matrix
sp[0] [0] =row;

sp[0] [1]=col;

sp[0] [2] =count;

k=1;//k points to second row of sparse matrix
//loop to fill theother rows of sparse matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
{
if (arr([i] [§]!=0)

{

splk] [0]=1;

SPARSE MATRIX 53

splk] [1]1=3;
sp k] [2]1=arr[i] []];
k++;

//print the sparse matrix
cout<<”\nTHE SPRASE MATRIX IS\n”;
for (i=0;i<=count;i++)

{

for(j=0;j<3;j++)
cout<<” “<<splil [F];

cout<<endl;

}
}

OUTPUT
HOW MANY ROWS AND COLUMNS4

a numberd

number

numbher@
numher@
numher3
number@
numberS
numherA@
numberb
numhe r@
number@
numherf

THE ENTEHED ARRAY ELEMENTS ARE

a
a
b

54 DATA STRUCTURE AND ALGORITHMS USING C++

Transpose of a Sparse Matrix

#include<iostreams>
#include<iomanip>
using namespace std;
int main()
{
int arr[10] [10],1,],row,col,count=0,k=0,sp[15]
[3],tran[10] [3];

//ask user about the numbe o3f ows and columns sparse matx
cout<<”\nENTER HOW MANY ROWS AND COLUMNS” ;
//read row and col
cin>>row>>col;
//loop to read the normal matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
{
cout<<endl<<”Enter a number”;
cinssarr[i] [j];
}
//loop to print the normal matrix that read from user
cout<<”\nTHE ENTERED ARRAY ELEMENTS ARE\n”;
for (i=0;i<row;i++)
{
for(j=0;j<col;j++)
cout<<setw(4)<<arr[i] [j];
cout<<endl;

//loop to count the number of non zero elements in the matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
if (arr[i] [j]!=0)//condition for non zero elements
count++; //increase the count

//set the first row of sparse matrix
sp[0] [0] =row;

sp[0] [1]=col;

sp[0] [2] =count;

k=1;//k points to second row of sparse matrix
//loop to f£ill theother rows of sparse matrix
for (i=0;i<row;i++)
for(j=0;j<col;j++)
{

if (arr([i] [§]!=0)

SPARSE MATRIX

sp k] [0]=1;
splk] [1]1=3;
sp k] [2]1=arr[i] []];
k++;
}
}
//print the sparse matrix
cout<<”\nTHE SPRASE MATRIX IS\n”;
for (i=0;i<=count;i++)
{
for(j=0;3j<3;j++)
cout<<” “<<splil [];
cout<<endl;
}
/*TRANSPOSE* /
tran[0] [0] =col;
tran[0] [1] =row;
tran[0] [2] =count;
k=1;
for(i=0;i<col;i++)
for(j=1;j<=count;j++)
{
if(splj] [1]1==1)
{
tran(k] [0]l=sp[]] [1];
tranlk] [1]1=sp[j] [0];
tranlk] [2]1=sp[]j] [2];
k++;
}
}

cout<<” \nTRANSPOSE OF THE SPRASE MATRIX
IS\n”;
for (i=0;i<=count;i++)
{
for(j=0;3<3;j++)
cout<<setw (5) <<tran[i] []];
cout<<endl;

}

55

56 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

HOW MANY ROWS AND COLUMNS4

numbherB
nunberf
numbher2
number3
nunherB
nunbherB
numbherB
nunher?
nunber@

numbherf

nunherd

numbexr@

THE ENTEHED ARRAY ELEMENTS ARE

3.5 Why to Use Sparse Matrix Instead of Simple Matrix?

o Storage: There are lesser non-zero elements than zeros and
thus lesser memory can be used to store only those non-zero
elements.

o Computing time: Computing time can be saved by logically
designing a data structure traversing only non-zero elements.

SPARSE MATRIX 57

3.6 Drawbacks of Sparse Matrix

Memory Drawbacks of a Sparse Matrix

Every element of a program array takes up memory and a sparse matrix
can end up taking unnecessary amounts of memory space. For example,
a 10x10 array can occupy 10 x 10 x 1 byte (assuming 1 byte per element)
=100 bytes. If a majority of these elements say 70 of 100, are zeroes, then
70 bytes of space is essentially wasted. Sometimes large sparse matrices are
too big to fit into memory.

Computational Drawbacks of a Sparse Matrix

Performing algorithmic computations (like matrix multiplication, for
example) takes up a lot of unnecessary time for each zero computation.
Anything multiplied by zero is zero, but this operation still has to be per-
formed which is seen as a waste of computational time.

A sparse matrix can be compressed and memory reduction can be
achieved by storing only the non-zero elements. However, this will also
require programming additional structures to recover the original matrix
when elements have to be accessed, but overall a compressed sparse matrix
can ultimately increase computational speed.

Sparse matrices are very common in machine learning algorithms. Now
that your question ‘what is sparse matrix’ is answered, let'’s understand
some examples and its uses.

3.7 Sparse Matrix and Machine Learning

Asmentioned earlier, sparse matrices are a common occurrence in Machine
Learning algorithms.

1. In Data Storage

Activity count arrays often end up being a sparse matrix. For example:

(a) In a movie application like Netflix, the array that stores the check of
which movies are watched and not watched in a catalog.

(b) Ine-commerce programs, data that represents the products purchased
and not purchased by a user.

(c) Inamusic app, the count of songs listened and not listened to by a user.

https://www.digitalvidya.com/blog/understanding-machine-learning-algorithms/
https://www.digitalvidya.com/blog/understanding-machine-learning-algorithms/

58 DATA STRUCTURE AND ALGORITHMS USING C++

2. In Data Preparation

Sparse matrices are often seen in encoding schemes, which are used for

data preparation.

Examples:

(a) One-hot encoding, which is used to represent categorical data as sparse
binary vectors.

(b) Count encoding, which is used in the representation of the frequency
of words in a document.

(c) TF-IDF encoding, which is used in representing frequency scores of
words in the vocabulary.

3. Machine Learning Study Areas

Sometimes, machine learning study areas require the development of spe-

cialized methods to address sparse matrices as input data. Examples are:

(a) Natural Language Processing when working with text documents

(b) Recommendation systems for product catalog programs.

(c) In Computer Vision when scanned images have a lot of dark or black
pixels.

Different Methods of Sparse Matrix Representation & Compression
Storing a sparse matrix as is takes up unnecessary space and increases
computational time. There are ways for sparse matrix representation in a
‘compressed’ format, which improves its efficiency.

3.8 Questions

What is a sparse Matrix?

Write some implementation areas of sparse matrix.

How to represent sparse matrix.

Differentiate with suitable example about the representation

of sparse matrix.

5. Is it more beneficial to use sparse matrix than dense matrix?
Explain your answer.

6. What are the limitations of sparse matrix?

7. Specify a few limitations of sparse matrix.

Ll

https://www.digitalvidya.com/blog/natural-language-processing-guide/

4
Concepts of Class

4.1 Introduction to CLASS

Like structure the class is also a user defined data type or Abstract Data
Type (which derives/combines the properties of different data types into
a single unit), which combines both the data members and member func-
tions into a single unit. The Object oriented properties like Data encapsu-
lation and Data Hiding is fully supported by the class.

Like structure the class has also its declaration and before its use we must
have to declare it. The declaration of the class is very simple except that all
the members of the class can be arranged in different sections (block) to
achieve the data hiding.

The main purpose of C++ programming is to add object orientation to
the C programming language and classes are the central feature of C++
that supports object-oriented programming and are often called user-
defined types.

A class is used to specity the form of an object and it combines data
representation and methods for manipulating that data into one neat
package. The data and functions within a class are called members of the
class.

When you define a class, you define a blueprint for a data type. This does
not actually define any data, but it does define what the class name means,
that is, what an object of the class will consist of and what operations can
be performed on such an object.

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (59-90) © 2021 Scrivener Publishing LLC

59

60 DATA STRUCTURE AND ALGORITHMS USING C++

4.2 Access Specifiers in C++

As the name specifies these are the controllers of the members for a class.
To achieve the properties of the OOPs the class provides three different
Access Specifiers such as

o Private
° Pubhc
o Protected

These are also known as Member Access Control.

PRIVATE:

The members which are declared with in the private group they are not
allowed to use outside of the class only the members of the class can share
it which is the data hiding.

PUBLIC:
The members which are declared with in this category are allowed to use
any where of the program.

PROTECTED:

This section is as same as the private category if used in single classes. The
only difference to private is that, these members can be transferred to the
derived classes incase of Inheritance.

4.3 Declaration of Class

class class name
{
private :
data members;
member functions|() ;
public :
data members;
member functions|() ;
protected:
data members;
member functions|() ;

}i

CoNCEPTS OF CLASS 61

Member Function

A member function of a class is a function that has its definition or its
prototype within the class definition like any other variable. It operates on
any object of the class of which it is a member, and has access to all the
members of a class for that object.

Example :
class print

{

private:
int x;
public :
void display ()

{

cout<<“\n Enter the number”;
cin>>x;
cout<<“THE ENTERED NUMBER IS "<<X;

}i

The function display() is kept in the public section because by using this
only one can print the value of x but x is in the private category so any one
want to display a number is bound to use the display(). This is the benefit
of the class.

Difference between the class and structure

Class Structure

The Keyword class is used The Keyword struct is used

It provides the inheritance, It does not provide these concepts
polymorphism

By default the members of class are By default the members of structure
private. are public.

Data abstraction is supported Not supported

Declaration of an OBJECT

The object is an instance of a class. Through the object one can use the
members of the class.
Syntax : class_name object_name;

62 DATA STRUCTURE AND ALGORITHMS USING C++

Accessing the members of a class

The members of a class can be accessed with the help of the objects like the
structure. That means object_name.member_name;

Difference between PRIVATE, PUBLIC, AND PROTECTED in pro-
grammatically way.

Example
class differ
{
private
int x;
public
int y;
protected:
int z;
}i

void main ()

{

differ obj; //Declaration of the object
cout<<”Enter a number for x”;
cin>>obj.x; //Error, because x is private
cout<<”Enter a number for y”;
cin>>obj.y; //No Error, Since Y is public
cout<<”Enter a number for z”;
cin>>obj.z; //Error, because z is protected

4.4 Some Manipulator Used In C++

The C++ allows some manipulator functions which are used for to have
some extra formatting during the output. Out of them most commonly
used manipulator functions are

o endl

o setw()
o setfill()
o dec

e oct

e hex

 setprecision()

CoONCEPTS OF CLASS 63

These manipulators are defined inside the <iomanip.h> so before its use
we must have to include<iomanip.h>
endl
This manipulator allows a new line. It does the same work as “\n”
Ex: cout<<”HELLO”<<endl<<”WEL COME";
OUTPUT
HELLO
WEL COME
setw()
This manipulator is used to allow some gap in between two numbers.
Ex: intx=5,y=4

cout<<x<<setw(5)<<y;
OUTPUT
5__ _ _4(_indicates the white space)
setfill()

This manipulator is used to allow to fill the gap by a character which is
provided by the setw() manipulator.

Ex:
int x=5,y=4;
cout<<setfill(‘$’);
cout<<x<<setw(5)<<y;
OUTPUT
5$$$$4
Dec,oct,hex

These manipulators are used to display the integer in different base values.
Dec : Display the number in integer format

Oct : Display the number in Octal format

Hex : Display the number in Hexadecimal format

Ex:

void main ()

{
int x = 14;
cout<<”DECIMAL "<<dec<<X;
cout<<endl<<”OCTAL"” <<oCct<<Xx;
cout<<endl<<”HEXADECIMAL” <<hex<<X;

}
OUTPUT

DECIMAL 14

OCTAL 16

HEXADECIMAL e
Setprecision()

64 DATA STRUCTURE AND ALGORITHMS USING C++

This manipulator is used to controls the number of digits to be displayed
after the decimal place of a floating point number.
Ex:
float x=5.23456;
cout<<setprecision(2)<<x;
cout<<endl<<setprecision(0)<<x;
cout<<endl<<setprecision(6)<<x;

OUTPUT
5.23
5.23456
5.23456

4.5 Defining the Member Functions Outside
of the Class

We already know that a class consists of different data members and mem-
ber functions and when we provide the definitions of the member func-
tions inside the class then the class became a complex and it also difficult
to handle the errors.

So it will be better to declare the member functions inside the class
but provide the definitions outside of the class. To achieve this the Scope
Resolution Operator is used.

The process to define the member functions outside of the class is

Return_type class_name :: function_name(data_type varl,data_type

{

Body of function ;
Return (value/variable/expression;

}

4.6 Array of Objects

Like other normal variable the objects can also be used as an array and the
declaration is also as same as the normal array.
Declaration

Class_name object [size];

CoNCEPTS OF CLASS

Example

Write a program to input the detail of 5 students and display them.

class student

{

char name[20],add[30];
int roll, age;
public
void input () ;
void print () ;

}i

void student :: input ()

cout<<endl<<”Enter the name and address”;
gets (name) ;

gets (add) ;
cout<<endl<<”Enter the roll and age”;
cins>>rolls>>age;
}
void student :: print()

{

cout<<endl<<”NAME IS ”<<name;
cout<<endl<<”ADDRESS” <<add;
cout<<endl<<”AGE IS "<<age;
cout<<endl<<”ROLL IS”<<roll;

}

void main()

stident obj [5] ;

int 1i;

for(i=0;i<5;1i++)
{

obj [i] .input () ;

foi(i:O;i<5;i++)
{

obj [i] .print () ;
!

1

65

66 DATA STRUCTURE AND ALGORITHMS USING C++

4.7 Pointer to Object

If the object is a pointer then the members of the class can be accessed by
using the indirection operator as

Object name -> member name;

Ex : WAP to check a number as prime or not

#include<iostream.h>
class prime
private:

int x;

public
void input () ;
void check() ;
Vi

void prime :: input ()

{

cout<<”Enter the number”;

cin>>x;
}

void prime :: check()
{

int i;

for(i=2 ; i<=x;i++)

{

if (x%1==0)

break;
1
if (i==x || x==1)
cout<<”PRIME” ;

else
cout<<”NOT PRIME” ;

}

void main ()
{

prime *p;

p->input () ;

p->check () ;

}

CONCEPTS OF CLASS 67

4.8 Inline Member Function

C++ provides a facility to use the keyword inline for its conventional users.
C++ provides an inline function where the compiler writes the code for the
function directly in the place where it is invoked, rather than generating
the target function for a function and invoking it every time it is needed.

When a normal function calls it always shift the control from its call
to definition part which will take more extra time in executing a series of
instructions for shifting the control, saving registers, returning the value to
the calling function and arranging the values.

To avoid this we may replace the task with macros as

For ex : #define min(a,b) (a<b ? a:b)

This saves the overhead of a function call by simply replacing the
expression

min(a,b) (a<b ? a: b) textually in the program

The major drawbacks of the macro is that they are not really functions
and therefore the usual error checking does not occur during compilation.

So to avoid this C++ introduces a new feature called as Inline function
which is expanded in line when it is invoked. That is when a function calls
then the compiler replaces its call with the function definition. Generally
the inline is used for those functions which having smaller in size. The
inline is not a command. It is a request to compiler and whether the func-
tion will be treated as inline or not that depends upon the compiler even if
we mention the inline.

In C++ when we define the member functions of a class inside the body
then by default these will treated as Inline but when we will define the
functions outside of the body of class then we have to define the function
as inline explicitly.

When we define the member function inside a class then by default
the C++ compiler will treat it as inline but when we provide the defi-
nition of a function outside of a class then we may also set it as Inline

by the keyword inline.
inline return_type class_name : function_name(data_type
A2} SO)

Body of function;
Return (value/variable/expression) ;

}

68 DATA STRUCTURE AND ALGORITHMS USING C++

Example
WAP to find out the GCD of two numbers

#include<iostream.h>
class GCD
{
private
int a,b;
public
void input () ;
void find() ;

}i

inline void GCD :: input ()

{

cout<<endl<<”Enter two numbers”;

cin>>a>>b;
!
inline void GCD :: find()
{
int r;
if (a<b) //Makes a as greater than b
{
r=a;
a=b;
b=r;
!
r = a%b;

while(r!=0)

{

a = b;
b = r;
r a%b;

cout<<”GCD”<<b;

}

void main ()
{
GCD obj;
obj.input () ;
obj.find () ;

}

Syntax :
inline return type function name (argument list...)
{
Body of function;
Return (value/variable/expression) ;

CONCEPTS OF CLASS 69
There are some restrictions to use the inline such as

o Ifa function having a static variable

o If a function having loop, switch or goto statement, condi-
tional statement

« Ifafunction is recursive

« Ifafunction having return statement.

4.9 Friend Function

In normal circumstance we may hide/protect the data members by declar-
ing them in Private. But the friend can access any of the members of the
class, regardless of their access specification. The keyword friend makes a
function as a non member of the class even if its declaration is inside the
class.

The friend function can be declared at any where of the class. Since it is a
non member of the class so we must have to pass an object as its argument
to extract the members of the class.

Syntax
friend return_type function_name(data_type var,...........);
The keyword friend can be studied in four different ways as

« Simple friend function

« Friend with inline substitution

« Granting friendship to another class

« Two or more class having same friend function.

4.9.1 Simple Friend Function

#include<iostream.h>
class a
private:
friend void display(a obj) ;
int x;
void display(a obj)
cout<<”Enter a number”;
cin>>obj.x;

70 DATA STRUCTURE AND ALGORITHMS USING C++

cout<<”The value is “<<obj.x;

}

void main ()

{
a obj;
display (obj) ;

}

OUTPUT
Enter a number 23
The value is 23

Question : The friend function is declared inside the class so how it became
the non_member of the class ?

Ans : No doubt the friend function is declared in side the class but it does
not follow the properties of a member of the class that means if we try to
extract the member of a class then it must be accessed with the help of the
object as

Object_name .member_name but the friend function is called as a nor-
mal function inside the main()

Second thing is that as a member of a class if we want to provide the
definition outside of the class then we must have to use the scope resolu-
tion operator but here we define the friend function as a normal function.

So from the above discussion we came to know that even of the friend
function is declared inside the class but it is not a member of the class.

4.9.2 Friend With Inline Substitution

#include<iostream.h>
class a
{
private:
int x;
public:
friend void display(a obj) ;

}i

inline void display(a obj)
cout<<”Enter a numer”;
cin>>obj.x;
cout<<”The value is “<<obj.x;

}

CoNCEPTS OF CLASS 71

void main ()
{
a obj;
display (obj) ;

}

4.9.3 Granting Friendship to Another Class (Friend Class)

In this methodology a class can grant its friendship to another class. For
example Let us consider two classes as A and B. Let A grants friendship to
B then B has the ability to access the members of the class A but reverse is
not true.
Syntax
class A
{
friend class B;
private
data member ;
member function() ;
public
data member ;
member function() ;

protected
data member ;
member function() ;
}i
class B
{
private
data member ;
member function() ;
return type function name (A obj);
public
data member ;
member function() ;
return type function name (A obj);
protected
data member ;
member function() ;
return type function name (A obj);

}i
Example

#include<iostream.h>
#include<iomanip.h>

72 DATA STRUCTURE AND ALGORITHMS USING C++

#include<stdio.h>
class std
{
friend class mark;
private:
char name[20] ,add[20];
int age,roll,m[5], total;
float avg;
public:
void input () ;
Vi
class mark
{
public:
void result (std obj);
Vi

void std :: input ()
{
total=0;
cout<<”Enter the name and address”;
gets (name) ;
gets (add) ;
cout<<”Enter the age,roll”;
cin>>age>>roll;
cout<<”Enter the marks in 5 subjects”;
for(int i=0;1<5;1i++)
{
cin>>m[i];
total=total+m[i] ;
}
avg= float (total)/5;
}
void mark :: result (std obj)
{
cout<<endl<<”NAME IS “<<obj.name;
cout<<endl<<”ADDRESS “<<obj.add;
cout<<endl<<”AGE IS “<<obj.age;
cout<<endl<<”ROLL IS “<<obj.roll;
for(int 1=0;1<5;1i++)

cout<<endl<<”MARK “<<i+l<<” IS “<<obj.m[i];

cout<<endl<<”TOTAL IS “<<obj.total;
cout<<endl<<”AVERAGE IS “<<obj.avg;
if (obj.avg>=50)
cout<<endl<<”P A S S”;
else
cout<<endl<<”F A I L”;

}

void main ()

{

std obj;

CoNCEPTS OF CLASS

mark objl;
obj.input () ;
objl.result (obj) ;

}

73

4.9.4 More Than One Class Having the Same Friend Function

A friend function can also be used for different classes. For this if N -No
of classes want to keep a friend function as common than we must have to

declare N-1 classes as forward declaration.

class nameN

private
data member;
member function() ;
public:
data member;
member function() ;
friend return type function name (namel objl,name2
nameN objn) ;
protected
data member;
member function() ;

Vi

class namel
{
private
data member;
member function() ;
public:
data member;
member function() ;
friend return type function name (namel objl,name2
nameN objn) ;
protected
data member;
member function() ;

Vi

obj2..

obj2..

74 DATA STRUCTURE AND ALGORITHMS USING C++

class nameN-1

private
data member;
member function() ;

public:

data member;

member function() ;

friend return type function name (namel objl,name2 obj2..

nameN objn) ;
protected

data member;

member function() ;

}i

Example

#include<iostream.h>
class A;
class B;
class C
{
private:
int x;
public:
void input () ;
friend void average (A obj,B objl,C obj2);
}i
class A
{
private:
int y;
public:
void input () ;
friend void average (A obj,B objl,C obj2);
}i
class B
{
private:
int z;
public:
void input () ;
friend void average (A obj,B objl,C obj2);

CoNCEPTS OF CLASS 75

}i

void C :: input ()
cout<<”Enter a number”;
cin>>x;

void A :: input ()

{

cout<<»Enter a number»;
cin>>y;

void B :: input ()
cout<<”Enter a number”;
cin>>z;

}

void average (A obj,B objl,C obj2)

{

float avg;

avg = float(obj2.x + obj.y + objl.z)/3;
cout<<”AVERAGE OF “<<obj2.x<<” “<<obj.y<<”
IS “<<avg;

}

void main ()

{
A obj;
B objl;
C obj2;
obj.input () ;
objl.input () ;
obj2.input () ;

average (obj,objl,obj2) ;

}

“<<objl.z<<”

4,10 Static Data Member and Member Functions

The static is a storage class specifier which is generally used for the declara-
tion of the variable it having a speciality compare to other normal variables
that is it maintain the consistency of the value of the variable even if it is
out of the scope of the function. In C++ we may use the static with the
members of the class. When we declare a data member as static then the
initialized value of the variable is ZERO and it will create a single copy of
the variable for all the objects and that will be shared by all the objects. The
scope of the static variable is local but it works as like a global variable.

76 DATA STRUCTURE AND ALGORITHMS USING C++

The static data members allocated memory during the compilation time
where as the nonstatic data members allocate the memory during compi-
lation time.

Before the main function we must have to define a static data member as

data type class name :: variable;
or
data type class name :: variable = value;

Difference between normal and static data members

class demo

{

private:
int X;
i

void main ()

{

demo obj,objl,obj2;

In the above case the 3 copies of the data_member ‘x” will be created for
the three objects obj,obj1,0bj2. So if we will change the ‘x’ through obj then
that will not affect the X’ of obj1 and also obj2.

class demo

{

private:
static int X;

Vi
int demo :: x;
void main ()

{

demo obj,objl,obj2;

In this case instead of creating three copies it will create a single copy
of the data_member X’ for all the objects and that will be shared by the
objects. So if we change the value of the data_member through obj than
that will be effect to objl and obj2.

CoONCEPTS OF CLASS 77

Example

#include<iostream.h>

class demo

{
private:

static int x;

public:

void change () ;
void display () ;

}i

void demo :: display ()
{
cout<<x;
}
void demo :: change ()
{
X++;
}
int demo :: x=5;

void main ()

{

demo obj,objl,obj2;
obj.display () ;
objl.display () ;
obj2.display () ;

obj .change () ;
obj.display () ;
objl.display () ;
obj2.display () ;

OUTPUT 555666

The keyword static can also be used with the member function. The
speciality with the function is that it can only use the static data members
and can be called by the class name as

class_name :: function_name();

#include<iostream.h>
class demo

{

static int x;

public

static void print();

Vi

void demo :: print()

{

cout<<endl<<++x;

78 DATA STRUCTURE AND ALGORITHMS USING C++

int demo :: x=5;

void main ()

{

demo obj;
demo :: print();
obj.print () ;

}

OUTPUT 6 7

4.11 Constructor and Destructor

4.11.1 Constructor

The constructors are the special member functions which are used for the
initialization. It is special because it is working and way of representing
is totally different from the normal functions. We cannot initialize the
data members inside the private section and generally we arrange the data
members inside the private section. So if we want to initialize the member
than we have to do this inside a member function, which is not preferable
because to have an initialized value we have to call a member function. So
it will be better to initialize the data members whenever the class members
will gets activated for use i.e. when the objects are being created. To achieve
the C++ provides the constructors for its conventional programmers.

The constructors are the special member functions which are called
automatically whenever an object is being created.

Certain rules we have to follow which using the constructor such as

o The name of the constructor is same as the class name.

 The constructors do not have any return type not even void.

+ They cannot be inherited.

o The keywords like virtual, const, volatile, static cannot be
used.

The constructors are of four types such as

o Empty Constructors

o Default constructors

« Parameterized Constructors
o Copy constructors

CoNCEPTS OF CLASS 79

4.11.1.1 Empty Constructor

The name itself designates that the constructors whose body part is absent
is called as empty constructors. These constructors are not used.

Syntax :
constructor name ()

{
}

4.11.1.2 Default Constructor

In default constructor we have to initialize the data members by assigning
some value to them and whatever the value may be assigned that will be
fixed for all the objects that means by default the objects members will
store the values which is given inside the default constructors.

Syntax:

constructor_name ()

{

data_member = value;
data member = value;

data member = value;

}

Example

#include<iostream.h>
class hello
{
private:
int x;
public :
hello() ;
void display () ;
}i

hello :: hello()

x=5;

}

void hello :: display()

{

cout<<endl<<x;

}

80 DATA STRUCTURE AND ALGORITHMS USING C++

void main ()

{

hello obj,objl,obj2; //constructors are called
obj.display () ;
objl.display () ;
obj2.display () ;

}

OUTPUT
5
5
5

4.11.1.3 Parameterized Constructors

When we want to initialize the data members according to the values given
by the user then we have to choose the parameterized constructors. In
this type some parameters should have to pass during the creation of the
objects.

Syntax :
constructor name(data type V1, data type V2............... data type Vn)
{

Memberl = V1;
Member2 = V2;
Member3 = V3;

During the creation of object the format would be

class _name obj (vl,v2,....vn);

Example

#include<iostream.h>
#include<conio.h>
#include<iomanip.hs>
class fibo
{
private:
int a,b,c,n;

CoNCEePTS OF CLASS 81

public
fibo (int) ;
void generate () ;

i

fibo :: fibo(int x)
{
a=0;
b=1;
c=a+b;
n=x;
}
void fibo :: generate()

{

cout<<”THE FIBONACCI SERIES NUMBERS ARE”;
cout<<endl<<a<<setw (4)<<b;
for(int i=3;i<=n;i++)
{
c=a+b;
cout<<setw(4) <<c;
a=b;
b=c;
}
}

void main ()

{

int n;

cout<<”Enter how many digits U want to print”;
cin>>n;

fibo obj (n) ;

clrscr () ;

obj.generate () ;

OUTPUT
Enter how many digits U want to print 8

THE FIBONACCI SERIES NUMBERS ARE
o 1 1 2 3 5 8 13

4.11.1.4 Copy Constructor

The copy constructor is a special type of constructor where the data mem-
bers are initialized by the object. So when there is a need that the initial-
ization should be by the object than use the copy constructor. The format
is same as the parameter constructor except that the argument of the con-
structor should be always the object.

82 DATA STRUCTURE AND ALGORITHMS USING C++

Since the data members are initialized by the object so before that the
object should have to be initialized so while using the copy constructor we
have to use either the default constructor or parameterized constructor.
Because due to this the data members of the object first will be initialized
and then with the help of the object again the data members are initialized.
Since the data member get the same value two times so this constructor is
so named.

SYNTAX
constructor name(class name &object);

Example

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
class fibo

{

private:

int a,b,c,n;
public

fibo (int) ;

fibo (fibo &obj) ;
void generate() ;
}i
fibo :: fibo(fibo &obj)
{
a=obj.a;
b=0obj.b;
c=obj.c;
n=o0bj.n;
}
fibo :: fibo (int x)
{
a=0;
b=1;
c=a+b;
n=x;
}
void fibo :: generate()
{
cout<<”THE FIBONACCI SERIES NUMBERS ARE”;
cout<<endl<<a<<setw(4)<<b;
for(int i=3;i<=n;i++)
{
c=a+b;
cout<<setw(4)<<c;

CoNCEPTS OF CLASS

void main ()

{

int n;
cout<<”Enter how many digits U want to print”;
cin>>n;
fibo obj (n) ;
obj.generate () ; 1
OUTPUT

Enter how many digits U want to print 8

THE FIBONACCI SERIES NUMBERS ARE
o 1 1 2 3 5 8 13

4.11.2 Destructor

83

A destructor is also a member function of the class which is used for the
destruction of the objects which are created by a constructor. That is this is used
for the de-allocation purpose. The declaration of the destructor is as same as
the constructor except that the destructor is declared with the tiled(~) symbol
and it does not have any return type as well as it does not have any argument.
The destructors are also called automatically. The keyword “virtual” cam

be used with destructor.
Ex:

#include<iostream.h>
#include<conio.h>
class demo
{
public:
demo ()

{

cout<<”CONSTRUCTOR IS CALLED”;

}

void input ()

{

cout<<endl<<”HELLO” ;

}

~demo ()

{

cout<<endl<<”DESTRUCTOR IS CALLED”;
getch() ;

}

84 DATA STRUCTURE AND ALGORITHMS USING C++

i

void main ()

{

demo obj;
obj.input () ;

}

OUTPUT

CONSTRUCTOR IS CALLED
HELLO
DESTRUCTOR IS CALLED

4.12 Dynamic Memory Allocation

Allocation of memory for a variable during run time is known as
DYNAMIC MEMORY ALLOCATION.

Need of Dynamic Memory Allocation
When there is a requirement to handle more than one element of same kind
then the concept of array is being implemented. During the declaration of
an array we must have to mention its size which contradicts the flexibility
nature of an array, because if we specifies the boundary point of an array then
that array will be stipulated for that much amount of data, if the amount of
data exceeds the boundary then the array fails to handle it and on the other
hand if we specify a large volume of boundary for the array then, it does not
matter that it will recover the first drawback but it will lead to memory loss,
because some portion of memory is utilized from a huge block so the remain-
ing unused memory is blocked and that is not used by any other program. But
as a better programmer, he/she should be conscious about the memory, that
means how a task can be completed with a minimum amount of memory.

So to avoid this it will be better to reserve the memory according to the
user choice/requirement and this is only possible during the runtime.

To have a dynamic memory allocation C++ allows a new operator as
“new” and for the deallocation purpose it provides “delete” operator which
does the same work as free() in C-language.

Syntax :

new operator
Data_type *var = new data type; //for single memory
allocation
Data_ type *var = new data typeln] //for more than one
memory allocation

CoNCEPTS OF CLASS 85

delete operator
delete var ; //for single memory cell
delete [] var; // for an array

We can also initialize a variable during allocation.

int *x =new int(5);

Example :
Wap to enter n number of elements into an array and display them.

#include<iostream.h>
#include<iomanip.h>
void main ()
{
int n;
cout<<”Enter how many elements to be handle”;
cin>>n;
int *p = new int[n];
for(int 1=0;i<n;i++)
{
cout<<”Enter a number”;
cin>>* (p+1i) ;
}
cout<<”THE ELEMENTS ARE”;
for (i=0;i<n;i++)
cout<<setw (5) <<* (p+1i) ;
delete [lp;

}

Wap to enter N number of elements and display them with the help of
class, constructor and destructor.

#include<iostream.h>
#include<iomanip.h>
class dynamic
{
private:
int *p,n;
public:
dynamic (int) ;
~dynamic () ;
void show () ;

i

dynamic :: dynamic (int a)
{
n=a;
p = new int[n];
if (p==NULL)

cout<<”UNABLE TO ALLOCATE MEMORY” ;
else

86 DATA STRUCTURE AND ALGORITHMS USING C++

cout<<”SUCESSFULLY ALLOCATED”;
}
dynamic :: ~dynamic ()
{
delete [] p;
}
void dynamic :: show ()
{
for (int 1=0;i<n;i++)
{
cout<<”Enter a number”;
cin>>* (p+1i) ;
}
cout<<”THE ELEMENTS ARE”;
for (i=0;i<n;i++)
cout<<setw (5) <<* (p+1) ;
}

void main ()
{
int a;
cout<<”Enter how many elements”;
cin>>a;
dynamic obj (a) ;
obj.show () ;

}

4.13 'This Pointer

This pointer is a special type of pointer which is used to know the address
of the current object that means it always stores the address of current
object. We can also handle the members of a class as

this->member name;

Example :

#include<iostream.h>
class even
{
private:
int n;
public:
void input () ;
void check() ;
Vi
void even :: input ()
{

cout<<”Enter a number”;

CoNCEPTS OF CLASS

cin>>this->n;

}

void even :: check()

{

cout<<”THE ADDRESS OF OBJECT IS “<<this;
if (this->n %2==0)
cout<<endl<<this->n<<”IS EVEN”;
else
cout<<endl<<this->n<<”IS NOT EVEN”;

}

void main ()

{
even obj;
obj.input () ;
obj.check () ;

}

OUTPUT

Enter a number 5

THE ADDRESS OF OBJECT IS Ox8fa7fff4
5 ISNOT EVEN

4.14 Class Within Class

87

Like structure within structure we can also use a class as a member of another
class which is known as the class with in class. It is also called as nested class.

Example

#include<iostream.h>
#include<iomanip.h>
class a
{
public:
void input ()
{
cout<<"HELLO" ;
}
Vi

class b
{
public
a obj;
void print ()

{

88 DATA STRUCTURE AND ALGORITHMS USING C++

cout<<"INDIA";

}
}i

void main ()
{
b B;
B.print () ;
B.obj.input () ;

}
OR

#include<iostream.h>
class a
{
private:
int x;
public
void check () ;
class b
{
private:
int y ;
public:
void print();
}i

}i
void a :: check()
{
cout<<"Enter the number";
cin>>x;
if (x>=0)
cout<<endl<<"+VE";
else
cout<<endl<<"-VE";
}
void a::b::print()
{
cout<<endl<<"Enter the number";
cins>>y;
if (y%2==0)
cout<<endl<<"EVEN";
else
cout<<endl<<"ODD";
}

void main ()

{

CoNCEPTS OF CLASS

a obj;

a:

:b objl;

obj.check () ;
objl.print () ; 1

4.15

WX NN =

»‘
e

Questions

Define features of object-oriented paradigm.
What are the access specifiers used in class?
Differentiate between inline and macro.
What is the benefit of using friend function?
What are the types of constructors?

What is dynamic memory allocation?

What is the use of this pointer?

What are the types of manipulators in c++?
Discuss features of static data member and static member
functions.

Differentiate between structure and class.

89

Stack

5.1 STACK

Stack is a linear data structure which follows the principle of LIFO (Last in
First Out). In other words we can say that if the LIFO principle is imple-
mented with the array than that will be called as the STACK.

5.2 Operations Performed With STACK

The most commonly implemented operations with the stack are PUSH,
POP.

Besides these two more operations can also be implemented with the
STACK such as PEEP and UPDATE.

The PUSH operation is known as the INSERT operation and the POP
operation is known as DELETE operation. During the PUSH operation we
have to check the condition for OVERFLOW and during the POP opera-
tion we have to check the condition for UNDERFLOW.

OVERFLOW

If one can try to insert an element with a filled stack then that situation will
be called as the OVERFLOW.

In general if one can try to insert an element with a filled data structure
then that will be called as OVERFLOW.

Condition for OVERFLOW

Top = size —1 (for the STACK starts with 0)
Top = size (for the STACK starts with 1)

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (91-128) © 2021 Scrivener Publishing LLC

91

92 DATA STRUCTURE AND ALGORITHMS USING C++

UNDERFLOW

If one can try to delete an element from an empty stack then that situation
will be called as the UNDERFLOW.

In general if one can try to DELETE an element from an empty data
structure then that will be called as OVERFLOW.

Condition for UNDERFLOW

Top = —1 (for the STACK starts with 0)
Top = 0 (for the STACK starts with 1)

EXAMPLES
STACK][5]

0 1 2 3 4 top =1 (CONDITION FOREMPTY
STACK)
PUSH(5)

5
0 1 2 3 4 top=0

PUSH(25)

5 25
0 1 2 3 4 top=1

PUSH(53)

5 | 25 | 53
0o 1 2 3 4 top = 2

PUSH(78)

5 25 | 53 | 78
0 1 2 3 4 top=3

PUSH(99)

5 | 25 | 53| 78 | 99
0o 1 2 3 4 top = 4

Stack 93

PUSH(145)
“OVERFLOW” (top =size —1 Condition for OVERFLOW)
POP
5 25 53 78
0o 1 2 3 4 top =3
POP
5 25 53
0 1 2 3 4 top=2
POP
5 25
0o 1 2 3 4 top =1
POP
5
0 1 2 3 4 top=0
POP
0 1 2 3 4 top=-1
POP
“UNDERFLOW” (top= -1 Condition for UNDERFLOW)

5.3 ALGORITHMS

ALGORITHM FOR PUSH OPERATION

PUSH(STACKJSIZE], NO, TOP) [STACKISIZE] is the Stack]
[NO is the Number to Insert]
[Top is the position of the stack]
STEP-1:1F (TOP = SIZE - 1) THEN :
WRITE : “OVERFLOW”
RETURN
[END OF IF]

94 DATA STRUCTURE AND ALGORITHMS USING C++

STEP-2: TOP : = TOP +1
STACK[TOP] := NO
STEP-3 : RETURN

ALGORITHM FOR POP OPERATION

POP(STACK[SIZE], TOP) [STACKISIZE] is the Stack]
[Top is the position of the stack]

STEP-1:IF (TOP =-1) THEN :

WRITE : “UNDERFLOW”

RETURN

[END OF IF]

STEP-2 : WRITE : STACK[TOP]

TOP :=TOP -1
STEP-3: RETURN

ALGORITHM FOR TRAVERSE OPERATION

TRAVERSE(STACKJ[SIZE], TOP) [STACKISIZE] is the Stack]
[Top is the position of the stack]
STEP-1:IF (TOP = - 1) THEN:
WRITE : “STACK IS EMPTY”
RETURN
[END OF IF]
Step-2:SETI1:=0
STEP-3 : REPEAT FOR1=TOP TO 0 BY -1
WRITE : STACK[I]
[END OF LOOP]
STEP-4 : RETURN

ALGORITHM FOR PEEP OPERATION

PEEP(STACK[SIZE], NO, TOP) [STACKISIZE] is the Stack]
[NO is the Number to Search]
[Top is the position of the stack]
STEP-1:1F (TOP =-1) THEN:
WRITE : “STACK IS EMPTY”
RETURN
[END OF IF]
STEP-2:SET I: =0

Stack 95

STEP-3 : REPEAT FOR I =TOP TO 0 BY -1
IF (NO = STACK[I]) THEN:
WRITE : “NUMBER IS FOUND AT”
WRITE : TOP-I+1
WRITE : “POSITION”
RETURN
[END OF IF]
IF I=0 THEN:
WRITE : “NUMBER IS NOT FOUND”
[END OF IF]
[END OF LOOP]
STEP-4 : RETURN

OR

PEEP(STACK|[SIZE], IN, TOP) [STACKJSIZE] is the Stack]
[IN is the Index Number to Search]
[Top is the position of the stack]
STEP-1:IF (TOP -IN +1 < 0) THEN :
WRITE : “OUT OF BOUND”
RETURN
[END OF IF]
STEP-2 : WRITE : STACK[TOP-IN+1]
STEP-3 : RETURN

ALGORITHM FOR UPDATE OPERATION

UPDATE(STACK[SIZE], NO, TOP) [STACKI[SIZE] is the Stack]
[NO is the Number to Update]
[Top is the position of the stack]
STEP-1:1F (TOP =-1) THEN:
WRITE : “STACK IS EMPTY”
RETURN
[END OF IF]

STEP-2:SET I: =0
STEP-3 : REPEAT FORI=TOP TO 0 BY -1
IF (NO = STACK][I]) THEN:
STACK[I] = NO
RETURN
[END OF IF]

96 DATA STRUCTURE AND ALGORITHMS USING C++

IF I=0 THEN:
WRITE : “UPDATE SUCCESSFULLY NOT
COMPLETED”
[END OF IF]
[END OF LOOP]

STEP-4 : RETURN

5.4 Applications of STACK

 Checking of the parenthesis of an expression
+ Reversing of a string

o In Recursion

« Evaluation of Expression

CHECKING OF PARENTHESIS OF AN EXPRESSION PROCESS
First scan the expression if an opening parenthesis is found then PUSH it
and if a closing parenthesis is found then POP and this operation will con-
tinue up to all the elements of the expression are scanned.

Finally check the status of the TOP i.e/ if top == —1 then the expression
is correct and if not then the expression is not correct.

Second if an closinging parenthesis is found but in the stack no paren-
thesis then also display that the expression is not correct.

PROGRAM
WAP to check the correctness of the PARENTHESIS of an expression
by using STACK.

