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Introduction
Concurrency with Modern C++ is a journey through the present and upcoming concurrency features
in C++.

• C++11 andC++14 have the basic building blocks for creating concurrent and parallel programs.

• With C++17 we have the parallel algorithms from the Standard Template Library (STL). That
means that most STL-based algorithms can be executed sequentially, parallel, or vectorized.

• The concurrency story in C++ goes on. With C++20/23, we can hope for extended futures,
coroutines, transactions, and more.

This book explains the details of concurrency inmodern C++ and gives you, also, many code examples.
Consequently, you can combine theory with practice to get the most out of it.

Because this book is about concurrency, I’d like to present many pitfalls and show you how to
overcome them.

Conventions

Only a few conventions.

Special Fonts

Italic: I use Italic to emphasize an expression.

Bold: I use Bold to emphasize even more.

Monospace: I use Monospace for code, instructions, keywords, and names of types, variables, functions,
and classes.

Special Symbols

⇒ stands for a conclusion in the mathematical sense. For example, a⇒ b means if a then b.

Special Boxes

Boxes contain tips, warnings, and distilled information.

Tip Headline
This box provides tips and additional information about the presented material.
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Warning Headline
Warning boxes should help you to avoid pitfalls.

Distilled Information
This box summarizes at the end of each main section the important things to remember.

Source Code

All source code examples are complete. That means, assuming you have a conforming compiler, you
can compile and run them. The name of the source file is in the title of the listing. I use the using

namespace std directive in the source files only if necessary.

Run the Programs

Compiling and running the examples is quite easy for the C++11 and C++14 examples in this book.
Every modern C++ compiler should support them. For the GCC¹ and the clang² compiler, the C++
standard must be specified as well as the threading library. For example the g++ compiler from GCC
creates an executable program called thread with the following command-line: g++ -std=c++14 -

pthread thread.cpp -o thread.

• -std=c++14: use the language standard C++14

• -pthread: add support for multithreading with the pthread library

• thread.cpp: source file

• -o thread: executable program

The same command-line holds for the clang++ compiler. The Microsoft Visual Studio 17 C++ compiler
supports C++14 as well.

If you have no modern C++ compiler at your disposal, there are many online compilers available.
Arne Mertz’ blog post C++ Online Compiler³ gives an excellent overview.

With C++17 and C++20/23, the story becomes quite complicated. I installed the HPX (High Per-
formance ParalleX)⁴ framework, which is a general-purpose C++ runtime system for parallel and
distributed applications of any scale. HPX has already implemented the Parallel STL of C++17 and
many of the concurrency features of C++20 and C++23.

¹https://gcc.gnu.org/
²https://clang.llvm.org/
³https://arne-mertz.de/2017/05/online-compilers/
⁴http://stellar.cct.lsu.edu/projects/hpx/

https://gcc.gnu.org/
https://clang.llvm.org/
https://arne-mertz.de/2017/05/online-compilers/
http://stellar.cct.lsu.edu/projects/hpx/
http://stellar.cct.lsu.edu/projects/hpx/
https://gcc.gnu.org/
https://clang.llvm.org/
https://arne-mertz.de/2017/05/online-compilers/
http://stellar.cct.lsu.edu/projects/hpx/


Introduction v

How should you read the book?

If you are not very familiar with concurrency in C++, start at the very beginning with A Quick
Overview to get the big picture.

Once you get the big picture, you can proceed with the The Details. Skip the memory model in your
first iteration of the book unless you are entirely sure that is what you are looking for. The chapterCase
Studies should help you apply the theory. This is quite challenging as it requires a basic understanding
of the memory model.

The chapters about The Near Future: C++20 and the The Future: C++23 are optional. I am very curious
about the future. I hope you are too!

The last part, Further Information provides you with additional guidance towards a better understand-
ing of my book and, finally, getting the most out of it.

Personal Notes

Acknowledgment

I started a request in my English blog to write this book in English: www.ModernesCpp.com⁵ I
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Special thanks to all of you, including my daughter Juliette, who improved my layout, and my son
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Randy Hormann, L�szl� Kovacs, Lasse Natvig, Erik Newton, Ian Reeve, Bart Vandewoestyne, Vadim
Vinnik, Dafydd Walters, Andrzej Warzynski, and Enrico Zschemisch.

About Me

I’ve worked as a software architect, team leader, and instructor for about 20 years. I enjoy writing
articles on C++, Python, and Haskell and speaking at conferences in my spare time. In 2016 I decided
to work for myself. I organize and lead seminars about modern C++ and Python.

My Special Circumstances

I began to write this book ConcurrencyWith Modern C++ in Oberstdorf while getting a new hip joint.
Formally, it was a total endoprosthesis of my left hip joint. I wrote the first half of this book during
my stay in the clinic and the rehabilitation clinic. Honestly, writing a book helped me a lot during
this challenging period.

⁵http://www.modernescpp.com/index.php/looking-for-proofreaders-for-my-new-book-concurrency-with-modern-c
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A Quick Overview



1. Concurrency with Modern C++
With the publishing of the C++11 standard, C++ got a multithreading library and a memory model.
This library has basic building blocks like atomic variables, threads, locks, and condition variables.
That’s the foundation on which future C++ standards such as C++20 and C++23 can establish higher
abstractions. However, C++11 already knows tasks, which provide a higher abstraction than the cited
basic building blocks.

Concurrency in C++

Roughly speaking, you can divide the concurrency story of C++ into three evolution steps.
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1.1 C++11 and C++14: The Foundation

C++11 introduced multithreading. The multithreading support consists of a well-defined memory
model and a standardized threading interface. C++14 added reader-writer locks to the multithreading
facilities of C++.

1.1.1 Memory Model

Memory Model in C++

The foundation of multithreading is a well-defined memory model. This memory model has to deal
with the following aspects:

• Atomic operations: operations that are performed without interruption.

• Partial ordering of operations: a sequence of operations that must not be reordered.

• Visible effects of operations: guarantees when operations on shared variables are visible in other
threads.

The C++ memory model is inspired by its predecessor: the Java memory model. Unlike the Java
memory model, however, C++ allows us to break the constraints of sequential consistency, which
is the default behavior of atomic operations.

Sequential consistency provides two guarantees.

1. The instructions of a program are executed in source code order.

2. There is a global order for all operations on all threads.

The memory model is based on atomic operations on atomic data types (short atomics).
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1.1.1.1 Atomics

C++ has a set of simple atomic data types. These are booleans, characters, numbers, and pointers in
many variants. You can define your atomic data type with the class template std::atomic. Atomics
establishes synchronization and ordering constraints that can also hold for non-atomic types.

The standardized threading interface is the core of concurrency in C++.

1.1.2 Multithreading

Multithreading in C++

Multithreading in C++ consists of threads, synchronization primitives for shared data, thread-local
data, and tasks.

1.1.2.1 Threads

C++ supports two kind of threads: the basic thread std::thread (C++11) and the improved thread
std::jthread (C++20).

1.1.2.1.1 std::thread

A std::thread represents an independent unit of program execution. The executable unit, which is
started immediately, receives its work package as a callable unit. A callable unit can be a named
function, a function object, or a lambda function.

The creator of a thread is responsible for its lifecycle. The executable unit of the new thread ends
with the end of the callable. Either the creator waits until the created thread t is done (t.join()) or
the creator detaches itself from the created thread: t.detach(). A thread t is joinable if no operation
t.join() or t.detach() was performed on it. A joinable thread calls std::terminate in its destructor,
and the program terminates.
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A from its creator detached thread is typically called a daemon thread because it runs in the
background.

A std::thread is a variadic template. This means that it can receive an arbitrary number of arguments;
either the callable or the thread can get the arguments.

1.1.2.1.2 std::jthread (C++20)

std::jthread stands for joining thread. In addition to std::thread from C++11, std::jthread

automatically joins in it destructor and can cooperatively be interrupted. Consequently, std::jthread
extends the interface of std::thread.

1.1.2.2 Shared Data

You have to coordinate access to a shared variable if more than one thread uses it simultaneously and
the variable is mutable (non-const). Reading and writing a shared variable concurrently is a data race
and, therefore, undefined behavior. Coordinating access to a shared variable is achieved with mutexes
and locks in C++.

1.1.2.2.1 Mutexes

Amutex (mutual exclusion) guarantees that only one thread can access a shared variable at any given
time. A mutex locks and unlocks the critical section, to which the shared variable belongs. C++ has
five different mutexes. They can lock recursively, tentatively, and with or without time constraints.
Even mutexes can share a lock at the same time.

1.1.2.2.2 Locks

You should encapsulate a mutex in a lock to release the mutex automatically. A lock implements the
RAII idiom by binding a mutex’s lifetime to its own. C++ has a std::lock_guard / std::scoped_lock
for the simple, and a std::unique_lock / std::shared_lock for the advanced use cases such as the
explicit locking or unlocking of the mutex, respectively.

1.1.2.2.3 Thread-safe Initialization of Data

If shared data is read-only, it’s sufficient to initialize it in a thread-safe way. C++ offers various ways
to achieve this including using a constant expression, a static variable with block scope, or using the
function std::call_once in combination with the flag std::once_flag.

1.1.2.3 Thread Local Data

Declaring a variable as thread-local ensures that each thread gets its own copy. Therefore, there is no
shared variable. The lifetime of thread-local data is bound to the lifetime of its thread.
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1.1.2.4 Condition Variables

Condition variables enable threads to be synchronized via messages. One thread acts as the sender
while the other acts as the receiver of the message. The receiver blocks waiting for the message from
the sender. Typical use cases for condition variables are producer-consumer workflows. A condition
variable can be either the sender or the receiver of the message. Using condition variables correctly
is quite challenging; therefore, tasks are often the easier solution.

1.1.2.5 Cooperative Interruption (C++20)

The additional functionality of the cooperative interruption of std::jthread is based on the std::stop_-
source, std::stop_token, and the std::stop_callback classes. std::jthread and std::condition_vari-

able_any support cooperative interruption by design.

1.1.2.6 Semaphores (C++20)

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource.
A counting semaphore is a semaphore that has a counter that is bigger than zero. The counter
is initialized in the constructor. Acquiring the semaphore decreases the counter, and releasing the
semaphore increases the counter. If a thread tries to acquire the semaphore when the counter is zero,
the thread will block until another thread increments the counter by releasing the semaphore.

1.1.2.7 Latches and Barriers (C++20)

Latches and barriers are coordination types that enable some threads to block until a counter becomes
zero. The counter is initialized in the constructor. At first, don’t confuse the new barriers withmemory
barriers, also known as fences. In C++20 we get latches and barriers in two variations: std::latch,
and std::barrier. Concurrent invocations of the member functions of a std::latch or a std::barrier
produce no data race.

1.1.2.8 Tasks

Tasks have a lot in common with threads. While you explicitly create a thread, a task is just a job
you start. The C++ runtime automatically handles, such as in the simple case of std::async, the task’s
lifetime.

Tasks are like data channels between two communication endpoints. They enable thread-safe
communication between threads. The promise as one endpoint puts data into the data channel, the
future at the other endpoint picks the value up. The data can be a value, an exception, or simply a
notification. In addition to std::async, C++ has the class templates std::promise and std::future

that give you more control over the task.
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1.1.2.9 Synchronized Outputstreams (C++20)

With C++20, C++ enables synchronized outputstreams. std::basic_syncbuf is a wrapper for a
std::basic_streambuf¹. It accumulates output in its buffer. Thewrapper sets its content to thewrapped
buffer when it is destructed. Consequently, the content appears as a contiguous sequence of characters,
and no interleaving of characters can happen. Thanks to std::basic_osyncstream, you can directly
write synchronously to std::cout.

1.2 C++17: Parallel Algorithms of the Standard
Template Library

Parallel algorithms in C++17

With C++17, concurrency in C++ has drastically changed, in particular the parallel algorithms of
the Standard Template Library (STL). C++11 and C++14 only provide the basic building blocks for
concurrency. These tools are suitable for a library or framework developer but not for the application
developer. Multithreading in C++11 and C++14 becomes an assembly language for concurrency in
C++17!

1.2.1 Execution Policy

With C++17, most of the STL algorithms are available in a parallel implementation. This makes
it possible for you to invoke an algorithm with a so-called execution policy. This policy specifies
whether the algorithm runs sequentially (std::execution::seq), in parallel (std::execution::par), or
in parallel with additional vectorisation (std::execution::par_unseq).

¹https://en.cppreference.com/w/cpp/io/basic_streambuf

https://en.cppreference.com/w/cpp/io/basic_streambuf
https://en.cppreference.com/w/cpp/io/basic_streambuf
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1.2.2 New Algorithms

In addition to the 69 algorithms available in overloaded versions for parallel, or parallel and vectorized
execution, we get eight additional algorithms. These new ones are well suited for parallel reducing,
scanning, or transforming ranges.

1.3 Coroutines

Coroutines

Coroutines are functions that can suspend and resume their execution while maintaining their state.
Coroutines are often the preferred approach to implement cooperative multitasking in operating
systems, event loops, infinite lists, or pipelines.

1.4 Case Studies

After presenting the theory of the memory model and the multithreading interface, I apply the theory
in a few case studies.

1.4.1 Calculating the Sum of a Vector

Calculating the sum of a vector can be done in various ways. You can do it sequentially or concurrently
with maximum and minimum sharing of data. The performance numbers differ drastically.
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1.4.2 The Dining Philosophers Problem by Andre Adrian

The dining philosophers problem is a classic synchronization problem formulated by Edsger Dijkstra²
in the article Hierarchical Ordering of Sequential Processes³: Five philosophers, numbered from 0
through 4 are living in a house where the table laid for them, each philosopher having his own place
at the table. Their only problem - besides those of philosophy - is that the dish served is a very difficult
kind of spaghetti, that has to be eaten with two forks. There are two forks next to each plate, so that
presents no difficulty: as a consequence, however, no two neighbours may be eating simultaneously.

1.4.3 Thread-Safe Initialization of a Singleton

Thread-safe initialization of a singleton is the classical use-case for thread-safe initialization of a
shared variable. There are many ways to do it, with varying performance characteristics.

1.4.4 Ongoing Optimization with CppMem

I start with a small program and successively improve it by weakening the memory ordering. I verify
each step of my process of ongoing optimization with CppMem. CppMem⁴ is an interactive tool for
exploring the behavior of small code snippets using the C++ memory model.

1.4.5 Fast Synchronization of Threads

There are many ways in C++20 to synchronize threads. You can use condition variables, std::atomic_-
flag, std::atomic<bool>, or semaphores. I discuss the performance numbers of various ping-pong
games.

1.5 Variations of Futures

Thanks to the new keyword co_return, I can implement in the case study variations of futures an
eager future, a lazy future, or a future running in a separate thread. Heavily used comments make its
workflow transparent.

1.6 Modification and Generalization of a Generator

co_yield enables it to create infinite data streams. In the case stucy modification and generalization
of a generator, the infinite data streams become finite and generic.

²https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
³https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
⁴http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
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1.7 Various Job Workflows

The case study of various job workflows presents a few coroutines that are automatically resumed if
necessary. co_await makes this possible.

1.8 The Future: C++23

Concurrency in C++23

It isn’t easy to make predictions, especially about the future (Niels Bohr⁵).

1.8.1 Executors

An executor consists of a set of rules about where, when, and how to run a callable unit. They are the
basic building block to execute and specify if callables should run on an arbitrary thread, a thread pool,
or even single threaded without concurrency. The extended futures, the extensions for networking
N4734⁶ depend on them but also the parallel algorithms of the STL, and the new concurrency features
in C++20/23 such as latches and barriers, coroutines, transactional memory, and task blocks eventually
use them.

1.8.2 Extended futures

Tasks called promises and futures, introduced in C++11, have a lot to offer, but they also have
drawbacks: tasks are not composable into powerful workflows. That limitation does not hold for
the extended futures in C++23. Therefore, an extended future becomes ready when its predecessor
(then) becomes ready, when_any one of its predecessors becomes ready, or when_all of its predecessors
becomes ready.

⁵https://en.wikipedia.org/wiki/Niels_Bohr
⁶http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf

https://en.wikipedia.org/wiki/Niels_Bohr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
https://en.wikipedia.org/wiki/Niels_Bohr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
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1.8.3 Transactional Memory

Transactional memory is based on the ideas underlying transactions in database theory. A transaction
is an action that provides the first three properties of ACID database transactions: Atomicity,
Consistency, and Isolation. The durability that is characteristic for databases holds not for the
proposed transactional memory in C++. The new standard has transactional memory in two flavors:
synchronized blocks and atomic blocks. Both are executed in total order and behave as if a global lock
protected them. In contrast to synchronized blocks, atomic blocks cannot execute transaction-unsafe
code.

1.8.4 Task Blocks

Task Blocks implement the fork-join paradigm in C++. The following graph illustrates the key idea
of a task block: you have a fork phase in which you launch tasks and a join phase in which you
synchronize them.

Task Blocks

1.8.5 Data-Parallel Vector Library

The data-parallel vector library provides data-parallel (SIMD) programming via vector types. SIMD
means that one operation is performed on many data in parallel.

1.9 Patterns and Best Practices

Patterns are documented best practices from the best. They “… express a relation between a certain
context, a problem, and a solution.” Christopher Alexander⁷. Thinking about the challenges of
concurrent programming from a more conceptional point of view provides many benefits. In contrast
to the more conceptional patterns to concurrency, the chapter best practices provide pragmatic tips
to overcome the concurrency challenges.

⁷https://en.wikipedia.org/wiki/Christopher_Alexander

https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Christopher_Alexander


Concurrency with Modern C++ 12

1.9.1 Synchronization

A necessary prerequisite for a data race is shared mutable state. Synchronization patterns boil down
to two concerns: dealing with sharing and dealing with mutation.

1.9.2 Concurrent Architecture

The chapter to concurrent architecture presents five patterns. The two patterns Active Object and
the Monitor Object synchronize and schedule member functions invocation. The third pattern Half-
Sync/Half-Async has an architectural focus and decouples asynchronous and synchronous service
processing in concurrent systems. The Reactor pattern and the Proactor pattern can be regarded
as variations of the Half-Sync/Half-Async pattern. Both patterns enable event-driven applications
to demultiplex and dispatch service requests. The reactor performs its job synchronously, but the
proactor asynchronously.

1.9.3 Best Practices

Concurrent programming is inherently complicated, therefore having best practices in general, but
also for multithreading, and the memory model makes a lot of sense.

1.10 Data Structures

A data structure that protects itself so that no data race can appear is called thread-safe. The chapter
lock-based data structures presents the challenges to design those lock-based data structures.

1.11 Challenges

Writing concurrent programs is inherently complicated. This is particularly true if you only use C++11
and C++14 features. Therefore, I describe in detail the most challenging issues. I hope that if I dedicate
a whole chapter to the challenges of concurrent programming, you become more aware of the pitfalls.
I write about challenges such as race conditions, data races, and deadlocks.

1.12 Time Library

The time library is a key component of the concurrent facilities of C++. Often you let a thread sleep
for a specific time duration or until a particular point in time. The time library consists of: time points,
time durations, and clocks.
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1.13 CppMem

CppMem is an interactive tool to get deeper inside into the memory model. It provides two precious
services. First, you can verify your lock-free code, and second, you can analyze your lock-free code
and get a more robust understanding of your code. I often use CppMem in this book. Because the
configuration options and the insights of CppMem are quite challenging, the chapter gives you a
basic understanding of CppMem.

1.14 Glossary

The glossary contains non-exhaustive explanations on essential terms.



The Details



2. Memory Model

Cippi studies the atomics

The foundation of multithreading is a well-defined memory model. From the reader’s perspective,
it consists of two aspects. On the one hand, there is the enormous complexity of it, which often
contradicts our intuition. On the other hand, it helps a lot to get a more in-depth insight into the
multithreading challenges.

However, first of all, what is a memory model?
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Memory Model in C++

2.1 Basics of the Memory Model

From the concurrency point of view, there are two main aspects of the memory model:

• What is a memory location?

• What happens if two threads access the same memory location?

Let me answer both questions.

2.1.1 What is a memory location?

A memory location is according to cppreference.com¹

• an object of scalar type (arithmetic type, pointer type, enumeration type, or std::nullptr_t),

• or the largest contiguous sequence of bit fields of non-zero length.

Here is an example of a memory location:

¹http://en.cppreference.com/w/cpp/language/memory_model

http://en.cppreference.com/w/cpp/language/memory_model
http://en.cppreference.com/w/cpp/language/memory_model
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struct S {

char a; // memory location #1

int b : 5; // memory location #2

int c : 11, // memory location #2 (continued)

: 0,

d : 8; // memory location #3

int e; // memory location #4

double f; // memory location #5

std::string g; // several memory locations

};

First, the object obj consists of seven sub-objects, and the two bit fields b, and c share the samememory
location.

Here are a few important observations:

• Each variable is an object.

• Scalar types occupy one memory location.

• Adjacent bit fields (b and c) have the same memory location.

• Variables occupy at least one memory location.

Now, to the crucial part of multithreading.

2.1.2 What happens if two threads access the same memory
location?

If two threads access the same memory location - adjacent bit fields can share the same memory
location - and at least one thread wants to modify it, your program has a data races unless

1. the memory location is modified by an atomic operation.

2. one access happens-before the other.

The second case is quite interesting because synchronization primitives such as mutexes establish
happens-before relations. These happens-before relations are based on operations on atomics and
apply in general also on operations on non-atomics. The memory-ordering defines the details which
cause the happens-before relations and are, therefore, an essential fundamental part of the memory
model.

This was my first formal approach to the memory model. Now, I want to give you a mental model
for the memory model. The C++ memory model defines a contract.
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2.2 The Contract

This contract is between the programmer and the system. The system consists of the compiler that
generates machine code, the processor that executes the machine code and includes the different
caches that store the program’s state. Each of the participants wants to optimize their part. For
example, the compiler uses registers or modifies loops; the processor performs out-of-order execution
or branch prediction; the caches apply prefetching of instructions or buffering of values. The result is
- in the right case - a well-defined executable that is fully optimized for the hardware platform. To be
precise, there is not only a single contract but a fine-grained set of contracts. Or to say it differently:
the weaker the rules are that the programmer has to follow, the more potential there is for the system
to generate a highly optimized executable.

There is a rule of thumb. The stronger the contract, the fewer liberties for the system to generate an
optimized executable. Sadly, the other way around does not work. When the programmer uses an
extremely weak contract or memory model, there are many optimization choices. The consequences
are that the program is only manageable by a handful of worldwide recognized experts, which
probably neither you nor I belong.

Roughly speaking, there are three contract levels in C++11.

Three levels of the contract

Before C++11, there was only one contract. The C++ language specification did not include mul-
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tithreading or atomics. The system only knew about one control flow, and therefore there were
only restricted opportunities to optimize the executable. The system’s key point was to guarantee
for the programmer that the observed behavior of the program corresponded to the sequence of the
instructions in the source code. Of course, this means that there was no memory model. Instead,
there was the concept of a sequence point. Sequence points are points in the program at which the
effects of all instructions preceding it must be observable. The start or the end of the execution of a
function are sequence points. When you invoke a function with two arguments, the C++ standard
makes no guarantee about which argument is evaluated first, so the behavior is unspecified. The
reason is straightforward - the comma operator is not a sequence point, which does not change in
C++.

With C++11 everything has changed. C++11 is the first standard aware of multiple threads. The reason
for the well-defined behavior of threads is the C++ memory model that was heavily inspired by
the Java memory model². Still, the C++ memory model goes - as always - a few steps further. The
programmer has to obey a few rules in dealing with shared variables to get a well-defined program.
The program is undefined if there exists at least one data race. As I already mentioned, you have to
be aware of data races if your threads share mutable data. Tasks are a lot easier to use than threads
or condition variables.

With atomics, we enter the domain of the experts. This becomes more evident the more we weaken
the C++ memory model. We often talk about lock-free programming when we use atomics. I spoke
in this subsection about the weak and strong rules. Indeed, the sequential consistency is called the
strong memory model, and the relaxed semantic is called the weak memory model.

2.2.1 The Foundation

The C++ memory model has to deal with the following points:

• Atomic operations: operations that can perform without interruption.

• Partial ordering of operations: sequences of operations that must not be reordered.

• Visible effects of operations: guarantees when operations on shared variables are visible to other
threads.

The foundation of the contract are operations on atomics that have two characteristics: They are by
definition atomic or indivisible, and they create synchronization and order constraints on the program
execution. These synchronization and order constraints also hold for operations on non-atomics. On
the one hand, an operation on an atomic is always atomic, but on the other hand, you can tailor the
synchronizations and order constraints to your needs.

2.2.2 The Challenges

The more we weaken the memory model, the more we change our focus towards other things, such
as:

²https://en.wikipedia.org/wiki/Java_memory_model

https://en.wikipedia.org/wiki/Java_memory_model
https://en.wikipedia.org/wiki/Java_memory_model
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• The program has more optimization potential.

• The possible number of control flows of the program increases exponentially.

• We are in the domain for the experts.

• The program breaks our intuition.

• We apply micro-optimization.

To deal with multithreading, we should be an expert. In case we want to deal with atomics (sequential
consistency), we should open the door to the next level of expertise.What happens whenwe talk about
the acquire-release semantic or relaxed semantic? We advance one step higher to (or deeper into) the
next expertise level.
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The expert levels

Now, we dive deeper into the C++ memory model and start with lock-free programming. On our
journey, I write about atomics and their operations. Once we are done with the basics, the different
levels of the memory model follow. The starting point is the straightforward sequential consistency,
the acquire-release semantic follows, and the not so intuitive relaxed semantic is the endpoint of our
journey.
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Let’s start with atomics.
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2.3 Atomics

Atomics are the base of the C++ memory model. By default, the strong version of the memory model
is applied to the atomics; therefore, it makes much sense to understand the features of the strong
memory model.

2.3.1 Strong versus Weak Memory Model

As you may already know from the subsection on Contract: The Challenges, with the strong memory
model I refer to sequential consistency, and with the weak memory model I refer to relaxed semantic.

2.3.1.1 Strong Memory Model

Java 5.0 got its currentmemorymodel in 2004, C++ in 2011. Before that, Java had an erroneousmemory
model, and C++ had no memory model. Those who think this is the endpoint of a long process are
entirely wrong. The foundations of multithreaded programming are 40 to 50 years old. Leslie Lamport³
defined the concept of sequential consistency in 1979.

Sequential consistency provides two guarantees:

• The instructions of a program are executed in the order written down.

• There is a global order of all operations on all threads.

Before I dive deeper into these two guarantees, I want to explicitly emphasize that these two
guarantees only hold for atomics but influence non-atomics.

This graphic shows two threads. Each thread stores its variable x or y respectively, loads the other
variable y or x, and stores them in the variable res1 or res2.

Two atomics

Because the variables are atomic, the operations are executed atomically. By default, sequential
consistency applies. The question is: in which order can the statements be executed?

The first guarantee of sequential consistency is that the instructions are executed in the order defined
in the source code. This is easy. No store operation can overtake a load operation.

³https://en.wikipedia.org/wiki/Leslie_Lamport

https://en.wikipedia.org/wiki/Leslie_Lamport
https://en.wikipedia.org/wiki/Leslie_Lamport
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The second guarantee of the sequential consistency is that all threads’ instructions have to follow a
global order. In the case listed above, it means that thread 2 sees the operations of thread 1 in the same
order in which thread 1 executes them. This is the critical observation. Thread 2 sees all operations of
thread 1 in the source code order of thread 1. The same holds from the perspective of thread 1. You
can think about characteristic two as a global clock that all threads have to obey. The global clock is
the global order. Each time the clock makes a tick, one atomic operation takes place, but you never
know which one.

We are not yet done with our riddle. We still need to look at the different interleaving executions of
the two threads. So the following six interleavings of the two threads are possible.

The six interleavings of the two threads

That was easy, right? That was sequential consistency, also known as the strong memory model.

2.3.1.2 Weak Memory Model

Let refer once more to the contract between the programmer and the system.

The programmer uses atomics in this particular example. He obeys his part of the contract. The
system guarantees well-defined program behavior without data races. In addition to that, the system
can execute the four operations in each combination. If the programmer uses the relaxed semantic,
the pillars of the contract dramatically change. On the one hand, it is a lot more difficult for the
programmer to understand possible interleavings of the two threads. On the other hand, the system
has a lot more optimization possibilities.
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With the relaxed semantic - also called weak memory model - there are many more combinations of
the four operations possible. The counter-intuitive behavior is that thread 1 can see the operations of
thread 2 in a different order, so there is no view of a global clock. From the perspective of thread 1, it
is possible that the operation res2= x.load() overtakes y.store(1). It is even possible that thread 1 or
thread 2 do not perform their operations in the order defined in the source code. For example, thread
2 can first execute res2= x.load() and then y.store(1).

Between the sequential consistency and the relaxed-semantic are a few more models. The most
important one is the acquire-release semantic. With the acquire-release semantic, the programmer has
to obey weaker rules than with sequential consistency. In contrast, the system has more optimization
possibilities. The acquire-release semantic is the key to a deeper understanding of synchronization
and partial ordering in multithreading programming. The threads are synchronized at specific
synchronization points in the code. Without these synchronization points, there is no well-defined
behavior of threads, tasks, or condition variables possible.

In the last section, I introduced sequential consistency as the default behavior of atomic operations.
What does that mean? You can specify the memory order for each atomic operation. If no memory
order is specified, sequential consistency is applied, meaning that the flag std::memory_order_seq_cst
is implicitly applied to each operation on an atomic.

This piece of code

x.store(1);

res = x.load();

is equivalent to the following piece of code:

x.store(1, std::memory_order_seq_cst);

res = x.load(std::memory_order_seq_cst);

For simplicity, I use the first form in this book. Now it’s time to take a deeper look into the atomics
of the C++ memory model. We start with the elementary std::atomic_flag.

2.3.2 The Atomic Flag

std::atomic_flag is an atomic boolean. It has a clear and a set state. For simplicity reasons, I call the
clear state false and the set state true. Its clearmember functions enables you to set its value to false.
With the test_and_set member functions, you can set the value back to true and return the previous
value. There is no member functions to ask for the current value. This will change with C++20. With
C++20, a std::atomic_flag has a test member functions and can be used for thread synchronization
via the member functions notify_one, notify_all, and wait.
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All operations of std::atomic_flag atomicFlag

Member functions Description

atomicFlag.clear() Clears the atomic flag.

atomicFlag.test_and_set() Sets the atomic flag and returns the old value.
atomicFlag.test() (C++20) Returns the value of the flag.

atomicFlag.notify_one() (C++20) Notifies one thread waiting on the atomic flag.
atomicFlag.notify_all (C++20) Notifies all threads waiting on the atomic flag.

atomicFlag.wait(bo) (C++20) Blocks the thread until notified and the atomic value changes.

The call atomicFlag.test() returns the atomicFlag value without changing it. Further on, you can
use std::atomic_flag for thread-synchronization: atomicFlag.wait(), atomicFlag.notify_one(), and
atomicFlag.notify_all(). The member functions notify_one or notify_all notify one or all of the
waiting atomic flags. atomicFlag.wait(boo) needs a boolean boo. The call atomicFlag.wait(boo)

blocks until the next notification or spurious wakeup. It checks then if the value of atomicFlag is equal
to boo and unblocks if not. The value boo serves as a predicate to protect against spurious wakeups.

Additionally to C++11, default-construction in C++20 set a std::atomic_flag in its false state.

Initialization of a std::atomic_flag in C++11
The std::atomic_flag flag has to be initialized in C+++11 with the statement
std::atomic_flag flag = ATOMIC_FLAG_INIT. Other initialization contexts such as
std::atomic_flag flag(ATOMIC_FLAG_INIT) are unspecified.

std::atomic_flag has two outstanding properties.

std::atomic_flag is

• the only lock-free atomic. A non-blocking algorithm is lock-free if there is guaranteed system-
wide progress.

• the building block for higher-level thread abstractions.

The only lock-free atomic? The remaining more powerful atomics can provide their functionality by
using a mutex internally according to the C++ standard. These remaining atomics have a member
functions called is_lock_free to check if the atomic uses a mutex internally. On the popular
microprocessor architectures, I always get the answer true. You should be aware of this and check it
on your target system if you want to program lock-free.

adress_free Atomic operations that are lock-free should also be address-free. Address-
free means that atomic operations from different processes on the same memory location
are atomic.
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std::is_always_lock_free

You can check for each instance of an atomic type or atomic_ref type (C++20) obj if its lock-
free: obj.is_lock_free(). This check is performed at runtime. Thanks to the constexpr

function atomic<type>::is_always_lock_free, you can check for each atomic type if it’s
lock-free on all supported hardware that the executable might run on. This check returns
only true if it is true for all supported hardware. The check is performed at compile-time
and is available since C++17.

The following expression should never fail:

if (std::atomic<T>::is_always_lock_free) assert(std::atomic<T>().is_lock_free();

The interface of std::atomic_flag is powerful enough to build a spinlock. With a spinlock, you can
protect a critical section as you would with a mutex.

2.3.2.1 Spinlock

A spinlock is an elementary lock such as a mutex. In contrast to a mutex, it waits not until it gets its
lock. It eagerly asks for the lock to get access to the critical section. The spinlock saves the expensive
context switch in the wait state from the user space to the kernel space, but it utilizes the CPU and
wastes CPU cycles. If threads are typically blocked for a short time, spinlocks are quite efficient. Often
a lock uses a combination of a spinlock and a mutex. The lock first uses the spinlock for a limited time.
If this does not succeed the thread is then put in the wait state.

Spinlocks should not be used on a single processor system. In the best case, a spinlock wastes resources
and slows down the owner of the lock. In the worst case, you get a deadlock.

The example shows the implementation of a spinlock with the help of std::atomic_flag

A spinlock with std::atomic_flag

1 // spinLock.cpp

2

3 #include <atomic>

4 #include <thread>

5

6 class Spinlock{

7 std::atomic_flag flag = ATOMIC_FLAG_INIT;

8 public:

9

10 void lock(){

11 while( flag.test_and_set() );

12 }
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13

14 void unlock(){

15 flag.clear();

16 }

17

18 };

19

20 Spinlock spin;

21

22 void workOnResource(){

23 spin.lock();

24 // shared resource

25 spin.unlock();

26 }

27

28

29 int main(){

30

31 std::thread t(workOnResource);

32 std::thread t2(workOnResource);

33

34 t.join();

35 t2.join();

36

37 }

Both threads t and t2 (lines 31 and 32) are competing for the critical section. For simplicity, the critical
section in line 24 consists only of a comment. How does it work? The class Spinlock has - similar to a
mutex - the member function lock and unlock. In addition to this, the std::atomic_flag is initialized
with class member initialization to false (line 7).

If thread t is going to execute the function workOnResource, the following scenarios can happen.
1. Thread t gets the lock because the lock invocation was successful. The lock invocation is

successful if the flag’s initial value in line 11 is false. In this case, thread t sets it in an atomic
operation to true. The value true is the value of the while loop that returns to thread t2 if it
tries to get the lock. So thread t2 is caught in the rat race. Thread t2 cannot set the flag’s value
to false, so that t2 must wait until thread t1 executes the unlock member functions and sets
the flag to false (lines 14 - 16).

2. Thread t doesn’t get the lock. So we are in scenario 1 with swapped roles.
I want you to focus your attention on the member functions test_and_set of std::atomic_flag. The
member function test_and_set consists of two operations: reading and writing. Both operations must
be performed in one atomic operation. If not, we would have a read and a write on the shared resource
(line 24). That is by definition a data race, and the program has undefined behavior.

It’s exciting to compare the active waiting of a spinlock with the passive waiting of a mutex.
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2.3.2.1.1 Spinlock versus Mutex

What happens to the CPU load if the function workOnResource locks the spinlock for 2 seconds (lines
23 - 25)?

Waiting with a spinlock

1 // spinLockSleep.cpp

2

3 #include <atomic>

4 #include <thread>

5

6 class Spinlock{

7 std::atomic_flag flag = ATOMIC_FLAG_INIT;

8 public:

9

10 void lock(){

11 while( flag.test_and_set() );

12 }

13

14 void unlock(){

15 flag.clear();

16 }

17

18 };

19

20 Spinlock spin;

21

22 void workOnResource(){

23 spin.lock();

24 std::this_thread::sleep_for(std::chrono::milliseconds(2000));

25 spin.unlock();

26 }

27

28

29 int main(){

30

31 std::thread t(workOnResource);

32 std::thread t2(workOnResource);

33

34 t.join();

35 t2.join();

36

37 }

If the theory is correct, one of the four cores of my PC is fully utilized. This is precisely what happens.
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Take a look at the screenshot.

A spinlock that sleeps for two seconds

The screenshot shows nicely that the load of one core reaches 100% on my PC. Each time a different
core performs busy waiting.

Now I use a mutex instead of a spinlock. Let’s see what happens.

Waiting with a mutex

1 // mutex.cpp

2

3 #include <mutex>

4 #include <thread>

5

6 std::mutex mut;

7

8 void workOnResource(){

9 mut.lock();

10 std::this_thread::sleep_for(std::chrono::milliseconds(5000));

11 mut.unlock();

12 }

13



Memory Model 31

14 int main(){

15

16 std::thread t(workOnResource);

17 std::thread t2(workOnResource);

18

19 t.join();

20 t2.join();

21

22 }

Although I executed the program several times, I did not observe a significant load on any of the
cores.

A mutex that sleeps for two seconds

Thanks to std::atomic_flag, thread synchronization is straightforward and fast.

2.3.2.2 Thread Synchronization
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Thread synchronization with a std::atomic_flag

1 // threadSynchronizationAtomicFlag.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic_flag atomicFlag{};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicFlag.test_and_set();

17 atomicFlag.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicFlag.wait(false);

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';

27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }
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The thread preparing the work (line 16) sets the atomicFlag to true and sends the notification. The
thread completing the work waits for the notification. It is only unblocked if atomicFlag is equal to
true.

Here are a few runs of the program with the Microsoft Compiler.

Thread synchronization with std::atomic_flag

Even when the sender sends its notification before the waiter is in the wait state, the notification is
not lost. std::atomic_flag cannot be victims of lost wakeups.

Let’s go one step further from the basic building block std::atomic_flag to themore advanced atomics:
the class template std::atomic.

2.3.3 std::atomic

They are various variations of the class template std::atomic available. std::atomic<bool> and
std::atomic<user-defined type> use the primary template. Partial specialisations are available
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for pointers std::atomic<T*>, and with C++20 for smart pointers std::atomic<smart T*>, full
specialisations for integral types std::atomic<integral type>, and with C++20 for floating-point
types std::atomic<floating-point> .

The atomic booleans, the atomic user-defined types, and the atomic smart pointer support the same
interface. I call it the fundamental atomic interface. The atomic pointer extends the fundamental
atomic interface. The same applies to the atomic arithmetic types: the atomic floating-point types
extend the interface of the atomic pointers, and the atomic integral types extend the interface of the
atomic floating-point types.

The downside of the various variations of std::atomic is that you do not have the guarantee that
they are lock-free. In the next subsection, I present the various atomic types based on their interface.
Roughly speaking, there are four subsections. Let me start with atomic booleans, atomic user-defined
types, and atomic smart pointers (C++20).

2.3.3.1 Fundamental Atomic Interface

The threee partial specialization std::atomic<bool>, std::atomic<user-defined type>, and std::atomic<smart
T*> support the fundamental atomic interface.

Member functions Description

is_lock_free Checks if the atomic object is lock-free.
atomic_ref<T>::is_always_lock_free Checks at compile time if the atomic type is

always lock-free.

load Atomically returns the value of the atomic.
operator T Atomically returns the value of the atomic.

Equivalent to atom.load().

store Atomically replaces the value of the atomic
with the non-atomic.

exchange Atomically replaces the value with the new
value. Returns the old value.

compare_exchange_strong Atomically compares and eventually
exchanges the value. Details are here.

compare_exchange_weak

notify_one (C++20) Notifies one atomic wait operation.
notify_all (C++20) Notifies all atomic wait operations.

wait (C++20) Blocks until it is notified.
Compares itself with the old value to protect
against spurious wakeups and lost wakeups.
If the old value compares to unequal,
returns.
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Let me present more details about std::atomic<bool>.
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2.3.3.1.1 std::atomic<bool>

std::atomic<bool> has a lot more to offer than std::atomic_flag. It can explicitly be set to true or
false.

atomic is not volatile

What does the keyword volatile in C# and Java have in common with the keyword
volatile in C++? Nothing! That is the difference between volatile and std::atomic.

• volatile: is for special objects on which optimized read or write operations are not
allowed.

• std::atomic: defines atomic variables, which are meant for a thread-safe reading
and writing.

The confusion starts here. The keyword volatile in Java and C# has the meaning of
std::atomic in C++. Alternatively, volatile has no multithreading semantics in C++.

volatile is typically used in embedded programming to denote objects which can change
independently of the regular program flow. One example is an object which represents an
external device (memory-mapped I/O). Because these objects can change independently
of the regular program flow and their value is directly written into main memory, no
optimized storage in caches occurs.

std::atomic<bool> is already sufficient to synchronise two threads and I can, therefore, implement a
kind of a condition variable with a std::atomic<bool>.

2.3.3.1.2 Simulating a Condition Variable

Let’s first use a condition variable to synchronize two threads.

Usage of a condition variable

1 // conditionVariable.cpp

2

3 #include <condition_variable>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> mySharedWork;

9 std::mutex mutex_;

10 std::condition_variable condVar;

11

12 bool dataReady{false};

13

14 void waitingForWork(){
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15 std::cout << "Waiting " << '\n';

16 std::unique_lock<std::mutex> lck(mutex_);

17 condVar.wait(lck, []{ return dataReady; });

18 mySharedWork[1] = 2;

19 std::cout << "Work done " << '\n';

20 }

21

22 void setDataReady(){

23 mySharedWork = {1, 0, 3};

24 {

25 std::lock_guard<std::mutex> lck(mutex_);

26 dataReady = true;

27 }

28 std::cout << "Data prepared" << '\n';

29 condVar.notify_one();

30 }

31

32 int main(){

33

34 std::cout << '\n';

35

36 std::thread t1(waitingForWork);

37 std::thread t2(setDataReady);

38

39 t1.join();

40 t2.join();

41

42 for (auto v: mySharedWork){

43 std::cout << v << " ";

44 }

45

46

47 std::cout << "\n\n";

48

49 }

Let me say a few words about the program. For a in-depth discussion of condition variables, read the
chapter condition variables in this book.

Thread t1 waits in line 17 for the notification of thread t2. Both threads use the same condition
variable condVar and synchronize on the same mutex mutex_. How does the workflow run?

• Thread t2

– prepares the work package mySharedWork = {1, 0, 3}
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– set the non-atomic boolean dataReady to true

– send its notification condVar.notify_one

• Thread t1

– waits for the notification condVar.wait(lck, []{ return dataReady; }) while holding
the lock lck

– continues its work mySharedWork[1] = 2 after getting the notification

The boolean dataReady that thread t2 sets to true and thread t1 checks in the lambda-function []{

return dataReady; } stands for a kind of memory for the stateless condition variable. Condition
variables may be a victim to two phenomena:

1. spurious wakeup: the receiver of the message wakes up, although no notification happened,

2. lost wakeup: the sender sends its notification before the receiver is in the wait state.

And now the pendant with std::atomic<bool>.

Implementation of a condition variable with std::atomic<bool>

1 // atomicCondition.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <thread>

7 #include <vector>

8

9 std::vector<int> mySharedWork;

10 std::atomic<bool> dataReady(false);

11

12 void waitingForWork(){

13 std::cout << "Waiting " << '\n';

14 while (!dataReady.load()){

15 std::this_thread::sleep_for(std::chrono::milliseconds(5));

16 }

17 mySharedWork[1] = 2;

18 std::cout << "Work done " << '\n';

19 }

20

21 void setDataReady(){

22 mySharedWork = {1, 0, 3};

23 dataReady = true;

24 std::cout << "Data prepared" << '\n';

25 }

26

27 int main(){
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28

29 std::cout << '\n';

30

31 std::thread t1(waitingForWork);

32 std::thread t2(setDataReady);

33

34 t1.join();

35 t2.join();

36

37 for (auto v: mySharedWork){

38 std::cout << v << " ";

39 }

40

41

42 std::cout << "\n\n";

43

44 }

What guarantees that line 17 is executed after the line 14? Ormore generally that the thread t1 executes
mySharedWork[1] = 2 (line 17) after thread t2 had executed mySharedWork = {1, 0, 3} (line 22). Now
it gets more formal.

• Line 22 happens-before line 23

• Line 14 happens-before line 17

• Line 23 synchronizes-with line 14

• Because synchronizes-with establishes a happens-before relation and happens-before is transi-
tive, it follows: mySharedWork = {1, 0, 3} happens-before mySharedWork[1] = 2

That was easy, wasn’t it? For simplicity, I ignored that synchronizes-with establishes an inter-thread
happens before and inter-thread happens before establishes a happens-before relation. In case you are
curious, here are the details: memory_order⁴.

I want to mention the critical point explicitly: access to the shared variable mySharedWork is synchro-
nized using the condition variable condVar or the atomic dataReady. This holds, although mySharedWork

itself is not protected by a lock or is atomic.

Both programs produce the same result for mySharedWork.

⁴http://en.cppreference.com/w/cpp/atomic/memory_order

http://en.cppreference.com/w/cpp/atomic/memory_order
http://en.cppreference.com/w/cpp/atomic/memory_order
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Synchronizations of two threads with an atomic and a condition variable

Push versus Pull Principle
I cheated a little. There is one key difference between synchronizing threads with a
condition variable and std::atomic<bool>. The condition variable notifies the waiting
thread (condVar.notify()) that it should proceed with its work. The waiting thread with
std::atomic<bool> checks if the sender is done with its work (dataRead = true).

The condition variable notifies the waiting thread (push principle) while the atomic
boolean repeatedly asks for the value (pull principle).

std::atomic<bool> and the other full or partial specializations of std::atomic support the bread and
butter of all atomic operations: compare_exchange_strong and compare_exchange_weak.

2.3.3.1.3 compare_exchange_strong and compare_exchange_weak

compare_exchange_strong has the syntax: bool compare_exchange_strong(T& expected, T& desired).
Because this operation compares and exchanges its values in one atomic operation, it is often called
compare and swap (CAS). This kind of operation is available in many programming languages
and is the foundation of non-blocking algorithms. Of course, the behavior may vary a little.
atomicValue.compare_exchange_strong(expected, desired) has the following behavior.

• If the atomic comparison of atomicValue with expected returns true, atomicValue is set in the
same atomic operation to desired.

• If the comparison returns false, expected is set to atomicValue.

The reason the operation compare_exchange_strong is called strong is apparent. There is also a member
functions compare_exchange_weak. The weak version can fail spuriously. That means, although
*atomicValue == expected holds, atomicValue was not set to desired and the function call returns
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false, so you have to check the condition in a loop: while (!atomicValue.compare_exchange_-

weak(expected, desired)). The weak form exists because some processors don’t support an atomic
compare-exchange instruction. When called in a loop, you should prefer the weak form. On some
platforms, the weak form can be faster.

CAS operations are open for the so-called ABA problem. This means you read a value twice, and each
time it returns the same value A; therefore, you conclude that nothing changed in between. However,
you overlooked that the value may have changed to B in between readings.

The weak forms of the functions are allowed to fail spuriously, that is, act as if *this != expected

even if they are equal. When a compare-and-exchange is in a loop, the weak version may have better
performance on some platforms.

std::atomic<bool> makes it trivial in C++20 to synchronize two threads.

2.3.3.1.4 Thread Synchronization (C++20)

It is trivial to refactor the thread synchronization programusing std::atomic_flag to std::atomic<bool>.

Thread synchronization with std::atomic<bool>

1 // threadSynchronizationAtomicBool.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::atomic<bool> atomicBool{false};

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 atomicBool.store(true);

17 atomicBool.notify_one();

18

19 }

20

21 void completeWork() {

22

23 std::cout << "Waiter: Waiting for data." << '\n';

24 atomicBool.wait(false);

25 myVec[2] = 2;

26 std::cout << "Waiter: Complete the work." << '\n';
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27 for (auto i: myVec) std::cout << i << " ";

28 std::cout << '\n';

29

30 }

31

32 int main() {

33

34 std::cout << '\n';

35

36 std::thread t1(prepareWork);

37 std::thread t2(completeWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

The call atomicBool.wait(false) blocks if atomicBool == false holds. Consequently, the call
atomicBool.store(true) (line 16) send atomicBool to true and send afterwards its notification.

According to std::atomic_flag, here are four runs with the Microsoft Compiler.
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Thread synchronization with std::atomic<bool>

In addition to booleans, there is atomics for pointers, integrals, and user-defined types. The rules for
user-defined types are unique.

All variations of std::atomic support the CAS operations.

2.3.3.1.5 User Defined Atomics std::atomic<user-defined type>

Thanks to the class template std::atomic, you can define your user-defined atomic type.

There aremany strong restrictions on a user-defined type if you use it for an atomic type std::atomic<user-defined
type>. The atomic type std::atomic<user-defined type> supports the same interface as std::atomic<bool>.

Here are the restrictions for a user-defined type to become an atomic type:

• The copy assignment operator for a user-defined type, for all its base classes and all non-static
members, must be trivial. This means that you must not define the copy assignment operator,
but you can request it from the compiler using default⁵.

• a user-defined type must not have virtual member functions or virtual base classes

⁵http://en.cppreference.com/w/cpp/keyword/default

http://en.cppreference.com/w/cpp/keyword/default
http://en.cppreference.com/w/cpp/keyword/default
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• a user-defined type must be bitwise comparable so that the C functions memcpy⁶ or memcmp⁷
can be applied

Most popular platforms can use atomic operations for std::atomic<user-defined type> if the size of
the user-defined type is not bigger as the size of an int.

Check the type properties at compile time
The type properties on a user-defined type can be checked at compile time, by using the
following functions: std::is_trivially_copy_constructible, std::is_polymorphic and
std::is_trivial. All these functions are part of the very powerful type-traits library⁸.

2.3.3.1.6 Atomic Smart Pointers std::atomic<smart T*> (C++20)

A std::shared_ptr consists of a control block and its resource. The control block is thread-safe, but
access to the resource is not. This means modifying the reference counter is an atomic operation
and you have the guarantee that the resource is deleted exactly once. These are the guarantees
std::shared_ptr gives you. .

The Importance of being Thread-Safe
I want to take a short detour to emphasize how important it is that the std::shared_ptr

has well-defined multithreading semantics. At first glance, use of a std::shared_ptr does
not appear to be a sensible choice for multithreaded code. It is by definition shared and
mutable and is the ideal candidate for non-synchronized read and write operations and
hence for undefined behavior. On the other hand, there is the guideline in modern C++:
Don’t use raw pointers. This means, consequently, that you should use smart pointers
in multithreaded programs.

The proposal N4162⁹ for atomic smart pointers directly addresses the deficiencies of the current
implementation. The deficiencies boil down to these three points: consistency, correctness, and
performance.

• Consistency: the atomic operations for std::shared_ptr are the only atomic operations for a
non-atomic data type.

• Correctness: the use of the global atomic operations is quite error-prone because the correct
usage is based on discipline. It is easy to forget to use an atomic operation - such as using ptr

= localPtr instead of std::atomic_store(&ptr, localPtr). The result is undefined behavior
because of a data race. If we used an atomic smart pointer instead, the type system would not
allow it.

⁶http://en.cppreference.com/w/cpp/string/byte/memcpy
⁷http://en.cppreference.com/w/cpp/string/byte/memcmp
⁸http://en.cppreference.com/w/cpp/header/type_traits
⁹http://wg21.link/n4162

http://en.cppreference.com/w/cpp/string/byte/memcpy
http://en.cppreference.com/w/cpp/string/byte/memcmp
http://en.cppreference.com/w/cpp/header/type_traits
http://wg21.link/n4162
http://en.cppreference.com/w/cpp/string/byte/memcpy
http://en.cppreference.com/w/cpp/string/byte/memcmp
http://en.cppreference.com/w/cpp/header/type_traits
http://wg21.link/n4162
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• Performance: the atomic smart pointers have a big advantage compared to the free atomic_*
functions. The atomic versions are designed for the special use case and can internally have
a std::atomic_flag as a kind of cheap spinlock¹⁰. Designing the non-atomic versions of the
pointer functions to be thread-safe would be overkill where they are used in a single-threaded
scenario. They would have a performance penalty.

The correctness argument is probably the most important one. Why? The answer lies in the proposal.
The proposal presents a thread-safe singly-linked list that supports insertion, deletion, and searching
of elements. This singly-linked list is implemented in a lock-free way.

2.3.3.1.7 A thread-safe singly linked list

A thread-safe singly linked list

¹⁰https://en.wikipedia.org/wiki/Spinlock

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Spinlock
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All changes that are required to compile the program with a C++11 compiler are marked in red. The
implementation with atomic smart pointers is a lot easier and hence less error-prone. C++20’s type
system does not permit using a non-atomic operation on an atomic smart pointer.

The proposal N4162¹¹ proposed the new types std::atomic_shared_ptr and std::atomic_weak_-

ptr as atomic smart pointers. By merging them in the mainline ISO C++ standard, they be-
came partial template specialization of std::atomic, namely std::atomic<std::shared_ptr<T>>, and
std::atomic<std::weak_ptr<T>>.

Consequently, the atomic operations for std::shared_ptr are deprecated with C++20.

The following program shows five thread modifying a std::atomic<std::shared_ptr<std::string>>

withoud synchronization.

1 // atomicSharedPtr.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <atomic>

6 #include <string>

7 #include <thread>

8

9 int main() {

10

11 std::cout << '\n';

12

13 std::atomic<std::shared_ptr<std::string>> sharString(

14 std::make_shared<std::string>("Zero"));

15

16 std::thread t1([&sharString]{

17 sharString.store(std::make_shared<std::string>(*sharString.load() + "One"));

18 });

19 std::thread t2([&sharString]{

20 sharString.store(std::make_shared<std::string>(*sharString.load() + "Two"));

21 });

22 std::thread t3([&sharString]{

23 sharString.store(std::make_shared<std::string>(*sharString.load() +"Three"));

24 });

25 std::thread t4([&sharString]{

26 sharString.store(std::make_shared<std::string>(*sharString.load() +"Four"));

27 });

28 std::thread t5([&sharString]{

29 sharString.store(std::make_shared<std::string>(*sharString.load() +"Five"));

30 });

¹¹http://wg21.link/n4162

http://wg21.link/n4162
http://wg21.link/n4162
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31

32 t1.join();

33 t2.join();

34 t3.join();

35 t4.join();

36 t5.join();

37

38 std::cout << *sharString.load() << '\n';

39

40 }

The atomic std::shared_ptr shaString (line 13) is initialized with the string “Zero”. Each of the
five threads t1 to t5 (lines 16 - 28) adds a string to sharString that is displayed in line 38. Using
a std::shared_ptr instead of std::atomic<std::shared_ptr> would be a data race.

Executing the program shows the interleaving of the threads.

Thread-safe modifying of a std::string

2.3.3.2 std::atomic<floating-point type> (C++20)

Additionally to the fundamental atomic interface, std::atomic<floating-point type> supports
addition and substraction.

Additional operations to the fundamental atomic interface

Member functions Description
fetch_add, += Atomically adds (subtracts) the value.
fetch_sub, -= Returns the old value.

Full specializations for the types float, double, and long double are available.

2.3.3.3 std::atomic<T*>

std::atomic<T*> is a partial specialization of the class template std::atomic. It behaves like a plain
pointer T*. Additionally to std::atomic<floating-point type>, std::atomic<T*> supports pre- and
post-increment or pre- and post-decrement operations.
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Additional operations to the std::atomic<floating-point type

Member functions Description
++, -- Increments or decrements (pre- and post-increment) the

atomic.

Have a look at the short example.

int intArray[5];

std::atomic<int*> p(intArray);

p++;

assert(p.load() == &intArray[1]);

p+=1;

assert(p.load() == &intArray[2]);

--p;

assert(p.load() == &intArray[1]);

In C++11, there are atomic types for the integral data types.

2.3.3.4 std::atomic<integral type>

For each integral type there is a full specialization std::atomic<integral type> of std::atomic.
std::atomic<integral type> supports all operations that std::atomic<T*> or std::atomic<floating-point
type> supports. Additionally, std::atomic<integral type supports the bitwise logical operators AND,
OR, and XOR.

All operations on atomic

Member functions Description

fetch_or, |= Atomically performs bitwise (AND, OR, and XOR) operation with the value.
fetch_and, &= Returns the old value.
fetch_xor, ^=

There is a small difference between the composite bitwise-assignment operation and the fetch version.
The composite bitwise-assignment operatorion returns the new value; the fetch variation returns the
old value.

A more in-depth look provides more insight: there is no atomic multiplication, atomic division, nor
an atomic shift operation available. This is not a significant limitation because these operations are
seldom needed and can easily be implemented. Here is an example of an atomic fetch_mult function.
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An atomic multiplication with compare_exchange_strong

1 // fetch_mult.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 template <typename T>

7 T fetch_mult(std::atomic<T>& shared, T mult){

8 T oldValue = shared.load();

9 while (!shared.compare_exchange_strong(oldValue, oldValue * mult));

10 return oldValue;

11 }

12

13 int main(){

14 std::atomic<int> myInt{5};

15 std::cout << myInt << '\n';

16 fetch_mult(myInt,5);

17 std::cout << myInt << '\n';

18 }

One point worth mentioning is that the multiplication in line 9 only happens if the relation oldValue

== shared holds. I put the multiplication in a while loop to be sure that the multiplication always takes
place because there are two instructions for the reading of oldValue in line 8 and its usage in line 9.
Here is the result of the atomic multiplication.

An atomic multiplication

The fetch_mult algorithm is lock_free
The algorithm fetch_mult (line 6) multiplies std::atomic shared by mult. The key
observation is that there is a small time-window between the reading of the old value
T oldValue = shared Load (line 8) and the comparison with the new value in line 9.
Therefore another thread can always step in and change oldValue. If you think about a
bad interleaving of threads, you see no per-thread progress guarantee.

The consequence is that the algorithm is lock-free, but not wait-free.

Which specializations for integral types exist? Here are the details:
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• character types: char, char8_t (C++20), char16_t, char32_t, and wchar_t

• standard signed integer types: signed char, short, int, long, and long long

• standard unsigned integer types: unsigned char, unsigned short, unsigned int, unsigned long,
and unsigned long long

• additional integer types, defined in the header <cstdint>¹²:

– int8_t, int16_t, int32_t, and int64_t (signed integer with exactly 8, 16, 32, and 64 bits)
– uint8_t, uint16_t, uint32_t, and uint64_t (unsigned integer with exactly 8, 16, 32, and 64
bits)

– int_fast8_t, int_fast16_t, int_fast32_t, and int_fast64_t (fastest signed integer with
at least 8, 16, 32, and 64 bits)

– uint_fast8_t, uint_fast16_t, uint_fast32_t, and uint_fast64_t (fastest unsigned integer
with at least 8, 16, 32, and 64 bits)

– int_least8_t, int_least16_t, int_least32_t, and int_least64_t (smallest signed integer
with at least 8, 16, 32, and 64 bits)

– uint_least8_t, uint_least16_t, uint_least32_t, and uint_least64_t (smallest unsigned
integer with at least 8, 16, 32, and 64 bits)

– intmax_t, and uintmax_t (maximum signed and unsigned integer)
– intptr_t, and uintptr_t (signed and unsigned integer for holding a pointer)

2.3.3.5 Type Aliases

For all std::atomic<bool> and all std::atomic<integral type> the C++ standard provide type aliases
if the integral type is available.

Type aliases for std::atomic<bool> and std::atomic<integral type>

Type alias Definition
std::atomic_bool std::atomic<bool>

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_char8_t (C++20) std::atomic<char8_t> (C++20)

¹²http://en.cppreference.com/w/cpp/header/cstdint

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
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Type aliases for std::atomic<bool> and std::atomic<integral type>

Type alias Definition
std::atomic_char16_t std::atomic<char16_t>

std::atomic_char32_t std::atomic<char32_t>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_int8_t std::atomic<std::int8_t>

std::atomic_uint8_t std::atomic<std::uint8_t>

std::atomic_int16_t std::atomic<std::int16_t>

std::atomic_uint16_t std::atomic<std::uint16_t>

std::atomic_int32_t std::atomic<std::int32_t>

std::atomic_uint32_t std::atomic<std::uint32_t>

std::atomic_int64_t std::atomic<std::int64_t>

std::atomic_uint64_t std::atomic<std::uint64_t>

std::atomic_int_least8_t std::atomic<std::int_least8_t>

std::atomic_uint_least8_t std::atomic<std::uint_least8_t>

std::atomic_int_least16_t std::atomic<std::int_least16_t>

std::atomic_uint_least16_t std::atomic<std::uint_least16_t>

std::atomic_int_least32_t std::atomic<std::int_least32_t>

std::atomic_uint_least32_t std::atomic<std::uint_least32_t>

std::atomic_int_least64_t std::atomic<std::int_least64_t>

std::atomic_uint_least64_t std::atomic<std::uint_least64_t>

std::atomic_int_fast8_t std::atomic<std::int_fast8_t>

std::atomic_uint_fast8_t std::atomic<std::uint_fast8_t>

std::atomic_int_fast16_t std::atomic<std::int_fast16_t>

std::atomic_uint_fast16_t std::atomic<std::uint_fast16_t>

std::atomic_int_fast32_t std::atomic<std::int_fast32_t>

std::atomic_uint_fast32_t std::atomic<std::uint_fast32_t>

std::atomic_int_fast64_t std::atomic<std::int_fast64_t>

std::atomic_uint_fast64_t std::atomic<std::uint_fast64_t>

std::atomic_intptr_t std::atomic<std::intptr_t>

std::atomic_uintptr_t std::atomic<std::uintptr_t>

std::atomic_size_t std::atomic<std::size_t>

std::atomic_ptrdiff_t std::atomic<std::ptrdiff_t>

std::atomic_intmax_t std::atomic<std::intmax_t>

std::atomic_uintmax_t std::atomic<std::uintmax_t>

std::atomic_signed_lock_free (C++20) std::atomic<signed integral>

std::atomic_unsigned_lock_free (C++20) std::atomic<unsigned integral>

The type aliases atomic_signed_lock_free and atomic_unsigned_lock_free are specializations of
atomics whose template arguments are signed or unsigned integral types. Only implementations that
support lock-free integral specializations provide these aliases. An implementation can choose the
most efficient integral specialization.
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2.3.4 All Atomic Operations

First, here is the list of all operations on atomics.

All operations on atomic

Member functions Description

test_and_set Atomically set the flag to true and returns the previous value.

clear Atomically sets the flag to false.

is_lock_free Checks if the atomic object is lock-free.
atomic_ref<T>::is_always_lock_free Checks at compile time if the atomic type is always lock-free.

load Atomically returns the value of the atomic.
operator T Atomically returns the value of the atomic. Equivalent to atom.load().

store Atomically replaces the value of the atomic with a non-atomic.

exchange Atomically replaces the value with the new value. Returns the old value.

compare_exchange_strong Atomically compares and eventually exchanges the value. Details are here.
compare_exchange_weak

fetch_add, += Atomically adds (subtracts) the value.
fetch_sub, -= Returns the old value.

fetch_or, |= Atomically performs bitwise (AND, OR, and XOR) operation with the value.
fetch_and, &= Returns the old value.
fetch_xor, ^=

++, -- Increments or decrements (pre- and post-increment) the atomic.

notify_one (C++20) Notifies one atomic wait operation.
notify_all (C++20) Notifies all atomic wait operations.

wait (C++20) Blocks until it is notified.
Compares itself with the old value to protect against spurious wakeups and
lost wakeups.
If the old value compares to unequal, returns.

The atomic types have no copy constructor or copy assignment operator, but they support an
assignment from an implicit conversion to the underlying built-in type. The composite assignment
operators return the new value; the fetch variations returns the old value. The composite assignment
operators return values and not references to the assigned object.
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Implicit conversion to the underlying type

std::atomic<long long> atomObj(2011);

atomObj = 2014;

long long nonAtomObj = atomObj;

Each member functions supports an additional memory-ordering argument. The default for the
memory-ordering argument is std::memory_order_seq_cst but you can also use std::memory_order_-
relaxed, std::memory_order_consume, std::memory_order_acquire, std::memory_order_release, or std::memory_-
order_acq_rel. The compare_exchange_strong and compare_exchange_weak member functions can be
parametrized with two memory-orderings. One for the success and one for the failure case. If you
only explicitly provide one memory-ordering, it is used for the success and the failure case. Here are
the details to memory-ordering.

Of course, not all operations are available on each atomic type. The table shows the list of the atomic
operations depending on the atomic type.

All atomic operations depending on the atomic type

Member functions atomic_flag atomic<bool> atomic<floating> atomic<T*> atomic<integral>
atomic<user>

atomic<smart T*>

test_and_set yes

clear yes

is_lock_free yes yes yes yes
atomic<T>::is_-

always_lock_free

yes yes yes yes

load yes yes yes yes
operator T yes yes yes yes

store yes yes yes yes

exchange yes yes yes yes

compare_exchange_-

strong

yes yes yes yes

compare_exchange_-

weak

yes yes yes yes

fetch_add, += yes yes yes
fetch_sub, -= yes yes yes
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All atomic operations depending on the atomic type

Member functions atomic_flag atomic<bool> atomic<floating> atomic<T*> atomic<integral>
atomic<user>

atomic<smart T*>
fetch_or, |= yes
fetch_and, &= yes
fetch_xor, ^= yes

++, -- yes yes

notify_one (C++20) yes yes yes yes yes
notify_all (C++20) yes yes yes yes yes
wait (C++20) yes yes yes yes yes

2.3.5 Free Atomic Functions

The functionality of the flag std::atomic_flag and the class template std::atomic can also be used
with free functions. Because these functions use pointers instead of references they are compatible
with C. The atomic free functions are available for the std::atomic_flag and the types such as the
types you can use with the class template std::atomic.

The free functions for a std::atomic_flag are called: std::atomic_clear(), std::atomic_clear_-
explicit, std::atomic_flag_test_and_set(), and std::atomic_flag_test_set_explicit(). The first
argument of all four variations is a pointer to a std::atomic_flag. Additionally, the two _exclicit

variations expect a memory-ordering.

For each std::atomic type there is a corresponding free function available. They free functions follow
a straightforward naming convention: add just the prefix atomic_ in front of it. For example, a member
functions call at.store() on a std::atomic becomes std::atomic_store(), and std::atomic_store_-

explicit(). The first overload expects, in this case, a pointer and the second overload, additionally, a
memory-ordering.

For completeness, here are all overloads: atomic¹³.

With one exception, free functions are only available on atomic types. The prominent exception to
this rule is std::shared_ptr.

2.3.5.1 std::shared_ptr (deprecated in C++20)

std::shared_ptr is the only non-atomic data type on which you can apply atomic operations. First,
let me write about the motivation for this exception.

The C++ committee saw the necessity that smart pointers should provide a minimum atomicity
guarantee in multithreading programs. What is the meaning of the minimal atomicity guarantee

¹³http://en.cppreference.com/w/cpp/atomic

http://en.cppreference.com/w/cpp/atomic
http://en.cppreference.com/w/cpp/atomic
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for std::shared_ptr? The control block of the std::shared_ptr is thread-safe. This means that the
increase and decrease operations of the reference-counter are atomic. You also have the guarantee
that the resource is destroyed exactly once.

The assertions that a std::shared_ptr provides, are described by Boost¹⁴.

1. A shared_ptr instance can be “read” (accessed using only constant operations) simultaneously
by multiple threads.

2. Different shared_ptr instances can be “written to” (accessed using mutable operations such as
operator= or reset) simultaneously by multiple threads (even when these instances are copies
and share the same reference count underneath).

To make the two statements clear, let me show a simple example. When you copy a std::shared_ptr

in a thread, all is fine.

Thread-safe copying of a std::shared_ptr

1 std::shared_ptr<int> ptr = std::make_shared<int>(2011);

2

3 for (auto i = 0; i < 10; i++){

4 std::thread([ptr]{

5 std::shared_ptr<int> localPtr(ptr);

6 ptr = std::make_shared<int>(2014);

7 }).detach();

8 }

Let’s first look at line 5. By using copy construction for the std::shared_ptr localPtr, only the control
block is used. This is thread-safe. Line 6 is a little bit more interesting. The localPtr is set to a new
std::shared_ptr. This is not a problem from the multithreading point of view: the lambda-function
(line 4) binds ptr by copy. Therefore, the modification of localPtr takes place on a copy.

The story changes dramatically if I get the std::shared_ptr by reference.

A data race on a std::shared_ptr

1 std::shared_ptr<int> ptr = std::make_shared<int>(2011);

2

3 for (auto i = 0; i < 10; i++){

4 std::thread([&ptr]{

5 ptr = std::make_shared<int>(2014);

6 }).detach();

7 }

¹⁴http://www.boost.org/doc/libs/1_57_0/libs/smart_ptr/shared_ptr.htm#ThreadSafety

http://www.boost.org/doc/libs/1_57_0/libs/smart_ptr/shared_ptr.htm#ThreadSafety
http://www.boost.org/doc/libs/1_57_0/libs/smart_ptr/shared_ptr.htm#ThreadSafety
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The lambda-expression binds the std::shared_ptr ptr in line 4 by reference. This means, the
assignment (line 5) may become a concurrent reading and writing of the underlying resource;
therefore, the program has undefined behavior.

Admittedly that last example was not very easy to achieve. std::shared_ptr requires special attention
in a multithreading environment. std::shared_ptr is the only non-atomic data type in C+ for which
atomic operations exist.

2.3.5.1.1 Atomic Operations on std::shared_ptr

There are specializations for the atomic operations load, store, compare_and_exchange for a std::shared_-
ptr. By using the explicit variant, you can even specify the memory-ordering. Here are the free atomic
operations for std::shared_ptr.

Atomic operations for std::shared_ptr

std::atomic_is_lock_free(std::shared_ptr)

std::atomic_load(std::shared_ptr)

std::atomic_load_explicit(std::shared_ptr)

std::atomic_store(std::shared_ptr)

std::atomic_store_explicit(std::shared_ptr)

std::atomic_exchange(std::shared_ptr)

std::atomic_exchange_explicit(std::shared_ptr)

std::atomic_compare_exchange_weak(std::shared_ptr)

std::atomic_compare_exchange_strong(std::shared_ptr)

std::atomic_compare_exchange_weak_explicit(std::shared_ptr)

std::atomic_compare_exchange_strong_explicit(std::shared_ptr)

For the details, have a look at cppreference.com¹⁵. It is quite easy to modify a shared pointer bound
by reference in a thread-safe way.

A data race for a std::shared_ptr resolved

1 std::shared_ptr<int> ptr = std::make_shared<int>(2011);

2

3 for (auto i = 0;i < 10; i++){

4 std::thread([&ptr]{

5 auto localPtr = std::make_shared<int>(2014);

6 std::atomic_store(&ptr, localPtr);

7 }).detach();

8 }

The update of the std::shared_ptr ptr in the expression std::atomic_store(&ptr, localPtr) is
thread-safe. All is well? NO! Finally, we need atomic smart pointers.

¹⁵http://en.cppreference.com/w/cpp/memory/shared_ptr

http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
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Atomic Smart Pointers with C++20
That is not the end of the story for atomic smart pointers. With C++20 we have two new
smart pointers: std::atomic<std::shared_ptr> and std::atomic<std::weak_ptr>. I present
them in the chapter about C++20: atomic smart pointers. They should be your first choice
if possible.

Let’s continue with C++20.

2.3.6 std::atomic_ref (C++20)

The class template std::atomic_ref applies atomic operations to the referenced object. Therefore,
concurrent writing and reading of atomic object is no data race. The lifetime of the referenced object
must exceed the lifetime of the atomic_ref. When any atomic_ref is accessing an object, all other
accesses to the object must use an atomic_ref. In addition, no subobject of the atomic_ref-accessed
object may be accessed by another atomic_ref.

2.3.6.1 Motivation

Stop. You may think that using a reference inside an atomic would do the job. Unfortunately not.

In the following program, I have a class ExpensiveToCopy, which includes a counter. A few threads
concurrently increment the counter. Consequently, counter has to be protected.

Using an atomic reference

1 // atomicReference.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <random>

6 #include <thread>

7 #include <vector>

8

9 struct ExpensiveToCopy {

10 int counter{};

11 };

12

13 int getRandom(int begin, int end) {

14

15 std::random_device seed; // initial seed

16 std::mt19937 engine(seed()); // generator

17 std::uniform_int_distribution<> uniformDist(begin, end);

18

19 return uniformDist(engine);
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20 }

21

22 void count(ExpensiveToCopy& exp) {

23

24 std::vector<std::thread> v;

25 std::atomic<int> counter{exp.counter};

26

27 for (int n = 0; n < 10; ++n) {

28 v.emplace_back([&counter] {

29 auto randomNumber = getRandom(100, 200);

30 for (int i = 0; i < randomNumber; ++i) { ++counter; }

31 });

32 }

33

34 for (auto& t : v) t.join();

35

36 }

37

38 int main() {

39

40 std::cout << '\n';

41

42 ExpensiveToCopy exp;

43 count(exp);

44 std::cout << "exp.counter: " << exp.counter << '\n';

45

46 std::cout << '\n';

47

48 }

Variable exp (line 42) is the expensive-to-copy object. For performance reasons, the function count

(line 22) takes exp by reference. Function count initializes the std::atomic<int> with exp.counter (
line 25). The following lines create ten threads (line 27), each performing the lambda expression, which
takes counter by reference. The lambda expression gets a random number between 100 and 200 (line
29) and increments the counter exactly as often. The function getRandom (line 13) starts with an initial
seed and creates via the random number generator Mersenne Twister¹⁶ a uniform distributed number
between 100 and 200.

In the end, the exp.counter (line 44) should have an approximate value of 1500 because ten threads
increment on average 150 times. Executing the program on the Wandbox online compiler¹⁷ gives me
a surprising result.

¹⁶https://en.wikipedia.org/wiki/Mersenne_Twister
¹⁷https://wandbox.org/

https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/
https://en.wikipedia.org/wiki/Mersenne_Twister
https://wandbox.org/
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Surprise with an atomic reference

The counter is 0. What is happening? The issue is in line 25. The initialization in the expression
std::atomic<int> counter{exp.counter} creates a copy. The following small program exemplifies the
issue.

Copying the reference

1 // atomicRefCopy.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 int main() {

7

8 std::cout << '\n';

9

10 int val{5};

11 int& ref = val;

12 std::atomic<int> atomicRef(ref);

13 ++atomicRef;

14 std::cout << "ref: " << ref << '\n';

15 std::cout << "atomicRef.load(): " << atomicRef.load() << '\n';

16

17 std::cout << '\n';

18

19 }

The increment operation in line 13 does not address the reference ref (line 11). The value of ref is
not changed.
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Copying the reference

Replacing the std::atomic<int> counter{exp.counter}with std::atomic_ref<int> counter{exp.counter}

solves the issue:

Using a std::atomic_ref

// atomicReference.cpp

#include <atomic>

#include <iostream>

#include <random>

#include <thread>

#include <vector>

struct ExpensiveToCopy {

int counter{};

};

int getRandom(int begin, int end) {

std::random_device seed; // initial randomness

std::mt19937 engine(seed()); // generator

std::uniform_int_distribution<> uniformDist(begin, end);

return uniformDist(engine);

}

void count(ExpensiveToCopy& exp) {

std::vector<std::thread> v;

std::atomic_ref<int> counter{exp.counter};

for (int n = 0; n < 10; ++n) {

v.emplace_back([&counter] {

auto randomNumber = getRandom(100, 200);

for (int i = 0; i < randomNumber; ++i) { ++counter; }
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});

}

for (auto& t : v) t.join();

}

int main() {

std::cout << '\n';

ExpensiveToCopy exp;

count(exp);

std::cout << "exp.counter: " << exp.counter << '\n';

std::cout << '\n';

}

Now, the value of counter is as expected:

The expected result with std::atomic_ref

Accordingly to std::atomic, std::atomic_ref can be specialized and supports specializations for the
built-in data types.

2.3.6.2 Specializations of std::atomic_ref

You can specialize std::atomic_ref for user-defined type, use partial specializations for pointer types,
or full specializations for arithmetic types such as integral or floating-point types.

2.3.6.2.1 Primary Template

The primary template std::atomic_ref can be instantiated with a TriviallyCopyable type T.
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struct Counter {

int a;

int b;

};

Counter counter;

std::atomic_ref<Counter> cnt(counter);

2.3.6.2.2 Partial Specializations for Pointer Types

The standard provides partial specializations for pointer types: std::atomic_ref<T*>. Additionally to
the following std::atomic_ref<floating-point type>, std::atomic_ref<T*> supports pre- and post-
increment or pre- and post-decrement operations.

2.3.6.2.3 Specialization for Arithmetic Types

The standard provides specialization for the integral and floating-point types: std::atomic_ref<arithmetic
type>.

• character types: char, char8_t (C++20), char16_t, char32_t, and wchar_t

• standard signed integer types: signed char, short, int, long, and long long

• standard unsigned integer types: unsigned char, unsigned short, unsigned int, unsigned long,
and unsigned long long

• additional integer types, defined in the header <cstdint>¹⁸:
– int8_t, int16_t, int32_t, and int64_t (signed integer with exactly 8, 16, 32, and 64 bits)
– uint8_t, uint16_t, uint32_t, and uint64_t (unsigned integer with exactly 8, 16, 32, and 64
bits)

– int_fast8_t, int_fast16_t, int_fast32_t, and int_fast64_t (fastest signed integer with
at least 8, 16, 32, and 64 bits)

– uint_fast8_t, uint_fast16_t, uint_fast32_t, and uint_fast64_t (fastest unsigned integer
with at least 8, 16, 32, and 64 bits)

– int_least8_t, int_least16_t, int_least32_t, and int_least64_t (smallest signed integer
with at least 8, 16, 32, and 64 bits)

– uint_least8_t, uint_least16_t, uint_least32_t, and uint_least64_t (smallest unsigned
integer with at least 8, 16, 32, and 64 bits)

– intmax_t, and uintmax_t (maximum signed and unsigned integer)
– intptr_t, and uintptr_t (signed and unsigned integer for holding a pointer)

• standard floating-point types: float, double, and long double

2.3.6.3 All Atomic Operations

First, here is the list of all operations on atomic_ref.

¹⁸http://en.cppreference.com/w/cpp/header/cstdint

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
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All operations on atomic_ref

Member functions Description

is_lock_free Checks if the atomic_ref object is lock-free.
atomic_ref<T>::is_always_lock_free Checks at compile time if the atomic type is always lock-free.

load Atomically returns the value of the referenced object.
operator T Atomically returns the value of the referenced object. Equivalent to

atomic.load().

store Atomically replaces the value of the referenced object with a non-atomic.

exchange Atomically replaces the value of the referenced object with the new value.

compare_exchange_strong Atomically compares and eventually exchanges the value of the referenced
object. Details are here.

compare_exchange_weak

fetch_add, += Atomically adds(subtracts) the value to(from) the referenced object.
fetch_sub, -=

fetch_or, |= Atomically performs bitwise OR, AND, and XOR) operation on the referenced
object.

fetch_and, &=
fetch_xor, ^=

++, -- Increments or decrements (pre- and post-increment) the referenced object.

notify_one Notifies one atomic wait operation.
notify_all Notifies all atomic wait operations.

wait Blocks until it is notified.
Compares itself with the old value to protect against spurious wakeups and
lost wakeups.
If the old value compares to unequal, returns.

The composite assignment operators return the new value; the fetch variations return the old value.

Each member functions supports an additional memory-ordering argument. The default for the
memory-ordering argument is std::memory_order_seq_cst but you can also use std::memory_order_-
relaxed, std::memory_order_consume, std::memory_order_acquire, std::memory_order_release, or std::memory_-
order_acq_rel. The compare_exchange_strong and compare_exchange_weak member functions can be
parametrized with two memory-orderings. One for the success and one for the failure case. If you
only explicitly provide one memory-ordering, it is used for the success and the failure case. Here are
the details of memory-ordering.

Of course, not all operations are available on all types referenced by std::atomic_ref. The table shows
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the list of all atomic operations depending on the type referenced by std::atomic_ref.

All atomic operations, depending on the type referenced by std::atomic_ref

Function atomic_ref<T> atomic_ref<floating> atomic_ref<T*> atomic_ref<integral>

is_lock_free yes yes yes yes
atomic_ref<T>::is_lock_-

free

yes yes yes yes

load yes yes yes yes
operator T yes yes yes yes

store yes yes yes yes

exchange yes yes yes yes

compare_exchange_strong yes yes yes yes
compare_exchange_weak yes yes yes yes

fetch_add, += yes yes yes
fetch_sub, -= yes yes yes

fetch_or, |= yes
fetch_and, &= yes
fetch_xor, ^= yes

++, -- yes yes

notify_one yes yes yes yes
notify_all yes yes yes yes

wait yes yes yes yes

Atomics and their atomic operations are the basic building blocks for the memory model. They
establish synchronization and ordering constraints that hold for both atomics and non-atomics. Let’s
have a more in-depth look into the synchronization and ordering constraints.
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2.4 The Synchronization and Ordering Constraints

You cannot configure the atomicity of an atomic data type, but you can accurately adjust the
synchronization and ordering constraints of atomic operations. Changing the synchronization and
ordering constraints is a possibility that is unique to C++ and is not possible in C#’s or Java’s memory
model.

There are six different variants of the memory model in C++. The critical question is what their
characteristics are?

2.4.1 The Six Variants of Memory Orderings in C++

We already know C++ has six variants of memory ordering. The default for atomic operations
is std::memory_order_seq_cst. This expression stands for sequential consistency. Besides, you can
explicitly specify one of the other five. So what does C++ have to offer?

The memory orderings

enum memory_order{

memory_order_relaxed,

memory_order_consume,

memory_order_acquire,

memory_order_release,

memory_order_acq_rel,

memory_order_seq_cst

}

To classify these six memory ordering, it helps to answer two questions:

1. Which kind of atomic operations should use which memory model?

2. Which synchronization and ordering constraints are defined by the six variants?

My plan is quite simple: I answer both questions.

2.4.1.1 Kind of Atomic Operation

There are three different kinds of operations:

• Read operations: memory_order_acquire and memory_order_consume

• Write operations: memory_order_release

• Read-modify-write operations: memory_order_acq_rel and memory_order_seq_cst

memory_order_relaxed defines no synchronization and ordering constraints. It does not fit in this
taxonomy.

The following table orders the atomic operations based on their reading and writing characteristics.
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Characteristics of Atomic Operations

Operation read write read-modify-write

test_and_set yes

clear yes

is_lock_free yes

load yes
operator T yes

store yes

exchange yes

compare_exchange_strong yes
compare_exchange_weak yes

fetch_add, += yes
fetch_sub, -=

fetch_or, |= yes
fetch_and, &=
fetch_xor, ^=

++, -- yes

notify_one yes
notify_all yes
wait yes

Read-modify-write operations have an additional guarantee: they always provide the newest value.
This means a sequence of atomVar.fetch_sub(1) operations on different threads counts down one
after the other without any gaps or duplicates.

If you use an atomic operation atomVar.load() with a memory model that is designed for a
write or read-modify-write operation, the write part has no effect. The result is that operation
atomVar.load(std::memory_order_acq_rel) is equivalent to operation atomVar.load(std::memory_-

order_acquire). Accordingly, operation atomVar.load(std::memory_order_release) is equivalent to
atomVar.load(std::memory_order_relaxed).

2.4.1.2 Different Synchronization and Ordering Constraints

There are, roughly speaking, three different types of synchronization and ordering constraints in C++:
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• Sequential consistency: memory_order_seq_cst

• Acquire-release: memory_order_consume, memory_order_acquire, memory_order_release, and memory_-
order_acq_rel

• Relaxed: memory_order_relaxed

While the sequential consistency establishes a global order between threads, the acquire-release
semantic establishes an ordering between reading and writing operations on the same atomic variable
with different threads. The relaxed semantic only guarantees the modification order of some atomic
m. Modification order means that all modifications on a particular atomic m occur in some particular
total order. Consequently, a particular thread reads of an atomic object never see “older” values than
those the thread has already observed.

The different memory models and their effects on atomic and non-atomic operations make the C++
memory model an exciting and challenging topic. Let us discuss the synchronization and ordering
constraints of the sequential consistency, the acquire-release semantic, and the relaxed semantic.

2.4.2 Sequential Consistency

Let us dive deeper into sequential consistency. The key to sequential consistency is that all operations
on all threads obey a universal clock. This global clock makes it quite intuitive to think about it.

The intuitiveness of the sequential consistency comes with a price. The downside is that the system
has to synchronize threads.

The following program synchronizes the producer and the consumer threadwith the help of sequential
consistency.

Producer-Consumer synchronization with sequential consistency

1 // producerConsumer.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <string>

6 #include <thread>

7

8 std::string work;

9 std::atomic<bool> ready(false);

10

11 void consumer(){

12 while(!ready.load()){}

13 std::cout<< work << '\n';

14 }

15

16 void producer(){

17 work= "done";
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18 ready=true;

19 }

20

21 int main(){

22 std::thread prod(producer);

23 std::thread con(consumer);

24 prod.join();

25 con.join();

26 }

The output of the program is not very exciting.

Producer-Consumer synchronization with sequential consistency

Because of sequential consistency, the program execution is deterministic. Its output is always “done”.

The graphic depicts the sequence of operations. The consumer thread waits in the while-loop until the
atomic variable ready is set to true. When this happens, the consumer threads continue their work.
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Execution order of the sequential consistency

It is relatively easy to understand that the program always returns “done”. We only have to use the
two characteristics of sequential consistency. On the one hand, both threads execute their instructions
in source code order; on the other hand, each thread sees the other thread’s operations in the same
order. Both threads follow the same universal clock. This synchronization does also hold - with the
help of the while(!ready.load()){} loop - for the synchronization of the producer and the consumer
thread.

I can explain the reasoning a lot more formally by using the terminology of the memory ordering.
Here is the formal version:

1. work= "done" is sequenced-before ready = true

⇒ work= "done" happens-before ready = true

2. while(!ready.load()){} is sequenced-before std::cout << work << '\n'

⇒ while(!ready.load()){} happens-before std::cout<< work << '\n'

3. ready= true synchronizes-with while(!ready.load()){}

⇒ ready= true inter-thread happens-before while (!ready.load()){}

⇒ ready= true happens-before while (!ready.load()){}

The conclusion: because the happens-before relation is transitive, it follows work = "done" happens-
before ready= true happens-before while(!ready.load()){} happens-before std::cout<< work <<

'\n'

In sequential consistency, a thread sees another thread’s operations and, therefore of all other threads
in the same order. The critical characteristic of sequential consistency does not hold if we use the
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acquire-release semantic for atomic operations. The acquire-release semantic is an area where C#
and Java do not follow. That’s also an area where our intuition begins to wane.

2.4.3 Acquire-Release Semantic

There is no global synchronization between threads in the acquire-release semantic; there is only
synchronization between atomic operations on the same atomic variable. A write operation on one
thread synchronizes with a read operation on another thread on the same atomic variable.

The acquire-release semantic is based on one fundamental idea: a release operation synchronizes
with an acquire operation on the same atomic and establishes an ordering constraint. The ordering
constraint means all read and write operations cannot be moved after a release operation. All read
and write operations cannot be moved before an acquire operation.

What is an acquire or a release operation? The reading of an atomic variable with load or test_and_set
is an acquire operation. There is more: releasing a lock or mutex synchronizes-with the acquiring of
a lock or a mutex. The construction of a thread synchronizes-with the invocation of the callable. The
completion of the thread synchronizes-with the join-call. The completion of the callable of the task
synchronizes-with the call to wait or get in the future. Acquire and release operations come in pairs.

It helps a lot to keep that picture in mind.

The critical region

The memory model for a deeper understanding of
multithreading
This is the main reason you should keep the memory model in mind. Acquire-release
semantic helps you get a better understanding of the high-level synchronization primitives
such as a mutex. The same reasoning holds for the starting of a thread and the join-call
on a thread. Both are acquire-release operations. The story goes on with the wait and
notify_one call on a condition variable; wait is the acquire, and notify_one the release
operation. What’s about notify_all? That is a release operation as well.
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Now, let us look once more at the spinlock in the subsection std::atomic_flag. We can write it more
efficiently because the synchronization is done with the atomic_flag flag. Therefore the acquire-
release semantic applies.

A Spinlock with acquire-release semantic
1 // spinlockAcquireRelease.cpp

2

3 #include <atomic>

4 #include <thread>

5

6 class Spinlock{

7 std::atomic_flag flag;

8 public:

9 Spinlock(): flag(ATOMIC_FLAG_INIT) {}

10

11 void lock(){

12 while(flag.test_and_set(std::memory_order_acquire));

13 }

14

15 void unlock(){

16 flag.clear(std::memory_order_release);

17 }

18 };

19

20 Spinlock spin;

21

22 void workOnResource(){

23 spin.lock();

24 // shared resource

25 spin.unlock();

26 }

27

28

29 int main(){

30

31 std::thread t(workOnResource);

32 std::thread t2(workOnResource);

33

34 t.join();

35 t2.join();

36

37 }

The flag.clear call in line 16 is a release, the flag.test_and_set call in line 12 an acquire
operation, and the acquire synchronizes with the release operation. The heavyweight synchronization
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of two threads with sequential consistency (std::memory_order_seq_cst) is replaced by the more
lightweight and performant acquire-release semantic (std::memory_order_acquire and std::memory_-

order_release). The behavior is not affected.

Although the flag.test_and_set(std::memory_order_acquire) call is a read-modify-write operation,
the acquire semantic is sufficient. In summary, flag is an atomic and guarantees, therefore, modifica-
tion order. This means all modifications to flag occur in some particular total order.

The acquire-release semantic is transitive. That means if you have an acquire-release semantic
between two threads (a, b) and an acquire-release semantic between (b, c), you get an acquire-release
semantic between (a, c).

2.4.3.1 Transitivity

A release operation synchronizes with an acquire operation on the same atomic variable and
establishes ordering constraint. These are the components to synchronize threads in a performant
way if they act on the same atomic. How can that work if two threads share no atomic variable? We
do not want any sequential consistency because that is too expensive, but we want the light-weight
acquire-release semantic.

The answer to this question is straightforward. Applying the transitivity of the acquire-release
semantic, we can synchronize independent threads.

In the following example, thread t2with its work package deliveryBoy is the connection between two
independent threads t1 and t3.

Transitivity of the acquire-release semantics

1 // transitivity.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> mySharedWork;

9 std::atomic<bool> dataProduced(false);

10 std::atomic<bool> dataConsumed(false);

11

12 void dataProducer(){

13 mySharedWork = {1,0,3};

14 dataProduced.store(true, std::memory_order_release);

15 }

16

17 void deliveryBoy(){

18 while(!dataProduced.load(std::memory_order_acquire));

19 dataConsumed.store(true, std::memory_order_release);
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20 }

21

22 void dataConsumer(){

23 while(!dataConsumed.load(std::memory_order_acquire));

24 mySharedWork[1] = 2;

25 }

26

27 int main(){

28

29 std::cout << '\n';

30

31 std::thread t1(dataConsumer);

32 std::thread t2(deliveryBoy);

33 std::thread t3(dataProducer);

34

35 t1.join();

36 t2.join();

37 t3.join();

38

39 for (auto v: mySharedWork){

40 std::cout << v << " ";

41 }

42

43 std::cout << "\n\n";

44

45 }

The output of the program is deterministic. mySharedWork has the values 1,2, and 3.

Output of the program transitivity.cpp

There are two critical observations:

1. Thread t2 waits in line 18, until thread t3 sets dataProduced to true (line 14).

2. Thread t1 waits in line 23, until thread t2 sets dataConsumed to true (line 19).
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Let me explain the rest with a graphic.

Transitivity of the acquire-release semantic

The essential parts of the picture are the arrows.

• The blue arrows are the sequenced-before relations. This means that all operations in one thread
are executed in source code order.

• The red arrows are the synchronizes-with relations. The reason is the acquire-release semantic
of the atomic operations on the same atomic. The synchronization between the atomics, and
therefore between the threads happen at specific points.

• sequenced-before establishes a happens-before and synchronizes-with a inter-thread happens-
before relation.

The rest is pretty simple. The happens-before and inter-thread happens-before order of the instructions
correspond to the arrows’ direction from top to bottom. Finally, we guarantee that mySharedWork[1]
== 2 is executed last.

A release operation synchronizes-with an acquire operation on the same atomic variable, so we can
easily synchronize threads, if … . The typical misunderstanding is about the if.

2.4.3.2 The Typical Misunderstanding

What is my motivation for writing about the typical misunderstanding of the acquire-release
semantic? Many of my readers and students have already fallen into this trap. Let’s look at the
straightforward case.

2.4.3.2.1 Waiting Included

Here is a simple program as a starting point.
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Acquire-release with waiting

1 // acquireReleaseWithWaiting.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> mySharedWork;

9 std::atomic<bool> dataProduced(false);

10

11 void dataProducer(){

12 mySharedWork = {1, 0, 3};

13 dataProduced.store(true, std::memory_order_release);

14 }

15

16 void dataConsumer(){

17 while( !dataProduced.load(std::memory_order_acquire) );

18 mySharedWork[1] = 2;

19 }

20

21 int main(){

22

23 std::cout << '\n';

24

25 std::thread t1(dataConsumer);

26 std::thread t2(dataProducer);

27

28 t1.join();

29 t2.join();

30

31 for (auto v: mySharedWork){

32 std::cout << v << " ";

33 }

34

35 std::cout << "\n\n";

36

37 }

The consumer thread t1 in line 17 waits until the producer thread t2 in line 13 sets dataProduced to
true. dataProduced is the guard, and it guarantees that access to the non-atomic variable mySharedWork
is synchronized. Synchronized means that the producer thread t2 initializes mySharedWork, then the
consumer thread t1 finishes the work by setting mySharedWork[1] to 2. The program is well-defined.
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Execution of the acquireReleaseWithWaiting program

The graphic shows the happens-before relation within the threads and the synchronizes-with relation
between the threads. synchronizes-with establishes an inter-thread happens-before relation. The rest
of the reasoning is the transitivity of the happens-before relation.

Finally it holds that mySharedWork = {1, 0, 3} happens-before mySharedWork[1] = 2.

Acquire-release semantic with waiting

What aspect is often missing in this reasoning? The if.

2.4.3.2.2 If …

What happens if the consumer thread t1 in line 17 doesn’t wait for the producer thread t2?
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Acquire-release without waiting

1 // acquireReleaseWithoutWaiting.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> mySharedWork;

9 std::atomic<bool> dataProduced(false);

10

11 void dataProducer(){

12 mySharedWork = {1, 0, 3};

13 dataProduced.store(true, std::memory_order_release);

14 }

15

16 void dataConsumer(){

17 dataProduced.load(std::memory_order_acquire);

18 mySharedWork[1] = 2;

19 }

20

21 int main(){

22

23 std::cout << '\n';

24

25 std::thread t1(dataConsumer);

26 std::thread t2(dataProducer);

27

28 t1.join();

29 t2.join();

30

31 for (auto v: mySharedWork){

32 std::cout << v << " ";

33 }

34

35 std::cout << "\n\n";

36

37 }

The program has undefined behavior because there is a data race on the variable mySharedWork. When
we let the program run, we get the following non-deterministic behavior.
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Undefined behavior with the acquire-release semantic

What is the issue? It holds that dataProduced.store(true, std::memory_order_release) synchronizes-
with dataProduced.load(std::memory_order_acquire). But that doesn’t mean the acquire operation
waits for the release operation, and that is exactly what is displayed in the graphic. In the graphic
the dataProduced.load(std::memory_order_acquire) instruction is performed before the instruction
dataProduced.store(true, std::memory_order_release). We have no synchronizes-with relation.
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Acquire-release semantic without waiting

2.4.3.2.3 The Solution

synchronizes-with means: if dataProduced.store(true, std::memory_order_release) happens be-
fore dataProduced.load(std::memory_order_acquire), then all visible effects of the operations be-
fore dataProduced.store(true, std::memory_order_release) are visible after dataProduced.load(

std::memory_order_acquire). The key is the word if. That if is guaranteed in the first program with
the predicate (while(!dataProduced.load(std::memory_order_acquire)).

Here it comes once again, but more formally.

All operations before dataProduced.store(true, std::memory_order_release) happens-before all op-
erations after dataProduced.load(std::memory_order_acquire), if the following holds : dataProduced.store(true,
std::memory_order_release) happens-before dataProduced.load(std::memory_order_acquire).

2.4.3.3 Release Sequence

A release sequence is quite an advanced concept when dealing with acquire-release semantic. So let
first start with the acquire-release semantic in the following example.
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A release sequence

1 // releaseSequence.cpp

2

3 #include <atomic>

4 #include <thread>

5 #include <iostream>

6 #include <mutex>

7

8 std::atomic<int> atom{0};

9 int somethingShared{0};

10

11 using namespace std::chrono_literals;

12

13 void writeShared(){

14 somethingShared = 2011;

15 atom.store(2, std::memory_order_release);

16 }

17

18 void readShared(){

19 while ( !(atom.fetch_sub(1, std::memory_order_acquire) > 0) ){

20 std::this_thread::sleep_for(100ms);

21 }

22

23 std::cout << "somethingShared: " << somethingShared << '\n';

24 }

25

26 int main(){

27

28 std::cout << '\n';

29

30 std::thread t1(writeShared);

31 std::thread t2(readShared);

32 // std::thread t3(readShared);

33

34 t1.join();

35 t2.join();

36 // t3.join();

37

38 std::cout << "atom: " << atom << '\n';

39

40 std::cout << '\n';

41

42 }
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Let’s first look at the example without thread t3. The atomic store on line 15 synchronizes-with
the atomic load in line 19. The synchronization guarantees that all that happens before the store
is available after the load. This means, in particular, that the access to the non-atomic variable
somethingShared is not a data race.

What changes if I use the thread t3? Now there seems to be a data race. As I already mentioned,
the first call to atom.fetch_sub(1, std::memory_order_acquire) (line 19) has an acquire-release
semantic with atom.store(2, std::memory_order_release) (line 15); therefore, there is no data race
on somethingShared.

This does not hold for the second call to atom.fetch_sub(1, std::memory_order_acquire). It is a ready-
modify-write operation without a std::memory_order_release tag. It means in particular, that the sec-
ond call to atom.fetch_sub(1, std::memory_order_acquire) does not synchronize-with the first call,
and a data race may occur on sharedVariable. May because thanks to the release sequence, this does
not happen. The release sequence is extended to the second call to atom.fetch_sub(1, std::memory_-

order_acquire); therefore, the second call atom.fetch_sub(1, std::memory_order_acquire) has a
happens-before relation with the first call.

Finally, here is the output of the program.

A release sequence

More formally, the N4659: Working Draft, Standard for Programming Language C++¹⁹.

Release Sequence
A release sequence headed by a release operation A on an atomic object M is a maximal
contiguous sub-sequence of side effects in the modification order of M, where the first
operation is A, and every subsequent operation * is performed by the same thread that
performed A, or * is an atomic read-modify-write operation.

¹⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
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If you carefully follow my explanation such as the one in the subsection Challenges, you probably
expect Relaxed Semantic to come next; however I’ll look first at the memory model std::memory_-
order_consume which is quite similar to std::memory_order_acquire.

2.4.4 std::memory_order_consume

std::memory_order_consume is the most legendary of the six memory orderings. For two reasons: first,
std::memory_order_consume is extremely hard to understand, and second - and this may change in
the future - no compiler supports it currently. With C++17 the situation gets even worse. Here is
the official wording: “The specification of release-consume ordering is being revised, and the use of
memory_order_consume is temporarily discouraged.”

How can it be that a compiler that implements the C++11 standard doesn’t support the memory
model std::memory_order_consume? The answer is that the compiler maps std::memory_order_consume
to std::memory_order_acquire. This mapping is acceptable because both are load or acquire oper-
ations. std::memory_order_consume requires weaker synchronization and ordering constraints than
std::memory_order_acquire. Therefore, the release-acquire ordering is potentially slower than the
release-consume ordering but - and this is the key point - well-defined.

To understand the release-consume ordering, it is a good idea to compare it with the release-acquire or-
dering. I speak in the following subsection explicitly about the release-acquire ordering and not about
the acquire-release semantic to emphasize the strong relationship of std::memory_order_consume and
std::memory_order_acquire.

2.4.4.1 Release-acquire ordering

As a starting point, let us use the following programwith two threads t1 and t2. t1 plays the producer’s
role, t2 the consumer’s role. The atomic variable ptr helps to synchronize the producer and consumer.

Release-acquire ordering

1 // acquireRelease.cpp

2

3 #include <atomic>

4 #include <thread>

5 #include <iostream>

6 #include <string>

7

8 using namespace std;

9

10 atomic<string*> ptr;

11 int data;

12 atomic<int> atoData;

13

14 void producer(){

15 string* p = new string("C++11");
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16 data = 2011;

17 atoData.store(2014, memory_order_relaxed);

18 ptr.store(p, memory_order_release);

19 }

20

21 void consumer(){

22 string* p2;

23 while (!(p2 = ptr.load(memory_order_acquire)));

24 cout << "*p2: " << *p2 << '\n';

25 cout << "data: " << data << '\n';

26 cout << "atoData: " << atoData.load(memory_order_relaxed) << '\n';

27 }

28

29 int main(){

30

31 cout << '\n';

32

33 thread t1(producer);

34 thread t2(consumer);

35

36 t1.join();

37 t2.join();

38

39 cout << '\n';

40

41 }

Before analyzing the program, I want to introduce a small variation.

2.4.4.2 Release-consume ordering

I replace the memory order std::memory_order_acquire in line 23 with std::memory_order_consume.

