
C++17 Standard
Library Quick
Reference

A Pocket Guide to Data Structures,
Algorithms, and Functions
—
Second Edition
—
Peter Van Weert
Marc Gregoire

C++17 Standard
Library Quick

Reference
A Pocket Guide to Data Structures,

Algorithms, and Functions

Second Edition

Peter Van Weert
Marc Gregoire

C++17 Standard Library Quick Reference: A Pocket Guide to Data
Structures, Algorithms, and Functions

Peter Van Weert 				 Marc Gregoire
Kessel-Lo, Belgium				 Meldert, Belgium

ISBN-13 (pbk): 978-1-4842-4922-2		 ISBN-13 (electronic): 978-1-4842-4923-9
https://doi.org/10.1007/978-1-4842-4923-9

Copyright © 2019 by Peter Van Weert and Marc Gregoire

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibil-
ity for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook ver-
sions and licenses are also available for most titles. For more information, reference our Print and
eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484249222.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4923-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484249222
http://www.apress.com/source-code

Dedicated to my parents and my brother,
who are always there for me.

Their support and patience helped me
in finishing this book.

—Marc Gregoire

In loving memory of Jeroen.
Your enthusiasm and courage will forever remain

an inspiration to us all.

—Peter Van Weert

v

About the Authors��� xv

About the Technical Reviewer�� xvii

Introduction��� xix

Contents

■ ■ Chapter 1: Numerics and Math��� 1

Common Mathematical Functions�� <cmath> 1

Basic Functions��� 1

Exponential and Logarithmic Functions�� 2

Power Functions�� 2

Trigonometric and Hyperbolic Functions��� 3

Integral Rounding of Floating-Point Numbers��� 3

Floating-Point Manipulation Functions�� 3

Classification and Comparison Functions�� 4

gcd/lcm C++17 �� <numeric> 4

Error Handling�� 5

Special Mathematical Functions C++17 ������������������������������������� <cmath> 5

Bessel Functions��� 6

Polynomials��� 7

Elliptic Integrals��� 7

Exponential Integrals��� 8

Error Functions�� 8

Gamma Functions�� 8

■ Contents

vi

Beta Functions��� 9

Zeta Functions��� 9

Minimum, Maximum, and Clamping������������������������������������ <algorithm> 9

Fixed-Width Integer Types���<cstdint> 10

Arithmetic Type Properties�� <limits> 11

Complex Numbers���<complex> 13

Compile-Time Rational Numbers�� <ratio> 14

Random Numbers��� <random> 15

Random Number Generators��� 15

Random Number Distributions�� 18

Numeric Arrays��<valarray> 23

std::slice�� 24

std::gslice�� 25

std::mask_array��� 26

std::indirect_array��� 27

■ ■ Chapter 2: General Utilities��� 29

Moving, Forwarding, Swapping��<utility> 29

Moving��� 29

Forwarding�� 31

Swapping and Exchanging�� 32

Pairs and Tuples��� 33

Pairs�� <utility> 33

Tuples�� <tuple> 34

std::byte C++17 ��<cstddef> 35

Relational Operators��<utility> 36

Smart Pointers�� <memory> 36

Exclusive Ownership Pointers��� 36

Shared Ownership Pointers��� 39

■ Contents

vii

Function Objects�� <functional> 42

Reference Wrappers�� 43

Predefined Functors�� 43

Binding Function Arguments��� 44

Negating a Callable C++17 �� 45

Generic Function Wrappers��� 45

Functors for Class Members�� 46

Initializer Lists��<initializer_list> 47

Vocabulary Types C++17 �� 48

std::optional��� <optional> 48

std::variant��� <variant> 50

std::any���<any> 55

Date and Time Utilities�� <chrono> 56

Durations��� 57

Time Points�� 58

Clocks�� 59

C-Style Date and Time Utilities�� <ctime> 60

Type Utilities�� 62

Runtime Type Identification�������������������������������������� <typeinfo>, <typeindex> 62

Type Traits��<type_traits> 63

Type Operations��� <utility> 70

Generic Utilities�� 71

std::invoke C++17 ��<functional> 71

std::addressof�� <memory> 72

■ Contents

viii

■ ■ Chapter 3: Containers��� 73

Iterators���<iterator> 73

Iterator Tags��� 74

Non-member Functions to Get Iterators�� 75

Non-member Operations on Iterators�� 76

Sequential Containers�� 76

std::vector�� <vector> 76

std::deque�� <deque> 83

std::array��� <array> 84

std::list and std::forward_list���������������������������������������<list>, <forward_list> 84

Sequential Containers Reference�� 86

std::bitset�� <bitset> 89

Complexity��� 90

Reference�� 90

Container Adaptors�� 91

std::queue�� <queue> 91

std::priority_queue�� <queue> 91

std::stack��� <stack> 92

Example��� 92

Reference�� 93

Ordered Associative Containers��� 93

std::map��<map> 94

Inserting in a Map�� 95

std::multimap���<map> 98

std::set and std::multiset��<set> 98

Order of Elements�� 98

Searching�� 99

Moving Nodes Between Containers C++17 ��� 100

Merging Containers C++17 �� 100

■ Contents

ix

Complexity��� 101

Reference�� 101

Unordered Associative Containers...
..<unordered_map>, <unordered_set> 103

Hash Map��� 104

Template Type Parameters�� 104

Hash Functions�� 104

Complexity��� 106

Reference�� 106

Allocators�� <memory> 108

Polymorphic Allocators C++17 ���<memory_resource> 108

Allocators for Multilevel Containers���������������������������������<scoped_allocator> 111

■ ■ Chapter 4: Algorithms��� 113

Input and Output Iterators�� 113

General Guidelines��� 114

Algorithm Arguments��� 114

Terminology��� 115

Algorithms��� <algorithm> 115

Applying a Function to a Range��� 115

Checking for the Presence of Elements��� 117

Finding Elements��� 117

Finding Min/Max Elements�� 118

Binary Search�� 119

Subsequence Search��� 120

Sequence Comparison��� 121

Generating Sequences��� 122

Copy, Move, Swap�� 123

Removing and Replacing��� 124

Reversing and Rotating��� 125

■ Contents

x

Partitioning�� 126

Sorting��� 127

Sampling and Shuffling��� 128

Operations on Sorted Ranges�� 129

Permutation��� 130

Heaps��� 131

Numeric Algorithms���<numeric> 132

Reductions��� 132

Inner Products��� 133

Prefix Sums��� 134

Element Differences�� 135

Algorithms for Uninitialized Memory������������������������������������ <memory> 135

Parallel Algorithms C++17 ��� <execution> 136

Parallel Execution�� 137

Parallel Unsequenced Execution��� 138

Iterator Adaptors��<iterator> 138

■ ■ Chapter 5: Input/Output�� 141

Input/Output with Streams�� 141

Helper Types���<ios> 142

Formatting Methods (std::ios_base)���<ios> 143

I/O Manipulators��<ios>, <iomanip> 145

Example��� 146

std::ios��<ios> 147

std::ostream�� <ostream> 149

std::istream��� <istream> 151

std::iostream�� <istream> 153

■ Contents

xi

String Streams���<sstream> 153

Example��� 154

File Streams���<fstream> 155

Example��� 156

Streaming Custom Types��� 156

Custom << and >> Operators��� 156

Custom I/O Manipulators��<ios> 157

Stream Iterators���<iterator> 160

std::ostream_iterator��� 160

std::istream_iterator�� 160

Stream Buffers��� <streambuf> 161

File Systems�� <filesystem> 162

Files, Paths, and Pathnames�� 162

Error Reporting�� 163

The path Class��� 164

File Links��� 168

Path Normalization�� 169

The Current Working Directory�� 170

Absolute and Relative Paths�� 170

Comparing Paths��� 172

File Status�� 172

Creating, Copying, Deleting, and Renaming��� 176

File Sizes and Free Space��� 177

Directory Listing�� 178

C-Style File Utilities�� <cstdio> 180

C-Style Output and Input�� <cstdio> 181

std::printf() Family��� 181

std::scanf() Family��� 185

■ Contents

xii

■ ■ Chapter 6: Characters and Strings�� 189

Strings�� <string> 189

Searching in Strings�� 190

Modifying Strings�� 191

Constructing Strings�� 192

String Length��� 192

Copying (Sub)Strings��� 193

Comparing Strings��� 193

String Views C++17 ��<string_view> 194

Character Classification���������������������������������������<cctype>, <cwctype> 195

Character-Encoding Conversion��������������������������<locale>, <codecvt> 197

Localization��� <locale> 200

Locale Names�� 200

The Global Locale�� 201

Basic std::locale Members�� 202

Locale Facets��� 202

Combining and Customizing Locales��� 210

C Locales��� <clocale> 213

Regular Expressions��� <regex> 214

The ECMAScript Regular Expression Grammar��� 214

Regular Expression Objects��� 216

Matching and Searching Patterns��� 218

Match Iterators�� 221

Replacing Patterns�� 223

Numeric Conversions��� 226

Convenient Conversion Functions��� <string> 227

High-Performance Conversion Functions C++17 ����������������������������� <charconv> 229

■ Contents

xiii

■ ■ Chapter 7: Concurrency�� 231

Threads��� <thread> 231

Launching a New Thread��� 231

A Thread’s Lifetime�� 232

Thread Identifiers�� 232

Utility Functions��� 233

Exceptions��� 233

Futures�� <future> 234

Return Objects��� 234

Providers��� 235

Exceptions��� 237

Mutual Exclusion�� <mutex> 238

Mutexes and Locks�� 238

Mutex Types��� 239

Lock Types��� 241

Locking Multiple Mutexes�� 244

Exceptions��� 244

Calling a Function Once�� <mutex> 245

Condition Variables���<condition_variable> 246

Waiting for a Condition�� 246

Notification�� 247

Exceptions��� 248

L1 Data Cache Line Size C++17 ��<new> 248

Synchronization��� 249

Atomic Operations�� <atomic> 250

Atomic Variables�� 250

Atomic Flags�� 255

Non-member Functions and Macros��� 255

Fences��� 255

■ Contents

xiv

■ ■ Chapter 8: Diagnostics�� 257

Assertions��<cassert> 257

Exceptions�� <exception>, <stdexcept> 258

Exception Pointers��� <exception> 259

Nested Exceptions��� <exception> 260

System Errors���<system_error> 262

std::error_category�� 263

std::error_code�� 263

std::error_condition��� 264

C Error Numbers��<cerrno> 264

Failure Handling��� <exception> 265

std::uncaught_exceptions() C++17 �� 265

std::terminate()�� 266

■ ■Appendix: Standard Library Headers�� 271
Numerics and Math (Chapter 1)��� 271

General Utilities (Chapter 2)��� 272

Containers (Chapter 3)��� 273

Algorithms (Chapter 4)��� 274

Input/Output (Chapter 5)�� 274

Characters and Strings (Chapter 6)��� 275

Concurrency (Chapter 7)�� 276

Diagnostics (Chapter 8)��� 277

The C Standard Library�� 277

Index��� 279

xv

About the Authors

Peter Van Weert is a Belgian software engineer and
C++ expert, mainly experienced in large-scale desktop
application development. He is passionate about
coding, algorithms, and data structures.

Peter received his master of science in computer
science summa cum laude with congratulations of the
Board of Examiners from the University of Leuven. In
2010, he completed his PhD thesis in Leuven at the
research group for declarative languages and artificial
intelligence. During his doctoral studies, he was a
teaching assistant for courses on software analysis
and design, object-oriented programming (Java), and
declarative programming (Prolog and Haskell).

After graduating, Peter joined Nikon Metrology to work on industrial metrology
software for high-precision 3D laser scanning and point cloud–based inspection. At
Nikon, he learned to handle large C++ code bases and gained further proficiency in all
aspects of the software development process—skills that serve him well today at Medicim,
the software R&D center for dental companies Nobel Biocare, Ormco, and KaVo Kerr.
At Medicim, Peter contributes to their next-generation digital platform for dentists,
orthodontists, and oral surgeons that offers patient data acquisition from a wide range of
hardware, diagnostic functionality, implant planning, and prosthetic design.

In his spare time, Peter writes books on C++ and is a regular speaker at and board
member of the Belgian C++ Users Group.

Marc Gregoire is a software architect from Belgium.
He graduated from the University of Leuven, Belgium,
with a degree in “Burgerlijk ingenieur in de computer
wetenschappen” (equivalent to a master of science in
engineering in computer science). The year after, he
received an advanced master’s degree in artificial
intelligence, cum laude, at the same university. After
his studies, Marc started working for a software
consultancy company called Ordina Belgium. As a
consultant, he worked for Siemens and Nokia Siemens
Networks on critical 2G and 3G software running on
Solaris for telecom operators. This required working in
international teams stretching from South America and
the United States to Europe, the Middle East, Africa,
and Asia. Now, Marc is a software architect at Nikon

xvi

■ ABOUT THE AUTHORS

Metrology (www.nikonmetrology.com), a division of Nikon and a leading provider of
precision optical instruments and metrology solutions for 3D geometric inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework.
He has experience in developing C++ programs running 24/7 on Windows and Linux
platforms, for example, KNX/EIB home automation software. In addition to C/C++, Marc
also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable
Professional) award for his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (www.becpp.org), author of
Professional C++ (Wiley), technical editor for numerous books for several publishers, and
a member on the CodeGuru forum (as Marc G). He maintains a blog at www.nuonsoft.
com/blog/.

http://www.nikonmetrology.com/
http://www.becpp.org/
http://www.nuonsoft.com/blog/
http://www.nuonsoft.com/blog/

xvii

About the Technical
Reviewer

Christophe Pichaud is a French C/C++
developer based in Paris. Over the course of his
career, he has developed large scale server
implementations in the banking industry, where
he helped build the first French online bank
account service (for Banque-Populaire), as well as
Retail Services (Société Générale). He’s also
performed C++ migrations and developed hybrid
applications with the .NET stack. Among his past
clients are Accenture, Avanade, Sogeti, CapGemini,
Palais de Elysée (French Presidency), SNCF, Total,
Danone, CACIB, and BNP Paribas. He earned his
MCSD.NET certification and currently works for
a Microsoft Gold Partner called Devoteam
Modern Applications in Paris, a division of
Devoteam (www.devoteam.com).

Additionally, he participates in Microsoft Events as speaker for TechDays, and as
an MVP at Ask the Expert sessions. He’s regularly written C++ technical articles for the
French magazine Programmez since 2011. He is also the community manager of the
“.NET Azure Rangers,” which includes 26 members and 9 MVPs and whose activities
include speaking, writing and community-building around Microsoft technologies.

When he is not developing software or reading books, Christophe spends his spare
time and holidays with his three daughters, Edith, Lisa, and Audrey along with his father
Jean-Marc and mother Mireille in the Burgundy region of France.

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.devoteam.com&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=TfkHoH0iDrzPfA5a-J5sXdFlbl12_mBKfxwy5GKlXV8&s=6FkQr7c0CjywwQTEwZJj3zoriuOp-3LX9olIYg_N5DQ&e=

xix

Introduction

The C++ Standard Library
The C++ Standard Library is a collection of essential classes and functions used by
millions of C++ programmers on a daily basis. Being part of the ISO Standard of the
C++ Programming Language, an implementation is distributed with virtually every
C++ compiler. Code written with the C++ Standard Library is therefore portable across
compilers and target platforms.

The Library is more than 25 years old. Its initial versions were heavily inspired by
a (then proprietary) C++ library called the Standard Template Library (STL), so much
so that many still incorrectly refer to the Standard Library as “the STL.” The STL library
pioneered generic programming with templated data structures called containers and
algorithms, glued together with the concept of iterators. Most of this work was adapted by
the C++ standardization committee, but nevertheless neither library is a true superset of
the other.

Today the C++ Standard Library is much more than the containers and algorithms of
the STL, though. For decades, it has featured STL-like string classes, extensive localization
facilities, and a stream-based I/O library, as well as the entire C Standard Library.
Earlier this decade, the C++11 and C++14 editions of the ISO standard have added,
among other things, hash map containers, generic smart pointers, a versatile random
number generation framework, a powerful regular expression library, more expressive
utilities for function-style programming, type traits for template metaprogramming,
and a portable concurrency library featuring threads, mutexes, condition variables, and
atomic variables. Most recently, C++17 has introduced, among many smaller additions,
parallelized algorithms, a file system library, and several key types for day-to-day use
(such as optional<>, variant<>, any, and string_view). Many of the C++11, C++14, and
C++17 additions are based on Boost, a collection of open source C++ libraries.

And this is just the beginning: the C++ community has rarely been as active and
alive as in the past decade. The next version of the Standard, tentatively called C++20, is
expected to add even more essential classes and functions.

Why This Book?
Needless to say, it is hard to know and remember all the possibilities, details, and
intricacies of the vast and growing C++ Standard Library. This handy reference guide
offers a condensed, well-structured summary of all essential aspects of the C++ Standard
Library and is therefore indispensable to any C++ programmer.

■ Introduction

xx

You could consult the Standard itself, but it is written in a very detailed, technical
style and is primarily targeted at Library implementors. Moreover, it is very long: the
C++ Standard Library chapters alone are nearly 1,000 pages in length, and those on the
C Standard Library easily encompass another 200 pages. Other reference guides exist
but are often outdated, limited (most cover little more than the STL containers and
algorithms), or not much shorter than the Standard itself.

This book covers all important aspects of the C++17 and C18 Standard Libraries,
some in more detail than others, and is always driven by their practical usefulness. You
will not find page-long, repetitive examples; obscure, rarely used features; or bloated,
lengthy explanations that could be summarized in just a few bullets. Instead, this book
strives to be exactly that: a summary. Everything you need to know and watch out for in
practice is outlined in a compact, to-the-point style, interspersed with practical tips and
short, well-chosen, clarifying examples.

Who Should Read This Book?
The book is targeted at all C++ programmers, regardless of their proficiency with the
language or the Standard Library. If you are new to C++, its tutorial aspects will quickly
bring you up to speed with the C++ Standard Library. Even the most experienced C++
programmer, however, will learn a thing or two from the book and find it an indispensable
reference and memory aid. The book does not explain the C++ language or syntax itself,
but is accessible to anyone with basic C++ knowledge or programming experience.

What You Will Learn
•• How to use the powerful random number generation facilities

•• How to work with dates and times

•• What smart pointers are and how to use them to prevent memory
leaks

•• How to use containers to efficiently store and retrieve your data

•• How to use algorithms to inspect and manipulate your data

•• How lambda expressions allow for elegant use of algorithms

•• What functionality the library provides for stream-based I/O

•• How to inspect and manipulate files and directories on your file
system

•• How to work with characters and strings in C++

•• How to write localized applications

■ Introduction

xxi

•• How to write safe and efficient multithreaded code using the C++11
concurrency library

•• How to correctly handle error conditions and exceptions

•• And more!

General Remarks
•• All types, classes, functions, and constants of the C++ Standard Library

are defined in the std namespace (short for standard).

•• All C++ Standard Library headers must be included using
#include  <header> (note: no .h suffix!).

•• All headers of the C Standard Library are available to C++
programmers in a slightly modified form by including <cheader>
(note the c prefix).1 The most notable difference between the C++
headers and their original C counterparts is that all functionality
is defined in the std namespace. Whether it is also provided in the
global namespace is up to the implementation: portable code should
therefore use the std namespace at all times.

•• This book generally only covers headers of the C Standard Library
if the C++ Standard Library does not offer more modern alternatives.

•• More advanced, rarely used topics such as custom memory allocators
are not covered.

Code Examples
To compile and execute the code examples given throughout the book, all you need is
a sufficiently recent C++ compiler. We leave the choice of compiler entirely up to you,
and we further assume you can compile and execute basic C++ programs. All examples
contain standard, portable C++ code only and should compile with any C++ compiler
that is compliant with the C++17 version of the Standard. We occasionally indicate known
limitations of major compilers, but this is not a real goal of this book. In case of problems,
please consult your implementation’s documentation.

Nearly all code examples can be copied as is and put inside the main() function
of a basic command-line application. Generally, only two headers have to be included
to make a code snippet compile: the one being discussed in the context where the

1The original C headers may still be included with <header.h>, but their use is deprecated.

■ Introduction

xxii

example is given and <iostream> for the command-line output statements (explained
shortly). If any other header is required, we try to indicate so in the text. Should
we forget, the Appendix provides a brief overview of all headers of the Standard
Library and their contents. Additionally, you can download compilable source code
files for all code snippets from this book from the Apress web site (www.apress.
com/9781484218754).

Following is the obligatory first example (for once, we show the full program):

#include <iostream>

int main() {
 std::cout << "Hello world!" << std::endl;
}

Many code samples, including those in earlier chapters, write to the standard
output console using std::cout and the << stream insertion operator, even though these
facilities of the C++ I/O library are only discussed in detail in Chapter 5. The stream
insertion operator can be used to output virtually all fundamental C++ types, and
multiple values can be written on a single line. The so-called I/O manipulator std::endl
outputs the newline character (\n) and flushes the output for std::cout to the standard
console. Straightforward usage of the std::string class defined in <string> may occur
in earlier examples as well. For instance:

More details regarding streams and strings are found in Chapters 5 and 6,
respectively, but this should suffice to get you through the examples in earlier chapters.

std::string piString = "PI";
double piValue = 3.14159;
std::cout << piString << " = " << piValue << std::endl; // PI = 3.14159

http://www.apress.com/9781484218754
http://www.apress.com/9781484218754

■ Introduction

xxiii

#include <string>
#include <ostream>

class Person {
public:

Person() = default;
explicit Person(std::string first, std::string last = "",

bool isVIP = false)
: m_first(move(first)), m_last(move(last)), m_isVIP(isVIP) {}

const std::string& GetFirstName() const { return m_first; }
void SetFirstName(std::string first) { m_first = move(first); }

const std::string& GetLastName() const { return m_last; }
void SetLastName(std::string last) { m_last = move(last); }

bool IsVIP() const { return m_isVIP; }

private:
std::string m_first, m_last;
bool m_isVIP = false;

};

// Comparison operator
bool operator<(const Person& lhs, const Person& rhs) {

if (lhs.IsVIP() != rhs.IsVIP()) return rhs.IsVIP();
if (lhs.GetLastName() != rhs.GetLastName())

return lhs.GetLastName() < rhs.GetLastName();
return lhs.GetFirstName() < rhs.GetFirstName();

}

// Equality operator
bool operator==(const Person& lhs, const Person& rhs) {

return lhs.IsVIP() == rhs.IsVIP()
&& lhs.GetFirstName() == rhs.GetFirstName()
&& lhs.GetLastName() == rhs.GetLastName();

}

// Stream insertion operator for output to C++ streams.
// Details of this operator can be found in Chapter 5.
std::ostream& operator<<(std::ostream& os, const Person& person) {

return os << person.GetFirstName() << ' ' << person.GetLastName();
}

Common Class
The following Person class is used in code examples throughout the book to illustrate the
use of user-defined classes together with the Standard Library:

1
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_1

CHAPTER 1

Numerics and Math

�Common Mathematical Functions� <cmath>

The <cmath> header defines an extensive collection of common math functions in the
std namespace. Unless otherwise specified, all functions are overloaded to accept all
standard numerical types, with the following rules for determining the return type:

•	 If all arguments are float, the return type is float as well.
Analogous for double and long  double inputs.

•	 If mixed types or integers are passed, these numbers are
converted to double, and a double is returned as well. If one of the
inputs is a long  double, long  double is used instead.

�Basic Functions

Function Description

abs(x)
fabs(x)
fabsf(x)
fabsl(x)

Returns the absolute value of x. abs() and fabs() accept all numeric
types; fabsf() and fabsl() only float and long  double. Starting with
C++17, abs() no longer converts integers into doubles (as is
conventional for <cmath>: see earlier). Instead, it behaves as abs() in
<cstdlib> for integral x’s (explained next). C++17

abs(x)
labs(x)
llabs(x)

Defined by <cstdlib>. Returns absolute value for an integral x. abs()
accepts int, long, or long  long (smaller integral types are promoted
to int); labs() and llabs() only long and long  long. The result has
the same (possibly promoted) type as the input.

fmod(x,  y)
remainder(x,  y)

Returns the remainder of x y . For fmod(), the result always has the

same sign as x; for remainder() that is not necessarily true. For example:
mod(1,4)  =  rem(1,4)  =  1, but mod(3,4)  =  3 and rem(3,4)  =  -1.

remquo(x,  y,  *q) Returns the same value as remainder(). q is a pointer to an int and

receives a value with the sign of x y and at least the last three bits of

the integral quotient itself (rounded to nearest).

(continued)

Chapter 1 ■ Numerics and Math

2

Function Description

div(x,  y)
ldiv(x,  y)
lldiv(x,  y)

Defined by <cstdlib>. Returns a struct with two members, quot
and rem, containing respectively x  /  y and x  %  y (though often
computed with one instruction). div() accepts a pair of ints, longs,
or long  longs; ldiv() two longs, and lldiv() two long  longs. The
results have the same (possibly promoted) type as the inputs.

fma(x,  y,  z) Computes (x * y) + z in an accurate (better precision and rounding
properties than a naïve implementation) and efficient (uses a single
hardware instruction if possible) manner.

fmin(x,  y)
fmax(x,  y)

Returns the minimum or maximum of x and y. std::min() and
max() defined in <algorithm> are often more convenient, as they
do not convert integers into double. These are explained later in this
chapter.

fdim(x,  y) Returns the positive difference, i.e.,
x y if x y

if x y

- >
+ £

ì
í
î 0

nan(string)
nanf(string)
nanl(string)

Returns a quiet (nonsignaling) NaN (Not-a-Number) of type double,
float, long  double, respectively, if available (0 otherwise). The
string parameter is an implementation-dependent tag that can
be used to differentiate between different NaN values. Both "" and
nullptr are valid and result in a generic quiet NaN.

�Exponential and Logarithmic Functions

Function Formula Function Formula Function Formula

exp(x) ex exp2(x) 2x expm1(x) ex − 1

log(x) lnx = log
e
x log10(x) log

10
x log2(x) log

2
x

log1p(x) ln(1 + x)

�Power Functions

Function Formula Function Formula

pow(x,  y) xy sqrt(x)
x

hypot(x,  y) x y2 2+ cbrt(x) x3

hypot(x,  y,  z) x y z2 2 2+ + C++17

Chapter 1 ■ Numerics and Math

3

�Trigonometric and Hyperbolic Functions
<cmath> provides all basic trigonometric (sin(), cos(), tan(), asin(), acos(), atan())
and hyperbolic functions (sinh(), cosh(), tanh(), asinh(), acosh(), atanh()). All angles
are expressed in radians.

The lesser-known trigonometric function atan2() is available as well. You use it to
compute the angle between a vector (x, y) and the positive X axis. atan2(y,  x) is similar
to atan(y  /  x) except that its result correctly reflects the quadrant the vector is in (and
that it also works if x is zero). Essentially, by dividing y by x in atan(y  /  x), one loses
information regarding the sign of x and y.

�Integral Rounding of Floating-Point Numbers

Function Description

ceil(x)
floor(x)

Rounds up/down to an integer. That is, returns the nearest integer that
is not less/not greater than x.

trunc(x) Returns the nearest integer not greater in absolute value than x.

round(x)
lround(x)
llround(x)

Returns the integral value nearest to x, rounding halfway cases away
from zero. The return type of round() is based as usual on the type of x,
while lround() returns long, and llround() returns long  long.

nearbyint(x) Returns the integral value nearest to x as a floating-point type. The
current rounding mode is used: see round_style in the section on
arithmetic type properties later in this chapter.

rint(x)
lrint(x)
llrint(x)

Returns the integral value nearest to x, using the current rounding
mode. The return type of rint() is based as usual on the type of x, while
lrint() returns long, and llrint() returns long  long.

�Floating-Point Manipulation Functions

Function Description

modf(x,  *p) Breaks the value of x into an integral and fractional part. The latter
is returned, the former is stored in p, both with the same sign as x.
The return type is based on that of x as usual, and p must point to a
value of the same type as this return type.

frexp(x,  *exp) Breaks the value of x into a normalized fraction with an absolute
value in the range [0.5, 1) or equal to zero (the return value), and an
integral power of 2 (stored in exp), with x = fraction * 2exp.

logb(x) Returns the floating-point exponent of x, i.e., log
radix

|x|, with radix
the base used to represent floating-point values (2 for all standard
numerical types, hence the name ‘binary logarithm’).

ilogb(x) Same as logb(x) but the result is truncated to a signed int.

(continued)

Chapter 1 ■ Numerics and Math

4

Function Description

ldexp(x,  n) Returns x * 2n (with n an int).

scalbn(x,  n)
scalbln(x,  n)

Returns x * radixn (with n an int for scalbn() and a long for
scalbln()). Radix is the base used to represent floating-point
values (2 for all standard C++ numerical types).

nextafter(x,  y)
nexttoward(x,  y)

Returns the next representable value after x in the direction of y.
Returns y if x equals y. For nexttoward(), the type of y is always
long  double.

copysign(x,  y) Returns a value with the absolute value of x and the sign of y.

�Classification and Comparison Functions

Function Description

fpclassify(x) Classifies the floating-point value x: returns an int equal to
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, or
an implementation-specific category.

isfinite(x) Returns true if x is finite, i.e., normal, subnormal
(denormalized), or zero, but not infinite or not-a-number.

isinf(x) Returns true if x is positive or negative infinity.

isnan(x) Returns true if x is not-a-number.

isnormal(x) Returns true if x is normal, i.e., neither zero, subnormal
(denormalized), infinite, nor not-a-number.

signbit(x) Returns a nonzero value if x is negative.

isgreater(x,  y)
isgreaterequal(x,  y)
isless(x,  y)
islessequal(x,  y)
islessgreater(x,  y)

Compares x and y. The names are self-explanatory, except
islessgreater() which returns true if x < y ∥ x > y. Note that
this is not the same as !=, as, e.g., nan("")  !=  nan("") is true,
but not islessgreater(nan(""),  nan("")).

isunordered(x,  y) Returns whether x and y are unordered, i.e., whether one or
both are not-a-number.

� gcd/lcm C++17 	 <numeric>

The functions gcd() and lcm() compute the greatest common divisor and least common
multiple, respectively. They are defined as follows:

template<typename M, typename N>
constexpr std::common_type_t<M, N> gcd(M, N);

Chapter 1 ■ Numerics and Math

5

template<typename M, typename N>
constexpr std::common_type_t<M, N> lcm(M, N);

Both M and N must be integer types. As explained in Chapter 2, std::common_type_
t<M, N> is a so-called type trait, which in this case results in a type that both M and N can
implicitly be converted to. Concretely, the common type of two integer types M and N is
determined by the following rules (applied in order):

•	 If N and M are equal, their common type is that same type as well.

•	 If N and M are both smaller than int, their common type is int.

•	 If the size of N and M differs, their common type is the largest type.

•	 Otherwise, the common type is the one that is unsigned.

�Error Handling
The mathematical functions from <cmath> can report errors in two ways depending on
the value of math_errhandling (defined in <cmath>, although not in the std namespace).
It has an integral type and can have one of the following values or their bitwise OR
combination:

•	 MATH_ERRNO: Use the global errno variable (see Chapter 8).

•	 MATH_ERREXCEPT: Use the floating-point environment, <cfenv>,
not further discussed in this book.

�Special Mathematical Functions C++17 � <cmath>

C++17 adds a collection of specialized mathematical functions. All of these are available in
multiple overloads. In the following table, the functions without an asterisk always return a
double. For the functions marked with an asterisk, the return type is always double, unless
one of its arguments is a long  double, then the return type is long  double as well.

Additionally, there are two extra versions of each function with a postfix f or l.
These additional functions accept floats and return a float (f postfix), or accept
long  doubles and return a long  double (l postfix). For example, assoc_laguerre(),
assoc_laguerref(), and assoc_laguerrel().

Explaining all the details of these mathematical functions falls outside the scope of
this book. The following table just shows the mathematical formula for each function.
Please consult a mathematical reference for more details.

■■ Note A t the time of writing, libc++, the implementation that ships with the Clang
compiler, has not implemented these special mathematical functions yet.

Chapter 1 ■ Numerics and Math

6

�Bessel Functions

Function Description

cyl_bessel_j(v,  x)* Computesv thev cylindrical Bessel function of the first kind:

J x
x

k
x

k

k k

n () = -() ()
+ +()

³
=

¥ +

å
0

2
1 2

1
0

/

!
,

n

G v k
for

cyl_neumann(v,  x)* Computes the cylindrical Neumann function, also known as
the cylindrical Bessel function of the second kind:

N x

J x J x
x

v

v vv

v
v

() =

() - ()
³-

®

cos

sin
,

lim

p
p

m n

for and non-integral0

JJ x J x
xm mmp

mp
() - ()æ

è
ç

ö

ø
÷ ³

ì

í
ï
ï

î
ï
ï

-cos

sin
, for and integral0 v

cyl_bessel_i(v,  x)* Computes the regular modified cylindrical Bessel function:

I x i J ix
x

k k
x

k

k

v
v

v

v

v
() = () = ()

+ +()
³-

=

¥ +

å
0

2
2

1
0

/

!
,

G
for

cyl_bessel_k(v,  x)* Computes the irregular modified cylindrical Bessel function:

K x i J ix iN ix

I x I x
x

v
v

v v

v v

v

() = () () + ()()

=

() - ()
³

+

-

p

p
p

/

sin
,

2

2
0

1

for aand non-integral

for an

v

p
mpm n

m m

2
0lim

sin
,

®

- () - ()æ

è
ç

ö

ø
÷ ³

I x I x
x dd integral v

ì

í
ï
ï

î
ï
ï

sph_bessel(n,  x) Computes the spherical Bessel function of the first kind:

j x
x

J x xn n() = æ
è
ç

ö
ø
÷ () ³+

p
2

0
1 2

1 2

/

/ , for

sph_neumann(n,  x) Computes the spherical Neumann function, also known as
the spherical Bessel function of the second kind:

n x
x

N x xx n() = æ
è
ç

ö
ø
÷ () ³+

p
2

0
1 2

1 2

/

/ , for

Chapter 1 ■ Numerics and Math

7

�Polynomials

Function Description

legendre(l,  x) Computes the Legendre polynomial of the first kind:

P x
l

d

dx
x xl l

l

l

l
() = -() £

1

2
1 12

!
, for

assoc_legendre(l,  m,  x) Computes the associated Legendre function:

P x x
d

dx
P x xl

m m
m

m l() = -() () £1 12 2/
, for

sph_legendre(l,  m, θ) Computes the spherical associated Legendre function
Yl

m q , where0() , :

Y
l l m

l m
P el

m m

l
m imq f

p
q f,() = -() +() -()

+()
æ

è
çç

ö

ø
÷÷ ()1

2 1

4

1 2
!

!
cos

/

,,

for m l£

laguerre(n,  x) Computes the Laguerre polynomial of order n at point x:

L x
e

n

d

dx
x e xn

x n

n
n x() = () ³-

!
, for 0

assoc_laguerre(n,  m,  x) Computes the associated Laguerre polynomial:

L x
d

dx
L x xn

m m
m

m n m() = -() () ³+1 0, for

hermite(n,  x) Computes the Hermite polynomial of order n at point x:

H x e
d

dx
en

n x
n

n
x() = -() -1

2 2

�Elliptic Integrals

Function Description

ellint_1(k, ϕ)* Computes the incomplete elliptic integral of the first kind:

F k
d

k
k, forf

q

q

f

() =
-

£ò
0

2 21
1

sin
,

comp_ellint_1(k) Computes the complete elliptic integral of the first kind:

F k k, for
p
2

1æ
è
ç

ö
ø
÷ £,

ellint_2(k, ϕ)* Computes the incomplete elliptic integral of the second kind:

E k k d k, forf q q
f

() = - £ò
0

2 21 1sin ,

(continued)

Chapter 1 ■ Numerics and Math

8

Function Description

comp_ellint_2(k) Computes the complete elliptic integral of the second kind:

E k k, for
p
2

1æ
è
ç

ö
ø
÷ £,

ellint_3(k, ν, ϕ)* Computes the incomplete elliptic integral of the third kind:

 n f
q

n q q

f

, , fork
d

k
k() =

-() -
£ò

0
2 2 21 1

1
sin sin

,

comp_ellint_3(k, ν)* Computes the complete elliptic integral of the third kind:

 k k, , forn
p
2

1æ
è
ç

ö
ø
÷ £,

�Exponential Integrals

Function Description

expint(x) Computes the exponential integral: Ei x
e

t
dt

x

t

() = -
-

¥ -

ò

�Error Functions

Function Description

erf(x) Computes the error function of a given value: erf x e dt
x

t() = ò -2

0

2

p

erfc(x) Computes the complement of the error function of a given value:

erfc x erf x e dt
x

t() = - () =
¥

-ò1
2 2

p

�Gamma Functions

Function Description

tgamma(x) Computes the “true gamma” of a given value:

G x t e dtx t() =
¥

- -ò
0

1

lgamma(x) Computes: ln(|Γ(x)|)

Chapter 1 ■ Numerics and Math

9

�Beta Functions

Function Description

beta(x,  y)* Computes the beta function: B x y
x y

x y
x y, for() = () ()

+()
> >

G G
G

, ,0 0

�Zeta Functions

Function Description

riemann_zeta(x) Computes the Riemann zeta function:

z x

k x

k x

k

x

x
k

k x() =

>

-
-() £ £

=

¥
-

-
=

¥
- -

å

å
1

1
1

1

1

1

1 2
1 0 1

2

,

,

for

 for

xx x x
x x xp

p
z- æ

è
ç

ö
ø
÷ -() -() <

ì

í

ï
ï
ï

î

ï
ï
ï 1

2
1 1 0sin ,G for

�Minimum, Maximum, and Clamping� <algorithm>

The Standard Library provides a set of functions related to finding the minimum and
maximum of two or more values. In the following function definitions, T is the element
type, and the optional Compare parameter is a function object to be used to compare
elements. T can be any type, not just a fundamental type. If no Compare function object
is specified, operator< is used. The function object accepts two parameters and returns
true if the first argument is less than the second, false otherwise. The ordering imposed
must be a strict weak ordering, just as with the default operator<:

constexpr const T& min(const T& x, const T& y[, Compare comp])
constexpr const T& max(const T& x, const T& y[, Compare comp])

Returns a reference to the minimum or maximum of two values, or the first value
if they are equal.

Chapter 1 ■ Numerics and Math

10

constexpr T min(initializer_list<T> list[, Compare comp])
constexpr T max(initializer_list<T> list[, Compare comp])

Returns a copy of the minimum or maximum value in a given initializer_list
(discussed in Chapter 2), or a copy of the leftmost minimum or maximum if
there are several elements equal to this extreme. Allows expressions of the form
std::min({  x,  y,  z  }) to quickly determine the extreme of a limited number of
elements.

constexpr pair<const T&, const T&>
 minmax(const T& x, const T& y[, Compare comp])

Returns a pair containing references to the minimum and maximum of two values,
in that order. If x and y are equal, pair(x,  y) is returned.

constexpr pair<T, T> minmax(initializer_list<T> list[, Compare comp])

Returns a pair containing a copy of the minimum and maximum values in an
initializer_list, in that order. If several elements are equal to the minimum,
then a copy of the leftmost one is returned; if several are equal to the maximum,
a copy of the rightmost is returned.

C++17 also adds the following std::clamp() function which can be used to clamp,
or bound, a given value to a given range C++17 :

constexpr const T&
 clamp(const T& value, const T& low, const T& high[, Compare comp])

This function returns the following:

•	 A reference to low if value < low

•	 A reference to value if low ≤ value ≤ high

•	 A reference to high if high < value

�Fixed-Width Integer Types� <cstdint>

The <cstdint> header contains platform-dependent type aliases for integer types with
different and more portable width requirements than the fundamental integer types:

•	 std::(u)intX_t, an (unsigned) integer of exactly X bits (X =  8, 16,
32, or 64). Present only if supported by the target platform.

•	 std::(u)int_leastX_t, the smallest (unsigned) integer type of at
least X bits (X =  8, 16, 32, or 64).

•	 std::(u)int_fastX_t, the fastest (unsigned) integer type of at
least X bits (X =  8, 16, 32, or 64).

Chapter 1 ■ Numerics and Math

11

•	 std::(u)intmax_t, the largest supported (unsigned) integer type.

•	 std::(u)intptr_t, (unsigned) integer type large enough to hold
a pointer. These type aliases are optional.

The header further defines macros for the minimum and maximum values of
these (and some other) types, for instance, INT_FAST_8_MIN and INT_FAST_8_MAX for
std::int_fast8_t. The standard C++ way of obtaining these values though is with the
facilities of <limits> discussed next.

�Arithmetic Type Properties� <limits>

The std::numeric_limits<T> template class offers a multitude of static functions and
constants to obtain properties of a numeric type T. It is specialized for all fundamental
numeric types, both integral and floating-point, and can hence be used to inspect
properties of all their aliases as well, such as size_t or those of the previous section. The
various members offered are listed as follows. Functions are only and always used to
obtain a T value, whereas Booleans, ints, and enum values are defined as constants.

Member Description

is_specialized Indicates whether the template is specialized for the given type. If
false, zero-initialized values are used for all other members.

min(),  max() Returns the minimum/maximum finite representable number.
Rather unexpectedly, for floating-point numbers, min() returns the
smallest positive number that can be represented (cf. lowest()).

lowest() Returns the lowest finite representable number. Same as min()
except for floating-point types, where lowest() returns the lowest
negative number, which for float and double equals -max().

radix The base used to represent values (2 for all C++ numerical types,
but specific platforms could support, e.g., native decimal types).

digits The number of digits in base radix (i.e., generally the number of
bits) representable, excluding any sign bit for integer types. For
floating-point types, the number of digits in the mantissa.

digits10 The number of significant decimal digits that the type can represent
without loss, e.g., when converting from text and back. Equal to
⌊digits * log

10
(radix)⌋ for integers: for char, e.g., it equals 2, as it

cannot represent all values with 3 decimal digits. For floating-point
numbers, it equals ⌊(digits − 1) * log

10
(radix)⌋.

is_signed Identifies signed types. All standard floating-point types are signed,
Booleans not, for char and wchar_t it is unspecified.

is_integer Identifies integer types (includes Booleans and character types).

(continued)

Chapter 1 ■ Numerics and Math

12

Member Description

is_exact Identifies types with exact representations. Same as is_integer for
all standard types, but there exist, e.g., third-party rational number
representations that are exact but not integer.

is_bounded Identifies types with finite representations. true for all standard
types, but libraries exist that offer types with arbitrary precision.

is_modulo Identifies ‘modulo types’, meaning that if the result of a +, -, or *
operation would fall outside the range [min(), max()], the resulting
value differs from the real value by an integral multiple of max() -
min() + 1. Usually true for integers; false for floating-point types.

traps Identifies types that have at least one value that would cause a trap
(exception) when used as an operand for an arithmetic operation.
For example, division by 0 always causes a trap. Usually true for all
standard integer types, except bool. Usually false for all floating-
point types.

The following members are relevant only for floating-point types. For integer types,
they always equal or return zero:

Member Description

max_digits10 The number of decimal digits needed to represent any value
of the type without loss, e.g., when converting to text and back.
Use (at least) max_digits10 precision when converting floating-
point numbers to text, and it will give the exact same value
again when parsed back (9 for float, 17 for double, 22 for
long double).

min_exponent10,
min_exponent,
max_exponent10,
max_exponent

The lowest negative (for min_*) or highest positive (for max_*)
integer n such that 10n (for *10) or radixn − 1 (otherwise) is a valid
normalized floating-point value.

epsilon() The difference between 1.0 and the next representable value.

round_error() The maximum rounding error as defined in ISO/IEC 10967-1.

is_iec599 Identifies types conforming to all IEC 599/IEEE 754
requirements. Usually true for all standard floating-point types.

has_infinity Identifies types that can represent positive infinity. Usually true
for all standard floating-point types.

infinity() Returns the value for positive infinity. Only meaningful if
has_infinity is true.

has_quiet_NaN,
has_signaling_NaN

Identifies types that can represent the special value for a quiet
or signaling NaN (Not-a-Number). Usually true for all standard
floating-point types. Using a signaling NaN in operations results
in an exception; using a quiet NaN does not.

(continued)

Chapter 1 ■ Numerics and Math

13

Member Description

quiet_NaN(),
signaling_NaN()

Returns the value for a quiet or signaling NaN. Only meaningful
if has_quiet_NaN respectively has_signaling_NaN is true.

tinyness_before Identifies types that perform a check for underflow before
performing any rounding.

round_style Contains the rounding style as a std::float_round_style
value: round_indeterminate, round_toward_zero, round_
to_nearest, round_toward_infinity, or round_toward_neg_
infinity. All integer types are required to round toward zero.
The standard floating-point types usually round to nearest.

has_denorm Identifies types that can represent denormalized values (special
values smaller than min() that exist to deal with underflow). Has
type std::float_denorm_style, with values denorm_absent,
denorm_present (most common), and denorm_indeterminate.

denorm_min() Returns smallest positive denormalized value if has_denorm !=
std::denorm_absent, and min() otherwise.

has_denorm_loss Identifies types for which loss of precision is detected as
denormalization loss rather than as an inexact result (advanced
option which should be false; dropped in IEEE 754-2008).

�Complex Numbers� <complex>

The std::complex<T> type, defined for at least T equal to float, double, and
long double, is used to represent complex numbers as follows:

std::complex<float> c(1,2); // Both arguments are optional (default: 0)
std::cout << "c=" << c.real() << '+'<< c.imag() << 'i' << '\n'; // c=1+2i
c.real(3); c.imag(3); c += 1;
std::cout << "norm(" << c << ") = " << std::norm(c); // norm((4,3)) = 25

All expected operators are available: +, -, *, /, +=, -=, *=, /=, =, ==, and !=, including
overloads with a floating-point operand (which is then treated as a complex number with
a zero imaginary part), and the >> and << operators for interaction with the streams of
Chapter 5.

The std::literals::complex_literals namespace defines convenient literal
operators for creating complex<T> numbers: i, if, and il, creating values with T equal
to double, float, and long  double, respectively. Using this, the c value in the previous
example could have been created with ‘auto c = 1.f + 2if;’.

The header furthermore defines the complex equivalents of several of the basic
math functions seen earlier, that is, pow(), sqrt(), exp(), log(), and log10(), as well as
all trigonometric and hyperbolic functions, that is, sin(), cos(), tan(), asin(), acos(),
atan(), sinh(), cosh(), tanh(), asinh(), acosh(), and atanh().