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;
//declare the top
static int top = -1;
//declare the stack
char stack[25];
//defination for push()
void push(char no)

{

//condition for overflow
if (top == 24)
cout<<endl<<”STACK OVERFLOW”;
else

Stack 97

{ //insert the open grouping character into stack
top = top+l; //increase the value of top
stack[top] = no; //stare the character to stack

}

}

//defination of ppo()

void pop (char ch)

{

if (top == -1) //condition for underflow
{

cout<<”\n STACK UNDERFLOW”;

cout<<”\n INVALID EXPRESSION”;

exit (0);

}

//pop the character if proper closing charcter is found

if (ch=='")’ && stackl[topl=='(‘ || ch==']1’ && stack[topl=="1["

|| ch=="}’ & stackl[topl=="{")
--top; //decrease the valeu of top

}

int main()

{

string str;
int i;
cout<<”\n ENTER THE EXPRESSION”;
cin>>str;

for(i=0;str[i]!'="\0";i++)

{
if(strlil==' (‘| |strlil=="["]||str[il=="{")
push(str[il) ;

if(strlil==)’ || strlil=="1" || strlil=="}’)
pop (str[il);

}

if (top == -1)

cout<<”\n EQUATION IS CORRECT”;

else

cout<<”\n INVALID EXPRESSION”;

}

98 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

ENTER THE ERPRESSIONCa+h=[c—d1>
EQUATION IS CORRECT

Process exited after 10.66 seconds with return value 8
Press any key to continue . . .

ENTER THE EXPRESSIONax(h—c[+d>—ed
INVALID EXPRESSION

Process exited after 12.95% seconds with return value 8
Press any key to continue . . .

o WAP TO REVERSE A STRING BY USING STACK.

#include<iostream>
#include<string.h>
using namespace std;

// A structure to represent a stack
class reverse
{
public:
int top;
int size;
char* stk;

bi

reverse* BuildStack (unsigned size)
{
reverse* stack = new reverse();
stack->size = size;
stack->top = -1;
stack->stk = new char|[(stack->size *
sizeof (char))];
return stack;

}

// Stack is full when top is equal to the last index
int Filled(reverse* stack)
{ return stack->top == stack-s>size - 1; }

STACK

// Stack is empty when top is equal to -1
int Empty (reverse* stack)
{ return stack->top == -1; }

// Function to add an item to stack.
// It increases top by 1
void push(reverse* stack, char item)
{
if (Filled(stack))
return;
stack->stk[++stack->top] = item;

}

// Function to remove an item from stack.
// It decreases top by 1
char pop (reverse* stack)
{
if (Empty(stack))
return -1;
return stack->stk[stack->top--];

}

// A stack based function to reverse a string
void Reverse (char strl])
{

// Create a stack of capacity

//equal to length of string

int n = strlen(str) H

reverse* stack = BuildStack (n);

// Push all characters of string to stack
int i;
for (1 = 0; 1 < n; i++)

push(stack, str[il);

// Pop all characters of string and
// put them back to str
for (1 = 0; 1 < n; i++)

str[i] = pop(stack);

}

// Driver code

int main()
char str[50];
cout<<endl<<”Enter a string”;
gets (str);

99

100 DATA STRUCTURE AND ALGORITHMS USING C++

Reverse (str);
cout << “Reversed string is “ << str;

return O;

Output

Enter a stringwel come
Reversed string is emoc lew

Process exited after 2.132 seconds with return value @
Press any key to continue . . .

In recursive methods the stack is used to store the values in each calling
of the function

o EXPRESSION CONVERSIONS
In general the expressions are represented in the form of INFIX nota-
tions that is the operators are used in between the operands. But during
the evaluation process the given expression is converted to POSTFIX or
PREFIX according to the requirements.

INFIX : The operator is used in between the operands.
EX:A+B

POSTFIX : The operator is used after the operands. It is also

known as POLISH notation.

EX: AB+

PREFIX : The operator is used before the operands. It is also
known as REVERSE POLISH notation.
EX: +AB

During conversion we have to concentrate on the precedence of the
operators such as

PRECEDENCE
FIRST () [{}
SECOND : A $, arrow mark
THIRD :*, / [Left to Right]

FOURTH :+, - (Left to Right)

Stack 101

CONVERSION OF INFIX TO POSTFIX(reverse polish)
ALGORITHM

STEP 1:

STEP 2:

STEP 3:

STEP 4 :

STEP5:

STEP 6:

STEP 7 :

First Insert a opening parenthesis at the beginning and closing
parenthesis at the end of the expression.

Arrange the expression in the ARRAY.

Scan every element from the array and if operand than store it
in the POSTFIX and if operator than PUSH it into the STACK
followed by STEP-4 and STEP-5

If the scanned operator having Less or Equal precedence than the
existing operator than pop out the operators from the stack till a
less precedence operator or opening parenthesis is found.

If the scanned operator is a closing parenthesis than pop the oper-
ators from the STACK up to the Opening Parenthesis and omit
them and poped operators will store in the POSTFIX.

Repeat step-3, step-4, step-5 till all the elements are scanned from
the array.

Print the POSTFIX as the result.

CONVERSION OF INFIX TO PREFIX(POLISH)
ALGORITHM

STEP 1:

STEP 2:

STEP 3:

STEP 4 :

STEPS5:

STEP6:

STEP 7 :

First Insert an opening parenthesis at the beginning and closing
parenthesis at the end of the expression.

Arrange the expression in reverse order in the ARRAY by swap-
ping the parenthesis.(i.e/ for open use close and vice_versa)

Scan every element from the array and if operand than store it
in the PREFIX and if operator than PUSH it into the STACK fol-
lowed by STEP-4 and STEP-5

If the scanned operator having Less precedence than the existing
operator than pop out the operators from the stack till a less pre-
cedence or Equal precedence operator or opening parenthesis is
found.

If the scanned operator is a closing parenthesis than pop the oper-
ators from the STACK up to the Opening Parenthesis and omit
them and poped operators will store in the PREFIX.

Repeat step-3, step-4, step-5 till all the elements are scanned from
the array.

Print the PREFIX in reverse order as the result.

102 DATA STRUCTURE AND ALGORITHMS USING C++

EXAMPLE:

Convert A+B-(C*D-E+FAG)+ (H+I*J)into POSTFIX by
using STACK.

ARRAY STACK POSTFIX

((

A (A

+ (+ A

B (+ AB

- (- AB +

((-(AB+

C (-(AB+C

* (-(* AB+C

D (-(* AB+CD

- (-(- AB+CD*

E (-(- AB+CD*E

+ (-(+ AB+CD*E-

F (-(+ AB+CD*E-F

A (-(+A AB+CD*E-F

G (-(+A AB+CD*E-FG

) (- AB+CD*E-FGA+

+ (+ AB+CD*E-FGA+-

((+(AB+CD*E-FGA+-
H (+(AB+CD*E-FGA+-H
+ (+(+ AB+CD*E-FGA+-H
I (+(+ AB+CD*E-FGA+-HI
) (+(+* AB+CD*E-FGA+-HI

STACK

103

ARRAY STACK POSTFIX
] (+(+* AB+CD*E-FGA+-HIJ
) (+ AB+CD*E-FGA+-HIJ*+

AB+CD*E-FGA+-HIJ*++

Convert A+B-(C*D-E+FAG)+ (H+I*]J)into PREFIX by using

STACK.
ARRAY STACK PREFIX
((
(((
J ((J
* (J
I (JI
+ ((+ JI*
H ((+ JI*H
) (JI*H+
+ (+ JI*H+
((+(JI*H+
G (+(JI*H+G
A (+(n JIXH+G
F (+(~ JI*H+GF
+ (+(+ JI*H+GEFA
E (+(+ JI*H+GFAE
- (+(+- JI*H+GFAE
D (+(+- JI*H+GFAED
* (+(+-* JI*H+GFAED

104 DATA STRUCTURE AND ALGORITHMS USING C++

ARRAY STACK PREFIX

C (+(+-* JI*H+GFAEDC

) (+ JIXH+GFAEDC*-+

- (+- JI*H+GFAEDC* -+

B (+- JI*H+GFAEDC*-+B
+ (+-+ JI*H+GFAEDC*-+B
A (+-+ JI*H+GFAEDC*-+BA

FINAL RESULT L.E/ PREFIX IS +-+AB+-*CDEAFG+H*IJ

% CONVERSION OF POSTFIX TO INFIX
ALGORITHM

STEP-1:
STEP-2:

STEP-3:

STEP-4 :

EXAMPLE:

STACK

Arrange the given postfix in an array
Scan each element from the array and push it into the

If an operator is found than process it (convert it to infix)
by considering the conjugative two operands and put

then in a pair of parenthesis.

Finally display the result.

Convert ABC*D-EAF/+ to INFIX

P w0+

s1

D
(B *C)
A

/

(((B * C) - D) "E)
A

sS4

52

JI*H+GFAEDC*-+BA+-+

M

(B * C)-D)

A

s3

+*

(((B*C)-D) *E) / F)

A

[A+({((B*C)-D)*E) / F) |
S6

85

Stack 105

%+ CONVERSION OF PREFIX TO INFIX
ALGORITHM

STEP-1 : Arrange the given prefix in an array in reverse order.

STEP-2: Scan each element from the array and push it into the
STACK

STEP-3 : If an operator is found than process it (convert it to infix)
by considering the conjugative two operands and put
then in a pair of parenthesis.

STEP-4 : Finally display the result in reverse order.

EXAMPLE:
Convert +A/N -*BCDEF to INFIX
First REVERSE it as FEDCB * - A /A +

B -
c (C*B) "
D D (D-(C*B))
E E E
F F F
s1 82 s3
7
(EAD - (C * B))) *
F A
(F/(EAD - (C * B))
s4 s5

[(F/(E~D - (€ * B))*A |

S6

Finally Reverse itas A + ((((B*C) -D) A E) / F)

106 DATA STRUCTURE AND ALGORITHMS USING C++

Evaluation of Expression by using STACK.
Evaluate 12, 5,2, %, 4,-,2,1,6,/, +

* - A
2 4 2
S (5*2) (5*2)-4)
12 12 12
s1 s2 s3
/
6 +
(((5 * 2) - 4) ~2) ((((S * 2) - 4) ~2) / 6)
12 12
s4 s5

12+ ((5%2)-4) ~2)/ 6) |
S6

RESULT : 18

5.5 Programming Implementations of STACK

o Wap to perform the PUSH,POP, and TRAVERSE opera-
tion with the STACK.

#include<iostream>
#include<stdlib.h>

using namespace std;

static int *s,size,top=-1;

//method to push an integer into stack
void push(int no)

{
if (top == size-1)
cout<<”\n STACK OVERFLOW”;
else
{
top = top+l;
* (s+top) = no;
}
}
//method to pop an element from stack
void pop ()
{
if (top == -1)

cout<<”\n STACK UNDERFLOW”;

STACK

else

{

cout<<* (s+top)<< “ IS DELETED”;
--top;

//method to display the elements of the stack
void traverse()

{

int i;
if (top == -1)

cout<<”\n STACK IS EMPTY”;
else

for(i = top; i>=0;i--)

cout<<* (s+i)<<” “;
//driver program
int main()
int opt;
cout<<”\n Enter the size of the stack”;
cin>>size; //ask user about the size of stack

107

s= (int *)malloc(size * sizeof(int)); //dynamically

allocate memory for stack
//infinite loop to handle the operations of stack
while (1)
{
cout<<”\n Enter the choice”;
cout<<”\n 1.PUSH 2. POP 3. DISPLAY 0. EXIT”;
cin>>opt;
if (opt==1)
{
cout<<”\n Enter the number to insert”;
cin>>opt;
push (opt) ;

}

else
if (opt==2)
pop () ;
else
if (opt==3)
traverse() ;
else
if (opt==0)
exit (0);
else

cout<<”\n INVALID CHOICE”;

108 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

Enter the size of the stackb

Enter the choice
1.PUSH 2. POFP 3. DISPLAY B. ERIT2

STACK UNDERFLOW

Enter the choice

1.PUSH 2. POP 3. DISPLAY @A. EXIT1
Enter the number to insert2h

Enter the choice
1.PUSH 2. POP 3. DISPLAY A. EXIT1

Enter the number to insertbhd

Enter the choice
1_PUSH 2. POP 3. DISPLAY @A. EXIT1

Enter the number to insert85

Enter the choice
1.PUSH 2. POP 3. DISPLAY @O. EXKIT1

Enter the number to insert?5

Enter the choice
1_.PUSH 2. POP 3. DISPLAY @. EXIT1

Enter the number to insert8b

Enter the choice
1.PUSH 2. POP 3. DISPLAY B. EXIT1

Enter the number to insewrt5H4

STACK OUVERFLOW

Enter the choice

1.PUSH 2. POP 3. DISPLAY

85 95 85 63 25

Enter the choice
P DISPLAY

Enter the choice

?5 IS DELETED

Enter the choice

1.PUSH 2. POP 3. DISPLAY
B5 63 25

Enter the choice

1.PUSH 2. POP 3. DISPLAY

DISPLAY

Process exited after 48 seconds with return value @
Press any key to continue . .

STACK OPERATIONS USING STL

#include <iostream>
#include <stack>
using namespace std;

int main ()

{

stack <int> myStack;
int n,opt;

Stack 109

while (1)
{
cout<<endl<<”1l. PUSH 2. POP 3. SIZE OF STACK 4.
TOP OF STACK 5. QUIT”;
cin>>opt;
if (opt==1)
{
cout<<endl<<”Enter a number to push”;
cin>>n;
myStack.push(n) ;
}
else
if (opt==2)
{
if (myStack.empty())
cout<<endl<<”Underflow”;
else
{
myStack.pop () ;
cout<<endl<<”Pop operation
completed successfully”;

}

else
if (opt==3)
{
cout<<endl<<myStack.size()<<” elements are in
stack”;
}
else
if (opt==4)
{
if (myStack.empty())
cout<<endl<<”NO ELEMENTS ARE IN
STACK” ;
else
cout<<endl<<”The top value is :
“<<myStack.top() ;

else
if (opt==5)
exit (0);

else
cout<<endl<<”Invalid choice”;

return 0;

110 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

. PUSH 2. POP 3. SIZE OF STACK 4.
Enter a nunber to push23
- PUSH 2. POP 3. SIZE OF STACK 4.
push45
- PUSH 2. POP 3. SIZE OF STACK 4.
Enter a number to push66
- PUSH 2. POP 3. SIZE OF STACK 4. TOP OF STACK

op operation completed successfully
- PUSH 2. POP 3. SIZE OF STACK 4. TOP OF STACK

2 elements are in stack

. PUSH 2. POP 3. SIZE OF STACK 4. TOP OF STACK

he top value is = 45
USH 2. POP 3. SIZE OF STACK 4. TOP OF STACK

Process exited after 24.29 seconds with return value
ress any key to continue . . .

POSTFIX EVALUATION

#include<iostream>
using namespace std;
int stack[1000];//declare a stack of size 1000
static int top = -1;//set the value of top to -1 for empty
stack
//push method to push the characters of expression
void push(int x)

{
}

//pop method will delete the top element of stack
int pop ()

{
}

//method to check the validity of expression
int isValid(char str[])

{

stack[++top] = x;

return stackl[top--];

int i,cd=0,co=0;
for(i=0;i<str[i]l!="\0";i++)
{
if(str[i]l>='0’ && strl[il<='9")
cd++; //count number of digits
else
co++;//count number of operators

}

Stack 111

if (cd-co==1) //for a valid expression number of
digit - number of operator must be 1

return 1;//return 1 for valid expressison

else

return 0; //return 0 for invalid expression

//driver program

int main()

{

char postfix[1000];//declare the postfix as string
to store the expression
int a,b,c,val;
//read the postfix expression
cout<<”Enter the expression :%“;
cin>>postfix;
if (1isValid(postfix))
{
cout<<endl<<”Invalid expression”;
exit (0);

}

//loop to scan each character of the expression
for(int i=0;postfix[i]!="\0’;i++)

{

if (postfix[i]l>="0’ && postfix[il<='9")//
check for digit
{
val = postfix[i] - 48;//convert to
numeric format
push(val);//push it to stack

else

a = pop(); //pop an element

b = pop(); //again pop another
element for operation
switch(postfix[i]) //switch case is
use to check the type of operator

{

case ‘+’: //condition for +
{
c = a + b; //add two
numbers
break;

}

case ‘-’: //condition for -

{
¢ =b - a; //subtract
break;

112 DATA STRUCTURE AND ALGORITHMS USING C++

case ‘*’':

c = a * b;//multiply
break;

}
case ‘/':

{
¢ =b / a;//divide
break;

}
}

push(c);//push the result into stack

}

//prin tthe result

cout<<”\nThe Value of expression “<<postfix<<” is
“<<pop () ;

return 0;

OUTPUT

Enter the expression & 512+4=+3-

The Ualue of expression 512+4%+3— is 14

Process exited after 10.63 seconds with return value 8
Press any key to continue . . .

PROGRAM TO CONVERT INFIX TO POSTFIX (ONLY +,-,%,/)

#include<iostream>
#include<string.h>
using namespace std;

char str[100]; //declare a string variable to store the
operators as stack
int top=-1; //initially set -1 to top as empty stack
//push method
void push(char s)
{
top=top+1; //increase the value of top
str[topl=s;//assign the operator into stack

}

STACK

//pop method

char pop ()

{

char i;

if (top==-1) //condition for empty stack

{
cout<<endl<<”Stack is empty”;
return 0;

}

else
{
i=str[topl; //store the popped operator
top=top-1;
}
return i;//return the popped operator
}
//method precedence
int preced(char c)
{
if(C==I/I |C==I*I)
return 3; //return 3 for * and /
if(c=="+"||c=="-")
return 2; //return 2 for + and -
return 1;//return 1 for other operator if any
}
//method to convert the infix to postfix
void infx2pofx(char in[])
{
int 1;
static int i=0,px=0;
char s, t;
char pofx[80];
l=strlen(in);//find the length of infix expression
while (i<1l)

{

s=in[i] ; //extract one by one characer from infix

switch(s) //check for operator precedence
{
case (‘
case ‘)’
t=pop(); //pop from the stack when close
parenthesis is found
while(t != (')
{
pofx[px]=t;
px=px+1;
t=pop () ;
}

break;

push(s) ;break;

113

114 DATA STRUCTURE AND ALGORITHMS USING C++

case ‘+' :

case ‘-’ :

case ‘*’ :

case '/’ :
while (preced(str[top]) >=preced(s))
{
t=pop () ;
pofx[px]=t;
PX++;
}
push(s) ;

break;

default : pofx[px++]=s;
break;
}
i=i+1;

}

while (top>-1)
{
t=pop () ;
pofx[px++]=t;
}
pofx [px++]1="\0";
puts (pofx) ;

return;

}
//driver program
int main(void)

{

char ifx[50];

cout<<endl<<”Enter the infix expression”;
//read the infix expression

gets (ifx);

infx2pofx (ifx); //call to the method

return 0;

}

Stack 115

OUTPUT

Enter the infix expressionfA+B—(C*D/E>+F-G
AB+CD*E—F+G—

Process exited after 11.17 seconds with return value A
Press any key to continue . . .

PROGRAM TO CONVERT POSTFIX TO INFIX (ONLY +,-,*,/)

#include <bits/stdc++.h>
using namespace std;

//method to return true if operand otherwise return false
bool checkOperand (char x)

{
if((x >= ‘a’ && x <= ‘z’) || (x >= ‘A’ && x <= ‘Z’'))
return true;
else
return false;
}

//method to convert the postfix to infix
string Infix2Postfix(string post)

{

stack<string> infix;

for (int i=0; post[i]!="\0’; i++)
{
// Push operands
if (checkOperand(post[i]))
{
string op(1l, postl[il]);
infix.push (op) ;

}

// We assume that input is

// a valid postfix and expect

// an operator.

else

{
string opl = infix.top();
infix.pop() ;
string op2 = infix.top();
infix.pop() ;
infix.push(“ (™ + op2 + post[i]l + opl + “)7"); //
reform the expression

116 DATA STRUCTURE AND ALGORITHMS USING C++

return infix.top(); //return the expression

}

//main () method
int main()
{
string post;
cout<<endl<<”Enter the postfix
expression”;
getline(cin,post) ;
cout << Infix2Postfix(post);
return 0;

OUTPUT

Enter the postfix expressionAB+CD=E/—F+G—
CCCCA+B)—C((C*DD>/E)> > +F)>—-G)

Process exited after 14.4% seconds with return value @
Press any key to continue . . .

PROGRAM FOR INFIX EVALUATION

#include <bits/stdc++.h>
using namespace std;
//method declarations

int priority(char) ;

int operate(int,char,int);
int solve(string):;

//driver program

int main()

{

string infix;//declare a string to store the infix

expression

cout<<endl<<”Enter an Infix expression(Provide a space

between operator and operands)”;

getline(cin,infix);//read the expression

cout<<endl<<infix<<” = “<<solve(infix);//print the result
return 0;

}

//returns the precedence of the operator
int priority(char op) {

if(op == ‘+’||op == ‘-')

return 1;

STACK

if(op - *I||op - \/I)
return 2;
return 0;

}

//perform the operation according to the operator given
int operate(int x, char ch, int y)

{

if (ch=="4+")
return x + y;
else
if(ch=="-")
return x - y;
else
if (ch=="%*")
return x * y;
else
if (ch=="/")
return x / vy;

}

//method to return the result of the expression
int solve(string expression)

int i,x,y,n,res;

char ch;

//numArr is used to store the numbers
stack <int> numArr;

// opList is sued to store the operators
stack <char> opList;

for(i = 0; i < expression.length(); i++){
//condition for space then no action is needed

if (expression[i] == ' ')
continue;

117

//if the scanned character is an opening bracket then

push it into the opList stack
else if (expression[i] == ‘("){
opList.push(expression[i]);
}

//if scanned digit is a number then push it into the

stack
else if(isdigit(expression[i]))

118 DATA STRUCTURE AND ALGORITHMS USING C++

//form the number by accumulating the sequence of
digits till operator or space is found
//it is used for the numbers having more than 1
digits
while(i < expression.length() &&

isdigit (expression[il]))

{
n = (n*1l0) + (expression[il-’0’); //form the
number
i++;

}

numArr.push(n); //push the number into the stack

}

//scanned charcater is a closing bracket then perform
operation till open bracket

else if (expression[i] == ')')

{
while(!opList.empty() && opList.top() != ‘(%) //
condition for open bracket and till stack is
empty
{

y = numArr.top(); //extract the top element
into y
numArr.pop(); //pop the stack

X = numArr.top(); //extract the top element
into x
numArr.pop(); //pop the stack

ch = opList.top(); //extract the operator in
top o the stack
opList.pop(); //pop the stack

res = operate(x,ch, y);//perform the
operation
numArr.push(res); //push the result into the
stack

}

//pop the opening bracket
if (!opList.empty())
opList.pop();

Stack 119

//if the scanned character is operator
else

{

//perform the operation if the operator in
opList having equal or higher priority to the scanned
character, then perform the operation

while(!opList.empty () && priority (opList.top())

>= priority(expression[i]))
{
y = numArr.top(); //extract the top element
into y
numArr.pop(); //pop the stack

x = numArr.top(); //extract the top element
into x

numArr.pop(); //pop the stack

ch = opList.top(); //extract the operator in
top o the stack
opList.pop(); //pop the stack

res = operate(x,ch, y);//perform the
operation
numArr.push(res); //push the result into the
stack

}

opList.push(expression[i]);

while (!opList.empty())
{
y = numArr.top(); //extract the top element into y
numArr.pop(); //pop the stack

x = numArr.top(); //extract the top element
into x

numArr.pop(); //pop the stack

ch = opList.top(); //extract the operator in
top o the stack
opList.pop(); //pop the stack

res = operate(x,ch, y);//perform the operation
numArr.push(res); //push the result into the
stack

120 DATA STRUCTURE AND ALGORITHMS USING C++

// Top of ‘values’ contains result, return it.
return numArr.top();

OUTPUT

Enter an Infix exp»ess1nn(Prnu1de a space between operator and operands)
10 * 12 + ¢ 1280 + 18 > - 3 = 2 1

10 = 12 + (128 + 18 > — 3 = 2 + 1 = 245

Process exited after 23.71 seconds with return value 8
Press any key to continue . . .

/* peep operation of the stack using arrays */
include<stdio.h>

include<ctype.h>

int top = -1,n;

int *s;

/* Definition of the push function */

void push(int d)

{

if (top ==(n-1))

printf (“\n OVERFLOW”) ;
else
{

++top;

* (s+top) = d;

}
}
/* Definition of the peep function */
void peep ()
{
int 1i;
int p;
printf (“\nENTER THE INDEX TO PEEP”);
scanf (“%d”, &i);

if ((top-i+1) <0)

{
}

else

{

Printf (*\n OUT OF BOUND”);

Printf (“THE PEEPED ELEMENT IS %d4”,
* (s+ (top-1+1));

}

STACK

/* Definition of the display function */

void display ()

{
int i;
if (top == -1)

{
}

else

{

printf (“\n Stack is empty”);

for(i = top; i >= 0; --1)
printf (™\n %d”, *(s+i));

}
}
void main () /* Function main */
{ int no;

clrscr () ;
printf (“\nEnter the boundary of the stack”);
scanf (“%d”, &n) ;

stack = (int *)malloc(n * 2);

while (1)

{

121

printf ("WHICH OPERATION DO YOU WANT TO PERFORM:\n”);

printf (™ \n 1. Push 2. PEEP 0. EXIT");
scanf (“%d”, &no) ;

if (no==1)
{
printf (“\n Input the element to push:”);
scanf (“%d”, &no);
push (no) ;
printf (“\n After inserting “);
display ();
}
else
if (no==2)
{
peep () ;
display ();
}
Else
if (no == 0)
exit (0);
else

printf (“\n INVALID OPTION”);

122 DATA STRUCTURE AND ALGORITHMS USING C++

/* update operation of the stack using arrays */

include<stdio.h>

include<ctype.h>

int top = -1,n;

int flag = 0;

int *stack;

void push(int *, int);

int update (int *);

void display(int *);

/* Definition of the push function */

void push(int *s, int d)

{

if (top ==n-1)

flag = 0;
else
{
flag = 1;
++top;
* (s+top) = d;

}
}

/* Definition of the update function */
int update (int *s)
{
int 1i;
int u;
printf (“\nEnter the index”) ;
scanf (“%d”, &i) ;
if ((top-i+1) <0)
{
u = 0;
flag = 0;

else

flag = 1;

u=* (s+ (top-i+1)) ;

printf (“\nENTER THE NUMBER TO UPDATE”) ;
scanf (“%d”, s+ (top-i+1)) ;

}

return (u) ;

}

/* Definition of the display function */
void display(int *s)

{

Stack 123

int i;
if (top == -1)
{
printf (“\n Stack is empty”);
!
else
{
for(i = top; 1 = 0; --1i)
printf (™\n %d”, *(s+i));
!

}

void main ()
{
int no,g=0;
char ch;
int top= -1;
printf (“\nEnter the boundary of the stack”);
scanf (“%d”, &n) ;
stack = (int *)malloc(n * 2);
up:
printf ("WHICH OPERATION DO YOU WANT TO PERFORM: \n”);
printf (* \n Push->i\n update->p”);
printf (“\nInput the choice : “);
fflush(stdin) ;
scanf (“%c”, &ch) ;
printf (“Your choice is: %c”,ch);
if (tolower (ch)=="1")
{
printf (“\n Input the element to push:”);
scanf (“*%d”, &no);
push (stack, no);

if (flag)
{
printf (“\n After inserting “);
display (stack);
if (top == (n-1))
printf (“\n Stack is
full”);
}
else
printf (“\n Stack overflow after
pushing”);
}
else
if (tolower(ch)=="p")

{

no = update (stack);
if (flag)

124 DATA STRUCTURE AND ALGORITHMS USING C++

opt:

printf (“\n The No %d is updated”,
no) ;
printf (“\n Rest data in stack is as
follows:\n");

display (stack);

else
printf (“\n Stack underflow”);

}

printf (“\nDO YOU WANT TO OPERATE MORE”) ;

fflush(stdin);

scanf (“%c”, &ch);
if (toupper(ch)=="Y")

goto up;
else
if (tolower (ch)=='n")
exit ();
else

{
printf (“\nINVALID CHARACTER...Try
Again”);
goto opt;

o Wap to convert

#include<stdio.h>

#include<conio.h>

#include<string.h>
char str[100];

int top=-1;

void push (char s)
{
top=top+1;

}

str [top]

char pop ()

{

char 1i;
if (top==-1)

{

}

the Infix to Prefix notation

=S;

printf (“\n The stack is Empty”);

getch() ;
return O0;

}

else

{

i=str[top];

top=top-1;
}

return 1i;

}

int preced(char c)

{

if (c=="%"|
return 4;

if (c=='/" | |c=="*")
return 3;

:A:)

o=

void infx2prefx(char in[])

{

int 1;

static int i=0,px=0;

char s,t;
char pofx[80];
l=strlen(in);
while (i<1)

{

s=in[1i];

switch(s)

{

case ‘)’ push (s)break;
case ‘(" t=pop ();
while(t != ') ')
{
pofx[px]=t;
px=pxX+1;
t=pop () ;
}
break;
case ‘+'
case ‘-’
case ‘*/
case ‘/'

case

STACK

125

126 DATA STRUCTURE AND ALGORITHMS USING C++

while (preced (str[top]) >preced(s))

{

t=pop () ;
pofx[px]=t;
pPX++;

}
push(s);
break;

default : pofxl[px++]=s;
break;
}

i=1+41;

}

while (top>-1)

{
t=pop () ;
pofx [px++]=t;

}
pofx[px++]="\0";
strrev (pofx) ;
puts (pofx) ;

return;

}

int main (void)

{

char 1fx[50];

printf (“\n Enter the infix expression ::”);
gets (ifx) ;

strrev (ifx) ;

//scanf (“%s”,ifx) ;

infx2prefx (ifx) ;

return O;

}

5.6 Questions

In which principle does STACK work?

Write some implementations of stack.

What is polish and reverse polish notation?

Write a recursive program to check the validity of an expres-
sion in terms of parenthesis ().{},[].

e =

STACK

Write a recursive program to reverse a string using stack.
Explain structurally how stack is used in recursion with a
suitable example.

Convert (a+b*c) —(d/e”g) into equivalent prefix and postfix
expression.

What are overflow and underflow conditions in STACK?
Evaluate: 5,3,2,*,+,4,- using stack.

. Write a recursive method to find the factorial of a number.

127

Queue

6.1 Queue

Queue is a linear data structure which follows the principle of FIFO. In
other words we can say that if the FIFO principle is implemented with the
array than that will be called as the QUEUE.

The most commonly implemented operations with the stack are
INSERT, DELETE.

Besides these two more operations can also be implemented with the
QUEUE such as PEEP and UPDATE.

During the INSERT operation we have to check the condition for
OVERFLOW and during the DELETE operation we have to check the con-
dition for UNDERFLOW.

The end at which the insertion operation is performed that will be called
as the REAR end and the end at which the delete operation is performed is
known as FRONT end.

6.2 Types of Queue

e Linear Queue

o Circular Queue

o D - Queue (Double ended queue)
o Priority Queue.

6.3 Linear Queue

OVERFLOW

If one can try to insert an element with an filled QUEUE than that situation
will be called as the OVERFLOW.

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (129-166) © 2021 Scrivener Publishing LLC

129

130 DATA STRUCTURE AND ALGORITHMS USING C++

Condition for OVERFLOW
Rear = size -1 (for the QUEUE starts with 0)
Rear = size (for the QUEUE starts with 1)

UNDERFLOW
If one can try to delete an element from an empty QUEUE than that situa-
tion will be called as the UNDERFLOW.

Condition for UNDERFLOW
Front = -1 (for the QUEUE starts with 0)
front = 0 (for the QUEUE starts with 1)

CONDITION FOR EMPTY QUEUE
Front = -1 and Rear = -1 [for the QUEUE starts with 0]
Front = 0 and Rear = 0 [for the QUEUE starts with 1]

EXAMPLES
QUEUE|5]

0 1 2 3 4 front=-1, rear=-1

INSERT(5)

5
0 1 2 3 4 front =0, rear = 0

INSERT(25)

5 25
0 1 2 3 4 front = 0, rear = 1

INSERT(53)

5 25 53
0 1 2 3 4 front = 0, rear = 2

INSERT(78)

5 25 53 78
0 1 2 3 4 front =0, rear = 3

Queue 131

INSERT(99)

5 25 53 78 99
0 1 2 3 4 front =0, rear = 4

INSERT(145)
“OVERFLOW” (rear =size -1 Condition for OVERFLOW)
DELETE

25 53 78 99
0 1 2 3 4 front =1, rear = 4

DELETE

53 78 99
0 1 2 3 4 front =2, rear =4

DELETE

78 99
0 1 2 3 4 front = 3, rear = 4

DELETE

99
0 1 2 3 4 front = 4, rear = 4

DELETE

0 1 2 3 4 front = -1, rear = -1

DELETE
“UNDERFLOW” (front = -1 Condition for UNDERFLOW

ALGORITHM FOR INSERT OPERATION
INSERT(QUEUE[SIZE], FRONT, REAR, NO)

STEP 1: IF (REAR = SIZE - 1) THEN :
WRITE : “OVERFLOW”
RETURN
[END OF IF]

132 DATA STRUCTURE AND ALGORITHMS USING C++

STEP 2 : IF (REAR = -1) THEN :
FRONT :=0
REAR :=0
ELSE :
REAR :=REAR+1
[END OF IF]
STEP 3: QUEUE[REAR] :=NO
STEP 4: RETURN

ALGORITHM FOR DELETE OPERATION
DELET(QUEUE[SIZE], FRONT, REAR)

STEP 1: IF (FRONT = -1) THEN :
WRITE : “UNDERFLOW”
RETURN
[END OF IF]
STEP 2 : WRITE: QUEUE[FRONT]
STEP 3 : IF (FRONT ==REAR) THEN :
FRONT := -1
REAR :=-1
ELSE :
FRONT := FRONT +1
[END OF IF]
STEP 4: RETURN

ALGORITHM FOR TRAVERSE OPERATION
TRAVERSE(QUEUEISIZE], FRONT, REAR)

STEP 1:1IF (FRONT =-1) THEN :
WRITE : “ QUEUE IS EMPTY ”
RETURN
[END OF IF]
STEP 2 : SET I:=0
STEP 3 : REPEAT FORI= FRONT TO REAR
WRITE : QUEUE][I]
[END OF LOOP]
STEP 4: RETURN

Queue 133

ALGORITHM FOR PEEP OPERATION
PEEP(QUEUEJSIZE], NO, FRONT, REAR)

[QUEUEJSIZE] is the Stack]
[NO is the Number to Search]
[Front & Rear are the positions
of the stack]
STEP-1:IF (REAR =-1) THEN :
WRITE : “STACK IS EMPTY”
RETURN
[END OF IF]
STEP-2:SET I: =0
STEP-3 : REPEAT FOR I = FRONT TO REAR
IF (NO = QUEUE[I]) THEN:
WRITE : “NUMBER IS FOUND AT”
WRITE : I+1
WRITE : “POSITION”
RETURN
[END OF IF]
IF I= REAR THEN:
WRITE : “NUMBER IS NOT FOUND”
[END OF IF]
[END OF LOOP]
STEP-4 : RETURN

ALGORITHM FOR UPDATE OPERATION
UPDATE(QUEUEJSIZE], NO, FRONT, REAR)

[QUEUE[SIZE] is the QUEUE]
[NO is the Number to Update]
[FRONT & REAR is the position
of the stack]
STEP-1:1IF (REAR =-1) THEN:
WRITE : “STACK IS EMPTY”
RETURN
[END OF IF]
STEP-2:SET I: =0
STEP-3 : REPEAT FOR I =FRONT TO REAR
IF (NO = QUEUEJI]) THEN:
QUEUE[I] =NO

134 DATA STRUCTURE AND ALGORITHMS USING C++

RETURN

[END OF IF]

IF I=REAR THEN:
WRITE : “UPDATE SUCCESSFULLY NOT
COMPLETED”

[END OF IF]

[END OF LOOP]
STEP-4 : RETURN

6.4 Circular Queue

In circular queue the rear and front end of the queue are inter connected,
i.e/ after reaching to the rear end if the front end is not at zero than rear
will again set to zero , and same also implemented with the front end also.

OVERFLOW

If one can try to insert an element with an filled QUEUE than that situation
will be called as the OVERFLOW.

Condition for OVERFLOW

rear = size -1 and front = 0 OR FRONT = REAR +1(for the QUEUE
starts with 0)

Rear = size and front = 1 OR FRONT = REAR +1(for the QUEUE starts
with 1)

UNDERFLOW
If one can try to delete an element from an empty QUEUE than that situa-
tion will be called as the UNDERFLOW.

Condition for UNDERFLOW
Front = -1 (for the QUEUE starts with 0)
front = 0 (for the QUEUE starts with 1)

CONDITION FOR EMPTY QUEUE
Front = -1 and Rear = -1 [for the QUEUE starts with 0]
Front = 0 and Rear = 0 [for the QUEUE starts with 1]

Queue 135

EXAMPLES
C_QUEUE[5]

0 1 2 3 4 front = -1, rear = -1

INSERT(5)

5
0 1 2 3 4 front =0, rear = 0

INSERT(25)

5 25
0 1 2 3 4 front =0, rear = 1

INSERT(53)

5 25 53
0 1 2 3 4 front = 0, rear = 2

INSERT(78)

5 25 53 78
0 1 2 3 4 front =0, rear =3

INSERT(99)

5 25 53 78 99
0 1 2 3 4 front=0, rear =4

INSERT(145)
“OVERFLOW” (rear =size -1 Condition for OVERFLOW)
DELETE

25 53 78 99
0 1 2 3 4 front =1, rear = 4

DELETE

53 78 99
0 1 2 3 4 front =2, rear =4

136 DATA STRUCTURE AND ALGORITHMS USING C++

DELETE
78 | 99
0 1 2 3 4
INSERT(87)
87 78 | 99
0 1 2 3 4
INSERT(65)
87 | 65 78 | 99
0 1 2 3 4
INSERT(5)
87 | 65 5 78 | 99
0 1 2 3 4
INSERT(89)
“OVER FLOW”
DELETE
87 | 65 99
0 1 2 3 4
DELETE
87 | 65
0 1 2 3 4
DELETE
65
0 1 2 3 4
DELETE
0 1 3 4

front = 3, rear = 4

front =3, rear =0

front =3, rear=1

front = 3, rear = 2

front = 4, rear = 2

front = 0, rear = 2

front =1, rear = 2

front = 2, rear = 2

QuEeue 137

DELETE

0 1 2 3 4 front = -1, rear = -1

DELETE
“UNDERFLOW” (front = -1 Condition for UNDERFLOW

ALGORITHM FOR INSERT OPERATION
INSERT(C_QUEUEISIZE], FRONT, REAR, NO)

STEP 1:1F (REAR =SIZE -1 AND FRONT = 0 OR FRONT = REAR +1)
THEN :
WRITE : “OVERFLOW”
RETURN
[END OF IF]
STEP 2: IF (REAR = SIZE - 1) THEN :
REAR :=0
ELSE :
IF(REAR = -1) THEN:
FRONT :=0
REAR:=0
ELSE
REAR :=REAR+1
[END OF IF]
STEP 3: C_QUEUE[REAR] :=NO
STEP 4: RETURN

ALGORITHM FOR DELETE OPERATION
DELET(C_QUEUEISIZE], FRONT, REAR)

STEP 1 : IF (FRONT = -1) THEN :
WRITE : “UNDERFLOW”
RETURN
[END OF IF]
STEP 2 : WRITE: C_QUEUE[FRONT]
STEP 3 :IF (FRONT ==REAR) THEN :
FRONT := -1
REAR :=-1
ELSE :

138 DATA STRUCTURE AND ALGORITHMS USING C++

IF(FRONT = SIZE-1) THEN:
FRONT =0
ELSE:
FRONT := FRONT +1
[END OF IF]
STEP 4: RETURN

ALGORITHM FOR TRAVERSE OPERATION
TRAVERSE(C_QUEUEJSIZE], FRONT, REAR)

STEP 1 : IF (FRONT = -1) THEN :
WRITE : “ QUEUE IS EMPTY ”
RETURN
[END OF IF]
STEP 2 : SET =0
STEP 3: IF (FRONT > REAR) THEN:
REPEAT FOR I = FRONT TO SIZE-1
WRITE : C_QUEUE(]]
[END OF LOOP]
REPEAT FORI = 0 TO REAR
WRITE : C_QUEUE(]]
[END OF LOOP]

ELSE:
REPEAT FOR I = FRONT TO REAR
WRITE : C_QUEUE[I]
[END OF LOOP]
STEP 4: RETURN

6.5 Double Ended Queue

The Double ended queue is also called as D-QUEUE or DE-QUEUE or
DEQUE which allows to perform the insertion and deletion operation at
both the ends. Depending upon the operations this can be categorized into

two types as
o Input Restricted DEQUE
« Output Restricted DEQUE

QuUEUuE 139

INPUT RESTRICTED DEQUE

In this type of queue the insertion operation is restricted i.e/ it allows
the insertion operation at one end but the deletion operation is at both the
ends. One can perform the insertion operation at the rear end only but the
insertion and deletion operation can be performed at front end.

OUTPUT RESTRICTED DEQUE

In this type of queue the Deletion operation is restricted i.e/ it allows
the deletion operation at one end but the insertion operation is at both the
ends. One can perform the deletion operation at the front end only but the
insertion and deletion operation can be performed at rear end.