Release-consume ordering

1 // acquireConsume.cpp

2

3 #include <atomic>

4 #include <thread>

5 #include <iostream>

6 #include <string>

7

8 using namespace std;

9

10 atomic<string*> ptr;
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11 int data;

12 atomic<int> atoData;

13

14 void producer(){

15 string* p = new string("C++11");

16 data = 2011;

17 atoData.store(2014,memory_order_relaxed);

18 ptr.store(p, memory_order_release);

19 }

20

21 void consumer(){

22 string* p2;

23 while (!(p2 = ptr.load(memory_order_consume)));

24 cout << "*p2: " << *p2 << '\n';

25 cout << "data: " << data << '\n';

26 cout << "atoData: " << atoData.load(memory_order_relaxed) << '\n';

27 }

28

29 int main(){

30

31 cout << '\n';

32

33 thread t1(producer);

34 thread t2(consumer);

35

36 t1.join();

37 t2.join();

38

39 cout << '\n';

40

41 }

Now the program has undefined behavior. This statement is very hypothetical because my GCC
5.4 compiler implements std::memory_order_consume by using std::memory_order_acquire. Under the
hood, both programs do the same thing.

2.4.4.3 Release-acquire versus Release-consume ordering

The outputs of the programs are identical.
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Release-acquire and release-consume ordering

At the risk of repeating myself, I want to add a few words explaining why the first program,
acquireRelease.cpp is well-defined.

The store operation on line 17 synchronizes-with the load operation in line 23. The reason is that
the store operation uses std::memory_order_release and the load operation uses std::memory_order_-
acquire. This store/load relation is the synchronization. What are the ordering constraints for the
release-acquire operations? The release-acquire ordering guarantees that all operations’ results before
the store operation (line 16) are available after the load operation (line 21). So also, the release-acquire
operation orders access to the non-atomic variable data (line 14) and the atomic variable atoData (line
15). That holds although atoData uses the std::memory_order_relaxed memory ordering.

The crucial question is: what happens if I replace std::memory_order_acquire with std::memory_-

order_consume?

2.4.4.4 Data dependencies with std::memory_order_consume

std::memory_order_consume deals with data dependencies on atomics. Data dependencies exist in two
ways. First, let us look at carries-a-dependency-to in a thread and dependency-ordered before between
two threads. Both dependencies introduce a happens-before relation. These are the kind of relations
we are looking for. What does carries-a-dependency-to and dependency-order-before mean?

• carries-a-dependency-to: if the result of operation A is used as an operand in operation B, then:
A carries-a-dependency-to B.

• dependency-ordered-before: a store operation (with std::memory_order_release, std::memory_-
order_acq_rel, or std::memory_order_seq_cst) is dependency-ordered-before a load operation B
(with std::memory_order_consume) if the result of load operation B is used in a further operation
C in the same thread. It is important to note that operations B and C have to be in the same
thread.
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I know from personal experience that both definitions might not be easy to digest. Here is a graphic
to visualize them.

Data dependencies of std::memory_order_consume

The expression ptr.store(p, std::memory_order_release) is dependency-ordered-before the expres-
sion while (!(p2 = ptr.load(std::memory_order_consume))), because the following line std::cout

<< "*p2: " << *p2 << '\n' is be read as the result of the load operation. Furthermore it holds that:
while (!(p2 = ptr.load(std::memory_order_consume)) carries-a-dependency-to std::cout << "*p2:

" << *p2 << '\n', because the output of *p2 uses the result of the ptr.load operation.

We have no guarantee regarding the output of data and atoData. That’s because neither has a carries-a-
dependency relation to the ptr.load operation. It gets even worse: since data is a non-atomic variable,
there is a data race on the variable data. The reason is that both threads can access data at the same
time, and thread t1 wants to modify data. Therefore the program has undefined behavior.

Finally, we have reached the relaxed semantic.

2.4.5 Relaxed Semantic

The relaxed semantic is the other end of the spectrum. The relaxed semantic is the weakest of all
memory models and only guarantees the modification order of atomics. This means all modifications
on an atomic happen in some particular total order.

2.4.5.1 No synchronization and ordering constraints

It is relatively easy. If there are no rules, we cannot violate them. However, that is too easy; the
program should have well-defined behavior. Well-defined behavior means that you typically use
synchronization and ordering constraints of stronger memory orderings to control operations with
relaxed semantic. How does this work? A thread can see the effects of another thread in arbitrary
order, so you have to make sure there are points in your program where all operations on all threads
get synchronized.
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A typical example of an atomic operation, in which the sequence of operations doesn’t matter, is a
counter. The critical observation for a counter is not how the different threads increment the counter;
the critical observation in a counter is that all increments are atomic and that all increments are done
at the end. Have a look at the following example.

A counter with relaxed semantic

1 // relaxed.cpp

2

3 #include <vector>

4 #include <iostream>

5 #include <thread>

6 #include <atomic>

7

8 std::atomic<int> count = {0};

9

10 void add()

11 {

12 for (int n = 0; n < 1000; ++n) {

13 count.fetch_add(1, std::memory_order_relaxed);

14 }

15 }

16

17 int main()

18 {

19 std::vector<std::thread> v;

20 for (int n = 0; n < 10; ++n) {

21 v.emplace_back(add);

22 }

23 for (auto& t : v) {

24 t.join();

25 }

26 std::cout << "Final counter value is " << count << '\n';

27 }

The three most exciting lines are 13, 24, and 26.

In line 13, the atomic number count is incremented using the relaxed semantic, so we have a guarantee
that the operation is atomic. The fetch_add operation establishes an ordering on count. The function
add (lines 10 - 15) is the work package of the threads. Each thread gets its work package on line 21.

Thread creation is one synchronization point - the other one being t.join() on line 24.

The creator thread synchronizes with all its children in line 24. It waits with the t.join() call until
all its children are done. t.join() is why the results of the atomic operations are published. To say it
more formally: t.join() is a release operation.
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In conclusion, there is a happens-before relation between the increment operation in line 13 and the
reading of the counter count in line 26.

The result is that the program always returns 10000. Boring? No, it’s reassuring!

The atomic counter with relaxed semantic

A typical example of an atomic counter which uses the relaxed semantic is the reference counter of
std::shared_ptr. The relaxed semantic only holds for the increment operation. The critical property
for incrementing the reference counter is that the operation is atomic. The order of the increment
operations does not matter. The relaxed semantic does not hold for the decrement of the reference
counter. These operations need an acquire-release semantic for the destructor.

The add algorithm is wait-free
Have a closer look at the function add in line 10. There is no synchronization involved in
the increment operation (line 13). The value 1 is just added to the atomic count.

Therefore, the algorithm is not only lock-free but it is also wait-free.

The fundamental idea of std::atomic_thread_fence is to establish synchronization and ordering
constraints between threads without an atomic operation.
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2.5 Fences

C++ support two kind of fences: a std::atomic_thread_fence and a std::atomic_signal_fence.

• std::atomic_thread_fence: synchronises memory accesses between threads.

• std::atomic_signal_fence: synchronizes between a signal handler and code running on the
same thread.

2.5.1 std::atomic_thread_fence

A std::atomic_thread_fence prevents specific operations from crossing a fence.

std::atomic_thread_fence needs no atomic variable. They are frequently just referred to as fences or
memory barriers. You quickly get an idea of what a std::atomic_thread_fence is all about.

2.5.1.1 Fences as Memory Barriers

What does that mean? Specific operations cannot cross a memory barrier. What kind of operations?
From a bird’s-eye view, we have two kinds of operations: read and write or load and store operations.
The expression if(resultRead) return result is a load, followed by a store operation.

There are four different ways to combine load and store operations:

• LoadLoad: A load followed by a load.

• LoadStore: A load followed by a store.

• StoreLoad: A store followed by a load.

• StoreStore: A store followed by a store.

Of course, there are more complicated operations consisting of multiple load and stores (count++), and
these operations fall into my general classification.

What about memory barriers? If you place memory barriers between two operations like LoadLoad,
LoadStore, StoreLoad, or StoreStore, you have the guarantee that specific LoadLoad, LoadStore,
StoreLoad, or StoreStore operations are not be reordered. The risk of reordering is always present
if non-atomics or atomic operations with relaxed semantic are used.

2.5.1.2 The Three Fences

Typically, three kinds of fences are used. They are called a full fence, acquire fence, and release fence.
As a reminder, acquire is a load, and release is a store operation. What happens if I place one of the
three memory barriers between the four combinations of load and store operations?

• Full fence: A full fence std::atomic_thread_fence() between two arbitrary operations prevents
these operations’ reordering with one exception: StoreLoad operations can be reordered.
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• Acquire fence: An acquire fence std::atomic_thread_fence(std::memory_order_acquire) pre-
vents a read operation before an acquire fence from being reordered with a read or write
operation after the acquire fence.

• Release fence: A release fence std::atomic_thread_fence(std::memory_order_release) pre-
vents a write operation after a release fence from being reorderd with a read or write operation
before a release fence.

A lot of energy goes into getting the definitions of the acquire and release fence and their consequences
for lock-free programming right. Especially challenging to understand are the subtle differences
between the acquire-release semantic of atomic operations. Before I get to that point, I illustrate the
definitions with graphics.

Which kind of operations can cross a memory barrier? Have a look at the following three graphics. If
the arrow is crossed with a red bar, the fence prevents this type of operation.

2.5.1.2.1 Full fence

Full fence

Of course, instead of writing std::atomic_thread_fence() you can explicitly write std::atomic_-

thread_fence(std::memory_order_seq_cst). Sequential consistency is applied to fences by default. If
you use sequential consistency for a full fence, the std::atomic_thread_fence follows a global order.
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2.5.1.2.2 Acquire fence

Acquire fence

2.5.1.2.3 Release fence

Release fence

The three memory barriers can be depicted even more concisely.
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2.5.1.2.4 All Fences at a Glance

All fences at a glance

Acquire and release fences guarantee similar synchronization and ordering constraints as atomics
with acquire-release semantic.

2.5.1.3 Acquire-Release Fences

The most apparent difference between acquire and release fences and atomics with acquire-release
semantics is that fences need no atomics. There is also a more subtle difference; the acquire and release
fences are more heavyweight than the corresponding atomics.

2.5.1.3.1 Atomic Operations versus Fences

For the sake of simplicity, I now refer to acquire operations when I use fences or atomic operations
with acquire semantics. The same holds for release operations.

The main idea of an acquire, and a release operation is that it establishes synchronization and ordering
constraints between threads. These synchronization and ordering constraints also hold for atomic
operations with relaxed semantic or non-atomic operations. Note that acquire and release operations
come in pairs. Besides, operations on atomic variables with acquire-release semantic must act on the
same atomic variable. Having said that, I now look at these operations in isolation.

Let’s start with the acquire operation.

2.5.1.3.2 Acquire Operation

A load (read) operation on an atomic variable with the memory-ordering set to std::memory_order_-

acquire is an acquire operation.
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Atomic operation with acquire semantic

std::atomic_thread_fencewith the memory order set to std::memory_order_acquire imposes stricter
constraints on memory access reordering:

Fence with acquire semantic

This comparison emphasizes two points:

1. A fence with acquire semantic establishes stronger ordering constraints. Although the acquire
operation on an atomic and on a fence requires no read or write operation to be moved before
the acquire operation, there is an additional guarantee with the acquire fence. No read operation
can be moved after the acquire fence.

2. The relaxed semantic is sufficient for the reading of the atomic variable var. Thanks to
std::atomc_thread_fence(std::memory_order_acquire), this operation cannot be moved after
the acquire fence.

Similar observations can be made for the release fence.

2.5.1.3.3 Release Operation

The store (write) operation on an atomic variable with the memory-ordering set to std::memory_-

order_release is a release operation.

Atomic operation with release semantic

Here is the corresponding image for the release fence.
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Fence with release semantic

In addition to the constraints imposed by the release operation on an atomic variable var, the release
fence guarantees two properties:

1. Store operations can’t be moved before the fence.

2. It’s sufficient for the variable var to have relaxed semantic.

However, it’s time to go one step further and build a program that uses fences.

2.5.1.4 Synchronization with Atomic Variables or Fences

As a starting point, I’ve implemented a typical consumer-producer workflow with the acquire-release
semantic. Initially, I use atomics and then switch to fences.

2.5.1.4.1 Atomic Operations

Let’s start with atomics because most of us are comfortable with them.

Acquire-release ordering with atomics

1 // acquireRelease.cpp

2

3 #include <atomic>

4 #include <thread>

5 #include <iostream>

6 #include <string>

7

8 using namespace std;

9

10 atomic<string*> ptr;

11 int data;

12 atomic<int> atoData;

13

14 void producer(){

15 string* p = new string("C++11");
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16 data = 2011;

17 atoData.store(2014, memory_order_relaxed);

18 ptr.store(p, memory_order_release);

19 }

20

21 void consumer(){

22 string* p2;

23 while (!(p2 = ptr.load(memory_order_acquire)));

24 cout << "*p2: " << *p2 << '\n';

25 cout << "data: " << data << '\n';

26 cout << "atoData: " << atoData.load(memory_order_relaxed) << '\n';

27 }

28

29 int main(){

30

31 cout << '\n';

32

33 thread t1(producer);

34 thread t2(consumer);

35

36 t1.join();

37 t2.join();

38

39 cout << '\n';

40

41 }

This program should be quite familiar to you. It is the classic example that I used in the subsection
about std::memory_order_consume. The graphics emphasize exactly that the consumer thread t2 sees
all values from the producer thread t1.
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Acquire-release semantic with atomic operations

The program is well-defined because the happens-before relation is transitive. I only have to combine
the three happens-before relations:

1. Lines 15 - 17 happens-before line 18 ptr.store(p, std::memory_order_release).

2. Line 23 while(!(p2= ptrl.load(std::memory_order_acquire))) happens-before the lines 24 -
26.

3. Line 18 synchronizes-with line 23.⇒ Line 18 inter-thread happens-before line 23.

However, the story becomes more interesting. Now I come to fences. They are almost completely
ignored in the literature on the C++ memory model.

2.5.1.4.2 Fences

It’s quite straightforward to port the program to use fences.

Acquire-release ordering with fences

1 // acquireReleaseFences.cpp

2

3 #include <atomic>

4 #include <thread>

5 #include <iostream>

6 #include <string>

7

8 using namespace std;

9

10 atomic<string*> ptr;
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11 int data;

12 atomic<int> atoData;

13

14 void producer(){

15 string* p = new string("C++11");

16 data = 2011;

17 atoData.store(2014, memory_order_relaxed);

18 atomic_thread_fence(memory_order_release);

19 ptr.store(p, memory_order_relaxed);

20 }

21

22 void consumer(){

23 string* p2;

24 while (!(p2 = ptr.load(memory_order_relaxed)));

25 atomic_thread_fence(memory_order_acquire);

26 cout << "*p2: " << *p2 << '\n';

27 cout << "data: " << data << '\n';

28 cout << "atoData: " << atoData.load(memory_order_relaxed) << '\n';

29 }

30

31 int main(){

32

33 cout << '\n';

34

35 thread t1(producer);

36 thread t2(consumer);

37

38 t1.join();

39 t2.join();

40

41 delete ptr;

42

43 cout << '\n';

44

45 }

The first step was to add fences with release and acquire semantic (lines 18 and 25). Next, I changed
the atomic operations with acquire or release semantic to relaxed semantic (lines 19 and 24). That was
straightforward. Of course, I can only replace an acquire or release operation with the corresponding
fence. The critical point is that the release fence establishes a synchronizes-with relation with the
acquire fence, and therefore an inter-thread happens-before relation.

Here is the output of the program.
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Synchronization with fences

For the more visual reader, here’s the entire relation graphically.

Acquire-release semantic with fences

The key question is: why do the operations after the acquire fence see the effects of the operations
before the release fence? This guarantee is interesting because data is a non-atomic variable, and
atoData.store is used with relaxed semantic. This would suggest they can be reordered; however,
thanks to the std::atomic_thread_fence(std::memory_order_release) as a release operation in com-
bination with the std::atomic_thread_fence(std::memory_order_acquire), neither can be reordered.

For clarity, the whole reasoning in a more concise form.

1. The acquire and release fences prevent the reordering of the atomic and non-atomic operations
across the fences.

2. The consumer thread t2 is waiting in the while (!(p2= ptr.load(std::memory_order_-

relaxed))) loop, until the pointer ptr.store(p,std::memory_order_relaxed) is set in the
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producer thread t1.

3. The release fence synchronizes-with the acquire fence.

4. In the end, all effects of relaxed or non-atomic operations that happen-before the release fence
are visible after the acquire fence.

Synchronization between the release fence and the
acquire fence
The words from the N4659: Working Draft, Standard for Programming Language C++²⁰
are quite difficult to get: “A release fence A synchronizes with an acquire fence B if there
exist atomic operations X and Y, both operating on some atomic object M, such that A is
sequenced before X, X modifies M, Y is sequenced before B, and Y reads the value written
by X or a value written by any side effect in the hypothetical release sequence X would
head if it were a release operation.”

Let me explain the last sentence with the help of the program acquireReleaseFence.cpp

• atomic_thread_fence(memory_order_release) (line 18) is the release fence A

• atomic_thread_fence(memory_order_acquire) (line 25) is the acquire fence B

• ptr (line 10) is the atomic object M

• ptr.store(p, memory_order_relaxed) (line 19) is the atomic store X

• while (!(p2 = ptr.load(memory_order_relaxed))) (line 24) is the atomic load Y

You can even mix the acquire and release operations on an atomic in the program acquireRelease.cpp

with the acquire and release fence in the program acquireReleaseFence.cpp without affecting the
synchronize-with relation.

2.5.2 std::atomic_signal_fence

std::atomic_signal_fence establishes memory synchronization ordering of non-atomic and relaxed
atomic accesses between a thread and a signal handler executed on the same thread. The following
program shows the usage of a std::atomic_signal_fence.

²⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
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Synchronization with a signal handler

1 // atomicSignal.cpp

2

3 #include <atomic>

4 #include <cassert>

5 #include <csignal>

6

7 std::atomic<bool> a{false};

8 std::atomic<bool> b{false};

9

10 extern "C" void handler(int) {

11 if (a.load(std::memory_order_relaxed)) {

12 std::atomic_signal_fence(std::memory_order_acquire);

13 assert(b.load(std::memory_order_relaxed));

14 }

15 }

16

17 int main() {

18

19 std::signal(SIGTERM, handler);

20

21 b.store(true, std::memory_order_relaxed);

22 std::atomic_signal_fence(std::memory_order_release);

23 a.store(true, std::memory_order_relaxed);

24

25 }

First, I set in line 19 the signal handler handler for the particular signal SIGTERM. SIGTERM is a
termination request for the program. Both std::atomic_signal_handler establish an acquire-release
fence between the release operation std::atomic_signal_fence(std::memory_order_release) (line
22) and the acquire operation std::atomic_signal_fence(std::memory_order_acquire) (line 12). This
means in particular that release operations can not be reordered across the release fence (line 22) and
that acquire operations can not be reordered across the acquire fence (line 11). Consequently, the
assertion in line 13 assert(b.load(std::memory_order_relaxed)) never fires because if a.store(true,
std::memory_order_relaxed) (line 23) happened, b.store(true, std::memory_order_relaxed) (line 21)
must have happened before.
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Distilled Information
• The memory model is a contract between the programmer and the system.
The system consists of the compiler that generates machine code, the processor
that executes the machine code and includes the different caches that store the
program’s state.

• The C++ memory model has to deal with the following questions:

– Which operations are atomic?

– Which ordering of operations is guaranteed?

– What are the visible effects on shared variables to other threads?

• The foundation of the contract are operations on atomics that have two character-
istics: They are by definition atomic, and they create synchronization and order
constraints on the program execution.

• C++20 support atomics for integrals, floating-points, pointers, and smart pointers.

• The class template std::atomic_ref applies atomic operations to the referenced
object.

• Roughly speakting, there are three different types of synchronization and ordering
constraints in C++:

– Sequential consistency (default)

– Acquire-release semantic

– Relaxed semantic



3. Multithreading

Cippi ties a braid

C++ has a multithreading interface since C++11 and this interface has all the basic building blocks for
creating multithreaded programs. These are threads, synchronization primitives for shared data such
as mutexes and locks, thread-local data, synchronization mechanism for threads such as condition
variables, and tasks. Tasks usually called promises and futures, provide a higher abstraction than
native threads.
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Multithreading in C++
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C++ supports two kind of threads: the basic thread std::thread (C++11) and the improved thread
std::jthread (C++20). First, I write about the basic thread, and at the end of this section, I discuss the
improved thread.

3.1 The Basic Thread std::thread

To launch a thread in C++, you have to include the <thread> header.

3.1.1 Thread Creation

A thread std::thread represents an executable unit. This executable unit, which the thread imme-
diately starts, gets its work package as a callable unit. A thread is not copy-constructible or copy-
assignable but move-constructible or move-assignable.

A callable unit is an entity that behaves like a function. Of course, it can be a function but also a
function object, or a lambda function. The return value of the callable unit is ignored.

After discussing theory, here is a small example.

Creation of a thread with callable units

1 // createThread.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 void helloFunction(){

7 std::cout << "Hello from a function." << '\n';

8 }

9

10 class HelloFunctionObject{

11 public:

12 void operator()() const {

13 std::cout << "Hello from a function object." << '\n';

14 }

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 std::thread t1(helloFunction);

22

23 HelloFunctionObject helloFunctionObject;

24 std::thread t2(helloFunctionObject);
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25

26 std::thread t3([]{std::cout << "Hello from a lambda." << '\n';});

27

28 t1.join();

29 t2.join();

30 t3.join();

31

32 std::cout << '\n';

33

34 };

All three threads (t1, t2, and t3) write their messages to the console. The work package of thread t2 is
a function object (lines 10 - 15), the work package of thread t3 is a lambda function (line 26). In lines
28 - 30, the main thread is waiting until its children are done.

Let’s have a look at the output. This is more interesting.

Creation of threads with various callables

The three threads are executed in an arbitrary order. Even the three output operations can interleave.

In our case, the child’s creator is the main thread, is responsible for the child’s lifetime.

3.1.2 Thread Lifetime

The parent has to take care of its children. This simple principle has big consequences for the lifetime
of a thread. This small program starts a thread that displays its id.
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Forget to join a thread

1 // threadWithoutJoin.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 int main(){

7

8 std::thread t([]{std::cout << std::this_thread::get_id() << '\n';});

9

10 }

But the program does not print the id.

Forget to join a thread

What’s the reason for the exception?

3.1.2.1 join and detach

The lifetime of a created thread t ends with its callable unit. The creator has two choices.

1. It can wait until its child is done: t.join().

2. It can detach itself from its child: t.detach().

A t.join() call is useful when the following code relies on the result of the calculation performed in
the thread. t.detach() permits the thread to execute independently from the thread handle t; therefore,
the detached thread runs for the lifetime of the executable. Typically you use a detached thread for a
long-running background service such as a server.

A thread t with a callable unit - you can create threads without a callable unit - is called
joinable if neither a t.join() nor a t.detach() call happened. The destructor of a joinable thread
throws an exception and std::terminate is called. This was the reason the program execution of
threadWithoutJoin.cpp terminated with an exception. If you invoke t.join() or t.detach() more
than once on a thread t, you get a std::system_error exception.

The solution to this problem is quite simple: call t.join().
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Joining a thread

1 // threadWithJoin.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 int main(){

7

8 std::thread t([]{std::cout << std::this_thread::get_id() << '\n';});

9

10 t.join();

11

12 }

Now we get the expected output.

Join a thread

The thread’s id serves as a unique identifier of the std::thread.

The Challenge of detach

Of course, you can use t.detach() instead of t.join() in the last program. The thread t

is not joinable anymore; therefore, its destructor didn’t call std::terminate. But now you
have another issue. The program behavior is undefined because the main program may
complete before the thread t has time to complete its work package; therefore, its lifetime
is too short to display the id. For more details see lifetime issues of variables.
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scoped_thread by Anthony Williams
If it’s too bothersome for you to take care of the lifetime of your threads t manually, you
can encapsulate a std::thread in your wrapper class. This class should automatically call
t.join() in its destructor if the thread is still joinable. Of course, you can go the other way
and call t.detach(); but you know, there is an issue with detaching.

Anthony Williams created such a useful class and presented it in his excellent book
C++ Concurrency in Action¹. He called the wrapper scoped_thread. scoped_thread gets
a thread t in its constructor and checks if t is still joinable. If the thread t passed into the
constructor is not joinable anymore, there is no need for the scoped_thread. If t is joinable,
the destructor calls t.join(). Because the copy constructor and copy assignment operator
are declared as delete, instances of scoped_thread cannot be copied to or assigned from.

// scoped_thread.cpp

#include <thread>

#include <utility>

class scoped_thread{

std::thread t;

public:

explicit scoped_thread(std::thread t_): t(std::move(t_)){

if (!t.joinable()) throw std::logic_error("No thread");

}

~scoped_thread(){

t.join();

}

scoped_thread(scoped_thread&)= delete;

scoped_thread& operator=(scoped_thread const &)= delete;

};

3.1.3 Thread Arguments

A thread such as an arbitrary function can get its arguments by copy, by move, or by reference.
std::thread is a variadic template². This means it can get an arbitrary number of arguments.

If your thread gets its data by reference, you have to be extremely careful about the lifetime of the
arguments and the sharing of data.

¹https://www.manning.com/books/c-plus-plus-concurrency-in-action
²http://en.cppreference.com/w/cpp/language/parameter_pack

https://www.manning.com/books/c-plus-plus-concurrency-in-action
http://en.cppreference.com/w/cpp/language/parameter_pack
https://www.manning.com/books/c-plus-plus-concurrency-in-action
http://en.cppreference.com/w/cpp/language/parameter_pack
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3.1.3.1 Copy or Reference

Let’s have a look at a small code snippet.

std::string s{"C++11"}

std::thread t1([=]{ std::cout << s << '\n'; });

t1.join();

std::thread t2([&]{ std::cout << s << '\n'; });

t2.detach();

Thread t1 gets its argument by copy, thread t2 by reference.

Thread arguments by reference
To be honest, I cheated a little. The thread t2 gets its argument by reference, but the lambda
function captures its argument by reference. If you need to pass the argument to a thread
by reference, it must be wrapped in a reference wrapper³. This is quite straightforward
with the helper function std::ref⁴. std::ref is defined in the header <functional>.

<functional>

...

void transferMoney(int amount, Account& from, Account& to){

...

}

...

std::thread thr1(transferMoney, 50, std::ref(account1), std::ref(account2));

Thread thr1 executes the function transferMoney. transferMoney gets its arguments by
reference; therefore, thread thr1 gets its account1 and account2 by reference.

What issues are hiding in these lines of code? Thread t2 gets its string s by reference, and afterward
is detached from its creator’s lifetime. The lifetime of the string s is bound to the creator’s lifetime;
the lifetime of the global object std::cout is attached to the main thread’s lifetime. So the lifetime of
s or the lifetime of std::cout may be shorter than the lifetime of the thread t2. Now we are deep in
the area of undefined behavior.

Are you not convinced? Let’s take a closer look at what undefined behavior may look like.

³http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper
⁴http://en.cppreference.com/w/cpp/utility/functional/ref

http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper
http://en.cppreference.com/w/cpp/utility/functional/ref
http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper
http://en.cppreference.com/w/cpp/utility/functional/ref
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Passing the arguments to a thread by reference

1 // threadArguments.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 class Sleeper{

8 public:

9 Sleeper(int& i_): i{i_}{};

10 void operator() (int k){

11 for (unsigned int j = 0; j <= 5; ++j){

12 std::this_thread::sleep_for(std::chrono::milliseconds(100));

13 i += k;

14 }

15 std::cout << std::this_thread::get_id() << '\n';

16 }

17 private:

18 int& i;

19 };

20

21

22 int main(){

23

24 std::cout << '\n';

25

26 int valSleeper = 1000;

27 std::thread t(Sleeper(valSleeper), 5);

28 t.detach();

29 std::cout << "valSleeper = " << valSleeper << '\n';

30

31 std::cout << '\n';

32

33 }

What value does valSleeper have in line 29? valSleeper is local to the main() function. Thread t gets
as its work package a function object with the variable valSleeper and the number 5 (line 27). The
crucial observation is that the thread gets valSleeper by reference (line 9) and is detached from the
main thread (line 28). Next, it executes the call operator of the function object (lines 10 - 16). In this
member function, it counts from 0 to 5, sleeps in each iteration 1/10 of a second, and increments i by
k. In the end, it displays its id on the screen. Nach Adam Riese⁵ (a German proverb), the result should
be 1000 + 6 * 5 = 1030.

⁵https://de.wikipedia.org/wiki/Liste_gefl%C3%BCgelter_Worte/N#Nach_Adam_Riese

https://de.wikipedia.org/wiki/Liste_gefl%C3%BCgelter_Worte/N#Nach_Adam_Riese
https://de.wikipedia.org/wiki/Liste_gefl%C3%BCgelter_Worte/N#Nach_Adam_Riese
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However, what happened? Something is going very wrong.

Undefined behavior with a reference

The program has two strange properties. First, valSleeper is 1000, and second, the id is not displayed.

The program has at least two issues.

1. valSleeper is shared by all threads. This is a data race because the threads may read and write
valSleeper at the same time.

2. The main thread’s lifetime ends before the child thread has performed its calculation or written
its id to std::cout.

Both issues are race conditions because the program’s result depends on the interleaving of the
operations. The race condition is the cause of the data race.

Fixing the data race is pretty easy. valSleeper should be protected using either a lock or an atomic.
To overcome the lifetime issues of valSleeper and std::cout, you have to join the thread instead of
detaching it.

Here is the modified main function.

int main(){

std::cout << '\n';

int valSleeper= 1000;

std::thread t(Sleeper(valSleeper),5);

t.join();

std::cout << "valSleeper = " << valSleeper << '\n';

std::cout << '\n';

}

Now we get the right result. Of course, the execution becomes slower.
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Fixed the undefined behavior

To complete the story of std::thread, here are the remaining member functions.

3.1.4 Member Functions

Here is the interface of std::thread t in a concise table. For additional details, please refer to
cppreference.com⁶.

Member functions of a thread t

Member functions Description

t.join() Waits until thread t has finished its execution.

t.detach() Executes the created thread t independently of the creator.

t.joinable() Returns true if thread t is still joinable.

t.get_id() and Returns the id of the thread.
std::this_thread::get_id()

std::thread::hardware_concurrency() Indicates the number of threads that can run concurrently.

std::this_thread::sleep_until(absTime) Puts thread t to sleep until the time point absTime.

std::this_thread::sleep_for(relTime) Puts thread t to sleep for the time duration relTime.

std::this_thread::yield() Enables the system to run another thread.

t.swap(t2) Swaps the threads. Same as std::swap(t, t2).

The static member function std::thread::hardware_concurrency returns the number of concurrent
threads supported by the implementation, or 0 if the runtime can not determine the number. This is
according to the C++ standard. The sleep_until and sleep_for operations need a time point or a time

⁶http://de.cppreference.com/w/cpp/thread/thread

http://de.cppreference.com/w/cpp/thread/thread
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duration as an argument.

Access to the system-specific implementation
The threading interface is a wrapper around the underlying implementation. You can use
the member function native_handle to get access to the system-specific implementation.
This handle to the underlying implementation is available for threads, mutexes, and
condition variables.

Threads cannot be copied but can be moved. The swap member function performs a move when
possible.

To conclude this subsection, here are a few of the mentioned member functions in practice.

Member functions of a thread

1 // threadMethods.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 using namespace std;

7

8 int main(){

9

10 cout << boolalpha << '\n';

11

12 cout << "hardware_concurrency()= "<< thread::hardware_concurrency() << '\n';

13

14 thread t1([]{cout << "t1 with id= " << this_thread::get_id() << '\n';});

15 thread t2([]{cout << "t2 with id= " << this_thread::get_id() << '\n';});

16

17 cout << '\n';

18

19 cout << "FROM MAIN: id of t1 " << t1.get_id() << '\n';

20 cout << "FROM MAIN: id of t2 " << t2.get_id() << '\n';

21

22 cout << '\n';

23 swap(t1,t2);

24

25 cout << "FROM MAIN: id of t1 " << t1.get_id() << '\n';

26 cout << "FROM MAIN: id of t2 " << t2.get_id() << '\n';

27

28 cout << '\n';

29
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30 cout << "FROM MAIN: id of main= " << this_thread::get_id() << '\n';

31

32 cout << '\n';

33

34 cout << "t1.joinable(): " << t1.joinable() << '\n';

35

36 cout << '\n';

37

38 t1.join();

39 t2.join();

40

41 cout << '\n';

42

43 cout << "t1.joinable(): " << t1.joinable() << '\n';

44

45 cout << '\n';

46

47 }

In combination with the output, the program should be relatively easy to follow.
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Member functions of a thread

Maybe it looks a little weird that threads t1 and t2 (lines 14 and 15) run at different points in time of
the program execution. You have no guarantee when each thread runs; you only have the assurance
that both threads run before t1.join() and t2.join() in lines 38 and 39.

The more mutable (non-const) variables threads share, the more challenging multithreading becomes.

3.2 The Improved Thread std::jthread (C++20)

std::jthread stands for joining thread. In addition to std::thread fromC++11, std::jthread automat-
ically joins in it destructor and can cooperatively be interrupted. Consequently, std::jthread extends
the interface of std::thread. std::jthread models RAII and, therefore, also joins when an exception
occurs. The std::jthread holds a private member of type std::stop_source. std::jthread thread
constructor accept a function that takes std::stop_token as its first argument. This std::stop_token
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is passed into the function and can, therefore, be used by the function to check if a stop request has
be requested.

The following table gives you a concise overview of the additional std::jthread t functionality.

Additional member functions of a std::jthread t

Member functions Description
t.get_stop_source() Returns a std::stop_source object associated with the shared stop state.

t.get_stop_token() Returns a std::stop_token object associated with the shared stop state.

t.request_stop() Requests execution stop via the shared stop state. Returns true if the stop request
was successful.

3.2.1 Automatically Joining

This is the non-intuitive behavior of std::thread. If a std::thread is still joinable, std::terminate is
called in its destructor. A thread thr is joinable if either thr.join() nor thr.detach() was called.

Terminating a still joinable std::thread

// threadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

When executed, the program terminates.
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Terminating a joinable std::thread

Both executions of std::thread terminate. In the second run, the thread thr has enough time to display
its message: “Joinable std::thread”.

In the following example, I use std::jthread from the current C++20 standard.

Terminating a still joinable std::jthread

// jthreadJoinable.cpp

#include <iostream>

#include <thread>

int main() {

std::cout << '\n';

std::cout << std::boolalpha;

std::jthread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};

std::cout << "thr.joinable(): " << thr.joinable() << '\n';

std::cout << '\n';

}

Now, the thread thr automatically joins in its destructor such if it’s still joinable.
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Using a std::jthread that joins automatically

Here is a typical implementation of std::jthreads destructor.

Typical implemenation of std::jthreads destructor

1 jthread::~jthread() {

2 if(joinable()) {

3 request_stop();

4 join();

5 }

6 }

First, the thread checks if it is still joinable (line 2). A thread is still joinable if neither join() or
detach() was called on it. If the thread is still joinable, it asks for the stopping of the execution (line
3) and calls join() afterward (line 4). The join call blocks until the thread’s execution is done.

3.2.2 Cooperative Interruption of a std::jthread

To get the general idea, let me present a simple example.

Interrupt an non-interruptable and interruptable std::jthread

1 // interruptJthread.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 using namespace::std::literals;

8

9 int main() {

10

11 std::cout << '\n';

12
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13 std::jthread nonInterruptable([]{

14 int counter{0};

15 while (counter < 10){

16 std::this_thread::sleep_for(0.2s);

17 std::cerr << "nonInterruptable: " << counter << '\n';

18 ++counter;

19 }

20 });

21

22 std::jthread interruptable([](std::stop_token stoken){

23 int counter{0};

24 while (counter < 10){

25 std::this_thread::sleep_for(0.2s);

26 if (stoken.stop_requested()) return;

27 std::cerr << "interruptable: " << counter << '\n';

28 ++counter;

29 }

30 });

31

32 std::this_thread::sleep_for(1s);

33

34 std::cerr << '\n';

35 std::cerr << "Main thread interrupts both jthreads" << '\n';

36 nonInterruptable.request_stop();

37 interruptable.request_stop();

38

39 std::cout << '\n';

40

41 }

In the main program, I start the two threads nonInterruptible and interruptible (lines 13 and 22).
Unlike in the thread nonInterruptible, the thread interruptible gets a std::stop_token and uses
it in line 26 to check if it was interrupted: stoken.stop_requested(). In case of a stop request, the
lambda function returns and, therefore, the thread ends. The call interruptible.request_stop() (line
37) triggers the stop request. This does not hold for the previous call nonInterruptible.request_stop().
The call has no effect.
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Interrupt a non-interruptable and interruptable std::jthread”

I provide the details about the std::stop_token in the section about cooperative interruption.
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3.3 Shared Data

To make the point clear, you only need to think about synchronization if you have shared, mutable
data because shared, mutable data is prone to data races. If you have concurrent non-synchronized
read and write access to data, your program has undefined behavior.

The easiest way to visualize concurrent, unsynchronized read and write operations is to write
something to std::cout.

Let’s have a look.

Writing unsynchronized to std::cout

1 // coutUnsynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 class Worker{

8 public:

9 Worker(std::string n):name(n){};

10 void operator() (){

11 for (int i = 1; i <= 3; ++i){

12 // begin work

13 std::this_thread::sleep_for(std::chrono::milliseconds(200));

14 // end work

15 std::cout << name << ": " << "Work " << i << " done !!!" << '\n';

16 }

17 }

18 private:

19 std::string name;

20 };

21

22

23 int main(){

24

25 std::cout << '\n';

26

27 std::cout << "Boss: Let's start working.\n\n";

28

29 std::thread herb= std::thread(Worker("Herb"));

30 std::thread andrei= std::thread(Worker(" Andrei"));

31 std::thread scott= std::thread(Worker(" Scott"));

32 std::thread bjarne= std::thread(Worker(" Bjarne"));

33 std::thread bart= std::thread(Worker(" Bart"));
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34 std::thread jenne= std::thread(Worker(" Jenne"));

35

36

37 herb.join();

38 andrei.join();

39 scott.join();

40 bjarne.join();

41 bart.join();

42 jenne.join();

43

44 std::cout << "\n" << "Boss: Let's go home." << '\n';

45

46 std::cout << '\n';

47

48 }

The program describes a workflow. The boss has six workers (lines 29 - 34). Each worker has to take
care of 3 work packages. The work package takes 1/5 second (line 13). After the worker is done with
his work package, he screams out loudly to the boss (line 15). Once the boss received notifications
from all workers, he sends them home (line 44).

What a mess for such a simple workflow!
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Non-synchronized writing to std::cout

The most straightforward solution is to use a mutex.

3.3.1 Mutexes

Mutex stands formutual exclusion. It ensures that only one thread can access a critical section at any
one time.

By using a mutex, the mess of the workflow turns into harmony.

Writing synchronized to std::cout

1 // coutSynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 class Worker{
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11 public:

12 Worker(std::string n):name(n){};

13

14 void operator() (){

15 for (int i = 1; i <= 3; ++i){

16 // begin work

17 std::this_thread::sleep_for(std::chrono::milliseconds(200));

18 // end work

19 coutMutex.lock();

20 std::cout << name << ": " << "Work " << i << " done !!!" << '\n';

21 coutMutex.unlock();

22 }

23 }

24 private:

25 std::string name;

26 };

27

28

29 int main(){

30

31 std::cout << '\n';

32

33 std::cout << "Boss: Let's start working." << "\n\n";

34

35 std::thread herb= std::thread(Worker("Herb"));

36 std::thread andrei= std::thread(Worker(" Andrei"));

37 std::thread scott= std::thread(Worker(" Scott"));

38 std::thread bjarne= std::thread(Worker(" Bjarne"));

39 std::thread bart= std::thread(Worker(" Bart"));

40 std::thread jenne= std::thread(Worker(" Jenne"));

41

42 herb.join();

43 andrei.join();

44 scott.join();

45 bjarne.join();

46 bart.join();

47 jenne.join();

48

49 std::cout << "\n" << "Boss: Let's go home." << '\n';

50

51 std::cout << '\n';

52

53 }
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std::cout is protected by the coutMutex in line 8. A simple lock() in line 19 and the corresponding
unlock() call in line 21 ensure that the workers won’t scream all at once.

Synchronized writing to std::cout

std::cout is thread-safe
The C++11 standard guarantees that you must not protect std::cout. Each character is
written atomically. More output statements like those in the example may interleave.
This is only a visual issue; the program is well-defined. This remark is valid for all global
stream objects. Insertion to and extraction from global stream objects (std::cout, std::cin,
std::cerr, and std::clog) is thread-safe.

To put it more formally: writing to std::cout is not a data race but a race condition. This
means that the output depends on the interleaving of threads.

C++11 has four different exclusive mutexes that can lock recursively, tentative with and without time
constraints.
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Exclusive mutex variations

Member function mutex recursive_mutex timed_mutex recursive_timed_mutex

m.lock yes yes yes yes

m.try_lock yes yes yes yes

m.try_lock_for yes yes

m.try_lock_until yes yes

m.unlock yes yes yes yes

A recursive mutex allows the same thread to lock the mutex many times. The mutex stays locked until
it was unlocked as many times as it was locked. The maximum number of times that a recursive mutex
can be locked is unspecified. If the maximum number is reached, an std::system_error⁷ exception is
thrown.

With C++14 we have a std::shared_timed_mutex and with C++17 a std::shared_mutex. std::shared_-
mutex and std::shared_timed_mutex are quite similar. You can use bothmutexes for exclusive or shared
locking. Additionally, with std::shared_timed_mutex you can specify a time point or a time duration.

Shared mutex variations

Member function shared_timed_mutex shared_mutex

m.lock yes yes

m.try_lock yes yes

m.try_lock_for yes

m.try_lock_until yes

m.unlock yes yes

m.lock_shared yes yes

m.try_lock_shared yes yes

m.try_lock_shared_for yes

m.try_lock_shared_until yes

⁷http://en.cppreference.com/w/cpp/error/system_error

http://en.cppreference.com/w/cpp/error/system_error
http://en.cppreference.com/w/cpp/error/system_error
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Shared mutex variations

Member function shared_timed_mutex shared_mutex
m.unlock_shared yes yes

The std::shared_timed_mutex(std::shared_mutex) enables you to implement reader-writer locks.
This means you can use std::shared_timed_mutex (std::shared_mutex) for exclusive or for shared
locking. You get an exclusive lock, if you put the std::shared_timed_mutex (std::shared_mutex) into a
std::lock_guard or into a std::unique_lock; you get a shared lock, if you put the std::shared_timed_-
mutex (std::shared_lock) into a std::shared_lock. The member functions m.try_lock_for(relTime)
and m.try_lock_shared_for(relTime)) need a relative time duration; the member functions m.try_-
lock_until(absTime) and m.try_lock_shared_until(absTime) need an absolute time point.

m.try_lock (m.try_lock_shared) tries to lock themutex and returns immediately. On success, it returns
true, otherwise false. In contrast the member functions m.try_lock_for (m.try_lock_shared_for) and
m.try_lock_until (m.try_lock_shared_until) try to lock until the specified time out occurs or the lock
is acquired, whichever comes first. You should use a steady clock for your time constraint. A steady
clock can not be adjusted.

You should not use mutexes directly; you should put mutexes into locks. Here is the reason why.

3.3.1.1 Issues of Mutexes

The issues with mutexes boil down to one main concern: deadlocks.

Deadlock
A deadlock is a state where two or more threads are blocked because each thread waits for the
release of a resource before it releases its resource.

The result of a deadlock is a total standstill. The thread that tries to acquire the resource, and usually
the whole program, is blocked forever. Producing a deadlock is easy. Curious?

3.3.1.1.1 Exceptions and Unknown Code

The small code snippet has many issues.

std::mutex m;

m.lock();

sharedVariable = getVar();

m.unlock();

Here are the issues:

1. If the function getVar() throws an exception, the mutex m is not released.
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2. Never ever call an unknown function while holding a lock. If the function getVar tries to lock
the mutex m, the program has undefined behavior because m is not a recursive mutex. Most of
the time, undefined behavior causes a deadlock.

3. Avoid calling a function while holding a lock. Maybe the function is from a library, and you
get a new version of the library, or the function is rewritten. There is always the danger of a
deadlock.

The more locks your program needs, the more challenging it becomes. The dependency is very non-
linear.

3.3.1.1.2 Lock Mutexes in Different Order

Here is a typical scenario of a deadlock resulting from locking in a different order.

Deadlock of two threads

Thread 1 and thread 2 need access to two resources to finish their work. The problem arises when
the requested resources are protected by two separate mutexes and are requested in different orders
(Thread 1: Lock 1, Lock 2; Thread 2: Lock 2, Lock 1). In this case, the thread executions interleave so
that thread 1 gets mutex 1, then thread 2 gets mutex 2, and we reach a standstill. Each thread wants to
get the other’s mutex, but the other thread has to release it first to get the other mutex. The expression
“deadly embrace” describes this kind of deadlock very well.

Translating this picture into code is easy.
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Locking mutexes in different order

1 // deadlock.cpp

2

3 #include <iostream>

4 #include <chrono>

5 #include <mutex>

6 #include <thread>

7

8 struct CriticalData{

9 std::mutex mut;

10 };

11

12 void deadLock(CriticalData& a, CriticalData& b){

13

14 a.mut.lock();

15 std::cout << "get the first mutex" << '\n';

16 std::this_thread::sleep_for(std::chrono::milliseconds(1));

17 b.mut.lock();

18 std::cout << "get the second mutex" << '\n';

19 // do something with a and b

20 a.mut.unlock();

21 b.mut.unlock();

22

23 }

24

25 int main(){

26

27 CriticalData c1;

28 CriticalData c2;

29

30 std::thread t1([&]{deadLock(c1,c2);});

31 std::thread t2([&]{deadLock(c2,c1);});

32

33 t1.join();

34 t2.join();

35

36 }

Threads t1 and t2 call deadlock (lines 12 - 23). The function deadlock needs variables CriticalData
c1 and c2 (lines 27 and 28). Because objects c1 and c2 have to be protected from shared access, they
internally hold a mutex (to keep this example short and simple, CriticalData doesn’t have any other
member functions or members apart from a mutex).

A short sleep of about one millisecond in line 16 is sufficient to produce the deadlock.
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Deadlock of two threads

The only choice left is to press CTRL+C and kill the process.

Thanks to std::lock, it is easy to lock many Lockables such as mutexes or locks in an atomic
step. Therefore you can overcome deadlocks by locking Lockables in a different order. The section
std::lock provide more details about atomic locking with std::lock.

Locks do not solve all the issues with mutexes, but they come to our rescue in many cases.

3.3.2 Locks

Locks take care of their resource following the RAII idiom. A lock automatically binds its mutex in the
constructor and releases it in the destructor. This considerably reduces the risk of a deadlock, because
the runtime takes care of the mutex.

Locks are available in four different flavours: std::lock_guard for the simple use-cases; std::unique_-
lock for the advanced use-cases. std::shared_lock is available since C++14 and can be used to
implement reader-writer locks. With C++17 we got the std::scoped_lock which can lock more
mutexes in an atomic step.

First, the simple use-case.

3.3.2.1 std::lock_guard

std::mutex m;

m.lock();

sharedVariable = getVar();

m.unlock();

The mutex m ensures that access to the critical section sharedVariable = getVar() is sequential.
Sequential means in this special case that each thread gains access to the critical section after the other.
This establishes a total order in the system. The code is simple but prone to deadlocks. A deadlock may
appear if the critical section throws an exception or if the programmer forgets to unlock the mutex.
With std::lock_guard we can do this more elegantly:
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std::mutex m;

{

std::lock_guard<std::mutex> lockGuard(m);

sharedVariable = getVar();

}

That was easy, but what’s the story with the opening and closing brackets? Its scope limits the lifetime
of std::lock_guard and the scope is defined by the curly brackets⁸. This means that its lifetime ends
when it passes the closing curly brackets. Exactly then, the std::lock_guard destructor is called, and
- as you may have guessed - the mutex is released. This happens automatically and, it happens also
if getVar() in sharedVariable = getVar() throws an exception. Function scope and loop scope also
limit the lifetime of an object.

3.3.2.2 std::scoped_lock

With C++17 we got the std::scoped_lock. It’s very similar to std::lock_guard, but std::scoped_lock
can, additionally, lock an arbitrary number of mutexes atomically. You have to keep a few facts in
mind.

1. If std::scoped_lock is invoked with one mutex m it behaves such as a std::lock_guard and
locks the mutex m: m.lock. If the std::scoped_lock is invoked with more than one mutex
(std::scoped_lock(MutexTypes& ... m) it uses the function std::lock(m ...).

2. If the current threads already owns one of the mutexes and the mutex is not recursive, the
behavior is undefined. With high probability, you get a deadlock.

3. You can just take the ownership of the mutex without locking them. In this case, you have to
provide the std::adopt_lock_t flag to the constructor: std::scoped_lock(std::adopt_lock_t,
MutexTypes& ... m).

You can quite elegantly solve the previous deadlock by using a std::scoped_lock. I discuss the
resolution of the deadlock in the following section.

3.3.2.3 std::unique_lock

A std::unique_lock is stronger but more expensive than its little brother std::lock_guard.

In addition to what’s offered by a std::lock_guard, a std::unique_lock enables you to

• create it without an associated mutex.

• create it without locking the associated mutex.

• explicitly and repeatedly set or release the lock of the associated mutex.

• recursively lock its mutex.

• move the mutex.

⁸http://en.cppreference.com/w/cpp/language/scope#Block_scope

http://en.cppreference.com/w/cpp/language/scope#Block_scope
http://en.cppreference.com/w/cpp/language/scope#Block_scope
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• try to lock the mutex.

• delay the lock on the associated mutex.

The following table shows the member functions of a std::unique_lock lk.

The interface of std::unique_lock

Member function Description

lk.lock() Locks the associated mutex.

lk.try_lock() and Tries to lock the associated mutex.
lk.try_lock_for(relTime) and Tries to lock the associated mutex for the time duration relTime.
lk.try_lock_until(absTime) Tries to lock the associated mutex until the time point absTime.

lk.unlock() Unlocks the associated mutex.

lk.release() Release the mutex. The mutex remains locked.

lk.swap(lk2) Swaps the locks. Same as std::swap(lk, lk2).

lk.mutex() Returns a pointer to the associated mutex.

lk.owns_lock() and Checks if the lock lk has a locked mutex.
operator bool

lk.try_lock_for(relTime) needs a relative time duration; lk.try_lock_until(absTime) an absolute
time point. lk.try_lock_for(lk.try_lock_until) calls effectively the member function mut.try_lock_-

for(mut.try_lock_until) on the associated mutex mut. The associated mutex has to support exclusive
timed blocking. You should use a steady clock for your time constraint. A steady clock can not be
adjusted.

lk.try_lock tries to lock the mutex and returns immediately. On success, it returns true, otherwise
false. In contrast, the member functions lk.try_lock_for and lk.try_lock_until the lock lk blocks
until the specified timeout occurs or the lock is acquired, whichever comes first. All three member
functions lk.try_lock, lk.try_lock_for, and lk.try_lock_until throw a std::system_error excep-
tion if there is no associated mutex or if the mutex is already locked by this std::unique_lock.

lk.release() removes the underlying mutex from the lock object’s control and returns a pointer to
that mutex. After calling this member function, the caller is responsible for releasing it because the
mutex is not associated with the lock object anymore.

3.3.2.4 std::shared_lock

With C++14, C++ adds support for std::shared_lock.
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A std::shared_lock has the same interface as a std::unique_lock but behaves differently when used
with a std::shared_timed_mutex or a std::shared_mutex. Many threads can share one std::shared_-

timed_mutex (std::shared_mutex) and, therefore, implement a reader-writer lock. The idea of reader-
writer locks is straightforward and extremely useful. An arbitrary number of threads executing read
operations can access the critical region simultaneously, but only one thread is allowed to write.

Reader-writer locks do not solve the fundamental problem - threads competing for access to a critical
region, but they help minimize the bottleneck.

A telephone book is a typical example of using a reader-writer lock. Usually, many people want to
look up a telephone number, but only a few want to change them. Let’s look at an example.

Reader-writer locks

1 // readerWriterLock.cpp

2

3 #include <iostream>

4 #include <map>

5 #include <shared_mutex>

6 #include <string>

7 #include <thread>

8

9 std::map<std::string,int> teleBook{{"Dijkstra", 1972}, {"Scott", 1976},

10 {"Ritchie", 1983}};

11

12 std::shared_timed_mutex teleBookMutex;

13

14 void addToTeleBook(const std::string& na, int tele){

15 std::lock_guard<std::shared_timed_mutex> writerLock(teleBookMutex);

16 std::cout << "\nSTARTING UPDATE " << na;

17 std::this_thread::sleep_for(std::chrono::milliseconds(500));

18 teleBook[na]= tele;

19 std::cout << " ... ENDING UPDATE " << na << '\n';

20 }

21

22 void printNumber(const std::string& na){

23 std::shared_lock<std::shared_timed_mutex> readerLock(teleBookMutex);

24 std::cout << na << ": " << teleBook[na];

25 }

26

27 int main(){

28

29 std::cout << '\n';

30

31 std::thread reader1([]{ printNumber("Scott"); });

32 std::thread reader2([]{ printNumber("Ritchie"); });

33 std::thread w1([]{ addToTeleBook("Scott",1968); });
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34 std::thread reader3([]{ printNumber("Dijkstra"); });

35 std::thread reader4([]{ printNumber("Scott"); });

36 std::thread w2([]{ addToTeleBook("Bjarne",1965); });

37 std::thread reader5([]{ printNumber("Scott"); });

38 std::thread reader6([]{ printNumber("Ritchie"); });

39 std::thread reader7([]{ printNumber("Scott"); });

40 std::thread reader8([]{ printNumber("Bjarne"); });

41

42 reader1.join();

43 reader2.join();

44 reader3.join();

45 reader4.join();

46 reader5.join();

47 reader6.join();

48 reader7.join();

49 reader8.join();

50 w1.join();

51 w2.join();

52

53 std::cout << '\n';

54

55 std::cout << "\nThe new telephone book" << '\n';

56 for (auto teleIt: teleBook){

57 std::cout << teleIt.first << ": " << teleIt.second << '\n';

58 }

59

60 std::cout << '\n';

61

62 }

The telephone book in line 9 is the shared variable, which has to be protected. Eight threads want
to read the telephone book; two threads want to modify it (lines 31 - 40). To access the telephone
book concurrently, the reading threads use the std::shared_lock<std::shared_timed_mutex>> in line
23. This is in contrast to the writing threads, which need exclusive access to the critical section. The
exclusivity is given by the std::lock_guard<std::shared_timed_mutex>> in line 15. In the end, the
program displays the updated telephone book (lines 55 - 58).
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Reader-writer lock for reading and writing of a telephone book

The screenshot shows that the reading threads’ output overlaps while the writing threads are executed
one after the other. This means that the reading operations are performed at the same time.

That was easy. Too easy. The telephone book has undefined behavior.

3.3.2.4.1 Undefined behavior

The program has undefined behavior. To bemore precise it has a data race.What? Before you continue,
stop for a few seconds and think. By the way, the concurrent access to std::cout is not the issue.

The characteristic of a data race is that at least two threads access the shared variable simultaneously,
and at least one of them is a writer. This exact scenario may occur during program execution. One
of the associative containers’ features is that reading of the container using the index operator can
modify it. This happens if the element is not available in the container. If “Bjarne” is not found in the
telephone book, a pair (“Bjarne”, 0) is created from the read access. You can force the data race by
putting the printing of Bjarne in line 40 in front of all the threads (lines 31 - 40). Let’s have a look.

You can see it right at the top. Bjarne has the value 0.

The program has a data race
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An obvious way to fix this issue is to use only reading operations in the function printNumber:

Reader-writer locks resolved

1 // readerWriterLocksResolved.cpp

2

3 ...

4

5 void printNumber(const std::string& na){

6 std::shared_lock<std::shared_timed_mutex> readerLock(teleBookMutex);

7 auto searchEntry = teleBook.find(na);

8 if(searchEntry != teleBook.end()){

9 std::cout << searchEntry->first << ": " << searchEntry->second << '\n';

10 }

11 else {

12 std::cout << na << " not found!" << '\n';

13 }

14 }

15

16 ...

If a key is not in the telephone book, I just write the key and the text not found! to the console.
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Data race resolved

You can see the message Bjarne not found! in the second program execution. In the first program
execution, addToTeleBook is executed first; therefore, Bjarne is found.

3.3.3 std::lock

std::lock can lock its Lockables⁹ such as a mutex or a lock in an atomic step. A Lockable is a data
type that supports the member functions lock, unlock, and try_lock.std::lock is a variadic template
and can, therefore, accept an arbitrary number of arguments. std::lock tries to get all locks in one
atomic step using a deadlock avoidance algorithm. The Lockable are locked by an unspecified series
of calls to lock, try_lock, and unlock. If a call to lock causes an exception, unlock is called for any
locked Lockable before rethrowing.

Remember the deadlock from the subsection Issues of Mutexes?

⁹https://en.cppreference.com/w/cpp/named_req/Lockable

https://en.cppreference.com/w/cpp/named_req/Lockable
https://en.cppreference.com/w/cpp/named_req/Lockable
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Locking mutexes in different order

1 // deadlock.cpp

2

3 #include <iostream>

4 #include <chrono>

5 #include <mutex>

6 #include <thread>

7

8 struct CriticalData{

9 std::mutex mut;

10 };

11

12 void deadLock(CriticalData& a, CriticalData& b){

13

14 a.mut.lock();

15 std::cout << "get the first mutex" << '\n';

16 std::this_thread::sleep_for(std::chrono::milliseconds(1));

17 b.mut.lock();

18 std::cout << "get the second mutex" << '\n';

19 // do something with a and b

20 a.mut.unlock();

21 b.mut.unlock();

22

23 }

24

25 int main(){

26

27 CriticalData c1;

28 CriticalData c2;

29

30 std::thread t1([&]{deadLock(c1,c2);});

31 std::thread t2([&]{deadLock(c2,c1);});

32

33 t1.join();

34 t2.join();

35

36 }

Let’s solve the issue. The function deadLock has to lock its mutexes atomically, and that’s exactly what
happens in the following example.
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Delayed locking of mutexes
1 // deadlockResolved.cpp

2

3 #include <iostream>

4 #include <chrono>

5 #include <mutex>

6 #include <thread>

7

8 using namespace std;

9

10 struct CriticalData{

11 mutex mut;

12 };

13

14 void deadLock(CriticalData& a, CriticalData& b){

15

16 unique_lock<mutex> guard1(a.mut,defer_lock);

17 cout << "Thread: " << this_thread::get_id() << " first mutex" << '\n';

18

19 this_thread::sleep_for(chrono::milliseconds(1));

20

21 unique_lock<mutex> guard2(b.mut,defer_lock);

22 cout << " Thread: " << this_thread::get_id() << " second mutex" << '\n';

23

24 cout << " Thread: " << this_thread::get_id() << " get both mutex" << '\n';

25 lock(guard1,guard2);

26 // do something with a and b

27 }

28

29 int main(){

30

31 cout << '\n';

32

33 CriticalData c1;

34 CriticalData c2;

35

36 thread t1([&]{deadLock(c1,c2);});

37 thread t2([&]{deadLock(c2,c1);});

38

39 t1.join();

40 t2.join();

41

42 cout << '\n';

43

44 }



Multithreading 140

If you call the constructor of std::unique_lock with std::defer_lock, the underlying mutex is not
locked automatically. At this point (lines 16 and 21), the std::unique_lock is just the mutex owner.
Thanks to the variadic template std::lock, the lock operation is performed in an atomic step (line 25).

In this example, std::unique_lock manages the lifetime of the resources and std::lock locks the
associated mutex. You can do it the other way around. In the first step, the mutexes are locked. In
the second std::unique_lock manages the lifetime of resources. Here is an example of the second
approach.

std::lock(a.mut, b.mut);

std::lock_guard<std::mutex> guard1(a.mut, std::adopt_lock);

std::lock_guard<std::mutex> guard2(b.mut, std::adopt_lock);

Both variants resolve the deadlock.

Deadlock resolved with std::unique_lock
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Resolving the deadlock with a std::scoped_lock

With C++17, the resolution of the deadlock becomes quite easy.We have the std::scoped_-
lock that can lock an arbitrary number of mutexes atomically. You only have to use a
std::scoped_lock instead of the std::lock call. That’s all. Here is the modified function
deadlock.

Deadlock resolved with std::scoped_lock

1 // deadlockResolvedScopedLock.cpp

2

3 ...

4 void deadLock(CriticalData& a, CriticalData& b){

5

6 cout << "Thread: " << this_thread::get_id() << " first mutex" << '\n';

7 this_thread::sleep_for(chrono::milliseconds(1));

8 cout << " Thread: " << this_thread::get_id() << " second mutex" << '\n';

9 cout << " Thread: " << this_thread::get_id() << " get both mutex" << '\n';

10

11 std::scoped_lock(a.mut, b.mut);

12 // do something with a and b

13 }

14

15 ...

3.3.4 Thread-safe Initialization

If the variable is never modified, synchronization is no need by using an expensive lock or an atomic.
You only have to ensure that it is initialized in a thread-safe way.

There are three ways in C++ to initialize variables in a thread-safe way.

• Constant expressions

• The function std::call_once in combination with the flag std::once_flag

• A static variable with block scope

Thread-safe Initialization in the main thread
The easiest way to initialize a variable in a thread-safe way is to initialize the variable in
the main-thread before you create any child threads.
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3.3.4.1 Constant Expressions

Constant expressions are expressions that the compiler can evaluate at compile time. They are
implicitly thread-safe. Placing the keyword constexpr in front of a variable makes the variable a
constant expression. The constant expression must be initialized immediately.

constexpr double pi = 3.14;

Besides, user-defined types can also be constant expressions. For those types, there are a few
restrictions that must meet to initialize it at compile-time.

• They must not have virtual member functions or a virtual base class.

• Their constructor must be a constant expression.

• Every base class and each non-static member must be initialized.

• Their member functions, which should be callable at compile time, must be constant expres-
sions.

Instances of MyDouble satisfy all these requirements. So it is possible to instantiate them at compile
time. This instantiation is thread-safe.

User defined constant expressions

1 // constexpr.cpp

2

3 #include <iostream>

4

5 class MyDouble{

6 private:

7 double myVal1;

8 double myVal2;

9 public:

10 constexpr MyDouble(double v1, double v2): myVal1(v1), myVal2(v2){}

11 constexpr double getSum() const { return myVal1 + myVal2; }

12 };

13

14 int main() {

15

16 constexpr double myStatVal = 2.0;

17 constexpr MyDouble myStatic(10.5, myStatVal);

18 constexpr double sumStat = myStatic.getSum();

19

20 }
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3.3.4.2 std::call_once and std::once_flag

By using the std::call_once function, you can register a callable. The std::once_flag ensures that
only one registered function is invoked. You can register additional functions via the same std::once_-
flag. Only one function from that group is called.

std::call_once obeys the following rules:

• Exactly one execution of exactly one of the functions is performed. It is undefined which
function is selected for execution. The selected function runs in the same thread as the
std::call_once invocation it was passed to.

• No invocation in the group returns before the execution mentioned above of the selected
function completes successfully.

• If the selected function exits via an exception, it is propagated to the caller. Another function is
then selected and executed.

The short example demonstrates the application of std::call_once and the std::once_flag. Both of
them are declared in the header <mutex>.

Use of std::call_once and the std::once_flag

1 // callOnce.cpp

2

3 #include <iostream>

4 #include <thread>

5 #include <mutex>

6

7 std::once_flag onceFlag;

8

9 void do_once(){

10 std::call_once(onceFlag, [](){ std::cout << "Only once." << '\n'; });

11 }

12

13 void do_once2(){

14 std::call_once(onceFlag, [](){ std::cout << "Only once2." << '\n'; });

15 }

16

17 int main(){

18

19 std::cout << '\n';

20

21 std::thread t1(do_once);

22 std::thread t2(do_once);

23 std::thread t3(do_once2);

24 std::thread t4(do_once2);

25
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26 t1.join();

27 t2.join();

28 t3.join();

29 t4.join();

30

31 std::cout << '\n';

32

33 }

The program starts with four threads (lines 21 - 24). Two of them invoke do_once and the other two
do_once2. The expected result is that the string “Only once” or the string “Only once2” is displayed
only once.

Usage of std::call_once and std::once_flag

The famous singleton pattern guarantees that only one instance of a class is created. This is a
challenging task in multithreading environments. Thanks to std::call_once and std::once_flag the
job is a piece of cake.

Now the singleton is initialized in a thread-safe way.

Singleton pattern with std::call_once and the std::once_flag

1 // singletonCallOnce.cpp

2

3 #include <iostream>

4 #include <mutex>

5

6 using namespace std;

7

8 class MySingleton{

9

10 private:

11 static once_flag initInstanceFlag;

12 static MySingleton* instance;

13 MySingleton() = default;

14 ~MySingleton() = default;

15
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16 static void initSingleton(){

17 instance = new MySingleton();

18 }

19

20 public:

21 MySingleton(const MySingleton&) = delete;

22 MySingleton& operator=(const MySingleton&) = delete;

23

24 static MySingleton* getInstance(){

25 call_once(initInstanceFlag, MySingleton::initSingleton);

26 return instance;

27 }

28

29 };

30

31 MySingleton* MySingleton::instance = nullptr;

32 once_flag MySingleton::initInstanceFlag;

33

34 int main(){

35

36 cout << '\n';

37

38 cout << "MySingleton::getInstance(): "<< MySingleton::getInstance() << '\n';

39 cout << "MySingleton::getInstance(): "<< MySingleton::getInstance() << '\n';

40

41 cout << '\n';

42

43 }

Let’s first review the static flag initInstanceFlag. It is declared in line 11 and initialized in line 17. The
static member function getInstance (lines 24 - 27) uses the flag initInstanceFlag to ensure that the
static member function initSingleton (line 16 - 18) is executed exactly once. The singleton is created
in the body of the member function.

default and delete

You can request special member functions from the compiler by using the keyword
default. These member functions are special because the compiler can create them for
us.

The result of annotating a member function with delete is that the compiler-generated
member function is not available and, therefore, cannot be called. If you try to use them,
you’ll get a compile-time error. Here are the details for the keywords default and delete¹⁰.

¹⁰https://isocpp.org/wiki/faq/cpp11-language-classes

https://isocpp.org/wiki/faq/cpp11-language-classes
https://isocpp.org/wiki/faq/cpp11-language-classes
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The MySingleton::getIstance() member function displays the address of the singleton.

Thread-safe implementation of the singleton with std::call_once and std::once_flag

3.3.4.3 Static Variables with Block Scope

Static variables with block scope are created exactly once and lazily. Lazily means that they are created
just at the moment of usage. This characteristic is the basis of the so-called Meyers Singleton, named
after Scott Meyers¹¹. This is by far the most elegant implementation of the singleton pattern in C++.
With C++11, static variables with block scope have an additional guarantee; they are initialized in a
thread-safe way.

Here is the thread-safe Meyers Singleton pattern.

The thread-safe Meyers Singleton pattern

1 // meyersSingleton.cpp

2

3 class MySingleton{

4 public:

5 static MySingleton& getInstance(){

6 static MySingleton instance;

7 return instance;

8 }

9 private:

10 MySingleton();

11 ~MySingleton();

12 MySingleton(const MySingleton&)= delete;

13 MySingleton& operator=(const MySingleton&)= delete;

14

15 };

16

17 MySingleton::MySingleton()= default;

18 MySingleton::~MySingleton()= default;

19

20 int main(){

21

¹¹https://en.wikipedia.org/wiki/Scott_Meyers

https://en.wikipedia.org/wiki/Scott_Meyers
https://en.wikipedia.org/wiki/Scott_Meyers
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22 MySingleton::getInstance();

23

24 }

Know your Compiler support for static
If you use the Meyers Singleton in a concurrent environment, be sure that your compiler
implements static variables with the C++11 thread-safe semantic. It happens quite often
that programmers rely on the C++11 semantic of static variables, but their compiler does
not support it. The result may be that more than one instance of a singleton is created.

thread_local data has no sharing issues.
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3.4 Thread-Local Data

Thread-local data, also known as thread-local storage, is created for each thread separately. It behaves
like static data because it’s bound for the thread’s lifetime and is created at its first usage. This means
that thread-local variables at namespace scope or as static class members are created before its first
use, and those thread-local variables declared in a function are created with its first use. Thread-local
data belongs exclusively to the thread.

Thread-local data

1 // threadLocal.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 thread_local std::string s("hello from ");

11

12 void addThreadLocal(std::string const& s2){

13

14 s += s2;

15 // protect std::cout

16 std::lock_guard<std::mutex> guard(coutMutex);

17 std::cout << s << '\n';

18 std::cout << "&s: " << &s << '\n';

19 std::cout << '\n';

20

21 }

22

23 int main(){

24

25 std::cout << '\n';

26

27 std::thread t1(addThreadLocal,"t1");

28 std::thread t2(addThreadLocal,"t2");

29 std::thread t3(addThreadLocal,"t3");

30 std::thread t4(addThreadLocal,"t4");

31

32 t1.join();

33 t2.join();

34 t3.join();

35 t4.join();
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36

37 std::cout << s << '\n';

38 std::cout << "&s: " << &s << '\n';

39

40 }

Using the keyword thread_local in line 10, the thread-local string s is created. Threads t1 - t4
(lines 27 - 30) use the function addThreadLocal (lines 12 - 21) as their work package. Threads get
as their argument the strings t1 to t4 respectively and add them to the thread-local string s. Also,
addThreadLocal displays the address of s in line 18. The main thread is also a thread and it gets its
own copy of s (line 37).

Thread-local data

The output of the program shows it implicitly in line 17 and explicitly in line 18. The thread-local string
is created for each thread t1 - t4, and the main thread. First, each output shows a new thread-local
string. Second, each string s has a different address.

I often discuss in my seminars: What is the difference between a static, a thread_local, and a local
variable? A static variable is bound to the lifetime of the main thread, a thread_local variable is
bound to the lifetime of its thread, and a local variable is bound to the lifetime of the scope in which
it was created. Here is a variation of the previous program threadLocal.cpp to make my point clear.
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State between function calls
1 // threadLocalState.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 thread_local std::string s("hello from ");

11

12 void first(){

13 s += "first ";

14 }

15

16 void second(){

17 s += "second ";

18 }

19

20 void third(){

21 s += "third";

22 }

23

24 void addThreadLocal(std::string const& s2){

25

26 s += s2;

27

28 first();

29 second();

30 third();

31 // protect std::cout

32 std::lock_guard<std::mutex> guard(coutMutex);

33 std::cout << s << '\n';

34 std::cout << "&s: " << &s << '\n';

35 std::cout << '\n';

36

37 }

38

39 int main(){

40

41 std::cout << '\n';

42

43 std::thread t1(addThreadLocal,"t1: ");

44 std::thread t2(addThreadLocal,"t2: ");
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45 std::thread t3(addThreadLocal,"t3: ");

46 std::thread t4(addThreadLocal,"t4: ");

47

48 t1.join();

49 t2.join();

50 t3.join();

51 t4.join();

52

53 }

In this variation to the previous program, the function addThreadLocal (line 24) invokes the functions
first, second, and third. Each of the function uses the thread_local string s to add its function name.
The key point of this variation is that the string s is used as a thread-local state between the function
called first, second, and third (lines 28 - 30). The output shows that the strings are independent.

Thread-local data

From a Single-Threaded to a Multithreaded Program.
Thread-local data helps to port a single-threaded program to amultithreaded environment.
If the global variables are thread-local, there is the guarantee that each thread gets its copy
of the data. Due to this fact, there is no shared mutable state which may cause a data race
resulting in undefined behavior.
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In contrast to thread-local data, condition variables are not easy to use.
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3.5 Condition Variables

Condition variables enable threads to be synchronized via messages. They need the <condition_-

variable> header. One thread acts as a sender, and the other as a receiver of the message. The receiver
waits for the notification from the sender. Typical use cases for condition variables are sender-receiver
or producer-consumer workflows.

A condition variable can be the sender but also the receiver of the message.

The member functions of the condition variable cv

Member function Description
cv.notify_one() Notifies a waiting thread.
cv.notify_all() Notifies all waiting threads.
cv.wait(lock, ...) Waits for the notification.
cv.wait_for(lock, relTime, ...) Waits for a time duration for the notification.
cv.wait_until(lock, absTime, ...) Waits until a time point for the notification.
cv.native_handle() Returns the native handle of this condition variable.

The subtle difference between cv.notify_one and cv.notify_all is that cv.notify_all notifies all
waiting threads. In contrast, cv.notify_one notifies only one of the waiting threads. The other
condition variables do stay in the wait state. Here is an example before we cover the gory details
- which are the three dots in the wait operations - of condition variables.

First usage of condition variables

1 // conditionVariable.cpp

2

3 #include <iostream>

4 #include <condition_variable>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex mutex_;

9 std::condition_variable condVar;

10

11 bool dataReady{false};

12

13 void doTheWork(){

14 std::cout << "Processing shared data." << '\n';

15 }

16

17 void waitingForWork(){

18 std::cout << "Worker: Waiting for work." << '\n';

19 std::unique_lock<std::mutex> lck(mutex_);

20 condVar.wait(lck, []{ return dataReady; });
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21 doTheWork();

22 std::cout << "Work done." << '\n';

23 }

24

25 void setDataReady(){

26 {

27 std::lock_guard<std::mutex> lck(mutex_);

28 dataReady = true;

29 }

30 std::cout << "Sender: Data is ready." << '\n';

31 condVar.notify_one();

32 }

33

34 int main(){

35

36 std::cout << '\n';

37

38 std::thread t1(waitingForWork);

39 std::thread t2(setDataReady);

40

41 t1.join();

42 t2.join();

43

44 std::cout << '\n';

45

46 }

The program has two child threads: t1 and t2. They get their work package waitingForWork and
setDataRead in lines 38 and 39. setDataReady notifies - using the condition variable condVar - that it
is done with the preparation of the work: condVar.notify_one(). While holding the lock, thread t1

waits for its notification: condVar.wait(lck, []{ return dataReady; }). The sender and receiver need
a lock. In the case of the sender, a std::lock_guard is sufficient because it calls lock and unlock only
once. In the receiver’s case, a std::unique_lock is necessary because it frequently locks and unlocks
its mutex.

Here is the output of the program.
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Synchronization of two threads with condition variables

std::condition_variable_any

std::condition_variable can only wait on an object of type std::unique_lock<mutex>

but std::condition_variable_any can wait on an user-supplied lock type that meets the
concept of BasicLockable¹². The generalised std::condition_variable_any supports the
same interface such as std::condition_variable.

3.5.1 The Predicate

Maybe you wonder why you need a predicate for the wait call because you can invoke wait without
a predicate. Let’s try it out.

Blocking condition variables

1 // conditionVariableBlock.cpp

2

3 #include <iostream>

4 #include <condition_variable>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex mutex_;

9 std::condition_variable condVar;

10

11 void waitingForWork(){

12

13 std::cout << "Worker: Waiting for work." << '\n';

14

15 std::unique_lock<std::mutex> lck(mutex_);

16 condVar.wait(lck);

¹²http://en.cppreference.com/w/cpp/concept/BasicLockable

http://en.cppreference.com/w/cpp/concept/BasicLockable
http://en.cppreference.com/w/cpp/concept/BasicLockable
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17 // do the work

18 std::cout << "Work done." << '\n';

19

20 }

21

22 void setDataReady(){

23

24 std::cout << "Sender: Data is ready." << '\n';

25 condVar.notify_one();

26

27 }

28

29 int main(){

30

31 std::cout << '\n';

32

33 std::thread t1(setDataReady);

34 std::thread t2(waitingForWork);

35

36 t1.join();

37 t2.join();

38

39 std::cout << '\n';

40

41 }

The first invocation of the program seems to work fine. The second invocation locks because the
notification call (line 25) happens before thread t2 (line 34) enters its waiting state (line 16).

Deadlock with condition variables

Now it is clear. The predicate is a kind of memory for the stateless condition variable; therefore,
the wait call always checks the predicate at first. Condition variables are a victim to two known
phenomena: lost wakeup and spurious wakeup.
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3.5.2 Lost Wakeup and Spurious Wakeup

Lost Wakeup

The lost wakeup phenomenon is that the sender sends its notification before the receiver gets to its wait
state. The consequence is that the notification is lost. The C++ standard describes condition variables
as a simultaneous synchronization mechanism: “The condition_variable class is a synchronization
primitive that can be used to block a thread, or multiple threads at the same time, …”. So the
notification gets lost, and the receiver is waiting and waiting and … .

Spurious Wakeup
The receiver may wake up, although no notification happened. At a minimum POSIX Threads¹³
and the Windows API¹⁴ can be victims of these phenomena. One reason for a spurious wakeup
can be a stolen wakeup. This means, before the awoken thread gets the chance to run, another
thread kicks in and runs.

3.5.3 The Wait Workflow

The waiting thread has quite a complicated workflow.

Here are the two fundamental lines 19 and 20 from the previous example conditionVariable.cpp.

std::unique_lock<std::mutex> lck(mutex_);

condVar.wait(lck, []{ return dataReady; });

The two lines are equivalent to the following four lines:

std::unique_lock<std::mutex> lck(mutex_);

while ( ![]{ return dataReady; }() ) {

condVar.wait(lck);

}

First, you have to distinguish between the first call of std::unique_lock<std::mutex> lck(mutex_)

and the notification of the condition variable: condVar.wait(lck).

• std::unique_lock<std::mutex> lck(mutex_): In the initial processing, the thread locks the
mutex and then check the predicate []{ return dataReady; }.

– If the call of the predicated evaluates to

* true: the thread continues its work.
* false: condVar.wait() unlocks the mutex and puts the thread in a waiting (blocking)
state

¹³https://en.wikipedia.org/wiki/POSIX_Threads
¹⁴https://en.wikipedia.org/wiki/Windows_API

https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/Windows_API
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• condVar.wait(lck): If the condition_variable condVar is waiting and gets a notification or a
spurious wakeup the following steps happen.

– The thread is unblocked and reacquires the lock on the mutex.
– The thread checks the predicate.
– If the call of the predicated evaluates to

* true: the thread continues its work.
* false: condVar.wait() unlocks the mutex and puts the thread in a waiting (blocking)
state.

Even if the shared variable is atomic, it must be modified under the mutex to correctly publish the
modification to the waiting thread.

Use a mutex to protect the shared variable
Even if you make dataReady an atomic, it must be modified under the mutex; if not the
modification to the waiting thread may be published but not correctly synchronized. This
race condition may cause a deadlock. What does that mean: published, but not correctly
synchronized. Let’s have a closer look at the wait workflow and assume that deadReady is
atomic and is modified, not protected by the mutex mutex_.

1 std::unique_lock<std::mutex> lck(mutex_);

2 while ( ![]{ return dataReady.load(); }() {

3 // time window

4 condVar.wait(lck);

5 }

Let me assume the notification is send while the condition variable condVar is not waiting.
This means the thread’s execution is in the source snippet between line 2 and 4 (see the
comment time window). The result is that the notification is lost. Afterward, the thread
goes back waiting and presumably sleeps forever.

This wouldn’t have happened if a mutex had protected ‘ dataReady‘. Because of the
synchronization with the mutex, the notification would only be sent if the condition
variable and, therefore, the receiver thread is waiting.

Inmost of the use-cases, tasks are the less error-proneway to synchronize threads. I compare condition
variables and tasks in the section Returning a Notification.
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3.6 Cooperative Interruption (C++20)

The additional functionality of the cooperative interruption thread is based on the std::stop_source,
std::stop_token, and the std::stop_callback classes. std::jthread and std::condition_variable_-

any support cooperative interruption by design.

First, why it is not a good idea to kill a thread?

Killing a Thread is Dangerous
Killing a thread is dangerous because you don’t know the state of the thread. Here are two
possible malicious outcomes.

• The thread is only half-done with its job. Consequently, you don’t know the state
of its job and, hence, the state of your program. You end with undefined behavior,
and all bets are off.

• The thread may be in a critical section and having locked a mutex. Killing a thread
while it locks a mutex ends with a high probability in a deadlock.

The std::stop_source, std::stop_token, and the std::stop_callback classes allows a thread to asyn-
chronously request an execution to stop or ask if an execution got a stop signal. The std::stop_token
can be passed to an operation and afterward be used to actively poll the token for a stop request or to
register a callback via std::stop_callback. The stop request is sent by a std::stop_source. This signal
affects all associated std::stop_token. The three classes std::stop_source, std::stop_token, and the
std::stop_callback share the ownership of an associated stop state.

In the next subsecions, I provide more details about cooperative interruption.

3.6.1 std::stop_source

You can construct a std::stop_source in two ways:

Constructors of std::stop_source

1 std::stop_source();

2 explicit std::stop_source(std::nostopstate_t) noexcept;

The default constructor (line 1) constructs a std::stop_source with a new stop state. The constructor
taking std::nostopstate_t (line 2) constructs an empty std::stop_source without associated stop
state.

The component std::stop_source src provides the following member functions for handling stop
requests.
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Member functions of std::stop_source src

Member function Description
std::stop_source src The default constructor creates a stop source with an associated stop

state.

std::stop_source src{nostopstate} Creates a stop_source without associated stop state.

src.get_token() If src.stop_possible(), returns a stop_token for the associated stop
state. Otherwise, returns a default-constructed (empty) stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and request_stop() was called by one of
the owners.

src.request_stop() Calls a stop request if src.stop_possible() and
!src.stop_requested(). Otherwise, the call has no effect.

The call src.get_token() returns the stop token stoken. Thanks to stoken you can check if a stop
request has beenmade or can bemade by its associated stop source src. The stop token stoken observes
the stop source src.

src.stop_requested() returns truewhen src has an associated stop state and was asked to stop earlier.

src.stop_possible() return false if there is no associated stop stare or no stop source anymore and
stop was never requested before.

The calls src.stop_possible(), src.stop_requested(), and src.request_stop() are thread-safe.

src.request_stop() of a stop source src is visible to all std::stop_token and registered callback of
the same associated stop state. Also, any std::condiction_variable_any waiting on the associated
std::stop_token() will be awoken. When a stop is requested, it cannot be withdrawn. src.request_-
stop() is successful and returns true if src‘ has an associated stop state and it was not requested
to stop before.

3.6.2 std::stop_token

std::stop_token is essentially a thread-safe “view” of the associated stop state. It is typically retrieved
from a std::jthread or a std::stop_source src via src.get_token(). This causes them share the same
associated stop state as the std::jthread or std::stop_source.

Thanks to the std::stop_token, you can check for the associated std::stop_source if a stop request
has been made.

The std::stop_token can also be passed to the constructor of std::stop_callback, or to the interrupt-
ible waiting functions of std::condition_variable_any.
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Member functions of std::stop_token stoken

Member function Description

std::stop_token stoken The default constructor creates a stop token with an associated stop state.

stoken.stop_possible() Returns true if stoken has an associated stop state.

stoken.stop_requested() true if request_stop() was called on the associated std::stop_source src,
otherwise false.

stoken.stop_possible() also returns true if the stop request has already been made.

stoken.stop_requested() returns true when the stop token has an associated stop state and has
already received a stop request.

If the std::stop_token should be temporarily disabled, you can replace it with a default-constructed
token. A default-constructed token has no associated stop state. The following code snippet shows
how to disable and enable a thread’s capability to accept stop requests.

Temporarily disable a stop token

1 std::jthread jthr([](std::stop_token stoken) {

2 ...

3 std::stop_token interruptDisabled;

4 std::swap(stoken, interruptDisabled);

5 ...

6 std::swap(stoken, interruptDisabled);

7 ...

8 }

std::stop_token interruptDisabled has no associated stop state. This means the thread jthr can
accept stop requests in all lines except 4 and 5.

3.6.3 std::stop_callback

A std::stop_callback models RAII. It’s constructor registers a callable for a stop token and it’s
destructor unregisters it. The following example shows the use of std::stop_callback.
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Use of callbacks

1 // invokeCallback.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <thread>

7 #include <vector>

8

9 using namespace std::literals;

10

11 auto func = [](std::stop_token stoken) {

12 int counter{0};

13 auto thread_id = std::this_thread::get_id();

14 std::stop_callback callBack(stoken, [&counter, thread_id] {

15 std::cout << "Thread id: " << thread_id

16 << "; counter: " << counter << '\n';

17 });

18 while (counter < 10) {

19 std::this_thread::sleep_for(0.2s);

20 ++counter;

21 }

22 };

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::vector<std::jthread> vecThreads(10);

29 for(auto& thr: vecThreads) thr = std::jthread(func);

30

31 std::this_thread::sleep_for(1s);

32

33 for(auto& thr: vecThreads) thr.request_stop();

34

35 std::cout << '\n';

36

37 }

Each of the ten threads invokes the lambda function func (lines 11 - 22). The callback in lines 14
- 17 displays the thread id and the local counter. Due to the 1-second sleeping of the main thread
and the sleeping of the child threads, the counter is four when the callbacks are invoked. The call
thr.request_stop() triggers the callback on each thread using the std::stop_token. The chapter The
Improved Thread std::jthread provides more details about cooperative interruption of a thread.
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Use of callbacks

The std::stop_callback constructor registers the callback function for the std::stop_token given
by the associated std::stop_source. This callback function is either invoked in the thread invoking
request_stop() or the thread constructing the std::stop_callback. If the request to stop happens prior
to the registration of the std::stop_callback, the callback is invoked in the thread constructing the
std::stop_callback. Otherwise, the callback is invoked in the thread invoking request_stop.

You can register more than one callback for one or more threads using the same std::stop_token. The
C++ standard provides no guarantee in which order they are executed.

Stop request arrives before the callback registration

1 // invokeCallbacks.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 using namespace std::literals;

8

9 void func(std::stop_token stopToken) {

10 std::this_thread::sleep_for(100ms);

11 for (int i = 0; i <= 9; ++i) {

12 std::stop_callback cb(stopToken, [i] { std::cout << i; });

13 }

14 std::cout << '\n';

15 }

16

17 int main() {
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18

19 std::cout << '\n';

20

21 std::jthread thr1 = std::jthread(func);

22 std::jthread thr2 = std::jthread(func);

23 thr1.request_stop();

24 thr2.request_stop();

25

26 std::cout << '\n';

27

28 }

Stop request arrives before the callback registration

The previous program invokeCallbacks.cpp illustrates when the stop request arrives before the
callback registration, and thus the child thread has to execute each handler during registration.

The following program, invokeCallbacksLoop.cpp, illustrates when the callback has been registered
before the stop request.

Stop request arrives after the callback registration

1 // invokeCallbacksLoop.cpp

2

3 #include <chrono>

4 #include <functional>

5 #include <iostream>

6 #include <list>

7 #include <stop_token>

8 #include <thread>

9

10 using namespace std::literals;

11
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12 using handler_t = std::function<void()>;

13 using callback_t = std::stop_callback<handler_t>;

14

15 void func(std::stop_token stopToken) {

16 std::list<callback_t> callbacks;

17 for (int i = 0; i <= 9; ++i) {

18 callbacks.emplace_back(stopToken, [i] { std::cout << i; });

19 }

20 std::this_thread::sleep_for(100ms);

21 std::cout << '\n';

22 }

23

24 int main() {

25

26 std::cout << '\n';

27

28 std::jthread thr1 = std::jthread(func);

29 std::jthread thr2 = std::jthread(func);

30 std::this_thread::sleep_for(50ms);

31 thr1.request_stop();

32 thr2.request_stop();

33

34 std::cout << '\n';

35

36 }

Stop request arrives after the callback registration

3.6.4 A General Mechanism to Send Signals

The pair std::stop_source and std::stop_token can be considered as a general mechanism to send a
signal. By copying the std::stop_token, you can send the signal to any entity executing something.
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In the following example, I use std::async, std::promise, std::thread, and std::jthread in various
combinations.

Sending a signal to various executing entities

1 // signalStopRequests.cpp

2

3 #include <iostream>

4 #include <thread>

5 #include <future>

6

7 using namespace std::literals;

8

9 void function1(std::stop_token stopToken, const std::string& str){

10 std::this_thread::sleep_for(1s);

11 if (stopToken.stop_requested()) std::cout << str << ": Stop requested\n";

12 }

13

14 void function2(std::promise<void> prom,

15 std::stop_token stopToken, const std::string& str) {

16 std::this_thread::sleep_for(1s);

17 std::stop_callback callBack(stopToken, [&str] {

18 std::cout << str << ": Stop requested\n";

19 });

20 prom.set_value();

21 }

22

23 int main() {

24

25 std::cout << '\n';

26

27 std::stop_source stopSource;

28

29 std::stop_token stopToken = std::stop_token(stopSource.get_token());

30

31 std::thread thr1 = std::thread(function1, stopToken, "std::thread");

32

33 std::jthread jthr = std::jthread(function1, stopToken, "std::jthread");

34

35 auto fut1 = std::async([stopToken] {

36 std::this_thread::sleep_for(1s);

37 if (stopToken.stop_requested()) std::cout << "std::async: Stop requested\n";

38 });

39

40 std::promise<void> prom;

41 auto fut2 = prom.get_future();
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42 std::thread thr2(function2, std::move(prom), stopToken, "std::promise");

43

44 stopSource.request_stop();

45 if (stopToken.stop_requested()) std::cout << "main: Stop requested\n";

46

47 thr1.join();

48 thr2.join();

49

50 std::cout << '\n';

51

52 }

Thanks to the stopSource (line 27), I can create the stopToken (line 29). Each running entity such
as std::thread (line 31), std::jthread (line 33), std::async (line 35), or std::promise (line 42). A
std::stop_token is cheap to copy. Line 44 triggers stopSource.request_stop. Also the main-thread (line
45) gets the signal. I use in this example std::jthread. std::jthread has explicit member functions
to deal with cooperative interruption more conveniently. Read more about it the following section
Joining Thread.

Sending a signal to various executing entities

You may wonder why the various executing entities sleep for one second (lines 10, 16, and 36) in the
previous program signalStopRequests.cpp? I want to be sure that the call stopSource.request_stop()
in line 44 has an effect. The execution entity such as the std::thread (line 31), the std::jthread (line
33), std:async (line 35), or std::promise (line 42) can be in one the following states, when the request
to stop is signaled.

• Not started: The call stopToken.stop_requested returns true when executed. The callback is
executed when stopSource.request_stop is signaled.

• Executing: The execution entity receives the signal. To take an effect, the stopSource.request_-
stop must happen before the running entity calls stopToken.stop_requested. Accordingly, the
stopSource.request_stop must happen before the callback is initialized.
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• Finished: The call stopSource.request_stop has no effect. The callback is not executed.

Let’s see what happens when I join the threads thr1 and thr2 before the call stopSource.request_stop
in the previous program signalStopRequests.cpp? Here are the lines 44 and 45 swapped with the lines
47 and 48.

Sending the signal too late

44 thr1.join();

45 thr2.join();

46

47 stopSource.request_stop();

48 if (stopToken.stop_requested()) std::cout << "main: Stop requested\n";

The swap of the lines affects that only the main-thread reacts to the signal.

Ignoring the signal if it is too late

3.6.5 Additional Functionality of std::jthread

A std::jthread is a std::thread with the additional functionality of cooperative interruption. To
support this functionality it has a std::stop_source.

The member functions of std::jthread jthr for stop-token handling

Member Function Description

jthr.get_stop_source() Returns a std::stop_source object associated with the
shared stop state.

jthr.get_stop_token() Returns a std::stop_token object associated with the
shared stop state.

jthr.request_stop() Requests execution stop via the shared stop state. Returns
true if the stop request was successful.



Multithreading 169

The section std::jthread provides the details about cooperative interruption of a std::jthread.

3.6.6 New wait Overloads for the condition_variable_any

std::condition_variable_any is a generalization of std::condition_variable¹⁵. std::condition_-

variable requires a std::unique_lock<std::mutex>, but std::condition_variable_any can operate on
any lock lo, supporting lo.lock() and lo.unlock.

The three wait variations to wait, wait_for, and wait_until of the std::condition_variable_any get
new overloads. They take a std::stop_token.

Three new wait overloads

1 template <class Predicate>

2 bool wait(Lock& lock,

3 stop_token stoken,

4 Predicate pred);

5

6 template <class Rep, class Period, class Predicate>

7 bool wait_for(Lock& lock,

8 stop_token stoken,

9 const chrono::duration<Rep, Period>& rel_time,

10 Predicate pred);

11

12 template <class Clock, class Duration, class Predicate>

13 bool wait_until(Lock& lock,

14 stop_token stoken,

15 const chrono::time_point<Clock, Duration>& abs_time,

16 Predicate pred);

These new overloads require a predicate. The presented versions ensure that the threads are notified if
a stop request for the passed std::stop_token stoken is signaled. The functions return a boolean that
indicates whether the predicate evaluates to true. This returned boolean is independent of whether a
stop was requested or whether the timeout was triggered. The three overloads are equivalent to the
following expressions:

¹⁵https://en.cppreference.com/w/cpp/thread/condition_variable

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
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Equivalent expression for the three overloads

// wait in lines 1 - 4

while (!stoken.stop_requested()) {

if (pred()) return true;

wait(lock);

}

return pred();

// wait_for in lines 6 - 10

return wait_until(lock,

std::move(stoken),

chrono::steady_clock::now() + rel_time,

std::move(pred)

);

// wait_until in lines 12 - 16

while (!stoken.stop_requested()) {

if (pred()) return true;

if (wait_until(lock, timeout_time) == std::cv_status::timeout) return pred();

}

return pred();

After the wait calls, you can check if a stop request happened.

Handle interrupts with wait

cv.wait(lock, stoken, predicate);

if (stoken.stop_requested()){

// interrupt occurred

}

The following example shows the use of a condition variable with a stop request.

Use of condition variable with a stop request

1 // conditionVariableAny.cpp

2

3 #include <condition_variable>

4 #include <thread>

5 #include <iostream>

6 #include <chrono>

7 #include <mutex>

8 #include <thread>

9

10 using namespace std::literals;
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11

12 std::mutex mut;

13 std::condition_variable_any condVar;

14

15 bool dataReady;

16

17 void receiver(std::stop_token stopToken) {

18

19 std::cout << "Waiting" << '\n';

20

21 std::unique_lock<std::mutex> lck(mut);

22 bool ret = condVar.wait(lck, stopToken, []{ return dataReady; });

23 if (ret) {

24 std::cout << "Notification received: " << '\n';

25 }

26 else{

27 std::cout << "Stop request received" << '\n';

28 }

29 }

30

31 void sender() {

32

33 std::this_thread::sleep_for(5ms);

34 {

35 std::lock_guard<std::mutex> lck(mut);

36 dataReady = true;

37 std::cout << "Send notification" << '\n';

38 }

39 condVar.notify_one();

40

41 }

42

43 int main(){

44

45 std::cout << '\n';

46

47 std::jthread t1(receiver);

48 std::jthread t2(sender);

49

50 t1.request_stop();

51

52 t1.join();

53 t2.join();

54

55 std::cout << '\n';
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56

57 }

The receiver thread (lines 17 - 29) is waiting for the notification of the sender thread (lines 31 - 41).
Before the sender thread sends its notification in line 39, the main thread triggered a stop request in
line 50. The output of the program shows that the stop request happened before the notification.

Sending a stop request to a condition variable
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3.7 Semaphores (C++20)

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource.
A counting semaphore is a semaphore that has a counter that is bigger than zero. The constructor
initializes the counter. Acquiring the semaphore decreases the counter, and releasing the semaphore
increases the counter. If a thread tries to acquire the semaphore when the counter is zero, the thread
will block until another thread increments the counter by releasing the semaphore.

Edsger W. Dijkstra invented semaphores
The Dutch computer scientist Edsger W. Dijkstra¹⁶ presented in 1965 the concept of a
semaphore. A semaphore is a data structure with a queue and a counter. The counter is
initialized to a value equal to or greater than zero. It supports the two operations wait

and signal. Operation wait acquires the semaphore and decreases the counter. It blocks
the thread from acquiring the semaphore if the counter is zero. Operation signal releases
the semaphore and increases the counter. Blocked threads are added to the queue to avoid
starvation¹⁷.

Originally, a semaphore was a railway signal.

Semaphore

The original uploader was AmosWolfe at English Wikipedia. - Transferred from en.wikipedia to
Commons., CC BY 2.0,¹⁸

C++20 supports a std::binary_semaphore, which is an alias for a std::counting_semaphore<1>. In this

¹⁶https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
¹⁷https://en.wikipedia.org/wiki/Starvation_(computer_science)
¹⁸https://commons.wikimedia.org/w/index.php?curid=1972304

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://commons.wikimedia.org/w/index.php?curid=1972304
https://commons.wikimedia.org/w/index.php?curid=1972304
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://commons.wikimedia.org/w/index.php?curid=1972304
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case, the least maximal value is 1. std::binary_semaphores can be used to implement locks¹⁹.

using binary_semaphore = std::counting_semaphore<1>;

In contrast to a std::mutex, a std::counting_semaphore is not bound to a thread. This means that the
acquire and release of a semaphore call can happen on different threads. The following table presents
the interface of a std::counting_semaphore.

Member functions of a std::counting_semaphore sem

Member function Description

std::semaphore sem{num} Creates a semaphore with the counter num.

sem.max() (static) Returns the maximum value of the counter.

sem.release(upd = 1) Increases counter by upd and subsequently unblocks threads acquiring
the semaphore sem.

sem.acquire() Decrements the counter by 1 or blocks until the counter is greater than
0.

sem.try_acquire() Tries to decrement the counter by 1 if it is greater than 0.

sem.try_acquire_for(relTime) Tries to decrement the counter by 1 or blocks for at most relTime if the
counter is 0.

sem.try_acquire_until(absTime) Tries to decrement the counter by 1 or blocks at most until absTime if
the counter is 0.

The constructor call std::counting_semaphore<10> sem(5) creates a semaphore sem with an at least
maximal value of 10 and a counter of 5. The call sem.max() returns the maximum possible value
of the internal counter. The following realations must hold for upd in sem.release(upd = 1):
update >= 0 and update + counter <= sem.max(). sem.try_aquire_for(relTime) needs a time
duration; the member function sem.try_acquire_until(absTime) needs a time point. The three calls
sem.try_acquire, sem.try_acquire_for, and sem.try_acquire_until return a boolean indicating the
success of the calls.

Semaphores are typically used in sender-receiver workflows. For example, initializing the semaphore
sem with 0 will block the receiver’s sem.acquire() call until the sender calls sem.release(). Conse-
quently, the receiver waits for the notification of the sender. One-time synchronization of threads
can easily be implemented using semaphores.

¹⁹https://en.cppreference.com/w/cpp/named_req/BasicLockable

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/BasicLockable


Multithreading 175

Thread synchronization with a std::counting_semaphore

1 // threadSynchronizationSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6 #include <vector>

7

8 std::vector<int> myVec{};

9

10 std::counting_semaphore<1> prepareSignal(0);

11

12 void prepareWork() {

13

14 myVec.insert(myVec.end(), {0, 1, 0, 3});

15 std::cout << "Sender: Data prepared." << '\n';

16 prepareSignal.release();

17 }

18

19 void completeWork() {

20

21 std::cout << "Waiter: Waiting for data." << '\n';

22 prepareSignal.acquire();

23 myVec[2] = 2;

24 std::cout << "Waiter: Complete the work." << '\n';

25 for (auto i: myVec) std::cout << i << " ";

26 std::cout << '\n';

27

28 }

29

30 int main() {

31

32 std::cout << '\n';

33

34 std::thread t1(prepareWork);

35 std::thread t2(completeWork);

36

37 t1.join();

38 t2.join();

39

40 std::cout << '\n';

41

42 }
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The std::counting_semaphore prepareSignal (line 10) can have the values 0 and 1. In the concrete
example, it’s initialized with 0 (line 10). This means, that the call prepareSignal.release() sets the
value to 1 (line 16) and unblocks the call prepareSignal.acquire() (line 22).

Thread synchronization with semaphores
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3.8 Latches and Barriers (C++20)

Latches and barriers are coordination types that enable some threads to block until a counter becomes
zero. At first, don’t confuse the new barriers with memory barriers, also known as fences. In C++20
we get latches and barriers in two variations: std::latch, and std::barrier. Concurrent invocations
of the member functions of a std::latch or a std::barrier produce no data race.

First, there are two questions:

1. What are the differences between these two mechanisms to coordinate threads? You can use
a std::latch only once, but you can use a std::barrier more than once. A std::latch helps
to manage one task by multiple threads. A std::barrier helps to manage repeated tasks by
multiple threads. Additionally, a std::barrier enables you to execute a function in the so-called
completion step. The completion step is the state when the counter becomes zero.

2. What use cases do latches and barriers support that cannot be done in C++11 and C++14 with
futures, threads, or condition variables combined with locks? Latches and barriers address no
new use cases, but they are a lot easier to use. They are also more performant because they
often use a lock-free mechanism internally.

3.8.1 std::latch

Now, let us have a closer look at the interface of a std::latch.

Member functions of a std::latch lat

Member function Description

std::latch lat{cnt} Creates a std::latch with counter cnt.

lat.count_down(upd = 1) Atomically decrements the counter by upd without blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();.

std::latch::max Returns the maximum value of the counter supported by the
implementation

The default value for upd is 1. When upd is greater than the counter or negative, the behavior is
undefined. The call lat.try_wait() never actually waits, as its name suggests.

The following program bossWorkers.cpp uses two std::latch to build a boss-workers workflow. I syn-
chronized the output to std::cout using the function synchronizedOut (line 13). This synchronization
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makes it easier to follow the workflow.