Chapter 1 ■ Numerics and Math

14

Besides these, the following complex-specific non-member functions exist:

Function Description Definition

real() / imag() Non-member getters real / imag

abs() The magnitude or modulus real imag2 2+

norm() The norm real2 + imag2

arg() The phase or argument atan2(imag, real)

conj() The conjugate (real, −imag)

polar() Construction from polar coordinates
(m, ϕ) (= magnitude and phase)

m(cos ϕ + i sin ϕ)

proj() Projection onto the Riemann sphere (∞, ±0) if infinite real or
imag; else (real, imag)

�Compile-Time Rational Numbers� <ratio>

The std::ratio<Numerator,  Denominator=1> type template from the <ratio> header
represents a rational number. What makes it peculiar is that it does so at the type level,
rather than the usual value level (std::complex numbers are an example of the latter).
While ratio values can be default-constructed, this is rarely the intention. Rather, the
ratio type is generally used as type argument for other templates. For example, the
std::chrono::duration<T,  Period=std::ratio<1>> template explained in Chapter 2
may be instantiated as duration<int, ratio<1,1000>> to represent a duration of
milliseconds, or as duration<int, ratio<60>> for a duration of minutes.

Convenience type aliases exist for all standard SI ratios: std::kilo, for instance,
is defined as ratio<1000>, and std::centi as ratio<1,100>. The full list is atto (10−18),
femto (10−15), pico (10−12), nano (10−9), micro (10−6), milli (10−3), centi (10−2), deci (10−1),
deca (101), hecto (102), kilo (103), mega (106), giga (109), tera (1012), peta (1015), and exa
(1018), and for platforms with an integer type that is wider than 64 bit yocto (10−24), zepto
(10−21), zetta (1021), and yotta (1024).

All ratio types define two static members: num and den, containing the numerator
and denominator of the rational number, but after normalization. The ratio’s type
member equals the ratio type of this normalized rational number.

Arithmetic operations with ratios are possible, but it is again at the type level: the
std::ratio_add template, for instance, takes two ratio types as template arguments and
evaluates to the type that corresponds to the sum of these rational numbers. The ratio_
subtract, ratio_multiply, and ratio_divide templates are analogous. To compare two
ratio types, similar ratio_xxx templates are provided with xxx either equal, not_equal,
less, less_equal, greater, or greater_equal.

Chapter 1 ■ Numerics and Math

15

The following example clarifies ratio arithmetic (<typeinfo>, discussed in
Chapter 2, must be included when using the typeid operator):

using a_third = std::ratio<1, 3>;
using a_half = std::ratio<1, 2>;
using two_quart = std::ratio<2, 4>;
using sum = std::ratio_add<a_third, a_half>;

std::cout << two_quart::num << '/' << two_quart::den << '\n'; // 1/2
std::cout << sum::num << '/' << sum::den << '\n'; // 5/6
std::cout << std::boolalpha; /* print true/false instead of 1/0 */
std::cout << (typeid(two_quart) == typeid(a_half)) << '\n'; // false
std::cout << (typeid(two_quart::type) == typeid(a_half)) << '\n'; // true
std::cout << std::ratio_equal<two_quart, a_half>::value << '\n'; // true

�Random Numbers� <random>

The <random> library provides powerful random number generation facilities that
supersede the flawed C-style rand() function from <cstdlib>. Central concepts are
random number generators and distributions. A generator is a function object that
generates random numbers in a predefined range in a uniformly distributed way—that
is, each value in said range has, in principle, the same probability of being generated.
A generator is generally passed to a distribution functor to generate random values
distributed according to some chosen statistical distribution. This could, for instance, be
another user-specified uniform distribution:

std::default_random_engine generator;
std::uniform_int_distribution<int> distribution(1, 6);
int dice_roll = distribution(generator); // 1 <= dice_roll <= 6

When multiple values are to be generated, it is more convenient to bind the
generator and distribution, for example, using the facilities of <functional> (Chapter 2):

std::function<int()> roller = std::bind(distribution, generator);
for (int i = 0; i < 100; ++i) std::cout << roller() << '\n';

�Random Number Generators
The library defines two types of generators: random number engines that generate
pseudorandom numbers and one true nondeterministic random number generator,
std::random_device.

Chapter 1 ■ Numerics and Math

16

�Pseudorandom Number Engines
Three families of pseudorandom number engines are provided in the form of generic
class templates with various numeric type parameters:

•	 std::linear_congruential_engine: Uses a minimal amount of
memory (one integer) and is reasonably fast, but generates low-
quality random numbers.

•	 std::mersenne_twister_engine: Produces the highest-quality
pseudorandom numbers, at the expense of a larger state size (the
state of the predefined mt19937 Mersenne Twister, e.g., consists
of 625 integers). Still, as they are also the fastest generators, these
engines should be your default choice if size is of no concern.

•	 std::subtract_with_carry_engine: While an improvement over
the linear congruential engines in terms of quality (not speed
though), these engines have much lower quality and performance
than a Mersenne Twister. Their state size is more moderate
though (96 bytes generally).

All these engines provide a constructor that accepts an optional seed to initialize
the engine. Seeding is explained later. They also have a copy constructor and support the
following operations:

Operation Description

seed(value) Reinitializes the engine by seeding it with a given value.

operator() Generates and returns the next pseudorandom number.

discard(n) Generates n pseudorandom numbers and discards them.

min()
max()

Returns the minimum and maximum value that the engine can possibly
generate.

== / != Compares the internal state of two engines (non-member operators).

<< / >> Serialization to/from streams: see Chapter 5 (non-member operators).

All three engine templates require a series of numerical template parameters.
Because choosing the appropriate parameters is best left to experts, several predefined
instantiations exist for each family. Before we discuss these though, we first need to
introduce random number engine adaptors.

Engine Adaptors

The following function objects adapt the output of an underlying engine:

•	 std::discard_block_engine<e,p,r>: For each block of p  >  0
generated numbers by the underlying engine e, it discards all but
r kept values (with p  >=  r  >  0).

Chapter 1 ■ Numerics and Math

17

•	 std::independent_bits_engine<e,w>: Generates random
numbers of w  >  0 bits even if the underlying engine e produces
numbers with a different width.

•	 std::shuffle_order_engine<e,k>: Delivers the numbers of
the underlying engine e in a different, randomized order. Keeps
a table of k  >  0 numbers, each time returning and replacing a
random one of those.

All the adaptors have a similar set of constructors: a default constructor, one with a
seed that is forwarded to the wrapped engine, and constructors that accept an lvalue or
rvalue reference to an existing engine to copy or move.

Adaptors support the exact same operations as the wrapped engines, plus:

Operation Description

seed() Reinitializes the underlying engine by seeding it with a default seed.

base() Returns a const reference to the underlying engine.

Predefined Engines

Based on the preceding engines and adaptors, the library provides the following
predefined engines that you should use instead of using the engines and/or adaptors
directly. The mathematical parameters for these have been defined by experts.

•	 minstd_rand0 / minstd_rand are linear_congruential_engines
that generate std::uint_fast32_t numbers in [0, 231-1).

•	 knuth_b equals shuffle_order_engine<minstd_rand0,256>.

•	 mt19937 / mt19937_64 are mersenne_twister_engines generating
uint_fast32_t / uint_fast64_t numbers.

•	 ranlux24_base / ranlux48_base are rarely used stand-alone
(cf. next bullet), but are subtract_with_carry_engines that
generate uint_fast32_t / uint_fast64_t numbers.

•	 ranlux24 / ranlux48 are ranlux24_base / ranlux48_base engines
adapted by a discard_block_engine.

■■ Tip S ince choosing between all preceding predefined engines can still be daunting, an
implementation must also offer a std::default_random_engine which should be good
enough for most applications (it may be a type alias for one of the other engines).

Chapter 1 ■ Numerics and Math

18

�Nondeterministic Random Number Generator
A random_device, in principle, does not generate pseudorandom numbers, but truly
nondeterministic uniformly distributed random numbers. How it accomplishes this is
implementation dependent: it could, for example, use special hardware on your CPU
to generate numbers based on some physical phenomenon. If the random_device
implementation cannot generate true nondeterministic random numbers, it is allowed
to fall back to one of the pseudorandom number engines discussed earlier. To detect this,
use its entropy() method: it returns a measure of the quality of the generated numbers,
but zero if a pseudorandom number engine is used.

random_device is noncopyable and has but one constructor that accepts an
optional implementation-specific string to initialize it. It has member functions
operator(), min(), and max() analogous to the ones provided by the engines. Unlike
for pseudorandom number engines before though, its operator() may throw an
std::exception if it failed to generate a number (e.g., due to hardware failure).

While a random_device generates true random numbers, possibly cryptographically
secure (check your library documentation), it is typically slower than any pseudorandom
engine. It is therefore common practice to seed a pseudorandom engine using a random_
device, as explained in the next section.

�Seeding
All pseudorandom number engines have to be seeded with an initial value. If you set
up an engine with the same seed, then you always get the same sequence of generated
numbers. While this could be useful for debugging or for certain simulations, most of
the time you want a different unpredictable sequence of numbers to be generated on
each run. That is why it is important to seed your engine with a different value each
time the program is executed. This has to be done once (e.g., at construction time). The
recommended way of doing this is with a random_device, but as we saw earlier, this may
also just generate pseudorandom numbers. A popular alternative is by seeding with the
current time (cf. Chapter 2). For example:

std::random_device seeder;
const auto seed = seeder.entropy() ? seeder() : std::time(nullptr);
std::default_random_engine generator(
 static_cast<std::default_random_engine::result_type>(seed));

�Random Number Distributions
Up to now, we have only talked about generating random numbers that are uniformly
distributed in the full range of 32- or 64-bit unsigned integers. The library provides a
large collection of distributions you can use to fit this distribution, range, and/or value
type to your needs. Their names will sound familiar if you are fluent in statistics. While
describing all maths behind them falls outside the scope of this book, the following
sections briefly describe the available distributions, some in more detail than others. For
each distribution, we show the supported constructors. For details on these distributions
and their parameters, we recommend you consult a mathematical reference.

Chapter 1 ■ Numerics and Math

19

�Uniform Distributions

uniform_int_distribution<Int=int>(Int a=0, Int b=numeric_limits<Int>::max())
uniform_real_distribution<Real = double>(Real a = 0.0, Real b = 1.0)

Generates uniformly distributed integer/floating-point numbers in the range [a, b]
(both inclusive).

Real generate_canonical<Real, size_t bits, Generator>(Generator&)

This is the only distribution that is defined as a function instead of a functor.
It generates numbers in the range [0.0, 1.0) using the given Generator as the
source of the randomness. The bits parameter determines the number of bits of
randomness in the mantissa.

�Bernoulli Distributions

bernoulli_distribution(double p = 0.5)

Generates random Boolean values with p equal to the probability of generating
true.

binomial_distribution<Int = int>(Int t = 1, double p = 0.5)
negative_binomial_distribution<Int = int>(Int k = 1, double p = 0.5)
geometric_distribution<Int = int>(double p = 0.5)

Generate random non-negative integral values according to a certain probability
density function.

�Normal Distributions

normal_distribution<Real = double>(Real mean = 0.0, Real stddev = 1.0)

Generates random numbers according to a normal, also called Gaussian,
distribution. The parameters specify the expected mean and standard deviation
stddev. In Figure 1-1 μ represents the mean and σ the standard deviation.

lognormal_distribution<Real = double>(Real mean = 0.0, Real stddev = 1.0)
chi_squared_distribution<Real = double>(Real degrees_of_freedom = 1.0)
cauchy_distribution<Real = double>(Real peak_location = 0., Real scale = 1.)
fisher_f_distribution<Real = double>(Real dof_num = 1., Real dof_denom = 1.)
student_t_distribution<Real = double>(Real degrees_of_freedom = 1.0)

Some more advanced normal-like distributions.

Chapter 1 ■ Numerics and Math

20

�Poisson Distributions

poisson_distribution<Int = int>(double mean = 1.0)
exponential_distribution<Real = double>(Real lambda = 1.0)
gamma_distribution<Real = double>(Real alpha = 1.0, Real beta = 1.0)
weibull_distribution<Real = double>(Real a = 1.0, Real b = 1.0)
extreme_value_distribution<Real = double>(Real a = 0.0, Real b = 1.0)

Various distributions related to the classical Poisson distribution. The latter is
illustrated in Figure 1-1, where λ is the mean (which for this distribution is equal to
the variance). The Poisson distribution generates integers, so the connecting lines
are there for illustration purposes only.

�Sampling Distributions
Discrete Distribution

A discrete distribution requires a set of count weights and generates random numbers
in the range [0, count). The probability of a value depends on its weight. The following
constructors are provided:

discrete_distribution<Int = int>()
discrete_distribution<Int = int>(InputIt first, InputIt last)
discrete_distribution<Int = int>(initializer_list<double> weights)
discrete_distribution<Int = int>(size_t count, double xmin, double xmax,
 UnaryOperation op)

Figure 1-1.  Probability distributions for some example normal and Poisson distributions,
plotting the probability (between 0 and 1) that a value is generated

Chapter 1 ■ Numerics and Math

21

The default constructor initializes the distribution with a single weight of 1.0. The
second and third constructors initialize it with a set of weights given as an iterator range,
discussed in Chapter 3, or as an initializer_list, discussed in Chapter 2. And the last
one initializes it with count weights generated by calling the given unary operation. The
following formula is used:

weight op xmin ii = + * +æ
è
ç

ö
ø
÷d

d
2

 with d =
-xmax xmin

count

Piecewise Constant Distribution

A piecewise constant distribution requires a set of intervals and a weight for each interval.
It generates random numbers which are uniformly distributed in each of the intervals.
The following constructors are provided:

piecewise_constant_distribution<Real = double>()

The default constructor initializes the distribution with a single interval with
boundaries 0.0 and 1.0, and weight 1.0.

piecewise_constant_distribution<Real = double>(
 InputIt1 firstBound, InputIt1 lastBound, InputIt2 firstWeight)

Initializes the distribution with intervals whose bounds are taken from the
firstBound, lastBound iterator range and weights taken from the range starting at
firstWeight.

piecewise_constant_distribution<Real = double>(
 initializer_list<Real> bounds, UnaryOperation weightOperation)

Initializes the distribution with intervals whose bounds are given as an
initializer_list and weights generated by the given unary operation.

piecewise_constant_distribution<Real = double>(size_t count,
 Real xmin, Real xmax, UnaryOperation weightOperation)

Initializes the distribution with count uniform intervals over the range [xmin, xmax]
and weights generated by the given unary operation.

The piecewise_constant_distribution has methods intervals() and
densities() returning the interval boundaries and the probability densities for the
values in each interval.

Chapter 1 ■ Numerics and Math

22

Piecewise Linear Distribution

A piecewise linear distribution, as implemented by piecewise_linear_distribution,
is similar to a piecewise constant one, but has a linear probability distribution in each
interval instead of a uniform one. It requires a set of intervals and a set of weights for each
interval boundary. It also provides intervals() and densities() methods. The set of
constructors is analogous to those discussed in the previous section, but one extra weight
is required because each boundary needs a weight instead of each interval.

Example

std::mt19937 generator; // Default-seeded for this example
std::vector intervals = { 1,20,40,60,80 };
std::vector weights = { 1,3,1,3} ;
std::piecewise_constant_distribution<double> distribution(

begin(intervals), end(intervals), begin(weights));
int value = static_cast<int>(distribution(generator));

The graph on the left in Figure 1-2 shows the number of times a specific value has been
generated when generating a million values using the preceding code. In the graph you
clearly see the piecewise_constant_distribution with intervals (1,20), (20,40), (40,60),
and (60,80) with interval weights 1, 3, 1, and 3.

The graph on the right shows a piecewise_linear_distribution with the same
intervals and with boundary weights 1, 3, 1, 3, and 1. Notice that you require one extra
weight compared to the piecewise_constant_distribution because you specify the
weights for the boundaries instead of for the intervals.

Figure 1-2.  Difference between a piecewise constant and piecewise linear distribution

If you use a piecewise_linear_distribution with intervals of different sizes, the
graph will not be continuous. That is because the weights are given for the boundaries of an
interval, so if the beginning has a weight of 3 and the end has a weight of 1, then it means
that the value at the beginning of the interval is three times more likely to be generated
compared to the value at the end. Therefore, if the interval is, for example, twice as long, all
probabilities will be twice as small as well, including those of the bounds.

Chapter 1 ■ Numerics and Math

23

�Numeric Arrays� <valarray>

std::valarray is a container-like class for storing and efficiently manipulating dynamic
arrays of numeric values. A valarray has built-in support for multidimensional arrays and
for efficiently applying most mathematical operations defined in <cmath> to each element.
Types stored in a valarray must essentially be an arithmetic or pointer type, or a class that
behaves similarly such as std::complex. Thanks to these restrictions, some compilers are
able to optimize valarray calculations more than when working with other containers.

std::valarray provides the following constructors:

Constructor Description

valarray()
valarray(count)

Constructs an empty valarray, or one with count
zero-initialized/default-constructed elements.

valarray(const  T&  val,  n)
valarray(const  T*  vals,  n)

Constructs a valarray with n copies of val, or n copies
from the vals array.

valarray(initializer_list) Constructs a valarray and initializes it with the values
from the initializer list.

valarray(const x_array<T>&) Constructors that convert between x_array<T> and
valarray<T>, where x can be slice, gslice, mask, or
indirect. All four types are discussed later.

valarray(const valarray&)
valarray(valarray&&)

Copy and move constructor.

Here is an example:

std::valarray<int> ints1(7); // 7 zero-initialized integers
std::valarray doubles = { 1.1, 2.2, 3.3 }; // Deduces std::valarray<double>
int carray[] = { 6,5,4,3,2,1 };
std::valarray ints2(carray, 3); // Contains 6,5,4

(continued)

A valarray supports the following operations:

Operation Description

operator[] Retrieves a single element, or a part, i.e., a slice_array, gslice_
array, mask_array or indirect_array discussed later.

operator= Copy, move, and initializer-list assignment operators. You can
also assign an instance of the element type: all elements in the
valarray will be replaced with a copy of it.

operator+, -, ~, ! Applies unary operations to each element. Returns a new
valarray with the result (operator! returns valarray<bool>).

operator+=, -=, *=,
/=, %=, &=, |=, ^=,
<<=, >>=

Applies these operations to each element. Input is either
‘const  T&’ or an equally long ‘const valarray<T>&’. In the latter
case, the operator is piecewise applied.

Chapter 1 ■ Numerics and Math

24

Operation Description

swap() Swaps two valarrays.

size()
resize(n,val=T())

Returns or changes the number of elements. When resizing you
can specify the value to assign to new elements, they are zero-
initialized by default.

sum(), min(), max() Returns the sum, minimum, and maximum of all elements.

shift(int n)
cshift(int n)

Returns a new valarray of the same size in which elements are
shifted by n positions. If n < 0, elements are shifted to the left.
Elements shifted out will be zero-initialized for shift(), while
cshift() performs a circular shift.

apply(func) Returns a new valarray where each element is calculated by
applying the given unary function to the current elements.

The following non-member functions are supported as well:

Operation Description

swap() Swaps two valarrays.

begin(), end() Returns begin and end iterators (cf. Chapters 3 and 4).

abs() Returns a valarray with the absolute values.

operator+, -, *, /, %,
&, |, ^, <<, >>, &&, ||

Applies these binary operators to a valarray and a value, or to
each element of two equally long valarrays.

operator==, !=, <,
<=, >, >=

Returns a valarray<bool> where each element is the result of
comparing elements of two valarrays or the elements of one
valarray with a value.

There is also support for applying exponential (exp(), log(), and log10()), power
(pow() and sqrt()), trigonometric (sin(), cos(), etc.), and hyperbolic (sinh(), cosh(),
and tanh()) functions to all elements at once. These non-member functions return a new
valarray with the results.

�std::slice
This represents a slice of a valarray. A std::slice itself does not contain or refer to
any elements, it simply defines a sequence of indices. These indices are not necessarily
contiguous. It has three constructors: slice(start,  size,  stride), a default constructor
equivalent to slice(0,0,0), and a copy constructor. Three getters are provided: start(),
size(), and stride(). To use slice, create one and pass it to operator[] of a valarray.
This selects size() elements from the valarray starting at position start(), with a given
stride() (step size). If called on a const valarray, the result is a valarray with copies of
the elements. Otherwise, it is a slice_array with references to the elements.

Chapter 1 ■ Numerics and Math

25

slice_array supports less operations than a valarray but can be converted to a
valarray using the valarray(const  slice_array<T>&) constructor. slice_array has the
following three assignment operators:

void operator=(const T& value) const
void operator=(const valarray<T>& arr) const
const slice_array& operator=(const slice_array& arr) const

Operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>= are provided as well. These
operators require a right-hand side operand of the same type as the valarray to which
the slice_array refers to, and apply the operator to the elements referred to by the
slice_array. For example:

std::valarray ints = { 0,1,2,3,4,5,6,7 };
std::slice mySlicer(2, 3, 2);
const std::valarray<int>& constInts = ints;
auto copies = constInts[mySlicer]; // valarray<int> with copies of 2,4,6
auto refs = ints[mySlicer]; // slice_array<int> with references to 2,4,6
std::valarray factors{ 6,3,2 };
refs *= factors; // ints will be 0,1,12,3,12,5,12,7

One use case for slices is to select rows or columns from valarrays that represent
matrices. They can also be used to implement matrix algorithms such as matrix
multiplication.

�std::gslice
gslice stands for generalized slice. Instead of having a single value for the size and stride,
a gslice has a valarray<size_t> for sizes and one for strides. The default constructor
is equivalent to gslice(0,  valarray<size_t>(),  valarray<size_t>()), and a copy
constructor is provided as well. Just as std::slice, getters start(), size(), and
stride() are available. Analogous to slice, a gslice is used by passing it to operator[]
of valarray, returning either a valarray with copies or a gslice_array with references.
A gslice_array supports a similar set of operations as a slice_array. How the different
sizes and strides are used is best explained with an example:

std::valarray a = { 0,11,22,33,44,55,66,77,88,99,111 };
std::valarray<size_t> sizes{ 2,3 }; // <size_t> required here, otherwise it

// deduces to std::valarray<int>.
std::valarray<size_t> strides{ 5,2 };
std::valarray r = a[std::gslice(1,sizes,strides)]; //11,33,55,66,88,111

Chapter 1 ■ Numerics and Math

26

In this example we have two values for size and stride, so the gslice will create two
slices. The first slice has the following parameters:

•	 Start index = 1 (the first argument to the gslice constructor)

•	 Size = 2 and stride = 5 (the first values in sizes and strides)

This slice therefore represents the indices {1, 6}. With this, two second-level slices
are created, one for each of these indices. The indices from the first-level slice are used as
starting indices for the two second-level slices. The first second-level slice therefore has
parameters:

•	 Start index = 1 (the first index of the first slice {1, 6})

•	 Size = 3 and stride = 2 (second values from sizes and strides)

and the second (note that both have the same size and stride parameters):

•	 Start index = 6 (the second index of the first slice {1, 6})

•	 Size = 3 and stride = 2 (second values from sizes and strides)

Concatenated, the second-level slices therefore represent these indices: {1,3,5,
6,8,10}. If there were a third level (i.e., third values in sizes and strides), these indices
would serve as starting indices for six third-level slices (all using those third values of
sizes and strides). Because there is no third level in this example, the corresponding
values are simply selected from the valarray: {11,33,55, 66,88,111}.

�std::mask_array
The operator[] on a valarray also accepts a valarray<bool>, similarly returning
either a valarray with copies or a std::mask_array with references. This operator selects
all elements from a valarray that have a true value in the corresponding position
in the valarray<bool>. A mask_array supports an analogous set of operations as a
slice_array. Here is an example:

std::valarray ints = { 0,1,2,3,4,5,6,7,8,9,10 };
// Construct a valarray<bool> with true for all even elements in ints.
std::valarray even = ((ints % 2) == 0);
// Count the number of true values in even. (See Chapter 4)
auto count = std::count(begin(even), end(even), true);
// Construct a valarray<int> with count elements of value 4.
std::valarray factors(4, count);
// Multiply the even elements in ints with a factor of 4.
ints[even] *= factors; // 0,1,8,3,16,5,24,7,32,9,40

Chapter 1 ■ Numerics and Math

27

�std::indirect_array
Lastly, the operator[] on valarray accepts a valarray<size_t> as well, returning either
a valarray with copies or a std::indirect_array with references. The valarray<size_t>
specifies which indices should be selected. An indirect_array again supports an
analogous set of operations as a slice_array. An example:

std::valarray ints = { 0,1,2,3,4 };
std::valarray<size_t> indices = { 1,3,4 }; // <size_t> required here.
ints[indices] = -1; // 0,-1,2,-1,-1

29
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_2

CHAPTER 2

General Utilities

�Moving, Forwarding, Swapping� <utility>

This section explains move(), move_if_noexcept(), forward(), swap(), and exchange().
In passing, we also introduce the concepts of move semantics and perfect forwarding.

�Moving
An object can be moved elsewhere (rather than copied) if its previous user no longer
needs it afterward. Moving the resources from one object to another can often be
implemented far more efficiently than (deep) copying them. For a string object, for
instance, moving is typically as simple as copying a char* pointer and a length (constant
time); there is no need to copy the entire char array (linear time).

Unless otherwise specified, the source object that was moved from is left in an
undefined but valid state and should not be used anymore unless reinitialized. A valid
implementation for moving a std::string (cf. Chapter 6), for instance, could set the
source’s char* pointer to nullptr to prevent the array from being deleted twice, but this
is not required by the standard. Likewise, it is unspecified what length() will return after
being moved from. Some operations, such as assignments, remain allowed though as
demonstrated in the following example:

void f(std::string s) { std::cout << "Moved or copied: " << s << '\n'; }
void g(std::string&& s) { std::cout << "Moved " << s << '\n'; }
std::string h() { std::string s("test"); return s; } // moved implicitly,
int main() { // =std::move(s)
std::string test("123");
f(test); // test copied to a new string
f(std::move(test)); // test moved to a new string (move constructor)
// std::cout << test; --> Undefined: may give "", "123", or simply crash
test = "456"; // test is reinitialized, and may be used again
// g(test); --> Does not compile
g(std::move(test));
g(std::string("789")); // Unnamed objects are moved implicitly
g(h());

}

Chapter 2 ■ General Utilities

30

■■ Tip I n Standard Library speak, unless otherwise specified, only operations without
preconditions are guaranteed to work on an object after moving its contents. The reason
is that its class invariants may no longer hold. If you do want to reuse such an object, look
for a member named clear() or reset(): these normally have no preconditions and can
be used to bring the object back to a well-defined initial state, where all class invariants
are guaranteed to hold. These considerations hold for nearly all Standard Library types.
The most notable exceptions are the smart pointers we explain later in this chapter: smart
pointers are always reset to their nullptr state after moving.

Despite its name, the std::move() function technically does not move anything:
instead, it simply marks that a given T, T&, or T&& value may be moved, by statically casting
it to an rvalue reference T&&. Because of the type cast, other functions may get selected by
overload resolution, and/or value parameter objects may become initialized using their
move constructors (of form T(T&& t)), if available, rather than their copy constructors.
This initialization occurs at the callee side, not the caller side. An rvalue parameter T&&
forces the caller to always move.

Similarly, an object can also be moved to another using a move assignment operator
(of form operator=(T&&)):

std::string one("Test 123");
std::string other;
other = std::move(one);
// std::cout << one; --> Undefinedbehavior: one was moved to other

If no move member is defined, either explicitly or implicitly, overload resolution for
T&& will fall back to T& or T, and in the latter case still create a copy. Conditions for implicit
move members to be generated include that there may not be any user-defined copy,
move, or destructor members, nor any non-static member variable or base class that
cannot be moved.

The move_if_noexcept() function is similar to move(), except that it only casts to
T&& if the move constructor of T is known not to throw from its exception specification
(noexcept, or the deprecated throw()); otherwise, it casts to const  T&.

All classes defined by the standard have move members if appropriate. Many
containers of Chapter 3, for example, can be moved in constant time (not std::array,
although it will move individual elements if possible to avoid deep copies).

■■ Tip I f you define a move constructor or move assignment operator, always do so with a
noexcept specifier. The container classes of Chapter 3 extensively use moving to speed up
operations such as adding a new element or when relocating arrays of elements (e.g., with
sequential containers). Similarly, many algorithms of Chapter 4 will benefit if efficient move
members are available (and/or non-member swap() operations: cf. later). However, and

Chapter 2 ■ General Utilities

31

especially when moving arrays of elements, these optimizations often only take effect if the
values’ move members are known not to throw.

�Forwarding
The std::forward() helper function is intended to be used in templated functions
to efficiently pass its arguments along to other functions while preserving any move
semantics. If the argument to forward<T>() was an lvalue reference T&, this reference
is returned unchanged. Otherwise, the argument is cast to an rvalue reference T&&. An
example will clarify its intended use:

struct A { A() {}; A(const A&) = delete; }; // A objects cannot be copied
void f(const A&) { std::cout << "lval, "; } // forwarded as lvalue ref
void f(A&&) { std::cout << "rval, "; } // forwarded as rvalue ref

// Three different forwarding (fwd) schemes:
template <typename T> void good_fwd(T&& t) { f(std::forward<T>(t)); }
template <typename T> void bad_fwd(T&& t) { f(t); }
template <typename T> void ugly_fwd(T t) { f(t); }

int main() {
A a;
good_fwd(a); good_fwd(std::move(a)); good_fwd(A()); // lval, rval, rval,
bad_fwd(a); bad_fwd(std::move(a)); bad_fwd(A()); // lval, lval,lval,

// ugly_fwd(a); ugly_fwd(std::move(a));ugly_fwd(A()); --> error: 3x copy
}

The idiom used by good_fwd() is called perfect forwarding. It optimally preserves
rvalue references (such as those of std::move()d or temporary objects). The idiom’s
first ingredient is a so-called forwarding or universal reference: a T&& parameter, with
T a template type parameter. Without it, template argument deduction removes all
references: for ugly_fwd(), both A& and A&& become A. With a forwarding reference, A&
and A&& are deduced respectively: that is, even though the forwarding reference looks
like T&&, if passed A&, A& is deduced and not A&&. Still, using a forwarding reference alone
is not enough, as shown with bad_fwd(). When using the named variable t as is, it binds
with an lvalue function parameter (all named variables will), even if its type is deduced as
A&&. This is where std::forward<T>() comes in. Similar to std::move(), it casts to T&&,
but only if given a value with an rvalue type (including named variables of type A&&).

All this is quite subtle and is more about the C++ language (type deduction in
particular) than the Standard Library. The main takeaway here is that to correctly forward
arguments of a function template to a function, you should consider using perfect
forwarding—that is, a forwarding reference combined with std::forward().

Chapter 2 ■ General Utilities

32

�Swapping and Exchanging
The std::swap() template function swaps two objects as if implemented as

template<typename T> void swap(T& one, T& other)
{ T temp(std::move(one)); one = std::move(other); other = std::move(temp); }

A similar swap() function template to piecewise swap all elements of equally long
T[N] arrays is defined as well.

While already quite efficient if proper move members are available, for truly optimal
performance one should consider specializing these template functions, for instance, to
eliminate the need to move to a temporary. Many algorithms of Chapter 4, for instance,
will call this non-member swap() function. For standard types, swap() specializations are
already defined where appropriate.

A function similar to swap() is std::exchange(), which assigns a new value to
something while returning its old value. A valid implementation is

template<typename T, typename U=T> T exchange(T& x, U&& new_val)
 { T old_val(std::move(x)); x = std::forward<U>(new_val); return old_val; }

■■ Tip A lthough swap() and exchange() may be specialized in the std namespace, most
recommend to specialize them in the same namespace as their template argument type. The
advantage then is that so-called argument-dependent lookup (ADL) works. In other words,
that 'swap(x,y)' works without using directives or declarations and without specifying the
namespace of swap(). The ADL rules basically stipulate that a non-member function should be
looked up first in the namespace of its arguments. Generic code should then use the following
idiom to fall back to std::swap() if need be: 'using  std::swap;  swap(x,y);'. Simply
writing std::swap(x,y) would not use user-defined swap() functions outside the std
namespace, while swap(x,y) alone would not work unless there is such a user-defined function.

■■ Tip  One use case where std::exchange() often comes in handy is when
implementing move members. For example:

class Node {};
class Tree {

Node* m_root = nullptr; // Pointer to dynamic memory
public:
Tree(Tree&& other) noexcept

: m_root(std::exchange(other.m_root, nullptr)) {}
//...

};

Chapter 2 ■ General Utilities

33

�Pairs and Tuples
�Pairs� <utility>

The std::pair<T1,T2> template struct is a copyable, movable, swappable,
(lexicographically) comparable struct that stores a pair of T1 and T2 values in its public
first and second member variables. A default-constructed pair zero-initializes its values,
but initial values may be provided as well:

std::pair<unsigned int, Person> p(42u, Person("Douglas", "Adams"));

The template type arguments can be deduced automatically with C++17 class
template argument deduction. The previous definition of p can be simplified as follows:

std::pair p(42u, Person("Douglas", "Adams"));

If your compiler does not yet support class template argument deduction, then
you can use a helper function provided by the Standard Library to deduce the types as
follows:

auto p = std::make_pair(42u, Person("Douglas", "Adams"));

Conversely, decomposing a pair back into its elements can be done using C++17’s
structured bindings. For example:

auto [number, person] = p;

If your compiler does not yet support structured bindings, you can use std::tie()
instead, as explained in the section on tuples.

■■ Tip N ot all types can be moved efficiently, and would have to be copied when
constructing a pair. For bigger objects (e.g., those that contain fixed-size arrays), this could
be a performance issue. Other types may even not be copyable at all. For such cases,
std::pair has a special ‘piecewise’ constructor to perform in-place construction of its
two members. It is called with a special constant, followed by two tuples (see next section)
containing the arguments to forward to the constructors of both members.

For instance (forward_as_tuple() is used to not copy the strings to a temporary tuple):

std::pair<unsigned, Person> p(std::piecewise_construct,

 std::make_tuple(42u), std::forward_as_tuple("Douglas", "Adams"));

Chapter 2 ■ General Utilities

34

Piecewise construction can also be used with the emplace() functions of the containers
in Chapter 3 (these functions are similarly defined to avoid unwanted copying), and in
particular with those of std::map and std::unordered_map. Note that with piecewise
construction you have to provide the template type arguments; C++17 class template
argument deduction does not work in this case.

�Tuples� <tuple>

std::tuple is a generalization of pair that allows any number of values to be stored (i.e.,
zero or more, not just two): std::tuple<Type...>. It is mostly analogous to pair. The
main difference is that the individual values are not stored in public member variables.
Instead, you can access them using one of the get() template functions:

std::tuple t(1, 2, 0.3, std::string("4"));
std::cout << std::get<0>(t) << '\n'; // get using 0-based index
std::get<2>(t) = 3.0; // no set required: get returns a reference
std::cout << std::get<double>(t) << '\n'; // get using unique type
// std::cout << std::get<int>(t) << '\n'; --> ambiguous: compiler error!
std::string s = std::get<3>(std::move(t)); // move a value out of a tuple

C++17 class template argument deduction is again supported as shown in
the previous code snippet. Similar as for std::pair, there is a helper method
std::make_tuple() in case you need it. For example:

auto t = std::make_tuple(1, 2, 0.3, std::string("4"));

Structured bindings from C++17 can be used to obtain the elements stored inside a
tuple. For example:

auto [one, two, three, s] = t; // = std::move(t) moves string into s

Alternatively, you can unpack a tuple using the tie() function. The special
std::ignore constant may be used to exclude any value:

int one, two; std::string s;
std::tie(one, two, std::ignore,s) = t; //= std::move(t) moves to s

■■ Tip T he std::tie() function may be used to compactly implement lexicographical
comparisons based on multiple values. For instance, the body of operator< for our
Person class in the Introduction could be written as

return std::tie(lhs.m_isVIP, lhs.m_lastName, lhs.m_firstName)

 < std::tie(rhs.m_isVIP, rhs.m_lastName, rhs.m_firstName);

Chapter 2 ■ General Utilities

35

Two helper structs exist to obtain the size and element types of a given tuple as
well, which is mainly useful when writing generic code:

std::cout << std::tuple_size<decltype(t)>::value << '\n'; // 4
std::tuple_element<0,decltype(t)>::type one = std::get<0>(t); // int

Note that get(), tuple_size, and tuple_element are also defined for pair and
std::array (cf. Chapter 3) in their respective headers, but not tie(). std::tie() does
work on a pair though because std::tuple has a converting assignment operator that
allows you to assign pairs to tuples (of matching types).

Another helper function for tuples is std::forward_as_tuple(), which creates a
tuple of references to its arguments. These are lvalue references generally, but rvalue
references are maintained, as with std::forward() explained earlier.

std::apply() invokes a given function or function-like object by passing the individual
elements of a given tuple as arguments. A function f(const std::string&,  int), for
instance, can thus be called as follows C++17 :

std::tuple tuple("test", 123);
std::apply(f, tuple);

Similarly, std::make_from_tuple<T>(t) constructs an object of type T by passing
the elements of a given tuple  t as arguments to its constructor C++17 .

Both apply() and make_from_tuple() do not only work with tuple but also with
pair and array. Basically they work with anything that supports std::get<>() and
std::tuple_size().

Finally, tuples offer facilities for custom allocators as well, but this is an advanced
topic that falls outside the scope of this book.

�std::byte C++17 � <cstddef>

std::byte is a type to represent a single byte of memory. It can be used to access raw
memory. Before C++17, the go-to types for this purpose were char and unsigned  char.
The difference with byte is that byte is actually a scoped enumeration type:

enum class byte : unsigned char {};

As such, byte is not implicitly convertible to numerical types such as int and does
not support arithmetic operations. Only explicit casts to numerical types are allowed.
A function std::to_integer<>() is provided to perform such casts as well.

Only a few operations are allowed on bytes. The <<, >>, <<=, and >>= operators are
supported to perform bit shifts, and the |, &, ^, ~, |=, &=, and ^= operators can be used to
perform logical operations on bytes.

Chapter 2 ■ General Utilities

36

Here is an example of using std::byte:

std::byte b1{ 1 }, b2{ 42 }; // More realistic examples would read bytes
std::byte b = b1 | b2; // from a file (Chapter 5), the network, ...
b <<= 5;
int v1 = static_cast<int>(b);
auto v2 = unsigned int(b);
long v3 = std::to_integer<long>(b);
std::cout << v1 << ' '<< v2 << ' ' << v3 << std::endl; // 96 96 96

�Relational Operators� <utility>

A nice set of relational operators is provided in the std::rel_ops namespace: !=, <=, >,
and >=. The first one is implemented in terms of operator==, the remaining forward to
operator<. When you add ‘using  namespace  std::rel_ops’, your class therefore only needs
to implement operator== and <. The other operators are then generated automatically:

// Works even though only operator< is defined for our Person class:
using namespace std::rel_ops;
const bool comparison = (Person("Alexander") > Person("Bob"));
std::cout << comparison; // 0 (Alexander is not greater)

�Smart Pointers� <memory>

A smart pointer is an RAII-style object that (typically) decorates and mimics a pointer to
heap-allocated memory while guaranteeing this memory is deallocated at all times once
appropriate. As a rule, modern C++ programs should never use raw pointers to manage
(co-)owned dynamic memory: all dynamic memory should be managed either by a
smart pointer or a container such as vector (cf. Chapter 3). Consequently, C++ programs
should rarely directly call delete or delete[] anymore. Doing so will go a long way
toward preventing memory leaks.

�Exclusive Ownership Pointers
�std::unique_ptr
A unique_ptr has exclusive ownership of a pointer to heap memory and can therefore
not be copied, only moved or swapped. Other than that, it mostly behaves like a regular
pointer. The following illustrates its basic usage on the stack:

{ std::unique_ptr<Person> jeff(new Person("Jeffrey"));
if (jeff != nullptr) jeff->SetLastName("Griffin");
if (jeff) DoSomethingWith(*jeff); // Dereference as Person&

} // jeff is deleted, even if DoSomethingWith() throws

Chapter 2 ■ General Utilities

37

The -> and * operators ensure a unique_ptr can mostly be used like a raw pointer.
Comparison operators ==, !=, <, >, <=, and >= are provided to compare two unique_ptrs,
or a unique_ptr with nullptr (in either order), but not for comparing a unique_ptr<T>
with a T value. To do the latter, get() must be called to access the raw pointer. A unique_
ptr also conveniently casts to a Boolean to check for nullptr.

Construction is facilitated using the helper function make_unique(), for example:

{ auto jeff = std::make_unique<Person>("Jeffrey");
 ...

Typical uses of unique_ptrs that make them a truly essential utility include the
following:

•	 They can be stored safely inside the containers of Chapter 3.

•	 When used as member variables of another class, they eliminate
the need for explicit deletes in its destructor. Moreover, they
prevent the compiler from generating error-prone copy members
for objects that are supposed to exclusively own dynamic
memory.

•	 They are the safest and recommended way to transfer exclusive
ownership, either by returning a unique_ptr from a function
that creates a heap object or by passing one as an argument to
a function that accepts further ownership. This has three major
advantages:

a.	 In both cases, std::move() generally has to be used,
making the ownership transfer explicit.

b.	 The intended ownership transfer also becomes apparent
from the functions’ signatures.

c.	 It prevents memory leaks.

A unique_ptr can also manage memory allocated with new[]:

{ std::unique_ptr<int[]> array(new int[123]); // or make_unique<int[]>(123)
 for (int i = 0; i < 123; ++i) array[i] = i;
 DoSomethingWith(array.get()); // Pass raw int* pointer
} // array is delete[]'d, even if DoSomethingWith() throws

For this template specialization, the dereferencing operators * and -> are replaced
with an indexed array access operator []. A more powerful and convenient class to
manage dynamic arrays, std::vector, is explained later in Chapter 3.

Chapter 2 ■ General Utilities

38

■■ Tip N ormally we recommend you always use std::make_unique() for creating a
unique_ptr. It is often shorter, avoids the use of the new keyword (which during code
review should trigger a scan for delete), and, prior to C++17, used to be safer as well.
In rare occasions, though, you could still consider the use of new  [], as it is one of few
ways to allocate a dynamic array of uninitialized values. Both make_unique<T[]>() and
vector<T> zero-initialize fundamental data types or pointers:

auto a2 = std::make_unique<int[]>(123); // 123 times zero
std::unique_ptr<int[]> a1(new int[123]); // 123 uninitialized values

Do keep in mind that this really only matters in performance critical code, which is rare. In
all other cases, you should stick with vector for managing arrays (see Chapter 3).

■■ Note  C++17’s class template argument deduction purposely does not work for smart
pointers. The reason is that the compiler cannot always properly deduce the required type.
Concretely, if you pass a pointer of type T* to the constructor, the compiler has no way of
knowing whether this points to a single T or an array of Ts.

A unique_ptr<T> has two similar members that are often confused: release() and
reset(T*=nullptr). The former replaces the old stored pointer (if any) with nullptr,
while the latter replaces it with the given T*. The key difference though is that release()
does not delete the old pointer. Instead, release() is intended to release ownership of the
stored pointer: it simply sets the stored pointer to nullptr and returns its old value. This
is useful to pass ownership to, for example, a legacy API. reset(), on the other hand, is
intended to replace the stored pointer with a new value, not necessarily nullptr. Before
overwriting the old pointer, it is deleted. reset() therefore also does not return any value:

auto niles = std::make_unique<Person>("Niles", "Crane");
niles.reset(new Person("Niles", "Butler")); // Niles Crane is deleted
TakeOwnership(niles.release());// TakeOwnership() must delete Niles Butler

■■ Tip T ake care for memory leaks when transferring ownership using release().
Suppose the preceding example ended with TakeOwnership(niles.release(),  f()).
If the call to f() throws after the unique_ptr has released ownership, Niles leaks.
Therefore, always make sure that expressions containing release() subexpressions do
not contain any throwing subexpressions as well. In our example, the solution would be to
evaluate f() on an earlier line, storing its result in a named variable. Transferring using
std::move(niles), as recommended earlier, would never leak either by the way. But for
legacy APIs this is not always an option.

Chapter 2 ■ General Utilities

39

■■ Caution A fairly common mistake is to use release() where reset() was intended,
the latter with the default nullptr argument, ignoring the value returned by release().
The object formerly owned by the unique_ptr then leaks, which often goes by unnoticed.

An advanced feature of unique_ptrs is that they can use a custom deleter. The
deleter is the functor that is executed when destroying the owned pointer. This is useful
for nondefault memory allocation, to do additional cleanup or, for example, to manage a
file pointer as returned by the C function fopen() (defined in <cstdio>):

{ std::unique_ptr<FILE, std::function<void(FILE*)>>
smartFilePtr(fopen("test.txt", "r"), fclose);

DoSomethingWith(smartFilePtr.get());
} // The FILE* is closed, even if DoSomethingWith() throws

This example uses a deleter of type std::function (defined in the <functional>
header, discussed later in this chapter) initialized with a function pointer, but any
function pointer or functor type may be used instead.

■■ Tip  You can also use decltype() to specify the type of the custom deletion function,
as in, for instance, std::unique_ptr<FILE,  decltype(&fclose)>.

�std::auto_ptr
In pre-C++17, the <memory> header defined a second smart pointer type for exclusive
ownership, namely, std::auto_ptr. In C++17, this has been removed in favor of
unique_ptr. Essentially, an auto_ptr was a flawed unique_ptr that is implicitly moved
when copied: this not only makes them error-prone but also dangerous (and in fact
illegal) to use with the standard containers and algorithms of Chapters 3 and 4.

�Shared Ownership Pointers
�std::shared_ptr
When multiple entities share the same heap-allocated object, it is not always obvious
or possible to assign a single owner to it. For such cases, shared_ptrs exist, defined in
<memory>. These smart pointers maintain a thread-safe reference count for a shared
memory resource, which is deleted once its reference count reaches zero, that is, once
the last shared_ptr that co-owned it is destructed. The use_count() member returns the
reference count, and unique()1 checks whether the count equals one.

1 unique() is deprecated in C++17 and removed in C++20.

Chapter 2 ■ General Utilities

40

Like a unique_ptr, it has ->, *, cast-to-Boolean, and comparison operators to mimic
a raw pointer. Equivalent get() and reset() members are provided as well, but no
release(). Also similar to a unique_ptr, a shared_ptr can manage dynamic arrays, but
only since C++17. What really sets shared_ptr apart from unique_ptrs though is that they
can and are intended to be copied:

{ auto bond = std::make_shared<int>(007); // bond.use_count() == 1
auto james = bond; // james.use_count() == 2 && bond.use_count() == 2
bond.reset(); // james.use_count() == 1 && bond.use_count() == 0

} // 007 is deleted

A shared_ptr can be constructed by moving a unique_ptr into it, but not the other
way around:

auto muhammed = std::make_unique<Person>("Muhammed");
std::shared_ptr<Person> mountain = std::move(muhammed);
//muhammed = std::move(mountain); // mountain cannot be moved to Muhammed

To construct a new shared_ptr, it is again recommended to use make_shared(): for
the same reason as with make_unique() (shorter code), but in this case also because it is
more efficient.