6.6 Priority Queue

Priority queues are a kind of queue in which the elements are dequeued
in priority order.

« Theyare a mutable data abstraction: enqueues and dequeues
are destructive.

o Each element has a priority, an element of a totally ordered
set (usually a number)

« More important things come out first, even if they were
added later

« Our convention: smaller number = higher priority

 There is no (fast) operation to find out whether an arbitrary
element is in the queue

o Useful for event-based simulators (with priority = simulated
time), real-time games, searching, routing, compression via
Huffman coding

Depending on the heaps the priority queue are also of two types such as
Min Priority Queue
Max Priority Queue

The Set of operations for Max Priority Queue are
o Insert(A,N) : Inserts an element N into A

e Maximum(A,X) : Finds the X from A where X is the
Maximum

140 DATA STRUCTURE AND ALGORITHMS USING C++

o Extract_Max(A) : Remove and returns the element of S with
largest Key

o Increase_Key(A,x,k) : Increases the value of element X’s to
the new value k which is assumed to be at least as large as x’s
current key value.

The Set of operations for Min Priority Queue are

e Insert

¢ Minimum

o Extract Min

o Decrease_Key

The most important application of Max Priority Queue is to schedule
jobs on a shared computer. The Max Priority queue keeps track of the jobs
to be performed and their relative priorities. When a job is finished or
interrupted the highest priority job is selected from those pending using
Extract-Max, A new job can be added to the queue at any time by using
Insert.

EXTRACT_MAX operation returns the largest element. So to find the
largest element from an unordered list takes O(n) times. An alternative is
to use an ordered linear list . The elements are in non decreasing order if a
sequential representation is used.

The Extract-Max operation takes 0(1) and the Insert time is O(n).
When Max heap is used both Extract-max and insert can be performed in
O(logn) time.

ALGORITHM MAXIMUM(A,X)
1. return A[1]

ALGORITHM EXTRACT-MAX(A)

If heapsize[A]<1
then Write : “Heap Underflow”
Max «A[1]

A[1] «Alheapsize[A]]
heapsize[A] <heapsize[A]-1
Max_Heap(A,1)

retrun Max

N L

Queue 141

ALGORITHM INCREASE-KEY (A,i,key))

SR

if key <A[i]

then write “key is smaller than the current key”
Ali] « key

while i > 1 and A[PARENT(i)]< A[i]

do exchange A[i] «<>A[PARENT()]

i < Parent(i)

ALGORITHM INSERT (A, key)

1.
2.
3.

heapsize[A] < heapsize[A] + 1
Alheapsize[A]] ¢ -
INCREASE-KEY/(A, heapsize[A],key)

The running time of INSERT on an n-element heap is O(lgn)
A heap can support any priority-queue operation on a set of size

n in O(Ign) time.

OPERATIONS FOR MIN PRIORITY QUEUE
ALGORITHM MINIMUM(A,X)

2.

return A[1]

ALGORITHM EXTRACT-MIN(A)

8.

9.
10.
11.
12.
13.
14.

If heapsize[A]<1

then Write : “Heap Underflow”
Max <A[1]

A[1] «Aflheapsize[A]]
heapsize[A] <heapsize[A]-1
Max_Heap(A,1)

retrun Min

ALGORITHM DECREASE-KEY (A,i,key))

© 0 XN

if key >Al[i]

then write “key is greater than the current key”
Ali] < key

whilei> 1 and A[PARENT»{)]> A[i]

142 DATA STRUCTURE AND ALGORITHMS USING C++

11. do exchange A[i] <>A[PARENT(i)]
12. i« Parent(i)

ALGORITHM INSERT(A,key)

4. heapsize[A] < heapsize[A] + 1
5. Alheapsize[A]] ¢ -0
6. DECREASE-KEY(A, heapsize[A],key)

6.7 Programs

1. /* INSERTION AND DELETION IN A QUEUE ARRAY
IMPLEMENTATION */

include<iostream>
#include<stdlib.h>
using namespace std;
int *qg,size, front=-1,rear=-1;
void insert (int n)
{

if (rear ==size-1)

cout<<”\n QUEUE OVERFLOW”;

else
{
rear ++;
* (g+rear) = n ;
if (front == -1)
front = 0;

/* Function to delete an element from queue */
void Delete ()
if (front == -1)
cout<<”\n Underflow”;
return ;
cout<<”\n Element deleted : “<<* (g+front) ;
if (front == rear)
front = -1;
rear = -1;

else

QUEUE

front = front + 1;
void display ()
int i;
if (front == -1)
cout<<”\n EMPTY QUEUE”;
else
cout<<”\nTHE QUEUE ELEMENTS ARE”;
for(i = front ; 1 <= rear; i++)
cout<<”\t"”<<* (g+i) ;
int main()
int opt;
cout<<”\n Enter the size of the QUEUE”;
cin>>gize;
g= (int *)malloc(size * sizeof (int));
while (1)

{

cout<<”\n Enter the choice”;
cout<<”\n 1.INSERT 2. DELETE 3. DISPLAY 0. EXIT”;
cin>>opt;
if (opt==1)
{
cout<<”\n Enter the number to insert”;
cin>>opt;
insert (opt) ;

}
else
if (opt==2)
Delete () ;
else
if (opt==3)
display () ;
else
if (opt==0)
exit (0) ;
else
cout<<”\n INVALID CHOICE”;

143

144 DATA STRUCTURE AND ALGORITHMS USING C++

Output

Enter the size of the QUEUE4

Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Enter the number to insert23

Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Enter the number to insertd3

Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Enter the number to insertth

Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Enter the number to insert??

Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Enter the number to insert88

QUEUE OUERFLOW
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY B. EXIT3

HE QUEUE ELEMENTIS ARE 23 43 65
Enter the choice

1.INSERT 2. DELETE 3. DISPLAY @A. EXITZ

Element deleted = 23
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Element deleted : 43
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Element deleted := 65
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Element deleted := 77
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY

Underf low
Enter the choice
1.INSERT 2. DELETE 3. DISPLAY A. EXITA

Process exited after 22.92 seconds with return value 8
ress any key to continue . . .

QUuEeuE 145

2. CIRCULAR QUEUE OPERTIONS

#include<iostreams>
#include<iomanip>
using namespace std;
//body of class
class CircularQueue

{

private : //declare data members
int front, rear,size, *cqg;
public:
CircularQueue (int); //constructor

//method declarations
void Enqueue (int) ;
void Dequeue () ;
void Print () ;
bool isEmpty () ;
bool isFull();
void Clear() ;
int getFront () ;
int getRear () ;
Vi

//body of constructor

CircularQueue :: CircularQueue (int n)
size= n;
front=-1; //initialize front
rear=-1; //initialize rear

cqg = new int[size]; //allocate memory for
circular queue

}

//method will return the value of rear
int CircularQueue :: getRear ()

{
}

//method will return the value of front
int CircularQueue :: getFront ()

{
}

//method will clear the elements of queue
void CircularQueue :: Clear()

{

return rear;

return front;

front=-1; //set front to -1
rear=-1; //set rear to -1

146 DATA STRUCTURE AND ALGORITHMS USING C++

//method will return true if circular queue is

full
bool CircularQueue :: isFull()

{ //condition for circular queue is full
if (front==0 && rear == size-1 || front ==
rear+1)
return true;
else

return false;
}
//method will return true if the circular
queue 1is empty
bool CircularQueue :: isEmpty ()
{
if (front==-1) //condition for empty
return true;
else
return false;
}
//method will print the elements of circular
queue
void CircularQueue :: Print ()
{
int 1i;
if (isEmpty()) //check for empty queue
printf(“\n CIRCULAR QUEUE IS EMPTY”) ;
else
if (front > rear) //print the elements when
front > rear

{

for(i = front; i <= size-1; i++)
cout<<cqg[i] <<setw(5) ;
for(i = 0; i1 <= rear; i++)

cout<<cqg[i] <<setw(5) ;

}

else //print the elements from front to rear
for(i = front; i <= rear; 1i++)
cout<<cqgl[i] <<setw(5) ;

}

//method will insert an element into circular queue
void CircularQueue :: Engueue (int n)

{

if (isFull()) //condition for overflow

{

printf (“\n Overflow”) ;
return;

QUEUE

if (rear == -1) /* Insert first element */
front = 0;
rear = 0;
else
if (rear == size-1) //if rear is
at last then assign it to first
rear = 0;
else
rear++; //increment the

value of rear
//assign the number into circular queue
cqglrear]=n ;
}
//method to delete the elements from queue
void CircularQueue :: Dequeue ()
{
int ch;
if (isEmpty()) //condition for underflow
{
printf (“\nUnderflow”) ;
return ;

}

//print the element which is to be delete

cout<<endl<<cqg[front]<<” deleted from circular

queue” ;

if (front ==rear) //condition for queue having

single element

{

Clear () ;
}
else
if (front == size-1)
front = 0;
else
front++;

//driver program
int main ()
int opt,n;
char ch;
cout<<endl<<”Enter the size of circular queue”;

148 DATA STRUCTURE AND ALGORITHMS USING C++

cin>>n; //ask user about the size of circular queue
CircularQueue obj(n); //declare an object

//infinite loop to control the program
while (1)

{
cout<<endl<<”***x*kxx* M E N U **kkkkkkr .
cout<<endl<<”e. ENQUEUE\nd. Dequeue\nm. isEmpty\nu.
isFull\nc.Clear\nf. Get Front\nr. Get Rear\np. Print)\
ng. Quit”;
cout<<endl<<”Enter Choice Y
cin>>ch;

//condition for enqueue ()
if (ch=='e’ || ch=='E")

cout<<endl<<”Enter the number to insert”;
cin>>opt;

obj .Enqueue (opt) ;
}
else //condition for dequeue ()
if (ch=='d’ || ch=='D")

obj .Dequeue () ;
}
else //condition for call to isEmpty ()
if (ch=="m’ || ch=='M")

if (obj.isEmpty())
cout<<endl<<”Circular Queue is EMPTY”;

else
cout<<endl<<”Circular
Queue 1is not empty” ;

}
else //condition to call isFull()
if (ch=="u’ || ch=="T7")

if (obj.isFull())
cout<<endl<<”Circular Queue is FULL”;
else
cout<<endl<<”Circular
Queue is not Full”
1
else //condition to call clear ()
if (ch=='c’ || ch=='C")
obj.Clear() ;
else

QUuUEUE 149

if (ch=="f’ || ch=='F’) //condition to call
getFront ()
cout<<endl<<”Front = “<<obj.getFront () ;
else
if (ch=='r’ || ch=='R’) //condition to call
getRear ()
cout<<endl<<”Rear = “<<obj.getRear() ;
else //condition to call Print ()
if (ch=='p’ || ch=='P")

obj.Print () ;
else //condition to terminate the program
if (ch=="q’ || ch=='0Q")
exit (0) ;
else
cout<<endl<<”Invalid Choice”;

150 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

nter the size of circular gueue3l

MEHNLU
ENGQUEUE

. Degqueue
. isEmpty

t. isFull

.Clear

. Get Front

. Get Rear

. Print

. Quit

nter Choice = I

CIRCULAR QUEUE 1S EMPTY
p M E N U s
ENQUEUE

Dequeue
isEmpty
isFull
Clear
Get Front
Get Rear
Print
Quit
ter Choice

Get Front
Get Rear
Print
Quit

ter Choice

Degueue
isEmpty
isFull

Get Front
Get Rear
Print
Quit
ter Choice H |

ircular Queue is not Full
b H E N U ==
ENQUEUE

Degqueue

isEmpty
t. isFull
Clear

Get Front
». Get Hear

Print

Quit

ter Choice

QUEUE

Circular Queuve is EMPTY
ot et e T T Y I | = 2 SR s e
e. ENQUEUE
Degueue
isEmpty
izFull
c.Clear
f. Get Front
. Get HRear
p. Print
- Quit
Enter Choice - E

Enter the number to insertl

s M E
ENQUEUE
Degueue
isEmpty
isFull

c.Clear

f. Get Front

r. Get Rear

p. Print
- Quit

Enter Choice : E

N U s

Enter the number to insertid

Get Front
r. Get Hear
p- Print
g. Quit
Enter Choice : E

Enter the number to inserthh

isEmpty
isFull

Get Rear
p- Print
[lg- Quit
Enter Choice : E

Enter the number to insert2

Ouerf low

151

152 DATA STRUCTURE AND ALGORITHMS USING C++

e M| E N U
e. ENQUEUE

d. Dequeue

m. isEmpty

. isFull
c.Clear

f. Get Front
. Get Rear
p- Print

. Quit

Enter Choice
12 34 56
s M E M
e. EMQUEUE

d. Dequeue

m. isEmpty

. isFull
c.Clear

f. Get Front
. Get Rear
p. Print

g. Quit

Enter Choice H)}

12 deleted from circular gueue

wrmE M E W I e
e. ENQUEUE

d. Degqueue

m. isEmpty

. isFull

c.Clear

f. Get Front

. Get Rear

p. Print

. Quit

Enter Choice = D

34 deleted from circular gueue

. Get Rear
p. Print
g. Quit
Enter Choice
=1

QUEUE

B o N O Y I [== e e

e. ENQUEUE

d. Degueue

m. isEmpty

w. igFull

c.Clear

f. Get Front

». Get Rear

p. Print

g- Quit

Enter Choice HEl}

Circular Queue is not Full
e e e B e
e. ENQUEUE
d. Degueue
m. isEmpty
isFull
c.Clear
f. Get Front
». Get Rear
p. Print
. Quit
Enter Choice Hl, |

Circular Queue is not empty
HxEasEd M N | =emewsEws
e. ENQUEUE

d. Degqueue

m. isEmpty

u. isFull

c.Clear

f. Get Front

Enter Choice : E
Enter the number to inzert3d

e [B W | e
e . ENGUEUE
d. Degueue
m. isEmpty
. isFull
c.Clear

f. Get Front
». Get Rear
p. Print

g. Quit
Enter Choice

m. isEmpty

u. isFull

c.Clear

f. Get Front

. Get Rear

p. Print

g. Quit

Enter Choice
34

s

153

154 DATA STRUCTURE AND ALGORITHMS USING C++

. Get Rear
p. Print
g. Quit
Enter Choice

e M E N
e . EMQUEUE

d. Degueue

m. isEmpty

w. isFull
c.Clear

f. Get Front
. Get Rear

p. Print
g. Quit
Enter Choice

Underf low

isFull
c.Clear
f. Get Front
». Get Rear
p. Print
. Quit
Enter Choice

Process exited after 283.3 seconds with return value B
Press any key to continue . . .

3. CIRCULAR QUEUE PROGRAM FOR INSERT,DELETE,SERCH
AND TRAVERSE OPERATIONS

#include<iostream>
using namespace std;
//structure of class cqueue
class cqueue
{
private:
int front, rear, cnt,queue[10] ;
public:
cqueue () ; //constructor
void enqueue (); //prototype of enqueue ()
void dequeue(); //prototype of dequeue ()
int count(); //count the number of
elements in queue
void traverse(); //traverse the queue elements
bool search(int); //search an element in
circular queue

QuEeue 155

cqueue :: cqueue ()

{

front=-1; //assign -1 to front and rear for empty
queue

rear=-1;

cnt=0;//set 0 to count

}

//method to insert an element into the queue
void cqueue :: enqueue ()

{

//condition for overflow
if (front == 0 && rear==9 || front == rear+l)

{
}

else

cout<<endl<<”OVERFLOW” ;

if (rear==-1) //condition for queue does not
having any element

{

front=0; //set the front and rear to
0
rear=0;
}
else
if (rear==9 && front!=0) //condition
for rear is at last but queue having
empty space

rear=0;
else
{ //increase the rear for
insertion
rear++;

//insert an element into the
queue
cout<<endl<<”Enter an element to insert into

queue” ;
cins>>queue [rear] ;

}

//method to delete an element from queue
void cqueue :: dequeue ()

{

if (front==-1) //condition for underflow

{

156

DATA STRUCTURE AND ALGORITHMS USING C++

cout<<endl<<”UNDERFLOW” ;
}
else
{ //print the element to delete
cout<<endl<<queue [front] <<” deleted from queue”;
//set the front
if (front==rear) //queue having single
element
{
front=-1;
rear=-1;
}
else
if (front==9) //condition for front is
at last
front=0;
else
front=front+1l; //increase the front
}
}

//method to traverse the queue

void cqueue :: traverse()
{
int 1i;
if (front==-1) //condition for empty queue

cout<<endl<<”EMPTY QUEUE”;
else
if (front >rear) //condition for front
is greater to rear
for(i=front;i<=9;i++) //print
the elements from front to last
cout<<queue [1] <<” w,
for(i=0;i<=rear;i++) //print the
elements from 0 to rear

w

cout<<queue [i] <<” ;
else
for (i=front;i<=rear;i++) //print the
elements from front to rear

w

cout<<queue [1] <<” ;
//method to count the number of elements in queue
int cqueue :: count ()
int 1i;
cnt=0;

QuEeue 157

if (rear==-1) //condition for queue does
not having element
return cnt;//return cnt as 0

else
if (front >rear) //condition having

front greater to rear

{

for (i=front;i<=9;i++) //count number
of elements from front to last
cnt++;

for (i=0;i<=rear;i++) //count the
elements from 0 to rear

cnt++;

}

else

for (i=front;i<=rear;i++) //count the
elements from front to rear

cnt++;

return cnt; //return count

}

//method to search an element in queue

bool cqueue :: search(int n)
{
int 1i;
if (rear==-1) //if queue does not having

any element then return false
return false;

if (front >rear) //condition having
front greater to rear

{

for (i=front;i<=9;1i++)//search number
of elements from front to last

if (n==queue[i])

return true;
for(i=0;i<=rear;i++)//search the
elements from 0 to rear

if (n==queue[i])
return true;

}

else
for (i=front;i<=rear;i++)//search the
elements from front to rear
if (n==queue[i])
return true;
return false;

}

//driver program

158 DATA STRUCTURE AND ALGORITHMS USING C++

int main()
{
int opt,n;
cqueue obj;
cout<<endl<<"***********************\n";
cout<<endl<<”CIRCULAR QUEUE OPERATIONS” ;
cout<<end1<<”*****************\n”’-
//loop to operate the operations with queue
till user wants
while (1)
{

//display the menu

cout<<endl<<”1l. INSERT 2. DELETE 3. COUNT 4.
SEARCH 5. TRAVERSE 0.EXIT”;
cout<<endl<<”Enter your choice”;

cin>>opt; //read the choice

if (opt==1) //condition for insert operation
obj .enqueue () ;

else

if (opt==2) //condition for delete operation
obj.dequeue () ;

else

if (opt==3) //condition for count operation

cout<<endl<<”Circular gqueue having “<<obj.
count () <<” number of elements”;

else

if (opt==4) //condition for search operation
cout<<endl<<”Enter an element to
search”;
cin>>n;
if (obj.search(n))
cout<<endl<<n<<” ig inside the queue”;
else
cout<<endl<<n<<” is not inside the
queue” ;
!
else
if (opt==5) //condition for traverse
operation
obj.traverse () ;
else
if (opt==0) //condition for terminate the
loop
break;

else //invalid option
cout<<endl<<”Invalid choice”;

OUTPUT

CIRCULAR QUEUE OPERATIONS

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE

Enter your choicel
Enter an element to

1. INSERT 2. DELETE

Enter your choicel
Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

Enter an element to

1. INSERT 2. DELETE
Enter your choicel

OUERFLOW
1. INSERT 2. DELETE
Enter your choiceb

23 34 5 65

26 87 5 3

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

insert into

3. COUNT 4.

3. COUNT 4.

26

SEARCH 5. TRAUVERSE

queue23d

SEARCH 5. TRAUERSE

queue34

SEARCH 5. TRAUVERSE

gqueues

SEARCH 5. TRAVERSE

queuebs

SEARCH 5. TRAUVERSE

queue?b

SEARCH 5. TRAUVERSE

queuel?

SEARCH 5. TRAVERSE

queues

SEARCH 5. TRAUVERSE

queue3

SEARCH 5. TRAUERSE

queue?6

SEARCH 5. TRAUERSE

queue4d
SEARCH 5.

TRAUVERSE

SEARCH 5. TRAUERSE

43

QUEUE

B.EXIT

B.EXIT

B.EXIT

B8.ERIT

B.EXIT

B.EXIT

B_EXIT

B.EXIT

159

160 DATA STRUCTURE AND ALGORITHMS USING C++

1. INSERT 2. DELETE 3. COUNT 4.
Enter your choice2

23 deleted from gueue
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B.
Enter your choice2

34 deleted from gqueue
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B@.EXIT

Enter your choice2

L deleted from gueue

1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B.EXIT
Enter your choicel

Enter an element to insert into gueue3d3l

d. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAVERSE @.EXIT

Enter your choicedl
Enter an element to insert into gueuedd

1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE 8.
Enter your choice3

Circular gueue having 9 number of element
d. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. IRHUERSE A.EXIT
Enter your choicel

Enter an element to insert into gueuebt

. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE @.

Enter your choicel

OUERFLOW
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAVERSE B.EXIT
Enter your choice3

ircular gueue having 18 number of elements
1. INSERT 2. DELETE 3. GOUNT 4. SEARCH 5. TRAUERSE B@.EXIT
Enter your choiceb
65 76 87 5 3 Y6 43 33 44 56
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B@.EXIT
Enter your choicel

Circular gueue having 10 number of elements

1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE A.
Enter your choice3d3

Invalid choice

1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE @.EXIT
Enter your choice4

Enter an element to search33

33 is inside the qgueue

4. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE @.
Enter your choice4d

Enter an element to searchl

1 is not inside the gqueue
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE @._EXIT

Enter vour choiceb
87 L 3 43 33 44 Gg

1. INSERT 2. DELETE 3.
Enter your choice2

65 deleted from gueue
. INSERT 2. DELETE 3.
Enter your choice2

COUNT

76 deleted from gueue
1. INSERT 2. DELEIE 3.
Enter your choice2

COUNT

87 deleted from gueue
. INSERT 2. DELEIE 3.
Enter your choice2

COUNT

5 deleted from gueue
. INSERT 2. DELETE 3.
Enter your choice2

COUNT

3 deleted from gueue
. INSERT 2. DELETE 3.

Enter your choice2

COUNT

76 deleted from queue
1. IMSERT 2. DELEIE 3.
Enter your choice2

43 deleted from queue
1. IMSERT 2_ DELETE 3.
Enter your choices

33 4

1. INSERT 2. DELETE 3. COUNT 4.
Enter your choicel

COUNT

Circular gqueue having 3 number
1. INSERT 2. DELETE 3. COUNT 4.
Enter your choice

33 deleted from gueue
1. INSERT 2. DELETE 3. COUNT 4.
Enter vour choice2

44 deleted from gqueue
1. INSERT 2. DELETE 3. COUNT 4.
Enter your choicel

Enter an element to intert into

1. INSERT 2. DELETE 3. COIUNT 4.
Enter your choiceS

5
d. INSERT 2. DELETE 3. COUNT 4.

Enter your choice2

C6 deleted from gueue
1. INSERT Z. DELETE 3. COUNT 4.
Enter your choice2

56 deleted from gueune
1. INSERT 2. DELETE 3.
Enter your choice2

UNDERFLOY

COUNT 4.

. SEARCH

. SEARCH

. SEARGH

. SEARCH

. SEARCH

. SERRCH

- SERRCH

5. TRAUERSE

5. TRAVERSE

5. TRAVERSE

5. TRAVERSE

5. TRAVERSE

5. TRAVERSE

5. TRAVERSE

5. TRAVERSE

SEARCH 5. TRAVERSE

of elements

SEARCH 5. TRAVERSE

SEARCH 5. TRAUVERSE

SEARCH 5. TRAVERSE

queueb6

SEARCH 5. TRAUVERSE

SEARCH 5. TRAUVERSE

SEARCH 5. TRAUERSE

SEARCH 5. TRAVERSE

QUEUE

B.EXIT

B.ERIT

B.ERIT

B.ERIT

B_EXIT

B_EXIT

B_EXIT

B.EXIT

B_EXIT

A.EXIT

B_ERIT

B_ERIT

B.EXIT

162 DATA STRUCTURE AND ALGORITHMS USING C++

1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B.EXIT
Enter vour choiceld

Circular gueue having B number of elements
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAUERSE B.ERIT
Enter your choice4d

Enter an element to searchbé

56 iz not inside the gueue
1. INSERT 2. DELETE 3. COUNT 4. SEARCH 5. TRAVERSE B.EXIT
Enter your choiceB

Process exited after 180.8 seconds with return value 8
Press any key to continue . . .

4. PROGRAM FOR DE-QUEUE INSERTION AND DELETION

#include<iostreams>
using namespace std;
#define SIZE 50
class dequeue {
int al[50],f,r;
public:
dequeue () ;
void insert at beg(int) ;
void insert at end(int);
void delete fr front();
void delete fr rear();
void show () ;

bi

dequeue: :dequeue () {
f=-1;
r=-1;

}

void dequeue::insert at _end(int 1) ({
if (r>=SIZE-1) {
cout<<”\n insertion is not possible, overflow!!!!”;
} else {
if (£==-1) {
f++;
T++;
} else {
r=r+1;
}

alrl=1i;
cout<<”\nInserted item is”<<alr];

}

void dequeue::insert at beg(int 1) ({

QUEUE

if (F==-1) {

£=0;

al++rl=1i;

cout<<”\n inserted element is:”<<i;
} else if (£!=0) {

al--fl=1;
cout<<”\n inserted element is:”<<i;
} else {

cout<<”\n insertion is not possible, overflow!!!”;

}
}

void dequeue::delete fr front () {
if (f==-1) {

cout<<”deletion is not possible::dequeue is empty”;

return;
}
else {
cout<<”the deleted element is:”<<alf];
if (f==1)
f=r=-1;
return;
} else
f=f+1;
}

}

void dequeue::delete fr rear() {
if (f==-1) {

cout<<”deletion is not possible::dequeue is empty”

return;
}
else {
cout<<”the deleted element is:”<<alr];
if (f==r)
f=r=-1;
} else
r=r-1;
}
}

void dequeue: :show () {

if (f==-1) {
cout<<”Dequeue is empty”;
} else {

for(int i=f;i<=r;i++)
cout<<al[i]l<<” “;

163

164 DATA STRUCTURE AND ALGORITHMS USING C++

int main()
int ¢, i;
dequeue d;
do //perform switch opeartion

cout<<”\n
cout<<”\n

{

cout<<”\n 1

cout<<”\n 2

cout<<”\n 3

cout<<”\n 4.deletion from front”;
5
6

.insert at beginning”;
.insert at end”;
.show” ;

.deletion from rear”;
.exit”;

cout<<”\n enter your choice:”;
cin>>c;
switch(c) |

}

case 1:
cout<<”enter the element to be
cin>>1i;
d.insert_at beg(i);
break;
case 2:
cout<<”enter the element to be
cin>>1i;
d.insert_at end(i);
break;
case 3:
d.show() ;
break;
case 4:
d.delete fr front();
break;
case 5:
d.delete fr rear();
break;
case 6:
exit (1) ;
break;
default:
cout<<”invalid choice”;
break;

} while(c!=7);

inserted”;

inserted”;

QUEUE 165

6.8 Questions

What is queue data structure?

What is the benefit of circular queue over linear queue?
What is double-ended queue?

What are the operations performed with priority queue?
Write a few applications of priority queue.

Mention the overflow and underflow condition of circular
queue.

7. Write a program to show the implementation of double
ended queue.

SN

7
Linked List

The linked list is the way of representing the data structure that may be lin-
ear or nonlinear. The elements in the linked list will be allocated randomly
inside the memory with a relation in between them. The elements in the
linked list is known as the NODES.

The link list quite better than the array due to the proper usage of memory.

7.1 Why Use Linked List?

The array always requires the memory that are in sequential order but the
linked list requires a single memory allocation which is sufficient enough
to store the data. In case of array the memory may not be allotted even if
the memory space is greater than the required space because that may not
be in sequential order.

7.2 Types of Link List

The link list are of Four types such as

« Single Link List

e Double Link List
o Circular Link List
o Header Link List

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (167-248) © 2021 Scrivener Publishing LLC

167

168 DATA STRUCTURE AND ALGORITHMS USING C++
7.3 Single Link List

STRUCTURE OF THE NODE OF A LINKED LIST

The node of a link list having the capacity to store the data as well as the
address of its next node and the data may varies depending on the users
requirement so it will be better to choose the data type of the node as
STRUCTURE which will have the ability to store different types of ele-
ments. The general format of the node is

Struct tagname

{
Data type memberl;

Data type member2;

Struct tagname *var;
i

Example:
struct link
{
int info;
struct link *next;

b

This structure is also called as self referential structure.

CONCEPT OF CREATION OF A LINKED LIST

int *p,q=>5;

p=&q;

*P=*p+5

After this the value of q is being changed to 10.

The main observation here is that if a pointer variable points to
another variable then what ever the changes made with the pointer that
will directly affect to the variable whose address is stored inside the
pointer and concept is used to design/create the linked list.

LiNkED LisT 169

LOGIC FOR CREATION

struct link

{
int info;
struct link *next;
}i

struct link start, *node;

start

200

Node 300

400

500

LOGIC

NODE = &START

Node->next = (struct link *)malloc(sizeof(struct link))
Node = node->next

Node->next = NULL

Input node->info

ALGORITHM FOR CREATION OF SINGLE LINK LIST

170 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM FOR TRAVERSING OF SINGLE LINK LIST

INSERTION

The insertion process with link list can be discussed in four different ways
such as

« Insertion at Beginning

o Insertion at End

o Insertion when node number is known
o Insertion when information is known

LiNnkeD LisT 171

first

R\

LOGIC

First = &start

Node = start.next

Allocate a memory to NEW
Input NEW->info
First->next = NEW
NEW->next = node.

ALGORITHM FOR INSERTION AT BEGINNING

172 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM FOR INSERTION AT LAST

ALGORITHM FOR INSERTION OF NODE WHEN NODE
NUMBER IS KNOWN

LiNnkeD LisT 173

ALGORITHM FOR INSERTION OF NODE WHEN

INFORMATION IS KNOWN

174 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM FOR DELETION FROM BEGINNING

ALGORITHM FOR DELETION THE LAST NODE

LiNnkeD LisT 175

ALGORITHM FOR DELETION OF NODE WHEN NODE
NUMBER IS KNOWN

176 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM FOR DELETION OF NODE WHEN
INFORMATION IS KNOWN

LINKED LisT

7.4 Programs Related to Single Linked List

7.4.1 /* Creation of a Linked List */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
Vi
struct link start;
/* Function main */
void create(struct link *);
void display (struct link *);
int main|()
{
struct link *node;
create (node) ;
display (node) ;

void create(struct link *node) /*LOGIC TO CREATE A LINK
LIST*/

char ch='y’;

start.next = NULL;

177

node = &start; /* Point to the start of the list */

while(ch ::’y’ || Ch=:'Y')

{

node-snext = (struct link*) malloc (sizeof (struct 1ink));

node = node->next;

cout<<”\n ENTER A NUMBER : “;
cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES:
cin>>ch;

w.,
7

178 DATA STRUCTURE AND ALGORITHMS USING C++

void display(struct link *node)
{ /*DISPLAY THE LINKED
LIST*/
node = start.next;
cout<<”\n After Inserting a node list is as
follows:\n”;
while (node)

{

cout<<setw(5) <<node->info;
node = node->next;

ENTER A NUMBER : 5

DO ¥YOU WANT TQ CRIEATE NODEE: uy
ENTER A NUMBER : 32

DO ¥YOU WANT TO CRTEATE NODES: u
ENTER A NUMBER : 58y

DO YOU UWANT TO CRIEATE NODES :
ENTER A HUMBER : 98

DO YOU WANT TO CRIERTE NODES: y
ENTER A HUMBER : 5
DO ¥OU WANT TO CRTEATE MORE NODES: n

After Insertégg a node list is as follouws:

Process exited after 12.23 seconds with return value
Press any key to continue . .

7.4.2 [*Insert a Node Into a Simple Linked List at
the Beginning */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct list
{

int info;

struct list *next;

}i

LiNnkeD LisT 179

struct list start, *first, *New;
/* Function main */

void create(struct list *);
void display (struct list *);
void insert (struct list *);

int main()
{
struct list *node;
create (node) ;
insert (node) ;
display (node) ;

void create (struct list *node) /*LOGIC TO CREATE A LINK LIST*/

{

char ch='y’;

start.next = NULL;

node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")

{

node-s>next = (struct list*) malloc (sizeof (struct
list));

node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<"\n DO YOU WANT TO CRTEATE MORE NODES: “;

cin>>ch;

void display(struct list *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;
cout<<”\n After Inserting a node list is as
follows:\n”;
while (node)
{
cout<<setw(5) <<node->info;
node = node->next;

void insert (struct list *node)
{ /*INSERT AN ELEMENT AT THE
FIRST NODE*/

node = start.next;

180 DATA STRUCTURE AND ALGORITHMS USING C++

first = &start;

New = (struct list*) malloc(sizeof (struct list)) ;
New->next = node ;

first->next = New;

cout<<”\n Input the fisrt node value: “;
cin>>New->info;

Output

ENTER A NUMBER : 3
DO ¥YOU WANT TO CRTEATE MORE NODES: y
ENTER A NUMBER : 8
DO ¥OU WANT TO CRTEATE MORE NODES: y
ENTER A NUMBER : %
DO YOU YWANT TO CRTEATE MORE NODES: n

Input the fisrt node value: 34

After Inserting a node list is as follows:
34 3] 9

Process exited after 15 seconds with return value @
Press any key to continue .

7.4.3 /* Insert a Node Into a Simple Linked List at the End
of the List */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct list
{

int info;

struct list *next;
}i
struct list start, *first, *New, *last;
/* Function main */
void create(struct list *);
void display (struct list *);
void insert (struct list *);

int main{()

{

struct list *node;
create (node) ;

LiNnkeD LisT 181

insert (node) ;
display (node) ;

void create(struct list *node) /*LOGIC TO CREATE A LINK
LIST*/

{

char ch='y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct list*)
malloc (sizeof (struct list));
node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct list *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;
cout<<”\n After Inserting a node list is as follows:\n”;
while (node)
{
cout<<setw(5) <<node->info;
node = node->next;

void insert (struct list *node)
{ /* LOGIC OF INSERTION (LAST NODE) */
node = start.next;
last = &start;
while (node)
{
node = node->next;
last= last->next;
!
if (node == NULL)
{
New = (struct list*) malloc (sizeof (struct list));
New->next = node ;
last->next = New;

182 DATA STRUCTURE AND ALGORITHMS USING C++

cout<<”\n ENTER THE VALUE OF LAST NODE: “;
cin>>New->info;

ENTER A NUMBER : 12

DO YOU YANT TO CRTEATE MORE NODES:
ENTER A NUMBER : 65

DO YOU WANTI TO CRTEATE MORE NODES:
ENTER A NUMBER : 98

DO ¥YOU WANTI TO CRTEATE MORE NODES:
ENTER A NUMBER : 22

DO ¥YOU YANT TO CRTEATE MORE NODES:
ENTER THE UALUE OF LAST NODE: 3

After Inserting a node list is as follows:

65 28

Process exited after B.413 seconds with return value 8
Press any key to continue . . .

7.4.4 /*Inserta Node Into a Simple Linked List When the
Node Is Known */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link
{

int info;

struct link *next;
Vi
struct link start, *first, *New, *previous;
/* Function main */
void create(struct link *);
void display (struct link *);
void insert (struct link *);

int main{()

{
struct link *node;
create (node) ;

LiNkeD LisT 183

insert (node) ;
display (node) ;

void create(struct link *node) /*LOGIC TO CREATE A LINK

LIST*/

{

char ch='y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*)
malloc (sizeof (struct 1link)) ;
node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display (struct link *node)

{

/*DISPLAY THE LINKED LIST*/

node = start.next;
cout<<”\n After Inserting a node list is as
follows:\n”;
while (node)
{

cout<<setw(5) <<node->info;

node = node->next;

void insert (struct link *node)

{

/* Inserting a node */

int non = 0;

int pos;

node = start.next;

previous = &start;

cout<<”\n ENTER THE POSITION TO INSERT:”;
cin>>pos;

while (node)

{

if ((non+1l) == pos)

{

184 DATA STRUCTURE AND ALGORITHMS USING C++

New = (struct link*) malloc (sizeof (struct
link));
New->next = node ;
previous->next = New;
cout<<endl<<”\n Input the node value:
cin>>New->info;
break ;
else
node = node->next;
previous= previous-s>next;
non++;
OUTPUT

7.4.5

ENTER A NUMBER : 12

DO ¥YOU WANI TOQ CRIEATE MORE MODES:
ENTER A NUMBER : 3

DO YOU WANTI TO CRTEATE MORE NODES:
ENTER A NUMBER := 5

DO YOU WANT TO CRTEATE MORE MODES:
ENTER A NUMBER : 9

DO ¥YOU WANI TO CRTIEATE MORE MODES:
ENTER THE POSITION TO INSERT:3

Input the node value: 12

After Inserting a node list is as follows:
1 3 12 5 ki

Process exited after 11.55 seconds with return value 8
Press any key to continue . . .

w.

7

/* Insert a Node Into a Simple Linked List Information Is

Known and Put After Some Specified Node */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link

{

LiNnkeD LisT 185

int info;
struct link *next;
Vi
struct link start, *first, *New, *before;
/* Function main */
void create(struct link *);
void display (struct link *);
void insert (struct link *);

int main()
{
struct link *node;
create (node) ;
insert (node) ;
display (node) ;

void create(struct link *node) /*LOGIC TO CREATE A LINK
LIST*/

{

char ch='y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*)
malloc (sizeof (struct 1link));
node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display (struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;
cout<<”\n After Inserting a node list is as
follows:\n”;
while (node)
{
cout<<setw(5) <<node->info;
node = node->next;

186 DATA STRUCTURE AND ALGORITHMS USING C++

void insert (struct link *node)

{

int no= 0;

int ins;

node = start.next;

before = &start;

cout<<”\n Input value node the node you want to
insert:”;

fflush(stdin) ;

cin>>ins;

while (node)

{

if (node->info <= ins)
{
New = (struct link*) malloc (sizeof (struct
link));
New->next = node;
before->next = New;
New->info = ins;
break ;

else

node = node->next;
before= before->next;

no++;

Output

ENTER A NUMBER
DO ¥OU UWANT TO
ENTER A NUMBER
DO ¥OU WANT TO
ENTER A HUMBER
DO YOU UWANT TO
ENTER A NUMBER
DO ¥OU UWANT TO
ENTER A NUMBER
DO YOU UANT TO

LINKED LisT

: 12

CRTEATE MORE MODES:

= 32

CRTEATE MORE NODES:

: 85

CRTERTE MORE NODES :

: 95

CRTEATE MORE NODES:

: 4

CRTEATE MORE NODES: n

Input value node the node you want to insert:?5

After Inserting a node list is as follows:

12 32

rocess exited after 12.81 seconds with return value B8
ress any key to continue . . .

187

7.4.6 /* Deleting the First Node From a Simple Linked List */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;

struct link

{

int info;

struct link *next;

}i

struct link start, *previous, *node;
/* Function main */

void create(struct link *);

void display (struct link *);

void delet (struct link *);

int main()

{

create (node) ;

printf (“\n THE CREATED LINKED LIST IS :\n”) ;
display (node) ;
delet (node) ;

188 DATA STRUCTURE AND ALGORITHMS USING C++

printf (“\n AFTER DELETING THE FIRST NODE THE LINKED LIST IS “);
display (node) ;
}

void create (struct link *node) /*LOGIC TO CREATE A LINK LIST*/

{

char ch="y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*) malloc (sizeof (struct
link)) ;
node = node->next;

cout<<”\n ENTER A NUMBER : “;
cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;

H
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;

while (node)

cout<<setw(5) <<node->info;
node = node->next;

void delet (struct link *node)

node = start.next;
previous = &start;
if (node == NULL)

cout<<”\n Under flow”;

else
previous->next = node->next;
free (node) ;

LiNnkeD LisT 189

Output

ENTER A NUMBER : 12
DO ¥OU WANT TO CRITEATE MORE MODES: ¥
ENTER A NUMBER : 34
DO YOU UWANT TO CRTEATE MORE MODES: Y%
ENTER A NUMBER : 6%
DO ¥OU WANT TO CRTEARTE MORE MNODES: ¥
ENTER A NUMBER : 32
DO ¥OU WANT TO CRTEATE MORE MODES: N
THE CREATED LIMKED LIST IS =

34 32

12 65
AFTER DELETING THE FIRST HODE THE LINKED LIST IS 34 65 32

Press any key to continue . . .