A boss-worker workflow using two std::latch

1 // bossWorkers.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <latch>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::latch goHome(1);

10

11 std::mutex coutMutex;

12

13 void synchronizedOut(const std::string s) {

14 std::lock_guard<std::mutex> lo(coutMutex);

15 std::cout << s;

16 }

17

18 class Worker {

19 public:

20 Worker(std::string n): name(n) { };

21

22 void operator() (){

23 // notify the boss when work is done

24 synchronizedOut(name + ": " + "Work done!\n");

25 workDone.count_down();

26

27 // waiting before going home

28 goHome.wait();

29 synchronizedOut(name + ": " + "Good bye!\n");

30 }

31 private:

32 std::string name;

33 };

34

35 int main() {

36

37 std::cout << '\n';

38

39 std::cout << "BOSS: START WORKING! " << '\n';

40

41 Worker herb(" Herb");

42 std::thread herbWork(herb);



Multithreading 179

43

44 Worker scott(" Scott");

45 std::thread scottWork(scott);

46

47 Worker bjarne(" Bjarne");

48 std::thread bjarneWork(bjarne);

49

50 Worker andrei(" Andrei");

51 std::thread andreiWork(andrei);

52

53 Worker andrew(" Andrew");

54 std::thread andrewWork(andrew);

55

56 Worker david(" David");

57 std::thread davidWork(david);

58

59 workDone.wait();

60

61 std::cout << '\n';

62

63 goHome.count_down();

64

65 std::cout << "BOSS: GO HOME!" << '\n';

66

67 herbWork.join();

68 scottWork.join();

69 bjarneWork.join();

70 andreiWork.join();

71 andrewWork.join();

72 davidWork.join();

73

74 }

The idea of the workflow is straightforward. The six workers herb, scott, bjarne, andrei, andrew,
and david (lines 41 - 57) have to fulfill their job. When each has finished his job, it counts down the
std::latch workDone (line 25). The boss (main-thread) is blocked in line 59 until the counter becomes
0. When the counter is 0, the boss uses the second std::latch goHome to signal its workers to go home.
In this case, the initial counter is 1 (line 9). The call goHome.wait() blocks until the counter becomes
0.
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A boss-worker workflow using two std::latch

When you think about this workflow, you may notice that it can be done without a boss. Here it is.

A worker’s workflow using a std::latch

1 // workers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <thread>

7

8 std::latch workDone(6);

9 std::mutex coutMutex;

10

11 void synchronizedOut(const std::string& s) {

12 std::lock_guard<std::mutex> lo(coutMutex);

13 std::cout << s;

14 }

15

16 class Worker {

17 public:

18 Worker(std::string n): name(n) { };
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19

20 void operator() () {

21 synchronizedOut(name + ": " + "Work done!\n");

22 workDone.arrive_and_wait(); // wait until all work is done

23 synchronizedOut(name + ": " + "See you tomorrow!\n");

24 }

25 private:

26 std::string name;

27 };

28

29 int main() {

30

31 std::cout << '\n';

32

33 Worker herb(" Herb");

34 std::thread herbWork(herb);

35

36 Worker scott(" Scott");

37 std::thread scottWork(scott);

38

39 Worker bjarne(" Bjarne");

40 std::thread bjarneWork(bjarne);

41

42 Worker andrei(" Andrei");

43 std::thread andreiWork(andrei);

44

45 Worker andrew(" Andrew");

46 std::thread andrewWork(andrew);

47

48 Worker david(" David");

49 std::thread davidWork(david);

50

51 herbWork.join();

52 scottWork.join();

53 bjarneWork.join();

54 andreiWork.join();

55 andrewWork.join();

56 davidWork.join();

57

58 }

There is not much to add to this simplified workflow. The call wordDone.arrive_and_wait() (line 22)
is equivalent to the calls count_down(upd); wait();. This means the workers coordinate themselves,
and the boss is no longer necessary, as was the case in the previous program bossWorkers.cpp.
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A workers workflow using a std::latch

A std::barrier is similar to a std::latch.

3.8.2 std::barrier

There are two differences between a std::latch and a std::barrier. First, you can use a std::barrier
more than once, and second, you can adjust the counter for the next phase. The counter is set in the
constructor of std::barrier bar. Calling bar.arrive(), bar.arrive_and_wait(), and bar.arrive_and_-

drop() decrements the counter in the current phase. Additionally, bar.arrive_and_drop() decrements
the counter for the next phase. Immediately after the current phase is finished and the counter
becomes zero, the so-called completion step starts. In this completion step, a callable is invoked. The
std::barrier gets its callable in its constructor.

The completion step performs the following steps:

1. All threads are blocked.

2. An arbitrary thread is unblocked and executes the callable. The callable must not throw and
has to be noexcept.

3. If the completion step is done, all threads are unblocked.
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Member functions of a std::barrier bar

Member function Description

std::barrier bar{cnt} Creates a std::batcj with counter cnt.

std::barrier bar{cnt, call} Creates a std::barrier with counter cnt and callable call.

bar.arrive(upd) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step is done.

bar.arrive_and_wait() Equivalent to wait(arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent phase by one.

std::barrier::max Maximum value supported by the implementation

The call bar.arrive_and_drop()means essentially that the counter is decremented by one for the next
phase.

The program fullTimePartTimeWorkers.cpp halves the number of workers in the second phase.

Full-time and part-time workers

1 // fullTimePartTimeWorkers.cpp

2

3 #include <iostream>

4 #include <barrier>

5 #include <mutex>

6 #include <string>

7 #include <thread>

8

9 std::barrier workDone(6);

10 std::mutex coutMutex;

11

12 void synchronizedOut(const std::string& s) noexcept {

13 std::lock_guard<std::mutex> lo(coutMutex);

14 std::cout << s;

15 }

16

17 class FullTimeWorker {

18 public:

19 FullTimeWorker(std::string n): name(n) { };

20

21 void operator() () {

22 synchronizedOut(name + ": " + "Morning work done!\n");
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23 workDone.arrive_and_wait(); // Wait until morning work is done

24 synchronizedOut(name + ": " + "Afternoon work done!\n");

25 workDone.arrive_and_wait(); // Wait until afternoon work is done

26

27 }

28 private:

29 std::string name;

30 };

31

32 class PartTimeWorker {

33 public:

34 PartTimeWorker(std::string n): name(n) { };

35

36 void operator() () {

37 synchronizedOut(name + ": " + "Morning work done!\n");

38 workDone.arrive_and_drop(); // Wait until morning work is done

39 }

40 private:

41 std::string name;

42 };

43

44 int main() {

45

46 std::cout << '\n';

47

48 FullTimeWorker herb(" Herb");

49 std::thread herbWork(herb);

50

51 FullTimeWorker scott(" Scott");

52 std::thread scottWork(scott);

53

54 FullTimeWorker bjarne(" Bjarne");

55 std::thread bjarneWork(bjarne);

56

57 PartTimeWorker andrei(" Andrei");

58 std::thread andreiWork(andrei);

59

60 PartTimeWorker andrew(" Andrew");

61 std::thread andrewWork(andrew);

62

63 PartTimeWorker david(" David");

64 std::thread davidWork(david);

65

66 herbWork.join();

67 scottWork.join();
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68 bjarneWork.join();

69 andreiWork.join();

70 andrewWork.join();

71 davidWork.join();

72

73 }

This workflow consists of two kinds of workers: full-time workers (line 17) and part-time workers
(line 32). The part-time worker works in the morning, the full-time worker in the morning and
the afternoon. Consequently, the full-time workers call workDone.arrive_and_wait() (lines 23 and
25) two times. On the contrary, the part-time workers call workDone.arrive_and_drop() (line 38)
only once. This workDone.arrive_and_drop() call causes the part-time worker to skip the afternoon
work. Accordingly, the counter has in the first phase (morning) the value 6, and in the second phase
(afternoon) the value 3.

Full-time and part-time workers
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3.9 Tasks

In addition to threads, C++ has tasks to performwork asynchronously. Tasks need the <future> header.
A task is parameterisedwith awork package and consists of two associated components: a promise and
a future. Both are connected via a data channel. The promise executes the work packages and puts the
result in the data channel; the associated future picks up the result. Both communication endpoints
can run in separate threads. It is special that the future can pick up the result later; therefore, the
calculation of the result by the promise is independent of the query of the result by the associated
future.

Regard tasks as data channels between communica-
tion endpoints
Tasks behave like data channels between communication endpoints. One endpoint of the
data channel is called the promise. The other endpoint of the data channel is called the
future. These endpoints can exist in the same or different threads. The promise puts its
result in the data channel. The future picks it up later.

Tasks as data channels between communication endpoints

3.9.1 Tasks versus Threads

Tasks are very different threads.
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std:async versus threads

1 // asyncVersusThread.cpp

2

3 #include <future>

4 #include <thread>

5 #include <iostream>

6

7 int main(){

8

9 std::cout << '\n';

10

11 int res;

12 std::thread t([&]{ res = 2000 + 11; });

13 t.join();

14 std::cout << "res: " << res << '\n';

15

16 auto fut= std::async([]{ return 2000 + 11; });

17 std::cout << "fut.get(): " << fut.get() << '\n';

18

19 std::cout << '\n';

20

21 }

The child thread t and the asynchronous function call std::async calculate both the sum of 2000 and
11. The creator thread gets the result from its child thread t via the shared variable res and displays
it in line 14. The call std::async in line 16 creates the data channel between the sender (promise) and
the receiver (future). The future asks the data channel with fut.get() (line 17) for the calculation.
This fut.get call is blocking.

Here is the output of the program.

Tasks versus threads

Based on this program, I want to emphasize the differences between threads and tasks explicitly.
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Tasks versus threads

Criteria Threads Tasks

Participants creator and child thread promise and future

Communication shared variable communication channel

Thread creation obligatory optional

Synchronization via join() (waits) get call blocks

Exception in child thread child and creator threads terminates return value of the promise

Kinds of communication values values, notifications, and exceptions

Threads need the <thread> header; tasks the <future> header.

Communication between the creator thread and the created thread requires the use of a shared
variable. The task communicates via its implicitly protected data channel; therefore, a task must not
use a protection mechanism like a mutex.

While you can misuse a shared mutable variable to communicate between the child and its creator, a
task’s communication is more explicit. The future can request the task’s result only once (by calling
fut.get()). Calling it more than once results in undefined behavior. This is not true for a std::shared_-
future, which can be queried multiple times.

The creator thread waits for its child with the call to join. The future fut uses the fut.get() call
which blocks until the result is available.

If an exception is thrown in the created thread, the created thread terminates and so the creator and
the whole process. In contrast, the promise can send the exception to the future, which has to handle
the exception.

A promise can serve one or many futures. It can send a value, an exception, or just a notification. You
can use them as a safe replacement for a condition variable.

std::async is the easiest way to create a future.

3.9.2 std::async

std::async behaves like an asynchronous function call. This function call takes a callable together
with its arguments. std::async is a variadic template and can, therefore, take an arbitrary number of
arguments. The call to std::async returns a future object fut. That’s your handle on getting the result
via fut.get().
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std::async should be your first choice
TheC++ runtime decides if std::async is executed in a separate thread or not. The decision
of the C++ runtime may depend on the number of CPU cores available, the utilization of
your system, or the size of your work package. By using std::async you only specify the
task that should run. The C++ runtime automatically manages the creation and also the
lifetime of the thread.

Optionally you can specify a start policy for std::async.

3.9.2.1 The Start Policy

With the start policy, you can explicitly specify whether the asynchronous call should be executed in
the same thread (std::launch::deferred) or in another thread (std::launch::async).

Eager versus lazy evaluation
Eager and lazy evaluation are two orthogonal strategies to calculate the result of an
expression. In the case of eager evaluation²⁰, the expression is evaluated immediately - in
the case of lazy evaluation²¹ the expression is only be evaluated if needed. Eager evaluation
is often called greedy evaluation, and lazy evaluation is often called call-by-need. With
lazy evaluation, you save time and compute power because there is no evaluation on
suspicion.

It is special about the call auto fut = std::async(std::launch::deferred, ... ) that the promise is
not be executed immediately. The call fut.get() starts the promise lazily. This means that the promise
only runs if the future asks via fut.get() for the result.

Eager and lazy evaluation of a future

1 // asyncLazy.cpp

2

3 #include <chrono>

4 #include <future>

5 #include <iostream>

6

7 int main(){

8

9 std::cout << '\n';

10

11 auto begin= std::chrono::system_clock::now();

12

²⁰https://en.wikipedia.org/wiki/Eager_evaluation
²¹https://en.wikipedia.org/wiki/Lazy_evaluation

https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Eager_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
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13 auto asyncLazy=std::async(std::launch::deferred,

14 []{ return std::chrono::system_clock::now(); });

15

16 auto asyncEager=std::async(std::launch::async,

17 []{ return std::chrono::system_clock::now(); });

18

19 std::this_thread::sleep_for(std::chrono::seconds(1));

20

21 auto lazyStart= asyncLazy.get() - begin;

22 auto eagerStart= asyncEager.get() - begin;

23

24 auto lazyDuration= std::chrono::duration<double>(lazyStart).count();

25 auto eagerDuration= std::chrono::duration<double>(eagerStart).count();

26

27 std::cout << "asyncLazy evaluated after : " << lazyDuration

28 << " seconds." << '\n';

29 std::cout << "asyncEager evaluated after: " << eagerDuration

30 << " seconds." << '\n';

31

32 std::cout << '\n';

33

34 }

Both std::async calls (lines 13 and 16) return the current time point. However, the first call is
lazy while the second eager. The short sleep of one second in line 19 makes that obvious. The call
asyncLazy.get() in line 21 triggers the execution of the promise in line 13 - the result is available after
a short nap of one second (line 19). This is not true for asyncEager, which gets the result from the
immediately executed work package.

Here are the numbers.

Lazy versus eager evaluation

You do not have to bind a future to a variable.



Multithreading 191

3.9.2.2 Fire and Forget

Fire and forget futures are special futures. They execute just in place because their future is not bound
to a variable. It is necessary for a fire-and-forget future that the promise runs in a separate thread to
immediately start its work. This is done by the std::launch::async policy.

Let’s compare an ordinary future with a fire and forget future.

auto fut= std::async([]{ return 2011; });

std::cout << fut.get() << '\n';

std::async(std::launch::async,

[]{ std::cout << "fire and forget" << '\n'; });

Fire and forget futures look very promising but have a big drawback. A future that is created by
std::async waits on its destructor, until its promise is done. In this context, waiting is not very
different from blocking. The future blocks the progress of the program in its destructor. This becomes
more evident when you use fire and forget futures. What seems to be concurrent runs sequentially.

Fire and forget futures

1 // fireAndForgetFutures.cpp

2

3 #include <chrono>

4 #include <future>

5 #include <iostream>

6 #include <thread>

7

8 int main(){

9

10 std::cout << '\n';

11

12 std::async(std::launch::async, []{

13 std::this_thread::sleep_for(std::chrono::seconds(2));

14 std::cout << "first thread" << '\n';

15 });

16

17 std::async(std::launch::async, []{

18 std::this_thread::sleep_for(std::chrono::seconds(1));

19 std::cout << "second thread" << '\n';}

20 );

21

22 std::cout << "main thread" << '\n';

23

24 std::cout << '\n';
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25

26 }

The program executes two promises in their threads. The resulting futures are fire and forget futures.
These futures block in their destructors until the associated promise is done. The result is that the
promises are executed in the sequence which you find in the source code. The execution sequence is
independent of the execution time. This is what you see in the output of the program.

Fire and forget futures

std::async is a convenient mechanism used to distribute a bigger compute job on more shoulders.

3.9.2.3 Concurrent Calculation

The calculation of the scalar product can be spread across four asynchronous function calls.

Dot product with four futures

1 // dotProductAsync.cpp

2

3 #include <iostream>

4 #include <future>

5 #include <random>

6 #include <vector>

7 #include <numeric>

8

9 using namespace std;

10

11 static const int NUM= 100000000;

12

13 long long getDotProduct(vector<int>& v, vector<int>& w){

14

15 auto vSize = v.size();

16

17 auto future1 = async([&]{
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18 return inner_product(&v[0], &v[vSize/4], &w[0], 0LL);

19 });

20

21 auto future2 = async([&]{

22 return inner_product(&v[vSize/4], &v[vSize/2], &w[vSize/4], 0LL);

23 });

24

25 auto future3 = async([&]{

26 return inner_product(&v[vSize/2], &v[vSize* 3/4], &w[vSize/2], 0LL);

27 });

28

29 auto future4 = async([&]{

30 return inner_product(&v[vSize * 3/4], &v[vSize], &w[vSize * 3/4], 0LL);

31 });

32

33 return future1.get() + future2.get() + future3.get() + future4.get();

34 }

35

36

37 int main(){

38

39 cout << '\n';

40

41 random_device seed;

42

43 // generator

44 mt19937 engine(seed());

45

46 // distribution

47 uniform_int_distribution<int> dist(0, 100);

48

49 // fill the vectors

50 vector<int> v, w;

51 v.reserve(NUM);

52 w.reserve(NUM);

53 for (int i=0; i< NUM; ++i){

54 v.push_back(dist(engine));

55 w.push_back(dist(engine));

56 }

57

58 cout << "getDotProduct(v, w): " << getDotProduct(v, w) << '\n';

59

60 cout << '\n';

61

62 }
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The program uses the functionality of the random library that is part of C++11. The two vectors v and
w are created and filled with random numbers (lines 50 - 56). Each of the vectors gets (lines 53 - 56)
one hundred million elements. dist(engine) in lines 54 and 55 generates the random numbers, which
are uniformly distributed in the range 0 to 100. The calculation of the scalar product takes place in
getDotProduct (lines 13 - 34). The standard algorithm std::inner_product is executed asynchronously
four times: one asynchronous invocation for each quarter of the vectors’ length. The return statement
sums up the results of the futures.

Scalar product with four asynchronous function calls

std::packaged_task is also usually used to perform a concurrent computation.

3.9.3 std::packaged_task

std::packaged_task pack is a wrapper for a callable in order to be invoked asynchronously. By calling
pack.get_future() you get the associated future. Invoking the call operator on pack (pack()) executes
the std::packaged_task and, therefore, executes the callable.

Dealing with std::packaged_task usually consists of four steps:

I. Wrap your work:

std::packaged_task<int(int, int)> sumTask([](int a, int b){ return a + b; });

II. Create a future:

std::future<int> sumResult= sumTask.get_future();

III. Perform the calculation:

sumTask(2000, 11);

IV. Query the result:
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sumResult.get();

Here is an example showing the four steps.

Concurrency with std::packaged_task

1 // packagedTask.cpp

2

3 #include <utility>

4 #include <future>

5 #include <iostream>

6 #include <thread>

7 #include <deque>

8

9 class SumUp{

10 public:

11 int operator()(int beg, int end){

12 long long int sum{0};

13 for (int i = beg; i < end; ++i ) sum += i;

14 return sum;

15 }

16 };

17

18 int main(){

19

20 std::cout << '\n';

21

22 SumUp sumUp1;

23 SumUp sumUp2;

24 SumUp sumUp3;

25 SumUp sumUp4;

26

27 // wrap the tasks

28 std::packaged_task<int(int, int)> sumTask1(sumUp1);

29 std::packaged_task<int(int, int)> sumTask2(sumUp2);

30 std::packaged_task<int(int, int)> sumTask3(sumUp3);

31 std::packaged_task<int(int, int)> sumTask4(sumUp4);

32

33 // create the futures

34 std::future<int> sumResult1 = sumTask1.get_future();

35 std::future<int> sumResult2 = sumTask2.get_future();

36 std::future<int> sumResult3 = sumTask3.get_future();

37 std::future<int> sumResult4 = sumTask4.get_future();

38

39 // push the tasks on the container

40 std::deque<std::packaged_task<int(int,int)>> allTasks;
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41 allTasks.push_back(std::move(sumTask1));

42 allTasks.push_back(std::move(sumTask2));

43 allTasks.push_back(std::move(sumTask3));

44 allTasks.push_back(std::move(sumTask4));

45

46 int begin{1};

47 int increment{2500};

48 int end = begin + increment;

49

50 // perform each calculation in a separate thread

51 while (not allTasks.empty()){

52 std::packaged_task<int(int, int)> myTask = std::move(allTasks.front());

53 allTasks.pop_front();

54 std::thread sumThread(std::move(myTask), begin, end);

55 begin = end;

56 end += increment;

57 sumThread.detach();

58 }

59

60 // pick up the results

61 auto sum = sumResult1.get() + sumResult2.get() +

62 sumResult3.get() + sumResult4.get();

63

64 std::cout << "sum of 0 .. 10000 = " << sum << '\n';

65

66 std::cout << '\n';

67

68 }

The program’s purpose is to calculate the sum of all numbers from 0 to 10000 - with the help of four
std::packaged_task each running in a separate thread. The associated futures are used, to sum up the
final result. Of course, you can use the Gaußschen Summenformel²². Strange, I didn’t find an English
web page.

I. Wrap the tasks: I pack the work packages in std::packaged_task (lines 28 - 31) objects. Work
packages are instances of the class SumUp (lines 9 - 16). The work is done in the call operator (lines
11 - 15). The call operator sums up all numbers from beg to end - 1 and returns the sum as a result.
std::packaged_task in lines 28 - 31 can deal with callables that need two ints and return an int:
int(int, int).

II. Create the futures: I have to create the future objects with the help of std::packaged_task objects.
This is done in the lines 34 to 37. The packaged_task is the promise in the communication channel.
The type of the future is defined explicitly: std::future<int> sumResult1 = sumTask1.get_future(),
but the compiler can do that job for me: auto sumResult1 = sumTask1.get_future().

²²https://de.wikipedia.org/wiki/Gau%C3%9Fsche_Summenformel

https://de.wikipedia.org/wiki/Gau%C3%9Fsche_Summenformel
https://de.wikipedia.org/wiki/Gau%C3%9Fsche_Summenformel
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III. Perform the calculations: Now, the calculation takes place. The packaged_task aremoved onto the
std::deque²³ (lines 40 - 44). In the while loop, each packaged_task (lines 51 - 58) is executed. For doing
that, I move the head of the std::deque in a std::packaged_task (line 52), move the packaged_task in
a new thread (line 54), and let it run in the background (line 57). std::packaged_task objects are not
copyable. That’s the reason I used the move semantic in lines 52 and 54. This restriction holds for all
promises, but also futures and threads. There is one exception to this rule: std::shared_future.

IV. Pick up the results: In the final step, I ask all futures for their value and sum them up (line 61).

Here is the overall result of the concurrent computation.

Summation with std::packaged_task

The following table shows the interface of anstd::packaged_task pack.

The member functions of the std::packaged_task

Member function Description

pack.swap(pack2) Swaps the task objects. Same as std::swap(pack, pack2).

pack.valid() Checks if the task object has a valid function.

pack.get_future() Returns the future.

pack.make_ready_at_thread_exit(ex) Executes the function. The result is available if the current thread
exits.

pack.reset() Resets the state of the task. Abandons the stored results from
previous executions.

A std::packaged_task can be in contrast to a std::async, or a std::promise reset and resused. The
following example shows this special use-case on a std::packaged_task.

²³http://en.cppreference.com/w/cpp/container/deque

http://en.cppreference.com/w/cpp/container/deque
http://en.cppreference.com/w/cpp/container/deque
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Reuse of a std::packaged_task

1 // packagedTaskReuse.cpp

2

3 #include <functional>

4 #include <future>

5 #include <iostream>

6 #include <utility>

7 #include <vector>

8

9 void calcProducts(std::packaged_task<int(int, int)>& task,

10 const std::vector<std::pair<int, int>>& pairs){

11 for (auto& pair: pairs){

12 auto fut = task.get_future();

13 task(pair.first, pair.second);

14 std::cout << pair.first << " * " << pair.second << " = " << fut.get()

15 << '\n';

16 task.reset();

17 }

18 }

19

20 int main(){

21

22 std::cout << '\n';

23

24 std::vector<std::pair<int, int>> allPairs;

25 allPairs.push_back(std::make_pair(1, 2));

26 allPairs.push_back(std::make_pair(2, 3));

27 allPairs.push_back(std::make_pair(3, 4));

28 allPairs.push_back(std::make_pair(4, 5));

29

30 std::packaged_task<int(int, int)> task{[](int fir, int sec){

31 return fir * sec; }

32 };

33

34 calcProducts(task, allPairs);

35

36 std::cout << '\n';

37

38 std::thread t(calcProducts, std::ref(task), allPairs);

39 t.join();

40

41 std::cout << '\n';

42

43 }
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The function calcProducts (line 9) gets two arguments: the task and the int-pairs vector. It uses the task
to calculate for each int-pair the product (line 13). In the end, the task is reset in line 16. calcProducts
runs in the main-thread (line 34) and a separate thread (line 38). Here is the output of the program.

Reuse of a std::packaged_task

3.9.4 std::promise and std::future

The class templates std::promise and std::future provide you with full control over the task.

Promise and future are a mighty pair. A promise can put a value, an exception, or simply a notification
into the shared data channel. One promise can serve many std::shared_future futures. With C++23
we may get extended futures that are composable.

Here is an introductory example of the usage of std::promise and std::future. Both communication
endpoints can be moved to separate threads, so the communication takes place between threads.

Usage of std::promise and std::future

1 // promiseFuture.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <thread>

6 #include <utility>

7

8 void product(std::promise<int>&& intPromise, int a, int b){

9 intPromise.set_value(a*b);
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10 }

11

12 struct Div{

13

14 void operator() (std::promise<int>&& intPromise, int a, int b) const {

15 intPromise.set_value(a/b);

16 }

17

18 };

19

20 int main(){

21

22 int a = 20;

23 int b = 10;

24

25 std::cout << '\n';

26

27 // define the promises

28 std::promise<int> prodPromise;

29 std::promise<int> divPromise;

30

31 // get the futures

32 std::future<int> prodResult = prodPromise.get_future();

33 std::future<int> divResult = divPromise.get_future();

34

35 // calculate the result in a separate thread

36 std::thread prodThread(product, std::move(prodPromise), a, b);

37 Div div;

38 std::thread divThread(div, std::move(divPromise), a, b);

39

40 // get the result

41 std::cout << "20*10 = " << prodResult.get() << '\n';

42 std::cout << "20/10 = " << divResult.get() << '\n';

43

44 prodThread.join();

45

46 divThread.join();

47

48 std::cout << '\n';

49

50 }

Thread prodThread (line 36) gets the function product (lines 8 -10), the prodPromise (line 32) and the
numbers a and b. To understand the arguments of prodThread, you have to look at the signature of the
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function. prodThread needs as its first argument a callable. This is the previously mentioned function
product. The function product requires a promise of the kind rvalue reference (std::promise<int>&&
intPromise) and two numbers. These are the last three arguments of prodThread. std::move in line 36
creates an rvalue reference. The rest is a piece of cake. divThread (line 38) divides the two numbers
a and b. For its work, it uses the instance div of the class Div (lines 12 - 18). div is an instance of a
function object.

The future picks up the results by calling prodResult.get() and divResult.get().

Division and multiplication with tasks

3.9.4.1 std::promise

std::promise enables you to set a value, a notification, or an exception. Besides, the promise can
provide its result in a delayed fashion.

The member functions of the std::promise prom

Member function Description

prom.swap(prom2) Swaps the promises. Same as std::swap(prom, prom2).

prom.get_future() Returns the future.

prom.set_value(val) Sets the value.

prom.set_exception(ex) Sets the exception.

prom.set_value_at_thread_exit(val) Stores the value and makes it ready if the promise exits.

prom.set_exception_at_thread_exit(ex) Stores the exception and makes it ready if the promise exits.

If the promise sets the value or the exception more than once, a std::future_error exception is
thrown.

3.9.4.2 std::future

A std::future enables you to
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• pick up the value from the promise.

• ask the promise if the value is available.

• wait for the notification of the promise. This waiting can be done with a relative time duration
or an absolute time point.

• create a shared future (std::shared_future).

The member functions of the future fut

Member function Description

fut.share() Returns a std::shared_future. After calling fut.share(), fut.valid() returns
false.

fut.get() Returns the result, which can be a value or an exception.

fut.valid() Checks if the shared state is available. After calling fut.get() it returns false.

fut.wait() Waits for the result.

fut.wait_for(relTime) Waits for the result, but not longer than for a relTime. Returns a
std::future_status.

fut.wait_until(absTime) Waits for the result, but not longer than until abstime. Returns a
std::future_status.

In contrast to the wait call, the wait_forand wait_until variants return the status of the future.

3.9.4.2.1 std::future_status

The wait_for and wait_until calls of the future and a shared future return its state. Three states are
possible:

State of a future or a shared future

enum class future_status {

ready,

timeout,

deferred

};

The following table describe each possible state:
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The state of a future or a shared future

State Description

deferred The function has not been started.

ready The result is ready.

timeout The timeout has expired.

Thanks to the wait_for or wait_until variants of a future, your future can wait until its associated
promise is done.

Waiting for the promise

1 // waitFor.cpp

2

3 #include <iostream>

4 #include <future>

5 #include <thread>

6 #include <chrono>

7

8 using namespace std::literals::chrono_literals;

9

10 void getAnswer(std::promise<int> intPromise){

11 std::this_thread::sleep_for(3s);

12 intPromise.set_value(42);

13 }

14

15 int main(){

16

17 std::cout << '\n';

18

19 std::promise<int> answerPromise;

20 auto fut = answerPromise.get_future();

21

22 std::thread prodThread(getAnswer, std::move(answerPromise));

23

24 std::future_status status{};

25 do {

26 status = fut.wait_for(0.2s);

27 std::cout << "... doing something else" << '\n';

28 } while (status != std::future_status::ready);

29

30 std::cout << '\n';

31
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32 std::cout << "The Answer: " << fut.get() << '\n';

33

34 prodThread.join();

35

36 std::cout << '\n';

37

38 }

While the future fut is waiting for the promise, it can perform something else.

Waiting for the promise

If a future fut asks for the result more than once, a std::future_error exception is thrown.

There is a one-to-one relationship between the promise and the future. In contrast, std::shared_future
supports a one-to-many relationship between a promise and many futures.

3.9.5 std::shared_future

There are two ways to create a std::shared future.
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1. You can take the future from the Promise prom by a std::shared_future: std::shared_-

future<int> fut = prom.get_future().

2. You can either invoke fut.share() on a future fut. After the fut.share() call fut.valid()
returns false.

A shared future is associated with its promise and can independently ask for the result. A std::shared

future has the same interface as a std::future.

In addition to the std::future, a std::shared_future enables you to query the promise independently
of the other associated futures.

The handling of a std::shared_future is special. The following program creates directly a std::shared_-
future.

Taking a future with a std::shared_future

1 // sharedFuture.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <thread>

6 #include <utility>

7

8 std::mutex coutMutex;

9

10 struct Div{

11

12 void operator()(std::promise<int>&& intPromise, int a, int b){

13 intPromise.set_value(a/b);

14 }

15

16 };

17

18 struct Requestor{

19

20 void operator ()(std::shared_future<int> shaFut){

21

22 // lock std::cout

23 std::lock_guard<std::mutex> coutGuard(coutMutex);

24

25 // get the thread id

26 std::cout << "threadId(" << std::this_thread::get_id() << "): " ;

27

28 std::cout << "20/10= " << shaFut.get() << '\n';

29

30 }

31
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32 };

33

34 int main(){

35

36 std::cout << '\n';

37

38 // define the promises

39 std::promise<int> divPromise;

40

41 // get the futures

42 std::shared_future<int> divResult = divPromise.get_future();

43

44 // calculate the result in a separat thread

45 Div div;

46 std::thread divThread(div, std::move(divPromise), 20, 10);

47

48 Requestor req;

49 std::thread sharedThread1(req, divResult);

50 std::thread sharedThread2(req, divResult);

51 std::thread sharedThread3(req, divResult);

52 std::thread sharedThread4(req, divResult);

53 std::thread sharedThread5(req, divResult);

54

55 divThread.join();

56

57 sharedThread1.join();

58 sharedThread2.join();

59 sharedThread3.join();

60 sharedThread4.join();

61 sharedThread5.join();

62

63 std::cout << '\n';

64

65 }

Both work packages of the promise and the future are function objects in this current example. In
line 46 divPromise is moved and executed in thread divThread. Accordingly, std::shared_future’s
are copied in all five threads (lines 49 - 53). It’s important to emphasize it once more. In contrast to a
std::future object that can only be moved, you can copy a std::shared_future object.

The main thread waits in lines 57 to 61 for its child threads to finish their jobs and to display their the
results.
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Taking a std::shared_future

As I previously mentioned, you can create a std::shared_future from a std::future by using its
member function share.

Creating a std::shared_future from a std::future

1 // sharedFutureFromFuture.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <thread>

6 #include <utility>

7

8 std::mutex coutMutex;

9

10 struct Div{

11

12 void operator()(std::promise<int>&& intPromise, int a, int b){

13 intPromise.set_value(a/b);

14 }

15

16 };

17

18 struct Requestor{

19

20 void operator ()(std::shared_future<int> shaFut){

21

22 // lock std::cout

23 std::lock_guard<std::mutex> coutGuard(coutMutex);

24

25 // get the thread id

26 std::cout << "threadId(" << std::this_thread::get_id() << "): " ;

27



Multithreading 208

28 std::cout << "20/10= " << shaFut.get() << '\n';

29

30 }

31

32 };

33

34 int main(){

35

36 std::cout << std::boolalpha << '\n';

37

38 // define the promises

39 std::promise<int> divPromise;

40

41 // get the future

42 std::future<int> divResult = divPromise.get_future();

43

44 std::cout << "divResult.valid(): " << divResult.valid() << '\n';

45

46 // calculate the result in a separat thread

47 Div div;

48 std::thread divThread(div, std::move(divPromise), 20, 10);

49

50 std::cout << "divResult.valid(): " << divResult.valid() << '\n';

51

52 std::shared_future<int> sharedResult = divResult.share();

53

54 std::cout << "divResult.valid(): " << divResult.valid() << "\n\n";

55

56 Requestor req;

57 std::thread sharedThread1(req, sharedResult);

58 std::thread sharedThread2(req, sharedResult);

59 std::thread sharedThread3(req, sharedResult);

60 std::thread sharedThread4(req, sharedResult);

61 std::thread sharedThread5(req, sharedResult);

62

63 divThread.join();

64

65 sharedThread1.join();

66 sharedThread2.join();

67 sharedThread3.join();

68 sharedThread4.join();

69 sharedThread5.join();

70

71 std::cout << '\n';

72
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73 }

The first two calls of divResult.valid() on the std::future (lines 44 and 50) return true. This change
after the call divResult.share() in line 52 because this call transfers the shared state.

Creating a std::shared_future

3.9.6 Exceptions

If the callable used by std::async or by std::packaged_task throws an error, the exception is store in
the shared state. When the future fut then calls fut.get(), the exception is rethrown, and the code
using the future has to handle it.

A std::promise prom provides the same facility but has themember function prom.set_exception(std::current_-

exception()) to set the exception as shared state.

Dividing a number by 0 is undefined behavior. The function executeDivision displays the result of
the calculation or the exception.

Returning an exception

1 // promiseFutureException.cpp

2

3 #include <exception>

4 #include <future>

5 #include <iostream>

6 #include <thread>

7 #include <utility>

8

9 struct Div{
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10 void operator()(std::promise<int>&& intPromise, int a, int b){

11 try{

12 if ( b==0 ){

13 std::string errMess = std::string("Illegal division by zero: ") +

14 std::to_string(a) + "/" + std::to_string(b);

15 throw std::runtime_error(errMess);

16 }

17 intPromise.set_value(a/b);

18 }

19 catch (...){

20 intPromise.set_exception(std::current_exception());

21 }

22 }

23 };

24

25 void executeDivision(int nom, int denom){

26 std::promise<int> divPromise;

27 std::future<int> divResult= divPromise.get_future();

28

29 Div div;

30 std::thread divThread(div, std::move(divPromise), nom, denom);

31

32 // get the result or the exception

33 try{

34 std::cout << nom << "/" << denom << " = " << divResult.get() << '\n';

35 }

36 catch (std::runtime_error& e){

37 std::cout << e.what() << '\n';

38 }

39

40 divThread.join();

41 }

42

43 int main(){

44

45 std::cout << '\n';

46

47 executeDivision(20, 0);

48 executeDivision(20, 10);

49

50 std::cout << '\n';

51

52 }
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The promise deals with the issue that the denominator is 0. If the denominator is 0, it sets the exception
as return value: intPromise.set_exception(std::current_exception()) in line 20. The future has to
deal with the exception in its try-catch block (lines 33 - 38).

Here is the output of the program.

Exception handling with std::promise and std::future

std::current_exception and std::make_exception_ptr

std::current_exception() captures the current exception object and creates a
std::exception_ptr. std::exception_ptr holds either a copy or a reference to the
exception object. If the function is called when no exception is being handled, an empty
std::exception_ptr²⁴ is returned.

Instead of retrieving the thrown exception in an try/catch block with
intPromise.set_exception(std::current_exception());, you can directly call
intPromise.set_exception(std::make_exception_ptr(std::runtime_error(errMess)));.

If you destroy the std::promise without calling the set-member function or a std::packaged_task

before invoking it, a std::future_error exception with an error code std::future_errc::broken_-

promise would be stored in the shared state.

3.9.7 Notifications

Tasks are a save replacement for condition variables. If you use promises and futures to synchronize
threads, they have a lot in common with condition variables. Most of the time, promises and futures
are the better choices.

Before I present you an example, here is the big picture.

²⁴http://en.cppreference.com/w/cpp/error/current_exception

http://en.cppreference.com/w/cpp/error/current_exception
http://en.cppreference.com/w/cpp/error/current_exception
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Condition variables versus tasks

Criteria Condition Variables Tasks

Multiple synchronizations Yes No

Critical section Yes No

Error handling in receiver No Yes

Spurious wakeup Yes No

Lost wakeup Yes No

The advantage of a condition variable to a promise and future is that you can use condition variables
to synchronize threads multiple times. In contrast to that, a promise can send its notification only
once, so you have to use more promise and future pairs to get the condition variable’s functionality.
If you use the condition variable for only one synchronization, the condition variable is a lot more
challenging to use in the right way. A promise and future pair needs no shared variable and therefore
no lock and is not prone to spurious or lost wakeups. In addition to that, tasks can handle exceptions.
There are lots of reasons to prefer tasks to condition variables.

Do you remember how difficult it was to use condition variables? If not, here are the key parts required
to synchronize two threads.

void waitingForWork(){

std::cout << "Worker: Waiting for work." << '\n';

std::unique_lock<std::mutex> lck(mutex_);

condVar.wait(lck, []{ return dataReady; });

doTheWork();

std::cout << "Work done." << '\n';

}

void setDataReady(){

std::lock_guard<std::mutex> lck(mutex_);

dataReady=true;

std::cout << "Sender: Data is ready." << '\n';

condVar.notify_one();

}

The function setDataReady performs the notification part of the synchronization - the function
waitingForWork the waiting part of the synchronization.

Here is the same workflow with tasks.
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Thread synchronization with tasks

1 // promiseFutureSynchronize.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <utility>

6

7

8 void doTheWork(){

9 std::cout << "Processing shared data." << '\n';

10 }

11

12 void waitingForWork(std::future<void>&& fut){

13

14 std::cout << "Worker: Waiting for work." << '\n';

15 fut.wait();

16 doTheWork();

17 std::cout << "Work done." << '\n';

18

19 }

20

21 void setDataReady(std::promise<void>&& prom){

22

23 std::cout << "Sender: Data is ready." << '\n';

24 prom.set_value();

25

26 }

27

28 int main(){

29

30 std::cout << '\n';

31

32 std::promise<void> sendReady;

33 auto fut = sendReady.get_future();

34

35 std::thread t1(waitingForWork, std::move(fut));

36 std::thread t2(setDataReady, std::move(sendReady));

37

38 t1.join();

39 t2.join();

40

41 std::cout << '\n';

42

43 }
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That was quite easy.

Thanks to sendReady (line 32) you get a future fut (line 33). The promise communicates using its
return value void (std::promise<void> sendReady) that it is only capable of sending notifications.
Both communication endpoints are moved into threads t1 and t2 (lines 35 and 36). The future waits
using the call fut.wait() (line 15) for the notification of the promise: prom.set_value() (line 24).

The program’s structure and output match the corresponding program in the section condition
variable.

std::promise and std::future as condition variable
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3.10 Synchronized Outputstreams (C++20)

What happens when you write without synchronization to std::cout?

Non-synchronized access to std::cout

1 // coutUnsynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 class Worker{

8 public:

9 Worker(std::string n):name(n) {};

10 void operator() (){

11 for (int i = 1; i <= 3; ++i) {

12 // begin work

13 std::this_thread::sleep_for(std::chrono::milliseconds(200));

14 // end work

15 std::cout << name << ": " << "Work " << i << " done !!!" << '\n';

16 }

17 }

18 private:

19 std::string name;

20 };

21

22

23 int main() {

24

25 std::cout << '\n';

26

27 std::cout << "Boss: Let's start working.\n\n";

28

29 std::thread herb= std::thread(Worker("Herb"));

30 std::thread andrei= std::thread(Worker(" Andrei"));

31 std::thread scott= std::thread(Worker(" Scott"));

32 std::thread bjarne= std::thread(Worker(" Bjarne"));

33 std::thread bart= std::thread(Worker(" Bart"));

34 std::thread jenne= std::thread(Worker(" Jenne"));

35

36

37 herb.join();

38 andrei.join();

39 scott.join();



Multithreading 216

40 bjarne.join();

41 bart.join();

42 jenne.join();

43

44 std::cout << "\n" << "Boss: Let's go home." << '\n';

45

46 std::cout << '\n';

47

48 }

The boss has six workers (lines 29 - 34). Each worker has to take care of three work packages that take
1/5 second each (line 13). After the worker is done with his work package, he screams out loudly to
the boss (line 15). Once the boss receives notifications from all workers, he sends them home (line 44).

What a mess for such a simple workflow! Each worker screams out his message ignoring his
coworkers!
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Non-synchronized writing to std::cout

I want to remind you. This interleaving of output operations is only a visual issue and not a data race.

How canwe solve this issue?With C++11, the answer is straightforward: use a lock such as lock_guard
to synchronize the access to std::cout:
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Synchronized access to std::cout

1 // coutSynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex coutMutex;

9

10 class Worker{

11 public:

12 Worker(std::string n):name(n) {};

13

14 void operator() () {

15 for (int i = 1; i <= 3; ++i) {

16 // begin work

17 std::this_thread::sleep_for(std::chrono::milliseconds(200));

18 // end work

19 std::lock_guard<std::mutex> coutLock(coutMutex);

20 std::cout << name << ": " << "Work " << i << " done !!!\n";

21 }

22 }

23 private:

24 std::string name;

25 };

26

27

28 int main() {

29

30 std::cout << '\n';

31

32 std::cout << "Boss: Let's start working." << "\n\n";

33

34 std::thread herb= std::thread(Worker("Herb"));

35 std::thread andrei= std::thread(Worker(" Andrei"));

36 std::thread scott= std::thread(Worker(" Scott"));

37 std::thread bjarne= std::thread(Worker(" Bjarne"));

38 std::thread bart= std::thread(Worker(" Bart"));

39 std::thread jenne= std::thread(Worker(" Jenne"));

40

41 herb.join();

42 andrei.join();

43 scott.join();

44 bjarne.join();
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45 bart.join();

46 jenne.join();

47

48 std::cout << "\n" << "Boss: Let's go home." << '\n';

49

50 std::cout << '\n';

51

52 }

The coutMutex in line 8 protects the shared object std::cout. Putting the coutMutex into a std::lock_-
guard guarantees that the coutMutex is locked in the constructor (line 19) and unlocked in the destructor
(line 21) of the std::lock_guard. Thanks to the coutMutex guarded by the coutLock the mess becomes
a harmony.
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Synchronized access of std::cout

With C++20, writing synchronized to std::cout is a piece of cake. std::basic_syncbuf is a wrapper
for a std::basic_streambuf²⁵. It accumulates output in its buffer. The wrapper sets its content to the
wrapped buffer when it is destructed. Consequently, the content appears as a contiguous sequence of
characters, and no interleaving of characters can happen.

Thanks to std::basic_osyncstream, you can directly write synchronously to std::cout.

C++20 defines two specializations of std::basic_osyncstream for char, and wchar_t.

²⁵https://en.cppreference.com/w/cpp/io/basic_streambuf

https://en.cppreference.com/w/cpp/io/basic_streambuf
https://en.cppreference.com/w/cpp/io/basic_streambuf
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std::osyncstream std::basic_osyncstream<char>

std::wosyncstream std::basic_osyncstream<wchar_t>

You can create a named-synchronized output stream. Here is how the previous program coutUnsynchronized.cpp

is refactored to write synchronized to std::cout.

Synchronized access of std::cout with std::basic_osyncstream

1 // synchronizedOutput.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <syncstream>

6 #include <thread>

7

8 class Worker{

9 public:

10 Worker(std::string n):name(n) {};

11 void operator() (){

12 for (int i = 1; i <= 3; ++i) {

13 // begin work

14 std::this_thread::sleep_for(std::chrono::milliseconds(200));

15 // end work

16 std::osyncstream syncStream(std::cout);

17 syncStream << name << ": " << "Work " << i << " done !!!" << '\n';

18 }

19 }

20 private:

21 std::string name;

22 };

23

24

25 int main() {

26

27 std::cout << '\n';

28

29 std::cout << "Boss: Let's start working.\n\n";

30

31 std::thread herb= std::thread(Worker("Herb"));

32 std::thread andrei= std::thread(Worker(" Andrei"));

33 std::thread scott= std::thread(Worker(" Scott"));

34 std::thread bjarne= std::thread(Worker(" Bjarne"));

35 std::thread bart= std::thread(Worker(" Bart"));

36 std::thread jenne= std::thread(Worker(" Jenne"));

37

38
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39 herb.join();

40 andrei.join();

41 scott.join();

42 bjarne.join();

43 bart.join();

44 jenne.join();

45

46 std::cout << "\n" << "Boss: Let's go home." << '\n';

47

48 std::cout << '\n';

49

50 }

The only change to the previous program coutUnsynchronized.cpp is that std::cout is wrapped in a
std::osyncstream (line 16). To use the std::osyncstream, I add the header <syncstream>. When the
std::osyncstream goes out of scope in line 17, the characters are transferred, and std::cout is flushed.
It is worth mentioning that the std::cout calls in the main program do not introduce a data race and
have, therefore, not be synchronized.

Because I use the syncStream declared on line 17 only once, a temporary object may be more
appropriate. The following code snippet presents the modified call operator.

void operator()() {

for (int i = 1; i <= 3; ++i) {

// begin work

std::this_thread::sleep_for(std::chrono::milliseconds(200));

// end work

std::osyncstream(std::cout) << name << ": " << "Work " << i << " done !!!"

<< '\n';

}

}

std::basic_osyncstream syncStream offers two interesting member functions.

• syncStream.emit() emits all buffered output and executes all pending flushes.

• syncStream.get_wrapped() returns a pointer to the wrapped buffer.

cppreference.com²⁶ shows how you can sequence the output of different output streams with the
get_wrapped member function.

²⁶https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped

https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped
https://en.cppreference.com/w/cpp/io/basic_osyncstream/get_wrapped


Multithreading 223

Sequence output

// sequenceOutput.cpp

#include <syncstream>

#include <iostream>

int main() {

std::osyncstream bout1(std::cout);

bout1 << "Hello, ";

{

std::osyncstream(bout1.get_wrapped()) << "Goodbye, " << "Planet!" << '\n';

} // emits the contents of the temporary buffer

bout1 << "World!" << '\n';

} // emits the contents of bout1

Synchronized access of std::cout
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Distilled Information
• C++ supports two kind of threads: the basic thread std::thread (C++11) and the
improved thread std::jthread (C++20).

– A std::thread gets a callable as work package and starts immediately.
The creator of a thread is responsible for the created thread. Either the
creator waits until the created thread tis done (t.join()) or the creator
detaches (t.detach()) itself from the created thread. A thread is joinable if
no operation t.join() or t.detach() was performed on it. A joinable thread
calls std::terminate in its destructor, and the program terminates.

– A std::jthread extends the interface of a std::thread. It automatically joins
in its destructor and supports cooperative interruption.

• You have to coordinate access to a shared variable if more than one thread uses
it simultaneously and the variable is mutable. A mutex guarantees that only one
thread can access a shared variable at any given time. You should encapsulate a
mutex in a lock to release the mutex automatically and, therefore, overcome the
many issues of mutexes. C++ offers mutex and locks in many variations.

• If shared data is read-only, it’s sufficient to initialize it in a thread-safe way. C++
offers various ways to achieve this, including using a constant expression, a static
variable with block scope, or the function std::call_once combined with the flag
std::once_flag.

• Declaring a variable as thread-local ensures that each thread gets its copy. The
lifetime of thread-local data is bound to the lifetime of its thread.

• Condition variables enable threads to be synchronized via messages. One thread
acts as the sender while the other acts as the receiver of the message. The receiver
blocks waiting for the message from the sender.

• std::jthread and std::condition_variable_any support cooperative interruption
by design. Cooperative interruption is based on the std::stop_source, std::stop_-
token, and the std::stop_callback.

• Semaphores are a synchronization mechanism used to control concurrent access
to a shared resource. The counter of a semaphore is initialized in the constructor.
Acquiring the semaphore decreases the counter, and releasing the semaphore
increases the counter. If a thread tries to acquire the semaphore when the counter is
zero, the thread will block until another thread increments the counter by releasing
the semaphore.

• Latches and barriers are coordination types that enable some threads to block until
a counter becomes zero. The counter is initialized in the constructor.

• Tasks have a lot in common with threads. While you explicitly create a thread,
a task is just a job you start. The C++ runtime automatically handles the task’s
lifetime, such as in the simple case of std::async. Tasks are like data channels
between two communication endpoints. They enable thread-safe communication
between threads. The promise as one endpoint puts data into the data channel,
the future at the other endpoint picks the value up. The data can be a value, an
exception, or simply a notification. In addition to std::async, C++ has the class
templates std::promise and std::future that give you more control over the task.

• C++ enables synchronized output streams. A synchronized output stream accumu-
lates output in its buffer and flushes it when it is destructed. Consequently, the
content appears as a contiguous sequence of characters, and no interleaving of
characters can happen



4. Parallel Algorithms of the Standard
Template Library

Cippi clones herself

The Standard Template Library has more than 100 algorithms for searching, counting, and manipu-
lating ranges and their elements. With C++17, 69 of them get new overloads, and eight new ones are
added. The overloaded, and new algorithms can be invoked with a so-called execution policy.
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Parallel algorithms of C++17

Using an execution policy, you can specify whether the algorithm should run sequentially, in
parallel, or parallel with vectorization. For using the execution policy, you have to include the header
<execution>.
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4.1 Execution Policies

The standard defines three execution policies:

• std::execution::sequenced_policy

• std::execution::parallel_policy

• std::execution::parallel_unsequenced_policy

• std::execution::unsequenced_policy (C++20)

The corresponding policy tag specifies whether a program should run sequentially, in parallel, or
parallel with vectorization.

• std::execution::seq: runs the program sequentially

• std::execution::par: runs the program in parallel on multiple threads

• std::execution::par_unseq: runs the program in parallel on multiple threads and allows the
interleaving of individual loops; permits a vectorized version with SIMD¹ (Single Instruction
Multiple Data) extensions.

• std::execution::unseq (C++20): runs the program in parallel on multiple threads; permits a
vectorized version with SIMD.

The usage of the execution policy std::execution::par, std::execution::unseq, or std::execution::par_-
unseq allows the algorithm to run parallel or parallel and vectorized. The difference between
std::execution::unseq, and std::execution::par_unseq is that the later allows the interleaving the
individual threads.

This policy is a permission and not a requirement.

The following code snippet applies all execution policies.

The execution policy

1 std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9};

2

3 // standard sequential sort

4 std::sort(v.begin(), v.end());

5

6 // sequential execution

7 std::sort(std::execution::seq, v.begin(), v.end());

8

9 // permitting parallel execution

10 std::sort(std::execution::par, v.begin(), v.end());

11

12 // permitting parallel and vectorized execution

13 std::sort(std::execution::par_unseq, v.begin(), v.end());

¹https://en.wikipedia.org/wiki/SIMD

https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD
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14

15 // permitting parallel and vectorized execution, but no interleaving of individual threads

16 std::sort(std::execution::unseq, v.begin(), v.end());

The example shows that you can still use the classic variant of std::sort (line 4). Besides, in C++17,
you can specify explicitly whether the sequential (line 7), parallel (line 10), or the parallel and
vectorized (line 13) version should be used.

Thanks to std::is_execution_policy you can check, whether T is a standard or implementation-
defined execution policy type: std::is_execution_policy<T>::value. The function checks whether T
is a standard or implementation-defined execution policy type. The expression evaluates to true, if T is
std::execution::sequenced_policy, std::execution::parallel_policy, std::execution::unsequenced_-
policy, std::execution::parallel_unsequenced_policy, or an implementation-defined execution pol-
icy type. Otherwise, value is equal to false.

4.1.1 Parallel and Vectorized Execution

Whether an algorithm runs in a parallel and vectorized way depends on many factors. For example,
it depends on whether the CPU and the operating system support SIMD instructions. Additionally, it
also depends on the compiler and the optimization level you used to translate your code.

The following example shows a simple loop for filling a vector.

Filling a vector

1 const int SIZE= 8;

2

3 int vec[] = {1, 2, 3, 4, 5, 6, 7, 8};

4 int res[] = {0, 0, 0, 0, 0, 0, 0, 0};

5

6 int main(){

7 for (int i = 0; i < SIZE; ++i) {

8 res[i] = vec[i]+5;

9 }

10 }

Line 8 is the crucial line in this small example. Thanks to Compiler Explorer², we can have a closer
look at the assembler instructions generated by clang 3.6.

4.1.1.1 Without Optimization

Here are the assembler instructions. Each addition is done sequentially.

²https://godbolt.org/

https://godbolt.org/
https://godbolt.org/
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Sequential execution

4.1.1.2 With Maximum Optimization

By using the highest optimization level, -O3, special registers such as xmm0 are used that can hold 128
bits or 4 ints. This special register means that the addition takes place in parallel on four elements of
the vector.

Vectorized execution

An overload of an algorithm without an execution policy and an overload of an algorithm with a
sequential execution policy std::execution::seq differ in one aspect: exceptions.

4.1.2 Exceptions

If an exception occurs during the usage of an algorithm with an execution policy, std::terminate³
is called. std::terminate calls the installed std::terminate_handler⁴. The consequence is that per
default std::abort⁵ is called, which causes abnormal program termination. The handling of exceptions
is the difference between an algorithm’s invocation without an execution policy and an algorithm
with a sequential std::execution::seq execution policy. The invocation of the algorithm without an
execution policy propagates the exception, and, therefore, the exception can be handled. The program
exceptionExecutionPolicy.cpp shows my point.

³https://en.cppreference.com/w/cpp/error/terminate
⁴https://en.cppreference.com/w/cpp/error/terminate_handler
⁵https://en.cppreference.com/w/cpp/utility/program/abort

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate_handler
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/error/terminate_handler
https://en.cppreference.com/w/cpp/utility/program/abort
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Exceptions with execution policies

1 // exceptionExecutionPolicy.cpp

2

3 #include <algorithm>

4 #include <execution>

5 #include <iostream>

6 #include <stdexcept>

7 #include <string>

8 #include <vector>

9

10 int main(){

11

12 std::cout << '\n';

13

14 std::vector<int> myVec{1, 2, 3, 4, 5};

15

16 try{

17 std::for_each(myVec.begin(), myVec.end(),

18 [](int){ throw std::runtime_error("Without execution policy"); }

19 );

20 }

21 catch(const std::runtime_error& e){

22 std::cout << e.what() << '\n';

23 }

24

25 try{

26 std::for_each(std::execution::seq, myVec.begin(), myVec.end(),

27 [](int){ throw std::runtime_error("With execution policy"); }

28 );

29 }

30 catch(const std::runtime_error& e){

31 std::cout << e.what() << '\n';

32 }

33 catch(...){

34 std::cout << "Catch-all exceptions" << '\n';

35 }

36

37 }

The exception handler in line 21 catches the exception std::runtime_error but doesn’t work with the
exception handler in line 30 or even in line 33 with a catch-all exception handler.

With a new MSVC compiler and the flag std:c++latest, the program gives the expected output.
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Exception policy of the parallel algorithms

Only the first exception handler is executed.

4.1.3 Hazards of Data Races and Deadlocks

The parallel algorithm does not automatically protect you from data races and deadlocks.

Parallel execution with a data race

std::vector<int> v = {1, 2, 3 };

int sum = 0;

std::for_each(std::execution::par, v.begin(), v.end(), [&sum](int i){

sum += i + i;

});

The small code snippet has a data race on sum. sum builds the sum of all i + i and is concurrently
modified. sum has to be protected.

Parallel execution

std::vector<int> v = {1, 2, 3 };

int sum = 0;

std::mutex m;

std::for_each(std::execution::par, v.begin(), v.end(), [&sum](int i){

std::lock_guard<std::mutex> lock(m);

sum += i + i;

});

When I change the execution policy to std::execution::par_unseq, I have a race condition that usually
results in a deadlock.
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Parallel and vectorized execution with a deadlock

std::vector<int> v = {1, 2, 3 };

int sum = 0;

std::mutex m;

std::for_each(std::execution::par_unseq, v.begin(), v.end(), [&sum](int i){

std::lock_guard<std::mutex> lock(m);

sum += i + i;

});

The lambda function may result in two consecutive calls of m.lock on the same thread. Two times
trying to lock a non-recursive std::mutex is undefined behavior and gives most of the time a deadlock.
You can avoid the deadlock by using an atomic.

Parallel and vectorized execution without a deadlock

std::vector<int> v = {1, 2, 3 };

std::atomic<int> sum = 0;

std::mutex m;

std::for_each(std::execution::par_unseq, v.begin(), v.end(), [&sum](int i){

sum += i + i;

});

Because sum is an atomic counter, relaxed semantic is also fine: sum.fetch_add(i + i, std::memory_-

order_relaxed);.

69 of the STL algorithms can be parametrized with an execution policy. Additionally, C++17 has eight
new algorithms.
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4.2 Algorithms

Here are the 69 algorithms with parallelized versions.

The 69 algorithms with parallelised versions

std::adjacent_difference std::adjacent_find std::all_of std::any_of
std::copy std::copy_if std::copy_n std::count
std::count_if std::equal std::fill std::fill_n
std::find std::find_end std::find_first_of std::find_if
std::find_if_not std::generate std::generate_n std::includes
std::inner_product std::inplace_merge std::is_heap std::is_heap_until
std::is_partitioned std::is_sorted std::is_sorted_until std::lexicographical_compare
std::max_element std::merge std::min_element std::minmax_element
std::mismatch std::move std::none_of std::nth_element
std::partial_sort std::partial_sort_copy std::partition std::partition_copy
std::remove std::remove_copy std::remove_copy_if std::remove_if
std::replace std::replace_copy std::replace_copy_if std::replace_if
std::reverse std::reverse_copy std::rotate std::rotate_copy
std::search std::search_n std::set_difference std::set_intersection
std::set_symmetric_difference std::set_union std::sort std::stable_partition
std::stable_sort std::swap_ranges std::transform std::uninitialized_copy
std::uninitialized_copy_n std::uninitialized_fill std::uninitialized_fill_n std::unique
std::unique_copy

Besides, we get eight new algorithms.

4.3 The New Algorithms

The new algorithms are in the std namespace. The algorithms std::for_each and std::for_each_n

require the header <algorithm>. The remaining six other algorithms require the header <numeric>.

Here is an overview of the new algorithms.

The new algorithms

Algorithm Description

std::for_each Applies a unary callable to the range.

std::for_each_n Applies a unary callable to the first n elements of the range.
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The new algorithms

Algorithm Description
std::exclusive_scan Applies from the left a binary callable up to the ith (exclusive) element of

the range and writes the result to an output range. The left argument of
the callable is the previous result. Stores intermediate results. If the
binary callable is non-associative the result is non-deterministic.
Similar to std::partial_sum⁶

std::inclusive_scan Applies from the left a binary callable up to the ith (inclusive) element of
the range and writes the result to an output range. The left argument of
the callable is the previous result. Stores intermediate results. If the
binary callable is non-associative the result is non-deterministic.
Similar to std::partial_sum

std::transform_exclusive_scan First applies a unary callable to the range and then applies
std::exclusive_scan. If the binary callable is non-associative the result
is non-deterministic.

std::transform_inclusive_scan First applies a unary callable to the range and then applies
std::inclusive_scan. If the binary callable is non-associative the result
is non-deterministic.

std::reduce Applies from the left a binary callable to the range. If the binary callable
is non-associative or non-commutative the result is non-deterministic.
Similar to std::accumulate⁷

std::transform_reduce Applies first a unary callable to one or a binary callable to two ranges
and then std::reduce to the resulting range. If the binary callables are
non-associative or non-commutative the result is non-deterministic.

Admittedly this description is not easy to digest, but if you already know std::accumulate and
std::partial_sum, the reduce and scan variations should be quite familiar. reduce is the parallel
pendant to accumulate and scan the parallel pendant to partial_sum. The parallel execution is the
reason that std::reduce needs an associative and commutative callable. The corresponding statement
hold for the scan variations in contrary to the partial_sum variations.

First, I present an exhaustive example of the algorithms and then write about these functions’
functional heritage. In my example, I ignore the new std::for_each algorithm. In contrast to the
C++98 variant that returns a unary function, the additional C++17 variant returns nothing. While
std::accumulate processes its elements from left to the right, std::reduce does it in an arbitrary
order. Let me start with a small code snippet using std::accumulate and std::reduce. The callable is
the lambda function [](int a, int b){ return a * b; }.

⁶http://en.cppreference.com/w/cpp/algorithm/partial_sum
⁷http://en.cppreference.com/w/cpp/algorithm/accumulate

http://en.cppreference.com/w/cpp/algorithm/partial_sum
http://en.cppreference.com/w/cpp/algorithm/accumulate
http://en.cppreference.com/w/cpp/algorithm/partial_sum
http://en.cppreference.com/w/cpp/algorithm/accumulate
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std::vector<int> v{1, 2, 3, 4};

std::accumulate(v.begin(), v.end(), 1, [](int a, int b){ return a * b; });

std::reduce(std::execution::par, v.begin(), v.end(), 1 ,

[](int a, int b){ return a * b; });

The two following graphs show the different fold strategies of std::accumulate and std::reduce.

std::accumulate starts at the left and successively applies the binary operator.

Fold strategy of std::accumulate

On the contrary, std::reduce applies the binary operator in a non-deterministic way.

Fold strategy of std::reduce

The associativity allows the std::reduce algorithm to compute the reduction step on arbitrary
adjacents pairs of elements. Thanks to commutativity, the intermediate results can be computed in
an arbitrary order.
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The new algorithms
1 // newAlgorithm.cpp

2

3 #include <algorithm>

4 #include <execution>

5 #include <numeric>

6 #include <iostream>

7 #include <string>

8 #include <vector>

9

10

11 int main(){

12

13 std::cout << '\n';

14

15 // for_each_n

16

17 std::vector<int> intVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

18 std::for_each_n(std::execution::par,

19 intVec.begin(), 5, [](int& arg){ arg *= arg; });

20

21 std::cout << "for_each_n: ";

22 for (auto v: intVec) std::cout << v << " ";

23 std::cout << "\n\n";

24

25 // exclusive_scan and inclusive_scan

26 std::vector<int> resVec{1, 2, 3, 4, 5, 6, 7, 8, 9};

27 std::exclusive_scan(std::execution::par,

28 resVec.begin(), resVec.end(), resVec.begin(), 1,

29 [](int fir, int sec){ return fir * sec; });

30

31 std::cout << "exclusive_scan: ";

32 for (auto v: resVec) std::cout << v << " ";

33 std::cout << '\n';

34

35 std::vector<int> resVec2{1, 2, 3, 4, 5, 6, 7, 8, 9};

36

37 std::inclusive_scan(std::execution::par,

38 resVec2.begin(), resVec2.end(), resVec2.begin(),

39 [](int fir, int sec){ return fir * sec; }, 1);

40

41 std::cout << "inclusive_scan: ";

42 for (auto v: resVec2) std::cout << v << " ";

43 std::cout << "\n\n";

44
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45 // transform_exclusive_scan and transform_inclusive_scan

46 std::vector<int> resVec3{1, 2, 3, 4, 5, 6, 7, 8, 9};

47 std::vector<int> resVec4(resVec3.size());

48 std::transform_exclusive_scan(std::execution::par,

49 resVec3.begin(), resVec3.end(),

50 resVec4.begin(), 0,

51 [](auto fir, int sec){ return fir + sec; },

52 [](auto arg){ return arg * arg; });

53

54 std::cout << "transform_exclusive_scan: ";

55 for (auto v: resVec4) std::cout << v << " ";

56 std::cout << '\n';

57

58 std::vector<std::string> strVec{"Only","for","testing","purpose"};

59 std::vector<int> resVec5(strVec.size());

60

61 std::transform_inclusive_scan(std::execution::par,

62 strVec.begin(), strVec.end(),

63 resVec5.begin(),

64 [](auto fir, auto sec){ return fir + sec; },

65 [](auto s){ return s.length(); }, static_cast<std::size_t\

66 >(0));

67

68

69 std::cout << "transform_inclusive_scan: ";

70 for (auto v: resVec5) std::cout << v << " ";

71 std::cout << "\n\n";

72

73 // reduce and transform_reduce

74 std::vector<std::string> strVec2{"Only","for","testing","purpose"};

75

76 std::string res = std::reduce(std::execution::par,

77 strVec2.begin() + 1, strVec2.end(), strVec2[0],

78 [](auto fir, auto sec){ return fir + ":" + sec; });

79

80 std::cout << "reduce: " << res << '\n';

81

82 auto res7 = std::transform_reduce(std::execution::par,

83 strVec2.begin(), strVec2.end(), static_cast<std::size_t>(0),

84 [](auto a, auto b){ return a + b; },

85 [](std::string s){ return s.length(); }); \

86

87

88 std::cout << "transform_reduce: " << res7 << '\n';

89
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90 std::cout << '\n';

91

92 }

I apply the new algorithms to a std::vector<int> (line 17) and a std::vector<std::string> (line 58).

The std::for_each_n algorithm in line 18 maps the first n ints of the vector to their squares.

std::exclusive_scan (line 27) and std::inclusive_scan (line 37) are quite similar. Both apply a binary
operation to their elements. The difference is that std::exclusive_scan excludes the last element in
each iteration.

The std::transform_exclusive_scan in line 48 is quite challenging to read. Let me try to explain it. In
the first step I apply the lambda function [](int arg){ return arg * arg; } to each element of the
range resVec3.begin() to resVec3.end(). In the second step, I apply the binary operation [](int fir,

int sec){ return fir + sec; } to the intermediate vector. This means, sum up all elements using 0
as the initial value. The result is placed in resVec4.begin().

The std::transform_inclusive_scan function in line 61 is similar. This function maps each element
to its length.

The std::reduce function should be pretty easy to read; it puts ":" characters between every two
elements of the input vector. The resulting string should not start with a ":" character; therefore, the
range starts at the second element (strVec2.begin() + 1) and uses the first element of the vector
strVec2[0] as the initial element.

transform_reduce becomes map_reduce

I have more to say about the std::transform_reduce function in line 80. First of all,
the C++ algorithm transform is in other languages often called map. Therefore, we
could also call std::transform_reduce std::map_reduce. Now I assume you noticed it.
std::transform_reduce is the well-known parallel MapReduce⁸ algorithm implemented
in C++. Accordingly, std::transform_reduce maps a unary callable ([](std::string s){

return s.length(); }) onto a range and reduces the pair to a output value: [](std::size_t
a, std::size_t b){ return a + b; }.

Studying the output of the program should help you.

⁸https://en.wikipedia.org/wiki/MapReduce

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce
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The new algorithms

4.3.1 More overloads

All C++ variants reducing and scanning have more overloads. In the simplest form, you can invoke
them without a binary callable and an initial element. If you do not use a binary callable, the addition
is used as the binary operation. If you do not specify an initial element, the initial element depends
on the used algorithm:

• std::inclusive_scan and std::transform_inclusive_scan: the first element.

• std::reduce and std::transform_reduce: typename std::iterator_traits<InputIt>::value_-

type{}.

Let’s look at these new algorithms from a functional perspective.

4.3.2 The functional Heritage

Long story short: all new functions have a pendant in the pure functional language Haskell.

• std::for_each_n is called map in Haskell.

• std::exclusive_scan and std::inclusive_scan are called scanl and scanl1 in Haskell.

• std::transform_exclusive_scan and std::transform_inclusive_scan is a composition of the
Haskell functions map and scanl or scanl1.

• std::reduce is called foldl or foldl1 in Haskell.

• transform_reduce is a composition of the Haskell functions map and foldl or foldl1.

Before I show you Haskell in action, let me say a few words about the different functions.

• map applies a function to a list.
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• foldl and foldl1 apply a binary operation to a list and reduce the list to a value. foldl needs,
in contrast to foldl1 an initial value. foldl1 requires the list to be non-empty and uses the first
element as the initial value.

• scanl and scanl1 apply the same strategy such as foldl and foldl1, but they produce all
intermediate results so that you get back a list.

• foldl, foldl1, scanl, and scanl1 start their job from the left.

Let’s have a look at the Haskell functions. Here is Haskell’s interpreter shell.

New algorithms in Haskell

(1) and (2) define a list of integers and a list of strings. In (3), I apply the lambda function (\a ->

a * a) to the list of integers. (4) and (5) are more sophisticated. The expression (4) multiplies (*) all
pairs of integers starting with the one as the neutral element of multiplication. Expression (5) does the
corresponding for addition. Expressions (6), (7), and (9) are for the imperative eye quite challenging.
You have to read them from right to left. scanl1 (+) . map(\a -> length) (7) is a function composition.
The dot (.) symbol composes the two functions. The first function maps each element to its length;
the second function adds the list of lengths together. (9) is similar to (7). The difference is that foldl
produces one value and requires an initial element, that is in this case 0. Now expression (8) should
be readable; it successively joins two strings with the “:” character.
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4.4 Compiler Support

As far as I know, there is no fully standard-compliant implementation of the parallel STL available.
Thanks to the Microsoft Visual Compiler and the GCC Compiler, you can at least use the sequential
and parallel execution policy but neither of the parallel and vectorized one: std::execution::unseq
or std::execution::par_unseq. When you request a parallel and vectorized execution policy, the
compiler maps it to the parallel execution policy (std::execution::par).

4.4.1 Microsoft Visual Compiler

MSVC 17.8 added support for about 30 algorithms.

Parallel Algorithms with MSVC 17.8

std::adjacent_difference std::adjacent_find std::all_of
std::any_of std::count std::count_if
std::equal std::exclusive_scan std::find
std::find_end std::find_first_of std::find_if
std::for_each std::for_each_n std::inclusive_scan
std::mismatch std::none_of std::reduce
std::remove std::remove_if std::search
std::search_n std::sort std::stable_sort
std::transform std::transform_exclusive_scan std::transform_inclusive_scan
std::transform_reduce

4.4.2 GCC Compiler

Thanks to Intels Threading Building Block⁹ (TBB) you can use the parallel STL algorithms with the
GCC 9. The TBB is a C++ template library developed by Intel for parallel programming on multi-core
processors. To be precise, you need TBB 2018 version or higher.

Using the TBB is easy. You have to link against the TBB specifying the flag -ltbb.

Using the Threading Building Blocks

⁹https://en.wikipedia.org/wiki/Threading_Building_Blocks

https://en.wikipedia.org/wiki/Threading_Building_Blocks
https://en.wikipedia.org/wiki/Threading_Building_Blocks
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4.4.3 Further Implementations of the Parallel STL

I used the HPX implementation to get my first intuition about the parllel STL algorithms. HPX (High-
Performance ParallelX)¹⁰ is a framework that is a general-purpose C++ runtime system for parallel and
distributed applications of any scale. HPX has already implemented the parallel STL in its namespace.

For completeness, here are further (partial) implementations of the parallel STL:

• Intel¹¹

• Thibaut Lutz¹²

• Nvidia (thrust)¹³

• Codeplay¹⁴

4.5 Performance

The program parallelSTLPerformance.cpp calculates the tangents with the sequential, parallel, and
parallel and vectorized execution policy.

Performance of the various execution policies

1 // parallelSTLPerformance.cpp

2

3 #include <algorithm>

4 #include <cmath>

5 #include <chrono>

6 #include <execution>

7 #include <iostream>

8 #include <random>

9 #include <string>

10 #include <vector>

11

12 constexpr long long size = 500'000'000;

13

14 const double pi = std::acos(-1);

15

16 template <typename Func>

17 void getExecutionTime(const std::string& title, Func func){

18

19 const auto sta = std::chrono::steady_clock::now();

¹⁰http://stellar.cct.lsu.edu/projects/hpx/
¹¹https://software.intel.com/en-us/get-started-with-pstl
¹²https://github.com/t-lutz/ParallelSTL
¹³https://thrust.github.io/doc/group__execution__policies.html
¹⁴https://github.com/KhronosGroup/SyclParallelSTL

http://stellar.cct.lsu.edu/projects/hpx/
http://stellar.cct.lsu.edu/projects/hpx/
https://software.intel.com/en-us/get-started-with-pstl
https://github.com/t-lutz/ParallelSTL
https://thrust.github.io/doc/group__execution__policies.html
https://github.com/KhronosGroup/SyclParallelSTL
http://stellar.cct.lsu.edu/projects/hpx/
https://software.intel.com/en-us/get-started-with-pstl
https://github.com/t-lutz/ParallelSTL
https://thrust.github.io/doc/group__execution__policies.html
https://github.com/KhronosGroup/SyclParallelSTL
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20 func();

21 const std::chrono::duration<double> dur = std::chrono::steady_clock::now() - sta;

22 std::cout << title << ": " << dur.count() << " sec. " << '\n';

23

24 }

25

26 int main(){

27

28 std::cout << '\n';

29

30 std::vector<double> randValues;

31 randValues.reserve(size);

32

33 std::mt19937 engine;

34 std::uniform_real_distribution<> uniformDist(0, pi / 2);

35 for (long long i = 0 ; i < size ; ++i) randValues.push_back(uniformDist(engine));

36

37 std::vector<double> workVec(randValues);

38

39 getExecutionTime("std::execution::seq", [workVec]() mutable {

40 std::transform(std::execution::seq, workVec.begin(), workVec.end(),

41 workVec.begin(),

42 [](double arg){ return std::tan(arg); }

43 );

44 });

45

46 getExecutionTime("std::execution::par", [workVec]() mutable {

47 std::transform(std::execution::par, workVec.begin(), workVec.end(),

48 workVec.begin(),

49 [](double arg){ return std::tan(arg); }

50 );

51 });

52

53 getExecutionTime("std::execution::par_unseq", [workVec]() mutable {

54 std::transform(std::execution::par_unseq, workVec.begin(), workVec.end(),

55 workVec.begin(),

56 [](double arg){ return std::tan(arg); }

57 );

58 });

59

60 std::cout << '\n';

61

62 }



Parallel Algorithms of the Standard Template Library 244

The program parallelSTLPerformance.cpp calculates the tangents with the sequential (line 39),
parallel (line 46), and parallel and vectorized (line 53) execution policy. First, the vector randValues
is filled with 500 million numbers from the half-open interval [0, pi / 2 [. The function template
getExecutionTime (lines 16 - 24) gets the title, and the lambda function executes the lambda function
(line 20), and shows the execution time (line 22). There is one particular point about the three lambda
functions (lines 39, 46, and 53) used in this program. They are declared as mutable. This is necessary
because the lambda functionsmodify its argument workVec. Lambda functions are per default constant.
If a lambda function wants to change its values, it has to be declared mutable.

Compiler Comparison
I explicitly want to emphasize. I don’t want to compare the Microsoft Visual compiler and
the GCC compiler. Both compilers run on computers with different capabilities. These
performance numbers should only give you a gut feeling. This means if you want the
numbers for your system, you have to repeat the test. To make it short. I’m really keen to
know if the parallel execution of the STL algorithms pays and to what extent. My main
focus is the relative performance of the sequential and parallel execution

I use maximum optimization on Windows and Linux. This means for Windows the flag
/O2 and on Linux the flag -O3.

4.5.1 Microsoft Visual Compiler

My Windows laptop has eight logical cores, but the parallel execution is more than ten times faster.

Sequential, parallel, and parallel and vectorized execution using the Microsoft Visual Compiler

The numbers for the parallel and the parallel and vectorized execution are in the same ballpark.
Here is the explanation for the Visual C++ Team Blog: Using C++17 Parallel Algorithms for Better
Performance¹⁵: Note that the Visual C++ implementation implements the parallel and parallel

¹⁵https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/

https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
https://blogs.msdn.microsoft.com/vcblog/2018/09/11/using-c17-parallel-algorithms-for-better-performance/
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unsequenced policies the same way, so you should not expect better performance for using par_unseq
on our implementation, but implementations may exist that can use that additional freedom someday.

4.5.2 GCC Compiler

My Linux computer has only four cores. Here are the numbers.

Sequential, parallel, and parallel and vectorized execution using the GCC Compiler

The numbers are as expected. I have four cores and the parallel execution is about four times faster
than the sequential execution. The performance numbers of the parallel and vectorized version and
the parallel version are in the same ballpark. My assumption is, therefore, that the GCC compiler
uses the same strategy such as the Windows compiler. When I ask for the parallel and vectorized
execution by using the execution policy std::execution::par_unseq, I get the parallel execution
policy (std::execution::par). This behavior is according to the C++17 standard because the execution
policies are only a hint for the compiler.

Distilled Information
• With C++17, most of the STL algorithms are available in a parallel implementation.
This makes it possible to invoke an algorithmwith a so-called execution policy. This
policy specifies whether the algorithm runs sequentially, in parallel, or in parallel
with additional vectorization.

• Additionally to the 69 algorithms available in overloaded versions for parallel or
parallel and vectorized execution, we get new algorithms. These new ones are well
suited for parallel reducing, scanning, or transforming ranges.



5. Coroutines (C++20)

Cippi waters the flowers

Coroutines are functions that can suspend and resume their execution while keeping their state. The
evolution of functions in C++ goes one step further.
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Coroutines

The Challenge of Understanding Coroutines
It was quite a challenge for me to understand coroutines. I strongly suggest that you should
not read the sections in the chapter in sequence. Skip in your first iteration the sections
“The Framework”, and “The Workflow”. Furthermore, read the case studies “Variations of
Futures”, “Modification and Generalization of a Generator”, and “Various Job Workflows”.
Reading, studying, and playing with the provided examples should give you an initial
intuition need for you to actually dive into details and the workflow of coroutines.

What I present in this section as a new idea in C++20 is quite old. The term coroutine was coined by
Melvin Conway¹. He used it in his publication on compiler construction in 1963. Donald Knuth² called
procedures a special case of coroutines. Sometimes, it just takes a while to get your ideas accepted.

¹https://en.wikipedia.org/wiki/Melvin_Conway
²https://en.wikipedia.org/wiki/Donald_Knuth

https://en.wikipedia.org/wiki/Melvin_Conway
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Melvin_Conway
https://en.wikipedia.org/wiki/Donald_Knuth
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Functions versus Coroutines

While you can only call a function and return from it, you can call a coroutine, suspend and resume
it, and destroy a suspended coroutine.

With the new keywords co_await and co_yield, C++20 extends the execution of C++ functions with
two new concepts.

Thanks to co_await expression it is possible to suspend and resume the execution of the expression.
If you use co_await expression in a function func, the call auto getResult = func() does not block if
the result of the function is not available. Instead of resource-consuming blocking, you have resource-
fri’\n’y waiting.

co_yield expression supports generator functions. The generator function returns a new value each
time you call it. A generator function is a kind of data stream from which you can pick values. The
data stream can be infinite. Therefore, we are at the center of lazy evaluation with C++.

5.1 A Generator Function

The following program is as simple as possible. The function getNumbers returns all integers from
begin to end, incremented by inc. Value begin has to be smaller than end, and inc has to be positive.
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A greedy generator function

1 // greedyGenerator.cpp

2

3 #include <iostream>

4 #include <vector>

5

6 std::vector<int> getNumbers(int begin, int end, int inc = 1) {

7

8 std::vector<int> numbers;

9 for (int i = begin; i < end; i += inc) {

10 numbers.push_back(i);

11 }

12

13 return numbers;

14

15 }

16

17 int main() {

18

19 std::cout << '\n';

20

21 const auto numbers= getNumbers(-10, 11);

22

23 for (auto n: numbers) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 for (auto n: getNumbers(0, 101, 5)) std::cout << n << " ";

28

29 std::cout << "\n\n";

30

31 }

Of course, I am reinventing the wheel with getNumbers, because that job could be done with
std::iota³.

For completeness, here is the output.

³http://en.cppreference.com/w/cpp/algorithm/iota

http://en.cppreference.com/w/cpp/algorithm/iota
http://en.cppreference.com/w/cpp/algorithm/iota
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A generator function

Two observations of the program greedyGenerator.cpp are essential. On the one hand, the vector
numbers in line 8 always gets all values. This holds even if I’m only interested in the first 5 elements of
a vector with 1000 elements. On the other hand, it’s quite easy to transform the function getNumbers

into a lazy generator. The following program is intentionally not complete. The definition of the
generator is still missing.

A lazy generator function
1 // lazyGenerator.cpp

2

3 #include <iostream>

4

5 generator<int> generatorForNumbers(int begin, int inc = 1) {

6

7 for (int i = begin;; i += inc) {

8 co_yield i;

9 }

10

11 }

12

13 int main() {

14

15 std::cout << '\n';

16

17 const auto numbers = generatorForNumbers(-10);

18

19 for (int i= 1; i <= 20; ++i) std::cout << numbers() << " ";

20

21 std::cout << "\n\n";

22

23 for (auto n: generatorForNumbers(0, 5)) std::cout << n << " ";

24

25 std::cout << "\n\n";

26

27 }

While the function getNumbers in the file greedyGenerator.cpp returns a std::vector<int>, the
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coroutine generatorForNumbers in lazyGenerator.cpp returns a generator. The generator numbers in
line 17 or generatorForNumbers(0, 5) in line 23 returns a new number on request. The range-based for
loop triggers the query. Precisely, the query of the coroutine returns the value i via co_yield i and
immediately suspends its execution. If a new value is requested, the coroutine resumes its execution
exactly at that place.

The expression generatorForNumbers(0, 5) in line 23 is a just-in-place use of a generator.

I want to stress one point explicitly. The coroutine generatorForNumbers creates an infinite data stream
because the for loop in line 8 has no end condition. This is fine if I only ask for a finite number of
values, such as in line 20. This does not hold for line 23, since there is no end condition. Therefore, the
expression runs forever.

5.2 Characteristics

Coroutines have a few unique characteristics.

5.2.1 Typical Use Cases

Coroutines are the usual way to write event-driven applications⁴, which can be simulations, games,
servers, user interfaces, or even algorithms. Coroutines are also typically used for cooperative
multitasking⁵. The key to cooperative multitasking is that each task takes as much time as it needs,
but avoids sleeping or waiting, and instead allows some other task to run. Cooperative multitasking
stands in contrast to pre-emptive multitasking, for which we have a scheduler that decides how long
each task gets the CPU.

There are different kinds of coroutines.

5.2.2 Underlying Concepts

Coroutines in C++20 are asymmetric, first-class, and stackless.

The workflow of an asymmetric coroutine goes back to the caller. This does not hold for a symmetric
coroutine. A symmetric coroutine can delegate its workflow to another coroutine.

First-class coroutines are similar to first-class functions, since coroutines behave like data. Behaving
like data means that you can use them as arguments to or return values from functions, or store them
in a variable.

A stackless coroutine can suspend and resume the top-level coroutine. The execution of the coroutine
and the yielding from the coroutine comes back to the caller. The coroutine stores its state for
resumption separate from the stack. Stackless coroutines are often called resumable functions.

⁴https://en.wikipedia.org/wiki/Event-driven_programming
⁵https://en.wikipedia.org/wiki/Computer_multitasking

https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Computer_multitasking
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5.2.3 Design Goals

Gor Nishanov describes in proposal N4402⁶ the design goals of coroutines.

Coroutines should

• be highly scalable (to billions of concurrent coroutines)

• have highly efficient resume and suspend operations comparable in cost to the overhead of a
function

• seamlessly interact with existing facilities with no overhead

• have open-ended coroutine machinery allowing library designers to develop coroutine libraries
exposing various high-level semantics such as generators, goroutines⁷, tasks and more

• usable in environments where exceptions are forbidden or not available

Due to the design goals of scalability and seamless interaction with existing facilities, the coroutines
are stackless. In contrast, a stackful coroutine reserves a default stack of 1MB on Windows, and 2MB
on Linux.

There are four ways for a function to become a coroutine.

5.2.4 Becoming a Coroutine

A function becomes a coroutine if it uses

• co_return, or

• co_await, or

• co_yield, or a

• co_await expression in a range-based for loop.

⁶https://isocpp.org/files/papers/N4402.pdf
⁷https://tour.golang.org/concurrency/1

https://isocpp.org/files/papers/N4402.pdf
https://tour.golang.org/concurrency/1
https://isocpp.org/files/papers/N4402.pdf
https://tour.golang.org/concurrency/1
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Distinguish Between the Coroutine Factory and the
Coroutine Object
The term coroutine is often used for two different aspects of coroutines: the function
invoking co_return, co_await, or co_yield, and the coroutine object. Using one term for
two different coroutine aspects may puzzle you (such as it did me). Let me clarify both
terms.

A simple coroutine producing 2021
MyFuture<int> createFuture() {

co_return 2021;

}

int main() {

auto fut = createFuture();

std::cout << "fut.get(): " << fut.get() << '\n';

}

This straightforward example has a function createFuture and returns an object of type
MyFuture<int>. Both are called coroutines. To be specific, the function createFuture is
a coroutine factory that returns a coroutine object. The coroutine object is a resumable
object that implements the framework to model a specific behavior. I present in the section
co_return the implementation and the use of this straightforward coroutine.

5.2.4.1 Restrictions

Coroutines cannot have return statements or placeholder return types. This holds for unconstrained
placeholders (auto), and constrained placeholders (concepts).

Additionally, functions having variadic arguments⁸, constexpr functions, consteval functions, con-
structors, destructors, and the main function cannot be coroutines.

5.3 The Framework

The framework for implementing coroutines consists of more than 20 functions, some of which you
must implement and some of which you may overwrite. Therefore, you can tailor the coroutine to
your needs.

A coroutine is associated with three parts: the promise object, the coroutine handle, and the coroutine
frame. The client gets the coroutine handle to interact with the promise object, which keeps its state
in the coroutine frame.

⁸https://en.cppreference.com/w/cpp/language/variadic_arguments

https://en.cppreference.com/w/cpp/language/variadic_arguments
https://en.cppreference.com/w/cpp/language/variadic_arguments
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5.3.1 Promise Object

The promise object is manipulated from inside the coroutine, and it delivers its result or exception via
the promise object.

The promise object must support the following interface.

Promise object

Member Function Description

Default constructor A promise must be default constructible.

initial_suspend() Determines if the coroutine suspends before it runs.

final_suspend noexcept() Determines if the coroutine suspends before it ends.

unhandled_exception() Called when an exception happens.

get_return_object() Returns the coroutine object (resumable object).

return_value(val) Is invoked by co_return val.

return_void() Is invoked by co_return.

yield_value(val) Is invoked by co_yield val.

The compiler automatically invokes these functions during its execution of the coroutine. The section
workflow presents this workflow in detail.

The function get_return_object returns a resumable object that the client uses to interact with the
coroutine. A promise needs at least one of themember functions return_value, return_void, or yield_-
value. You don’t need to define the member functions return_value or return_void if your coroutine
never ends.

The three functions yield_value, initial_suspend, and final_suspend return awaitables. An Await-
able is something that you can await on. The awaitable determines if the coroutine pauses or not.

5.3.2 Coroutine Handle

The coroutine handle is a non-owning handle to resume or destroy the coroutine frame from the
outside. The coroutine handle is part of the resumable function.

The following code snippet shows a simple Generator having a coroutine handle coro.
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A coroutine handle

1 template<typename T>

2 struct Generator {

3

4 struct promise_type;

5 using handle_type = std::coroutine_handle<promise_type>;

6

7 Generator(handle_type h): coro(h) {}

8 handle_type coro;

9

10 ~Generator() {

11 if ( coro ) coro.destroy();

12 }

13 T getValue() {

14 return coro.promise().current_value;

15 }

16 bool next() {

17 coro.resume();

18 return not coro.done();

19 }

20 ...

21 }

The constructor (line 7) gets the coroutine handle to the promise that has type std::coroutine_-

handle<promise_type>⁹. The member functions next (line 16) and getValue (line 13) allow a client
to resume the promise (gen.next()) or ask for its value (gen.getValue()) using the coroutine handle.

Invoking a coroutine

Generator<int> coroutineFactory(); // function that returns a coroutine object

auto gen = coroutineFactory();

gen.next();

auto result = gen.getValue();

Internally, both functions trigger the coroutine handle coro (line 8) to

• resume the coroutine: coro.resume() (line 17) or coro();

• destroy the coroutine: coro.destroy() (line 11);

• check the state of the coroutine: coro (line 11).

⁹https://en.cppreference.com/w/cpp/coroutine/coroutine_handle

https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
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The coroutine is automatically destroyed when its function body ends. The call coro only returns true
at its final suspension point.

The resumable object requires an inner type promise_-
type

A resumable object such as Generatormust have an inner type promise_type. Alternatively,
you can specialize std::coroutine_traits¹⁰ on Generator and define a public member
promise_type in it: std::coroutine_traits<Generator>.

5.3.3 Coroutine Frame

The coroutine frame is an internal, typically heap-allocated state. It consists of the already mentioned
promise object, the coroutine’s copied parameters, the representation of the suspension points, local
variables whose lifetime ends before the current suspension point, and local variables whose lifetime
exceed the current suspension point.

Two requirements are necessary to optimize out the allocation of the coroutine:

1. The lifetime of the coroutine has to be nested inside the lifetime of the caller.

2. The caller of the coroutine knows the size of the coroutine frame.

The crucial abstractions in the coroutine framework are Awaitables and Awaiters.

5.4 Awaitables and Awaiters

The three functions of a promis object prom yield_value, initial_suspend, and final_suspend return
awaitables.

5.4.1 Awaitables

An Awaitable is something you can await on. The awaitable determines if the coroutine pauses or
not.

Essentially, the compiler generates the following function calls using the promise prom and the co_-

await operator.

¹⁰https://en.cppreference.com/w/cpp/coroutine/coroutine_traits

https://en.cppreference.com/w/cpp/coroutine/coroutine_traits
https://en.cppreference.com/w/cpp/coroutine/coroutine_traits
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Compiler-generated function calls

Call Compiler generated call

Start coroutine execution co_await prom.initial_suspend()

co_yield value co_await prom.yield_value(value)

co_return value co_await prom.return_value(value)

End coroutine execution co_await prom.final_suspend()

The co_await operator needs an awaitable as argument. The awaitable is converted into an awaiter.

5.4.2 The Concept Awaiter

The concept Awaiter requires three functions.

The concept Awaiter

Function Description

await_ready Indicates if the result is ready. When it returns false, await_suspend
is called.

await_suspend Schedule the coroutine for resumption or destruction.

await_resume Provides the result for the co_await exp expression.

The C++20 standard already defines two basic awaitables: std::suspend_always, and std::suspend_-

never.

5.4.3 std::suspend_always and std::suspend_never

As its name suggests, the Awaitable suspend_always always suspends. Therefore, the call await_ready
returns false.
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The Awaitable std::suspend_always

struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

The opposite holds for suspend_never. It never suspends and, hence, the call await_ready returns true.

The Awaitable std::suspend_never

struct suspend_never {

constexpr bool await_ready() const noexcept { return true; }

constexpr void await_suspend(std::coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

The awaitables std::suspend_always and std::suspend_never are the basic building blocks for
functions, such as initial_suspend and final_suspend. Both functions are automatically executed
when the coroutine is exected: initial_suspend at the beginning and final_suspend at the end end of
the coroutine.

5.4.4 initial_suspend

When the member function initial_suspend returns std::suspend_always, the coroutine suspends at
its beginning. When returning std::suspend_never, the coroutine does not pause.

• A lazy coroutine that pauses immediately

A lazy coroutine

std::suspend_always initial_suspend() {

return {};

}

• An eager coroutine that runs immediately
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A eager coroutine

std::suspend_never initial_suspend() {

return {};

}

5.4.5 final_suspend

When the member function final_suspend returns std::suspend_always, the coroutine suspends at
its end. When returning std::suspend_never, the coroutine does not pause.

• A lazy coroutine that pauses at its end

A lazy coroutine that finally pauses

std::suspend_always final_suspend() noexcept() {

return {};

}

• An eager coroutine that doesn’t pause at its end

An eager coroutine that doesn’t pause

std::suspend_never final_suspend() noexcept {

return {};

}

So far, we have only Awaitables, but we need something to await for. Let me fill the gap and write
about Awaiters.

5.4.6 Awaiter

There are essentially two ways to get an Awaiter.

• A co_await operator is defined.

• The Awaitable becomes the Awaiter.

Remember, when co_await expression is invoked, the expression is an Awaitable. Further, an
expression is a call on the promise object (Awaitable): prom.yield_value(value), prom.initial_-
suspend(), or prom.final_suspend().

Now, the compiler performs the following lookup rule to get an Awaiter:

1. It looks for the co_await operator on the promise object and returns an Awaiter:

awaiter = awaitable.operator co_await();
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2. It looks for a freestanding co_await operator and returns an Awaiter:

awaiter = operator co_await(awaitable);

3. If there is no co_await operator defined, the Awaitable becomes the Awaiter:

awaiter = awaitable;

awaiter = awaitable

When you study my coroutine implementations in this chapter, you may notice that I use
most of the time that an Awaitable implicitly becomes an Awaiter. Only the example to
thread synchronization uses the co_await operator to get the Awaiter.

After these static aspects of coroutines, I want to continue with their dynamic aspects.

5.5 The Workflows

The compiler transforms your coroutine and runs two workflows: the outer promise workflow and
the inner awaiter workflow.

5.5.1 The Promise Workflow

When you use co_yield, co_await, or co_return in a function, the function becomes a coroutine, and
the compiler transforms its body to something equivalent to the following lines.

The transformed coroutine

1 {

2 Promise prom;

3 co_await prom.initial_suspend();

4 try {

5 <function body having co_return, co_yield, or co_await>

6 }

7 catch (...) {

8 prom.unhandled_exception();

9 }

10 FinalSuspend:

11 co_await prom.final_suspend();

12 }

The compiler automatically runs the transformed code using the functions of the promise object. In
short, I call this workflow the promise workflow. Here are the main steps of this workflow.

• Coroutine begins execution
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– allocates the coroutine frame if necessary
– copies all function parameters to the coroutine frame
– creates the prom object prom (line 2)
– calls prom.get_return_object() to create the coroutine handle, and keeps it in a local
variable. The result of the call will be returned to the caller when the coroutine first
suspends.

– calls prom.initial_suspend() and co_awaits its result. The promise type typically returns
suspend_never for eagerly-started coroutines or suspend_always for lazily-started corou-
tines. (line 3)

– the body of the coroutine is executed when co_await prom.initial_suspend() resumes
• Coroutine reaches a suspension point

– the return object (prom.get_return_object()) is returned to the caller which resumed the
coroutine

• Coroutine reaches co_return
– calls prom.return_void() for co_return or co_return expression, where expression has
type void

– calls prom.return_value(expression) for co_return expression, where expression has
non-void type.

– destroys all stack-created variables
– calls prom.final_suspend() and co_awaits its result

• Coroutine is destroyed (by terminating via co_return an uncaught exception, or via the
coroutine handle)

– calls the destruction of the promise object
– calls the destructor of the function parameters
– frees the memory used by the coroutine frame
– transfers control back to the caller

When a coroutine ends with an uncaught exception, the following happens:

• catches the exception and calls prom.unhandled_exception() from the catch block

• calls prom.final_suspend() and co_awaits the result (line 11)

When you use co_await expr in a coroutine, or the compiler implicitly invokes co_await prom.initial_-

suspend(), co_await prom.final.suspend(), or co_await prom.yield_value(value), a second, inner
awaitable workflow starts.

5.5.2 The Awaiter Workflow

Using co_await expr causes the compiler to transform the code based on the functions await_ready,
await_suspend, and await_resume. Consequently, I call the execution of the transformed code the
awaiter workflow.

The compiler generates approximately the following code using the awaiter. For simplicity, I ignore
exception handling and describe the workflow with comments.
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The generated Awaiter Workflow

1 awaiter.await_ready() returns false:

2

3 suspend coroutine

4

5 awaiter.await_suspend(coroutineHandle) returns:

6

7 void:

8 awaiter.await_suspend(coroutineHandle);

9 coroutine keeps suspended

10 return to caller

11

12 bool:

13 bool result = awaiter.await_suspend(coroutineHandle);

14 if result:

15 coroutine keep suspended

16 return to caller

17 else:

18 go to resumptionPoint

19

20 another coroutine handle:

21 auto anotherCoroutineHandle = awaiter.await_suspend(coroutineHandle);

22 anotherCoroutineHandle.resume();

23 return to caller

24

25 resumptionPoint:

26

27 return awaiter.await_resume();

The workflow is only executed if awaiter.await_ready() returns false (line 1). In case it returns true,
the coroutine is ready and returns with the result of the call awaiter.await_resume() (line 27).

Let me assume that awaiter.await_ready() returns false. First, the coroutine is suspended (line 3),
and immediately the return value of awaiter.await_suspend() is evaluated. The return type can be
void (line 7), a boolean (line 12), or another coroutine handle (line 20), such as anotherCoroutineHandle.
Depending on the return type, the program flow returns or another coroutine is executed.



Coroutines (C++20) 263

Return value of awaiter.await_suspend()

Type Description

void The coroutine keeps suspended and returns to the caller.

bool bool == true: The coroutine keeps suspended and returns to the caller.
bool == false: The coroutine is resumed and does not return to the caller.

anotherCoroutineHandle The other coroutine is resumed and returns to the caller.

Whats happens in case an exception is thrown? It makes a difference if the exception occurs in await_-

read, await_suspend, or await_resume.

• await_ready: The coroutine is not suspended, nor are the calls await_suspend or await_resume
evaluated.

• await_suspend: The exception is caught, the coroutine is resumed, and the exception rethrown.
await_resume is not called.

• await_resume: await_ready and await_suspend are evaluated and all values are returned. Of
course, the call await_resume does not return a result.

Let me put theory into practice.

5.6 co_return

A coroutine uses co_return as its return statement.

5.6.1 A Future

Admittedly, the coroutine in the following program eagerFuture.cpp is the simplest coroutine I can
imagine that still does something meaningful: it automatically stores the result of its invocation.

An eager future

1 // eagerFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {}
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11 ~MyFuture() { }

12 T get() {

13 return *value;

14 }

15

16 struct promise_type {

17 std::shared_ptr<T> ptr = std::make_shared<T>();

18 ~promise_type() { }

19 MyFuture<T> get_return_object() {

20 return ptr;

21 }

22 void return_value(T v) {

23 *ptr = v;

24 }

25 std::suspend_never initial_suspend() {

26 return {};

27 }

28 std::suspend_never final_suspend() noexcept {

29 return {};

30 }

31 void unhandled_exception() {

32 std::exit(1);

33 }

34 };

35 };

36

37 MyFuture<int> createFuture() {

38 co_return 2021;

39 }

40

41 int main() {

42

43 std::cout << '\n';

44

45 auto fut = createFuture();

46 std::cout << "fut.get(): " << fut.get() << '\n';

47

48 std::cout << '\n';

49

50 }

MyFuture behaves as a future¹¹, which runs immediately. The call of the coroutine createFuture (line
45) returns the future, and the call fut.get (line 46) picks up the result of the associated promise.

¹¹https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
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There is one subtle difference to a future, the return value of the coroutine createFuture is available
after its invocation. Due to the lifetime issues, the return value is managed by a std::shared_ptr (lines
9 and 17). The coroutine always uses std::suspend_never (lines 25, and 28) and, therefore, neither
suspends before it runs nor after. Thismeans the coroutine is executedwhen the function createFuture
is invoked. The member function get_return_object (line 19) creates and stores the handle to the
coroutine object, and return_value (lines 22) stores the result of the coroutine, which was provided
by co_return 2021 (line 38). The client invokes fut.get (line 46) and uses the future as a handle to the
promise. The member function get returns the result to the client (line 13).

An eager future

You may think that it is not worth the effort of implementing a coroutine that behaves just like a
function. You are right! However, this simple coroutine is an ideal starting point for writing various
implementations of futures. Read more about Variations of Futures in chapter case studies.

5.7 co_yield

Thanks to co_yield you can implement a generator generating an infinite data stream fromwhich you
can successively query values. The return type of the generator generator<int> generatorForNumbers(int

begin, int inc= 1) is generator<int>, where generator internally holds a special promise p such that
a call co_yield i is equivalent to a call co_await p.yield_value(i). Statement co_yield i can be
called an arbitrary number of times. Immediately after each call, the execution of the coroutine is
suspended.

5.7.1 An Infinite Data Stream

The program infiniteDataStream.cpp produces an infinite data stream. The coroutine getNext uses
co_yield to create a data stream that starts at start and gives on request the next value, incremented
by step.