Custom deleters are again supported. Unlike with unique_ptr though, the deleter’s
type is not a type argument of the shared_ptr template. The declaration analogous to the
one in our earlier example thus becomes

std::shared_ptr<FILE> smartFilePtr(fopen("test.txt", "r"), fclose);

To obtain a shared_ptr to a related type, use std::static_pointer_cast(),
dynamic_pointer_cast(), const_pointer_cast(), or reinterpret_pointer_cast()
(reinterpret_pointer_cast() only since C++17). If the result is non-null, the reference
count shall safely be incremented with one. An example will clarify:

class A { public: virtual ~A() {}; };
class B : public A {};
class C {};

std::shared_ptr<A> a = std::make_shared(); // a points to a new B()
std::shared_ptr b = std::dynamic_pointer_cast(a);
std::shared_ptr<C> c = std::dynamic_pointer_cast<C>(a);
// (c == nullptr) && (a.use_count() == b.use_count() == 2)

Chapter 2 ■ General Utilities

41

A lesser-known feature of shared_ptrs is called aliasing and is used for sharing parts
of an already shared object. It is best introduced with an example:

struct A { int* member; /* ... */ };
auto a = std::make_shared<A>();
auto m = std::shared_ptr<int>(a, a->member); // aliasing constructor
// a.use_count() == m.use_count() == 2

A shared_ptr has both an owned pointer and a stored pointer. The former
determines the reference counting, the latter is returned by get(), *, and ->. Generally
both are the same, but not if constructed with the aliasing constructor. Almost all
operations use the stored pointer, including the comparison operators <, >=, and so on.
To compare based on the owned rather than the stored pointer, use the owner_before()
member or std::owner_less<T=void> functor class (functors are explained shortly). This
is useful, for example, when storing shared_ptrs in a std::set (see Chapter 3).

�std::weak_ptr
There are times, particularly when building caches of shared objects, that you want to
keep a reference to a shared object should you need it, but you do not want your reference
to necessarily prevent the deletion of the object. This concept is commonly called a weak
reference and is offered by <memory> in the form of a std::weak_ptr.

A nonempty weak_ptr is constructed with a shared_ptr or results from assigning
a shared_ptr to it afterward. These pointers can again be freely copied, moved, or
swapped. While a weak_ptr does not co-own the resource, it can access its use_count().
To check whether the shared resource still exists, expired() can be used as well (it is
equivalent to use_count()==0). The weak_ptr, however, does not have direct access
to the shared raw pointer, as nothing would then prevent the last co-owner from
concurrently deleting it. To access the resource, a weak_ptr first has to be promoted to a
co-owning shared_ptr using its lock() member:

auto s = std::make_shared<std::string>("SharedString");
auto w = std::weak_ptr<std::string>(s);//w.use_count() == s.use_count() == 1
{ std::shared_ptr<std::string> s2 = w.lock();
 DoSomethingWith(*s2); // w.use_count() == s.use_count() == 2
} // w.use_count() == s.use_count() == 1
s.reset(); // w.expired() == true

�std::enable_shared_from_this
The Standard Library provides std::enable_shared_from_this<T>, a mixin class
template that allows objects to safely return a shared_ptr<T> to themselves. When a class
inherits from enable_shared_from_this<T>, it gets the following extra methods:

•	 shared_from_this() returns a shared_ptr<T> to this.

•	 weak_from_this() returns a weak_ptr<T> to this.

Chapter 2 ■ General Utilities

42

There is one important caveat though when using this template.

■■ Caution  shared_from_this() can only be used when a pointer to this has
already been stored in a shared_ptr before; otherwise, shared_from_this() throws a
std::bad_weak_ptr exception. weak_from_this() simply returns an empty weak_ptr
if no pointer to the object has been placed inside a shared_ptr yet.

In the following example, the pointers p1, p2, and p3 point to the same instance of
MyObject:

class MyObject : public std::enable_shared_from_this<MyObject> {
public:
std::shared_ptr<MyObject> pointer() { return shared_from_this(); }

};

int main() {
auto p1 = std::make_shared<MyObject>();
auto p2 = p1->pointer();
auto p3 = p1->shared_from_this();

MyObject unshared;
auto p4 = unshared.shared_from_this (); // Throws std::bad_weak_ptr

}

�Function Objects� <functional>

A function object or functor is an object with an operator()(T1,...,Tn) (n may be zero),
allowing it to be invoked just like a function or operator. Here is an example:

template <typename T> struct my_plus
{ T operator() (const T& x, const T& y) const {return x+y;} };

my_plus<int> functor;
std::cout << functor(11,22) << std::endl; // 33

Functors can not only be passed to many standard algorithms (Chapter 4) and
concurrency constructs (Chapter 7) but are also very useful for creating your own generic
algorithms or, for example, for storing or providing callback functions.

This section outlines the functors defined in <functional>, as well as its facilities for
creating and working with functors.2

2  The old ptr_fun(), mem_fun(), mem_fun_ref(), bind1st(), bind2nd(), their return types,
as well as the base classes unary_function and binary_function that were defined in
<functional> have been removed from the C++17 version of the standard.

Chapter 2 ■ General Utilities

43

Before we delve into functors though, first a short word on the reference wrapper
utilities that are defined in the <functional> header.

■■ Note I n the text that follows, the term callable is used. A callable is something that can
be invoked—such as a function, a function pointer, a function object, a closure resulting
from a lambda expression, and so on.

�Reference Wrappers
The functions std::ref() and cref() return std::reference_wrapper<T> instances that
simply wrap a (const) T& reference to their input argument. This reference can then be
extracted explicitly with get() or implicitly by casting to T&.

As these wrappers can safely be copied, they can be used, for example, to pass
references to template functions that take their arguments by value, badly forward
their arguments (forwarding is discussed earlier in this chapter), or simply copy their
arguments for other reasons. Standard template functions that do not accept references
as arguments, but do work with ref()/cref(), include std::thread() and async() (see
Chapter 7) and the std::bind() function discussed shortly.

These wrappers can be assigned to as well, thus enabling storing references into
the containers of Chapter 3. In the following example, for instance, one could not have
declared a vector<int&>, because int& values cannot be assigned to:

int i = 234;
std::vector v{ std::ref(i) }; // cf. Chapter 3
// Or: std::vector<std::reference_wrapper<int>> v{ std::ref(i) };
v[0].get() = 432; // Occasionally, like here, an explicit get() is needed

// (v[0] returns reference_wrapper<int>&, not int&).
std::cout << v[0] << "==" << i << std::endl; // 432==432

�Predefined Functors
The <functional> header provides an entire series of functor structs similar to the
my_plus example used earlier in the introduction of this section:

•	 plus, minus, multiplies, divides, modulus, and negate

•	 equal_to, not_equal_to, greater, less, greater_equal, and
less_equal

•	 logical_and, logical_or, and logical_not

•	 bit_and, bit_or, bit_xor, and bit_not

Chapter 2 ■ General Utilities

44

These functors often result in short, readable code, even more so than with lambda
expressions. The following example sorts an array in descending order (with the default
being ascending) using the sort() algorithm explained in Chapter 4:

int array[] = { 7, 9, 7, 2, 0, 4 };
std::sort(std::begin(array), std::end(array), std::greater<int>());

As of C++14, all preceding functor classes have a special specialization for T equal
to void, and void has also become the default template type argument. These are called
transparent operator functors, as their function call operator conveniently deduces the
parameter type. In the preceding sort() example, one could simply use std::greater<>.
The same functor can even be used for different types:

std::plus<> fun; // defaults to std::plus<void>
std::cout << fun(234,432) << ' ' << fun(1.101,2.0405) << std::endl;

As Chapter 3 explains, the transparent std::less<> and greater<> functors are also
the preferred comparison functors for ordered associative containers.

�Binding Function Arguments
The std::bind() function may be used to wrap a copy of any callable while changing
its signature: parameters may be reordered, assigned fixed values, and so on. To specify
which arguments to forward to the wrapped callable, a sequence of either values or
so-called placeholders (_1, _2, etc.) is passed to bind(). The first argument passed to
the bound functor is forwarded to all occurrences of placeholder _1, the second to those
of _2, and so on. The maximum number of available placeholders is implementation
specific. Some examples to clarify:

bool my_less(int x, int y) { return x < y; }
void f(std::string& x, char y) { x += y; }
int main() {

using namespace std::placeholders; // contains _1, _2, _3, ...
auto my_greater = std::bind(my_less, _2, _1); // function + swap _1 _2
auto twice = std::bind(std::plus<int>{}, _1, _1);// functor + twice _1
auto plus5 = std::bind(std::plus<int>{}, _1, 5); // functor + fixed 5
std::cout << my_greater(twice(13), plus5(20)) << '\n'; // 1 (true)

// bind() expressions may be nested whilst sharing placeholders:
auto g = std::bind(my_greater,std::bind(twice,_1),std::bind(plus5,_1));
std::cout << g(10) << ' ' << g(4) <<'\n'; // 1 0 (true false)

Chapter 2 ■ General Utilities

45

// Use std::ref()/cref() to pass references
// (For containers, algorithms, and strings seechapters 3, 4, and 6)
std::vector v{ 'c', 'o', 'n', 'c', 'a', 't' };
std::string concat;
std::for_each(begin(v), end(v), std::bind(f, std::ref(concat), _1));
std::cout << concat << std::endl;

}

The type of the functor that is returned by std::bind() is unspecified, much like the
type of a lambda expression (also a functor).

■■ Tip A s of C++14, there is nothing std::bind() can do that lambda expressions
cannot do as well. As lambda expressions are mostly easier to write and read than bind()
expressions, we therefore do not recommend using std::bind() too often.

�Negating a Callable C++17
Passing a callable, predicate, to std::not_fn() creates and returns a new functor (of an
unspecified type) that negates predicate’s result (i.e., evaluates to !predicate()). This
new functor has the same parameter types as the original callable.

Prior to C++17, you had to resort to std::not1()  /  not2(), which only worked for
unary/binary functors that satisfied certain requirements. Both not1() and not2() are
deprecated since C++17 and are not further discussed.

�Generic Function Wrappers
The std::function class template is designed for wrapping a copy of any kind of callable.
This includes functors of undefined types, such as the results of std::bind(), not_fn(),
and lambda expressions:

bool my_less(int x, int y) { return x < y; }
int main() {

std::function<bool(int,int)> test = my_less; // function
test = &my_less; // function pointer
test = std::less<>{}; // function object
test = [](int x, int y) {return x < y; }; // lambda closure
if (test) std::cout << test(234,432) << std::endl; // 1 (true)

}

If a default-constructed function object is called, a std::bad_function_call
exception is thrown. To verify whether a function may be called, it conveniently casts to a

Chapter 2 ■ General Utilities

46

Boolean. Alternatively, you may compare a function to a nullptr using == or !=, just like
you would with a function pointer.

Other members include target<Type>() to obtain a pointer to the wrapped entity
(the correct Type must be specified, otherwise the member returns nullptr) and target_
type() which returns the type_info for this wrapped entity (type_info is explained
under “Type Utilities” later in this chapter).

■■ Tip A lesser-known feature of std::ref(), cref(), and their return type
reference_wrapper seen earlier is that they can also be used to wrap callables.
Unlike a std::function though, which stores a copy of the callable, a reference_
wrapper stores a reference to it. This is useful when passing a functor you do not want
to be copied—for example, because it is too large (performance), stateful, or simply
uncopyable—to an algorithm that accepts it or may pass it around by value. For example:

function_that_copies_its_callable_argument(std::ref(my_functor));

Note that for the standard algorithms of Chapter 4, it is generally unspecified how often they
copy their arguments. So to guarantee no copies are made, one must use (c)ref().

�Functors for Class Members
Both std::function and bind() may be used to create functors that evaluate to a given
object’s member variable or that call a member function on a given object. A third option
is to use std::mem_fn(), which is intended specifically for this purpose:

struct my_struct { int val; bool fun(int i) { return val == i; } };
int main() {
 my_struct s{234};

 std::function<int(my_struct&)> f_get_val = &my_struct::val;
 std::function<bool(my_struct&,int)> f_call_fun = &my_struct::fun;
 std::cout << f_get_val(s) << ' ' << f_call_fun(s, 123) << std::endl;

 using std::placeholders::_1;
 auto b_get_val = std::bind(&my_struct::val, _1);
 auto b_call_fun_on_s = std::bind(&my_struct::fun, std::ref(s), _1);
 std::cout << b_get_val(s) << ' ' << b_call_fun_on_s(234) << std::endl;

 auto m_get_val = std::mem_fn(&my_struct::val);
 auto m_call_fun = std::mem_fn(&my_struct::fun);
 std::cout << m_get_val(s) << ' ' << m_call_fun(s, 456) << std::endl;
}

Chapter 2 ■ General Utilities

47

The member functors created by either bind() or mem_fn(), but not std::functions,
may also be called with a pointer or one of the standard smart pointers (cf. previous
section) as the first argument (i.e., without dereferencing). Interesting also about the
bind() option is that it can bind the target object itself (cf. b_call_fun_on_s). If that is
not required, std::mem_fn() generally results in the shortest code as it deduces the entire
type. A more realistic example is this (vector, count_if(), and string are explained in
Chapters 3, 4, and 6, respectively):

std::vector<std::string> v{ "Test", "", "123", "", "" };
std::cout <<

std::count_if(begin(v), end(v), std::mem_fn(&std::string::empty)); // 3

�Initializer Lists� <initializer_list>

The initializer_list<T> type is used by the C++ compiler to represent the result of
initializer-list declarations:

auto list = { 1, 2, 3 }; // list has type std::initializer_list<int>

This curly braces syntax is the only way to create nonempty initializer lists. Once
created, initializer_lists are immutable. Their few operations, size(), begin(),
and end(), are analogous to those of containers (Chapter 3). When constructing an
initializer_list from a list of initialization values, the list stores a copy of those values.
However, copying an initializer_list does not copy the elements: the new copy
simply refers to the same array of values.

The single most common use case for initializer_lists is probably initializer-list
constructors, which are special in the sense that they take precedence over any other
constructors when curly braces are used:

class ExampleClass {
public:
ExampleClass(int, int) { /* ... */ };
ExampleClass(std::initializer_list<int>) { /* ... */};

};
ExampleClass a(1, 2); // (int, int) constructor is used
ExampleClass b{1, 2}; // initializer_list<int> constructor is used

All container classes of Chapter 3, for instance, have initializer-list constructors to
initialize them with a list of values.

Chapter 2 ■ General Utilities

48

�Vocabulary Types C++17
�std::optional� <optional>

A std::optional<T> can either hold a value of type T or not. Use cases include optional
return values from functions, optional function parameters, and optional class data
members. Using std::optional removes the need to resort to sentinel values (e.g., -1,
EOF, nullptr, NaN, etc.) to represent, for instance, error conditions or values that are not
(yet) set. It also clearly expresses what to expect: a value that may not always be present.
The following code snippet shows how an optional can be used as a return type of a
function:

std::optional<double> divide(double n, double d) {
 if (d != 0.0) return n / d;
 else return {};
}

int main() {
 auto result = divide(12, 3);
 if (result.has_value()) // or: if (result)
 std::cout << "result is: " << result.value(); // or: ... << *result
}

In the preceding example, the difference between result.value() and *result
is that for an empty optional the former throws a bad_optional_access exception,
whereas the latter results in undefined behavior.

The standard requires an optional to hold its value in place, so when creating an
instance of optional<T>, it is made big enough to hold such a T.

�std::nullopt_t
The Standard Library provides the type std::nullopt_t and a global instance of that type
called std::nullopt. A nullopt_t can be passed to the constructor of optional to create
an optional without a value. It can also be used in assignment statements to remove any
value currently in an optional, and in comparisons to verify whether an optional has a
value or not.

The divide() example from earlier can be written as follows:

std::optional<double> divide(double n, double d) {
 if (d != 0.0) return n / d;
 else return std::nullopt;
}

Chapter 2 ■ General Utilities

49

int main() {
 auto result = divide(12, 3);
 if (result != std::nullopt)
 std::cout << "result is: " << result.value();
}

�Constructors
An optional can be constructed either from a given T value or from U or optional<U>
if U is convertible to T. Default-constructed optionals and optionals constructed from
a nullopt_t have no value. A std::optional<T> is copyable and/or movable if T is
copyable and/or movable.

Finally, optional also supports the following in-place constructor:

optional(in_place_t, [initializer_list,] Args&&... args)

This creates an optional holding a T value constructed in place by forwarding
the optional initializer list and arguments to the appropriate constructor of type T. The
standard provides std::in_place which is of type std::in_place_t, and which you can
use to pass to this constructor. This in-place construction works in a similar fashion as the
in-place construction of pairs. Here is a quick example:

auto opt = std::optional<std::string>(std::in_place, "Hello");

A helper function to create optionals is provided as well, std::make_optional().
It comes in the following flavors:

•	 make_optional(T&& value): Creates an optional from the given
value

•	 make_optional([initializer_list,] Args&&... args):
Creates an optional with a value constructed in place by calling
a constructor of T and passing it the optional initializer list and
forward<Args>(args)...

■■ Note R eferences cannot be stored as is in an optional. You can however create an
optional<reference_wrapper<T>> or optional<reference_wrapper<const T>>.
Reference wrappers are discussed earlier in this chapter in the section on function objects.

Chapter 2 ■ General Utilities

50

�Methods and Non-member Functions
The following methods are provided:

Method Description

operator bool()
bool has_value()

Returns true if the optional contains a value,
false otherwise.

T* operator->()
T& operator*()

Returns a pointer or a reference to the wrapped
value. The behavior is undefined if the optional
has no value.

T& value() Returns a reference to the wrapped value. Throws
bad_optional_access if the optional has no value.

T value_or(U&& default_value) Returns a copy of the wrapped value if any;
otherwise returns the given default value.

operator=() Assigns a value or nullopt_t to the optional.

T& emplace(Args&&... args)
T& emplace(initializer_list,
 Args&&... args)

Constructs a value for the optional in place by
forwarding the given initializer list (if any) and
arguments to a constructor of T.

reset() Empties the optional by destroying the wrapped
value. No new value can be passed to reset() (this
is unlike the reset() of smart pointers earlier).

swap(optional&) Swaps the contents with another optional.

Three sets of comparison operators (==, !=, <, >, <=, and >=) are provided as
non-member functions: comparing two optional instances, comparing an optional
with std::nullopt, and comparing an optional with a value. A non-member
std::swap(optional&) is also available.

�std::variant� <variant>

An instance of std::variant holds a value of one of a predefined set of types,
called alternatives. You can think of it as a type-safe union. For example,
variant<int,  long,  string> is a variant that holds an instance of one of the three
specified alternatives at any given time: either an int, a long, or a string.

Similar to an optional, a variant is required to store its value in place, so it is made
big enough to hold an instance of the biggest specified alternative type. Also similar to
optional, a variant cannot store references as is. If you need to store references, use
reference wrappers (discussed in the section on function objects). Unlike optional,
however, a variant normally always holds a value.

Chapter 2 ■ General Utilities

51

�Construction
Default Construction

A variant is never empty, unless an exception is thrown while constructing the value instance
to store in the variant. The default constructor of a variant does not create an ‘empty’
variant, but one that holds a default-constructed value of the first supported alternative type.
The compiler will raise an error if you try to default-construct a variant for which the first
alternative is not default-constructible. For example, the following code does not compile:

class NoDefaultCtor {
 public:
 NoDefaultCtor() = delete;
 NoDefaultCtor(int) {}
};

std::variant<NoDefaultCtor> v;

To make it possible to use variant with types that are not default-constructible as
the first alternative, the <variant> header provides std::monostate, a trivial default-
constructible type. You use it as follows:

std::variant<std::monostate, NoDefaultCtor> v;

Constructors

The following constructors are available:

•	 variant(): Constructs a variant containing a value-initialized
instance of the variant’s first alternative.

•	 Copy and move constructors.

•	 variant(T&& t): Constructs a variant containing a value of one
of the variant’s alternative types which can be constructed by
forwarding the given value t to a constructor of that type.

•	 variant(in_place_type_t<T>, [initializer_list,]
Args&&... args): Constructs a variant containing a value of
type T constructed by calling a constructor of T and passing it the
optional initializer list and forward<Args>(args)...

•	 variant(in_place_index_t<I>, [initializer_list,]
Args&&... args): Constructs a variant containing a value of the
type of the Ith alternative, constructed by calling a constructor
of that type and passing it the optional initializer list and
forward<Args>(args)...

std::in_place_type_t<T> and in_place_index_t<I> are tags to be able to
differentiate overloaded constructors. The standard also provides std::in_place_
type<T> and in_place_index<I> which are predefined instances of the corresponding

Chapter 2 ■ General Utilities

52

_t types, and which you can pass as arguments to the constructors. Here is an example of
using one of the in-place constructors:

std::variant<int, std::string> v(std::in_place_type<std::string>, "Hello");

�Methods and Non-member Functions
A std::variant supports the following methods:

Method Description

valueless_by_exception() Returns true if the variant is empty. This state can
only be reached when an exception is thrown while
constructing the value instance to store in the variant.

index() Returns the index of the type (alternative) of the value
currently stored in the variant, or std::variant_npos
for a valueless variant.

operator=() Assigns a value to the variant.

emplace<T>()
emplace<I>()

Constructs a new value in place. It has a similar set of
overloads as the constructors, i.e., it can construct a
value based on a given type T or on the index I of the
alternative type, and it either accepts a set of arguments
or an initializer list and a set of arguments. The return
value is a reference to the created value.

swap(variant&) Swaps the contents with another variant.

Additionally, the Standard Library provides a set of comparison operators (==, !=, <,
>, <=, and >=) as non-member functions and includes the following non-member helper
functions to work with variants:

Non-member Function Description

holds_alternative<T>
 (const variant&)

Returns true if the given variant holds a value of the
specified type T.

get<T>(variant&)
get<I>(variant&)
get<T>(const variant&)
get<I>(const variant&)
get<T>(variant&&)
get<I>(variant&&)

Retrieves the value currently held by a variant,
either based on the type or the index of the desired
alternative. Returns a reference to the requested value
and throws std::bad_variant_access if the current
variant does not hold an alternative of the requested
type or index. The behavior is unspecified if either the
requested type is not unique among the alternatives or
the given index is not a valid index for the variant.

(continued)

Chapter 2 ■ General Utilities

53

Non-member Function Description

get_if<T>(variant*)
get_if<I>(variant*)
get_if<T>(const variant*)
get_if<I>(const variant*)

Nonthrowing versions of the get<>() functions that
accept and return pointers instead of references.
Instead of throwing, these return nullptr on errors.

swap(variant&) Swaps the contents with another variant.

�Example Usage
Here is a quick example of how to use the variant type:

std::variant<int, std::string> v1; // Value-constructed variant contains
// a value-initialized value of the
// first alternative type (int).

std::cout << std::holds_alternative<int>(v1) << std::endl; // 1 (true)
std::cout << v1.index() << std::endl; // 0

v1 = "In manufacturing, we try to stamp out variance. "
"With people, variance is everything.";

std::cout << std::get<1>(v1) << std::endl; // In manu...
std::cout << *std::get_if<std::string>(&v1) << std::endl; // In manu...

�Visitation
A final helper function provided is std::visit():

template<class Visitor, class... Variants>
constexpr auto visit(Visitor&& visitor, Variants&&... v);

This function accepts a visitor and one or more variants to be visited. The return type
is the return type of the visitor that was invoked. If visit() is called with one variant, then
the given visitor will be invoked with a single argument: the value of the given variant. A
std::bad_variant_access exception is thrown if the given variant is empty.

Here is an example of using visit() to visit a single variant:

std::variant<std::string, int> v1 = { "Hello world!" }, v2 = 42;

// A simple visitor.
auto myVisitor = [](auto&& value) { std::cout << value << std::endl; };
std::visit(myVisitor, v1); // Hello world!
std::visit(myVisitor, v2); // 42

Chapter 2 ■ General Utilities

54

// A type-matching visitor to handle specific types.
struct IsNullVisitor {
bool operator()(const std::string& s) const { return s.empty(); }
bool operator()(int i) const { return i == 0; }

};

std::cout << std::visit(IsNullVisitor{}, v1) << std::endl; // 0
std::cout << std::visit(IsNullVisitor{}, v2) << std::endl; // 0

visit() can also visit multiple variants at once. The result of calling visit() with
multiple variants is a single invocation of the given visitor passing as many arguments
as there are variant arguments. For example, if visit() is called with two variants,
then the given visitor will be invoked with two arguments: the value of the first given
variant, followed by the value of the second given variant. A std::bad_variant_access
exception is thrown if any of the variants is empty. A type-matching visitor should have a
handler for all combinations of the alternative types in the variants. Here is an example
of a type-matching visitor visiting two variants:

class MyVisitor {
public:

auto operator()(int, int) const { return "Two ints.";}
auto operator()(const std::string&, const std::string&) const {

return "Two strings."; }
auto operator()(const std::string&, int) const {

return "A string and an int."; }
auto operator()(int, const std::string&) const {

return "An int and a string."; }
};

// A string and an int.
std::cout << std::visit(MyVisitor{}, v1, v2) << std::endl;

�Helper Classes
The standard provides a std::variant_size<T> class template to query, at compile
time, the number of alternatives of a given variant<Ts...> type—that is, to query, at
compile time, the length of its parameter pack Ts. This number can be retrieved either
with std::variant_size<T>::value or with the more convenient variable template
std::variant_size_v<T> (which is defined exactly as std::variant_size<T>::value).

Finally, with std::variant_alternative<I,  T> you can query the type of the
Ith alternative type of a given variant type. This type can be retrieved with either
std::variant_alternative<I,  T>::type or the more convenient template alias
std::variant_alternative_t<I,  T>.

Chapter 2 ■ General Utilities

55

�std::any� <any>

An instance of std::any can hold a value of any type, or no value at all. As it is capable of
holding any kind of type, there is no way of knowing how big an any instance must be, so
values are usually not stored in place (except when small object optimization kicks in).
any can be thought of as a type-safe void*.

�Constructors
The following constructors are available:

•	 any(): Constructs an instance without a value.

•	 Copy and move constructors.

•	 any(T&& value): Constructs an any containing a value of type T,
constructed by forwarding the given value to the constructor of T.

•	 any(in_place_type_t<T>, [initializer_list,] Args&&...):
Constructs an any instance containing a value of type T
constructed in place by forwarding the optional initializer list and
arguments to a constructor of T. The standard provides std::in_
place_type<T> which is of type in_place_type_t<T>, and which
you can use to pass to this constructor.

Finally, the std::make_any<T>([initializer_list,] Args&&...) helper functions
are provided to create any instances, which behave the same as the in-place constructors.

�Methods and Non-member Functions
The following methods are provided:

Method Description

bool has_value() Returns true if the any contains a value, false
otherwise.

type_info& type() Returns a type_info3 for the type of the value
contained in the any instance. If the any is empty,
returns a type_info for void.

operator=() Assigns a value to the any.

V& emplace(Args&&... args)
V& emplace(initializer_list,
 Args&&... args)

Constructs a value for the any in place by
forwarding the given initializer list (if any) and
arguments to a constructor of V.

3 type_info is a structure containing information about a given type. It is explained under
“Type Utilities” later in this chapter. For now it suffices to know that you can call name() on a
type_info instance to get the full name of a given type. It requires the <typeinfo> header.

(continued)

Chapter 2 ■ General Utilities

56

Method Description

reset() Empties the any by destroying the contained value.
No new value can be passed as an argument (this is
unlike the reset() method of smart pointers).

swap(any&) Swaps the contents with another any.

To get type-safe access to the contained value of an any instance, use std::any_cast<T>().
This function comes in the following five overloads. The last column describes what happens if
the value’s type of the any instance does not match the given type T.

Overload Return Type On Error

any_cast<T>(const any&) T Throws bad_any_cast

any_cast<T>(any&) T Throws bad_any_cast

any_cast<T>(any&&) T Throws bad_any_cast

any_cast<T>(const any*) const T* Returns nullptr

any_cast<T>(any*) T* Returns nullptr

�Example Usage
Here is a brief example on how to work with any instances4:

std::any a;
std::cout << a.has_value() << std::endl; // 0
a = 42;
std::cout << a.type().name() << std::endl; // int
a = "Any sufficiently advanced technology is indistinguishable from magic";
std::cout << a.type().name() << std::endl; // const char*
std::cout << std::any_cast<const char*>(a) << std::endl; // Any suffi...
a.reset();
std::cout << a.type().name() << std::endl; // void

�Date and Time Utilities� <chrono>

The <chrono> library introduces utilities mainly for tracking time and durations at varying
degrees of precision, determined by the type of clock used. To work with dates, one has to
use the C-style date and time types and functions defined in <ctime>. The system_clock
from <chrono> allows for interoperability with <ctime>.

4 As we explain later, the actual output of std::type_info::name() depends on your compiler. With
Microsoft Visual Studio 2017, for instance, the output for the type const  char* is "char  const  *
__ptr64"; with GCC 9 it is "PKc" (a mangled type name, short for "Pointer to Konst char").

Chapter 2 ■ General Utilities

57

�Durations
A std::chrono::duration<Rep,  Period=std::ratio<1>> expresses a time span as a tick
count, represented as a Rep value which is obtainable through count() (Rep is or emulates
an arithmetic type). The time between two consecutive ticks, or period, is statically
determined by Period, a std::ratio type denoting a number (or fraction) of seconds
(std::ratio is explained in Chapter 1). The default Period is 1 second:

using namespace std::chrono;
using hours_t = duration<int, std::ratio<3600>>;
using milli_t = duration<int64_t, std::milli>; // milli==ratio<1,1000>
const hours_t one_hour(1);
const milli_t ms(one_hour);
std::cout << "1h = " << ms.count()<< "ms"; // 1h = 3600000ms

The duration constructor can convert between durations of a different Period
and/or count Representation, as long as no truncation is required. The duration_cast()
function can be used for truncating conversions as well:

// const hours_t back_to_hours(ms); <-- error (int64_t would be truncated)
const auto back_to_hours = duration_cast<hours_t>(ms);

For convenience, several type aliases analogous to those in the previous example
are predefined in the std::chrono namespace: hours, minutes, seconds, milliseconds,
microseconds, and nanoseconds. Each uses an unspecified signed integral Rep type, at
least big enough to represent a duration of about 1000 years (Rep has at least 23, 29, 35, 45,
55, and 64 bits, respectively).

For further convenience, the namespace std::literals::chrono_literals
contains literal operators to easily create instances of such duration types: h, min, s,
ms, us, and ns, respectively. They are also made available with a 'using  namespace
std::chrono' declaration. When applied on a floating-point literal, the result shall have
an unspecified floating-point type as Rep:

const auto secs = duration_cast<seconds>(0.5h);
std::cout << "0.5h = " << secs.count() << "s"; // 0.5h = 1800s

All arithmetic and comparison operators one would intuitively expect for working
with durations are supported: +, -, *, /, %, +=, -=, *=, /=, %=, ++, --, ==, !=, <, >, <=, and >=.
The following expression, for example, evaluates to a duration with count()  ==  22:

duration_cast<minutes>((12min + .5h) / 2 + (100ns >= 1ms? -3h : ++59s))

Chapter 2 ■ General Utilities

58

C++17 provides std::chrono::floor(), ceil(), round(), and abs() that work on
durations. These functions, except abs(), require you to specify a template type
argument representing the desired duration of the result. Here is an example on how to
use floor() and abs() C++17 :

auto s1 = -4.2s; // -4.2s
auto s2 = std::chrono::floor<std::chrono::seconds>(s1); // -5s
auto s3 = std::chrono::abs(s1); // 4.2s

�Time Points
A std::chrono::time_point<Clock,  Duration=Clock::duration> represents a point
in time, expressed as a Duration since a Clock’s epoch. This Duration may be obtained
from its time_since_epoch() member. The epoch is defined as the instant in time chosen
as the origin for a particular clock, the reference point from which time is measured. The
available standard Clocks are introduced in the next section.

A time_point is generally originally obtained from a member of its Clock’s class.
It may be constructed from a given Duration as well though. If default-constructed, it
represents the Clock’s epoch. Several arithmetic (+, -, +=, -=) and comparison (==, !=,
<, >, <=, >=) are again available. Subtracting two time_points results in a Duration, and
Durations may be added to and subtracted from a time_point. Adding time_points
together though is not allowed, nor is subtracting one from a Duration:

using namespace std::chrono;
time_point<system_clock, hours> one_hour(1h); // 1h since epoch
time_point<system_clock, minutes> sixty_minutes = one_hour;
std::cout << (one_hour - sixty_minutes).count() << std::endl; // 0

Conversion between time_points with different Duration types works analogously
to the conversion of durations: implicit conversions are allowed, as long as no truncation
is required; otherwise, time_point_cast() can be used:

auto one_hour = time_point_cast<hours>(sixty_minutes);

C++17 provides std::chrono::floor(), ceil(), and round() that work on
timepoints. These functions require you to specify a template type argument
representing the desired duration of the result. Here is a quick example C++17 :

time_point<system_clock, duration<double>> tp1(2.2s);
auto tp2 = std::chrono::floor<seconds>(tp1); // 2s since epoch

Chapter 2 ■ General Utilities

59

�Clocks
The std::chrono namespace offers three clock types: steady_clock, system_clock, and
high_resolution_clock. All clocks define the following static members:

•	 now(): A function returning the current point in time.

•	 rep, period, duration, time_point: Implementation-specific
types. time_point is the type returned by now(): an instantiation
of std::chrono::time_point with Duration type argument equal
to duration, which in turn equals std::chrono::duration<rep,
period>.

•	 is_steady: A Boolean constant which is true if the time between
clock ticks is constant and two consecutive calls to now() always
return time_points t1 and t2 for which t1 <= t2.

The only clock that is guaranteed to be steady is steady_clock. That is, this
clock cannot be adjusted. The system_clock on the other hand corresponds to the
system-wide real-time clock, which can generally be set at will by the user. The high_
resolution_clock, finally, is the clock with the shortest period supported by the library
implementation (it may be an alias for steady_clock or system_clock).

To measure the time an operation took, a steady_clock should therefore be used,
unless the high_resolution_clock of your implementation is steady:

using std::chrono::steady_clock;
const steady_clock::time_point before = steady_clock::now();
std::cout << steady_clock::period::num << '/' /* Possible output: */

<< steady_clock::period::den << '\n'; // 1/1000000000
std::cout << (steady_clock::now() - before).count(); // 34721

The system_clock should be reserved for working with calendar time. Because
the facilities of <chrono> in that respect are somewhat limited, this clock offers static
functions to convert its time_points to time_t objects and vice versa (to_time_t() and
from_time_t(), respectively), which can then be used with the C-style date and time
utilities discussed in the next subsection:

using std::chrono::system_clock;
const auto now = system_clock::now(); /* Possible output: */
const time_t now_time_t = system_clock::to_time_t(now);
std::cout << now.time_since_epoch().count() << '\n'; // 1445470140000
std::cout << ctime(&now_time_t)<< '\n'; // Wed Oct 21 16:29:00 2015

Chapter 2 ■ General Utilities

60

�C-Style Date and Time Utilities� <ctime>

The <ctime> header defines two interchangeable types to represent a date and time:

•	 time_t: An alias for an arithmetic type (generally a 64-bit signed
integer), represents time in a platform-specific manner.

•	 tm: A portable struct with these fields—tm_sec (range [0,60],
where 60 is used for leap seconds), tm_min, tm_hour, tm_mday (day
of the month, range [1,31]), tm_mon (range [0,11]), tm_year (year
since 1900), tm_wday (range [0,6], with 0 being Sunday), tm_yday
(range [0,365]), and tm_isdst (positive if Daylight Saving Time is
in effect, 0 if not, and negative if unknown).

The following functions are available with <ctime>. The ‘local time zone’ is
determined by the currently active C locale (locales are explained in Chapter 6):

Function Returns

clock() A clock_t (an arithmetic type) with the approximate processor time
consumed by the process in clock ticks, or -1 upon failure. The clock’s
period is stored in the CLOCKS_PER_SEC constant. While this clock is
steady, it may run at a different pace than wall clock time (slowed down
due to context switches, sped up due to multithreading, etc.).

time() Current point in time as a time_t, or -1 on failure. A time_t* argument
must be passed: if not nullptr, the return value is written there as well.

difftime() The difference between two time_ts as a double value denoting a time
in seconds (result may be negative).

mktime() A time_t, converted from a tm* for the local time zone, or -1 on failure.

localtime()
gmtime()

A pointer to a statically allocated tm to which the conversion for the
local/GMT time zone from a given time_t* has been written, or
nullptr on failure. These functions are not thread-safe: this global tm is
possibly shared among localtime(), gmtime(), and ctime().

asctime()
ctime()

A char* pointer into a global buffer in which the (null-terminated)
textual representation of a given tm* resp. time_t* is written, using a
fixed, locale-independent format. As they are thus both limited and not
thread-safe, they have been deprecated in favor of, e.g., strftime().

strftime() Explained next.

Consult your implementation’s documentation for safer alternatives for localtime()
and gmtime() (e.g., localtime_s() for Windows or localtime_r() for Linux). For
converting dates and times to strings, the preferred C-style function is strftime() (at the
end of this section, we point out C++-style alternatives):

size_t strftime(char* result, size_t n, const char* format, const tm*);

Chapter 2 ■ General Utilities

61

An equivalent for converting to wide strings (wchar_t sequences), wcsftime(), is
defined in <cwchar>. These functions write a null-terminated character sequence into
result, which must point to a preallocated buffer of size n. If this buffer is too small, zero
is returned. Otherwise, the return value shall equal the number of characters written, not
including the terminating null character.

The grammar for specifying the desired textual representation is defined as follows:
any character in the format string is copied to the result, except certain special specifiers
which are replaced as shown in the following table:

Specifier Output Range or Example

%M / %S Minutes / seconds [00,59] / [00,60]

%H / %I Hours using 24h / 12h clock [00,23] / [01,12]

%R / %T Equivalent to "%H:%M" / "%H:%M:%S" 04:29 / 04:29:00

%p / %r A.m. or p.m. / full 12h clock time pm / 04:29:00 pm

%A / %a Full / abbreviated weekday name Wednesday / Wed

%u / %w Weekday number, where the first number in the
range stands for Monday / Sunday

[1-7] / [0-6]

%d / %e Day of the month [01-31] / [1-31]

%j Day of the year [001-366]

%U / %V / %W Week of the year, with weeks starting at Sunday
(%U) or Monday (%V, %W); %V determines the first
week of the year according to ISO 8601

[00,53] (%U,%W) /
[01,53] (%V)

%B / %b, %h Full / abbreviated month name (%h is an alias for
%b)

October / Oct

%m Month number [01-12]

%Y / %G Year / year current week belongs to per ISO 8601 2019

%C / %y / %g First (%C) / last (%y, %g) two digits of the year. %g
uses the year the current week belongs to per ISO
8601

20 / 19 / 19

%D / %F Equivalent to "%m/%d/%y" / "%Y-%m-%d" 10/21/19 /
2019-10-21

%c / %x / %X Preferred date + time / date / time representation (see later)

%Z / %z If available (empty if not): time zone name or
abbreviation / offset from UTC as "±hhmm"

PDT / -0700

%% / %t / %n Escaping / special characters % / \t / \n

Chapter 2 ■ General Utilities

62

time_t time = std::time(nullptr);
tm time_tm = *std::localtime(&time);
char buffer[256];
strftime(buffer, sizeof(buffer), "Today is %a %e/%m%n", &time_tm);
std::cout << buffer; // Today is Sat 30/01
strftime(buffer, sizeof(buffer), "%c--%x %X", &time_tm);
std::cout << buffer << '\n'; // Sat Jan 30 17:58:23 2016--01/30/16 17:58:23

The result of many specifiers, including those that expand to names or ‘preferred’
formats, depends on the active locale (cf. Chapter 6). When executed with a French
locale, for example, the output for the preceding example could be "Today  is  mer.  21/11"
and "10/21/15  16:29:00--10/21/15  16:29:00". To use a locale-dependent alternative
representation (if one is defined by the current locale), C, c, X, x, Y, and y may be preceded
by an E (i.e., %EC, %Ec, etc.); to use alternative numeric symbols, d, e, H, I, M, m, S, u, U, V, W, w,
and y may be modified with the letter O.

As covered in Chapter 5, the C++ libraries offer facilities for reading/writing a tm
from/to a stream as well, namely, get_time() and put_time(). The only C-style function
from <ctime> you will generally need to output calendar dates and time in C++-style is
therefore localtime() (to convert a system_clock's time_t to tm).

�Type Utilities
�Runtime Type Identification� <typeinfo>, <typeindex>
The C++ typeid() operator is used to obtain information on the runtime type of a
value. It returns a reference to a global instance of the std::type_info class defined in
<typeinfo>. These instances cannot be copied, but it is safe to use references or pointers
to them. Comparison is possible using their ==, !=, and before() members, and a
hash_code() can be computed for them. Of particular interest is name(), which returns an
implementation-specific textual representation of the value’s type:

const std::string s = "Hello";
std::cout << typeid(s).name() << '\n';
std::cout << (typeid(typeid(s).name()) == typeid(s.data())); // 1 (true)

The name() printed may be something like "std::basic_string<char,  std::char_
traits<char>,  std::allocator<char>>" (cf. Chapter 6), but for other implementations
it might just as well simply be "Ss". The latter are so-called mangled type names, used
by the compiler internally. Such names can generally be converted to a human-readable
form using some compiler-specific function.

When used on a B* pointer to an instance of a derived class D, typeid() shall only
give the dynamic type D* rather than the static type B* if B is polymorphic, that is, has at
least one virtual member.

Chapter 2 ■ General Utilities

63

Because type_infos cannot be copied, they cannot be used as keys for the
associative arrays of Chapter 3 directly. For precisely this purpose, the <typeindex>
header defines the std::type_index decorator class: it mimics the interface of a wrapped
type_info&, but it is copyable; has <, <=, >, and >= operators; and has a specialization of
std::hash defined for it.

�Type Traits� <type_traits>

A type-trait class, or type trait for short, is a construct used to obtain compile-time
information on a given type or to transform between related types. Type traits are used to
inspect or manipulate template type arguments when writing generic code and are thus
key components in template metaprogramming.

The <type_traits> header defines a multitude of trait classes. Due to page
constraints, and because template metaprogramming is an advanced topic, this book
cannot go into details on all of them. We will provide a brief reference though on the
different type traits, which should be sufficient for basic usage.

�Helper Classes
The <type_traits> header provides a std::integral_constant<T,  T  value> template
that represents a constant of a given type. It serves as a base class for most type traits. The
constant can be retrieved using the static value data member, by casting to T, or from its
function call operator. Here is an example:

using answer_t = std::integral_constant<int, 42>;
std::cout << answer_t::value << std::endl; // static 'value' member
std::cout << answer_t{}<< std::endl; // implicit casting operator
std::cout << answer_t{}()<< std::endl; // function call operator

Additionally, the standard provides the following predefined constants:

•	 std::true_type, defined as integral_constant<bool,  true>

•	 std::false_type, defined as integral_constant<bool,  false>

C++17 adds a std::bool_constant alias template defined as integral_
constant<bool,  B> C++17 .

Chapter 2 ■ General Utilities

64

�Type Classification

Each type in C++ belongs to exactly one of 14 primary type categories. Besides those,
the standard also defines several composite type categories to easily refer to all types
belonging to two or more related primary categories. For each of these, a type trait struct
exists to check whether a given type belongs to that category. Their names are of the form
is_category, with category equal to one of the names shown in Figure 2-1. A trait’s static
Boolean named value contains whether its type argument belongs to the corresponding
category. Traits are functors that both return and cast to this value.

Since C++17, all type traits that have a value member have corresponding helper
variable templates defined to make them easier to use. These are called std::trait_
v<...> and defined as std::trait<...>::value. For example, instead of writing
is_integral<int>::value, you can simply write is_integral_v<int> C++17 .

Some examples (the code refers to ‘int main()’):

std::cout << std::boolalpha; // Print true/false instead of 1/0
std::cout << std::is_integral<int>::value << '\n'; // true
std::cout << std::is_integral_v<char> << '\n'; // true
std::cout << std::is_class_v<std::is_class<bool>> << '\n'; // true
std::cout << std::is_function_v<int(void)> << '\n'; // true
std::cout << std::is_function_v<decltype(main)> << '\n'; // true
std::cout << std::is_pointer_v<decltype(&main)> << '\n'; // true
struct A { void f() {}; };
void(A::* p)() = &A::f;
std::cout << std::is_member_function_pointer<decltype(p)>() <<'\n';// true

void
fundamental null_pointer

floating_point arithmetic
integral
enum scalar object
pointer
member_function_pointer member_pointer

 compound member_object_pointer
array
class
union
function
lvalue_reference reference
rvalue_reference

Figure 2-1.  Overview of the type classification traits. The second column lists the 14
primary categories; the other names are those of the composite categories.

Chapter 2 ■ General Utilities

65

�Type Properties
A second series of type traits is there to statically query properties of types. They are
mostly used in exactly the same manner as those of the previous subsection, and all
except two, has_virtual_destructor and has_unique_object_representations, again
have names of the form is_property.

The values for property listed as follows check the indicated type properties:

•	 The presence of type quantifiers: const and volatile

•	 Polymorphism properties of classes: polymorphic (has virtual
member(s)), abstract (pure virtual member(s)), and final

•	 Signedness of arithmetic types: signed (includes floating-point
numbers) and unsigned (includes Booleans)

And then there is a large family of traits where the property is the validity of a
construction or assignment statement with specified argument types or the validity of a
destruction statement (omitting as always the 'is_'):

•	 The basic ones are constructible<T,Args...>, assignable<T,
Arg>, and destructible<T>. All scalar types are destructible, and
the former two properties may hold for nonclass types as well (as
constructions like ‘int  i(0);’ for example, are valid).

•	 Auxiliary traits exist for checking the validity of
default constructions (default_constructible) and
copy/move constructions and assignments (copy_
constructible<T>  ==  constructible<T,  const  T&>, etc.).

•	 With the swappable and swappable_with traits, you can query
whether objects of a certain type can be swapped or can be
swapped with objects of a different type C++17 .

•	 All preceding property names can mostly be prefixed with
trivially or nothrow, for instance, trivially_destructible,
nothrow_constructible, or nothrow_swappable_with. Only the
swappable(_with) traits cannot be prefixed with trivially.

The nothrow properties hold if the corresponding operation is statically known to
never throw. The trivial ones hold if the type is either scalar or a non-polymorphic
class for which this operation is the default one (i.e., not specified by the user), and the
trivial property holds as well for all its base classes and non-static member variables.
For the trivially constructible properties, the class is also not allowed to have any non-
static data members with in-class initializers.

The final list of property values for which is_property traits exist essentially holds
under the following conditions. Arrays of types satisfying these also have the same property:

•	 trivially_copyable, if trivially_destructible and
trivially_(copy|move)_(constructible|assignable) all hold.
Bitwise copy functions such as std::memcpy() are defined to be
safe for trivially_copyable types.

Chapter 2 ■ General Utilities

66

•	 trivial, if trivially_default_constructible and trivially_
copyable, and no nondefault constructors exist.