7.4.7 [* Deleting the Last Node From a Simple Linked List */

#include<iostream>
#include<iomanips>
#include<stdlib.h>
using namespace std;
struct link
{

int info;

struct link *next;
}i
struct link start, *previous, *node;
/* Function main */
void create(struct link *);
void display (struct link *);
void delet (struct link *);

int main()

{

create (node) ;

printf (“\n THE CREATED LINKED LIST IS :\n”);
display (node) ;
delet (node) ;

printf (“\n AFTER DELETING THE LAST NODE THE LINKED LIST IS “);
display (node) ;

void create(struct link *node) /*LOGIC TO CREATE A LINK LIST*/

{

190 DATA STRUCTURE AND ALGORITHMS USING C++

char ch='y’;

start.next = NULL;

node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")

{

node->next = (struct link*) malloc (sizeof (struct 1link));

node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/

node = start.next;

while (node)

{

cout<<setw(5) <<node->info;
node = node->next;

void delet (struct link *node)

{

int n = 0;

node = start.next;
previous = &start;
if (node == NULL)

cout<<”\n Underflow”;
else
while (node)

{

node = node->next;

previous = previous-s>next;
n++;

node = start.next;

previous = &start;

while(n != 1)
node = node->next;
previous = previous-s>next;
n --;

LiNnkeD LisT 191

previous->next = node->next;
free (node) ;

ENTER A HWUMBER : 43
DO ¥OU WANT TO CRTEATE
ENTER A NUMBER : 65
DO ¥YOU WANT TO CRTEATE
ENTER A NUMBER : 87
DO ¥OU WANT TO CRTEATE
ENTER A NUMBER : 23
DO ¥OU WANT TO CRTERTE
ENTER A NUMBER : 44
DO ¥YOU WANT TO CRTEATE MORE NODES:
THE CREATED LIMKED LIST IS =
43 65 87?2 23 414
AFTER DELETING THE LAST NODE THE LINKED LIST IS 43

Process exited after 15.62 seconds with return value 8
Press any key to continue . -

7.4.8 /[* Deleting a Node From a Simple Linked List When
Node Number Is Known */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link
{

int info;

struct link *next;
Vi
struct link start, *previous, *node;
/* Function main */
void create(struct link *);
void display (struct link *);
void delet (struct link *);

int main()

{

192 DATA STRUCTURE AND ALGORITHMS USING C++

create (node) ;

printf (*\n THE CREATED LINKED LIST IS :\n”);
display (node) ;
delet (node) ;

printf(“\n AFTER DELETION THE INKED LIST IS “);
display (node) ;

void create (struct link *node) /*LOGIC TO CREATE A LINK
LIST*/

{

char ch='y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*) malloc (sizeof (struct
link));
node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;

while (node)

{

cout<<setw(5) <<node->info;
node = node->next;

void delet (struct link *node)

{

int n = 1;

int pos;

node = start.next;
previous = &start;

printf (“\n Input node number you want to delete:”);
scanf (* %d”, &pos) ;

while (node)

LINKED LisT

node->next;

{
if (n == pos)
{
previous->next =
free (node) ;
break ;
}
else
{
node = node->next;
previous = previous-s>next;
}
n++;
}
}
OUTPUT

ENTER A MUMBER : 45
DO YOU WANT TO CRTEATE MORE NODES: ¥
ENTER A NUMBER : 32
DO YOU WANT TO CRTEATE MORE NODES: ¥
ENTER A NUMBER : 95
DO ¥YOU WANT TO CRTEATE MORE NODES: ¥
ENTER A MUMBER : 25
DO YOU WANT TO CRTEATE MORE NODES: N
THE CREATED LINKED LIST IS :

45 32 25 25

Input node number you want to delete:3

AFTER DELETION THE INKED LIST IS

25

Process exited after 14.11 seconds with return value @

Press any key to continue . .

7.4.9 Deleting a Node From a Simple Linked List When

Information of a Node Is Given

#include<iostream>
#include<iomanips>
#include<stdlib.h>
using namespace std;
struct link

193

194 DATA STRUCTURE AND ALGORITHMS USING C++

int info;
struct link *next;
Vi
struct link start, *previous, *node;
/* Function main */
void create(struct link *);
void display (struct link *);
void delet (struct link *);

int main()

{

create (node) ;

printf (*\n THE CREATED LINKED LIST IS :\n”);
display (node) ;
delet (node) ;

printf(“\n AFTER DELETION THE INKED LIST IS “);
display (node) ;

void create (struct link *node) /*LOGIC TO CREATE A LINK LIST*/

{

char ch="y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*) malloc (sizeof (struct
link)) ;

node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;

while (node)

{

cout<<setw(5) <<node->info;
node = node->next;

LiNkeD LisT 195

void delet (struct link *node)
{
int non= 1;
int dnode;
node = start.next;
previous = &start;
printf (“\n Input information of a node you want to
delete: “);
scanf (“%$d”, &dnode) ;
while (node)

{

if (node->info == dnode)
printf (“\n Position of the information in the list is : %d”,
non) ;

previous->next = node->next;

free (node) ;
break ;

else

node = node->next;
previous = previous-s>next;

non++;

196 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

ENTER A NUMBER : 25
DO ¥YOU WANT TO CRTEATE MORE
ENTER A NUMBER : 54
DO ¥OU UWANT TO CRTEATE MORE
ENTER A HUMBER : 76

DO ¥OU WANT TO CRTEATE MORE
ENTER A NUMBER := 8%
DO ¥YOU WANT TO CRTEATE MORE NODES:

ENTER A NUMBER : 32
DO ¥OU WANT TO CRTEATE MORE NODES:

THE CREATED LINKED LIST IS =
25 54 76 89 32
Input information of a node you want to delete: 54

Position of the information in the list is = 2

AFTER DELETION THE INKED LIST IS 25 76 32
Process exited after 15.22 seconds with return value B
Press any key to continue . . .

ALGORITHM FOR SEARCHING

struct link
{
int info;
struct link *next;
}i
SEARCH(START,NODE,NO) [START IS THE STRUCTURE TYPE
OF VARIABLE]
[NODE IS THE STRUCTURE TYPE OF
POINTER VARIABLE]
[NO IS THE INFORMATION TO SEARCH]
STEP-1: NODE := NEXT[START]
STEP-2 : SET COUNT :=1
SET OPT:=0
STEP-3 : REPEAT WHILE(NODE != NULL)
IF(COUNT = NO) THEN:
WRITE : INFO[NODE]

LiNkeD LisT 197

7.4.10 /* SEARCH A NODE INTO A SIMPLE LINKED LIST
WITH INFORMATION IS KNOWN */

#include<iostreams>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link
{

int info;

struct link *next;
}i
struct link start, *newl, *node;
/* Function main */
void create(struct link *);
void display (struct link *);
void search(struct link *);

int main()

{

create (node) ;
printf(“\n THE CREATED LINKED LIST IS :\n”);
display (node) ;

search (node) ;

198 DATA STRUCTURE AND ALGORITHMS USING C++

void create (struct link *node) /*LOGIC TO CREATE A LINK LIST*/

{

char ch='y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*)
malloc (sizeof (struct 1link)) ;
node = node->next;

cout<<”\n ENTER A NUMBER : “;

cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;

while (node)

{

cout<<setw(5) <<node->info;
node = node->next;

void search(struct 1link *node)

{

int wval;

int flag = 0,n=0;

node = &start ;

cout<<”\n ENTER THE NUMBER TO SEARCH”;
cin>>val;

if (node == NULL)

{
}

while (node)

{

cout<<”\n List is empty”;

if(val == node->info)
cout<<”\n THE NUMBER “<<val<<” IS AT “<<n<<” POSITION
IN THE LIST”;
node
flag

node->next;
1;

LiNkeD LisT 199

break;
}
else
{
node = node->next;
}
n++;
}
if (1flag)
{
cout<<”\n THE NUMBER %d IS NOT FOUND IN THE
LIST"<<val;
}
}
OUTPUT

ENTER A MUMBER := 2%

DO ¥YOU WANT TO CRTEATE MORE NODES:
ENTER A MUMBER : 3

DO ¥YOU YWANT TO CRTEATE MORE NODES:
ENTER A NUMBER : 85

DO YOU YANT IO CRTEATE MORE NODES:
ENTER A NUMBER : 95

DO ¥YOU YANT TO CRTEATE MORE NODES:
ENTER A MUMBER : 24

DO ¥YOU WANT TO CRTEATE MORE NODES:

THE CREATED LINKED LIST IS :
25 = 85 25 24
ENTER THE HUMBER TO SEARCH24
THE NUMBER 24 I8 AT 5 POSITION IN THE LIST

rocess exited after 14.51 seconds with return value 8
ress any key to continue . . .

7.4.11 /* Sorting a Linked List in Ascending Order */

#include<iostream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
struct link
{

int info;

struct link *next;

bi

200 DATA STRUCTURE AND ALGORITHMS USING C++

struct link start, *New, *node, *temp;
/* Function main */

void create(struct link *);
void display (struct link *);
void sort (struct link ¥*);

int main()

{

create (node) ;

cout<<”\n THE CREATED LINKED LIST IS :\n”;
display (node) ;

sort (node) ;
cout<<”\n AFTER SORT THE LINKED LIST IS :\n”;
display (node) ;

void create(struct link *node) /*LOGIC TO CREATE A LINK LIST*/

{

char ch="y’;
start.next = NULL;
node = &start; /* Point to the start of the list */
while(ch =='y’ || ch=="Y")
{
node->next = (struct link*) malloc (sizeof (struct
link)) ;
node = node->next;

cout<<”\n ENTER A NUMBER : “;
cin>>node->info;

node->next = NULL;

cout<<”\n DO YOU WANT TO CRTEATE MORE NODES: “;
cin>>ch;

void display(struct link *node)
{ /*DISPLAY THE LINKED LIST*/
node = start.next;

while (node)

{

LINKED LisT

cout<<setw(5) <<node->info;

node = node->next;
void sort (struct link *node)
for (New = start.next; New->next != NULL; New =
New->next)
for (temp = New->next; temp != NULL; temp =
temp->next)
if (New->info > temp->info)
int t = New->info;

New->info = temp->info;
temp->info = t;

}

OUTPUT

ENTER A NUMBER : 58
DO ¥OU WANT TO CRTEATE MORE NODES:
ENTER A NUMBER : 7
DO ¥YOU WANT TO CRIEATE MORE NODES:
ENTER A NUMEER : 65
DO ¥OU WANT TO CRTEATE MORE NODES:
ENTER A NUMBER : 3
DO YOU WANT TO CRTEATE MORE NODES:
ENTER A NUMBER : 11
DO YOU WANT TO CRTEATE MORE NODES:
THE CREATED LINKED LIST IS :

L8 ? 65 3 i1
AFTER SORT THE LIWKED LIST IS

3 ? 11 58 65

Process exited after 9.188 seconds with »eturn value @
Press any key to continue . . .

201

202 DATA STRUCTURE AND ALGORITHMS USING C++

7.4.12 /* Reversing a Linked List */

#include <stdio.h>
#include <alloc.h>
struct link
{
int info;
struct link *next;
Vi
int i, no;
struct link *start, *node, *previous, *current, *counter;
void display(struct link *);
void create(struct link *);
struct link * reverse(struct link *);
void main ()
{
struct link *node;
struct link *p;
node = (struct link *) malloc(sizeof (struct 1link));
create (node) ;
printf (“\n Original List is as follows:\n”);
display (node) ;
p = (struct link *)malloc(sizeof (struct link)) ;
p = reverse (node) ;
printf (“\n After reverse operation list is as
follows:\n”) ;
display (p) ;
!

struct link * reverse(struct link *start)
current = start;
previous = NULL ;

while(current != NULL)
counter = (struct link *)malloc (sizeof (struct 1link));
counter = current-snext ;
current->next = previous ;
previous = current ;
current = counter;
start = previous;
return (start) ;

}

void display(struct link *node)

{

while (node != NULL)

{

LiNkED LisT 203
printf (* %d”, node->info) ;
node = node->next;
!
!
void create(struct link *node)
{
int 1i;
int no;
printf (“\n Input the number of nodes you want to
create:”);
scanf (“*%d”, &no) ;
for (i = 0; 1 < no ; i++)
{
printf (“\nEnter the number”) ;
scanf (“%$d”, &node->info) ;
node->next = (struct link*) malloc (sizeof (struct
link)) ;
if(1 == no - 1)
node->next = NULL;
else

node = node->next;

}

node->next = NULL;

7.4.13 Program for Student Data Using Linked List

include<iostreams>
#include<fstream>
#include<stdlib.h>
#include<iomanip>
using namespace std;
struct student

{

}i

string fname, lname;
int yob,mob,dob;

char sex;

float mark;

struct student *next;

struct student start, *last, *New;
//method declarations

void
void
void
void
void
void

7

insert (struct student *)
create (struct student ¥*)
display (struct student *
average (struct student *
maximum (struct student *
search (struct student *);

) ’
)i
) .

7

204 DATA STRUCTURE AND ALGORITHMS USING C++

//driver program
int main()
{ /* FUNCTION MAIN */
struct student *node;
create (node); //create the link list
int opt;
//infinite loop
while (1)
{//display the menu
cout<<endl<<”1l. Add Friend \n2. Display
friends\n 8. Print Average age of friends\n 9. Print Male
Friends\NO. Exit\n”;
cout<<endl<<”Enter choice”;
cin>>opt; //read the choice
//call to the corresponding methods according
to the users input
if (opt==1)
insert (node) ;
else
if (opt==2)
display (node) ;
else
if (opt==8)
average (node) ;
else
if (opt==9)
printmale (node) ;
else
if (opt==0)
exit (0) ;
else
cout<<endl<<”Invalid choice”;

}

//create method read the data from file and stores it into
link list
void create(struct student *node)
{
int n;
char ch;
string name;
start.next = NULL; /* Empty list */
node = &start; /* Point to the start of the list */

while (1)

{

//allocate memory for a node of list

LiNnkeD LisT 205

node->next = (struct student*) malloc (sizeof
(struct student)) ;

node = node-s>next; //shift the node to next node
cout<<endl<<”Enter the first name”;
cin>>name;

node->fname=name;

cout<<endl<<”Enter the last name”;
cin>>name;

node->lname=name;

cout<<endl<<”Enter the year of birth”;
cin>>n;

node->yob=n;

cout<<endl<<”Enter the month of birth”;
cin>>n;

node->mob=n;

cout<<endl<<”Enter the day of birth”;
cin>>n;

node->dob=n;

cout<<endl<<”Enter the sex[m/f]”;
cin>>ch;

node->sex=ch;

node->next = NULL;//assign NULL to end
cout<<endl<<”Do you want to create more nodes[y/nl]”;
cin>>ch;
if (ch=='n’|| ch=='N’)
break;

}

//insert a new node
void insert (struct student *node)
{
string name;
int n;
char ch;
node = start.next;
last = &start;
while (node)//loop will continue till end
{
node = node->next;
last= last->next;
}
if (node == NULL)
{
//allocate new memory for new node
New = (struct student*) malloc (sizeof (struct
student)) ;
//logic for insertion

206 DATA STRUCTURE AND ALGORITHMS USING C++

New->next = node ;
last->next = New;
//ask data to user
cout<<endl<<”Enter the first name”;
cin>>name;
New->fname=name;
cout<<endl<<”Enter the last name”;
cin>>name;
New->lname=name;
cout<<endl<<”Enter the year of birth”;
cin>>n;
New->yob=n;
cout<<endl<<”Enter the month of birth”;
cin>>n;
New->mob=n;
cout<<endl<<”Enter the day of birth”;
cin>>n;
New->dob=n;
cout<<endl<<”Enter the sex[m/f]”;
cin>>ch;
New->gsex=ch;
}
}
//method to diaply the data
void display (struct student *node)
{
node = start.next;//points to first node oflist
while (node)//loop will continue till end of list
{//print the data
cout<<endl<<node->fname<<”\t” <<node->lname<<”\t”<<node-
>yob<<”\t”<<node->mob<<”\t”<<node->dob<<”\t” <<node->sex;
node = node->next;//shift the pointer to next node

}

void printmale (struct stiudent *node)
{
node = start.next;//points to first node oflist
while (node)//loop will continue till end of list

{
if (node->sex=='m’ | |node->sex=="M")
//print the data
cout<<endl<<node->fname<<”\t” <<node->lname<<”\t”<<node-
>yob<<”\t”<<node->mob<<”\t”<<node->dob<<”\t” <<node->sex;
node = node->next;//shift the pointer to next node

}

void average (struct stiudent *node)

{

LiNnkeD LisT 207

float avg;
int sum=0,c=0;
node = start.next;//points to first node oflist
while (node)//loop will continue till end of list
{

C++;

sum=sum+ node->age;

node = node->next;//shift the pointer to next node

}

avg= (float) sum/c;

void youngest (struct stiudent *node)
{

int minyear,minmon,minday,c=0;
string namel,name2;
node = start.next;//points to first node oflist
minyear=node->yob;
minmon=node->mob;
minday=node->dob;

while (node)//loop will continue till end of list
{
if (minyear>node->yob)
{
namel=node->fname;
name2=node->1lname;

}

if (minyear == node->yob && minmom > node->mob)

{

namel=node->fname;
name2=node->1lname;

}

if (minyear == node->yob && minmom == node->mob &&
minday >node->dob)

{

namel=node->fname;
name2=node->1lname;

}

node = node->next;//shift the pointer to next node

}

cout<<endl<<”Youngest Friend is “<<namel<<”\t”<<name2;

void oldest (struct stiudent *node)

{

int minyear,minmon,minday,c=0;

208 DATA STRUCTURE AND ALGORITHMS USING C++

string namel,name2;

node = start.next;//points to first node oflist
minyear=node->yob;

minmon=node->mob;

minday=node->dob;

while (node)//loop will continue till end of list
{
if (minyear < node->yob)
{
namel=node->fname;
name2=node->1lname;

}

if (minyear == node->yob && minmom < node->mob)
namel=node->fname;
name2=node->1lname;
if (minyear == node->yob && minmom == node->mob &&
minday < node->dob)

{

namel=node->fname;
name2=node->1lname;

}

node = node->next;//shift the pointer to next node

}

cout<<endl<<”0Oldest Friend is “<<namel<<”\t”<<name2;

LiNkeD LisT 209

OUTPUT

1. Display Student Details

2. Claculate average of all student marks
J. Search for a particular student’s mark
4. Find Maximum

5. Add a new student

6. Quit program

Enter choicel

1681561724
161453421
161452731
202673489
181345782
181672431
101872354
101892312
1081673423
161782314
1. Display Student Details
2. Glaculate average of all student marks
3. Search for a particular student’s mark
4. Find Maximum
5. Add a new student
6. Quit program
Enter choice2

Average mark is - 66.48

1. Display Student Details

2. Claculate average of all student marks
3. Search for a particular student’s mark
4. Find Haximum

5. fAdd a new student

6. Quit program

Fnter choice3l

Enter the id of student to know the mark1@1872354

The mark of student with ID 181872354 is 80.08
1. Display Student Details

2. Claculate average of all student marks

3. Search for a particular student’s mark

4. Find Maximum

5. Add a new student

6. Quit program

Enter choiced

Peter with ID 1681345782 secures highest mark as 98.88

210 DATA STRUCTURE AND ALGORITHMS USING C++

1. Display Student Details

2. Glaculate average of all student marks
3. Search for a particular student’s mark
4. Find Maximum

5. Add a new student

b. Quit program

Enter choiceb

Enter the nameSonu
Enter the ID1BA1782876
Enter the mark?5

1. Display Student Details

2. Claculate average of all student marks
3. Search for a particular student’s mark
4. Find Maximum

5. Add a new student

6. Quit program

Eﬁter choicel

1561724 78._0a8
453421 67.0808
181452731 54.0A8
282673489 23.988
1681345782 98 .06
181672431 90.08
1@1872354 80.0908
1@18922312 ?5.088
181673423 34._08
131782314 65 .08
181782876 95 .08
1. Display Student Details
2. Claculate average of all student marks
3. Search for a particular student’s mark
4. Find Maximum
5. Add a new student
6. Quit program
Enter choice2

Nuerage mark iz : 69.68
. Display Student Details
. Claculate average of all student marks
. Search for a particular student’s mark
. Find Maximum
. Add a new student
. Quit program
nter choiceb

Process exited after 98.42 seconds with return value 8
Press any key to continue . . .

7.5 Double Link List

The double link list is designed in such a way that each node of the list can
able to store two address parts one is its next and other is its previous node.
The general format of the node of a double link list is

Struct tagname

{

Data type memberl;

LiNkeD LisT 211

Data type member2;

Data type membern;
Struct link *varl, *var2;

}i

Ex:
Struct Dlink

int info;
struct Dlink *next, *prev ;

}i
Graphically

START
| NULL| | 200 |
100

[100] 59 | 300 |
200

[200] 75 [400 |
300

[300] 75 | s00 |
400

| 400 |

| NULL|

LOGIC FOR CREATION

Struct link
int info;
struct link *next, *prev;

}i

Struct link start, *node;
Node=&start;

Allocate a memory to node-s>next
Node->next ->prev = node

Node = node->next

Node->next = NULL

212 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM FOR CREATION OF A DOUBLE LINK LIST

CREATE(START,NODE)
STEP-1 : NEXT[START]:=NULL
PREV[START] :=NULL
STEP-2 : ALLOCATE A MEMORY TO NEXT[NODE]
PREV[NEXT][NODE] := NODE
NODE := NEXT[NODE]
NEXT[NODE] :=NULL
STEP-3 INPUT : INFO[NODE]
STEP-4 : REPEAT STEP-2 AND STEP-3 TO CREATE MORE NODES
STEP-5 : RETURN

ALGORITHM FOR TRAVERSE OF A DOUBLE LINK LIST

TRAVERSE(START,NODE)
STEP-1 : NODE : = NEXT[START]
STEP-2 : WRITE : “FORWARD TRAVERSE”
STEP-3 : REPEAT WHILE (NEXT[NODE] != NULL)
WRITE : INFO[NODE]
NODE := NEXT[NODE]
[END OF LOOP]
STEP-4 : WRITE : “REVERSE TRAVERSE”
STEP-5 : REPEAT WHILE (PREV[NODE]!=NULL)
WRITE : INFO[NODE]
NODE : = PREV[NODE]
[END OF LOOP]
STEP-6 : RETURN

ALGORITHM FOR INSERTION OF A NODE AT BEGIN

INSBEG(START,NODE)

STEP-1: NODE : = NEXT[START]

STEP-2 : ALLOCATE A MEMORY TO NEW

STEP-3 : PREV[NEW] := PREV[NODE]
NEXT[NEW] := NODE
NEXT[PREV[NODE]] := NEW
PREV[NODE] :=NEW

STEP-4 : INPUT : INFO[NEW]

STEP-5 : RETURN

LiNnkeD LisT 213

214 DATA STRUCTURE AND ALGORITHMS USING C++

DELETION

LiNnkeD LisT 215

OR

DELLAST(START,NODE)
STEP-1: NODE : = NEXT[START]
STEP-2 : REPEAT WHILE (NEXT[NODE]!=NULL)
NODE : = NEXT[NODE]
COUNT : = COUNT+1
[END OF LOOP]
STEP-3 : NODE : PREV[NODE]
STEP-4 : WRITE : INFO[NODE]
STEP-5 : NEXT[PREV[NODE]] := NEXT[NODE]
PREV[NEXT[NODE]] := PREV[NODE]
STEP-6 : FREE(NODE)
STEP-7 : RETURN

216 DATA STRUCTURE AND ALGORITHMS USING C++

7.6 Programs on Double Linked List

7.6.1 /* Creation of Double Linked List */

#include <iostream>
#include<iomanip>
include <stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
struct link *previous;
i
struct link start;
void create (struct link *);
void display (struct link *);

LiNnkeD LisT 217

void create(struct link *node)

{

char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */
while(ch == ‘y’ || ch=='Y")
{
node->next = (struct link *)
malloc (sizeof (struct link));
node->next->previous = node;
node = node->next;

cout<<”\n ENTER THE NUMBER” ;

fflush(stdin) ;

cin>>node->info;

node->next = NULL;

fflush(stdin) ;

cout<<”\nDO YOU WANT TO CREATE MORE NODES [Y/N] “;
fflush(stdin) ;

cin>>ch;

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements printing in Forward
Direction\n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;
cout<<endl<<”Link list elements printing in Backward
Direction\n”;
do {
cout<<setw(5) <<node->info;
node = node->previous;
} while (node-s>previous) ;

}

int main()
struct link *node;
create (node) ;
cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;

218 DATA STRUCTURE AND ALGORITHMS USING C++
Output

THE NUMBER25

WANT TO CREATE MORE MODES [¥~/M1
THE NUMBER32

WANT TO CREATE MORE NODES[¥-/N1
THE NUMBER?%

WANT TO CREATE MORE MODES [¥~/N]
THE NUMBERS4

WANT TO CGREATE MORE HODES[Y¥~MN1]
CREATING THE LINKED LIST IS

Link list elements printing in Forward Direction
25 32 95 54

Link list elements printing in Backward Direction
54 95 32 25

Process exited after 8.334 seconds with return value 8
Press any key to continue .

7.6.2 /* Inserting First Node in the Doubly Linked List */

include <iostream>
#include<iomanip>
include <stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
struct link *previous;
}i
struct link start, *New;
void create (struct link *);
void display (struct link *);
void insert (struct link *);

void create (struct link *node)
char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */

while(ch == ‘y’ || ch=='Y")

LiNkeD LisT 219

node->next = (struct link *)
malloc (sizeof (struct 1link)) ;
node->next->previous = node;
node = node->next;

cout<<”\n ENTER THE NUMBER” ;
fflush(stdin) ;
cin>>node->info;

node->next = NULL;
fflush(stdin) ;

cout<<”\nDO YOU WANT TO CREATE MORE NODES[Y/N] “;
fflush(stdin) ;

cin>>ch;

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements printing in Forward
Direction\n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;
cout<<endl<<”Link list elements printing in Backward
Direction\n”;
do {
cout<<setw(5) <<node->info;
node = node->previous;
} while (node-s>previous) ;

void insert (struct link *node)

{
node = start.next;
New = (struct link *) malloc (sizeof (struct link));
fflush(stdin) ;
cout<<”\n Input the first node value: “;
cin>>New->info;

New->next = node;
New->previous = node->previous;
node-s>previous->next = New;

node->previous = New;

220 DATA STRUCTURE AND ALGORITHMS USING C++

int main()

{

struct link *node;

create (node) ;

cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;

insert (node) ;

cout<<”\n List after insertion of first node \n”;
display (node) ;

OUTPUT

THE NUMBER25
WANT TO CREATE MORE MNODES[Y-N]
THE NUMBER32
WANT TO CREATE MORE NODESI[Y~/N]
THE NUMBERS5
WANT TO CREATE MORE NODESI[Y~N]
THE NUMBERES
WANT TO CREATE MORE NODESIY-N]
CREATING THE LINKED LIST IS
Link list elements printing in Forward Direction
25 32 25
Link list elements printing in Backwawrd Dirvection
a8 95 32
Input the first node wvalue: 33

List after insertion of first node

Link list elements printing in Forward Direction
33 25 32 95
Link list elements printing in Backward Direction
25 33

Process exited after 24.19 seconds with return value B8
Press any key to continue . . .

7.6.3 /[*Inserting a Node in the Doubly Linked List When Node
Number Is Known*/

include <iostreams
#include<iomanip>

include <stdlib.hs>
using namespace std;
struct link

LiNkED L1sT 221

int info;
struct link *next;
struct link *previous;
Vi
struct link start, *New;
void create (struct 1link *);
void display (struct link ¥*);
void insert (struct link *);

void create(struct link *node)
char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */
while(ch == ‘y’ || ch=='Y")
{
node->next = (struct link *)
malloc (sizeof (struct link));
node-s>next->previous = node;
node = node->next;

cout<<”\n ENTER THE NUMBER” ;

fflush(stdin) ;

cin>>node->info;

node->next = NULL;

fflush(stdin) ;

cout<<”\nDO YOU WANT TO CREATE MORE NODES [Y/N] “;
fflush(stdin) ;

cin>>ch;

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements printing in Forward
Direction\n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;
cout<<endl<<”Link list elements printing in Backward
Direction\n”;
do {

cout<<setw(5) <<node->info;

222 DATA STRUCTURE AND ALGORITHMS USING C++

node = node->previous;
} while (node-s>previous) ;

void insert (struct link *node)

{

int n,i;
cout<<” \nENTER THE NODE NUMBER TO INSERT”;
cin>>n;
i=1;
node = start.next;
New = (struct link *)malloc(sizeof (struct link));

fflush(stdin) ;

cout<<”\n ENTER THE VALUE TO INSERT “;
cin>>New->info;

while (node)

{

if (i==n)

{
New->next = node;
New->previous = node->previous;
node-s>previous->next = New;
node->previous = New;
break;

}

else
{
node=node->next;
1++;
}
}

int main()
{
struct link *node;
create (node) ;
cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;
insert (node) ;
cout<<”\n List after insertion of first node \n”;
display (node) ;

LINKED LisT

OUTPUT

THE NUMBERZS

WANT TO CREATE MORE NODESIY-/N]
THE NUMBER7S

WANT TO CREATE MORE NODESL[Y-/N1
THE NUMBERG

WANT TO CREATE MORE NODESIL[Y-/N]
THE NUMBER3Z2

WANT TO CREATE MOHRE HODESLY. M1
THE HUMBER1Z2

WANT TO CREATE MORE HODESLY. N1
CREATING THE LINKEDl LIST IS

Link list elements printing in Forwawrd Direction
25 78 & 32 12

Link list elements printing in Backward Direction
12 32 [78 25

ENTER THE HODE NHUMBER TO INSERT2

ENTER THE UALUE TO INSERT 1688
List after insertion of first node

Link list elements printing in Forward Direction
25 188 78 [32 12
Link list elements printing in Backward Direction
78 188

Process exited after 16._8% seconds with return value 8
Press any key to continue . . .

7.6.4 /*Inserting a Node in the Doubly Linked List When
Information Is Known*/

include <iostream>
#include<iomanip>
include <stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
struct link *previous;
Vi
struct link start, *New;
void create (struct link *);
void display (struct link *);
void insert (struct link *);

223

224 DATA STRUCTURE AND ALGORITHMS USING C++

void create(struct link *node)
char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */
while(ch == ‘y’ || ch=='Y")
{
node->next = (struct link *)
malloc (sizeof (struct 1link));
node->next->previous = node;
node = node->next;

cout<<”\n ENTER THE NUMBER” ;

fflush(stdin) ;

cin>>node->info;

node->next = NULL;

fflush(stdin) ;

cout<<”\nDO YOU WANT TO CREATE MORE NODES [Y/N] “;
fflush(stdin) ;

cin>>ch;

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements printing in Forward
Direction\n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;
cout<<endl<<”Link list elements printing in Backward
Direction\n”;
do {
cout<<setw(5) <<node->info;
node = node->previous;
} while (node-s>previous) ;

LINKED LisT

void insert (struct link *node)

{

int n;
cout<<” \nENTER THE INFORMATION VALUE TO INSERT”;
cin>>n;

node = start.next;

while (node)

{

if (node->info >= n)

{

New= (struct link *)malloc (sizeof (struct link)) ;

New->info = n;

New->next = node;

New->previous = node->previous;

node-s>previous->next = New;
node-s>previous = New;

break;

}

else

node=node->next;

}
}

int main()
{
struct link *node;
create (node) ;
cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;
insert (node) ;
cout<<”\n List after insertion of first node \n”;
display (node) ;

225

226 DATA STRUCTURE AND ALGORITHMS USING C++
OUTPUT

THE NHUMBER25

WANT TO CREATE MORE NODESL[Y~-N1 ¥
THE NUMBER%2S5

WANT TO CREATE MORE NODESLY-N1 ¥
THE NUMBER35

WANT TO CREATE MORE NODESL[Y~-N1 ¥
THE HUMBER

WANT TO CREATE MORE NODESI[Y.-N1 N
CREATING THE LIMKED LIST IS
Link list elements printing in Forward Direction
25 25 35 21
Link list elements printing in Backward Direction
21 35 ?5 25
ENTER THE INFORMATION UALUE TO INSERTSAG
List after insertion of first node

Link list elements printing in Forward Direction
25 LA 25 35 21

Link list elements printing in Backward Direction
25

35 25 58

Process exited after 21.42 seconds with return value 8
Press any key to continue . . .

7.6.5 /* Delete First Node From a Double Linked List */

include <iostream>
#include<iomanip>
include <stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
struct link *previous;
}i
struct link start, *New;
void create (struct link ¥*);
void display (struct link *);
void Delete(struct link *);

LINkED L1sT 227

void create(struct link *node)

{

char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */
while(ch == ‘y’ || ch=='Y")
{
node->next = (struct link *) malloc (sizeof (struct
link)) ;
node-s>next->previous = node;
node = node->next;

cout<<”\n ENTER THE NUMBER” ;

fflush(stdin) ;

cin>>node->info;

node->next = NULL;

fflush(stdin) ;

cout<<”\nDO YOU WANT TO CREATE MORE NODES [Y/N] “;
fflush(stdin) ;

cin>>ch;

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements printing in Forward
Direction\n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;
cout<<endl<<”Link list elements printing in Backward
Direction\n”;
do {
cout<<setw(5) <<node->info;
node = node->previous;
} while (node-s>previous) ;

void Delete (struct link *node)
{

node = start.next;

if (node == NULL)

{

printf (“\n Underflow”) ;

228 DATA STRUCTURE AND ALGORITHMS USING C++

else

node->previous-s>next = node->next ;
node->next->previous = node->previous ;
free (node) ;

int main()

{

struct link *node;

create (node) ;

cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;

Delete (node) ;

cout<<”\n List Deletion of first node \n”;
display (node) ;

OUTPUT

THE NHUMBER25

WANT TO CREATE MORE NODES [¥.N1 ¥
THE NUMBER36

WANT TO CREATE MORE NODES [¥./N1 ¥
THE HUMBERS85

WANT TO GREATE MORE MODES [¥-/M1 ¥
THE HUMBER?PS

WANT TO CREATE MORE NODES [¥.-/N1 ¥
THE NUMBER12

WANT TO CREATE MORE HODES[¥-N]1 H
CREATING THE LINKED LIST IS

25 36 85

Link list elements printing in Backward Direction
36 2

Link list elements printing in Forward Direction
12

List Deletion of firet node

LINkED LisT 229

Link list elements printing in Forward Direction
36 85 9 12

Link list elements printing in Backward Direction
12 9 85 36

Process exited after 11.%7 seconds with return value 8
Press any key to continue . . .

7.6.6 /*Delete the Last Node From the Double Linked List*/

include <iostream>
#include<iomanips>
include <stdlib.h>
using namespace std;
struct link
{
int info;
struct link *next;
struct link *previous;
}i
struct link start, *New;
void create (struct link *);
void display (struct link *);
void Delete (struct link *);

void create(struct link *node)

{

char ch='y’;
start.next = NULL; /* Empty list */
start.previous = NULL;

node = &start; /* Point to the start of the list */
while(ch == ‘y’ || ch=='Y")
{

node->next = (struct link *) malloc (sizeof (struct

link));
node-s>next->previous = node;
node = node->next;
cout<<”\n ENTER THE NUMBER”;
fflush(stdin) ;
cin>>node->info;
node->next = NULL;
fflush(stdin) ;
cout<<”\nDO YOU WANT TO CREATE MORE NODES[Y/N] “;
fflush(stdin) ;
cin>>ch;

230 DATA STRUCTURE AND ALGORITHMS USING C++

void display (struct link *node)
node = start.next;
cout<<endl<<”Link list elements \n”;
while (node->next)
cout<<setw(5) <<node->info;
node = node->next;

cout<<setw(5) <<node->info;

void Delete(struct link *node)

{

int n=0;
node = start.next;
if (node == NULL)

{
}

else

cout<<”\n Underflow”;

while (node->next)
{
node = node->next;
n++;
}
node = start.next;
while(n != 1)
{
node = node->next;
n--;
}

node=node->next;

node-s>previous->next = NULL;
free (node) ;

LiNkeD LisT 231

int main()

{

struct link *node;

int n;

create (node) ;

cout<<”\n AFTER CREATING THE LINKED LIST IS \n”;
display (node) ;

Delete (node) ;

cout<<”\n List Deletion of Last node \n”;
display (node) ;

OUTPUT

THE NUMBER12
WANT TO CREATE MORE NODESIY¥-N1
THE NUMBER54
WANT TO CREATE MORE NODESIY-N1
THE NUMBER6?
HANT TO CREATE MORE NODESI[Y- N1
THE NUMBERS
WANT TO CREATE MORE NODESIY~ N1
CREATING THE LINKED LIST IS

Link list elements

12 b

67
List Deletion of Last node

Link list elements
54 67

Process exited after 29.63 seconds with return value 8
Press any key to continuwe . . .

7.7 Header Linked List

The header link list is a special type of linked list in which a special node
will be usd as header node. The purpose of this node is to store the total
number of elements present in the linked list. On necessity we can easily
access the elements of the linked list.

Types of Header Linked List

Basically two types of header linked list are used as

Grounded Header Linked List and Circular Header Linked list.

232 DATA STRUCTURE AND ALGORITHMS USING C++

1. Grounded Header Linked List
In this type of linked list the last node will have the NULL
pointer.. In the header linked list thestart pointer always
points to the header node. start -> next = NULL indicates
that the grounded header linked list is empty. Like single
linked list and double linked list we can also perform all type
of operations with this type of header linked list.

START

A

Header
Node

NULL

2. Circular Header Linked List
In this type of linked list the last node will point or con-
nected to header node. Because in circular linked list
the last node will connect to the first node of linked list.
So formally we can say that the list does not indicate first or
last nodes. In this case, external pointers provide a frame of
reference because last node of a circular linked list doesnot
contain the NULL pointer. Like single linked list and double
linked list we can also perform all type of operations with
this type of header linked list.

LiNkeD LisT 233
START
A
Header
Node
A 4
A 4
Connected to
header node
7.7.1 /* Inserting a Node Into a Header Linked List */
include <stdio.h>
include <alloc.h>
struct link
{
int info;
struct link *next;
Vi
int 1i;
int number;
struct link *start, *new;
void insert (struct link *);
void create(struct link *);
void display(struct link *);
void create(struct link *node)
{
char ch='y’;
start-s>next = NULL; /* Empty list */
node = start; /* Point to the header node of the

list */

234 DATA STRUCTURE AND ALGORITHMS USING C++

node->next = (struct link*) malloc(sizeof (struct
link)); /* Create header node */
i=0;
while(ch == ‘y’ || ch=="Y’)
{
node->next = (struct link*)
malloc (sizeof (struct 1link)) ;
node = node->next;
printf (“\nENTER THE NUMBER”) ;
scanf (“%$d”, &node->info) ;
node->next = NULL;
fflush(stdin) ;

printf (“\nDO YOU WANT TO CREATE MORE NODES[Y/N]”) ;

scanf (“%c”, &ch) ;

1++;
printf (“\n NUMBER OF NODES = %d”, i);
node = start;

node->info = i; /*ASSIGN TOTAL NUMBER OF NODES INTO
THE HEADER LIST*/

}

void insert (struct link *node)
{

int n = 1;
int no, count;
node=start;
count = node->info;
node = node->next;
printf(“\nENTER THE NODE NUMBER TO INSERT”) ;
fflush(stdin) ;

scanf (“*%d”, &no) ;
while (count)

{

if (n == no)
{
new = (struct link*)
malloc (sizeof (struct 1link)) ;
new->next = node->next ;
node->next = new;

printf (“\nENTER THE VALUE”) ;
fflush(stdin) ;

scanf (“%d”, &new->info) ;
node = node->next;

else

LiNkeD LisT 235

node = node->next;

count--;
n++;
node = start;
node->info = node->info+1;

}

void display (struct link *node)
{

int count;

node=start;
count = node->info;
node = node->next;
printf (“\n THE LINKED LIST IS \n”);
while (count)

{

printf (* %d”, node->info) ;
node = node->next;
count --;

}
}

void main ()

{

struct link *node;
clrscr () ;

create (node) ;
display (node) ;
insert (node) ;
display (node) ;

7.8 Circular Linked List

As the name specifies this type of linked lists forms a circle. That means the
last node of the list will be connected to the beginning of the linked list.
This can be of

Single Circular linked list

Double circular linked list

Example

236 DATA STRUCTURE AND ALGORITHMS USING C++

START

A

Connected to
strat node

Advantages of Circular Linked Lists:

1)

2)

3)

Any node can be a starting point. We can traverse the whole
list by starting from any point. We just need to stop when the
first visited node is visited again.

Useful for implementation of queue. Unlike this implemen-
tation, we do not need to maintain two pointers for front and
rear if we use circular linked list. We can maintain a pointer
to the last inserted node and front can always be obtained as
next of last.

Circular lists are useful in applications to repeatedly go
around the list. For example, when multiple applications
are running on a PC, it is common for the operating system
to put the running applications on a list and then to cycle
through them, giving each of them a slice of time to exe-
cute, and then making them wait while the CPU is given to
another application. It is convenient for the operating sys-
tem to use a circular list so that when it reaches the end of
the list it can cycle around to the front of the list.