An infinite data stream

1 // infiniteDataStream.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9
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10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {}

14 handle_type coro;

15

16 ~Generator() {

17 if ( coro ) coro.destroy();

18 }

19 Generator(const Generator&) = delete;

20 Generator& operator = (const Generator&) = delete;

21 Generator(Generator&& oth) noexcept : coro(oth.coro) {

22 oth.coro = nullptr;

23 }

24 Generator& operator = (Generator&& oth) noexcept {

25 coro = oth.coro;

26 oth.coro = nullptr;

27 return *this;

28 }

29 T getValue() {

30 return coro.promise().current_value;

31 }

32 bool next() {

33 coro.resume();

34 return not coro.done();

35 }

36 struct promise_type {

37 promise_type() = default;

38

39 ~promise_type() = default;

40

41 auto initial_suspend() {

42 return std::suspend_always{};

43 }

44 auto final_suspend() noexcept {

45 return std::suspend_always{};

46 }

47 auto get_return_object() {

48 return Generator{handle_type::from_promise(*this)};

49 }

50 auto return_void() {

51 return std::suspend_never{};

52 }

53

54 auto yield_value(const T value) {
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55 current_value = value;

56 return std::suspend_always{};

57 }

58 void unhandled_exception() {

59 std::exit(1);

60 }

61 T current_value;

62 };

63

64 };

65

66 Generator<int> getNext(int start = 0, int step = 1) {

67 auto value = start;

68 while (true) {

69 co_yield value;

70 value += step;

71 }

72 }

73

74 int main() {

75

76 std::cout << '\n';

77

78 std::cout << "getNext():";

79 auto gen = getNext();

80 for (int i = 0; i <= 10; ++i) {

81 gen.next();

82 std::cout << " " << gen.getValue();

83 }

84

85 std::cout << "\n\n";

86

87 std::cout << "getNext(100, -10):";

88 auto gen2 = getNext(100, -10);

89 for (int i = 0; i <= 20; ++i) {

90 gen2.next();

91 std::cout << " " << gen2.getValue();

92 }

93

94 std::cout << '\n';

95

96 }

The main program creates two coroutines. The first one gen (line 79) returns the values from 0 to 10,
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and the second one gen2 (line 88) the values from 100 to -100. Before I dive into the workflow, thanks
to the online compiler Wandbox¹², here is the output of the program.

An infinite data stream

The numbers in the program infiniteDataStream.cpp stand for the steps in the first iteration of the
workflow.

1. creates the promise

2. calls promise.get_return_object() and keeps the result in a local variable

3. creates the generator

4. calls promise.initial_suspend(). The generator is lazy and, therefore, always suspends.

5. asks for the next value and returns if the generator is consumed

6. triggered by the co_yield call. The next value is available thereafter.

7. gets the next value

In additional iterations, only steps 5, 6, and 7 are performed.

Section Modification and Generalization of Threads in chapter case studies discusses further improve-
ments and modifications of the generator infiniteDataStream.cpp.

5.8 co_await

co_await eventually causes the execution of the coroutine to be suspended or resumed. The expression
exp in co_await exp has to be a so-called awaitable expression, i.e. which must implement a specific
interface, consisting of the three functions await_ready, await_suspend, and await_resume.

A typical use case for co_await is a server that waits for events.

¹²https://wandbox.org/

https://wandbox.org/
https://wandbox.org/
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A blocking server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = acceptor.accept(); // blocking

4 auto request = socket.read(); // blocking

5 auto response = handleRequest(request);

6 socket.write(response); // blocking

7 }

The server is quite simple because it sequentially answers each request in the same thread. The server
listens on port 443 (line 1), accepts the connection (line 3), reads the incoming data from the client
(line 4), and writes its answer to the client (line 6). The calls in lines 3, 4, and 6 are blocking.

Thanks to co_await, the blocking calls can now be suspended and resumed.

A waiting server

1 Acceptor acceptor{443};

2 while (true) {

3 Socket socket = co_await acceptor.accept();

4 auto request = co_await socket.read();

5 auto response = handleRequest(request);

6 co_await socket.write(response);

7 }

Before I present the challenging example of thread synchronization with coroutines, I want to start
with something straightforward: starting a job on request.

5.8.1 Starting a Job on Request

The coroutine in the following example is as simple as it can be. It awaits on the predefined Awaitable
std::suspend_never().

Starting a job on request

1 // startJob.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct Job {

7 struct promise_type;

8 using handle_type = std::coroutine_handle<promise_type>;

9 handle_type coro;
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10 Job(handle_type h): coro(h){}

11 ~Job() {

12 if ( coro ) coro.destroy();

13 }

14 void start() {

15 coro.resume();

16 }

17

18

19 struct promise_type {

20 auto get_return_object() {

21 return Job{handle_type::from_promise(*this)};

22 }

23 std::suspend_always initial_suspend() {

24 std::cout << " Preparing job" << '\n';

25 return {};

26 }

27 std::suspend_always final_suspend() noexcept {

28 std::cout << " Performing job" << '\n';

29 return {};

30 }

31 void return_void() {}

32 void unhandled_exception() {}

33

34 };

35 };

36

37 Job prepareJob() {

38 co_await std::suspend_never();

39 }

40

41 int main() {

42

43 std::cout << "Before job" << '\n';

44

45 auto job = prepareJob();

46 job.start();

47

48 std::cout << "After job" << '\n';

49

50 }

You may think that the coroutine prepareJob (line 37) is meaningless because the Awaitable never
suspends. No! The function prepareJob is at least a coroutine factory using co_await (line 38) and
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returning a coroutine object. The function call prepareJob() in line 45 creates the coroutine object of
type Job. When you study the data type Job, you recognize that the coroutine object is immediately
suspended, because the member function of the promise returns the Awaitable std::suspend_always
(line 23). This is exactly the reason why the function call job.start (line 46) is necessary to resume
the coroutine (line 15). The member function final_suspend also returns std::suspend_always (line
27).

Starting a Job on Request

In the case studies’ section various job flows, I use the program startJob as a starting point for further
experiments.

5.8.2 Thread Synchronization

It’s typical for threads to synchronize themselves. One thread prepares a work package another thread
awaits. Condition variables¹³, promises and futures¹⁴, and also an atomic boolean¹⁵ can be used to
create a sender-receiver workflow. Thanks to coroutines, thread synchronization is quite easy, without
the inherent risks of condition variables, such as spurious wakeups and lost wakeups.

Thread Synchronization

1 // senderReceiver.cpp

2

3 #include <coroutine>

4 #include <chrono>

5 #include <iostream>

6 #include <functional>

7 #include <string>

8 #include <stdexcept>

9 #include <atomic>

10 #include <thread>

11

12 class Event {

13 public:

14

15 Event() = default;

16

¹³https://en.cppreference.com/w/cpp/thread/condition_variable
¹⁴https://en.cppreference.com/w/cpp/thread
¹⁵https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic
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17 Event(const Event&) = delete;

18 Event(Event&&) = delete;

19 Event& operator=(const Event&) = delete;

20 Event& operator=(Event&&) = delete;

21

22 class Awaiter;

23 Awaiter operator co_await() const noexcept;

24

25 void notify() noexcept;

26

27 private:

28

29 friend class Awaiter;

30

31 mutable std::atomic<void*> suspendedWaiter{nullptr};

32 mutable std::atomic<bool> notified{false};

33

34 };

35

36 class Event::Awaiter {

37 public:

38 Awaiter(const Event& eve): event(eve) {}

39

40 bool await_ready() const;

41 bool await_suspend(std::coroutine_handle<> corHandle) noexcept;

42 void await_resume() noexcept {}

43

44 private:

45 friend class Event;

46

47 const Event& event;

48 std::coroutine_handle<> coroutineHandle;

49 };

50

51 bool Event::Awaiter::await_ready() const {

52

53 // allow at most one waiter

54 if (event.suspendedWaiter.load() != nullptr){

55 throw std::runtime_error("More than one waiter is not valid");

56 }

57

58 // event.notified == false; suspends the coroutine

59 // event.notified == true; the coroutine is executed like a normal function

60 return event.notified;

61 }
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62

63 bool Event::Awaiter::await_suspend(std::coroutine_handle<> corHandle) noexcept {

64 coroutineHandle = corHandle;

65

66 const Event& ev = event;

67 ev.suspendedWaiter.store(this);

68

69 if (ev.notified) {

70 void* thisPtr = this;

71

72 if (ev.suspendedWaiter.compare_exchange_strong(thisPtr, nullptr)) {

73 return false;

74 }

75 }

76

77 return true;

78 }

79

80 void Event::notify() noexcept {

81 notified = true;

82

83 void* waiter = suspendedWaiter.load();

84

85 if (waiter != nullptr && suspendedWaiter.compare_exchange_strong(waiter, nullptr)) {

86 static_cast<Awaiter*>(waiter)->coroutineHandle.resume();

87 }

88 }

89

90 Event::Awaiter Event::operator co_await() const noexcept {

91 return Awaiter{ *this };

92 }

93

94 struct Task {

95 struct promise_type {

96 Task get_return_object() { return {}; }

97 std::suspend_never initial_suspend() { return {}; }

98 std::suspend_never final_suspend() noexcept { return {}; }

99 void return_void() {}

100 void unhandled_exception() {}

101 };

102 };

103

104 Task receiver(Event& event) {

105 auto start = std::chrono::high_resolution_clock::now();

106 co_await event;
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107 std::cout << "Got the notification! " << '\n';

108 auto end = std::chrono::high_resolution_clock::now();

109 std::chrono::duration<double> elapsed = end - start;

110 std::cout << "Waited " << elapsed.count() << " seconds." << '\n';

111 }

112

113 using namespace std::chrono_literals;

114

115 int main() {

116

117 std::cout << '\n';

118

119 std::cout << "Notification before waiting" << '\n';

120 Event event1{};

121 auto senderThread1 = std::thread([&event1]{ event1.notify(); }); // Notification

122 auto receiverThread1 = std::thread(receiver, std::ref(event1));

123

124 receiverThread1.join();

125 senderThread1.join();

126

127 std::cout << '\n';

128

129 std::cout << "Notification after 2 seconds waiting" << '\n';

130 Event event2{};

131 auto receiverThread2 = std::thread(receiver, std::ref(event2));

132 auto senderThread2 = std::thread([&event2]{

133 std::this_thread::sleep_for(2s);

134 event2.notify(); // Notification

135 });

136

137 receiverThread2.join();

138 senderThread2.join();

139

140 std::cout << '\n';

141

142 }

From the user’s perspective, thread synchronization with coroutines is straightforward. Let’s have
a look at the program senderReceiver.cpp. The threads senderThread1 (line 121) and senderThread2

(line 132) each uses an event to send its notification,respectively, in lines 121 and 134. The function
receiver in lines 104 - 111 is the coroutine, which is executed in threads receiverThread1 (line 122) and
receiverThread2 (line 132). I measured the time between the beginning and the end of the coroutine
and displayed it. This number shows how long the coroutine waits. The following screenshot shows
the output of the program.
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Thread synchronization

If you compare the class Generator in the infinite data stream with the class Event in this example,
there is a subtle difference. In the first case, the Generator is the awaitable and the awaiter; in the
second case, the Event uses the operator co_await to return the awaiter. This separation of concerns
into the Awaitable and the awaiter improves the structure of the code.

The output displays that the execution of the second coroutine takes about two seconds. The reason
is that the event1 sends its notification (line 121) before the coroutine is suspended, but the event2

sends its notification after a time duration of 2 seconds (line 134).

Now, I put the implementer’s hat on. The workflow of the coroutine is quite challenging to grasp. The
class Event has two interesting members: suspendedWaiter and notified. Variable suspendedWaiter in
line 31 holds the waiter for the signal, and notified in line 32 has the state of the notification.

In my explanation of both workflows, I assume in the first case (first workflow) that the event
notification happens before the coroutine awaits the events. For the second case (second workflow),
I assume it is the other way around.

Let’s first look at event1 and the first workflow. Here, event1 sends its notification before receiverThread1
is started. The invocation event1 (line 121) triggers the method notify (lines 80 to 88). First the
notification flag is set and then, the call void* waiter = suspendedWaiter.load() loads the potential
waiter. In this case, the waiter is a nullptr because it was not set before. This means the following
resume call on the waiter in line 86 is not executed. The subsequentially performed function
await_ready (lines 51 - 61) checks first if there is more than one waiter. In this case, I throw a
std::runtime exception. The crucial part of this method is the return value. event.notification was
already set to true in the notifymethod. truemeans, in this case, that the coroutine is not suspended
and executes such as a normal function.

In the second workflow, the co_await event2 call happens before event2 sends its notification. co_-
await event2 triggers the call await_ready (line 51). The big difference with the first workflow is that
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event.notified is false. This false value causes the suspension of the coroutine. Technically, method
await_suspend (lines 63 - 78) is executed. await_suspend gets the coroutine handle corHandle and stores
it for later invocation in the variable coroutineHandle (line 64). Of course, later invocation means
resumption. Second, the waiter is stored in the variable suspendedWaiter. When later event2.notify
triggers its notification, method notify (line 80) is executed. The difference with the first workflow
is that the condition waiter != nullptr evaluates to true. The result is that the waiter uses the
coroutineHandle to resume the coroutine.

Distilled Information
• Coroutines are generalized functions that can pause and resume their execution
while keeping their state.

• With C++20, we don’t get concrete coroutines, but a framework for implementing
coroutines. This framework consists of more than 20 functions that you partially
have to implement and partially could overwrite.

• With the new keywords co_await and co_yield, C++20 extends the execution of
C++ functions with two new concepts.

• Thanks to co_await expression it is possible to suspend and resume the execution
of the expression. If you use co_await expression in a function func, the call auto
getResult = func() does not block if the function’s result is not available. Instead
of resource-consuming blocking, you have resource-fri’\n’y waiting.

• co_yield empowers you to write infinite data streams.



6. Case Studies

Cippi applies here knowledge

After providing the theory on the memory model, the the multithreading interface, and the brand-
new C++20 standard, I now apply the theory in practice. Additionally, the case studies calculating
the sum of a vector, thread-safe initialization of a singleton, and [fast synchronization of threads]
(#chapterXXXFastSSSSynchronizationSSSofSSSThreads) give you performance numbers.

The Reference PCs
You should take the performance numbers with a grain of salt. I’m not interested in
the exact number for each variation of the algorithms on Linux and Windows. I’m more
interested in getting a gut feeling of which algorithms may work and which algorithms
may not work. I’m not comparing the absolute numbers of my Linux desktop with the
numbers on my Windows laptop, but I’m interested to know if some algorithms work
better on Linux or Windows.
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6.1 Calculating the Sum of a Vector

What is the fastest way to add the elements of a std::vector? To get the answer, I fill a std::vector

with one hundred million arbitrary but uniformly distributed¹ numbers between 1 and 10. The task
is to calculate the sum of the numbers in various ways. I use the performance of a single-threaded
addition as the reference execution time. I discuss atomics, locks, thread-local data and tasks.

Let’s start with the single-threaded scenario.

6.1.1 Single Threaded addition of a Vector

The straightforward strategy is it to add the numbers in a range-based for loop.

6.1.1.1 Range-based for Loop

The summation takes place in line 27.

Summation of a vector in a range-based for loop

1 // calculateWithLoop.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <random>

6 #include <vector>

7

8 constexpr long long size = 100000000;

9

10 int main(){

11

12 std::cout << '\n';

13

14 std::vector<int> randValues;

15 randValues.reserve(size);

16

17 // random values

18 std::random_device seed;

19 std::mt19937 engine(seed());

20 std::uniform_int_distribution<> uniformDist(1, 10);

21 for (long long i = 0 ; i < size ; ++i)

22 randValues.push_back(uniformDist(engine));

23

24 const auto sta = std::chrono::steady_clock::now();

¹https://en.wikipedia.org/wiki/Discrete_uniform_distribution

https://en.wikipedia.org/wiki/Discrete_uniform_distribution
https://en.wikipedia.org/wiki/Discrete_uniform_distribution
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25

26 unsigned long long sum = {};

27 for (auto n: randValues) sum += n;

28

29 const std::chrono::duration<double> dur =

30 std::chrono::steady_clock::now() - sta;

31

32 std::cout << "Time for addition " << dur.count()

33 << " seconds" << '\n';

34 std::cout << "Result: " << sum << '\n';

35

36 std::cout << '\n';

37

38 }

How fast are my computers?

Explicit summation on Linux

Explicit summation on Windows

You should not use loops explicitly. Most of the time you can use an algorithm from the Standard
Template Library.

6.1.1.2 Summation with std::accumulate

std::accumulate is the right way to calculate the sum of a vector. For the sake of simplicity, I show
the application of std::accumulate. The entire source file can be found in the resources for this book.
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Summation of a vector with std::accumulate

// calculateWithStd.cpp

...

const unsigned long long sum = std::accumulate(randValues.begin(),

randValues.end(), 0);

...

On Linux, the performance of std::accumulate is roughly the same as the performance of the range-
based for-loop. However, using std::accumulate on Windows makes a big difference, and performs
much better than an explicit for-loop.

Summation with std::acccumulate on Linux

Summation with std::acccumulate on Windows

Now we have our reference timings. Let me run two additional single-threaded scenarios. One with a
lock and the other with an atomic. Why? We get the performance numbers indicating how expensive
the protection by a lock or an atomic is when there is no contention.

6.1.1.3 Protection with a Lock

If I protect access to the summation variable with a lock, I get the answers to two questions.

1. How expensive is the synchronization of a lock without contention?

2. How fast can a lock be in the optimal case?

I only show the application of std:lock_guard. The entire source file is part of the resources for this
book.
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Summation of a vector by using a lock for the summation variable

// calculateWithLock.cpp

...

std::mutex myMutex;

for (auto i: randValues){

std::lock_guard<std::mutex> myLockGuard(myMutex);

sum += i;

}

...

The execution times are as expected: the access to the protected variable sum is slower.

Single-threaded summation with std::acccumulate on Linux using a lock

Single-threaded summation with std::acccumulate on Windows using a lock

Using a std::lock_guardwithout contention is about 50 - 150 times slower than using std::accumulate.

Let’s finally get to atomics.

6.1.1.4 Protection with Atomics

Accordingly, I have the same questions for atomics that I had for locks.
1. How expensive is the synchronization of an atomic?

2. How fast can an atomic be if there is no contention?
I have an additional question; what is the performance difference of an atomic compared to a lock?
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Summation of a vector by using an atomic as summation variable
1 // calculateWithAtomic.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <numeric>

7 #include <random>

8 #include <vector>

9

10 constexpr long long size = 100000000;

11

12 int main(){

13

14 std::cout << '\n';

15

16 std::vector<int> randValues;

17 randValues.reserve(size);

18

19 // random values

20 std::random_device seed;

21 std::mt19937 engine(seed());

22 std::uniform_int_distribution<> uniformDist(1, 10);

23 for (long long i = 0 ; i < size ; ++i)

24 randValues.push_back(uniformDist(engine));

25

26 std::atomic<unsigned long long> sum = {};

27 std::cout << std::boolalpha << "sum.is_lock_free(): "

28 << sum.is_lock_free() << '\n';

29 std::cout << '\n';

30

31 auto sta = std::chrono::steady_clock::now();

32

33 for (auto i: randValues) sum += i;

34

35 std::chrono::duration<double> dur = std::chrono::steady_clock::now() - sta;

36

37

38 std::cout << "Time for addition " << dur.count()

39 << " seconds" << '\n';

40 std::cout << "Result: " << sum << '\n';

41

42 std::cout << '\n';

43

44 sum = 0;
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45 sta = std::chrono::steady_clock::now();

46

47 for (auto i: randValues) sum.fetch_add(i);

48

49 dur = std::chrono::steady_clock::now() - sta;

50 std::cout << "Time for addition " << dur.count()

51 << " seconds" << '\n';

52 std::cout << "Result: " << sum << '\n';

53

54 std::cout << '\n';

55

56 }

First, I check in line 28 if the atomic sum has a lock. That is crucial because otherwise, there would
be no difference between using locks and atomics. On all mainstream platforms I know, atomics
are lock-free. Second, I calculate the sum in two ways. I use in line 33 the += operator, in line 47 the
member function fetch_add. In the single-threaded case, both variants have comparable performance;
however, for fetch_add I can explicitly specify thememory-ordering. More about that point in the next
subsection.

Here are the results.

Summation with an atomic on Linux
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Summation with an atomic on Windows

6.1.1.5 All Single-Threaded Numbers

I want to stress three points.

1. Atomics are 12 - 50 times slower on Linux and Windows than std::accumulate without
synchronization.

2. Atomics are 2 - 3 times faster on Linux and Windows than locks.

3. std::accumulate seems to be highly optimized on Windows.

Before we look at the multithreaded scenarios, here is a table summarizing the results for single-
threaded execution. The unit is seconds.

Performance of all single threaded summations

Operating System
(Compiler)

Range-based for
loop

std::accumulate Locks Atomics

Linux (GCC) 0.07 0.07 3.34 1.34
1.33

Windows (cl.exe) 0.08 0.03 4.07 1.50
1.61

6.1.2 Multithreaded Summation with a Shared Variable

You may have already guessed it. Using a shared variable for the summation with four threads is not
optimal because the synchronization overhead outweighs the performance benefit. Let me show you
the numbers.

The questions I want to answer are still the same.

1. What is the difference in performance between the summation using a lock and an atomic?
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2. What is the difference in performance between single-threaded and multithreaded execution
of std::accumulate?

6.1.2.1 Using a std::lock_guard

The simplest way to make the thread-safe summation is to use a std::lock_guard.

Multithreaded summation of a vector using a std::lock_guard

1 // synchronizationWithLock.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <mutex>

6 #include <random>

7 #include <thread>

8 #include <utility>

9 #include <vector>

10

11 constexpr long long size = 100000000;

12

13 constexpr long long fir = 25000000;

14 constexpr long long sec = 50000000;

15 constexpr long long thi = 75000000;

16 constexpr long long fou = 100000000;

17

18 std::mutex myMutex;

19

20 void sumUp(unsigned long long& sum, const std::vector<int>& val,

21 unsigned long long beg, unsigned long long end){

22 for (auto it = beg; it < end; ++it){

23 std::lock_guard<std::mutex> myLock(myMutex);

24 sum += val[it];

25 }

26 }

27

28 int main(){

29

30 std::cout << '\n';

31

32 std::vector<int> randValues;

33 randValues.reserve(size);

34

35 std::mt19937 engine;

36 std::uniform_int_distribution<> uniformDist(1,10);

37 for (long long i = 0 ; i < size ; ++i)
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38 randValues.push_back(uniformDist(engine));

39

40 unsigned long long sum = 0;

41 const auto sta = std::chrono::steady_clock::now();

42

43 std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);

44 std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);

45 std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);

46 std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);

47

48 t1.join();

49 t2.join();

50 t3.join();

51 t4.join();

52

53 std::chrono::duration<double> dur= std::chrono::steady_clock::now() - sta;

54 std::cout << "Time for addition " << dur.count()

55 << " seconds" << '\n';

56 std::cout << "Result: " << sum << '\n';

57

58 std::cout << '\n';

59

60 }

The program is easy to explain. The function sumUp (lines 20 - 26) is the work package each thread
executes. sumUp gets the summation variable sum and the std::vector val by reference. beg and end

specify the range of the summation. The std::lock_guard (line 23) is used to protect the shared sum.
Each thread (lines 43 - 46) performs a quarter of the summation.

Here are the performance numbers of the program.

Summation with a shared variable on Linux
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Summation with a shared variable on Windows

The program’s bottleneck is the shared variable sum because a std::lock_guard heavily synchronizes
it. One obvious solution comes immediately to mind: replace the heavyweight lock with a lightweight
atomic.

Reduced Source Files
For the sake of simplicity, I show the function sumUp for the remainder of this subsection
because all other parts of the program hardly change. For the complete examples, please
see the resources for this book.

6.1.2.2 Using an atomic variable

Now, the summation variable sum is an atomic. That means I don’t need the std::lock_guard anymore.
Here is the modified sumUp function.

Summation of a vector by using an atomic

// synchronizationWithAtomic.cpp

...

void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end){

for (auto it = beg; it < end; ++it){

sum += val[it];

}

}

...

The performance numbers are pretty weird on my Windows laptop. The synchronization with
std::lock_guard is more than twice as fast as the atomic version.
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Summation with an atomic on Linux

Summation with an atomic on Windows

In addition to using the += operator on an atomic, you can use the fetch_add member function. Let’s
try it out.

6.1.2.3 Using the member function fetch_add

Once more. The modification of the source code is minimal. I have only changed the summation
expression to sum.fetch_add(val[it]).

Summation of a vector by using the member function fetch_add

// synchronizationWithFetchAdd.cpp

...

void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end){

for (auto it = beg; it < end; ++it){

sum.fetch_add(val[it]);

}

}

...

Now we have a similar performance as the previous example; there is little difference between the
operator += and fetch_add.
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Summation with an atomic on Linux

Summation with an atomic on Windows

Although there is no performance difference between the += operation and the fetch_add member
function on an atomic, fetch_add has an advantage; it allows me to weaken the memory-ordering
explicitly and to apply relaxed semantic.

6.1.2.4 Using the member function fetch_add with relaxed semantic

1 // synchronizationWithFetchAddRelaxed.cpp

2

3 ...

4

5 void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

6 unsigned long long beg, unsigned long long end){

7 for (auto it = beg; it < end; ++it){

8 sum.fetch_add(val[it], std::memory_order_relaxed);

9 }

10 }

11

12 ...

The default behavior for atomics is sequential consistency. This statement is true for the addition and
assignment of an atomic and, of course, for the fetch_addmember function, but we can optimize even
more. I adjust the memory-ordering in the summation expression to the relaxed semantic: sum.fetch_-
add(val[it], std::memory_order_relaxed). The relaxed semantic is the weakest memory-ordering;
therefore, the endpoint of my optimization.

The relaxed semantic is acceptable in this use-case because we have two guarantees: each addition
with fetch_add takes place atomically, and the threads synchronize with the join calls.
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Because of the weakest memory model, we have the best performance.

Summation with a relaxed atomic on Linux

Summation with a relaxed atomic on Windows

6.1.2.5 All Multithreading Numbers with a Shared Variable

The units of the performance numbers are seconds.

Performance of all multi threaded summations

Operating System (Compiler) std::lock_guard atomic += fetch_add fetch_add (relaxed)
Linux (GCC) 20.81 7.78 7.87 7.66
Windows (cl.exe) 6.22 15.73 15.78 15.01

The result of the performance numbers is not promising. Using a shared atomic variable with relaxed
semantic and calculating the sumwith four threads’ help is about 100 times slower than using a single
thread with the algorithm std::accumulate.

Let’s combine the two previous strategies for adding the numbers. I use four threads and minimize
the synchronization between the threads.

6.1.3 Thread-Local Summation

There are different ways to minimize synchronization. I can use local variables, thread-local data, and
tasks.

6.1.3.1 Using a Local Variable

Since each thread can use a local summation variable, it can do its job without synchronization. The
synchronization is only necessary to sum up the local variables. The summation of the local variables
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is the critical section that must be protected. I can do this in various ways. A short remark: since only
four additions take place, it doesn’t matter from a performance perspective which synchronization
I use. I use a std::lock_guard, an atomic with sequential consistency and relaxed semantic for the
summation.

6.1.3.1.1 std::lock_guard

Summation with minimal synchronization using a std::lock_guard

1 // localVariable.cpp

2

3 #include <mutex>

4 #include <chrono>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <utility>

9 #include <vector>

10

11 constexpr long long size = 100000000;

12

13 constexpr long long fir = 25000000;

14 constexpr long long sec = 50000000;

15 constexpr long long thi = 75000000;

16 constexpr long long fou = 100000000;

17

18 std::mutex myMutex;

19

20 void sumUp(unsigned long long& sum, const std::vector<int>& val,

21 unsigned long long beg, unsigned long long end){

22 unsigned long long tmpSum{};

23 for (auto i = beg; i < end; ++i){

24 tmpSum += val[i];

25 }

26 std::lock_guard<std::mutex> lockGuard(myMutex);

27 sum += tmpSum;

28 }

29

30 int main(){

31

32 std::cout << '\n';

33

34 std::vector<int> randValues;

35 randValues.reserve(size);

36
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37 std::mt19937 engine;

38 std::uniform_int_distribution<> uniformDist(1, 10);

39 for (long long i = 0; i < size; ++i)

40 randValues.push_back(uniformDist(engine));

41

42 unsigned long long sum{};

43 const auto sta = std::chrono::system_clock::now();

44

45 std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);

46 std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);

47 std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);

48 std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);

49

50 t1.join();

51 t2.join();

52 t3.join();

53 t4.join();

54

55 const std::chrono::duration<double> dur=

56 std::chrono::system_clock::now() - sta;

57

58

59 std::cout << "Time for addition " << dur.count()

60 << " seconds" << '\n';

61 std::cout << "Result: " << sum << '\n';

62

63 std::cout << '\n';

64

65 }

Lines 26 and 27 are interesting. These are the lines where the local summation result tmpSum is added
to the global summation variable sum.

Summation with a local variable on Linux
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Summation with a local variable on Windows

In the following two variations using a local variable, only the function sumUp changes; therefore, I
display the function. For the entire program, please refer to the source files.

6.1.3.1.2 Using an Atomic Variable with Sequential Consistency

Let’s replace the non-atomic global summation variable sum with an atomic.

Summation of a vector with minimal synchronization and an atomic

1 // localVariableAtomic.cpp

2

3 ...

4

5 void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

6 unsigned long long beg, unsigned long long end){

7 unsigned int long long tmpSum{};

8 for (auto i = beg; i < end; ++i){

9 tmpSum += val[i];

10 }

11 sum+= tmpSum;

12 }

13

14 ...

Here are the performance numbers.

Summation with a local variable on Linux
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Summation with a local variable on Windows

6.1.3.1.3 Using an Atomic Variable with Relaxed Semantic

We can do better. I use relaxed semantic now instead of the default memory-ordering. That’s well
defined because the only guarantee we need is that all summations occur and are atomic.

Summation of a vector with minimal synchronization and an atomic using relaxed semantic

1 // localVariableAtomicRelaxed.cpp

2

3 void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

4 unsigned long long beg, unsigned long long end){

5 unsigned int long long tmpSum{};

6 for (auto i = beg; i < end; ++i){

7 tmpSum += val[i];

8 }

9 sum.fetch_add(tmpSum, std::memory_order_relaxed);

10 }

11

12 ...

As expected, it doesn’t make any difference whether I use a std::lock_guard or an atomic with
sequential consistency or relaxed semantic.

Summation with a local variable on Linux
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Summation with a local variable on Windows

Thread-local data is a particular kind of local data. It is lifetime is bound to the scope of the thread
and not to the scope of the function, such as for the variable tmpSum in this example.

6.1.3.2 Using Thread-Local Data

Thread-local data belongs to the thread in which it was created; it is only created when needed.
Thread-local data is an ideal fit for the local summation variable tmpSum.

Summation of a vector with minimal synchronization using thread-local data

1 // threadLocalSummation.cpp

2

3 #include <atomic>

4 #include <chrono>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <utility>

9 #include <vector>

10

11 constexpr long long size = 100000000;

12

13 constexpr long long fir = 25000000;

14 constexpr long long sec = 50000000;

15 constexpr long long thi = 75000000;

16 constexpr long long fou = 100000000;

17

18 thread_local unsigned long long tmpSum = 0;

19

20 void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

21 unsigned long long beg, unsigned long long end){

22 for (auto i = beg; i < end; ++i){

23 tmpSum += val[i];

24 }

25 sum.fetch_add(tmpSum, std::memory_order_relaxed);

26 }

27
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28 int main(){

29

30 std::cout << '\n';

31

32 std::vector<int> randValues;

33 randValues.reserve(size);

34

35 std::mt19937 engine;

36 std::uniform_int_distribution<> uniformDist(1, 10);

37 for (long long i = 0; i < size; ++i)

38 randValues.push_back(uniformDist(engine));

39

40 std::atomic<unsigned long long> sum{};

41 const auto sta = std::chrono::system_clock::now();

42

43 std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);

44 std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);

45 std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);

46 std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);

47

48 t1.join();

49 t2.join();

50 t3.join();

51 t4.join();

52

53 const std::chrono::duration<double> dur=

54 std::chrono::system_clock::now() - sta;

55

56 std::cout << "Time for addition " << dur.count()

57 << " seconds" << '\n';

58 std::cout << "Result: " << sum << '\n';

59

60 std::cout << '\n';

61

62 }

I declare in line 18 the thread-local variable tmpSum and use it for the addition in lines 23 and 25.

Here are the performance numbers using thread-local data.
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Summation with a thread-local variable on Linux

Summation with a thread-local variable on Windows

In the last scenario, I use tasks.

6.1.3.3 Using Tasks

Using tasks, we can do the whole job without explicit synchronization. Each partial summation is
performed in a separate thread, and the final summation takes place in the main thread.

Here is the program:

Summation of a vector with minimal synchronization using tasks

1 // tasksSummation.cpp

2

3 #include <chrono>

4 #include <future>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <utility>

9 #include <vector>

10

11 constexpr long long size = 100000000;

12

13 constexpr long long fir = 25000000;

14 constexpr long long sec = 50000000;

15 constexpr long long thi = 75000000;

16 constexpr long long fou = 100000000;

17
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18 void sumUp(std::promise<unsigned long long>&& prom, const std::vector<int>& val,

19 unsigned long long beg, unsigned long long end){

20 unsigned long long sum={};

21 for (auto i = beg; i < end; ++i){

22 sum += val[i];

23 }

24 prom.set_value(sum);

25 }

26

27 int main(){

28

29 std::cout << '\n';

30

31 std::vector<int> randValues;

32 randValues.reserve(size);

33

34 std::mt19937 engine;

35 std::uniform_int_distribution<> uniformDist(1,10);

36 for (long long i = 0; i < size; ++i)

37 randValues.push_back(uniformDist(engine));

38

39 std::promise<unsigned long long> prom1;

40 std::promise<unsigned long long> prom2;

41 std::promise<unsigned long long> prom3;

42 std::promise<unsigned long long> prom4;

43

44 auto fut1= prom1.get_future();

45 auto fut2= prom2.get_future();

46 auto fut3= prom3.get_future();

47 auto fut4= prom4.get_future();

48

49 const auto sta = std::chrono::system_clock::now();

50

51 std::thread t1(sumUp, std::move(prom1), std::ref(randValues), 0, fir);

52 std::thread t2(sumUp, std::move(prom2), std::ref(randValues), fir, sec);

53 std::thread t3(sumUp, std::move(prom3), std::ref(randValues), sec, thi);

54 std::thread t4(sumUp, std::move(prom4), std::ref(randValues), thi, fou);

55

56 auto sum= fut1.get() + fut2.get() + fut3.get() + fut4.get();

57

58 std::chrono::duration<double> dur= std::chrono::system_clock::now() - sta;

59 std::cout << "Time for addition " << dur.count()

60 << " seconds" << '\n';

61 std::cout << "Result: " << sum << '\n';

62
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63 t1.join();

64 t2.join();

65 t3.join();

66 t4.join();

67

68 std::cout << '\n';

69

70 }

I define in lines 39 - 47 the four promises and the associated futures. In lines 51 - 54, each promise is
moved to its thread. A promise can only be moved but not copied. The threads execute the function
sumUp (lines 18 - 25). sumUp takes as its first argument a promise by rvalue reference. The futures ask
in line 56 for the summation result by using the blocking get call.

Summation with a local variable on Linux

Summation with a local variable on Windows

To conclude this section, there is an overview of all performance numbers.

6.1.3.4 All Numbers for the Thread-Local Summation

It does not make a big difference whether I use local variables or tasks to calculate the partial sum
or if I use various synchronization primitives such as atomics. Only the thread-local data seems to
make the program a little slower. This observation holds for Linux and Windows. Don’t be surprised
by the higher performance of Linux relative to Windows. The program was optimized for four cores,
and my Windows laptop has only two. The numbers are in seconds.
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Performance of all thread-local summations

Operating
System
(Compiler)

std::lock_-
guard

Atomic
using

sequential
consistency

Atomic
using
relaxed
semantic

Thread-
local
data

Tasks

Linux
(GCC)

0.03 0.03 0.03 0.04 0.03

Windows
(cl.exe)

0.10 0.10 0.10 0.20 0.10

I want to draw our focus to a fascinating point. The thread-local multithreaded summation of the
vector is about twice as fast as the single-threaded summation. I would expect a fourfold performance
improvement in the optimal case because there is hardly a synchronization necessary between the
threads. What is the reason?
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6.1.4 Summation of a Vector: The Conclusion

6.1.4.1 Single Threaded

The range-based for loop and the STL algorithm std::accumulate are in the same performance range.
In the optimized version, the compiler uses for the summation case the optimized version vectorized
SIMD² instruction (SSE or AVX). Therefore, the loop counter is increased by 4 (SSE) or 8 (AVX).

6.1.4.2 Multithreading with a Shared Variable

The usage of a shared variable for the summation variable makes one point clear: synchronization is
costly and should be avoided as much as possible. Although I used an atomic variable and even broke
the sequential consistency, the four threads are 100 times slower than one thread. From a performance
perspective, minimizing expensive synchronization has to be our first goal.

6.1.4.3 Thread-local Summation

The thread-local summation is only two times faster than the single-threaded range-based for loop
or std::accumulate. That holds even though each of the four threads can work independently. That
surprised me because I was expecting a nearly fourfold improvement. What surprised me, even more
was that my four cores are not fully utilized.

Utilisation of the four cores

The reason is simple; the cores can’t get the data fast enough from memory. The execution is memory
bound³. Or to say it the other way around, the memory slows down the cores. The following pictures
show the bottleneck memory.

²https://en.wikipedia.org/wiki/SIMD
³https://en.wikipedia.org/wiki/Memory_bound_function

https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Memory_bound_function
https://en.wikipedia.org/wiki/Memory_bound_function
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Memory_bound_function


Case Studies 302

The bottleneck memory

The Roofline model⁴ is an intuitive performance model to provide performance estimates of applica-
tions running on multi-core or many-core architectures. The model depends on the peak performance,
peak bandwidth, and arithmetic intensity of the architecture.

⁴https://en.wikipedia.org/wiki/Roofline_model

https://en.wikipedia.org/wiki/Roofline_model
https://en.wikipedia.org/wiki/Roofline_model
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6.2 The Dining Philosophers Problem by Andre Adrian

Andre Adrian is the guest author of this chapter. He solved the classical dining philosopher’s problem
in various ways using modern C++. Andres’s case study exemplifies in a very instructive way the
theory explained in this book. I just made a few minimal editorial adjustments to match its layout to
the layout of my book.

The dining philosophers problem

The dining philosophers problem is a classic synchronization problem formulated by Edsger Dijkstra⁵
in the article Hierarchical Ordering of Sequential Processes⁶: Five philosophers, numbered from 0
through 4 are living in a house where the table laid for them, each philosopher having his own place
at the table. Their only problem - besides those of philosophy - is that the dish served is a very difficult
kind of spaghetti, that has to be eaten with two forks. There are two forks next to each plate, so that
presents no difficulty: as a consequence, however, no two neighbours may be eating simultaneously.

We use the following problem description: 4 philosophers live a simple life. Every philosopher
performs the same routine: he thinks for some random duration, gets his first fork, gets his second fork,
eats for some random duration, puts down the forks, and starts thinking again. To make the problem
interesting the 4 philosophers have only 4 forks. Philosopher number 1 has to take forks number 1

⁵https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
⁶https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
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and 2 for eating. Philosopher 2 needs forks 2 and 3, and so on up to philosopher 4 who needs forks 4
and 1 for eating. After eating, the philosopher puts the forks back on the table.

6.2.1 Multiple Resource Use

As we go from problem description to programming, we translate philosophers to threads and forks
to resources. In our first program (dp_1.cpp) we create 4 “philosopher” threads and 4 “fork” resource
integers.

Multiple Resource Use

1 // dp_1.cpp

2 #include <iostream>

3 #include <thread>

4 #include <chrono>

5

6 int myrand(int min, int max) {

7 return rand()%(max-min)+min;

8 }

9

10 void lock(int& m) {

11 m=1;

12 }

13

14 void unlock(int& m) {

15 m=0;

16 }

17

18 void phil(int ph, int& ma, int& mb) {

19 while(true) {

20 int duration=myrand(1000, 2000);

21 std::cout<<ph<<" thinks "<<duration<<"ms\n";

22 std::this_thread::sleep_for(std::chrono::milliseconds(duration));

23

24 lock(ma);

25 std::cout<<"\t\t"<<ph<<" got ma\n";

26 std::this_thread::sleep_for(std::chrono::milliseconds(1000));

27

28 lock(mb);

29 std::cout<<"\t\t"<<ph<<" got mb\n";

30

31 duration=myrand(1000, 2000);

32 std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

33 std::this_thread::sleep_for(std::chrono::milliseconds(duration));

34
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35 unlock(mb);

36 unlock(ma);

37 }

38 }

39

40 int main() {

41 std::cout<<"dp_1\n";

42 srand(time(nullptr));

43

44 int m1{0}, m2{0}, m3{0}, m4{0};

45

46 std::thread t1([&] {phil(1, m1, m2);});

47 std::thread t2([&] {phil(2, m2, m3);});

48 std::thread t3([&] {phil(3, m3, m4);});

49 std::thread t4([&] {phil(4, m4, m1);});

50

51 t1.join();

52 t2.join();

53 t3.join();

54 t4.join();

55 }

The main() function establishes random numbers in line 42.We set the random number generator seed
value to the number of seconds since 1st January 1970. We define our fork resources in line 44. Then
we start four threads beginning in line 46. To avoid premature thread termination we join the threads
beginning in line 51. The thread function phil() has a forever loop. The while(true) statement is
always true, therefore the thread will never terminate. The problem description says “he thinks for
some random duration”. First, we calculate a random duration with the function myrand() (lines 20
and 6). The function myrand() produces a pseudo-random return value in the range of [min, max).
For program trace, we log the philosopher’s number, his current state of he thinks and the duration
to the console. The sleep_for() statement lets the scheduler put the thread for the duration into the
state waiting. In a “real” program application source code uses up time instead of sleep_for(). After
the philosopher’s thread thinking time is over, he “gets his first fork” (line 24). We use a function
lock() to perform the “gets fork” thing. At the moment the function lock() is very simple because we
don’t know better. We just set the fork resource to the value 1 (line 10). After the philosopher thread
obtained his first fork, he proudly announces the new state with a got ma console output. Now the
thread “gets his second fork” (line 28). The corresponding console output is got mb. The next state
is eats. Again we determine the duration, produce a console output, and occupy the thread with a
sleep_for() (line 31). After the state eats the philosopher puts down his forks (lines 35 and 14). The
unlock() function is again really simple and sets the resource back to 0.

Please compile the program without compiler optimization. We will see the reason later. The console
output of our program looks promising:
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Multiple resource use

Have we already solved the dining philosophers problem? Well, the program output is not detailed
enough to answer this question.

6.2.2 Multiple Resource Use with Logging

We should add some more logging. At the moment the function lock() does not check if the fork is
available before the resource is used. The improved version of lock() in program dp_2.cpp is:

Multiple resource use with logging

// dp_2.cpp

...

void lock(int& m) {

if (m) {

std::cout<<"\t\t\t\t\t\tERROR lock\n";

}

m=1;

}

...

Program version 2 produces the following output:
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Multiple resource use with logging

We see ERROR lock console output. This output tells us that two philosophers use the same resource
at the same time. What can we do?

6.2.3 Erroneous Busy Waiting without Resource Hierarchy

We can change the if statement in lock() into a while statement. This while statement produces a
spinlock. A spinlock is a fancy word for busy waiting. While the fork resource is in use, the thread is
busy waiting for a change from the state in use to the state available. At this very moment, we set the
fork resource again to state in use. In program dp_3.cpp we have:

Erroneous Busy Waiting without Resource Hierarchy

// dp_3.cpp

...

void lock(int& m) {

while (m)

; // busy waiting

m=1;

}

...

Please believe that this little change is still not a CORRECT solution for the dining philosophers’
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problem. We have no longer the wrong resource usage. But we have another problem. See program
version 3 output:

Erroneous busy waiting without resource hierarchy

Every philosopher thread takes his first fork resource and then can not take the second fork. What can
we do? Andrew S. Tanenbaum⁷ wrote in his book “Operating Systems. Design and Implementation,
3rd edition”: “Another way to avoid the circular wait is to provide a global numbering of all the
resources. Now the rule is this: processes can request resources whenever they want to, but all requests
must be made in numerical order.”

6.2.4 Erroneous Busy Waiting with Resource Hierarchy

This solution is known as resource hierarchy or partial ordering. For the dining philosophers problem,
partial ordering is easy. The first fork taken has to be the fork with the lower number. For philosophers
1 to 3 the resources are taken in the correct order. Only philosopher thread 4 needs a change for
correct partial ordering. First get fork resource 1, then get fork resource 4. See the main program in
file dp_4.cpp:

⁷https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum

https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
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Erroneous Busy Waiting with Resource Hierarchy

// dp_4.cpp

...

int main() {

std::cout<<"dp_4\n";

srand(time(nullptr));

int m1{0}, m2{0}, m3{0}, m4{0};

std::thread t1([&] {phil(1, m1, m2);});

std::thread t2([&] {phil(2, m2, m3);});

std::thread t3([&] {phil(3, m3, m4);});

std::thread t4([&] {phil(4, m1, m4);});

t1.join();

t2.join();

t3.join();

t4.join();

}

...

Program version 4 output looks fine:
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Erroneous Busy Waiting with Resource Hierarchy (without optimization)

Now there is no longer wrong resource usage nor do we have a deadlock. We get brave and use
compiler optimization. We want to have a good program that executes fast! This is program version
4 output with compiler optimization:
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Erroneous Busy Waiting with Resource Hierarchy (with optimization)

It is always the same philosopher thread that eats. Is it possible that the setting of compiler
optimization can change the behavior of a program? Yes, it is possible. The philosopher threads read
from memory the value of fork resource. The compiler optimization optimizes some of these memory
reads away. Everything has a price!

6.2.5 Still Erroneous Busy Waiting with Resource Hierarchy

The programming language C++ has the atomic template to define an atomic type. If one thread writes
to an atomic object while another thread reads from it, the behavior is well-defined. In file dp_5.cpp
we use atomic<int> for the fork resources (lines 11, 17, 21, and 47). We include the header <atomic> in
line 5:

Erroneous Busy Waiting with Resource Hierarchy

1 // dp_5.cpp

2 #include <iostream>

3 #include <thread>

4 #include <chrono>

5 #include <atomic>

6

7 int myrand(int min, int max) {

8 return rand()%(max-min)+min;

9 }

10
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11 void lock(std::atomic<int>& m) {

12 while (m)

13 ; // busy waiting

14 m=1;

15 }

16

17 void unlock(std::atomic<int>& m) {

18 m=0;

19 }

20

21 void phil(int ph, std::atomic<int>& ma, std::atomic<int>& mb) {

22 while(true) {

23 int duration=myrand(1000, 2000);

24 std::cout<<ph<<" thinks "<<duration<<"ms\n";

25 std::this_thread::sleep_for(std::chrono::milliseconds(duration));

26

27 lock(ma);

28 std::cout<<"\t\t"<<ph<<" got ma\n";

29 std::this_thread::sleep_for(std::chrono::milliseconds(1000));

30

31 lock(mb);

32 std::cout<<"\t\t"<<ph<<" got mb\n";

33

34 duration=myrand(1000, 2000);

35 std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

36 std::this_thread::sleep_for(std::chrono::milliseconds(duration));

37

38 unlock(mb);

39 unlock(ma);

40 }

41 }

42

43 int main() {

44 std::cout<<"dp_5\n";

45 srand(time(nullptr));

46

47 std::atomic<int> m1{0}, m2{0}, m3{0}, m4{0};

48

49 std::thread t1([&] {phil(1, m1, m2);});

50 std::thread t2([&] {phil(2, m2, m3);});

51 std::thread t3([&] {phil(3, m3, m4);});

52 std::thread t4([&] {phil(4, m1, m4);});

53

54 t1.join();

55 t2.join();
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56 t3.join();

57 t4.join();

58 }

The program version 5 output is:

Still Erroneous Busy Waiting with Resource Hierarchy

This output looks great. Now we have reached the limits of our testing methodology. There is still a
tiny chance for misbehavior. The two operations “is a resource available” and “mark resource as in
use” in the lock() function is atomic, but they are still two operations. Between these two operations,
the scheduler can place a thread switch. And this thread switch at this most inconvenient time can
produce very hard-to-find bugs in the program.

6.2.6 Correct Busy Waiting with Resource Hierarchy

Thankfully all current computers have an atomic operation “test the resource and if the test is positive
mark resource as in use”. In the programming language C++, the atomic_flag type makes this special
“test and set” operation available for us. File dp_6.cpp has the first correct solution for the dining
philosophers problem:
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Correct Busy Waiting with Resource Hierarchy
// dp_6.cpp

#include <iostream>

#include <thread>

#include <chrono>

#include <atomic>

int myrand(int min, int max) {

return rand()%(max-min)+min;

}

void lock(std::atomic_flag& m) {

while (m.test_and_set())

; // busy waiting

}

void unlock(std::atomic_flag& m) {

m.clear();

}

void phil(int ph, std::atomic_flag& ma, std::atomic_flag& mb) {

while(true) {

int duration=myrand(1000, 2000);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

lock(ma);

std::cout<<"\t\t"<<ph<<" got ma\n";

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

lock(mb);

std::cout<<"\t\t"<<ph<<" got mb\n";

duration=myrand(1000, 2000);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

unlock(mb);

unlock(ma);

}

}

int main() {

std::cout<<"dp_6\n";

srand(time(nullptr));
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std::atomic_flag m1, m2, m3, m4;

unlock(m1);

unlock(m2);

unlock(m3);

unlock(m4);

std::thread t1([&] {phil(1, m1, m2);});

std::thread t2([&] {phil(2, m2, m3);});

std::thread t3([&] {phil(3, m3, m4);});

std::thread t4([&] {phil(4, m1, m4);});

t1.join();

t2.join();

t3.join();

t4.join();

}

The program version 6 output is similar to the last output. The dining philosophers’ problem is good-
natured. One resource is only shared between two threads. The atomic_flag spinlock is needed if
several threads want to get the same resource.

6.2.7 Good low CPU load Busy Waiting with Resource Hierarchy

The spinlock disadvantage is the busy waiting. The while loop in lock() is a waste of CPU resources. A
remedy to this problem is to put a sleep_for() function in the body of this while loop. The sleep_for()
function performswaiting in the scheduler. This waiting is much better thanwaiting in the application.
As always there is a price. The sleep_for() slows down the program’s progress. File dp_7.cpp is the
second correct solution:

Correct Busy Waiting with Resource Hierarchy

// dp_7.cpp

...

void lock(std::atomic_flag& m) {

while (m.test_and_set())

std::this_thread::sleep_for(std::chrono::milliseconds(8));

}

...

Note: a std::this_thread::yield() instead of the sleep_for() does not reduce CPU load on the
author’s computer. The impact of yield() is implementation-dependent.
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6.2.8 std::mutex with Resource Hierarchy

To completely avoid busy waiting we need more help from the scheduler. If every thread tells the
scheduler the resource state, the scheduler can put a “wait for a resource” thread into the “waiting”
state. After the scheduler gets a “resource is available” information, the waiting thread state changes
to ready. The thread to scheduler information exchange is expensive. Because of this C++ offers both,
spinlock and mutex. Spinlock is waiting in the thread and mutex is waiting in the scheduler. File
dp_8.cpp shows the mutex solution. Please note the #include <mutex>:

std::mutex with Resource Hierarchy

// dp_8.cpp

#include <iostream>

#include <thread>

#include <chrono>

#include <mutex>

int myrand(int min, int max) {

return rand()%(max-min)+min;

}

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

ma.lock();

std::cout<<"\t\t"<<ph<<" got ma\n";

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

mb.lock();

std::cout<<"\t\t"<<ph<<" got mb\n";

duration=myrand(1000, 2000);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

mb.unlock(); // (9)

ma.unlock();

}

}

int main() {

std::cout<<"dp_8\n";

srand(time(nullptr));
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std::mutex m1, m2, m3, m4;

std::thread t1([&] {phil(1, m1, m2);});

std::thread t2([&] {phil(2, m2, m3);});

std::thread t3([&] {phil(3, m3, m4);});

std::thread t4([&] {phil(4, m1, m4);});

t1.join();

t2.join();

t3.join();

t4.join();

}

Program version 8 is correct and uses minimal CPU resources. C++ offers a wrapper to mutex to make
life easier for programmers.

6.2.9 std::lock_guard with Resource Hierarchy

Using the lock_guard template, we put only the mutex into the lock. The mutex member function lock

is automatically called in the locks constructor and unlock in its destructor at the end of the scope.
unlock is also called if an exception is thrown.

The convenient version is dp_9.cpp:

std::lock_guard with Resource Hierarchy

// dp_9.cpp

...

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

std::lock_guard<std::mutex> ga(ma);

std::cout<<"\t\t"<<ph<<" got ma\n";

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

std::lock_guard<std::mutex> gb(mb);

std::cout<<"\t\t"<<ph<<" got mb\n";

duration=myrand(1000, 2000);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";
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std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

}

...

We get better and better. Program versions 8 and 9 are correct and are light on the CPU load. But look
careful on the program output:

std::lock_guard with Resource Hierarchyy

The program output is slightly garbled. Maybe you have seen this output distortion before. There is
nothing wrong with the spinlock program versions 6 and 7 or the mutex program versions 8 and 9.

6.2.10 std::lock_guard and Synchronized Output with Resource
Hierarchy

The console output itself is a resource. That is the reason for garbled output in multi-thread programs.
The solution is to put a lock_guard around every console output in dp_10.cpp:



Case Studies 319

std::lock_guard with Resource Hierarchy

// dp_10.cpp

...

std::mutex mo;

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

std::lock_guard<std::mutex> ga(ma);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got ma\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

std::lock_guard<std::mutex> gb(mb);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got mb\n";

}

duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

}

...

The global mutex mo controls the console output resource. Every cout statement is in its block and the
lock_guard() template ensures that console output is no longer garbled.
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6.2.11 std::lock_guard and Synchronized Output with Resource
Hierarchy and a count

As a little bonus, I added dp_11.cpp. This program version counts the number of philosophers threads
that are eating at the same time. Because we have 4 forks, there should be times where 2 philosopher
threads eat concurrently. Please note that you need again #include <atomic> in program dp_11.cpp:

std::lock_guard and Synchronized Output with Resource Hierarchy and a count

// dp_11.cpp

...

std::mutex mo;

std::atomic<int> cnt = 0;

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

std::lock_guard<std::mutex> ga(ma);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got ma\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

std::lock_guard<std::mutex> gb(mb);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got mb\n";

}

duration=myrand(1000, 2000);

++cnt;

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms "<<cnt<<"\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

--cnt;
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}

}

...

The program version 11 output is:

std::lock_guard and Synchronized Output with Resource Hierarchy and a count

6.2.12 A std::unique_lock using deferred locking

C++ offers alternative solutions next to resource hierarchy. At the moment we have two separate
operations to acquire the two resources. If there is only one operation to acquire the two resources,
there is no longer the danger of deadlock. The first “all or nothing” solution uses unique_lock() with
defer_lock. The real resource acquire in program dp_12.cpp happens in the lock() statement:

A std::unique_lock using deferred locking

// dp_12.cpp

...

nt myrand(int min, int max) {

static std::mt19937 rnd(std::time(nullptr));

return std::uniform_int_distribution<>(min,max)(rnd);

}
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std::mutex mo;

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

std::unique_lock<std::mutex> ga(ma, std::defer_lock);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got ma\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

std::unique_lock<std::mutex> gb(mb,std::defer_lock);

std::lock(ga, gb);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got mb\n";

}

duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

}

...

So far we have generated the random numbers using the rand() function. This function is not
reentrant. Not reentrant means not threadable. This error is fixed with a modified myrand() function.
The static function object rnd is a Mersenne Twister⁸ random number generator. With static
we avoid a global function object. Scaling to a value between min and max is now done with
uniform_int_distribution<>. Using the library is better than writing your own code. Who would
have thought that simple things like cout output and random number are so difficult in programs
with threads?

⁸https://en.wikipedia.org/wiki/Mersenne_Twister

https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Mersenne_Twister
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6.2.13 A std::scoped_lock with Resource Hierarchy

The second “all or nothing” solution is even more straightforward. The C++17 function std::scoped_-

lock() allows acquiring multiple resources. This powerful function in program dp_13.cpp gives us the
shortest dining philosophers solution:

A std::scoped_lock with Resource Hierarchy

// dp_13.cpp

...

int myrand(int min, int max) {

static std::mt19937 rnd(std::time(nullptr));

return std::uniform_int_distribution<>(min,max)(rnd);

}

std::mutex mo;

void phil(int ph, std::mutex& ma, std::mutex& mb) {

while(true) {

int duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<ph<<" thinks "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

std::this_thread::sleep_for(std::chrono::milliseconds(1000));

std::scoped_lock scop(ma, mb);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t"<<ph<<" got ma, mb\n";

}

duration=myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t\t\t"<<ph<<" eats "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

}

...
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There are more solutions. The original Dijkstra solution in the article Hierarchical Ordering of
Sequential Processes⁹ used one mutex, one semaphore per philosopher, and one state variable per
philosopher. Andrew S. Tanenbaum provided a C language solution in his book “Operating Systems.
Design and Implementation, 3rd edition; chapter 2.3.1”.

6.2.14 The Original Dining Philosophers Problem using Semaphores

Program dp_14.cpp is the Tanenbaum solution rewritten in C++20:

The Original Dining Philosophers Problem using Semaphores

// dp_14.cpp

#include <iostream>

#include <chrono>

#include <thread>

#include <mutex>

#include <semaphore>

#include <random>

int myrand(int min, int max) {

static std::mt19937 rnd(std::time(nullptr));

return std::uniform_int_distribution<>(min,max)(rnd);

}

enum {

N=5, // number of philosophers

THINKING=0, // philosopher is thinking

HUNGRY=1, // philosopher is trying to get forks

EATING=2, // philosopher is eating

};

#define LEFT (i+N-1)%N // number of i's left neighbor

#define RIGHT (i+1)%N // number of i's right neighbor

int state[N]; // array to keep track of everyone's state

std::mutex mutex_; // mutual exclusion for critical regions

std::binary_semaphore s[N]{0, 0, 0, 0, 0};

// one semaphore per philosopher

void test(int i) // i: philosopher number, from 0 to N-1

{

if (state[i] == HUNGRY

&& state[LEFT] != EATING && state[RIGHT] != EATING) {

state[i] = EATING;

⁹https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD310.html
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s[i].release();

}

}

void take_forks(int i) // i: philosopher number, from 0 to N-1

{

mutex_.lock(); // enter critical region

state[i] = HUNGRY; // record fact that philosopher i is hungry

test(i); // try to acquire 2 forks

mutex_.unlock(); // exit critical region

s[i].acquire(); // block if forks were not acquired

}

void put_forks(int i) // i: philosopher number, from 0 to N-1

{

mutex_.lock(); // enter critical region

state[i] = THINKING; // philosopher has finished eating

test(LEFT); // see if left neighbor can now eat

test(RIGHT); // see if right neighbor can now eat

mutex_.unlock(); // exit critical region

}

std::mutex mo;

void think(int i) {

int duration = myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<i<<" thinks "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

void eat(int i) {

int duration = myrand(1000, 2000);

{

std::lock_guard<std::mutex> g(mo);

std::cout<<"\t\t\t\t"<<i<<" eats "<<duration<<"ms\n";

}

std::this_thread::sleep_for(std::chrono::milliseconds(duration));

}

void philosopher(int i) // i: philosopher number, from 0 to N-1

{

while (true) { // repeat forever
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think(i); // philosopher is thinking

take_forks(i); // acquire two forks or block

eat(i); // yum-yum, spaghetti

put_forks(i); // put both forks back on table

}

}

int main() {

std::cout<<"dp_14\n";

std::thread t0([&] {philosopher(0);});

std::thread t1([&] {philosopher(1);});

std::thread t2([&] {philosopher(2);});

std::thread t3([&] {philosopher(3);});

std::thread t4([&] {philosopher(4);});

t0.join();

t1.join();

t2.join();

t3.join();

t4.join();

}

By the way, the semaphore is the oldest thread synchronization primitive. Dijkstra defined the P() and
V() operation in 1965: “It is the P-operation, which represents the potential delay, viz. when a process
initiates a P-operation on a semaphore, that at that moment is = 0, in that case, this P-operation cannot
be completed until another process has performed a V-operation on the same semaphore and has given
it the value ‘1’.” Today P() is called release() and V() is called acquire(). (Cooperating sequential
processes¹⁰)

6.2.15 A C++20 Compatible Semaphore

You need a C++20 compiler like LLVM (clang++) version 13.0.0 or newer to compile dp_14.cpp. Or
you change the #include <semaphore> into #include "semaphore.h" and provide the following header
file. Then a C++11 compiler is sufficient.

¹⁰https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
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The Original Dining Philosophers Problem using Semaphores

// semaphore.h

#include <mutex>

#include <condition_variable>

#include <limits>

namespace std {

template <std::ptrdiff_t least_max_value

= std::numeric_limits<std::ptrdiff_t>::max()>

class counting_semaphore {

public:

counting_semaphore(std::ptrdiff_t desired) : counter(desired) {}

counting_semaphore(const counting_semaphore&) = delete;

counting_semaphore& operator=(const counting_semaphore&) = delete;

inline void release(ptrdiff_t update = 1) {

std::unique_lock<std::mutex> lock(mutex_);

counter += update;

cv.notify_one();

}

inline void acquire() {

std::unique_lock<std::mutex> lock(mutex_);

while (0 == counter) cv.wait(lock);

--counter;

}

private:

ptrdiff_t counter;

std::mutex mutex_;

std::condition_variable cv;

};

using binary_semaphore = counting_semaphore<1>;

}

The C++ semaphore consists of a counter, a mutex, and a condition_variable. After 14 program
versions, we leave this topic. The programs versions 1 to 6 have problems. I presented them to show
bad multi-thread programming. Don’t copy that!
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6.3 Thread-Safe Initialization of a Singleton

Before I start with this case study, let me emphasize: I am not advocating using the singleton pattern.
Therefore, allow me to begin this chapter about the thread-safe initialization of a singleton with a
warning.

Thoughts about Singletons
I only use the singleton pattern in my case studies because it is a classic example of a
variable that has to be initialized in a thread-safe way. The singleton pattern has a few
severe disadvantages. Let me give you a few ideas:

• A singleton is a global variable in disguise. Therefore, it makes it quite challenging
to test your function because it depends on the global state.

• Typically, you use a singleton in a function by invoking the static member function
MySingleton::getInstance(). This means the interface of a function does not tell
you that you use a singleton inside. You hide the dependency on the singleton.

• If you have to static object x and y in separate source files and the construction of
these objects depend on each other, you are in the static initialization order fiasco¹¹
because there is no guarantee which static is initialized first. Moreover, singletons
are static objects.

• The singleton pattern manages the lazy creation of an object but not its destruction.
If you don’t destruct something you don’t need anymore, this is called a memory
leak.

• Imagine you want to subclass the singleton. Should it be possible? What does that
mean for the implementation?

• A thread-safe and fast singleton implementation is quite challenging.

For a more elaborate discussion about the pros and cons of the singleton pattern, please
refer to the referenced articles in the Wikipedia page for the singleton pattern¹².

I want to start my discussion of the thread-safe initialization of the singleton with a short detour.

6.3.1 Double-Checked Locking Pattern

The double-checked locking¹³ pattern is the classical way to initialize a singleton in a thread-safe way.
What sounds like established best practice or as a pattern, is more a kind of anti-pattern¹⁴. It assumes
guarantees in the traditional implementation, which aren’t given by the Java, C# or C++ memory
model anymore. The wrong assumption is that creating a singleton is an atomic operation; therefore,
a solution that seems to be thread-safe is not thread-safe.

¹¹https://isocpp.org/wiki/faq/ctors
¹²https://en.wikipedia.org/wiki/Singleton_pattern
¹³https://www.dre.vanderbilt.edu/~schmidt/PDF/DC-Locking.pdf
¹⁴https://en.wikipedia.org/wiki/Anti-pattern

https://isocpp.org/wiki/faq/ctors
https://en.wikipedia.org/wiki/Singleton_pattern
https://www.dre.vanderbilt.edu/~schmidt/PDF/DC-Locking.pdf
https://en.wikipedia.org/wiki/Anti-pattern
https://isocpp.org/wiki/faq/ctors
https://en.wikipedia.org/wiki/Singleton_pattern
https://www.dre.vanderbilt.edu/~schmidt/PDF/DC-Locking.pdf
https://en.wikipedia.org/wiki/Anti-pattern
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What is the double-checked locking pattern? The first idea to implement a thread-safe singleton is to
protect the initialization of the singleton with a lock.

Thread-safe initialization with a lock

1 std::mutex myMutex;

2

3 class MySingleton{

4 public:

5 static MySingleton& getInstance(){

6 std::lock_guard<mutex> myLock(myMutex);

7 if(!instance) instance = new MySingleton();

8 return *instance;

9 }

10 private:

11 MySingleton() = default;

12 ~MySingleton() = default;

13 MySingleton(const MySingleton&) = delete;

14 MySingleton& operator= (const MySingleton&) = delete;

15 static MySingleton* instance;

16 };

17

18 MySingleton* MySingleton::instance = nullptr;

Any issues? Yes and no. Yes because there is a considerable performance penalty. No because the
implementation is thread-safe. A heavyweight lock protects each access to the singleton in line 7.
This also applies to the read access, which after the initial construction of MySingleton is not necessary.
Here comes the double-checked locking pattern to our rescue. Let’s have a look at the getInstance

function.

The double-checked locking pattern

1 static MySingleton& getInstance(){

2 if (!instance){ // check

3 lock_guard<mutex> myLock(myMutex); // lock

4 if(!instance) instance = new MySingleton(); // check

5 }

6 return *instance;

7 }

Instead of the heavyweight lock, I use a lightweight pointer comparison in line 2. If I get a null pointer,
I apply the heavyweight lock on the singleton (line 3). Because there is the possibility that another
thread initializes the singleton between the pointer comparison in line 2 and the lock call in line 3, I
have to perform an additional pointer comparison in line 4. So the name is obvious; two times a check
and one time a lock.
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Smart? Yes. Thread-safe? No.

What is the issue? The call instance= new MySingleton() in line 4 consists of at least three steps.

1. Allocate memory for MySingleton

2. Initialize the MySingleton object

3. Let instance refer to the fully initialized MySingleton object

The issue is that the C++ runtime provides no guarantee that the steps are performed in that sequence.
For example, the processor may reorder the steps to the sequence 1,3, and 2. So in the first step, the
memory is allocated, and in the second step, instance refers to a non-initialized singleton. If just at
that moment another thread t2 tries to access the singleton and makes the pointer comparison, the
comparison succeeds. The consequence is that thread t2 refers to a non-initialized singleton, and the
program behavior is undefined.

6.3.2 Performance Measurement

I want to measure how expensive it is to access a singleton object. For reference timing, I use
a singleton which I access 40 million times sequentially. Of course, the first access initializes the
singleton object. In contrast, the accesses from four threads is done concurrently. I’m only interested
in the performance numbers. Therefore I sum up the execution time of the four threads. I measure
the performance using a static variable with block scope (Meyers Singleton), a lock std::lock_guard,
the function std::call_once in combination with the std::once_flag, and atomics with sequential
consistency and acquire release semantic.

The program runs on two PCs. My Linux PC with the GCC compiler has four cores, while my
Windows PC with the cl.exe compiler has two. I compile the program with maximum optimization.
Please refer to the beginning of this chapter for the details about my setup.

I want to answer two questions:

1. What are the performance numbers of the various singleton implementations?

2. Is there a significant difference between Linux (GCC) and Windows (cl.exe)?

Finally, I collect all numbers in a table.

Before I present the performance numbers of the various multithreading implementations, here is the
sequential program. The getInstance member function is not thread-safe with the C++03 standard.
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Single-threaded singleton implementation

1 // singletonSingleThreaded.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 constexpr auto tenMill = 10000000;

7

8 class MySingleton{

9 public:

10 static MySingleton& getInstance(){

11 static MySingleton instance;

12 volatile int dummy{};

13 return instance;

14 }

15 private:

16 MySingleton() = default;

17 ~MySingleton() = default;

18 MySingleton(const MySingleton&) = delete;

19 MySingleton& operator=(const MySingleton&) = delete;

20

21 };

22

23 int main(){

24

25 constexpr auto fourtyMill = 4 * tenMill;

26

27 const auto begin= std::chrono::system_clock::now();

28

29 for ( size_t i = 0; i <= fourtyMill; ++i){

30 MySingleton::getInstance();

31 }

32

33 const auto end = std::chrono::system_clock::now() - begin;

34

35 std::cout << std::chrono::duration<double>(end).count() << '\n';

36

37 }

As the reference implementation, I use the so-called Meyers Singleton, named after Scott Meyers¹⁵.
The elegance of this implementation is that the singleton object in line 11 is a static variable with a

¹⁵https://en.wikipedia.org/wiki/Scott_Meyers

https://en.wikipedia.org/wiki/Scott_Meyers
https://en.wikipedia.org/wiki/Scott_Meyers
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block scope; therefore, instance is initialized only once. This initialization happens when the static
member function getInstance (lines 10 - 14) is executed the first time.

The volatile Variable dummy

When I compiled the programwith maximum optimization, the compiler removed the call
MySingleton::getInstance() in line 30 because the call has no effect; therefore, I got very
fast execution but wrong performance numbers. Using the volatile variable dummy (line
12), the compiler is not allowed to optimize away the MySingleton::getInstance() call in
line 30.

Here are the reference numbers for the single-threaded use-case.

Meyers Singelton on Linux (single theaded)

Meyers Singleton on Windows (single theaded)

The beauty of the Meyers Singleton is that it becomes thread-safe with C++11.

6.3.3 Thread-Safe Meyers Singleton

The C++11 standard guarantees that static variables with block scope are initialized in a thread-safe
way. The Meyers Singleton uses a static variable with block scope, so we are done. The only work
that is left to do is to rewrite the previously used classical Meyers Singleton for the multithreading
use-case.
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Meyers-Singleton in the multithreading use-case

1 // singletonMeyers.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <future>

6

7 constexpr auto tenMill = 10000000;

8

9 class MySingleton{

10 public:

11 static MySingleton& getInstance(){

12 static MySingleton instance;

13 volatile int dummy{};

14 return instance;

15 }

16 private:

17 MySingleton() = default;

18 ~MySingleton() = default;

19 MySingleton(const MySingleton&) = delete;

20 MySingleton& operator=(const MySingleton&) = delete;

21

22 };

23

24 std::chrono::duration<double> getTime(){

25

26 auto begin = std::chrono::system_clock::now();

27 for (size_t i = 0; i <= tenMill; ++i){

28 MySingleton::getInstance();

29 }

30 return std::chrono::system_clock::now() - begin;

31

32 };

33

34 int main(){

35

36 auto fut1= std::async(std::launch::async, getTime);

37 auto fut2= std::async(std::launch::async, getTime);

38 auto fut3= std::async(std::launch::async, getTime);

39 auto fut4= std::async(std::launch::async, getTime);

40

41 const auto total= fut1.get() + fut2.get() + fut3.get() + fut4.get();

42

43 std::cout << total.count() << '\n';
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44

45 }

I use the singleton object in the function getTime (lines 24 - 32). The function is executed by the four
promises in lines 36 - 39. The results of the associated futures are summed up in line 41. That’s all.
Only the execution time is missing.

Meyers Singleton on Linux (multi threaded)

Meyers Singleton on Windows (multi threaded)

I reduce the examples to the singleton implementa-
tion
The function getTime for calculating the execution time and the main function are almost
identical. Therefore, I skip them in the remaining examples of this subsection. For the
entire program, please refer to the source code for this book.

Let’s go for the most obvious one and use a lock.

6.3.4 std::lock_guard

The mutex wrapped in a std::lock_guard guarantees that the singleton is initialized in a thread-safe
way.
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A thread-safe singleton using a lock

1 // singletonLock.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <future>

6 #include <mutex>

7

8 constexpr auto tenMill = 10000000;

9

10 std::mutex myMutex;

11

12 class MySingleton{

13 public:

14 static MySingleton& getInstance(){

15 std::lock_guard<std::mutex> myLock(myMutex);

16 if (!instance){

17 instance= new MySingleton();

18 }

19 volatile int dummy{};

20 return *instance;

21 }

22 private:

23 MySingleton() = default;

24 ~MySingleton() = default;

25 MySingleton(const MySingleton&) = delete;

26 MySingleton& operator=(const MySingleton&) = delete;

27

28 static MySingleton* instance;

29 };

30

31

32 MySingleton* MySingleton::instance = nullptr;

33

34 ...

You may have already guessed that this approach is pretty slow.
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Multi-threaded singleton on Linux using std::lock_guard

Multi-threaded singleton on Windows using std::lock_guard

The next version of the thread-safe singleton pattern is also based on the multithreading library: it
uses std::call_once combined with the std::once_flag.

6.3.5 std::call_once with std::once_flag

You can use the function std::call_once together with the std::once_flag to register callables so that
exactly one callable is executed in a thread-safe way.

A thread-safe singleton using std::call_once together with the std::once_flag

1 // singletonCallOnce.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <future>

6 #include <mutex>

7 #include <thread>

8

9 constexpr auto tenMill = 10000000;

10

11 class MySingleton{

12 public:

13 static MySingleton& getInstance(){

14 std::call_once(initInstanceFlag, &MySingleton::initSingleton);

15 volatile int dummy{};

16 return *instance;

17 }
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18 private:

19 MySingleton() = default;

20 ~MySingleton() = default;

21 MySingleton(const MySingleton&) = delete;

22 MySingleton& operator=(const MySingleton&) = delete;

23

24 static MySingleton* instance;

25 static std::once_flag initInstanceFlag;

26

27 static void initSingleton(){

28 instance= new MySingleton;

29 }

30 };

31

32 MySingleton* MySingleton::instance = nullptr;

33 std::once_flag MySingleton::initInstanceFlag;

34

35 ...

Here are the performance numbers.

Multi-threaded singleton on Linux using std::call_once and std::once_flag

Multi-threaded singleton on Windows using std::call_once and std::once_flag

Let’s continue our thread-safe singleton implementation using atomics.

6.3.6 Atomics

With atomic variables, my implementation becomes a lot more challenging. I can even specify the
memory-ordering for my atomic operations. The following two implementations of the thread-safe
singletons are based on the previously mentioned double-checked locking pattern.
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6.3.6.1 Sequential consistency

In my first implementation, I use atomic operations without explicitly specifying the memory-
ordering; therefore, sequential consistency applies.

A thread-safe singleton using atomics with sequential consistency

1 // singletonSequentialConsistency.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <future>

6 #include <mutex>

7 #include <thread>

8

9 constexpr auto tenMill = 10000000;

10

11 class MySingleton{

12 public:

13 static MySingleton* getInstance(){

14 MySingleton* sin = instance.load();

15 if (!sin){

16 std::lock_guard<std::mutex> myLock(myMutex);

17 sin = instance.load(std::memory_order_relaxed);

18 if(!sin){

19 sin= new MySingleton();

20 instance.store(sin);

21 }

22 }

23 volatile int dummy{};

24 return sin;

25 }

26 private:

27 MySingleton() = default;

28 ~MySingleton() = default;

29 MySingleton(const MySingleton&) = delete;

30 MySingleton& operator=(const MySingleton&) = delete;

31

32 static std::atomic<MySingleton*> instance;

33 static std::mutex myMutex;

34 };

35

36

37 std::atomic<MySingleton*> MySingleton::instance;

38 std::mutex MySingleton::myMutex;

39
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40 ...

In contrast to the double-checked locking pattern, I now guarantee that the expression sin= new

MySingleton() in line 19 happens before the store expression instance.store(sin) in line 20. This is
due to the sequential consistency as default memory-ordering for atomic operations. Have a look at
line 17: sin = instance.load(std::memory_order_relaxed). This additional load is necessary because,
between the first load in line 14 and the usage of the lock-in line 16, another thread may kick in and
change the value of instance.

Multi-threaded singleton on Linux using atomics

Multi-threaded singleton on Windows using atomics

We can optimize the program even more.

6.3.6.2 Acquire-release semantic

Let’s have a closer look at the previous thread-safe implementation of the singleton pattern using
atomics. The loading (or reading) of the singleton in line 14 is an acquire operation, the storing (or
writing) in line 20 a release operation. Both operations take place on the same atomic. Therefore se-
quential consistency is overkill. The C++11 standard guarantees that a release operation synchronizes
with an acquire operation on the same atomic and establishes an ordering constraint. This means that
all previous read and write operations cannot be moved after a release operation. All subsequent read
and write operations cannot be moved before an acquire operation.

These are the minimum guarantees required to implement a thread-safe singleton.
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A thread-safe singleton using atomics with acquire-release semantic

1 // singletonAcquireRelease.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <future>

6 #include <mutex>

7 #include <thread>

8

9 constexpr auto tenMill = 10000000;

10

11 class MySingleton{

12 public:

13 static MySingleton* getInstance(){

14 MySingleton* sin = instance.load(std::memory_order_acquire);

15 if (!sin){

16 std::lock_guard<std::mutex> myLock(myMutex);

17 sin = instance.load(std::memory_order_relaxed);

18 if(!sin){

19 sin = new MySingleton();

20 instance.store(sin, std::memory_order_release);

21 }

22 }

23 volatile int dummy{};

24 return sin;

25 }

26 private:

27 MySingleton() = default;

28 ~MySingleton() = default;

29 MySingleton(const MySingleton&) = delete;

30 MySingleton& operator=(const MySingleton&) = delete;

31

32 static std::atomic<MySingleton*> instance;

33 static std::mutex myMutex;

34 };

35

36

37 std::atomic<MySingleton*> MySingleton::instance;

38 std::mutex MySingleton::myMutex;

39

40 ...

The acquire-release semantic has a similar performance as the sequential consistency.
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Multi-threaded singleton on Linux using atomics

Multi-threaded singleton on Windows using atomics

This is not surprising because on the x86 architecture, both memory-orderings are very similar.
We would probably more significant difference in the performance numbers on the ARMv7¹⁶ or
PowerPC¹⁷ architecture. You can read the details Jeff Preshings blog Preshing on Programming¹⁸.

At the end here is an overview of all performance numbers.

6.3.7 Performance Numbers of the various Thread-Safe Singleton
Implementations

The numbers give a clear indication. The Meyers Singleton is the fastest one. It is not only the fastest
one, but it is also the easiest one to get. The Meyers Singleton is about two times faster than the atomic
versions. As expected the synchronization with the lock is the most heavyweight and, therefore, the
slowest. std::call_once in particular on Windows is a lot slower than on Linux.

Performance of all singleton implementations

Operating
System
(Compiler)

Single
Threaded

Meyers
Singleton

std::lock_-
guard

std::call_-
once

Sequential
Consis-
tency

Acquire-
Release
Semantic

Linux
(GCC)

0.03 0.04 12.47 0.22 0.09 0.07

Windows
(cl.exe)

0.02 0.03 15.48 1.74 0.07 0.07

I want to stress one point about the numbers explicitly. These are the summed up numbers for all four

¹⁶https://en.wikipedia.org/wiki/ARM_architecture
¹⁷https://en.wikipedia.org/wiki/PowerPC
¹⁸http://preshing.com/

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC
http://preshing.com/
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC
http://preshing.com/


Case Studies 342

threads. That means that we get optimal concurrency with the Meyers Singleton because the Meyers
Singleton is nearly as fast as the single-threaded implementation.
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6.4 Ongoing Optimization with CppMem

I start with a small program and improve it successively. I verify each step ofmy process with CppMem.
CppMem¹⁹ is an interactive tool for exploring the behavior of small code snippets using the C++
memory model.

First, here is the small program.

The reference program for the ongoing optimization

1 // ongoingOptimization.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 int x = 0;

7 int y = 0;

8

9 void writing(){

10 x = 2000;

11 y = 11;

12 }

13

14 void reading(){

15 std::cout << "y: " << y << " ";

16 std::cout << "x: " << x << '\n';

17 }

18

19 int main(){

20 std::thread thread1(writing);

21 std::thread thread2(reading);

22 thread1.join();

23 thread2.join();

24 }

The program is quite simple. It consists of the two threads thread1 and thread2. thread1 writes
the values x and y. thread2 reads the values x and y in the opposite sequence. This idea sounds
straightforward, but even in this simple program, we get three different results:

¹⁹http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
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The reference program

I have two questions in mind for my process of ongoing optimization.

1. Is the program well-defined? In particular: is there a data-race?

2. Which values for x and y are possible?

The first question is often very challenging to answer. In the first step, I think about the answer to the
first question, and in the second step, I verify my reasoning with CppMem. Once I have answered the
first question, the second answer can easily be determined from the first answer. I also present the
possible values for x and y in a table.

However, I haven’t explained what I mean by ongoing optimization. It’s pretty simple; I successively
optimize the program by weakening the C++ memory-ordering. These are my optimization steps:

• Non-atomic variables

• Locks

• Atomics with sequential consistency

• Atomics with acquire-release semantic

• Atomics with relaxed semantic

• Volatile variables

Before I start my process of ongoing optimization, you should have a basic understanding of CppMem.
The chapter CppMem gives you a simplified introduction.
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6.4.1 CppMem: Non-Atomic Variables

Using the run button shows it immediately there is a data race. To be more precise, it has two data
races. Neither the access to the variable x nor the variable y is protected. As a result, the program
has undefined behavior. In C++ jargon, this means that the program has so-called catch fire semantic;
therefore, all results are possible. Your PC can even catch fire.

So, we are not able to conclude the values of x and y.

Guarantees for int variables
Most mainstream architectures guarantee that access to an int variable is atomic as long
as the int variable is aligned naturally. Naturally aligned means that on a 32-bit or 64-bit
architecture, the 32-bit int variable must have an address divisible by 4. There is a reason
why I mention this so explicitly. With C++11, you can adjust the alignment of your data
types.

I have to emphasize that I’m not advising you to use an int like an atomic int. I only want
to point out that the compiler guarantees more in this case than the C++11 standard. If
you rely on the compiler guarantee, your program is not compliant with the C++ standard
and, therefore, may break on other hardware platforms or in the future.

These were my thoughts to int. Now we should have a look at what CppMem reports about the
undefined behavior of the program.

CppMem allows me to reduce the program to its bare minimum.

CppMem: unsynchronized access

1 int main() {

2 int x = 0;

3 int y = 0;

4 {{{ {

5 x = 2000;

6 y = 11;

7 }

8 ||| {

9 y;

10 x;

11 }

12 }}}

13 }

You can define a thread in CppMem with the curly braces (lines 4 and 12) and the pipe symbol (line
8). The additional curly braces in lines 4 and 7 or lines 8 and 11 define the work package of the thread.
Because I’m not interested in the output of the variables x and y, I only read them in lines 9 and 10.

That was the theory for CppMem, now to the practice.
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6.4.1.1 The Analysis

When I execute the program, CppMem complains (1) (in red) that one of the four possible interleavings
of threads is not race free. Only the first execution is consistent. Now I can use CppMem to switch
between the four executions (2) and analyze the annotated graph (3).

A data race with non-atomics

You get the most out of CppMem by analyzing the various graphs.

6.4.1.1.1 First Execution

What conclusions can we derive from the following graph?
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First execution

The nodes of the graph represent the expressions of the program, the edges the relation between the
expressions. Inmy explanation, I refer to the names (a) to (f).What can I conclude from the annotations
in this graph?

• a:Wna x = 0: Is the first expression (a), which is a non-atomic write of x.

• sb (sequenced-before): The writing of the first expression (a) is sequenced before the writing
of the second expression (b). These relations also hold between the expressions (c) and (d), and
(e) and (f).

• rf (read from): The expression (e) reads the value of y from the expression (b). Accordingly, (f)
reads from (a).

• sw (synchronizes-with): The expression (a) synchronises with (f). This relation holds because
the expressions (f) takes place in a separate thread. The creation of a thread is a synchronization
point. Everything that happens before the thread creation is visible in the thread. For symmetry
reasons, the same argument holds between (b) and (e).

• dr (data race): Here is the data race between the reading and writing of the variables x and y.
The program has undefined behavior.

Why is the execution consistent?
The execution is consistent because the values x and y are initialized from the values in
the main thread (a) and (b). The initialization of the values x and y from the expressions
(c) and (d) is not consistent with the memory model.

The next three executions are not consistent.
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6.4.1.1.2 Second Execution

Second execution

The expression (e) reads in this non-consistent execution the value of y from the expression (d). The
writing of (d) happens concurrently with the reading of (e).

6.4.1.1.3 Third Execution

Third execution

This execution is symmetric to the previous execution. The expression (f) reads from expression (c)
concurrently.
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6.4.1.1.4 Fourth Execution

Fourth exection

Now everything goes wrong. The expressions (e) and (f) read from the expressions (d) and (c)
concurrently.

6.4.1.1.5 A Short Conclusion

Although I just used the default configuration of CppMem, I got a lot of valuable information and
insight. In particular, the graphs from CppMem showed:

• All four combinations of x and y are possible: (0,0), (11,0), (0,2000), and (11,2000).

• The program has at least one data race and, therefore, has undefined behavior.

• Only one of the four possible executions is consistent.
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Using volatile
From the memory model perspective, using the qualifier volatile for x and y makes no
difference to using non-synchronized access to x and y.

CppMem: unsynchronized access with volatile
1 int main() {

2 volatile int x = 0;

3 volatile int y = 0;

4 {{{ {

5 x = 2000;

6 y = 11;

7 }

8 ||| {

9 y;

10 x;

11 }

12 }}}

13 }

CppMem generates identical graphs as in the previous example. The reason is quite simple,
in C++ volatile has no multithreading semantic.

The access to x and y in this example was not synchronized, and we got a data race; therefore,
undefined behavior. The most obvious way for synchronization is to use locks.

6.4.2 CppMem: Locks

Both threads thread1 and thread2 use the same mutex, wrapped in a std::lock_guard.

ongoing optimization with locks

1 // ongoingOptimizationLock.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <thread>

6

7 int x = 0;

8 int y = 0;

9

10 std::mutex mut;

11

12 void writing(){

13 std::lock_guard<std::mutex> guard(mut);

14 x = 2000;
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15 y = 11;

16 }

17

18 void reading(){

19 std::lock_guard<std::mutex> guard(mut);

20 std::cout << "y: " << y << " ";

21 std::cout << "x: " << x << '\n';

22 }

23

24 int main(){

25 std::thread thread1(writing);

26 std::thread thread2(reading);

27 thread1.join();

28 thread2.join();

29 };

The program is well-defined. Depending on the execution order (thread1 vs thread2), either both
values are either at first read and then overwritten, or are at first overwritten and then read. The
following values for x and y are possible.

Possible values for locks

y x Values possible?

0 0 Yes
11 0
0 2000
11 2000 Yes

Using std::lock_guard in CppMem
I could not find a way to use std::lock_guard in CppMem. If you know how to achieve
it, please let me know.

Locks are easy to use, but the synchronization is often too heavyweight. I now switch to a more
lightweight strategy and use atomics.

6.4.3 CppMem: Atomics with Sequential Consistency

If you don’t specify the memory-ordering, sequential consistency is applied. Sequential consistency
guarantees two properties. Each thread executes its instructions in source code order, and all threads
follow the same global order.

Here is the optimized version of the program using atomics.
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ongoing optimization with atomics (sequential consistency)

1 // ongoingOptimizationSequentialConsistency.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6

7 std::atomic<int> x{0};

8 std::atomic<int> y{0};

9

10 void writing(){

11 x.store(2000);

12 y.store(11);

13 }

14

15 void reading(){

16 std::cout << y.load() << " ";

17 std::cout << x.load() << '\n';

18 }

19

20 int main(){

21 std::thread thread1(writing);

22 std::thread thread2(reading);

23 thread1.join();

24 thread2.join();

25 };

Let’s analyze the program. The program is data race free because x and y are atomics. Therefore, only
one question is left to answer. What values are possible for x and y? This question is easy to answer.
Thanks to the sequential consistency, all threads have to follow the same global order.

It holds true:

• x.store(2000); happens-before y.store(11);

• std::cout << y.load() << " "; happens-before std::cout << x.load() << '\n';

Hence: the value of x.load() cannot be 0 if y.load() has the value 11, because x.store(2000) happens
before y.store(11).

All other values for x and y are possible. Here are three possible interleavings resulting in the three
different values for x and y.

1. thread1 is completely executed before thread2.

2. thread2 is completely executed before thread1.

3. thread1 executes its first instruction x.store(2000) before thread2 is completely executed.

Now all values for x and y.
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Possible values for the atomics(sequential consistency)

y x Values
possible?

:————-: :—————
:

:—————
-:

#

0 0 Yes
11 0
0 2000 Yes
11 2000 Yes

Let me verify my reasoning with CppMem.

6.4.3.1 CppMem

Here is the corresponding program in CppMem.

CppMem: atomics (sequential consistency

1 int main(){

2 atomic_int x = 0;

3 atomic_int y = 0;

4 {{{ {

5 x.store(2000);

6 y.store(11);

7 }

8 ||| {

9 y.load();

10 x.load();

11 }

12 }}}

13 }

First, a little bit of syntax. CppMem uses in lines 2 and 3 the typedef atomic_int for std::atomic<int>.

When I execute the program, I’m overwhelmed by the number of execution candidates.
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Ongoing Optimization (sequential consistency)

There are 384 (1) possible execution candidates, only 6 of them are consistent. No candidate has a
data race. I’m only interested in the six consistent executions and ignore the other 378 non-consistent
executions. Non-consistent means, for example, that they do not respect the modification order of the
memory model.

I use the interface (2) to get the six annotated graphs.

We already know that all values for x and y are possible except for y = 11 and x = 0. These results are
possible because of sequential consistency. Now I’m curious, which interleaving of threads produces
which values for x and y?
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6.4.3.1.1 Execution for (y = 0, x = 0)

Execution for (y = 0, x = 0)

6.4.3.1.2 Executions for (y = 0, x = 2000)

Execution for (y = 0, x = 2000)
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Execution for (y = 0, x = 2000)

Execution for (y = 0, x = 2000)

Execution for (y = 0, x = 2000)
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6.4.3.1.3 Execution for (y = 11, x = 2000)

Execution for (y = 11, x = 2000)

I’m not done with my analysis. I’m interested in answering the question: Which sequence of
instructions corresponds to which of the six graphs?

6.4.3.2 Sequence of Instructions

I have assigned to each sequence of instructions the corresponding graph.
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Sequence of instructions

Let me start with the more straightforward cases.

• (1): It’s quite simple to assign the graph (1) to the sequence (1). In the sequence (1) x and y have
the values 0 because y.load() and x.load() are executed before the operations x.store(2000)
and y.store(11).

• (6): The reasoning for the execution (6) is similar. y has the value 11 and x the value 2000 because
all load operations happen after all store operations.

• (2), (3), (4), (5): Now to the more interesting cases in which y has the value 0, and x has the
value 2000. The yellow arrows (sc) in the graph are the key to my reasoning because they stand
for the sequence of instructions. For example, let’s look at execution (2).

– (2): The sequence of the yellow arrows (sc) in the graph (2) is: write x = 2000 ⇒ read
y = 0 ⇒ write y = 11 ⇒ read x = 2000. This sequence corresponds to the sequence of
instructions of the second interleaving of threads (2).

Let’s break the sequential consistency with the acquire-release semantic.
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6.4.4 CppMem: Atomics with Acquire-Release Semantic

The synchronization in the acquire-release semantic occurs between atomic operations on the same
atomic. This synchronization of atomic operations on the same atomic is in contrast to the sequential
consistency of synchronization between threads. Due to this fact, the acquire-release semantic is more
lightweight and, therefore, faster.

Here is the program with acquire-release semantic.

ongoing optimization with atomics (acquire-release semantic)

1 // ongoingOptimizationAcquireRelease.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6

7 std::atomic<int> x{0};

8 std::atomic<int> y{0};

9

10 void writing(){

11 x.store(2000, std::memory_order_relaxed);

12 y.store(11, std::memory_order_release);

13 }

14

15 void reading(){

16 std::cout << y.load(std::memory_order_acquire) << " ";

17 std::cout << x.load(std::memory_order_relaxed) << '\n';

18 }

19

20 int main(){

21 std::thread thread1(writing);

22 std::thread thread2(reading);

23 thread1.join();

24 thread2.join();

25 };

At first glance, you notice that all operations are atomic, so the program is well-defined. But the second
glance shows more; the atomic operations on y are attached with the flag std::memory_order_release

(line 12) and std::memory_order_acquire (line 16). In contrast to that, the atomic operations on x are
annotated with std::memory_order_relaxed (lines 11 and 17). So there are no synchronization and
ordering constraints for x. The answer to the possible values for x and y can only be given by y.

It holds:

• y.store(11,std::memory_order_release) synchronizes-with y.load(std::memory_order_acquire)
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• x.store(2000,std::memory_order_relaxed) is visible before y.store(11, std::memory_order_-

release)

• y.load(std::memory_order_acquire) is visible before x.load(std::memory_order_relaxed)

I elaborate a little bit more on these three statements. The key idea is that the store of y in line 12
synchronizes with the load of y in line 16. This is because the operations take place on the same
atomic, and they use the acquire-release semantic. y uses std::memory_order_release in line 12 and
std::memory_order_acquire in line 16. The pairwise operation on y has another imposing property.
They establish a kind of barrier relative to y. So x.store(2000, std::memory_order_relaxed) cannot be
executed after y.store(std::memory_order_release) and x.load() cannot be executed before y.load().

The reasoning in the acquire-release semantic case is more sophisticated than in the case of the
previous sequential consistency, but the possible values for x and y are the same. Only the combination
y == 11 and x == 0 is not possible.

There are three different interleavings of the threads possible, which produce the three different
combinations of the values x and y.

• thread1 is executed before thread2.

• thread2 is executed before thread1.

• thread1 executes x.store(2000) before thread2 is executed.

To make a long story short, here are all possible values for x and y.

Possible values for the atomics(acquire-release semantic)

y x Values possible?

0 0 Yes
11 0
0 2000 Yes
11 2000 Yes

Once more. Let’s verify our thinking with CppMem.

6.4.4.1 CppMem

Here is the corresponding program.
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CppMem: atomics(acquire-release semantic

1 int main(){

2 atomic_int x = 0;

3 atomic_int y = 0;

4 {{{ {

5 x.store(2000, memory_order_relaxed);

6 y.store(11, memory_order_release);

7 }

8 ||| {

9 y.load(memory_order_acquire);

10 x.load(memory_order_relaxed);

11 }

12 }}}

13 }

We already know that all results are possible except for (y = 11, x = 0).

6.4.4.1.1 Possible executions

I only refer to the three graphs with consistent execution. The graphs show an acquire-release
semantic between the store-release of y and the load-acquire operation of y. It makes no difference
if the reading of y (rf) takes place in the main thread or a separate thread. The graphs also show the
synchronizes-with relation using a sw annotated arrow.

6.4.4.1.2 Execution for (y = 0, x = 0)

Execution for (y = 0, x = 0)
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6.4.4.1.3 Execution for (y = 0, x = 2000)

Execution for (y = 0, x = 2000)

6.4.4.1.4 Execution for (y = 11, x = 2000)

Execution for (y = 11, x = 2000)

x does not have to be atomic. This was my first and wrong assumption. See why.

6.4.5 CppMem: Atomics with Non-atomics

A typical misunderstanding in applying the acquire-release semantic is to assume that the acquire
operation is waiting for the release operation. Based on this wrong assumption, you may think that x
does not has to be an atomic variable, and we can further optimize the program.



Case Studies 363

ongoing optimization with atomics with non-atomics

1 // ongoingOptimizationAcquireReleaseBroken.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6

7 int x = 0;

8 std::atomic<int> y{0};

9

10 void writing(){

11 x = 2000;

12 y.store(11, std::memory_order_release);

13 }

14

15 void reading(){

16 std::cout << y.load(std::memory_order_acquire) << " ";

17 std::cout << x << '\n';

18 }

19

20 int main(){

21 std::thread thread1(writing);

22 std::thread thread2(reading);

23 thread1.join();

24 thread2.join();

25 };

The program has a data race on x and, therefore, undefined behavior. The acquire-release semantic
guarantees if y.store(11, std::memory_order_release) (line 12) is executed before y.load(std::memory_-
order_acquire) (line 16), that x = 2000 (line 11) is executed before the reading of x (line 17). If not the
reading of x is executed simultaneously as the writing of x. So we have concurrent access to a shared
variable, and one of them is a write operation. That is by definition a data race.

To make my point more clear, let me use CppMem.

6.4.5.1 CppMem
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CppMem: atomics and non-atomics

1 int main(){

2 int x = 0;

3 atomic_int y = 0;

4 {{{ {

5 x = 2000;

6 y.store(11, memory_order_release);

7 }

8 ||| {

9 y.load(memory_order_acquire);

10 x;

11 }

12 }}}

13 }

The data race occurs when one thread is writing x = 2000 and the other thread is reading x. We get a
dr symbol (data race) on the corresponding yellow arrow.

A data race

The final step in the process of ongoing optimization is still missing: relaxed semantic.

6.4.6 CppMem: Atomics with Relaxed Semantic

With the relaxed semantic, we have no synchronization and ordering constraints on atomic operations.
Only the atomicity of the operations is guaranteed.
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Ongoing optimization with atomics (relaxed semantic)

1 // ongoingOptimizationRelaxedSemantic.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <thread>

6

7 std::atomic<int> x{0};

8 std::atomic<int> y{0};

9

10 void writing(){

11 x.store(2000, std::memory_order_relaxed);

12 y.store(11, std::memory_order_relaxed);

13 }

14

15 void reading(){

16 std::cout << y.load(std::memory_order_relaxed) << " ";

17 std::cout << x.load(std::memory_order_relaxed) << '\n';

18 }

19

20 int main(){

21 std::thread thread1(writing);

22 std::thread thread2(reading);

23 thread1.join();

24 thread2.join();

25 };

For the relaxed semantic, my fundamental questions are straightforward to answer. These are my
questions:

1. Does the program have well-defined behavior?

2. Which values for x and y are possible?

On the one hand, all operations on x and y are atomic, so the program is well-defined. On the other
hand, there are no restrictions on the possible interleavings of threads. The result may be that thread2
sees the operations on thread1 in a different order. This is the first time in our process of ongoing
optimization that thread2 can display x == 0 and y == 11 and, therefore, all combinations of x and y

are possible.
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Possible values for the atomics(relaxed semantic)

y x Values possible?

0 0 Yes
11 0 Yes
0 2000 Yes
11 2000 Yes

Now I’m curious how the graph of CppMem looks like for x == 0 and y == 11?

6.4.6.1 CppMem

CppMem: atomics (relaxed semantic)

1 int main(){

2 atomic_int x = 0;

3 atomic_int y = 0;

4 {{{ {

5 x.store(2000, memory_order_relaxed);

6 y.store(11, memory_order_relaxed);

7 }

8 ||| {

9 y.load(memory_order_relaxed);

10 x.load(memory_order_relaxed);

11 }

12 }}}

13 }

That was the CppMem program. Now to the graph that produces the counter-intuitive behavior.

Execution for (y = 11, x = 0)
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x reads the value 0 (line 10) but y reads the value 11 (line 9). This happens, although the writing of x
(line 5) is sequenced before the writing of y (line 6).

6.4.7 Conclusion

Using a small program and successively improve it was quite enlightening. First, with each step, more
interleavings of threads were possible; therefore, more different values for x and y were possible.
Second, the challenge of the program increases with each improvement. Even for this small program,
CppMem provides invaluable services.
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6.5 Fast Synchronization of Threads

When youwant to synchronize threadsmore than once, you can use condition variables, std::atomic_-
flag, std::atomic<bool>, or semaphores. In this section, I want to answer the question: Which variant
is the fastest?

To get comparable numbers, I implement a ping-pong game. One thread executes a ping function, and
the other thread a pong function. For simplicity reasons, I call the thread executing the ping function
the ping thread and the other thread the pong thread. The ping thread waits for the notification of
the pong thread and sends the notification back to the pong thread. The game stops after 1’000’000
ball changes. I perform each game five times to get comparable performance numbers.

About the Numbers
I made my performance test at the end of 2020 with the brand new Visual Studio compiler
19.28 because it already supported synchronization with atomics (std::atomic_flag and
std::atomic) and semaphores. Additionally, I compiled the examples with maximum
optimization (/Ox). The performance number should only give a rough idea of the relative
performance of the various ways to synchronize threads. When you want the exact
number on your platform, you have to repeat the tests.

Let me start the comparison with condition variables.

6.5.1 Condition Variables

Multiple time synchronization with a condition variable

1 // pingPongConditionVariable.cpp

2

3 #include <condition_variable>

4 #include <iostream>

5 #include <atomic>

6 #include <thread>

7

8 bool dataReady{false};

9

10 std::mutex mutex_;

11 std::condition_variable condVar1;

12 std::condition_variable condVar2;

13

14 std::atomic<int> counter{};

15 constexpr int countlimit = 1'000'000;

16

17 void ping() {
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18

19 while(counter <= countlimit) {

20 {

21 std::unique_lock<std::mutex> lck(mutex_);

22 condVar1.wait(lck, []{return dataReady == false;});

23 dataReady = true;

24 }

25 ++counter;

26 condVar2.notify_one();

27 }

28 }

29

30 void pong() {

31

32 while(counter <= countlimit) {

33 {

34 std::unique_lock<std::mutex> lck(mutex_);

35 condVar2.wait(lck, []{return dataReady == true;});

36 dataReady = false;

37 }

38 condVar1.notify_one();

39 }

40

41 }

42

43 int main(){

44

45 auto start = std::chrono::system_clock::now();

46

47 std::thread t1(ping);

48 std::thread t2(pong);

49

50 t1.join();

51 t2.join();

52

53 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

54 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

55 }

I use two condition variables in the program: condVar1 and condVar2. The ping thread waits for the
notification of condVar1 and sends its notification with condVar2. dataReady protects against spurious
and lost wakeups. The ping-pong game ends when counter reaches the countlimit. The nofication_-
one calls (lines 26 and 38) and the counter are thread-safe and are, therefore, outside the critical
region.
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These are the numbers.