•	 standard_layout, if scalar or a class for which a pointer to
that class may safely be casted to a pointer to the type of its first
non-static member (i.e., no polymorphism, limited multiple
inheritance, etc.). This is for compatibility with C, as such casts
(with C structs then) are common practice in C code.

•	 pod (plain old data), if trivial and standard_layout.

•	 aggregate, if T is an aggregate type, which is either an array type
or a class type that has no private or protected data members, no
user-provided and inherited constructors, no virtual methods,
and no virtual, private, or protected base classes. With such class
types (typically a struct or union), you can perform aggregate
initialization; that is, you can initialize its members without
having to write an explicit constructor C++17 .

•	 literal_type, if values may be used in constexpr expressions
(i.e., can be evaluated statically without side effects). This type
property has been deprecated in C++17 and will be removed from
C++20.

•	 empty, for non-polymorphic classes without non-static member
variables.

Finally, the std::has_unique_object_representations trait determines whether T
is a trivially copyable type for which two objects with the same value always have the
exact same binary representation. You can use this to find out whether you may compute
the hash of an object based on its representation as a sequence of bytes. An example for
which this trait is typically false is float, as the IEEE-754 floating-point standard states
that binary equality is not always the same as floating-point equality (for instance, +0.f
== -0.f, but both values are represented using a different byte sequence). This trait will
also be false whenever padding is added C++17 .

�Type Relationships
These three type traits compare types: is_same<T1,  T2>, is_base_of<Base,  Derived>, and
is_convertible<From,  To> (using implicit conversions).

�Type Property Queries
The value constant of a type trait is not always a Boolean. For the following traits, it will
contain the specified size_t type properties:

•	 std::alignment_of<T>: Value of alignof(T) operator

•	 std::rank<T>: Array dimensions, for example, rank<int>()  ==  0,

rank<int[]>()  ==  1, rank<int[][5][6]>()  ==  3, and so on

Chapter 2 ■ General Utilities

67

•	 std::extent<T,N=0>: Number of elements of Nth array
dimension, or 0 if unknown or invalid; for instance,

extent<int[]>()  ==  0 and extent<int[][5][6],  1>()  ==  5

�Type Transformations
Most type transformation traits are again fairly similar, except that they do not inherit
from std::integral_constant<>. Instead of a static value member, they define a nested
type alias called type. A convenience alias template with name std::trait_t<T> exists for
all these traits, which is defined as std::trait<T>::type:

•	 std::add_x with x one of const, volatile, cv (const and
volatile), pointer, lvalue_reference, rvalue_reference.

•	 std::remove_x with x one of const, volatile, cv, pointer,
reference (lvalue or rvalue), extent, all_extents. In all except
the last case, only the top-level/first type modifier is removed. For
instance: remove_extent<int[][5]>::type  ==  int[5].

•	 std::decay<T> converts T to a related type that can be stored
by value, mimicking by-value argument passing. An array type
int[5], for example, becomes a pointer type int*, a function a
function pointer, const, and volatile are stripped, and so on. A
possible implementation will be shown later as an example.

•	 std::make_signed and make_unsigned. If applied on an integral
type T, type shall be a signed respectively unsigned integer type
with sizeof(type)  ==  sizeof(T).

•	 std::underlying_type, defined only for enum types, gives the
(integral) type underlying this enum.

•	 std::common_type<T...> has a type all types T can implicitly be
converted to.

•	 std::conditional<B,T1,T2> has type  T1 if the constexpr  B
evaluates to true, and type  T2 otherwise.

The following example shows a possible implementation of the std::decay
transformation trait in terms of the std::conditional metafunction. The latter is used to
essentially form an if-else  if-else construction at the level of types:

using namespace std;
template<typename T> struct my_decay {
private:
 using U = remove_reference_t<T>;

Chapter 2 ■ General Utilities

68

public:
 using type = conditional_t<is_array_v<U>, remove_extent_t<U>*,
 conditional_t<is_function_v<U>, add_pointer_t<U>,
 remove_cv_t<U>>>;
};

�SFINAE Templates
SFINAE is an acronym for Substitution Failure Is Not An Error and is a rule in the C++
language that states that failure to specialize a template does not constitute a compile
error. The following two templates are defined specifically to facilitate specific template
metaprogramming patterns that exploit this principle:

•	 std::enable_if<B,T=void> has type  T, but only if the constexpr
B evaluates to true. Otherwise, type is not defined.

•	 std::void_t<...> maps any sequence of types to void C++17 .

The examples in the upcoming subsections will clarify.

std::enable_if

Our first example shows how to leverage SFINAE to conditionally add or remove
functions from overload resolution using enable_if. In this case, it shall be the absence
of the type alias type that causes substitution to fail. For the first overload, we explicitly
reference this alias (and are therefore forced to add typename); in the second, we instead
use the more convenient template alias enable_if_t:

// use the efficient memcpy() if allowed (i.e., T is trivially copyable):
template<typename T, size_t N>
typename std::enable_if<std::is_trivially_copyable<T>::value>::type
copy(T(&from)[N], T(&to)[N])
{ std::memcpy(to, from, N * sizeof(T)); }

// otherwise, copy elements one by one using copy assignment:
template<typename T, size_t N>
std::enable_if_t<!std::is_trivially_copyable_v<T>>
copy(T(&from)[N], T(&to)[N])
{ for (size_t i = 0; i < N; ++i) to[i] = from[i]; }

With the introduction of constexpr  if statements to the C++ language since C++17,
most std::enable_if constructs can be greatly simplified. For example, instead of having
to provide two overloads for the previous copy() function, the following implementation
uses a single function which uses a constexpr  if statement to select either the efficient or
element-based copy algorithm at compile time C++17 :

Chapter 2 ■ General Utilities

69

template<typename T, size_t N>
void copy(T(&from)[N], T(&to)[N])
{
 if constexpr (std::is_trivially_copyable_v<T>) {
 std::memcpy(to, from, N * sizeof(T));
 } else {
 for (size_t i = 0; i < N; ++i) to[i] = from[i];
 }
}

std::void_t C++17

The seemingly trivial utility trait std::void_t maps any sequence of types to void.
You use it together with the SFINAE principle to verify the validity of expressions. For
example, the following code defines a has_value_type  struct to represent whether or
not a given type T has a member called value_type:

template<typename, typename = std::void_t<>>
struct has_value_type : std::false_type {};

template<typename T>
struct has_value_type<T, std::void_t<typename T::value_type>>
: std::true_type {};

template<typename T>
inline constexpr bool has_value_type_v = has_value_type<T>::value;

// All containers (Chapter 3) define a value_type type alias (example
// needs the <vector> header), as does std::integral_constant itself:
static_assert(has_value_type<std::vector<int>>::value);
static_assert(!has_value_type_v<int>);
static_assert(has_value_type<has_value_type<int>>{});

�Function Invocation Traits C++17
C++17 adds some more traits related to properties of function invocations:

•	 is_invocable<F,Args...> / is_nothrow_invocable<F,Args...>
determine whether the callable F can be called with the given
argument types (for the latter: without throwing exceptions).

•	 is_invocable_r<R,F,A...> / is_nothrow_invocable_r<R,F,A...>
are analogous to the is_invocable traits, but additionally check
whether this invocation results in a type that is convertible to R.

•	 invoke_result<F,Args...> has a type member containing the return
type of a given callable when called with the given argument types.

Chapter 2 ■ General Utilities

70

This last trait replaces std::result_of<F(Args...)> which has been deprecated in
C++17 and will be removed from C++20.

�Trait Operations C++17
Zero or more type traits that have a value member that is convertible to a Boolean (such
as all type ‘is_’ and ‘has_’ traits of the <type_traits> header) can be combined using
these logical operations:

•	 std::conjunction performs a logical AND operation on traits.

•	 std::disjunction performs a logical OR operation on traits.

•	 std::negation performs a logical NOT operation on a trait.

Both conjunction and disjunction support the equivalent of short-circuiting
of Boolean expressions with respect to SFINAE. That is, conjuncts and disjuncts are
instantiated left to right, and instantiation stops once the correct value has been determined,
even if any of the remaining conjuncts or disjuncts would have led to a substitution failure.

�Type Operations� <utility>

�std::declval
The return type of std::declval<T>() is T&&; only when T is void, the return type is T. This
function has no implementation, so evaluating it is an error. It can only be used in so-called
unevaluated expressions, which are expressions that are passed to decltype(), noexcept(),
typeid(), or sizeof(). Such expressions are interpreted at compile time, never evaluated.

You typically use declval<T>() to invoke a member function on an object of type T
in an unevaluated expression without having to know which constructors exist for T, often
in combination with type traits. As the following example shows, declval<T>() even
works if T has no default constructor (this unlike T{}):

template<typename T>
void process(const T& /*t*/) {

if constexpr (std::is_integral_v<decltype(std::declval<T>().handle())>)
std::cout << "handle() has integral return type\n";

else
std::cout << "handle() has non-integral return type\n";

}

struct NoDefaultCtor { NoDefaultCtor(int){}; int handle(); };
struct DefaultCtor{ std::string handle(); };

int main() {

process(NoDefaultCtor{0}); // handle() has integral return type
process(DefaultCtor{}); // handle() has non-integral return type

}

Chapter 2 ■ General Utilities

71

�std::as_const C++17
Given a reference, std::as_const() returns a const reference. An overload accepting an
rvalue reference is deleted to prevent calling as_const() with rvalue references.

This function comes in handy, for instance, when applying Scott Meyer’s guideline
for avoiding code duplication with class methods that are overloaded on constness. It
encourages you to implement const versions of class methods as you normally would
and to implement non-const versions by forwarding to the const versions. We also refer
to this pattern as the to-const-and-back-again pattern. Here is a quick example:

class Matrix
{
public:
struct Cell { /* ... */};
Cell& at(size_t x, size_t y);
const Cell& at(size_t x, size_t y) const;
/* ... */

};

const Matrix::Cell& Matrix::at(size_t x, size_t y) const {
// Some otherwise duplicated logic: input verification, ...
return /* ... */;

}
Matrix::Cell& Matrix::at(size_t x, size_t y) {
// Before: const_cast<Cell&>(static_cast<const Matrix&>(*this).at(x, y));
return const_cast<Cell&>(std::as_const(*this).at(x, y));

}

�Generic Utilities
The functions in this section generalize a common operation (function invocation and
taking the address of an object, respectively) such that these work correctly even when
applied on corner cases that would otherwise require special syntax (member function
pointers and types with an overloaded operator&(), respectively). As such, these
functions are particularly useful as well when writing function templates.

�std::invoke C++17 � <functional>

std::invoke() invokes a given callable with a given set of arguments. The callable can
be a free function, a lambda closure, a functor, a method on an object, and so on. The
advantage of std::invoke(f, args...) compared to simply invoking f(args...) is that

Chapter 2 ■ General Utilities

72

it also works if f is a member function pointer, which normally needs a special syntax.
This is shown in the following example:

template<typename C, typename... Args>
void process(C callable, Args... args) {

// ... Do stuff ...
std::invoke(callable, std::forward<Args>(args)...);
// ... Do more stuff ...

}

class Processor {
public: void handle(int data) { std::cout << "Processor::handle()\n"; }
};
void f(float data) { std::cout << "Global function f()\n"; }

int main() {
Processor processor;
process(&f, 15.85714f);
process(&Processor::handle, processor, 42);

}

�std::addressof� <memory>

Usually, the address of an object can be retrieved using operator&. However, objects
are allowed to overload this operator to give it a different behavior. Although this
is rarely done, if an object does overload operator&, that operator cannot be used
(directly) anymore to get the real address of the object. In such cases, you can use
std::addressof() to get the true address in memory. You should also use addressof()
to retrieve the address of an object of unknown type in generic code.

73
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_3

CHAPTER 3

Containers

The C++ Standard Library provides a selection of different data structures called
containers that you can use to store collections of data elements. Containers work in
tandem with algorithms, described in Chapter 4. Containers and algorithms are designed
in such a way that they do not need to know about each other. The interaction between
them is accomplished with iterators. All containers provide iterators, and algorithms only
need iterators to be able to perform their work.

This chapter starts by explaining the concept of iterators followed by a description
of all sequential containers, container adaptors, and associative containers. We end the
chapter with a brief description of C++ allocators.

�Iterators� <iterator>

Iterators are the glue between containers and algorithms. They provide a way to
enumerate all elements of a container in a uniform way without having to know any
details about the container. The following list briefly mentions the most important
iterator categories provided by the standard, and the subsequent table explains all the
operations possible on them:

•	 Forward (F): An input iterator that supports forward iteration

•	 Bidirectional (B): A forward iterator that can move forward and
backward

•	 Random access (R): A bidirectional iterator that support jumping
to elements at arbitrary indices or offsets

Chapter 3 ■ Containers

74

In the following table, T is an iterator type, a and b are instances of T, t is an instance
of the type to which T points, and n is an integer.

Operation Description F B R

T  a, ~T(), T  b(a), b  =  a Default constructor, destructor, copy
constructor, copy assignment

■ ■ ■

a  ==  b, a  !=  b Equality and inequality operators ■ ■ ■
*a, a->m,  *a  =  t,
*a++  =  t

Dereferencing ■ ■ ■

++a, a++, *a++ Incrementing operators ■ ■ ■
--a, a--, *a-- Decrementing operators  ■ ■
a[n] Random access   ■
a  +  n, n  +  a, a  -  n,
a  +=  n, a  -=  n

Arithmetic operators. Advance an iterator
forward or backward

  ■

a  -  b Calculates the distance between iterators   ■
a  <  b, a  >  b,a  <=  b,
a  >=  b

Inequality operators   ■

From this, it is obvious that random iterators are very similar to C++ pointers. In fact,
pointers into a regular C-style array satisfy all requirements for a random access iterator
and can therefore be used with the algorithms from Chapter 4 as well. Certain sequential
containers likely even use regular pointers for iterators (through type aliasing). For more
complex data structures, though, this is not possible, and iterators are implemented as
small classes.

All Standard Library compliant containers must provide an iterator and
const_iterator member type. Additionally, containers that support reverse
iteration must provide the reverse_iterator and const_reverse_iterator
member types. For example, the reverse iterator type for a vector of integers is
std::vector<int>::reverse_iterator.

�Iterator Tags
The type trait expression std::iterator_traits<Iter>::iterator_category may be
used by generic algorithms to optimize their implementation based on the category
of its iterator arguments (typically in combination with, for instance, std::enable_if
or C++17’s constexpr  if statements). The std::distance() function explained in an
upcoming section, for instance, may use this technique to choose between a slower
implementation that linearly calculates the distance between two iterators (for forward
and bidirectional iterators) and a more efficient one that simply subtracts two iterators
(for random access iterators).

For a given Iter type, iterator_category evaluates to a type alias for one of the
so-called iterator tags, empty types that are defined solely for their use in template

Chapter 3 ■ Containers

75

metaprogramming. These tag types are named std::category_iterator_tag, where
possible category values include forward, bidirectional, and random_access.1

If you implement your own iterators, you should therefore specify its tag. You
can do this either by adding a static type alias member iterator_category to
your implementation that refers to one of the iterator tag types or by specializing
std::iterator_traits for your type to provide the correct tag type.

■■ Note T he <iterator> header also defines a std::iterator<> class template that
was intended to serve as the base class of custom iterator types. It defines, among other
things, the iterator_category alias. This template is deprecated, however. C++17

�Non-member Functions to Get Iterators
All containers support member functions that return various iterators. However, the
standard also provides non-member functions that can be used to get such iterators. In
addition, these non-member functions work the same way on containers, C-style arrays,
and initializer_lists. The provided non-member functions are as follows:

Non-member Function Description

begin() / end() Returns an iterator to the first, or, respectively, one past the
last element

cbegin() / cend() const versions of begin() and end()

rbegin() / rend() Returns a reverse iterator to the last, or, respectively, one
before the first element

crbegin() / crend() const versions of rbegin() and rend()

Dereferencing the iterators returned by the const versions, also called const iterators,
results in const references and therefore cannot be used to modify the elements in the
container or array. A reverse iterator allows you to traverse a container’s elements in reverse
order: starting with the last element and going toward the first element. When you increment
a reverse iterator, it actually moves to the previous element in the underlying container.

Here is an example of how to use such non-member functions on a C-style array:

int myArray[] = { 1,2,3,4 };
const auto beginIter = std::cbegin(myArray);
const auto endIter = std::cend(myArray);
for (auto iter = beginIter; iter != endIter; ++iter)
 std::cout << *iter << std::endl;

1 Two more iterator categories and corresponding tag types are introduced in the next chapter.
These are not relevant in the context of containers though.

Chapter 3 ■ Containers

76

However, instead of this, it is recommended that you use a range-based for loop
to iterate over all elements of a C-style array or Standard Library container. It is much
shorter and clearer. For example:

int myArray[] = { 1,2,3,4 };
for (const auto& element : myArray)
 std::cout << element << std::endl;

You cannot always use the range-based for loop version, though. If you want to loop
over the elements and remove some of them, for instance, then you need the iterator version.

�Non-member Operations on Iterators
The following non-member operations exist to perform random access operations on all
types of iterators. When called on iterators that are not known to support random access
(see earlier), the implementation automatically falls back to a method that works for that
iterator (e.g., a linear traversal):

•	 std::distance(iter1,  iter2): Returns the distance between two
iterators.

•	 std::advance(iter,  dist): Advances an iterator by a given
distance and returns nothing. The distance can be negative if the
iterator is bidirectional or random access.

•	 std::next(iter,  dist=1): Equivalent to advance(iter,  dist)
and returns iter.

•	 std::prev(iter,  dist=1): Equivalent to advance(iter,  -dist)
and returns iter. Only works for bidirectional and random access
iterators.

�Sequential Containers
The following sections describe the five sequential containers: vector, deque, array,
list, and forward_list. The std::vector container is discussed in more detail
compared to the others. Once you know how to work with one container, however, you
know how to work with others. At the end of this section is a reference with all available
methods supported by sequential containers.

�std::vector� <vector>

A vector stores its elements contiguously in memory. It is comparable to a heap-
allocated C-style array, except that it is safer and easier to use because vector
automatically releases its memory and grows to accommodate new elements.

Chapter 3 ■ Containers

77

�Construction
Like all Standard Library containers, vector is templated on the type of object stored in it.
The following piece of code shows how to define a vector of integers:

std::vector<int> myVector;

Initial elements can be specified using a braced initializer:

std::vector<int> myVector1 = { 1,2,3,4 };
std::vector<int> myVector2{ 1,2,3,4 };

You can also construct a vector with a certain size. For example:

std::vector<int> myVector(100, 1);

This creates myVector containing 100 elements with value 1. The second argument
is optional. If you omit it, new elements are zero-initialized, which is 0 for the case of
integers.

■■ Caution T ake care with uniform initialization when constructing vectors of numbers.
The following statement, for instance, does not construct a vector containing 100 values
equal to 1, but a vector containing just 2 values—100 and 1:

std::vector<int> myVector{100, 1};

Starting with C++17, you can omit template type arguments when you construct a
container if these types can be deduced from the constructor arguments C++17 :

std::vector oneTwoThree{ 1,2,3 }; // <int> deduced from initializer list
std::vector fiveFloats(5, 0.f); // <float> deduced from 0.f

�Accessing Elements
Elements in a vector can be accessed using operator[], which returns a reference to an
element at a specific zero-based index, making it behave exactly as with C-style arrays.
For example:

myVector[1] = 22;
std::cout << myVector[1]; // 22

No bounds checking is performed when using operator[]. If you need bounds
checking, use the at() method: it throws a std::out_of_range exception if the given
index is out of bounds.

Chapter 3 ■ Containers

78

front() can be used to get a reference to the first element, and back() returns a
reference to the last element.

To access the contiguous array of dynamic memory holding a vector’s elements, you
use the data() method. This is particularly useful when interfacing with functions that
expect a C-style array:

int* data = myVector.data();

■■ Note I n older code, you often see &myVector[0] instead, but this expression is
inherently unsafe for empty containers. Even with data() you need to be careful though: it
is implementation-defined whether data() may or may not return nullptr for an empty
vector (rather than a pointer to an empty, null-terminated array).

�Iterators
vector supports random access iterators. You use the begin() or cbegin() member to
get a non-const or const iterator to the first element in the vector. The end() and cend()
methods are used to get an iterator to one past the last element. rbegin() and crbegin()
return a reverse iterator to the last element, and rend() and crend() return a reverse
iterator to one before the first element.

As always, you can also use the equivalent non-member functions explained earlier,
such as std::begin(), std::cbegin(), and so on.

�Adding Elements
One way to add elements to a vector is to use push_back(). For example, adding two
integers to myVector can be done as follows:

std::vector<int> myVector;
myVector.push_back(11);
myVector.push_back(2);

Another option is to use the insert() method, which requires an iterator to the
position before which the new element should be inserted. For example:

std::vector myVector{ 1,2,3,4 };
myVector.insert(myVector.begin() + 2, 22); // 1,2,22,3,4

Just like any modifying operation, insertion generally invalidates existing iterators.
So when inserting in a loop, the following idiom should be used:

Chapter 3 ■ Containers

79

std::vector myVector{ 1,2,3,4 };
for (auto iter = myVector.begin(); iter != myVector.end(); ++iter)
{
if (*iter % 2 == 0) // Duplicate all even values...
iter = myVector.insert(iter + 1, *iter);

}

This works because insert() returns a valid iterator pointing to the inserted element
(more generally, to the first inserted element, discussed shortly). Also make sure never to
cache the end iterator in such loops, as insert() might invalidate it.

With insert() you can also insert a range of elements anywhere in the vector, or
concatenate (append) two vectors. When doing so, you do not have to resize the vector
yourself; insert() takes care of that for you. For example:

std::vector v1{ 1,2,3 };
std::vector v2{ 4,5 };
v1.insert(cbegin(v1)+1, cbegin(v2), cend(v2)); // 1,4,5,2,3
v1.insert(cend(v1), cbegin(v2), cend(v2)); // 1,4,5,2,3,4,5 (append!)

Two additional overloads of insert() provide insertion of initializer lists or a given
number of copies of a certain element. Using the same initial v1 as before:

v1.insert(cbegin(v1)+1, {4,5}); // 1,4,5,2,3
v1.insert(cend(v1), 2, 6); // 1,4,5,2,3,6,6

Instead of constructing a new element and then passing it to insert() or push_
back(), elements can also be constructed in place using an emplacement method, such
as emplace() or emplace_back(). The former, emplace(), is the counterpart of a single-
element insert(), the latter of push_back(). For example, you can add a new Person at
the back of a vector of Person objects in these two similar ways:

std::vector<Person> persons;
persons.push_back(Person("Sheldon", "Cooper"));
persons.emplace_back("Leonard", "Hofstadter");

The arguments to emplacement functions are perfect-forwarded to the element’s
constructors. Emplacement is generally more efficient if it avoids the creation of a
temporary object, as in the previous example. This is particularly interesting if copying is
expensive. It may even be the only way to add elements that cannot be copied.

On a related note: addition and insertion members of containers generally have full
support for moving elements into containers, again to avoid the creation of unnecessary
copies (move semantics is explained in Chapter 2). For example:

Person person("Howard", "Wolowitz");
persons.push_back(std::move(person));

Chapter 3 ■ Containers

80

�Size and Capacity
A vector has a size, which is the number of elements contained in the vector. You can
query it using size(). Use empty() to check whether a vector is empty or not.

A vector can be resized with resize(). For example:

std::vector<int> myVector;
myVector.resize(100, 12);

This sets the size of the vector to 100 elements. If new elements have to be created,
they are initialized with 12. The second parameter is again optional; when omitted, new
elements are zero-initialized.

In addition to a size, a vector also has a capacity, returned by capacity(). The
capacity is the total number of elements it can store (including the elements already in
the vector) without having to allocate more memory. If more elements are added than
allowed by the capacity, the vector must perform a reallocation because it needs to store
all elements contiguously in memory. Reallocation means that a new, bigger block of
memory is allocated and that all current elements in the vector are transferred to the
new location (they are moved if moving is supported and known not to throw; otherwise
they are copied; see Chapter 2).

If you know how many elements you will add, it often benefits performance
to preallocate sufficient capacity to avoid reallocation. Failure to do so may cause a
significant performance hit. You can preallocate memory using reserve():

myVector.reserve(100);

Note that this does not reserve capacity for 100 extra elements; it simply ensures that
the total capacity of myVector is at least 100. Reserving capacity for a nonempty vector to
store 100 extra elements should be done as follows:

myVector.reserve(myVector.size() + 100);

�Removing Elements
The last element in a vector can be removed using pop_back(), and erase() is used to
remove other elements. There are two overloads of erase():

•	 erase(iter): Removes the element to which the given iterator
points

•	 erase(first,  last): Removes the range of elements given by the
two iterators, so [first, last)

When you remove elements, the size of the vector changes, but its capacity does not.
If you want to reclaim unused memory, you can use shrink_to_fit(). This is just a hint,
however, which may be ignored by an implementation.

Chapter 3 ■ Containers

81

To remove all elements, you can use clear(). This again does not affect capacity. A
classic idiom to clear a container while guaranteeing its memory is reclaimed is to swap
with an empty one:

std::vector unlucky(100000, 13); // Now reclaim unlucky's memory...
{ std::vector<int> empty; empty.swap(unlucky); }

When the scope exits, the formerly empty container is destroyed containing all
elements, leaving the original one empty. This idiom may be written more briefly as
follows:

std::vector<int>().swap(unlucky); // (temporary is destroyed after ';')

■■ Caution  Do not mistake empty() for clear() when you intend to remove all
elements of a container. empty() simply returns a Boolean and does not empty the
container at all.

�Remove-Erase Idiom
If you need to remove a number of elements from a vector, you can write your own
loop to iterate over all the elements, and invoke erase() for all elements that need to be
removed. The problem, however, is that erase() invalidates all iterators pointing at or
beyond the element that was removed. As this includes both the current iterator and the
end() iterator, you have to be extra careful not to make any mistakes.

The following example shows the typical pattern that you could use to safely remove
all elements equal to 2 from a vector:

std::vector vec{ 1,2,3,2,2,6 };
for (auto it = cbegin(vec); it != cend(vec);) {
 if (*it == 2)
 it = vec.erase(it); // Returns iterator one past the removed item

 else
 ++it;

}

Notice that the old it is no longer used after erase() and that the end iterator must
certainly not be cached either.

To avoid mistakes, it is always recommended that you use standard algorithms
instead of hand-written loops. To remove multiple elements, you can use the remove-erase
idiom. This pattern first uses the std::remove() or remove_if() algorithm. As we explain
in Chapter 4, these algorithms do not actually remove elements. Instead, they move all
elements that need to be kept toward the beginning, maintaining the relative order of
these elements. The algorithms return an iterator to one past the last element to be kept.

Chapter 3 ■ Containers

82

The next step usually is to call erase() on the container to really erase the elements
starting from the iterator returned by remove() or remove_if() to the end. For example:

std::vector vec{ 1,2,3,2,2,6 }; // 1,2,3,2,2,6
auto iter = std::remove(begin(vec), end(vec), 2); // 1,3,6,2,2,6
vec.erase(iter, end(vec)); // 1,3,6

The call to remove() in the second line moves all elements to keep toward the
beginning of the vector. The contents of the other elements (i.e., those to remove) can be
different depending on your library implementation.

The previous remove() and erase() calls can also be combined into one line:

vec.erase(std::remove(begin(vec), end(vec), 2), end(vec));

■■ Caution A common mistake (that can go unnoticed for quite a while) when using
the remove-erase idiom is forgetting to pass the end iterator as the second argument to
erase(). This argument is marked in bold in our examples. Without it, you only delete one
element:

vec.erase(std::remove(begin(vec), end(vec), 2)); // 1,3,6,2,6

�std::vector<bool>
vector<bool> is a specialization of vector<T> for Boolean elements. It allows C++
Standard Library implementations to store the Boolean values in a space-efficient way,
but this is not a requirement. It has the same interface as vector<T>, with the addition of
a flip() method to flip all the bits in the vector<bool>.

This specialization is similar to the std::bitset discussed later. The difference is
that a bitset has a fixed size, whereas a vector<bool> can dynamically grow and shrink
as needed.

Both vector<bool> and bitset are recommended only to save memory; otherwise,
use a vector<std::uint_fast8_t>: this generally has superior performance when it
comes to accessing, traversing, or assigning values.

�Complexity
The complexity of common operations on a vector is as follows:

•	 Insertion: Amortized constant O(1) at the end; otherwise linear in
the distance from the insertion point to the end of the vector, O(N)

•	 Deletion: O(1) at the end, otherwise linear in the distance to the
end of the vector O(N)

•	 Access: O(1)

Chapter 3 ■ Containers

83

Even though list and forward_list, discussed later, have better theoretical
insertion and deletion complexities, vector is typically faster in practice and should
therefore be your default sequential container. When in doubt, always use a profiler to
compare their performance for your application.

�std::deque� <deque>

Much like a vector, a deque2 is a sequential container that supports random access to its
elements, both through operator[] and its iterators. Unlike a vector, however, a deque
does not store all its elements in one contiguous array. Instead, it arranges its data such
that insertions and removals at both ends of the queue—deque is short for double-ended
queue—have the following appealing properties:

	 1.	 They always occur in constant time.

	 2.	 They never require any other elements to be copied or moved.

	 3.	 They never invalidate pointers or references to the other elements.

For a vector, these properties only hold when altering the back of the array, and
then only if you do so without exceeding the capacity.

The operations on a deque are almost the same as for a vector, with a few minor
differences. A deque also does not have the concept of capacity, so capacity(), reserve(),
and shrink_to_fit() are not available. Moreover, a deque provides (constant time)
push_front() and pop_front() methods in addition to push_back() and pop_back().

Here is an example of using a deque:

std::deque myDeque{ 1,2,3,4 }; // std::deque<int> deduced
myDeque.insert(myDeque.begin() + 2, 22); // 1,2,22,3,4
myDeque.pop_front(); // 2,22,3,4
myDeque.erase(myDeque.begin() + 1); // 2,3,4
myDeque.push_front(11); // 11,2,3,4

�Complexity
The complexity of common operations on a deque is as follows:

•	 Insertion: O(1), constant, at both ends of the queue (front and
back); otherwise O(N), linear, in the distance between the
insertion point and the beginning or end

•	 Deletion: O(1) at the front and back; otherwise O(N), linear, in the
distance to the beginning or end

•	 Access: O(1)

2 Deque is pronounced /dɛk/, like deck (as in a deck of cards).

Chapter 3 ■ Containers

84

�std::array� <array>

An array is a container with a fixed size that is specified at compile time as a template
argument. It again supports operator[] and random access iterators.

The following defines an array of three integers:

std::array<int, 3> myArray;

These integers are uninitialized. All other containers zero-initialize their elements by
default. This is because a std::array is designed to be as close as possible to a C array. Of
course, you can also initialize elements when defining an array. The number of initialization
values must equal the size of the array or less. If you specify more values, you get a
compilation error. Elements for which no value is specified are zero-initialized. For example:

std::array<int, 3> myArray{ 1,2 }; // 1,2,0

This also implies that the following zero-initializes all elements:

std::array<int, 3> myArray{}; // 0,0,0

The template arguments can be deduced from a (nonempty) initializer list:

std::array myArray{ 1,2 }; // std::array<int, 2> deduced

There is one special method, fill(), which fills the array with a certain value. For
example:

myArray.fill(5); // 5,5,5

�Complexity
•	 Insertion: Not possible

•	 Deletion: Not possible

•	 Access: O(1)

�std::list and std::forward_list� <list>, <forward_list>
A list stores its elements as a doubly linked list, whereas a forward_list stores them as
a singly linked list. This has some consequences.

Firstly, because both store elements noncontiguously in memory, you cannot
access arbitrary elements of these containers in constant time. For this reason, list and
forward_list also do not provide operator[]. To access a specific element of either
list container, you always have to perform a linear search using iterators. list supports
bidirectional iterators, so you can start at the beginning or the end; forward_list only
supports forward iterators, so you always need to start at the beginning.

Chapter 3 ■ Containers

85

Once you are at the correct place in the container, however, insertions and deletions
at that place are efficient because they only need to modify a couple of links. These
insertions and deletions never invalidate iterators or references to other elements either.

Next to the lack of random access, a second downside is that the elements of list-
based containers may become scattered in memory, which hurts performance when
traversing lists due to an increased number of cache misses.

■■ Tip  Because of their downsides, only use a list or forward_list if a profiler shows
that it is more efficient for your use case. Mostly a vector will be more efficient, however,
even if you need frequent insertions or removals.

The operations supported by list and forward_list are again similar to those of a
vector, with some minor differences. A list or forward_list does not have a capacity,
so none of the capacity-related methods are supported. Both support front(), which
returns a reference to the first element. A list also supports back() returning a reference
to the last element. forward_list is the only container without a size() member.

�Complexity
list and forward_list have similar complexities:

•	 Insertion: O(1) once you are at the correct position

•	 Deletion: O(1) once you are at the correct position

•	 Access: O(1) to access the first (for list and forward_list) or last
(only for list) element; otherwise O(N)

�List-Specific Algorithms
Due to the nature of how list and forward_list store their elements, they provide a
couple of member functions that implement specific algorithms. The following table lists
the provided algorithms for list (L) and forward_list (F):

Operation L F Description

merge() ■ ■ Merges two sorted lists. The list that is merged in is emptied.

remove() ■ ■ Removes elements from the list that match a given value.

remove_if() ■ ■ Removes elements from the list that satisfy a given predicate.

reverse() ■ ■ Reverses the contents of the list.

sort() ■ ■ Sorts the elements.

splice() ■  Moves elements from another list before a given position.

splice_after()  ■ Moves elements from another list after a given position.

unique() ■ ■ Replaces consecutive duplicates with a single element.

Chapter 3 ■ Containers

86

For all of these algorithms except splice() and splice_after(), generic versions
are available that are explained in Chapter 4. These generic versions work on all types
of containers, but the list containers provide special implementations that are more
efficient.

Here is an example of using some of these list algorithms:

std::list list1{ 1,7,5 }, list2{ 5,6,2 }, list3{ 3,4 }; // list<int>
list1.sort(); // 1,5,7
list2.sort(); // 2,5,6
list1.merge(list2); // list1 = 1,2,5,5,6,7

 // list2 = empty
list1.unique(); // 1,2,5,6,7

auto splicePosition = std::next(begin(list1), 2);
list1.splice(splicePosition, list3); // list1 = 1,2,3,4,5,6,7

 // list3 = empty

�Sequential Containers Reference
The following subsections give an overview of all the operations supported by vector (V),
deque (D), array (A), list (L), and forward_list (F), divided into categories.

�Iterators

Operation V D A L F Description

begin()
end()

■ ■ ■ ■ ■ Returns an iterator to the first or one past the last
element

cbegin()
cend()

■ ■ ■ ■ ■ const versions of begin() and end()

rbegin()
rend()

■ ■ ■ ■  Returns a reverse iterator to the last element or
one before the first element

crbegin()
crend()

■ ■ ■ ■  const versions of rbegin() and rend()

before_begin()     ■ Returns an iterator to the element right before
the element returned by begin()

cbefore_begin()     ■ const version of before_begin()

Chapter 3 ■ Containers

87

�Size and Capacity

Operation V D A L F Description

size() ■ ■ ■ ■  Returns the number of elements

max_size() ■ ■ ■ ■ ■ Returns the maximum number of elements
that can be stored in the container

resize() ■ ■  ■ ■ Resizes the container

empty() ■ ■ ■ ■ ■ Returns true if the container is empty,
false otherwise

capacity() ■     Returns the current capacity of the
container

reserve() ■     Reserves capacity

shrink_to_fit() ■ ■    Hint to reduce the capacity of the container
to match its size

�Access

Operation V D A L F Description

operator[] ■ ■ ■   Returns a reference to an element at a given
index position. No bounds checking is
performed on the index.

at() ■ ■ ■   Returns a reference to an element at a given
index position. If the given index position
is out of bounds, a std::out_of_range
exception is thrown.

data() ■  ■   Returns a pointer to the data of the vector or
array. May return nullptr if size() equals
zero.

front() ■ ■ ■ ■ ■ Returns a reference to the first element.
Undefined behavior on an empty container.

back() ■ ■ ■ ■  Returns a reference to the last element.
Undefined behavior on an empty container.

Chapter 3 ■ Containers

88

�Modifiers
Operation V D A L F Description

assign() ■ ■ ■ ■ ■ Replaces the contents of the container with
• N copies of a given value, or
• Copies of elements from a given range, or
• Elements from a given initializer_list

clear() ■ ■  ■ ■ Deletes all elements; size becomes zero.

emplace() ■ ■  ■  Constructs a single new element in place
before the element pointed to by a given
iterator. The iterator argument is followed
by zero or more arguments that are just
forwarded to the element’s constructor.

emplace_back() ■ ■  ■  Constructs a single new element in place at
the end.

emplace_after()     ■ Constructs a single new element in place
after an existing element.

emplace_front()  ■  ■ ■ Constructs a single new element in place at
the beginning.

erase() ■ ■  ■  Erases elements.

erase_after()     ■ Erases an element after an existing iterator
position.

fill()   ■   Fills the container with a given element.

insert() ■ ■  ■  Inserts one or more elements before the
element pointed to by a given iterator.

insert_after()     ■ Inserts one or more elements after the
element pointed to by a given iterator.

push_back()
pop_back()

■ ■  ■  Adds an element at the end, or, respectively,
removes the last element.

push_front()
pop_front()

 ■  ■ ■ Adds an element at the beginning, or,
respectively, removes the first element.

swap() ■ ■ ■ ■ ■ Swaps the contents of two containers in
constant time, except for arrays, where it
needs linear time.

Chapter 3 ■ Containers

89

�Non-member Functions
Sequential containers support the following non-member functions:

Operation Description

==, !=, <, <=, >, >= Compares values in two containers (lexicographically)

std::swap() Swaps the contents of two containers

std::size() Returns the number of elements (not for std::forward_list)

std::empty() Returns whether the container is empty

std::data() Same as the data() member function (array and vector only)

std::swap(), size(), empty(), and data() all work for non-container types as
well—and C-style arrays in particular—which makes them particularly useful in function
templates that operate on arbitrary data ranges. Outside the context of templates, you’ll
probably find std::size() the most useful function to remember.3 Here is an example:

int array[] { 1, 2, 3};
std::cout << std::size(array) << std::endl; // 3

This is clearly far more convenient than the old-school alternative:

std::cout << sizeof(array) / sizeof(array[0]) << std::endl;

The <array> header defines one additional non-member function, std::get<Index>(),
and helper types std::tuple_size and std::tuple_element, which are equivalent to the
same function and types defined for tuples and pairs explained in Chapter 2.

�std::bitset� <bitset>

A bitset is a container storing a fixed number of bits. The number of bits is specified
as a template parameter. For example, the following creates a bitset with 10 bits, all
initialized to 0:

std::bitset<10> myBitset;

The values for the individual bits can be initialized by passing an integer to the
constructor or by passing in a string representation of the bits. For example:

std::bitset<4> myBitset("1001");

3 std::size(), data(), and empty() are defined by various Standard Library headers, among
which <iterator> and all container headers. We find it easiest to include the <array> header
though when using, for instance, std::size() on C-style arrays.

Chapter 3 ■ Containers

90

A bitset can be converted to an integer or a string with to_ulong(), to_ullong(),
and to_string().

�Complexity
•	 Insertion: Not possible

•	 Deletion: Not possible

•	 Access: O(1)

�Reference
�Access

Operation Description

all()
any()
none()

Returns true if all, at least one, or, respectively, none of the bits are set.

count() Returns the number of bits that are set.

operator[] Accesses a bit at a given index. No bounds checking is performed.

test() Accesses a bit at a given index. Throws std::out_of_range if the given
index is out of bounds.

==, != Returns true if two bitsets are equal or not equal, respectively.

size() Returns the number of bits the bitset can hold.

to_string()
to_ulong()
to_ullong()

Converts a bitset to a string, unsigned long, or, respectively,
unsigned long long.

�Operations

Operation Description

flip() Flips the values of all the bits

reset() Sets all bits or a bit at a specific position to false

set() Sets all bits to true or a bit at a specific position to a specific value

In addition, bitset supports all bitwise operators: ~, &, &=, ^, ^=, |, |=, <<, <<=, >>,
and >>=.

Chapter 3 ■ Containers

91

�Container Adaptors
Container adaptors are built on top of other containers to provide a different interface.
They prevent you from directly accessing the underlying container and force you to use
their special interface. The following three sections give an overview of the available
container adaptors—queue, priority_queue, and stack—followed by a section that gives
an example and a reference section.

�std::queue� <queue>

A queue represents a container that has first-in first-out (FIFO) semantics. You can
compare it to a queue at a night club. A person who arrived before you will be allowed to
enter before you.

A queue needs access to the front and the back, so the underlying container must
support back(), front(), push_back(), and pop_front(). The standard list and deque
support these methods and can be used as underlying containers. The default container
is the deque. Here is the template definition of queue:

template<class T, class Container = std::deque<T>>
class queue;

The complexity for a queue is as follows:

•	 Insertion: O(1) for list as underlying container; amortized O(1)
for deque

•	 Deletion: O(1) for list and deque as underlying container

•	 Access: Not possible

�std::priority_queue� <queue>

A priority_queue is similar to a queue but stores the elements according to a priority.
The element with highest priority is at the front of the queue. In the case of a night club,
VIP members get higher priority and are allowed to enter before non-VIPs.

A priority_queue needs random access on the underlying container and only needs
to be able to modify the container at the back, not the front. Therefore, the underlying
container must support random access, front(), push_back(), and pop_back(). The
vector and deque are available options, with the vector being the default underlying
container. Here is the template definition of priority_queue:

template<class T,
 class Container = std::vector<T>,
 class Compare = std::less<typename Container::value_type>>
class priority_queue;

To determine the priority, elements are compared using a functor object of the
type specified as the Compare template type parameter. By default, this is std::less,
explained in Chapter 2, which, unless specialized, forwards to operator< of the element

Chapter 3 ■ Containers

92

type T. A Compare instance can optionally be provided to the priority_queue constructor;
if not, one is default-constructed.

The complexity for a priority_queue is as follows:

•	 Insertion: Amortized O(log(N)) for vector or deque as underlying
container

•	 Deletion: O(log(N)) for vector and deque as underlying container

•	 Access: Not possible

�std::stack� <stack>

A stack represents a container that has last-in first-out (LIFO) semantics. You can compare
it to a stack of plates in a self-service restaurant. Plates are added at the top, pushing down
other plates. A customer takes a plate from the top, which is the last added plate on the stack.

For implementing LIFO semantics, a stack requires the underlying container to
support back(), push_back(), and pop_back(). The vector, deque, and list are available
options for the underlying container, with deque being the default one. Here is the
template definition of stack:

template<class T, class Container = std::deque<T>>
class stack;

The complexity for a stack is as follows:

•	 Insertion: O(1) for list as underlying container, amortized O(1)
for vector and deque

•	 Deletion: O(1) for list, vector and deque as underlying container

•	 Access: Not possible

Example
The following example demonstrates how to use the container adaptors. The table after
the code shows the output of the program when the container, cont, is defined as a queue,
priority_queue, or stack, respectively:

std::queue<Person> cont;
cont.emplace("Doug", "B", true);
cont.emplace("Phil", "W", false);
cont.emplace("Stu", "P", true);
cont.emplace("Alan", "G", false);
while (!cont.empty())
{
 std::cout << cont.front() << std::endl; // queue
 // std::cout << cont.top() << std::endl; // priority_queue and stack
 cont.pop();

}

Chapter 3 ■ Containers

93

queue<Person> priority_queue<Person> stack<Person>

Doug B
Phil W
Stu P
Alan G

Stu P4

Doug B
Phil W
Alan G

Alan G
Stu P
Phil W
Doug B

�Reference

Operation Description

emplace() Queue: Constructs a new element in place at the back
Priority queue: Constructs a new element in place
Stack: Constructs a new element in place at the top

empty() Returns true if empty, false otherwise

front()
back()

Queue: Returns a reference to the first or last element
Priority queue: n/a
Stack: n/a

pop() Queue: Removes the first element from the queue
Priority queue: Removes the highest-priority element
Stack: Removes the top element

push() Queue: Inserts a new element at the back of the queue
Priority queue: Inserts a new element
Stack: Inserts a new element at the top

size() Returns the number of elements

swap() Swaps the contents of two queues or stacks

top() Queue: n/a
Priority queue: Returns a reference to the element with the highest priority
Stack: Returns a reference to the element at the top

queue and stack support the same set of non-member functions as the sequential
containers: ==, !=, <, <=, >, >=, and std::swap(). priority_queue only supports the
std::swap() non-member function.

�Ordered Associative Containers
There are four ordered associative containers: std::map, multimap, set, and multiset,
which we explain in turn. We’ll not revisit the member functions that are analogous to
those of the sequential containers seen earlier (begin(), end(), size(), clear(), etc.).

4 The way operator< is defined for Person in the Introduction causes the VIP and non-VIP
persons in the priority_queue to be in reverse alphabetical order: people with an
alphabetically higher name get a higher priority.

Chapter 3 ■ Containers

94

For this, we refer to the overview of all available functions at the end of the section.
We begin with std::map, which is explained in some more detail. As always, working with
the other associative containers is mostly analogous.

�std::map� <map>

A map is a data structure that stores key-value elements, each represented using the pair
utility class explained in Chapter 2. Each key can be associated with at most one value at
any given moment.

When defining a map, you need to specify both the key type and the value type. You
can immediately initialize a map with a braced initializer as well:

std::map<Person,int> myMap{ {Person("Jenne"), 1}, {Person("Bart"), 2} };

■■ Note I n the preceding statement, the compiler would not be able to deduce the map’s
two template arguments. The reason is that it cannot deduce the expected element type
std::pair<const Person,int> from the values in the initializer list.

Iterators for a std::map<Key,  Value> are bidirectional iterators that point to a
std::pair<const  Key,  Value>. For example:

auto iter = begin(myMap); // type of *iter is pair<const Person, int>&
std::cout << "Key=" << iter->first.GetFirstName(); // Key=Bart
std::cout << ", Value=" << iter->second << std::endl; // , Value=2

As with all ordered associative containers, a map’s elements are stored and
enumerated in an order with increasing key values, not in the order in which these
elements were inserted. This is why, in the previous example, begin(myMap) points to the
element with key Person("Bart") rather than Person("Jenne").

The advantage of a map<K,V> over, say, a vector<pair<K,V>> is that a map allows you
to quickly assign and retrieve the value associated with a given key. One way to do this is
using its [] operator:

myMap[Person("Bart")] = 0;
std::cout << myMap[Person("Bart")] << std::endl; // 0

Note the resemblance to an array: the only apparent difference is that elements are
indexed by values of type Key rather than by consecutive integers. This is why maps are
sometimes also called associative arrays.