Circular Doubly Linked Lists are used for implementation of
advanced data structures like Fibonacci Heap.

http://quiz.geeksforgeeks.org/queue-set-2-linked-list-implementation/
http://en.wikipedia.org/wiki/Fibonacci_heap

LiNkeD Li1sT 237

o CREATING CIRCULAR HEADER LINKED LIST */

include <stdio.h>
include <stdlib.h>
#include<conio.h>
struct link
{
int info;
struct link *next;

Vi

int i; /* Represents number of nodes in the list */
int number=0;

struct link start, *node, *newl;

void create ()

{

char ch;
node = &start; /* Point to the header node in
the list */
i = 0;
do
{
node->next = (struct link*) malloc (sizeof (

struct 1link)) ;

node = node->next;
printf (“\n Input the node: %d:”, (i+1));
scanf (“*%$d”, &node->info);
fflush(stdin) ;
printf(“\n DO YOU WANT TO CREATE MORE[Y/N] “);
ch = getchar() ;
i++;

}while (ch=='y’ || ch=='Y");
node->next = &start;

start.info = i; /* Assign total number of nodes to
the header node */

}

void insertion ()
struct link *first;
first=&start;
node=start.next;

int opt;
int count = node->info;
int node number = 1;

int insert node;

node = node->next;

printf (“\n Input node number you want to insert: “);
printf (“\n Value should be less are equal to the”);
printf (“\n number of nodes in the list: “);

238 DATA STRUCTURE AND ALGORITHMS USING C++

scanf (“*%d”, &insert node) ;
while (count--)
{
if (node_number == insert_node)
{
newl = (struct link*)
malloc (sizeof (struct 1link));
first-s>next=newl;

newl->next = node;
printf (“\n Input the node value: “);
scanf (“%$d”, &newl->info) ;
opt=1;
break;
else
node = node->next;

first=first->next;

}

node_number ++;

}

if (opt==1)

{

node = &start; /* Points to header node */
node->info = node->info+1;

}
}
/* Display the list */
void display ()

{

node=&start;

int count = node->info;

do
printf (* \n%5d “, node->info) ;
node = node->next;

}while (count--) ;

}

int main ()

{

create () ;

printf (“\n Before inserting a node list is as
follows:\n”) ;

display () ;

insertion() ;

printf (“\n After inserting a node list is as
follows:\n”) ;

display () ;
}

LiNkED LisT 239

7.9 Application of Linked List

1. Representation of different data structures link stacks and

queues,sparse matrix,tree,graph, etc...

2. Implementation of graphs: Adjacency list representation of
graphs is most popular which is uses linked list to store adja-
cent vertices.

. Dynamic memory allocation: We use linked list of free blocks.

. Maintaining directory of names

. Performing arithmetic operations on long integers

. Manipulation of polynomials by storing constants in the
node of linked list

AN Ul W

7.9.1 Addition of Two Polynomial

Struct poly
{
int coef,exp;
struct poly *next;
15
SUM(P1,P2,P3)
STEP-1: REPEAT WHILE (P1 != NULL AND P2 != NULL)
IF (DEGREE[P1] > DEGREE(P2)) THEN :
ADD(P3, DEGREE[P1], COEF[P1])
P1:= NEXT[P1]
ELSE:
IF(DEGREE[P1] < DEGREE(P2)) THEN :
ADD(P3, DEGREE[P2], COEF[P2])
P2 := NEXT[P2]
ELSE :
ADD(P3, DEGREE(P1),(COEF(P1) + COEF(P2))
P1:=NEXT[P1]
P2 := NEXT[P2]
[END OF IF]
[END OF LOOP]
STEP-2:1F (P1 =NULL)
REPEAT WHILE (P2 !=NULL)
ADD(P3,DEGREE(P2),COEF(P2))
P2 := NEXT(P2)
[END OF LOOP]
[END OF IF]

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/graph-and-its-representations/
https://www.geeksforgeeks.org/graph-and-its-representations/

240 DATA STRUCTURE AND ALGORITHMS USING C++

STEP-3: IF (P2 = NULL)
REPEAT WHILE (P1 != NULL)
ADD(P3,DEGREE(P1),COEF(P1))
P1:= NEXT(P1)
[END OF LOOP]
[END OF IF]
STEP - 4: RETURN

ADD(P3,COEEEXP)

STEP-1: ALLOCATE A MEMORY TO P3->NEXT
STEP-2: P3 : = NEXT[P3]
STEP-3 : COEF[P3] := COEF
EXP[P3] := EXP
STEP-4 : NEXT|[P3] := NULL
STEP-5 : RETURN

7.9.2 /* Polynomial With Help of Linked List */

include <stdio.h>
include <alloc.h>
struct link
int coef;
int expo;
struct link *next;
int 1i;
int number;
struct link start, *previous, *new;

void create (struct link *node)

{

char ch="y’;
start.next = NULL; /* Empty list */
node = &start; /* Point to the start of the list */
i=0;
while(ch == ‘y’ || ch=="Y’)
{
node->next = (struct link*)

malloc (sizeof (struct 1link)) ;
node = node->next;
printf (“"\nENTER THE COEFFICIENT VALUE:”) ;
fflush(stdin) ;
scanf (“*%$d”, &node->coef);
printf (“"\nENTER THE EXPONENT VALUE:”) ;

LINkED Li1sT 241

fflush(stdin) ;

scanf (“*%d”, &node->expo) ;

node->next = NULL;

fflush(stdin) ;

printf(“\nDO YOU WANT TO CREATE MORE
NODES[Y/N]");

scanf (“%c”, &ch) ;

1++;

!

printf (“\nNUMBER OF NODES = %d\n”, 1i);

}

void display(struct link *node)

{

node = &start;
node = node->next;
printf (%d”, node-s>coef); // PRINTING THE FIRST
ELEMENT

printf (“X*%d”, node->expo) ;
node=node- >next;
while (node)
{
printf (*+ %d”, node->coef) ;
printf (“"X*%d”, node->expo) ;
node = node->next;

void main ()

{
struct link *node;
create (node) ;
display (node) ;

7.9.3 Program for Linked Queue

#include<stdio.h>
#include<iostream>
using namespace std;
struct Q

{

int info;

struct Q *next;

}i

struct Q *front, *rear, *New;

242 DATA STRUCTURE AND ALGORITHMS USING C++

void insert ()
{
New = (struct Q *)malloc(sizeof (struct Q)) ;
printf (“\n Enter a number”) ;
scanf (“%d” , &New->info) ;
New ->next = NULL;
if (fEront == NULL)

{

front = New;

rear = New;
else
rear->next = New;
rear = rear ->next;

}

void delet ()
{
if (fEront == NULL)
{
printf(“\n QUEUE IS EMPTY”) ;
return;
}
New = front;
if (New != NULL)
{
printf (“%d IS DELETED”,New->info) ;
front = front-> next;
free (New) ;

}

void display ()
{
New = front;
if (New == NULL)
{
printf (“\n QUEUE IS EMPTY”);
return;
}
printf (“\n THE QUEUE IS “);
while (New != NULL)
{
printf (“*$5d”,New->info) ;
New = New->next;

LINKED Li1sT 243

int main()
{
int opt;
while (1)

{

cout<<”\n 1. INSERT 2. DELETE 0. EXIT”;
cin>>opt;
if (opt==1)

{

insert () ;
cout<<”\n AFTER INSERTION THE QUEUE IS :”;
display () ;

}

else

delet () ;
printf (“\n AFTER DELETE THE QUEUE IS: “);
display () ;
1
else
if (opt==0)
exit (0) ;

7.9.4 Program for Linked Stack

#include<stdio.h>
#include<dos.h>
struct stack

int info;

struct stack *next;

}i

struct stack *start=NULL, *node, *first, *New;

void push ()

{

New = (struct stack *)malloc (sizeof (struct stack)) ;
printf (“\n Enter a number”) ;
scanf (“*%d”, &New->1info) ;
if (start == NULL)
{
start = New;
New->next = NULL;

}

244 DATA STRUCTURE AND ALGORITHMS USING C++

else

{

New->next = start;
start = New;

}
}

void pop ()
{

first = start;

if (start == NULL)

printf (“"\n STACK IS EMPTY”) ;
else

{

start

start->next;

printf (“*\n %d IS POPPED”,first->info);
free(first) ;

}

void traverse()

{
if (start == NULL)
printf (“\n EMPTY STACK”") ;
else
{
first = start;
while (first)
{
printf (" $d” ,first->info) ;
first = first->next;
}
}
}
int main()
{
int opt;
while (1)
{
printf (™\n 1. PUSH 2. POP 0.EXIT”);
scanf (“%d”, &opt) ;
if (opt==1)
{

push () ;

LINkED LisT 245

printf(“\n AFTER PUSH THE STACK IS “);
traverse () ;

}

else
if (opt==2)

{

pop () ;

printf(“\n AFTER DELETE THE STACK IS “);
traverse () ;

}

else
if (opt==0)
exit (0) ;
}
}

7.10 Garbage Collection and Compaction

After use of any memory it must be reusable, and its the work of the operat-
ing system to find out those memory which are allocated but not used any-
where so the operating system will perform a task as a result these unused
memory spaces will added into the free memory space.

The technique which does this collection is called garbage collection.

The garbage collection may take place when there is only some mini-
mum amount of space or no space at all left in the free storage list, or when
the CPU is idle and has time to do the collection. The garbage collectionis
invisible to the programmer.

Memory management system uses the concept called compaction,
which collects all free space blocks and places them at one location in a sin-
gle free block. So the request for memory allocation will be from this free
block. Memory management system uses some technique for tis. Different
methods for assigning the requested memory from free block such as

o FIRST FIT METHOD
o BEST FIT METHOD
o WORST FIT METHOD

In first fit method of memory allocation, the first entry which has free
block equal to or more than required one is taken.

246 DATA STRUCTURE AND ALGORITHMS USING C++
For example

0 100 190 250 370 450

| FREE | A | FREE | FREE | C |

0 100 190 250 370 450
B [A | | FREE | |
30

Now to allocate a memory of 30 Byte for B the system will choose the
memory area of 0-100.

In best fit method of memory allocation, the entry which is smallest
among all the entries which are equal or bigger than the required one is
choosen.

For example

0 100 190 250 370 450

| FREE| A | FREE | FREE [C |

| Free | A |B | FREE | |
0 100 190 250 370 450

220

Now to allocate a memory of 30 Byte for B the system will choose the
memory area of 190-250.

In worst fit method of memory allocation, the system always allocates a
portion of the largest free block in memory.

LINkED L1sT 247

For example

0 100 190 250 370 450
[FREE| A |FREE |[FREE]|C

0 100 190 250 370 450
[FREE| A | B[| |
280

Now to allocate a memory of 30 Byte for B the system will choose the
memory area of 250-370.

7.11

N »

Questions

What is the benefit of linked list over array?

What are the types of linked list?

What is garbage collection?

What is compaction?

What are the types of memory allocation?

What is header linked list?

Write a program to implement employee data base using
double-linked list.

Write a program to implement a phone directory system
using header linked list.

What is the use of linked list?

. Write a program to add, subtract, and multiply two polyno-

mials using linked list.

8
TREE

A tree is a nonlinear data structure in which the elements are arranged in
the parent and child relationship manner. We can also say that in the tree
data structure the elements can also be stored in a sorted order, and is used
to represent the hierarchical relationship.

A TREE is a dynamic data structure that represents the hierarchical
relationships between individual data items.
In a tree, nodes are organized in a hierarchical way in such a way that

» There is a specially designated node called the root, at the
beginning of the structure except when the tree is empty

> Lines connecting the nodes are called branches and every
node except the root is joined to just one node at the next
higher level(parent)

» Nodes that have no children are called as leaf nodes or
terminal nodes.

8.1 Tree Terminologies

> Level 0

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (249-294) © 2021 Scrivener Publishing LLC

249

250 DATA STRUCTURE AND ALGORITHMS USING C++

NODE: Each element of a tree is called as node. It is the basic structure in
a tree. It specifies the information and links(branches) to other data items.
In the above diagram 14 nodes are there.
ROOT: It is specially designated node in a tree. It is the first node in the hierar-
chial arrangement of data items. In the diagram A is the root node.
PARENT: Parent of a node is the immediate predecessor of an node. Here B is the
parent of E and E
CHILD:

Each immediate successor of a node is known as child. In the above diagram B,
C, D are children of A.
SIBLINGS:

The child nodes of a given parent node are called siblings. In the figure H, I, |
are siblings.
DEGREE OF A NODE:

The number of sub-trees of a node in a given tree is called degree of that node.
In the figure
The degree of node A is 3
The degree of node B is 2
The degree of node G is 1
The degree of node F is 0

DEGREE OF TREE:

The maximum degree of nodes in a given tree is called the degree of the tree. In
the figure the maximum degree of nodes A and D is 3. So the degree of Tree is 3.
TERMINAL NODE:

A node with degree zero is called terminal node or a leaf. In the figure K, E L,
H, M, N, J are terminal nodes.

NON-TERMINAL NODE:

Any node (except the root node) whose degree is not zero is called as non-ter-

minal node. In the above tree B, E, C, G, D, I are non-terminal nodes.

LEVEL:

The entire tree structured is leveled in such a way that the root is always at the
level 0, then its immediate children are at level 1, and their immediate children are
at level 2 and so on up to the leaf node. The above tree has four levels.

EDGE:

Edge is the connecting line of 2 nodes. CG is an edge of the above tree.
PATH:

Path is the sequence of consecutive edges from the source node to
the destination node. In the above tree the path between A and M is
(A,D),(D,),I,M)

TREE 251

DEPTH:

The depth of node n is the length of the unique path from the root to n. The
depth of Eis 2 and B is 1.
HEIGHT:

The height of node n is the length of the longest path from n to leaf. The height
of Bis2 and Fis 0.

BINARY TREE

A binary tree is a special form of a tree in which every node of the tree
can have at most two children.
OR
In a binary tree the degree of each node is less than or equal to 2.

EXAMPLE

8.2 Binary Tree
The BINARY TREE are of THREE types such as

« Complete Binary Tree

o Almost Complete Binary Tree
o Strictly Binary Tree

o Extended Binary Tree

COMPLETE BINARY TREE

A binary tree with n nodes and of depth d is a strictly binary tree all of
whose terminal nodes are at level d. In a complete Binary Tree the out
degree of every node is either 2 or Nil.

252 DATA STRUCTURE AND ALGORITHMS USING C++

EXAMPLE:

ALMOST COMPLETE BINARY TREE
An almost complete binary TREE IS A BINARY TREE in which the fol-
lowing conditions must hold:

1. All the leaves are at the bottom level or the bottom 2 levels
2. All the leaves are in the leftmost possible positions and all
levels are completely filled with nodes.

STRICTLY BINARY TREE

If every non-terminal node in a binary tree consists of non empty left subtree
and right subtree , then such a tree is called as the STRICTLY binary tree.
EXAMPLE

EXTENDED BINARY TREE

A binary tree is called as extended binary tree or 2-TREE if every node of
tree has zero or two children.

TREE 253

In this case the nodes with 2-children are called as Internal nodes and
the nodes with 0 children are called as External nodes.

EXAMPLE
. O [{@/G\
It is not a 2-TREE but Binary Tree It is the extended form of the
previous binary tree and it is
2-TREE

8.3 Representation of Binary Tree
A binary tree can be represented by using

o Array
 Linked List

8.3.1 Array Representation of a Tree

An array can be used to represent the BINARY tree. The total number of
elements in the array depends on the total number of nodes in the TREE.
The ROOT node is always kept as the FIRST element of the array i.e/ in
the 0-Index the root node will be store. Then, in the successive memory
locations the left child and right child are stored.
Ex.

254 DATA STRUCTURE AND ALGORITHMS USING C++

ARRAY REPRESENTATION
A A
B B
C C
D D
E _
F —
G E

8.3.2 Linked List Representation of a Tree

lililF

NULL NULL NULL NULL NULL NULL NULL NULL

While representing the Binary tree we will have to use the Concept of
Double Linked List.

8.4 Operations Performed With the Binary Tree
The most commonly implemented operations with the Binary Tree are

Creation

Insertion

Deletion

Searching

Some other operations are
Copying

Merging

Updating

VVVYVYVVYYVYY

TREE 255

ALGORITHM FOR CREATION OF BINARY TREE

8.4.1 /*Creation of a Tree*/

#include<stdio.h>
include<alloc.h>
struct node

int info;
struct node *left;
struct node *right;

struct node *create(int , struct node *);
void display(struct node *, int);
void main ()
{
int info ;
char ch="y’;
struct node *tree ;
tree = NULL;
while(ch == ‘y’ || ch=='Y’)
{
printf (“\n Input information of the node: “);
scanf (“%d”, &info);
tree = create(info, tree);
printf (“*\n Tree is “);

256 DATA STRUCTURE AND ALGORITHMS USING C++

display(tree, 1);
printf(“\nDO YOU WANT TO CREATE MORE
CHILDS[Y/N]") ;
scanf (“%c”, &ch) ;
}

}

struct node * create(int info, struct node *n)
if (n == NULL)
n = (struct node *) malloc(sizeof (struct node));
n->info = info;
n->left = NULL;
n->right= NULL;
return (n);

if (n->info >= info)
n->left = create(info, n->left);
else

}

void display(struct node *tree, int no)

{

n->right = create(info, n->right); return(n);

int i;

if (tree)

{
display (tree->right, no+l) ;
printf (“\n “);

for (i = 0; 1 < no; 1i++)

printf (®)
printf (“*%$d”, tree->info);
printf (“\n”) ;

display (tree->left, no+l);

}

8.5 Traversing With Tree

The tree traversing is the way to visit all the nodes of the tree on a specific
order. The Tree traversal can be accomplished in three different ways such as

» INORDER traversal

» POST ORDER traversal
> PRE ORDER traversal.
» Level Order Traversal

TREE 257

Tree traversal can be performed in two different ways such as
» BY USING RECURSION
» WITHOUT USING RECURSION

RECURSIVELY

Inorder traversal
» Traverse the Left Subtree in INORDER (Left)
» Visit the Root node
» Traverse the Right Subtree in INORDER(Right)

Preorder traversal
» Visit the Root Node
» Traverse the Right Subtree in PREORDER (Left)
» Traverse the Right Subtree in PREORDER(Right)

Postorder traversal
» Traverse the Right Subtree in POSTORDER (Left)
» Traverse the Right Subtree in POSTORDER(Right)
» Visit the Root Node

WITHOUT USING RECURSION

Nonrecursive Inorder Traversal Algorithm

258 DATA STRUCTURE AND ALGORITHMS USING C++

Nonrecursive Preorder Traversal Algorithm

Nonrecursive Postorder Traversal Algorithm

TREE 259

madel for these nodes. Besides putting these nodeson the STACK we
also check whether the node has right child or not, if the node has right
child then that right child is also pushed on STACK and the value of flag
is made -1 for these types of nodes.
STEP4: Save the value of top_prev , and then pop an address from the
STACK and assign that address to ptr.
STEPS5: Repeat following steps while flag[top_prev]=1

Traverse the node whose address is ptr.

POP another node from the STACK.

LEVEL ORDER TRAVERSAL

In this type of traversal the elements will be visited according to level wise
but it is not so far used.
EXAMPLES

INORDER :DBHEAFCIG
PREORDER :ABDEHCEFGI
POSTORDER :DHEBFIGCA
LEVELORDER:ABCDEFGHI

8.5.1 /* Binary Tree Traversal */

include<stdio.h>

struct link

{
int info;
struct link *left;
struct link *right;

260 DATA STRUCTURE AND ALGORITHMS USING C++

struct link *binary(int *1list, int lower, int upper)
{
struct node *node;
int mid = (lower + upper)/2;
node = (struct link *) malloc(sizeof (struct link)) ;
node->info = list [mid];
if (lower>= upper)
{
node->left = NULL;
node->right = NULL;
return (node) ;

}

if (lower <= mid - 1)

node->left=binary(list, lower, mid - 1);
else

node->left = NULL;
if (mid + 1 <= upper)

node->right = binary(list, mid + 1, upper);
else

node->right = NULL;
return (node) ;

}

void output (struct link *t, int level)
{
int 1i;
if (t)
{
output (t->right, level+l);
printf (“\n”) ;
for (i = 0; 1 < level; 1i++)
printf (« «);
printf (« %d», t->info);
output (t->left, level+l);
}
}
void preorder (struct link *node)
{
if (node)
{
printf (* %d”, node->info) ;
preorder (node->left) ;
preorder (node->right) ;

}
}

void inorder (struct link *node)

{

if (node)

TREE

inorder (node->left) ;
printf (* %d”, node->info) ;
inorder (node->right) ;
}
}
void postorder (struct link *node)
{
if (node)
{
postorder (node->left) ;
postorder (node->right) ;
printf (* %d”, node->info) ;
}
}
void main ()
{
int 1list[100];
int number = 0;
int info;

char ch="y’;

struct link *t ;

t = NULL;

while(ch == ‘y’ || ch=="Y’)

{

printf (“\n Enter the value of the node”);

scanf (“*%$d”, &info) ;

list [number++] = info;

printf(“\nDO YOU WANT TO CREATE MORE
NODES [Y/N] ") ;

}

number --;

scanf (“%c”, &ch) ;

printf (“\n Number of elements in the list is %d”,

number) ;
t = binary(list, 0, number);
output (t, 1) ;
printf (“\n Pre-order traversal\n”) ;
preorder (t);
printf (“\n In-order traversal\n”);
inorder (t);
printf («\n Post-order traversal\n») ;
postorder (t);

261

262 DATA STRUCTURE AND ALGORITHMS USING C++

8.6 Conversion of a Tree From Inorder and Preorder

INORDER :DBHEAFCIG

PREORDER :ABDEHCFGI

Choose the ROOT from the preorder and from inorder find the nodes in
left and right and this process will continue up to all the elements are cho-
sen from the preorder/inorder.

STEP1: From preorder A is the root and from inorder we will find that in
the left of A (D,B,H,E) and in the right (EC,I,G)

®

(D,BH,E) (F,CILG)

STEP2: Again from Preorder ‘B’ will be chosen as PARENT and from
Inorder in the left of B (D) and in the right (H,E).

° (F,C.1,G)

(H,E)

STEP3: From Preorder ‘E’ will chosen as the PARENT and from inorder
on its left ‘H’ is present.

(FIcIIIG)

TREE 263

STEP4: From Preorder we will choose ‘C’ as the PARENT and from inor-
der we observe that in the left of ‘C’ (F) will placed and in the right (I,G)

STEP5: From the PREORDR we observe that ‘G’ is the parent and from the
INORDER I will be used as the Left child of ‘G’

CONVERSION OF A TREE FROM INORDER AND POSTORDER
INORDER :DBHEAFCIG

POSTORDER :DHEBFIGCA

Choose the ROOT from the postorder (from the right) and from inorder
find the nodes in left and right and this process will continue up to all the
elements are chosen from the postorder/inorder.

(1,G)

STEP1 : From the right of POSTORDER ‘A’ will be chosen as the ROOT
and from INORDER we observe that in the left of A (D,B,H,E,A) and in

the right (EC,I,G) will be there.

(D,B,H,E,A) (F,C1,G)

264 DATA STRUCTURE AND ALGORITHMS USING C++

STEP2: From the POSTFIX ‘C’ will be chosen as the PARENT and from
INORDER we observe that in the right of ‘C’ (I,G) and to the left (F) will

be used.
O

(D,B,H;,E)

STEP3: From the right of POSTORDER ‘G’ will be chosen as the PARENT
and from inorder to the left of ‘G’ (I) will be used.

STEP4: From the right to postorder ‘B’ will be chosen as the PARENT and
from the INORDER to we observe that to the right of ‘B’ (H,E,A) and to
the left (D) will be used.

(D,B,H,E)

TREE 265

STEPS5: From the right to postorder we will choose ‘E’ as PARENT and
from the Inorder to the left of ‘E* (H) will be used.

8.7 Types of Binary Tree

There are different types of BINARY trees are found but some of them
which are frequently used are

Expression Tree

Binary Search Tree

Height Balanced Tree (AVL Tree)
Threaded Binary Tree

Heap Tree

Huffman Tree

Decision Tree

Red Black Tree

YVVVVYVYYYVY

8.8 Expression Tree

An expression tree is a Binary Tree which stores/represents the mathemat-
ical (arithmetic) expressions.

The leaves of an expression tree are operands, such as constants or vari-
able names and all the internal nodes are the operators. An expression
tree will be always a binary tree because an arithmetic expression contains
either binary operators or unary operators.

266 DATA STRUCTURE AND ALGORITHMS USING C++

Formally we can define an expression Tree as a special kind of binary
tree in which:

o Each leaf is an operand. Examples: a, b, ¢, 6, 100

o The root and internal nodes are operators. Examples: +, -,
>* / A
bl bl

o Subtrees are subexpressions with the root being an operator.

Construction of Expression Tree:
Now For constructing expression tree we use a stack. We loop through
input expression and do following for every character.

1) If character is operand push that into stack.
2) If character is operator pop two values from stack make
them its child and push current node again.

At the end only element of stack will be root of expression tree.

EXAMPLE
Represent an Expression Tree

A+ (B*C)-(DAE)/F+G*H
While constructing the TREE choose an operator in such a way that the
terms in parenthesis will be in a side (for better construction) and choose

a operator having higher precedence.

STEP1:

A + (B*C) - (DAE) F+G*H

STEP2:

A + (B*C)

TREE 267

Step3:

Depending on the expression used we have different types of expressions:

o Prefix expression
« Infix expression
« Postfix expression

Example
Construct an expression tree for 57 - 3 /

Scan the symbols from left and since 5 and 7 are operands so push them
into stack.

Next read ‘-5 since - is an operator so pop the stack and make these as
chile of the operator.

AN

268 DATA STRUCTURE AND ALGORITHMS USING C++

Next, 3’ will read then push it into stack.

- 3

N

5 7

Last read the character /’ since it is an operator so pop the symbols from
stack and add them into °/’ as its child.

8.9 Binary Search Tree

A binary Search Tree is a Binary Tree that is either empty or in which each
node possesses a key that satisty the properties like

o The element in the left subtree are smaller than the key in
the root

 The element in the right subtree are greater than or equal to
the root

o The left and right subtrees are also the Binary Search Tree.

OPERATIONS PERFORMED WITH A BST

The most commonly used operations with BST are
Insertion Deletion Searching

TREE 269

EXAMPLE

SEARCHING

To search any node in a Binary tree, initially the data item that is to be
searched is compared with the data of the root node. If the data is equal to
the data of the root node then the search is successful.

If the data is found to be greater than the data of the root node then the
searching process proceeds in the right sub-tree, otherwise searching pro-
cess proceeds in the left sub-tree.

Repeat the same process till the element is found and while searching if
Leaf node is found than print that the number is not found.

INSERTION

To insert any node into a binary search tree, initially data item that is to be
inserted is compared with the data of the root node.

If the data item is foundto be greater than or equal to the data item of root
node then the new node is inserted in the right sub tree of the root node,
other wise the new node is inserted in the left sub tree of the root node.

Now the root node of the right or left sub tree is taken and its data is
compared with the data that is to be inserted and the same procedure is
repeated. This is done till the left or right sub tree where the new node to be
inserted is found to be empty. Finally the new node is made the appropriate
child of this current node.

270 DATA STRUCTURE AND ALGORITHMS USING C++

DELETION

While deletion if the deleted node has only one sub tree, in this case simply
link the parent of the deleted node to its sub tree.

When the deleted node has both left and right sub tree then the process
is too complicated and there we have to follow the following four cases
such as

CASET1: No node in the tree contains the specified data item.
CASE2: The node containing the data item has no children
CASE3: The node containing the data item has exactly one child
CASE4: The node containing the data item has two children.

CASE1
In first case we have to check the condition whether tree is empty or not.
Condition is
IF (ROOT = NULL)
WRITE : “TREE IS EMPTY”
[END OF IF]

CASE2
In this case where the node to be deleted is a leaf node i.e/ its left and right
node is not there then just delete it by assigning NULL to its parent node.
Condition is
IF ([left]item = NULL AND [RIGHT]ITEM = NULL)
Ex: If we want to delete 52 than add NULL to 49.

CASE3
In this case where the node having either left sub tree or right sub tree.
Condition is

IF ([left]item != NULL AND [RIGHT]ITEM = NULL)

IF ([left]item = NULL AND [RIGHT]ITEM != NULL)
Ex: If we want to delete 49 , which has only one child , so we can delete it
simply by giving address of right child to its parent left pointer. Here 55 is
the parent of 49 and 52 is the right child of 49. So after delete of 49 52 will
be added to left of 55.

TREE 271

CASE4
In this case the node to be deleted has two children. Now we have to con-
sider the condition when the node has both left and right child. This can
be checked as

If(left[item] !=NULL AND right[item]!=NULL)

For example Let we want to delete 78, which has left and right children,
for this we have to first delete the item which is inorder successor of 78.
Here 80 is the inorder successor of 78. We delete the 80 by simply giving
NULL value to its parents left pointer.

272 DATA STRUCTURE AND ALGORITHMS USING C++

8.10 Height Balanced Tree (AVL Tree)

A height balanced tree is a binary tree in which the difference in heights
between the left and the right subtree is not more than one for every
node.

The height of a tree is the number of nodes in the longest path from the
root to any leaf.

The property of this tree is described by two Russian Mathematicians
G.M. Adel’son - vel'skii and E.M. Landis. There fore this tree is so called
for their honour.

A Binary Search Tree in which the difference of heights of the right and
left sub trees of any node is less than or equal to one is known as AVL
tree.

While insertion of any node to the tree we have to find out the Balancing
Factor which is the difference between the left height-right height.

the Balancing Factor is 1 than the tree is Left heavy

If the Balancing Factor is -1 than the tree is Right Heavy

If the Balancing Factor is 0 than the tree is Balanced

INSERTION WITH AN AVL TREE

We can insert a new node into an AVL tree by first using the usual binary
tree insertion technique, comparing the key of the new node with that
in the root and inserting the new node into the left or right subtrees
accurately.

But AVL tree has a property that the height of left and right subtree will
be with maximum difference 1. Suppose after inserting new node, this dif-
ference becomes more than 1, i.e/ the value of the balance factor has some
value other than -1,0,1. So now our work is to restore the property of AVL
tree again.

To convert an unbalanced tree to AVL tree some rotations are needed
such as

e LR rotation
e RL Rotation
e LL rotation
« RR notation

TREE 273

For simplification just observe the follwing rotations carefully.

TRICK1

BF=0

Q BF =0
AFTER ROTATION BF=0 ° e

BF =-2

= BF =0
BF =-1
BF=0 BF=0
BF=0

TRICK3

BF=2

| AFTERROTATION
BF
F=0

TRICK4

TRICK4

274 DATA STRUCTURE AND ALGORITHMS USING C++

TRICKS5:

() ()
O O=——-> OO
@ ® ® ® ®
&

TRICKG6:

e @ ®
® @ © @

@ e AFTER ROTATION @ @ @

CONSTRUCT AN AVL TREE BY CONSIDERING THE NUMBERS
12, 25, 32, 65, 74, 26, 13, 08, 45

STEP1:

@ BF=0

STEP2 :

TREE 275

STEP4:
STEP4:
BF=0
STEP5:
STEP5: BF=-2

BF=0

AFTER ROTATION
e

BF=0 Q

276 DATA STRUCTURE AND ALGORITHMS USING C++

/>\

STEPG :

DELETION: The deletion from an AVL tree is the same as the Binary
Search Tree.

TREE 277

8.11 Threaded Binary Tree

When a binary tree is represented using pointers then the pointers to
empty subtrees are set to NULL. That is the left pointer of a node whose
left child is an empty subtree is normally set to NULL simillarily the right
pointer of a node whose right child is an empty subtree is also set to NULL.
Thus a large number of pointers are set to NULL. It will be useful to use
these pointers fields to keep some other information for operations in
binary tree. The most common operation in Binary tree is traversing. We
can use these pointer fields to contain the address pointer which points to
the nodes higher in the tree. Such pointer which keeps the address of the
nodes higher in the tree is called as Thread. A binary tree which imple-
ments these pointers is called Threaded Binary Tree.

In the context of Data structure the threaded binary tree are of three
types such as

o Left threaded Binary tree
 Right threaded binary tree
» Complete threaded binary tree

ADVANTAGE

Thread mechanism is used to avoid recursive function call and also it
saves stacks and memory.

LEFT-THREADED BINARY TREE

278 DATA STRUCTURE AND ALGORITHMS USING C++

Here all the left pointers are attached with its inorder predecessor.

RIGHT-THREADED BINARY TREE

Here all the right pointers are attached with its inorder predecessor.

COMPLETE-THREADED BINARY TREE

TREE 279

8.12 Heap Tree

A heap is a complete binary tree and is implemented in an array as sequen-
tial representation rather than the linked representation. A heap can be
constructed in two different ways such as MAX - HEAP or MIN - HEAP.

A heap is called as Max — Heap or Descending Heap is every node of
a heap has a value greater than or equal to the value of every child of that
node. In max heap the value of the root will be the biggest number.

A heap is called as min heap or ascending heap if every node of heap has
a value less than or equal to the value of every child of that node.

CREATION OF HEAP TREE

When we want to create an heap it must be filled up in a sequential order
i.e/ either from left or from right side. After fill up one level then the next
level insrtion will start.

Ex:

Create a MAX-HEAP by considering the numbers

14,52, 2, 65, 84, 44, 35

| INTERCHANGE >

STEP1:

STEP2:

STEP3:

STEP3: °

280 DATA STRUCTURE AND ALGORITHMS USING C++

STEP4:

STEP4:

TREE 281

STEPG6:
STEP 6: : 6
STEP7:

STEP 7:

Like the MAX-HEAP we can also create a MIN-HEAP by following the
same procedure but the main aim should that the root node must be the
smallest element.

INSERTION WITH HEAP

When we want to insert an element into an heap it must have to satisfy the
property of HEAP if not then make some interchange with that tree.

DELETION FROM THE HEAP

The delete operation can be as
o Find the index number of the number to be deleted

« Take the last node of the tree at the place of deleted node
o Keep the node at the appropriate place.

282 DATA STRUCTURE AND ALGORITHMS USING C++

To keep the node at right place the steps would be

o Compare it with its parent, if the parent is less than the
node then interchange with its parent. Compare it again
with it’s new parent until the parent is greater than the
inserted item.

o Ifthe parent is greater than the node then compare it with
left and right child, if it is smaller then replace it with
greater value child. Compare it again until it is greater
than or equal to both the left and right child.

8.13 Huffman Tree

Generally the HUFFMAN TREE concept is implemented based upon the
concepts of extended binary tree. In extended binary tree we known that
every node has zero or two children. The nodes which have two children
that is called as internal nodes and the node which have no children that is
called as external node.
In every extended binary tree the number of external nodes is more
than the number of internal nodes.
Mathematically
External node = internal node + 1
ie/ E=1+1

TREE 283

The external nodes are represented by the square brackets and the inter-
nal nodes are represented by the Circles.
The path length for any node is the number of minimum nodes tra-
versed from root to that node.
In the above figure the total length for internal and external nodes are :-
Path() =0 +1+2+1+2+3=9
Path(E)=2+3+3+2+4+4+3 =21

We can also get the total path length of external node as
PATH(E) = PATH(I) + 2N Where N is the number of internal nodes.
Suppose each node having some weights then the weighted path length
will be
P=WIP1+W2P2+............... + WNPN
W is the weight and P is the path length of an external node.

FOR EXAMPLE
Let we will create different trees with 5, 8, 10, 6

Programming in Data Structure

TYPE2

TYPE3 TYPE4:

284 DATA STRUCTURE AND ALGORITHMS USING C++

FOR TYPE1 :

P=52+82+1072+6"2=10+16 + 20 + 12 =58
FORTYPE2:

P=10*1+52+ 83+6*3=10+10+24+18=62
FORTYPE3:

P=6%1+10*2 + 83 + 53 = 6+20+24+15 = 65
FOR TYPE4:

P=8%2+10*1+ 53 +6*3 =16+10+15+18 = 59

From the above we observe that different trees have different path
lengths even if same type of trees. So problem arises to find the minimum
weighted path length. This type of extended binary tree can be obtained by
the Huffmann algorithm.

HUFFMAN ALGORITHM

STEP1 : Lets Consider there are N numbers of weights as W1,W2,.....,WN
STEP2 : Take two minimum weights and create a sub tree. Suppose W1
and W2 are first two minimum weights then sub tree will be of the form

STEP3 : Now the remaining weights will be W1 + W2, W3,....WN
STEP4 : Create all subtrees at the last weight

Example
Create a Huffman Tree by considering the numbers as

15,18, 25,7,8,11,5

STEP1: Taking Two nodes with minimum weights as 5and 7

TREE 285

Now the elements in the list are : 15, 18, 25, 12, 8, 11
STEP2: Taking two nodes with minimum weights as 8 and 11

Now the remaining nodes are 15, 18, 25, 12, 19
STEP3: Taking two nodes with minimum weights as 12 and 15

Now the remaining elements are 18, 25,27, 19

STEP4: Taking two nodes with minimum weights as 18 and 19

Now the remaining elements are 37, 25, 27

286 DATA STRUCTURE AND ALGORITHMS USING C++

STEP5: Taking two nodes with minimum weights as 25 and 27

Now the remaining elements are 37 and 52

STEP6: Taking the two remaining elements as 37 and 52 the tree will be

8.14 Decision Tree

A decision tree is a binary tree where a node represents some decision
and edges emanating from a node represent the outcome of the decision.
External nodes represent the ultimate decisions.

TREE 287

[bEcision 1 | [pECision 2 |

EXAMPLE
Find the Greatest among 3 numbers

8.15 B-Tree
B-TREE is a balanced multi way tree.

o Itisalso known as balanced sort tree.

o Itis nota binary tree.

o All the leaves of the tree must be at same level and height of
the tree must be kept minimum.

B-Tree of order N can be defined as

o All the non-leaf nodes (except the root node) have at least
(n/2) children and at most (n) children.

o All leaf nodes will be at same level

 Allleaf nodes can contain maximum (n-1) keys.

o All non leaf nodes can contain (m-1) keys where m is the
number of children for that node.

o All the values that appear on the left most child of a node are
smaller than the first value of that node. All the values that
appear on the right most child of a node are greater than the
last value of that node.

288 DATA STRUCTURE AND ALGORITHMS USING C++

INSERTION IN B-TREE

While insertion process we have to use the traversing. Through traversal it
will find that key to be inserted is already existing or not. Suppose key does
not exist in tree then through traversal it will reach the leaf node. Now we
have to focus on two cases such as

« Node is not FULL
o Node is already FULL

In the first case we can simply add the key at that node. But in the sec-
ond case we will need to split the node into two nodes and median key will
go to the parent of that node. If parent is also full then same thing will be
repeated until it will get non full parent node. Suppose root is full then it
will split into two nodes and median key will be the root.

EXAMPLE
Create an B-TREE of order 5
12,15, 33, 66, 55, 24, 22, 11, 85, 102, 105, 210, 153, 653, 38, 308, 350, 450

STEP1: Insert 12

STEP2: Insert 15

STEP3: Insert 33

STEP4: Insert 66

STEP5: Insert 55

a0

TREE 289

STEPG6: Insert 24

N
|12 15 24| | 55 66 |
STEP7: Insert 22
L=]
12 15 22 24| 55 66
STEPS: Insert 11
15 33

ww] [ma] [

STEP9: Insert 85

55 66 85

11 12 |

STEP10: Insert 102

55 66 85 102

290 DATA STRUCTURE AND ALGORITHMS USING C++

STEP11: Insert 105

15 33 85

[1 12 | | 22 24 | | 55 66 | [102 105

STEP12: Insert 210

15 33 85

[11 12 | [22 24 | [55 66 | [102 105 210

STEP13: Insert 153

15 33 85

[1 12 | | 22 24 | | 55 66 | [102 105 153 210

STEP14: Insert 653

[15 33 85 153 |

112 22 24 55 66 | |102 105 | | 210 653

STEP15: Insert 38

[15 33 85 153 |

11 12 22 24 38 55 66 | 102 105 | | 210 653

TREE 291

STEP16: Insert 308

[15 33 85 153

11 12 22 24 38 55 66| | 102 105 | [210308 653

STEP17: Insert 350

[15 33 85 153 |

11 12 22 24 38 55 66 | | 102 105 | [210 308 350 653

STEP18: Insert 450

15 33 153 350

/

[1112 | | 22 24 | [38 55 66| [102 105 | | 210 308 | | 450 653

DELETION FROM THE B-TREE

Deletion from a B-Tree is similar to the insertion. Initially we need to find
the node from which the value is to be deleted. After the deletion of the
value we need to check, whether the tree still maintains the property of
B-TREE or not.

Like insertion here also two situations will occur as

o Node is leaf node
o Node is non leaf node

292 DATA STRUCTURE AND ALGORITHMS USING C++

For example: Delete 55

15 33 153 350
/ N/
(s | [mas] [sasses] [roa ves | [zo5ms | [[asoess
Delete 33
s
15 38 153 350
/
s] [mza] [e [o2ves | [zosos | [aoem

8.16 B + Tree

In B-TREE we can access records randomly but sequential traversal is not
provided by it. B+ TREE is a special tree which provides the random access
as well as sequential traversal.

In B+ tree all the non leaf nodes are interconnected i.e/ a leaf node will
point to next leaf node.

15 38 153 350
1 12 22 44 102 105 210 308 450 653

A3 s s e s e A e

TREE 293

8.17 General Tree

A general tree is such a tree where there is no rules or restrictions such as

To convert a general tree to Binary tree just create a link in between like

B ° » C
ofofo ﬁ@@

FOREST

Forest is the collection of number of trees which are not linked with each
other. A forest can be obtained by removing the root from a rooted tree.

8.18 Red-Black Tree

A red-black tree is a binary search tree with one extra attribute for each
node: the colour, which is either red or black. We also need to keep track
of the parent of each node, so that a red-black tree’s node structure
would be:

294 DATA STRUCTURE AND ALGORITHMS USING C++

struct TREE
enum { red, black } colour;
void *item;
struct t_red black node *left,
*right,
*parent;

}

For the purpose of this discussion, the NULL nodes which terminate the
tree are considered to be the leaves and are coloured black.

Definition of a red-black tree

A red-black tree is a binary search tree which has the following red-black
properties:

Every node is either red or black.

Every leaf (NULL) is black.

If a node is red, then both its children are black.

Every simple path from a node to a descendant leaf contains the
same number of black nodes.

Ll

A red-black tree with » internal nodes has height at most 2log(n+1).