Multiple time synchronization with condition variables

The average execution time is 0.52 seconds.

Porting this workflow to std::atomic_flag in C++20 is straightforward.

6.5.2 std::atomic_flag

Here is the same workflow using first two and then one atomic flag.

6.5.2.1 Two Atomic Flags

In the following program, I replace the waiting on the condition variable with the waiting on the
atomic flag and the notification of the condition variable with the atomic flag setting followed by the
notification.

Multiple time synchronization with two atomic flags

1 // pingPongAtomicFlags.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag1{};

8 std::atomic_flag condAtomicFlag2{};

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;
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12

13 void ping() {

14 while(counter <= countlimit) {

15 condAtomicFlag1.wait(false);

16 condAtomicFlag1.clear();

17

18 ++counter;

19

20 condAtomicFlag2.test_and_set();

21 condAtomicFlag2.notify_one();

22 }

23 }

24

25 void pong() {

26 while(counter <= countlimit) {

27 condAtomicFlag2.wait(false);

28 condAtomicFlag2.clear();

29

30 condAtomicFlag1.test_and_set();

31 condAtomicFlag1.notify_one();

32 }

33 }

34

35 int main() {

36

37 auto start = std::chrono::system_clock::now();

38

39 condAtomicFlag1.test_and_set();

40 std::thread t1(ping);

41 std::thread t2(pong);

42

43 t1.join();

44 t2.join();

45

46 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

47 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

48

49 }

A call condAtomicFlag1.wait(false) (line 15) blocks if the atomic flag’s value is false. On the contrary,
it returns if condAtomicFlag1 has the value true. The boolean value serves as a kind of predicate and
must, therefore, set back to false (line 15). Before the notification (line 21) is sent to the pong thread,
condAtomicFlag1 is set to true (line 20). The initial setting of condAtomicFlag1 (line 29) to true starts
the game.
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Thanks to std::atomic_flag the game ends earlier.

Multiple time synchronization with two atomic flags

On average, a game takes 0.32 seconds.

When you analyze the program, you may recognize that one atomics flag is sufficient for the
workflow.

6.5.2.2 One Atomic Flags

Using one atomic flag makes the workflow easier to understand.

Multiple time synchronization with one atomic flag

1 // pingPongAtomicFlag.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic_flag condAtomicFlag{};

8

9 std::atomic<int> counter{};

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

13 while(counter <= countlimit) {

14 condAtomicFlag.wait(true);

15 condAtomicFlag.test_and_set();
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16

17 ++counter;

18

19 condAtomicFlag.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter <= countlimit) {

25 condAtomicFlag.wait(false);

26 condAtomicFlag.clear();

27 condAtomicFlag.notify_one();

28 }

29 }

30

31 int main() {

32

33 auto start = std::chrono::system_clock::now();

34

35 condAtomicFlag.test_and_set();

36 std::thread t1(ping);

37 std::thread t2(pong);

38

39 t1.join();

40 t2.join();

41

42 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

43 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

44

45 }

In this case, the ping thread blocks on true, but the pong thread blocks on false. From the performance
perspective, using one or two atomic flags makes no difference.
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Multiple time synchronization with one atomic flag

The average execution time is 0.31 seconds.

I used in this example std::atomic_flag such as an atomic boolean. Let’s give it another try with
std::atomic<bool>.

6.5.3 std::atomic<bool>

The following C++20 implementation is based on std::atomic.

Multiple time synchronization with an atomic bool

1 // pingPongAtomicBool.cpp

2

3 #include <iostream>

4 #include <atomic>

5 #include <thread>

6

7 std::atomic<bool> atomicBool{};

8

9 std::atomic<int> counter{};

10 constexpr int countlimit = 1'000'000;

11

12 void ping() {

13 while(counter <= countlimit) {

14 atomicBool.wait(true);

15 atomicBool.store(true);

16

17 ++counter;
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18

19 atomicBool.notify_one();

20 }

21 }

22

23 void pong() {

24 while(counter <= countlimit) {

25 atomicBool.wait(false);

26 atomicBool.store(false);

27 atomicBool.notify_one();

28 }

29 }

30

31 int main() {

32

33 std::cout << std::boolalpha << '\n';

34

35 std::cout << "atomicBool.is_lock_free(): "

36 << atomicBool.is_lock_free() << '\n';

37

38 std::cout << '\n';

39

40 auto start = std::chrono::system_clock::now();

41

42 atomicBool.store(true);

43 std::thread t1(ping);

44 std::thread t2(pong);

45

46 t1.join();

47 t2.join();

48

49 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

50 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

51

52 }

std::atomic<bool> can internally use a locking mechanism such as a mutex. My Windows runtime
is lock-free.
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Multiple time synchronization with an atomic bool

On average, the execution time is 0.38 seconds.

From the readability perspective, this implementation based on std::atomic is straightforward to
understand. This observation also holds for the following implementation of the ping-pong game
based on semaphores.

6.5.4 Semaphores

Semaphores promises to be faster than condition variables. Let’s see if this is true.
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Multiple time synchronization with semaphores

1 // pingPongSemaphore.cpp

2

3 #include <iostream>

4 #include <semaphore>

5 #include <thread>

6

7 std::counting_semaphore<1> signal2Ping(0);

8 std::counting_semaphore<1> signal2Pong(0);

9

10 std::atomic<int> counter{};

11 constexpr int countlimit = 1'000'000;

12

13 void ping() {

14 while(counter <= countlimit) {

15 signal2Ping.acquire();

16 ++counter;

17 signal2Pong.release();

18 }

19 }

20

21 void pong() {

22 while(counter <= countlimit) {

23 signal2Pong.acquire();

24 signal2Ping.release();

25 }

26 }

27

28 int main() {

29

30 auto start = std::chrono::system_clock::now();

31

32 signal2Ping.release();

33 std::thread t1(ping);

34 std::thread t2(pong);

35

36 t1.join();

37 t2.join();

38

39 std::chrono::duration<double> dur = std::chrono::system_clock::now() - start;

40 std::cout << "Duration: " << dur.count() << " seconds" << '\n';

41

42 }
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The program pingPongsemaphore.cpp uses two semaphores: signal2Ping and signal2Pong (lines 7 and
8). Both can have the two values 0 and 1 and are initialized with 0. This means when the value is 0 for
the semaphore signal2Ping: a call signal2Ping.release() (lines 24 and 32) set the value to 1 and is,
therefore, a notification; a signal2Ping.acquire() (line 15) call blocks until the value becomes 1. The
same argumentation holds for the second semaphore signal2Pong.

Multiple time synchronization with semaphores

On average, the execution time is 0.33 seconds.

6.5.5 All Numbers

As expected, condition variables are the slowest way, and atomic flag the fastest way to syn-
chronize threads. The performance of a std::atomic<bool> is in between. There is a downside
with std::atomic<bool>. std::atomic_flag is the only atomic data type that is always lock-free.
Semaphores impressed me most because they are nearly as fast as atomic flags.

Execution Time

Condition
Variables

Two Atomic
Flags

One Atomic
Flag

Atomic
Boolean

Semaphores

Execution
Time

0.52 0.32 0.31 0.38 0.33
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6.6 Variations of Futures

Before I create variations of the future from section co_return, we should understand its control flow.
Comments make the control flow transparent. Additionally, I provide a link to the presented programs
on online compilers.

Control flow of an eager future

1 // eagerFutureWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 std::shared_ptr<T> value;

10 MyFuture(std::shared_ptr<T> p): value(p) {

11 std::cout << " MyFuture::MyFuture" << '\n';

12 }

13 ~MyFuture() {

14 std::cout << " MyFuture::~MyFuture" << '\n';

15 }

16 T get() {

17 std::cout << " MyFuture::get" << '\n';

18 return *value;

19 }

20

21 struct promise_type {

22 std::shared_ptr<T> ptr = std::make_shared<T>();

23 promise_type() {

24 std::cout << " promise_type::promise_type" << '\n';

25 }

26 ~promise_type() {

27 std::cout << " promise_type::~promise_type" << '\n';

28 }

29 MyFuture<T> get_return_object() {

30 std::cout << " promise_type::get_return_object" << '\n';

31 return ptr;

32 }

33 void return_value(T v) {

34 std::cout << " promise_type::return_value" << '\n';

35 *ptr = v;

36 }

37 std::suspend_never initial_suspend() {
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38 std::cout << " promise_type::initial_suspend" << '\n';

39 return {};

40 }

41 std::suspend_never final_suspend() noexcept {

42 std::cout << " promise_type::final_suspend" << '\n';

43 return {};

44 }

45 void unhandled_exception() {

46 std::exit(1);

47 }

48 };

49 };

50

51 MyFuture<int> createFuture() {

52 std::cout << "createFuture" << '\n';

53 co_return 2021;

54 }

55

56 int main() {

57

58 std::cout << '\n';

59

60 auto fut = createFuture();

61 auto res = fut.get();

62 std::cout << "res: " << res << '\n';

63

64 std::cout << '\n';

65

66 }

The call createFuture (line 60) causes the creating of the instance of MyFuture (line 59). Before
MyFuture’s constructor call (line 10) is completed, the promise promise_type is created, executed,
and destroyed (lines 20 - 48). The promise uses in each step of its control flow the awaitable
std::suspend_never (lines 36 and 40) and, hence, never pauses. To save the result of the promise
for the later fut.get() call (line 60), it has to be allocated. Furthermore, the used std::shared_ptrs
ensure (lines 9 and 21) that the program does not cause a memory leak. As a local, fut goes out of
scope in line 65, and the C++ run time calls its destructor.

You can try out the program on the Compiler Explorer²⁰.

²⁰https://godbolt.org/z/Y9naEx

https://godbolt.org/z/Y9naEx
https://godbolt.org/z/Y9naEx
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An eager future

The presented coroutine runs immediately and is, therefore, eager. Furthermore, the coroutine runs
in the thread of the caller.

Let’s make the coroutine lazy.

6.6.1 A Lazy Future

A lazy future is a future that runs only if asked for the value. Let’s see what I have to change in the
eager coroutine, presented in eagerFutureWithComments.cpp, to make it lazy.

Control flow of a lazy future

1 // lazyFuture.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6

7 template<typename T>

8 struct MyFuture {

9 struct promise_type;

10 using handle_type = std::coroutine_handle<promise_type>;

11

12 handle_type coro;

13

14 MyFuture(handle_type h): coro(h) {

15 std::cout << " MyFuture::MyFuture" << '\n';

16 }
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17 ~MyFuture() {

18 std::cout << " MyFuture::~MyFuture" << '\n';

19 if ( coro ) coro.destroy();

20 }

21

22 T get() {

23 std::cout << " MyFuture::get" << '\n';

24 coro.resume();

25 return coro.promise().result;

26 }

27

28 struct promise_type {

29 T result;

30 promise_type() {

31 std::cout << " promise_type::promise_type" << '\n';

32 }

33 ~promise_type() {

34 std::cout << " promise_type::~promise_type" << '\n';

35 }

36 auto get_return_object() {

37 std::cout << " promise_type::get_return_object" << '\n';

38 return MyFuture{handle_type::from_promise(*this)};

39 }

40 void return_value(T v) {

41 std::cout << " promise_type::return_value" << '\n';

42 result = v;

43 }

44 std::suspend_always initial_suspend() {

45 std::cout << " promise_type::initial_suspend" << '\n';

46 return {};

47 }

48 std::suspend_always final_suspend() noexcept {

49 std::cout << " promise_type::final_suspend" << '\n';

50 return {};

51 }

52 void unhandled_exception() {

53 std::exit(1);

54 }

55 };

56 };

57

58 MyFuture<int> createFuture() {

59 std::cout << "createFuture" << '\n';

60 co_return 2021;

61 }
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62

63 int main() {

64

65 std::cout << '\n';

66

67 auto fut = createFuture();

68 auto res = fut.get();

69 std::cout << "res: " << res << '\n';

70

71 std::cout << '\n';

72

73 }

Let’s first study the promise. The promise always suspends at the beginning (line 44) and the end (line
48). Furthermore, the member function get_return_object (line 36) creates the return object that is
returned to the caller of the coroutine createFuture (line 58). The future MyFuture is more interesting.
It has a handle coro (line 12) to the promise. MyFuture uses the handle to manage the promise. It
resumes the promise (line 24), asks the promise for the result (line 25), and finally destroys it (line 19).
The resumption of the coroutine is necessary because it never runs automatically (line 44). When the
client invokes fut.get() (line 68) to ask for the result of the future, it implicitly resumes the promise
(line 24).

You can try out the program on the Compiler Explorer²¹.

A lazy future

What happens if the client is not interested in the result of the future? Let’s try it out.

²¹https://godbolt.org/z/EejWcj

https://godbolt.org/z/EejWcj
https://godbolt.org/z/EejWcj
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The client does not resume the coroutine

int main() {

std::cout << '\n';

auto fut = createFuture();

// auto res = fut.get();

// std::cout << "res: " << res << '\n';

std::cout << '\n';

}

As youmay guess, the promise never runs, and themember functions return_value and final_suspend
are not executed.

A lazy future that is not started

Lifetime Challenges of Coroutines
One of the challenges of dealing with coroutines is to handle the lifetime of the coroutine.
In the previous program eagerFutureWithComments.cpp, I stored the coroutine result in a
std::shared_ptr. This is critical because the coroutine is executed eagerly.

In this program lazyFuture.cpp, the call final_suspend always suspends (line 48):
std::suspend_always final_suspend(). Consequently, the promise outlives the client, and
a std::shared_ptr is not necessary anymore. Returning std::suspend_never from the
function final_suspend would cause, in this case, undefined behavior because the client
would outlive the promise. Hence, the lifetime of the result ends, bevor the client asks for
it.

Let’s vary the coroutine further and run the promise in a separate thread.
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6.6.2 Execution on Another Thread

The coroutine is fully suspended before entering the coroutine createFuture (line 67), because the
member function initial_suspend returns std::suspend_always (line 52). Consequently, the promise
can run on another thread.

Executing the promise on another thread

1 // lazyFutureOnOtherThread.cpp

2

3 #include <coroutine>

4 #include <iostream>

5 #include <memory>

6 #include <thread>

7

8 template<typename T>

9 struct MyFuture {

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12 handle_type coro;

13

14 MyFuture(handle_type h): coro(h) {}

15 ~MyFuture() {

16 if ( coro ) coro.destroy();

17 }

18

19 T get() {

20 std::cout << " MyFuture::get: "

21 << "std::this_thread::get_id(): "

22 << std::this_thread::get_id() << '\n';

23

24 std::thread t([this] { coro.resume(); });

25 t.join();

26 return coro.promise().result;

27 }

28

29 struct promise_type {

30 promise_type(){

31 std::cout << " promise_type::promise_type: "

32 << "std::this_thread::get_id(): "

33 << std::this_thread::get_id() << '\n';

34 }

35 ~promise_type(){

36 std::cout << " promise_type::~promise_type: "

37 << "std::this_thread::get_id(): "

38 << std::this_thread::get_id() << '\n';
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39 }

40

41 T result;

42 auto get_return_object() {

43 return MyFuture{handle_type::from_promise(*this)};

44 }

45 void return_value(T v) {

46 std::cout << " promise_type::return_value: "

47 << "std::this_thread::get_id(): "

48 << std::this_thread::get_id() << '\n';

49 std::cout << v << '\n';

50 result = v;

51 }

52 std::suspend_always initial_suspend() {

53 return {};

54 }

55 std::suspend_always final_suspend() noexcept {

56 std::cout << " promise_type::final_suspend: "

57 << "std::this_thread::get_id(): "

58 << std::this_thread::get_id() << '\n';

59 return {};

60 }

61 void unhandled_exception() {

62 std::exit(1);

63 }

64 };

65 };

66

67 MyFuture<int> createFuture() {

68 co_return 2021;

69 }

70

71 int main() {

72

73 std::cout << '\n';

74

75 std::cout << "main: "

76 << "std::this_thread::get_id(): "

77 << std::this_thread::get_id() << '\n';

78

79 auto fut = createFuture();

80 auto res = fut.get();

81 std::cout << "res: " << res << '\n';

82

83 std::cout << '\n';
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84

85 }

I added a few comments to the program that show the id of the running thread. The program
lazyFutureOnOtherThread.cpp is quite similar to the previous program lazyFuture.cpp. The main
difference is the member function get (line 19). The call std::thread t([this] { coro.resume();

}); (line 24) resumes the coroutine on another thread.

You can try out the program on the Wandbox²² online compiler.

Execution on another thread

I want to add a few additional remarks about the member function get. It is crucial that the promise,
resumed in a separate thread, finishes before it returns coro.promise().result.

The member function get using std::thread

T get() {

std::thread t([this] { coro.resume(); });

t.join();

return coro.promise().result;

}

Where I to join the thread t after the call return coro.promise().result, the program would have
undefined behavior. In the following implementation of the function get, I use a std::jthread. Since
std::jthread automatically joins when it goes out of scope. This is too late.

The member function get using std::jthread

T get() {

std::jthread t([this] { coro.resume(); });

return coro.promise().result;

}

In this case, the client likely gets its result before the promise prepares it using the member function
return_value. Now, result has an arbitrary value, and therefore so does res.

²²https://wandbox.org/permlink/jFVVj80Gxu6bnNkc

https://wandbox.org/permlink/jFVVj80Gxu6bnNkc
https://wandbox.org/permlink/jFVVj80Gxu6bnNkc
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Execution on another thread

There are other possibilities to ensure that the thread is done before the return call.

• Create a std::jthread in its scope.

std::jthread has its own scope

T get() {

{

std::jthread t([this] { coro.resume(); });

}

return coro.promise().result;

}

• Make std::jthread a temporary object

std::jthread as a temporary

T get() {

std::jthread([this] { coro.resume(); });

return coro.promise().result;

}

In particular, I don’t like the last solution because it may take you a few seconds to recognize that I
just called the constructor of std::jthread.
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6.7 Modification and Generalization of a Generator

Before I modify and generalize the generator for an infinite data stream, I want to present it as a
starting point of our journey. I intentionally put many output operations in the source code and only
ask for three values. This simplification and visualization should help to understand the control flow.

Generator generating an infinite data stream

1 // infiniteDataStreamComments.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6

7 template<typename T>

8 struct Generator {

9

10 struct promise_type;

11 using handle_type = std::coroutine_handle<promise_type>;

12

13 Generator(handle_type h): coro(h) {

14 std::cout << " Generator::Generator" << '\n';

15 }

16 handle_type coro;

17

18 ~Generator() {

19 std::cout << " Generator::~Generator" << '\n';

20 if ( coro ) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32 int getNextValue() {

33 std::cout << " Generator::getNextValue" << '\n';

34 coro.resume();

35 return coro.promise().current_value;

36 }

37 struct promise_type {
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38 promise_type() {

39 std::cout << " promise_type::promise_type" << '\n';

40 }

41

42 ~promise_type() {

43 std::cout << " promise_type::~promise_type" << '\n';

44 }

45

46 std::suspend_always initial_suspend() {

47 std::cout << " promise_type::initial_suspend" << '\n'; \

48

49 return {};

50 }

51 std::suspend_always final_suspend() noexcept {

52 std::cout << " promise_type::final_suspend" << '\n';

53 return {};

54 }

55 auto get_return_object() {

56 std::cout << " promise_type::get_return_object" << '\n';

57 return Generator{handle_type::from_promise(*this)};

58 }

59

60 std::suspend_always yield_value(int value) {

61 std::cout << " promise_type::yield_value" << '\n';

62 current_value = value;

63 return {};

64 }

65 void return_void() {}

66 void unhandled_exception() {

67 std::exit(1);

68 }

69

70 T current_value;

71 };

72

73 };

74

75 Generator<int> getNext(int start = 10, int step = 10) {

76 std::cout << " getNext: start" << '\n';

77 auto value = start;

78 while (true) {

79 std::cout << " getNext: before co_yield" << '\n';

80 co_yield value;

81 std::cout << " getNext: after co_yield" << '\n';

82 value += step;
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83 }

84 }

85

86 int main() {

87

88 auto gen = getNext();

89 for (int i = 0; i <= 2; ++i) {

90 auto val = gen.getNextValue();

91 std::cout << "main: " << val << '\n';

92 }

93

94 }

Executing the program on the Compiler Explorer²³ makes the control flow transparent.

Generator generating an infinite data stream

Let’s analyze the control flow.

The call getNext() (line 87) triggers the creation of the Generator<int>. First, the promise_type (line
38) is created, and the following get_return_object call (line 54) creates the generator (line 56) and

²³https://godbolt.org/z/cTW9Gq

https://godbolt.org/z/cTW9Gq
https://godbolt.org/z/cTW9Gq
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stores it in a local variable. The result of this call is returned to the caller when the coroutine is
suspended the first time. The initial suspension happens immediately (line 48). Because the member
function call initial_suspend returns an Awaitable std::suspend_always (line 48), the control flow
continues with the coroutine getNext until the instruction co_yield value (line 79). This call is mapped
to the call yield_value(int value) (line 59) and the current value is prepared current_value = value

(line 61). The member function yield_value(int value) returns the Awaitable std::suspend_always

(line 59). Consequently, the execution of the coroutine pauses, and the control flow goes back to
the main function, and the for loop starts (line 89). The call gen.getNextValue() (line 89) starts the
execution of the coroutine by resuming the coroutine, using coro.resume() (line 34). Further, the
function getNextValue() returns the current value that was prepared using the previously invoked
member function yield_value(int value) (line 59). Finally, the generated number is displayed in line
90 and the for loop continues. In the end, the generator and the promise are destructed.

After this detailed analysis, I want to make a first modification of the control flow.

6.7.1 Modifications

My code snippets and line numbers are all based on the previous program infiniteDataStreamComments.cpp.
I only show the modifications.

6.7.1.1 The Coroutine is Not Resumed

When I disable the resumption of the coroutine (gen.getNextValue() in line 89) and the display of its
value (line 90), the coroutine immediately pauses.

Not resuming the coroutine

int main() {

auto gen = getNext();

for (int i = 0; i <= 2; ++i) {

// auto val = gen.getNextValue();

// std::cout << "main: " << val << '\n';

}

}

The coroutine never runs. Consequently, the generator and its promise are created and destroyed.
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Not resuming the coroutine

6.7.1.2 initial_suspend Never Suspends

In the program, the member function initial_suspend returns the Awaitable std::suspend_always

(line 46). As its name suggests, the Awaitable std::suspends_always causes the coroutine to pause
immediately. Let me return std::suspend_never instead of std::suspend_always.

initial_suspend suspends never

std::suspend_never initial_suspend() {

std::cout << " promise_type::initial_suspend" << '\n';

return {};

}

In this case, the coroutine runs immediately and pauses when the function yield_value (line 59)
is invoked. A subsequent call gen.getNextValue() (line 89) resumes the coroutine and triggers the
execution of the member function yield_value once more. The result is that the start value 10 is
ignored, and the coroutine returns the values 20, 30, and 40.
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Don’t Resuming the Coroutine

6.7.1.3 yield_value Never Suspends

The member function yield_value (line 59) is triggered by the call co_yield value and prepares
the current_value (line 61). The function returns the Awaitable std::suspend_always (line 62) and,
therefore, pauses the coroutine. Consequently, a subsequent call gen.getNextValue (line 89) has to
resume the coroutine. When I change the return value of the member function yield_value to
std::suspend_never, let me see what happens.
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yield_value never suspends

std::suspend_never yield_value(int value) {

std::cout << " promise_type::yield_value" << '\n';

current_value = value;

return {};

}

As you may guess, the while loop (lines 77 - 82) runs forever, and the coroutine does not return
anything.

yield_value Never Suspends

It is straightforward to restructure the generator infiniteDataStreamComments.cpp so that it produces
a finite number of values.

6.7.2 Generalization

You may wonder why I never used the full generic potential of Generator. Let me adjust its
implementation to produce the successive elements of an arbitrary container of the Standard Template
Library.
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Generator successively returning each element
1 // coroutineGetElements.cpp

2

3 #include <coroutine>

4 #include <memory>

5 #include <iostream>

6 #include <string>

7 #include <vector>

8

9 template<typename T>

10 struct Generator {

11

12 struct promise_type;

13 using handle_type = std::coroutine_handle<promise_type>;

14

15 Generator(handle_type h): coro(h) {}

16

17 handle_type coro;

18

19 ~Generator() {

20 if ( coro ) coro.destroy();

21 }

22 Generator(const Generator&) = delete;

23 Generator& operator = (const Generator&) = delete;

24 Generator(Generator&& oth): coro(oth.coro) {

25 oth.coro = nullptr;

26 }

27 Generator& operator = (Generator&& oth) {

28 coro = oth.coro;

29 oth.coro = nullptr;

30 return *this;

31 }

32 T getNextValue() {

33 coro.resume();

34 return coro.promise().current_value;

35 }

36 struct promise_type {

37 promise_type() {}

38

39 ~promise_type() {}

40

41 std::suspend_always initial_suspend() {

42 return {};

43 }

44 std::suspend_always final_suspend() noexcept {



Case Studies 397

45 return {};

46 }

47 auto get_return_object() {

48 return Generator{handle_type::from_promise(*this)};

49 }

50

51 std::suspend_always yield_value(const T value) {

52 current_value = value;

53 return {};

54 }

55 void return_void() {}

56 void unhandled_exception() {

57 std::exit(1);

58 }

59

60 T current_value;

61 };

62

63 };

64

65 template <typename Cont>

66 Generator<typename Cont::value_type> getNext(Cont cont) {

67 for (auto c: cont) co_yield c;

68 }

69

70 int main() {

71

72 std::cout << '\n';

73

74 std::string helloWorld = "Hello world";

75 auto gen = getNext(helloWorld);

76 for (int i = 0; i < helloWorld.size(); ++i) {

77 std::cout << gen.getNextValue() << " ";

78 }

79

80 std::cout << "\n\n";

81

82 auto gen2 = getNext(helloWorld);

83 for (int i = 0; i < 5 ; ++i) {

84 std::cout << gen2.getNextValue() << " ";

85 }

86

87 std::cout << "\n\n";

88

89 std::vector myVec{1, 2, 3, 4 ,5};
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90 auto gen3 = getNext(myVec);

91 for (int i = 0; i < myVec.size() ; ++i) {

92 std::cout << gen3.getNextValue() << " ";

93 }

94

95 std::cout << '\n';

96

97 }

In this example, the generator is instantiated and used three times. In the first two cases, gen (line 76)
and gen2 (line 83) are initialized with std::string helloWorld, while gen3 uses a std::vector<int>

(line 91). The output of the program should not be surprising. Line 78 returns all characters of the
string helloWorld successively, line 85 only the first five characters, and line 93 the elements of the
std::vector<int>.

You can try out the program on the Compiler Explorer²⁴.

A generator successively returning each element

To make it short. The implementation of the Generator<T> is almost identical to the previous one. The
crucial difference with the previous program is the coroutine getNext.

getNext

template <typename Cont>

Generator<typename Cont::value_type> getNext(Cont cont) {

for (auto c: cont) co_yield c;

}

getNext is a function template that takes a container as an argument and iterates in a range-based
for loop through all elements of the container. After each iteration, the function template pauses. The
return type Generator<typename Cont::value_type> may look surprising to you. Cont::value_type is
a dependent template parameter, for which the parser needs a hint. By default, the compiler assumes
a non-type if it could be interpreted as a type or a non-type. For this reason, I have to put typename in
front of Cont::value_type.

²⁴https://godbolt.org/z/j9znva

https://godbolt.org/z/j9znva
https://godbolt.org/z/j9znva
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6.8 Various Job Workflows

Before I modify the workflow from section co_await, I want to make the awaiter workflow more
transparent.

6.8.1 The Transparent Awaiter Workflow

I added a few comments to the program startJob.cpp.

Starting a job on request (including comments)

1 // startJobWithComments.cpp

2

3 #include <coroutine>

4 #include <iostream>

5

6 struct MySuspendAlways {

7 bool await_ready() const noexcept {

8 std::cout << " MySuspendAlways::await_ready" << '\n';

9 return false;

10 }

11 void await_suspend(std::coroutine_handle<>) const noexcept {

12 std::cout << " MySuspendAlways::await_suspend" << '\n';

13

14 }

15 void await_resume() const noexcept {

16 std::cout << " MySuspendAlways::await_resume" << '\n';

17 }

18 };

19

20 struct MySuspendNever {

21 bool await_ready() const noexcept {

22 std::cout << " MySuspendNever::await_ready" << '\n';

23 return true;

24 }

25 void await_suspend(std::coroutine_handle<>) const noexcept {

26 std::cout << " MySuspendNever::await_suspend" << '\n';

27

28 }

29 void await_resume() const noexcept {

30 std::cout << " MySuspendNever::await_resume" << '\n';

31 }

32 };

33

34 struct Job {
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35 struct promise_type;

36 using handle_type = std::coroutine_handle<promise_type>;

37 handle_type coro;

38 Job(handle_type h): coro(h){}

39 ~Job() {

40 if ( coro ) coro.destroy();

41 }

42 void start() {

43 coro.resume();

44 }

45

46

47 struct promise_type {

48 auto get_return_object() {

49 return Job{handle_type::from_promise(*this)};

50 }

51 MySuspendAlways initial_suspend() {

52 std::cout << " Job prepared" << '\n';

53 return {};

54 }

55 MySuspendAlways final_suspend() noexcept {

56 std::cout << " Job finished" << '\n';

57 return {};

58 }

59 void return_void() {}

60 void unhandled_exception() {}

61

62 };

63 };

64

65 Job prepareJob() {

66 co_await MySuspendNever();

67 }

68

69 int main() {

70

71 std::cout << "Before job" << '\n';

72

73 auto job = prepareJob();

74 job.start();

75

76 std::cout << "After job" << '\n';

77

78 }
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First of all, I replaced the predefined Awaitables std::suspend_always and std::suspend_never with
Awaitables MySuspendAlways (line 6) and MySuspendNever (line 20). I use them in lines 51, 55, and 66.
The Awaitables mimic the behavior of the predefined Awaitables but additionally write a comment.
Due to the use of std::cout, the member functions await_ready, await_suspend, and await_resume

cannot be declared as constexpr.

The screenshot of the program execution shows the control flow nicely, which you can directly
observe on the Compiler Explorer²⁵.

Starting a job on request (including comments)

The function initial_suspend (line 51) is executed at the beginning of the coroutine and the function
final_suspend at its end (line 55). The call prepareJob() (line 73) triggers the creation of the
coroutine object, and the function call job.start() its resumption and, hence, completion (line 74).
Consequently, the members await_ready, await_suspend, and await_resume of MySuspendAlways are
executed. When you don’t resume the Awaitable such as the coroutine object returned by the member
function final_suspend, the function await_resume is not processed. In contrast, the Awaitable’s
MySuspendNever function is immediately ready because await_ready returns true and, hence, does
not suspend.

Thanks to the comments, you should have an elementary understanding of the awaiter workflow.
Now, it’s time to vary it.

6.8.2 Automatically Resuming the Awaiter

In the previous workflow, I explicitly started the job.

²⁵https://godbolt.org/z/T5rcE4

https://godbolt.org/z/T5rcE4
https://godbolt.org/z/T5rcE4
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Explicitly starting the job

int main() {

std::cout << "Before job" << '\n';

auto job = prepareJob();

job.start();

std::cout << "After job" << '\n';

}

This explicit invoking of job.start()was necessary because await_ready in theAwaitable MySuspendAlways
always returned false. Now let’s assume that await_ready can return true or false and the job is not
explicitly started. A short reminder: When await_ready returns true, the function await_resume is
directly invoked but not await_suspend.

Automatically Resuming the Awaiter

1 // startJobWithAutomaticResumption.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7

8 std::random_device seed;

9 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

10 std::default_random_engine(seed()));

11

12 struct MySuspendAlways {

13 bool await_ready() const noexcept {

14 std::cout << " MySuspendAlways::await_ready" << '\n';

15 return gen();

16 }

17 bool await_suspend(std::coroutine_handle<> handle) const noexcept {

18 std::cout << " MySuspendAlways::await_suspend" << '\n';

19 handle.resume();

20 return true;

21

22 }

23 void await_resume() const noexcept {

24 std::cout << " MySuspendAlways::await_resume" << '\n';

25 }
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26 };

27

28 struct Job {

29 struct promise_type;

30 using handle_type = std::coroutine_handle<promise_type>;

31 handle_type coro;

32 Job(handle_type h): coro(h){}

33 ~Job() {

34 if ( coro ) coro.destroy();

35 }

36

37 struct promise_type {

38 auto get_return_object() {

39 return Job{handle_type::from_promise(*this)};

40 }

41 MySuspendAlways initial_suspend() {

42 std::cout << " Job prepared" << '\n';

43 return {};

44 }

45 std::suspend_always final_suspend() noexcept {

46 std::cout << " Job finished" << '\n';

47 return {};

48 }

49 void return_void() {}

50 void unhandled_exception() {}

51

52 };

53 };

54

55 Job performJob() {

56 co_await std::suspend_never();

57 }

58

59 int main() {

60

61 std::cout << "Before jobs" << '\n';

62

63 performJob();

64 performJob();

65 performJob();

66 performJob();

67

68 std::cout << "After jobs" << '\n';

69

70 }
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First of all, the coroutine is now called performJob and runs automatically. gen (line 9) is a random
number generator for the numbers 0 or 1. It uses for its job the default random engine, initialized with
the seed. Thanks to std::bind_front²⁶, I can bind it together with the std::uniform_int_distribution
to get a callable which, when used, gives me a random number 0 or 1.

I removed in this example the Awaitables with predefined Awaitables from the C++ standard, except
the Awaitable MySuspendAlways as the return type of the member function initial_suspend (line 41).
await_ready (line 13) returns a boolean. When the boolean is true, the control flow jumps directly
to the member function await_resume (line 23), when false, the coroutine is immediately suspended
and, therefore, the function await_suspend runs (line 17). The function await_suspend gets the handle
to the coroutine and uses it to resume the coroutine (line 19). Instead of returning the value true,
await_suspend can also return void.

The following screenshot shows: When await_ready returns true, the function await_resume is called,
when await_ready returns false, the function await_suspend is also called.

You can try out the program on the Compiler Explorer²⁷.

²⁶https://en.cppreference.com/w/cpp/utility/functional/bind_front
²⁷https://godbolt.org/z/8b1Y14

https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://godbolt.org/z/8b1Y14
https://en.cppreference.com/w/cpp/utility/functional/bind_front
https://godbolt.org/z/8b1Y14
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Automatically Resuming the Awaiter

Let me improve the presented program more and resume the awaiter on a separate thread.

6.8.3 Automatically Resuming the Awaiter on a Separate Thread

The following program is based on the previous one.

Automatically Resuming the Awaiter on a Seperate Thread

1 // startJobWithAutomaticResumptionOnThread.cpp

2

3 #include <coroutine>

4 #include <functional>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <vector>

9

10 std::random_device seed;

11 auto gen = std::bind_front(std::uniform_int_distribution<>(0,1),

12 std::default_random_engine(seed()));
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13

14 struct MyAwaitable {

15 std::jthread& outerThread;

16 bool await_ready() const noexcept {

17 auto res = gen();

18 if (res) std::cout << " (executed)" << '\n';

19 else std::cout << " (suspended)" << '\n';

20 return res;

21 }

22 void await_suspend(std::coroutine_handle<> h) {

23 outerThread = std::jthread([h] { h.resume(); });

24 }

25 void await_resume() {}

26 };

27

28

29 struct Job{

30 static inline int JobCounter{1};

31 Job() {

32 ++JobCounter;

33 }

34

35 struct promise_type {

36 int JobNumber{JobCounter};

37 Job get_return_object() { return {}; }

38 std::suspend_never initial_suspend() {

39 std::cout << " Job " << JobNumber << " prepared on thread "

40 << std::this_thread::get_id();

41 return {};

42 }

43 std::suspend_never final_suspend() noexcept {

44 std::cout << " Job " << JobNumber << " finished on thread "

45 << std::this_thread::get_id() << '\n';

46 return {};

47 }

48 void return_void() {}

49 void unhandled_exception() { }

50 };

51 };

52

53 Job performJob(std::jthread& out) {

54 co_await MyAwaitable{out};

55 }

56

57 int main() {
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58

59 std::vector<std::jthread> threads(8);

60 for (auto& thr: threads) performJob(thr);

61

62 }

The main difference with the previous program is the new awaitable MyAwaitable, used in the
coroutine performJob (line 54). On the contrary, the coroutine object returned from the coroutine
performJob is straightforward. Essentially, its member functions initial_suspend (line 38) and
final_suspend (line 43) return the predefined awaitable std::suspend_never. Additionally, both
functions show the JobNumber of the executed job and the thread ID on which it runs. The screenshot
shows which coroutine runs immediately and which one is suspended. Thanks to the thread id, you
can observe that suspended coroutines are resumed on a different thread.

You can try out the program on the Wandbox²⁸.

Automatically Resuming the Awaiter on a Separate Thread

Let me discuss the interesting control flow of the program. Line 59 creates eight default-constructed
threads, which the coroutine performJob (line 53) takes by reference. Further, the reference becomes
the argument for creating MyAwaitable{out} (line 54). Depending on the value of res (line 17), and,
therefore, the return value of the function await_ready, the Awaitable continues (res is true) to run
or is suspended (res is false). In case MyAwaitable is suspended, the function await_suspend (line 22)
is executed. Thanks to the assignment of outerThread (line 23), it becomes a running thread. The
running threads must outlive the lifetime of the coroutine. For this reason, the threads have the scope
of the main function.

²⁸https://wandbox.org/permlink/skHgWKF0SYAwp8Dm

https://wandbox.org/permlink/skHgWKF0SYAwp8Dm
https://wandbox.org/permlink/skHgWKF0SYAwp8Dm
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Distilled Information
• Calculating the sum of a vector can be done in various ways. You can do it
sequentially or concurrently with maximum and minimum sharing of data. The
performance numbers differ drastically.

• Thread-safe initialization of a singleton is the classical use-case for thread-safe
initialization of a shared variable. There are many ways to do it, with varying
performance characteristics.

• I start with a small program and successively improve it by weakening the memory
ordering. I verify each step of my process of ongoing optimization with CppMem.
CppMem is an interactive tool for exploring the behavior of small code snippets
using the C++ memory model.

• There are many ways in C++20 to synchronize threads. You can use condition
variables, std::atomic_flag, std::atomic<bool>, or semaphores. I discuss the per-
formance numbers of various ping-pong games.

• Thanks to the new keyword co_return, I can implement in the section variations
of futures an eager future, a lazy future, or a future running in a separate thread.
Heavily used comments make its workflow transparent.

• co_yield enables it to create infinite data streams. In the case study modification
and generalization of a generator, the infinite data streams become finite and
generic.

• The case study of various job workflows presents a few coroutines that are
automatically resumed if necessary. co_await makes this possible.



7. The Future: C++23

Cippi predicts the future

This chapter is about the future of C++: C++23. In this chapter, my intent is not to be as precise as
the other chapters in this book. That’s for two reasons. First, not all of the presented features make it
into the C++23 standard. Second, if a feature makes it into the C++23 standard, the interface of that
feature changes very likely. This holds in particular true for the executors. I update this book regularly
and, therefore, reflect the revised and new proposals in this chapter.

This chapter’s goal is quite simple: to give you an idea about the upcoming concurrency features in
C++23.
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Concurrency in C++23



The Future: C++23 411

7.1 Executors

Executors are the basic building block for execution in C++ and fulfill a similar role for execution,
such as allocators for the containers in C++. Functions such as async, the parallel algorithms of the
Standard Template Library, the then continuation of futures, the run member functions of task blocks,
or the post, dispatch, or defer calls of the Networking TS¹ use them. Also, execution is a fundamental
concern of programming. There is no standardized way to perform an execution.

Here is the introductory example of the proposal P0761².

Various parallel_for implementations

void parallel_for(int facility, int n, function<void(int)> f) {

if(facility == OPENMP) {

#pragma omp parallel for

for(int i = 0; i < n; ++i) {

f(i);

}

}

else if(facility == GPU) {

parallel_for_gpu_kernel<<<n>>>(f);

}

else if(facility == THREAD_POOL) {

global_thread_pool_variable.submit(n, f);

}

}

This parallel_for function has a few issues.

• A simple function such as parallel_for is complex to maintain. The complexity gets worse
and worse if new algorithms or new parallel paradigms should be supported.

• Each branch of the function has different synchronization properties. OpenMP³ may block
until all spawning threads are done, GPU runs typically asynchronously, and a thread pool
may block or not. Insufficient synchronization may end in a data race or deadlock. In the best
case, you get a race condition.

• The parallel_for loop is too restrictive. For example, there is no way to use your thread pool
instead of the global thread pool in the function: global_thread_pool_variable.submit(n, f);.

¹https://en.cppreference.com/w/cpp/experimental
²http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
³https://en.wikipedia.org/wiki/OpenMP

https://en.cppreference.com/w/cpp/experimental
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
https://en.wikipedia.org/wiki/OpenMP
https://en.cppreference.com/w/cpp/experimental
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
https://en.wikipedia.org/wiki/OpenMP
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7.1.1 A long Way

In October 2018 many proposals were written for executors, and many design decisions are still open.
The expectation is that they are part of C++23. There is the chance the one-way execution is even
standardized with C++20. This chapter is mainly based on the proposals to the design of executors
P0761⁴, and to their formal description in P0443⁵ and P1244⁶. P0443 (A Unified Executors Proposal for
C++) proposes the one-way execution, which may be part of C++20, and P1244 (Dependent Execution
for a Unified Executors Proposal for C++) propose the dependent execution, which may be part of
C++23. This chapter also refers to the relatively new “Modest Executor Proposal” P1055⁷.

7.1.2 What is an Executor?

First of all. What is an executor? An executor consists of a set of rules about where, when and how
to run a callable unit.

• Where: The callable may run on an internal or external processor, and that the result is read
back from the internal or external processor.

• When: The callable may run immediately or be scheduled for a later time.

• How: The callable may run on a CPU or GPU or even be executed in a vectorized way.

More formally, each executor has properties associated with the performed execution function.

7.1.2.1 Executor Properties

You can associate these properties with an executor in twoways: execution::require, or execution::prefer.

1. Directionality: The execution function can be of kind “fire and forget” (execution::oneway),
return a future (execution::twoway), or return a continuation (execution::then).

2. Cardinality: The execution function can create one (execution::single) or multiple execution
agents (execution::bulk).

3. Blocking: The function may block or not. There are three mutually-exclusive blocking proper-
ties: execution::blocking.never, execution::blocking.possibly, and execution::blocking.always.

4. Continuations: The taskmay be performed on the client’s calling thread (execution::continuation)
or not (execution::not_continuation).

5. Future task submission: Specify if outstanding work is likely (exection::outstanding_-
work.tracked) or not (execution::outstanding_work.untracked):

6. Bulk forward progress guarantees: Specifies the the mutually-exclusive forward progress
guarantees of execution agents created in bulk: execution::bulk_sequenced_execution, execution::bulk_-
parallel_execution, and execution::bulk_unsequenced_execution.

⁴http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
⁵http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
⁶http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1244r0.html
⁷http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1244r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0443r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1244r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
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7. Thread execution mapping guarantees: Should each execution agent be mapped to a new
thread (execution::new_thread_execution_mapping) or not (execution::thread_execution_mapping).

8. Allocators: Associates an allocator (execution::allocator) with an executor.

You can even define your properties.

Executors are the Building Blocks
Because the executors are the building blocks for execution, the concurrency and paral-
lelism features of C++ heavily depend on them. This holds for the extended futures, the
extensions for networking N4734⁸, but also the parallel algorithms of the STL, and the new
concurrency features in C++20/23 such as latches and barriers, coroutines, transactional
memory, and task blocks.

7.1.3 First Examples

7.1.3.1 Using an Executor

Here are a few code snippets showing the usage of executors:

7.1.3.1.1 The promise std::async

Executing an std::async

// get an executor through some means

my_executor_type my_executor = ...

// launch an async using my executor

auto future = std::async(my_executor, [] {

std::cout << "Hello world, from a new execution agent!" << '\n';

});

7.1.3.1.2 The STL Algorithm std::for_each

⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf


The Future: C++23 414

Performing std::for_each in parallel on my_executor

// get an executor through some means

my_executor_type my_executor = ...

// execute a parallel for_each "on" my executor

std::for_each(std::execution::par.on(my_executor),

data.begin(), data.end(), func);

7.1.3.1.3 Networking TS: Accepting a Client Connection with the Default System Executor

Using the system executor to accept new connections

// obtain an acceptor (a listening socket) through some means

tcp::acceptor my_acceptor = ...

// perform an asynchronous operation to accept a new connection

acceptor.async_accept(

[](std::error_code ec, tcp::socket new_connection)

{

...

}

);

7.1.3.1.4 Networking TS: Accepting a Client Connection with a Thread Pool Executor

Using a thread pool executor to accept new connections

// obtain an acceptor (a listening socket) through some means

tcp::acceptor my_acceptor = ...

// obtain an executor for a specific thread pool

auto my_thread_pool_executor = ...

// perform an asynchronous operation to accept a new connection

acceptor.async_accept(

std::experimental::net::bind_executor(my_thread_pool_executor,

[](std::error_code ec, tcp::socket new_connection)

{

...

}

)

);
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The function std::experimental::net::bind_executor from the networking TS N4734⁹ allows it to
use a specific executor. In this case, the completion handler runs on a thread pool and executes the
lambda function.

To use an executor, you have to obtain it.

7.1.3.2 Obtaining an Executor

There are various ways to obtain an executor.

7.1.3.2.1 From the Execution Context static_thread_pool

An executor from an execution context

// create a thread pool with 4 threads

static_thread_pool pool(4);

// get an executor from the thread pool

auto exec = pool.executor();

// use the executor on some long-running task

auto task1 = long_running_task(exec);

7.1.3.2.2 From the Execution Policy std::execution::par

An executor from an execution policy

// get par's associated executor

auto par_exec = std::execution::par.executor();

// use the executor on some long-running task

auto task2 = long_running_task(par_exec);

7.1.3.2.3 From the System Executor

This is the default executor that usually uses a thread for the execution. It is used if another one is not
specified.

7.1.3.2.4 From an Executor Adapter

⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
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An executor from an executor adaptor

// get an executor from a thread pool

auto exec = pool.executor();

// wrap the thread pool's executor in a logging_executor

logging_executor<decltype(exec)> logging_exec(exec);

// use the logging executor in a parallel sort

std::sort(std::execution::par.on(logging_exec), my_data.begin(), my_data.end());

logging_executor is in the code snippet a wrapper for the pool executor.

7.1.4 Goals of an Executor Concept

What are the goals of an executor concept according to the proposal P1055¹⁰?

1. Batchable: control the trade-off between the cost of the callable transition and its size.

2. Heterogenous: allow the callable to run on heterogeneous contexts and get the result back.

3. Orderable: specify the order in which the callables are invoked. The goal includes ordering
guarantees such as LIFO¹¹ (Last In, First Out), FIFO¹² (First In, First Out) execution, priority or
time constraints, or even sequential execution.

4. Controllable: the callable has to be targetable to a specific computing resource, deferred, or
even canceled.

5. Continuable: to control asynchronous callable signals are needed. These signals have to
indicate whether the result is available, whether an error occurred, when the callable is done
or if the callee wants to cancel the callable. The explicit starting of the callable or the stopping
of the starting callable should also be possible.

6. Layerable: hierarchies allow capabilities to be added without increasing the simpler use-cases’
complexity.

7. Usable: ease of use for the implementer and the user should be the primary goal.

8. Composable: allows a user to extend the executors for features that are not part of the standard.

9. Minimal: nothing should exist on the executor concepts that could be added externally in a
library on top of the concept.

¹⁰http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
¹¹https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
¹²https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1055r0.pdf
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
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7.1.5 Terminology

The Proposal P0761¹³ defines a few new terms for the execution of a callable:

• Execution resource: is an instance of hardware or software capability capable of executing a
callable. An execution unit can range from a SIMD vector unit to an entire runtime managing
a large collection of threads. Execution resources such as a CPU or a GPU are heterogeneous
because they have different freedoms and restrictions.

• Execution context: a program object representing a specific collection of execution resources
and the execution agents within those resources. Typical examples are a thread pool or a
distributed or a heterogeneous runtime.

• Execution agent: is a unit of execution of a specific execution context that is mapped to a single
invocation of a callable on an execution resource. Typical examples are a CPU thread or a GPU
execution unit.

• Executor: is an object associated with a specific execution context. It provides one or more
execution functions for creating execution agents from a callable function object.

7.1.6 Execution Functions

According to the previous paragraph, an executor provides one ormore execution function for creating
execution agents from a callable. An executor has to support at least one of the six following functions.

The execution functions of an executor

Name Cardinality Direction

execute single oneway

twoway_execute single twoway

then_execute single then

bulk_execute bulk oneway

bulk_twoway_execute bulk twoway

bulk_then_execute bulk then

Each execution function has two properties: cardinality and direction.

• Cardinality

– single: creates one execution agents
– bulk: creates a group of execution agents

• Direction

– oneway: creates an execution agent and does not return a result

¹³http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0761r2.pdf
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– twoway: creates an execution agent and does return a future that can be used to wait for
execution to complete

– then: creates an execution agent and does return a future that can be used to wait for
execution to complete. The execution agent begins execution after a given future pred

becomes ready.

Let me explain the execution functions more informally.

All of them take a callable.

7.1.6.1 Single Cardinality

The single cardinality is straightforward. A oneway execution function is a fire-and-forget job and
returns void. It’s pretty similar to a fire and forget future, but it does not automatically block in the
future’s destructor. A twoway execution function returns you a future that you can use to pick up
the result. This behaves similarly to a std::promise that gives you back the handle to the associated
std::future. In the then case, it is a kind of continuation. It gives you back a future, but the execution
agent runs only if the provided future pred is ready.

7.1.6.2 Bulk Cardinality

The bulk cardinality case is more complicated. These functions create a group of execution agents,
and each of these execution agents calls the given callable f. They return the result of a result factory
and not the result of a single callable f invoked by the execution agents. The first parameter of f is
the shape parameter, which is an integral type and stands for the index of the agent’s type. Further
arguments are the result factory if it is a twoway executor and a shape factory, which all agents share.
The lifetime of the shared parameter created by the shared factory is bound to the agents’ lifetime.
Both are called factories because they produce their value by executing a callable and run before the
agents. The client is responsible for disambiguating the correct result via this result factory.

When the function bulk_then_execute is used, the callable f takes its predecessor future as an
additional argument. The callable f takes the result, the shared parameter, and the predecessor by
reference because no agent is an owner.

7.1.6.3 execution::require

How can you be sure that your executor supports the specific execution function?

In the special case, you know it.
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Use an oneway single executor

void concrete_context(const my_oneway_single_executor& ex)

{

auto task = ...;

ex.execute(task);

}

In the general case, you can use the function execution::require to ask for it.

Ask for an twoway_execute single executor

template<class Executor>

void generic_context(const Executor& ex)

{

auto task = ...;

// ensure .toway_execute() is available with execution::require()

execution::require(ex, execution::single, execution::twoway).toway_execute(task);

}

7.1.7 A Prototype Implementation

Based on the proposal P0443R5¹⁴, a prototype implementation of the executor proposal is available.
This prototype implementation helped me a lot to get a deeper understanding of the bulk cardinality
in particular.

A prototype implementation of the executors

1 // executor.cpp

2

3 #include <atomic>

4 #include <experimental/thread_pool>

5 #include <iostream>

6 #include <utility>

7

8 namespace execution = std::experimental::execution;

9 using std::experimental::static_thread_pool;

10 using std::experimental::executors_v1::future;

11

12 int main(){

13

14 static_thread_pool pool{4};

¹⁴http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0443r5.html
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15 auto ex = pool.executor();

16

17 // One way, single.

18 ex.execute([]{ std::cout << "We made it!" << '\n'; });

19

20 std::cout << '\n';

21

22 // Two way, single.

23 future<int> f1 = ex.twoway_execute([]{ return 42; });

24 f1.wait();

25 std::cout << "The result is: " << f1.get() << '\n';

26

27 std::cout << '\n';

28

29 // One way, bulk.

30 ex.bulk_execute([](int n, int& sha){

31 std::cout << "part " << n << ": " << "shared: " << sha << "\n";

32 }, 8,

33 []{ return 0; }

34 );

35

36 std::cout << '\n';

37

38 // Two way, bulk, void result.

39 future<void> f2 = ex.bulk_twoway_execute(

40 [](int n, std::atomic<short>& m){

41 std::cout << "async part " << n ;

42 std::cout << " atom: " << m++ << '\n';

43 }, 8,

44 []{},

45 []{

46 std::atomic<short> atom(0);

47 return std::ref(atom);

48 }

49 );

50 f2.wait();

51 std::cout << "bulk result available" << '\n';

52

53 std::cout << '\n';

54

55 // Two way, bulk, non-void result.

56 future<double> f3 = ex.bulk_twoway_execute(

57 [](int n, double&, int &){

58 std::cout << "async part " << n << " ";

59 std::cout << std::this_thread::get_id() << '\n';
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60 }, 8,

61 []{

62 std::cout << "Result factory: "

63 << std::this_thread::get_id() << '\n';

64 return 123.456; },

65 []{

66 std::cout << "Shared Parameter: "

67 << std::this_thread::get_id() << '\n';

68 return 0; }

69 );

70 f3.wait();

71 std::cout << "bulk result is " << f3.get() << '\n';

72

73 }

The program uses as executor a thread pool of four threads (lines 14 and 15). Lines 18 and 23 uses
execution functions of single cardinality and create two agents of single cardinality. The second one
is a twoway execution function and returns, therefore, a result.

The remaining execution functions in lines 30, 39, and 56 are of bulk cardinality. Each function creates
eight agents (lines 32, 43, and 60). In the first case, the callable displays the index n and the shared
value shawhich the shared factory in line 33 creates. The next execution function bulk_twoway_execute
is more interesting. Although its result factory returns void, the shared state is the atomic variable
atom. Each agent increments its value by one (line 42). Thanks to the result factory, the last execution
function (lines 56 to 69) returns the result 123.456. It’s quite interesting to see how many threads are
involved in the execution of the callable and the execution of the result and the shared factory. The
program’s output shows that result and shared factory run in the same thread but the agents in a
different thread.
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A prototype implementation of executors

7.2 Extended Futures

Tasks in the form of promises and futures have an ambivalent reputation in C++11. On the one
hand, they are a lot easier to use than threads or condition variables; on the other hand, they have a
significant deficiency. They cannot be composed. C++20/23 overcomes this deficiency.

I have written about tasks in the form of std::async, std::packaged_task, or std::promise and
std::future. The details are here: tasks. With C++20/23 we may get extended futures.
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7.2.1 Concurrency TS v1

7.2.1.1 std::future

The name extended futures is quite easy to explain. First, the C++11 std::future interface was
extended; second, there are new functions for creating special futures that are composable. I start
with my first point.

The extended future has three new member functions:

• The unwrapping constructor that unwraps the outer future of awrapped future (future<future<T>>).

• The predicate is_ready that returns if a shared state is available.

• The member function then attaches a continuation to a future.

At first, the state of a future can be valid or ready.

7.2.1.1.1 valid versus ready

• valid: a future is valid if it has a shared state (with a promise). This does not have to be the case
because you can default-construct a std::future without a promise.

• ready: a future is ready if the shared state is available or put differently if the promise has
already produced its value.

Therefore, (valid == true) is a requirement for (ready == true).

My mental model of promise and future is that they are the endpoints of a data channel.

Tasks as data channels between communication endpoints

Now the difference between valid and ready becomes quite natural. The future is valid if there is a
data channel to a promise. The future is ready if the promise has already put its value into the data
channel.

Now to the member function then for the continuation of a future.
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7.2.1.1.2 Continuations with then

then empowers you to attach a future to another future. It often happens that a future is packed into
another future. The job of the unwrapping constructor is it to unwrap the outer future.

The proposal N3721
Before I show the first code snippet, I have to say a few words about proposal N3721¹⁵.
Most of this section is from the proposal on “Improvements for std::future<T> and Related
APIs”. This includes my examples. Strangely, the original authors frequently did not use
the final get call to get the result from the future. Therefore, I added the res.get call to
the examples and saved the result in a variable myResult. Additionally, I fixed a few typos.

Continuations with std::future

1 #include <future>

2 using namespace std;

3 int main() {

4

5 future<int> f1 = async([]() { return 123; });

6 future<string> f2 = f1.then([](future<int> f) {

7 return to_string(f.get()); // here .get() won't block

8 });

9

10 auto myResult= f2.get();

11

12 }

There is a subtle difference between the to_string(f.get()) call (line 7) and the f2.get() call in line
10. As I already mentioned in the code snippet: the first call is non-blocking, and the second call is
blocking. The f2.get() call waits until the result of the future-chain is available. This statement also
holds for chains such as f1.then(...).then(...).then(...).then(...) as it holds for the composition
of extended futures. The final f2.get() call is blocking.

7.2.1.2 std::async, std::packaged_task, and std::promise

There is not much to say about the extensions of std::async, std::package_task, and std::promise. I
only have to add that in C++20/23 all three return extended futures.

The composition of futures is more exciting. Now we can compose asynchronous tasks.

¹⁵https://isocpp.org/files/papers/N3721.pdf

https://isocpp.org/files/papers/N3721.pdf
https://isocpp.org/files/papers/N3721.pdf


The Future: C++23 425

7.2.1.3 Creating new Futures

C++20 gets four new functions for creating special futures. These functions are std::make_ready_-

future, std::make_execptional_future, std::when_all, and std::when_any. First, let’s look at the
functions std::make_ready_future, and std::make_exceptional_future.

7.2.1.3.1 std::make_ready_future and std::make_exceptional_future

Both functions create an immediately ready future. In the first case, the future has a value; in the
second case an exception. What seems to be strange at first actually makes much sense. In C++11 the
creation of a ready future requires a promise. This is necessary even if the shared state is immediately
available.

Creating a future with make_ready_future

future<int> compute(int x) {

if (x < 0) return make_ready_future<int>(-1);

if (x == 0) return make_ready_future<int>(0);

future<int> f1 = async([]() { return do_work(x); });

return f1;

}

Hence the result must only be calculated by a promise if (x > 0) holds.

A short remark: both functions are the pendant to the return function in a monad. Now let’s begin
with future composition.

7.2.1.3.2 std::when_any and std::when_all

Both functions have a lot in common.

First, let’s look at the input.

when_any and when_all

template < class InputIt >

auto when_any(InputIt first, InputIt last)

-> future<when_any_result<

std::vector<typename std::iterator_traits<InputIt>::value_type>>>;

template < class... Futures >

auto when_any(Futures&&... futures)

-> future<when_any_result<std::tuple<std::decay_t<Futures>...>>>;

template < class InputIt >

auto when_all(InputIt first, InputIt last)

-> future<std::vector<typename std::iterator_traits<InputIt>::value_type>>;
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template < class... Futures >

auto when_all(Futures&&... futures)

-> future<std::tuple<std::decay_t<Futures>...>>;

Both functions accept a pair of iterators for a future range or an arbitrary number of futures. The big
difference is that in the case of the pair of iterators, the futures have to be of the same type; while in
the case of the arbitrary number of futures, the futures can have different types, and even std::future

and std::shared_future can be used.

The function’s output depends on whether a pair of iterators or an arbitrary number of futures
(variadic template) was used. Both functions return a future. If a pair of iterators was used, you get
a future of futures in a std::vector: future<vector<future<R>>>. If you use a variadic template, you
get a future of futures in a std::tuple: future<tuple<future<R0>, future<R1>, ... >>.

This covers their commonalities. The future that both functions return is ready if all input futures
(when_all), or if any of the input futures (when_any) are ready.

The following two examples show the usage of std::when_all and std::when_any.

7.2.1.3.3 std::when_all

Future composition with std::when_all

1 #include <future>

2

3 using namespace std;

4

5 int main() {

6

7 shared_future<int> shared_future1 = async([] { return intResult(125); });

8 future<string> future2 = async([]() { return stringResult("hi"); });

9

10 future<tuple<shared_future<int>, future<string>>> all_f =

11 when_all(shared_future1, future2);

12

13 future<int> result = all_f.then(

14 [](future<tuple<shared_future<int>, future<string>>> f){

15 return doWork(f.get());

16 });

17

18 auto myResult = result.get();

19

20 }
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The future all_f (line 10) composes both the future shared_future1 (line 7) and future2 (line 8). The
future result in line 13 is executed if all underlying futures are ready. In this case, the future all_f in
line 15 is executed. The result is in the future result and can be used in line 18.

7.2.1.3.4 std::when_any

Future composition with std::when_any

1 #include <future>

2 #include <vector>

3

4 using namespace std;

5

6 int main(){

7

8 vector<future<int>> v{ .... };

9 auto future_any = when_any(v.begin(), v.end());

10

11 when_any_result<vector<future<int>>> result = future_any.get();

12

13 future<int>& ready_future = result.futures[result.index];

14

15 auto myResult = ready_future.get();

16

17 }

The future in when_any can be taken by result in line 11. result provides the information indicating
which input future is ready. If you don’t use when_any_result, you have to ask each future if ready.
That is tedious.

future_any is the future that is ready if one of its input futures is ready. future_any.get() in line 11
returns the future result. By using result.futures[result.index] (line 13) you have the ready_future
and thanks to ready_future.get() you can ask for the result of the job.

Either the already standardized futures or the concurrency TS v1 futures¹⁶ are “not as generic,
expressive or powerful as they should be” P0701r1¹⁷. Additionally, the executors as basic building
blocks for executing something have to be unified with the new futures.

7.2.2 Unified Futures

What are the disadvantages of the already standardized and the futures from the concurrency TS 1?

¹⁶http://en.cppreference.com/w/cpp/experimental/concurrency
¹⁷http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html

http://en.cppreference.com/w/cpp/experimental/concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html
http://en.cppreference.com/w/cpp/experimental/concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html
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7.2.2.1 Disadvantages

The already mentioned document gives an excellent description of the deficiencies of the futures.

7.2.2.1.1 future/promise Should Not Be Coupled to std::thread Execution Agents

C++11 had only one executor: std::thread. Consequently, futures and std::thread were inseparable.
This changedwith C++17 and the parallel algorithms of the STL. This changes evenmore with the new
executors, which you can use to configure the future. For example, the future may run in a separate
thread, in a thread pool, or sequentially.

7.2.2.1.2 Where are .then Continuations are Invoked?

Imagine you have a simple continuation, such as in the following example.

Continuations with std::future

future<int> f1 = async([]() { return 123; });

future<string> f2 = f1.then([](future<int> f) {

return to_string(f.get());

});

The question is: Where should the continuation run? There are a few possibilities today:

1. Consumer Side: The consumer execution agent always executes the continuation.

2. Producer Side: The producer execution agent always executes the continuation.

3. inline_executor semantics: If the shared state is ready when the continuation is set, the con-
sumer thread executes the continuation. If the shared state is not ready when the continuation
is set, the producer thread executes the continuation.

4. thread_executor semantics: A new std::thread executes the continuation.

In particular, the first two possibilities have a significant drawback: they block. In the first case,
the consumer blocks until the producer is ready. In the second case, the producer blocks, until the
consumer is ready.

Here are a few nice use-cases of executor propagation from the document P0701r1¹⁸:

¹⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0701r1.html
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Executor propagation

auto i = std::async(thread_pool, f).then(g).then(h);

// f, g and h are executed on thread_pool.

auto i = std::async(thread_pool, f).then(g, gpu).then(h);

// f is executed on thread_pool, g and h are executed on gpu.

auto i = std::async(inline_executor, f).then(g).then(h);

// h(g(f())) are invoked in the calling execution agent.

7.2.2.1.3 Passing futures to .then Continuations is Unwieldy

Because the future is passed to the continuation and not its value, the syntax is quite complicated.
First, once more, the correct but verbose version.

Continuations with std::future

std::future<int> f1 = std::async([]() { return 123; });

std::future<std::string> f2 = f1.then([](std::future<int> f) {

return std::to_string(f.get());

});

Now, I assume that I can pass the value because to_string is overloaded on std::future<int>.

Continuations with std::futurepassingthevalue

std::future<int> f1 = std::async([]() { return 123; });

std::future<std::string> f2 = f1.then(std::to_string);

7.2.2.1.4 when_all and when_any Return Types are Unwieldy

The chapter to std::when_all and std::when_any shows their quite complicated usage.

7.2.2.1.5 Conditional Blocking in futures Destructor Must Go

Fire and forget futures look very promising but have a big drawback. A future that is created by
std::async waits on its destructor until its promise is done. What seems to be concurrent runs
sequentially. According to document P0701r1, this is not acceptable and error-prone.

I describe the peculiar behavior of Fire and Forget Futures in the referenced chapter.

7.2.2.1.6 Immediate Values and future Values Should Be Easy to Composable

In C++11, there is no convenient way to create a future. We have to start with a promise.
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Creating a future in the current standard
std::promise<std::string> p;

std::future<std::string> fut = p.get_future();

p.set_value("hello");

This may change with the function std::make_ready_future concurreny TS v1.

Creating a future in the concurrency TS v1
std::future<std::string> fut = make_ready_future("hello");

Using future and non-future arguments would make our job even more comfortable.

Using future and non-future arguments
bool f(std::string, double, int);

std::future<std::string> a = /* ... */;

std::future<int> c = /* ... */;

std::future<bool> d1 = when_all(a, make_ready_future(3.14), c).then(f);

// f(a.get(), 3.14, c.get())

std::future<bool> d2 = when_all(a, 3.14, c).then(f);

// f(a.get(), 3.14, c.get())

Neither the syntactic form d1 nor the syntactic form d2 is possible with the concurrency ts v1.

7.2.2.2 Five New Concepts

There are five new concepts for futures and promises in proposal 1054R0¹⁹.
• FutureContinuation, invocable objects that are called with the value or exception of a future
as an argument.

• SemiFuture, which can be bound to an executor, an operation that produces a ContinuableFuture
(f = sf.via(exec)).

• ContinuableFuture, which refines SemiFuture and instances can have one FutureContinuation
attached to them (f.then(c)), which is executed on the future’s associated executor when the
future becomes ready.

• SharedFuture, which refines ContinuableFuture and instances can havemultiple FutureContinuations
attached to them.

• Promise, each associated with a future and makes the future ready with either a value or an
exception.

The paper also provides the declaration of these new concepts.

¹⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
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The five new concepts for futures and promises
template <typename T>

struct FutureContinuation

{

// At least one of these two overloads exists:

auto operator()(T value);

auto operator()(exception_arg_t, exception_ptr exception);

};

template <typename T>

struct SemiFuture

{

template <typename Executor>

ContinuableFuture<Executor, T> via(Executor&& exec) &&;

};

template <typename Executor, typename T>

struct ContinuableFuture

{

template <typename RExecutor>

ContinuableFuture<RExecutor, T> via(RExecutor&& exec) &&;

template <typename Continuation>

ContinuableFuture<Executor, auto> then(Continuation&& c) &&;

};

template <typename Executor, typename T>

struct SharedFuture

{

template <typename RExecutor>

ContinuableFuture<RExecutor, auto> via(RExecutor&& exec);

template <typename Continuation>

SharedFuture<Executor, auto> then(Continuation&& c);

};

template <typename T>

struct Promise

{

void set_value(T value) &&;

template <typename Error>

void set_exception(Error exception) &&;

bool valid() const;

};
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Based on the declaration of the concepts, here are a few observations:

• A FutureContinuation can be invoked with a value or with an exception. It is a callable unit
that consumes the value or exception of a future

• All futures (SemiFuture, ContinuableFuture, and SharedFuture) have a member function via

that excepts an executor and returns a ContinuableFuture. via allows it to convert from one
future type to a different one by using a different executor.

• Only a ContinuableFuture or a SharedFuture have a then continuation member function. The
then member function takes a FutureContinuation and returns a ContinuableFuture.

• A SharedFuture is a non-uniquely owned future that is copyable.

• A Promise can set a value or an exception.

7.2.2.3 Future Work

The proposal 1054R0²⁰ left a few questions open.

• Forward progress guarantees for futures and promises.

• Requirements on synchronization for the use of futures and promises from non-concurrent
execution agents.

• std::future/std::promise interoperability.

• Future unwrapping, both future<future<T>> and more advanced forms.

• when_all/when_any/when_n.

• async.

7.3 Transactional Memory

Transactional memory is based on the idea of a transaction from database theory. Transactional
memory makes working with threads a lot easier for two reasons: first data races and deadlocks
disappear, and second transactions are composable.

A transaction is an action that has the following properties Atomicity, Consistency, Isolation, and
Durability (ACID). Except for the durability or storing the result of an action, all properties hold for
transactional memory in C++. Now three short questions are left.

7.3.1 ACI(D)

What do atomicity, consistency, and isolationmean for an atomic block consisting of some statements?

²⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
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An atomic block

atomic{

statement1;

statement2;

statement3;

}

Atomicity
Either all or none of the statements in the block are performed.

Consistency
The system is always in a consistent state. All transactions establish a total order.

Isolation
Each transaction runs in total isolation from other transactions.

How do these properties apply? A transaction remembers its initial state and is performed without
synchronization. If a conflict happens during its execution, the transaction is interrupted and restored
to its initial state. This rollback causes the transaction to be executed again. If the transaction’s initial
state still exists at the end of the transaction, the transaction is committed. Conflicts are typically
detected with a tagged state reference.

A transaction is a kind of speculative action that is only committed if the initial state holds. In contrast
to a mutex, it is an optimistic approach. A transaction is performed without synchronization. It is only
be published if no conflict occurs. A mutex is a pessimistic approach. First, the mutex ensures that no
other thread can enter the critical region. Next, the thread enters the critical region if it is the exclusive
owner of the mutex, and hence all other threads are blocked.

C++ supports transactional memory in two flavors: synchronized blocks and atomic blocks.

7.3.2 Synchronized and Atomic Blocks

So far I only wrote about transactions. Now I write about synchronized blocks and atomic blocks.
Both can be encapsulated in each other. To be more specific synchronized blocks are not transactions
because they can execute transaction-unsafe. An example for a transaction-unsafe code would be a
code like the output to the console, which can not be undone. For this reason, synchronized blocks
are often called relaxed blocks.

7.3.2.1 Synchronized Blocks

Synchronized blocks behave like a global lock that protects them. This means that all synchronized
blocks follow a total order, and in particular: all changes to a synchronized block are available
in the next synchronized block. There is a synchronizes-with relation between the synchronized
blocks because of the commit of the transaction synchronizes-with the next start of a transaction.
Synchronized blocks can not cause a deadlock because they create a total order. While a classical
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mutex protects a critical region of the program, a global lock of a synchronized block protects the
total program.

This is the reason the following program is well-defined:

A synchronized block

1 // synchronized.cpp

2

3 #include <iostream>

4 #include <vector>

5 #include <thread>

6

7 int i= 0;

8

9 void increment(){

10 synchronized{

11 std::cout << ++i << " ,";

12 }

13 }

14

15 int main(){

16

17 std::cout << '\n';

18

19 std::vector<std::thread> vecSyn(10);

20 for(auto& thr: vecSyn)

21 thr = std::thread([]{ for(int n = 0; n < 10; ++n) increment(); });

22 for(auto& thr: vecSyn) thr.join();

23

24 std::cout << "\n\n";

25

26 }

Although the variable i in line 7 is a global variable and the synchronized block operations
are transaction-unsafe, the program is well-defined. Ten threads concurrently invoke the function
increment (line 21) ten times, incrementing the variable i in line 11. Access to i and std::cout happens
in total order. This is the characteristic of the synchronized block.

The program returns the expected result. The values for i are written in an increasing sequence,
separated by a comma. For completeness, here is the output.
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Incrementing with synchronized blocks

What about data races? You can have them with synchronized blocks. A small modification of the
source code is sufficient to introduce a data race.

A data race with a synchronized block

1 // nonsynchronized.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <vector>

6 #include <thread>

7

8 using namespace std::chrono_literals;

9 using namespace std;

10

11 int i= 0;

12

13 void increment(){

14 synchronized{

15 cout << ++i << " ,";

16 this_thread::sleep_for(1ns);

17 }

18 }

19

20 int main(){

21

22 cout << '\n';

23

24 vector<thread> vecSyn(10);

25 vector<thread> vecUnsyn(10);

26

27 for(auto& thr: vecSyn)

28 thr = thread([]{ for(int n = 0; n < 10; ++n) increment(); });

29 for(auto& thr: vecUnsyn)

30 thr = thread([]{ for(int n = 0; n < 10; ++n) cout << ++i << " ,"; });

31

32 for(auto& thr: vecSyn) thr.join();
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33 for(auto& thr: vecUnsyn) thr.join();

34

35 cout << "\n\n";

36

37 }

I let the synchronized block sleep for a nanosecond (line 16). At the same time, I access the output
stream std::cout without a synchronized block (line 30). In total, 20 threads increment the global
variable i, half of them without synchronization. The output shows the issue.

A data race with synchronized blocks

I put red circles around the issues in the output. These are the locations where at least two threads
write ‘ std::cout at the same time. The C++11 standard guarantees that the characters are written

atomically; that is not an issue. What is worse is that the variable i‘ is written by at least
two threads. This is a data race; hence, the program has undefined behavior. If you look carefully at
the output, you see a data race in action. The final result for the counter is 199 but should be 200. This
means one of the intermediate values of the counter was overwritten.

The total order of synchronized blocks also holds for atomic blocks.

7.3.2.2 Atomic Blocks

You can execute transaction-unsafe code in a synchronized block but not in an atomic block. Atomic
blocks are available in three forms: atomic_noexcept, atomic_commit, and atomic_cancel. The three
suffixes _noexcept, _commit, and _cancel define how an atomic block manages an exception:

atomic_noexcept

If an exception is thrown, std::abort is called, and the program aborts.

atomic_cancel

In the default case, std::abort is called. This does not hold if a transaction-safe exception is
thrown that is responsible for ending the transaction. In this case, the transaction is canceled,
put to its initial state, and the exception is thrown.
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atomic_commit

If an exception is thrown, the transaction is committed.

Transaction-safe exceptions are: std::bad_alloc²¹,std::bad_array_length²², std::bad_array_new_length²³,
std::bad_cast²⁴, std::bad_typeid²⁵, std::bad_exception²⁶, std::exception²⁷, and all exceptions that
are derived from one of these.

7.3.3 transaction_safe versus transaction_unsafe Code

You can declare a function as transaction_safe or attach the transaction_unsafe attribute to it.

transaction_safe versus transaction_unsafe

int transactionSafeFunction() transaction_safe;

[[transaction_unsafe]] int transactionUnsafeFunction();

transaction_safe belongs to the type of the function. What does transaction_safe mean? A
transaction_safe function is, according to the proposal N4265²⁸, a function that has a transaction_-

safe definition. This holds if the following properties do not apply to its definition:

• It has a volatile parameter or a volatile variable.

• It has transaction-unsafe statements.

• If the function uses a constructor or destructor of a class in its body that has a volatile non-
static member.

Of course, this definition of transaction_safe is not sufficient because it uses the term transaction_-

unsafe. You can read the proposal N4265²⁹ for the details.

²¹http://en.cppreference.com/w/cpp/memory/new/bad_alloc
²²https://www.cs.helsinki.fi/group/boi2016/doc/cppreference/reference/en.cppreference.com/w/cpp/memory/new/bad_

array_length.html
²³http://en.cppreference.com/w/cpp/memory/new/bad_array_new_length
²⁴http://en.cppreference.com/w/cpp/types/bad_cast
²⁵http://en.cppreference.com/w/cpp/types/bad_typeid
²⁶http://en.cppreference.com/w/cpp/error/bad_exception
²⁷http://en.cppreference.com/w/cpp/error/exception
²⁸http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html
²⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html

http://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://www.cs.helsinki.fi/group/boi2016/doc/cppreference/reference/en.cppreference.com/w/cpp/memory/new/bad_array_length.html
http://en.cppreference.com/w/cpp/memory/new/bad_array_new_length
http://en.cppreference.com/w/cpp/types/bad_cast
http://en.cppreference.com/w/cpp/types/bad_typeid
http://en.cppreference.com/w/cpp/error/bad_exception
http://en.cppreference.com/w/cpp/error/exception
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html
http://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://www.cs.helsinki.fi/group/boi2016/doc/cppreference/reference/en.cppreference.com/w/cpp/memory/new/bad_array_length.html
https://www.cs.helsinki.fi/group/boi2016/doc/cppreference/reference/en.cppreference.com/w/cpp/memory/new/bad_array_length.html
http://en.cppreference.com/w/cpp/memory/new/bad_array_new_length
http://en.cppreference.com/w/cpp/types/bad_cast
http://en.cppreference.com/w/cpp/types/bad_typeid
http://en.cppreference.com/w/cpp/error/bad_exception
http://en.cppreference.com/w/cpp/error/exception
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4265.html
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7.4 Task Blocks

Task blocks use thewell-known fork-join paradigm for the parallel execution of tasks. They are already
part of the Technical Specification for C++ Extension Parallelism Version 2³⁰; therefore, it’s pretty
probable that we get them with C++20.

Who invented it in C++? Both Microsoft with its Parallel Patterns Library (PPL)³¹ and Intel with its
Threading Building Blocks (TBB)³² were involved in the proposal N4441³³. Additionally, Intel used its
experience with their Cilk Plus library³⁴.

The name fork-join is quite easy to explain.

7.4.1 Fork and Join

The most straightforward approach to explain the fork-join paradigm is a graphic.

The fork-join paradigm

How does it work?

The creator invokes define_task_block or define_task_block_restore_thread. This call creates a task
block that can create tasks, or it can wait for their completion. The synchronization is at the end of
the task block. The creation of a new task is the fork phase; the task block’s synchronization is the
join phase of the workflow. Admittedly that was a simple description. Let’s have a look at a piece of
code.

³⁰http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4742.html
³¹https://en.wikipedia.org/wiki/Parallel_Patterns_Library
³²https://en.wikipedia.org/wiki/Threading_Building_Blocks
³³http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
³⁴https://en.wikipedia.org/wiki/Cilk

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4742.html
https://en.wikipedia.org/wiki/Parallel_Patterns_Library
https://en.wikipedia.org/wiki/Threading_Building_Blocks
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
https://en.wikipedia.org/wiki/Cilk
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4742.html
https://en.wikipedia.org/wiki/Parallel_Patterns_Library
https://en.wikipedia.org/wiki/Threading_Building_Blocks
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
https://en.wikipedia.org/wiki/Cilk
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Define a task block

1 template <typename Func>

2 int traverse(node& n, Func && f){

3 int left = 0, right = 0;

4 define_task_block(

5 [&](task_block& tb){

6 if (n.left) tb.run([&]{ left = traverse(*n.left, f); });

7 if (n.right) tb.run([&]{ right = traverse(*n.right, f); });

8 }

9 );

10 return f(n) + left + right;

11 }

traverse is a function template that invokes function f on each node of its tree. The keyword define_-

task_block defines the task block. The task block tb can start a new task in this block. This exactly
happens at the left and right branches of the tree in lines 6 and 7. Line 9 is the end of the task block
and hence the synchronization point.

HPX (High Performance ParalleX)
The above example is from the documentation for the HPX (High-Performance ParalleX)³⁵
framework, which is a general-purpose C++ runtime system for parallel and distributed
applications of any scale. HPX has already implemented many in this chapter presented
features of the upcoming C++20/23 standards.

You can define a task block by using either the function define_task_block or the function define_-

task_block_restore_thread.

7.4.2 define_task_block versus define_task_block_restore_thread

The subtle difference is that the function define_task_block_restore_thread guarantees in contrast
to the function define_task_block that the creator thread of the task block is the same thread that
runs after the task block.

³⁵http://stellar.cct.lsu.edu/projects/hpx/

http://stellar.cct.lsu.edu/projects/hpx/
http://stellar.cct.lsu.edu/projects/hpx/
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define_task_block versus define_task_block_restore_thread
1 ...

2 define_task_block([&](auto& tb){

3 tb.run([&]{[] func(); });

4 define_task_block_restore_thread([&](auto& tb){

5 tb.run([&]([]{ func2(); });

6 define_task_block([&](auto& tb){

7 tb.run([&]{ func3(); }

8 });

9 ...

10 ...

11 });

12 ...

13 ...

14 });

15 ...

16 ...

Task blocks ensure that the outermost task block’s creator thread (lines 2 - 14) is the same thread that
runs the statements after finishing the task block. This means that the thread that executes line 2 is
the same thread that executes lines 15 and 16. This guarantee does not hold for nested task blocks;
therefore, the task block’s creator thread in lines 6 - 8 does not automatically execute lines 9 and 10.
If you need that guarantee, you should use the function define_task_block_restore_thread (line 4).
It holds that the creator thread executing line 4 is the same thread running lines 12 and 13.

7.4.3 The Interface

A task block has a minimal interface. You can not construct, destroy, copy, or move an object of the
class task_block; you have to use either function define_task_block or define_task_block_restore_-
thread. The task_block tb is in the scope of the defined task block active and can start new tasks
(tb.run) or wait (tb.wait) until the task is done.

The minimal interface of a task block
1 define_task_block([&](auto& tb){

2 tb.run([&]{ process(x1, x2) });

3 if (x2 == x3) tb.wait();

4 process(x3, x4);

5 });

What is the code snippet doing? In line 2 a new task is started. This task needs the data x1 and x2.
Line 4 uses the data x3 and x4. If x2 == x3 is true, the variables must be protected from shared access.
This is why the task block tb waits until the task in line 2 is done.

If the functions task_block::run or task_block::wait detect that an exception is pending within the
current task block they throw an exception of kind task_cancelled_exception.
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7.4.4 The Scheduler

The scheduler manages which thread is running. This means that it is no longer the responsibility of
the programmer to decide who executes the task. Threads are just an implementation detail.

There are two strategies for executing the newly created task. The parent represents the creator thread
and the child the new task.

Child stealing
The scheduler steals the task and executes it.

Parent stealing
The task block tb itself executes the task. Now the scheduler steals the parent.

Proposal N4441³⁶ supports both strategies.

³⁶http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
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7.5 Data-Parallel Vector Library

The data-parallel vector library provides data-parallel (SIMD) programming via vector types. SIMD³⁷
stands for Single Instruction Multiple Data and means that one operation is performed on many
data in parallel. Each modern processor architecture provides SIMD extensions, but there exists no
standardized C++ interface to use them. The following table gives an overview of various SIMD
extensions.

SIMD Extensions

Architecture SIMD Extension Register Width

ARM 32 / 64 NEON 128 bit

Power / PowerPC AltiVec 128 bit
VSX 128 bit

x86 / AMD 64 MMX / 3DNow 64 bit
SSE 128 bit
AVX / AVX2 / AVX-512 128 bit / 256 bit / 512 bit

For example, the SSE³⁸ extension allows it to add four 32 bit ints in parallel. The effect is that it is
four times faster than adding four ints sequential because single and vector operations are equally
fast on modern CPU’s.

³⁷https://en.wikipedia.org/wiki/SIMD
³⁸https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
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Auto-Vectorisation
Auto-vectorisation is the compiler’s job to produce the best machine code for the given
architecture. Often there are many obstacles to generate the most efficient code for a given
machine:

According to the chapter Using Automatic Vectorization³⁹ to the INTEL C++ Compiler
they are:

• Non-contiguous memory access lead to inefficient loads/stores

• Data dependencies between iteration steps.

• Countable (the number of iterations of a loop can be determined before the loop is
entered)

There are more challenges for auto-vectorisation

• Dependent execution or function calls in loops

• Outer loops (loops containing other loops)

• Threads (calls to mutexes or atomics)

The SIMD extension in C++ consists now of two data-parallel vectors and special operations on them.

7.5.1 Data-Parallel Vectors

The data-parallel vectors are std::simd and std::simd_mask:

template< class T, class Abi = simd_abi::compatible<T> >

class simd;

template< class T, class Abi = simd_abi::compatible<T> >

class simd_mask;

• T is the element type of the vectors.

• Abi stands for the number of elements and storage.

The element type of simd_mask is bool and simd_mask<T, AbT>::size() is always simd<T, AbT>::size().

7.5.2 The Interface of the Data-Parallel Vectors

The data-parallel vector library supports tags for the ABI and alignment, various operations, and
traits.

³⁹https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-using-automatic-vectorization

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-using-automatic-vectorization
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-using-automatic-vectorization
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7.5.2.1 Tags

The tags let you specify and ask for the ABI and the alignment.

7.5.2.1.1 ABI Tags

The ABI tag indicates a choice of size and binary representation for objects of the vector type.

ABI tags

ABI tags Description

scalar Tag type for storing a single element.

fixed_size Tag type for storing a specified number of elements.

compatible Tag type that ensures ABI compatibility.

native Tag type that is most efficient.

max_fixed_size The maximum number of elements guaranteed to be supported by fixed.

7.5.2.1.2 Alignment Tags

The alignment tags indicate the alignment of the elements and the vector type.

Alignment tags

Alignment tags Description

element_aligned_tag and element_aligned Tag type that indicates the alignment of the elements.

vector_aligned_tag and vector_aligned Tag type that indicates the alignment of the vector type.

overaligned_tag and overaligned Tag type that indicates the specified alignment.

7.5.2.2 Where Expression

The where expression abstracts the operation of selected elements of a given object of arithmetic or
data-parallel type.
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Where expression

Where expression Description

const_where_expression Selects elements with non-mutating operations.

where_expression Selects elements with mutating operations.

where Generated const_where_expression and where expression.

7.5.2.3 Casts

Cast operations cast element-wise or split or concat between SIMD objects and single ones.

Casts

Where expression Description

simd_cast and static_simd_cast Performs a element-wise static cast.

to_fixed_size, to_compatible, and to_native Performs an element-wise ABI cast.

split Splits a single SIMD object to multiple objects.

concat Concatenates multiple SIMD objects into a single SIMD
object.

7.5.2.4 Algorithms

The SIMD algorithms are applied to two SIMD objects and return a SIMD object.

Algorithms

Algorithms Description

min Applies the min operation element-wise and returns a SIMD object.

max Applies the min operation element-wise and returns a SIMD object.

minmax Applies the minmax operation element-wise and returns a SIMD object.

clamp Applies the clamp operation element-wise and returns a SIMD object.

The clamp algorithm applies element-wise the following operation for i in [0, size()]:
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This means, the resulting SIMD object sim will have the following values:

• v[i] < lo[i]: sim[i] = lo[i]

• lo[i] < v[i] < hi[i]: sim[i] = vi[i]

• hi[i] < v[i]: sim[i] = hi[i]

7.5.2.5 Reduction

Reduction reduces the SIMD vector to a single element.

Reduction

Reduction Description

reduce Reduces the SIMD vector to a single element.

hmin Returns the minimum element.

hmax Return the maximum element.

7.5.2.6 Mask Reduction

Applies the predicate only to these elements of the SIMD vector v[i] for which the mask m[i] == true

holds.

Mask Reduction

Mask Reduction Description

all_of, any_of, none_of, and some_of Applies the predicates on each element v[i] for which the mask
m[i] == true holds.

popcount Return the number of true values.

find_first_set and find_last_set Return the position of the first or last true value.

7.5.2.7 Traits

Traits give you SIMD characteristics at compile time.
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Traits

Traits Description

is_abi_tag and is_abi_tag_v Checks if a type is an ABI tag type.

is_simd and is_simd_v Checks if a type is SIMD type.

is_simd_mask and is_simd_mask_v Checks if a type is a simd_mask type.

is_simd_flag_type and is_simd_flag_type_v Checks if a type is a SIMD flag type.

simd_size and simd_size_v Returns the number of elements of a given element type
and ABI.

memory_alignment and memory_alignment_v Returns an appropriate alignment for vector_aligned.

abi_for_size and abi_for_size_t Returns an ABI type for a given element type and number
of elements.

Distilled Information
• It isn’t easy to make predictions about the future, but I try.

• An executor consists of a set of rules about where, when, and how to run a callable.
They are the basic building block to execute and specify if callables should run on
an arbitrary thread, a thread pool, or even single-threaded without concurrency.

• Tasks called promises and futures, introduced in C++11, have a lot to offer, but
they also have drawbacks: tasks are not composable into powerful workflows. That
limitation does not hold for the extended futures in C++23. Therefore, an extended
future becomes ready when its predecessor becomes ready, when any one of its
predecessors becomes ready, or when all of its predecessors becomes ready.

• Transactional memory is based on the ideas underlying transactions in database
theory. A transaction is an action that provides the first three properties of ACID
database transactions:Atomicity,Consistency, and Isolation. The new standard has
transactional memory in two flavors: synchronized blocks and atomic blocks. Both
behave as if a global lock protected them.

• Task blocks implement the fork-join paradigm in C++. They consist of a fork phase
in which you launch tasks and a join phase in which you synchronize them.

• The data-parallel vector library provides data-parallel (SIMD) programming via
vector types. SIMDmeans that one operation is performed onmany data in parallel.
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8. Patterns and Best Practices

Cippi uses proven knowledge from her ancestors

This chapter aims to give you an idea of what patterns are andwhat they are suitable for.My pragmatic
view is informal and is wearing C++ glasses. For a more formal and comprehensive discussion of this
topic, I provide links to further literature.

First of all: What is a pattern?

Pattern
“Each pattern is a three-part rule, which expresses a relation between a certain context, a
problem, and a solution.” Christopher Alexander¹

To say it more informally. A pattern is a well-established and documented solution to a design
challenge in a specific domain.

8.1 History

The father of patterns is the already mentioned Cristopher Alexander, whose patterns about the
nature of human-centered design for towns, buildings, and construction, in general, were seminal for
software design. 1994, the so-called Gang of Four (Eric Gamma, Richard Helm, Ralph Johnson, and
John Vlissides) published their bookDesign Patterns: Elements of Reusable Object-Oriented Software².
The book includes 23 software design patterns aimed at object-oriented software design. The patterns
fall into three categories creational, structural, and behavioral. The book defined the vocabulary for
the entire software industry. Here are a few of the most known design patterns:

¹https://en.wikipedia.org/wiki/Christopher_Alexander
²https://en.wikipedia.org/wiki/Design_Patterns

https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_Patterns
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• Creational
– Factory member function pattern
– Singleton pattern

• Structural
– Adapter
– Bridge
– Composite
– Decorator
– Facade
– Proxy

• Behavioral
– Command
– Iterator
– Observer
– Strategy
– Template method
– Visitor

One year later, Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal published their highly influential book Pattern-Oriented Software-Architecture: A System of
Patterns³, or in short POSA. This book was the starting point of a series of five books. It was published
in 1995 and has three categories of patterns: architectural patterns, design patterns, and idioms. Many
of the patterns are now common terminology:

• Architectural Patterns
– Layers
– Pipes-and_Filters
– Broker
– Model-View-Controller

• Design Patterns
– Master-Slave
– Publish-Subscriber

• Idioms
– Counted-Pointer

What is the difference between these three categories? The focus of the architectural patterns is the
entire software system. They are more abstract than the design patterns, which define the interplay
between the subsystems. Idioms are implementations of an architectural or design pattern in a given
programming language. They have the lowest abstraction level of all three.

Each of the books two to five of the POSA series has a different focus. They deal with “Patterns for
Concurrent and Networked Objects” (volume 2), with “Patterns for Resource Management” (volume
3), with “A Pattern Language for Distributed Computing” (volume 4), and “On Patterns and Pattern
Languages” (volume 5). The book sections Synchronization Patterns and Concurrent Architecture are
strongly influenced by the second volume of the series.

³https://www.wiley.com/WileyCDA/Section/id-406899.html

https://www.wiley.com/WileyCDA/Section/id-406899.html
https://www.wiley.com/WileyCDA/Section/id-406899.html
https://www.wiley.com/WileyCDA/Section/id-406899.html
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8.2 Invaluable Value

Patterns added priceless value to software development in general. Of course, this also holds for
concurrency in particular. The added value boils down to three points. A well-defined terminology,
improved documentation, and learning from the best.

Thewell-defined terminologymeans that software developers can now use common and unambigu-
ous vocabulary. Misunderstandings or verbose explanations are mainly stories of the past. Suppose
a software developer asks for advice about implementing a family of similar algorithms to exchange
them during runtime. In that case, the answer may be as short as use the strategy pattern. If the
software developer knows the strategy pattern, he can immediately think about its consequences; if
not, he can look it up in the literature.

The documentation improves in two aspects. First, the documentation about the software system,
whether in a graphical or textual description, improves because if I read that the observer pattern is
used, I know that the system has a kind of Subject/Observer structure. This means that the observer
will register or unregister themselves on the subject, and the subject will send notifications to all of
its observers if necessary. Secondly, I can directly jump into the source code and search for keywords
such as observer, subject or notify because I have an idea about the concrete implementation.

Patterns are just about learning from the best. You learn from the documented experience from the
best and do not repeat their mistakes. They provide proven solutions for typical problems and help to
master complexity. Each pattern includes information on when you should use it, the consequences
of using it, how to implement it, and its known usages.

8.3 Pattern versus Best Practices

You may wonder that I write in this part of the book also about best practices. Why? Honestly, I often
had an intensive fight if a method such as immutable values or pure functions is a pattern or just best
practice. Patterns are documented best practices and, therefore, quite related. I learned from these
fight lessons.

• Both terms can not be precisely distinguished.

• If the practice I describe is a well-defined pattern, I put it in the pattern bucket.

• If the practice has a tip character and no formal defined structure, I put it in the best practices
bucket.

• Today’s best practices may become tomorrow’s well-defined patterns.

8.4 Anti-Pattern

A pattern stands for best practices, an anti-pattern stands for a lesson learned, or to use the words
from Andrew Koenig⁴: “Those that describe a bad solution to a problem which resulted in a bad

⁴https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)

https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
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situation.” If you carefully read the literature on concurrency patterns, you often find the double-
checked locking pattern. The double-checked locking pattern’s general idea is, in one sentence, the
thread-safe initialization of shared state in an optimized way. This shared state is typically a singleton⁵.
I intentionally put the double-checked locking pattern in the case studies chapter of this book to
emphasize it explicitly: naively usage of the double-checked locking pattern may end in undefined
behavior. The issues of the double-checked locking pattern boil essentially down to the issues of the
singleton pattern.

If you want to use the singleton pattern, you have to think about the following challenges:

• First and foremost, the singleton is a global object. Due to this fact, the singleton usage is most
of the time not visible in the interface. The effect is that you have a hidden dependency in the
code which uses the singleton.

• A singleton is a static object and is, therefore, once created, never destroyed. Its lifetime ends
with the lifetime of the program.

• If your static class member, such as a singleton, depends on another static member defined in
another translation unit, you have no guarantee which one is initialized first. The probability
that it fails is 50 %.

• A singleton is often usedwhen just an instance of a class would also do the job.Many developers
use the singleton to prove that they know their design pattern.

Distilled Information
• Patterns are documented best practices from the best. They “… express a relation
between a certain context, a problem, and a solution.” Christopher Alexander⁶.

• Patterns provide more than just best practices. They provide a well-defined
terminology and improve documentation.

• A anti-pattern stands for a lesson learned or a proven way to shot yourself in the
foot.

⁵https://en.wikipedia.org/wiki/Singleton_pattern
⁶https://en.wikipedia.org/wiki/Christopher_Alexander

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Christopher_Alexander


9. Synchronization Patterns

Cippi directs the train

The main concern when you deal with concurrency is shared, mutable state or as Tony Van Eerd¹ put
it in his CppCon 2014 talk “Lock-free by Example”: “Forget what you learned in Kindergarten (ie stop
Sharing)”.

Mutable, shared state

A necessary condition for a data race is a mutable, shared state. If you handle sharing or mutation,
no data race can happen. This is exactly the focus of the next two sections: Dealing with Sharing and
Dealing with Mutation.

¹https://github.com/tvaneerd

https://github.com/tvaneerd
https://github.com/tvaneerd
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9.1 Dealing with Sharing

If you don’t share, no data races can happen. Not sharing means that your thread works on
local variables. This can be achieved by copying the value, by using thread-specific storage, or by
transferring the result of a thread to its associated future via a protected data channel. The patterns
in this section are quite obvious, but for completeness, I will present them with a short explanation.

9.1.1 Copied Value

If a thread gets its arguments by copy and not by reference, there is no need to synchronize access to
any data. No data races and no lifetime issues are possible.

9.1.1.1 Data Races with References

The following program creates three threads. One thread gets its argument by copy, the other by
reference, and the last by constant reference.

Data races with references

1 // copiedValueDataRace.cpp

2

3 #include <functional>

4 #include <iostream>

5 #include <string>

6 #include <thread>

7

8 using namespace std::chrono_literals;

9

10 void byCopy(bool b){

11 std::this_thread::sleep_for(1ms);

12 std::cout << "byCopy: " << b << '\n';

13 }

14

15 void byReference(bool& b){

16 std::this_thread::sleep_for(1ms);

17 std::cout << "byReference: " << b << '\n';

18 }

19

20 void byConstReference(const bool& b){

21 std::this_thread::sleep_for(1ms);

22 std::cout << "byConstReference: " << b << '\n';

23 }

24

25 int main(){



Synchronization Patterns 455

26

27 std::cout << std::boolalpha << '\n';

28

29 bool shared{false};

30

31 std::thread t1(byCopy, shared);

32 std::thread t2(byReference, std::ref(shared));

33 std::thread t3(byConstReference, std::cref(shared));

34

35 shared = true;

36

37 t1.join();

38 t2.join();

39 t3.join();

40

41 std::cout << '\n';

42

43 }

Each thread sleeps for one millisecond (lines 11, 16, and 21) before displaying the boolean value. Only
thread t1 has a local copy of the boolean and has, therefore, no data race. The program’s output shows
that the boolean values of thread t2 and t3 are modified without synchronization.
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Data races with references

I made my example copiedValueDataRace.cpp an assumption that is trivial for a boolean but not for
a more complex type. Passing the argument by copy is data race free if the argument is a so-called
value object.

Value Object
A value object is an object whose equality is not based on identity but based on its state.
Value objects should be immutable so that they stay equal for their lifetime if created
equal. If you pass a value object by copy to a thread, there is no need to synchronize its
access. Due to the article ValueObject² from Martin Fowler, you can think of two classes
of objects: value objects and reference objects.

9.1.1.1.1 When a reference is actually a copy

You may think that the thread t3 in the previous example copiedValueDataRace.cpp can just be
replaced with std::thread t3(byConstReference, shared). The program compiles and runs but what
seems like a reference is a copy. The reason is that std::decay³ is applied to each argument of

²https://martinfowler.com/bliki/ValueObject.html
³https://en.cppreference.com/w/cpp/types/decay

https://martinfowler.com/bliki/ValueObject.html
https://en.cppreference.com/w/cpp/types/decay
https://martinfowler.com/bliki/ValueObject.html
https://en.cppreference.com/w/cpp/types/decay
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the thread. std::decay performs lvalue-to-rvalue, array-to-pointer, and function-to-pointer implicit
conversions to its type T. In particular, it invokes in this case std::remove_reference⁴ on the type T.

The program perConstReference.cpp uses a non-copyable type NonCopyableClass.

Implicit copying of a per-reference thread argument

1 // perConstReference.cpp

2

3 #include <thread>

4

5 class NonCopyableClass{

6 public:

7

8 // the compiler generated default constructor

9 NonCopyableClass() = default;

10

11 // disallow copying

12 NonCopyableClass& operator = (const NonCopyableClass&) = delete;

13 NonCopyableClass (const NonCopyableClass&) = delete;

14

15 };

16

17 void perConstReference(const NonCopyableClass& nonCopy){}

18

19 int main(){

20

21 NonCopyableClass nonCopy;

22

23 perConstReference(nonCopy);

24

25 std::thread t(perConstReference, nonCopy);

26 t.join();

27

28 }

The object nonCopy (line 21) is not copyable. This is fine if I invoke the function perConstReference

with the argument nonCopy because the function accepts its argument per constant reference. Using
the same function in the thread t (line 25) causes GCC 6 to generate a verbose compiler error with
more than 300 lines:

⁴https://en.cppreference.com/w/cpp/types/remove_reference

https://en.cppreference.com/w/cpp/types/remove_reference
https://en.cppreference.com/w/cpp/types/remove_reference
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A verbose error message

The error message’s essential part is in the middle of the screenshot in red rounded rectangle: “error:
use of deleted function”. The copy-constructor of the class NonCopyableClass is not available.

Use of deleted function

9.1.1.2 Lifetime Issues with References

If your thread uses its argument by reference and you detach the thread, you have to be extremely
careful. The small program copiedValueLifetimeIssues.cpp has undefined behavior.
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Lifetime issues with references

1 // copiedValueLifetimeIssues.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <thread>

6

7 void executeTwoThreads(){

8

9 const std::string localString("local string");

10

11 std::thread t1([localString]{

12 std::cout << "Per Copy: " << localString << '\n';

13 });

14

15 std::thread t2([&localString]{

16 std::cout << "Per Reference: " << localString << '\n';

17 });

18

19 t1.detach();

20 t2.detach();

21 }

22

23 using namespace std::chrono_literals;

24

25 int main(){

26

27 std::cout << '\n';

28

29 executeTwoThreads();

30

31 std::this_thread::sleep_for(1s);

32

33 std::cout << '\n';

34

35 }

executeTwoThreads (lines 7 - 21) starts two threads. Both threads are detached (lines 19 and 20) and
print the local variable localString (line 9). The first thread captures the local variable by copy, and
the second the local variable by reference. For simplicity reasons, in both cases, I used a lambda
expression to bind the arguments.