In the next section, we discuss how to insert new elements. You remove an element
with erase(), which you can pass either an iterator or simply a key:

myMap.erase(Person("Bart"));

Chapter 3 ■ Containers

95

�Inserting in a Map
Table 3-1 lists six ways of inserting a single key-value element into a map. The second,
third, and fourth columns indicate some differences between them (these differences
are explained later). The final column indicates whether a member with the same name
exists for any of the other ordered associative containers.

Table 3-1.  Six Ways of Inserting Elements into a Map. “N/A” Means “Not Applicable”, and
“?” Denotes “Unspecified”

Basic Usage Overwrites Steals Hint Maps Only

map[key]  =  value; Yes N/A No Yes

map.insert({key,value});
map.insert(std::pair(key,value));

No ? Yes No

map.insert_or_assign(key,value); C++17 Yes N/A Yes Yes

map.emplace(key,value); No ? No No

map.emplace_hint(hint,key,value); No ? Only No

map.try_emplace(key,value); C++17
map.try_emplace(key,args...); C++17

No No Yes Yes

�The Square Brackets Operator
You can use operator[] not only to access existing elements, as shown earlier, but also
to add new elements. If there is no value associated yet with the given key, operator[]
inserts a new element that associates this key with a new, default-constructed value and
then returns a reference to that value. This means you could add a new element to myMap
from our earlier example as follows:

myMap[Person("Peter")] = 3;

■■ Tip T he fact that operator[] may modify the container implies you cannot use it
on a const map. To access elements from a const map, you can use the at() member
instead. Take care though: when the given key is not associated with a value, at() throws
a std::out_of_range exception. Another option is the find() method, which returns
either an iterator to the requested key-value pair or the end() iterator.

�insert() and insert_or_assign()
Your second option to add elements to a map is with its insert() method, like this
(remember: an element of a map is a key-value pair):

myMap.insert(std::pair(Person("Marc"), 4));

Chapter 3 ■ Containers

96

Or, using a braced initializer for short:

myMap.insert({ Person("Marc"), 4 });

Other overloads of insert() allow you to add multiple elements at once. You provide
these elements either as an iterator range or as an initializer list. insert() is the only
member of Table 3-1 that allows you to insert multiple elements at once.

insert() never overwrites a value previously associated with a given key. Suppose
Person("Marc") is still mapped to 4 from before. Then:

myMap.insert({ Person("Marc"), 5 }); //5 is discarded
std::cout << myMap[Person("Marc")] << std::endl; // still 4!

To update existing mappings, you can use either the square brackets operator or
insert_or_assign():

myMap.insert_or_assign(Person("Marc"), 5);
std::cout << myMap[Person("Marc")] << std::endl; // 5

Notice how you do not pass a std::pair element to insert_or_assign(). Instead
you pass a key followed by a value. The following example illustrates this:

std::map<int, Person> inverseMap;
inverseMap.insert({ 3, Person("Peter", "Van Weert") });
inverseMap.insert_or_assign(5, Person("Marc", "Gregoire"));

�emplace() and try_emplace()
There is also an emplace() method that allows you to construct a new key-value pair in
place. You pass it the same arguments you would when constructing a key-value pair. In
practice, this is again mostly a key and a value. For example:

inverseMap.emplace(6, Person("Christophe", "Pichaud"));

To avoid the creation of any temporary objects with emplace(), you could use
piecewise construction and forward_as_tuple(), as explained in Chapter 2 (remember:
all arguments of emplace() are forwarded to a constructor of std::pair):

inverseMap.emplace(std::piecewise_construct, std::forward_as_tuple(6),
 std::forward_as_tuple("Christophe", "Pichaud"));

If you instead use try_emplace(), in-place construction of the value object is done
automatically. The parameters to this method are again slightly different: you pass it a key
followed by the arguments required to construct a value:

inverseMap.try_emplace(6, "Christophe", "Pichaud");

Chapter 3 ■ Containers

97

The second difference between emplace() and try_emplace() is even more
subtle. For keys that are already mapped, try_emplace() is the only insertion function
guaranteed to do absolutely nothing. The following example will clarify. Suppose that
the key 6 is already mapped from before. Ask yourself: what then happens to the powers
object in the following snippet?

Person powers("Mark", "Powers");
inverseMap.emplace(6, std::move(powers));

emplace(), like insert(), never overwrites, so ultimately the addition is discarded.
That is clear. But the standard does not specify whether the contents of powers are
moved first (say, into some temporary pair element), before the insertion is eventually
discarded. It is said that emplace() and insert() may “steal” a value if the given key is
already mapped. If you use try_emplace(), the standard guarantees that powers will not
be stolen; that is, its contents will not be moved.

�Hints
Most insertion members (see Table 3-1) allow for an optional ‘hint’ iterator to be passed
as the first argument. If this ‘hint’ points to the position right after the position where
the new element should be inserted, the insertion is done in amortized constant time.
Otherwise, insertion is logarithmic.

�Return Values
If no hint is used, members that insert a single element in a map generally return a
std::pair consisting of these two values (in the given order):

•	 An iterator pointing either to the newly inserted element (a new
key-value pair) or to the already-existing element that prevented
the insertion

•	 A Boolean that is true if a new element was inserted, or false
otherwise

Here is an example, where we use a structured binding (a syntax that is new in
C++17) to decompose the std::pair:

auto [iter, inserted] = inverseMap.insert({ 6, Person("Marc") });
if (!inserted)
 std::cout << "Not inserted. Existing value: " << iter->second;

If a hint is used, only the iterator is returned. And if multiple values are inserted at
once, the return type is always void.

Chapter 3 ■ Containers

98

�std::multimap� <map>

A multimap is mostly analogous to a map, except that it allows the same key to be
associated with multiple values at once. Elements are sorted on their key, of course, and
elements with the same key are and remain stored in the order of their insertion:

std::multimap<std::string,int> myMulti;
myMulti.insert({ "someKey", 2 });
myMulti.insert({ "sameKey", 5 });
myMulti.insert({ "sameKey", 2 });
std::cout << myMulti.size() << ' ' << myMulti.begin()->second; // 3 5

A multimap has no square brackets operator and no insert_or_assign() or try_
emplace() members. The insertion members do not return a pair, but simply an iterator
to the inserted element.

�std::set and std::multiset� <set>

A set is similar to a map, but it does not store pairs, only unique keys without values (this
is how the standard defines it, and we will as well; some may prefer to think of it as values
without keys though). A multiset supports duplicate keys.

There is only one template type parameter: the key type. This template argument can
be deduced if initial values are provided. The insert() method takes a single key instead
of a pair. For example:

std::set mySet{ 3,2,1}; // std::set<int> deduced
mySet.insert(2);
mySet.insert(6);
std::cout << mySet.size() << ' ' << *mySet.begin(); // 4 1

There are overloads of insert() similar to those for map and multimap, and similar
emplacement functions as well. Removal is again done through erase().

An iterator for a set or multiset is bidirectional and points to the actual key, not to a
pair. Keys are always sorted.

�Order of Elements
The ordered associative containers store their elements in an ordered fashion. By default,
std::less<Key> is used for this ordering, which, unless specialized, relies on operator<
of the Key type. You can change the comparison functor type by specifying a Compare
template type parameter. Here are near-complete template definitions of all four ordered
associative containers:

template<typename Key, typename Value, class Compare = std::less<Key>>
class map;

Chapter 3 ■ Containers

99

template<typename Key, typename Value, class Compare = std::less<Key>>
class multimap;

template<typename Key, typename Compare = std::less<Key>>
class set;
template<typename Key, typename Compare = std::less<Key>>
class multiset;

If no Compare functor instance is passed to the constructors of these containers (as in
all examples thus far), one is default-constructed.

■■ Tip T he preferred functors for use with ordered associative containers are the
so-called transparent operator functors (see Chapter 2)—for example, std::less<> (short
for std::less<void>)—because this improves performance for so-called heterogeneous
lookups. A map from string to int with a transparent operator functor, for example, is
declared as follows:

std::map<std::string, int, std::less<>> myStringMap;

A map of this type will be more efficient than a regular std::map<std::string, int>
when, for instance, string literals (or string_views: see Chapter 6) are used as keys in
lookups: std::less<> then avoids the creation of temporary std::string objects.

�Searching
If you want to find out whether a certain key is in an associative container, you can use
these:

•	 find(): Returns an iterator to the found element (a key-value pair
for maps) or the end iterator if the given key is not found.

•	 count(): Returns the number of keys matching the given key.
For map or set, this can only be 0 or 1, whereas for multimap or
multiset, this can be larger than 1.

•	 lower_bound(): Returns an iterator that points to the first element
whose key is not less than a given key. This can be the end iterator
if the key is not present in the container.

•	 upper_bound(): Returns an iterator that points to the first element
whose key is greater than a given key. Same as lower_bound() if
there is no element with the given key.

•	 equal_range(): Returns a std::pair of two iterators: lower_
bound() and upper_bound(). This corresponds to the half-open
range of elements with the given key if these exist.

Chapter 3 ■ Containers

100

■■ Tip T he result of upper_bound()—and thus that of lower_bound() as well for
unmapped keys—is a suitable hint iterator for the insertion members we discussed earlier.

�Moving Nodes Between Containers C++17
Ordered associative containers are generally implemented using a node-based data
structure (typically red-black trees). The following code efficiently moves one such node
from myMap to myOtherMap. No elements are copied or even moved in the process; only
links between nodes are updated:

auto node = myMap.extract(Person("Marc")); // type std::map::node_type
if (node) // or: !node.empty()
 myOtherMap.insert(std::move(node)); // would ignore empty node

The node handles returned by extract() cannot be copied, only moved.
A node from a map can be inserted into a multimap as well, and vice versa. The same

holds for transferring nodes between sets and multisets. The only requirement is that
the target container has the exact same element type as the source container. The type of
the comparison functors need not be the same.

The node-based overloads of insert() for std::map and set do not return a pair,
but a struct of type Container::insert_return_type. This struct has the following
three public data members (in that order):

•	 position: An iterator pointing to either the inserted element, the
element that prevented the insertion, or end() if the given node
handle was empty

•	 inserted: true if a new element was inserted; false otherwise

•	 node: The value of the (moved) node handle if no insertion took
place

�Merging Containers C++17
You can merge two associative containers with their merge() member functions. You
can merge any two ordered associative containers, as long as both have the exact same
element type. This implies that you can never merge a set into a map, but that you can, for
instance, merge a multiset into a set:

std::multiset src{ 1, 2, 4 };
std::set dst{ 2, 3 };
dst.merge(src);
// src == { 2 }
// dst == { 1, 2, 3, 4 }

Chapter 3 ■ Containers

101

The preceding example also illustrates that elements that cannot be moved into the
destination container (because that container does not allow for duplicate keys) remain
behind in the source container.

�Complexity
The complexity for all four ordered associative containers is the same:

•	 Insertion: Amortized constant if you provide a correct hint (one
past the insertion point); O(log(N)) otherwise.

•	 Deletion: O(log(N))

•	 Access: O(log(N))

�Reference
The following subsections give an overview of all the operations supported by map (M),
multimap (MM), set (S), and multiset (MS), divided into categories.

�Iterators
All ordered associative containers support the same set of iterator-related methods as
supported by the vector container: begin(), end(), cbegin(), cend(), rbegin(), rend(),
crbegin(), and crend().

�Size
All associative containers support the following methods:

Operation Description

empty() Returns true if the container is empty, false otherwise

max_size() Returns the maximum number of elements that can be stored

size() Returns the number of elements

Chapter 3 ■ Containers

102

�Access and Lookup
Operation M MM S MS Description

at() ■    Returns a reference to an element with the given
key. If the given key does not exist, a std::out_of_
range exception is thrown.

operator[] ■    Returns a reference to an element with the given
key. It default-constructs an element with the given
key if one does not exist already.

count() ■ ■ ■ ■ Returns the number of elements that match a given
key.

find() ■ ■ ■ ■ Finds an element matching a given key.

lower_bound() ■ ■ ■ ■ Returns an iterator to the first element with a key
not less than a given key.

upper_bound() ■ ■ ■ ■ Returns an iterator to the first element with a key
greater than a given key.

equal_range() ■ ■ ■ ■ Returns a range of elements that match a given
key as a pair of iterators. The range is equivalent to
calling lower_bound() and upper_bound().

�Modifiers
All associative containers support the following methods:

Operation Description

clear() Clears the container.

emplace() Constructs a new element in place. Does not overwrite existing
elements.

emplace_hint() Same as emplace(), but with a hint an implementation may use to
speed up insertion. Other insertion members are overloaded to allow
for an optional hint as well.

erase() Removes an element at a specific position, a range of elements, or all
elements matching a given key.

extract() Extracts a node for efficient insertion into another container.

insert() Inserts new elements or nodes extracted from another container.
Never overwrites existing elements.

merge() Merges a given container into the container. If duplicate keys are not
allowed in the destination container, elements with duplicate keys
remain behind in the source container.

swap() Swaps the contents of two containers.

Chapter 3 ■ Containers

103

 std::map additionally supports the following insertion alternatives. None of the
other ordered associative containers support these C++17 .

Operation Description

insert_or_assign() Inserts a new element, or overwrites the value of an existing
key-value association.

try_emplace() Constructs a new key-value pair in place. Does nothing if the
given key is already mapped.

�Observers
All associative containers support the following observers:

Operation Description

key_comp() Returns the functor used to compare keys

value_comp() Returns the functor used to compare key-value pairs based on
their keys

�Non-member Functions
All ordered associative containers support a similar set of non-member functions as
the sequential containers: operator==, !=, <, <=, >, >=, std::swap(), std::size(), and
std::empty().

�Unordered Associative Containers	� <unordered_map>,
<unordered_set>

The Standard Library defines the following four unordered associative containers:
unordered_map, unordered_multimap, unordered_set, and unordered_multiset.
They are completely analogous to their ordered counterparts (map, multimap, set, and
multiset), except that they do not order their elements but instead store them in buckets
in a so-called hash map.

Chapter 3 ■ Containers

104

�Hash Map
A hash map or hash table is an efficient data structure storing its elements in buckets.5
Conceptually, the map contains an array of pointers to buckets, which are in turn
arrays or linked lists of elements. Through a mathematical formula called hashing, a
hash integer number is calculated, which is then transformed into a bucket index. Two
elements resulting in the same bucket index are stored inside the same bucket.

A hash map allows for very fast retrieval of elements. To retrieve an element,
calculate its hash value, which results in the bucket number. If there are multiple
elements in that bucket, a quick (generally linear) search is performed in that single
bucket to find the right element.

�Template Type Parameters
The unordered associative containers allow you to specify your own hasher and your own
definition of how to decide whether two keys are equal by specifying extra template type
parameters. Here are the near-complete template definitions for all unordered associative
containers:

template<typename Key, typename Value, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>> class unordered_map;
template<typename Key, typename Value, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>> class unordered_multimap;

template<typename Key, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>> class unordered_set;
template<typename Key, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>> class unordered_multiset;

■■ Caution T he hash function should be compatible with the equality function in the
following sense: two keys that are equal should map to the same hash value.

�Hash Functions
If too many keys result in the same hash (bucket index), the performance of a hash map
deteriorates. In the worst case, all elements end up in the same bucket and all lookup and
insertion operations become linear.

5 Technically, you could easily implement a hash map without buckets: e.g., using so-called open
addressing. The way the standard unordered containers are defined, though, strongly suggests the
use of a separate chaining method, which is therefore what we describe here.

Chapter 3 ■ Containers

105

The Standard Library provides the following std::hash template (the base template
is defined in <functional> but is also included in the <unordered_xxx> headers):

template<typename T> struct hash;

Specializations are provided for several types, such as bool, char, int, long, double,
and std::string. If you want to calculate a hash of your own object types, you can
implement your own hashing functor class. However, we recommend that you implement
a specialization of std::hash instead.

The following is an example of how you could implement a std::hash specialization
for the Person class defined in the Introduction. It uses the standard std::hash
specialization for string objects to calculate the hash of the first and last name. Both
hashes are then combined by a XOR operation:

namespace std {
template<> struct hash<Person> {
 // The requirement to add the following two type aliases
 // is deprecated in C++17 (and expected to be removed in C++20)
 using argument_type = Person;
 using result_type = std::size_t;

 result_type operator()(const argument_type& p) const {
 auto firstNameHash(std::hash<std::string>()(p.GetFirstName()));
 auto lastNameHash(std::hash<std::string>()(p.GetLastName()));
 return firstNameHash ^ lastNameHash;
}

};
}

Simply XORing values generally does not give sufficiently randomly distributed
integers, but if both operands are already hashes, it can be considered acceptable. Details
of writing proper hash functions fall outside the scope of this book.

■■ Tip A lthough adding types or functions to the std namespace is disallowed, adding
template specializations is perfectly legal. Note also that the recommendation we made
in Chapter 2 to specialize std::swap() in the type’s own namespace does not extend to
std::hash. Because std::hash is a class rather than a function (like swap()), ADL does
not apply (see the discussion in Chapter 2).

Chapter 3 ■ Containers

106

�Complexity
The complexity for all four unordered associative containers is the same:

•	 Insertion: O(1) on average, O(N) worst case

•	 Deletion: O(1) on average, O(N) worst case

•	 Access: O(1) on average, O(N) worst case

A good hash function is key in achieving O(1) performance. The higher the
probability is that a hash function maps different keys onto the same hash value, the
further the performance of an unordered associative container degrades to O(N).

■■ Tip  Benchmarks have shown that the unordered associative containers are mostly
faster than their ordered counterparts, which makes them good defaults when you are
doubting between an ordered and an unordered associative container. Unless, of course,
ordered traversal is a requirement, or defining a good hash function is too difficult (defining
a less than operator is often easier). This rule of thumb notwithstanding: the only way to
know for sure which container performs best for your use case is to benchmark the different
options with realistic data and operations.

�Reference
All unordered associative containers support the same methods as the ordered
associative containers, except reverse iterators, lower_bound(), and upper_bound().
The following subsections give an overview of all additional operations supported by
std::unordered_map, unordered_multimap, unordered_set, and unordered_multiset,
divided into categories.

�Observers
All unordered associative containers support the following observers:

Operation Description

hash_function() Returns the hash function used for hashing keys

key_eq() Returns the function used to perform an equality test on keys

Chapter 3 ■ Containers

107

�Bucket Interface
All unordered associative containers support the following bucket interface:

Operation Description

begin(int)
end(int)
cbegin(int)
cend(int)

Returns an iterator to the first or one past the last element in the
bucket with given index

bucket(key) Returns the index of the bucket for a given key

bucket_count() Returns the number of buckets

bucket_size(int) Returns the number of elements in the bucket with a given index

max_bucket_count() Returns the maximum number of buckets that can be created

�Hash Policy
All unordered associative containers support the following hash policy methods:

Operation Description

load_factor() Returns the average number of elements in a bucket.

max_load_factor() Returns or sets the maximum load factor. If the load factor
exceeds this maximum, more buckets are created.

rehash() Sets the number of buckets to a specific value and rehashes all
current elements.

reserve() Reserves a number of buckets to accommodate a given number
of elements without exceeding the maximum load factor.

�Non-member Functions
Unordered associative containers support operator==, operator!=, std::swap(),
std::size(), and std::empty() as non-member functions.

Chapter 3 ■ Containers

108

�Allocators� <memory>

An allocator is a functor responsible for the allocation and deallocation of memory. Here
is how you could, in principle, use one directly:

std::allocator<Person> allocator; // Default allocator
Person* p = allocator.allocate(1); // Person constructor not invoked
new(p) Person("Basil", "Fawlty"); // Initialize using placement new
p->~Person(); // Memory not deallocated yet
allocator.deallocate(p, 1);

To allocate enough uninitialized memory to hold an entire array of elements, you
simply pass the desired array size to allocate() / deallocate() (instead of 1 in the
example). You can find a series of algorithms to subsequently populate and manipulate
such blocks of uninitialized memory in Chapter 4.

You generally do not use an allocator directly, however. In the Standard Library,
various types use them to manage their dynamic memory. By default, they all use
std::allocator<T>, but you can override this.

All containers except array and bitset, for instance, support an optional template
type parameter we have not shown yet—one that allows you to specify the type of
allocator it should use. For example, the complete definition of the vector template is as
follows:

template<class T, class Allocator = allocator<T>>
class vector;

An analogous template parameter exists for std::basic_string (Chapter 6) as
well. Other Standard Library types allow you to pass an allocator object as an optional
constructor argument. Examples include function and shared_ptr from Chapter 2, and
promise and packaged_task from Chapter 7. Note that to construct a shared_ptr with a
nondefault allocator, you should use std::allocate_shared().

Mostly, though, the default allocator suffices. Only on rare occasions you want to
control how memory is allocated. If the need does arise, we recommend you use an
existing allocator type provided either by the standard (see next subsection) or by a third-
party library (such as Boost). Writing your own custom allocator is possible, but this is an
advanced topic. We therefore do not cover this here.

�Polymorphic Allocators C++17 � <memory_resource>

The allocator that a container uses is part of its type. This sometimes impedes the use of
custom allocators: a vector<T,  allocator1>, for instance, cannot be used for functions
that expect either a vector<T> or a vector<T,  allocator2>. To address this design defect,
C++17 has introduced std::pmr::polymorphic_allocator<T>.

You can construct a polymorphic_allocator with a pointer to an object of any type
derived from std::pmr::memory_resource, after which the allocator invokes virtual

Chapter 3 ■ Containers

109

functions on this memory_resource. The allocation mechanism is thus determined using
runtime polymorphism rather than template instantiation.

A default-constructed polymorphic_allocator uses the default memory resource it
obtains from std::pmr::get_default_resource(). This global default can be changed
(in a thread-safe manner) using std::pmr::set_default_resource(). By default, this
default is set to the result of std::pmr::new_delete_resource(), which is a pointer to a
global memory_resource instance that simply uses new and delete.

std::pmr::null_memory_resource() returns a pointer to a second, equally trivial
global memory_resource: one that throws bad_alloc() for every allocation. We give an
example of when this may be useful in the upcoming section on monotonic buffers.

�Type Aliases
Because std::vector<T,  std::pmr::polymorphic_allocator<T>> is quite a mouthful,
the <vector> header defines an alias for this: std::pmr::vector<T>. Analogous aliases
are added to the std::pmr namespace for all container types, all basic_string aliases
(Chapter 6), and all match_result aliases (Chapter 6), all by their respective headers.

�Monotonic Buffers
A std::pmr::monotonic_buffer_resource allocates sequentially from its latest buffer.
If a buffer is depleted, a new (generally geometrically larger) buffer is allocated from
an upstream memory resource (by default std::pmr::get_default_resource()). The
type gets its name from the fact that it never really deallocates individual blocks. Its
deallocation function itself does nothing at all. That way, both allocation and deallocation
can be kept extremely fast.

An initial buffer may be provided to the constructor. Here is an overview of the
available constructors:

monotonic_buffer_resource([memory_resource* upstream])
monotonic_buffer_resource(std::size_t size[, memory_resource* upstream])
monotonic_buffer_resource(void* buffer, std::size_t size
 [, memory_resource* upstream])

For the middle constructors, size represents a minimum size for the initial, yet-to-
be-allocated first buffer.

Other members are release(), which deallocates all owned buffers, and upstream_
resource(), which returns a pointer to the upstream memory resource.

■■ Caution  Besides any initial buffer passed to its constructors, all buffers are owned by
the monotonic_buffer_resource. It will deallocate these upon destruction (or when
release() is called). This memory resource must therefore outlive all objects that are
using memory allocated from these buffers.

Chapter 3 ■ Containers

110

The idea is to use this memory_resource to quickly allocate a collection of objects
and then discard them again, all at once. Another key use is to turn dynamic allocation
into static allocation. An example will clarify. Suppose we are working in a context where
we know that a string will never be longer than a few hundred characters. Then you
can allocate its memory on the stack while still using the familiar std::string class, as
follows:

char buffer[300]; // Static allocation on the stack
std::pmr::monotonic_buffer_resource resource(

buffer, std::size(buffer), std::pmr::null_memory_resource()
);
std::pmr::string short_string(&resource);
// ... fill and manipulate short_string

This avoids the cost of dynamic allocation, which would make a difference if this
code either executes many times or is used in an environment where resources are
particularly scarce.

Note also that null_memory_resource() is set as the upstream allocator.
bad_alloc() will therefore be raised if the stack-allocated buffer does not suffice. Doing
so is optional and would be done for debugging purposes: with the default upstream
allocator, the monotonic_buffer_resource would otherwise silently allocate a new buffer,
which might nullify the intended performance optimization.

■■ Caution I t is often best to add some safety margin to your buffer sizes: a default-
constructed std::string, for instance, may already allocate some memory (to store the
empty string). Furthermore, reserve() and similar members are allowed to allocate more
than requested.

�Memory Pools
The memory_resources discussed in this section manage a collection of memory pools,
each serving requests for a different (maximum) size. Each of these pools consists of a
collection of chunks, in turn divided in equally sized blocks. Once a pool’s latest chunk
is depleted, a new (generally geometrically larger) chunk is acquired from an upstream
memory resource. Allocation requests whose size exceed the largest block size are
forwarded to this same upstream allocator.

The two memory_resources in question are std::pmr::synchronized_pool_
resource and unsynchronized_pool_resource. The former is thread-safe and optimized
for concurrent use, whereas the latter is more efficient if used from a single thread.

Both types offer constructors of the following forms:

..._pool_resource([memory_resource* upstream])

..._pool_resource(const pool_options& options[, memory_resource* upstream])

Chapter 3 ■ Containers

111

The default upstream memory_resource is again determined by std::pmr::get_
default_resource(). The other optional parameter is of type std::pmr::pool_options,
a struct consisting of these two size_t variables:

•	 max_blocks_per_chunk: Maximum number of blocks per chunk.
Implementations may stop growing chunk sizes at less blocks as
well or use different maximum chunk sizes for different pools.

•	 largest_required_pool_block: The allocation size that the
memory_resource should at least be able to service without
allocating from its upstream allocator. The actual block size used
may be larger.

If either value is zero or if the pool_options argument is omitted altogether,
implementation-specific default values are used.

Other members are release(), which deallocates all buffers (same as the
destructor), and the obvious getters upstream_resource() and options().

�Allocators for Multilevel Containers� <scoped_allocator>

The std::scoped_allocator_adaptor<OuterAlloc,  InnerAllocs...> template can be
used as the allocator type of a container of containers. It consists of an outer allocator
of type OuterAlloc and zero or more inner allocators of potentially different types.
References to all adapted allocator objects can be provided upon construction. If a
container is declared with scoped_allocator_adaptor as its allocator type, it uses its
outer allocator to allocate its elements. If these elements are containers themselves, they
in turn use the first of the InnerAllocs, and so on. If there are more levels of containers
than allocator types, the last of the inner allocators is used for the remaining innermost
containers.

113
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_4

CHAPTER 4

Algorithms

The previous chapter discusses the containers provided by the Standard Library to store
data. Orthogonally to these, the library offers numerous algorithms to process this or
other data. Algorithms are independent of containers: they do their work solely based
on iterators and can therefore be executed on any range of elements as long as suitable
iterators are provided.

This chapter starts with a brief definition of input/output iterators, followed by a
detailed overview of all available algorithms organized by functionality. The chapter ends
with a discussion of iterator adaptors.

�Input and Output Iterators
The previous chapter briefly explains the different categories of iterators offered by
containers: forward, bidirectional, and random access. Two more iterator categories are
used in the context of algorithms, which have fewer requirements compared to the other
three. Essentially:

•	 Input iterator: Must be dereferenceable to read elements. Other
than that, only the ++, ==, and != operators are required.

•	 Output iterator: Only ++ operators are required, but you must be
able to write elements to them after dereferencing.

For both, it also suffices that they provide single-pass access. That is, once
incremented, they may in principle invalidate all previous copies of them. Two
corresponding iterator tags, as discussed in Chapter 3, are provided for these categories
as well: std::input_iterator_tag and output_iterator_tag.

All iterators returned by the standard containers, as well as pointers into C-style
arrays, are valid input iterators. They are valid output iterators as well, as long as they do
not point to const elements.

Chapter 4 ■ Algorithms

114

�General Guidelines
First and foremost: use standard algorithms instead of self-written loops whenever
possible, because they are often more efficient and are far less error-prone. Also, and
especially after the introduction of lambda expressions, the use of algorithms mostly
results in far shorter, readable, self-explanatory code.

Whenever a container offers a specialized member function equivalent to an
algorithm (see Chapter 3), though, these are even more efficient and should therefore
be preferred over the generic algorithms. In the algorithm descriptions that follow, we
always list these alternatives.

Our remaining guidelines concern the two types of arguments you generally pass to
an algorithm: iterators, and more specifically the elements these iterators point to, and
function-like callables.

�Algorithm Arguments
Many algorithms either move or swap elements. Without proper move and/or swap
functions, these algorithms fall back to copying. For optimal performance you should
therefore always consider implementing specialized move and/or swap functions for
nontrivial custom data types (unless of course the implicitly generated members suffice:
remember the Rule of Zero!). Types offered by the Standard Library always provide move
and swap functions where appropriate. We refer to Chapter 2 for more information
regarding move semantics and swap functions.

Most algorithms also accept one or more callables—typically unary or binary
operations or predicates, as defined in the next section. Such callables can be either
lambda expressions, function pointers, or function objects (function objects are
discussed in Chapter 2). For most algorithms the following restrictions apply:

•	 Callables are not allowed to modify any elements through the
references they receive as input arguments.

•	 Algorithms may generally copy the callables they receive as often
as they want. Passing a so-called stateful functor may therefore not
always work as expected: whenever a function operator updates
a member variable, it may be updating the state of some copy of
the original functor. One solution is to wrap such functors inside a
std::reference_wrapper (see Chapter 2) before passing them to
an algorithm.

The only algorithms for which these restrictions do not apply are for_each() and
for_each_n(): as noted also later, these algorithms allow elements to be updated by their
callables and are guaranteed to never copy their callables (except when parallel execution
is used, as introduced near the end of this chapter).

Chapter 4 ■ Algorithms

115

�Terminology
The following terms and abbreviations are used for types in the definitions of algorithms:

•	 Function: Callable—that is, lambda expression, function object, or
function pointer.

•	 InIt, OutIt, FwIt, BidIt, RanIt: Input, output, forward, bidirectional,
or random access iterator.

•	 UnaOp, BinOp: Unary or binary operation—that is, a callable
accepting one resp. two arguments.

•	 UnaPred, BinPred: Unary or binary predicate, with a predicate
being an operation that returns a Boolean.

•	 Size: A type representing a size—for example, a number of
elements.

•	 DiffType: A type representing a distance between two iterators.

•	 T: An element type.

•	 Compare: A function object to be used to compare elements. If
not specified, operator< is used. The function object accepts two
parameters and returns true if the first argument is less than the
second, false otherwise. The ordering imposed must be a strict
weak ordering, just as with the default operator<.

�Algorithms� <algorithm>

This section gives an overview of all available algorithms in the <algorithm> header,
organized into subsections according to functionality. Algorithms offered by other
headers are listed in later sections.

�Applying a Function to a Range

Function for_each(InIt first, InIt last, Function function)

Invokes the given unary function for each element in the range [first, last)
and returns std::move(function). function is invoked with dereferenced
iterators from the input range. It is typically a void function (though not
necessarily: returned values are simply ignored) and is allowed to modify the
elements it receives as input arguments. for_each() does not copy function.

Chapter 4 ■ Algorithms

116

Note that when iterating sequentially over an entire container or C-style
array, a range-based for loop is more convenient. std::for_each() is
mostly useful for applying a function either to subranges or to all elements
in parallel (see later in this chapter).

InIt for_each_n(InIt first, Size n, Function function) C++17

Similar to for_each(), except that it operates on the range [first, first + n),
and returns the end iterator, first + n.

OutIt transform(InIt first1, InIt last1, OutIt target, UnaOp operation)
OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2,
 OutIt target, BinOp operation)

Transforms all elements in a range [first1, last1) and stores the results in
a range starting at target. The output iterator target is allowed to be equal to
first1 or first2 to perform an in-place transformation. For the first version, a
unary operation is invoked for each element. For the second version, a binary
operation is similarly performed on corresponding elements from both input
ranges. Let length = (last1 - first1), then the binary operation is executed on
pairs (*(first1 + n), *(first2 + n)) with 0 ≤ n < length. Both versions write the
return values of these invocations to the target range, in order. Unlike for_each()
and for_each_n(), the given operation is not allowed to modify the elements it
receives as input arguments. Both versions return the end iterator of the target
range, so (target + length).

�Example
The following example uses transform() first to double all the elements in a vector
using a lambda expression, and then again to negate the elements using a standard
function object. Next, it increments all numbers with for_each(). And finally, it outputs
all elements to the console using for_each_n(). This code snippet additionally needs
<functional> for std::negate:

std::vector vec{ 1,2,3,4,5,6 };

std::transform(cbegin(vec), cend(vec), begin(vec),
 [](auto& element) { return element * 2; });

std::transform(cbegin(vec), cend(vec), begin(vec), std::negate<>());

std::for_each(begin(vec), end(vec), [](int& i) { i += 1; });

std::for_each_n(cbegin(vec), size(vec),
 [](const auto& element) { std::cout << element << " "; });

Chapter 4 ■ Algorithms

117

The output is as follows:

-1 -3 -5 -7 -9 -11

�Checking for the Presence of Elements

bool all_of(InIt first, InIt last, UnaPred predicate)
bool none_of(InIt first, InIt last, UnaPred predicate)
bool any_of(InIt first, InIt last, UnaPred predicate)

Returns true if all, none, or respectively at least one of the elements in the range
[first, last) satisfies a unary predicate. If the range is empty, all_of() and
none_of() return true, and any_of() returns false.

DiffType count(InIt first, InIt last, const T& value)
DiffType count_if(InIt first, InIt last, UnaPred predicate)

Returns the number of elements in [first, last) that are equal to a given
value, or that satisfy a unary predicate.

[Alternatives: all associative containers have a count() member.]

�Example
The following example demonstrates the use of all_of() to check whether all elements
are even:

std::vector vec{ 1,2,3,4,5,6 };
bool allEven = std::all_of(cbegin(vec), cend(vec),
[](auto& element) { return element % 2 == 0; }); // false

�Finding Elements
The algorithms in this section search for the first element in a range that satisfies some
requirement. To obtain not just a single element but all elements that satisfy such a
requirement, you can, for instance, use std::copy_if() instead. This algorithm is
explained later in this chapter. Use reverse iterators to scan for the last element rather
than the first.

InIt find(InIt first, InIt last, const T& value)
InIt find_if(InIt first, InIt last, UnaPred predicate)
InIt find_if_not(InIt first, InIt last, UnaPred predicate)

Searches all elements in the range [first, last) for the first element that is
equal to a value, satisfies a unary predicate, or does not satisfy a predicate.
Returns an iterator to the element found, or last if none is found.

[Alternatives: all associative containers have a find() member.]

Chapter 4 ■ Algorithms

118

InIt find_first_of(InIt first1, InIt last1,
 FwIt first2, FwIt last2[, BinPred predicate])

Returns an iterator to the first element in [first1, last1) that is equal to an
element in [first2, last2). Returns last1 if no such element is found or if
[first2, last2) is empty. If a binary predicate is given, it is used to decide
about equality of elements between the two ranges.

FwIt adjacent_find(FwIt first, FwIt last[, BinPred predicate])

Returns an iterator to the first element of the first pair of adjacent elements in
the range [first, last) that are equal to each other or match a binary
predicate. Returns last if no suited adjacent elements are found.

�Example
The following code snippet uses the find_if() algorithm to find a person called Waldo in
a list of people:

auto people = { Person("Wally"), Person("Wilma"), Person("Wenda"),
 Person("Odlaw"), Person("Waldo"), Person("Woof") };
auto iter = std::find_if(begin(people), end(people),
 [](const Person& p) { return p.GetFirstName() == "Waldo"; });

�Finding Min/Max Elements
In Chapter 1, we introduced the min(), max(), and minmax() functions defined by the
<algorithm> header. Unlike most other <algorithm> functions, these do not operate
on iterator ranges. Instead they operate either on two elements or on an initializer
list. To find the smallest and/or largest elements of a range, you can use the following
algorithms instead:

FwIt min_element(FwIt first, FwIt last[, Compare comp])
FwIt max_element(FwIt first, FwIt last[, Compare comp])
pair<FwIt, FwIt> minmax_element(FwIt first, FwIt last[, Compare comp])

Returns an iterator to the minimum, an iterator to the maximum, or a pair
containing an iterator to both the minimum and maximum element in a range
[first, last). Returns last or pair(first, first) if the range is empty.

Chapter 4 ■ Algorithms

119

�Binary Search
All of the following algorithms require that the given range [first, last) is sorted.1 If this
precondition is not met, the algorithms’ behavior is undefined:

bool binary_search(FwIt first, FwIt last, const T& value[, Compare comp])

Returns true if there is an element equal to value in the range
[first, last).

FwIt lower_bound(FwIt first, FwIt last, const T& value[, Compare comp])
FwIt upper_bound(FwIt first, FwIt last, const T& value[, Compare comp])

Returns an iterator to the first element in [first, last) that does not
compare less than value for lower_bound() and to the first that compares
greater than value for upper_bound(). When inserting in a sorted range, both
are suitable positions to insert value, provided insertion happens before the
iterator (as with the insert() method of sequential containers: see the next
“Example” subsection).

[Alternatives: all ordered associative containers have lower_bound() and
upper_bound() members.]

pair<FwIt, FwIt> equal_range(FwIt first, FwIt last,
 const T& value[, Compare comp])

Returns a pair containing the lower and upper bounds.

[Alternatives: all associative containers, including the unordered ones, have
an equal_range() member.]

�Example
The following code snippet demonstrates how to insert a new value into a vector at the
correct place to keep the elements sorted:

std::vector vec{ 11,22,33 };
const int valueToAdd = 18;
auto lower = std::lower_bound(cbegin(vec), cend(vec), valueToAdd);
vec.insert(lower, valueToAdd); // 11,18,22,33

1 While mostly your search ranges will be fully sorted, technically it suffices that it is partitioned
on the value you are searching (partitioning is explained later).

Chapter 4 ■ Algorithms

120

The next example uses equal_range() to find the range of values equal to 2. It
returns a pair of iterators. The first one points to the first element equal to 2, and the
second points to the element after the last 2:

std::vector vec{ 1,2,2,3,4 };
auto result = std::equal_range(cbegin(vec), cend(vec), 2);
vec.erase(result.first, result.second); // 1,3,4

�Subsequence Search
Several subsequence search algorithms accept an optional binary predicate that is used
to decide about equality of elements:

FwIt1 search(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])
FwIt1 find_end(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])

Returns an iterator to the beginning of the first (search()) or last (find_end())
subsequence in [first1, last1) that is equal to the range [first2, last2).
Returns first1/last1 if the second range is empty, or last1 if no equal
subsequence is found.

FwIt search_n(FwIt first, FwIt last, Size count,
 const T& value[, BinPred predicate])

Returns an iterator to the beginning of the first subsequence in [first, last)
that consists of value repeated count times. Returns first if count is zero, or
last if no suitable subsequence is found.

FwIt search(FwIt first, FwIt last, const Searcher& searcher)

Returns an iterator to the beginning of the first subsequence in [first, last)
that equals the subsequence specified in the constructor of searcher (see the
next “Example” subsection). Returns first when searching the empty
subsequence, and last if the subsequence is not found. The <functional>
header provides the following searcher types:

•	 std::default_searcher: Naïve linear algorithm (same as
std::search() when not given a searcher functor)

•	 std::boyer_moore_searcher: Uses the Boyer-Moore string
searching algorithm, building a finite state machine upon
construction to achieve sublinear performance

•	 std::boyer_moore_horspool_searcher: Uses the Boyer-Moore-
Horspool string searching algorithm. Generally slower than the
Boyer-Moore searcher, but less memory consuming as well

Chapter 4 ■ Algorithms

121

You can pass a custom binary equality predicate when constructing the
searcher. For the two Boyer-Moore-based searcher types, you then likely need
to provide a compatible std::hash functor as well (see Chapter 3)—that is,
one that evaluates to the same hash for any two equal elements.

�Example
The Boyer-Moore algorithms are mostly used to efficiently search for strings in larger
texts. The following example requires the <string> and <functional> headers:

std::string needle = "hat";
std::string stack = "Burn the haystack. What's left is the needle.";
const std::boyer_moore_searcher searcher(begin(needle), end(needle));
const auto found = std::search(begin(stack), end(stack), searcher);
std::cout << "Found at position " << std::distance(begin(stack), found);

If multiple texts need to be searched for the same subsequence (as often occurs
when searching in files, for instance), you should reuse the same searcher object.

�Sequence Comparison
All the sequence comparison algorithms accept an optional binary predicate that is used
to decide about equality of elements:

bool equal(InIt1 first1, InIt1 last1, InIt2 first2[, BinPred predicate])

Let n = (last1 - first1), then returns true if all elements in the ranges
[first1, last1) and [first2, first2 + n) pairwise match. The second range
must have at least n elements. The four-argument version discussed shortly is
therefore preferred to avoid out-of-bounds accesses.

pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1,
 InIt2 first2[, BinPred predicate])

Let n = (last1 - first1), then returns a pair of iterators pointing to the first
elements in the ranges [first1, last1) and [first2, first2 + n) that do not
pairwise match. The second range must have at least n elements. The four-
argument version discussed next is therefore preferred to avoid out-of-bounds
accesses.

Chapter 4 ■ Algorithms

122

bool equal(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, BinPred predicate])
pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, BinPred predicate])

Safer versions of the earlier three-argument versions that also know the length
of the second range. For equal() to be true, both ranges have to be equally
long. For mismatch(), if no mismatching pair is found before reaching either
last1 or last2, a pair (first1 + m, first2 + m) is returned with
m = min(last1 - first1, last2 - first2).

�Generating Sequences

void fill(FwIt first, FwIt last, const T& value)
OutIt fill_n(OutIt first, Size count, const T& value)

Assigns value to all the elements in the range [first, last) or [first, first +
count). Nothing happens if count is negative. The range for fill_n() must be
big enough to accommodate count elements. fill_n() returns (first + count),
or first if count is negative.

[Alternatives: array::fill().]

void generate(FwIt first, FwIt last, Generator gen)
OutIt generate_n(OutIt first, Size count, Generator gen)

The generator is a function without any arguments returning a value. It is
called to calculate a value for each element in the range [first, last) or
[first, first + count). Nothing happens if count is negative. The range
for generate_n() must be big enough to accommodate count elements.
generate_n() returns (first + count), or first if count is negative.

void iota(FwIt first, FwIt last, T value)

This algorithm is defined in the <numeric> header. Each element in the range
[first, last) is set to value, after which value is incremented, so

*first = value++
*(first + 1) = value++
*(first + 2) = value++
...

Chapter 4 ■ Algorithms

123

�Example
The following example demonstrates generate() and iota():

std::vector<int> vec(6); // 0,0,0,0,0,0
int value = 11;
std::generate(begin(vec), begin(vec) + 3,
 [&value] { value *= 2; return value; }); // 22,44,88,0,0,0

std::iota(begin(vec) + 3, end(vec), 2); // 22,44,88,2,3,4

�Copy, Move, Swap

OutIt copy(InIt first, InIt last, OutIt targetFirst)
OutIt copy_if(InIt first, InIt last, OutIt targetFirst, UnaPred predicate)

Copies either all the elements (copy()) or only those that satisfy a unary
predicate (copy_if()), from the range [first, last) to a range starting at
targetFirst. For copy(), targetFirst is not allowed to be in [first, last):
if this is the case, copy_backward() may be an option. For copy_if(), the ranges
are not allowed to overlap. For both algorithms, the target range must be big
enough to accommodate the copied elements. Returns the end iterator of the
resulting range.

BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 targetLast)

Copies all the elements in the range [first, last) to a range ending at
targetLast, which is not in the range [first, last). The target range must be
big enough to accommodate the copied elements. Copying is done backward,
starting with copying element (last-1) to (targetLast-1) and going
back to first. Returns an iterator to the beginning of the target range,
so (targetLast - (last - first)).

OutIt copy_n(InIt start, Size count, OutIt target)

Copies count elements starting at start to a range starting at target. The target
range must be big enough to accommodate the elements. Returns the target end
iterator, so (target + count).

OutIt move(InIt first, InIt last, OutIt targetFirst)
BidIt2 move_backward(BidIt1 first, BidIt1 last, BidIt2 targetLast)

Similar to copy() and copy_backward() but moves the elements instead of
copying them.

Chapter 4 ■ Algorithms

124

FwIt2 swap_ranges(FwIt1 first1, FwIt1 last1, FwIt2 first2)

Swaps the elements in the range [first1, last1) with the elements in the range
[first2, first2 + (last1 - first1)). Both ranges are not allowed to overlap,
and the second range must be at least as big as the first. Returns an iterator one
past the last swapped element in the second range.

void iter_swap(FwIt1 x, FwIt2 y)

Swaps the element pointed to by x with the element pointed to by y, so
swap(*x, *y).

�Example
The following example copies all even numbers from one vector to another. To make
sure the target range is always sufficiently large, we first make the target vector larger
than it probably should be, and then erase() any excess elements:

std::vector<int> numbers{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 };
std::vector<int> evens(numbers.size());
auto end = std::copy_if(cbegin(numbers), cend(numbers), begin(evens),

[](int x) { return x % 2 == 0; });
evens.erase(end, evens.end()); // 2 8 34 144

Preallocating and then erasing like this is rather cumbersome. At the end of this
chapter, we will show you how to use copy_if() more conveniently in combination with
iterator adaptors.

�Removing and Replacing

FwIt remove(FwIt first, FwIt last, const T& value)
FwIt remove_if(FwIt first, FwIt last, UnaPred predicate)

Moves all elements in the range [first, last) that are not equal to value, or
do not satisfy a unary predicate, toward the beginning of the range, after which
[first, result) contains all the elements to keep. The result iterator, pointing
to one past the last element to keep, is returned. The algorithms are stable, which
means the retained elements maintain their relative order. The elements in
[result, last) should not be used because they could be in an unspecified state
due to moves. Usually these algorithms are followed by a call to erase(). This is
known as the remove-erase idiom and is discussed in Chapter 3.

[Alternatives: list and forward_list have remove() and remove_if() members.]

Chapter 4 ■ Algorithms

125

FwIt unique(FwIt first, FwIt last[, BinPred predicate])

Removes all but one element from consecutive equal elements in the range
[first, last). If a binary predicate is given, it is used to decide about equality
of elements. Otherwise equivalent to remove(), including the fact that it should
normally be followed by an erase(). A typical use of unique() is shown in the
next “Example” subsection.

[Alternatives: list::unique() and forward_list::unique().]

void replace(FwIt first, FwIt last, const T& oldVal, const T& newVal)
void replace_if(FwIt first, FwIt last, UnaPred predicate, const T& newVal)

Replaces with newVal all elements in the range [first, last) equal to oldVal,
or satisfying a unary predicate.