8.19 Questions

1. What is TREE data structure and how can it be used in a
computer system?

2. What are the different types of tree traversals?

3. Provide nonrecursive algorithms for TREE traversal.

4. What is an expression and how can it be formed? Explain
with a suitable example.

5. What is Height balanced tree? Construct by using 12,45,
65,7,87,98,6,54,22,23.

6. How to find the Lowest Common Ancestor of two nodes in

a Binary Tree?

What is the difference between B Tree and B+ Tree?

What is a Heap Tree? What is its use?

What is a 2-3 TREE?

What is RED-BLACK tree.

© 0o x N

9
Graph

GRAPH is a non linear data structure in which the elements are arranged
randomly in side the memory and are interconnected with each other
like TREE. The GRAPH having a wide range of application in general life
implementation like road map, electrical circuit designs etc...

A graph G is an ordered pair of sets (V,E) where V is the set of vertices
and E is the edges which connect the vertices.

A graph can be of two types such as

o Directed Graph
« Undirected Graph

DIRECTED GRAPH
A graph in which every edge is directed is called undirected graph.

UNDIRECTED GRAPH

A graph in which every edge is undirected is called undirected graph.
If in a graph some edges are directed and some are undirected then that
graph will be called as mixed graph.

9.1 Graph Terminologies
DIRECTED GRAPH

A graph in which every edge is directed is called undirected graph.

UNDIRECTED GRAPH

A graph in which every edge is undirected is called undirected graph.

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (295-348) © 2021 Scrivener Publishing LLC

295

296 DATA STRUCTURE AND ALGORITHMS USING C++

WEIGHTED GRAPH

A graph is said to be weighted if its edges have been assigned some non
negative value as weight.

ADJACENT NODES

A node N, is adjacent to another node or is a neighbor of another node N,
if there is an edge from node N, to N.

In undirected graph if (N, N,) is an edge than N is adjacent to N, and
N, is adjacent to N .

In Digraph < N, N > is an edge then N, is adjacent to N, and N is
adjacent from N_.

INCIDENCE

In an undirected graph the edge (V, V) is incident on nodes V and V.
In a digraph the edge <V, V> is incident from node V and is incident
tonode V,

PATH

A path from a node U, to node U isasequence of nodes U,U, U3 U
such that U is adjacentto U , U isadjacentto U, , U_, is adjacent
to Un,.

In other words we can say that (U, U), (U, U),(U,U,) are
the edges.

LENGTH OF PATH

It is the total number of edges included in the path.

CLOSED PATH

A path is said to be closed if first and last nodes of the path are same.

SIMPLE PATH

Simple path is a path in which all the nodes are distinct with an exception
that the first and last nodes of the path can be same.

GRAPH 297

CYCLE

Cycle is a simple path in which first and last nodes are the same or we can
say that a closed simple path is a cycle.

In a digraph a path is called a cycle if it has one or more nodes and the
start node is connected to the last node.

In an undirected graph a path is called a cycle if it has at least three
nodes and the start node is connected to the last node. In undirected graph
if (u,v) is an edge then u-v-u should not be considered as a path since (u,v)
and (v,u) are the same edges. So for a path to be a cycle in an undirected
graph there should be at least three nodes.

CYCLIC GRAPH
A graph that has cycles is called as cyclic graph

ACYCLIC GRAPH

A graph that has no cycle is known as acyclic graph.

DAG

A directed acyclic graph is named as dag after its acronym. Graph-5 is a
dag.

DEGREE

In an undirected graph the number of edges connected to a node is called
the degree of that node, or we can say that degree of a node is the number
of edges incident on it. In graph-2 degree of the node A is 1, degree of node
B is 0. In graph-3 the degree of the node A is 3 and the degree of the node
Bis 2.

In digraph there are two degrees for every node known as indegree and
outdegree.

INDEGREE

The indegree of a node is the number of edges coming to that node or in
other words edges incident to it. In graph-8 the indegree of nodes A, B, D,
and G are 0, 2, 6, and 1, respectively.

298 DATA STRUCTURE AND ALGORITHMS USING C++

OUTDEGREE

The outdegree of node is the number of edges going outside from that
node, or in other words the edges incident from it. In graph-8 outdegrees
of nodes A, B, D, E and G are 3, 1, 6, 3, and 2, respectively.

SOURCE

A node which has no incoming edges, but has outgoing edges, is called a
source. The indegree of source is zero. In graph-8 nodes A and F are sources.

SINK

A node, which has no outgoing edges but has incoming edges, is called as
sink. The outdegree of a sink is zero. In graph-8 node D is a sink.

PENDANT NODE

A node is said to be pendant if its indegree is equal to 1 and outdegree is
equal to 0.

REACHABLE

If there is a path from a node to any other node then it will be called as
reachable from that node.

ISOLATED NODE

If a node has no edges connected with any other node then its degree will be
0 and it will be called isolated node. In graph-2 node B is an isolated node.

SUCCESSOR AND PREDECESSOR

In graph is a node u is adjacent to node v, then u is the predecessor of v and
v is the successor of u.

CONNECTED GRAPH

An undirected graph is connected if there is a path from any node of graph
to any other node, or any node is reachable from any other node. Graph-2
is not a connected graph.

GRAPH 299

STRONGLY CONNECTED

A digraph is strongly connected if there is a directed path from any node
of graph to any other node. We can also say that a digraph is strongly con-
nected if for any pair of node u and v, there is a path from u and v and also
a path from v to u. Graph-7 is strongly connected.

WEAKLY CONNECTED

A digraph is weakly connected or unilaterally connected if for any pair of node
u and v, there is a path from u to v or a path from v to u. If from the digraph
we remove the directions and the resulting undirected graph is connected then
that digraph is weakly connected. Graph-6 is weakly connected graph.

MAXIMUM EDGES IN GRAPH

In an undirected graph there can be n(n — 1)/2 maximum edges and in a
digraph there can be n(n — 1) maximum edges, where n is the total number
of nodes in the graph.

COMPLETE GRAPH

A graph is complete if any node in the graph is adjacent to all the nodes
of the graph or we can say that there is an edge between any pair of nodes
in the graph. An undirected complete graph will contain n(n — 1)/2 edges.

MULTIPLE EDGE

If between a pair of nodes there is more than one edge then they are known
as multiple edges or parallel edges. In graph-3 there are multiple edges
between nodes A and C.

LOOP

An edge will be called loop or self edge if it starts and ends on the same
node. Graph-4 has a loop at node B.

MULTIGRAPH

A graph which has loop or multiple edges can be described as multigraph.
Graph-3 and Graph-4 are multigraphs.

300 DATA STRUCTURE AND ALGORITHMS USING C++

REGULAR GRAPH

A graph is regular if every node is adjacent to the same number of nodes,
Graph-1 is regular since every node is adjacent to other three nodes.

PLANAR GRAPH

A graph is called planar if it can be drawn in a plane without any two edges
intersecting. Graph-1 is not a planar graph, while graphs Graph-2, graph-
3, and graph-4 are planar graphs.

ARTICULATION POINT

If on removing a node from the graph the graph becomes disconnected
then that node is called as the articulation point.

BRIDGE

If on removing an edge from the graph the graph becomes disconnected
then that edge is called the bridge.

TREE

An undirected connected graph will be called tree if there is no cycle in it.

BICONNECTED GRAPH

A graph with no articulation points is called as a biconnected graph.

GRAPH-1 GRAPH-2 GRAPH-3

GRAPH-4 GRAPH-5

GrarPH 301

GRAPH-6 GRAPH-7

GRAPH-10

9.2 Representation of Graph

The major components of the graph are node and edges. Like tree the graph
can also be represented in two different ways such as

o ARRAY REPRESENTATION
o LINKED REPRESENTATION

302 DATA STRUCTURE AND ALGORITHMS USING C++
But Ovarall there are four major approaches to represent the graph as

o Adjacency Matrix

o Adjacency Lists
 Adjacency Multilists
« Incedince Matrix

ADJACENCY MATRIX

The nodes that are adjacent to one another are represented as matrix. Thus
adjacency matrix is the matrix, which keeps the information of adjacent or
nearby nodes. In other words we can say that this matrix keeps the infor-
mation whether the node is adjacent to any other node or not.

The adjacency matrix is a sequence matrix with one row and one col-
umn for each vertex. The values in the matrix are either 0 or 1. The adjancy
matrix of the graph G is a two dimensional array of size n * n(Where n is
the number of vertices in the graph) with the property that A[I][]] = 1, if the
edge (V,, V) is in the set of edges and A[I][J] = 0 if there is no such edge.

EXAMPLE:

ADJACENCY MATRIXIS

V1 |V2]|V3]|V4]|V5]Ve6

V1|0 0 0 0 0 0

V2 |1 0 0 0 0 0

V3 |0 0 0 0 0 0

GrarPH 303

V1 |V2|V3]|V4| V5] Ve

V4 |1 1 0 0 0 0

V510 0 1 1 0 1

Vo | 0 0 0 0 1 0

If the above is Undirected then the matrix will be

VI [V2| V3 |[V4]| V5] V6

V1|0 1 0 1 0 0
V2 |1 0 0 1 0 0
V3|0 0 0 0 1 0
V4 |1 1 0 0 1 0

V5 1[0 0 1 1 0 1

Vo6 [0 0 0 0 1 0

ADJACENCY LIST

The use of adjacency matrix to represent a graph is inadequate because of
the static implementation. The solution to this problem is by using a linked
list structure, which represents graph using adjacency list. If the graph is
not dense, that is if the graph is sparse, a better solution lies in an adjacency
list representation.

For each vertex we keep a list of all adjacent vertices. In adjacent list
representation of graph, we will maintain two lists. First list will keep the
track of all nodes in the graph and in the second list we will maintain a

304 DATA STRUCTURE AND ALGORITHMS USING C++

list of adjacent adjacent nodes for every node. Each list has a header node
which will be the corresponding node in the first list. The header nodes
are sequential providing easy random access to the adjacency list for any

particular vertex.
EXAMPLE:

Vi —> V4 N |
vz — v > vs |—»[vs N
v3 - »| NULL

\'Z3

V5

” =| v3 |—>|ve N

INCEDENCE MATRIX
Consider the Graph as

GraPH 305

In this type of representation the major part is the edges of the graphs it
clearly signifies that to which vertices the edges are connected. The vertex
from where the edge start that represented as 1 and the end at which it ends
that is represented by —1

V1 |V2]|V3]|V4|V5]Ve6

E1l |1 -1 |0 0 0 0
E2 -1 |0 0 0 0 1
E3 |0 -1 |0 1 0 0
E4 [0 1 0 0 -1 |0
E5 (0 0 1 0 0 -1
E6 | 0 0 1 0 -1 [0
E7 |10 0 1 -1 |0 0
E8 | 0O 0 0 -1)1 0

9.3 Traversal of Graph
The Graph Traversal is of two types such as

o Breadth First Search (BFS)
» Depth First Search (DFS)

9.3.1 Breadth First Search (BFS)

BES starts at a given vertex, which is at level ‘0’ In the first stage we visit all
vertices at level 1. In the second stage we visit all vertices at second level.
These new vertices, which are adjacent to level 1 vertices and so on.
The BES terminates when every vertex has been visited.
BEFS used to solve

1. Testing whether graph is connected or not.

2. Computing a spanning forest of Graph.

3. Computing a cycle in graph or reporting that no such cycle
exists.

306 DATA STRUCTURE AND ALGORITHMS USING C++

4. Computing for every vertex in graph, a path with the mini-
mum number of edges between start vertex and current ver-
tex or reporting that no such path exists.

Analysis: Total Running time of BFS = O(V + E)

ALGORITHM BFS(G;,S)

for each vertex u €V[G]- {S}
do color[u] <-white
d[u] < oo i.e/ distance from S
P[u] <~ NIL i.e/ Parent in the BFS tree
color([S] « gray
d[S] <« 0
Q« {8
while Q # ¢ do
9. u <« head[Q]
10. for each v € Adj[u] do
11. if color[v] = white then
12. color[v] <« gray
13. d[v] « d[u] +1
14. p[vl]«u
15. ENQUEUE(Q,v)
16. DEQUEUE(Q)
17. color[u] <« black

PN U P

Example :
OnunO l O
OO O—
BFS(G,S)

for each vertex u eV[G]- {S}
do color[u] <white
so color[S] = white
color[S] = gray
d[S] =0
Q={S}

GraPH 307

R H S a T H U

STEP-2 While Q # ¢
Since Q is not empty so S = Head[Q]
for each v € Adj[u]
i.e/ for each v € Adj[S]
find Adj[S] = [R,W]
if color[v] = white i.e/ color[R] = WHITE and color[W] = white
so color[R] = gray and color[W] = gray
d[v]=d[u] +1ie/d[R]=d[S]+1=0+1=1
d[W]=d[S]+1=0+1=1

ENQUE(Q,v)
i.e/ ENQUE(Q,R) and ENQUE(Q,W)
DEQUEUE(Q) and color[S] = BLACK

So DEQUEUE(S) and color[S] = black.

U

Q[R,T,X]
Vv w

ORQL

QIT,X,V]

o=Q)

308 DATA STRUCTURE AND ALGORITHMS USING C++

STEP-5
STEP-5

U(g)

°x
°-'

QIX,V,U]

GrAPH 309
STEP-9
R S
Qlgl
‘© O 0o0—O
Final result of BFS is S,W,R,T,X,V,U,Y

Final result of BFS is S;W,R, T,X,V,U,Y
Simplest Way for BFS

BREADTH FIRST SEARCH

The BFS uses QUEUE for the traversal of Graph.
PROCEDURE

1. Insert Starting Node into the QUEUE

2. Delete front element from the queue and insert all its unvis-
ited neighbors into the queue at the end and traverse them.
Also make the value of visited array true for these nodes.

3. Repeat Step-2 until the queue is empty

310 DATA STRUCTURE AND ALGORITHMS USING C++

STEP-1
Insert starting node 1 into the QUEUE
Traverse nodes = 1
Visited[1] =T
Front = 0 Rear = 0 queue = 1
Traversal =1
STEP-2
Delete the element from the queue and insert all the unvisited neighbors
into the queue i.e/
Traverse node = 2,4,5
Visited[2] = T Visited[4] =T visited [5] =T
Front = 0 Rear = 2 queue = 2,4,5
Traversal = 1,2,4,5
STEP-3
Delete front element node 2 from queue, traverse its unvisited neigh-
bors 3 and insert it into the queue
Traverse node = 3
Visited [3] =T
Front = 1 Rear = 3 queue = 4,5,3
Traversal = 1,2,4,5,3
STEP-4
Delete 4 and insert 7
Traverse nodes = 7
Visited[7] =T
Front = 2 Rear = 4 queue = 5,3,7
Traversal = 1,2,4,5,3,7
STEP-5
Delete 5 and insert 6,8
Traverse nodes - 6,8
Visited[6]= T visited[8] = T
Front = 3 Rear = 6 queue = 3,7,6,8
Traversal = 1,2,4,5,3,7,6,8
STEP-6
Delete 3 and since it has no unvisited neighbors so insert operation will
not perform
Front = 4 Rear = 6 queue = 7,6, 8
Traversal = 1,2,4,5,3,7,6,8
STEP-7
Delete 7 and since it has no unvisited neighbors so insert operation will
not perform
Front = 5 Rear = 6 queue =6, 8
Traversal = 1,2,4,5,3,7,6,8

GraPH 311

STEP-8

Delete 6 and since it has no unvisited neighbors so insert operation will
not perform

Front = 6 Rear = 6 queue = 8

Traversal = 1,2,4,5,3,7,6,8
STEP-9

Delete 8 and insert 9

Front = 0 Rear = 0 queue =9

Traversal = 1,2,4,5,3,7,6,8,9
STEP-10

Delete 9 and since it has no unvisited neighbors so insert operation will
not perform

Front = -1 Rear = -1 queue = EMPTY

Traversal = 1,2,4,5,3,7,6,8,9

9.3.2 Depth First Search

Depth First Search is another way of traversing of graph. It uses STACK
data structure for traversing.

ALGORITHM DFS(G)

for each vertex u €V[G]
do color[u] < white

7 (u) « NIL

time < 0

for each vertex u € V[G]
do if color[u] < white
DES-VISIT(u)

N W

ALGORITHM DFS-VISIT (u)

color[u] «gray

time < time + 1

d[u] <« time

for each v €Adj[u]

if color[v] < white

then 77 (v) < u
DFS-VISIT(v)

color(u) <« black

finish[u] <« time <« time+1

00N R W=

312 DATA STRUCTURE AND ALGORITHMS USING C++

EXAMPLE

STEP-1 u=R
Color[R] = gray, time =0+1 =1d[R] =1
v EeAdj[u] = v=(5V)
if color(S) = white and Since color(S) = white
n(V)=u=>n(S)=R

COLOR
PARENT (m)
R |S T |[U [V |W [X [Y
Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil
R [WI[Y [R |[S T | X
TIME
R |S T |[U |V (WX [|Y
1 2 7 14 | 3 5 6
16 (13 | 11 | 8 15 (12 |10 |9
R S T U \% W X Y

White | White | White | White | White | White | White | White

Gray Gray | Gray | Gray | Gray | Gray | Gray | Gray

Black Black | Black | Black | Black | Black | Black | Black

GraPH 313

Simplest Way for DFS

DEPTH FIRST SEARCH

The DFS uses STACK for the traversal of Graph.
PROCEDURE

1. PUSH starting node into the STACK

2. Pop an element from the STACK, if it has not traversed then
traverse it, if it has already been traversed then just ignore
it. After traversing make the value of visited array true for
this node.

3. Now PUSH all the unvisited adjacent nodes of the popped
element on STACK. PUSH the element even if it is already
on the stack.

4. Repeat Step-3 and step-4 until stack is empty.

STEP-1
PUSH 1 into STACK
Top = 0 stack =1
STEP-2
Pop 1 and traverse it and add all the unvisited adjacent node as 5,4,2
Traverse Node = 1
Visited[1] =T
Top = 2 stack = 5,4,2
Traversal = 1

314 DATA STRUCTURE AND ALGORITHMS USING C++

STEP-3
Pop 2 and traverse it and insert 5,3 into STACK
Traverse node = 2
Visited[2] =T
Top = 3 stack = 5,4,5,3
Traversal = 1,2
STEP-4
Pop 3, traverse it and insert 6 into the STACK
Traverse node = 3
Visited [3] =T
Top = 3 stack = 5,4,5,6
Traversal = 1,2,3
STEP-5
Pop 6, traverse it and nothing is to PUSH into the STACK
Traverse node = 6
Visited [6] =T
Top = 2 stack = 5,4,5
Traversal = 1,2,3,6
STEP-6
Pop 5, traverse itand PUSH 8 into the STACK and 6 is also adjacent but
since it is visited so it will not PUSH.
Traverse node = 5
Visited [5] =T
Top = 2 stack = 5,4,8
Traversal = 1,2,3,6,5
STEP-7
Pop 8, traverse it and PUSH 9 into the STACK.
Traverse node = 8
Visited [8] =T
Top = 2 stack = 5,4,9
Traversal = 1,2,3,6,5,8
STEP-8
Pop 9, traverse it and nothing is to PUSH into the STACK.
Traverse node = 9
Visited [9] =T
Top =1 stack = 5,4
Traversal = 1,2,3,6,5,8,9
STEP-9
Pop 4, traverse it and PUSH 7 into the STACK.
Traverse node = 4
Visited [4] =T

GrarPH 315

Top = 1 stack = 5,7
Traversal = 1,2,3,6,5,8,9,4
STEP-10
Pop 7, traverse it and nothing is to PUSH into the STACK.
Traverse node = 7
Visited [7] =T
Top = 0 stack =5
Traversal = 1,2,3,6,5,8,9,4,7
STEP-11
Pop 5, traverse it but since Visited[5] = T so just ignore it.
Top = 0 stack =EMPTY

9.4 Spanning Tree

Let a graph G = (V,E) , if T is a sub graph of G and contains all the vertices
but no cycles/circuit, then T may be called as Spanning Tree.

MINIMUM SPANNING TREE

If a weighted graph is considered, than the weight of the spanning tree (T)
of graph G can be calculated by summing all the individual weights, in the
spanning tree T. But we observe that for a graph a number of spanning tree
are available but minimum spanning tree means the spanning tree with
minimum weight.

A tree is a connected Graph with no cycles

1. A graphisa tree if and only if there is one and only one path
joining any two of its vertices.

2. A connected graph is a tree if and only if every one of its
edges is a bridge.

3. A connected graph is a tree if and only if it has N vertices
and N-1 edges.

One practical implementation of MST would be in the design of network.
Another useful application of MST is to finding airline routes.

9.4.1 Kruskal Algorithm

The Kruskal Algorithm is used to build the minimum spanning tree in
forest. Initially each vertex is in its own tree in forest. Then algorithm

316 DATA STRUCTURE AND ALGORITHMS USING C++

considers each edge in turn, order by increasing weight. If an edge (u,v)
connects two different trees then (u,v) is added to the set of edges of MST
, and two trees connected by an edge(u,v) are merged into a single tree.
On the other hand if an edge(u,v) connects two vertices in the same tree,
then edge(u,v) is discarded. It uses a disjoint set data structure to maintain
several disjoint sets of elements.
Each set contains the vertices in a tree of current forest.

ALGORITHM KRUSKAL(G,W)
A={¢}

for each vertex v eV[G]

do MAKE-SET(v)

Sort edges E by increasing order of weight W
for each edge(u,v) in E(G)

do if FIND-SET (u) # FIND-SET(v)

then A = A U{(u,v)}

UNION(u,v)

return A

VXN DD

Example :

First sort the edges according to their weights in ascending order.

EDGES WEIGHT
(B,C) 1
(G,D) 2
(C,D) 3
(EG) 4
(A,B) 5

GrAPH 317

(C.G)
(GE)
(AG)
(EE)

(E.D)
(ASF)
(B,G)

O 0 N1 O O U1

Now connect each and every edge from the beginning of the above list and
if a closed path is found then discard that edge.

(B,C)
(D——(c
(G.D)
(——(
(D—0)
(D)

(EG)

318 DATA STRUCTURE AND ALGORITHMS USING C++

(A,B)

Since (C,G) forms a closed path so discard it.

(G,E)

Since (A,G), (EE), (E,D), (A,F), (B,G) forms closed paths so discard
them and the above graph is the minimum spanning tree.

The Kruskal Algorithm is a greedy algorithm because at each step it
adds to the forest an edge at least possible.

9.4.2 Prim’s Algorithm

The key to implementing Prim’s algorithm efficiently is to make it easy to
select a new edge to be added to the tree formed by the edges in A in the
pseudo code below, the connected graph G and the root R of the minimum
spanning tree to be grown are inputs to the algorithm. During execution of
the algorithm all vertices that are not in the tree reside in a min priority queue
Q based in a key field. For each vertex V, Key[V] is the minimum weight of
any edge connecting V to a vertex in the tree, by conversion key[V]= o if
there is no such edge. The field 7 (V) names the parent of V in the tree.

ALGORITHM PRIM(G,W;R)

OO0 X® N AU L

—

for each u € V(G)

do key[u] <<

n(u) < Nil

Key[R] < 0

Q<+« V(G)

While Q # ¢

do u « EXTRACT-MIN(Q)

for each v € Q and w(u,v) < key(v)
then n(v) < u

key[R] < w(u,v)

Example:

GraPH 319

Queue:

KEY

Steps |A |B [C | D [E

10

N| N s |w N |~ O

320 DATA STRUCTURE AND ALGORITHMS USING C++

PARENT ()
Steps A [B C |D |E F G |H |I
Nil | Nil [Nil | Nil | Nil | Nil | Nil | Nil | Nil
1 A A
2 B
3 C C C
4 I
5 F F
6 G
7 D

Step-1: u = Extract_min(Q) i.e/ A and Key[A] =0

V ={B,H} [Adjacent of A]

W(A,B) < Key[B] i.e/4 < soKey[B]=4 @(B)=A

W(A,H) < Key[H] i.e/8 <o soKey[H] =8 m(H)=A Delete A
Step-2: u = Extract_min(Q) i.e/ B because the Minimum of [4,8] so 4i.e/ B

V ={CH} [Adjacent of B]

W(B,C) < Key[C] ie/8<osoKey[C]=8 a(C)=B

W(B,H) < Key[H] 1i.e/ 8 < 8 Since condition is false so no action will
take Delete: B
Step-3: u = Extract_min(Q) i.e/ Min of (8,8) so C

V = {B,LED} [Adjacent of C] Since B is not in Q so B will not be
considered.

W(C,I) < Key[I] i.e/2 < oosoKey[I] =2 a(I)=C

W(C,F) < Key[F] ie/4<osoKey[F]=4 n(F)=C

W(C,D) < Key[D] ie/7 < soKey[D]=7 n(D)=C Delete C
Step-4: u = Extract_min(Q) i.e/ Min of (7,4,8,2) so I

V ={C,H,G} [Adjacent ofI] Since Cis notin Q so C will not be considered

W(LH) < Key[H] ie/7<8soKey[H]=7 a(H)=1I
W(LG) < Key[G] ie/6<esoKey[G]=6 7(G)=1I Deletel

GrAaPH 321
Step-5: u = Extract_min(Q) i.e/ Min of (7,4,6,7) so F

V ={E,C,D,G} [Adjacent of F] Since Cis notin Q so C will not be considered
W(EG) < Key[G] ie/2<6s0Key[G]=2 a(G)=F

W(EE) < Key[E] i.e/ 10 < o so Key[E] =10 m(E) =F Delete F
W(ED) < Key[D] i.e/ 14 <7 (False)

Step-6: u = Extract_min(Q) i.e/ Min of (D,E,G,H)(7,10,2,7) so G
V ={H,LLF} [Adjacent of G] L,F will not be considered (Not In Queue)
W(G,H) < Key[H] ie/1<7soKey[H]=1 a(H)=G Delete G

Step-7: u = Extract_min(Q) i.e/ Min of (D,E,H)(7,10,1) so H
V ={A,B1,G} [Adjacent of H]
Since all are not in Queue so all will be discarded
Delete H

Step-8: u = Extract_min(Q) i.e/ Min of (D,E)(7,10) so D
V = {C,EE} [Adjacent of D] C,F will not be considered (Not In
Queue)

W(D,E) < Key[E] ie/9<10soKey[E]=9 a(E)=D Delete D

Step-9: u = Extract_min(Q) i.e/ Min of (E)(9) so E
V ={D,F} [Adjacent of H]
Since all are not in Queue so all will be discarded
Delete E

Finally all the vertices are deleted from the Q. Now plot the graph
according to the parent table.

O

322 DATA STRUCTURE AND ALGORITHMS USING C++

9.5 Single Source Shortest Path

The shortest path weight from a vertex u €V to a vertex v €V in the weighted
graph is the minimum cost of all paths from u to v if there exists no such
path from vertex u to vertex v then the weight of the shortest path is oo

We can also define as
Min{w(p) : ue———R—>o v if there is a path from uto v}
S(u, v) =
oo otherwise

NEGATIVE WEIGHTED EDGES

The negative weight cycle is a cycle whose total weight is —ve. No path from
starting vertex S to a vertex on the cycle can be a shortest path.

Since a path can run around the cycle many many times so it may get any

-ve costing other word we can say that a negative cycle invalidates the
notion of distance based on edge weights.

If some path from S to v contains a negative cost sysle , there does not
exist a shortest path otherwise there exist one that is simple.

-3

RELAXATION TECHNIQUE

This technique consists of testing whether we can improve the shortest
path found so far, if so update the shortest path. A relaxation step may or
may not decrease the value of the shortest path estimate.

ALGORITHM RELAX(u,v,w)

1. ifd[u] + w(u,v) <d[v]
2. then d[v] «d[u] + w(u,v)
3. m[v]«u

GRrRAPH 323

Example :

ALGORITHM INITIALIZE_SINGLE_SOURCE(G,S)

. for each vertex v e V[G]
. dod[v] «

7 (v) < Nil

d[s] <0

B

9.5.1 Bellman-Ford Algorithm

Bellman ford algorithm solves the single source shortest path problem in
the general case in which edges of a given digraph can have —ve weight as
long as G contains no negative cycles.

It uses d[u] as an upper bound on the distance d[u,v] from u to w.
The algorithm progressively decreases an estimate d[v] on the weight of
the shortest path from the source vertex S the each vertex v in V until it
achieves the actual shortest path.

This algorithm returns TRUE if the given digraph contains no -ve cycle
that are reachable from source vertex S otherwise FALSE.

ALGORITHM BELLMAN-FORD(G,W,S)

INITIALIZE-SINGLE-SOURCE(G,S)
for each vertexi=1to V[G] - 1 do
for each edge(u,v) € E(G) do
RELAX(u,v,w)

for each edge(u,v) in E(G)

do if d[u] + w(u,v) < d[v]

then return FALSE

N U w

324 DATA STRUCTURE AND ALGORITHMS USING C++

8. Return TRUE

Distance

Parent (7)

Steps |S |U |V |Y | X
0

1 6

2 112

3 9

4 4

5 2

6 -2

7 No effect

Steps | S U |V |Y | X
Nil | Nil | Nil | Nil | Nil

1 S S

2 U |U

3 Y

4 X

5 \Y%

6 U

7

No effect

GrAPH 325

STEPS
For i=1 Consider the vertex S

Now Since the Adj(S) = (U,X) now implement Relax with (S,U)
and (5,X)

Relax(s,u,w)
d[s] + w(s,u) <d[u] =0+ 6 <= sod[u] =6 and n(u) =S

Relax(s,x,w)
d[s] + w(s,x) <d[x] =0+ 7 <o sod[x] =7 and n(x) =S

For i=2 Consider the vertex U (min(u,x))
Now Since the Adj(U) = (V,X,Y) now implement Relax with
(U,V),(U,X) and (U,Y)

Relax(u,v,w)
d[u] + w(u,v) <d[v]=6+5<wsod[v]=11and n(v) = u

Relax(u,x,w)
d[u] + w(u,x) < d[x] = 6 + 8 < 7 (False)

Relax(u,y,w)
dlu] + w(u,y) <d[y] =6+ -4 <o sod[y]=2and n(y) =u

For i=3 Consider the vertex Y (minimum)
Now Since the Adj(Y) = (V,S) now implement Relax with (Y,V)
and (Y,S)

Relax(y,v,w)
dly] + w(y,v) <d[v]=2+7<1lsod[v]=9and n(v) =y

Relax(y,s,w)
d[y] + w(y,s) <d[s] =2 + 2 < 0 (False)

For i=4 Consider the vertex X (minimum)
Now Since the Adj(X) = (V,Y) now implement Relax with (X,V)
and (X,Y)

Relax(x,v,w)
d[x] +w(x,v) <d[v]=7+-3<9sod[v] =4and n(v) =x

326 DATA STRUCTURE AND ALGORITHMS USING C++

Relax(x,y,w)
d[x] + w(x,y) <d[y] =7 + 9 < 2 (False)

For i=5 Consider the vertex V (minimum)
Now Since the Adj(V) = (U) now implement Relax with (V,U)

Relax(v,u,w)
dlv] +w(vu)<dfu]=4+-2<6sod[u] =2and n(u) =v

For i=6 Consider the vertex U (minimum)
Now Since the Adj(U) = (V,Y,X) now implement Relax with
(U,V),(U,Y),(U,X)

Relax(u,v,w)
d[u] + w(u,v) <d[v] =2 + 5 < 4 (False)

Relax(u,y,w)
d[u] + w(u,y) <d[y] =2+ -4<2sod[y] =-2and n(y) =u

Relax(u,x,w)
d[u] + w(u,x) < d[x] =2 + 8 < 7 (False)

For i=7 Consider the vertex Y (minimum)
Now Since the Adj(Y) = (V,S) now implement Relax with
(L, V),(Y,S)

Relax(y,v,w)

d[y] + w(y,v) <d[v] =-2 + 7 < 4 (False)
Relax(y,s,w)

dly] + w(y,s) <d[s] =-2+2 <0 (False)

So the shortest path graph is

GRrRAPH 327

9.5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single source shortest path problem when all
edges have non —ve weights. It is a greedy algorithm and similar to prim’s
algorithm. Algorithm starts at the source vertex S it grows a tree T that ulti-
mately spans all vertices rechable from S. Vertices are added to T in order of
distancei.e/ first S, then the vertex closest to S, then the next closest and so on.

ALGORITHM DIJKSTRA(G,W,S)

1. INITIALIZE-SINGLE-SOURCE(G,S)
2. S«{}
3. Initialize Priority Queue i.e/ Q <-V[G]
4. While Q # ¢
5. do u <« Extract_min(Q)
6. S« Sufu}
7. for each vertex v €Adj[u]
8. do RELAX(u,v;w)
Example:
Distance
Steps [S [U [V [Y [X
0
1 10 5
2 8 14 | 7
3 13
4 9

328 DATA STRUCTURE AND ALGORITHMS USING C++

Parent ()
Steps | S U |V |Y | X
Nil | Nil | Nil | Nil | Nil
1 S S
2 X X X
3 Y
4 U
STEP-1 Consider the vertex S

Now Since the Adj(S) = (X,U) now implement Relax with (S,U)
and (S,X)

Relax(s,u,w)

d[s] + w(s,u) <d[u] =0+ 10 < o sod[u] =10 and (u) =S
Relax(s,x,w)

d[s] +w(s,x) <d[x] =0+5<osod[x] =5and 7n(x) =S delete S
STEP-2 Consider the vertex X (minimum)

Now Since the Adj(X) = (U,V,Y) now implement Relax with (X,U)
(X,Y)and (X,V)

Relax(x,u,w)
d[x] + w(x,u) <d[u] =5+ 3 <10sod[u] =8 and n(u) =X

Relax(x,v,w)

d[x] + w(x,v) <d[v] = 5+9<osod[v] =14 and n(v) =X
Relax(x,y,w)

d[x] + w(x,y) <d[y] = 5+ 2 < e sod[y] =7 and n(y) = X delete X
STEP-3 Consider the vertex Y (minimum)

Now Since the Adj(Y) = (S,V) now implement Relax with (Y,S)
(,V)
Relax(y;s,w)

d[y] + w(y,s) <d[s] =7 + 7 < 0 (False)
Relax(y,v,w)

dly] + w(y,v) <d[vl] = 7+ 6 <14sod[v] =13 and n(v) = Y
delete Y

GRrRAPH 329

STEP-4 Consider the vertex U (minimum)

Now Since the Adj(U) = (V,X) now implement Relax with (U,V)
(UX)
Relax(u,v,w)

d[u] + w(u,v) <d[v]=8+1<13sod[v]=9and n(v) = U

Relax(u,x,w)
d[u] + w(u,x) < d[x] = 8 + 2 < 5 (False) delete U
So final shortest path matrix is

(V]
_/
) 4

&

Dsv=Dsx+Dxu+Duv =5+3+1=9

PROGRAM USING DIJKSTRA ALGORITHM

#include<stdio.h>

#include<conio.h>

#define INFINITY 9999

#define MAX 10

void createGraph (int G[MAX] [MAX],int n) ;

void dijkstra(int G[MAX] [MAX],int n,int startnode) ;

int main()
{
int G[MAX] [MAX],i,]j,n,u;
char ch;
//input the number of vertices
printf (“*Enter no. of vertices:”);
scanf (“%d”, &n) ;

createGraph (G,n) ;
printf (“\nEnter the starting node:”);

330 DATA STRUCTURE AND ALGORITHMS USING C++

fflush(stdin) ;

scanf (“%c”,&ch) ; //read the starting vertex

u= toupper (ch)-65;//convert to its equivalent numeric
value i.e/ a=0,b=1,c=2 and so on....

dijkstra(G,n,u);

return O;

}

//create the graph by using the concepts of adjacency
matrix.
void createGraph (int G[MAX] [MAX],int n)
{
int 1,7;
//read the adjacency matrix
printf (“\nEnter the adjacency matrix:\n”) ;

for (i=0;i<n;i++)
for(j=0;j<n;j++)
scanf (“%d”,&G[1] [3]) ;

}

void dijkstra(int G[MAX] [MAX],int n,int startnode)

{

int cost [MAX] [MAX],6distance [MAX], pred [MAX] ;
int visited[MAX], count,mindistance,nextnode, i, j;
char ver='A’';

//pred[] stores the predecessor of each node
//count gives the number of nodes seen so far
//create the cost matrix
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if (G[1] [J]1==0)
cost [1] [j]1=INFINITY;
else
cost [1] [§1=GI[i]l [J];

//initialize pred[],distance[] and visitedl[]
for (i=0;i<n;i++)
{
distance[i] =cost [startnode] [1];
pred[i] =startnode;
visited[i]=0;

}

distance[startnode] =0;

GrAPH 331

visited[startnodel=1;
count=1;

while (count<n-1)

{

mindistance=INFINITY;

//nextnode gives the node with minimum
distance
for (i=0;i<n;i++)
if (distance[i]l <mindistance&&!visited[1])
{
mindistance=distance[i];
nextnode=1i;

}

//check if a better path exists through
nextnode or not
visited [nextnode] =1;
for (i=0;i<n;i++)
if (lvisited[i])

if (mindistance+cost [nextnode] [1] <distance[i])

{

distance[i] =mindistance+cost [nextnode] [i];
pred[i] =nextnode;

count++;

}

//print the path and distance of each node from
strating node
for (i=0;i<n;i++)
if (i!=startnode)
{
printf (“\nDistance of node from %c to %c
= %d”,ver, ver+i,distanceli]) ;

printf (“\nPath=%c”,ver+i) ;
j=1i;

do

{

j=predl[j];

printf (“<-%c”,ver+j) ;
}while (j!=startnode) ;

332 DATA STRUCTURE AND ALGORITHMS USING C++

OUTPUT

Enter no. of vertices:b

Enter the adjacency mateix:
4]

Enter the starting node:a

Distance of node from A B
Path=B<-fA

Distance of node from A L
Path=C<—A

Distance of node from A)]
Path=D<—A

Distance of node from A B
Pat h=E<-B<-A

Distance of node from A F

Process exited after 39.95 seconds with return value A
Press any key to continue . .

BY USING ADJACENCY MATRIX

#include<iostream.h>
#fdefine INFINITY 9999
void dijkstra(int gra[50] [50],int n,int startnode,int last) ;

int main()
int gral[50] [50],1,j,n,u,v;
cout<<”Enter no. of vertices:”;
cin>>n; // ask about the number of vertices
cout<<”\nEnter the adjacency matrix:\n”;

GRrRAPH 333

// enter the graph
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
cins>grali] [j];
cout<<endl<<”GRAPH IS \n”;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
cout<<” “<<gralil [7];
cout<<endl;

}

cout<<”\nEnter the starting node:”;

cins>>u; // input the starting vertex
cout<<”\n Enter the last vertex”;
cin>>v; //enter the last vertex

dijkstra(gra,n,u,v) ;
return 0;

}
//find the shortest path
void dijkstra(int gral[50] [50],int n,int startnode,int last)

{

int cost[50] [50] ,distance[50],pred[50];
int visited[50], count,mindistance,nextnode,i,j;

//pred[] stores the predecessor of each node
//count gives the number of nodes seen so far
//create the cost matrix
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if (grali] [§1==0)
cost [1] [j]1=INFINITY;
else
cost [1] [jJl=gralil []];

//initialize pred[],distance[] and visitedl[]
for(i=1;i<=n;i++)
{

distance[i]l =cost [startnode] [i];

pred[i] =startnode;

visited[i]=0;

}

distance [startnode] =0;
visited[startnodel=1;
count=1;

334 DATA STRUCTURE AND ALGORITHMS USING C++

while (count<n-1)

{

mindistance=INFINITY;

//nextnode gives the node at minimum distance
for(i=1;i<=n;i++)
if (distance[i]l <mindistance&&!visited[1])
mindistance=distance[i];
nextnode=1i;

}

//check if a better path exists through nextnode
visited[nextnode] =1;
for(i=1;i<=n;i++)
if (lvisited[i])
if (mindistance+cost [nextnode]
[i]<distance[i])

distance[i] =mindistance+cost [nextnode]
[i1;

pred[i] =nextnode;

count++;

}

//print the path and distance of each node
for(i=1;i<=n;i++)
if (i!=startnode && i==last)
{
cout<<”\nShortest Distance “<<startnode<<” to
“<<i<<” = “<<distancel[i];
cout<<”\nShortest Path = “<<i;

j=1;
do
{
j=pred([j];
cout<<”<-"<<j;
}while (j!=startnode) ;

GrAPH 335

OUTPUT

y]

0
1
7
°]
6]
[¢]
0
0
0
[¢]

CEODORAE _

Enter the starting node:l
Enter the last wvertexd

Shortest Distance 1 to 4 =
Bhortest Path = 4<{-3<{-1

9.6 All Pair Shortest Path

Given a directed, connected weighted graph G(V,E), for each edge (u,v)€E,
a weight w(u,v) is associated with the edge. The all pairs of shortest paths
problem (APSP) is to find a shortest path from u to v for every pair of ver-
ticesuand vin V.

The representation of G
The input is an nxn matrix W=(wij).

0 ifi=j
w(i,j)=7 the weight of the directed edge(i,j) ifi# jand(i,j)€E
o0 ifi # jand(i,j)¢ E

The all-pairs-shortest-path problem is generalization of the single-
source-shortest-path problem, so we can use Floyd’s algorithm, or Dijkstra’s
algorithm (varying the source node over all nodes).

« Floyd’s algorithm is O(NA3)
« Dijkstra’s algorithm with an adjacency matrix is O(N~2), so
varying over N source nodes is O(N/3)

336 DATA STRUCTURE AND ALGORITHMS USING C++

 Dijkstra’s algorithm with adjacency lists is O(E log N), so
varying over N source nodes is O(N E log N)

For large sparse graphs, Dijkstra’s algorithm is preferable.