Because the executeTwoThreads function doesn’t wait until the two threads have finished, the thread
t2 refers to the local string, which is bound to the lifetime of the invoking function. This causes



Synchronization Patterns 460

undefined behavior. Curiously, with GCC 6 the maximum optimized executable -O3 seems to work,
and the non-optimized executable crashes.

Lifetime issues with references

9.1.1.3 Further Information

• ValueObject⁵

• Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing⁶

9.1.2 Thread-Specific Storage

Thread-specific or thread-local storage allows multiple threads to use local storage via a global access
point. By using the storage specifier thread_local, a variable becomes a thread-local variable. This
means you can use the thread-local variable without synchronization.

Here is a typical use-case. Assume youwant to calculate the sum of all elements of a vector randValues.
Doing it with a range-based for-loop is straightforward.

// calculateWithLoop.cpp

...

unsigned long long sum = { };

for (auto n: randValues) sum += n;

But your PC has four cores. Therefore, you make a concurrent program out of the sequential program.

⁵https://martinfowler.com/bliki/ValueObject.html
⁶http://www.dre.vanderbilt.edu/~schmidt/POSA/POSA4/

https://martinfowler.com/bliki/ValueObject.html
http://www.dre.vanderbilt.edu/~schmidt/POSA/POSA4/
https://martinfowler.com/bliki/ValueObject.html
http://www.dre.vanderbilt.edu/~schmidt/POSA/POSA4/
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// threadLocalSummation.cpp

...

thread_local unsigned long long tmpSum = 0;

void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end) {

for (auto i = beg; i < end; ++i){

tmpSum += val[i];

}

sum.fetch_add(tmpSum, std::memory_order_relaxed);

}

...

std::atomic<unsigned long long> sum{};

std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);

std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);

std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);

std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);

You put the range-based for-loop into a function, let each thread calculate a fourth of the sum in the
thread-local variable tmpSum. The line sum.fetch_add(tmpSum, std::memory_order_relaxed) finally
sums up all values in the atomic sum.

I already discussed the various ways to sum up all vector elements in the chapter Calculating the Sum
of a Vector. You can study the entire program there.

Use the Algorithms of the Standard Template Library.
You should not write a loop if an algorithm of the standard template library can do the job.
In this case, it’s the job of std::accumulate⁷ to sum up all elements of the vector: sum =

std::accumulate(randValues.begin(), randValues.end(), 0). Since C++17, you can use
the std::reduce algorithm which is the parallelisable version of std::accumulate: sum =

std::reduce(std::execution::par, randValues.begin(), randValues.end(), 0).

9.1.2.1 Further Information

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects⁸

⁷https://en.cppreference.com/w/cpp/algorithm/accumulate
⁸https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://en.cppreference.com/w/cpp/algorithm/accumulate
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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9.1.3 Future

C++11 provides futures and promise in three flavors: std::async, std::packaged_task, and the
pair std::promise and std::future. The term promise goes back to the seventies. The future is a
read-only placeholder for the value which a promise sets. From the synchronization perspective, a
promise/future pair’s critical property is that a protected data channel connects both.

There are a few decisions to make when implementing a future.

• A future can ask for its value implicitly or explicitly with the get call, such as in C++.

• A future can eagerly or lazily start the computation. Only the promise std::async supports lazy
evaluation via launch policies.

auto lazyOrEager = std::async([]{ return "LazyOrEager"; });

auto lazy = std::async(std::launch::deferred, []{ return "Lazy"; });

auto eager = std::async(std::launch::async, []{ return "Eager"; });

lazyOrEager.get();

lazy.get();

eager.get();

If I don’t specify a launch policy, it’s up to the system to start the job eager or lazy. Using the launch
policy std::launch::async, a new thread is created, and the promise immediately starts its job. This
is in contrast to the launch policy std::launch::deferred. The call eager.get() starts the promise.
Additionally, the promise is executed in the thread requesting the result with get.

• A future can block or throw an exception if the value of the promise is not available. C++11
blocks, in this case, the wait or get call. Additionally, you can wait with a timeout on the
promise (wait_for and wait_until).

• There are various ways to implement futures: coroutines⁹, generators¹⁰, or channels¹¹.

9.1.3.1 Further Information

• Futures and promises¹²

9.2 Dealing with Mutation

If you don’t write and read data concurrently, no data race can happen. The easiest way to achieve
this is by immutable values. Additionally, to this best practice, there are two typical strategies.

⁹https://en.wikipedia.org/wiki/Coroutine
¹⁰https://en.wikipedia.org/wiki/Generator_(computer_programming)
¹¹https://en.wikipedia.org/wiki/Channel_(programming)
¹²https://en.wikipedia.org/wiki/Futures_and_promises

https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Channel_(programming)
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Channel_(programming)
https://en.wikipedia.org/wiki/Futures_and_promises
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First, protect the critical sections by a lock such as a scoped lock or strategized locking. In object-
oriented design, the critical section is typically an object including its interface. The Thread-Safe
Interface protects the entire object. If the variable is never modified, synchronization is no need
by using an expensive lock or an atomic. In this case, you only have to ensure that the variable is
initialized in a thread-safe way. I already discussed a few possibilities in the previous section thread-
safe initialization and the case studies about thread-safe initialization of a singleton, including the
infamous double-checked locking pattern.

Second, the modifying thread just signals when it is done with its work. This is the strategy of guarded
suspension.

9.2.1 Scoped Locking

Scoped locking is the idea of RAII applied to a mutex. Scoped locking is also known as synchronized
block and guard. The key idea of this idiom is to bind the resource acquisition and release to an object’s
lifetime. As the name suggests, the lifetime of the object is scoped. Scoped means that the C++ run
time is responsible for object destruction and, therefore, for releasing the resource.

The class ScopedLock implements scoped locking.

Scoped Locking

1 // scopedLock.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <new>

6 #include <string>

7

8 class ScopedLock{

9 private:

10 std::mutex& mut;

11 public:

12 explicit ScopedLock(std::mutex& m): mut(m){

13 mut.lock();

14 std::cout << "Lock the mutex: " << &mut << '\n';

15 }

16 ~ScopedLock(){

17 std::cout << "Release the mutex: " << &mut << '\n';

18 mut.unlock();

19 }

20 };

21

22 int main(){

23

24 std::cout << '\n';
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25

26 std::mutex mutex1;

27 ScopedLock scopedLock1{mutex1};

28

29 std::cout << "\nBefore local scope" << '\n';

30 {

31 std::mutex mutex2;

32 ScopedLock scopedLock2{mutex2};

33 }

34 std::cout << "After local scope" << '\n';

35

36 std::cout << "\nBefore try-catch block" << '\n';

37 try{

38 std::mutex mutex3;

39 ScopedLock scopedLock3{mutex3};

40 throw std::bad_alloc();

41 }

42 catch (std::bad_alloc& e){

43 std::cout << e.what();

44 }

45 std::cout << "\nAfter try-catch block" << '\n';

46

47 std::cout << '\n';

48

49 }

ScopedLock gets its mutex by reference (line 12). The mutex is locked in the constructor (line 13) and
unlocked in the destructor (line 18). Thanks to the RAII idiom, the object’s destruction and, therefore,
the unlocking of the mutex is done automatically.

Scoped locking has the following advantages and disadvantages.

• Advantage:

– Robustness, because the locks are automatically acquired and released

• Disadvantages:

– Recursive locking of a std::mutex is undefined behavior and may typically cause a
deadlock

– Locks are not automatically released if the c function longjmp¹³ is used; longjpm does not
call C++ destructors of scoped objects

¹³https://en.cppreference.com/w/cpp/utility/program/longjmp

https://en.cppreference.com/w/cpp/utility/program/longjmp
https://en.cppreference.com/w/cpp/utility/program/longjmp
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Deterministic destruction with scoped locking

The scope of scopedLock1 ends at the end of the main function. Consequentially, mutex1 is unlocked.
The same holds for mutex2 in line 31 and mutex3 in line 38. They are automatically unlocked at the end
of there local scopes (lines 33 and 41). For mutex3, the destructor of the scopedLock3 is also invoked if
an exception occurs. Interestingly, mutex3 reuses the memory of mutex2 because both have the same
address.

C++17 supports locks in four variations. C++ has a std::lock_guard / std::scoped_lock for the simple,
and a std::unique_lock / std::shared_lock for the advanced use cases such as the explicit locking or
unlocking of the mutex. You can read the details in the subsection locks.

9.2.1.1 Further Information

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects¹⁴

9.2.2 Strategized Locking

Assume you write code such as a library, which should be used in various domains, including
concurrent ones. To be on the safe side, you protect the critical sections with a lock. If your library now
runs in a single-threaded environment, you have a performance issue because you implemented an
expensive synchronization mechanism that is unnecessary. Now, strategized locking comes to your
rescue.

¹⁴https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/


Synchronization Patterns 466

Strategized locking is the idea of the strategy pattern applied to locking. This means putting your
locking strategy into an object and making it into a pluggable component of your system. First of all:
What is the strategy pattern?

9.2.2.1 Strategy Pattern

The Strategy Pattern

The strategy pattern is one of the book’s classic behavioral patterns Design Patterns: Elements of
Reusable Object-Oriented Software¹⁵. It’s also known as a policy. The critical idea is defining a family
of algorithms and encapsulating each algorithm in an object. Consequently, the algorithms become
pluggable components.

The Strategy Pattern

1 // strategy.cpp

2

3 #include <iostream>

4 #include <memory>

5

6 class Strategy {

7 public:

8 virtual void operator()() = 0;

9 virtual ~Strategy() = default;

10 };

11

12 class Context {

13 std::shared_ptr<Strategy> _strat;

14 public:

15 explicit Context() : _strat(nullptr) {}

¹⁵https://en.wikipedia.org/wiki/Design_Patterns

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
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16 void setStrategy(std::shared_ptr<Strategy> strat) { _strat = strat; }

17 void strategy() { if (_strat) (*_strat)(); }

18 };

19

20 class Strategy1 : public Strategy {

21 void operator()() override {

22 std::cout << "Foo" << '\n';

23 }

24 };

25

26 class Strategy2 : public Strategy {

27 void operator()() override {

28 std::cout << "Bar" << '\n';

29 }

30 };

31

32 class Strategy3 : public Strategy {

33 void operator()() override {

34 std::cout << "FooBar" << '\n';

35 }

36 };

37

38 int main() {

39

40 std::cout << '\n';

41

42 Context con;

43

44 con.setStrategy( std::shared_ptr<Strategy>(new Strategy1) );

45 con.strategy();

46

47 con.setStrategy( std::shared_ptr<Strategy>(new Strategy2) );

48 con.strategy();

49

50 con.setStrategy( std::shared_ptr<Strategy>(new Strategy3) );

51 con.strategy();

52

53 std::cout << '\n';

54

55 }

The abstract class Strategy in lines 6 to 10 defines the strategy. Each particular strategy, such as
Strategy1 (line 20), Strategy2 (line 26), or Strategy3 (line 32), has to support the function call operator
(line 8). The Context is the user of various strategies. It sets the particular strategy in line 16 and
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executes it in line 17. Because the Context executes the strategy via a pointer to the Strategy class, the
overridden member functions of Strategy1, Strategy2, and Strategie3 can be private. The context
con uses various strategies.

The Strategy Pattern applied

9.2.2.2 Implementation

Strategized locking often applies scoped locking. There are two typical ways to implement strategized
locking: run-time polymorphism (object-orientation) or compile-time polymorphism (templates).
Both ways improve the customization and extension of the locking strategy, ease the maintenance
of the system, and support the reuse of components. Also, implementing the strategized locking at
run-time or compile-time polymorphism differ in various aspects

• Advantages:
– Run-time Polymorphism

* allows it to configure the locking strategy during run time.
* is easier to understand for developers who have an object-oriented background.

– Compile-Time Polymorphism
* has no abstraction penalty.
* has a flat hierarchy.

• Disadvantages:
– Run-time Polymorphism

* needs an additional pointer indirection.
* may have a deep derivation hierarchy.

– Compile-Time Polymorphism
* may generate a very lengthy message in the error case, but the use of concepts such
as BasicLockable in C++20 causes concise error messages.

After this theoretical discussion, I implement the strategized locking in both variations. The strategized
locking supports, in my example, no-locking, exclusive locking, and shared locking. For simplicity
reasons, I used internally already existing mutexes. Additionally, the strategized locking models
scoped locking.

9.2.2.2.1 Runtime Polymorphism

The program strategizedLockingRuntime.cpp presents three different mutexes.
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Strategized Locking via Runtime Polymorphism
1 // strategizedLockingRuntime.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <shared_mutex>

6

7 class Lock {

8 public:

9 virtual void lock() const = 0;

10 virtual void unlock() const = 0;

11 };

12

13 class StrategizedLocking {

14 Lock& lock;

15 public:

16 StrategizedLocking(Lock& l): lock(l){

17 lock.lock();

18 }

19 ~StrategizedLocking(){

20 lock.unlock();

21 }

22 };

23

24 struct NullObjectMutex{

25 void lock(){}

26 void unlock(){}

27 };

28

29 class NoLock : public Lock {

30 void lock() const override {

31 std::cout << "NoLock::lock: " << '\n';

32 nullObjectMutex.lock();

33 }

34 void unlock() const override {

35 std::cout << "NoLock::unlock: " << '\n';

36 nullObjectMutex.unlock();

37 }

38 mutable NullObjectMutex nullObjectMutex;

39 };

40

41 class ExclusiveLock : public Lock {

42 void lock() const override {

43 std::cout << " ExclusiveLock::lock: " << '\n';

44 mutex.lock();
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45 }

46 void unlock() const override {

47 std::cout << " ExclusiveLock::unlock: " << '\n';

48 mutex.unlock();

49 }

50 mutable std::mutex mutex;

51 };

52

53 class SharedLock : public Lock {

54 void lock() const override {

55 std::cout << " SharedLock::lock_shared: " << '\n';

56 sharedMutex.lock_shared();

57 }

58 void unlock() const override {

59 std::cout << " SharedLock::unlock_shared: " << '\n';

60 sharedMutex.unlock_shared();

61 }

62 mutable std::shared_mutex sharedMutex;

63 };

64

65 int main() {

66

67 std::cout << '\n';

68

69 NoLock noLock;

70 StrategizedLocking stratLock1{noLock};

71

72 {

73 ExclusiveLock exLock;

74 StrategizedLocking stratLock2{exLock};

75 {

76 SharedLock sharLock;

77 StrategizedLocking startLock3{sharLock};

78 }

79 }

80

81 std::cout << '\n';

82

83 }

The class StrategizedLocking has a lock (line 14). StrategizedLocking models scoped locking and,
therefore, locks the mutex in the constructor (line16) and unlocks it in the destructor (line 19). Lock
(lines 7 - 11) is an abstract class and defines all derived classes’ interface. These are the classes
NoLock (line 29), ExclusiveLock (line 41), and SharedLock (line 53). SharedLock invokes lock_shared
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(line 56) and unlock_shared on its std::shared_mutex. Each of these locks holds one of the mutexes
NullObjectMutex (line 38), std::mutex (line 50), or std::shared_mutex (line 62). NullObjectMutex is a no-
op placeholder. The mutexes are declared as mutable. Therefore, they are usable in constant member
functions such as lock and unlock.

Null Object
The class NullObjectMutex is an example of a Null Object Pattern¹⁶, which is often quite
helpful. It consists of empty member functions, and it is just a placeholder so that the
optimizer can delete it.

9.2.2.2.2 Compile-Time Polymorphism

The template-based implementation is quite similar to the object-oriented-based implementation.

Strategized Locking via Compile-Time Polymorphism

1 // strategizedLockingCompileTime.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <shared_mutex>

6

7

8 template <typename Lock>

9 class StrategizedLocking {

10 Lock& lock;

11 public:

12 StrategizedLocking(Lock& l): lock(l){

13 lock.lock();

14 }

15 ~StrategizedLocking(){

16 lock.unlock();

17 }

18 };

19

20 struct NullObjectMutex {

21 void lock(){}

22 void unlock(){}

23 };

24

25 class NoLock{

¹⁶https://en.wikipedia.org/wiki/Null_object_pattern

https://en.wikipedia.org/wiki/Null_object_pattern
https://en.wikipedia.org/wiki/Null_object_pattern


Synchronization Patterns 472

26 public:

27 void lock() const {

28 std::cout << "NoLock::lock: " << '\n';

29 nullObjectMutex.lock();

30 }

31 void unlock() const {

32 std::cout << "NoLock::unlock: " << '\n';

33 nullObjectMutex.lock();

34 }

35 mutable NullObjectMutex nullObjectMutex;

36 };

37

38 class ExclusiveLock {

39 public:

40 void lock() const {

41 std::cout << " ExclusiveLock::lock: " << '\n';

42 mutex.lock();

43 }

44 void unlock() const {

45 std::cout << " ExclusiveLock::unlock: " << '\n';

46 mutex.unlock();

47 }

48 mutable std::mutex mutex;

49 };

50

51 class SharedLock {

52 public:

53 void lock() const {

54 std::cout << " SharedLock::lock_shared: " << '\n';

55 sharedMutex.lock_shared();

56 }

57 void unlock() const {

58 std::cout << " SharedLock::unlock_shared: " << '\n';

59 sharedMutex.unlock_shared();

60 }

61 mutable std::shared_mutex sharedMutex;

62 };

63

64 int main() {

65

66 std::cout << '\n';

67

68 NoLock noLock;

69 StrategizedLocking<NoLock> stratLock1{noLock};

70
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71 {

72 ExclusiveLock exLock;

73 StrategizedLocking<ExclusiveLock> stratLock2{exLock};

74 {

75 SharedLock sharLock;

76 StrategizedLocking<SharedLock> startLock3{sharLock};

77 }

78 }

79

80 std::cout << '\n';

81

82 }

The programs strategizedLockingRuntime.cpp and strategizedLockingCompileTime.cpp produce the
same output:

StrategizedLocking

The locks NoLock (line 25), ExclusiveLock (line 38), and SharedLock (line 51) have no abstract base
class. The consequence is that StrategizedLocking can be instantiated with an object that does not
support the right interface. This instantiation would end in a compile-time error. This loophole is
closed with C++20. Instead of template <typename Lock> class StrategizedLocking you can use the
concept BasicLockable: template <BasicLockable Lock> class StrategizedLocking. This means that
all used locks have to support the concept¹⁷ BasicLockable. A concept is a named requirement, and

¹⁷https://en.cppreference.com/w/cpp/language/constraints

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints
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many concepts are already defined in the C++20 concepts library¹⁸. The concept BasicLockable¹⁹ is
only used in the text of the C++20 standard. Consequently, I define and use the concept BasicLockable
in the following improved implementation of the strategized locking at compile time.

Strategized Locking via Compile-Time Polymorphism using the concept BasicLockable

1 // strategizedLockingCompileTimeWithConcepts.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <shared_mutex>

6

7 template <typename T>

8 concept BasicLockable = requires(T lo) {

9 lo.lock();

10 lo.unlock();

11 };

12

13 template <BasicLockable Lock>

14 class StrategizedLocking {

15 Lock& lock;

16 public:

17 StrategizedLocking(Lock& l): lock(l){

18 lock.lock();

19 }

20 ~StrategizedLocking(){

21 lock.unlock();

22 }

23 };

24

25 struct NullObjectMutex {

26 void lock(){}

27 void unlock(){}

28 };

29

30 class NoLock{

31 public:

32 void lock() const {

33 std::cout << "NoLock::lock: " << '\n';

34 nullObjectMutex.lock();

35 }

36 void unlock() const {

37 std::cout << "NoLock::unlock: " << '\n';

¹⁸https://en.cppreference.com/w/cpp/concepts
¹⁹https://en.cppreference.com/w/cpp/named_req

https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/named_req
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/named_req
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38 nullObjectMutex.lock();

39 }

40 mutable NullObjectMutex nullObjectMutex;

41 };

42

43 class ExclusiveLock {

44 public:

45 void lock() const {

46 std::cout << " ExclusiveLock::lock: " << '\n';

47 mutex.lock();

48 }

49 void unlock() const {

50 std::cout << " ExclusiveLock::unlock: " << '\n';

51 mutex.unlock();

52 }

53 mutable std::mutex mutex;

54 };

55

56 class SharedLock {

57 public:

58 void lock() const {

59 std::cout << " SharedLock::lock_shared: " << '\n';

60 sharedMutex.lock_shared();

61 }

62 void unlock() const {

63 std::cout << " SharedLock::unlock_shared: " << '\n';

64 sharedMutex.unlock_shared();

65 }

66 mutable std::shared_mutex sharedMutex;

67 };

68

69 int main() {

70

71 std::cout << '\n';

72

73 NoLock noLock;

74 StrategizedLocking<NoLock> stratLock1{noLock};

75

76 {

77 ExclusiveLock exLock;

78 StrategizedLocking<ExclusiveLock> stratLock2{exLock};

79 {

80 SharedLock sharLock;

81 StrategizedLocking<SharedLock> startLock3{sharLock};

82 }
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83 }

84

85 std::cout << '\n';

86

87 }

Lines (7 - 11) define the concept BasicLockable. BasicLockable requires that an object lo of type T that
lo support the member functions lock and unlock. The use of the concept is straightforward. Instead
of typename, I use the concept BasicLockable in the template declaration of StrategizedLocking (line
13). What happens, when I rename the member function unlock (line 49) of the class ExclusiveLock
into unlck(). The compilation fails and the compiler says essentially that the constraints for the class
StrategizedLocking are not satisfied because the call lo.unlock() would be invalid.

You can read more details about concepts in my blogposts on ModernesCpp/concepts²⁰ or in my
C++20²¹ book.

9.2.2.3 Further Information

• Design Patterns: Elements of Reusable Object-Oriented Software²²

• Strategy Pattern²³

• Null Object Pattern²⁴

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects²⁵

9.2.3 Thread-Safe Interface

The thread-safe interface fits very well when the critical sections are just objects. The naive idea to
protect all member functions with a lock causes, in the best case, a performance issue and, in the worst
case, a deadlock. The small pseudocode makes my point clear.

²⁰https://www.modernescpp.com/index.php/tag/concepts
²¹https://leanpub.com/c20
²²https://en.wikipedia.org/wiki/Design_Patterns
²³https://en.wikipedia.org/wiki/Strategy_pattern
²⁴https://en.wikipedia.org/wiki/Null_object_pattern
²⁵https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://www.modernescpp.com/index.php/tag/concepts
https://leanpub.com/c20
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Null_object_pattern
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.modernescpp.com/index.php/tag/concepts
https://leanpub.com/c20
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Null_object_pattern
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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struct Critical{

void memberFunction1(){

lock(mut);

memberFunction2();

...

}

void memberFunction2(){

lock(mut);

...

}

mutex mut;

};

Critical crit;

crit.memberFunction1();

Calling crit.memberFunction1 causes the mutex mut being locked twice. For simplicity reasons the
lock is a scoped lock. Here are the two issues:

1. when lock is a recursive lock, the second lock(mut) in memberFunction2 is redundant.

2. when lock is a non-recursive lock, the second lock(mut) in memberFunction2 leads to undefined
behavior. Most of the time, you get a deadlock.

The thread-safe interface overcomes both issues. Here is the straightforward idea:

• All interface member functions (public) should use a lock.

• All implementation member functions (protected and private) must not use a lock.

• The interface member functions call only protected or privatemember functions but no public
member functions.

The threadSafeInterface.cpp program shows its usage.

The Thread-Safe Interface

1 // threadSafeInterface.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <thread>

6

7 class Critical{

8

9 public:

10 void interface1() const {

11 std::lock_guard<std::mutex> lockGuard(mut);

12 implementation1();
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13 }

14 void interface2(){

15 std::lock_guard<std::mutex> lockGuard(mut);

16 implementation2();

17 implementation3();

18 implementation1();

19 }

20 private:

21 void implementation1() const {

22 std::cout << "implementation1: "

23 << std::this_thread::get_id() << '\n';

24 }

25 void implementation2(){

26 std::cout << " implementation2: "

27 << std::this_thread::get_id() << '\n';

28 }

29 void implementation3(){

30 std::cout << " implementation3: "

31 << std::this_thread::get_id() << '\n';

32 }

33

34

35 mutable std::mutex mut;

36

37 };

38

39 int main(){

40

41 std::cout << '\n';

42

43 std::thread t1([]{

44 const Critical crit;

45 crit.interface1();

46 });

47

48 std::thread t2([]{

49 Critical crit;

50 crit.interface2();

51 crit.interface1();

52 });

53

54 Critical crit;

55 crit.interface1();

56 crit.interface2();

57
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58 t1.join();

59 t2.join();

60

61 std::cout << '\n';

62

63 }

Three threads, including the main thread, use instances of Critical. Thanks to the thread-safe
interface, all calls to the public API are synchronized. The mutex mut in line 35 is mutable and can be
used in the constant member function interface1.

The advantages of the thread-safe interface are threefold.

1. A recursive call of a mutex is not possible. Recursive calls on a non-recursive mutex are
undefined behavior in C++ and usually end in a deadlock.

2. The program uses minimal locking and, therefore, minimal synchronization. Using just a
std::recursive_mutex in each public or private member function of the class Critical would
end in more expensive synchronizations.

3. From the user perspective, Critical is straightforward to use because synchronization is only
an implementation detail.

Each interface member function delegates its work to the corresponding implementation member
function. The indirection overhead is a typical disadvantage of the thread-safe interface pattern.

The output of the program shows the interleaving of the three threads.
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Thread-Safe Interface

Although the thread-safe interface seems easy to implement, there are two grave perils you have to
keep in mind.

9.2.3.1 Perils

Using a static member in your class or having virtual interfaces requires special care.

9.2.3.1.1 Static members

When your class has a staticmember that is not constant, you have to synchronize all member function
calls on the class instances.

The Thread-Safe Interface with a static member

1 class Critical{

2

3 public:

4 void interface1() const {

5 std::lock_guard<std::mutex> lockGuard(mut);

6 implementation1();

7 }

8 void interface2(){

9 std::lock_guard<std::mutex> lockGuard(mut);

10 implementation2();
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11 implementation3();

12 implementation1();

13 }

14

15 private:

16 void implementation1() const {

17 std::cout << "implementation1: "

18 << std::this_thread::get_id() << '\n';

19 ++called;

20 }

21 void implementation2(){

22 std::cout << " implementation2: "

23 << std::this_thread::get_id() << '\n';

24 ++called;

25 }

26 void implementation3(){

27 std::cout << " implementation3: "

28 << std::this_thread::get_id() << '\n';

29 ++called;

30 }

31

32 inline static int called{0};

33 inline static std::mutex mut;

34

35 };

The class Critical now has the static member called (line 32) to count how often the implementation
functionswere called. All instances of Critical use the same staticmember called and have, therefore,
to be synchronized. The critical section contains, in this case, all instances of Critical.

Inline static data members
Since C++17, static data members can be declared inline. An inline static data member
can be defined and initialized in the class definition.

struct X

{

inline static int n = 1;

};
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9.2.3.1.2 Virtuality

When you override a virtual interface function, the overriding function should have a lock even if the
function is private.

The Thread-Safe Interface with a virtual member function

1 // threadSafeInterfaceVirtual.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <thread>

6

7 class Base{

8

9 public:

10 virtual void interface() {

11 std::lock_guard<std::mutex> lockGuard(mut);

12 std::cout << "Base with lock" << '\n';

13 }

14 private:

15 std::mutex mut;

16 };

17

18 class Derived: public Base{

19

20 void interface() override {

21 std::cout << "Derived without lock" << '\n';

22 }

23

24 };

25

26 int main(){

27

28 std::cout << '\n';

29

30 Base* base1 = new Derived;

31 base1->interface();

32

33 Derived der;

34 Base& base2 = der;

35 base2.interface();

36

37 std::cout << '\n';

38

39 }
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In the calls base1->interface and base2.interface the static type of base1 and base2 is Base and,
therefore, interface is a public member function. Because the interface member function is virtual,
the call happens at run time using the dynamic type Derived. At last, the private member function
interface of the class Derived is invoked.

Thread-Safe Interface with virtual member function

There are two typical ways to overcome this issue.

1. Make the member function interface a non-virtual member function. This technique is called
NVI (Non-Virtual Interfac)²⁶. The non-virtual member functions guarantees that the interface
function of the base class Base is used. Additionally, overriding the interface function using
override causes a compile-time error because there is nothing to override.

2. Declare the member function interface as final: virtual void interface() final. Thanks to
final, overriding an as final declared virtual member function causes a compile-time error.

Although I presented two ways to overcome this issue, I strongly suggest you prefer the NVI idiom.
Use early binding if you don’t need late binding (virtuality).

9.2.3.2 Further Information

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects²⁷

9.2.4 Guarded Suspension

The guarded suspension basic variant combines a lock and a precondition that must be satisfied. If the
precondition is not fulfilled, that calling thread puts itself to sleep. To avoid a race condition which
may result in a data race or a deadlock, the checking thread uses a lock.

Various variants exist:

• The waiting thread can passively be notified about the state change or actively ask for the state
change. In short, I call this push versus pull principle.

²⁶https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface
²⁷https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://en.wikibooks.org/wiki/More_C++_Idioms/Non-Virtual_Interface
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://en.wikibooks.org/wiki/More_C++_Idioms/Non-Virtual_Interface
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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• The waiting can be done with or without a time boundary.

• The notification can be sent to one or all waiting threads.

I have already discussed in depth each of the three variants. What is, therefore, left for this section is
to bundle all information in one place. For the details, please follow the links in this subsection to the
guarded suspension.

9.2.4.1 Push versus Pull Principle

Let me start with the push principle.

9.2.4.1.1 Push Principle

Most of the time, you use a condition variable or a future/promise pair to synchronize threads. The
condition variable or the promise send the notification to the waiting thread. A promise has no
notify_one or notify_all member function. Instead, a valueless set_value call is typically used to
signal a notification. The following program snippets show the thread sending the notification and
the waiting thread.

• Condition variables

void waitingForWork(){

std::cout << "Worker: Waiting for work." << '\n';

std::unique_lock<std::mutex> lck(mutex_);

condVar.wait(lck, []{ return dataReady; });

doTheWork();

std::cout << "Work done." << '\n';

}

void setDataReady(){

{

std::lock_guard<std::mutex> lck(mutex_);

dataReady = true;

}

std::cout << "Sender: Data is ready." << '\n';

condVar.notify_one();

}

• Future/promise pair



Synchronization Patterns 485

void waitingForWork(std::future<void>&& fut){

std::cout << "Worker: Waiting for work." << '\n';

fut.wait();

doTheWork();

std::cout << "Work done." << '\n';

}

void setDataReady(std::promise<void>&& prom){

std::cout << "Sender: Data is ready." << '\n';

prom.set_value();

}

9.2.4.1.2 Pull Principle

Instead of passively waiting for the state change, you can actively ask for it. This pull principle is not
natively supported in C++ but can be, for example, implemented with atomics.

std::vector<int> mySharedWork;

std::atomic<bool> dataReady(false);

void waitingForWork(){

std::cout << "Waiting " << '\n';

while (!dataReady.load()){

std::this_thread::sleep_for(std::chrono::milliseconds(5));

}

mySharedWork[1] = 2;

std::cout << "Work done " << '\n';

}

void setDataReady(){

mySharedWork = {1, 0, 3};

dataReady = true;

std::cout << "Data prepared" << '\n';

}

9.2.4.2 Waiting with and without time boundary

A condition variable and a future have three member functions for waiting: wait, wait_for, and wait_-

until. The wait_for variant requires a time duration and the wait_until variant a time point. I skip
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waiting without time boundaries (wait) in this section not to bore you. The last section to the push
principle already provides two examples.

The consumer thread in various waiting strategies waits for the time duration steady_clock::now() +

dur. If the promise is ready it asks for the value; if not, it just displays its id: this_thread::get_it().

void producer(promise<int>&& prom){

cout << "PRODUCING THE VALUE 2011\n\n";

this_thread::sleep_for(seconds(5));

prom.set_value(2011);

}

void consumer(shared_future<int> fut,

steady_clock::duration dur){

const auto start = steady_clock::now();

future_status status= fut.wait_until(steady_clock::now() + dur);

if ( status == future_status::ready ){

lock_guard<mutex> lockCout(coutMutex);

cout << this_thread::get_id() << " ready => Result: " << fut.get()

<< '\n';

}

else{

lock_guard<mutex> lockCout(coutMutex);

cout << this_thread::get_id() << " stopped waiting." << '\n';

}

const auto end= steady_clock::now();

lock_guard<mutex> lockCout(coutMutex);

cout << this_thread::get_id() << " waiting time: "

<< getDifference(start,end) << " ms" << '\n';

}

9.2.4.3 Notify one or all waiting threads

notify_one awakes one of the waiting threads, notify_all awakes all of the waiting threads. With
notify_one, you have no guarantee which one will be awakened. The other threads do stay in the wait
state. This could not happen with a std::future, because there is a one-to-one association between the
future and the promise. If you want to simulate a one-to-many association, use a std::shared_future
instead of a std::future because a std::shared_future can be copied.

The following program shows a simple workflow with one-to-one and one-to-many associations
between promises and futures.
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A boss/worker workflow
1 // bossWorker.cpp

2

3 #include <future>

4 #include <chrono>

5 #include <iostream>

6 #include <random>

7 #include <string>

8 #include <thread>

9 #include <utility>

10

11 int getRandomTime(int start, int end){

12

13 std::random_device seed;

14 std::mt19937 engine(seed());

15 std::uniform_int_distribution<int> dist(start,end);

16

17 return dist(engine);

18 };

19

20 class Worker{

21 public:

22 explicit Worker(const std::string& n):name(n){};

23

24 void operator() (std::promise<void>&& preparedWork,

25 std::shared_future<void> boss2Worker){

26

27 // prepare the work and notfiy the boss

28 int prepareTime= getRandomTime(500, 2000);

29 std::this_thread::sleep_for(std::chrono::milliseconds(prepareTime));

30 preparedWork.set_value();

31 std::cout << name << ": " << "Work prepared after "

32 << prepareTime << " milliseconds." << '\n';

33

34 // still waiting for permission to start working

35 boss2Worker.wait();

36 }

37 private:

38 std::string name;

39 };

40

41 int main(){

42

43 std::cout << '\n';

44
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45 // define the std::promise => Instruction from the boss

46 std::promise<void> startWorkPromise;

47

48 // get the std::shared_future's from the std::promise

49 std::shared_future<void> startWorkFuture= startWorkPromise.get_future();

50

51 std::promise<void> herbPrepared;

52 std::future<void> waitForHerb = herbPrepared.get_future();

53 Worker herb(" Herb");

54 std::thread herbWork(herb, std::move(herbPrepared), startWorkFuture);

55

56 std::promise<void> scottPrepared;

57 std::future<void> waitForScott = scottPrepared.get_future();

58 Worker scott(" Scott");

59 std::thread scottWork(scott, std::move(scottPrepared), startWorkFuture);

60

61 std::promise<void> bjarnePrepared;

62 std::future<void> waitForBjarne = bjarnePrepared.get_future();

63 Worker bjarne(" Bjarne");

64 std::thread bjarneWork(bjarne, std::move(bjarnePrepared), startWorkFuture);

65

66 std::cout << "BOSS: PREPARE YOUR WORK.\n " << '\n';

67

68 // waiting for the worker

69 waitForHerb.wait(), waitForScott.wait(), waitForBjarne.wait();

70

71 // notify the workers that they should begin to work

72 std::cout << "\nBOSS: START YOUR WORK. \n" << '\n';

73 startWorkPromise.set_value();

74

75 herbWork.join();

76 scottWork.join();

77 bjarneWork.join();

78

79 }

The key idea of the program is that the boss (main-thread) has three workers: herb (line 53), scott (line
58), and bjarne (line 63). A thread represents each worker. In line 64, the boss waits until all workers
are done with their work package preparation. This means each worker sends, after an arbitrary
time, the notification to the boss that he is done. The worker-to-the-boss notification is a one-to-one
relation (line 30) because it goes to a std::future. In contrast, the instruction to start the work is a
one-to-many notification (line 73) from the boss to its workers. For this one-to-many notification, a
std::shared_future is necessary.
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A Boss/Worker Workflow

9.2.4.4 Further Information

• Concurrent Programming in Java: Design Principles and Patterns (Doug Lea)²⁸. The difference
between C++ and Java programming languages should not be an issue because the essence of
concurrent programming is much deeper than syntax of a particular language.

Distilled Information
• A necessary prerequisite for a data race is shared mutable state. Synchronization
patterns boil down to two concerns: dealing with sharing and dealing with
mutation.

• The three patterns copied value, thread-specific storage, and future prevent the
sharing of date.

• Thanks to the patterns scoped locking, strategized locking, thread-safe interface, or
guarded suspension, you can safely share mutable data between threads.

²⁸http://gee.cs.oswego.edu/dl/cpj/

http://gee.cs.oswego.edu/dl/cpj/
http://gee.cs.oswego.edu/dl/cpj/


10. Concurrent Architecture

Cippi designs a building

The patterns presented in this chapter are classics. The presented patterns are very well explained in
the invaluable book Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects¹. My goal for this chapter is to give a concise overview of the Active Object, the Monitor
Object. Additionally, I write about the Half-Sync/Half-Async pattern and the two strongly related
patterns: Reactor, and Proactor. As in the last chapter on Synchronization Patterns, I’m wearing C++
glasses. Before I dive into the patterns, here are the patterns from a birds-eye perspective.

• TheActive Object design pattern decouples member function execution frommember function
invocation for objects that each reside in their own thread of control. The goal is to introduce
concurrency by using asynchronous member function invocation and a scheduler for handling
requests. Wikipedia: Active object²

• The Monitor Object design pattern synchronizes concurrent member function execution to
ensure that only one member function at a time runs within an object. It also allows object’s
member functions to schedule their execution sequences cooperatively. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects³

Both patterns synchronize and schedule member function invocation. The main difference is that the
Active Object executes its member function in a different thread but the monitor in the same thread
as the client. In contrast to the Active Object and the Monitor Object, which have a subsystem focus
and are, therefore, typically called design patterns, the Half-Sync/Half-Async, the Reactor, and the
Proactor pattern have system perspective and are consequently called architectural patterns.

¹https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
²https://en.wikipedia.org/wiki/Active_object
³https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://en.wikipedia.org/wiki/Active_object
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://en.wikipedia.org/wiki/Active_object
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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• The Half-Sync/Half-Async architectural pattern decouples asynchronous and synchronous
service processing in concurrent systems to simplify programming without unduly reducing
performance. The pattern introduces two intercommunicating layers, one for asynchronous
and one for synchronous service processing. Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects⁴

• The Reactor pattern is an event-driven framework to demultiplex and dispatch service requests
concurrently onto various service providers. Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects⁵

• The Proactor pattern enables event-driven applications to demultiplex and dispatch service
requests triggered by the completion of an asynchronous operation. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects⁶

10.1 Active Object

The Active Object design pattern decouples method invocation from method execution. The method
invocation is performed on the client thread, but the method execution on the Active Object. The
Active Object has its own thread and a list of method request objects (short request) to be executed.
The client’s method invocation enqueues the requests on the Active Object’s list. The requests are
dispatched on the servant. The Active Object pattern is also known as Concurrent Object.

10.1.1 Challenges

When many threads access a shared object synchronized, the following challenges have to be solved.

1. A thread invoking a processing-intensive member function should not block the other threads
invoking the same object for too long.

2. It should be easy to synchronized access a shared object.

3. The concurrency characteristics of the executed requests should be adaptable to the concrete
hardware and software.

10.1.2 Solution

The client’s method invocation goes to a proxy, which represents the interface of the Active Object.
The servant implements these member functions and runs in the Active Object’s thread. At run time,
the proxy transforms the invocation into amethod invocation on the servant. This request is enqueued
in an activation list by the scheduler. A scheduler’s event loop runs in the same thread as the servant,
dequeues the requests from the activation list, removes them, and dispatches them on the servant.
The client obtains the result of the method invocation via a future from the proxy.

⁴https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
⁵https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
⁶https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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10.1.3 Components

The Active Object pattern consists of six components:

1. The proxy provides an interface for the accessible member functions on the Active Object. The
proxy triggers the construction of a request which goes into the activation list. The proxy runs
in the client thread.

2. The method request class defines the interface for the method executing on an Active Object.
This interface also contains guard methods, indicating if the job is ready to run. The request
includes all context information to be executed later.

3. The activation list maintains the pending requests. The activation list decouples the client’s
thread from the Active Object thread. The proxy inserts the request object, and the scheduler
removes them. Consequently, the access onto the activation list must be serialized.

4. The scheduler runs in the thread of the Active Object and decides which request from the
activation list is executed next. The scheduler evaluates the guards of the request to determine
if the request could run.

5. The servant implements the Active Object and runs in the active object’s thread. The servant
implements the interface of the method request, and the scheduler invokes its member
functions.

6. The future is created by the proxy and is only necessary if the request returns a result. Therefore,
the client receives the future and can obtain the result of the method invocation on the Active
Object. The client can wait for the outcome or poll for it.

10.1.4 Dynamic Behavior

The dynamic behavior of the Active Object consists on three phases:

1. Request construction and scheduling: The client invokes a method on the proxy. The proxy
creates a request and passes it to the scheduler. The scheduler enqueues the request on the
activation list. Additionally, the proxy returns a future to the client if the request returns a
result.

2. Member function execution: The scheduler determines which request becomes runnable by
evaluating the guard method of the request. It removes the request from the activation list and
dispatches it to the servant.

3. Completion: When the request returns something, it is stored in the future. The client can ask
for the result. When the client has the result, the request and the future can be deleted.

The following picture shows the sequence of messages.



Concurrent Architecture 493

Active Object
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Proxy
The proxy design pattern is one of the classics from the book Design Patterns:
Elements of Reusable Object-Oriented Software⁷. A proxy is an object which
stands for something else. A typical proxy could be a remote proxy CORBA⁸, a
security proxy, a virtual proxy which is created on-demand, or a smart pointer
such as std::shared_ptr⁹. Each proxy adds additional functionality to the object
it represents. A remote proxy stands for a remote object and gives the client
the illusion of a local object. A security proxy turns an insecure connection
into a secure connection by encrypting and decrypting data. A virtual proxy
encapsulates the creation of a heavy-weight object in a lazy fashion, and a smart
pointer manages the lifetime of the underlying memory.

Proxy

• The Proxy has the same interface, such as the RealSubject, manages the
reference, and often the subject’s lifetime.

• The Subject has the same interface such as the proxy and the RealSubject.
• The RealSubject provides the functionality.

The Wikipedia article about the proxy pattern¹⁰ gives you more details.

⁷https://en.wikipedia.org/wiki/Design_Patterns
⁸https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
⁹https://en.cppreference.com/w/cpp/memory/shared_ptr
¹⁰https://en.wikipedia.org/wiki/Proxy_pattern

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.wikipedia.org/wiki/Proxy_pattern
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10.1.5 Advantages and Disadvantages

Before I present a minimal implementation of the Active Object pattern, here are its advantages and
disadvantages.

• Advantages:

– The synchronization is only necessary on the Active Object’s thread but not on the client’s
threads.

– Clear separation between the client (user) and the server (implementer). The synchroniza-
tion challenges are on the implementer’s side.

– Enhanced throughput of the system because of the asynchronous execution of the requests.
Invoking processing-intensive member functions do not block the entire system.

– The scheduler can implement various strategies to execute the pending requests. If so, the
jobs can be executed in a different order they are enqueued.

• Disadvantages:

– If the requests are too fine-grained, the Active Object pattern’s performance overhead
such as the proxy, the activation list, and the scheduler may be excessive.

– Due to the scheduler’s scheduling strategy and the operating system’s scheduling, debug-
ging the Active Object pattern is often quite tricky. This holds, in particular, if the jobs
are executed in a different order, they are enqueued.

10.1.6 Implementation

The following example presents a simplified implementation of the Active Object pattern. In particular,
I don’t define an interface for the method requests on the active object, which the proxy and the
servant should implement. Further, the scheduler executes the next job when asked for it, and the run
member function of the Active Object creates the threads.

The involved types future<vector<future<pair<bool, int>>>> are often quite verbose. To improve
the readability, I heavily applied using declarations (lines 16 - 37).

Active Object

1 // activeObject.cpp

2

3 #include <algorithm>

4 #include <deque>

5 #include <functional>

6 #include <future>

7 #include <iostream>

8 #include <memory>

9 #include <mutex>

10 #include <numeric>
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11 #include <random>

12 #include <thread>

13 #include <utility>

14 #include <vector>

15

16 using std::async;

17 using std::boolalpha;

18 using std::cout;

19 using std::deque;

20 using std::distance;

21 using std::for_each;

22 using std::find_if;

23 using std::future;

24 using std::lock_guard;

25 using std::make_move_iterator;

26 using std::make_pair;

27 using std::move;

28 using std::mt19937;

29 using std::mutex;

30 using std::packaged_task;

31 using std::pair;

32 using std::random_device;

33 using std::sort;

34 using std::jthread;

35 using std::uniform_int_distribution;

36 using std::vector;

37

38 class IsPrime {

39 public:

40 pair<bool, int> operator()(int i) {

41 for (int j = 2; j * j <= i; ++j){

42 if (i % j == 0) return make_pair(false, i);

43 }

44 return make_pair(true, i);

45 }

46 };

47

48 class ActiveObject {

49 public:

50

51 future<pair<bool, int>> enqueueTask(int i) {

52 IsPrime isPrime;

53 packaged_task<pair<bool, int>(int)> newJob(isPrime);

54 auto isPrimeFuture = newJob.get_future();

55 auto pair = make_pair(move(newJob), i);
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56 {

57 lock_guard<mutex> lockGuard(activationListMutex);

58 activationList.push_back(move(pair));

59 }

60 return isPrimeFuture;

61 }

62

63 void run() {

64 vector<jthread> allServants;

65 // only one thread because the activation list is the bottleneck

66 for (int n = 0; n < 1; ++n) {

67 allServants.emplace_back([this] {

68 while ( !runNextTask() );

69 });

70 }

71 }

72

73 private:

74

75 bool runNextTask() {

76 lock_guard<mutex> lockGuard(activationListMutex);

77 auto empty = activationList.empty();

78 if (!empty) {

79 auto myTask= std::move(activationList.front());

80 activationList.pop_front();

81 myTask.first(myTask.second);

82 }

83 return empty;

84 }

85

86 deque<pair<packaged_task<pair<bool, int>(int)>, int >> activationList;

87 mutex activationListMutex;

88 };

89

90 vector<int> getRandNumbers(int number) {

91 random_device seed;

92 mt19937 engine(seed());

93 uniform_int_distribution<> dist(1000000, 1000000000);

94 vector<int> numbers;

95 for (long long i = 0 ; i < number; ++i) numbers.push_back(dist(engine));

96 return numbers;

97 }

98

99 future<vector<future<pair<bool, int>>>> getFutures(ActiveObject& activeObject,

100 int numberPrimes) {
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101 return async([&activeObject, numberPrimes] {

102 vector<future<pair<bool, int>>> futures;

103 auto randNumbers = getRandNumbers(numberPrimes);

104 for (auto numb: randNumbers){

105 futures.push_back(activeObject.enqueueTask(numb));

106 }

107 return futures;

108 });

109 }

110

111

112 int main() {

113

114 cout << boolalpha << '\n';

115

116 ActiveObject activeObject;

117

118 // a few clients enqueue work concurrently

119 auto client1 = getFutures(activeObject, 1998);

120 auto client2 = getFutures(activeObject, 2003);

121 auto client3 = getFutures(activeObject, 2011);

122 auto client4 = getFutures(activeObject, 2014);

123 auto client5 = getFutures(activeObject, 2017);

124

125 // give me the futures

126 auto futures = client1.get();

127 auto futures2 = client2.get();

128 auto futures3 = client3.get();

129 auto futures4 = client4.get();

130 auto futures5 = client5.get();

131

132 // put all futures together

133 futures.insert(futures.end(),make_move_iterator(futures2.begin()),

134 make_move_iterator(futures2.end()));

135

136 futures.insert(futures.end(),make_move_iterator(futures3.begin()),

137 make_move_iterator(futures3.end()));

138

139 futures.insert(futures.end(),make_move_iterator(futures4.begin()),

140 make_move_iterator(futures4.end()));

141

142 futures.insert(futures.end(),make_move_iterator(futures5.begin()),

143 make_move_iterator(futures5.end()));

144

145 // run the promises
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146 activeObject.run();

147

148 // get the results from the futures

149 vector<pair<bool, int>> futResults;

150 futResults.reserve(futures.size());

151 for (auto& fut: futures) futResults.push_back(fut.get());

152

153 sort(futResults.begin(), futResults.end());

154

155 // separate the primes from the non-primes

156 auto prIt = find_if(futResults.begin(), futResults.end(),

157 [](pair<bool, int> pa){ return pa.first == true; });

158

159 cout << "Number primes: " << distance(prIt, futResults.end()) << '\n';

160 cout << "Primes:" << '\n';

161 for_each(prIt, futResults.end(), [](auto p){ cout << p.second << " ";} );

162

163 cout << "\n\n";

164

165 cout << "Number no primes: " << distance(futResults.begin(), prIt) << '\n';

166 cout << "No primes:" << '\n';

167 for_each(futResults.begin(), prIt, [](auto p){ cout << p.second << " ";} );

168

169 cout << '\n';

170

171 }

First of all, the example’s general idea is that clients can enqueue jobs concurrently on the activation
list. The job of the servant is to determine which numbers are prime, and the activation list is part
of the Active Object. The Active Object runs the jobs enqueued in the activation list on a separate
thread, and the clients can ask for the results.

Here are the details. The five clients enqueue the work (lines 119 - 123) on the activeObject via the
getFutures function. getFutures takes the activeObject and a number numberPrimes. numberPrimes
random numbers are generated (line 103) between 1000000 and 1000000000 (line 93) and pushed on
the return value: vector<future<pair<bool, int>>. future<pair<bool, int> holds a bool and an
int. The bool indicates if the int is a prime. Let’s have a closer look at line 105: futures.push_-
back(activeObject.enqueueTask(numb)). This call triggers that a new job is enqueued on the activation
list (line 58). All calls on the activation list have to be protected. The activation list is a deque of
promises (line 86): deque<pair<packaged_task<pair<bool, int>(int)>, int >>. Each promise performs
the function object IsPrime (lines 38 - 46) when called. The return value is a pair of a bool and an int.
The bool indicates if the number int is prime.

Now, the work packages are prepared. Let’s start the calculation. All clients return in lines 126 - 130
their handles to the associated futures. Putting all futures together (lines 133 - 143) makesmy job easier.
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The call activeObject.run() in line 146 starts the execution. The member function run (line 63 - 71)
creates the threads that are going to execute the member function runNextTask (line 67). runNextTask
(lines 75 - 84) determines if the deque is not empty (line 78), and creates the new task. By calling
futResults.push_back(fut.get()) (line 151) on each future, all results are requested and pushed on
futResults. Line 153 sorts the vector of pairs: vector<pair<bool, int>>. The remaining lines present
the calculation. The iterator prIt in line 156 holds the first iterator to a pair that has a prime number.
The screenshot shows the number of primes distance(prIt, futResults.end()) (line 159) and the
primes (line 113). Only the first non-primes are displayed.

Active Object

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects¹¹

• Prefer Using Active Object instead of Naked Thread (Herb Sutter)¹²

• Active Object implementation in C++11¹³

¹¹https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
¹²http://www.drdobbs.com/parallel/prefer-using-active-objects-instead-of-n/225700095
¹³https://github.com/lightful/syscpp/

https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
http://www.drdobbs.com/parallel/prefer-using-active-objects-instead-of-n/225700095
https://github.com/lightful/syscpp/
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
http://www.drdobbs.com/parallel/prefer-using-active-objects-instead-of-n/225700095
https://github.com/lightful/syscpp/
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10.2 Monitor Object

The Monitor Object design pattern synchronizes concurrent member function execution to ensure
that only one member function at a time runs within an object. It also allows an object’s member
functions to schedule their execution sequences cooperatively. This pattern is also known as Thread-
Safe Passive Object.

10.2.1 Challenges

If many threads access a shared object concurrently, the following challenges exist.

1. Due to the concurrent access, the shared object must be protected from non-synchronized read
and write operations to avoid data races.

2. The necessary synchronization should be part of the implementation and not part of the
interface.

3. When a thread is done with the shared object, a notification should be triggered so that the
next thread can use the shared object. This mechanism helps avoid deadlocks and improves the
system’s overall performance.

4. After the execution of a member function, the invariants of the shared object must hold.

10.2.2 Solution

A client (thread) can access the Monitor Object’s synchronized member functions, and due to the
monitor lock, only one synchronized member function can run at any given point in time. Each
Monitor Object has a monitor condition that notifies the waiting clients.

10.2.3 Components

The Monitor Object consists of four components.
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Monitor Object

1. Monitor Object: The Monitor Object supports one or more member functions. Each client
must access the object through these member functions, and each member function runs in the
client’s thread.

2. Synchronized member functions: The synchronized member functions are the member
functions supported by theMonitor Object. Only onemember function can execute at any given
point in time. The Thread-Safe Interface helps to distinguish between the interface member
functions (synchronized member functions) and the implementation member functions of the
Monitor Object.

3. Monitor lock: EachMonitor Object has one monitor lock, which ensures that at most one client
can access the Monitor Object at any given point in time.

4. Monitor condition: The monitor condition allows separate threads to schedule their member
function invocations on the Monitor Object. When the current client is done with its invocation
of the synchronized member functions, the next waiting client is awakened to invoke the
Monitor Object’s synchronized member functions.

While the monitor lock ensures the synchronized member functions’ exclusive access, the monitor
condition guarantees minimal waiting for the clients. Essentially, the monitor lock protects from data
races and the condition monitor from deadlocks.

10.2.4 Dynamic Behavior

The interaction between the Monitor Object and its components has different phases.

• When a client invokes a synchronized member function on a Monitor Object, it must first lock
the global monitor lock. If the client is successful with its locking, it executes the synchronized
member function and unlocks the monitor lock at the end. If the client is not successful, the
client is blocked.
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• When the client is blocked because it cannot progress, it waits until the monitor condition sends
a notification. This notification happens when the monitor is unlocked. The notification can be
sent only to one or to all of the waiting clients. Typically, waiting means resource-friendly
sleeping in contrast to busy-waiting.

• When a client gets the notification to resume, it locks the monitor lock and executes the
synchronized member function. At the end of the synchronized member function, the monitor
lock is unlocked. The monitor condition sends a notification to signal that the next client can
execute its synchronized member function.

10.2.5 Advantages and Disadvantages

What are the advantages and disadvantages of the Monitor Object?

• Advantages:

– The client is not aware of the implicit synchronization of the Monitor Object, and the
synchronization is fully encapsulated in the implementation.

– The invoked synchronized member functions will be eventually automatically scheduled.
The notification/waiting mechanism of the monitor condition behaves as a simple
scheduler.

• Disadvantages:

– It is often quite challenging to change the synchronization mechanism of the synchroniza-
tion member functions because the functionality and the synchronization are strongly
coupled.

– When a synchronized member function invokes directly or indirectly the same Monitor
Object, a deadlock may occur.

The following example defines a ThreadSafeQueue.

Monitor Object

1 // monitorObject.cpp

2

3 #include <condition_variable>

4 #include <functional>

5 #include <queue>

6 #include <iostream>

7 #include <mutex>

8 #include <random>

9 #include <thread>

10

11 class Monitor {

12 public:

13 void lock() const {
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14 monitMutex.lock();

15 }

16

17 void unlock() const {

18 monitMutex.unlock();

19 }

20

21 void notify_one() const noexcept {

22 monitCond.notify_one();

23 }

24

25 template <typename Predicate>

26 void wait(Predicate pred) const {

27 std::unique_lock<std::mutex> monitLock(monitMutex);

28 monitCond.wait(monitLock, pred);

29 }

30

31 private:

32 mutable std::mutex monitMutex;

33 mutable std::condition_variable monitCond;

34 };

35

36 template <typename T>

37 class ThreadSafeQueue: public Monitor {

38 public:

39 void add(T val){

40 lock();

41 myQueue.push(val);

42 unlock();

43 notify_one();

44 }

45

46 T get(){

47 wait( [this] { return ! myQueue.empty(); } );

48 lock();

49 auto val = myQueue.front();

50 myQueue.pop();

51 unlock();

52 return val;

53 }

54

55 private:

56 std::queue<T> myQueue;

57 };

58
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59

60 class Dice {

61 public:

62 int operator()(){ return rand(); }

63 private:

64 std::function<int()> rand = std::bind(std::uniform_int_distribution<>(1, 6),

65 std::default_random_engine());

66 };

67

68

69 int main(){

70

71 std::cout << '\n';

72

73 constexpr auto NumberThreads = 10;

74

75 ThreadSafeQueue<int> safeQueue;

76

77 auto addLambda = [&safeQueue](int val){ safeQueue.add(val);

78 std::cout << val << " "

79 << std::this_thread::get_id() << "; ";

80 };

81 auto getLambda = [&safeQueue]{ safeQueue.get(); };

82

83 std::vector<std::thread> addThreads(NumberThreads);

84 Dice dice;

85 for (auto& thr: addThreads) thr = std::thread(addLambda, dice() );

86

87 std::vector<std::thread> getThreads(NumberThreads);

88 for (auto& thr: getThreads) thr = std::thread(getLambda);

89

90 for (auto& thr: addThreads) thr.join();

91 for (auto& thr: getThreads) thr.join();

92

93 std::cout << "\n\n";

94

95 }

The central idea of the example is that the Monitor Object is encapsulated in a class and can, therefore,
be reused. The class Monitor uses a std::mutex as monitor lock and std::condition_variable as
monitor condition. The class Monitor provides the minimal interface that a Monitor Object should
support.

ThreadSafeQueue in line 36 - 57 extends the std::queue in line 56 with a thread-safe interface.
ThreadSafeQueue derives from the class Monitor and uses its member functions to support the
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synchronized member functions add and get. The member functions add and get use the monitor lock
to protect theMonitor Object, particularly the non-thread-safe myQueue. add notifies the waiting thread
when a new item was added to myQueue. This notification is thread-safe. The member function get

(lines 46 - 53) deserves more attention. First, the wait member function of the underlying condition
variable is called. This wait call needs an additional predicate to protect against spurious and lost
wakeups. The operations modifying the myQueue (lines 49 and 50) must also be protected because they
can interleave with the call myQueue.push(val) (line 41). The Monitor Object safeQueue line 75 uses
the lambda functions in lines 77 and 81 to add or remove a number from the synchronized safeQueue.
ThreadSafeQueue itself is a class template and can hold values from an arbitrary type. One hundred
clients add 100 random numbers between 1 - 6 to the safeQueue (line 75), while one hundred clients
remove these 100 numbers concurrently from the safeQueue. The output of the program shows the
numbers and the thread ids.

Monitor Object

With C++20, der program monitorObject can be further improved. First, include the header <concepts>
and use the concept std::predicate as restricted typ parameter in the function template wait (lines
25 - 29). The concept std::predicate ensures that the function template wait can only be instantiated
with a predicate.
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Use of the concept predicate

// monitorObjectCpp20.cpp

...

template <std::predicate Predicate>

void wait(Predicate pred) const {

std::unique_lock<std::mutex> monitLock(monitMutex);

monitCond.wait(monitLock, pred);

}

Second, use std::jthread instead of std::thread.

Use of std::jthread

// monitorObjectCpp20.cpp

...

int main() {

std::cout << '\n';

constexpr auto NumberThreads = 100;

ThreadSafeQueue<int> safeQueue;

auto addLambda = [&safeQueue](int val){ safeQueue.add(val);

std::cout << val << " "

<< std::this_thread::get_id() << "; ";

};

auto getLambda = [&safeQueue]{ safeQueue.get(); };

std::vector<std::jthread> addThreads(NumberThreads);

Dice dice;

for (auto& thr: addThreads) thr = std::jthread(addLambda, dice());

std::vector<std::jthread> getThreads(NumberThreads);

for (auto& thr: getThreads) thr = std::jthread(getLambda);

std::cout << "\n\n";

}

The Active Object and the Monitor Object are similar but distinct in a few important points. Both
architectural patterns synchronize the access to a shared object. The member functions of an Active
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Object are executed in a different thread, but the Monitor Object member functions in the same
thread. The Active Object decouples it’s member function invocation better from its member function
execution and is, therefore, easier to maintain.

10.3 Half-Sync/Half-Async

The Half-Sync/Half-Async architectural pattern decouples asynchronous and synchronous service
processing in concurrent systems to simplify programming without unduly reducing performance.
The pattern introduces two intercommunicating layers, one for asynchronous and one for syn-
chronous service processing.

10.3.1 Challenges

Concurrent system often support asynchronous and synchronous services. Asynchronous services are
typically faster but also more complex to program.

The architecture should support

• synchronous services for simplicity but enable also asynchronous services for performance
reasons.

• communication between the asynchronous service and the synchronous services.

The Half-Sync/Half-Async pattern is often used in event-loops of servers or graphical user interfaces.

10.3.2 Solution

The event loop’s typical workflow is to accept the client or user event, insert the request into a
queue, and process the request synchronously in a separate thread. Accepting requests asynchronously
ensures efficiency and the synchronous processing simplifies the processing of the request. The
asynchronous and the synchronous service layers are decomposed into two layers, and the queue
coordinates between both. The asynchronous layer consists of the lower-level system services such
as interrupts, whereas the synchronous layer of high-level services such as database queries or file
manipulations. The asynchronous and the synchronous layer can talk to each other via the queueing
layer.
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10.3.3 Components

Half-Sync/Half-Async

The Half-Sync/Half-Async pattern consists of four components.

• Synchronous service layer

– The synchronous service layer performs high-level services. Typically, the high-level
services run in a separate thread.

– Services of this layer can block.

• Asynchronous service layer

– The asynchronous service layer performs low-level services.
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– Services in this layer cannot block.

• Queueing layer

– The queueing layer serves as a communication channel between the synchronous and
asynchronous layers.

– It notifies a layer when messages are passed from the other layer.

• External event source

– Creates external events for the asynchronous service layer.

10.3.4 Dynamic Behavior

• Asynchronous phase

– External sources send notifications to the asynchronous layer.
– The asynchronous service sends its result to the synchronous service using the queueing
layer.

• Queueing phase

– Buffers input from the asynchronous layer and notifies the synchronous layer.

• Synchronous phase

– Process the input from the queueing layer provided by the asynchronous layer.

10.3.5 Advantages and Disadvantages

What are the advantages and disadvantages of the Half-Sync/Half-Async pattern?

• Advantages:

– A clear separation of asynchronous and synchronous services. Low-level system services
are handled in the asynchronous, and high-level services are handled in the synchronous
layer.

– The queueing layer ensures the loose coupling of the asynchronous and the synchronous
layer.

– The clear separation makes the software easier to understand, debug, maintain, and
extend.

– Blocking in the synchronous services does not affect the asynchronous services.

• Disadvantages:

– The boundary-crossing between the asynchronous and synchronous layer may cause
overhead. Often, the boundary-crossing involves a context switch between the kernel-
space and the user-space because the asynchronous services run typically in the kernel-
space and the synchronous services in the user-space.

– The strict separation of the layers requires that the data is either copied or is immutable
– Due to the inverted flow of control, debugging and testing is challenging.
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10.3.6 Example

A defibrillator has to react to synchronous and asynchronous events. Synchronous events are for
example, instructions for the operator to perform the resuscitation. On the contrary, pushing the
power button by the operator is an asynchronous event. Two conditions must be met to apply the
current to the patient using the power button: the heart rhythm is treatable, and the current must
be synchronized with the insufficient heart muscle activity. Consequently, the push button event is
stored on the queuing layer and has a higher priority than the instructions events for the operator.

The Half-Sync/Half-Async pattern is often used in an event demultiplexing and dispatching frame-
works such as the Reactor or Proactor pattern.

10.4 Reactor

The Reactor pattern is an event-driven framework to demultiplex and dispatch service requests
concurrently onto various service providers. The requests are processed synchronously.The Reactor
pattern is also known as dispatcher or notifier.

10.4.1 Challenges

The server should handle more client requests concurrently. Each client request has a unique identifier,
which enables the mapping to the specific service provider. The following points must hold. The
Reactor should

• not block.

• support maximum throughput, avoid unnecessary context switches, and, therefore, the copying
or synchronization of data.

• be easily expandable to support improved or new services.

• hide the application from multi-threading and synchronization challenges.

10.4.2 Solution

For each supported service type implement an event handler that fulfills the specific client request.
Register this service handler within the Reactor. The Reactor uses an event demultiplexer to wait
synchronously on all incoming events. When an event arrives, the Reactor is notified and dispatches
it to the specific service.
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10.4.3 Components

Reactor

• Handles:

– The handles identify different event sources such as network connections, open files, or
GUI events.

– The event source generates events such as connect, read, or write that are queued on the
associated handle.

• Synchronous event demultiplexer:

– The synchronous event demultiplexer waits for one or more indication events, and it
blocks until the associated handle can process the event.

• Event handler:

– The event handler defines the interface for processing the indication events.
– The event handler defines the supported services of the application.

• Concrete event handler.

– The concrete event handler implements the interface of the application defined by the
event handler.

• Reactor:

– The Reactor supports an interface to register and deregister the concrete event handler
using file descriptors.

– The Reactor uses a synchronous event demultiplexer to wait for indication events. An
indication event can be read, write, or error event.

– The Reactor maps the events to their concrete event handler.
– The Reactor manages the lifetime of the event loop.
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The Reactor (and not the application) waits for the indication events to demultiplex and dispatch the
event. The concrete event handlers are registered within the Reactor. The Reactor inverts the flow of
control. This inversion of control is often called Hollywood principle¹⁴.

Synchronous Event Demultiplexer
The system calls select¹⁵, poll¹⁶, epoll¹⁷, kqueue¹⁸, or WaitForMultipleObjects¹⁹ enables
it to wait for indication events.

• select can only monitor 1024 file descriptors, and you should, therefore, only use
it if other synchronous event demultiplexers are not available. select is supported
on all Unix²⁰ and POSIX²¹ operating systems.

• poll behaves similarly to select but overcomes its 1024 file descriptors limitation.
Both system calls require that you specify the file descriptor with the highest
number, and the system calls then scan all possible file descriptor numbers up to
this highest set number. This strategy makes select and poll slower than epoll.

• epoll monitors only the specified file descriptors but is only available on Linux²²
operating systems.

• kqueue behaves similar to epoll and is available on the FreeBSD²³, and macOS²⁴
operating system.

• WaitForMultipleObjects is part of the Windows API²⁵.

10.4.4 Dynamic Behavior

The following points illustrate how the flow of control between the Reactor and and the evant handler
goes.

• The application registers event handler for specific events in the Reactor.

• Each event handler provides it specific handler to the Reactor.

• The application starts the event loop. The event loop waits for indication events.

¹⁴https://en.wikipedia.org/wiki/Inversion_of_control
¹⁵https://en.wikipedia.org/wiki/Select_(Unix)
¹⁶https://man7.org/linux/man-pages/man2/poll.2.html
¹⁷https://en.wikipedia.org/wiki/Epoll
¹⁸https://en.wikipedia.org/wiki/Kqueue
¹⁹https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
²⁰https://en.wikipedia.org/wiki/Unix
²¹https://en.wikipedia.org/wiki/POSIX
²²https://en.wikipedia.org/wiki/Linux
²³https://en.wikipedia.org/wiki/FreeBSD
²⁴https://en.wikipedia.org/wiki/MacOS
²⁵https://en.wikipedia.org/wiki/Windows_API

https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Select_(Unix)
https://man7.org/linux/man-pages/man2/poll.2.html
https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Kqueue
https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Select_(Unix)
https://man7.org/linux/man-pages/man2/poll.2.html
https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Kqueue
https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Windows_API
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• The event demultiplexer returns to the Reactor when a event source becomes ready.

• The Reactor dispatches the handles to the corresponding event handler.

• The event handler processes the event.

10.4.5 Advantages and Disadvantages

What are the advantages and disadvantages of the reactor pattern?

• Advantages:

– A clear separation of framework and application logic.
– The modularity of various concrete event handlers.
– The Reactor can be ported to various platforms, because the underlying event demulti-
plexing functions such as select²⁶, epoll²⁷, or WaitForMultipleObjects²⁸ are available on
Unix (select, epoll), and Windows platforms (WaitForMultipleObjects).

– The separation of interface and implementation enables easy adaption or extension of the
services.

– Overall structure supports the concurrent execution.

• Disadvantages:

– Requires an event demultiplexing system call.
– A long-running event handler can block the Reactor.
– The inversion of control makes testing and debugging more difficult.

10.4.6 Example

The example uses the POCO framework²⁹. The POCO C++ Libraries are powerful cross-platform C++
libraries for building network- and internet-based applications that run on desktop, server, mobile,
IoT, and embedded systems.

²⁶https://en.wikipedia.org/wiki/Select_(Unix)
²⁷https://en.wikipedia.org/wiki/Epoll
²⁸https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
²⁹https://pocoproject.org/

https://en.wikipedia.org/wiki/Select_(Unix)
https://en.wikipedia.org/wiki/Epoll
https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
https://pocoproject.org/
https://en.wikipedia.org/wiki/Select_(Unix)
https://en.wikipedia.org/wiki/Epoll
https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitformultipleobjects
https://pocoproject.org/
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The reactor pattern
1 // reactor.cpp

2

3 #include <fstream>

4 #include <string>

5

6 #include "Poco/Net/SocketReactor.h"

7 #include "Poco/Net/SocketAcceptor.h"

8 #include "Poco/Net/SocketNotification.h"

9 #include "Poco/Net/StreamSocket.h"

10 #include "Poco/Net/ServerSocket.h"

11 #include "Poco/Observer.h"

12 #include "Poco/Thread.h"

13 #include "Poco/Util/ServerApplication.h"

14

15 using Poco::Observer;

16 using Poco::Thread;

17

18 using Poco::Net::ReadableNotification;

19 using Poco::Net::ServerSocket;

20 using Poco::Net::ShutdownNotification;

21 using Poco::Net::SocketAcceptor;

22 using Poco::Net::SocketReactor;

23 using Poco::Net::StreamSocket;

24

25 using Poco::Util::Application;

26

27 class EchoHandler {

28 public:

29 EchoHandler(const StreamSocket& s, SocketReactor& r): socket(s), reactor(r) {

30 reactor.addEventHandler(socket,

31 Observer<EchoHandler, ReadableNotification>(*this, &EchoHandler::socketReadable));

32 }

33

34 void socketReadable(ReadableNotification*) {

35 char buffer[8];

36 int n = socket.receiveBytes(buffer, sizeof(buffer));

37 if (n > 0) {

38 socket.sendBytes(buffer, n);

39 }

40 else {

41 reactor.removeEventHandler(socket,

42 Observer<EchoHandler, ReadableNotification>(*this, &EchoHandler::socketReadable));

43 delete this;

44 }
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45 }

46

47 private:

48 StreamSocket socket;

49 SocketReactor& reactor;

50 };

51

52 class DataHandler {

53 public:

54

55 DataHandler(StreamSocket& s, SocketReactor& r): socket(s), reactor(r),

56 outFile("reactorOutput.txt") {

57 reactor.addEventHandler(socket,

58 Observer<DataHandler, ReadableNotification>(*this, &DataHandler::socketReadable));

59 reactor.addEventHandler(socket,

60 Observer<DataHandler, ShutdownNotification>(*this, &DataHandler::socketShutdown));

61 socket.setBlocking(false);

62 }

63

64 ~DataHandler() {

65 reactor.removeEventHandler(socket,

66 Observer<DataHandler, ReadableNotification>(*this, &DataHandler::socketReadable));

67 reactor.removeEventHandler(socket,

68 Observer<DataHandler, ShutdownNotification>(*this, &DataHandler::socketShutdown));

69 }

70

71 void socketReadable(ReadableNotification*) {

72 char buffer[64];

73 int n = 0;

74 do {

75 n = socket.receiveBytes(&buffer[0], sizeof(buffer));

76 if (n > 0) {

77 std::string s(buffer, n);

78 outFile << s << std::flush;

79 }

80 else break;

81 } while (true);

82 }

83

84 void socketShutdown(ShutdownNotification*) {

85 delete this;

86 }

87

88 private:

89 StreamSocket socket;
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90 SocketReactor& reactor;

91 std::ofstream outFile;

92 };

93

94 class Server: public Poco::Util::ServerApplication {

95

96 protected:

97 void initialize(Application& self) {

98 ServerApplication::initialize(self);

99 }

100

101 void uninitialize() {

102 ServerApplication::uninitialize();

103 }

104

105 int main(const std::vector<std::string>&) {

106

107 ServerSocket serverSocketEcho(4711);

108 ServerSocket serverSocketData(4712);

109 SocketReactor reactor;

110 SocketAcceptor<EchoHandler> acceptorEcho(serverSocketEcho, reactor);

111 SocketAcceptor<DataHandler> acceptorData(serverSocketData, reactor);

112 Thread thread;

113 thread.start(reactor);

114 waitForTerminationRequest();

115 reactor.stop();

116 thread.join();

117

118 return Application::EXIT_OK;

119

120 }

121

122 };

123

124 int main(int argc, char** argv) {

125

126 Server app;

127 return app.run(argc, argv);

128

129 }

Line 126 generates the TCP server. The server performs the main function (line 105) and is initialized
in line 97 and uninitialized in line 102. The main function of the TCP server creates two server sockets,
listening on port 4711 (line 107) and port 4712 (line 108). Line 110 and 111 create the server sockets
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using the EchoHandler and the DataHandler. The SocketAcceptor models the Acceptor component of
the Accepter-Connector design pattern. The reactor runs in a separate thread (line 113) until it gets
its termination request (line 115). The EchoHandler registers its read handle in the constructor (line 30),
and it unregisters its read handle in the member function socketReadable (line 41). The echo service
send the clients message back (line 38). On the contrary, the DataHandler enables a client to transfer
data to the server. The handler registers in its constructor its action for reading events (line 57) and
shutdown events (line 59). Both handlers are unregistered in the destructor of DataHandler (line 64).
The result of the data transfer is directly written to the file handle outFile (line 78).

The Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP)
Typically, either TCP³⁰ or the UDP³¹ protocol is used for internet communication.

TCP is a connection-oriented protocol, and data is transmitted as a byte stream in both
directions. TCP is reliable and guarantees the delivery of data in the order sent. Higher-
order protocols such as Hypertext Transfer Protocol³²(HTTP), Hypertext Transfer Protocol
Secure³³(HTTPS), Simple Mail Transfer Protocol³⁴(SMTP), or File Transfer Protocol³⁵(FTP)
use TCP.

UDP is a connection-less protocol without the reliability of TCP. Data delivered in packets
can be lost or be delivered out of order sent. UPD establishes no connection and is due
to its lightweight structure faster than TCP. The protocols Domain Name System³⁶(DNS),
Simple Network Management Protocol³⁷(SNMP), or Dynamic Host Configuration Proto-
col³⁸(DHCP) use UDP.

The following output shows on the left the server and on the right both clients. A telnet session serves
as a client. The first client connects to port 4711: telnet 127.0.0.1 4711. This client connects with
the echo server and displays, therefore, its request. The second client connects to port 4712: telnet
127.0.0.1 4712. The servers output shows that the client data is transferred to the server.

³⁰https://en.wikipedia.org/wiki/Transmission_Control_Protocol
³¹https://en.wikipedia.org/wiki/User_Datagram_Protocol
³²https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
³³https://en.wikipedia.org/wiki/HTTPS
³⁴https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
³⁵https://en.wikipedia.org/wiki/File_Transfer_Protocol
³⁶https://en.wikipedia.org/wiki/Domain_Name_System
³⁷https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
³⁸https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
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Reactor communicating with two clients

Acceptor-Connector
The Acceptor-Connector design pattern decouples the connection and initialization of
services in a distributed system from the processing of the services after they are connected
and initialized. It consists of three components: acceptor, connector, and service handler.
The acceptor waits for a connection request from a remote connector and establishes
an end-to-end service. The acceptor and the connector use their service handler to
encapsulate the application-specific processing.

The Half-Sync/Half-Async pattern is typically used in the Reactor pattern to answer client requests
in a separate thread.

The Proactor pattern is the asynchronous variant of the reactor pattern. The Reactor pattern demulti-
plexes and dispatches its event handler synchronously, but the Proactor pattern asynchronously.

10.5 Proactor

The Proactor pattern enables event-driven applications to demultiplex and dispatch service requests
triggered by the completion of an asynchronous operation.



Concurrent Architecture 520

10.5.1 Challenges

Processing multiple service requests asynchronously can often improve the performance of event-
driven applications such as servers. Event-driven applications must process multiple events syn-
chronously to achieve this performance and avoid expensive data synchronization or context
switching. Further, the new or improved services should be easily integrated, and the application
should be shielded from the multi-threading and synchronization challenges.

10.5.2 Solution

Split the application services into two parts: long-duration operations, which should run asyn-
chronously, and completion handlers, which process the long-duration asynchronous operations. The
processing of the completion handler is quite similar to the processing of the event handler in the
Reactor pattern. Still, the asynchronous operation is typically the job of the operating system. As the
Reactor pattern, the Proactor pattern defines an event loop.

Here is the unique part of the Proactor pattern compared to the Reactor pattern. An asynchronous
operation such as a connection request is initiated, and the operation is performed without blocking
the caller’s thread. When the long-duration operation is done it puts a completion event into
the completion event queue. The Proactor waits on the queue by using the asynchronous event
demultiplexer. The asynchronous event demultiplexer removes completion events from the queue,
and the Proactor dispatches it to the specific completion handler. This completion handler processes
the result of the asynchronous operation.

10.5.3 Components

The Proactor consists of nine components.
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Proactor

• Handle:
– stands for an entity of the operating system such as a socket that can generate a completion
event

• Asynchronous operation:
– is typically a long-duration operation that is executed asynchronously, and this can be a
read or a write operation on a socket.

• Asynchronous operation processor:
– executes an asynchronous operation and enqueues a completion event on the completion
event queue when done

• Completion handler:
– defines an interface for processing results of asynchronous operations

• Concrete completion handler:
– processes the results of the asynchronous operations in an application-specific way

• Completion event queue:
– buffers completion events until the asynchronous event demultiplexer dequeue them

• Asynchronous event demultiplexer:
– can block while waiting for completion events to occur on a completion event queue
– removes the completion event from the completion event queue

• Proactor:
– calls the asynchronous event demultiplexer to dequeue a completion event
– demultiplexes and dispatches completion events and invokes the concrete completion
handler

• Initiator:
– invokes the asynchronous operation
– it interacts with the asynchronous operation processor
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10.5.4 Advantages and Disadvantages

What are the advantages and disadvantages of the Proactor pattern?

• Advantages:

– The application separates the application-independent asynchronous functionality from
the application-specific functionality.

– The Proactor can be used on various operating systems supporting different asynchronous
event demultiplexer.

– Applications do not need to start new threads because the long-duration asynchronous
operations run in the caller’s thread.

– The Proactor pattern can avoid the cost of context switching.
– The application logic doesn’t start any threads, and, therefore, no synchronization is
necessary.

• Disadvantages:

– To apply the Proactor pattern most efficiently, the operating system should support
asynchronous operations.

– Due to the separation in time and space between the operation initiation and completion,
debugging or testing the program is challenging.

– The invocation of the asynchronous operation and maintaining of the completion event
requires memory.

Asio
The Asio³⁹ library, which may become part of C++23 as networking library, enables you
to implement the Proactor pattern in C++. Asio from Christopher Kohlhoff “is a cross-
platformC++ library for network and low-level I/O programming that provides developers
with a consistent asynchronous model using a modern C++ approach”.

10.5.5 Example

The example uses the Asio⁴⁰ library that may become part of C++23 as a networking library. Asio
enables it to implement the Proactor pattern in C++. Christopher Kohlhoff is the creator of Asio. He
characterizes the library as a cross-platform C++ library for network and low-level I/O programming
that provides developers with a consistent asynchronous model using a modern C++ approach.

³⁹https://think-async.com/Asio/l
⁴⁰https://think-async.com/Asio/l

https://think-async.com/Asio/l
https://think-async.com/Asio/l
https://think-async.com/Asio/l
https://think-async.com/Asio/l
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The proactor pattern
1 // proactor.cpp

2

3 #include <fstream>

4 #include <iostream>

5 #include <memory>

6 #include <string>

7 #include <utility>

8 #include <asio/ts/buffer.hpp>

9 #include <asio/ts/internet.hpp>

10

11 using asio::ip::tcp;

12

13 class EchoSession : public std::enable_shared_from_this<EchoSession> {

14 public:

15 EchoSession(tcp::socket sock): socket(std::move(sock)) { }

16

17 void start() {

18 do_read();

19 }

20

21 private:

22 void do_read() {

23 auto self(shared_from_this());

24 socket.async_read_some(asio::buffer(data, max_length),

25 [this, self](std::error_code, std::size_t length) {

26 do_write(length);

27 });

28 }

29

30 void do_write(std::size_t length) {

31 auto self(shared_from_this());

32 asio::async_write(socket, asio::buffer(data, length),

33 [this, self](std::error_code, std::size_t) {

34 do_read();

35 });

36 }

37

38 tcp::socket socket;

39 enum { max_length = 1024 };

40 char data[max_length];

41 };

42

43 class DataSession : public std::enable_shared_from_this<DataSession> {

44 public:
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45 DataSession(tcp::socket sock, std::string fileName): socket(std::move(sock)), outFile(f\

46 ileName) {

47 }

48

49 void start() {

50 do_read();

51 }

52

53 private:

54 void do_read() {

55 auto self(shared_from_this());

56 socket.async_read_some(asio::buffer(data, max_length),

57 [this, self](std::error_code, std::size_t length) {

58 addData(length);

59 });

60 }

61 void addData(std::size_t length) {

62 std::string s(data, length);

63 outFile << s << std::flush;

64 do_read();

65 }

66

67 tcp::socket socket;

68 enum { max_length = 1024 };

69 char data[max_length];

70 std::ofstream outFile;

71 };

72

73 class EchoServer {

74 public:

75 EchoServer(asio::io_context& io_context, short port)

76 : acceptor(io_context, tcp::endpoint(tcp::v4(), port)), socket(io_context) {

77 do_accept();

78 }

79

80 private:

81 void do_accept() {

82 acceptor.async_accept(socket,

83 [this](std::error_code) {

84 std::make_shared<EchoSession>(std::move(socket))->start();

85 do_accept();

86 });

87 }

88

89 tcp::acceptor acceptor;
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90 tcp::socket socket;

91 };

92

93 class DataServer {

94 public:

95 DataServer(asio::io_context& io_context, short port, const std::string& file)

96 : acceptor(io_context, tcp::endpoint(tcp::v4(), port)),

97 socket(io_context), fileName(file) {

98 do_accept();

99 }

100

101 private:

102 void do_accept() {

103 acceptor.async_accept(socket,

104 [this](std::error_code) {

105 std::make_shared<DataSession>(std::move(socket), std::move(fileName))->start();

106 do_accept();

107 });

108 }

109

110 tcp::acceptor acceptor;

111 tcp::socket socket;

112 std::string fileName;

113 };

114

115

116 int main() {

117

118 asio::io_context io_context;

119 EchoServer echoServer(io_context, 4711);

120 DataServer dataServer(io_context, 4712, "proactorOutput.txt");

121 io_context.run();;

122

123 }

The program uses an EchoServer (line 118) and a DataServer, listening to the specified Ports 4711 and
4712. The EchoServer writes the incoming data back, and the DataServer writes them into the file
proactorOutput.txt.

The EchoServer accepts in the member function do_ accept (line 80) client’s requests and handles
them using EchoSession (line 13). do_accept is recursively called (line 84). When a client request is
The crucial parts of the EchoSession are the member functions do_read (line 22) and do_write (line
30). do_read reads the data from the client connection asynchronously (line 24) and do_write writes
them asynchronously (line 32) back. In the end, the member function do_write calls do_read (line 34)
to read all incoming client data.
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The workflow of the DataServer and its DataSession (line 43) is similar. The crucial difference is that
the member function do_read writes the client data to the output file (line 57).

The following example uses two telnet⁴¹ sessions to invoke the TCP-server. Both TCP clients connect
to address 127.0.0.1. They use the port 4711 and 4712 respectively. Due to the EchoServer, data written
to the port 4711 is immediately written back. The DataServer writes the client data to the output file
more proactorOutput.txt.

Proactor communicating with two clients

10.6 Further Information

• Adaptive Communication Environment (ACE)⁴²

• Boost.Asio⁴³

• Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects⁴⁴

⁴¹https://en.wikipedia.org/wiki/Telnet
⁴²https://en.wikipedia.org/wiki/Adaptive_Communication_Environment
⁴³https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html
⁴⁴https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/

https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Adaptive_Communication_Environment
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Adaptive_Communication_Environment
https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html
https://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2/
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Distilled Information
• The two patterns active object and the monitor object synchronize and schedule
member functions invocation. The member functions of an Active Object are
executed in a different thread, but the Monitor Object member functions in the
same thread.

• The Half-Sync/Half-Async pattern has an architectural focus and decouples asyn-
chronous and synchronous service processing in concurrent systems. Both layers
communicate using a queuing layer.

• The Reactor pattern is an event-driven framework to demultiplex and dispatch
service requests concurrently onto various service providers.

• The Proactor pattern enables event-driven applications to demultiplex and dispatch
service requests triggered by the completion of an asynchronous operation.



11. Best Practices

Cippi studies

This chapter provides you with a simple set of rules for writing well-defined and fast, concurrent
programs in modern C++. Multithreading, particularly parallelism and concurrency, is quite a new
topic in C++; therefore, more and more best practices are discovered in the coming years. Consider the
rules in this chapter not as a complete list; but rather as a necessary starting point that evolves. This
holds particularly true for the parallel STL.When updating this book (12/2018), the parallel algorithms
of C++17 are only partially available; therefore, it is too early to formulate best practices for it.

11.1 General

Let’s start with a few very general best practices that apply to atomics and threads.

11.1.1 Code Reviews

Code reviews should be part of each professional software development process. This holds especially
true when you deal with concurrency. Concurrency is inherently complicated and requires a lot of
thoughtful analysis and experience.

To make the review most effective, send the code you want to discuss to the reviewers before the
review. Explicitly state which invariants should apply to your code. The reviewers should have enough
time to analyze the code before the official review starts.

Not convinced? Let me give you an example. Do you remember the data races in the program
readerWriterLock.cpp in the chapter std::shared_lock?
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Reader-writer locks
1 // readerWriterLock.cpp

2

3 #include <iostream>

4 #include <map>

5 #include <shared_mutex>

6 #include <string>

7 #include <thread>

8

9 std::map<std::string,int> teleBook{{"Dijkstra", 1972}, {"Scott", 1976},

10 {"Ritchie", 1983}};

11

12 std::shared_timed_mutex teleBookMutex;

13

14 void addToTeleBook(const std::string& na, int tele){

15 std::lock_guard<std::shared_timed_mutex> writerLock(teleBookMutex);

16 std::cout << "\nSTARTING UPDATE " << na;

17 std::this_thread::sleep_for(std::chrono::milliseconds(500));

18 teleBook[na]= tele;

19 std::cout << " ... ENDING UPDATE " << na << '\n';

20 }

21

22 void printNumber(const std::string& na){

23 std::shared_lock<std::shared_timed_mutex> readerLock(teleBookMutex);

24 std::cout << na << ": " << teleBook[na];

25 }

26

27 int main(){

28

29 std::cout << '\n';

30

31 std::thread reader1([]{ printNumber("Scott"); });

32 std::thread reader2([]{ printNumber("Ritchie"); });

33 std::thread w1([]{ addToTeleBook("Scott",1968); });

34 std::thread reader3([]{ printNumber("Dijkstra"); });

35 std::thread reader4([]{ printNumber("Scott"); });

36 std::thread w2([]{ addToTeleBook("Bjarne",1965); });

37 std::thread reader5([]{ printNumber("Scott"); });

38 std::thread reader6([]{ printNumber("Ritchie"); });

39 std::thread reader7([]{ printNumber("Scott"); });

40 std::thread reader8([]{ printNumber("Bjarne"); });

41

42 reader1.join();

43 reader2.join();

44 reader3.join();
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45 reader4.join();

46 reader5.join();

47 reader6.join();

48 reader7.join();

49 reader8.join();

50 w1.join();

51 w2.join();

52

53 std::cout << '\n';

54

55 std::cout << "\nThe new telephone book" << '\n';

56 for (auto teleIt: teleBook){

57 std::cout << teleIt.first << ": " << teleIt.second << '\n';

58 }

59

60 std::cout << '\n';

61

62 }

The issue is that the call teleBook[na] is line 24 can modify the telephone book. You can provoke the
data race by putting the reading thread reader8 in front of the other readers. I use this program in my
C++ seminars as a kind of exercise. The exercise is to spot the data race. About 10% of the participants
find the data race within 5 minutes.

11.1.2 Minimize Sharing of Mutable Data

You should minimize data sharing of mutable data for two reasons: performance and safety. Safety is
mainly about data races. Let me focus on performance in this paragraph. I deal with correctness in
the following best practices section.

In the chapter Calculating the Sum of a Vector I made an exhaustive performance study. How fast can
I sum up the values of a std::vector?

This was the critical part of the single-threaded summation.
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Single threaded summation

...

constexpr long long size = 100000000;

std::cout << '\n';

std::vector<int> randValues;

randValues.reserve(size);

// random values

std::random_device seed;std::mt19937 engine(seed());

std::uniform_int_distribution<> uniformDist(1, 10);

const unsigned long long sum = std::accumulate(randValues.begin(),

randValues.end(), 0);

...

Afterward, I performed the summation on four threads. I started naively with a shared summation
variable.

Multi threaded summation with a shared variable

...

void sumUp(unsigned long long& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end){

for (auto it = beg; it < end; ++it){

std::lock_guard<std::mutex> myLock(myMutex);

sum += val[it];

}

}

...

Optimized a little bit by using an atomic summation variable.
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Multi threaded summation with an atomic

...

void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end){

for (auto it = beg; it < end; ++it){

sum.fetch_add(val[it]);

}

}

...

And I got my performance improvement by calculating the partial sums locally.

Multi threaded summation with local variables

...

void sumUp(unsigned long long& sum, const std::vector<int>& val,

unsigned long long beg, unsigned long long end){

unsigned long long tmpSum{};

for (auto i = beg; i < end; ++i){

tmpSum += val[i];

}

std::lock_guard<std::mutex> lockGuard(myMutex);

sum += tmpSum;

}

...

The performance numbers are quite impressive and give a clear indication. The less you share state,
the more you get out of your cores.

Performance of the various summations on Linux

Single threaded std::lock_guard Atomics Local summation
0.07 sec 3.34 sec 1.34 sec 0.03 sec
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11.1.3 Minimize Waiting

You may have heard of Amdahl’s law¹. It predicts the theoretical maximum speedup you can get
using multiple processors. The law is quite simple. If p is the proportion of your code, that can run
concurrently, you get a maximum speedup of 1

1−p . So, if 90% of your code can run concurrently, you

get at most a 10 times speedup: 1
1−p == 1

1−0.9 == 1
0.1 == 10.

To see it from the opposite perspective, if 10% of your code has to run sequentially because you use
a lock, you get at most a ten times speedup. Of course, I assumed that you have access to infinite
processing resources.

The graphic shows a direct consequence of Amdahl’s law explicitly.

By Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

The optimum number of cores depends highly on the parallel portion of your code. For example: If
you have 50% parallel code, you reach the peak performance with 16 cores. Using more cores makes

¹https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Amdahl's_law


Best Practices 534

your program not faster. If you have 95% parallel code, you reach the peak performance with 2048
cores.

11.1.4 Prefer Immutable Data

Adata race is a situation in which at least two threads access a shared variable simultaneously. At least
one thread tries to modify the variable. The definition makes it quite obvious. A necessary condition
for a data race is a mutable, shared state. The graphic makes my point clear.

Mutable and shared state

If you have immutable data, no data race can happen. You only have to guarantee that the immutable
data are initialized in a thread-safe way. I presented in the chapter Thread-safe initialization four
ways to guarantee this. Here are they:

• early initialization before a thread is created

• constant expressions

• the function std::call_once in combination with the flag std::once_flag

• a static variable with block scope

There are two typical ways to create immutable data in C++: const and constexpr. While const is a
runtime technique, constexpr guarantees that the value is initialized at compile time and, therefore,
thread-safe. Even user-defined types can be initialized at compile time.

11.1.4.1 A User-defined Type

There are a few restrictions for user-defined types which instances should be created at compile time.

The constexpr constructor

• can only be invoked with a constant expression.

• cannot use exception handling.



Best Practices 535

• has to be declared as default or delete or the function body must be empty (C++11).

The constexpr user-defined type

• cannot have virtual base classes.

• requires each base object and each non-static member to be initialized in the constructor’s
initialization list or directly in the class body. Consequently, it holds that each used constructor
(e.g. of a base class) has to be constexpr constructor and that the applied initializers have to be
constant expressions.

cppreference.com² provides additional information to constexpr user-defined types. To add praxis to
the theory, I define the class MyInt. MyInt shows the just mentioned points. The class has also constexpr
member functions.

Immutable user-defined types

1 // userdefinedTypes.cpp

2

3 #include <iostream>

4 #include <ostream>

5

6 class MyInt{

7 public:

8 constexpr MyInt()= default;

9 constexpr MyInt(int fir, int sec): myVal1(fir), myVal2(sec){}

10 MyInt(int i){

11 myVal1= i - 2;

12 myVal2= i + 3;

13 }

14

15 constexpr int getSum() const { return myVal1 + myVal2; }

16

17 friend std::ostream& operator<< (std::ostream &out, const MyInt& myInt){

18 out << "(" << myInt.myVal1 << "," << myInt.myVal2 << ")";

19 return out;

20 }

21

22 private:

23 int myVal1= 1998;

24 int myVal2= 2003;

25

26 };

27

28 int main(){

29

²https://en.cppreference.com/w/cpp/language/constexpr

https://en.cppreference.com/w/cpp/language/constexpr
https://en.cppreference.com/w/cpp/language/constexpr
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30 std::cout << '\n';

31

32 constexpr MyInt myIntConst1;

33

34 constexpr int sec = 2014;

35 constexpr MyInt myIntConst2(2011, sec);

36 std::cout << "myIntConst2.getSum(): " << myIntConst2.getSum() << '\n';

37

38 int arr[myIntConst2.getSum()];

39 static_assert( myIntConst2.getSum() == 4025, "2011 + 2014 should be 4025" );

40

41 std::cout << '\n';

42

43 }

The class MyInt has two constexpr constructors. A default constructor (line 8) and a constructor taking
two arguments (line 9). Additionally, the class has one member function getSum that is a constant
expression. I declared the member function const because a constexprmember function is in contrast
to C++11 with C++14, not automatically const. The overloaded output operator operator << is not
a class member but can access its private and protected members. There are two ways to define the
variables myVal1 and myVal2 (lines 23 and 24) if I use them in constexpr objects. First, I can initialize
them in the constructor’s initialization list (line 9); second, I can initialize them in the class body (lines
23 and 24). The initialization in the initialization list of the constructor has a higher priority.

Lines 38 and 39 shows that I can invoke the constexprmember function in a constant expression. This
is the output of the program.

Using a constexpr object

I want to emphasize it once more explicitly: A constexpr object can only use constexpr member
functions.

Functional programming languages such as Haskell, having no mutable data, are very suitable for
concurrent programming.
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11.1.5 Use pure functions

Haskell is called a pure functional language because it is based on pure functions. A pure function is
a function which always produces the same results when given the same arguments. It has no side
effect and can, therefore, not change the state of the program.

Pure functions have a significant advantage from the concurrency perspective. They can be reordered
or automatically run on another thread.

Functions in C++ are per default impure. The following three functions are all pure, but each function
has a different characteristic.

int powFunc(int m, int n){

if (n == 0) return 1;

return m * powFunc(m, n-1);

}

powFunc is an ordinary function that runs at runtime.

template<int m, int n>

struct PowMeta{

static int const value = m * PowMeta<m, n-1>::value;

};

template<int m>

struct PowMeta<m, 0>{

static int const value = 1;

};

PowMeta is a so-called meta-function because it runs at compile time.

constexpr int powConst(int m, int n){

int r = 1;

for(int k = 1; k <= n; ++k) r *= m;

return r;

}

The function powCont can run at runtime and at compile time. It is a constexpr function.

11.1.6 Look for the Right Abstraction

There are various ways to initialize a Singleton in a multithreading environment. You can rely on
the standard library using a lock_guard or std::call_once, rely on the core language using a static
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variable, or rely on atomics using acquire-release semantic. The acquire-release semantic is by far the
most challenging one. It’s a big challenge in various aspects. You have to implement it, maintain it,
and explain it to your coworkers. In contrast to your effort, the well-known Meyers Singleton is a lot
easier to implement and runs faster.

The story with the right abstractions goes on. Instead of implementing a parallel loop for summing up
a container, use std::reduce. You can parametrize std::reducewith a binary callable and the parallel
execution policy.

The more you go for the right abstraction, the less likely it becomes that you shoot yourself in the
foot.

11.1.7 Use Static Code Analysis Tools

In the chapter on case studies, I introduced CppMem. CppMem³ is an interactive tool for exploring
the behavior of small code snippets using the C++ memory model. CppMem can help you in two
aspects. First, you can verify the correctness of your code. Second, you get a deeper understanding of
the memory model and, therefore, of the general’s multithreading issues.

11.1.8 Use Dynamic Enforcement Tools

ThreadSanitizer⁴ is a data race detector for C/C++. ThreadSanitizer is part of Clang 3.2 and GCC 4.8.
To use ThreadSanitizer, you have to compile and link your program using the flag -fsanitize=thread.

The following program has a data race.

A data race on globalVar

1 // dataRace.cpp

2

3 #include <thread>

4

5 int main(){

6

7 int globalVar{};

8

9 std::thread t1([&globalVar]{ ++globalVar; });

10 std::thread t2([&globalVar]{ ++globalVar; });

11

12 t1.join();

13 t2.join();

14

15 }

³http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
⁴https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
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t1 and t2 access globalVar at the same time. Both threads try to modify the globalVar. Let’s compile
and run the program.

g++ -std=c++11 dataRace.cpp -fsanitize=thread -pthread -g -o dataRace

The output of the program is quite verbose.

A data race detected with ThreadSanitizer

I highlighted in red the critical line of the screenshot. There is a data race on line 10.

11.2 Multithreading

11.2.1 Threads

Threads are the basic building blocks for writing concurrent programs.

11.2.1.1 Minimize thread creation

How expensive is a thread? Quite expensive! This is the issue behind this best practice. Let me first
talk about the usual size of a thread and then about the costs of its creation.
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11.2.1.1.1 Size

A ‘std::thread is a thin wrapper around the native thread. This means I’m interested in the size of a
Windows thread and a POSIX thread⁵ because most of the times, they are internally used.

• Windows systems: the post Thread Stack Size⁶ gave me the answer: 1 MB.

• POSIX systems: the pthread_create⁷ man-page provides me with the answer: 2MB. These is the
sizes for the i386 and x86_64 architectures. If you want to know the sizes for other architectures
that support POSIX, here are they:

Stack size of an std::thread

11.2.1.1.2 Creation

I didn’t find numbers how much time it takes to create a thread. To get a gut feeling, I made a simple
performance test on Linux and Windows.

I used GCC 6.2.1 on a desktop and cl.exe on a laptop for my performance tests. The cl.exe is part of
the Microsoft Visual Studio 2017. I compiled the programs with maximum optimization. This means
on Linux the flag O3 and on Windows Ox.

Here is my small test program.

⁵https://en.wikipedia.org/wiki/POSIX_Threads
⁶https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
⁷http://man7.org/linux/man-pages/man3/pthread_create.3.html

https://en.wikipedia.org/wiki/POSIX_Threads
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
http://man7.org/linux/man-pages/man3/pthread_create.3.html
https://en.wikipedia.org/wiki/POSIX_Threads
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
http://man7.org/linux/man-pages/man3/pthread_create.3.html
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A small performance test for thread creation

1 // threadCreationPerformance.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <thread>

6

7 static const long long numThreads= 1'000'000;

8

9 int main(){

10

11 auto start = std::chrono::system_clock::now();

12

13 for (volatile int i = 0; i < numThreads; ++i) std::thread([]{}).detach();

14

15 std::chrono::duration<double> dur= std::chrono::system_clock::now() - start;

16 std::cout << "time: " << dur.count() << " seconds" << '\n';

17

18 }

The program creates 1 million threads that execute the empty lambda function in line 13. These are
the numbers for Linux and Windows:

11.2.1.1.3 Linux

Thread creation on Linux

This means that creating a thread took about 14.5 sec / 1000000 = 14.5 microseconds on Linux.
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11.2.1.1.4 Windows

Thread creation on Windows

The thread creation took about 44 sec / 1000000 = 44 microseconds on Windows.

To put it the other way around. You can create about 69 thousand threads on Linux and 23 thousand
threads on Windows in one second.

11.2.1.2 Use tasks instead of threads

std:async versus threads

1 // asyncVersusThread.cpp

2

3 #include <future>

4 #include <thread>

5 #include <iostream>

6

7 int main(){

8

9 std::cout << '\n';

10

11 int res;

12 std::thread t([&]{ res = 2000 + 11; });

13 t.join();

14 std::cout << "res: " << res << '\n';

15

16 auto fut= std::async([]{ return 2000 + 11; });

17 std::cout << "fut.get(): " << fut.get() << '\n';
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18

19 std::cout << '\n';

20

21 }

Based on the program, there are many reasons for preferring tasks over threads. The main reasons
are:

• you can use a secure communication channel for returning the result of the communication. If
you use a shared variable, you have to synchronize the access to it.