OutIt remove_copy(InIt first, InIt last, OutIt target, const T& value)
OutIt remove_copy_if(InIt first, InIt last, OutIt target, UnaPred pred)
OutIt unique_copy(InIt first, InIt last, OutIt target[, BinPred predicate])
OutIt replace_copy(InIt first, InIt last, OutIt target,
 const T& oldVal, const T& newVal)
OutIt replace_copy_if(InIt first, InIt last, OutIt target,
 UnaPred predicate, const T& newVal)

Similar to the previous algorithms, but copies the results to a range starting
at target. The target range must be big enough to accommodate the copied
elements. The input and target ranges are not allowed to overlap. Returns an
iterator pointing to one past the last element that was copied to the target range.

�Example
The following example demonstrates the use of unique() and the remove-erase idiom to
filter out all consecutive equal elements from a vector:

std::vector v{ 3,4,4,4,5,6,4,5,5,7 };
auto result = std::unique(begin(v), end(v));

// possible outcome: 3,4,5,6,4,5,7,5,5,7
v.erase(result,end(v)); // final outcome: 3,4,5,6,4,5,7

�Reversing and Rotating

void reverse(BidIt first, BidIt last)

Reverses the elements in the range [first, last).

[Alternatives: list::reverse() and forward_list::reverse().]

Chapter 4 ■ Algorithms

126

FwIt rotate(FwIt first, FwIt middle, FwIt last)

Rotates the elements in the range [first, last) to the left in such a way that
the element pointed to by middle becomes the first element in the range and
the element pointed to by (middle - 1) becomes the last element in the range
(see the next “Example” subsection). Returns (first + (last - middle)).

OutIt reverse_copy(BidIt first, BidIt last, OutIt target)
OutIt rotate_copy(FwIt first, FwIt middle, FwIt last, OutIt target)

Similar to reverse() and rotate(), but copies the results to a range starting
at target. The target range must be big enough to accommodate the copied
elements. The input and target ranges are not allowed to overlap. Returns an
iterator pointing to one past the last element copied to the target range.

�Example
The next code snippet rotates the elements in the vector. The result is 5,6,1,2,3,4:

std::vector vec{ 1,2,3,4,5,6 };
std::rotate(begin(vec), begin(vec) + 4, end(vec));

�Partitioning

bool is_partitioned(InIt first, InIt last, UnaPred predicate)

Returns true if the elements in the range [first, last) are partitioned such
that all elements satisfying a unary predicate are before all elements that do not
satisfy the predicate. Also returns true if the range is empty.

FwIt partition(FwIt first, FwIt last, UnaPred predicate)
BidIt stable_partition(BidIt first, BidIt last, UnaPred predicate)

Partitions the range [first, last) such that all elements satisfying a unary
predicate are before all elements that do not satisfy the predicate. Returns
an iterator to the first element that does not satisfy the predicate. stable_
partition() maintains the relative order of elements in both partitions.

pair<OutIt1, OutIt2> partition_copy(InIt first, InIt last,
 OutIt1 outTrue, OutIt2 outFalse, UnaPred predicate)

Partitions the range [first, last) by copying all elements that satisfy or do
not satisfy a unary predicate to an output range starting at outTrue or outFalse,
respectively. Both output ranges must be big enough to accommodate the
copied elements. The input and output ranges are not allowed to overlap.
Returns a pair containing the end iterator of the two output ranges.

Chapter 4 ■ Algorithms

127

FwIt partition_point(FwIt first, FwIt last, UnaPred predicate)

Requires the range [first, last) to be partitioned based on a unary predicate.
Returns an iterator to the first element of the second partition: that is, the first
element that does not satisfy the predicate.

�Sorting

void sort(RanIt first, RanIt last[, Compare comp])
void stable_sort(RanIt first, RanIt last[, Compare comp])

Sorts the elements in the range [first, last). The stable version
maintains the order of equal elements.

[Alternatives: list::sort() and forward_list::sort().]

void partial_sort(RanIt first, RanIt middle, RanIt last[, Compare comp])

The (middle - first) smallest elements from the range [first, last) are
sorted and moved to the range [first, middle). The unsorted elements
are moved to the range [middle, last) in an unspecified order.

RanIt partial_sort_copy(InIt first, InIt last,
 RanIt targetFirst, RanIt targetLast[, Compare comp])

min(last - first, targetLast - targetFirst) elements from the
range [first, last) are sorted and copied to the target range. Returns
min(targetLast, targetFirst + (last - first)).

bool is_sorted(FwIt first, FwIt last[, Compare comp])

Returns true if the range [first, last) is a sorted sequence.

FwIt is_sorted_until(FwIt first, FwIt last[, Compare comp])

Returns the last iterator, iter, such that [first, iter) is a sorted
sequence.

bool lexicographical_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, Compare comp])

Returns whether the elements in the range [first1, last1) are
lexicographically less than the elements in the range [first2, last2).

void nth_element(RanIt first, RanIt nth, RanIt last[, Compare comp])

The elements in the range [first, last) are moved in such a way that the given
iterator nth, after rearranging, points to the element that would be in that position
if the whole range were sorted. The entire range does not actually get sorted. It is,
however, (nonstably) partitioned on the element nth points to.

Chapter 4 ■ Algorithms

128

�Example
The partial_sort() and partial_sort_copy() algorithms can be used to find the n
biggest, smallest, worst, best, … elements in a sequence. This is faster than sorting the
entire sequence. For example:

std::vector<int> vec{ 9,2,4,7,3,6,1 };
std::vector<int> threeSmallestElements(3);
std::partial_sort_copy(begin(vec), end(vec),
 begin(threeSmallestElements), end(threeSmallestElements));

nth_element() is a so-called selection algorithm to find the nth smallest number in a
sequence and has on average a linear complexity. It can, for example, be used to calculate
the median value of a sequence with an odd number of elements:

std::vector vec{ 9,2,4,7,3,6,1 };
auto middle = begin(vec) + vec.size() / 2;
std::nth_element(begin(vec), middle, end(vec));
int median = *middle; // 4

nth_element() is not only a selection algorithm, though, but also a partition
algorithm. If sorting is not a requirement, it can be used to retrieve the n smallest
elements of a series even faster than partial_sort().

std::vector vec{ 9,2,4,7,3,6,1 };
std::nth_element(begin(vec), begin(vec) + 3, end(vec));
std::vector threeSmallest(begin(vec), begin(vec) + 3); // Possible: 2,1,3

�Sampling and Shuffling
The algorithms we discuss in this section draw their randomness from one of the uniform
random number generators explained in Chapter 1.

void sample(InIt first, InIt last, RanIt out, Size n, UniformRanGen gen)
void sample(FwIt first, FwIt last, OutIt out, Size n, UniformRanGen gen)

C++17

Copies min(last - first, n) randomly selected elements from the range
[first, last) to the range starting at out. Each element has equal probability
of being selected, and no element is selected more than once. This algorithm is
stable (in the sense that the elements in the output appear in the same order as
in the input range) if the input iterators are forward iterators.

void shuffle(RanIt first, RanIt last, UniformRanGen generator)

Shuffles the elements in the range [first, last).

Chapter 4 ■ Algorithms

129

�Example
The following example first randomly samples six numbers from a vector and then
shuffles these. See Chapter 1 for more information on the random number generation
library. The code snippet additionally needs <random> and <ctime>:

std::random_device seeder;
const auto seed = seeder.entropy() ? seeder() : std::time(nullptr);
std::default_random_engine gen(

static_cast<std::default_random_engine::result_type>(seed));
std::vector<int> in{ 1,2,3,4,5,6,7,8,9,10 };
std::vector<int> out(6);
std::sample(begin(in), end(in), begin(out), size(out), gen);

// Possible result: 1 3 4 7 9 10
std::shuffle(begin(out), end(out), gen); // Possible result: 3 10 9 7 4 1

�Operations on Sorted Ranges
All the following operations require that the input ranges are sorted. If this precondition is
not met, the algorithms’ behavior is undefined. Note that the difference between merge()
and set_union() lies in how they behave if equivalent elements appear in both their
input ranges:

bool includes(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2[, Compare comp])

Returns true if all elements in the sorted range [first2, last2) are in the
sorted range [first1, last1) or if the former is empty, or false otherwise.

OutIt merge(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])

Merges all the elements from the sorted ranges [first1, last1) and
[first2, last2) to a range starting at target in such a way that the target
range is sorted as well. The target range must be big enough to accommodate
all elements. The input ranges are not allowed to overlap with the target range.
Returns the end iterator of the target range. The algorithm is stable; that is,
the order of equal elements is maintained. For elements that appear in both
ranges, the elements of the first range are copied to the output before those
of the second.

[Alternatives: list, forward_list, as well as all associative containers offer
merge() members.]

void inplace_merge(BidIt first, BidIt middle, BidIt last[, Compare comp])

Merges the sorted ranges [first, middle) and [middle, last) into one sorted
sequence stored in the range [first, last). The algorithm is stable, so the
order of equal elements is maintained.

Chapter 4 ■ Algorithms

130

OutIt set_union(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
OutIt set_intersection(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
OutIt set_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])
OutIt set_symmetric_difference(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, OutIt target[, Compare comp])

Performs set operations (see the following list) on two sorted ranges
[first1, last1) and [first2, last2) and stores the results in a range
starting at target. The elements copied to the target are sorted. The target
range must be big enough to hold all output elements. The input and output
ranges are not allowed to overlap. Returns the end iterator of the constructed
target range. If an element appears m times in the first input range, and n times
in the second input range, then

•	 Union: The element is copied m times from the first range, and
then max(0, n-m) times from the second. The element therefore
appears max(m, n) times in the output.

•	 Intersection: The element is copied min(m, n) times from the first
range.

•	 Difference: The element is copied max(0, m-n) times from the first
range.

•	 Symmetric difference: If m > n, then the last m-n equivalent
elements are copied from the first input range; if n > m, then the
n-m last ones are copied from the second. The element therefore
appears |m-n| times in the output.

�Permutation

bool is_permutation(FwIt1 first1, FwIt1 last1,
 FwIt2 first2[, BinPred predicate])
bool is_permutation(FwIt1 first1, FwIt1 last1,
 FwIt2 first2, FwIt2 last2[, BinPred predicate])

Returns true if the second range is a permutation of the first one. For the
three-argument versions, the second range is defined as [first2, first2 +
(last1 - first1)), and this range must be at least as large as the first.
The four-argument versions are therefore preferred to safeguard against
out-of-bounds accesses (they return false if the ranges have different lengths).
If a binary predicate is given, it is used to decide about equality of elements
between the two ranges.

Chapter 4 ■ Algorithms

131

bool next_permutation(BidIt first, BidIt last[, Compare comp])
bool prev_permutation(BidIt first, BidIt last[, Compare comp])

Transforms the elements in the range [first, last) into the lexicographically
next/previous permutation. Returns true if such a next/previous permutation
exists, otherwise returns false and transforms the elements in the
lexicographically smallest/largest permutation possible.

�Heaps
In this context, the term heap does not refer to the dynamic memory pool of the C++
runtime. In computer science, heaps are also a family of fundamental tree-based data
structures (well-known variants include binary, binomial, and Fibonacci heaps). These
data structures are key building blocks in the efficient implementation of various graph
and sorting algorithms (classic examples include Prim’s algorithm, Dijkstra’s algorithm,
and heapsort). It is also a common implementation strategy for a priority queue: in fact,
the C++ priority_queue container adaptor discussed in the previous chapter could
easily be implemented using the heap algorithms defined next.

For the following C++ algorithms, the heap’s tree is flattened into a contiguous
sequence of elements that is ordered in a particular fashion. Although the exact ordering
is implementation specific, it must satisfy the following key properties: its first element
is always the largest (or one of the largest elements), and both removing this largest
element (pop_heap()) and adding new elements (push_heap()) can be done repeatedly
in logarithmic time.

void make_heap(RanIt first, RanIt last[, Compare comp])

Turns the range [first, last) into a heap (in linear time).

void push_heap(RanIt first, RanIt last[, Compare comp])

The last element of the range [first, last) is moved to the correct
position such that it becomes a heap. The range [first, last - 1) is
required to be a heap prior to calling push_heap().

void pop_heap(RanIt first, RanIt last[, Compare comp])

Removes the greatest element from the heap [first, last) by swapping
*first with *(last - 1) and making sure the new range [first, last - 1)
remains a heap.

void sort_heap(RanIt first, RanIt last[, Compare comp])

Sorts all the elements in the range [first, last). The range is required to
be a heap prior to calling sort_heap().

Chapter 4 ■ Algorithms

132

bool is_heap(RanIt first, RanIt last[, Compare comp])

Returns true if the range [first, last) represents a heap.

RanIt is_heap_until(RanIt first, RanIt last[, Compare comp])

Returns the last iterator, iter, such that [first, iter) represents a heap.

�Numeric Algorithms� <numeric>

�Reductions
Reduce functions (which are also called accumulate, aggregate, compress, fold, or inject
functions) take a range of elements and repeatedly combine two elements until only one
value is left. The default combination operator is typically summation.

T accumulate(InIt first, InIt last, T startValue[, BinOp op])

Returns result, which is calculated by initializing result with startValue and
then executing result = result + element or result = op(result, element) for
each element in the range [first, last). accumulate() thus performs what is
known as a left fold. To perform a right fold instead, you need to reverse both the
input range (or use reverse iterators) and the order of the arguments to the binary
operator.

T reduce(InIt first, InIt last)
T reduce(InIt first, InIt last, T startValue[, BinOp op])

C++17

Same as accumulate(), except that std::plus<> is used by default instead of
operator+ and that the elements may be grouped and rearranged arbitrarily
while accumulating. The latter facilitates the efficient parallelization of this
algorithm (as discussed later in this chapter), but also implies that op should be
both commutative and associative.

T transform_reduce(Init first, Init last, T start, BinOp op1, UnaOp op2)

C++17

Same as reduce(), except that a given unary operator is applied to each
element of the input range first, before they are combined with any other values.
The unary operation is not applied to start.

transform_reduce() can also perform reductions of two ranges. These overloads
are discussed in the next section.

Chapter 4 ■ Algorithms

133

�Example
The following code snippet uses the reduce() algorithm to calculate the sum of all
elements in a sequence:

std::vector vec{ 4,2,5,1,3,6 };
int sum = std::reduce(begin(vec), end(vec)); // 21

�Inner Products
An inner product (also: dot product or scalar product) reduces not one but two ranges to a
single value by first combining corresponding elements of two ranges and then reducing
these combined values again to a single value:

T inner_product(InIt1 first1, InIt1 last1, InIt2 first2,
 T startValue[, BinOp1 op1, BinOp2 op2])

Returns result, which is calculated by starting with result equal to startValue
and then executing result = result + (el1 * el2) or result = op1(result,
op2(el1, el2)) for each el1 from the range [first1, last1) and each el2 from
the range [first2, first2 + (last1 - first1)) in order. The second range must
be at least as big as the first.

T transform_reduce(InIt1 first1, InIt1 last1, InIt2 first2,
 T startValue[, BinOp op1, BinOp2 op2])

C++17

Same as inner_product(), except that std::plus<> and multiplies<> are used
by default and that corresponding elements from both ranges may be grouped
and rearranged arbitrarily while accumulating. The latter facilitates the efficient
parallelization of this algorithm (as discussed later in this chapter), but does
imply that transform_reduce() should only be applied with commutative and
associative op1 operators.

�Example
The dot product of two vectors is a very common operation in 3D geometry:

double v1[] = { 0,1,2 };
double v2[] = { 1,0,2 };
double dot = std::inner_product(std::begin(v1), std::end(v1),

std::begin(v2), 0.0); // 0*1 + 1*0 + 2*2 = 4.0

Chapter 4 ■ Algorithms

134

�Prefix Sums
The prefix sum (also: cumulative sum, partial sum, or scan) of a sequence of numbers is a
second sequence that consists of sums of these numbers, where each next sum adds one
more number from the input sequence:

OutIt partial_sum(InIt first, InIt last, OutIt target[, BinOp op])

Calculates partial sums of increasing subranges from [first, last) and writes
the results to a range starting at target. With the default operator, +, the result
is as if calculated as follows:

*(target) = *first
*(target + 1) = *first + *(first + 1)
*(target + 2) = *first + *(first + 1) + *(first + 2)
...

Returns the end iterator of the target range, so (target + (last - first)).
The target range must be big enough to accommodate the results.
The calculations can be done in place by specifying target equal to first.

OutIt inclusive_scan(InIt first, InIt last, OutIt target[, BinOp op])
OutIt inclusive_scan(InIt first, InIt last, OutIt target, BinOp op,
 T startValue)

C++17

Same as partial_sum(), except that std::plus<> is used by default and that
the summation may be performed in any order. The latter facilitates the efficient
parallelization of this algorithm (as discussed later in this chapter), but also
implies that op should always be commutative and associative. Each partial sum
is initialized with startValue, if such a value is provided.

OutIt exclusive_scan(InIt first, InIt last, OutIt target,
 T startValue[, BinOp op])

C++17

Same as inclusive_scan(), except that *(first + i) is not included in the
i-th partial sum (hence the term ‘exclusive’). In other words, the output
could be computed as follows:

*(target) = startValue
*(target + 1) = startValue + *first
*(target + 2) = startValue + *first + *(first + 1)
...

(Of course, like with inclusive_scan(), computations may be rearranged
freely, and std::plus<> is used by default rather than operator+.)

Chapter 4 ■ Algorithms

135

OutIt transform_inclusive_scan(InIt first, InIt last, OutIt target,
 BinOp op1, UnOp op2[, T startValue])
OutIt transform_exclusive_scan(InIt first, InIt last, OutIt target,
 T startValue, BinOp op1, UnOp op2)

C++17

Same as inclusive_scan() / exclusive_scan(), except that a given unary
operation is applied to each element of the input range before values are added
together (the unary operation is not applied to startValue).

�Element Differences

OutIt adjacent_difference(InIt first, InIt last, OutIt target[, BinOp op])

Calculates differences of adjacent elements in the range [first, last) and
writes the results to a range starting at target. For the default operator, -, the
result is calculated as follows:

*(target) = *first
*(target + 1) = *(first + 1) - *first
*(target + 2) = *(first + 2) - *(first + 1)
...

Returns the end iterator of the target range, so (target + (last - first)).
The target range must be big enough to accommodate the results.
The calculations can be done in place by specifying target equal to first.

�Algorithms for Uninitialized Memory� <memory>

Because they never invoke any destructor or assignment operator to deinitialize any
preexisting objects in their target ranges, most algorithms in this section require these
target ranges to consist of uninitialized memory. You can obtain blocks of uninitialized
dynamic memory either from a C++ allocator (see Chapter 3) or from more low-level,
C-style allocation facilities such as malloc() and aligned_alloc() (both defined in
<cstdlib>, but not further explained in this book).

void uninitialized_default_construct(FwIt first, FwIt last)
FwIt uninitialized_default_construct_n(FwIt first, Size count)
void uninitialized_value_construct(FwIt first, FwIt last)
FwIt uninitialized_value_construct_n(FwIt first, Size count)

C++17

Initializes a sequence of values as if by placement new with either default
(new (address) T) or value (new (address) T()) construction. The variants
that accept an iterator and a count return an iterator pointing one past the last
constructed element.

Chapter 4 ■ Algorithms

136

FwIt uninitialized_copy(InIt first, InIt last, FwIt result)
FwIt uninitialized_copy_n(InIt first, Size count, FwIt result)
FwIt uninitialized_move(InIt first, InIt last, FwIt result)
pair<InIt, FwIt> uninitialized_move_n(InIt first, Size count, FwIt result)

C++17

Copies/moves a range of values to the range starting at result as if by placement
new with copy/move construction. This is unlike the regular copy() / move()
algorithms which use assignments (or equivalent). The first three algorithms
return an iterator that points into the target range, one past the last element that
was copied/moved. In the pair of iterators that uninitialized_move_n() returns,
the second element equals that same iterator as well. The first iterator of that
pair points into the source range, one past the last element that was moved
(without raising an exception).

void uninitialized_fill(FwIt first, FwIt last, const T& value)
FwIt uninitialized_fill_n(FwIt first, Size count, const T& value)

Fills the entire given range with copies of value as if by placement new with
copy construction. This is unlike the plain fill() algorithms, which instead
use copy assignment (or equivalent). The second algorithm returns an iterator
pointing one past the last element that was initialized.

void destroy_at(T* location)
void destroy(FwIt first, FwIt last)
FwIt destroy_n(FwIt first, Size count)

C++17

Invokes the destructor for the element at the given location, or for all elements
in the given range, without deallocating any memory. The result is a block of
uninitialized memory, which may be used as the target for any of the other
algorithms in this section. destroy_n() returns an iterator pointing one past the
last element that was destroyed.

�Parallel Algorithms C++17 � <execution>

Starting with C++17, nearly all algorithms defined in the <algorithm>, <numeric>, and
<memory> headers can be executed in parallel simply by passing a so-called execution
policy object as the first argument. In the following snippet, for instance, we use
std::sort() to sort the largeVector container in parallel:

using namespace std::execution;
std::sort(par, begin(largeVector), end(largeVector));

By passing std::execution::par, a global constant of type
std::execution::‌parallel_policy, we signal the library that it can use any number of
threads (the calling thread may be one of them), on any number of processing units.

The <execution> header defines the following three execution policy objects and
types, all in the std::execution namespace:

Chapter 4 ■ Algorithms

137

Object Type Summary

seq sequenced_policy Execution may not be parallelized.

par parallel_policy Execution may be parallelized. Algorithm function
invocations do not interleave on the same thread.

par_unseq parallel_
unsequenced_policy

Execution may be parallelized. To facilitate
vectorization, algorithm function invocations may
be interleaved on the same thread.

Implementations are free to define additional execution policy types. The only
requirement is that std::is_execution_policy_v<PolicyType> evaluates to true.

■■ Tip  Use parallel execution when operating on large data ranges, and/or when a
significant amount of work needs to be performed per element. The latter mostly occurs
with algorithms such as std::for_each or any of the reduction algorithms. Either way, best
is you always profile to verify that parallel execution is effectively more efficient.

■■ Caution I f a user-provided function exits with an uncaught exception during the parallel
execution of an algorithm with any of the three standard execution policies (so even if you
use a policy object of type sequenced_policy), std::terminate() is called, which by
default terminates the process (see Chapter 8).

■■ Note A t the time of writing, not all compilers (fully) support parallel algorithms yet:
of the compilers we verified, only GCC 9.1 recently added full support (requires -ltbb to
link with Intel TBB 2018 or later), Visual Studio 2019 only has partial support (all overloads
are added, but not all algorithms are effectively parallelized), and Clang 8 has no support
for parallel algorithms at all yet. Consult your compiler’s documentation for more details.
If your compiler does not support parallel algorithms yet, you may consider third-party
implementations, such as Intel Parallel STL or HPX.

�Parallel Execution
With std::execution::par, it is your responsibility to ensure that parallel function
invocations do not result in data races or deadlocks. Consider the following example:

std::for_each(par, begin(input), end(input),
 [&vector](const auto& elem) { vector.push_back(process(elem)); });

Chapter 4 ■ Algorithms

138

If vector is a regular std::vector, parallel execution clearly results in data races:
concurrently writing to shared data is not safe without synchronization. To fix this
example, you could acquire a shared mutex once process() is done, right before calling
push_back(). Provided, of course, it is safe to run process() concurrently. If it is not,
however, there really is no point in running this loop in parallel. We refer to Chapter 7 for
more information on concurrency issues and thread synchronization.

�Parallel Unsequenced Execution
The term unsequenced refers to the fact that when you pass par_unseq to an algorithm,
instructions of multiple algorithm function invocations are allowed to be interleaved
even on a single thread of execution. Allowing instructions of multiple invocations to
be reordered more freely facilitates vectorization. Vectorization is the replacement of
multiple hardware instructions with a single vector instruction—a special hardware
instruction that performs the same (numeric) operation on multiple values at once.
Given enough data, these vector instructions may even be run on multiple threads at
once, resulting in even more speedup.

Unsequenced execution, however, does come at a cost: it limits the functionality
you may use inside your algorithm functions. In technical terms, you are not allowed
to invoke any Standard Library function that is specified to synchronize with another
function, or for which any other function is specified to synchronize with it. Memory
allocation and deallocation functions are exempted from this restriction. Notable
examples of synchronizing functions include the lock() and unlock() functions of
mutexes and functions of std::atomics that require locks. We again refer to Chapter 7 for
more details on synchronization.

�Iterator Adaptors� <iterator>

The Standard Library provides five iterator adaptors. These first two are created from a
given iterator and are typically used for input ranges of algorithms:

•	 move_iterator: Applies std::move() (or equivalent) to the result
of dereferencing a given iterator

•	 reverse_iterator: Reverses the order of a given iterator

The other three iterator adaptors are created from a given container (not an iterator)
and generally act as special output iterators to algorithms:

•	 back_insert_iterator: Adds elements to a given container using
push_back()

•	 front_insert_iterator: Adds elements to a given container
using push_front()

•	 insert_iterator: Adds elements to a given container using
insert()

Chapter 4 ■ Algorithms

139

To ease the creation of these last three adaptors, the Standard Library offers these
factory functions: std::back_inserter(), front_inserter(), and inserter(). Here is
an example:

std::vector nums{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 };
std::vector<int> evens;
auto is_even = [](int x) { return x % 2 == 0; };
std::copy_if(cbegin(nums), cend(nums), back_inserter(evens), is_even);

Notice also how argument-dependent lookup (ADL) allows you to omit ‘std::’ from
‘std::back_inserter()’ when targeting a standard container.

You often use a std::back_insert_iterator like in our previous example in
combination with algorithms such as std::copy_if(), unique_copy(), and so on, to
copy an unknown amount of elements into a sequential container. Even if the size of the
target range is known, using a back_insert_iterator is often more convenient than
first resizing the target container. When inserting larger amounts of data, you could still
consider using reserve() first to increase the capacity.

If the target container is an associative container, you use an insert_iterator
instead. Next to the container, you then also pass the insertion position:

std::set<int> odds;
std::remove_copy_if(cbegin(nums), cend(nums),
 inserter(odds, begin(odds)), is_even);

■■ Note  Factory functions also exist for the other two iterator adaptors:
std::make_reverse_iterator() and make_move_iterator(). But these factory functions
have lost their appeal now that C++17 has introduced class template argument deduction.
Consider std::reverse_iterator(iter)—a valid constructor invocation since C++17.
Since this is already shorter than std::make_reverse_iterator(iter), there’s little
reason to still use the latter.

■■ Note T he three inserting iterator adaptors cannot be used as output iterator for parallel
algorithms. In technical terms, the reason is that these output iterators are not forward
iterators, a requirement that parallelized algorithm functions typically impose for their output
iterators. The practical reason though is clear enough: inserting elements concurrently into a
container is simply not safe.

141
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_5

CHAPTER 5

Input/Output

In C++, input and output (I/O for short) mostly happens through an abstraction known as
streams. Streams allow you to perform I/O operations without knowing the details of their
target or source. Be it your command-line interface, a string, or a file—streams offer an
easy, uniform interface to communicate with any of these.

In this chapter, we first cover the different C++ stream libraries. Next, we discuss
the C++17 <filesystem> library, which allows you to inspect and manipulate the files
that are present on your file system. We conclude the chapter with a brief introduction of
some useful C-style I/O functions.

�Input/Output with Streams
The stream classes provided by the Standard Library are organized in a hierarchy and a
set of headers, as shown in Figure 5-1.

ios_base (w)ios

(w)istream(w)ostream (w)iostream

(w)istringstream

(w)ifstream

(w)ostringstream

(w)ofstream (w)fstream

(w)stringstream

<ios>

<ostream> <istream>

<sstream>

<fstream>

Figure 5-1.  The hierarchy of stream-related classes

Chapter 5 ■ Input/Output

142

More accurately, the library defines templates called basic_ios, basic_ostream,
basic_istringstream, and so on, all parameterized on a character type. All classes in
the hierarchy, except ios_base, are type aliases for these templates with either char
or wchar_t as template type argument. For example, ostream is an alias for basic_
ostream<char>, and wifstream is an alias for basic_ifstream<wchar_t>. The remainder
of this chapter only uses the char aliases.

In addition to the headers depicted in Figure 5-1, there are also headers <iosfwd>
and <iostream>:

•	 <iosfwd> simply contains forward declarations of all stream-
related types.

•	 <iostream> includes <ios>, <streambuf>, <istream>, <ostream>,
and <iosfwd> while itself adding the standard input and output
streams (w)cin, (w)cout, (w)cerr, and (w)clog.

Note that, somewhat confusingly, <iostream> is thus not a header that defines
std::iostream (at least not directly)—this type is defined in the <istream> header
instead.

The library also provides the std::basic_streambuf, basic_filebuf, and basic_
stringbuf templates and their various type aliases, plus istreambuf_iterator and
ostreambuf_iterator. These are, or work on, stream buffers and are the basis for the
implementation of other stream classes, such as ostream, ifstream, and so on. Stream
buffers and iterators are discussed later in this chapter.

�Helper Types� <ios>

The following helper types are defined in <ios>:

Type Description

std::streamsize An alias for a signed integral type used to represent the number
of characters transferred during an I/O operation or to represent
the size of an I/O buffer.

std::streamoff An alias for a signed integral type used to represent an offset into
a stream.

std::fpos A class template containing an absolute position in a stream and
a conversion operator to convert it into a streamoff. Certain
arithmetic operations are supported: a streamoff can be added
to or subtracted from an fpos, resulting in an fpos (using +, -, +=,
or -=), and two fpos objects can be compared (using == or !=) or
subtracted, resulting in a streamoff (using -). Predefined type
aliases are provided: std::streampos and wstreampos for the
character types char and wchar_t.

Chapter 5 ■ Input/Output

143

�Formatting Methods (std::ios_base)� <ios>

The ios_base class, defined in <ios>, is the base class for all input and output stream
classes. It keeps track of formatting options and flags to manipulate how data is read and
written. The following methods are provided to manipulate text formatting:

Method Description

precision()
precision(streamsize)

Returns the precision for floating-point I/O, or changes it
while returning the old one. The semantics of the precision
depend on which floatfield formatting flag is set (see
Tables 5-1 and 5-2). If either fixed or scientific is set,
the precision specifies exactly how many digits to show
after the decimal separator, even if this means adding
trailing zeros. If neither is set, then it denotes the maximum
number of digits to show, counting both the digits before
and after the decimal separator (no zeros are added in this
case). And if both are set, the precision is ignored.

width()
width(streamsize)

Returns the width of the next field, or changes it while
returning the old one. This width specifies the minimum
number of characters to output with certain I/O operations.
To reach this minimum, fill characters (explained later) are
added. Only has an effect on the next I/O operation.

getloc()
imbue(locale)

Returns the locale used during I/O, or changes it while
returning the old one. See Chapter 6 for details on locales.

flags()
flags(fmtflags)

Returns the currently set formatting flags, or replaces the
current flags while returning the old ones. Table 5-1 lists all
available fmtflags flags, which can be combined bitwise.

setf(fmtflags)
unsetf(fmtflags)

Sets or unsets individual flags without touching others. The
flags prior to the update are returned.

setf(fmtflags flags,
 fmtflags mask)

Sets flags while unsetting others in a group, specified as
a mask. Table 5-2 lists the predefined masks. For example,
setf(right | fixed, adjustfield | floatfield) sets the
right and fixed flags while unsetting the left, internal,
and scientific flags.

You can also modify flags by streaming one of the I/O manipulators discussed in the
next section.

■■ Caution  Stream formatting settings are mostly sticky in the sense that they impact all
subsequent I/O operations on the stream. The only exception is width(): most stream I/O
operations reset the width parameter to zero (meaning “unspecified”). To read/write multiple
values with the same width, width() (or the corresponding I/O manipulator setw(): see
later) needs to be repeated before each I/O operation.

Chapter 5 ■ Input/Output

144

Table 5-1.  std::ios_base::fmtflags Formatting Flags Defined in <ios>

Flag Description

boolalpha Use true and false instead of 1 and 0 for Boolean I/O.

left,
right,
internal

Output is left aligned with fill characters added to the right, or
right aligned with padding on the left, or adjusted by padding in the
middle. internal works for numerical and monetary values, with
the designated padding point being between the value and any of its
prefixes: a sign, numerical base, and/or currency symbol. Otherwise,
internal is equivalent to right. The results of the different alignment
options are shown in the example section.

scientific,
fixed

If neither of these flags is set, use default notation for floating-point I/O
(for instance, 0.0314). Otherwise, use scientific (3.140000e-02) or fixed
notation (0.031400). If both are combined, scientific | fixed, use
hexadecimal floating-point notation (0x1.013a92p-5).

dec, oct, hex Use a decimal, octal, or hexadecimal base for integer I/O.

showbase For integer I/O, write or expect the base prefix as specified with dec,
oct, or hex. When performing monetary I/O, std::put_money()
prefixes values with the locale-dependent currency symbol, and
std::get_money() requires a currency symbol prefix.

showpoint Always use a locale-dependent decimal separator character for
floating-point I/O, even if the decimal part is zero.

showpos Use a + character for non-negative numeric I/O.

skipws Instructs all formatted input operations (explained later) to skip leading
whitespace.

unitbuf Forces output to be flushed after each output operation. We refer to the
section on std::ostream for a discussion on flushing.

uppercase Instructs floating-point and hexadecimal integer output operations to
use uppercase letters instead of lowercase ones.

Table 5-2.  std::ios_base::fmtflags Masks Defined in <ios>

Flag Description

basefield dec  |  oct  |  hex

adjustfield left  |  right  |  internal

floatfield scientific  |  fixed

Chapter 5 ■ Input/Output

145

The initial formatting settings for streams are as follows (technically these are set by
std::ios, the stream base class directly deriving from std::ios_base):

•	 Formatting flags are set to skipws | dec.

•	 Precision is set to 6.

•	 The field width is set to 0.

•	 The fill character is set to the space character (' ').

■■ Note N ext to the text formatting functions discussed in this section, the ios_base
class also offers a set of more advanced member functions to facilitate the creation of
user-defined I/O manipulators. We discuss these later in this chapter.

�I/O Manipulators� <ios>, <iomanip>

Manipulators allow you to change flags using operator<< and operator>> instead of
flags(fmtflags) or setf().

The <ios> header defines I/O manipulators in the global std scope for all the flags
defined in Table 5-1: std::scientific, std::left, and so on. For flags that are part of a
mask defined in Table 5-2, the I/O manipulator uses that mask. For example, std::dec
actually calls ios_base::setf(dec, basefield).

For boolalpha, showbase, showpoint, showpos, skipws, uppercase, and unitbuf,
negative manipulators are available as well, which have the same name but are prefixed
with no: for example, std::noboolalpha.

In addition to std::fixed and scientific, there are also std::hexfloat
(scientific | fixed) and std::defaultfloat (no floatfield flags set) manipulators.

Additionally, the <iomanip> header defines the following manipulators:

Manipulator Description

setiosflags(fmtflags)
resetiosflags(fmtflags)

Sets/unsets the given fmtflags.

setbase(int) Changes the base used for integer I/O. A value other
than 16 (hex), 8 (oct), or 10 (dec) sets the base to 10.

setfill(char) Changes the fill character. See the example later.

setprecision(int) Changes the number of decimal places for floating-point
output as if set with ios_base::precision().

setw(int) Sets the width of the next field. See the example.

(continued)

Chapter 5 ■ Input/Output

146

Manipulator Description

get_money(m&,bool=false)
put_money(m&,bool=false)

Reads or writes a monetary value. If the Boolean is
true, use international currency strings (e.g., "USD ");
otherwise use currency symbols (e.g., "$"). The type of m
can be either std::string or long double. See Chapter 6
for more details on monetary formatting.

get_time(tm*, char*)
put_time(tm*, char*)

Reads or writes a date/time. The formatting is the same
as for std::strftime(), discussed in Chapter 2.

quoted(s, char='"',
 char='\\')

Reads or writes a quoted string s. During output, quote
characters (by default '"'s) are added around s, and
every occurrence of the quote and escape characters
in s is escaped (the default escape character is '\\').
When inputting the inverse transformation is applied.
An example of this manipulator is given in the section
on how to implement your own operator<< and
operator>> later in this chapter.

All I/O manipulators except std::setw() are again sticky: once streamed, they
impact all subsequent I/O operations on the same stream. setw() does not stick,
though: this manipulator needs to be repeated once per value you want to stream with a
nondefault width formatting. The next section contains an example of this.

�Example
This code snippet additionally needs <locale>:

using namespace std;
cout.imbue(locale("")); // Use the user's preferred locale, see Chapter 6
cout << setfill('_') << hex << showbase;
cout << "Left: " << left << setw(7) << put_money(123) << '\n';
cout << "Right: " << right << setw(7) << put_money(123) << '\n';
cout << "Internal: " << internal;
cout.width(7);
cout << 123 << '\n';

On an American system, the output is as follows (hex does not impact put_money()):

Left: $1.23__
Right: __$1.23
Internal: 0x___7b

Had we not repeated the nonsticky setw(7) manipulator before outputting the right-
aligned value, the output of that line would have been "Right: $1.23" (without the extra
padding of two underscores).

Chapter 5 ■ Input/Output

147

�std::ios� <ios>

The ios class defined in <ios> inherits from ios_base and provides, among other things,
a number of methods to inspect and modify the state of a stream, which is a bitwise
combination of the state flags listed in Table 5-3.

Table 5-3.  std::ios_base::iostate State Constants Defined in <ios>

iostate Description

goodbit The stream is not in any error state. No bits are set: i.e., the state is 0.

badbit The stream is in an unrecoverable error state.

failbit An input or output operation failed. For example, reading a numerical value
into an integer could cause the failbit to be set if the numerical value
overflows the integer.

eofbit The stream is at its end. This bit is only set by input operations.

�Stream State
The following state-related methods are provided:

Method Description

good()
eof()
bad()
fail()

Returns true if, respectively,
neither badbit, nor failbit, nor eofbit is set,
the eofbit is set,
the badbit is set, or
either the failbit or badbit is set

operator!() Equivalent to fail()

operator bool() Equivalent to !fail() (this casting operator is marked explicit)

rdstate() Returns the current ios_base::iostate state

clear(state) Changes the state of the stream to the given one if a valid stream
buffer is attached (see later); otherwise sets it to state | badbit

setstate(state) Calls clear(state | rdstate())

■■ Caution  Do not use good() to determine whether one or more stream input operations
succeeded (and the data you tried to read is thus safe to use):

// Read data from the input_stream stream...
if (input_stream.good())

// Use the data that was read from input_stream

Chapter 5 ■ Input/Output

148

While this looks reasonable, good() fails if the stream was at its end—that is, if eofbit is
set. Most of the time, you should therefore write the following instead:

if (input_stream) //or: if (!input_stream.fail())
// Use the data that was read from input_stream

You should use good() to determine whether a stream can be used for further I/O, like so
(we therefore refer to good() as the good-to-go check):

if (my_stream.good())
// Perform (additional) I/O operations with my_stream

The default initialization of std::ios sets the state to goodbit if there is a valid
stream buffer attached (see later), or badbit otherwise.

�Error Handling
By default, stream operations report errors by setting the state bits (good, bad, fail, and
eof) of the stream, but they do not throw exceptions. Exceptions can be enabled, though,
with the exceptions() method. It either returns the current exception mask or accepts
one. This mask is a bitwise combination of std::ios_base::iostate state flags (see
Table 5-3). For each state flag in the mask that is set to 1, the stream throws an exception
when that state bit is set for the stream.

For example, the following code tries to open a nonexistent file using a file stream
(defined in <fstream>, as explained in detail later in this chapter). No exceptions are
thrown; only the fail bit of the stream is set to 1:

std::ifstream in("nonexistent_file.ext");
std::cout << in.fail() << std::endl; // 1

If you want to use exceptions instead, the code can be rewritten as follows:

std::ifstream in("nonexistent_file.ext");
try {
in.exceptions(std::ios_base::failbit); // Raise exceptions on failure

} catch (const std::ios_base::failure& exception) {
std::cout << exception.what() << std::endl;

}

A possible output is

ios_base::failbit set: iostream stream error

Chapter 5 ■ Input/Output

149

�Other Methods
Besides state-related methods, ios also defines the following methods

Method Description

fill()
fill(char)

Returns the current fill character, or changes it while returning the old
one. To change it, you can also use the setfill() manipulator.

copyfmt() Copies all formatting information, the locale, callbacks, and
exception mask from another ios instance. The state is not copied.

tie()
tie(ostream*)

Returns the currently tied output stream as a std::ostream* pointer
(nullptr if there’s no tied stream), or replaces it while returning the
old one (if any). The output stream tied to the this stream is flushed
each time an input or output operation is performed on the this
stream. Flushing is discussed in the section on std::ostream.

narrow()
widen()

Converts a wide character to its narrow equivalent or vice versa, in a
locale-specific manner. See Chapter 6 for details on locales.

�std::ostream� <ostream>

The ostream class supports formatted and unformatted output to char-based streams.
Formatted output means the format of what is written can be influenced by formatting
options, such as the width of a field, the number of decimal digits for floating-point
numbers, and so on. Formatted output is generally also influenced by the stream’s
locale, as explained in Chapter 6. Unformatted output entails simply writing characters
or character buffers as is.

ostream provides a swap() method and the following high-level output operations.
If no return type is mentioned, the operation returns an ostream&, allowing operations to
be chained:

Operation Description

operator<< Writes formatted data to the stream.

put(char)
write(const char*, n)

Writes a single character or n characters unformatted to the
stream.

fpos tellp()
seekp(pos)
seekp(off, dir)

Returns or changes the current position in the stream. The
p in these method names is shorthand for put and denotes
that these methods are working on an output stream.
seekp() accepts either an absolute position (fpos) or an
offset (streamoff) and a direction (seekdir: see Table 5-4)
in which to start the offset.

flush() Forcefully flushes the buffer to the target. Flushing and
buffering are discussed in further detail after Table 5-4.

Chapter 5 ■ Input/Output

150

Table 5-4.  std::ios_base::seekdir Constants Defined in <ios>

seekdir Description

beg The beginning of the stream

end The end of the stream

cur The current position in the stream

For performance reasons, output streams do not always directly write to their target
outputs, but instead first write to some in-memory buffer (see also later) until some
larger block of data is ready to be written out all at once. Especially for output to a hard
disk drive, for instance, writing fewer, adequately sized bigger blocks of data is far more
efficient than writing many small blocks in a row.

�I/O Manipulators
<ostream> also defines the following extra I/O manipulators:

Manipulator Description

ends Writes '\0' (null character) to the stream

flush Flushes the stream. Same as calling flush() on the ostream

endl Writes widen('\n') to the stream and flushes it

■■ Caution  Be wary of endl, especially when outputting, for instance, data in a loop.
Because each use of endl flushes the stream, using it repeatedly and prematurely may
hamper buffering and therefore hurt performance. It is often better to just stream '\n'
characters and to only explicitly flush (if ever) after a larger amount of output.

�Global Output Streams� <iostream>

The <iostream> header provides the following global ostream instances:

•	 cout / wcout: Outputs to the standard C output stream, stdout

•	 cerr / wcerr: Outputs to the standard C error stream, stderr

•	 clog / wclog: Outputs to the standard C error stream, stderr

(w)cerr and (w)clog are intended for output of errors and logging information,
respectively. Their destinations are implementation specific.

(w)cout is automatically tied to (w)cin. This means an input operation on (w)cin
causes (w)cout to flush its buffers. (w)cout is also automatically tied to (w)cerr, so any
output operation on (w)cerr causes (w)cout to flush.

Chapter 5 ■ Input/Output

151

std::ios_base provides a static method called sync_with_stdio() to synchronize
these global ostreams with the underlying C streams after each output operation. This
ensures that they both use the same buffers, allowing you to safely mix C++ and C-style
output. It also guarantees that the standard streams are thread-safe: that is, there are no
data races. Character interleaving remains possible, though.

■■ Note  When working with the standard streams cout, cerr, clog, and cin (discussed
later), you do not have to take care of platform-dependent end-of-line characters. For
example, on Windows, a line usually ends with \r\n, whereas on Linux it ends with \n.
However, the translation happens automatically for you, so you can just always use \n.

�Example
The following example demonstrates the three different methods of output:

std::cout << "PI = " << 3.1415 << std::endl;
std::cout.put('\t');
std::cout.write("C++", 3);

�std::istream� <istream>

The istream class supports formatted and unformatted input from char-based streams.
It provides swap() and the following high-level input operations. Unless otherwise
specified, the operation returns an istream&, which facilitates chaining:

Operation Description

operator>> Reads formatted data from the stream. All other input
operations work with unformatted data.

get(char*, count
 [, delim])
getline(char*, count
 [, delim])
read(char*, count)

Reads count characters from the stream and stores them
in a char* buffer. A terminating null character ('\0') is
automatically added by get() and getline(), but not by
read(). For the first two, input stops when encountering the
delimiter, by default '\n'. get() does not extract the delimiter
from the stream, but getline() does. The delimiter is never
stored in the char* buffer.

streamsize readsome(
 char*, count)

Reads at most count characters that are immediately available
into a given char* buffer. These are the characters the
underlying stream buffer (discussed later) can return without
having to wait for them, used, for instance, to read data from
asynchronous sources without blocking. Returns the number
of extracted characters.

(continued)

Chapter 5 ■ Input/Output

152

Operation Description

get(char&)
int get()
int peek()

Reads a single character from the stream. The first version
stores the read character in a char reference. The last two
return an integer that is either a valid read character or EOF
if no characters are available. peek() does not remove the
character from the stream.

unget()
putback(char)

Puts the last read character or a given one on the stream so it
is available for the next read operation.

ignore([count
 [,delim]])

Reads count characters (1 by default) from the stream or until
a given delimiting character is encountered (eof by default)
and discards them. The delimiter is removed as well.

streamsize gcount() Returns the number of characters that were extracted by the
last unformatted input operation: get(), getline(), read(),
readsome(), peek(), unget(), putback(), or ignore().

fpos tellg()
seekg(pos)
seekg(off, dir)

Returns or changes the current position in the stream. The
g is shorthand for get and denotes that these methods are
working on an input stream. seekg() accepts either an
absolute position (fpos) or an offset (streamoff) and a
direction (seekdir: see Table 5-4) in which to start the offset.

int sync() Synchronizes the input stream with the underlying stream
buffer (discussed later). This is an advanced, rarely used
method.

�I/O Manipulators
<istream> also defines the following extra I/O manipulator:

Manipulator Description

ws Discards any whitespace currently in the stream

�Global Input Streams� <iostream>

The <iostream> header provides the following global istream instances:

•	 cin / wcin: Reads from the standard C input stream, stdin

The ios_base::sync_with_stdio() function affects (w)cin as well. See the
explanation given for cout, cerr, and clog earlier.