Floyd-Warshall Algorithm

Floyd-Warshall’s algorithm is based upon the observation that a path link-
ing any two vertices u and v may have zero or more intermediate vertices.
The algorithm begins by disallowing all intermediate vertices. In this case,
the partial solution is simply the initial weights of the graph or infinity if
there is no edge.

The algorithm proceeds by allowing an additional intermediate vertex at
each step. For each introduction of a new intermediate vertex x, the short-
est path between any pair of vertices u and v, x,u,ve€V, is the minimum of
the previous best estimate of §(u,v), or the combination of the paths from
u—>x and x—>v.

The Floyd-Warshall algorithm compares all possible paths through the
graph between each pair of vertices. It is able to do this with only ®(|V|*)
comparisons in a graph. This is remarkable considering that there may be
up to Q(|V]?) edges in the graph, and every combination of edges is tested.
It does so by incrementally improving an estimate on the shortest path
between two vertices, until the estimate is optimal.

O(u,v)<«-min(8(u,v),0(u,x)+8(x,v))
Let the directed graph be represented by a weighted matrix W.

FLOYD-WARSHALL (W)
1 n <« rows[W]
2 D)« W
3 for k< 1to n
4 dofor i< 1to n
5 dofor j«- 1to n
6 do d¥ e MIN(d},df +d)
7 return D(n)

The time complexity of the algorithm above is O(n3).

GRAPH 337

Example

The path matrix is

§ 8 8

8 8 8 —

n § oo §

N~ N 8§ <

D’ =

=4,

4andj

So the total number of repetition will be O(4°) = 64

=4,i

According to the algorithm k

a g 8 e 8 8

— (g\l
NI NIRRT oy 10
AT ~ P 8 + + + +
TN N 8 8 8 8
SN A N~ S . © &
N 88 N 8 8 8 o5 8 8
SN N N N N N N N N’ N’ N N
TR [T [T
A~ AN AN~ A~ N N~ A~ N N~
AL AR LR AR

—_—_——— —_——_—— —_————
= o = = o
e — e e AR
—_—_—— —_——_— — —_————
— o~ = AN AN AN AN N O NN
— AR AR e
ajafalal agaala ARAA
—_ — — — —_ — — — —_—_——
— N N <K — AN N <K — AN N <H
— e — e AR P Y
—_—_ — — —_—_ — — —_—_———
— o — AN AN AN AN N N NN
NP AR IR AL

]
]
]
]
2][
]
]
]
]
]
]
]

1&
Dl
Dl
Dl
Dl
1&I1
: D!
. Dl
Dl
Dl
1&
D
D
D
D

We have to compute D1,D2,D3,D4.

For k

1

2

3

4
For k

1

2

3

4
For k

1

2

3

4

338 DATA STRUCTURE AND ALGORITHMS USING C++

=1&I=4

For k

——— —

=2&I=1

For k

(7,1247)

(12,12412) = 12

(00,12-}—00) = oo
(2,12+2)

(e0,3+7) = 10
(3,3+12)

=3

(oo,3+oo) = oo

11

GRrRAPH 339

=3&I=1

For k

=7

(7, 0+10)
(5, ©+3)

=5

(oo,oo+oo) = oo

(7, co+5)

=7

1)
1)
1)
)

1
2
3
4

— e —

7

(7, 00+10)

(12, 00+3) = 12
(oo,oo-{—oo) = oo
(2, 0o+5)

(3, ©=+3)
(5, o0+5)

=3&I=4

For k

10

—_— ——_——_—

—

=4 &I=

For k

6

(7, 2+4)
(12, 2+4)

(00,2+41)
(2, 246)

=6

3
2

340 DATA STRUCTURE AND ALGORITHMS USING C++

Fork=4&I=

J=1 : DY3][1] = min(D?[3][1], D*[3][4] + D?*[4][1]) = (10, 5+4) =9
J=2 : D*3][2] = min(D?[3][2], D’[3][4] + D*[4][2]) = (3,5+4) =3
J=3 : D*3][3] = min(D?*[3][3], D’[3][4] + D*[4][3]) = (e0,5+1) =6
J=4 : D*3][4] = min(D?*[3][4], D3[3][4] + D*[4][4]) = (5, 5+6) =5
Fork=4&1=4
J=1 : D'4][1] = min(D?[4][1], D*[4][4] + D?*[4][1]) = (4,6+4) =
J=2 : D%4][2] = min(D?[4][2], D*[4][4] + D?[4][2]) = (4,6+4) =
J=3 : D%4][3] = min(D?*[4][3], D?[4][4] + D*[4][3]) = (1,6+1) =1
J=4 : D%4][4] = min(D?[4][4], D’[4][4] + D*[4][4]) = (6,6+6) =

7 5 8 7

D= 6 6 3 2
9 3 6 5
4 4 1 6

From the above matrix we can plot the graph with All pair shortest path.

Example
The path matrix is
0 8§ o 1
D= oo 0 1 oo
4 o 0 oo
o 2 9 0

According to the algorithm k = 4, i= 4 and j= 4.
So the total number of repetition will be O(4°) = 64
We have to compute D1,D2,D3,D4.

Fork=1&I=1

J=1 : D'[1][1] = min(D°[1][1], D°[1][1] + D°[1][1]) = (0,0+0) =
J=2 : D'[1][2] = min(D°[1][2], D°[1][1] + D°[1][2]) = (8,0+8) =
J=3 : D'[1][3] = min(D°[1][3], D°[1][1] + D°[1][3]) = (c0,0+c0) = o0
J=4 : D!1][4] = min(D°[1][4], D°[1][1] + D°[1][4]) = (1,0+) =1
Fork=1&I=2

J=1 : D'[2][1] = min(D°[2][1], D°[2][1] + D°[1][1]) = (c0,e0+0) = oo
J=2 : D'[2][2] = min(D°[2][2], D°[2][1] + D°[1][2]) = (0, e=+8) =

GRAPH 341

[2][3], D°[2][1] + D°[1][3]) = (1, coteo) = 1
[2][4], D°[2][1] + D°[1][4]) = (e0,0041) = oo

3

1111)

—

—
—

12
0
5

(oo, 4+8)
(0,4+oo)
(00,4+1)

112])
1(3])
114])

— o —

[—
e

o N <A

| — = —

Fork=1 &I

J=1 :

—

[
[
[
[

D'[3

— — —

3
3
3

Dl
Dl
Dl

2
3
4

J
J
J

Fork=1&I=4

J=1 :

(°°)°°+0) = o0
(2, o+8)
(9, OO—I—oo)

=2

9
0

(0, co+1) =

)
)
)
)

—_————

=2 &I

For k

(°°,0+00) = oo

(0,040) =0

(1,0+1) =1

(°°,0+00) = oo

Fork=2 &I

=4

(4,12+00)

=12

(12, 12+0)
(0,12+1)

=0

=5

(5,12+0)

Fork=2&I=4

2

4][2] + D'[2][1]) = (e0,2400) = co
4][2] + D'[2][2]) = (2,2+0)

342 DATA STRUCTURE AND ALGORITHMS USING C++

0

(0, 9+4)
(8,9+12)
(9,9+0)

=38

=9

(1,9+5) = 1

1])
2])
3])
4])

— i —

Fork=3 &I

=5

(o0, 1+4)
(0, 1+12)

=0

(1,1+0) = 1
(o0,145)

=6

1)
1)
1)
),

1
2
3
4

— e —

=3&I

For k

4

4, 0+4)

12

0

12, 0+12)
0,0+0) =
5,0+5)

(
(
(
(

A~ A~~~
— — ——

— N N <H

— e —

5

=3 &I
D3

For k

~— — — —

A~ A~~~
— — ——

— N N <H

— e —

Fork=4 &I=2
J=1 : D*[2][1] = min(D’[2][1], D*[2][4] + D’[4][
J=2 : D*[2][2] = min(D’[2][2], D*[2][4] + D’[4][
J=3 : D*2][3] = min(D’[2][3], D*[2][4] + D’[4][
J=4 : D*2][4] = min(D’[2][4], D*[2][4] + D’[4][
Fork=4&I=3
J=1 : D*[3][1] = min(D’[3][1], D*[3][4] + D’[4][
J=2 : D*[3][2] = min(D’[3][2], D*[3][4] + D’[4][
J=3 : D*[3][3] = min(D’[3][3], D*[3][4] + D’[4][
J=4 : D*[3][4] = min(D’[3][4], D*[3][4] + D’[4][
Fork=4 &I1=4
J=1 : D*[4][1] = min(D’[4][1], D°’[4][4] + D°[4][1]
J=2 : D'[4][2] = min(D’[4][2], D’[4][4] + D’[4][2]
J=3 : D%4][3] = min(D?[4][3], D*[4][4] + D?[4][3]
J=4 : D*[4][4] = min(D’[4][4], D’[4][4] + D’[4][4]
The all pair shortest path matrix is
0 3 4 1
D=5 0 1 6
4 7 0 5
7 2 3 0

PROGRAM FOR FLOYD-WARSHALL

#include<stdio.h>

int i, j, k,n,x,y,dist[10] [10];
void floydWarshell ()
{
for (k = 0; k < n; k++)
{
printf (*\n For K = %d”,k);
for (i = 0; 1 < n; i++)
{
for (j = 0; < n; j++)
{
if (dist[i] [k] + dist[k] []j]
{
printf (“\nFor i=%d,
[$d] +dist [%d] [¥d] < dist[%d] [%d], %d + %d
[$d] = %d”,1i,3,1,k,k,J,1,7,dist[1] [k]

[31,1,3,dist[i] [k] + dist[k] [3]);

GRAPH 343

= (5,6+7) =5
=(0,6+2) =0
=(1,6+3) =1
=(6,6+0) =6

D=04,5+7)=4
D=(12,5+2)=7
D =(0,5+3)=0
4]) =(5,5+0) =5
)=(7,0+7)=7
) =(2,0+2) =2
)=(3,0+3)=3
)=(0,0+0) =0

< dist[i] [3])

j= %d,dist [%d]
dist [%d]
,dist [k] [§],dist[i]

< %d (T),

344 DATA STRUCTURE AND ALGORITHMS USING C++

dist[i] [j] = dist[i] [k] + distl[k][j];

}

else

{
printf (“\n For i=%d, j= %d,dist[%d] [%d]
+ dist[%d] [%d] < dist[%d] [%d] i.e/ %d + %d < %4
(False)”,1,3,1,k,k,3,1i,3,dist[i] [k] ,dist[k][j],dist[i] [J]);

}
}
printf (“\n\n PATH MATRIX - %d\n”,k+1) ;
for (x = 0; X < n; X++)
{
for (y = 0; y < n; y++)
printf (“%d\t”, dist[x][y]);
printf (“\n”) ;
}
getch() ;
}
}
int main()
{
int 1i,73;
printf (“enter no of vertices :");
scanf (“%d”, &n) ;
printf (“\n”) ;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
printf (“dist [%d] [%d]:",1,3);
scanf (“%d”, &dist [1] []]) ;
}
floydWarshell () ;
printf (™ \n\n shortest distances between every pair of
vertices \n”);
for (i = 0; 1 < n; i++)
{
for (3 = 0; j < n; j++)
printf (“%d\t”, dist[i] [j]);
printf (“\n”) ;
}

return O;

}

GRAPH 345

9.7 Topological Sorting

In any directed graph which has no cycle, topological sort gives the sequen-
tial order of all the nodes x,y and x comes before y in sequential order if a
path exists from x to y. So this sequential order will indicate the depedency
of one task on another.a

For topological sorting the steps are

o Take all the nodes which have zero indegree.
o Delete those nodes and edges going from those nodes.
« Do the same process again until all the nodes are deleted.

O—©
e
O—

The Adjacency List of the above graph is
A ->B,F

B ->E,F

C->B,D

D ->B,E

E->

F->

G->EF

Ex:

STEP-1:
Indegree of the Nodes are
A=0, B=3, C=0, D=1, E=3, F=3, G=0

STEP-2:
1) Taking all the nodes, which have zero indegree
AC,G
2) Add all zero indegree nodes to queue
QUEUE: A,C,G front =1 Rear =3

346 DATA STRUCTURE AND ALGORITHMS USING C++

3) Delete the node A and edges going from A

QUEUE: C,G front =2 Rear =3 SORT: A
4) Now the indegree of nodes will be

B=2, D=1, E=3, F=2

STEP-3:
1) Delete the node C and edges going from C
QUEUE :G front =3 Rear =3 SORT :A,C
2) Now the indegree of nodes will be
B=1, D=0, E=3, F=2

STEP-4:
1) Add the node D to the Queue
QUEUE:G,D front = 3, rear = 4 SORT : A,C
2) Delete the node G and edges going from G
QUEUE :D front =4 Rear =4 SORT :A,C,G
3) Now the indegree of nodes will be
B=1, E=2, F=1

STEP-5:
1) Delete the node D and edges going from D
QUEUE: front=0Rear =0 SORT :A,C,G,D
2) Now the indegree of nodes will be
B=0, E=1, F=1

STEP-6:
1) Add the node B to the Queue
QUEUE: B front=1,rear=1 SORT : A,C,G,D
2) Delete the node B and edges going from B
QUEUE: front=0Rear=0 SORT :A,C,G,D,B
3) Now the indegree of nodes will be
E=0, F=0

STEP-7:
1) Add the node E,F to the Queue
QUEUE : E,F front=1,rear=2 SORT: A,C,G,D,B
2) Delete the node E and edges going from E
QUEUE :F front =2 Rear =2 SORT :A,C,G,D,B,E

GRAPH 347
STEP-8:
1) Delete the node F and edges going from F
QUEUE: front=0Rear=0 SORT :A,C,G,D,B,E,F

Now the topological sorting graph will be A,C,G,D,B,E,F

9.8 Questions

1. What is graph data structure?
2. Draw the Minimum spanning tree of

NP
O SR AP OSaC
CANCRR AN WA

3. Write a program to implement PRIM’S algorithm.

4. What are the types of graph traversing?

5. What is the difference between Dijkstra and Bellman-Ford
algorithm?

6. What is topological sorting?

10

Searching and Sorting

Searching is the process of finding out the position of an element in an list.
If the element is found inside the list then the searching process is success-
ful otherwise the searching process is failure.

Searching is of two types such as

Linear Search
Binary Search

10.1 Linear Search

This is the simplest method of searching .In this method the element to be
found is sequentially searched in the list.

This method can be applied to a sorted or an un-sorted list.Searching is
case of sorted list starts from Oth element and continues until the element
is found or an element whose value is greater (Assuming the list is sorted
in ascending order) than the value being searched is reached.

As against this,searching in case of unsorted list starts from Oth element
and continues until the element is found or the end of list is reached.

Algorithm

N — Boundary of the list
Item — Searching number
Data — Linear array

Step-1 I=0
Step-2 Repeat while I<=n
If (item = data[i])
Print “Searching is successful”
Exit

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (349-390) © 2021 Scrivener Publishing LLC

349

350 DATA STRUCTURE AND ALGORITHMS USING C++

Else
Print “Searching is Unsuccessful”
Step-3 exit
Analysis of the Sequential Search

The number of comparisons for a successful search is depends upon the
position where the key value is present. If the searched value is present at
the 1st place then m 1 comparison is required. So in general mth compar-
isons are required to search the mth element.

Best Case Complexity

If the key value is present at first position on the array then T(n) = O(1)

Worst Case Complexity

If the value is present at the end of the array then T(n) = O(n)
Average Case Complexity

(Best case + Worst Case)/2 = (1+n)/2

T(n) = O(n)

Program on Linear Search

#include<iostream>
using namespace std;
int main()
{
int *a,no,n,i;
//ask user to input the number of elements to store in the
array
cout<<”\nENTER HOW MANY ELEMENTS TO BE STORED IN THE LIST”;
cin>>n; //read the number
a = new int[n]; //dynamically allocate memory for array
//loop to input the elements into the array
for (i=0;i<n;i++)

{

cout<<”\nENTER A NUMBER” ;
cin>>alil;

}
cout<<”\nENTER THE NUMBER TO SEARCH”;
cin>>no; //ask user to input the number to search
//loop to search the number in the list
for(i=0;i<n;i++)

SEARCHING AND SORTING 351

{

if (a[i] ==no)

{

cout<<”\nTHE NUMBER IS FOUND IN THE LIST”;
break;

}

else
if (i==n-1)
cout<<”\nTHE NUMBER IS NOT FOUND IN THE LIST”;

OUTPUT

HOW MANY ELEMENTS TO BE STORED IN THE LIST1@
NUMBER36
NUMBERS6
NUMBERS 8
NUMBER?
NUMBERZ3

NUMBER?74
NUMBERS
NUMBER?5
NUMBERG
THE NUMBER TO SEARCHG
THE NUMBER IS FOUND IN THE LIST

A
A
A
A
A
A NUMBERS4
A
A
A
A

Process exited after 18.59 seconds with return value A
Press any key to continue . . .

10.2 Binary Search

Binary search method is very fast and efficient. This method requires that
the list of element is to be sorted.

In this method to search an element we compare it with the element
present at the center of the list..I f it matches then the search is successful.
Otherwise,the list is devided into two halfs.One from the Oth position to
center position(1st half) and another from center to last element (2nd half).

352 DATA STRUCTURE AND ALGORITHMS USING C++

As aresult all the element in the 1st half are smaller than the center element,
whereas all the elements in the 2nd half are greater than the center element.

The searching will now proceed in either of the two halves depending
upon whether the element is greater or smaller than the center element .If
the element is smaller than the center element then searching will be done
in the 1st half otherwise in the 2nd half. Same process of comparing the
required element with the center element and if not found then deviding
the elements into two halves is repeated for the Ist half or 2nd half.This
procedure is repeated till ther element is found, or the division of half parts
gives one element.

For eg
123911 13 17 25 57 80

Suppose the array consists of 10 sorted numbers and 57 is the number
that is to be searched.Then the binary search method when applied to this
array work as follows.

57 is compared with the element present at the center of the list i.e/11
since 57 is greater than it, the searching is applied only to the 2nd half of
the array.

Now 57 ios compared with the center element of the 2nd half of the
array i.e/25. Here again 57 is greater than 25,s0 searching is now proceed
ion the elements present between the 25 and the last element 90.

This process is repeated till 57 is found or no further division of array
is possible.

Algorithm
STEP-1 low=0,up=n-1
Step-2 Repeat while low<=up

mid = int(low+up)/2
if(no=arr[mid])
print “Searched element is found”
exit
else
if(no < arr[mid]) then
up = mid-1
else
low = mid+1
step-3 print “searched element is not found”
step-4 exit

SEARCHING AND SORTING 353

Best Case Complexity

If the searched value is found at the middle of the list then the comparison
required T(n) = O(1)

Worst Case Complexity

Let K, be the smallest integer such that n<=2* and ¢ is one constant time
required for one comparison so,

T(n) = T(n/2) +c
t(2%) = T(24/2) +c => T(2" =T + ¢

By the method of induction we have
T(2") = T(2*') +c
T(2¥!) = T(2*?) +¢

T(2) = T(2xD)+¢

T2 =T®1) + ke
T(n) <=kc T(1) as constant
T(n) <= c*log, n (n=2"=>k = log,n)
T(n) = O(logn)

Program for Binary Search

//input the elements in ascending order

#include<iostreams>
using namespace std;
int main()

{

int *a,no,up,i,low=0,£f=0;

cout<<”\nENTER HOW MANY ELEMENTS TO BE STORED IN THE LIST”;
cin>>up;

a = new int [up];

//loop to input the elements into the array

for (i=0;i<up;i++)

354 DATA STRUCTURE AND ALGORITHMS USING C++

{

cout<<” \nENTER A NUMBER” ;
cin>>ali];

}

cout<<” \nENTER THE NUMBER TO SEARCH”;
cin>>no;
for (i=(low+up) /2;low<=up;i=(low+up) /2)

{

if (al[i] ==no)

{
f=1;
break;

}

else
if (al[i] >no)
up=1i-1;
else
low = i+1;

if (f==1)
cout<<”\nTHE SEARCHING ELEMENT IS FOUND”;
else
cout<<”\nTHE SEARCHING ELEMENT IS NOT FOUND”;

OUTPUT

HOW MAMY ELEMENTE TO BE STORED IM THE LIST®
NUMBER32
NUMBERGS
NHUMBER47?7

NUMBERS?
NUMEBERG64
NUMEBER?S

]
]
A
A NUMBERSS
]
A
]
A

NUMEER8S
THE NUMBER TO SEARCHZS
THE SEARCHING ELEMENT IS NOT FOUMD

Process exited after 28.34 seconds with return value 8
Press any key to continue . . .

SEARCHING AND SORTING 355

SORTING

Sorting means arranging the data in a particular order. i.e. either ascending
or descending.

There are different methods for sorting. These methods can be divided
into two categories such as

Internal Sorting
External Sorting

INTERNAL SORTING

If all the data that is to be sorted can be accommodated at a time in mem-
ory then internal sorting method can be used.

EXTERNAL SORTING

When the data is to be sorted is so large that some of the data is present in
the memory and some is kept in auxiliary memory(Hard disk, floppy disk,
tape etc.) then the external sorting methods are used.

INTERNAL SORTING

There are different types of internal sorting methods are used out of them
some of are discussed. All the methods below are discussed for the ascend-
ing order.

10.3 Bubble Sort

Bubble sort is a reasonable sort to use for sorting a fairly small number
of items and is easy to implement.

But for the smaller list this sorting procedure works fine.

In this method to arrange elements in ascending order, begin with the
Oth element, and is compared with the 1st element. If it is found to be
greater than the 1st element then they are interchanged. Then the 1st ele-
ment is compared with the 2nd element. If it is found to be greater then
they are interchanged. In the same way all the elements (Excluding the last)
are compared with their next element and are interchanged if required.

356 DATA STRUCTURE AND ALGORITHMS USING C++

This is the 1st iteration and on completing this iteration the largest ele-
ment gets placed at the last position. Similarily, in the second iteration the
comparisons are made till the last but one element and this time the second
largest element gets placed at the second last position in the list. As a result,
after all the iterations the list becomes a sorted list.

For ex.
Let an array having five numbers.

8112 |10 [78 | 5

Step-1: In the 1st iteration the Oth element 8 is compared with 1st ele-
ment 12 and since 8 is less than 12 then there is nothing to do.

Step-2: Now the 1st element 12 is compared with the 2nd element 10
and here the swapping will be performed.

Step-3: 'This process is repeated until (n — 2)th element is compared
with the (n — 1)th element and during comparison if the 1* element other
wise no intercheange.

Step-4: If there are n number of elements then n-1 iterations are
required.

ALGORITHM

n->Number of elements of the array
Step-1 1=0
Repeat through step 3 while (I<n)
Step-2 j=0
Repeat through step 3 while j<n-I
Step-3 if arr[j]<arr[j+1]
Temp = arr[j]
arr[j+1] = arr(j]
arr[j]=temp
Step-4 exit

Program for Bubble Sort

#include <iostream>
#include<iomanip>

using namespace std;

void sort (int al], int size)

SEARCHING AND SORTING 357

int i, j,temp;
for (i = 0; 1 < size-1; i++)

// Last i elements are already in place
for (j = 0; j < size-i-1; j++)
if (alj] > alj+1])
{
{

temp = aljl;
aljl = alj+1l;
alj+1] = temp;

}

//method to display the array elements
void display(int al], int size)
{
int i;
for (i = 0; i < size; i++)
cout << ali] << “ “;
cout << endl;

}

//driver program

int main()

{

int *arr,i,j,temp,no;
cout<<”\nHOW MANY ELEMENTS TO BE INSERTED INTO THE

LIST”;
cin>>no;

arr = new int [no];
for (i = 0; 1 < no; i++)

{

cout<<” \nENTER A NUMBER” ;
cins>s>arr[i];

}

sort (arr,no) ;

cout<<”\n Sorted list is as follows\n”;
display(arr,no) ;

358 DATA STRUCTURE AND ALGORITHMS USING C++
Output

HOW MANY ELEMENTIS TO BE INSERTED INTO THE LISTS
ENTER A HUMBER25
ENTER A NUMBER?5
ENTER A NUMBER2
ENTER A NUMBER35
ENTER A NUMBER4

Sorted list is as followus

Process exited after 5.939 seconds with return value B
Press any key to continue . . .

By using functions
#include<stdio.h>
#include<math.h>
#define SIZE 20
//function prototypes
void FillArray(int *array,int size);
void PrintArray(int *array,int size) ;
void BubbleSort (int *array, int size)
void swap (int *x,int *y);
//driver program
int main()
{
int NumList [SIZE],i;
FillArray (&NumList, SIZE) ;
printf (“\n Before sort array elements are :\n”);
PrintArray (&NumList, SIZE) ;
BubbleSort (&NumList, SIZE) ;
printf (“\n After sort array elements are :\n”);
PrintArray (&NumList, SIZE) ;
}
//code for fillarray ()
void FillArray (int *array,int size)

{

7

int 1i;
for (i=0;1i<SIZE;i++)
* (array+1i)= rand() % 100 ; //generate 20 random

numbers and assigned to array

}

//logic for printing the array elements
void PrintArray(int *array,int size)

SEARCHING AND SORTING

int 1i;
for(i=0;1<SIZE;i++) //loop to print the array
elements
printf (“$5d”, * (array+i)) ;
1

//logic for bubble sort
void BubbleSort (int *array,int size)
{
int i,3;
//logic for bubble sort
for(i=0;1i<SIZE-1;1i++)
{

for(j=0;J<SIZE-1-1i;j++)

359

{ //condition for descending order sorting

if (* (array+j) <= *(array+(j+1)))
swap ((array+3), (array+(j+1))); //
invoke swap ()

}
}
//logic for swappingof two numbers
void swap (int *x,int *y)

{
int z;
Z=%*X;
*X=*y;
*3,::2;
}

Before sort array elements are =
6?7 34 a 69 24 58 62 64 5 45 81 27 b1
42 27 36

After sort array elements are :
91 81 78 69 67 64 62 61 58 45 42 41 36 24

Process exited after B.0575%9 seconds with return value 5
Press any key to continue . . .

10.4 Selection Sort

71§

27

This is the simplest method of sorting. The selection sort starts from 1st
element and searches the entire list until it finds the minimum value. The
sort places the minimum value in the first place,select the second element
and searches for the second smallest element. This process will continue

until the complete list is sorted.

360 DATA STRUCTURE AND ALGORITHMS USING C++

ALGORITHM

Step-1 Repeat through step-3 while I < n
Step-2 Repeat through step-3 while k=1+1 to n
Step-3 If arr[i] >arr[k]

Temp = arr[k]

arr[k] = arr[i]

arr[i] = temp
Step-4 exit

Program for selection sort

#include<iostreams>
#include<iomanip>
using namespace std;
int main ()
{
int n, *arr;
int i,k,temp;

cout<<endl<<”Input the number of elements in the list:”;

cin>>n;
arr = new int[n];
for(i =0 ; 1 < n ; i++)

{

cout<<endl<<”Enter a number”;
cins>s>arr[i];
cout<<”\nLIST BEFORE SORTING :\n”;
for(i=0;i<n;i++)
cout<<getw(5)<<arr[i];

for(i=0; di<n-1 ;i++)
for(k = 1i+1; k<n;k++)

{

if (arr[i] > arrl[k])

temp = arr([k];
arr[k] = arr[i];
arr[i]=temp ;

cout<<”\n LIST AFTER SORTING :\n”;
for(i=0;i<n;i++)
cout<<getw(5)<<arr[i];

SEARCHING AND SORTING 361

OUTPUT

Input the number of elements in the list:5

a numberl2

a number32

a number52

a number?

a number85
ILIST BEFORE SO0RTING -
12 32 52 2
LIST AFTER SORTING :

32

Process exited after 5.546 seconds with return value @
Press any key to continue . .

10.5 Insertion Sort

Insertion sort is implemented by inserting a particular element at the
appropriate position.In this method, the first iteration starts with the com-
parison of 1st element with the Oth element. In the second iteration 2nd
element is compared with the Oth element and 1st element.

In general, in every iteration an element is compared with all the elements
before it. During comparison if it is found that the element in question can
be inserted at a suitable position then a space is created for it by shifting
the other elements one position to the right and inserting the element at a
suitable position.This procedure is repeated for all the elements in the array.

For Ex.
Consider the array

76 | 52 | 66 | 45 | 33

Step-1 : In the first loop the 1st element 52 is compared with the Oth ele-
ment 76. Since 52<76, 52 is inserted at Oth place. The Oth element
76 is shifted one position to the right.

Step-2 : In the second loop, the 2nd element 66 and the Oth element 52
are compared since 66>52, then no change will be performed.
Then the second element is compared with the 1st element and
same procedue will be continued.

362 DATA STRUCTURE AND ALGORITHMS USING C++

Step-3 : In the third loop ,the 3rd element is compared with the Oth ele-
ment 52, since 45 is smaller than 52 then 45 is inserted in the Oth
place in the array and all the elements fom Oth to 2nd are shifted
to right by one position.

Step-4 : In the fourth loop the fourth element 33 is compared with the
0th element 45,since 33<45 then 4th element is inserted into the
0th place and all the elements from Oth to 3rd are shifted by one
position and as a result we will got the sorted array.

Algorithm

Step-1 Repeat through step-4 while (I<no)
Step-2 Repeat while j<I
Step-3 If arr[j]>arr[i]
Temp = arr[j]
Arrlj] = arr[i]
Repeat while k=1to j

Arr[k]=arr(k-1]

Step-4 Arr[k+1]=temp

Program for Insertion Sort

#include<iostream>
#include<iomanip>
using namespace std;
int main()
{
int *arr,i,j,k,temp,no;
cout<<”\nHOW MANY ELEMENTS TO BE INSERTED INTO THE

LIST”;

cin>>no;

arr = new int[no];
for (i = 0; 1 < no; i++)

{

cout<<”\nENTER A NUMBER” ;
cin>>arr[i];
}
for (i = 1; 1 < no; i++)
for (3 = 0; j < 1i; j++)
if (arr[j] > arr[i])
{
temp = arr[j];
arr[j] = arr[i];

SEARCHING AND SORTING 363

for(k=i;k>j;k--)
arr[k] = arrl(k-1];
arr [k+1l] =temp;

}

cout<<”\n Sorted list is as follows\n”;
for (i=0;i<no;i++)
cout<<setw(5) <<arr[i];

}

OUTPUT

HOY MANY ELEMENTS TO BE INSERTED INTO THE LISTS
ENTER A NUMBER32

[ENTER A NUMBERS

[ENTER A NUMBERG4

[EMTER A HUMBERG

[ENTER A NUMBER1

Sorted list is follouwus

Process exited after 5.527 seconds with return value B
Press any key to continue . . .

10.6 Merge Sort

Merging means combining two sorted lists into one sorted list. For this the
elements from both the sorted lists are compared .The smaller of both the
elements is then stored in the third array .The sorting is complete when all
the elements from both the lists are placed in the third list.

ALGORITHM

step-1 I=0
J=0
K=0
Step-2 repeat step-3 while I<n and j<m
Step-3 if(lista[i] < listb[j])
List[k] = lista[i]
I=1+1

364 DATA STRUCTURE AND ALGORITHMS USING C++

K=k+1
Else
If(lista[i] > listb[j])
List[k] = listb[j]
j=j+1
K=k+1
Else
List[k] = lista[I]
I=I+1
J=j+1
K=k+1
Step-4 if I<n
Step-5 forl=1ton-1
List[k] = lista[I]

I=1+1
K=k+1
Step-6 else
If j<m
Step-7 forl=jtom-1
List[k] = listb[j]
J=j+1
K=k+1
Step-8 stop
PROGRAM

#include<iostreams>
#include<iomanip>
using namespace std;
int main()
{
int al[5];
int b[5];
int c[10] ;
int i, j, k, temp ;
cout<<endl<<”Enter 5 elements for first array”;
for(i=0;1i<5;i++)
{
cout<<”\nENTER A NUMBER” ;
cin>>ali];
}
cout<<endl<<”Enter 5 elements for second
array”;
for(i=0;i<5;i++)

SEARCHING AND SORTING 365

{

cout<<”\nENTER A NUMBER” ;
cin>>b[i];

cout<<”\nFirst array:\n”;

for (1 =0 ; 1 <=4 ; i++)
cout<<setw(5)<<alil;

cout<<”\n\nSecond array:\n”;

for (i =0 ; 1 <= 4 ; i++)
cout<<setw(5)<<b[i];
for (1 =0 ; 1 <= 3 ; i++)
{
for (J =1+ 1 ; <=4 ; j++)
{
if (alil > aljl)
{
temp = alil ;
alil = aljl ;
aljl = temp ;
}
if (bl[i] > b[j])
{
temp = blil ;
bl[i] = blj] ;
b[j] = temp ;
}
}
}
for (i=j=k=0;i<=9;)
{
if (aljl < bIlk])
cli++] = alj++]1 ;
else
if(aljl>blk])
cli++] = blk++] ;
else
{ cli++l=alj++1; ++k; } //cli++]1=blk++],
J++
if (] == || X == 5)

break ;

366 DATA STRUCTURE AND ALGORITHMS USING C++

for (; j <=4 ;)
cli++] = alj++] ;
for (; k <=4 ;)
cli++] = blk++] ;

cout<<”\n\nArray after sorting:\n”;
for (1 =0 ; 1 <= 9 ; i++)
cout<<setw(5)<<c[i] ;

OUTPUT
elements for first array
NUMBER12
NUMBER32
NUMBERS2
NUMBER6
NUMBERS 8

elements for second array
NUMBERZ2

NUMBERS
NUMBERS
NUMBER1
NUMBER25S

L array:
32 52

econd array:
<2 | =~

52 58

exited after 8.271 seconds with return value 8
Press any key to continue

10.7 Quick Sort

Quick sort uses the concepts of divide and conquer method. It is also
known as partition exchange sort. To Partion the list, we first choose some
key from the list for which about half the keys will come before and half
after. This selected key is called as pivot. We next partition the entries so
that all the keys which are less than the pivot come in one sublist and all
the keys which are greater than the pivot come in another sublist. We will

SEARCHING AND SORTING 367

repeat the same process until all elements of the list are at proper position
in the list.
Ex.

20 55 46 37 9 89 82 32

From the above list choose first number as pivot i.e/20 and the list is
partitioned into two sublists

(9) and (55 46 37 89 82 32)

At this point 20 is in its proper position in the array x[1], each element
below that position (9) is less than or equals to 20 and each element above
that position (55 46 37 89 82 32) is greater than or equals to 20.

The problem is broken into two sub problems that are to sort the two
sub arrays. Since the first sub array contains only a single element, so it is
already sorted .To sort the second sub array we choose its first element 55
as the pivot and again get two sub arrays (46 37 32) and (89 82).

So the entire array can be represented as

9 20 (46 37 32) 55 (89 82)
Repeating the same process we will get the result with the steps

20 55 46 37 9 89 82 32
9 20 (46 37 32) 55 (89 82)
9 20 (37 32) 46 55 (89 82)
9 20 (32) 37 46 55 (89 82)
9 20 32 37 46 55 (82) 89
9 20 32 37 46 55 82 89
The average run time efficiency of the quick sort is O(n(log, n). In the

worst case when the array is already sorted, the efficiency of quick sort may
drop down to O(n?)

PROGRAM

#include<iostream>
#include<iomanips>

using namespace std;

int split (int*, int, int) ;

void quicksort (int *, int, int) ;

368 DATA STRUCTURE AND ALGORITHMS USING C++

int main()

{
int arrf1o0] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 }
int i;
cout<<»\nTHE GIVEN ARRAY IS\n» ;
for (i =0 ; i <=9 ; i++)
cout<<setw(5)<<arr[i];
quicksort (arr, 0, 9) ;
cout<<»\nSORTED ARRAY IS\n»;
for (i =0 ; i <=9 ; i++)
cout<<setw(5)<<arr[i];
}
void quicksort (int al], int lower, int upper)
{
int i ;
if (upper > lower)
{
i = split (a, lower, upper) ;
quicksort (a, lower, i - 1) ;
quicksort (a, i + 1, upper) ;
}
}
int split (int all]l, int lower, int upper)
{

int i, p, g, t ;

p = lower + 1 ;
q = upper ;
i = allower] ;
while (g >= p)
{
while (alp] < 1)
p++ ;
while (alg]l > 1)
qg--
if (g > p)
{
t = alpl ;
alpl = alql ;
algl = t ;
}
}
t = al[lower] ;
allower] = alqgql ;
algl = t ;

return g

7

SEARCHING AND SORTING 369

OUTPUT

THE GIVEN ARRAY IS
11 2 2 13
SORTED ARRAY IS
i | 2 3

25 57 98

Process exited after B.3855 seconds with return value B
Press any key to continue . . .

10.8 Radix Sort

The radix sort is based upon the positional value of the actual digits of the
number being stored. This method was earlier performed on a mechanical
card sorter. For Ex. The number 245 in decimal notation written with a 2
in the hundredth position, 4 in the ten’s position and 5 in the unit position.
This three digits will be sorted in maximum three passes. In the first pass,
the unit digit will be sorted, in the second pass the tens digit will be sorted
and in the third and final pass the hundreds digit will be sorted.

Radix sort technique is also used when large lists of names are to be
sorted alphabetically.

For Ex.
Sort

42 (20 (64 (51 (34 (7031 (1615|1219 |33

In the first pass the unit digits are sorted i.e/.

Number | 0 1 2 (3 (4 (5 6 (7 [8 [9

42 42

20 20

64 64

51 51

34 34

70 70

370 DATA STRUCTURE AND ALGORITHMS USING C++

Number | 0 1 2 3 4 5 6

31 31

16 16

15 15

12 12

19

33 33

In the second pass the unit digits are sorted i.e/

Number | 0 1 2 3 4 5 6

20 20

70

51 51

31 31

42 42

12 12

33 33

64 64

34 34

15 15

16 16

19 19

Finally we will get the sorted list as

12 | 15|16 | 19 | 20 | 31 | 33 | 34 | 42

SEARCHING AND SORTING

PROGRAM FOR RADIX SORT

#include<iostreams>
using namespace std;

//method to find the maximum value in the array
int maximum(int al], int n)

{

int max = al[0],i;
for (i = 1; 1 < n; 1i++)
if (ali] > max)
max = al[il;

return max;

}

void sort (int al[]l, int n, int exp)
{
int out[n]; // output array
int i, count[10] = {0};

for (i = 0; 1 < n; 1++)
count[(alil/exp)%10 1++;

for (i = 1; 1 < 10; 1i++)
count [1i] += count[i - 1];

//construct the output array
for (i =n - 1; 1 >= 0; 1i--)
{
out [count [(alil/exp)%10 1 - 1] = alil;
count[(alil/exp)%10 1--;

for (i = 0; 1 < n; 1++)
ali]l = outl[i];

void radix(int al[], int n)

{

// Find the maximum number to know number of digits
int m = maximum(a, n);

for (int exp = 1; m/exp > 0; exp *= 10)
sort(a, n, exp);

371

372 DATA STRUCTURE AND ALGORITHMS USING C++

void print (int all, int n)
for (int 1 = 0; 1 < n; 1i++)
cout << ali] << ™ v;
int main()
int n, *arr,i;
cout<<endl<<”Input the number of elements in the list:”;
cin>>n;
arr = new int[n];
for(i = 0 ; 1 < n ; i++)
cout<<endl<<”Enter a number”;
cins>s>arr[i];
radix (arr, n);
print (arr, n);
return O;
OUTPUT

the number of elements in the list:5H
a number325
numberb2

numbher59

nunber?56

numhe r5
325 956

exited after 7.386 seconds with return value 8
Press any key to continue . . . _

10.9 Heap Sort

Heaps are based on the concept of a complete tree. Formally a binary tree
is completely full if it is of height h and has 2"*! — 1 nodes. A binary tree of
height h is complete if

1. itis empty or
2. Tts left subtree is complete of height h — 1 and its right sub-
tree is completely full of height h — 2 or

SEARCHING AND SORTING 373

3. its left subtree is completely full of height h — 1 and its right
subtree is complete of height h — 1.

A binary tree has the heap property if

1. it is empty or
2. Thekeyin the root is larger than that in either child and both
subtrees have the heap property.

A heap can be used as priority queue: the highest priority item is at the
root and is trivially extracted .But if the root is deleted , we are left with
two sub-trees and we must efficiently re-create a single tree with the heap
property.The value of the heap structure is that we can both extract the
highest priority item and insert a new one in O(logn) time.

A heap is an ordered balanced binary tree (complete binary tree) in
which the value of the node at the root of any sub-tree is less than or equals
to the value of either of its children.