• you can quite easily return values, notifications, and exceptions to the caller.

With extended futures, we get the possibility to compose futures and build highly sophisticated
workflows. These workflows are based on the continuation then, and the combinations when_any and
when_all.

11.2.1.3 Be extremely careful if you detach a thread

The following code snippet requires our full attention.

std::string s{"C++11"}

std::thread t([&s]{ std::cout << s << '\n'; });

t.detach();

Because thread t is detached from the lifetime of its creator, two race conditions can cause undefined
behavior.

1. Thread tmay outlive the lifetime of its creator. The consequence is that t refers to a non-existing
std::string.

2. The program shuts down before thread t can do its work because the lifetime of the output
stream std::cout is bound to the main thread’s lifetime.

11.2.1.4 Consider using an automatic joining thread

A thread t with a callable unit is called joinable if neither a t.join() nor a t.detach() call happened.
The destructor of a joinable thread throws the std::terminate exception. To not forget the t.join(),
you can create your wrapper around std::thread. This wrapper checks in the constructor if the given
thread is still joinable and joins the destructor’s given thread.

You don’t have to build this wrapper on your own. Use the std::jthread, scoped_thread fromAnthony
Williams, or the gsl::joining_thread from the guideline support library⁸.

⁸https://github.com/Microsoft/GSL

https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
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11.2.2 Data Sharing

With data sharing of mutable data the challenges in multithreading programming start.

11.2.2.1 Pass data per default by copy

std::string s{"C++11"}

std::thread t1([s]{ ... }); // do something with s

t1.join();

std::thread t2([&s]{ ... }); // do something with s

t2.join();

// do something with s

If you pass data such as the std::string s to a thread t1 by copy, the creator thread and the created
thread t1 use independent data. This is in contrast to the thread t2. It gets its std::string s by
reference. This means you have to synchronize the access to s in the creator thread and the created
thread t2 preventively. This is error-prone and expensive.

11.2.2.2 Use std::shared_ptr to share ownership between unrelated threads

Assume you have an object which you want to share between unrelated threads. The critical question
is, who is the object’s owner and, therefore, responsible for releasing the memory? Now you can
choose between a memory leak if you don’t deallocate the memory or undefined behavior because
you invoked delete more than once. Most of the time, the undefined behavior ends in a runtime crash.

The following program shows this non-solvable issue.

Unrelated threads share ownership

1 // threadSharesOwnership.cpp

2

3 #include <iostream>

4 #include <thread>

5

6 using namespace std::literals::chrono_literals;

7

8 struct MyInt{

9 int val{2017};

10 ~MyInt(){

11 std::cout << "Good Bye" << '\n';

12 }

13 };
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14

15 void showNumber(MyInt* myInt){

16 std::cout << myInt->val << '\n';

17 }

18

19 void threadCreator(){

20 MyInt* tmpInt= new MyInt;

21

22 std::thread t1(showNumber, tmpInt);

23 std::thread t2(showNumber, tmpInt);

24

25 t1.detach();

26 t2.detach();

27 }

28

29 int main(){

30

31 std::cout << '\n';

32

33 threadCreator();

34 std::this_thread::sleep_for(1s);

35

36 std::cout << '\n';

37

38 }

This example is intentionally easy. I let the main thread sleep for one second (line 34) to be sure that it
outlives the lifetime of the child thread t1 and t2. This is, of course, no appropriate synchronization,
but it helps me to make my point. The program’s vital issue is: Who is responsible for the deletion of
tmpIntin line 20? Thread t1 (line 22), thread t2 (line 23), or the function (main thread) itself. Because
I can not forecast how long each thread runs, I decided to go with a memory leak. Consequentially,
the destructor of MyInt in line 10 is never called:

Unrelated threads share ownership
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The lifetime issues are pretty easy to handle if I use a std::shared_ptr.

Unrelated threads share ownership via std::shared_ptr

Unrelated threads share ownership via std::shared_ptr

1 // threadSharesOwnershipSharedPtr.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <thread>

6

7 using namespace std::literals::chrono_literals;

8

9 struct MyInt{

10 int val{2017};

11 ~MyInt(){

12 std::cout << "Good Bye" << '\n';

13 }

14 };

15

16 void showNumber(std::shared_ptr<MyInt> myInt){

17 std::cout << myInt->val << '\n';

18 }

19

20 void threadCreator(){

21 auto sharedPtr = std::make_shared<MyInt>();

22

23 std::thread t1(showNumber, sharedPtr);

24 std::thread t2(showNumber, sharedPtr);

25

26 t1.detach();

27 t2.detach();

28 }

29

30 int main(){

31
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32 std::cout << '\n';

33

34 threadCreator();

35 std::this_thread::sleep_for(1s);

36

37 std::cout << '\n';

38

39 }

Two minor changes to the source code were necessary. First, the pointer in line 21 became a
std::shared_ptr, and second, the function showNumber in line 16 takes a smart pointer instead of a
plain pointer.

11.2.2.3 Minimize the time holding a lock

If you hold a lock, only one thread can enter the critical section and make progress.

void setDataReadyBad(){

std::lock_guard<std::mutex> lck(mutex_);

mySharedWork = {1, 0, 3};

dataReady = true;

std::cout << "Data prepared" << '\n';

condVar.notify_one();

} // unlock the mutex

void setDataReadyGood(){

mySharedWork = {1, 0, 3};

{

std::lock_guard<std::mutex> lck(mutex_);

dataReady = true;

} // unlock the mutex

std::cout << "Data prepared" << '\n';

condVar.notify_one();

}

The functions setDataReadyBad and setDataReadyGood are the notification components of a condition
variable. The variable dataReady is necessary to protect against spurious wakeups and lost wakeups.
Because dataReady is a non-atomic variable, it has to be synchronized using the lock lck. To make
the lifetime of the lock as short as possible, use an artificial scope ({ ... }) such as in the function
setDataReadyGood.

11.2.2.4 Put a mutex into a lock

You should not use a mutex without a lock.
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std::mutex m;

m.lock();

// critical section

m.unlock();

Something unexpected may happen in the critical section, or you forget to unlock the mutex: the
result is the same. If you don’t unlock a mutex, another thread requiring the mutex is blocked, and
you end with a deadlock.

Thanks to locks that automatically take care of the underlying mutex, your risk of getting a deadlock
is considerably reduced. According to the RAII idiom, a lock automatically binds its mutex in the
constructor and releases it in the destructor.

std::mutex m;

...

{

std::lock_guard<std::mutex> lockGuard(m);

// critical section

} // unlock the mutex

The artificial scope ({ ... }) ensures that the lock’s lifetime automatically ends; therefore, the
underlying mutex is unlocked.

11.2.2.5 Try to lock at most one mutex at one point in time

Of course, sometimes you need more than one mutex at one point in time. In this case, you may
become the victim of a race condition which causes a deadlock such as in the following chapter;
therefore, you should try to avoid holding more than one mutex at one point in time if possible.

11.2.2.6 Give your locks a name

If you use a lock such as std::lock_guard without a name, it will be immediately destroyed.

std::mutex m;

...

{

std::lock_guard<std::mutex>{m};

// critical section

}

In this innocent-looking code snippet, the std::lock_guard is immediately destroyed. Therefore, the
following critical section is executedwithout synchronization. The locks from the C++ standard follow
all the same pattern. They lock its mutex and its constructor and unlock it in its destructor. This pattern
is called RAII.

The following example shows the surprising behavior:
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1 // myGuard.cpp

2

3 #include <mutex>

4 #include <iostream>

5

6 template <typename T>

7 class MyGuard{

8 T& myMutex;

9 public:

10 MyGuard(T& m):myMutex(m){

11 myMutex.lock();

12 std::cout << "lock" << '\n';

13 }

14 ~MyGuard(){

15 myMutex.unlock();

16 std::cout << "unlock" << '\n';

17 }

18 };

19

20 int main(){

21

22 std::cout << '\n';

23

24 std::mutex m;

25 MyGuard<std::mutex> {m};

26 std::cout << "CRITICAL SECTION" << '\n';

27

28 std::cout << '\n';

29

30 }

The MyGuard calls lock and unlock in its constructor and its destructor. Because of the temporary, the
call to the constructor and destructor happens in line 25. In particular, this means that the destructor’s
call happens at line 25 and not, as usual, in line 31. As a consequence, the critical section in line 26 is
executed without synchronization.

This screenshot of the program shows that the output of unlock happens before the output of
CRITICAL SECTION.
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Locks having no name

11.2.2.7 Use std::lock or std::scoped_lock for locking more mutexes atomically

If a thread needs more than one mutex, you must be extremely careful that you lock the mutex always
in the same sequence. If not, a bad interleaving of threads may cause a deadlock.

void deadLock(CriticalData& a, CriticalData& b){

std::lock_guard<std::mutex> guard1(a.mut);

// some time passes

std::lock_guard<std::mutex> guard2(b.mut);

// do something with a and b

}

...

std::thread t1([&]{deadLock(c1,c2);});

std::thread t2([&]{deadLock(c2,c1);});

...

Thread t1 and t2 need two resources, CriticalData, to perform their job. CriticalData has its own
mutex mut to synchronize the access. Unfortunately, both invoke the function deadlock with the
arguments c1 and c2 in a different sequence. Now we have a race condition. If thread t1 can lock
the first mutex a.mut but not the second one, b.mut because in the meantime thread t2 locks the
second one, we get a deadlock.

Thanks to std::unique_lock you can defer the locking of its mutex. The function std::lock, which
can lock an arbitrary number of mutexes atomically, does the locking.
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void deadLock(CriticalData& a, CriticalData& b){

unique_lock<mutex> guard1(a.mut,defer_lock);

// some time passes

unique_lock<mutex> guard2(b.mut,defer_lock);

std::lock(guard1,guard2);

// do something with a and b

}

...

std::thread t1([&]{deadLock(c1,c2);});

std::thread t2([&]{deadLock(c2,c1);});

...

C++17 has a new lock, std::scoped_lock, which can get an arbitrary number of mutexes and locks
them atomically. Now, the workflow becomes even more straightforward.

void deadLock(CriticalData& a, CriticalData& b){

std::scoped_lock(a.mut, b.mut);

// do something with a and b

}

...

std::thread t1([&]{deadLock(c1,c2);});

std::thread t2([&]{deadLock(c2,c1);});

...

11.2.2.8 Never call unknown code while holding a lock

Calling an unknownFunction while holding a mutex is a recipe for undefined behavior.

std::mutex m;

{

std::lock_guard<std::mutex> lockGuard(m);

sharedVariable= unknownFunction();

}

I can only speculate about the unknownFunction. If unknownFunction

• tries to lock the mutex m, which is undefined behavior. Most of the times, you get a deadlock.
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• starts a new thread that tries to lock the mutex m, you get a deadlock.

• locks another mutex m2 you may get a deadlock because you lock the two mutexes m and m2 at
the same time.

• does not directly or indirectly try to lock the mutex m; all seems to be okay. “Seems” because
your coworker can modify the function or the function is dynamically linked, and you get a
different version. All bets are open what may happen.

• work as expected you may have a performance problem because you don’t know how long the
function unknownFunction would take.

To solve this issue, use a local variable.

auto tempVar = unknownFunction();

std::mutex m,

{

std::lock_guard<std::mutex> lockGuard(m);

sharedVariable = tempVar;

}

This additional indirection solves all issues. tempVar is a local variable and can, therefore, not be the
victim of a data race. This means that you can invoke unknownFunction without a synchronization
mechanism. Additionally, the time for holding a lock is reduced to its bare minimum: assigning the
value of tempVar to sharedVariable.

11.2.3 Condition Variables

Synchronizing threads via notifications is a simple concept, but condition variables make this task
very challenging. The main reason is that a condition variable has no state.

• If a condition variable gets a notification, it may be the wrong one (spurious wakeup).

• If a condition variable gets its notification before it was ready, the notification is lost (lost
wakeup).

11.2.3.1 Don’t use condition variables without a predicate

Using a condition variable without a predicate is often a race condition.
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Condition variables without a predicate

1 // conditionVariableLostWakeup.cpp

2

3 #include <condition_variable>

4 #include <mutex>

5 #include <thread>

6

7 std::mutex mutex_;

8 std::condition_variable condVar;

9

10 void waitingForWork(){

11 std::unique_lock<std::mutex> lck(mutex_);

12 condVar.wait(lck);

13 // do the work

14 }

15

16 void setDataReady(){

17 condVar.notify_one();

18 }

19

20 int main(){

21

22 std::thread t1(setDataReady);

23 std::thread t2(waitingForWork);

24

25 t1.join();

26 t2.join();

27

28 }

If the thread t1 runs before the thread t2, you get a deadlock. t1 sends its notification before t2 can
accept it. The notification is lost. This happens very often because thread t1 starts before thread t2,
and thread t1 has less work to perform.

Adding a bool variable dataReady to the workflow solves this issue. dataReady also protects against
a spurious wakeup because the waiting thread checks at first if the notification was from the right
thread.
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Condition variables with a predicate

1 // conditionVarialbleLostWakeupSolved.cpp

2

3 #include <condition_variable>

4 #include <mutex>

5 #include <thread>

6

7 std::mutex mutex_;

8 std::condition_variable condVar;

9

10 bool dataReady{false};

11

12 void waitingForWork(){

13 std::unique_lock<std::mutex> lck(mutex_);

14 condVar.wait(lck, []{ return dataReady; });

15 // do the work

16 }

17

18 void setDataReady(){

19 {

20 std::lock_guard<std::mutex> lck(mutex_);

21 dataReady = true;

22 }

23 condVar.notify_one();

24 }

25

26 int main(){

27

28 std::thread t1(waitingForWork);

29 std::thread t2(setDataReady);

30

31 t1.join();

32 t2.join();

33

34 }

11.2.3.2 Use Promises and Futures instead of Condition Variables

For one-time notifications, promises and futures are the better choice. The workflow of previous
program conditioVarialbleLostWakeupSolved.cpp can directly be implemented with a promise and a
future.
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Notification with promise and future

1 // notificationWithPromiseAndFuture.cpp

2

3 #include <future>

4 #include <utility>

5

6 void waitingForWork(std::future<void>&& fut){

7 fut.wait();

8 // do the work

9 }

10

11 void setDataReady(std::promise<void>&& prom){

12 prom.set_value();

13 }

14

15 int main(){

16

17 std::promise<void> sendReady;

18 auto fut = sendReady.get_future();

19

20 std::thread t1(waitingForWork, std::move(fut));

21 std::thread t2(setDataReady, std::move(sendReady));

22

23 t1.join();

24 t2.join();

25

26 }

The workflow is reduced to its bare minimum. The promise prom.set_value() sends the notification
the future fut.wait() is waiting for. The program needs no mutexes and locks because there is no
critical section. Because no lost wakeup or spurious wakeup can happen, a predicate is also not
necessary.

If your workflow requires that you use a condition variable many times, then a promise and future
pair is no alternative.

11.2.4 Promises and Futures

Promises and futures an often used as an easy-to-use replacement for threads or condition variables.

11.2.4.1 If possible, go for std::async

If possible, you should go for std::async to execute an asynchronous task.
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auto fut = std::async([]{ return 2000 + 11; });

// some time passes

std::cout << "fut.get(): " << fut.get() << '\n';

By invoking auto fut = std::async([]{ return 2000 + 11; }) you say to the C++ runtime: “Run
my job”. I don’t care if it is executed immediately, if it runs on the same thread, if it runs on a thread
pool, if it runs on a GPU⁹. You are only interested in picking up the future result: fut.get().

From a conceptional view, a thread is just an implementation detail for running your job. You only
specify what should be done and not how it should be done.

11.3 Memory Model

The foundation of multithreading is a well-defined memory model. Having a basic understanding of
the memory helps a lot to get a deeper insight into the multithreading challenges.

11.3.1 Don’t use volatile for synchronization

In C++ volatile has no multithreading semantic in contrast to C# or Java. In C# or Java, volatile
declares an atomic such as std::atomic declares an atomic in C++ and is typically used for objects
which can change independently of the regular program flow. Due to this characteristic, no optimized
storing in caches takes place.

11.3.2 Don’t program Lock Free

This advice sounds ridiculous after writing a book about concurrency and having an entire chapter
dedicated to the memory model. The reason for this advice is quite simple. Lock-free programming
is very error-prone and requires an expert level in this unique domain. In particular, if you want to
implement a lock-free data structure, be aware of the ABA problem.

11.3.3 If you program Lock-Free, use well-established patterns

If you have identified a bottleneck that could benefit from a lock-free solution, apply established
patterns.

1. Sharing an atomic boolean or an atomic counter is straightforward.

2. Use a thread-safe or even lock-free container to support consumer/producer scenario. If your
container is thread-safe, you can put and get values from the container without worrying about
synchronization. You shift the application challenges to the infrastructure.

⁹https://en.wikipedia.org/wiki/Graphics_processing_unit

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
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11.3.4 Don’t build your abstraction, use guarantees of the
language

Thread-safe initialization of a shared variable can be done in various ways. You can rely on guarantees
of the C++ runtime such as constant expressions, static variables with block scope, or use the function
std::call_once in combination with the flag std::once_flag. We program in C++; therefore, you can
build your abstraction based on atomics using even the highly sophisticated acquire-release semantic.
Don’t do this in the first place unless you have to do it. This means if you have identified a bottleneck
by measuring the performance of a critical code path, only make the change if you know that your
handcrafted version outperforms the default guarantees of the language.

11.3.5 Don’t reinvent the wheel

Writing thread-safe data structures is quite a challenging endeavor. Writing lock-free data-structures
is way harder; therefore, use existing libraries such as Boost.Lockfree¹⁰ or CDS¹¹.

11.3.5.1 Boost.Lockfree

Boost.Lockfree supports three different data structures:

Queue
a lock-free multi-produced/multi-consumer queue

Stack
a lock-free multi-produced/multi-consumer stack

spsc_queue
a wait-free single-producer/single-consumer queue (commonly known as ring buffer)

11.3.5.2 CDS

CDS stands for Concurrent Data Structures and contains many intrusive (non-owning) and non-
intrusive (owning) containers. The containers of the Standard Template Library are non-intrusive
because they automatically manage their elements.

• Stacks (lock-free)

• Queues and priority-queues (lock-free)

• Ordered lists

• Ordered sets and maps (lock-free and lock-based)

• Unordered sets and maps (lock-free and lock-based)

¹⁰http://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
¹¹http://libcds.sourceforge.net/

http://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/
http://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/
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Distilled Information
• Concurrent programming is inherently complicated, therefore having in general,
but also for multithreading, and the memory model makes a lot of sense.

• A general rule for concurrent programming is, program as constant and as local as
possible. Both principles avoid data races by design.

• When possible, prefer tasks about threads and also condition variables. Tasks can
deliver values and exceptions and can also send notifications.

• In general, lock-free programming is very challenging and should be the domain
of the experts. There are a few exceptions to this rule, such as atomic counters.
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12. General Considerations

Cippi analyzes the challenge

12.1 Concurrent Stack

Before I start to write about concurrent data structures, I want to emphasize it explicitly. I could never
have written a book about concurrency without the help of previous authors. This statement holds,
in particular, true for the chapters about concurrent data structures. My book is, therefore, heavily
influenced by the book The Art of Multiprocessing Programmming¹ by Maurice Herlihy and Nir
Shavit and by the book C++ Concurrency in Action² by Anthony Williams.

When threads share a data structure, and the data structure is mutable, you have to protect the data
structure from concurrent access. Conceptually, protection can be done from the outside or from the

¹https://www.oreilly.com/library/view/the-art-of/9780123705914/
²https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition

https://www.oreilly.com/library/view/the-art-of/9780123705914/
https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
https://www.oreilly.com/library/view/the-art-of/9780123705914/
https://www.manning.com/books/c-plus-plus-concurrency-in-action-second-edition
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inside. From the outside means that it is in the responsibility of the caller (application) to protect the
data. This outside perspective is the perspective I mainly used in this book until now. Form inside
means that the data structure is responsible for protecting itself. A data structure that protects itself
so that no data race can appear is called thread-safe. This inside perspective is the perspective I write
about in this and the next chapter.

First of all, what are the general consideration you have to keep in mind to design a concurrent data
structure?

Implementing thread-safe data structures is special. Before I dive into each of these unique concerns,
here is a concise overview, including the answers you have to give.

• Locking Strategy: Should the data structure support coarse-grained, fine-grained locking, or
be lock-free? Coarse-grained locking might be easier to implement but introduces contention.
A fine-grained implementation or a lock-free one is way more challenging.

• The Granularity of the Interface: The bigger the thread-safe data structure’s interface, the
more difficult it becomes to reason about the concurrent usage of the data structure.

• Typical Usage Pattern: When readers use your data structure mainly, you should not optimize
for writers.

• Avoidance of Loopholes: Don’t pass internals of your data structure to clients.

• Contention: Do concurrent client requests seldom or often use your data structure?

• Scalability: How is your data structure’s performance characteristic when the number of
concurrent clients increases or the data structure is bounded?

• Invariants: Which invariant must hold for your data structure when used?

• Exceptions: What should happen if an exception occurs?

Of course, these considerations are dependent on each other. For example, using a coarse-grained
locking strategy lets you think about the granularity of the interface and the invariants. In contrast,
it may increase the contention on the data structure and breaks scalability.

Although the general considerations in this chapter apply to lock-based data structures and the lock-
free data structures, most examples in this chapter use locks. I delay all detailed discussions about
lock-free data structures to the dedicated chapter.

12.2 Locking Strategy

Should the data structure support coarse-grained, fine-grained locking or be lock-free? First of all,
what do I mean by coarse-grained locking? Coarse-grained locking means that only one thread uses
the data structure at one point in time. The thread-safe interface pattern when using one lock is a
typical way to implement coarse-grained locking. Here is the straightforward idea of the thread-safe
interface pattern.

• All interface member functions (public) should use a lock.
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• All implementation member functions (protected and private) must not use a lock.

• The interface member functions call only protected or privatemember functions but no public
member functions.

The thread-safe interface pattern has two nice properties: all public member functions are thread-
safe per design and deadlock-free per design. The thread-safe interface is thread-safe because each
public member function uses a lock and the thread-safe interface is deadlock-free because a public

member function can not invoke another publicmember function of the class. I assume the following
implementation makes my point:

The Thread-Safe Interface

1 // threadSafeInterface.cpp

2

3 #include <iostream>

4 #include <mutex>

5 #include <thread>

6

7 class Critical{

8

9 public:

10 void interface1() const {

11 std::lock_guard<std::mutex> lockGuard(mut);

12 implementation1();

13 }

14 void interface2(){

15 std::lock_guard<std::mutex> lockGuard(mut);

16 implementation2();

17 implementation3();

18 implementation1();

19 }

20 private:

21 void implementation1() const {

22 std::cout << "implementation1: "

23 << std::this_thread::get_id() << '\n';

24 }

25 void implementation2(){

26 std::cout << " implementation2: "

27 << std::this_thread::get_id() << '\n';

28 }

29 void implementation3(){

30 std::cout << " implementation3: "

31 << std::this_thread::get_id() << '\n';

32 }

33

34
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35 mutable std::mutex mut;

36

37 };

38

39 int main(){

40

41 std::cout << '\n';

42

43 std::thread t1([]{

44 const Critical crit;

45 crit.interface1();

46 });

47

48 std::thread t2([]{

49 Critical crit;

50 crit.interface2();

51 crit.interface1();

52 });

53

54 Critical crit;

55 crit.interface1();

56 crit.interface2();

57

58 t1.join();

59 t2.join();

60

61 std::cout << '\n';

62

63 }

The thread-safe interface pattern sounds promising but also has an obvious drawback. The data
structure implementing the thread-safe interface is a bottleneck because only one thread can use the
data structure at one point in time. This characteristic means if you have many threads working
concurrently on the data structure, you should look for more fine-grained locking. For example,
instead of protecting the entire interface to a singly-linked list with one lock, you can use a lock
on individual nodes of the singly-linked list.

Of course, the data structure can also be lock-free. I discuss the special challenges of lock-free data
structures in the same chapter.

12.3 Granularity of the Interface

Assume you want to implement a lock-based wrapper ThreadSafeQueue for a std::deque. The
following code snippet gives a rough idea of the ThreadSafeQueue.
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class ThreadSafeQueue{

...

public:

bool empty() const;

std::shared_ptr<int> pop();

...

private:

std::deque<int> data;

...

};

For simplicity reasons, I only display the member functions empty and pop. empty returns if the
ThreadSafeQueue is empty and pop returns and removes the head of the ThreadSafeQueue. The interface
has the wrong granularity! Why? Assume that two threads want to perform the following function
on the same threadSafeQueue.

ThreadSafeQueue threadSafeQueue;

std::shared_ptr<int> getHead(){

if (!threadSafeQueue.empty()){

auto head = threadSafeQueue.pop();

return head;

}

return std::shared_ptr<int>();

}

...

std::thread t1([&]{ auto res = getHead();

...

});

std::thread t2([&]{ auto res = getHead();

...

});

This code has a race conditionwhich can cause undefined behavior. Between the check !threadSafeQueue.empty()
that the queue is not empty and the removing of the head-element via threadSafeQueue.pop(), there
is a time window. For example, the following interleaving can happen.

Undefined behavior with ThreadSafeQueue

thread t1 thread t2

(1) !threadSafeQueue.empty() == true

(2) !threadSafeQueue.empty() == true

(3) auto head = threadSafeQueue.pop();

(4) auto head = threadSafeQueue.pop();
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If threadSafeQueue has only one element, the second call threadSafeQueue.pop() from thread t2

has undefined behavior. Although both member functions are thread-safe, the combination of both
member functions has undefined behavior. The interface puts the burden to synchronize the access
to threadSafeQueue on the client’s shoulder. The is far from ideal.

Changing the granularity of themember functions on ThreadSafeQueue solves this issue quite elegantly.
Just combine the two calls empty and pop into one member function.

class ThreadSafeQueue {

...

public:

std::shared_ptr<int> tryPop(){

std::lock_guard<std::mutex> queLock(queMute);

if (!data.empty()){

auto head = data.pop();

return head;

}

return std::shared_ptr<int>();

}

...

private:

std::deque<int> data;

mutable std::lock_mutex queMutex;

...

};

12.4 Typical Usage Pattern

The typical usage pattern for a data structure is the read access. Reader-writer locks allow you to
optimize for the read access. When you put a std::shared_timed_mutex into a std::shared_lock, the
lock becomes a shared lock but when you put a std::shared_timed_mutex into a std::lock_guard or
into a std::unique_lock, you get a exclusive lock.

A telephone book is a data structure that more often read than modified and is, therefore, the ideal
candidate for a reader-writer lock. Let me start with an exclusive lock to have an initial performance
number. I have a telephone book with roughly 89,000 entries. Ten threads read all 89,000 names in an
arbitrary order, and one thread adds 1 to a telephone number of each tenth family name. Of course,
all threads run at the same time.

The following image shows you a part of the telephone book. You can see the name/number pairs
separated by a colon and the name separated from the number by a comma.
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The initial telephone book

The following program crates a std::unordered_map<std::string, int> from the file.

Exclusive locking on a telephone book

1 // exclusiveLockingTelebook.cpp

2

3 #include <chrono>

4 #include <fstream>

5 #include <future>

6 #include <iostream>

7 #include <mutex>

8 #include <random>

9 #include <regex>

10 #include <shared_mutex>

11 #include <sstream>

12 #include <string>

13 #include <unordered_map>

14 #include <vector>

15

16 using map = std::unordered_map<std::string, int>;

17

18 class TeleBook{

19

20 mutable std::mutex teleBookMutex;

21 mutable map teleBook;

22 const std::string teleBookFile;
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23

24 public:

25 TeleBook(const std::string& teleBookFile_): teleBookFile(teleBookFile_){

26 auto fileStream = openFile(teleBookFile);

27 auto fileContent = readFile(std::move(fileStream));

28 teleBook = createTeleBook(fileContent);

29 std::cout << "teleBook.size(): " << teleBook.size() << '\n';

30 }

31

32 map get() const {

33 std::lock_guard<std::mutex> lockTele(teleBookMutex);

34 return teleBook;

35 }

36

37 int getNumber(const std::string& name) const {

38 std::lock_guard<std::mutex> lockTele(teleBookMutex);

39 return teleBook[name];

40 }

41

42 void setNewNumber(const std::string& name) {

43 std::lock_guard<std::mutex> lockTele(teleBookMutex);

44 teleBook[name]++;

45 }

46

47 private:

48

49 std::ifstream openFile(const std::string& myFile){

50 std::ifstream file(myFile, std::ios::in);

51 if ( !file ){

52 std::cerr << "Can't open file "+ myFile + "!" << '\n';

53 exit(EXIT_FAILURE);

54 }

55 return file;

56 }

57

58 std::string readFile(std::ifstream file){

59 std::stringstream buffer;

60 buffer << file.rdbuf();

61 return buffer.str();

62 }

63

64 map createTeleBook(const std::string& fileCont){

65 map teleBook;

66

67 std::regex regColon(":");
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68 std::sregex_token_iterator fileContIt(fileCont.begin(), fileCont.end(),

69 regColon, -1);

70 const std::sregex_token_iterator fileContEndIt;

71

72 std::string entry;

73 std::string key;

74 int value;

75 while (fileContIt != fileContEndIt){

76 entry = *fileContIt++;

77 auto comma = entry.find(",");

78 key = entry.substr(0, comma);

79 value = std::stoi(entry.substr(comma + 1, entry.length() -1));

80 teleBook[key] = value;

81 }

82 return teleBook;

83 }

84 };

85

86 std::vector<std::string> getRandomNames(const map& teleBook){

87

88 std::vector<std::string> allNames;

89 for (const auto& pair: teleBook) allNames.push_back(pair.first);

90

91 std::random_device randDev;

92 std::mt19937 generator(randDev());

93

94 std::shuffle(allNames.begin(), allNames.end(), generator);

95

96 return allNames;

97 }

98

99 void getNumbers(const std::vector<std::string>& randomNames, TeleBook& teleBook){

100 for (const auto& name: randomNames) teleBook.getNumber(name);

101 }

102

103 int main(){

104

105 std::cout << '\n';

106

107 // get the filename

108 const std::string myFileName = "tele.txt";

109 TeleBook teleBook(myFileName);

110

111 std::vector<std::string> allNames = getRandomNames(teleBook.get());

112 std::vector<std::string> tenthOfAllNames(allNames.begin(),
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113 allNames.begin() + allNames.size()/10);

114

115 auto start = std::chrono::steady_clock::now();

116

117 auto futReader0 = std::async(std::launch::async,

118 [&]{ getNumbers(allNames, teleBook); });

119 auto futReader1 = std::async(std::launch::async,

120 [&]{ getNumbers(allNames, teleBook); });

121 auto futReader2 = std::async(std::launch::async,

122 [&]{ getNumbers(allNames, teleBook); });

123 auto futReader3 = std::async(std::launch::async,

124 [&]{ getNumbers(allNames, teleBook); });

125 auto futReader4 = std::async(std::launch::async,

126 [&]{ getNumbers(allNames, teleBook); });

127 auto futReader5 = std::async(std::launch::async,

128 [&]{ getNumbers(allNames, teleBook); });

129 auto futReader6 = std::async(std::launch::async,

130 [&]{ getNumbers(allNames, teleBook); });

131 auto futReader7 = std::async(std::launch::async,

132 [&]{ getNumbers(allNames, teleBook); });

133 auto futReader8 = std::async(std::launch::async,

134 [&]{ getNumbers(allNames, teleBook); });

135 auto futReader9 = std::async(std::launch::async,

136 [&]{ getNumbers(allNames, teleBook); });

137

138 auto futWriter = std::async(std::launch::async, [&]{

139 for (const auto& name: tenthOfAllNames) teleBook.setNewNumber(name);

140 });

141

142 futReader0.get(), futReader1.get(), futReader2.get(), futReader3.get(),

143 futReader4.get(), futReader5.get(), futReader6.get(), futReader7.get(),

144 futReader8.get(), futReader9.get(), futWriter.get();

145

146 std::chrono::duration<double> duration = std::chrono::steady_clock::now()

147 - start;

148

149 std::cout << "Process time: " << duration.count() << " seconds" << '\n';

150

151 std::cout << '\n';

152

153 }

Let me start with the constructor of the class TeleBook (lines 25 - 30). It opens the file, reads the content,
and creates a telephone book. The function getRandomNames (lines 86 - 97) generates an arbitrary
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permutation of the family names. Each tenth family name goes to the std::vector tenthOfAllNames.
These are the family names for which the telephone number is modified. Now, to the most interesting
lines 117 - 149. futReader0 to futReader9 are the futures, representing ten threads. Each thread reads all
family names using the function getNumbers in lines 99 - 101. The updating Future futWriter performs
it job directly in the lambda function (lines 138 - 140). When all futures are done, line 149 displays
the overall process time. I want to mention explicitly, that the interface functions (get, getNumber,
and setNewNumber) of TeleBook use the std::mutex teleBookMutex (line 20) for the synchronization.
teleBookMuex is mutable and can, therefore, be used in a const member function.

Now, I come to the optimization step. Themember functions get (lines 32 - 35) and getNumber (lines 37 -
40) don’t modify the telebook and can, therefore, use a reader-writer lock. Of course, this optimization
can not be applied to the member function setNewNumber (lines 42 - 45). I only display the interface of
the new class TeleBook in the optimized program for simplicity. The other parts of the program are
identical.

Shared locking on a telephone book

1 // sharedLockingTelebook.cpp

2

3 ...

4

5 class TeleBook{

6

7 mutable std::shared_timed_mutex teleBookMutex;

8 mutable map teleBook;

9 const std::string teleBookFile;

10

11 public:

12 TeleBook(const std::string& teleBookFile_): teleBookFile(teleBookFile_){

13 auto fileStream = openFile(teleBookFile);

14 auto fileContent = readFile(std::move(fileStream));

15 teleBook = createTeleBook(fileContent);

16 std::cout << "teleBook.size(): " << teleBook.size() << '\n';

17 }

18

19 map get() const {

20 std::shared_lock<std::shared_timed_mutex> lockTele(teleBookMutex);

21 return teleBook;

22 }

23

24 int getNumber(const std::string& name) const {

25 std::shared_lock<std::shared_timed_mutex> lockTele(teleBookMutex);

26 return teleBook[name];

27 }

28

29 void setNewNumber(const std::string& name) {
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30 std::lock_guard<std::shared_timed_mutex> lockTele(teleBookMutex);

31 teleBook[name]++;

32 }

33

34 private:

35 ...

You should not compare the performance of Linux(GCC) with the performance of Windows(cl.exe)
because the underlying computers are not comparable. Instead, you should compare the relative per-
formance of exclusive versus shared locking on both platforms. The numbers are pretty astonishing.

12.4.1 Linux (GCC)

12.4.1.1 Exclusive Locking

The initial telephone book

12.4.1.2 Shared Locking

The initial telephone book

Exclusive locking is on Linux about 15 % slower than shared locking. This difference is less than I
expected because the read/write ratio is 100 to 1.
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12.4.2 Windows (cl.exe)

12.4.2.1 Exclusive Locking

The initial telephone book

12.4.2.2 Shared Locking

The initial telephone book

Honestly, theWindows numbers surprisedme because shared locking is onWindows two times slower
than exclusive locking. It seems that the usage of a std::shared_lock and a std::lock_guard together
with a std::shared_time_mutex is a heavyweight operation so that sharing does not pay off.

12.5 Avoidance of Loopholes

Don’t pass the internals of your data structure to clients. Internals can be passed by reference or
pointer to the outside world. Passing an arbitrary callable to the data structure opens a loophole,
which is difficult challenging to spot.
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Loophole in the interface

1 // lockDouble.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <mutex>

6

7 class LockDouble {

8 public:

9 double get() const {

10 std::lock_guard<std::mutex> lockDoubGuard(lockDoubMutex);

11 return lockDoub;

12 }

13

14 void set(double val) {

15 std::lock_guard<std::mutex> lockDoubGuard(lockDoubMutex);

16 lockDoub = val;

17 }

18

19 template <typename Func>

20 void apply(Func func){

21 std::lock_guard<std::mutex> lockDoubGuard(lockDoubMutex);

22 func(lockDoub);

23 }

24

25

26 private:

27 double lockDoub{};

28 mutable std::mutex lockDoubMutex;

29

30 };

31

32 int main(){

33

34 LockDouble lck1;

35

36 auto fut1 = std::async([&lck1]{ lck1.set(20.11); });

37 auto fut2 = std::async([&lck1]{ std::cout << lck1.get() << '\n'; });

38

39 double* loophole = nullptr;

40 lck1.apply([&loophole](double& d) mutable { loophole = &d; });

41 *loophole = 11.22;

42

43 auto fut3 = std::async([&lck1]{ std::cout << lck1.get() << '\n'; });
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44

45 }

The class LockDouble has a clean interface. Each access to the variable lockDouble is protected by
the same mutex lockDoubMutex put into a std::lock_guard. The member function get returns a copy
and not a non-const reference to lockDouble. If the member function get would return a non-const
reference to lockDoub, a client could quite easily produce a data race.

...

double& get() {

std::lock_guard<std::mutex> lockDoubGuard(lockDoubMutex);

return lockDoub;

}

...

LockDouble lck;

lck.set(22.11);

double& d = lck.get();

d = 11.22;

Of course, the issue is that the reference d can change lockDoub, which should be protected by the
mutex lockDoubMutex. I assume this issue was quite easy to detect.

The member function apply in lines 19 - 23 opens the loophole. I create in line 40 a lambda function
that returns a reference to lockDoub. The expression *loophole = 11.22 changes the value of lockDoub
without synchronization. Of course, this is a data race. The screenshot shows the effects of the non-
synchronized access to lockDoub.

Sychronized and non-synchronized access to lockDoub
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ThreadSanitizer³ shows the data race explicitly.

Data race detection with the Threadsanitizer

12.6 Contention

Do concurrent client requests seldom or often use your data structure? When the contention is low,
straightforward synchronization primitives such as locks are usually fast enough. Using sophisticated
and challenging solutions such as atomics could be overkill. Before you go for the advanced solutions,
you should measure. To get an idea, how expensive locks are, let me make a straightforward test.

Now, I can make it short. I already did this test in the chapter Calculating the Sum of a Vector. I filled
a std::vector with one hundred million arbitrary but uniformly distributed⁴ numbers between 1 and
10. Then I calculated the sum of the numbers in various ways. Two ways are, in particular, interesting
for this section.

12.6.1 Single-Threaded Summation without Synchronization

First, I show the straightforward range-based for loop to calculate the sum.

³https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
⁴https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Summation of a vector in a range-based for loop

1 // calculateWithLoop.cpp

2

3 #include <chrono>

4 #include <iostream>

5 #include <random>

6 #include <vector>

7

8 constexpr long long size = 100000000;

9

10 int main(){

11

12 std::cout << '\n';

13

14 std::vector<int> randValues;

15 randValues.reserve(size);

16

17 // random values

18 std::random_device seed;

19 std::mt19937 engine(seed());

20 std::uniform_int_distribution<> uniformDist(1, 10);

21 for (long long i = 0 ; i < size ; ++i)

22 randValues.push_back(uniformDist(engine));

23

24 const auto sta = std::chrono::steady_clock::now();

25

26 unsigned long long sum = {};

27 for (auto n: randValues) sum += n;

28

29 const std::chrono::duration<double> dur =

30 std::chrono::steady_clock::now() - sta;

31

32 std::cout << "Time for addition " << dur.count()

33 << " seconds" << '\n';

34 std::cout << "Result: " << sum << '\n';

35

36 std::cout << '\n';

37

38 }

The reference number for Linux
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Explicit summation on Linux

and for Windows.

Explicit summation on Windows

12.6.2 Single-Threaded Summation with Synchronization (lock)

In contrast, the range-based for-loop with additional synchronization. I show only the source code
difference to the non-synchronized version.

Summation of a vector by using a lock for the summation variable

// calculateWithLock.cpp

...

std::mutex myMutex;

for (auto i: randValues){

std::lock_guard<std::mutex> myLockGuard(myMutex);

sum += i;

}

...

Respectively, the performance numbers for Linux
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Single-threaded summation on Linux using a lock

and Windows.

Single-threaded summation on Windows using a lock

12.6.3 Single-Threaded Summation with Synchronization (atomic)

The following range-based for-loop uses and atomic for synchronization. Here are the essential lines
showing the difference to the non-synchronized version.

Summation of a vector by using an atomic for the summation variable

// calculateWithAtomic.cpp

...

std::atomic<unsigned long long> sum = {};

for (auto i: randValues) sum += i;

...

Respectively, the performance numbers for Linux
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Single-threaded summation on Linux using an atomic

and Windows.

Single-threaded summation on Windows using an atomic

12.6.4 The Comparison

The non-synchronized version is about 18 times faster than the version using lock and about 50 - 150
times faster than the version using locks. The synchronized version using atomics is about 2.5 times
faster than the version using locks. This difference holds for Linux and Windows. The performance
numbers seem to speak a clear statement against synchronization with locks or atomics, but you have
to consider that this was a synchronization-heavy job. Additionally, when you have to synchronize
only a few times, a lock or a atomic may be your best and sufficiently performant version.

12.7 Scalability

How is your data structure’s performance characteristic when the number of concurrent clients
increases or the data structure is bounded? These are two questions which you should have to answer.
Scalability means a 1 to 1 relation between clients of the data structure and the throughput.
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• For example, when you have a thread-safe queue with one producer/consumer, each additional
producer or consumer must be blocked until the previous one is done. This blocking restriction
does not hold for many producers/many consumers queue. For simplicity reasons, I call the
second scenario an n/m relation. n can also be 1. The second scenario is if the producer can
satisfy all consumers or the other way around. If not, producers or consumers have to wait,
which hinters scalability.

• When your data structure is a bounded thread-safe queue, you can not expect perfect scalability
because the producer/consumer fails at one point out of lockstep. An internally used puffer
between the producers and consumers may decouple them but will not solve the original issue.

Let me answer the two questions for the concrete ThreadSafeQueue from chapter Concurrent
Architecture.

The Monitor Object

1 template <typename T>

2 class Monitor{

3 public:

4 void lock() const {

5 monitMutex.lock();

6 }

7 void unlock() const {

8 monitMutex.unlock();

9 }

10

11 void notify_one() const noexcept {

12 monitCond.notify_one();

13 }

14 void wait() const {

15 std::unique_lock<std::recursive_mutex> monitLock(monitMutex);

16 monitCond.wait(monitLock);

17 }

18

19 private:

20 mutable std::recursive_mutex monitMutex;

21 mutable std::condition_variable_any monitCond;

22 };

23

24 template <typename T>

25 class ThreadSafeQueue: public Monitor<ThreadSafeQueue<T>>{

26 public:

27 void add(T val){

28 derived.lock();

29 myQueue.push(val);

30 derived.unlock();

31 derived.notify_one();
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32 }

33

34 T get(){

35 derived.lock();

36 while (myQueue.empty()) derived.wait();

37 auto val = myQueue.front();

38 myQueue.pop();

39 derived.unlock();

40 return val;

41 }

42 private:

43 std::queue<T> myQueue;

44 ThreadSafeQueue<T>& derived = static_cast<ThreadSafeQueue<T>&>(*this);

45 };

The member function add adds (line 27) an element of type T to the std::queue, and the member
function get (line 34) removes an element from the std::queue. The class ThreadSafeQueue implements
the Monitor Object. The Monitor Object design pattern synchronizes concurrent member function
execution to ensure that only onemember function at a time runs within an object.When a producer is
done, one consumerwill be notified by the std::condition_variable_any (line 21). A std::recursive_-

mutex (line 20) protects modification on an internal queue. This description should be sufficient to
answer our two questions. If you want to knowmore about this architecture pattern, read the previous
chapter to the Monitor Object.

• It’s pretty evident that the consumer can be blocked in line 36, if no values are available.

• The second question is straightforward to answer because the thread-safe queue is not bounded.

12.8 Invariants

An invariant is a condition or relation that is always true. For example, the sum of all credit and debts
for all accounts should be zero at any time. Should, because, for the following program, the invariant
will not hold.

Broken Invariants

1 // invariant.cpp

2

3 #include <functional>

4 #include <iostream>

5 #include <mutex>

6 #include <numeric>

7 #include <random>

8 #include <thread>



General Considerations 582

9 #include <vector>

10

11 class Accounts{

12 public:

13 void deposit(int account){

14 std::lock_guard<std::mutex> lockAcc(mutAcc);

15 accounts[account] += 10;

16 }

17

18 void takeOff(int account){

19 std::lock_guard<std::mutex> lockAcc(mutAcc);

20 accounts[account] -= 10;

21 }

22

23 int getSum() const {

24 std::lock_guard<std::mutex> lockAcc(mutAcc);

25 return std::accumulate(accounts.begin(), accounts.end(), 0);

26 }

27

28 private:

29 std::vector<int> accounts = std::vector<int>(100, 0);

30 mutable std::mutex mutAcc;

31 };

32

33 class Dice{

34 public:

35 int operator()(){ return rand(); }

36 private:

37 std::function<int()> rand = std::bind(std::uniform_int_distribution<>(0, 99),

38 std::default_random_engine());

39 };

40

41 using namespace std::chrono_literals;

42

43 int main(){

44

45 constexpr auto TRANS = 1000;

46 constexpr auto OBS = 10;

47 Accounts acc;

48 Dice dice;

49

50 std::vector<std::thread> transactions(TRANS);

51 for (auto& thr: transactions) thr = std::thread([&acc, &dice]{

52 acc.deposit(dice());

53 std::this_thread::sleep_for(10ns);
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54 acc.takeOff(dice()); }

55 );

56

57 std::mutex coutMutex;

58

59 std::vector<std::thread> observers(OBS);

60 for (auto& thr: observers) thr = std::thread([&acc, &coutMutex]{

61 std::lock_guard<std::mutex> coutLock(coutMutex);

62 std::this_thread::sleep_for(1ms);

63 std::cout << "Total sum: " << acc.getSum() << '\n'; }

64 );

65

66 for (auto& thr: transactions) thr.join();

67 for (auto& thr: observers) thr.join();

68 }

The class Accounts has 100 accounts, all initialized to zero (line 24). You can deposit 10 unit (lines
13 - 16) from an account given by the index. The member function takeOff (lines 18 - 21) allows
it to withdraw 10 units from a given account. The member function getSum (lines 23 - 26) helps to
check if all invariants hold. All three member functions are synchronized via the std::mutex mutAcc.
Now, to the provocation of the invariants. I create 1000 threads (lines 50 - 56) which adds (line 52)
and remove (54) 10 units to and from an arbitrary account which is given by the dice. In contrast, 10
threads observe the sum of all accounts (lines 59 - 64). The longer the sleeping between the deposit

and the takeOff call is (line 53), the more probable is it to observe the invariant such as in the following
screenshot.

Broken invariants caught in action
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Of course, putting the deposit and the takeOff call into one critical section would guarantee the
invariant.

12.9 Exceptions

What should happen if an exception occurs? The answer to this question depends on the data structure
you use to create the thread. Here are a few options?

• std::thread: When the created thread throws an exception, std::terminate is called. This
means that std::terminate passes the main-thread.

• Task: Tasks such as std::async, std::packaged_task, and std::promise can throw an exception
which has to be handled by the associated std::future .

• Parallel algorithms of the STL: If an exception occurs during the usage of an algorithm with an
execution policy, std::terminate is called.

std::terminate calls the installed std::terminate_handler⁵. The consequence is that per default
std::abort⁶ is called, which causes abnormal program termination.

Now, it’s time to consider these concerns in practice. Typically concurrent data structures are stacks
and queues.

Distilled Information
• There many question you have to answer before you design lock-based or lock-free
data structures.

•

• Should data data structure support coarse-grained, fine-grained locking, or even
be lock-free?

• What are the typical usage patterns of your concurrent data structure? Do youwant
to optimize the data structure for read or write operations or for high contention?

⁵https://en.cppreference.com/w/cpp/error/terminate_handler
⁶https://en.cppreference.com/w/cpp/utility/program/abort

https://en.cppreference.com/w/cpp/error/terminate_handler
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/error/terminate_handler
https://en.cppreference.com/w/cpp/utility/program/abort


13. Lock-Based Data Structures

Cippi builds a stack

First of all: What is a stack?
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13.0.1 A Stack

A Stack

A std::stack¹ follows the LIFO principle (Last In First Out). A stack sta, which needs the header
<stack>, has three member functions.

With sta.push(e) you can insert a new element e at the top of the stack, remove it from the top with
sta.pop() and reference it with sta.top(). The stack supports the comparison operators and knows
its size. The operations of the stack have constant complexity.

#include <stack>

...

std::stack<int> myStack;

std::cout << myStack.empty() << '\n'; // true

std::cout << myStack.size() << '\n'; // 0

myStack.push(1);

myStack.push(2);

myStack.push(3);

std::cout << myStack.top() << '\n'; // 3

while (!myStack.empty()){

std::cout << myStack.top() << " ";

myStack.pop();

} // 3 2 1

std::cout << myStack.empty() << '\n'; // true

std::cout << myStack.size() << '\n'; // 0

Let me implement the concurrent stack successively.

13.0.1.1 A Simplified Implementation

My first implementation only supports the push member function. The class ConcurrentStackPush is
a thin wrapper around a std::stack.

¹http://en.cppreference.com/w/cpp/container/stack

http://en.cppreference.com/w/cpp/container/stack
http://en.cppreference.com/w/cpp/container/stack
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A concurrent Stack supporting push

1 // concurrentStackPush.cpp

2

3 #include <list>

4 #include <mutex>

5 #include <stack>

6 #include <string>

7 #include <utility>

8 #include <vector>

9

10 template<typename T, template <typename, typename> class Cont = std::deque>

11 class ConcurrentStackPush{

12 public:

13 void push(T val){

14 std::lock_guard<std::mutex> lockStack(mutexStack);

15 myStack.push(std::move(val));

16 }

17 ConcurrentStackPush() = default;

18 ConcurrentStackPush(const ConcurrentStackPush&) = delete;

19 ConcurrentStackPush& operator= (const ConcurrentStackPush&) = delete;

20 private:

21 mutable std::mutex mutexStack;

22 std::stack<T, Cont<T, std::allocator<T>>> myStack;

23 };

24

25 int main(){

26

27 ConcurrentStackPush<int> conStack;

28 conStack.push(5);

29

30 ConcurrentStackPush<double, std::vector> conStack2;

31 conStack2.push(5.5);

32

33 ConcurrentStackPush<std::string, std::list> conStack3;

34 conStack3.push("hello");

35

36 }

From the concurrency perspective, the type ConcurrentStackPush supports the pushmember function
(lines 13 - 16), which copies a new element to the internal myStack (line 22). Thanks to the mutexStack in
line 21, the copy-operation is thread-safe. I assume, you are irritated by the second template parameter:
template <typename, typename> class Cont = std::deque. The second template parameter is a so-
called template-template parameter. It’s default is std::deque. Cont is the container for holding the
elements. Cont needs the type and the allocator of its arguments. In line 22, you see the usage of the
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parameter Cont. Cont is the second argument of the internal std::stack. The lines 27, 30, and 33 show
how you can instantiate a ConcurrentStackPush with various containers. conStack (line 27) uses a
std::deque. contStack2 (line 30) uses a std::vector, and contStack2 (line 33) uses a std::list.

std::stack² and the following std::queue³ are so-called container adapter because they use an existing
container and support a stack-like or queue-like interface.

You may ask yourself why I use the ConcurrentStackPush in a single-threaded environment and why
I don’t show any output. Here is my answer: just having one member function, push, is too restricting.
ConcurrentStackPush should only serve as a starting point for a complete Implementation.

13.0.1.2 A Complete Implementation

According to the info box stack, my concurrent stack should at least support the member functions
push, pop, and top.

You may assume that the straightforward extension of the previous type ConcurrentStackPush would
do the job. This assumption is wrong.

A broken Concurrent Stack

template<typename T, template <typename, typename> class Cont = std::deque>

class ConcurrentStackBroken {

public:

void push(T val) {

std::lock_guard<std::mutex> lockStack(mutexStack);

myStack.push(std::move(val));

}

void pop() {

std::lock_guard<std::mutex> lockStack(mutexStack);

myStack.pop();

}

T& top(){

std::lock_guard<std::mutex> lockStack(mutexStack);

return myStack.top();

}

ConcurrentStackBroken() = default;

ConcurrentStackBroken(const ConcurrentStackBroken&) = delete;

ConcurrentStackBroken& operator = (const ConcurrentStackBroken&) = delete;

private:

mutable std::mutex mutexStack;

std::stack<T, Cont<T, std::allocator<T>>> myStack;

};

²http://en.cppreference.com/w/cpp/container/stack
³http://en.cppreference.com/w/cpp/container/queue

http://en.cppreference.com/w/cpp/container/stack
http://en.cppreference.com/w/cpp/container/queue
http://en.cppreference.com/w/cpp/container/stack
http://en.cppreference.com/w/cpp/container/queue
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The ConcurrentStackBroken has the member function push the two member functions pop, and top.
Just using the same mutex mutexStack for all three member functions is not correct. This native
implementation has at least two issues. One is obvious; the second one is more involved.

First, the member function top returns a reference. The reference can be used to modify an element
which is a data race, such as in the following code snippet.

Returning a reference

int main() {

ConcurrentStackBroken<int> conStack;

conStack.push(5);

auto fut = std::async(std::launch::async, [&conStack]{ conStack.top() += 5; });

auto fut2 = std::async(std::launch::async,

[&conStack]{ std::cout << conStack.top() << '\n'; });

}

The issue is that the write operation of the first std::async is not synchronized with the read operation
of the second std::async.

The second issue is that the top member function followed by the pop member function is not an
atomic operation. Let’s see what I mean.

top and pop are not atomic

int main(){

ConcurrentStackBroken<int> conStack;

constexpr auto SENTINEL = std::numeric_limits<int>::min();

conStack.push(SENTINEL);

conStack.push(5);

auto saveRemove = [&conStack]{ if (conStack.top() != SENTINEL) conStack.pop(); };

auto fut = std::async(std::launch::async, saveRemove);

auto fut2 = std::async(std::launch::async, saveRemove);

auto fut3 = std::async(std::launch::async, saveRemove);

}

To ensure that the ConcurrentStackBroken always has a valid element before I pop it, I pushed a
SENTINEL on it. SENTINEL is the invariant that should hold for the concurrent data structure. The lambda-
function saveRemove applies my protocol. The issue in saveRemove is that more than one pop operation
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could happen in sequence, based on the wrong assumption that contStack has a valid element. Of
course, the three std::async all interleave, and, therefore, the following sequence of operations can
happen. The operations top and pop do not interleave because they use the same mutex.

A possible interleaving

conStack.top() // associated promise to `fut`

conStack.top() // associated promise to `fut2`

conStack.top() // associated promise to `fut3`

conStack.pop() // associated promise to `fut`

conStack.pop() // associated promise to `fut2` // (2)

conStack.pop() // associated promise to `fut3` // (3)

The constructed sequence of operations is fatal. With the call (2), the SENTINEL is removed, and,
therefore, the invariant is broken. The call (3) has undefined behavior because the pop call on the
std::stack triggers a pop_back call on the internal container. Calling pop_back on an empty container
is undefined behavior.

Changing the interface of a concurrent data structure is often a viable way to overcome concurrency
issues. In this case, I change the interface’s granularity and combine the member functions top and
pop into on member function topAndPop. Of course, this combination of member functions top and
pop violates the Single responsibility principle⁴.

A concurrent Stack

1 // concurrentStack.cpp

2

3 #include <future>

4 #include <limits>

5 #include <iostream>

6 #include <mutex>

7 #include <stack>

8 #include <stdexcept>

9 #include <utility>

10

11 template<typename T, template <typename, typename> class Cont = std::deque>

12 class ConcurrentStack {

13 public:

14 void push(T val) {

15 std::lock_guard<std::mutex> lockStack(mutexStack);

16 myStack.push(std::move(val));

17 }

18 T topAndPop() {

19 std::lock_guard<std::mutex> lockStack(mutexStack);

20 if ( myStack.empty() ) throw std::out_of_range("The stack is empty!");

⁴https://en.wikipedia.org/wiki/Single_responsibility_principle

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
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21 auto val = myStack.top();

22 myStack.pop();

23 return val;

24 }

25 ConcurrentStack() = default;

26 ConcurrentStack(const ConcurrentStack&) = delete;

27 ConcurrentStack& operator = (const ConcurrentStack&) = delete;

28 private:

29 mutable std::mutex mutexStack;

30 std::stack<T, Cont<T, std::allocator<T>>> myStack;

31 };

32

33 int main() {

34

35 ConcurrentStack<int> conStack;

36

37 auto fut = std::async([&conStack]{ conStack.push(2011); });

38 auto fut1 = std::async([&conStack]{ conStack.push(2014); });

39 auto fut2 = std::async([&conStack]{ conStack.push(2017); });

40

41 auto fut3 = std::async([&conStack]{ return conStack.topAndPop(); });

42 auto fut4 = std::async([&conStack]{ return conStack.topAndPop(); });

43 auto fut5 = std::async([&conStack]{ return conStack.topAndPop(); });

44

45 fut.get(), fut1.get(), fut2.get();

46

47 std::cout << fut3.get() << '\n';

48 std::cout << fut4.get() << '\n';

49 std::cout << fut5.get() << '\n';

50

51 }

Themember function topAndPop (lines 18 - 24) returns a copy instead of a reference such as themember
function top before. Calling pop on an empty container is undefined behavior. I prefer to throw a
std::out_of_range exception (line 20) if the stack is empty. Returning a special non-value or returning
a std::optional⁵ is also a valid option. Copying the value has a downside. If the copy constructor of
the value throws an exception such as std::bad_alloc⁶, the value is lost.

The calls fut.get(), fut1.get(), fut2.get() (line 45) ensure that the associated promise runs. If you
don’t specify the launch policy, the promise may run lazily in the caller’s thread. Lazily means that
the promise will execute if and only if the future asks for its result with get or wait. Launching the
promises in a separate thread is also a valid option:

⁵https://en.cppreference.com/w/cpp/utility/optional
⁶https://en.cppreference.com/w/cpp/memory/new/bad_alloc

https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
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Launching each promise in a separate thread

auto fut = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2011); });

auto fut1 = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2014); });

auto fut2 = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2017); });

Finally, the output of the program:

A concurrent stack

13.1 Concurrent Queue

Accordingly to the chapter to the Concurrent Stack I want to answer the question: What is a queue?

13.1.1 A Queue

A Queue

A std::queue⁷ follows the FIFO principle (First In First Out). A queue que, which needs the header
<queue>, has four member functions.

With que.push(e) you can insert an element e at the end of the queue and remove the first element
from the queue with que.pop(). que.back() enables you to refer to the last element in the que,
que.front() to the first element in the que. std::queue has similar characteristics as std::stack. So
you can compare std::queue instances and get their sizes. The operations of the queue have constant
complexity.

⁷http://en.cppreference.com/w/cpp/container/queue

http://en.cppreference.com/w/cpp/container/queue
http://en.cppreference.com/w/cpp/container/queue
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#include <queue>

...

std::queue<int> myQueue;

std::cout << myQueue.empty() << '\n'; // true

std::cout << myQueue.size() << '\n'; // 0

myQueue.push(1);

myQueue.push(2);

myQueue.push(3);

std::cout << myQueue.back() << '\n'; // 3

std::cout << myQueue.front() << '\n'; // 1

while (!myQueue.empty()) {

std::cout << myQueue.back() << " ";

std::cout << myQueue.front() << " : ";

myQueue.pop();

} // 3 1 : 3 2 : 3 3

std::cout << myQueue.empty() << '\n'; // true

std::cout << myQueue.size() << '\n'; // 0

Based on my discussion of the concurrent stack, the concurrent queue’s first implementation is quite
similar.

13.1.2 Coarse-Grained Locking

Let’s start straightforward. My first implementation combines the front and pop member function
into a member function frontAndPop. In contrast, the member function push adds the elements to the
end of the queue. The member function back, which is optional for a queue⁸, returns the last element of
the queue. Honestly, I’m biased if I should support the member function back. Here are my thoughts.

1. Not supporting back limits the interface because you can never ask for the last element.

2. Combine back and push into onemember function backAndPush. backAndPush should, in this case,
return to the push operation previous value. This combination seems to be promising but has
two serious issues. First, the previous value has to be copied because a reference or a pointer
would break the synchronization. This copy operation is a performance penalty. Second, the
copy constructor could throw an exception.

3. Supporting both member functions back and push separately, introduces a data race. Assume
a user makes an assumption based on the value of the last element. We have the same issue,
such as supporting front and pop as two different member functions. The argumentation to the
member functions top and pop in concurrent stack also apply here. Honestly, this usage of the
concurrent queue seems quite untypical to me, but caution counts.

⁸https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
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Implementing the first variant is straightforward because it is quite similar to the concurrent stack.
Here it is:

A concurrent Queue with Coarse-Grained Locking

1 // concurrentQueueCoarseLocking.cpp

2

3 #include <future>

4 #include <limits>

5 #include <iostream>

6 #include <mutex>

7 #include <queue>

8 #include <stdexcept>

9 #include <utility>

10

11 template<typename T, template <typename, typename> class Cont = std::deque>

12 class ConcurrentQueue {

13 public:

14 void push(T val) {

15 std::lock_guard<std::mutex> lockQueue(mutexQueue);

16 myQueue.push(std::move(val));

17 }

18 T frontAndPop() {

19 std::lock_guard<std::mutex> lockQueue(mutexQueue);

20 if ( myQueue.empty() ) throw std::out_of_range("The queue is empty!");

21 auto val = myQueue.front();

22 myQueue.pop();

23 return val;

24 }

25 ConcurrentQueue() = default;

26 ConcurrentQueue(const ConcurrentQueue&) = delete;

27 ConcurrentQueue& operator = (const ConcurrentQueue&) = delete;

28 private:

29 mutable std::mutex mutexQueue;

30 std::queue<T, Cont<T, std::allocator<T>>> myQueue;

31 };

32

33 int main() {

34

35 ConcurrentQueue<int> conQueue;

36

37 auto fut = std::async([&conQueue]{ conQueue.push(2011); });

38 auto fut1 = std::async([&conQueue]{ conQueue.push(2014); });

39 auto fut2 = std::async([&conQueue]{ conQueue.push(2017); });

40

41 auto fut3 = std::async([&conQueue]{ return conQueue.frontAndPop(); });
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42 auto fut4 = std::async([&conQueue]{ return conQueue.frontAndPop(); });

43 auto fut5 = std::async([&conQueue]{ return conQueue.frontAndPop(); });

44

45 fut.get(), fut1.get(), fut2.get();

46

47 std::cout << fut3.get() << '\n';

48 std::cout << fut4.get() << '\n';

49 std::cout << fut5.get() << '\n';

50

51 }

Without further ado, the output of the program.

A Concurrent Stack

Done? No, I ignored an optimization possibility.

13.1.3 Fine-Grained Locking

In contrast to a stack, the push and pop operations on the queue happen separately on different ends.

13.1.3.1 A Broken Implementation

Instead of a coarse-grained locking with one mutex, a more fine-grained locking with two mutexes
should reduce the synchronization overhead.

A broken implementation of fine-grained concurrent queue

template<typename T, template <typename, typename> class Cont = std::deque>

class ConcurrentQueue{

public:

void push(T val){

std::lock_guard<std::mutex> lockQueue(mutexBackQueue);

myQueue.push(std::move(val));

}

T frontAndPop(){

std::lock_guard<std::mutex> lockQueue(mutexFrontQueue);
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if (myQueue.empty()) throw std::out_of_range("The queue is empty!");

auto val = myQueue.front();

myQueue.pop();

return val;

}

ConcurrentQueue() = default;

ConcurrentQueue(const ConcurrentQueue&) = delete;

ConcurrentQueue& operator= (const ConcurrentQueue&) = delete;

private:

mutable std::mutex mutexFrontQueue;

mutable std::mutex mutexBackQueue;

std::queue<T, Cont<T, std::allocator<T>>> myQueue;

};

There is an obvious issue that makes the implementation incorrect. When the queue is empty, push
and pop operate on the same element, which is a data race. Adding an element to separate the push

from the pop operations solves this issue.

I could not achieve the fine-grained concurrent queue, based on the abstraction std::queue provides.
Now, I have to do it by myself. First of all, how could a queue be implemented?

13.1.3.2 A Simple Queue

The straightforward way to implement a queue is it by using a singly-linked list. Singly-linked means
that one node points to the next node but not the other way around. Additionally, a head pointer
points to the head and the tail pointer to the tail of the data structure. Items can be removed (pop)
from and added (push) to the queue. Elements are removed from the queue by putting the head pointer
one position further. The remove operation will also return the old head node. Elements are added to
the queue by pointing the previous tail node to the new node. The remove and the add operation
adjust the head and the tail pointer.

A Simple Queue

Here is the implementation of the simple queue.
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A Simple Queue
1 // simpleQueue.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <utility>

6

7 template <typename T>

8 class Queue{

9 private:

10 struct Node{

11 T data;

12 std::unique_ptr<Node> next;

13 Node(T data_): data(std::move(data_)){}

14 };

15 std::unique_ptr<Node> head;

16 Node* tail;

17 public:

18 Queue(): tail(nullptr){};

19 std::unique_ptr<T> pop(){

20 if (!head) throw std::out_of_range("The queue is empty!");

21 std::unique_ptr<T> res = std::make_unique<T>(std::move(head->data));

22 std::unique_ptr<Node> oldHead = std::move(head);

23 head = std::move(oldHead->next);

24 if (!head) tail = nullptr;

25 return res;

26 }

27 void push(T val){

28 std::unique_ptr<Node> newNode = std::make_unique<Node>(Node(std::move(val)));

29 Node* newTail = newNode.get();

30 if (tail) tail->next= std::move(newNode);

31 else head = std::move(newNode);

32 tail = newTail;

33 }

34 Queue(const Queue& other) = delete;

35 Queue& operator=(const Queue& other) = delete;

36 };

37

38 int main(){

39

40 std::cout << '\n';

41

42 Queue<int> myQueue;

43 myQueue.push(1998);

44 myQueue.push(2003);
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45 std::cout << *myQueue.pop() << '\n';

46 std::cout << *myQueue.pop() << '\n';

47 myQueue.push(2011);

48 myQueue.push(2014);

49 std::cout << *myQueue.pop() << '\n';

50 myQueue.push(2017);

51 myQueue.push(2020);

52 std::cout << *myQueue.pop() << '\n';

53 std::cout << *myQueue.pop() << '\n';

54 std::cout << *myQueue.pop() << '\n';

55

56 std::cout << '\n';

57

58 }

I use std::unique_ptrs to automatically manage the lifetime of the nodes. Only the tail pointer is a
raw pointer (line 16) because the pointed-to node already has an owner. The member function push(T

val) (lines 27 - 33) adds a new value to the Queue. First, a new node newNode (line 28) is created. This
new node becomes the new tail (line 29). If tail points to an existing Node (line 30), tail’s pointer is
adjusted to the newNode; if not, head becomes the newNode (line 31). Finally, tail becomes the newTail
(line 32). The member function pop (lines 19 - 26) removes a node and returns it (line 25). When
the queue is empty, the member function throws an exception (line 20). Line 21 creates the return
value and move the head into the oldHead (line 22). oldHead is an std::unique_ptr and is , therefore,
automatically be destroyed when it goes out of scope. oldHead->next becomes the new head (line 23).
When the popmemberfunction returns the last node and the becomes empty , tail is set to a nullptr.

The screenshot shows the output of the program.

Usage of the Simple Queue

You may ask why I introduced my queue implementation because we have the same issue, such as
with the broken implementation before: head and tail can operate on the same node if the queue has
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one node. Subsequent interleaving pop and push calls could race. For example, the tail->next call (line
30) might interleave with the oldHead->next call (line 23) in the end. This interleaving means, at the
end, that I need one mutex to protect the entire data structure. Let me first answer your question. This
queue implementation could not be made thread-safe by using two mutexes, but this implementation
is the base for a thread-safe queue with fine-grained locking. I have to apply a trick to separate the
head from the tail.

13.1.3.3 A Simple Queue with a Dummy Node

A dummy node does the trick. It separates the head from the tail. Now, the calls next on the head
and the tail could not interleave. Of course, the implementation becomes more difficult because the
dummy node has to be dealt with.

A Simple Queue with a Dummy Node

1 // simpleQueueWithDummy.cpp

2

3 #include <iostream>

4 #include <memory>

5 #include <utility>

6

7 template <typename T>

8 class Queue{

9 private:

10 struct Node{

11 T data;

12 std::unique_ptr<Node> next;

13 Node(T data_): data(std::move(data_)){}

14 };

15 std::unique_ptr<Node> head;

16 Node* tail;

17 public:

18 Queue(): head(new Node(T{})), tail(head.get()){};

19 std::unique_ptr<T> pop(){

20 if (head.get() == tail) throw std::out_of_range("The queue is empty!");

21 std::unique_ptr<T> res = std::make_unique<T>(std::move(head->data));

22 std::unique_ptr<Node> oldHead = std::move(head);

23 head = std::move(oldHead->next);

24 if (!head) tail = nullptr;

25 return res;

26 }

27 void push(T val){

28 std::unique_ptr<Node> dummyNode = std::make_unique<Node>(Node(T{}));

29 Node* newTail = dummyNode.get();

30 tail->next= std::move(dummyNode);
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31 tail->data = val;

32 tail = newTail;

33 }

34 Queue(const Queue& other) = delete;

35 Queue& operator=(const Queue& other) = delete;

36 };

37

38 int main(){

39

40 std::cout << '\n';

41

42 Queue<int> myQueue;

43 myQueue.push(1998);

44 myQueue.push(2003);

45 std::cout << *myQueue.pop() << '\n';

46 std::cout << *myQueue.pop() << '\n';

47 myQueue.push(2011);

48 myQueue.push(2014);

49 std::cout << *myQueue.pop() << '\n';

50 myQueue.push(2017);

51 myQueue.push(2020);

52 std::cout << *myQueue.pop() << '\n';

53 std::cout << *myQueue.pop() << '\n';

54 std::cout << *myQueue.pop() << '\n';

55

56 std::cout << '\n';

57

58 }

The differences between the new simple queue to the previous one without a dummy node are not
that big. First, head and tail are initialized to point to the dummy node (line 18). Let’s first analyze the
pop member function. Line 20 checks consequently if the queue is logically empty; meaning, that the
queue has only the dummy node. The member function push changes more than the member function
pop. First, a new dummy node is created (line 28), which becomes at the end the node tail point’s to
(line 29 and line 32). The old dummy points to the new dummy node (line 30) and gets the value val
(line 31).

As expected, the program’s output using a queue with a dummy node is the same as the previous one
without a dummy node.
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Usage of the Simple Queue with a Dummy Node

Now, I’m done with my refactorization. The crucial observation for the queue with a dummy node is
that the pop member function and the push member function work almost entirely on different ends.
This separation allows it to use a mutex for each end. Only the check (head.get() == tail) (line 20)
in the pop member function requires both mutexes. This is not so bad because this critical region is
short-lived.

With this knowledge in mind, let me put the pieces together and finally come to the concurrent queue
with fine-grained locking.

13.1.3.4 The Implementation

The synchronization of the queue is based on two mutexes. One mutex protects the head, and one
mutex protects the tail of the queue. The final question is: Where to put the two mutexes? To get
maximum performance, the critical regions should be as short-lived as possible. This means for the
member function pop that the entire member function has to be protected, but for themember function
push only the instructions that use the queue’s tail. The other operations are local and, therefore,
thread-safe.

A Fine-Grained Concurrent Queue

1 // concurrentQueueFineLocking.cpp

2

3 #include <future>

4 #include <iostream>

5 #include <memory>

6 #include <mutex>

7 #include <utility>

8

9 template <typename T>

10 class ConcurrentQueue{

11 private:

12 struct Node{
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13 T data;

14 std::unique_ptr<Node> next;

15 Node(T data_): data(std::move(data_)){}

16 };

17 std::unique_ptr<Node> head;

18 Node* tail;

19 std::mutex headMutex;

20 std::mutex tailMutex;

21 public:

22 ConcurrentQueue(): head(new Node(T{})), tail(head.get()){};

23 std::unique_ptr<T> pop(){

24 std::lock_guard<std::mutex> headLock(headMutex);

25 {

26 std::lock_guard<std::mutex> tailLock(tailMutex);

27 if (head.get() == tail) throw std::out_of_range("The queue is empty!");

28 }

29 std::unique_ptr<T> res = std::make_unique<T>(std::move(head->data));

30 std::unique_ptr<Node> oldHead = std::move(head);

31 head = std::move(oldHead->next);

32 if (!head) tail = nullptr;

33 return res;

34 }

35 void push(T val){

36 std::unique_ptr<Node> dummyNode = std::make_unique<Node>(Node(T{}));

37 Node* newTail = dummyNode.get();

38 std::lock_guard<std::mutex> tailLock(tailMutex);

39 tail->next= std::move(dummyNode);

40 tail->data = val;

41 tail = newTail;

42 }

43 ConcurrentQueue(const ConcurrentQueue& other) = delete;

44 ConcurrentQueue& operator=(const ConcurrentQueue& other) = delete;

45 };

46

47 int main(){

48

49 std::cout << '\n';

50

51 ConcurrentQueue<int> conQueue;

52

53 auto fut = std::async([&conQueue]{ conQueue.push(2011); });

54 auto fut1 = std::async([&conQueue]{ conQueue.push(2014); });

55 auto fut2 = std::async([&conQueue]{ conQueue.push(2017); });

56

57 auto fut3 = std::async([&conQueue]{ return *conQueue.pop(); });
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58 auto fut4 = std::async([&conQueue]{ return *conQueue.pop(); });

59 auto fut5 = std::async([&conQueue]{ return *conQueue.pop(); });

60

61 fut.get(), fut1.get(), fut2.get();

62

63 std::cout << fut3.get() << '\n';

64 std::cout << fut4.get() << '\n';

65 std::cout << fut5.get() << '\n';

66

67 std::cout << '\n';

68

69 }

First of all: Is the implementation thread-safe? The ConcurrentQueue has only two member functions.
Two mutexes protect operations on the shared singly-linked list of Nodes. The headMutex (line 19) is
responsible for protecting the head of the data structure, and the tailMutex (line 20) is responsible for
protecting the tail of the data structure. The only operation, which could work on the head and the tail
of the singly-linked list is protected by both mutexes (line 27). Consequently, the ConcurrentQueue is
data race free. You should avoid acquiring more than one mutex at one point in time because this can
provoke a deadlock if both mutexes are acquired in a different order. Although the member function
pop acquires first the headMutex (line 24) and then the tailMutex (line 26), there is no potential for a
deadlock because the mutexes are always acquired in the same order.

Executing the fine-grained concurrent queue works as expected.
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A concurrent Queue with Fine-Grained Locking

Sometimes a program run throws an exception. This exception is acceptable due to my design decision.
When the queue is empty, I throw a std::out_of_range exception in the popmember function. Instead
of throwing an exception, a more appropriate strategy is to wait.

13.1.3.5 Waiting for the Value

Using a std::condition_variable enables the pop call to wait until a value is available.

A Concurrent Queue with Fine-Grained Locking and Waiting

1 // concurrentQueueFineLockingWithWaiting.cpp

2

3 #include <condition_variable>

4 #include <future>

5 #include <iostream>

6 #include <memory>

7 #include <mutex>

8 #include <utility>

9

10 template <typename T>

11 class Queue{
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12 private:

13 struct Node{

14 T data;

15 std::unique_ptr<Node> next;

16 Node(T data_): data(std::move(data_)){}

17 };

18 std::unique_ptr<Node> head;

19 Node* tail;

20 std::mutex headMutex;

21 std::mutex tailMutex;

22 std::condition_variable condVar;

23 public:

24 Queue(): head(new Node(T{})), tail(head.get()){};

25 std::unique_ptr<T> pop(){

26 std::lock_guard<std::mutex> headLock(headMutex);

27 {

28 std::unique_lock<std::mutex> tailLock(tailMutex);

29 if (head.get() == tail) condVar.wait(tailLock);

30 }

31 std::unique_ptr<T> res = std::make_unique<T>(std::move(head->data));

32 std::unique_ptr<Node> oldHead = std::move(head);

33 head = std::move(oldHead->next);

34 if (!head) tail = nullptr;

35 return res;

36 }

37 void push(T val){

38 std::unique_ptr<Node> dummyNode = std::make_unique<Node>(Node(T{}));

39 Node* newTail = dummyNode.get();

40 {

41 std::unique_lock<std::mutex> tailLock(tailMutex);

42 tail->next= std::move(dummyNode);

43 tail->data = val;

44 tail = newTail;

45 }

46 condVar.notify_one();

47 }

48 Queue(const Queue& other) = delete;

49 Queue& operator=(const Queue& other) = delete;

50 };

51

52 int main(){

53

54 std::cout << '\n';

55

56 Queue<int> conQueue;
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57

58 auto fut = std::async([&conQueue]{ conQueue.push(2011); });

59 auto fut1 = std::async([&conQueue]{ conQueue.push(2014); });

60 auto fut2 = std::async([&conQueue]{ conQueue.push(2017); });

61

62 auto fut3 = std::async([&conQueue]{ return *conQueue.pop(); });

63 auto fut4 = std::async([&conQueue]{ return *conQueue.pop(); });

64 auto fut5 = std::async([&conQueue]{ return *conQueue.pop(); });

65

66 fut.get(), fut1.get(), fut2.get();

67

68 std::cout << fut3.get() << '\n';

69 std::cout << fut4.get() << '\n';

70 std::cout << fut5.get() << '\n';

71

72 std::cout << '\n';

73

74 }

The modification to the previous concurrent queue with fine-grained locking is minimal. The pop call
waits in line 29 if no value is available. std::condition_variable requires a std::unique_lock instead
of a std::lock_guard. The push call notifies its waiter with condVar.notify_one that a new value is
available (line 46). condVar.notify_one is thread-safe and needs, therefore, no synchronization.Maybe,
you miss the predicate in the wait call (line 29). This predicate protect against spurious wakeups and
lost wakeups. This protection is exactly the job of the condition head.get() == tail.

The screenshot ends my story to the lock-based concurrent queue.
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A concurrent Queue with Fine-Grained Locking and Waiting

Distilled Information
• Implementing a lock-based data structure is challenging and should be done by
experts in this domain.

• Stack and queue are typical lock-based data structures.

• The protection of the lock-based data structure can be coarse-grained or fine-
grained. Coarse-grained means that you protect the entire data structure. Fine-
grained that you protect only specific elements of the data structure.



14. Lock-Free Data Structures

Cippi plays with a snake

The general thoughts about lock-based data structure and the particular thoughts about a concurrent
stack or concurrent queue, also apply to this chapter. Consequentially, I will mention or refer to
previous thoughts if necessary. The main difference between lock-based and lock-free data structures
is in short that your are faced with higher challenges when you design a lock-free data structure.

Design a Lock-Free Data Structure is Very Challenging
I want to explicitly emphasize that the implementation of lock-free data structures is
very challenging. It is quite easy to overlook an issue and end with deadlock or data
race¹. It would be best to consider my examples in this chapter only as a straightforward
introduction to lock-free data structures. Don’t invent your lock-free structure. Use
existing libraries lock-free data structures such asBoost.Lockfree² or CDS³.

¹chapterXXXDataSSSRaces
²https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
³http://libcds.sourceforge.net/doc/cds-api/index.html

https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/doc/cds-api/index.html
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/doc/cds-api/index.html
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14.1 General Considerations

14.1.1 The Next Evolutionary Step

When you design a thread-safe data structure, you often start with a lock-based one. This means,
your first implementation is lock-based and you use coarse-grained locking. Due to the increase of
concurrent execution, you switch probably from a coarse-grained implementation to a fine-grained
implementation. I presented this route in my previous section about a concurrent queue. My coarse-
grained implementation protected the entire queue and my fine-grained only the addressed nodes.
The next step in this evolution is obvious: implement the concurrent queue lock-free. Before you
make this very challenging step you should answer a few questions?

• Do the performance requirements justify the implementation of the lock-free data structure?

• Is there no existing lock-free data structure available? It is very likely that find your lock-free
data structure in Boost⁴ or CDS⁵.

• Do we have the necessary expertise to implement a lock-based data structure?

• Does your platform support lock-free atomics? The C++ standard guarantees that only
std::atomic_flag is lock-free.

Only if you answer all questions with yes, you may attack the challenge to implement a lock-based
data structure.

14.1.2 Sequential Consistency

I use in my examples to lock-free data structures the default memory ordering: sequential consistency.
The reason is simple. Sequential consistency provides the strongest guarantees of all memory ordering
and is, therefore, easier to use than the othermemory orders. Sequential consistency is an ideal starting
point when designing lock-free data structures. In further optimization steps, you can weaken the
memory ordering and apply acquire-release semantic, or relaxed semantic.

Depending on the architecture, weakening the memory ordering may not pay off. For example, the
x86⁶ memory model is one of the strongest memory models of all modern architectures. Consequen-
tially, breaking the sequential consistency and applying a weaker memory ordering may not give the
performance improvements you hoped for. On the contrary, ARMv8⁷, PowerPC⁸, Itanium⁹, and, in
particular, DEC alpha¹⁰ may pay off when breaking the sequential consistency.

⁴https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
⁵http://libcds.sourceforge.net/doc/cds-api/index.html
⁶https://en.wikipedia.org/wiki/X86
⁷https://en.wikipedia.org/wiki/ARM_architecture
⁸https://en.wikipedia.org/wiki/PowerPC
⁹https://en.wikipedia.org/wiki/Itanium
¹⁰https://en.wikipedia.org/wiki/DEC_Alpha

https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/doc/cds-api/index.html
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/DEC_Alpha
https://www.boost.org/doc/libs/1_66_0/doc/html/lockfree.html
http://libcds.sourceforge.net/doc/cds-api/index.html
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/DEC_Alpha
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14.2 Concurrent Stack

First, I want to start with a short reminder. What is a stack?

A Stack

A std::stack¹¹ follows the LIFO principle (Last In First Out). A stack sta, which needs the header
<stack>, has three member functions.

With sta.push(e) you can insert a new element e at the top of the stack, remove it from the top with
sta.pop() and reference it with sta.top(). The stack supports the comparison operators and knows
its size. The operations of the stack have constant complexity.

#include <stack>

...

std::stack<int> myStack;

std::cout << myStack.empty() << '\n'; // true

std::cout << myStack.size() << '\n'; // 0

myStack.push(1);

myStack.push(2);

myStack.push(3);

std::cout << myStack.top() << '\n'; // 3

while (!myStack.empty()){

std::cout << myStack.top() << " ";

myStack.pop();

} // 3 2 1

std::cout << myStack.empty() << '\n'; // true

std::cout << myStack.size() << '\n'; // 0

Now, let me start with the implemenation of a lock-free stack.

¹¹http://en.cppreference.com/w/cpp/container/stack

http://en.cppreference.com/w/cpp/container/stack
http://en.cppreference.com/w/cpp/container/stack
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14.2.1 A Simplified Implementation

Following my strategy in the previous chapter about a lock-based concurrent stack, I implement in
this chapter a lock-free concurrent stack. Beside the many similarities of the lock-based and lock-free
implementation of the concurrent stack, there is one big difference: The lock-free concurrent stack is
based on a singly-linked list and not on a STL container such as the lock-based concurrent stack.

In my simplified implementation, I start with the pushmember function. Let me first visualize, how a
new node is added to a singly-linked list. head is the pointer to the first node in the singly-linked list.

A singly-linked list

Create a new node

The new node becomes the head

Each node in the singly-linked list has two attributes. Its value T and the next. next points to the next
element in the singly-linked list. Only the node points to the nullptr. Adding a new node to the data
is straightforward. Create a new node and let next pointer point to the previous head. So far, the
new node is not accessible. Finally, the new node becomes the new head, and the push operation is
completed.

The following code snippets show the lock-free implementation of a concurrent stack.
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A lock-free stack supporting push

1 // lockFreeStackPush.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 template<typename T>

7 class LockFreeStackPush {

8 private:

9 struct Node {

10 T data;

11 Node* next;

12 Node(T d): data(d), next(nullptr) {}

13 };

14 std::atomic<Node*> head;

15 public:

16 LockFreeStackPush() = default;

17 LockFreeStackPush(const LockFreeStackPush&) = delete;

18 LockFreeStackPush& operator= (const LockFreeStackPush&) = delete;

19

20 void push(T val) {

21 Node* const newNode = new Node(val);

22 newNode->next = head.load();

23 while( !head.compare_exchange_strong(newNode->next, newNode) );

24 }

25 };

26

27 int main(){

28

29 LockFreeStackPush<int> lockFreeStack;

30 lockFreeStack.push(5);

31

32 LockFreeStackPush<double> lockFreeStack2;

33 lockFreeStack2.push(5.5);

34

35 LockFreeStackPush<std::string> lockFreeStack3;

36 lockFreeStack3.push("hello");

37

38 }

Let me analyze the crucial member function push (line 20). It creates the new node (line 21), adjusts
its next pointer to the old head, and makes the new node in a so-called CAS operation the new head
(line 22). A CAS operation provides in an atomic step a compare and swap operation.
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The call newNode->next = head.load() loads the old value of head. If the loaded value newNode->next
is still the some such as head in line 23, head is updated to the newNode and the call head.compare_-
exchange_strong returns true. If not, the call returns false and the while loop is executed until the call
returns true. head.compare_exchange_strong returns false if another thread added in the meantime
a new node to the stack. When you apply compare_exchange_strong in a loop, you can also use
compare_exchange_weak. compare_exchange_weak can spuriously fail and return false if head is equal
to newNode->next. Due to the recursion, this would cause only an additional iteration.

Lines 22 and 23 build a kind of atomic transaction. First, you make a snapshot of the data structure
(line 22), then you try to publish the transaction (line 23). If the snapshot is not valid anymore, you
make a rollback and try it once more.

push is lock-free but not wait-free
The previous implementation of the member function push is lock-free but not wait-free.
When many threads call compare_exchange_strong concurrently, only one threads can
make progress. All other threads have to wait.

The simplified version has two issues. First, it does not have a pull operation, and second, it releases
no memory. I address both issues in the next implementation.

14.2.2 A Complete Implementation

Typically, a stack supports the member functions push, pop, and top. Implementing the pop and top

member functions thread-safe, does not guarantee that the invocation of top followed by pop is thread-
safe. It may happen that one thread t1 called stack.top() and is interleaved by another thread t2 that
called stack.top() and then stack.pop(). Now, the final t1.pop() call is based on the wrong stack
size. Read more about this issue in the previous chapter about the concurrent stack.

14.2.2.1 No Memory Reclamation

Consequentially, the following implementation combines both member functions top and pop into
one: topAndPop.
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A lock-free stack supporting push and topAndPop

1 // lockFreeStackWithLeaks.cpp

2

3 #include <atomic>

4 #include <future>

5 #include <iostream>

6 #include <stdexcept>

7

8 template<typename T>

9 class LockFreeStack {

10 private:

11 struct Node {

12 T data;

13 Node* next;

14 Node(T d): data(d), next(nullptr){ }

15 };

16 std::atomic<Node*> head;

17 public:

18 LockFreeStack() = default;

19 LockFreeStack(const LockFreeStack&) = delete;

20 LockFreeStack& operator= (const LockFreeStack&) = delete;

21

22 void push(T val) {

23 Node* const newNode = new Node(val);

24 newNode->next = head.load();

25 while( !head.compare_exchange_strong(newNode->next, newNode) );

26 }

27

28 T topAndPop() {

29 Node* oldHead = head.load();

30 while( oldHead && !head.compare_exchange_strong(oldHead, oldHead->next) ) {

31 if ( !oldHead ) throw std::out_of_range("The stack is empty!");

32 }

33 return oldHead->data;

34 }

35 };

36

37 int main(){

38

39 LockFreeStack<int> lockFreeStack;

40

41 auto fut = std::async([&lockFreeStack]{ lockFreeStack.push(2011); });

42 auto fut1 = std::async([&lockFreeStack]{ lockFreeStack.push(2014); });

43 auto fut2 = std::async([&lockFreeStack]{ lockFreeStack.push(2017); });

44
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45 auto fut3 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

46 auto fut4 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

47 auto fut5 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

48

49 fut.get(), fut1.get(), fut2.get();

50

51 std::cout << fut3.get() << '\n';

52 std::cout << fut4.get() << '\n';

53 std::cout << fut5.get() << '\n';

54

55 }

The member function topAndPop returns the top element of the stack. It reads the head element of the
stack (line 29) and make the next node the new head if oldHead is not a nullptr (line 30). oldhead is a
nullptr if the stack is empty. I decided to throw an exception if the stack is empty (line 31). Returning
a special non-value or returning a std::optional¹² is also a valid option. Copying the value has a
downside. If the copy constructor of the value throws an exception such as std::bad_alloc¹³, the value
is lost. Finally, the member functions returns the head element (line 33).

The calls fut.get(), fut1.get(), fut2.get() (line 49) ensure that the associated promise runs. If you
don’t specify the launch policy, the promise may run lazily in the caller’s thread. Lazily means that
the promise will execute if and only if the future asks for its result with get or wait. You can also
launch the promise in a separate thread:

Launching each promise in a separate thread

auto fut = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2011); });

auto fut1 = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2014); });

auto fut2 = std::async(std::launch::asnyc, [&conStack]{ conStack.push(2017); });

Finally, the output of the program:

¹²https://en.cppreference.com/w/cpp/utility/optional
¹³https://en.cppreference.com/w/cpp/memory/new/bad_alloc

https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
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A lock-free stack

Although the presented lock-free stack supports push and topAndPop, it has a serious issue: it leaks
memory. You may ask: Why can’t the oldHead just be removed after the call head.compare_exchange_-
strong(oldHead, oldHead->next) (line 30) in the member function topAndPop? The answer is that
another thread may use oldHead. Let’s analyze the member functions push and topAndPop. Concur-
rent execution of push is no issue because the call !head.compare_exchange_strong(newNode->next,
newNode) atomically updates newNode->next to the new head. This is also valid if only one topAndPop

call happens concurrently. The issue arises when more topAndPop calls interleave with or without a
push call. Deleting the oldHead while another thread uses it would be disastrous, because the deletion
of oldHead must always happen before or after its update to the new head: oldHead->next (line 30).

The easiest way to solve this memory-leak issue is to use a std::shared_ptr.

14.2.2.1.1 Atomic Smart Pointer

There are two ways to apply atomic operatons on a std::shared_ptr: In C++11, you can use the free
atomic functions on std::shared_ptr. With C++20, you can use atomic smart pointers.

14.2.2.1.2 C++11

Using atomic operations on std::shared_ptr is tedious and error-prone. You can easily forget the
atomic operations and all bets are open. The following example shows a lock-free stack based on
std::shared_ptr.

A lock-free stack based on atomic smart pointers

1 // lockFreeStackWithSharedPtr.cpp

2

3 #include <atomic>

4 #include <future>

5 #include <iostream>

6 #include <stdexcept>

7 #include <memory>

8

9 template<typename T>
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10 class LockFreeStack {

11 public:

12 struct Node {

13 T data;

14 std::shared_ptr<Node> next;

15 };

16 std::shared_ptr<Node> head;

17 public:

18 LockFreeStack() = default;

19 LockFreeStack(const LockFreeStack&) = delete;

20 LockFreeStack& operator= (const LockFreeStack&) = delete;

21

22 void push(T val) {

23 auto newNode = std::make_shared<Node>();

24 newNode->data = val;

25 newNode->next = std::atomic_load(&head);

26 while( !std::atomic_compare_exchange_strong(&head, &newNode->next, newNode) );

27 }

28

29 T topAndPop() {

30 auto oldHead = std::atomic_load(&head);

31 while( oldHead && !std::atomic_compare_exchange_strong(&head, &oldHead,

32 std::atomic_load(&oldHead->next)) ) {

33 if ( !oldHead ) throw std::out_of_range("The stack is empty!");

34 }

35 return oldHead->data;

36 }

37 };

38

39 int main(){

40

41 LockFreeStack<int> lockFreeStack;

42

43 auto fut = std::async([&lockFreeStack]{ lockFreeStack.push(2011); });

44 auto fut1 = std::async([&lockFreeStack]{ lockFreeStack.push(2014); });

45 auto fut2 = std::async([&lockFreeStack]{ lockFreeStack.push(2017); });

46

47 auto fut3 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

48 auto fut4 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

49 auto fut5 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

50

51 fut.get(), fut1.get(), fut2.get();

52

53 std::cout << fut3.get() << '\n';

54 std::cout << fut4.get() << '\n';
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55 std::cout << fut5.get() << '\n';

56

57 }

This lock-free stack implementation is quite similar to the previous one without memory reclamation.
The main difference is that the nodes are of type std::shared_ptr<Node>. All operations std::shared_-
ptr<Node> are done atomically by using the free atomic operations std::load (lines 25, and 32), and
std::atomic_compare_exchange_strong (lines 26, and 31). The free atomics operations require a pointer.
I want to emphasize it explicitly, the read operation of the next node in oldHead->next (line 32) must be
atomic because oldHead->next can be used by other threads. Finally, here is the output of the program.

A lock-free stack based on smart pointers

Let’s jump nine years into the future and use C++20.

14.2.2.1.3 C++20

C++20 supports partial specializations of std::atomic for std::shared_ptr and std::weak_ptr. The
following implementation puts the nodes of the lock-free stack into a std::atomic<std::shared_-

ptr<Node>>.

A lock-free stack based on atomic smart pointers

1 // lockFreeStackWithAtomicSharedPtr.cpp

2

3 #include <atomic>

4 #include <future>

5 #include <iostream>

6 #include <stdexcept>

7 #include <memory>

8

9 template<typename T>

10 class LockFreeStack {

11 private:

12 struct Node {
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13 T data;

14 std::shared_ptr<Node> next;

15 };

16 std::atomic<std::shared_ptr<Node>> head;

17 public:

18 LockFreeStack() = default;

19 LockFreeStack(const LockFreeStack&) = delete;

20 LockFreeStack& operator= (const LockFreeStack&) = delete;

21

22 void push(T val) {

23 auto newNode = std::make_shared<Node>();

24 newNode->data = val;

25 newNode->next = head;

26 while( !head.compare_exchange_strong(newNode->next, newNode) );

27 }

28

29 T topAndPop() {

30 auto oldHead = head.load();

31 while( oldHead && !head.compare_exchange_strong(oldHead, oldHead->next) ) {

32 if ( !oldHead ) throw std::out_of_range("The stack is empty!");

33 }

34 return oldHead->data;

35 }

36 };

37

38 int main(){

39

40 LockFreeStack<int> lockFreeStack;

41

42 auto fut = std::async([&lockFreeStack]{ lockFreeStack.push(2011); });

43 auto fut1 = std::async([&lockFreeStack]{ lockFreeStack.push(2014); });

44 auto fut2 = std::async([&lockFreeStack]{ lockFreeStack.push(2017); });

45

46 auto fut3 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

47 auto fut4 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

48 auto fut5 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

49

50 fut.get(), fut1.get(), fut2.get();

51

52 std::cout << fut3.get() << '\n';

53 std::cout << fut4.get() << '\n';

54 std::cout << fut5.get() << '\n';

55

56 }
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This main difference between the previous implementation and this implementation is that the Node
is embedded into a std::atomic<std::shared_ptr<Node>> (line 16). Consequentially, the member
function push (line 22) creates a std::shared_ptr<Node> and the call head.load() in the member
function topAndPop returns a std::atomic<std::shared_ptr<Node>>. Here is the output of the program.

A lock-free stack based on atomic smart pointers

14.2.2.1.4 std::atomic<std::shared_ptr> is not Lock-Free on Windows

Honestly, I cheated in the previous programs using a atomic operations on a std::shared_ptr, and
using a std::atomic<shared_ptr>. You have to assume, that atomics operations on a std::shared_ptr
are not lock-free. Additionally, an implementation of std::atomic<std::shared_ptr> can use a locking
mechanism to support all partial and full specializations of std::atomic. This happened in the case
of the used Visual Studio C++ compiler. The call atom.lock_free() on a std::atomic<std::shared_-

ptr<Node>> returns false.

Atomic Smart pointer uses locks under the hood

1 // atomicSmartPointer.cpp

2

3 #include <atomic>

4 #include <iostream>

5 #include <memory>

6

7 template <typename T>

8 struct Node {

9 T data;

10 std::shared_ptr<Node> next;

11 };

12

13 int main() {

14

15 std::cout << '\n';

16

17 std::cout << std::boolalpha;

18

19 std::atomic<std::shared_ptr<Node<int>>> node;

20 std::cout << "node.is_lock_free(): " << node.is_lock_free() << '\n';

21
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22 std::cout << '\n';

23

24 }

The Visual Studio compiler 19.29.30137 for x64 uses a locking mechanism to support atomic smart
pointers.

std::atomic<std::shared_ptr> uses on Windows a locking mechanism

Therefore, we I’m back to square one and have to take care of memory management.

14.2.2.2 A Simple Garbage Collector for Nodes

I discussed in the section about the lock-free stack implementation leaking memory that concurrent
execution of more than one topAndPush call is a Race Condition. Consequentially, I can safely delete
a node if not more than one topAndPush call is concurrently executing. This observation is crucial for
solving this memory leak issue: I store removed nodes on a to be deleted list, and I delete the nodes on
this list if no more than one topAndPush call is active. There is only one challenge left: How can I be
sure that not more than one topAndPush call is active? I use an atomic counter that is incremented at
the start of topAndPush and decremented at its end. The counter is zero or one if no or one topAndPush
call is active.

The following program implements the presented strategy. I use the lockFreeStackWithLeaks.cpp as
starting point.
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A lock-free stack including garbage collection
1 // lockFreeStackWithGarbageCollection.cpp

2

3 #include <atomic>

4 #include <future>

5 #include <iostream>

6 #include <stdexcept>

7 #include <thread>

8

9 template<typename T>

10 class LockFreeStack {

11 private:

12 struct Node {

13 T data;

14 Node* next;

15 Node(T d): data(d), next(nullptr){ }

16 };

17

18 std::atomic<Node*> head{nullptr};

19 std::atomic<int> topAndPopCounter{};

20 std::atomic<Node*> toBeDeletedNodes{nullptr};

21

22 void tryToDelete(Node* oldHead) {

23 if (topAndPopCounter == 1) {

24 Node* copyOfToBeDeletedNodes = toBeDeletedNodes.exchange(nullptr);

25 if (topAndPopCounter == 1) deleteAllNodes(copyOfToBeDeletedNodes);

26 else addNodeToBeDeletedNodes(copyOfToBeDeletedNodes);

27 delete oldHead;

28 }

29 else addNodeToBeDeletedNodes(oldHead);

30 }

31

32 void addNodeToBeDeletedNodes(Node* oldHead) {

33 oldHead->next = toBeDeletedNodes;

34 while( !toBeDeletedNodes.compare_exchange_strong(oldHead->next, oldHead));

35 }

36

37 void deleteAllNodes(Node* currentNode) {

38 while (currentNode) {

39 Node* nextNode = currentNode->next;

40 delete currentNode;

41 currentNode = nextNode;

42 }

43 }

44
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45 public:

46 LockFreeStack() = default;

47 LockFreeStack(const LockFreeStack&) = delete;

48 LockFreeStack& operator= (const LockFreeStack&) = delete;

49

50 void push(T val) {

51 Node* const newNode = new Node(val);

52 newNode->next = head.load();

53 while( !head.compare_exchange_strong(newNode->next, newNode) );

54 }

55

56 T topAndPop() {

57 ++topAndPopCounter;

58 Node* oldHead = head.load();

59 while( oldHead && !head.compare_exchange_strong(oldHead, oldHead->next) ) {

60 if ( !oldHead ) throw std::out_of_range("The stack is empty!");

61 }

62 auto topElement = oldHead->data;

63 tryToDelete(oldHead);

64 --topAndPopCounter;

65 return topElement;

66 }

67 };

68

69 int main(){

70

71 LockFreeStack<int> lockFreeStack;

72

73 auto fut = std::async([&lockFreeStack]{ lockFreeStack.push(2011); });

74 auto fut1 = std::async([&lockFreeStack]{ lockFreeStack.push(2014); });

75 auto fut2 = std::async([&lockFreeStack]{ lockFreeStack.push(2017); });

76

77 auto fut3 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

78 auto fut4 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

79 auto fut5 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

80

81 fut.get(), fut1.get(), fut2.get();

82

83 std::cout << fut3.get() << '\n';

84 std::cout << fut4.get() << '\n';

85 std::cout << fut5.get() << '\n';

86

87 }
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The lock-free stack has two new attributes and three new member functions. The atomic counter
topAndPopCounter counts (line 19) the number of active topAndPop calls, and the atomic pointer
toBeDeletedNodes (line 20) is a pointer to the list of the to be deleted nodes. Additionally, the
member function tryToDelete (line 22) tries to delete removed nodes. The member functions
addNodeToBeDeletedNodes ads a node to the to be deleted list, and themember function deleteAllNodes

(line 37) deletes all nodes.

Let’s analyze themember function topAndPop (lines 56 - 66). At the beginning and the end of topAndPop,
topAndPopCounter is incremented and decremented. oldHead is removed from the stack and can,
therefore, eventually be deleted with the call tryToDelete (line 63). The member function tryToDelete

first checks if one or more topAndPush calls are active. If one topAndPush call is active (line 23), oldHead
is deleted. If not, oldHead is added to the to be deleted list (line 29). I assume that only one topAndPush
call is active. In this case, I create a local pointer copyOfToBeDeletedNodes to the to be deleted nodes,
and set the toBeDeletedNodes pointer to a nullptr (line 24). Before I delete the nodes, I check that no
additional topAndPush call is active in the meantime. If the current execution topAndPush is still the
only one, I use the local pointer copyOfToBeDeletedNodes to delete the list of all to be deleted nodes
(line 25). If another topAndPush call interleaved, I use the local pointer copyOfToBeDeletedNodes to
update toBeDeletedNodes pointer.