Chapter 5 ■ Input/Output

153

�Example
As explained earlier, istream provides a getline() method to extract characters.
Unfortunately, you have to pass it a char* buffer of proper size. The <string> header
defines a std::getline() method that is easier to use and that accepts a std::string as
target buffer. The following example illustrates its use:

int anInt;
double aDouble;
std::cout << "Enter an integer followed by some whitespace\n"
 << "and a double, and press enter: ";
std::cin >> anInt >> aDouble;
std::cout << "You entered: ";
std::cout << "Integer = " << anInt << ", Double = " << aDouble
 << std::endl;

std::string message;
std::cout << "Enter a string. End input with a * and enter: ";
std::getline(std::cin >> std::ws, message, '*');
std::cout << "You entered: '" << message << "'" << std::endl;

Here is a possible output of this program:

Enter an integer followed by some whitespace
and a double, and press enter: 1 3.2
You entered: Integer = 1, Double = 3.2
Enter a string. End input with a * and enter: This is
a multiline test*
You entered: 'This is
a multiline test'

�std::iostream� <istream>

The iostream class, defined in <istream> (not in <iostream>!), inherits from both
ostream and istream and provides high-level input and output operations. It keeps track
of two independent positions in the stream: an input and an output position. This is the
reason ostream has tellp() and seekp() methods, whereas istream has tellg() and
seekg(): iostream contains all four, so they need a different name. It does not provide
additional functionality beyond what is inherited.

�String Streams� <sstream>

String streams allow you to use stream I/O on std::strings (std::wstrings for the wide
character versions of the streams). The library provides istringstream (input, inherits

Chapter 5 ■ Input/Output

154

from istream), ostringstream (output, inherits from ostream), and stringstream (input
and output, inherits from iostream). See Figure 5-1 for the inheritance chart. All three
classes have a similar set of constructors:

•	 [i|o]stringstream(ios_base::openmode): Constructs a new
string stream with the given openmode, a bitwise combination of
the flags defined in Table 5-5

•	 [i|o]stringstream(string&, ios_base::openmode): Constructs
a new string stream with a copy of the given string as initial
stream contents and with the given openmode

•	 [i|o]stringstream([i|o]stringstream&&): Move constructor

Table 5-5.  std::ios_base::openmode Constants Defined in <ios>

openmode Description

app Short for append. Seeks to the end of the stream before each write.

binary A stream opened in binary mode. If not specified, the stream is opened
in text mode. See the “File Streams” section for the difference.

in / out A stream opened for reading/writing, respectively.

trunc Removes the contents of the stream after opening it.

ate Seeks to the end of the stream after opening it.

The openmode in the first two constructors has a default: out for ostringstream,
in for istringstream, and out|in for stringstream. For ostringstream and
istringstream, the given openmode is always combined with the default one; for example,
for ostringstream, the actual openmode is given_openmode|ios_base::out.

All three classes add only two methods:

•	 string str(): Returns a copy of the underlying string buffer

•	 void str(string&): Copies the given string to the underlying
string buffer, replacing any previous content of the buffer

�Example

std::ostringstream oss;
oss << 123 << " " << 3.1415;
std::string myString = oss.str();
std::cout << "ostringstream contains: '" << myString << "'" << std::endl;

std::istringstream iss(myString);
int myInt; double myDouble;
iss >> myInt >> myDouble;
std::cout << "int = " << myInt << ", double = " << myDouble << std::endl;

Chapter 5 ■ Input/Output

155

�File Streams� <fstream>

File streams allow you to use stream I/O on files. The library provides an ifstream (input,
inherits from istream), ofstream (output, inherits from ostream), and fstream (input
and output, inherits from iostream). See Figure 5-1 for the inheritance chart. All three
classes have a similar set of constructors:

•	 [i|o]fstream(filename, ios_base::openmode): Constructs a
file stream and opens the given file with the given openmode. The
file can be specified as a const char* or a std::string&. Sets the
state to failbit if opening the file fails.

•	 [i|o]fstream([i|o]fstream&&): Move constructor.

■■ Tip  File streams can also be opened with a path of the file system library discussed
later in this chapter, because a path converts implicitly to a string.

All three classes add the following methods:

•	 open(filename, ios_base::openmode): Opens a file similar to the
first constructor.

•	 is_open(): Returns true if a file is opened for input and/or
output.

•	 close(): Closes the currently opened file. Any pending output is
written out first.

The openmode (see Table 5-5) in the constructors and in the open() method has a
default: out for ofstream, in for ifstream, and out | in for fstream. For ofstream and
ifstream, the given openmode is always combined with the default one; for example, for
ofstream, the actual openmode is given_openmode | ios_base::out.

If the ios_base::in flag is specified, whether or not in combination with
ios_base::out, the file you are trying to open must already exist. The following code
opens a file for input and output and creates the file if it does not exist yet:

std::string filename = "data.txt";
std::fstream fs(filename); // Default openmode=ios_base::in|ios_base::out
if (!fs.good()) { // Fail bit will be set if file does not exist

fs.clear(); // First clear the error state
fs.open(filename, std::ios_base::out); // Create the file
fs.close(); // Close and reopen the file for input and output
fs.open(filename, std::ios_base::in | std::ios_base::out);

}

Chapter 5 ■ Input/Output

156

■■ Tip T o verify whether a given file exists, you may also use the file system library
discussed later in this chapter.

If a file is opened in text mode, as opposed to binary mode, the library is allowed to
translate certain special characters to match how the platform uses those. For example,
on Windows, lines usually end with \r\n, whereas on Linux they usually end with \n.
When a file is opened in text mode, you do not read/write the \r on Windows yourself;
the library handles this translation for you.

The fstream class, supporting both input and output, handles the current
position differently compared to other combined input and output streams, such as
stringstream. A file stream has only one position, so the output and input positions are
always the same.

■■ Tip T he destructor of a file stream automatically closes the file.

�Example
The following example is similar to the example given earlier for string streams but uses
a file instead. In this example, the ofstream is explicitly closed using close(), and the
ifstream is implicitly closed by the destructor of ifs:

const std::string filename = "output.txt";
std::ofstream ofs(filename);
ofs << 123 << " " << 3.1415;
ofs.close();

std::ifstream ifs(filename);
int myInt; double myDouble;
ifs >> myInt >> myDouble;
std::cout << "int = " << myInt << ", double = " << myDouble << std::endl;

�Streaming Custom Types
�Custom << and >> Operators
You can write your own versions of the stream output and extraction operators
operator<< and operator>>. What follows is an example of both operators for the Person
class. It uses the std::quoted() manipulator to handle spaces in names. For the sake of
the example, assume a valid Person object needs a nonempty first name:

Chapter 5 ■ Input/Output

157

std::ostream& operator<<(std::ostream& out, const Person& person) {
return out << std::quoted(person.GetFirstName()) << ' '

<< std::quoted(person.GetLastName());
}

std::istream& operator>>(std::istream& in, Person& person) {
std::string firstName, lastName;
in >> std::quoted(firstName) >> std::quoted(lastName);
if (firstName.empty()) // fail if invalid data is read

in.setstate(std::ios::failbit); // add fail bit
else if (in) // only if reading succeeded

person = Person(std::move(firstName), std::move(lastName));
return in;

}

These operators can be used as follows (<sstream> is also required):

Person kurt("Kurt", "von Strohm");
std::stringstream ss;
ss << kurt;
std::cout << ss.str() << '\n'; // "Kurt" "von Strohm"
ss.seekg(0); // Seek back to beginning of stream
Person readBack;
ss >> readBack;
std::cout << readBack << '\n'; // "Kurt" "von Strohm"

�Custom I/O Manipulators� <ios>

All stream classes offer a set of functions that essentially allow you to add state to their
instances (functionally equivalent to adding member variables). A typical use (of which
we will give an example later) is to store values inside a stream from within a custom I/O
manipulator, and then use these values in custom << and >> operators. Custom locale
facets (see Chapter 6) could use this state as well.

Chapter 5 ■ Input/Output

158

Here is a brief overview of these functions (all defined by ios_base):

Method Description

int  xalloc() Static member function that generates a program-wide unique
index to pass to iword() and/or pword(). This function is
thread-safe.

long&  iword(int)
void*&  pword(int)

Member functions that return a reference to a long variable or
void* pointer owned by the stream instance. The integer index
you pass must be obtained first from xalloc().

register_callback(
event_callback,int)

Adds a callback function (passed as a function pointer) that
will be called when either imbue(), copyfmt(), or ~ios_base()
gets invoked. Callbacks cannot be unregistered. The integer
value passed as a second argument (typically a xalloc()
index) is passed along with any invocation of the callback.

The first call to iword() / pword() with a given index results in a reference to a zero-
initialized value (0L / nullptr). Subsequent calls to iword() / pword() may invalidate
references returned earlier by the same function (if reallocation occurs). The values associated
with a given index, though, always remain retained (only copyfmt() replaces them).

The iword() and pword() members are backed by disjoint arrays. This means the
same xalloc() index can thus be reused for both, and you will get references to different
memory addresses.

The functions registered with register_callback() must return void and accept
the same parameter types as shown here:

void my_callback(std::ios_base::event, std::ios_base&, int);

When such a callback function is invoked by the stream, the third argument is the
integer value that you passed to register_callback() when registering the callback (as
noted earlier, this value will often be an index obtained by xalloc()). The std::ios_
base::event argument will be one of the enumeration values listed in the following table.
Each enumeration value corresponds to the moments at which registered callbacks are
invoked by a stream:

std::ios_base::event For Callbacks Invoked…

erase_event …from ~ios_base() or basic_ios::copyfmt() (the latter
before the iword() and pword() values are overwritten)

imbue_event …after a new locale has been installed by imbue()

copyfmt_event …after basic_ios::copyfmt() has replaced all iword() and
pword() values (but before the state bits are replaced)

■■ Tip  You can use pword() to store a pointer to dynamically allocated memory, which you
then release from inside a callback registered with register_callback().

Chapter 5 ■ Input/Output

159

�Example
In this example, we create dot() and nodot() I/O manipulators to toggle between printing
the full first name of a Person (the default) and only printing the first initial. Here is the code:

const int dot_xalloc = std::ios_base::xalloc(); // global constant

// I/O manipulators that toggle the 'dot' field of a stream
std::ios_base& dot(std::ios_base& stream)
{ stream.iword(dot_xalloc) = 1; return stream; }

std::ios_base& nodot(std::ios_base& stream)
{ stream.iword(dot_xalloc) = 0; return stream; }

// Output stream operator that 'dots' the first name if requested
std::ostream& operator<<(std::ostream& out, const Person& person) {

if (out.iword(dot_xalloc))
out << person.GetFirstName().front() << '.';

else
out << person.GetFirstName();

return out << ' ' << person.GetLastName();
}

The dot manipulator can then be used as follows:

Person person("Hubert", "Gruber");
std::cout << person << '\n' << dot << person << std::endl;

which will output

Hubert Gruber
H. Gruber

■■ Tip A portable output stream manipulator that accepts arguments looks as follows
(input stream manipulators are analogous):

struct my_manip {
my_manip(/* Parameters... */) : /* Store in members... */ {}
/* Member variables to store arguments ...*/

};
std::ostream& operator<<(std::ostream& out, const my_manip& m) {

/* ... use members stored in m to manipulate out */
return out;

}

You can then use my_manip just like you would the manipulators of <iomanip>:

std::cout << my_manip(/* Arguments... */) << /* ... */;

Chapter 5 ■ Input/Output

160

�Stream Iterators� <iterator>

The <iterator> header defines two stream iterators, istream_iterator and ostream_
iterator, in addition to the other iterators discussed in Chapters 3 and 4.

�std::ostream_iterator
The ostream_iterator is an output iterator capable of outputting a sequence of objects
of a certain type to an ostream using operator<<. The type of the objects to output is
specified as a template type parameter. There is one constructor that accepts a reference
to the ostream to use and an optional delimiter that is written to the stream after each
output.

Stream iterators are very powerful in combination with the algorithms discussed
in Chapter 4. As an example, the following code snippet writes a vector of doubles to
the console using the std::copy() algorithm, where each double is followed by a tab
character (additionally requires <vector> and <algorithm>):

std::vector vec{ 1.11, 2.22, 3.33, 4.44 };
std::copy(cbegin(vec), cend(vec),
 std::ostream_iterator<double>(std::cout, "\t"));

�std::istream_iterator
The istream_iterator is an input iterator capable of iterating over objects of a certain
type in an istream by extracting them one by one using operator>>. The type of the
objects to extract from the stream is specified as a template type parameter. There are
three constructors:

•	 istream_iterator(): The default constructor, which results in an
iterator pointing to the end of the stream

•	 istream_iterator(istream&): Constructs an iterator that
extracts objects from the given istream

•	 istream_iterator(istream_iterator&): Copy constructor

Just like an ostream_iterator, istream_iterators are very powerful in
combination with algorithms. The following example uses the for_each() algorithm in
combination with an istream_iterator to read an unspecified number of double values
from the standard input stream and sum them to calculate the average (additionally
needs <algorithm>):

std::istream_iterator<double> begin(std::cin), end;
double sum = 0.0; int count = 0;
std::for_each(begin, end, [&](double value){ sum += value; ++count;});
std::cout << sum / count << std::endl;

Input is terminated by pressing Ctrl+Z on Windows or Ctrl+D on Linux, followed by
Enter.

Chapter 5 ■ Input/Output

161

Our second example uses both an istream_iterator to read an unspecified number
of doubles from the console and an ostream_iterator to write the read doubles to a
stringstream separated by tabs (additionally needs <sstream> and <algorithm>):

std::ostringstream oss;
std::istream_iterator<double> begin(std::cin), end;
std::copy(begin, end, std::ostream_iterator<double>(oss, "\t"));
std::cout << oss.str() << std::endl;

�Stream Buffers� <streambuf>

As noted earlier, stream classes do not work directly with a target such as a string in
memory, a file on disk, and so on. Instead, they use the concept of stream buffers, defined
by std::basic_streambuf<CharType>. Two type aliases are provided, std::streambuf
and std::wstreambuf, where the template type argument is, respectively, char or
wchar_t. File streams use std::(w)filebuf and string streams std::(w)stringbuf, both
inheriting from (w)streambuf.

Each stream has a stream buffer associated with it to which you can get a pointer
with rdbuf(). A call to rdbuf(streambuf*) returns the current associated stream buffer
and changes it to the given one.

Stream buffers can be used to write a stream-redirector class that redirects one
stream to another stream. As a basic example, the following code snippet redirects all
std::cout output to a file (additionally needs <fstream>):

std::ofstream file("output.txt");
auto oldCoutBuf = std::cout.rdbuf(file.rdbuf()); // Redirect cout to file
std::cout << "Some output" << '\n'; // Write to file
std::cout.rdbuf(oldCoutBuf); // Restore the old cout buffer!

■■ Caution  When changing the buffer for one of the standard streams, do not forget to
restore the old buffer before terminating the application, as is done in the previous example.
Otherwise your code may crash with certain library implementations.

It can also be used to implement a tee class that redirects output to two or more
target streams. Another use is to easily read an entire file:

std::ifstream ifs("test.txt");
std::stringstream buffer;
buffer << ifs.rdbuf();

The exact behavior of stream buffers is implementation dependent. Working directly
with stream buffers is an advanced topic that we cannot discuss further in detail due to
page constraints.

Chapter 5 ■ Input/Output

162

�File Systems� <filesystem>

The <filesystem> library allows you to determine which files are present on your file
system, to inspect and manipulate their properties, and to create, copy, and delete such
files. Before we delve into the functionality of this library, though, we first establish some
essential terminology related to files, paths, and pathnames.

■■ Note T he <filesystem> library does not provide facilities to read from or write to
files: for that you use the file streams discussed earlier in this chapter.

�Files, Paths, and Pathnames
A file is an object within a file system that holds data. In the terminology of the
library, a directory is a file as well. What most would refer to as a ‘file’—as in a text
file, an executable, or a multimedia file—is called a regular file. As discussed later,
implementations typically support other file types as well, such as links and pipes.

A path is a sequence of elements that identifies the location of a file within the file
system. It could identify an existing file or a nonexistent file that you are about to create.
A pathname is a textual representation of the path.

Pathnames can be expressed either in the native format of the underlying file system
or the portable, so-called generic format of the library. This generic format corresponds
to that of the POSIX standard (in fact: on POSIX-based systems, there is generally no
difference between the native and generic pathname format). When expressed in the
generic format, a pathname consists of the following components:

[root  name][root  directory][relative  path]

where

•	 [root name] is an optional root designation for file systems with
multiple roots.

•	 [root directory] is an optional directory separator.

•	 [relative path] is a sequence of zero or more filenames, separated
by directory separators.

On Windows, "D:" or "\\server1" could be examples of root names. POSIX-like file
systems generally only have one root. For such systems, pathnames have no root name.
A directory separator is either "/" or the preferred separator of the operating system
(for instance, "\" on Windows). This preferred separator character can be obtained from
std::filesystem::path::preferred_separator.

Chapter 5 ■ Input/Output

163

■■ Note T he native Windows file system API accepts both forward slash "/" and backslash
"\" as directory separators in pathnames, as should all Windows components and
programs. The Visual Studio <filesystem> implementation accepts both as well.

Paths can be absolute or relative. An absolute path unambiguously identifies the
location of a file, whereas a relative one does so only starting from an additional starting
location. Which elements exactly determine that a pathname is absolute or not is
implementation dependent.

An example pathname on Windows is "C:\Windows\System32\notepad.exe". It
represents an absolute path. Omitting the root name "C:" would make it a relative path
(still with root directory "\"). An example pathname for a Linux file system is "/var/log/
kern.log". Even though it has no root name, it is still an absolute path.

Two special (relative) pathnames are ".", representing the current directory, and
"..", representing the parent directory.

�Error Reporting
Functions of the file system library that interact with the underlying file system can
typically fail—and if they do, they report failures in one of two ways:

•	 Overloads without a std::error_code& output parameter throw
a std::filesystem::filesystem_error exception when an error
occur.

•	 Overloads with a std::error_code& output parameter store the
error in the given error instead.

Functions can also throw a bad_alloc exception if a memory allocation error occurs
(even the overloads with an error_code& output parameter), unless the function is
marked as noexcept.

■■ Note T o save space, we will not show optional std::error_code& parameters in the
remainder of this text. Know, though, that whenever we mention that a function may fail,
both error reporting mechanisms will be present. Not all functions can fail though: none of
the member functions of the path class we discuss next, for instance, can fail (they operate
entirely at the level of pathname strings). Many non-member functions that work with
paths can fail though, as do many directory listing operations.

Chapter 5 ■ Input/Output

164

�The path Class
A std::filesystem::path represents a path and stores a pathname encoded using the
native pathname format in the native character encoding of the underlying file system.
std::filesystem::path::value_type is an alias for the character type used by this
encoding and std::filesystem::string_type for basic_string<value_type>. All
members that accept or return a pathname string are capable of converting from or to the
generic pathname format and/or other character encodings when needed.

■■ Note A path’s native pathname does not necessarily use (only) the preferred directory
separator—on Windows, for instance, a valid native pathname may use a mixture of '/'
and '/' separators. On Windows, value_type is normally wchar_t; on POSIX-based
systems, it is generally char.

�Construction and Assignment
You can create a path object from a given pathname using any of the constructors of the
form path(pathname[,  locale][,  format]), where

•	 pathname is either a C-style string, a std::basic_string, a basic_
string_view, or an iterator range into a character array. Various
encodings are supported, as explained shortly.

•	 locale, if provided, is used to convert pathname to the native
encoding of the file system.

•	 format is a value of the std::filesystem::path::format
enumeration type. Possible values are native_format, generic_
format, and auto_format. With auto_format (the default), the
interpretation of pathname is implementation-defined. Typically,
though, the constructor will inspect the contents of the given
pathname to determine whether it is specified in either the native
or generic pathname format.

If you do not provide a locale, the character type of pathname can be either char,
wchar_t, char16_t, or char32_t. The pathname is then assumed to be encoded using the
native narrow, native wide, UTF-16, or UTF-32 character encoding, respectively. If you do
provide a locale, however, the character type of pathname must be char, and the native
narrow encoding of the platform must be used.

UTF-8 pathnames are supported as well through std::filesystem::u8path().1 This
non-member factory function creates a path from a given UTF-8 encoded string either
of type const char*, string, or string_view, or passed as an iterator range. u8path()
always uses auto_format and does not accept a locale.

1 The u8path() factory function will be deprecated by C++20 with the introduction of the
char8_t character type. With this addition, the normal path constructors will be updated to
support UTF-8 encoded strings with type char8_t.

Chapter 5 ■ Input/Output

165

A path can be copied, moved, and swapped. A default-constructed path is empty.
The empty() method checks whether a path contains a pathname or not.

You replace a path’s pathname using either operator=() or assign(). These two
methods accept the same string inputs and encodings as the constructors, but no locale
or format parameter (auto_format is used).

�Conversion to Strings
You can convert a path into a pathname string using any of the following functions:

Method Description

c_str()
native()
operator string_type()

Direct access to the native pathname in its native
encoding. c_str() returns a const value_type* pointer,
native() a const string_type& reference.

string()
wstring()
u8string()
u16string()
u32string()

Returns a copy of the native pathname, encoded using
respectively the native narrow encoding, the native wide
encoding, UTF-8, UTF-16, and UTF-32. The character
types used for the resulting basic_string<CharT>
are respectively char, wchar_t, char,2 char16_t, and
char32_t.

generic_string()
generic_wstring()
generic_u8string()
generic_u16string()
generic_u32string()

Returns the pathname expressed in the generic format,
encoded with the same encoding and character types
as the previous set of functions. All native directory
separators are replaced with ‘/’.

string<CharT>()
generic_string<CharT>()

Member function templates with the same template
type parameter list as basic_string, of which only the
character type parameter CharT is non-optional. Return
the same values as the corresponding regular functions
for the same character type (where for char the native
narrow encoding is used). These function templates
also accept an optional std::allocator& argument (see
Chapter 3 for allocators).

�Decomposition
A path offers begin() and end() methods to iterate over its elements. For instance:

std::filesystem::path my_path("c:/Windows/notepad.exe");
for (const std::filesystem::path& element : my_path)
 std::cout << element << ", ";

2 Will normally become char8_t in C++20.

Chapter 5 ■ Input/Output

166

On a Windows system, this example prints

"c:", "/", "Windows", "notepad.exe",

■■ Note T he stream insertion operator for path, <<, outputs the underlying native
pathname surrounded with double quotes (as if by std::quoted()). The corresponding
stream extraction operator, >>, also disregards any surrounding quotes, if present.

If a path ends with a non-root directory separator, an empty path element is
appended to the iteration. Repeating the previous example with pathname
"c:/Windows/" therefore gives the following output:

"c:", "/", "Windows", "",

Other members that decompose a path are listed in the following table. Also
depicted are the pathnames of the path objects that these methods return when invoked
on three example paths (the first two are for a Windows file system, the third for a POSIX
system).

Method c:\Windows\notepad.exe d:\ gonzo/.profile

root_name() c: d: (empty)

root_directory() \ \ (empty)

root_path() c:\ d:\ (empty)

relative_path() Windows\notepad.exe (empty) gonzo/.profile

parent_path() c:\Windows d:\ gonzo

filename() notepad.exe (empty) .profile

extension() .exe (empty) (empty)

stem() notepad (empty) .profile

As seen from these examples, a path’s extension starts with the rightmost period
in the filename. If the first character of the filename is a period, however, that period is
ignored. The special filenames "." and ".." have no extension either. Also notice that the
parent path of a path that consists solely of root elements is the path itself.

For each of the methods in the previous table, there is also a has_x() method that
returns a Boolean (i.e., has_root_name(), has_filename(), etc.).

Chapter 5 ■ Input/Output

167

■■ Note  Because directories are files as well, filename() will return the name of a directory
if given a path that refers to a directory. Do recall though that if a pathname ends with a
directory separator, an extra empty element is added to the path. In that case, filename() will
return an empty path (and has_filename() will return false). Here is an example:

using std::filesystem::path;
std::cout << path(R"(c:\Temp)").filename() << std::endl; // "Temp"
std::cout << path(R"(c:\Temp\)").filename() << std::endl; // ""

�Composition
There are two mechanisms for composing paths:

	 1.	 You can append paths through operator/=, operator/, or the
append() method.

	 2.	 You can concatenate paths through operator+= or concat()
(there is no operator+ for paths).

The key difference is that /=, /, and append() insert a (preferred) directory separator
between two pathnames if the first does not already end with a separator, whereas +=
and concat() simply concatenate pathnames without inserting any separators. All
composition methods accept path objects, as well as the same string inputs as the path
constructors (but without locale or format arguments).

Here is an example that appends and concatenates pathnames:

auto get_full_path(int ind) {
auto temp_dir = std::filesystem::path(LR"(c:\temp)");
auto full_path = temp_dir/u8"file"; // or "file", L"file", etc.
full_path += std::to_string(ind) + ".log";// or full_path.append(...);
return full_path;

}

Assuming ind equals 10, the preceding function produces a path full_path that
contains "c:\temp\file10.log" as pathname.

Concatenation blindly concatenates pathnames, even if this results in an invalid
path. For instance, with temp_dir defined as before, the contrived statement ‘temp_dir +=
temp_dir;’ would result in the invalid pathname "c:\tempc:\temp".

Appending two paths p1 and p2, on the other hand, never results in an invalid path
and has some special semantics when mixing absolute and relative paths:

•	 If p2 is either an absolute path or a path with a nonempty root
name different from that of p1, the result is p2.

•	 Otherwise, the native format pathname of p2, without its root
name, is appended to that of p1. If p2 has a root directory, any root
directory and entire relative path of p1 are removed first.

Chapter 5 ■ Input/Output

168

using std::filesystem::path;
std::cout << path("foo") / "bar" << '\n'; // "foo/bar" or "foo\\bar"
std::cout << path("foo") / "/bar" << '\n'; // "/bar"
std::cout << path("foo") / "c:/bar" << '\n'; // "c:/bar" (Windows)
std::cout << path("c:/foo") / "d:bar" << '\n'; // "d:bar" (Windows)
std::cout << path("c:/foo") / "c:bar" << '\n'; // "c:/foo\\bar" (Windows)
std::cout << path("c:/foo") / "/bar" << '\n'; // "c:/bar" (Windows)

■■ Note T he double backslashes originate from the use of std::quoted() by the stream
insertion operator for paths and the fact that backslash is both the preferred directory
separator on Windows and the default escape character of std::quoted().

�Modification
The following table lists some methods that modify a given path object.

Method Description

clear() Turns the path into an empty path.

make_preferred() Converts all generic directory separators, '/', to the native
preferred separator ('\' on Windows).

remove_filename() Removes the filename part of the path (if any).

replace_filename(p) Removes the filename part of the path (if any) and
appends p as if by /=. The argument p can be any path, not
just a single filename.

replace_extension(p={}) Removes the extension part of the path and concatenates
p as if by +=. If p is empty (or omitted), this effectively
removes the extension. An extra dot is inserted before p if
p is nonempty and does not itself begin with a dot.

�File Links
A file system link associates a filename with a file. Several links can refer to the same
file. In general, there are two types of links: hard links and symbolic links. A hard link
can be thought of as a shared_ptr: if the last hard link to a file is removed, the file
itself is removed as well. It is also much like a C++ reference, as a hard link is generally
indistinguishable from the real file. A symbolic link, on the other hand, acts more like a
raw pointer: it is simply a path stored by the file system, referring to another file. If that
file does not exist, the symbolic link is said to be dangling. The term symbolic link is
commonly shortened to symlink.

Chapter 5 ■ Input/Output

169

Hard and symbolic links are supported by most platforms. All POSIX-compliant
operating systems support them, as does the NTFS file system used by most Windows
systems.

■■ Caution  Shortcuts in Windows are not file system links. Applications such as Windows
Explorer only treat such files as if they are, but to the file system they are simply regular
files with extension .lnk. While less known, a Windows user can create actual symbolic
or hard links, though, either with the mklink Command Prompt command or with various
third-party applications and Windows Explorer extensions.

The following table lists all functions related to filesystem links:

Function Description

create_hard_link(t,l)
create_symlink(t,l)
create_directory_symlink(t,l)

Creates a hard/symbolic link at path  l that refers
to the file at target path  t. For symlinks, the target
file does not have to exist. Portable code should
use create_directory_symlink() to create
symlinks to directories, even though on some
platforms (and on POSIX systems in particular)
you may be able to do so with create_symlink()
as well.

read_symlink(link) Returns the target path of a symbolic link. Fails if
the given path does not refer to a symlink file.

copy_symlink(from,to) Creates a new symlink at path  to that refers to
the same target as the symlink at from. Fails if the
latter path does not correspond to a symlink file.

hard_link_count(path) Returns the number of hard links to the file system
object identified by path.

is_symlink(path) Returns true if path is known to identify a symlink;
false if it does not. See also Table 5-6.

�Path Normalization
A generic pathname in normal form uses only the preferred directory separator and does
not contain any redundant directory separators or "." and ".." elements. For instance,
on Windows, the normal form of "/../Windows//./Temp/../win.ini" is "\Windows\
win.ini". A path is in normal form if its generic pathname is in normal form.

Chapter 5 ■ Input/Output

170

The following functions generate paths in normal, or near-normal, form:

Function Description

p.lexically_normal() Returns a path whose generic pathname is the normal
form of the generic pathname of p. This member does not
access the file system, but operates purely lexically—i.e., by
inspecting and manipulating pathname strings. This implies
that symbolic links are not resolved during normalization:
see canonical() for a variant that does do this.

canonical(p) Returns an absolute path that refers to the same file as p, but
whose generic pathname contains no symbolic links, ".", or
".." elements. Note that the standard does not guarantee
that the resulting path will be in normal form (its pathname
could, for instance, contain nonpreferred or redundant
directory separators). Fails if the path p does not exist.

weakly_canonical(p) Converts the longest sequence of leading elements that form
an existing path as if by canonical(), and then appends the
remaining elements. The resulting path is in normal form.

■■ Note E ven though the normal form of an empty path is an empty path, normalization
never produces an empty path when starting from a nonempty input. Instead, paths such
as "./" and "dir/.." are normalized to ".".

�The Current Working Directory
std::filesystem::current_path() returns the absolute path of the current working
directory associated with the process. It typically starts out as the directory from which the
application was launched, which may or may not correspond to the directory in which
the executable is located. This is also the path that is used by default to resolve relative
paths, as seen in the next subsection.

�Absolute and Relative Paths
The following table assumes the existence of the following two paths for its examples:

std::filesystem::path abs("c:/Windows/notepad.exe");
std::filesystem::path rel("../log.txt");

Chapter 5 ■ Input/Output

171

Function Returns…

p.is_absolute()
p.is_relative()

Returns true if the path represents an absolute or relative path,
respectively, and false otherwise. For example:

abs.is_absolute() == true
rel.is_relative() == true

absolute(p) Returns p converted into an absolute path. The result depends
on the current working directory. For instance, suppose the
working directory is "D:\temp\App1\x64", then

absolute(rel) == "D:\\temp\\App1\\log.txt"

p.lexically_
relative(base)

Returns p made relative to the given base path. For instance:

abs.lexically_relative("c:/")
 == "Windows\\notepad.exe"
abs.lexically_relative("c:/Windows/")
 == "notepad.exe"
abs.lexically_relative("c:/Windows/Temp")
 == "..\\notepad.exe"
abs.lexically_relative(abs) == "."

Unlike the non-member functions discussed later, this purely
lexical operation does not follow symlinks. Returns an empty
path if the root names do not match, if one of the paths is
absolute while the other is not, or if base has a root directory
while p does not.

p.lexically_
proximate(base)

Returns p.lexically_relative(base) if that is not empty,
otherwise returns p. For example:

abs.lexically_relative("d:/Temp/") == ""
abs.lexically_proximate("d:/Temp/") == "c:/Windows/
notepad.exe"

relative(p, base =
current_path())

Equivalent to

weakly_canonical(p)
 .lexically_relative(weakly_canonical(base))

proximate(p, base =
current_path())

Equivalent to

weakly_canonical(p)
 .lexically_proximate(weakly_canonical(base))

■■ Caution T he [lexically_]relative() / proximate() functions all assume the
given base path refers to a directory. The filename component of the pathname will thus
always be assumed to be that of a directory, even if it does not. For instance:

relative(abs, "c:/Users/log.txt") == "..\\..\\Windows\\notepad.exe"

Chapter 5 ■ Input/Output

172

�Comparing Paths
Two paths can be compared using the functions in the following table.

Function Description

equivalent(p1,p2) Two-way comparison that returns true if both paths refer to the
same location after resolving relative paths, as well as all hard and
symbolic links. Fails if either path does not exist.

p1.compare(p2)
p1.compare(str)

Three-way lexical comparison method (returns an int). Hard or
symbolic links are not resolved: comparison happens purely by three-
way string comparison (as if by basic_string::compare()) on native
pathname elements. Concretely, the result is determined as follows:

• � If the paths have different root names, return the result of
comparing these.

• � Otherwise, return a negative value if p1 does not have a root
directory and p2 does, and a positive value if p1 has a root
directory and p2 does not.

• � Otherwise, apply element-wise three-way string comparison
on all path elements, as if iterating simultaneously over the
relative_path() parts of both paths and applying native()
on each element before comparing. Return the first nonzero
value. If all corresponding elements compare equal, return a
negative value if p1 has less elements, a positive one if p2 has
more elements, and zero otherwise.

==,!=, <, <=, >, >= Two-way lexical comparison operators. Equivalent in semantics to
compare().

�File Status
A file_status object stores two properties: a file type and file permissions. You can
obtain a file’s file_status either using std::filesystem::status(path) or from a
directory_entry during directory listing (as explained later). For a symlink, status()
returns the file_status of the link’s target. symlink_status() is mostly equivalent to
status(), except that for symlinks it retrieves the status of the symlink file itself.

Next to a set of constructors with optional type and permission values (in that order),
a file_status only has type() and permissions() getters and setters. There are no other
members.

■■ Caution  Modifying a file_status has no effect on the actual file. Normally, you
therefore do not use the setters of a file_status (or its constructors for that matter). You
normally obtain a file_status from a [symlink_]status() function and then use its
getters to inspect a file’s type or permissions. To alter permissions of a file, you can use the
permissions() function discussed later. A file’s type cannot be changed.

Chapter 5 ■ Input/Output

173

�File Types
Some file systems offer more file types than just regular files, directories, and links.
Table 5-6 provides an overview of possible file types and the related functionality.

Your first option to determine the type of a file is to use the file_type returned by the
type() method of a file_status. Possible values of this scoped enumeration type are listed
in the first column of Table 5-6 (implementations are allowed to define additional values).

Your second option are the functions listed in the second column of the table. They
all exist both as non-member functions in the std::filesystem namespace and as
member functions of a directory_entry (see the section on directory listing). The non-
member functions accept either a path or a file_status.

■■ Tip  If you need to invoke multiple is_file_type(my_path) functions for a given
path, it is more efficient first to obtain status = file_status(my_path) and then use
is_file_type(status).

Table 5-6.  Overview of Functions and std::filesystem::file_type Enumeration Values
Used to Determine the Type of a File

file_type Functions If the File…

regular is_regular_file() …is a regular file.

directory is_directory() …is a directory.

symlink is_symlink() …is a symbolic link.

block is_block_file() …is a block special file.

character is_character_file() …is a character special file.

fifo is_fifo() …is a FIFO file (also known as a pipe file).

socket is_socket() …is a socket file.

exists() …exists.

not_found …does not exist.

is_other() …exists and is not a regular file, directory, or
symbolic link.

unknown …is an existing file for which the type could
not be determined (for instance, due to lack of
permissions).

none …is a file for which type has not yet been
determined (for instance, a default-constructed
file_status), or for which an error has occurred
while determining its type.

status_known() …is a file for which type has been determined.
That is, a file whose type is different from none
(and not different from unknown, as the function
name suggests!).

Chapter 5 ■ Input/Output

174

�File Permissions
Most file systems allow file permissions to be set on individual files and directories. The
C++ file system library supports such permissions. It provides an enumeration called
std::filesystem::perms, values of which can be bitwise combined to describe the
file permissions of a file or directory. The following table lists all available enumeration
values.

perms Value Description

none 0 No permissions are set for the file.

owner_read
owner_write
owner_exec
owner_all

0400
0200
0100
0700

The file’s owner has read, write, or execute permissions.
owner_all = owner_read | owner_write | owner_exec.

group_read
group_write
group_exec
group_all

040
020
010
070

Users in the file’s user group have read, write, or execute
permissions.
group_all = group_read | group_write | group_exec.

others_read
others_write
others_exec
others_all

04
02
01
07

Other users have read, write, or execute permissions.
others_all = others_read | others_write | others_exec.

all 0777 Equivalent to owner_all | group_all | others_all.

set_uid
set_gid

04000
02000

Set user ID or group ID on execution. Useful to set on
executable files. When a user executes a file which has the
set_uid or set_gid permission flags set, the privileges of
the user are temporarily elevated to the same privileges of
the executable’s user or group.

sticky_bit 01000 The meaning of this permission is operating system
dependent. On Linux, e.g., files in a directory with the
sticky_bit permission flag set can only be deleted or
renamed by the file’s owner, the directory’s owner, or by
the root user. If the sticky_bit permission is not set on
the directory, any user with write and execute permissions
on the directory can delete or rename any file in that
directory.

mask 07777 Equivalent to all | set_uid | set_gid | sticky_bit.

unknown 0xFFFF File permissions are unknown.

Chapter 5 ■ Input/Output

175

On Unix-like systems, the read, write, and exec permissions have the following
semantics for directories:

•	 read grants the ability to list the names of the files present in the
directory. To access the files themselves, or any meta-information
beyond their names, you need exec permission.

•	 write grants the ability to create, delete, and rename files within
the directory.

•	 exec grants the ability to search the directory—that is, to
access the contents and meta-information (such as file type,
size, permissions, etc.) of a file with a known name. To list the
filenames inside a directory, the read permission remains
required.

■■ Note N ot all implementations support all file permissions. Visual Studio’s
implementation, for instance, essentially only distinguishes between read-only files (none
of the write bits are set) and files that are not read-only (the all bits are set). There’s no
distinction between owner, group, or others.

The std::filesystem::permissions() function can be used to modify the
permissions for a given file:

void permissions(const path& path, perms permissions
 [, perm_options o = perm_options::replace]);

The std::filesystem::perm_options parameter specifies how the permissions
should be applied to the given file. It is an enumeration with the following values:

perm_options Description

replace The given permissions replace the current file’s permissions. This is
the default behavior.

add The given permissions are bitwise OR’ed with the current file’s
permissions.

remove The complement of the given permissions is bitwise AND’ed with the
current file’s permissions.

nofollow By default the permissions of the file a symbolic link points to
are modified. If the nofollow option is specified, however, the
permissions of the symbolic link file itself are modified.

Chapter 5 ■ Input/Output

176

�Creating, Copying, Deleting, and Renaming

Function Description

create_directory(p)
create_directory(p,from)

Creates a directory at the given path p. If a second path
is provided, certain attributes (such as file permissions)
are copied from the existing directory it must refer to.
Which attributes are copied depends on the operating
system. Returns true if a new directory was created,
false otherwise. If the target directory already exists,
false is returned without signaling failure.

create_directories(p) Invokes create_directory() for any nonexistent
directory in the given path. Returns true if one or more
new directories were created, false otherwise.

copy(from,to)
copy(from,to,options)
copy_file(from,to)
copy_file(from,to,opts)

copy() copies a regular file, directory, or symlink; copy_
file() only copies a regular file. Fails if paths to wrong
file types are provided, or if from and to are equivalent
paths. The exact behavior is controlled by the chosen
copy_options flags: see Table 5-7. The behavior of
copy()/copy_file() is undefined if more than one
flag of the same option group (the grouped rows in
Table 5-7) is set.

remove(path) Deletes a file, symlink, or empty directory. Fails if path
corresponds to a nonempty directory. Symlinks are not
followed: i.e., the symlink file itself is deleted, not its
target. Returns true if the file existed and was removed;
false otherwise.

remove_all(path) Recursively deletes the contents of path if it is a
directory as if by invoking remove(), followed by
remove(path).

rename(from,to) Moves or renames a file. If to is the path of an existing
file, that file gets deleted and replaced. from and to
must then either both refer to a directory file or both
refer to a nondirectory file. Does nothing if from and
to are equivalent paths. Fails if to ends with dot or dot
dot, or names a nonexistent directory ending with a
directory separator. Symlinks are not followed: if from
is a symlink, it is renamed and not its target. If to is an
existing symlink, it itself is replaced, and not its target.

Chapter 5 ■ Input/Output

177

�File Sizes and Free Space
You can query the size of a file with std::filesystem::file_size(const path&). For
a regular file, it returns the current file size in bytes (as a value of type std::uintmax_t,
an alias for the largest integer type supported by your platform). Symlinks are always
followed. For a file of any other type, and most notably for a directory, the result is
implementation-defined. Returns -1 on failure.

You can change the size of a file with std::filesystem::resize_file(const path&,
uintmax_t). If you increase the file size, the file is appended with zeros; otherwise the file
is truncated to the smaller size.

Table 5-7.  std::filesystem::copy_options Bitwise-Combinable Enumeration Values to
Control copy() and copy_file() Operations

copy_options Description

copy_options to control copy()’s or copy_file()’s behavior with existing targets

none Fail and report an error. (Default)

skip_existing Do not overwrite existing targets.

overwrite_existing Always overwrite existing targets.

update_existing Only overwrite an existing target if the new file is more recent.

copy_options to control copy()’s behavior with subdirectories

none Skip subdirectories. (Default)

recursive Recursively copy subdirectories.

copy_options to control copy()’s behavior with symbolic links

none Follow symlinks, and copy the files they point to. (Default)

copy_symlinks Copy symlinks as symlinks.

skip_symlinks Do not copy symlinks (neither as symlinks nor as the files they
point to).

copy_options to control copy()’s behavior

none Copy all content. (Default)

directories_only Only copy directory structure. Do not copy nondirectory files.

create_symlinks Instead of copying files, create symlinks to the source
files. The source path shall be an absolute path unless the
destination path is in the current directory.

create_hard_links Instead of copying files, create hard links to the source files.

Chapter 5 ■ Input/Output

178

std::filesystem::space(const path&) can be used to get information about
the file system containing the given path. It returns a std::filesystem::space_info
structure with the following uintmax_t members:

•	 capacity: The total size in bytes of the file system

•	 free: The number of free bytes on the file system

•	 available: The number of free bytes available for a nonprivileged
process (less or equal to free)

Any space_info member that could not be determined is set to -1.

�Directory Listing
Iterating over all files in a directory is made easy using a directory_iterator, as the
following example shows:

// Print the names of all regular files in the current directory
std::filesystem::directory_iterator begin("."), end;
for (auto iter = begin; iter != end; ++iter)

if (iter->is_regular_file())
std::cout << iter->path().filename() << '\n';

The directory_iterator type also has range-based for loop support (by having
begin(iter) return iter, and end(iter) a default-constructed iterator):

for (auto& entry : std::filesystem::directory_iterator("."))
 if (entry.is_regular_file())
 std::cout << entry.path().filename() << '\n';

To traverse a directory structure recursively, you can similarly use a recursive_
directory_iterator:

for (auto& entry : std::filesystem::recursive_directory_iterator("."))
 if (entry.is_regular_file())
 std::cout << entry.path().filename() << '\n';

A directory iterator that is not an end iterator points to a directory_entry. Next to
the usual copy and move members, and an (explicit) constructor from a given path, a
directory_entry provides the following members:

Chapter 5 ■ Input/Output

179

Method Description

refresh() Refreshes all file attributes cached within the
directory_entry. Any other accessor functions typically
return values that were cached during directory listing,
or when the directory_entry was last refreshed.

path()
operator const path&()

Returns the path the directory_entry refers to.

assign(p) Assigns a new path p to the directory_entry and
invokes refresh().

replace_filename(p) Replaces the filename of the path of the directory_
entry as if by assign(path().replace_filename(p)).
This does not make changes to the underlying file
system.

file_size()
hard_link_count()
last_write_time()
status()
symlink_status()

Returns properties of the entry’s file as if by invoking the
non-member function with the same name on path().

is_file_type()
exists()

A set of members with the same name and semantics as
the non-member functions described in Table 5-6 (with
one exception: there is no status_known() member).

Both directory_iterator and recursive_directory_iterator have constructors
accepting a directory_options as their second argument, which is an enumeration with
the following values that can be bitwise combined:

directory_options Description

none The default behavior: neither follow_directory_
symlink nor skip_permission_denied is set.

follow_directory_symlink Symbolic links to directories are followed during
iteration. This option only impacts subdirectories
encountered during recursive iteration (and therefore
has no effect for a directory_iterator). If the initial
directory is a symlink, this link is always followed.

skip_permission_denied Do not report an error when iteration fails to enter
a directory due to lack of permissions. This option
affects both the initial directory and all recursive
subdirectories.

For both iterator types, the iteration order within a directory is unspecified. Special
files "." and ".." are always skipped. It is unspecified whether files that are deleted or
added during an iteration still appear in the iteration or not.

Chapter 5 ■ Input/Output

180

A recursive_directory_iterator traverses a directory structure depth-first. More
concretely: if an iterator is incremented while it points to a directory, the iterator starts
listing its contents, recursively, before returning to the iteration of the parent directory.
It has the following additional methods:

Method Description

depth() Returns the current recursion depth (zero initially,
and incremented each time the iterator enters a new
subdirectory)

pop() Abandons the iteration of the current directory and
returns to the iteration of the files in the parent directory

disable_recursion_pending() Prevents the recursive_directory_iterator from
entering the current file, should that be a directory.
Resets each time the iterator is incremented

recursion_pending() Checks whether disable_recursion_pending() has
been called for the current file

�C-Style File Utilities� <cstdio>

Prior to C++17, the following C-style functions in the <cstdio> header were the only
portable file utilities available in the Standard Library:

Function Description

int remove(filename) Deletes the file with the given filename. Returns 0 on success. It
is implementation dependent whether errno (see Chapter 8) is
set when there is an error.

int rename(old, new) The file named old is renamed to new. If supported, files may
be moved to a different path as well. Returns 0 on success. It is
implementation dependent whether errno (see Chapter 8) is
set when there is an error.

FILE* tmpfile() Opens a newly created file with a generated unique name for
binary output. The returned FILE* pointer can be used, for
instance, with the C-style I/O functions briefly discussed in the
next section. The temporary file is automatically deleted when
it is closed (for instance, using std::fclose(FILE*)). Returns
nullptr when the file could not be created.

char* tmpnam(char*) Creates a unique, then nonexisting filename. If a char*
argument is provided, the result is stored in the buffer pointed
to by this pointer and the same pointer is returned as well. The
provided char* buffer must be at least L_tmpnam bytes long. If
the argument is nullptr, a pointer to an internal static buffer
is returned in which the filename is put. Returns nullptr if no
filename could be generated.

Chapter 5 ■ Input/Output

181

■■ Caution  tmpnam() is not required to be thread-safe. It also does not create the file,
so it is always possible that another process creates a file with the same name before your
process does so. tmpfile() does not have these problems, but is incompatible with C++
file streams, nor can it be used to create directories. Native APIs (such as POSIX or the
Windows API) typically provide better primitives for creating temporary files. Third-party
libraries such as Boost.Filesystem and Qt offer suitable portable solutions.