ALGORITHM

Step-1 Create a heap
Step-2 [do sorting]
Repeat through step-10 for k =n to 2
Step-3 list[1] = list[Kk]
Step-4 temp = list[1]
I=1
J=2
Step-5 [find the index of largest child of new element]
If j+1<k then
If list[j+1] > listj]
Then j=j+1
Step-6 Construct the new heap
Repeat through step-10 while j<=k-1 and list[j]>temp
Step-7 Interchange elements
List[1] = List(j]
Step-8 Obtain left child
I=j
J=2*1
Step-9 [Obtain the index of next largest child]
Ifj+1<k
If list[j+1] > list[j] then j=j+1

374 DATA STRUCTURE AND ALGORITHMS USING C++

Else
If j>n then j=1

Step-10[Copy elements into its proper place]
List[j] = temp
Step-11 exit

PROGRAM FOR HEAP SORT/

#include<iostream>
#include<iomanip>

using namespace std;

void heap(int *, int);
void create(int *, int);
void display (int *, int);

int main()
int arr[100];
int i, size;
cout<<endl<<”Enter number of elements”;

cin>>size;
cout<<”\n Size of the list: “<< size;
for(i =1 ; 1 <= size ; ++1)

{

cout<<”\n Enter a number”;
cin>>arr[i];

!

cout<<”\n Entered list is as follows:\n”;

display(arr, size);

create (arr, size);

cout<<”\n Heap tree is \n”;

display(arr, size);

cout<<endl<<endl;

heap (arr, size) ;

cout<<”\n\n Sorted list is as follows :\n\n”;
display (arr,size) ;

}

void create(int list[], int n)

{

int k, j, i, temp;

SEARCHING AND SORTING

for(k = 2 ; k <= n; ++k)

{
i =k ;
temp = list[k];
j=1i/2;
while((i > 1) && (temp > list[j]))
{
list[i] = 1list[jl;
i=13;
j=1i/2;
if (§J < 1)
J =1/
}
list[i] = temp ;
}

void heap (int arr[], int n)
{
int k, temp, value, j, 1, p;
int step = 1;
for(k = n ; k >= 2; --k)
{
temp = arr[1l] ;
arr[1] = arrl[k];
arr[k] = temp ;

i=1;
value = arr[1l];
j=2;

if ((j+1) < k)
if (arr[j+1] > arr([j])

J o++;
while((j <= (k-1)) && (arr[j] > value))
{
arr[i] = arr[j];
i=173;
Jj o= 2% ;

if ((§+1) < k)
if (arr[j+1] > arr([j])
J++;
else

375

376 DATA STRUCTURE AND ALGORITHMS USING C++

arr[i] = value;

}

cout<<”\n Step = “<<step;

step++;

for(p = 1; p <= n; p++)
cout<<setw(5) <<arr [p];

}

void display(int arr[], int n)
{
int i;
for(i =1 ; 1 <= n; ++ 1)

{
}

cout<<setw(5) <<arr[i];

OUTPUT

Enter number of elements?

Size of the list: 7
Enter a number25

Enter number62
Enter number8
Enter number?3
Enter numberS
Enter number?
Enter number45
Entered list is as follows:
25 [8 23 5

Heap is

23 45 25

62 25
45 25
25 8
8 5
7 5
5 ?

Step
Step
Step
Step
Step
Step

Sorted list is as follows

Process exited after 2.935 seconds with return value B
Press any key to continue . . .

SEARCHING AND SORTING 377

SORTING
TECHNIQUE BEST CASE AVERAGE CASE | WROST CASE

Bubble O(n) O(n?) O(n?)

Insertion O(n) O(n?) O(n?)

Selection O(n?) O(n?) O(n?)

Quick O(n?) O(n logn) O(n?)

Merge O(n logn) O(n logn) O(n logn)
Radix O(n?) O(n logn) O(n logn)
Heap O(n logn) O(n logn) O(n logn)

COMPARISON BETWEEN THE SORTING PROGRAMS

#include<iostream>

#include <ctime>

#include <stdlib.h>

void adjust (int) ;

void heapify (int) ;

void swap(long int &,long int &) ;
int partition(int,int);

void quickSort (int, int) ;

void merge (int 1, int m, int r);
void mergesort (int 1, int r) ;
using namespace std;

long int *a;

int n;

void swap(long int* a, long int* b)

{

long int t = *a;
*3 = *b;
*b = t;

}

//selection sort
void selection(int n)
int 1i,73;

long int t;

//logic to sort the array of elements
for(i=0;i<n;i++)
{

for (j=i+1;j<n;j++)

378 DATA STRUCTURE AND ALGORITHMS USING C++

if(alil>aljl)

{ //swap the numbers
t=alil;
alil=aljl;
aljl=t;

}

}
}

//method to generate n random numbers and store it into array
void input (int n)
{
int i;
int timetaken|[5] [6];
a = new long int[n];//allocate memory for n number of
elements
for (i=0;i<n;i++)
{ //generate the numbers and assign to array
al[i] = rand() % 10000 + 1;
}

//heapsort () method

void heapsort (int n)

{

int i,t;

heapify(n); //call to heapify method
for (i=n-1;i>0;i--) {

t = al[0]; //perform swap operation
alo]l = alil;

alil = t;

adjust (1) ;

}

}

//heapify () method

void heapify(int n)

int k,i,j,item;

for (k=1;k<n;k++) {

item = alkl];

i = k;

j o= (i-1)/2;

while ((1>0) && (item>a[j]))
ali]l = al3jl;

i=73;

j o= (i-1)/2;

SEARCHING AND SORTING 379

al[i] = item;
!
!

//adjust () methjod
void adjust (int n)
int i,Jj,item;

j=0;
item = aljl;
i = 2*%j+1;

while (i<=n-1) {
if (i+1 <= n-1)
if (a[i] <ali+1]1)

1++;
if (item<alil)
aljl = alil;
j o= i;
i = 2*%j+1;
} else
break;

}

aljl = item;

}

//quick sort

int partition(int low, int high)

{
long int pivot = alhighl]; //assign the pivot element
int 1 = (low - 1);

for (int j = low; j <= high- 1; j++)

{

if (alj] <= pivot)
{
14+ // increment index of smaller element
swap (&a[i]l, &aljl);
!
!

swap (&a[i + 1], &alhigh]);
return (i + 1);

}

void quicksort(int low, int high)

{

if (low < high)

{

int pi = partition(low, high);

380 DATA STRUCTURE AND ALGORITHMS USING C++

quicksort (low, pi - 1);
quicksort (pi + 1, high);
}
}

//merge sort
void mergesort (int 1, int r)

{
if (1 < r)
{
int m = 1+(r-1)/2;
// Sort first and second halves
mergesort (1, m);
mergesort (m+1l, r);
merge(l, m, r);
}
}
void merge (int 1, int m, int r)
{
int 1, 3, k;
int nl =m - 1 + 1;
int n2 = r - m;

int L[nl], R[n2];

for (i = 0; 1 < nl; i++)
L[i] = all + 1i1;

for (j = 0; j < n2; j++)
R[j] = alm + 1+ J1;

i=0;
j = 0;
k = 1; //index for merge array
while (i < nl && j < n2)
{
if (L[i] <= RI[31)
{
alk] = L[i];
1++;
}
else
{
alk] = RI[3];
J++;

SEARCHING AND SORTING

k++;

}

//copy the rest elements of left array
while (i < nl)

{
alk] = L[i];
1++;
k++;

}

//copy the remaining elements of right array
while (j < n2)

{
alk] = RI[3];
J++;
k++;

}

//bubble sort
void bubble (int n)

{
int 1, J;
for (i = 0; 1 < n; ++1)
{
for (j = 0; j < n-i-1; ++3)
{
if (aljl > alj+1])
{
aljl = aljl+alj+1];
alj+1] = aljl-alj + 11;
aljl = aljl-alj + 11;
}
}
}
}

//insertion sort
void insertion(int n)
{
int k,t,3;
for (int k=1; k<n; k++)

381

382 DATA STRUCTURE AND ALGORITHMS USING C++

j= k-1;

while(j>=0 && t <= aljl)

//driver program
int main ()
{
int timetaken[5] [6],1,7;
clock t start, finish;
double duration;
//selection sort
//assign 10000 to n
n = 10000;
input (n) ;
start =clock(); //time in milliseconds
selection (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)
timetaken[0] [0] = duration;
delete a;
//assign 20000 to n
n = 20000;
input (n) ;
start =clock(); //time in milliseconds
selection (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)
timetaken[1] [0] = duration;
delete a;
//assign 30000 to n
n = 30000;
input (n) ;
start =clock(); //time in milliseconds
selection (n) ;

)i

)i

//time in secs.

//time in secs.

SEARCHING AND SORTING 383

finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[2] [0] = duration;
delete a;
//assign 40000 to n
n = 40000;
input (n) ;

start =clock(); //time in milliseconds
selection (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[3] [0] = duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;
start =clock(); //time in milliseconds
selection (n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[4] [0] = duration;
delete a;

//heap sort
//assign 10000 to n
n = 10000;
input (n) ;
start =clock(); //time in milliseconds
heapsort (n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[0] [1] = duration;

delete a;

//assign 20000 to n

n = 20000;

input (n) ;

start =clock(); //time in milliseconds
heapsort (n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[1] [1] = duration;

delete a;
//assign 30000 to n

n = 30000;

input (n) ;

start =clock(); //time in milliseconds
heapsort (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.

384 DATA STRUCTURE AND ALGORITHMS USING C++

timetaken[2] [1] = duration;
delete a;

//assign 40000 to n
n = 40000;
input (n) ;

start =clock(); //time in milliseconds
heapsort (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[3] [1] = duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;
start =clock(); //time in milliseconds
heapsort (n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[4] [1] = duration;
delete a;

//quick sort
//assign 10000 to n
n = 10000;
input (n) ;
start =clock(); //time in milliseconds
quicksort (0,n-1);
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[0] [2] = duration;

delete a;

//assign 20000 to n

n = 20000;

input (n) ;

start =clock(); //time in milliseconds
quicksort (0,n-1);
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[1] [2] = duration;
delete a;
//assign 30000 to n
n = 30000;
input (n) ;
start =clock(); //time in milliseconds
quicksort (0,n-1);
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[2] [2] = duration;
delete a;

SEARCHING AND SORTING 385

//assign 40000 to n
n = 40000;
input (n) ;
start =clock(); //time in milliseconds
quicksort (0,n-1);
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[3] [2] = duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;
start =clock(); //time in milliseconds
quicksort (0,n-1);
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[4] [2] = duration;
delete a;

//merge sort
//assign 10000 to n
n = 10000;
input (n) ;
start =clock(); //time in milliseconds
mergesort (0,n-1) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[0] [3] = duration;
delete a;
//assign 20000 to n
n = 20000;
input (n) ;

start =clock(); //time in milliseconds
mergesort (0,n-1) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[1] [3] = duration;
delete a;
//assign 30000 to n
n = 30000;
input (n) ;
start =clock(); //time in milliseconds
mergesort (0,n-1) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[2] [3] = duration;

delete a;
//assign 40000 to n

n = 40000;

input (n) ;

386 DATA STRUCTURE AND ALGORITHMS USING C++

start =clock(); //time in milliseconds

mergesort (0,n-1) ;
finish=clock(); //time in milliseconds
duration = (double) (

(finish-start)) ;
timetaken[3] [3]

//time in secs.

= duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;

start =clock(); //time in milliseconds
mergesort (0,n-1) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start));
timetaken[4] [3] = duration;
delete a;

//time in secs.

//bubble sort
//assign 10000 to n
n = 10000;

input (n) ;
start =clock();
bubble (n) ;
finish=clock() ;

//time in milliseconds

//time in milliseconds
duration = (double) (
timetaken[0] [4]
delete a;

(finish-start)) ;

//time in secs.
= duration;

//assign 20000 to n

n = 20000;
input (n) ;
start =clock(); //time

in milliseconds
bubble (n) ;

finish=clock(); //time in milliseconds
duration = (double) (
timetaken[1] [4]
delete a;
//assign 30000 to n
n = 30000;
input (n) ;
start =clock(); //time in milliseconds
bubble (n) ;
finish=clock(); //time in milliseconds
duration = (double) ((finish-start));
timetaken[2] [4] = duration;
delete a;
//assign 40000 to n
n = 40000;
input (n) ;
start =clock(); //time in milliseconds
bubble (n) ;

(finish-start));

//time in secs.
= duration;

//time in secs.

SEARCHING AND SORTING 387

finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[3] [4] = duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;

start =clock(); //time in milliseconds
selection (n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[4] [4] = duration;
delete a;

//insertion sort
//assign 10000 to n
n = 10000;
input (n) ;
start =clock(); //time in milliseconds
insertion(n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[0] [5] = duration;
delete a;

//assign 20000 to n

n = 20000;

input (n) ;

start =clock(); //time in milliseconds
insertion(n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[1] [5] = duration;
delete a;
//assign 30000 to n
n = 30000;
input (n) ;

start =clock(); //time in milliseconds
insertion(n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[2] [5] = duration;
delete a;
//assign 40000 to n
n = 40000;
input (n) ;

start =clock(); //time in milliseconds
insertion(n) ;

388 DATA STRUCTURE AND ALGORITHMS USING C++

finish=clock(); //time in milliseconds
duration = (double) ((finish-start)); //time in secs.
timetaken[3] [5] = duration;
delete a;
//assign 50000 to n
n = 50000;
input (n) ;
start =clock(); //time in milliseconds
insertion(n) ;
finish=clock(); //time in milliseconds

duration = (double) ((finish-start)); //time in secs.
timetaken[4] [5] = duration;
delete a;

//print the details
COUt<<endl<<"\tSELECTION HEAP QUICK MERGE BUBBLE
INSERTION\n\n” ;

for (i=0;i<5;1i++)

{

cout<< (i+1)*10000<<”\t"”;
for(j=0;j<6;j++)

{
}

cout<<endl;

cout<<timetaken[i] [§]<<” \t 5

OUTPUT

SELECTION HEAP QUICK MERGE BUBBLE INSERTION

alalele] 293 337 88
1852 1355 351
2158 3187 791

3655 5557 1406

18 5184 2194

Process exited after 33.76 seconds with return value 8
Press any key to continue . . .

SEARCHING AND SORTING 389

10.10 Questions

1. With detailed steps, sort 12,34,54,6,78,34,2,33,41,87 using
heap sort.

2. Write the algorithm for Quick sort.

3. Write a program to implement the merge sort.

4. Write a single program to compare selection sort, insertion
sort, and bubble sort by generating 1000 random numbers.

5. Compare all sorting techniques in terms of time taken by
them to sort 10,000 randomly generated numbers.

6. When are binary search and linear search implemented?
Explain with an example.

7. Sort 123,435,678,.8765,324,23,4,56 using radix sort.

11
Hashing

A Hash table is simply an array that is addressed via a function. For Ex.
The below hash table is an array with eight elements. Each element is a
pointer to a linked list of numeric data. The hash function for this example
is simply divides the data key by 8. and uses the remainder as an index
into the table. This yields a number from 0 to 7. Since the Range of indices
for hash Table is 0 to 7. To insert a new item in the table, we hash the key
to determine which list the term goes on and then insert the item at the
beginning of the list. Ex to insert 11, we divide 11 by 8 whose remainder
is 3. Thus, 11 goes on the list starting at hash table [3]. To find a number
we hash the number and chain down the correct list to see if it is in the
table. To delete a number we find the number and remove and remove the
node from the linked list.

11.1 Hash Functions

The hash functions are chosen to avoid collision and also with simple oper-
ations. When we choose a particular hashing method is noted that hash
function should not be biased towards any particular slot in the hash table
so as to minimize collision. Also a hash function will have the characteris-
tic that each key is likely to hash to anyone of the slots available in the hash
table. Some of the hash functions are

Division Method

This method is considered as a simplest method. In this method integer x is
divided by M and then by using the remainder. This method is also called
as the division method of hashing.

Sachi Nandan Mohanty and Pabitra Kumar Tripathy. Data Structure and Algorithms Using C++:
A Practical Implementation, (391-396) © 2021 Scrivener Publishing LLC

391

392 DATA STRUCTURE AND ALGORITHMS USING C++

The format of hash function will be H(x) = x mod m;

This method works fine for just about any value of M. While choosing
the value of M some care should be taken and it is better to take an large
prime number. A way making M as a large prime number the keys are
spreaded out evenly. The advantage of the division hash function is sim-
plicity and drawback of this method is due to the property that conjuctive
keys are mapped consecutive hash values.

Middle Square Method

The middle square method employs hashing method that avoids the use
of division and the working of this hash method is that a key is multi-
plied by itself and the address is obtained by choosing an appropriate
number of bits or digits from the middle of the square. The selection
depends upon the table size and also they should fit into one computer
word of memory. The same positions in the square must be used for all
keys.

Ex: 56,789 squaring it the number becomes 3,224,990,521. If three digit
address is needed then choose 990.

Multiplication Method

We can form this hashing method by making slight variation in
middle-square method. In this technique instead of multiplying the value
by itself we have to multiply the number by a constant and then extract the
middle K bits from the result.

Folding Method

In this technique a key is divided into a number of parts and each part
should have equal length. The exception should given to the last part. The
splitted parts are then added together and if we get final carry it should be
ignored.

Ex : Let us consider 456,123,789. Now this key is divided into three sub
parts and adding them we will get 456 + 123 + 789 = 1386.

So by ignoring the final carry of 1 we will have 368 and this method is
called as fold-shifting.

A slight variation can also be implemented by reversing the first and last
subparts. This process is known as foldboundary method.

HasHING 393

11.2 Collisions

It is not guarantee that the hash function will generate the unique hash key
value for all the entries. It also happened that two or more entries having a
same key value. So in that situation these two records have to place at the
same hash table and also in the same position, which does not possible.
This situation leads to the collision. So it is work to find out a space for the
newly allocated element. The problem of avoiding these collisions is the
challenge in designing a good hash function.A good hash function mini-
mizes collisions by spreading the elements uniformly throughout the array.
But Minimization of the collision is very difficult.

11.3 Collision Resolution Methods

Linear Probing

A simple approach to resolving collisions is to store the colliding record
into the next available space. This technique is known as linear probing.
Linear probing resolves hash collision by sequential searching a hash table
beginning at the location returned by the hash function. What happens if
the key hashes to the last index in the array and that space is in use? We
consider the array as circular structure and continue looking for an empty
room at the beginning of the array.

Ex: Consider a hash function as h(x) = x%7

Then arrange the numbers 23,50,30,38 in the hash table

0 1 2 3 4 5 6

50 | 23 [30 | 38

Quadratic Probing

In this case, when collision occurs at the hash address h, then this method
searches the table at location h+1, h+4, h+9, etc. The hash function is
defined as (h(x) + i) % hash size.

Ex: The numbers are 23,81,93,113
The function is h(x) =x % 10

01 2 3 45 6 7 8 9
L [81] [23[93] [[u3] | |

394 DATA STRUCTURE AND ALGORITHMS USING C++

Separate chaining

The hash function is h(x) = x %10
Store the numbers 23,45,56,78,81,38,113

0
1
2
N | N
3 o 23 | > 113 |
4
s
6 » 56
7
N | N
8 > 78 | > 38 |
9

Entries in the hash table are dynamically allocated and entered on a
linked list associated with each hash table entry.This technique is known as
Chaining. An alternative method, where all entries are stored in the hash
table itself, is known as direct or open addressing and may be found in the
references.

11.4 Clustering

One problem with the linear probing is that its results in a situation called
clustering. A good hash function results in a uniform distribution of
indexes throughout the array, each room equally likely to be filled.

Bucket and Chaining

Another alternative way for handling Collisions is to allow multiple ele-
ment keys to hash to the same location. One solution is to let each com-
puted hash location contain rooms for multiple elements.rather than just
a single element. Each of these multi-element locations is called buckets.
Using this approach, we can allow collisions to produce duplicate entries
at the same hash location, up to a point. When the becomes full we must
again deal with handling collisions.

Another solution, which avoids this problem, is to use the hash value not as
the actual location of the element., but as the index into an array of pointers.
Each pointer accesses a chain of elements that share the same hash location.

HasHING 395

Selecting a Good Hash Function

One way to minimize collisions is to use data structure that has more space
than is actually needed for the number of elements, inorder to increase the
range of the hash function.

11.5 Questions

Why is hashing necessary?

Discuss the different methods of hashing.

What is collision and how to avoid it?

Discuss different collision resolution methods with suitable

example.

5. How to minimize collision?

6. Given the keys as 3,7,17,33,47,9,26,14,13,23,50,40. Hash
function is H(x) = x%10. Explain the hashing process using
linear probing and Quadratic probing.

7. Given the elements as 66,47,87,90,126,140,145,153,177,285,

393,395,467,566,620,735. Hash function is h(X) = x mod 20.

Rehash function is (key+3) mod 20. Allocate the elements in

20-sized heap.

Ll

Index

Absolute Value, 4

Access Specifiers, 60

Actual Argument, 31-33

Acyclic Graph, 297

Adjacency List, 239, 302, 303, 304, 336,
345

Adjacency Matrix, 302, 303, 330, 332,
335

Adjacency Multists, 302

Algorithemic Notations, 4

Algorithm, 1-9, 51, 57, 93-95, 101, 104,
105, 131-133, 137-142, 169-176,
196, 212-216, 255, 257, 258, 284,
306, 311, 315-321, 327, 329,
335-337, 349, 352, 356, 360, 362,
363, 373

All Pair Shortest Path, 335, 340, 343

Arithmatic with pointer, 38

Array, 2, 15-22, 47, 49, 50-54, 57, 64,
84, 85,91, 101-105, 120, 122, 129,
164, 247, 253, 254, 279, 301, 302,
309, 356-368, 371, 377, 378, 380,
381

Array Element, 16, 17, 52, 54, 357-359

Articulation Point, 300

Asymptotic Notations, 8, 13

Auto, 35, 36

Average Case, 7, 350, 377

B- Tree, 287, 288, 291, 292, 372, 373
B+ Tree, 292, 294

Bellman Ford Algorithm, 323, 347
Best Case, 7, 350, 353, 377

Best-Fit, 245, 246

Biconnected Graph, 300

Big Oh, 8

Binary Search, 249, 251-253, 265, 268,
269, 272,276, 289, 293, 294

Binary Search Tree, 265, 268, 269, 272,
276,293,294

Binary Tree, 251-255, 259, 265, 266,
268, 269, 272,277-279, 282, 284,
286, 287, 293, 294, 372, 373

Breadth First Search, 305, 309

Bridge, 300, 315

Bubble Sort, 355, 356, 359, 381, 386,
389

Call by reference, 32, 33, 47

Call by Value, 32, 33, 47

Ceiling Function, 3

Child, 249-253, 256, 258, 259, 263,
266, 268-271, 277,279, 282, 287,
294, 373

Circular Linked List, 232, 235, 236

Circular Queue, 129, 134, 145-148,
154, 158, 165

Class, 35, 45, 47, 59-89, 98, 145, 154,
162

Clustering, 394

Collision Resolution Methods, 393,
395

Collisions, 393, 394, 395

Compaction, 245, 247

Complete Graph, 299

Complexity, 3, 6, 7, 9-12, 350, 353

Connected Graph, 298-300, 315, 318

Construction of a Function, 27

397

398 INDEX

Constructors, 78-85, 89, 145, 154

Copy Constructor, 78, 81, 82

Creation, 80, 168, 177, 211, 212, 216,
254, 255,279

Creation of a Tree, 255

Cyclic Graph, 297

DAG, 297

Data Structure, 1, 2, 91, 92, 129, 167,
236, 239, 249, 277, 283, 295, 311,
316

Dec, 62

Decission Tree, 265, 286

Declaration, 6, 16, 18, 21, 27-29, 34,
37,39-43, 50, 59-64, 69, 73, 75,
83, 84, 116, 145, 203

Declaration of pointer, 37

Decrease_Key, 140

Default Constructor, 78, 79, 82

Degree of a node, 250, 297

Degree of a tree, 250

Deletion, 138, 139, 142, 162-164,
174-176, 192, 194, 214, 215, 228,
231, 254, 268, 270, 276, 281, 291

Depth, 251, 305, 311, 313

Depth First Search, 305, 311, 313

Dequeue, 139, 145, 147, 148, 154, 155,
158, 162, 163, 164, 306, 307

Destructors, 78, 83, 84, 85

Dijkstra’s Algorithm, 327, 335, 336

Double Ended Queue, 129, 138, 165

Double Linked List, 167, 210, 212, 216,
226,229, 232,254

Dynamic Memory Allocation, 84, 89,
239

Edge, 250, 286, 295-302, 305, 306,
315-318, 322, 323, 327, 335, 336,
345-347

Efficency, 3, 7, 8, 58, 367

Empty Constructor, 78, 79

endl, 35, 52-55, 62-65, 68, 72

Enqueue, 139, 145, 146, 148, 154, 155,
158, 306, 307

Expression Tree, 265-267
Extern, 35

Extract_ MAX, 140
Extract_MIN, 140, 320, 321, 327

Factorial, 4, 39-41, 127

First-Fit, 245

Floor, 3

FOR loop, 10

Formal Argument, 31, 33, 40

Friend Class, 71, 72

Friend function, 69, 70, 73, 89

Front, 129-139, 142-149, 154-157,
162-164, 236, 241, 242, 309-311,
345-347

Garbage Collection, 245, 247

GCD, 68

General Tree, 293

Graph, 2, 239, 295-309, 311, 313, 315,
317-319, 321-333, 335-337,
339-341, 343, 345, 347

Graph Terminologies, 295

Hash Functions, 391

Hashing, 391, 392, 393, 395

Header Linked List, 231-233, 237, 247

Heap Sort, 372, 374, 383, 389

Heap Tree, 265, 279, 294, 374

Heapsize, 140-142

Height, 251, 265, 272, 287, 294, 372,
373

Height Balanced Tree, 265, 272, 294

Hex, 62, 63

Huffman Tree, 265, 282, 284

if....else, 5

if...else ladder, 5

Incedince Matrix, 302

Indegree, 297, 298, 345, 346

Infix, 100, 101, 104, 105, 112, 113, 115,
116, 126, 267

Initialization of pointer, 37

Inline Member Function, 67

Inline Substitution, 69, 70

Inorder, 256-265, 271, 278, 395

Insertion, 2, 129, 138, 139, 142, 155,
162, 163, 170-173, 181, 205,
212-214, 216, 220, 225, 237, 238,
243, 254, 268, 269, 272, 281, 288

Insertion Sort, 361, 362, 381, 387, 389

Isolated Node, 298

Key, 7, 140-142, 268, 272, 287, 288,
318-321
Krushkal Algorithm, 315, 318

Level, 249-252, 256, 259, 260, 279,
287, 305

Linear Queue, 129, 165

Linear search, 7, 349, 350, 389

Linked List, 2, 50, 167-211, 213,
215-229, 231-237, 239-241, 245,
247,253, 254, 303, 391, 394

Little oh, 8

LL-Rotation, 272

Looping construct, 5

LR-Rotation, 272

Machine Learning, 57, 58

Manipulators, 62-64

MAX-heap, 279, 281

Member Function, 43, 59-61, 64, 67,
71,73-75,77,78, 83

Merge Sort, 363, 380, 385, 389

Merging, 2, 254, 363

MIN-heap, 279

Minimum, 140, 141, 245, 283-287,
306, 315, 318, 320, 322, 325, 326,
328,329, 331

Minimum Spanning Tree, 315, 318,
347

Multi-Dimensional Array, 17

Multi-Graph, 299

Nested loop, 10
Non-terminal Node, 250, 252
Null Pointer, 41, 232

INDEX 399

Objects, 62, 64, 75, 76, 78-80, 83

Oct, 62,63

Omega, 8

One-Dimensional Array, 16

Outdegree, 297, 298

Overflow, 91-93, 96, 106, 120, 123, 127,
129-131, 134, 135, 137, 142, 146,
155,162, 163, 165

Paramerized Constructor, 80, 82

Path, 250, 251, 258, 283, 284, 294,
296-299, 306, 317, 318, 322, 323,
337

Pendant Node, 298

Planar Graph, 300

Pointer, 32, 37-41, 46-48, 66, 86, 89,
168-173, 175, 176, 196, 206-208,
232,236, 255,270,271, 277,278

POP, 91-94, 97, 99, 101, 106, 107,
109-115, 118, 119, 124-126, 239,
244, 245, 257-259, 266-268,
313-315

Postfix, 101-104, 110-113, 115, 116,
127

Postorder, 257, 258, 261, 263-265

Predecessor, 250, 278, 298, 330, 333

Prefix, 100-105, 124, 127, 267

Preorder, 257-263

Prim’s Algorithm, 318, 327, 347

Priority Queue, 129, 139-141, 165, 318,
327,373

Private, 60-62, 65, 66, 68, 70-74, 77,79,
81-83, 85-88, 98, 145, 154

Protected, 60, 62, 71-74

Public, 60-62, 66, 68-74, 76-80, 82,
85, 86, 88, 145, 154

PUSH, 91-93, 96, 97, 99, 101, 104-107,
109-112, 114-126, 243-245, 258,
259, 266, 267, 268, 313, 314, 315

Queue, 2, 129-165, 236, 239, 241-243,
306, 307, 309-311, 318, 319, 321,
327, 345-347, 373

Quick Sort, 366, 367, 379, 384, 389

400 INDEX

Radix Sort, 369, 371, 389

Rear, 129-139, 142-149, 154-157,
162-164, 236, 241, 242, 309-311,
345-347

Rechable, 298, 323

Recursion, 96, 127, 257

Red-Black Tree, 265, 293, 294

Register, 35, 36, 67

Regular graph, 300

Remainder Function, 4, 391

Representation of Graph, 239, 301, 303

RL-Rotation, 272

Root, 249-251, 253, 257, 258, 262, 263,
266, 268-270, 272, 279, 281, 283,
287,288, 293, 318, 373

RR-Rotation, 272

Search, 7, 94, 95, 133, 154, 157, 158,
196-198, 203, 265, 268, 269, 272,
276, 293, 294, 305, 309, 311, 313,
349-354, 359, 389

Searching, 2, 7, 139, 196, 254, 268, 269,
349-355, 359, 363, 365, 367, 369,
371, 373, 375, 379, 381, 383, 385,
387, 389

Selection Sort, 359, 360, 377, 382, 389

setfill(), 62, 63

setprecision(), 62, 63

setw(), 52, 54, 55, 62, 63, 81, 85, 86,
146, 178-183, 185, 188, 190, 192,
194, 198, 201, 217, 219

Siblings, 250

Sigle-Source Shortest Path, 322, 323,
327

Simple if, 4

Single Linked List, 167-170, 177, 232

Sink, 298

Sorting, 2, 199, 345, 347, 349, 351, 353,
355, 357, 359-361, 363, 367, 369,
371, 373, 375, 377, 379, 381, 383,
385, 387, 389

Source, 25, 250, 298, 322, 323, 327,
335, 336

Spanning Tree, 315, 318, 347

Sparse, 49, 50, 53-58, 239, 303, 336

Stack, 2, 6,91-127, 129, 133, 239,
243-245, 257-259, 266-268, 277,
311, 313-315

Static, 35, 36, 69, 75-78, 89, 96, 106,
110, 113, 125, 303

STL, 108

Storage class specifiers, 35, 47

strcat(), 24, 25

stremp(), 24, 25

strepy(), 24, 25

String Handling, 20, 24

strlen(), 24, 26, 99, 113, 125

strlwr(), 24, 25

strrev(), 24, 25, 126

Structure, 42

strupr(), 24, 25

Successor, 250, 271, 298

Summation Symbol, 4

Theta, 8

This Pointer, 84, 89, 239

Threaded Binary Tree, 265, 277, 278

Top, 91-99, 106, 107, 109, 110, 112-116,
118-126, 236, 259, 313-315

Topological Sorting, 345, 347

Transpose, 54, 55

Traversal of Graph, 305, 309, 313

Traversing, 2, 56, 170, 256, 277, 288,
311, 313, 347

Tree, 2, 239, 249-259, 262-279,
281-295, 300, 301, 306, 315, 316,
318, 327, 347, 372-374

Tree Terminologies, 249

typdef, 46

Underflow, 91-94, 97, 106, 109, 124,
127, 129-132, 134, 137, 140-142,
147, 155, 156, 165, 190, 227, 230

Union, 46, 47, 316

Updating, 254

Worst Case, 7, 350, 353, 367, 377
Worst-Fit, 245, 246

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

The book is intended to assist university faculty members and students
to realize the principles and acquire the practical skills of
programming using the C++ programming language.

Everyone knows that programming plays a vital role as a solution to automate and execute a
task in a proper manner. Irrespective of mathematical problems, the skills of programming
are necessary to solve any type of problems that may be correlated to solve real life problems
efficiently and effectively. This book is intended to flow from the basic concepts of C++ to
technicalities of the programming language, its approach and debugging. The chapters of
the book flow with the formulation of the problem, it’s designing, finding the step-by-step
solution procedure along with its compilation, debugging and execution with the output.
Keeping in mind the learner’s sentiments and requirements, the exemplary programs are
narrated with a simple approach so that it can lead to creation of good programs that
not only executes properly to give the output, but also enables the learners to incorporate
programming skills in them.

As practice makes perfect, each chapter is also enriched with practice exercise questions so
as to build the confidence of writing the programs for learners. The book is a complete and
all-inclusive handbook of C++ that covers all that a learner as a beginner would expect, as
well as complete enough to go ahead with advanced programming. This book will provide
a fundamental idea about the concepts of data structures and associated algorithms. By
going through the book, the reader will be able to understand about the different types of
algorithms and at which situation and what type of algorithms will be applicable.

Audience

This book was designed to serve as a textbook for undergraduate engineering students
across all disciplines and postgraduate level courses in computer applications. Young
researchers working on efficient data storage and related applications will also find it to be
a helpful reference source to guide them in the newly established techniques of this rapidly
growing research field.

Sachi Nandan Mohanty received his PhD from IIT Kharagpur in 2015. He has recently
joined as an associate professor in the Department of Computer Science & Engineering
at ICFAI Foundation for Higher Education Hyderabad. His research areas include data
mining, big data analysis, cognitive science, fuzzy decision-making, brain-computer
interface, and computational intelligence. He has published 20 SCI journal articles and has
authored 3 as well as edited 4 books.

Pabitra Kumar Tripathy has completed his MTech in computer science at Berhampur
University. He is currently pursuing his PhD in computer science and engineering at Biju
Patnaik University of Technology. He has been teaching for 15 years and is currently
working as the Head of Department Computer Science in KALAM Institute of Technology,
Odisha. He has also published 3 programming books for technical students.

Cover design by Russell Richardson
Front cover image supplied by Pixabay.com ISBN 978-1-119-75054-3

90000
Also available
as an e-book

977811197750543

WILEY 40

www.wiley.com www,scrivefwerpublishing.com

	Cover
	Half-Title Page
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	1 Introduction to Data Structure
	1.1 Definition and Use of Data Structure
	1.2 Types of Data Structure
	Linear Data Structures
	Non-Linear Data Structure
	Operations Performed in Data Structure

	1.3 Algorithm
	Steps Required to Develop an Algorithm
	Mathematical Notations and Functions
	Algorithemic Notations

	1.4 Complexity of an Algorithm
	Space Complexity
	Time Complexity
	Best Case
	Worst Case
	Average Case

	1.5 Efficiency of an Algorithm
	1.6 Asymptotic Notations
	Big Oh (O) Notation
	Omega Notation (W)
	Theta Notation (q)
	Little Oh Notation (o)
	Introduction

	1.7 How to Determine Complexities
	Examples
	Answer: The first loop is O(N) and the second loop is O(M). Since you
	Answer: The first set of nested loops is O(N2) and the second loop is
	Answer: When i is 0 the inner loop executes N times. When i is 1 the
	Answer: a. Each call to f(j) is O(1). The loop executes N times so it is N x

	1.8 Questions

	2 Review of Concepts of ‘C++’
	2.1 Array
	2.1.1 One-Dimensional Array Declaration:
	2.1.2 Multi-Dimensional Array
	2.1.3 String Handling

	2.2 Function
	2.2.1 User Defined Functions
	2.2.2 Construction of a Function
	2.2.3 Actual Argument and Formal Argument
	2.2.4 Call by Value and Call by Reference
	2.2.5 Default Values for Parameters
	2.2.6 Storage Class Specifiers

	2.3 Pointer
	2.3.1 Declaration of a Pointer
	2.3.2 Initialization of a Pointer
	2.3.3 Arithmetic With Pointer
	2.3.4 Passing of a Pointer to Function
	2.3.5 Returning of a Pointer by Function
	2.3.6 C++ Null Pointer

	2.4 Structure
	2.4.1 The typedef Keyword

	2.5 Questions

	3 Sparse Matrix
	3.1 What is Sparse Matrix
	3.2 Sparse Matrix Representations
	3.3 Algorithm to Represent the Sparse Matrix
	3.4 Programs Related to Sparse Matrix
	3.5 Why to Use Sparse Matrix Instead of Simple Matrix?
	3.6 Drawbacks of Sparse Matrix
	3.7 Sparse Matrix and Machine Learning
	3.8 Questions

	4 Concepts of Class
	4.1 Introduction to CLASS
	4.2 Access Specifiers in C++
	4.3 Declaration of Class
	4.4 Some Manipulator Used In C++
	4.5 Defining the Member Functions Outside of the Class
	4.6 Array of Objects
	4.7 Pointer to Object
	4.8 Inline Member Function
	4.9 Friend Function
	4.9.1 Simple Friend Function
	4.9.2 Friend With Inline Substitution
	4.9.3 Granting Friendship to Another Class (Friend Class)
	4.9.4 More Than One Class Having the Same Friend Function

	4.10 Static Data Member and Member Functions
	4.11 Constructor and Destructor
	4.11.1 Constructor
	4.11.2 Destructor

	4.12 Dynamic Memory Allocation
	4.13 This Pointer
	4.14 Class Within Class
	4.15 Questions

	5 Stack
	5.1 STACK
	5.2 Operations Performed With STACK
	5.3 ALGORITHMS
	5.4 Applications of STACK
	5.5 Programming Implementations of STACK
	5.6 Questions

	6 Queue
	6.1 Queue
	6.2 Types of Queue
	6.3 Linear Queue
	6.4 Circular Queue
	6.5 Double Ended Queue
	6.6 Priority Queue
	6.7 Programs
	6.8 Questions

	7 Linked List
	7.1 Why Use Linked List?
	7.2 Types of Link List
	7.3 Single Link List
	7.4 Programs Related to Single Linked List
	7.4.1 /* Creation of a Linked List */
	7.4.2 /* Insert a Node Into a Simple Linked List at the Beginning */
	7.4.3 /* Insert a Node Into a Simple Linked List at the End of the List */
	7.4.4 /* Insert a Node Into a Simple Linked List When the Node Is Known */
	7.4.5 /* Insert a Node Into a Simple Linked List Information Is Known and Put After Some Specified Node */
	7.4.6 /* Deleting the First Node From a Simple Linked List */
	7.4.7 /* Deleting the Last Node From a Simple Linked List */
	7.4.8 /* Deleting a Node From a Simple Linked List When Node Number Is Known */
	7.4.9 Deleting a Node From a Simple Linked List When Information of a Node Is Given
	7.4.10 /* SEARCH A NODE INTO A SIMPLE LINKED LIST WITH INFORMATION IS KNOWN */
	7.4.11 /* Sorting a Linked List in Ascending Order */
	7.4.12 /* Reversing a Linked List */
	7.4.13 Program for Student Data Using Linked List

	7.5 Double Link List
	7.6 Programs on Double Linked List
	7.6.1 /* Creation of Double Linked List */
	7.6.2 /* Inserting First Node in the Doubly Linked List */
	7.6.3 /*Inserting a Node in the Doubly Linked List When Node Number Is Known*/
	7.6.4 /*Inserting a Node in the Doubly Linked List When Information Is Known*/
	7.6.5 /* Delete First Node From a Double Linked List */
	7.6.6 /*Delete the Last Node From the Double Linked List*/

	7.7 Header Linked List
	7.7.1 /* Inserting a Node Into a Header Linked List */

	7.8 Circular Linked List
	7.9 Application of Linked List
	7.9.1 Addition of Two Polynomial
	7.9.2 /* Polynomial With Help of Linked List */
	7.9.3 Program for Linked Queue
	7.9.4 Program for Linked Stack

	7.10 Garbage Collection and Compaction
	7.11 Questions

	8 TREE
	8.1 Tree Terminologies
	8.2 Binary Tree
	8.3 Representation of Binary Tree
	8.3.1 Array Representation of a Tree
	8.3.2 Linked List Representation of a Tree

	8.4 Operations Performed With the Binary Tree
	8.4.1 /*Creation of a Tree*/

	8.5 Traversing With Tree
	8.5.1 /* Binary Tree Traversal */

	8.6 Conversion of a Tree From Inorder and Preorder
	8.7 Types of Binary Tree
	8.8 Expression Tree
	8.9 Binary Search Tree
	8.10 Height Balanced Tree (AVL Tree)
	8.11 Threaded Binary Tree
	8.12 Heap Tree
	8.13 Huffman Tree
	8.14 Decision Tree
	8.15 B-Tree
	8.16 B + Tree
	8.17 General Tree
	8.18 Red–Black Tree
	8.19 Questions

	9 Graph
	9.1 Graph Terminologies
	9.2 Representation of Graph
	9.3 Traversal of Graph
	9.3.1 Breadth First Search (BFS)
	9.3.2 Depth First Search

	9.4 Spanning Tree
	9.4.1 Kruskal Algorithm
	9.4.2 Prim’s Algorithm

	9.5 Single Source Shortest Path
	9.5.1 Bellman–Ford Algorithm
	9.5.2 Dijkstra’s Algorithm

	9.6 All Pair Shortest Path
	9.7 Topological Sorting
	9.8 Questions

	10 Searching and Sorting
	10.1 Linear Search
	10.2 Binary Search
	10.3 Bubble Sort
	10.4 Selection Sort
	10.5 Insertion Sort
	10.6 Merge Sort
	10.7 Quick Sort
	10.8 Radix Sort
	10.9 Heap Sort
	10.10 Questions

	11 Hashing
	11.1 Hash Functions
	11.2 Collisions
	11.3 Collision Resolution Methods
	11.4 Clustering
	11.5 Questions

	Index
	EULA