Both helper member functions addNodeToBeDeletedNodes and deleteAllNodes iterate through the list.
deleteAllNodes is only invoked if one topAndPop call is active (line 25). Consequentially, no synchro-
nization is necessary. This observation does not hold for themember function addNodeToBeDeletedNodes
(lines 26 and 29). It must be synchronized because more than one topAndPop call can be active.
The while loop makes the oldHead the first node in the to be deleted nodes and uses a compare_-

exchange_strong to deal with the fact that topAndPop calls can interleave. Interleaving topAndPop call
may cause that oldHead->next != toBeDeletedNodes (line 34) and oldHead->next has to be updated to
toBeDeletedNodes.

A lock-free stack with garbage collection

So-far, this lock-free stack implementation works as expected but has a few flaws. When many
topAndPop calls interleave it may happen that the counter topAndPopCounter never becomes one. This
means that the nodes in the to be deleted lists of nodes are not deleted, and we have a memory leaks.
Additionally, the number of the to be deleted nodes become a resource issue.
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14.2.2.3 Hazard Pointers

The term hazard pointers goes back to Maged Michael. He described them in his paper “Hazard
Pointers: Safe Memory Reclamation for Lock-Free Objects”¹⁴. Hazard pointers solve the classical
problem of lock-free data structures such as a lock-free stack: When can a thread safely delete a
node of a data structure while other threads may use this node concurrently?

Although a hazard pointer provides a general solution for the common problem of safe memory
reclamation in lock-free data structures, I want to present it from the perspective of our lock-free
stack.

Hazard pointers

A hazard pointer is a single-writer multi-reader pointer. All hazard pointers build a linked list and
are initialized with a null pointer. When a thread uses a stack node, it puts the node’s address into a
hazard pointer, indicating, that it uses this node and is also the exclusive owner of the used hazard
pointer. When the thread is done using the node, it sets the pointer of the hazard pointer back to a null
pointer and, therefore, releases its ownership. A thread keeps a list of hazard pointers standing for the
nodes the thread is using and can not be deleted. When a thread wants to delete a node, it traverses
the list of all hazard pointers and checks if the node is used. If the node is not in use, it deletes it. If
the node is in use, it puts it eventually on a retire list of the to be deleted nodes. Eventually, because
the node is only added to the retire list if it is not yet on the list.

This means in the case of our lock-free stack. The member function topAndPop has two jobs regarding
memory reclamation. First, it manages the to be deleted node, and second, it traverses the retire list

¹⁴http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.378&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.378&rep=rep1&type=pdf
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of nodes and deletes them if they aren’t used anymore.

I need the following member function in a new implementation of topAndPop based on the previous
description: getHazardPointer to get a reference to a hazard pointer, retireList.addNode, and
retireList.deleteUnusedNodes to add a node to the retire list retireList. Additionally retireListe.deleteUnusedNodes
to delete all nodes from the retire list that are not used anymore. Additionally, the member function
retireList.deleteUnusedNodes uses the helper function retireList.isInUse that decides if a node is
currently used. The member function isInUse is also handy in topAndPop to decide if the current node
should be added to the retire list or directly deleted.

What does this mean for my previous LockFreeStack implementation without memory reclamation?
Let’s see. The following program shows the lock-free stack implementation based on hazard pointers.
I analyze it step by step.

A lock-free stack using hazard pointers

// lockFreeStackHazardPointers.cpp

#include <atomic>

#include <cstddef>

#include <future>

#include <iostream>

#include <stdexcept>

#include <thread>

template <typename T>

concept Node = requires(T a) {

{T::data};

{ *a.next } -> std::same_as<T&>;

};

template <typename T>

struct MyNode {

T data;

MyNode* next;

MyNode(T d): data(d), next(nullptr){ }

};

constexpr std::size_t MaxHazardPointers = 50;

template <typename T, Node MyNode = MyNode<T>>

struct HazardPointer {

std::atomic<std::thread::id> id;

std::atomic<MyNode*> pointer;

};

template <typename T>



Lock-Free Data Structures 627

HazardPointer<T> HazardPointers[MaxHazardPointers];

template <typename T, Node MyNode = MyNode<T>>

class HazardPointerOwner {

HazardPointer<T>* hazardPointer;

public:

HazardPointerOwner(HazardPointerOwner const &) = delete;

HazardPointerOwner operator=(HazardPointerOwner const &) = delete;

HazardPointerOwner() : hazardPointer(nullptr) {

for (std::size_t i = 0; i < MaxHazardPointers; ++i) {

std::thread::id old_id;

if (HazardPointers<T>[i].id.compare_exchange_strong(

old_id, std::this_thread::get_id())) {

hazardPointer = &HazardPointers<T>[i];

break;

}

}

if (!hazardPointer) {

throw std::out_of_range("No hazard pointers available!");

}

}

std::atomic<MyNode*>& getPointer() {

return hazardPointer->pointer;

}

~HazardPointerOwner() {

hazardPointer->pointer.store(nullptr);

hazardPointer->id.store(std::thread::id());

}

};

template <typename T, Node MyNode = MyNode<T>>

std::atomic<MyNode*>& getHazardPointer() {

thread_local static HazardPointerOwner<T> hazard;

return hazard.getPointer();

}

template <typename T, Node MyNode = MyNode<T>>

class RetireList {

struct RetiredNode {
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MyNode* node;

RetiredNode* next;

RetiredNode(MyNode* p) : node(p), next(nullptr) { }

~RetiredNode() {

delete node;

}

};

std::atomic<RetiredNode*> RetiredNodes;

void addToRetiredNodes(RetiredNode* retiredNode) {

retiredNode->next = RetiredNodes.load();

while (!RetiredNodes.compare_exchange_strong(retiredNode->next, retiredNode));

}

public:

bool isInUse(MyNode* node) {

for (std::size_t i = 0; i < MaxHazardPointers; ++i) {

if (HazardPointers<T>[i].pointer.load() == node) return true;

}

return false;

}

void addNode(MyNode* node) {

addToRetiredNodes(new RetiredNode(node));

}

void deleteUnusedNodes() {

RetiredNode* current = RetiredNodes.exchange(nullptr);

while (current) {

RetiredNode* const next = current->next;

if (!isInUse(current->node)) delete current;

else addToRetiredNodes(current);

current = next;

}

}

};

template<typename T, Node MyNode = MyNode<T>>

class LockFreeStack {

std::atomic<MyNode*> head;

RetireList<T> retireList;
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public:

LockFreeStack() = default;

LockFreeStack(const LockFreeStack&) = delete;

LockFreeStack& operator= (const LockFreeStack&) = delete;

void push(T val) {

MyNode* const newMyNode = new MyNode(val);

newMyNode->next = head.load();

while( !head.compare_exchange_strong(newMyNode->next, newMyNode) );

}

T topAndPop() {

std::atomic<MyNode*>& hazardPointer = getHazardPointer<T>();

MyNode* oldHead = head.load();

do {

MyNode* tempMyNode;

do {

tempMyNode = oldHead;

hazardPointer.store(oldHead);

oldHead = head.load();

} while( oldHead != tempMyNode );

} while( oldHead && !head.compare_exchange_strong(oldHead, oldHead->next) ) ;

if ( !oldHead ) throw std::out_of_range("The stack is empty!");

hazardPointer.store(nullptr);

auto res = oldHead->data;

if ( retireList.isInUse(oldHead) ) retireList.addNode(oldHead);

else delete oldHead;

retireList.deleteUnusedNodes();

return res;

}

};

int main(){

LockFreeStack<int> lockFreeStack;

auto fut = std::async([&lockFreeStack]{ lockFreeStack.push(2011); });

auto fut1 = std::async([&lockFreeStack]{ lockFreeStack.push(2014); });

auto fut2 = std::async([&lockFreeStack]{ lockFreeStack.push(2017); });

auto fut3 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

auto fut4 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });

auto fut5 = std::async([&lockFreeStack]{ return lockFreeStack.topAndPop(); });
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fut.get(), fut1.get(), fut2.get();

std::cout << fut3.get() << '\n';

std::cout << fut4.get() << '\n';

std::cout << fut5.get() << '\n';

}

The program runs as expected.

Hazard pointers

MyNode is a class template, parametrized by the type it holds: data. MyNode models the concept Node.

MyNode

1 template <typename T>

2 concept Node = requires(T a) {

3 {T::data};

4 { *a.next } -> std::same_as<T&>;

5 };

6

7 template <typename T>

8 struct MyNode {

9 T data;

10 MyNode* next;

11 MyNode(T d): data(d), next(nullptr){ }

12 };

Concepts are compile-time predicates. They put semantic constraints on template parameters. The
concept Node requires a member data (line 3) and a pointer next (line 4) that returns a Node. The types
in the program lockFreeStackHazardPointers.cpp are essentially parametrized on the data member
and the concept Node. MyNode models the concept Node. For example, here is the declaration of the
LockFreeStack:
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template<typename T, Node MyNode = MyNode<T>>

class LockFreeStack;

You can read more details about concepts in my blogposts on ModernesCpp/concepts¹⁵ or in my
C++20¹⁶ book.

Let me continue my analysis of the program with the lock-free stack.

The LockFreeStack

1 template<typename T, Node MyNode = MyNode<T>>

2 class LockFreeStack {

3

4 std::atomic<MyNode*> head;

5 RetireList<T> retireList;

6

7 public:

8 LockFreeStack() = default;

9 LockFreeStack(const LockFreeStack&) = delete;

10 LockFreeStack& operator= (const LockFreeStack&) = delete;

11

12 void push(T val) {

13 MyNode* const newMyNode = new MyNode(val);

14 newMyNode->next = head.load();

15 while( !head.compare_exchange_strong(newMyNode->next, newMyNode) );

16 }

17

18 T topAndPop() {

19 std::atomic<MyNode*>& hazardPointer = getHazardPointer<T>();

20 MyNode* oldHead = head.load();

21 do {

22 MyNode* tempMyNode;

23 do {

24 tempMyNode = oldHead;

25 hazardPointer.store(oldHead);

26 oldHead = head.load();

27 } while( oldHead != tempMyNode );

28 } while( oldHead && !head.compare_exchange_strong(oldHead, oldHead->next) ) ;

29 if ( !oldHead ) throw std::out_of_range("The stack is empty!");

30 hazardPointer.store(nullptr);

31 auto res = oldHead->data;

32 if ( retireList.isInUse(oldHead) ) retireList.addNode(oldHead);

33 else delete oldHead;

34 retireList.deleteUnusedNodes();

¹⁵https://www.modernescpp.com/index.php/tag/concepts
¹⁶https://leanpub.com/c20

https://www.modernescpp.com/index.php/tag/concepts
https://leanpub.com/c20
https://www.modernescpp.com/index.php/tag/concepts
https://leanpub.com/c20
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35 return res;

36 }

37 };

The push call is not critical from a concurrency perspective because head is updated in an atomic step.
Additionally, the compare_exchange_strong (line 15) call guarantees that head is always the current
head of the stack.

Due to hazard pointers, the call topAndPop becomesmore complicated. First, the function getHazardPointer

references the hazard pointer for the current thread (line 19). The call hazardPointer.store(oldHead)
(line 25)makes the current thread to the owner of the hazard pointer, and the call hazardPointer.store(nullptr)
(line 30) releases its ownership. First, let me analyze the inner and outer do-while loops (lines 21
- 28). The inner do-while loop sets the hazard pointer to the head of the stack. The do-while loop
ends when the following holds: oldHead == tempNode. Both nodes are equal if oldHead is still the
current head of the lock-free stack. oldHead was set in line 20 and could not be the current head
anymore (line 28) because another thread may kicked in and already managed oldHead. The outer
do-while loop should be familiar from the previous lock-free stack implementations. I iterate in
the while loop using compare_exchange_strong and set the head to oldHead->next. On end, head
is the head of the stack. Remember, the member function topAndPop should return the value of
the head and remove it. Before I use oldHead I have to check if oldHead is not a null pointer. If
oldHead is a null pointer, I throw an exception. The rest of the topAndPoP is straightforward. The call
retirenListe.isInUse(oldHead) checks if oldHead is still in use. Depending on this check, oldHead
is added to the retire list retireList.addNode (line 32) if it is not yet on the list or deleted (line 33).
The last call retireList.deleteUnusedNodes (line 37) is the most labour-intensive call in the member
function topAndPop. The member function retireListe.deleteUnusedNodes traverses the entire retire
list and deletes all nodes that are not used anymore.

For performance reasons, the call retireList.deleteUnusedNodes should not be executed in each call
of topAndPop. An improved strategy is to invoke the member function deleteUnusedNodes if the length
of the retire list exceeds a specific threshold. For example, when the length of the retire list is twice
the length of the stack, at least half of the nodes can be deleted. This threshold value is a trade-off
between performance requirements and memory consumption.

Let me continue my explanation with the free function getHazardPointer and the retire list.

The free function getHazardPointer

template <typename T, Node MyNode = MyNode<T>>

std::atomic<MyNode*>& getHazardPointer() {

thread_local static HazardPointerOwner<T> hazard;

return hazard.getPointer();

}

The function getHazardPointer references a hazard pointer using the hazard pointer owner hazard.
hazard is a thread-local and static variable. Therefore, each thread gets its copy of the hazard pointer
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owner, and its lifetime is bound to the lifetime of the owning thread. The bound lifetime of the hazard
pointer owner is crucial because it guarantees the hazard pointer is cleared when the thread-local
hazard pointer owner is destroyed. I write more about this RAII object in my analysis of the class
type HazardPointerOwner.

The retire list has the public member functions isInUse, addNode, and deleteUnusedNodes. Additionally,
it has the inner class RetireNode, an atomic member of it, and the private member function
addToRetiredNodes.

The RetireList

1 template <typename T, Node MyNode = MyNode<T>>

2 class RetireList {

3

4 struct RetiredNode {

5 MyNode* node;

6 RetiredNode* next;

7 RetiredNode(MyNode* p) : node(p), next(nullptr) { }

8 ~RetiredNode() {

9 delete node;

10 }

11 };

12

13 std::atomic<RetiredNode*> RetiredNodes;

14

15 void addToRetiredNodes(RetiredNode* retiredNode) {

16 retiredNode->next = RetiredNodes.load();

17 while (!RetiredNodes.compare_exchange_strong(retiredNode->next, retiredNode));

18 }

19

20 public:

21

22 bool isInUse(MyNode* node) {

23 for (std::size_t i = 0; i < MaxHazardPointers; ++i) {

24 if (HazardPointers<T>[i].pointer.load() == node) return true;

25 }

26 return false;

27 }

28

29 void addNode(MyNode* node) {

30 addToRetiredNodes(new RetiredNode(node));

31 }

32

33 void deleteUnusedNodes() {

34 RetiredNode* current = RetiredNodes.exchange(nullptr);

35 while (current) {
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36 RetiredNode* next = current->next;

37 if (!isInUse(current->node)) delete current;

38 else addToRetiredNodes(current);

39 current = next;

40 }

41 }

42

43 };

Let’s start with the interface of the type RetireList.

The member function isInUse (line 22) checks if node is in use. It does its job by traversing the variable
template¹⁷ HazardPointers that is parameterized on the type of data the node holds. HazardPointer
is a C-array of HazardPointer of length 50. A HazardPointer consists of an atomic thread id and an
atomic pointer to a node.

The variable template HazardPointers

constexpr std::size_t MaxHazardPointers = 50;

template <typename T, Node MyNode = MyNode<T>>

struct HazardPointer {

std::atomic<std::thread::id> id;

std::atomic<MyNode*> pointer;

};

template <typename T>

HazardPointer<T> HazardPointers[MaxHazardPointers];

Using an STL container such as std::set¹⁸ as HazardPointers would be way more convenient.
std::set is already ordered and guarantees constant access time on average but has a big issue: it’s
not thread-safe.

Themember function addNode (line 29) takes a node, invokes the privatemember function addToRetiredNodes

(line 15) and puts the node into an RetiredNode. RetiredNode (line 4 - 9) is an RAII object and guarantees
that the wrapped node is always destroyed and, therefore, its memory is released. All retired nodes
build a singly-linked list (line 13).

The member function deleteUnusedNodes (line 33) traverses the singly-linked list of retired nodes by
applying the following pattern:

¹⁷https://en.cppreference.com/w/cpp/language/variable_template
¹⁸https://en.cppreference.com/w/cpp/container/set

https://en.cppreference.com/w/cpp/language/variable_template
https://en.cppreference.com/w/cpp/language/variable_template
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/language/variable_template
https://en.cppreference.com/w/cpp/container/set
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Iteration of a singly-linked list

1 void deleteUnusedNodes() {

2 RetiredNode* current = RetiredNodes.exchange(nullptr);

3 while (current) {

4 RetiredNode* const next = current->next;

5 if (!isInUse(current->node)) delete current;

6 else addToRetiredNodes(current);

7 current = next;

8 }

9 }

It checks the current node (line 3), points the next node to current->next (line 4), and updates the
current node with the next node (line 7). Finally, the current node is destroyed if not used anymore
(line 5), or added to the retired nodes (line 6). The private member function addToRetireNodes (line
17) adds the retired nodes to the singly-linked list. To perform its job, it loads the RetiredNodes and
makes the new node retiredNode to the new head of the singly-linked list (line 17). Before retiredNode
becomes the new head of the singly-linked list, I have to ensure that RetiredNode is still the head of
the singly-linked list because another thread could kick in and changed the head of the singly-linked
list in the meantime. Thanks to the while-loop (line 17), retiredNode becomes only the new head
if ‘ retiredNode->next = RetiredNodes.load() holds. If not, retiredNode->next is updated to

RetiredNodes.load()‘.

There is only one peace of the puzzle left:

The HazardPointerOwner

1 template <typename T, Node MyNode = MyNode<T>>

2 class HazardPointerOwner {

3

4 HazardPointer<T>* hazardPointer;

5

6 public:

7 HazardPointerOwner(HazardPointerOwner const &) = delete;

8 HazardPointerOwner operator=(HazardPointerOwner const &) = delete;

9

10 HazardPointerOwner() : hazardPointer(nullptr) {

11 for (std::size_t i = 0; i < MaxHazardPointers; ++i) {

12 std::thread::id old_id;

13 if (HazardPointers<T>[i].id.compare_exchange_strong(

14 old_id, std::this_thread::get_id())) {

15 hazardPointer = &HazardPointers<T>[i];

16 break;

17 }

18 }

19 if (!hazardPointer) {
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20 throw std::out_of_range("No hazard pointers available!");

21 }

22 }

23

24 std::atomic<MyNode*>& getPointer() {

25 return hazardPointer->pointer;

26 }

27

28 ~HazardPointerOwner() {

29 hazardPointer->pointer.store(nullptr);

30 hazardPointer->id.store(std::thread::id());

31 }

32 };

HazardPointerOwner holds a hazardPointer. This hazardPointer is set in the constructor by traversing
all HazardPointers (lines 13 and 14). The compare_exchange_strong call checks in an atomic step if
the currently traversed hazard pointer is not set and sets its id to the id of the now executed thread
(std::this_thread::get_id()). In the success case, hazardPointer becomes the new hazard pointer
returned to the client invoking the member function getPointer (line 24). When all of the hazard
pointers of HazardPointers are used, the constructor throws a std::out_of_range exception (line 20).
Finally, HazardPointerOwner’s destructor sets the hazardPointer to its default state.

14.3 Concurrent Queue

Distilled Information
• Stack and a queue a typical lock-free data structures.

• Deleting a node of a lock-free data structure often face you with one challenge.
How can you be sure that no other thread is still using a node you want to delete.

• Hazard pointers are an elegant and performant way to solve the challenge of safe
memory reclamation in lock-free data structures.
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15. Challenges
Programming concurrent applications is inherently complicated. This still holds if you use C++11 and
C++14 features, and that is before I mention the memory model. I hope that if I dedicate a whole
chapter to the challenges of concurrent programming, you may become more aware of the pitfalls.

15.1 ABA Problem

ABAmeans you read a value twice, and each time it returns the same value A. Therefore, you conclude
that nothing changed in between. However, you missed the fact that the value was updated to B
somewhere in between.

Let me first use a simple scenario to introduce the problem.

15.1.0.1 An Analogy

The scenario consists of you sitting in a car and waiting for the traffic light to become green. Green
stands in our case for B, and red for A. What’s happening?

1. You look at the traffic light, and it is red (A).

2. Because you are bored, you begin to check the news on your smartphone and forget the time.

3. You look once more at the traffic light. Damn, it is still red (A).

Of course, the traffic light became green (B) between your two checks. Therefore, what seems to be
one red phase was a complete cycle.

What does this mean for threads (processes)? Now more formally.

1. Thread 1 reads the variable var with value A.

2. Thread 1 is preempted, and thread 2 runs.

3. Thread 2 changes the variable var from A to B to A.

4. Thread 1 continues to run and checks the value of variable var and gets A because of the value
A, thread 1 proceeds.

Often that is not a problem, and you can ignore it.

15.1.0.2 Non-critical ABA

The functions compare_exchange_strong and compare_exchange_weak suffer the ABA problem that can
be observed in the fetch_mult (line 6). Here, it is non-critical. fetch_multmultiplies a std::atomic<T>&
shared by mult.
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An atomic multiplication with compare_exchange_strong

1 // fetch_mult.cpp

2

3 #include <atomic>

4 #include <iostream>

5

6 template <typename T>

7 T fetch_mult(std::atomic<T>& shared, T mult){

8 T oldValue = shared.load();

9 while (!shared.compare_exchange_strong(oldValue, oldValue * mult));

10 return oldValue;

11 }

12

13 int main(){

14 std::atomic<int> myInt{5};

15 std::cout << myInt << '\n';

16 fetch_mult(myInt,5);

17 std::cout << myInt << '\n';

18 }

The critical observation is that there is a small-time window between the reading of the old value T

oldValue = shared.load in line 8 and the new value in line 9. Therefore, another thread can kick in
and change the oldValue from oldValue to another value and back to oldValue. The oldValue is the A,
and another value is the B in ABA.

Often it makes no difference if Read-Operations address the same, unchanged variable. However, in
a lock-free concurrent data structure, ABA may have a significant impact.

15.1.0.3 A lock-free data structure

I do not present a lock-free data structure in detail here. I use a lock-free stack that is implemented as
a singly linked list. The stack supports only two operations.

1. Pop the top object and return a pointer to it.

2. Push the specified object to stack.

Let me describe the pop operation in pseudo-code to give you an idea of the ABA problem. The pop
operation executes the following steps until the operation is successful.

1. Get the head node: head

2. Get the subsequent node: headNext

3. Make headNext to the new head if head is still the head of the stack

Here are the first two nodes of the stack:
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Stack: TOP -> head -> headNext -> ...

Let’s construct the ABA problem.

15.1.0.4 ABA in Action

Let’s start with the following stack:

Stack: TOP -> A -> B -> C

Thread 1 is active and wants to pop the head of the stack.

• Thread 1 stores

head = A

headNext = B

Before thread 1 finishes the pop step, thread 2 kicks in.

• Thread 2 pops A

Stack: TOP -> B -> C

• Thread 2 pops B and deletes B

Stack: TOP -> C

• Thread 2 pushed A back

Stack: TOP -> A -> C

Thread 1 is rescheduled and checks if A == head. Because of A == head, headNext, which is B becomes
the new head. However, B was already deleted. Therefore, the program has undefined behavior.

There are a few remedies to the ABA problem.

15.1.0.5 Remedies

The conceptional problem of ABA is quite easy to understand. A node such as B == headNext was
deleted although another node A == head was referring to it. The solution to our problem is to get rid
of the premature deletion of the node. Here are a few remedies.
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15.1.0.5.1 Tagged state reference

You can use the address’s low bits to add a tag to each node indicating how often the node has been
successfully modified. The result is that compare and swap (CAS) member function eventually fails,
although the check returns true. This idea does not solve the issue because the tag bits may eventually
wrap around. Architectures that support a double word CAS operation can have a bigger counter.

Tagged state reference are typically used in transactional memory.

The following three techniques are based on the idea of deferred reclamation.

15.1.0.5.2 Garbage Collection

Garbage collection guarantees that the variables are only deleted if it is not needed anymore. This
sounds promising but has a significant drawback. Most garbage collectors are not lock-free. Therefore,
even if you have a lock-free data structure, the overall system won’t be lock-free.

15.1.0.5.3 Hazard Pointers

From Wikipedia: Hazard Pointers¹:

Each thread keeps a list of hazard pointers in a hazard-pointer system, indicating which nodes the
thread is currently accessing. (In many systems, this “list” maybe probably limited to only one or two
elements.) Nodes on the hazard pointer list must not be modified or deallocated by any other thread.
(…) When a thread wishes to remove a node, it places it on a list of nodes “to be freed later”, but does
not deallocate the node’s memory until no other thread’s hazard list contains the pointer. A dedicated
garbage-collection thread can do this manual garbage collection (if the list “to be freed later” is shared
by all the threads); alternatively, cleaning up the “to be freed” list can be done by each worker thread
as part of an operation such as “pop”.

15.1.0.6 RCU

RCU stands for Read Copy Update and is a synchronization technique for almost read-only data
structures. RCU was created by Paul McKenney and has been used in the Linux Kernel since 2002.

The idea is quite simple and follows the acronym. To modify data, you make a copy of the data and
modify that copy. In contrast, all readers work with the original data. If there is no reader, you can
safely replace the data structure with its copy.

For more details about RCU, read the article What is RCU, Fundamentally?² by Paul McKenney.

Two new proposals
As part of a concurrency toolkit, there are two proposals for future C++ standards: the
proposal P0233r0³ for hazard pointers and the proposal P0461R0⁴ for RCU.

¹https://en.wikipedia.org/wiki/Hazard_pointer
²https://lwn.net/Articles/262464/
³http://www.modernescpp.com/open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0233r0.pdf
⁴http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0461r0.pdf

https://en.wikipedia.org/wiki/Hazard_pointer
https://lwn.net/Articles/262464/
http://www.modernescpp.com/open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0233r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0461r0.pdf
https://en.wikipedia.org/wiki/Hazard_pointer
https://lwn.net/Articles/262464/
http://www.modernescpp.com/open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0233r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0461r0.pdf
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15.2 Blocking Issues

To make my point clear, you have to use a condition variable in combination with a predicate. If you
don’t, your program may become a victim of a spurious wakeup or lost wakeup.

If you use a condition variable without a predicate, the notifying thread may send its notification
before the waiting thread is waiting. Therefore, the waiting thread waits forever. This phenomenon
is called a lost wake-up.

Here is the program.

Blocking condition variables

1 // conditionVariableBlock.cpp

2

3 #include <iostream>

4 #include <condition_variable>

5 #include <mutex>

6 #include <thread>

7

8 std::mutex mutex_;

9 std::condition_variable condVar;

10

11 bool dataReady;

12

13

14 void waitingForWork(){

15

16 std::cout << "Worker: Waiting for work." << '\n';

17

18 std::unique_lock<std::mutex> lck(mutex_);

19 condVar.wait(lck);

20 // do the work

21 std::cout << "Work done." << '\n';

22

23 }

24

25 void setDataReady(){

26

27 std::cout << "Sender: Data is ready." << '\n';

28 condVar.notify_one();

29

30 }

31

32 int main(){

33
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34 std::cout << '\n';

35

36 std::thread t1(setDataReady);

37 std::thread t2(waitingForWork);

38

39 t1.join();

40 t2.join();

41

42 std::cout << '\n';

43

44 }

By chance, the first invocation of the program works fine. The second invocation locks because the
notify call (line 28) happens before the thread t2 (line 37) is waiting (line 19).

A blocking condition variable

Of course, deadlocks and livelocks are side effects of race conditions. A deadlock depends in general
on the interleaving of the threads and may sometimes occur or not. A livelock is similar to a deadlock.
While a deadlock blocks, a livelock seems to make progress, emphasizing “seems”. Think about a
transaction in a transactional memory use case. Each time the transaction should be committed, a
conflict happens; therefore, a rollback takes place. Here are the details of transactions.

15.3 Breaking of Program Invariants

Program invariants are invariants that should hold for the entire lifetime of your program.

Malicious race condition breaks an invariant of the program. The invariant of the program is that the
sum of all balances should be the same amount. Which in our case is 200 euros because each account
starts with 100 euro (line 9). I neither want to create money by transferring it, nor do I want to destroy
it.
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Breaking an invariant of the program
1 // breakingInvariant.cpp

2

3 #include <atomic>

4 #include <functional>

5 #include <iostream>

6 #include <thread>

7

8 struct Account{

9 std::atomic<int> balance{100};

10 };

11

12 void transferMoney(int amount, Account& from, Account& to){

13 using namespace std::chrono_literals;

14 if (from.balance >= amount){

15 from.balance -= amount;

16 std::this_thread::sleep_for(1ns);

17 to.balance += amount;

18 }

19 }

20

21 void printSum(Account& a1, Account& a2){

22 std::cout << (a1.balance + a2.balance) << '\n';

23 }

24

25 int main(){

26

27 std::cout << '\n';

28

29 Account acc1;

30 Account acc2;

31

32 std::cout << "Initial sum: ";

33 printSum(acc1, acc2);

34

35 std::thread thr1(transferMoney, 5, std::ref(acc1), std::ref(acc2));

36 std::thread thr2(transferMoney, 13, std::ref(acc2), std::ref(acc1));

37 std::cout << "Intermediate sum: ";

38 std::thread thr3(printSum, std::ref(acc1), std::ref(acc2));

39

40 thr1.join();

41 thr2.join();

42 thr3.join();

43

44 std::cout << " acc1.balance: " << acc1.balance << '\n';
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45 std::cout << " acc2.balance: " << acc2.balance << '\n';

46

47 std::cout << "Final sum: ";

48 printSum(acc1, acc2);

49

50 std::cout << '\n';

51

52 }

In the beginning, the sum of the accounts is 200 euros. Line 33 displays the sum by using the function
printSum in lines 21 - 23. Line 38 makes the invariant visible. Because there is a short sleep of 1ns in
line 16, the intermediate sum is 182 euro. In the end, all is fine; each account has the right balance
(line 44 and line 45), and the sum is 200 euro (line 48).

Here is the output of the program.

The invariant of the accounts

15.4 Data Races

A data race is a situation in which at least two threads access a shared variable simultaneously. At
least one thread tries to modify the variable.

If your program has a data race, it has undefined behavior. This means all outcomes are possible, and
therefore, reasoning about the program makes no sense anymore.

Let me show you a program with a data race.
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A data race

1 // addMoney.cpp

2

3 #include <functional>

4 #include <iostream>

5 #include <thread>

6 #include <vector>

7

8 struct Account{

9 int balance{100};

10 };

11

12 void addMoney(Account& to, int amount){

13 to.balance += amount;

14 }

15

16 int main(){

17

18 std::cout << '\n';

19

20 Account account;

21

22 std::vector<std::thread> vecThreads(100);

23

24

25 for (auto& thr: vecThreads) thr = std::thread(addMoney, std::ref(account), 50);

26

27 for (auto& thr: vecThreads) thr.join();

28

29

30 std::cout << "account.balance: " << account.balance << '\n';

31

32 std::cout << '\n';

33

34 }

One hundred threads are adding 50 euros (line 25) to the same account (line 20). They use the function
addMoney. The critical observation is that the writing to the account is done without synchronization.
Therefore we have a data race, and the result is not valid. This is undefined behavior, and the final
balance (line 30) differs between 5000 and 5100 euro.
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A data race causes incorrect balances

15.5 Deadlocks

A deadlock is a state in which at least one thread is blocked forever because it waits for the release of
a resource, it does never get.

There are two main reasons for deadlocks:

1. A mutex has not been unlocked.

2. You lock your mutexes in a different order.

For overcoming the second issue, techniques such as lock hierachies⁵ are used in classical C++.

For the details about deadlocks and how to overcome them with modern C++, read the subsection
issues of mutexes and locks.

⁵http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0801/071201hs01/071201hs01.html

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0801/071201hs01/071201hs01.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0801/071201hs01/071201hs01.html
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Locking a non-recursive mutex more than once
Locking a non-recursive mutex more than once is undefined behavior.

Locking more than once
1 // lockTwice.cpp

2

3 #include <iostream>

4 #include <mutex>

5

6 int main(){

7

8 std::mutex mut;

9

10 std::cout << '\n';

11

12 std::cout << "first lock call" << '\n';

13

14 mut.lock();

15

16 std::cout << "second lock call" << '\n';

17

18 mut.lock();

19

20 std::cout << "third lock call" << '\n';

21

22 }

Typically, you get a deadlock.

A deadlock with non-recursive mutexes

15.6 False Sharing

When a processor reads a variable such as an int from main memory, it reads more than the size of
an int frommemory. The processor reads an entire cache line (typically 64 bytes) frommemory. False
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sharing occurs if two threads read at the same time different variables a and b that are located on the
same cache line. Although a and b are logically separated, they are physically connected. An expensive
hardware synchronization on the cache line is necessary because a and b share the same. The result is
that you get the right results, but the performance of your concurrent application decreases. Precisely
this phenomenon happen in the following program.

False sharing

1 // falseSharing.cpp

2

3 #include <algorithm>

4 #include <chrono>

5 #include <iostream>

6 #include <random>

7 #include <thread>

8 #include <vector>

9

10 constexpr long long size{100000000};

11

12 struct Sum{

13 long long a{0};

14 long long b{0};

15 };

16

17 int main(){

18

19 std::cout << '\n';

20

21 Sum sum;

22

23 std::cout << &sum.a << '\n';

24 std::cout << &sum.b << '\n';

25

26 std::cout << '\n';

27

28 std::vector<int> randValues, randValues2;

29 randValues.reserve(size);

30 randValues2.reserve(size);

31

32 std::mt19937 engine;

33 std::uniform_int_distribution<> uniformDist(1,10);

34

35 int randValue;

36 for (long long i = 0; i < size; ++i){

37 randValue = uniformDist(engine);

38 randValues.push_back(randValue);
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39 randValues2.push_back(randValue);

40 }

41

42 auto sta = std::chrono::steady_clock::now();

43

44 std::thread t1([&sum, &randValues]{

45 for (auto val: randValues) sum.a += val;

46 });

47

48 std::thread t2([&sum, &randValues2]{

49 for (auto val: randValues2) sum.b += val;

50 });

51

52 t1.join(), t2.join();

53

54 std::chrono::duration<double> dur= std::chrono::steady_clock::now() - sta;

55 std::cout << "Time for addition " << dur.count()

56 << " seconds" << '\n';

57

58 std::cout << "sum.a: " << sum.a << '\n';

59 std::cout << "sum.b: " << sum.b << '\n';

60

61 std::cout << '\n';

62

63 }

The variables a and b in lines 13 and 14 share the same cache line. Thread t1 (line 44) and the thread
t2 use both variables to concurrently add up the vectors randValues and randValues2. Both vectors
have 100 million integers between 1 and 10. The program’s output shows interesting facts. a and b are
aligned at 8-byte boundaries because this is the alignment for long long ints on my system.
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False sharing

What happens if I change the alignment of a and b to 64 bytes? 64 is the size of the cache line on my
system. Here is the slight change I have to make to the struct Sum. I don’t use a seed for my random
number generator; therefore, I get the same random numbers each time.

struct Sum{

alignas(64) long long a{0};

alignas(64) long long b{0};

};

False sharing resolved

Now a and b are aligned at 64-byte boundaries, and the program becomes more than six times faster.
The reason is that a and b are now on different cache lines.
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The optimizer detects the false sharing
If I compile the last programs with maximum optimization, my optimizer detects
the false sharing and eliminate it. This means that I get the same performance
numbers with and without false sharing. This also holds for Windows. Here are
the optimized numbers.

False sharing resolved by the optimizer

std::hardware_destructive_interference_size and
std::hardware_constructive_interference_size with C++17
The functions std::hardware_destructive_interference_size and std::hardware_-

constructive_interference_size let you deal in a portable way with the cache line size.
std::hardware_destructive_interference_size returns the minimum offset between
two objects to avoid false sharing and std::hardware_constructive_interference_size

returns the maximum size of contiguous memory to promote true sharing.

With C++17, Sum can be written in a platform-independent way.

struct Sum{

alignas(std::hardware_destructive_interference_size) long long a{0};

alignas(std::hardware_destructive_interference_size) long long b{0};

};
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15.7 Lifetime Issues of Variables

Creating a C++ example with lifetime related issues is relatively easy. Let the created thread t run in
the background (i.e. it was detached with a call to t.detach()) and let it be only half completed. The
creator thread doesn’t wait until its child is done. In this case, you have to be extremely careful not
to use anything in the child thread that belongs to the creator thread.

Lifetime issues of variables

1 // lifetimeIssues.cpp

2

3 #include <iostream>

4 #include <string>

5 #include <thread>

6

7 int main(){

8

9 std::cout << "Begin:" << '\n';

10

11 std::string mess{"Child thread"};

12

13 std::thread t([&mess]{ std::cout << mess << '\n';});

14 t.detach();

15

16 std::cout << "End:" << '\n';

17

18 }

This is too simple. The thread t is using std::cout and the variable mess. Both belong to the main
thread. The effect is that we don’t see the output of the child thread in the second run. Only “Begin:”
(line 9) and “End:” (line 16) are printed.
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Lifetime issues of variables

15.8 Moving Threads

Moving threads make the lifetime issues of threads even harder.

A thread supports themove semantic but not the copy semantic. The reason being the copy constructor
of std::thread is set to delete: thread(const thread&) = delete;. Imagine what happens if you copy
a thread while the thread is holding a lock.

Let’s move a thread.

Erronous moving a thread

1 // threadMoved.cpp

2

3 #include <iostream>

4 #include <thread>

5 #include <utility>

6

7 int main(){

8

9 std::thread t([]{std::cout << std::this_thread::get_id();});

10 std::thread t2([]{std::cout << std::this_thread::get_id();});

11

12 t = std::move(t2);

13 t.join();

14 t2.join();

15

16 }
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Both threads t and t2 should do their simple job: printing their IDs. In addition to that, thread t2 is
moved to t (line 12). In the end, the main thread takes care of its children and joins them. But wait,
the result is very different from my expectations:

Erronous moving a thread

What is going wrong? We have two issues:

1. By moving the thread t2, t gets a new callable unit, and its destructor is called. As a result, t’s
destructor calls std::terminate, because it is still joinable.

2. Thread t2 has no associated callable unit. The invocation of join on a thread without callable
unit leads to the exception std::system_error.

Knowing this, fixing the errors is straightforward.

Moving a thread

1 // threadMovedFixed.cpp

2

3 #include <iostream>

4 #include <thread>

5 #include <utility>

6

7 int main(){

8

9 std::thread t([]{std::cout << std::this_thread::get_id() << '\n';});

10 std::thread t2([]{std::cout << std::this_thread::get_id() << '\n';});

11

12 t.join();

13 t = std::move(t2);

14 t.join();

15

16 std::cout << "\n";

17 std::cout << std::boolalpha << "t2.joinable(): " << t2.joinable() << '\n';

18

19 }

The result is that thread t2 is not joinable anymore.
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Erronous moving resolved

15.9 Race Conditions

A race condition is a situation in which an operation’s result depends on the interleaving of certain
individual operations.

Race conditions are challenging to spot. It depends on the interleaving of the threads whether they
occur. That means the number of cores, the utilization of your system, or your executable optimization
level may all be reasons why a race condition appears or does not.

Race conditions are not bad per se. It is the nature of threads that they interleave in different ways,
but this can often cause serious problems. In this case, I call them malign race conditions. Typical
effects of malign race conditions are data races, breaking of program invariants, blocking issues of
threads, or lifetime issues of variables.



16. The Time Library
A book dealing with concurrency in modern C++ would not be complete without writing a chapter
about the time library. The time library consists of three parts: time point, time duration, and clock.
They depend on each other.
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16.1 The Interplay of Time Point, Time Duration, and
Clock

Time point
The time point is given by its starting point - the so-called epoch¹ - and the time that has elapsed
since the epoch (expressed as a time duration).”

Time duration
The time duration is the difference between two time points. It is measured in the number of
time ticks.

Clock
The clock consists of a starting point and a time tick. This information enables you to calculate
the current time.

You can compare time points. When you add a time duration to a time point, you get a new time point.
The time tick is the accuracy of the clock in which you measure the time duration. The birth of Jesus
is, in my culture, the starting time point, and a year is a typical time tick.

I illustrate the three concepts using the lifetime of Dennis Ritchie². The creator of C died in 2011. For
the sake of simplicity, I’m only interested in the years.

Here is the lifetime.

The lifetime of Dennis Ritchie

The birth of Jesus is our epoch. The time points 1941, and 2011 are defined by the epoch and the time
duration. Of course, the epoch is also a time point. When I subtract 1941 from 2011, I get the time
duration. This dime duration is measured to an accuracy of one year in our example. Dennis Ritchie
died at 70.

Let’s dive deeper into the components of the time library.

¹https://en.wikipedia.org/wiki/Epoch_(reference_date)
²https://en.wikipedia.org/wiki/Dennis_Ritchie

https://en.wikipedia.org/wiki/Epoch_(reference_date)
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Epoch_(reference_date)
https://en.wikipedia.org/wiki/Dennis_Ritchie
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16.2 Time Point

The time point std::chrono::time_point is defined by the starting point (epoch) and the additional
time duration. The class template consists of two components: clock and time duration. By default,
the time duration is derived from the clock.

The class template std::chrono::time_point

template<

class Clock,

class Duration= typename Clock::duration

>

class time_point;

The following four special time points depend on the clock:

• epoch: the starting point of the clock

• now: the current time

• min: the minimum time point that the clock can have

• max: the maximum time point that the clock can have

The accuracy of theminimumandmaximum time point depends on the clock used: std::system::system_-
clock, std::chrono::steady_clock, or std::chrono::high_resolution_clock.

C++ gives no guarantee about the accuracy, the starting point or the valid time range of a clock. The
starting point of std::chrono::system_clock is typically 1st January 1970, the so-called UNIX-epoch³.
It holds further that std::chrono::high_resolution_clock has the highest accuracy.

16.2.1 From Time Point to Calendar Time

Thanks to std::chrono::system_clock::to_time_t you can convert a time point that internally uses
std::chrono::system_clock to an object of type std::time_t. Further conversion of the std::time_t

object with the function std::gmtime⁴ gives you the calendar time, expressed in Coordinated Universal
Time⁵ (UTC). In the end, this calendar time can be used as the input for the function std::asctime⁶
to get a textual representation of the calendar time.

³https://en.wikipedia.org/wiki/Unix_time
⁴http://en.cppreference.com/w/cpp/chrono/c/gmtime
⁵https://en.wikipedia.org/wiki/Coordinated_Universal_Time
⁶http://en.cppreference.com/w/cpp/chrono/c/asctime

https://en.wikipedia.org/wiki/Unix_time
http://en.cppreference.com/w/cpp/chrono/c/gmtime
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.cppreference.com/w/cpp/chrono/c/asctime
https://en.wikipedia.org/wiki/Unix_time
http://en.cppreference.com/w/cpp/chrono/c/gmtime
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.cppreference.com/w/cpp/chrono/c/asctime
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Display the calendar time

1 // timepoint.cpp

2

3 #include <chrono>

4 #include <ctime>

5 #include <iostream>

6 #include <string>

7

8 int main(){

9

10 std::cout << '\n';

11

12 std::chrono::time_point<std::chrono::system_clock> sysTimePoint;

13 std::time_t tp= std::chrono::system_clock::to_time_t(sysTimePoint);

14 std::string sTp= std::asctime(std::gmtime(&tp));

15 std::cout << "Epoch: " << sTp << '\n';

16

17 tp= std::chrono::system_clock::to_time_t(sysTimePoint.min());

18 sTp= std::asctime(std::gmtime(&tp));

19 std::cout << "Time min: " << sTp << '\n';

20

21 tp= std::chrono::system_clock::to_time_t(sysTimePoint.max());

22 sTp= std::asctime(std::gmtime(&tp));

23 std::cout << "Time max: " << sTp << '\n';

24

25 sysTimePoint= std::chrono::system_clock::now();

26 tp= std::chrono::system_clock::to_time_t(sysTimePoint);

27 sTp= std::asctime(std::gmtime(&tp));

28 std::cout << "Time now: " << sTp << '\n';

29

30 }

The output of the program shows the valid range of std::chrono::system_clock. On my Linux PC
std::chrono::system_clock has the UNIX-epoch as starting point and can have time points between
the years 1677 and 2262.
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The valid range of std::chrono::system_clock

You can add time durations to time points to get new time points. Adding time durations beyond the
valid time range is undefined behavior.

16.2.2 Cross the valid Time Range

The following example uses the current time and adds or subtracts 1000 years. For the sake of
simplicity, I ignore leap years and assume that a year has 365 days.

Crossing the valid time range

1 // timepointAddition.cpp

2

3 #include <chrono>

4 #include <ctime>

5 #include <iostream>

6 #include <string>

7

8 using namespace std::chrono;

9 using namespace std;

10

11 string timePointAsString(const time_point<system_clock>& timePoint){

12 time_t tp= system_clock::to_time_t(timePoint);

13 return asctime(gmtime(&tp));

14 }

15

16 int main(){

17

18 cout << '\n';

19

20 time_point<system_clock> nowTimePoint= system_clock::now();

21 cout << "Now: " << timePointAsString(nowTimePoint) << '\n';
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22

23 const auto thousandYears= hours(24*365*1000);

24 time_point<system_clock> historyTimePoint= nowTimePoint - thousandYears;

25 cout << "Now - 1000 years: " << timePointAsString(historyTimePoint) << '\n';

26

27 time_point<system_clock> futureTimePoint= nowTimePoint + thousandYears;

28 cout << "Now + 1000 years: " << timePointAsString(futureTimePoint) << '\n';

29

30 }

For readability, I introduced the namespace std::chrono. The program’s output shows that an
overflow of the time points in lines 25 and 28 causes incorrect results. Subtracting 1000 years from the
current time point gives a time point in the future; adding 1000 years to the current time point gives
a time point in the past, respectively.

Overflow of the valid time range

The difference between two time points is a time duration. Time durations support the basic arithmetic
and can be displayed in different time ticks.
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16.3 Time Duration

Time duration std::chrono::duration is a class template that consists of the type of the tick Rep and
the length of a tick Period.

The class template std::chrono::duration

template<

class Rep,

class Period = std::ratio<1>

> class duration;

The tick length is by default std::ratio<1>. std::ratio<1> stands for a second and can also be written
as std::ratio<1, 1>. The rest is quite easy. std::ratio<60> is a minute and std::ratio<1,1000> a
millisecond. When the type of Rep is a floating-point number, you can use it to hold fractions of time
ticks.

C++11 predefines the most important time durations:

Important time durations

typedef duration<signed int, nano> nanoseconds;

typedef duration<signed int, micro> microseconds;

typedef duration<signed int, millT> milliseconds;

typedef duration<signed int> seconds;

typedef duration<signed int, ratio< 60>> minutes;

typedef duration<signed int, ratio<3600>> hours;

How much time has passed since the UNIX epoch (1.1.1970)? Thanks to type aliases for the different
time durations, I can answer the question quite easily. In the following example, I ignore leap years
and assume that a year has 365 days.

Crossing the valid time range

1 // timeSinceEpoch.cpp

2

3 #include <chrono>

4 #include <iostream>

5

6 using namespace std;

7

8 int main(){

9

10 cout << fixed << '\n';

11

12 cout << "Time since 1.1.1970:\n" << '\n';
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13

14 const auto timeNow= chrono::system_clock::now();

15 const auto duration= timeNow.time_since_epoch();

16 cout << duration.count() << " nanoseconds " << '\n';

17

18 typedef chrono::duration<long double, ratio<1, 1000000>> MyMicroSecondTick;

19 MyMicroSecondTick micro(duration);

20 cout << micro.count() << " microseconds" << '\n';

21

22 typedef chrono::duration<long double, ratio<1, 1000>> MyMilliSecondTick;

23 MyMilliSecondTick milli(duration);

24 cout << milli.count() << " milliseconds" << '\n';

25

26 typedef chrono::duration<long double> MySecondTick;

27 MySecondTick sec(duration);

28 cout << sec.count() << " seconds " << '\n';

29

30 typedef chrono::duration<double, ratio<60>> MyMinuteTick;

31 MyMinuteTick myMinute(duration);

32 cout << myMinute.count() << " minutes" << '\n';

33

34 typedef chrono::duration<double, ratio<60*60>> MyHourTick;

35 MyHourTick myHour(duration);

36 cout << myHour.count() << " hours" << '\n';

37

38 typedef chrono::duration<double, ratio<60*60*24*365>> MyYearTick;

39 MyYearTick myYear(duration);

40 cout << myYear.count() << " years" << '\n';

41

42 typedef chrono::duration<double, ratio<60*45>> MyLessonTick;

43 MyLessonTick myLesson(duration);

44 cout << myLesson.count() << " lessons" << '\n';

45

46 cout << '\n';

47

48 }

The typical time durations are microsecond (line 18), millisecond (line 22), second (line 26), minute
(line 30), hour (line 34), and year (line 38). Also, I define the German school hour (45 min) in line 42.
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Time since epoch

It’s pretty convenient to calculate with time durations, as the next section illustrates.

16.3.1 Calculations

The time durations support basic arithmetic operations. This means that you can multiply or divide a
time duration by a number. Of course, you can compare time durations. I explicitly want to emphasize
that all these calculations and comparisons respect the units.

With the C++14 standard, it gets even better. The C++14 standard supports the typical time literals.

Predefined time literals

Type Suffix Example

std::chrono::hours h 5h

std::chrono::minutes min 5min

std::chrono::seconds s 5s

std::chrono::milliseconds ms 5ms

std::chrono::microseconds us 5us

std::chrono::nanoseconds ns 5ns
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How much time does my 17 years old son Marius spend during a typical school day? I answer the
question in the following example and show the result in various time duration formats.

A typical school-day in various time durations
1 // schoolDay.cpp

2

3 #include <iostream>

4 #include <chrono>

5

6 using namespace std::literals::chrono_literals;

7 using namespace std::chrono;

8 using namespace std;

9

10 int main(){

11

12 cout << '\n';

13

14 constexpr auto schoolHour= 45min;

15

16 constexpr auto shortBreak= 300s;

17 constexpr auto longBreak= 0.25h;

18

19 constexpr auto schoolWay= 15min;

20 constexpr auto homework= 2h;

21

22 constexpr auto schoolDaySec= 2*schoolWay + 6 * schoolHour + 4 * shortBreak +

23 longBreak + homework;

24

25 cout << "School day in seconds: " << schoolDaySec.count() << '\n';

26

27 constexpr duration<double, ratio<3600>> schoolDayHour = schoolDaySec;

28 constexpr duration<double, ratio<60>> schoolDayMin = schoolDaySec;

29 constexpr duration<double, ratio<1,1000>> schoolDayMilli= schoolDaySec;

30

31 cout << "School day in hours: " << schoolDayHour.count() << '\n';

32 cout << "School day in minutes: " << schoolDayMin.count() << '\n';

33 cout << "School day in milliseconds: " << schoolDayMilli.count() << '\n';

34

35 cout << '\n';

36

37 }

I have time durations for a German school hour (line 14), for a short break (line 16), for an extended
break (line 17), for Marius’s way to school (line 19), and his homework (line 20). The result of the
calculation schoolDaysInSeconds (line 22) is available at compile time.
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A typical school-day in various time durations

Evaluation at compile time
The time literals (lines 14 - 20), the schoolDaySec in line 22, and the various durations
(lines 28 - 30) are all constant expressions (constexpr). Therefore, all values are evaluated
at compile time. Just the output is performed at runtime.

The accuracy of the time tick is dependent on the clock used. In C++we have the clocks std::chrono::system_-
clock, std::chrono::steady_clock, and std::chrono::high_resolution_clock.
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16.4 Clocks

The fact that there are three different types of clocks begs the question: What are the differences?

• std::chrono::sytem_clock: is the system-wide real-time clock (wall-clock⁷). The clock has the
auxiliary functions to_time_t and from_time_t to convert time points into calendar time.

• std::chrono::steady_clock: is the only clock to provide the guarantee that you can not adjust
it. Therefore, std::chrono::steady_clock is the preferred clock to measure time intervals.

• std::chrono::high_resolution_clock: is the clock with the highest accuracy but it can be simply
an alias for the clocks std::chrono::system_clock or std::chrono::steady_clock.

No guarantees about the accuracy, starting point,
and valid time range
The C++ standard provides no guarantee about the accuracy, the starting point or the valid
time range of the clocks. Typically, the starting point of std::chrono:system_clock is the
1.1.1970, the so-called UNIX-epoch, while for std::chrono::steady_clock it is usually the
boot time of your PC.

16.4.1 Accuracy and Steadiness

It is pretty interesting to knowwhich clocks are steady and what accuracy they provide. Steady means
that the clock cannot be adjusted. You can get the answers directly from the clocks.

Accuracy and steadiness of the three clocks

1 // clockProperties.cpp

2

3 #include <chrono>

4 #include <iomanip>

5 #include <iostream>

6

7 using namespace std::chrono;

8 using namespace std;

9

10 template <typename T>

11 void printRatio(){

12 cout << " precision: " << T::num << "/" << T::den << " second " << '\n';

13 typedef typename ratio_multiply<T,kilo>::type MillSec;

14 typedef typename ratio_multiply<T,mega>::type MicroSec;

15 cout << fixed;

⁷https://en.wikipedia.org/wiki/Wall-clock_time

https://en.wikipedia.org/wiki/Wall-clock_time
https://en.wikipedia.org/wiki/Wall-clock_time
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16 cout << " " << static_cast<double>(MillSec::num)/MillSec::den

17 << " milliseconds " << '\n';

18 cout << " " << static_cast<double>(MicroSec::num)/MicroSec::den

19 << " microseconds " << '\n';

20 }

21

22 int main(){

23

24 cout << boolalpha << '\n';

25

26 cout << "std::chrono::system_clock: " << '\n';

27 cout << " is steady: " << system_clock::is_steady << '\n';

28 printRatio<chrono::system_clock::period>();

29

30 cout << '\n';

31

32 cout << "std::chrono::steady_clock: " << '\n';

33 cout << " is steady: " << chrono::steady_clock::is_steady << '\n';

34 printRatio<chrono::steady_clock::period>();

35

36 cout << '\n';

37

38 cout << "std::chrono::high_resolution_clock: " << '\n';

39 cout << " is steady: " << chrono::high_resolution_clock::is_steady

40 << '\n';

41 printRatio<chrono::high_resolution_clock::period>();

42

43 cout << '\n';

44

45 }

I show in lines 27, 33, and 39 for each clock whether it is steady. The function printRatio (lines
10 - 20) is more challenging to read. First, I display the accuracy of the clocks as a fraction with
the unit in seconds. Additionally, I use the function template std::ratio_multiply and the constants
std::kilo and std::mega to adjust the units to milliseconds and microseconds displayed as floating-
point numbers. You can get the details of the calculation at compile time at cppreference.com⁸.

The output on Linux differs from that on Windows. std::chrono::system_clock is far more accurate
on Linux; std::chrono::high_resultion_clock is steady on Windows.

⁸http://en.cppreference.com/w/cpp/numeric/ratio

http://en.cppreference.com/w/cpp/numeric/ratio
http://en.cppreference.com/w/cpp/numeric/ratio
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Accuracy and steadiness of the three clocks on Linux

Accuracy and steadiness of different clocks on Windows

Although the C++ standard doesn’t specify the epoch of the clock, you can calculate it.
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16.4.2 Epoch

Thanks to the auxiliary function time_since_epoch⁹, each clock returns how much time has passed
since the epoch.

Calculating the epoch for each clock

1 // now.cpp

2

3 #include <chrono>

4 #include <iomanip>

5 #include <iostream>

6

7 using namespace std::chrono;

8

9 template <typename T>

10 void durationSinceEpoch(const T dur){

11 std::cout << " Counts since epoch: " << dur.count() << '\n';

12 typedef duration<double, std::ratio<60>> MyMinuteTick;

13 const MyMinuteTick myMinute(dur);

14 std::cout << std::fixed;

15 std::cout << " Minutes since epoch: "<< myMinute.count() << '\n';

16 typedef duration<double, std::ratio<60*60*24*365>> MyYearTick;

17 const MyYearTick myYear(dur);

18 std::cout << " Years since epoch: " << myYear.count() << '\n';

19 }

20

21 int main(){

22

23 std::cout << '\n';

24

25 system_clock::time_point timeNowSysClock = system_clock::now();

26 system_clock::duration timeDurSysClock= timeNowSysClock.time_since_epoch();

27 std::cout << "system_clock: " << '\n';

28 durationSinceEpoch(timeDurSysClock);

29

30 std::cout << '\n';

31

32 const auto timeNowStClock = steady_clock::now();

33 const auto timeDurStClock= timeNowStClock.time_since_epoch();

34 std::cout << "steady_clock: " << '\n';

35 durationSinceEpoch(timeDurStClock);

36

37 std::cout << '\n';

⁹http://en.cppreference.com/w/cpp/chrono/time_point/time_since_epoch

http://en.cppreference.com/w/cpp/chrono/time_point/time_since_epoch
http://en.cppreference.com/w/cpp/chrono/time_point/time_since_epoch
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38

39 const auto timeNowHiRes = high_resolution_clock::now();

40 const auto timeDurHiResClock= timeNowHiRes.time_since_epoch();

41 std::cout << "high_resolution_clock: " << '\n';

42 durationSinceEpoch(timeDurHiResClock);

43

44 std::cout << '\n';

45

46 }

The variables timeDurSysClock (line 26), timeDurStClock (line 33), and timeDurHiResClock (line 40)
contain the amount of time that has passed since the starting point of the corresponding clock.Without
automatic type deduction with auto, the exact types of the time point and time duration are extremely
verbose to write. In the function durationSinceEpoch (lines 9 - 19) I display the time duration in
different resolutions. First, I display the number of time ticks (line 11), then the number of minutes
(line 15), and at the end of the years (lines 18) since the epoch. All values depend on the clock used.
For the sake of simplicity, I ignore leap years and assume that a year has 365 days.

Once more, the results are different on Linux and Windows.

The epoch for each clock on Linux
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The epoch for each clock on Windows

To draw the right conclusion, I have to mention that my Linux PC had been running for about 5 hours
(305 minutes), and my Windows PC had been running for more than 6 hours (391 minutes).

std::chrono::system_clock and std::chrono::high_resolution_clock have the UNIX-epoch as start-
ing point on my linux PC. The starting point of std::chrono::steady_clock is the boot time of my
PC. While it seems that std::high_resolution_clock is an alias for std::system_clock on Linux,
std::high_resolution_clock seems to be an alias for std::steady_clock onWindows. This conclusion
is in accordance with the result from the previous subsection Accuracy and Steadiness.

Thanks to the time library, you can put a thread to sleep. The arguments of the sleep andwait functions
are time points or time durations.
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16.5 Sleep and Wait

One crucial feature that multithreading components such as threads, locks, condition variables, and
futures have in common is the notion of time.

16.5.0.1 Conventions

The member functions for handling time in multithreading programs follow a simple convention.
Member functions ending with _for have to be parametrized by a time duration; member functions
ending with _until by a time point. Here is a concise overview of the member functions dealing with
sleeping, blocking, and waiting.

Member functions for sleeping, blocking, and waiting

Multithreading Component _until _for
std::thread th th.sleep_until(in2min) th.sleep_for(2s)

std::unique_lock lk lk.try_lock_until(in2min) lk.try_lock(2s)

std::condition_variable cv cv.wait_until(in2min) cv.wait_for(2s)

std::future fu fu.wait_until(in2min) fu.wait_for(2s)

std::shared_future shFu shFu.wait(in2min) shFu.wait_for(2s)

in2min stands for a time 2 minutes in the future. 2s is a time duration of 2 seconds. Although I use
auto in the initialization of the time point in2min, the following is still verbose:

Defining a time point

auto in2min= std::chrono::steady_clock::now() + std::chrono::minutes(2);

Time literals from C++14 come to our rescue when using time durations. 2s stands for 2 seconds.

Let’s look at different waiting strategies.

16.5.0.2 Various waiting strategies

The main idea of the following program is that the promise provides its result for four shared futures.
That is possible becausemore than one shared_future canwait to notify the same promise. Each future
has a different waiting strategy. Both the promise and every future are executed in different threads.
For simplicity reasons I speak in the rest of this subsection only about a waiting thread, although it is
the corresponding future that is waiting. Here are the details of the promises and the futures.

Here are the strategies for the four waiting threads:

• consumeThread1: waits up to 4 seconds for the result of the promise.

• consumeThread2: waits up to 20 seconds for the result of the promise.
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• consumeThread3: asks the promise for the result and goes back to sleep for 700 milliseconds.

• consumeThread4: asks the promise for the result and goes back to sleep. Its sleep duration
starts with one millisecond and doubles each time.

Here is the program.

Various waiting strategies

1 // sleepAndWait.cpp

2

3 #include <utility>

4 #include <iostream>

5 #include <future>

6 #include <thread>

7 #include <utility>

8

9 using namespace std;

10 using namespace std::chrono;

11

12 mutex coutMutex;

13

14 long double getDifference(const steady_clock::time_point& tp1,

15 const steady_clock::time_point& tp2){

16 const auto diff= tp2 - tp1;

17 const auto res= duration <long double, millT> (diff).count();

18 return res;

19 }

20

21 void producer(promise<int>&& prom){

22 cout << "PRODUCING THE VALUE 2011\n\n";

23 this_thread::sleep_for(seconds(5));

24 prom.set_value(2011);

25 }

26

27 void consumer(shared_future<int> fut,

28 steady_clock::duration dur){

29 const auto start = steady_clock::now();

30 future_status status= fut.wait_until(steady_clock::now() + dur);

31 if ( status == future_status::ready ){

32 lock_guard<mutex> lockCout(coutMutex);

33 cout << this_thread::get_id() << " ready => Result: " << fut.get()

34 << '\n';

35 }

36 else{

37 lock_guard<mutex> lockCout(coutMutex);

38 cout << this_thread::get_id() << " stopped waiting." << '\n';
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39 }

40 const auto end= steady_clock::now();

41 lock_guard<mutex> lockCout(coutMutex);

42 cout << this_thread::get_id() << " waiting time: "

43 << getDifference(start,end) << " ms" << '\n';

44 }

45

46 void consumePeriodically(shared_future<int> fut){

47 const auto start = steady_clock::now();

48 future_status status;

49 do {

50 this_thread::sleep_for(milliseconds(700));

51 status = fut.wait_for(seconds(0));

52 if (status == future_status::timeout) {

53 lock_guard<mutex> lockCout(coutMutex);

54 cout << " " << this_thread::get_id()

55 << " still waiting." << '\n';

56 }

57 if (status == future_status::ready) {

58 lock_guard<mutex> lockCout(coutMutex);

59 cout << " " << this_thread::get_id()

60 << " waiting done => Result: " << fut.get() << '\n';

61 }

62 } while (status != future_status::ready);

63 const auto end= steady_clock::now();

64 lock_guard<mutex> lockCout(coutMutex);

65 cout << " " << this_thread::get_id() << " waiting time: "

66 << getDifference(start,end) << " ms" << '\n';

67 }

68

69 void consumeWithBackoff(shared_future<int> fut){

70 const auto start = steady_clock::now();

71 future_status status;

72 auto dur= milliseconds(1);

73 do {

74 this_thread::sleep_for(dur);

75 status = fut.wait_for(seconds(0));

76 dur *= 2;

77 if (status == future_status::timeout) {

78 lock_guard<mutex> lockCout(coutMutex);

79 cout << " " << this_thread::get_id()

80 << " still waiting." << '\n';

81 }

82 if (status == future_status::ready) {

83 lock_guard<mutex> lockCout(coutMutex);
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84 cout << " " << this_thread::get_id()

85 << " waiting done => Result: " << fut.get() << '\n';

86 }

87 } while (status != future_status::ready);

88 const auto end= steady_clock::now();

89 lock_guard<mutex> lockCout(coutMutex);

90 cout << " " << this_thread::get_id()

91 << " waiting time: " << getDifference(start,end) << " ms" << '\n';

92 }

93

94 int main(){

95

96 cout << '\n';

97

98 promise<int> prom;

99 shared_future<int> future= prom.get_future();

100 thread producerThread(producer, move(prom));

101

102 thread consumerThread1(consumer, future, seconds(4));

103 thread consumerThread2(consumer, future, seconds(20));

104 thread consumerThread3(consumePeriodically, future);

105 thread consumerThread4(consumeWithBackoff, future);

106

107 consumerThread1.join();

108 consumerThread2.join();

109 consumerThread3.join();

110 consumerThread4.join();

111 producerThread.join();

112

113 cout << '\n';

114

115 }

I create the promise in the main function (line 98), use the promise to create the associated future (line
99), and move the promise into a separate thread (line 100). I have to move the promise into the thread
because it does not support the copy semantic. That is not necessary for the shared futures (lines 102
- 105); they support the copy semantic and can hence be copied.

Before I talk about the thread’s work package, let me say a few words about the auxiliary function
getDifference (lines 14 - 19). The function takes two time points and returns the time duration
between this two timepoints in milliseconds. I use the function a few times.

What about the five created threads?

• producerThread: executes the function producer (lines 21 - 25) and publishes its result 2011
after 5 seconds of sleep. This is the result the futures are waiting for.
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• consumerThread1: executes the function consumer (lines 27 - 44). The thread is waiting for
at most 4 seconds (line 30) before it continues with its work. This waiting period is not long
enough to get the result from the promise.

• consumerThread2: executes the function consumer (lines 27 - 44). The thread is waiting at most
20 seconds before it continues with its work.

• consumerThread3: executes the function consumePeriodically (lines 46 - 67). It sleeps for
700 milliseconds (line 50) and asks for the result of the promise (line 60). Because of the
std::chrono::seconds(0) in line 51, there is no waiting. If the result of the calculation is
available, it is displayed in line 60.

• consumerThread4: executes the function consumeWithBackoff (lines 69 - 92). It sleeps in the
first iteration 1 second and doubles its sleeping period every iteration. Otherwise, its strategy
is similar to the strategy of consumerThread3.

Now to the synchronization of the program. Both the clock determining the current time and
std::cout are shared variables, but no synchronization is necessary. Firstly, the member function
call std::chrono::steady_clock::now() is thread-safe (for example in lines 30 and 40), secondly,
the C++ runtime guarantees that the characters are written thread-safe to std::cout. I only used
a std::lock_guard to wrap std::cout (for example in lines 32, 37, and 41).

Although the threads write one after the other to std::cout, the output is not easy to understand.
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Usage of different waiting strategies

The first output is from the promise. The left outputs are from the futures. At first consumerThread4 asks
for the result. 8 characters indent the output. consumerThread4 also displays its ID. consumerThread3 im-
mediately follows. 4 characters indent its output. The output of consumerThread1 and consumerThread2

is not indented.

• consumeThread1: waits unsuccessfully 4000.18 ms seconds without getting the result.

• consumeThread2: gets the result after 5000.3 ms, although its waiting duration is up to 20
seconds.

• consumeThread3: gets the result after 5601.76 ms. That’s about 5600 milliseconds= 8 * 700
milliseconds.

• consumeThread4: gets the result after 8193.81 ms. To say it differently. It waits 3 seconds too
long.



17. CppMem - An Overview
CppMem¹ is an interactive tool for exploring the behavior of small code snippets using the C++
memory model. It has to be in the toolbox of each programmer who seriously deals with the memory
model.

The online version of CppMem - you can also install it on your PC - provides valuable services in a
twofold way:

1. CppMem verifies the behavior of small code snippets. Based on the C++ memory model’s
chosen variant, the tool considers all possible interleavings of threads, visualizes each of them
in a graph, and annotates these graphs with additional details.

2. The very accurate analysis of CppMem gives you deep insight into the C++ memory model. In
short, CppMem is a tool that helps you to get a better understanding of the memory model.

Of course, it’s often the nature of powerful tools that you first have to overcome a few hurdles.
The nature of things is that CppMem gives you a very detailed analysis related to this incredibly
challenging topic and is highly configurable. Therefore, I plan to present the components of the tool.

17.1 The simplified Overview

My simplified overview of CppMem is based on the default configuration. This overview only
provides you with the base for further experiments and should help you understand my ongoing
optimization process.

¹http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
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The default configuration of CppMem

For the sake of simplicity, I refer to the red numbers in the screenshot.

17.1.1 1. Model

• Specifies the C++ memory model. preferred is a simplified but equivalent variant of the C++11
memory model.

17.1.2 2. Program

• Contains the executable program in a simplified C++11 like syntax. To be precise, you cannot
directly copy C or C++ code programs into CppMem.

• You can choose between many programs that implement typical multithreading scenarios. To
get these programs’ details read the very well-written articleMathematizing C++ Concurrency².
Of course, you can also run your code.

• CppMem is about multithreading; therefore, there are shortcuts for multithreading available.

– You can easily define two threads using the expression {{{ ... ||| ... }}}. The three
dots (...) represents the work package of each thread.

²http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf

http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
http://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
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– If you use the expression x.readvalue(1), CppMem evaluates the interleavings of the
threads for which the thread execution gives the value 1 for x.

17.1.3 3. Display Relations

• Describes the relations between the read, write, and read-write modifications on atomic
operations, fences and locks.

• You can explicitly enable the relations in the annotated graph with the checkboxes.

• There are three classes of relations. The coarser distinction between original and derived
relations is the most interesting one. Here are the default values.

– Original relations:
* sb: sequenced-before
* rf : read from
* mo: modification order
* sc: sequentially consistent
* lo: lock order

– Derived relations:
* sw: synchronises-with
* dob: dependency-ordered-before
* unsequenced_races: races in a single thread
* data_races: inter-thread data races

17.1.4 4. Display Layout

• With this switch you can choose which Doxygraph³ graph is used.

17.1.5 5. Model Predicates

• With this button, you can set the predicates for the chosen model, which can cause a non-
consistent (not data-race-free) execution; therefore, if you get a non-consistent execution, you
see precisely the reason for the non-consistent execution. I do not use these buttons in this book.

See the documentation⁴ for more details.

This is sufficient as a starting point for CppMem. Now, it is time to give CppMem a try.

CppMem provides many examples.

17.1.6 The Examples

The examples show typical use-case when working with concurrent and, in particular, with lock-free
code. The examples are grouped into categories.

³https://sourceforge.net/projects/doxygraph/
⁴http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html

https://sourceforge.net/projects/doxygraph/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
https://sourceforge.net/projects/doxygraph/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
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17.1.6.1 Paper

The examples/Paper category gives you a few examples which are intensely discussed in the paper
Mathematizing C++ Concurrency⁵.

• data_race.c: data race on x

• partial_sb.c: sequenced-before to the evaluation order in a single-threaded program

• unsequenced_race.c: unsequenced race on x according to the evaluation order

• sc_atomics.c: correct use of atomics

• thread_create_and_asw.c: additional synchronize-with due thread creation

Let’s start with the first example.

17.1.6.1.1 The Test Run

Choose the program data_race.c from the CppMem samples. The run button shows immediately
there is a data race.

⁵https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf

https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
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A data race with CppMem

For simplicity, I refer to the red numbers in my explanation.

1. The data race is quite easy to see. A thread writes x (x = 3) and another thread reads x (x==3)

without synchronization.

2. Two interleavings of threads are possible due to the C++ memory model. Only one of them is
consistent with the chosen model. This is the case if, in the expression x==3, the value of x is
written by the expression int x = 2 in the main function. The graph displays this relation in
the edge annotated with rf and sw.

3. Switching between the different interleaving of threads is fascinating.

4. The graph shows all relations which you enabled in Display Relations.

• a:Wna x=2 is in the graphic the a-th statement, a non-atomic write. Wna stands for “Write non-
atomic”.

• The graph’s key edge is the edge between the writing of x (b:Wna) and the reading of x (C:Rna).
That’s the data race on x.
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17.1.6.2 Further Categories

The other categories focus on specific aspects of lock-free programming. The example of each
category is available in various forms. Each form using different memory orderings. For an additional
discussion to the categories, read the already mentioned paper Mathematizing C++ Concurrency⁶. If
possible, I present the program with sequential consistency.

17.1.6.2.1 Store Buffering (examples/SB_store_buffering)

Two threads write to separate locations and then read from the other location.

SB+sc_sc+sc_sc+sc.c

// SB+sc_sc+sc_sc

// Store Buffering (or Dekker's), with all four accesses SC atomics

// Question: can the two reads both see 0 in the same execution?

int main() {

atomic_int x=0; atomic_int y=0;

{{{ { y.store(1,memory_order_seq_cst);

r1=x.load(memory_order_seq_cst); }

||| { x.store(1,memory_order_seq_cst);

r2=y.load(memory_order_seq_cst); } }}}

return 0;

}

17.1.6.2.2 Message Passing (examples/MP_message_passing)

One thread writes data (non-atomic) and sets an atomic flag, while the second thread waits for the
flag and reads data (non-atomic).

MP+na_sc+sc_na.c

// MP+na_sc+sc_na

// Message Passing, of data held in non-atomic x,

// with sc atomic stores and loads on y giving release/acquire synchronization

// Question: is the read of x required to see the new data value 1

// rather than the initial state value 0?

int main() {

int x=0; atomic_int y=0;

{{{ { x=1;

y.store(1,memory_order_seq_cst); }

||| { r1=y.load(memory_order_seq_cst).readsvalue(1);

r2=x; } }}}

return 0;

}

⁶https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf

https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
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17.1.6.2.3 Load Buffering (examples/LB_load_buffering)

Can two reads see the later write of the other thread?

Lb+sc_sc+sc_sc.c

// LB+sc_sc+sc_sc

// Load Buffering, with all four accesses sequentially consistent atomics

// Question: can the two reads both see 1 in the same execution?

int main() {

atomic_int x=0; atomic_int y=0;

{{{ { r1=x.load(memory_order_seq_cst);

y.store(1,memory_order_seq_cst); }

||| { r2=y.load(memory_order_seq_cst);

x.store(1,memory_order_seq_cst); } }}}

return 0;

}

17.1.6.2.4 Write-to-Read Causality (examples/WRC)

Does the third thread see the write from the first thread? * The first thread writes to x. * The second
thread reads from that and writes to y. * The third thread reads from that and then reads x.

WRC+rel+acq_rel+acq_rlx.c

// WRC

// the question is whether the final read is required to see 1

// With two release/acquire pairs, it is

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,mo_release);

||| { r1=x.load(mo_acquire).readsvalue(1);

y.store(1,mo_release); }

||| { r2=y.load(mo_acquire).readsvalue(1);

r3=x.load(mo_relaxed); }

}}}

return 0;

}

17.1.6.2.5 Independent Reads of Independent Writes (examples\IRIW)

Two threads write to different locations. Can the second thread see those writes in a different order?
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IRIW+rel+rel+acq_acq+acq_acq.c

// IRIW with release/acquire

// the question is whether the reading threads have

// to see the writes to x and y in the same order.

// With release/acquire, they do not.

int main() {

atomic_int x = 0; atomic_int y = 0;

{{{ x.store(1, memory_order_release);

||| y.store(1, memory_order_release);

||| { r1=x.load(memory_order_acquire).readsvalue(1);

r2=y.load(memory_order_acquire).readsvalue(0); }

||| { r3=y.load(memory_order_acquire).readsvalue(1);

r4=x.load(memory_order_acquire).readsvalue(0); }

}}};

return 0;

}



18. Glossary
The idea of this glossary is by no means to be exhaustive but to provide a reference for the essential
terms.

18.1 adress_free

Atomic operations that are lock-free should also be address-free. Address-free means that atomic
operations from different processes on the same memory location are atomic.

18.2 ACID

A transaction is an action that has the properties Atomicity, Consistency, Isolation, and Durability
(ACID). Except for durability, all properties hold for transactional memory in C++.

• Atomicity: either all or no statement of the block is performed.

• Consistency: the system is always in a consistent state. All transactions build a total order.

• Isolation: each transaction runs in complete isolation from the other transactions.

• Durability: a transaction is recorded.

18.3 CAS

CAS stands for compare-and_swap and is an atomic operation. It compares a memory location with
a given value and modifies the memory location if the memory location and the given value are
the same. The CAS operations in C++ are called std::compare_exchange_strong, and std::compare_-

exchange_weak.

18.4 Callable Unit

A callable unit (short callable) is something that behaves like a function. Not only are these named
functions but also function objects or lambda expressions. If a callable accepts one argument, it’s
called unary callable; if taking two arguments, binary callable.
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18.5 Complexity

O(i) stands for the complexity (runtime) of an operation. So O(1) means that the runtime of an
operation on a container is constant and independent of the container’s size. Conversely, O(n) means
that the runtime depends linear on the number of the container elements.

Predicates are special callables that return a boolean as a result.

18.6 Concepts

Concepts are compile-time predicates. They put semantic constraints on template parameters. std::sort
has overloads that accept a comparator.

template< class RandomIt, class Compare >

constexpr void sort(RandomIt first, RandomIt last, Compare comp);

These are the type requirements for the more powerful overload of std::sort:

• RandomIt must meet the requirements of ValueSwappable and LegacyRandomAccessIterator.

• The type of the dereferenced RandomIt must meet the requirements of MoveAssignable and
MoveConstructible.

• The type of the dereferenced RandomIt must meet the requirements of Compare.

Requirements such as ValueSwappable or LegacyRandomAccessIterator are so-called named require-
ments. Some of these requirements are formalized in C++20 in concepts¹.

18.7 Concurrency

Concurrency means that the execution of several tasks overlaps. Concurrency is a superset of
parallelism.

18.8 Critical Section

A critical section is a section of code that at most one thread can use at a time.

¹https://en.cppreference.com/w/cpp/language/constraints

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints
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18.9 Deadlock

A deadlock is a state in which at least one thread is blocked forever because it waits for the release of
a resource that it will never get.

There are two main reasons for deadlocks:

1. A mutex has not been unlocked.

2. You lock your mutexes in an incorrect order.

18.10 Eager Evaluation

In case of eager evaluation, the expression is evaluated immediately. This evaluation strategy is
orthogonal to lazy evaluation. Eager evaluation is often called greedy evaluation.

18.11 Executor

An executor is an object associatedwith a specific execution context. It provides one ormore execution
functions for creating execution agents from a callable function object.

18.12 Function Objects

First of all, don’t call them functors². That’s a well-defined term from a branch of mathematics called
category theory³.

Function objects are objects that behave like functions. They achieve this by implementing the
function call operator. As function objects are objects, they can have attributes and, therefore, state.

struct Square{

void operator()(int& i){i= i*i;}

};

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), Square());

for (auto v: myVec) std::cout << v << " "; // 1 4 9 16 25 36 49 64 81 100

²https://en.wikipedia.org/wiki/Functor
³https://en.wikipedia.org/wiki/Category_theory

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
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Instantiate function objects to use them
It’s a common error that the name of the function object (Square) is used in an algorithm
instead of the instance of function object (Square()) itself: std::for_each(myVec.begin(),
myVec.end(), Square). Of course, that’s a typical error. You have to use the instance:
std::for_each(myVec.begin(), myVec.end(), Square())

18.13 Lambda Functions

Lambda functions provide their functionality in-place. The compiler gets its information right on the
spot and has therefore excellent optimization potential. Lambda functions can receive their arguments
by value or by reference. They can capture the variables of their defining environment by value or by
reference as well.

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), [](int& i){ i= i*i; });

// 1 4 9 16 25 36 49 64 81 100

Lambda functions should be your first choice
If the functionality of your callable is short and self-explanatory, use a lambda function.
A lambda function is generally faster than a function or a function object and easier to
understand.

18.14 Lazy evaluation

In the case of lazy evaluation⁴, the expression is only be evaluated if needed. This evaluation strategy
is orthogonal to eager evaluation. Lazy evaluation is often called call-by-need.

18.15 Lock-free

A non-blocking algorithm is lock-free if there is guaranteed system-wide progress.

The following algorithm incrementing the atomic counter is lock-free.

⁴https://en.wikipedia.org/wiki/Lazy_evaluation

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation


Glossary 692

std::atomic<int> counter;

int cnt = counter.load();

while (!counter.compare_exchange_strong(cnt, cnt + 1)) {}

On thread executing this algorithm succeed and, therefore, there is guaranteed system-wide progress.

A lock-free algorithm is obstruction-free.

18.16 Lock-based

In a lock-based algorithm, at most one thread holding the lock can make progress, but this progress
is not guaranteed.

std::mutex mut;

int counter;

{

std::lock_guard<std::mutex> lock(mut);

++counter;

}

18.17 Lost Wakeup

A lost wakeup is a situation in which a thread misses its wake-up notification due to a race condition.

That may happen if you use a condition variable without a predicate.

18.18 Math Laws

A binary operation (*) on some set X is

• associative , if it satisfies the associative law for all x, y, z in X: (x * y) * z = x * (y * z)

• commutative , if it satisfies the commutative law for all x, y in X: x * y = y * x

18.19 Memory Location

A memory location is according to cppreference.com⁵

• an object of scalar type (arithmetic type, pointer type, enumeration type, or ‘std::nullptr_t),

• or the largest contiguous sequence of bit fields of non-zero length.

⁵http://en.cppreference.com/w/cpp/language/memory_model

http://en.cppreference.com/w/cpp/language/memory_model
http://en.cppreference.com/w/cpp/language/memory_model
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18.20 Memory Model

The memory model defines the relationship between objects and memory location and deals with the
question: What happens if two threads access the exact memory locations.

18.21 Modification Order

All modifications to a particular atomic object M occur in some particular total order. This total order
is called the modification order of M. Consequently, reads of an atomic object by a particular thread
never sees “older” values than those the thread has already observed.

18.22 Monad

Haskell as a pure functional language has only pure functions. A vital feature of these pure functions
is that they always return the same result when given the same arguments. Thanks to this property
called referential transparency⁶, a Haskell function cannot have side effects; therefore, Haskell has a
conceptional issue. The world is full of calculations that have side effects. These are calculations that
can fail, that can return an unknown number of results, or depend on the environment. To solve this
conceptional issue, Haskell uses monads and embeds them in the pure functional language.

The classical monads encapsulate one side effect:

• I/O monad: Calculations that deal with input and output.

• Maybe monad: Calculations that maybe return a result.

• Error monad: Calculations that can fail.

• List monad: Calculations that can have an arbitrary number of results.

• State monad: Calculations that build a state.

• Reader monad: Calculations that read from the environment.

Themonad concept is from category theory⁷, which is a part of themathematics that deals with objects
and mapping between these objects. Monads are abstract data types (type classes), which transform
simple types into enriched types. Values of these enriched type are called monadic values. Once in a
monad, a value can only be transformed by a function composition into another monadic value.

This composition respects the unique structure of a monad; therefore, the error monad interrupts its
calculation if an error occurs or the state monad builds its state.

A monad consists of three components:

⁶https://en.wikipedia.org/wiki/Referential_transparency
⁷https://en.wikipedia.org/wiki/Category_theory

https://en.wikipedia.org/wiki/Referential_transparency
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Referential_transparency
https://en.wikipedia.org/wiki/Category_theory
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• Type constructor: The type constructor defines how the simple data type becomes a monadic
data type.

• Functions:

– Identity function: Introduces a simple value into the monad.
– Bind operator: Defines how a function is applied to amonadic value to get a newmonadic
value.

• Rules for the functions:

– The identity function has to be the left and the right identity element.
– The composition of functions has to be associative.

For the error monad to become an instance of the type class monad, the error monad has to support
the bind operator’s identity function. Both functions define how the error monad deals with an error
in the calculation. If you use an error monad, the error handling is done in the background.

A monad consists of two control flows. The explicit control for calculating the result and the implicit
control flow for dealing with the specific side effect.

Of course, you can define monad in fewer words: “A monad is just a monoid in the category of
endofunctors.”

Monads are becoming more and more import in C++. With C++17 we get std::optional⁸, a kind of a
Maybe monad. With C++20/23 we will probably get extended futures and the ranges library⁹ from
Eric Niebler. Both are monads.

18.23 Non-blocking

An algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or
suspension of another thread. This definition is from the excellent book Java concurrency in practice¹⁰.

18.24 obstruction-free

A non-blocking algorithm is obstruction-free if it the guarantee that a thread can proceed if all other
threads are suspended.

18.25 Parallelism

Parallelism means that several tasks are performed at the same time. Parallelism is a subset of
Concurrency.

⁸http://en.cppreference.com/w/cpp/utility/optional
⁹http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html
¹⁰http://jcip.net/

http://en.cppreference.com/w/cpp/utility/optional
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html
http://jcip.net/
http://en.cppreference.com/w/cpp/utility/optional
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html
http://jcip.net/
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18.26 Predicate

Predicates are callable units that return a boolean as a result. If a predicate has one argument, it’s
called a unary predicate. If a predicate has two arguments, it’s called a binary predicate.

18.27 Pattern

“Each pattern is a three-part rule, which expresses a relation between a certain context, a problem,
and a solution.” Christopher Alexander¹¹

18.28 RAII

Resource Acquisition Is Initialization, in short RAII, stands for a popular technique in C++, in which
the resource acquisition and release are bound to the lifetime of an object. This means for a lock that
the mutex will be locked in the constructor and unlocked in the destructor. This RAII implementation
is also known as scoped locking.

Typical use cases in C++ are locks that handle the lifetime of its underlying mutex, smart pointers
that handle the lifetime of its resource (memory), or containers of the standard template library¹² that
handle the lifetime of its elements.

18.29 Release Sequence

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A, and every
subsequent operation.

• is performed by the same thread that performed A, or

• is an atomic read-modify-write operation.

18.30 Sequential Consistency

Sequential consistency has two essential characteristics:

1. The instructions of a program are executed in source code order.

2. There is a global order of all operations on all threads.

¹¹https://en.wikipedia.org/wiki/Christopher_Alexander
¹²https://en.cppreference.com/w/cpp/container

https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.cppreference.com/w/cpp/container
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.cppreference.com/w/cpp/container


Glossary 696

18.31 Sequence Point

A sequence point defines any point in the execution of a program at which it is guaranteed that all
effects of previous evaluations have been performed, and no effects from subsequent evaluations have
yet been performed.

18.32 Spurious Wakeup

A spurious wake-up is an erroneous notification. It may happen that the waiting component of a
condition variable or an atomic flag gets a notification, although the notification component didn’t
send a signal.

18.33 Thread

In computer science, a thread of execution is the smallest sequence of programmed instructions
that a scheduler can manage independently, which is typically a part of the operating system. The
implementation of threads and processes differs between operating systems, but in most cases, a
thread is a process component. Multiple threads can exist within one process, executing concurrently
and sharing resources such as memory, while different processes do not share these resources. In
particular, the threads of a process share its executable code and the values of its variables at any
given time. For the details, read the Wikipedia article about threads¹³.

18.34 Total order

A total order is a binary relation (<=) on some set X which is antisymmetric, transitive, and total.

• Antisymmetric: if a <= b and b <= a then a == b

• Transitivity: if a <= b and b <= c then a <= c

• Totality: a <= b or b <= a

Applied to concurrency, the definition of total order becomes quite handy. Actions such as operation
on the same atomic variable or transaction build a total order. This mean, all threads see the effects
of these actions in the same order.

¹³https://en.wikipedia.org/wiki/Thread_(computing)

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
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18.35 TriviallyCopyable

TriviallyCopyable objects can be copied by copying their object representationsmanually (std::memmove).
All data types compatible with the C language (POD types) are trivially copyable.

Formally, TriviallyCopyable is a concept that has to fulfill the following requirements:

• Every copy constructor is trivial or deleted

• Every move constructor is trivial or deleted

• Every copy assignment operator is trivial or deleted

• Every move assignment operator is trivial or deleted

• at least one copy constructor, move constructor, copy assignment operator, or move assignment
operator is non-deleted

• Trivial non-deleted destructor

This implies that the class has no virtual functions or virtual base classes. Trivial, in essence, means
that none of the specified special member functions is user-defined. This includes also all base classes
and non-static class types.

18.36 Undefined Behavior

All bets are off. Your program can produce the correct result, the wrong result, can crash at run time,
or may not even compile. That behavior might change when porting to a new platform, upgrading to
a new compiler, or as a result of an unrelated code change.

18.37 volatile

volatile is typically used to denote objects which can change independently of the regular program
flow. For example, these are objects in embedded programming that represent an external device
(memory-mapped I/O). Because these objects can change independently of the regular program flow
and their value is directly be written into main memory, no optimized storing in caches takes place.

18.38 wait-free

A non-blocking algorithm is wait-free if there is guaranteed per-thread progress.

Each thread incrementing the counter in the following program makes progress.
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std::atomic<int> counter;

counter.fetch_add(1);

A wait-free algorithm is lock-free.
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atomic_llong Awaitables (coroutines)
atomic_long Awaitables and Awaiters (coroutines)
atomic_noexcept Awaiter (coroutines)
atomic_ptrdiff_t Awaiter
atomic_ref B
atomic_schar back (queue)
atomic_shared_ptr barrier
atomic_short basic_osyncstream
atomic_signal_fence basic_streambuf
atomic_signed_lock_free basic_syncbuf
atomic_size_t Basics of the Memory Model
atomic_test_and_set Becoming a Coroutine
atomic_test_and_set_explicit Best Practices
atomic_thread_fence binary_semaphore
atomic_uchar Blocking Issues
atomic_uint16_t Breaking of Program Invariants
atomic_uint32_t busy waiting
atomic_uint64_t C
atomic_uint8_t Calculating the Sum of a Vector
atomic_uint Calculations
atomic_uint_fast16_t call_once
atomic_uint_fast32_t callable (Glossary)
atomic_uint_fast64_t Callable Unit
atomic_uint_fast8_t caries-a-dependency
atomic_uint_least16_t CAS
atomic_uint_least32_t Case Studies
atomic_uint_least64_t catch fire semantic
atomic_uint_least8_t Challenges
atomic_uintmax_t clamp
atomic_uintptr_t clear (atomic_flag)
atomic_ullong clear
atomic_ulong Clocks
atomic_unsigned_lock_free co_await operator
atomic_ushort co_await
atomic_wchar_t co_awaitsssoperator
atomic_weak_ptr co_return
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co_yield CppMem: Atomics with Relaxed Semantic
commutative (Glossary) CppMem: Atomics with Sequential Consistency
compare_exchange_strong CppMem: Locks
compare_exchange_weak CppMem: Non-Atomic Variables
compatible CppMem
complexity (Glossary) CppMem
concat Creating new Futures
concepts (Glossary) Critical Section (Glossary)
Concurrency (Glossary) Cross the valid Time Range
Concurrent Architectur CRTP
Concurrent Calcuation Curiously Recurring Template Pattern
Concurrent Object current_exception
Concurrent Queue (Lock-Based Data Structures) D
Concurrent Queue (Lock-Free Data Structures) Data Races
Concurrent Stack (Lock-Based Data Structures) Data Structures
Concurrent Stack (Lock-Based Data Structures) Data-Parallel Vector Library
Concurrent Stack (Lock-Free Data Structures) Data-Parallel Vectors
Condition Variables Deadlock (Glossary)
condition_variable Deadlocks
condition_variable_any Deal with Sharing
condition_variable_any Dealing with Mutation
consistency defer_lock
const_where_expression deferred (future_status)
Constant Expressions define_task_block
Contention (Lock-Based Data Structures) define_task_block_restore_thread
ContinuableFuture dependency-order-before
Continuation with then Design Goals (coroutines)
Conventions detach
Cooperative Details (coroutines)
Copied Value (Pattern) Different Synchronization and Ordering Constraints
coroutine factory dispatcher notifier
Coroutine Frame (coroutines) Double-Checked Locking Pattern
Coroutine Handle (coroutines) durability
coroutine handle E
coroutine object Eager evaluation (Glossary)
coroutine state Edsger W. Dijkstra
coroutine_traits element_aligned
Coroutines element_aligned_tag
count_down emit
counting semaphores epoch (time_point)
CppMem: Atomics with Acquire-Release Semantic Epoch
CppMem: Atomics with Non-atomics epoll
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Exceptions (Lock-Based Data Structures) Fire and Forget
Exceptions fixed_size
exchange (atomic) foldl1
exchange (atomic_ref) foldl
exclusive_scan for_each
execution agent for_each_n
execution context Fork and Join
execution function Free Atomic Function
Execution Policies From Time Point to Calendar Time
execution resource front (queue)
execution::require full fence
execution:par Function Objects (Glossary)
execution:par_unseq Fundamental Atomic Interface
execution:parallel_policy Further Information
execution:parallel_unsequenced_policy Future (Pattern)
execution:seq future
execution:sequenced_policy future_errc::broken_promise
execution:unseq future_error
execution:unsequenced_policy future_status
Executor (Glossary) FutureContinuation
executor propagation G
Executors General (Best Practices)
Extended Futures General Considerations (Lock-Based Data Structures)
F General Considerations (Lock-Free Data Structures)
False Sharing get
Fast Synchronization of Threads get_future (parameter_pack)
Fences get_future (promise)
fetch_add (atomic) get_id
fetch_add (atomic_ref) get_return_object
fetch_and (atomic) get_stop_source
fetch_and (atomic_ref) get_stop_token
fetch_or (atomic) get_token (stop_source)
fetch_or (atomic_ref) get_wrapped
fetch_sub (atomic) Glossary
fetch_sub (atomic_ref) gmtime
fetch_xor (atomic) Granulariy of the Interace (Lock-Based Data Structures)
fetch_xor (atomic_ref) Guard Suspension (Pattern)
FIFO guard
final_suspend(coroutines) H
final_suspend h (time literal)
find_first_set Half-Sync/Half-Async
find_last_set hardware_constructive_interference_size
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hardware_destructive_interference_size latch
Hazard Pointers Latches and Barriers
hazard pointers Lazy evaluation (Glossary)
High-Performance ParallelX Lifetime Issues of Variables
high_resulution_clock LIFO
History (Pattern) LIFO
hmax load (atomic)
hmin load (atomic_ref)
hours LoadLoad
HPX LoadStore
I lock (unique_lock)
inclusive_scan lock-based (Glossary)
initial_suspend(coroutines) Lock-Based Data Structures
initial_suspend lock-free (Glossary)
inline static data members Lock-Free Data Structures
Invaluable Value (Pattern) lock
Invariants (Lock-Based Data Structures) lock_guard
is_abi_tag Locking Strategy (Lock-Based Data Structures)
is_abi_tag_v Locks
is_always_lock_free (atomic) longjmp
is_always_lock_free Lost Wakeup (Glossary)
is_execution_policy Lost Wakeup
is_lock_free (atomic) M
is_lock_free (atomic_ref)is_always_lock_free
(atomic_ref)

make_exception_ptr

is_simd make_exceptional_future
is_simd_flag_type make_ready_future
is_simd_flag_type_v make_ready_future_at_thread_exit
is_simd_mask map
is_simd_mask_v Math Laws (Glossary)
is_simd_v max (barrier)
isolation max (counting_semaphore)
Issues of Mutexes max (latch)
J max (simd)
join and detach max (time_point)
join max_fixed_size
joinable Memory Barriers
jthread Memory Location (Glossary)
K Memory Model (Best Practices)
Kind of Atomic Operations Memory Model (Glossary)
kqueueWaitForMultipleObjects Memory Model
L memory_alignment
Lambda Functions (Glossary) memory_alignment_v
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memory_order_acq_rel notify_one (atomic_flag)
memory_order_acquire notify_one (atomic_flag)
memory_order_consume notify_one (atomic_ref)
memory_order_relaxed notify_one (condition_variable)
memory_order_release now (time_point)
memory_order_seq_cst ns (time literal)
Meyers Singleton Null object
microseconds O
milliseconds obstruction-free (Glossary)
min (simd) once_flag
min (time literal) Ongoing Optimization
min (time_point) Operations
minmax operator T (atomic)
minutes operator T (atomic_ref)
Modication and Generalization of a Generator osyncstream
Modification Order (Glossary) overaligned
modification order consistency overaligned_tag
Monad (Glossary) owns_lock
Monitor Object P
Moving Threads packaged_task
ms (time literal) Parallel Algorithms of the STL
Multithreaded Summation with a Shared Variable Parallelism (Glossary)
Multithreading (Best Practices) partial_sum
Multithreading Pattern (Glossary)
mutex Pattern versus Best Practices (Pattern)
Mutexes Patterns and Best Practices
My Performance Measurement Patterns
N Performance Numbers of the various Thread-Safe

Singleton Implementations
nanoseconds Performance of Parallel STL
native poll
native_handle (condition_variable) pop (queue)
native_handle pop (Simple Queue)
Non-blocking (Glossary) pop (stack)
none_of pop (stack)
nostopstate_t popcount
Notifications Predicate (Glossary)
notify_all (atomic) Proactor
notify_all (atomic_flag) promise and future
notify_all (atomic_flag) promise object (coroutine)
notify_all (atomic_ref) Promise Object (coroutines)
notify_all (condition_variable) promise
notify_one (atomic) Proxy
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push (queue) Semaphores
push (Simple Queue) Semaphores
push (stack) SemiFuture
push (stack) Sequence Point (Glossary)
Q Sequential Consistency (Glossary)
Queue (Lock-Based Data Structures) Sequential Consistency
R set_exception
Race Condition set_exception_at_thread_exit
RAII (Glossary) set_value (parameter_pack)
ratio set_value (promise)
RCU set_value_at_thread_exit
Reactor share
ready (future_status) Shared Data
recursive_mutex shared_future
recursive_timed_mutex shared_lock
reduce (simd) shared_mutex
reduce shared_ptr
Reference PCs shared_timed_mutex
relaxed block SharedFuture
Relaxed Semantic signal
release (counting_semaphore) SIGTERM
release (unique_lock) simd
release fence simd_cast
Release Sequence (Glossary) simd_mask
request_stop (stop_source) simd_size
request_stop simd_size_v
reset Single Threaded Addition of a Vector
Restrictions (coroutines) singleton
resumable function Sleep and Wait
resumable object some_of
return_value Specilisations of std::atomic_ref
return_void Spinlock versus Mutex
S spinlock
s (time literal) split
Scalability (Lock-Based Data Structures) Spurious wakeup (Glossary)
scalar Spurious Wakeup
scanl1 Stack (Lock-Based Data Structures)
scanl Static Variables
Scoped Locking (Pattern) static_simd_cast
scoped_lock std::call_once with std::once_flag
scoped_thread steady_clock
seconds stop_callback
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stop_possible (stop_source) The functional Heritage
stop_possible (stop_token) The Future: C++23
stop_requested (stop_source) The Interface of Data-Parallel Vectors
stop_requested (stop_token) The Interface
stop_source The Interplay of Time Point, Time Durcation, and

Clock
stop_token The New Algorithms
store (atomic) The Promise Workflow
store (atomic_ref) The Scheduler
StoreLoad The Six Variants
StoreStore The Start Policy
Strategized Locking (Pattern) The Synchronization and Ordering Constraints
Strong Memory Model The Test Run
Strong versus Weak Memory Model The three Fences
Summation of a Vector: The Conclusion The Typical Minunderstanding
suspend_always The Wait Workflow
suspend_never The Workflow
Synchronization Patterns this_thread::get_id
Synchronization with Atomic Variables or Fences this_thread::sleep_for
Synchronized and Atomic Blocks this_thread::sleep_until
synchronized block this_thread::yield
Synchronized Outputstreams Thread (Glossary)
Synchronized Outputstreams Thread Arguments
Synchronous Event Demultiplexerselect Thread Creation
system_clock Thread Lifetime
T Thread Safe Initialization
tagged state reference Thread-Local Data
Task Blocks Thread-Local Summation
task_cancelled_exception Thread-Safe Initialization of a Singelton
Tasks Thread-Safe Interface (Pattern)
TBB Thread-Safe Meyers Singleton
TCP Thread-Safe Passive Object
test (atomic_flag) Thread-Specific Storage (Pattern)
test_and_set (atomic_flag) thread::hardware_concurrency
test_and_set thread
The Atomic Flag Threading Building Blocks
The Awaiter Workflow Threads versus Tasks
The Challenges Time Duration
The Contract Time Library
The Details Time Point
The Dining Philiosopher Problem time_since_epoch
The Foundation time_t
The Framework (coroutines) timed_mutex
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timeout (future_status) Variations of
to_compatible Various Job Workflows
to_fixed_size Various waiting strategies
to_native vector_aligned
to_time_t vector_aligned_tag
top (stack) volatile (Glossary)
top (stack) W
total order (Glossary) wait (atomic)
transaction-unsafe wait (atomic_flag)
transaction_safe versus transaction_unsafe Code wait (atomic_flag)
transaction_safe wait (atomic_ref)
transaction_unsafe wait (barrier)
Transactional Memory wait (condition_variable)
transform_exclusive_scan wait (condition_variable_any)
transform_inclusive_scan wait (future)
transform_reduce wait (latch)
Transitivity wait-free (Glossary)
Transmission Control Protocol wait_for (condition_variable)
TriviallyCopyable (Glossary) wait_for (condition_variable_any)
try_acquire wait_for (future)
try_acquire_for wait_until (condition_variable)
try_acquire_until wait_until (condition_variable_any)
try_lock wait_until (future)
try_lock_for Weak Memory Model
try_lock_until when_all
try_wait when_any
Typical Usage Pattern (Lock-Based Data Structures) where
Typical Use-Cases (coroutines) where_expression
U wosyncstream
UDP Y
Undefined Behavior Unit (Glossary) yield_value
Underlying Concepts (coroutines)
unhandled_exception
Unified Futures
unique_lock
unlock
us (time literal)
User Datagram Protocol
V
valid (future)
valid (parameter_pack)
value object
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