�C-Style Output and Input� <cstdio>

Next to file utilities, the <cstdio> header also defines functions for character-based I/O
(getc(), putc(), etc.) and formatted I/O (printf(), scanf(), etc.). All the C-style I/O
functionality is subsumed by the type-safe C++ streams, which also have better-defined,
portable error handling.3 This section does discuss the std::printf() and std::scanf()
families of functions, though, and only these, because they remain more convenient at
times than C++ streams due to their compact formatting syntax.

�std::printf() Family
The following printf() family of functions is defined in <cstdio>:

std::printf(const char* format, ...)
std::fprintf(FILE* file, const char* format, ...)
std::snprintf(char* buffer, size_t bufferSize, const char* format, ...)
std::sprintf(char* buffer, const char* format, ...)

They write formatted output to, respectively, standard output, a file, a buffer of given
size, or a buffer and return the number of characters written out. The last one, sprintf(),
is less safe than snprintf(). They all have a variable number of arguments following
the format string. There are also versions prefixed with a v that accept a va_list for the
arguments: for example, vprintf(const char* format, va_list). For the first three,
wide-character versions are provided as well: (v)wprintf(), (v)fwprintf(), and (v)
swprintf().

The given format string controls how the output is formatted. All characters of this
format string are written out as is, except sequences that start with a %. The basic syntax
for a formatting option is % followed by a conversion specifier. This tells printf() how to
interpret the next value in the variable-length list of arguments. The arguments passed to
printf() must be in the same order as the % directives in format. Table 5-8 explains the
available conversion specifiers. The expected argument types listed are for the case where
no length modifier is used (discussed later).

3 Some library implementations use errno (see Chapter 8) to report errors for C-style I/O
functions, including the printf() and scanf() functions: consult your library documentation
to confirm.

Chapter 5 ■ Input/Output

182

■■ Caution T he C-style I/O functions are not type-safe. If your conversion specifier says to
interpret an argument value as a double, then that argument must be a true double (and
not, for instance, a float or an integer). It will compile and run if a wrong type is passed,
but this rarely ends well. This also means you should never pass a C++ std::string as
is as an argument for a string conversion specifier: instead, use c_str() as shown in the
following example.

Table 5-8.  Available Conversion Specifiers for printf()-Like Functions

Specifier Description

d, i A signed int argument converted to decimal representation [-]ddd.

o, u, x, X An unsigned int argument converted to an octal (o), decimal (u), or
hexadecimal representation, the latter with either lowercase (x) or
uppercase digits (X).

f, F A double argument converted to a decimal notation in the style [-]ddd.dd
(with lowercase or, respectively, uppercase letters used for infinity and NaN
values).

e, E A double argument converted to scientific notation: i.e., [-]d.dde±dd or
[-]d.ddE±dd (again with lowercase/uppercase letters for special values).

g, G A double argument converted as if with f/F or e/E, whichever is more
compact for the given value and precision. e/E is only used if the exponent
is greater than or equal to the precision, or less than -4.

a, A A double argument converted to hexadecimal format: [-]0xh.hhhp±d or
[-]0Xh.hhhP±d (infinity and NaN values are printed as with f, F).

c An int argument converted to a single unsigned char.

s The argument is a pointer to a char array. The precision specifies the
maximum number of bytes to output. If no precision is given, writes
everything until the null terminator. Note: Do not pass a std::string object
as is as argument for a %s modifier!

p The argument is interpreted as a void pointer, and the pointer is converted
to an implementation-dependent format.

n The argument is a pointer to a signed int that receives the number of
characters written out so far by this call to printf().

% Outputs a % character. No corresponding argument must be passed.

Chapter 5 ■ Input/Output

183

The following example prints the lyrics of the traditional American folk song “99
Bottles of Beer”:

std::string bottles = "bottles of beer";
char on_wall[99];
for (int i = 99; i > 0; --i) {
 snprintf(on_wall, sizeof(on_wall), "%s on the wall", bottles.c_str());
 printf("%d %s, %d %s.\n", i, on_wall, i, bottles.c_str());
 printf("Take one down, pass it around, %d %s.\n", i-1, on_wall);
}

The formatting options are much more powerful than the basic conversions
discussed so far. The full syntax of the % directive is as follows (the < and > tags are
included for exposition only):

%<flags><width><precision><length_modifier><conversion>

with

•	 <flags>: Zero or more flags that change the meaning of the
conversion specifier. See Table 5-9.

•	 <width>: Optional minimum field width (truncation is never
done: only padding). Padding is applied if the converted value has
fewer characters than the specified width. By default, spaces are
used for padding. <width> can be either a non-negative integer
or *, which means to take the width from an integer argument
from the argument list. This width has to precede the value to be
formatted.

•	 <precision>: A dot followed by an optional non-negative integer
(0 is assumed if not specified), or a *, which again means to take
the precision from an integer argument from the argument list.
The precision is optional and determines the following:

•	 The maximum number of bytes for s. By default, a zero-
terminated character array is expected.

•	 The minimum number of digits to output for all integer
conversion specifiers (d, i, o, u, x, and X). Default: 1.

•	 The number of digits to output after the decimal point for
most floating-point conversion specifiers (a, A, e, E, f, and F).
If not specified, the default precision is 6.

•	 The maximum number of significant digits for g and G.
The default is again 6.

Chapter 5 ■ Input/Output

184

•	 <length_modifier>: An optional modifier that alters the type of
the argument to be passed. Table 5-10 gives an overview of all
supported modifiers for numeric conversions. For character and
strings (c and s conversion specifiers, respectively), the l length
modifier (note: this is the letter l) changes the expected input
type from int and char* to wint_t and wchar_t*, respectively.4

•	 <conversion>: The only required component, which specifies the
conversion to apply to the argument. (See Table 5-8.)

Table 5-9.  Available Flags

Flag Description

- Left justifies the output. By default, output is right justified.

+ Always outputs the sign of a number, even for positive numbers.

space-character Prefixes the output with a space if the number to output is non-
negative or results in no characters. Ignored if + is also specified.

Outputs a so-called alternative form.
For x and X, the result is prefixed with 0x or 0X if the number is
not zero.
For all floating-point specifiers (a, A, e, E, f, F, g, and G), the output
always contains a decimal point character.
For g and G, trailing zeros are not removed.
For o, precision is increased such that the first digit to output
is a zero.

0 For all integer and floating-point conversion specifiers (d, i, o, u,
x, X, a, A, e, E, f, F, g, and G), padding is done with zeros instead of
spaces. Ignored if - is specified as well, or for all integer specifiers
in combination with a precision.

The modifiers in Table 5-10 determine the type of the inputs that must be passed as
indicated. std::intmax_t and uintmax_t are defined in <cstdint> (see Chapter 1), and
size_t and ptrdiff_t are defined in <cstddef>. Note also that the long and long long
modifiers use the letter l, and not the number 1.

4 wint_t is defined in <cwchar> and is an alias for an integral type large enough to hold any
wide character (wchar_t value) and at least one value that is not a valid wide character (WEOF).

Chapter 5 ■ Input/Output

185

�Example

int i = 123;
std::printf("i: '%+10d'\n", i); // i: ' +123'

long double d = 31.415;
int prec = 4; /* precision */
std::printf("d: %.4Lf = %.*Le\n", d, prec, d); // d: 31.4150 = 3.1415e+01

�std::scanf() Family
The following scanf() family of functions is defined in <cstdio>:

std::scanf(const char* format, ...)
std::fscanf(FILE* file, const char* format, ...)
std::sscanf(const char* buffer, const char* format, ...)

They read, respectively, from standard input, a file, or a buffer. In addition to these
functions, which have a variable number of arguments following the format string, there
are also versions whose names are prefixed with v and that accept a va_list for the
arguments: for example, vscanf(const char* format, va_list). Wide-character versions
are provided as well: (v)wscanf(), (v)fwscanf(), and (v)swscanf().

They all read formatted data based on a given format string. The scanf() formatting
grammar used is similar to that of printf(), seen earlier. All characters in the format
string are simply used to compare with the input, except sequences that start with a %.
These % directives result in values being parsed and stored in the location pointed to by

Table 5-10.  Length Modifiers for All Numeric Conversion Specifiers

Modifier d, i o, u, x, X n a, A, e, E, f, F, g, G

(none) int unsigned int int* double

hh char unsigned char char*

h short unsigned short short*

l long unsigned long long*

ll long long unsigned long long long long*

j intmax_t uintmax_t intmax_t*

z size_t size_t size_t*

t ptrdiff_t ptrdiff_t ptrdiff_t*

L long double

Chapter 5 ■ Input/Output

186

the function’s arguments, in order. The basic syntax is a % sign followed by one of the
conversion specifiers from Table 5-11. The last column shows the argument type in case
no length modifiers are specified (see Table 5-12).

Table 5-11.  Available Conversion Specifiers for scanf()-Like Functions

Specifier Matches… Argument

d Optionally signed decimal integer. int*

i Optionally signed integer whose base is determined from
the integer’s prefix: decimal by default, but octal if it starts
with 0 and hexadecimal if it starts with 0x or 0X.

int*

o / u / x, X Optionally signed octal/decimal/hexadecimal integer.
Hexadecimal digits are optionally preceded by 0x or 0X.

unsigned int*

a, A, e, E,
f, F, g, G

Optionally signed floating-point number, infinity, or
NaN. All eight specifiers are completely equivalent: e.g.,
they all parse scientific notation as well.

float*

c A character sequence whose length is specified by the field
width, or of length one if no width is specified.

char*

s A sequence of nonwhitespace characters. char*

[…] A nonempty character sequence from a set of expected
characters. The set is specified between square brackets,
e.g., [abc]. To match all characters except those in a set,
use [^abc].

char*

p An implementation-dependent sequence of characters as
produced by %p with printf().

void**

n Does not extract/parse any input. The argument receives
the number of characters read from the input stream so far.

int*

% A % character. /

For all directives except those with conversion specifier c, s, or [...], any
whitespace characters are skipped until the first nonwhitespace one. Parsing stops
when the end of the input string is reached, when a stream input error occurs, or when a
parsing error occurs. The return value equals the number of assigned values or EOF if an
input failure occurred before starting the first conversion. The number of assigned values
will be less than the number of directives if the end of the stream is reached or a parsing
error occurs: for example, zero if this occurs during the first conversion.

The full syntax of the % directive is as follows (all < and > tags are for exposition only):

%<*><width><length_modifier><conversion>

Chapter 5 ■ Input/Output

187

with

•	 <*>: An optional * sign that causes scanf() to parse the data from
the input without storing it in any of the arguments.

•	 <width>: Optional maximum field width in characters.

•	 <length_modifier>: Optional length modifier; see Table 5-12.
When applied to a c, s, or […] specifier, the l (letter l) modifies
the required input type from char* to wchar_t*.

•	 <conversion>: Required. Specifies the conversion to apply; see
Table 5-11.

Table 5-12.  Available Length Modifiers for the Numeric Conversion Specifiers of scanf()-
Like Functions

Modifier d, i o, u, x, X n a, A, e, E, f, F, g, G

(none) int* unsigned int* int* float*

hh char* unsigned char* char*

h short* unsigned short* short*

l long* unsigned long* long* double*

ll long long* unsigned long long* long long*

j intmax_t* uintmax_t* intmax_t*

z size_t* size_t* size_t*

t ptrdiff_t* ptrdiff_t* ptrdiff_t*

L long double*

The only nonobvious difference between Table 5-12 for scanf() functions and
the corresponding Table 5-10 for printf() functions is that by default, floating-point
arguments must point to a float and not a double.

�Example

std::string s = "i: +123; d: -2.34E-3; chars: abcdef";
int i = 0; double d = 0.0; char chars[4] = { 0 };
std::sscanf(s.c_str(), "i: %i; d: %lE; chars: %[abc]", &i, &d, chars);
std::printf("i: %+i; d: %.2lE; chars: %s", i, d, chars);

189
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_6

CHAPTER 6

Characters and Strings

�Strings� <string>

C++ supports C-style strings—plain C-style character arrays terminated with a null
character ('\0', with ASCII code zero). The C Standard Library offers various headers
with functions to manipulate such strings. Working directly with C-style strings, however,
has serious drawbacks. Analogous to working with plain arrays (compared to working
with, say, std::vector), a C-style string doesn’t know its own size, and it is your job to
allocate the required memory. It also falls to you to ensure these C-style strings are, and
always remain, properly null-terminated. We therefore recommend you do not work
directly with C-style strings, and use the container-like abstractions offered by the C++
Standard Library instead.

The <string> header defines four different string types, each for a different char-like
type:

String Type Characters Typical Character Size

Narrow strings std::string char 8 bit

Wide strings std::wstring wchar_t 16 or 32 bit

UTF-16 strings std::u16string char16_t 16 bit

UTF-32 strings std::u32string char32_t 32 bit

The names in the first column are purely indicative, because strings are completely
agnostic about the character encoding used for the char-like items—or code units, as they
are technically called—they contain. Narrow strings, for example, may be used to store
ASCII strings, as well as strings encoded using UTF-8 or DBCS.

In this section, we will mostly use std::string. But everything applies equally
well to all other types. The locale and regular expression functionalities discussed in
subsequent sections are, unless otherwise noted, only required to be implemented for
narrow and wide strings.

All four string types are instantiations of the same class template, std::basic_
string<CharT>. A basic_string<CharT> is essentially a vector<CharT> with extra
functions and overloads either to facilitate common string operations or for compatibility
with C-style strings (const CharT*). All members of vector are provided for strings as

Chapter 6 ■ Characters and Strings

190

well, except for the emplacement functions (which are of little use for characters). This
implies that, unlike in other mainstream languages such as .NET, Python, and Java,
strings in C++ are mutable. It also means, for example, that strings can readily be used
with all algorithms seen in Chapter 4:

std::string s = "Strings be fun";
s.reserve(20);
s.push_back('!'); // "Strings be fun!"
const auto found = std::find(cbegin(s), cend(s), 'b');
s[found - s.cbegin()] = 'r'; // "Strings re fun!"
s.insert(found, 'a'); // "Strings are fun!"

The remainder of this section focuses on the functionality that strings add compared
to vectors. For the functions that strings have in common with vector, we refer to
Chapter 3. One thing to note is that string-specific functions and overloads are mostly
index-based rather than iterator-based. The last three lines in the previous example, for
instance, may be written more conveniently as

const size_t found = s.find('b');
s[found] = 'r';
s.insert(found, "a"); // (no index-based single-character insert exists)

or

const size_t found = s.find("be");
s.replace(found, 2, "are"); // 2 = number of characters to replace

The equivalent of the end() iterator when working with string indices is
basic_string::npos. This constant is consistently used to represent half open-ended
ranges (i.e., to denote “until the end of the string”), and, as you see next, as the “not
found” return value for find()-like functions.

�Searching in Strings
Strings offer six member functions to search for substrings or characters: find() and
rfind(), find_first_of() and find_last_of(), and find_first_not_of() and
find_last_not_of(). These always come in pairs: one to search from front to back, and
one to search from back to front. All also have the same five overloads of the following form:

size_t find(char c, size_t pos = 0) const; // single char
size_t find(const string& str, size_t pos = 0) const noexcept; // string
size_t find(const char* s, size_t pos = 0) const; // C-string
size_t find(const char* s, size_t pos, size_t n) const; // char buffer
size_t find(string_view sv, size_t pos = 0) const; // string view

Chapter 6 ■ Characters and Strings

191

The mostly optional pos parameter is the index at which the search should start.
For the functions searching backward, the default value for pos is npos.

The pattern to search for is either a single character or a string, with the latter
represented as a C++ string, a null-terminated C-string, a character buffer of which the
first n values are used, or a string view (the C++17 string_view type is discussed later in
this chapter). The (r)find() functions search for an occurrence of the full pattern, and the
find_xxx_of() / find_xxx_not_of() family of functions search for any single character
that occurs/does not occur in the pattern. The result is the index of the (start of the) first
occurrence starting from either the beginning or end, or npos if no match is found.

■■ Tip S tarting with C++17, the <algorithm> header offers more efficient algorithms for
finding substrings. These are explained in Chapter 4.

�Modifying Strings
To modify a string, you can use all members known already from vector, including
erase(), clear(), push_back(), and so on (see Chapter 3). Additional functions
or functions with string-specific overloads are assign(), insert(), append(), +=,
and replace(). Their behavior should be obvious; only replace() may need some
explanation. First though, let’s introduce the multitude of useful overloads these five
functions have. These are generally of this form:

string& func([Position,] const string& str); // C++ string
string& func([Position,] const string& str, // substring of C++ string

size_t substringPos, size_t substringLen = npos);
string& func([Position,] const char* str); // null-terminated C-string
string& func([Position,] const char* str, size_t n); // buffer of n chars
string& func([Position,] string_view sv); // string view (see later)
string& func([Position,] size_t n, char c); // fill
string& func([Position,] InputIterator first, InputIterator last); // (*)
string& func([Position,] initializer_list<char> il); // (*)

For moving a string, assign(string&&) is defined as well. Because the += operator
inherently only has a single parameter, naturally only the C++ string, C-style string, and
initializer-list overloads are possible.

Analogous to their vector counterparts, for insert() the overloads marked with
(*) return an iterator rather than a string. Likely for the same reason, the insert()
function has these two additional overloads:

iterator insert(const_iterator position, size_t n, char c); // fill
iterator insert(const_iterator position, char c); // single char

Only insert() and replace() need a Position. For insert(), this is usually an
index (a size_t), except for the last two overloads, where it is an iterator (analogous again
to vector::insert()). For replace(), the Position is a range, specified either using two

Chapter 6 ■ Characters and Strings

192

const_iterators (not available for the substring overload) or using a start index and a
length (not for the last two overloads).

In other words, replace() does not, as you may expect, replace occurrences of a
given character or string with another. Instead, it replaces a specified subrange with a
new sequence—a string, substring, fill pattern, and so on—possibly of different length.
You saw an example of its use earlier (2 is the length of the replaced range):

s.replace(s.find("be"), 2, "are");

To replace all occurrences of substrings or given patterns, you can use regular
expressions and the std::regex_replace() function explained later in this chapter. To
replace individual characters, the generic std::replace() and replace_if() algorithms
from Chapter 4 are an option as well.

A final modifying function with a noteworthy difference from its vector counterpart
is erase(): in addition to the two iterator-based overloads, it has one that works with
indices. Use it to erase the tail or a subrange or, if you like, to clear() it:

string& erase(size_t pos = 0, size_t len = npos);

�Constructing Strings
In addition to the default constructor, which creates an empty string, the constructor has
the same seven overloads as the functions in the previous subsection, plus of course one
for string&&. (Like other containers, all string constructors have an optional argument for
custom allocators as well, but this is for advanced use only.)

As of C++14, basic_string objects of various character types can also be
constructed from corresponding string literals by appending the suffix s. This literal
operator is defined in the std::literals::string_literals namespace:

using namespace std::literals::string_literals;
auto a = "a is a const char*";
auto b = "b is a std::string"s;
auto c = std::pair(3u, L"c is a pair<unsigned, wstring>"s); // <utility>

�String Length
To get a string’s length, you can use either the typical container member size() or its
string-specific alias length(). Both return the number of char-like elements the string
contains. Take care, though: C++ strings are agnostic on the character encoding used,
so their length equals what is technically called the number of code units, which may
be larger than the number of code points or characters. Well-known encodings where
not all characters are represented as a single code unit are the variable-length Unicode
encodings UTF-8 and UTF-16:

std::string s(u8"字符串"); // UTF-8 encoding of Chinese word for "string"

std::cout << s.length(); // Length: 9 code units!

Chapter 6 ■ Characters and Strings

193

One way to get the number of code points is to convert to a UTF-32 encoded string
first, using the character-encoding conversion facilities introduced later in this chapter.

�Copying (Sub)Strings
Another vector function (next to size()) that has a string-specific alias is data(), with its
equivalent c_str(). Both return a const pointer to the internal character array (without
copying). To copy the string to a C-style string instead, use copy():

size_t copy(char* out, size_t len, size_type pos = 0) const;

This copies len char values starting at pos to out. That is, it may be used to copy a
substring as well. To create a substring as a C++ string, use substr():

string substr(size_t pos = 0, size_t len = npos) const;

�Comparing Strings
Strings may be compared lexicographically with other C++ strings or C-style strings using
either the non-member comparison operators (==, <, >=, etc.) or their compare() member.
The latter is a so-called three-way comparison function and has several overloads as listed
next. The overloads with a std::string also exist for a string_view argument (string_
view is explained in the next section):

int compare(const string& str) const noexcept;
int compare(size_type pos1, size_type n1, const string& str
 [, size_type pos2, size_type n2 = npos]) const;
int compare(const char* s) const;
int compare(size_type pos1, size_type n1, const char* s
 [, size_type n2]) const;

pos1/pos2 is the position in the first/second string where the comparison should
start, and n1/n2 is the number of characters to compare from the first/second string. The
return value is zero if both strings are equal, and a negative/positive number if the first
string is less/greater than the second.

■■ Caution I t is a common mistake to confuse a three-way comparison function for a
function that checks for equality, like in the following snippet:

if (s1.compare(s2)) /* strings are equal ... */

This has the opposite effect as intended. If two strings are equal, compare() evaluates to
zero, which becomes false if converted to a Boolean.

Chapter 6 ■ Characters and Strings

194

�String Views C++17 � <string_view>

std::string_view acts as a non-owning, read-only view on a sequence of characters,
functionally nearly equivalent to a reference of type const std::string&. The main
difference is that when using std::string_view, you never inadvertently copy the
underlying character sequence. Consider this function that extracts the extension of a
given filename (for simplicity, assume there always is one):

std::string extension(const std::string& fileName) {
 return fileName.substr(fileName.rfind('.') + 1);
}

To evaluate extension("my_pic.png"), at least two character sequences are copied:
first "my_pic.png" is copied into a temporary std::string object that binds with the
fileName parameter, and then "png" is copied into the std::string object that is
returned from the function. Of course, for this toy example the overhead of unnecessarily
copying read-only input strings is entirely negligible, but in general this cost could be
significant.

Traditionally, avoiding such overheads involved adding multiple overloads for
string literals, C-style null-terminated strings, and so on. Not only does this mean more
work, these overloads then do not have access to the convenient member functions that
std::string offers either (such as substr() and rfind()).

Starting with C++17, you can instead simply write functions such as extension() as
follows:

std::string_view extension(std::string_view fileName) {
 return fileName.substr(fileName.rfind('.') + 1);
}

Now extension("my_pic.png") no longer copies any character sequences. And this
same function works for std::string or C-style char* pointers just as well.

■■ Note  const std::string_view& would be fine as parameter type as well. But since
a string_view normally only holds a pointer and a size, copying string_views is cheap
enough to pass them by value.

A string_view object only has const methods that allow you to view a string,
nothing more. That is, you cannot modify the underlying character array through
its interface. Still, because it may save gratuitous copying, at virtually no cost,
std::string_view should generally be preferred over a reference of type

Chapter 6 ■ Characters and Strings

195

const std::string&. It is almost always a drop-in replacement for const std::string&,
except for these small differences:

•	 string_view does not offer c_str(), only data(). Reason is that
unlike a string, a string_view does not always point to a buffer
that is null-terminated at data() + size().

•	 Creating a string object from a string_view requires an explicit
construction (to avoid inadvertent copies). The other way around,
a string object does implicitly convert to string_view (thanks to
the cast operator added in C++17).

•	 string_view offers remove_prefix(n) and remove_suffix(n)
member functions to create new string_views for substrings with
n characters removed from the start or end, respectively.

To create a string_view from a string literal, you can use the ""sv literal operator
defined in the std::literals::string_view_literals namespace. As always, both
literals and string_view_literals are inline namespaces:

using namespace std::string_view_literals; // or std::literals, or...
auto my_sv_literal = "The best view comes after the hardest climb"sv;

■■ Caution A string_view does not copy or take ownership of the underlying character
array. It is your responsibility to ensure this character array outlives the string_view.
Creating string_views for plain string literals is always safe.

The <string_view> header also defines std::wstring_view, u16string_view, and
u32string_view for unmodifiable views on strings and character sequences consisting of
characters of types other than char. As always, all four string_view types are aliases for
instantiations of a basic_string_view<CharT> template.

�Character Classification� <cctype>, <cwctype>
The <cctype> and <cwctype> headers offer a series of functions to classify,
respectively, char and wchar_t characters. These functions are std::isclass(int) and
std::iswclass(wint_t), where class equals one of the values in Table 6-1 (and wint_t is
a type alias for an integer type). All functions return a nonzero int if the given character
belongs to the class, or zero otherwise.

Chapter 6 ■ Characters and Strings

196

The same headers also offer the tolower() / toupper() and towlower() /
towupper() functions for converting between lowercase and uppercase characters.
Characters are again represented using int and wint_t. If the conversion is undefined or
impossible, these functions simply return their input value.

All character classification and transformation functions are defined only for ints /
wint_t inputs that are representable as unsigned char / wchar_t, respectively, plus the
value of the macro EOF / WEOF. The latter macros expand to the (negative) integer used to
represent the end of a file or stream (EOF is short for end-of-file).

The exact behavior of all these functions depends on the active C locale. Locales are
explained in detail later in this chapter, but essentially this means the active language
and regional settings may result in different sets of characters to be considered letters,
lowercase or uppercase, digits, whitespace, and so on. Table 6-1 lists all general properties
of and relations between the different character classes and gives some examples for the
default "C" locale.

■■ Note I n the “Localization” section later in this chapter, you see that the <locale>
header also offers a list of overloads for std::isclass() and std::tolower() /
toupper() (all templated on the character type) that use a given C++ locale rather than
the active C locale.

Table 6-1.  The 12 Standard Character Classes

Class Description

cntrl Control characters: all non-print characters. Includes ‘\0’, ‘\t’, ‘\n’, ‘\r’, etc.

print Printable characters: digits, letters, space, punctuation marks, etc.

graph Characters with graphical representation: all print characters except ‘ ’

blank Whitespace characters that separate words on a line. At least ‘ ’ and ‘\t’

space Whitespace characters: at least all blank characters, ‘\n’, ‘\r’, ‘\v’, and ‘\f’. Never
alpha characters

digit Decimal digits (0–9)

xdigit Hexadecimal digits (0–9, A–F, a–f)

alpha Letter characters. At least all lowercase and uppercase characters, and never
any of the cntrl, digit, punct, and space characters

lower Lowercase alpha letters (a–z for the default locale)

upper Uppercase alpha letters (A–Z for the default locale)

alnum Alphanumeric characters: union of all alpha and digit characters

punct Punctuation marks (! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~ for
the default locale). Never a space or alnum character

Chapter 6 ■ Characters and Strings

197

�Character-Encoding Conversion� <locale>, <codecvt>

■■ Note  Most of the functionality we explain in this section is now deprecated. (Concretely,
the three conversion classes defined by the <codecvt> header (Table 6-3), as well as
the std::wstring_convert and wbuffer_convert helper classes of <locale>,
have been deprecated in C++17). Also, the support for these facilities in mainstream
implementations was never very good to begin with. To manipulate Unicode-encoded text
in a portable manner, we therefore recommend you use a third-party library instead. Viable
candidates include the powerful ICU library or Boost.Locale.

A character encoding determines how code points (many but not all code points are
characters) are represented as binary code units. Examples include ASCII (classical
encoding with 7-bit code units), the fixed-length UCS-2 and UCS-4 encodings (16-bit and
32-bit code units, respectively), and the three main Unicode encodings: the fixed-length
UTF-32 (using a single 32-bit code unit for each code point) and variable-length UTF-8
and UTF-16 encodings (representing each code point as one or more 8- or 16-bit code
units, respectively; up to 4 units for UTF-8, and 2 for UTF-16). The details of Unicode and
the various character encodings and conversions could fill a book; we explain here what
you need to know in practice to convert between encodings.

The class template for objects that contain the low-level encoding-conversion logic
is std::codecvt<CharType1, CharType2, State> (cvt is likely short for converter).
It is defined in <locale> (as you see in the next section, this is actually a locale facet).
The first two parameters are the C++ character types used to represent the code units of
both encodings. For all standard instantiations, CharType2 is char. State is an advanced
parameter we do not explain further (all standard specializations use std::mbstate_t
from <cwchar>).

The four codecvt specializations listed in Table 6-2 are defined in <locale>.
Additionally, the <codecvt> header defines the three std::codecvt subclasses listed in
Table 6-3.1 For these, CharT corresponds to the CharType1 parameter of the codecvt base
class; as stated earlier, CharType2 is always char.

1 These classes have two more optional template parameters: a number specifying the largest
code point to output without error and a codecvt_mode bitmask value (default 0) with possible
values little_endian (output encoding) and consume_header / generate_header (read/write
initial BOM header to determine endianness).

Chapter 6 ■ Characters and Strings

198

Although codecvt instances could in theory be used directly, it is far easier to use
the std::wstring_convert<CodecvtT, WCharT=wchar_t> class from <locale>. This
helper class facilitates conversions between char strings and strings of a (generally
wider) character type WCharT in both directions. Despite its misleading (outdated) name,
wstring_convert can also convert from and to, for example, u16strings or u32strings,
not just wstrings. These members are provided:

Member Description

(constructor) Constructors exist that take a pointer to an existing CodecvtT (of
which wstring_convert takes ownership) and an initial state (not
discussed further). Both are optional. A final constructor accepts two
error strings: one to be returned by to_bytes() upon failure and one
by from_bytes() (the latter is optional).

from_bytes() Converts either a single char or a string of chars (a C-style char*
string, a std::string, or a sequence bounded by two char* pointers)
to a std::basic_string<WCharT> and returns the result. Throws
std::range_error upon failure, unless an error string was provided
upon construction: in that case, this error string is returned.

to_bytes() Opposite conversion from WCharT to char, with analogous overloads.

converted() Returns the number of input characters processed by the last from_
bytes() or to_bytes() conversion.

state() Returns the current state (mostly mbstate_t: not discussed further).

Table 6-2.  Character-Encoding Conversion Classes Defined in <locale>

codecvt<char,char,mbstate_t> Identity conversion

codecvt<char16_t,char,mbstate_t> Conversion between UTF-16 and UTF-8

codecvt<char32_t,char,mbstate_t> Conversion between UTF-32 and UTF-8

codecvt<wchar_t,char,mbstate_t> Conversion between native wide
and narrow character encodings
(implementation specific)

Table 6-3.  Character-Encoding Conversion Classes Defined in <codecvt>

codecvt_utf8<CharT>
codecvt_utf16<CharT>

Conversion between UCS-2 (for 16-bit CharTs) or UCS-4
(for 32-bit CharTs) and UTF-8/UTF-16. The UTF-16
string is represented using 8-bit chars as well, so this is
intended for binary UTF-16 encodings.

codecvt_utf8_utf16<CharT> Conversion between UTF-16 and UTF-8 (CharT must be
at least 16-bit).

Chapter 6 ■ Characters and Strings

199

Recall the following example from the section on std::string lengths:

std::string s(u8"字符串"); // UTF-8 encoding of Chinese word for "string"

std::cout << s.length(); // Length: 9 code units!

To convert this string to UTF-32, you would hope the following is possible:

using cvt = std::codecvt<char32_t,char,std::mbstate_t>;
std::wstring_convert<cvt, char32_t> convertor;
std::u32string s_u32 = convertor.from_bytes(s);
std::cout << s_u32.length(); // Length: 3 code units

Unfortunately, this does not compile. For the converter subclasses defined in
<codecvt>, this would compile. But the destructor of the codecvt base class is protected
(like all standard locale facets: discussed later), and the wstring_convert destructor calls
it to delete the converter instance it owns. This design defect can be circumvented using a
helper wrapper such as the following:

// Inherit all constructors and make a protected destructor public:
template <class BASE> class Deletable : public BASE {
public:
using BASE::BASE;
~Deletable() = default;

};

To make the code compile,2 you then replace the first line with the following:

using cvt = Deletable<std::codecvt<char32_t,char,std::mbstate_t>>;

To use the potentially locale-specific variants of these converters (see the next
section), use the following (other locale name besides "" may be used as well):

using cvt = Deletable<std::codecvt_byname<char32_t,char,std::mbstate_t>>;
std::wstring_convert<cvt, char32_t> convertor(new cvt(""));

A related class is wbuffer_convert<CodecvtT, WCharT=wchar_t>, which wraps a
basic_streambuf<char> and makes it act as a basic_streambuf<WCharT> (stream buffers
are very briefly explained in Chapter 5). A wbuffer_convert instance is constructed with
an optional basic_streambuf<char>*, CodecvtT*, and state. Both the getter and setter for
the wrapped buffer are called rdbuf(), and the current conversion state may be obtained
using state().

2 At the time of writing, this example does not work in Visual Studio. It compiles after replacing
char32_t with __int32, and u32string with basic_string<__int32>, but even then the
results are wrong.

Chapter 6 ■ Characters and Strings

200

The following constructs a stream that accepts wide character strings, but writes it to
an UTF-8 encoded file (needs <fstream>):

std::ofstream out("test.txt"); // char-based file output stream
std::wbuffer_convert<std::codecvt_utf8<wchar_t>> cvt(out.rdbuf());
std::wostream wout(&cvt); // wchar_t output stream
wout << L"I am written as UTF-8, irrespective of the native wide format!";

�Localization� <locale>

Textual representations of dates, monetary values, and numbers are governed by regional
and cultural conventions. To illustrate, the following three sentences are analogous but
written using local currencies, numeric, and date formats:

In the U.S., John Doe has won $100,000.00 on the lottery on 3/14/2015.
In India, Ashok Kumar has won ₹ 1,00,000.00 on the lottery on 14-03-2015.
En France, Monsieur Brun a gagné 100.000,00 € à la loterie sur 14/3/2015.

In C++, all parameters and functionality related to processing text in a locale-specific
manner—that is, adapted to local conditions—are contained in a std::locale object.
These include not only formatting of numeric values and dates as just illustrated but also
locale-specific sorting and conversions of strings.

�Locale Names
Standard locale objects are constructed from a locale name:

std::locale(const char* locale_name);
std::locale(const std::string& locale_name);

These names commonly consist of a two-letter ISO-639 language code followed by
a two-letter ISO-3166 country code. The precise format, however, is platform specific: on
Windows, for instance, the name for the English-American locale is "en-US", whereas
on POSIX-based systems it is "en_US". Most platforms support, or sometimes require,
additional specifications such as region codes, character encodings, and so on. Consult
your platform’s documentation for a full list of supported locale names and options.

There are only two portable locale names, "" and "C":

•	 With "", you construct a std::locale with the user’s preferred
regional and language settings, taken from the program’s
execution environment (i.e., the operating system).

•	 The "C" locale denotes the classic or neutral locale, which is the
standardized, portable locale that all C and C++ programs use by
default.

Chapter 6 ■ Characters and Strings

201

Using the "C" locale, the earlier example sentence becomes

Anywhere, a C/C++ programmer may win 100000 on the lottary on 3/14/2015.

■■ Tip  When writing to a file intended to be read by computer programs (configuration
files, numeric data output, etc.), it is highly recommended that you use the neutral "C"
locale, to avoid problems during parsing. When displaying values to the user, you should
consider using a locale based on the user’s preferences ("").

�The Global Locale
The active global locale affects various standard C++ functions that format or parse text,
most directly the regular expression algorithms discussed later in this chapter and the
I/O streams seen in Chapter 5. It is implementation dependent whether there is one
program-wide global locale instance or one per thread of execution.

The global locale always starts out as the classic "C" locale. To set the global locale,
you use the static std::locale::global() function. To get a copy of the currently active
global locale, simply default-construct a std::locale. For example:

std::locale current_locale;
std::cout << '"' << current_locale.name() << '"' << '\n'; // "C"
std::cout << 100000 << '\n'; // 100000
std::locale::global(std::locale("")); // Global locale -> user preferences
std::cout << 100000 << '\n'; // 100000
std::cout.imbue(std::locale()); // Imbue the current global locale
std::cout << 100000 << '\n'; // Some possible outputs (locale dependent):
 // 100,000; 100 000; 100.000; 1,00,000; ...

■■ Note T o avoid race conditions, standard C++ objects (such as newly created stream
or regex objects) always copy the global locale upon construction. Calling global()
therefore does not affect existing objects, including std::cout and the other standard
streams of <iostream>. To change their locale, you must call their imbue() member.

Chapter 6 ■ Characters and Strings

202

�Basic std::locale Members
The following table lists most basic functions offered by a std::locale, not including the
copy members. More advanced members to combine or customize locales are discussed
near the end of the section:

Member Description

global() Static function to set the active global locale (discussed earlier).

classic() Static function returning a constant reference to a classic "C" locale.

locale() Default constructor: creates a copy of the global locale.

locale(name) Construction from locale name, as discussed earlier. Throws a
std::runtime_exception if a nonexistent name is passed.

name() Returns the locale name, if any. If the locale represents a customized
or combined locale (discussed later), "*" is returned.

== / != Compares two locale objects. Customized or combined locales are
equal only if they are the same object or one is a copy of the other.

�Locale Facets
As obvious from the previous subsection, the std::locale public interface does not offer
much functionality. All localization facilities are instead offered in the form of facets.
Each locale object encapsulates a number of such facets, a reference to which may be
obtained via the std::use_facet<FacetType>() function. The following example uses
the classic locale’s numeric punctuation facet to print out the locale’s decimal mark for
formatting floating-point numbers:

const auto& f =
std::use_facet<std::numpunct<char>>(std::locale::classic());

std::cout << f.decimal_point() << std::endl; // Prints a dot('.')

For all standard facets, the instance referred to by the result of use_facet() cannot
be copied, moved, swapped, or deleted. This facet is (co-)owned by the given locale and
is deleted together with the (last) locale that owns it. When requesting a FacetType the
given locale does not own, a bad_cast exception is raised. To verify the presence of a
facet, you can use std::has_facet<FacetType>().

■■ Caution N ever do something like auto& f = use_facet<...>(std::locale
("..."));: the facet f was owned by the temporary locale object, so using it will
likely crash.

By default, locales contain specializations of all the facets introduced in the
remainder of this section, each in turn specialized for at least the char and wchar_t
character types (additional minimal requirements are discussed throughout the section).

Chapter 6 ■ Characters and Strings

203

Implementations may include more facets, and programs can even add custom facets
themselves, as explained later.

We now discuss the 12 standard facet classes listed in Table 6-4 in order, grouped in
sections by category. Afterward, we show how to combine facets of different locales and
create customized facets. Although this is perhaps not something most programmers will
use regularly, occasionally the need does arise to customize facets. Regardless, it is worth
knowing the scope and various effects of localization and to keep them in mind when
developing programs that show or process user text (i.e., most programs).

Table 6-4.  Overview of the 12 Basic Facet Classes, Grouped by Category

Category Facets

Numeric numpunct<C>, num_put<C>, num_get<C>

Monetary moneypunct<C, International>, money_put<C>, money_get<C>

Time time_put<C>, time_get<C>

Ctype ctype<C>, codecvt<C1, C2, State>

Collate collate<C>

Messages messages<C>

�Numeric Formatting
The facets of the numeric and monetary categories follow the same pattern: there is
one punct facet (short for punctuation) with the locale-specific formatting parameters,
plus both a put and a get facet responsible for the actual formatting and parsing of
values, respectively. The latter two facets are mostly intended to be used by the stream
objects introduced in Chapter 5. The concrete format they use to read or write values
is determined by a combination of the parameters set in the punct facet and others set
using the stream’s members or stream manipulators.

Numeric Punctuation

The std::numpunct<CharT> facet offers functions to retrieve the following information
related to the formatting of numeric and Boolean values:

•	 decimal_point(): Returns the decimal separator

•	 thousands_sep(): Returns the thousands separator character

•	 grouping(): Returns a std::string encoding the digit grouping

•	 truename() and falsename(): Return basic_string<CharT>s
with textual representations for Boolean values

In the lottery example at the beginning of the section, a numeric value of 100000.00
was formatted using three different locales: “100,000.00”, “1,00,000.00”, and
“100.000,00”. The first two locales use a comma (,) and dot (.) as thousands and decimal
separator, respectively, whereas for the third it is the other way around.

Chapter 6 ■ Characters and Strings

204

The digit grouping() is encoded as a sequence of char values indicating the number
of digits in each group, starting with the number in the rightmost group. The last char
in the sequence is used for all subsequent groups as well. Most locales group digits in
threes, for example, which is encoded as "\3". (Note: Do not use "3", because the '3'
ASCII character results in a char with value 51; i.e., '3' == '\51'.) For Indian locales,
however, as seen in “1,00,000.00”, only the rightmost group contains three digits; all
other groups contain only two. This is encoded as "\3\2". To indicate an infinite group,
a std::numeric_limits<char>::max() value may be used in the last position. An empty
grouping() string denotes that no grouping should be used at all, which is the case, for
instance, for the classic "C" locale.

Formatting and Parsing of Numeric Values

The std::num_put and num_get facets constitute the implementation of the << and
>> stream operators described in Chapter 5 and provide two sets of methods with the
following signature:

Iter put(Iter target, ios_base& stream, char fill, X value)
Iter get(Iter begin, Iter end, ios_base& stream, iostate& error, X& result)

Here X can be bool, long, long long, unsigned int, unsigned long, unsigned long
long, double, long double, or a void pointer. For get(), unsigned short and float
are also possible. These methods either format a given numeric value or try to parse
the characters in the range [begin, end). In both cases, the ios_base parameter is a
reference to a stream from which locale and formatting information is taken (including
the stream’s formatting flags and precision: see Chapter 5).

All put() functions simply return target after writing the formatted character
sequence there. The fill character is used for padding if the formatted length is less than
stream.width() (see Chapter 5 for the padding rules).

If parsing succeeds, get() stores the numeric value in result. If the input did not
match the format, result is set to zero and the failbit is set in the iostate parameter
(see Chapter 5). If the parsed value is too large/small for type X, the failbit is set as well,
and result is set to std::numeric_limits<X>::max()/lowest() (see Chapter 1). If the
end of the input was reached (can be a success or a failure), the eofbit is set. An iterator
to the first character after the parsed sequence is returned.

We do not show example code here, but these facets are analogous to the monetary
formatting facets introduced next, for which we do include a full example.

�Monetary Formatting
Monetary Punctuation

The std::moneypunct<CharType, International=false> facet offers functions to
retrieve the following information related to formatting monetary values:

•	 decimal_point(), thousands_sep(), and grouping(): Analogous
to the numeric punctuation members seen earlier.

•	 frac_digits(): Returns the number of digits after the decimal
separator. A typical value is 2.

Chapter 6 ■ Characters and Strings

205

•	 curr_symbol(): Returns the currency symbol, such as '€',
if the International template parameter is false, and the
international currency code (usually three letters) followed by a
space, such as "EUR ", if International is true.

•	 pos_format() and neg_format(): Return a money_base::pattern
structure (discussed later) describing how positive and negative
monetary values are to be formatted.

•	 positive_sign() and negative_sign(): Return a formatting
string for positive and negative monetary values.

The latter four members need more explanation. They use types defined in
std::money_base, a base class of moneypunct. The money_base::pattern structure,
defined as struct pattern{ char field[4]; }, is an array containing four values of the
money_base::part enumeration, with these supported values:

part Description

none Optional whitespace characters, except when none appears last.

space At least one whitespace character.

symbol The currency symbol, curr_symbol().

sign The first character returned by positive_sign() or negative_sign().
Additional characters appear at the end of the formatted monetary value.

value The monetary value.

For example, assume that the neg_format() pattern is {none, symbol, sign, value},
that the currency symbol is '$', that negative_sign() returns "()", and that
frac_digits() returns 2. Then the value -123456 is formatted as "$(1,234.56)".

■■ Note  For American and many European locales, frac_digits() equals 2, meaning
unformatted values are to be expressed in, for example, cents rather than dollars or euros. This
is not always the case, though: for the Japanese locale, for example, frac_digits() is 0.

Formatting and Parsing of Monetary Values

The facets std::money_put and money_get handle formatting and parsing of monetary
values and are mainly intended to be used by the put_money() and get_money() I/O
manipulators discussed in Chapter 5. The facets offer methods of this form:

Iter put(Iter target, bool intl, ios_base& stream, char fill, X value)
Iter get(Iter begin, Iter end, bool intl, ios_base& stream,
 iostate& error, X& result)

Chapter 6 ■ Characters and Strings

206

Here X is either std::string or long double. The behavior and meaning of the
parameters is similar to that discussed for num_put and num_get earlier. If intl is false,
currency symbols like $ are used; otherwise, strings like "USD " are used.

The following illustrates how these facets can be used, although you normally simply
use std::put_/get_money() (uses <cassert> and <sstream>):

std::locale my_locale("en-US"); // For Windows; for Linux use "en_US"
std::stringstream stream;
stream.imbue(my_locale);

// Perform equivalent of 'stream << std::put_money(valueIn);' explicitly:
long double valueIn = 123456; // (Or: 'std::string valueIn = "123456";')
auto& money_formatter = std::use_facet<std::money_put<char>>(my_locale);
stream << std::showbase;
auto target = std::ostreambuf_iterator<char>(stream);
money_formatter.put(target, false, stream, ' ', valueIn); // $1,234.56

// Perform equivalent of 'stream >> std::get_money(valueOut);' explicitly
long double valueOut; // (Or: 'std::string valueOut;')
auto& money_parser = std::use_facet<std::money_get<char>>(my_locale);
std::ios_base::iostate error = std::ios_base::goodbit;
auto b = std::istreambuf_iterator<char>(stream);
auto e = std::istreambuf_iterator<char>();
money_parser.get(b, e, false, stream, error, valueOut); // 123456
if (error != std::ios_base::goodbit) stream.setstate(error);

assert(valueIn == valueOut);

�Time and Date Formatting
The two facets std::time_get and time_put handle parsing and formatting of time and
dates and power the get_time() and put_time() manipulators seen in Chapter 5. They
provide methods with the following signatures:

Iter put(Iter target, ios_base& stream, char fill, tm* value, <format>)
Iter get(Iter begin, Iter end, ios_base& stream, iostate& error,
 tm* result, <format>)

The <format> is either ‘const char* from, const char* to’, pointing to a time-
formatting pattern expressed using the same syntax as explained for strftime()
in Chapter 2, or ‘char format, char modifier’, a single time format specifier of the
same grammar with optional modifier. The behavior and meaning of the parameters
is analogous to those for the numeric and monetary formatting facets. The std::tm
structure is explained in Chapter 2 as well. Only those members of the passed tm are
used/written that are mentioned in the formatting pattern.

Chapter 6 ■ Characters and Strings

207

In addition to the generic get() functions, the time_get facet has a series of more
restricted parsing functions, all with the following signature:

Iter get_x(Iter begin, Iter end, ios_base& stream, iostate& error, tm*)

Member Description

get_time() Tries to parse a time as %H:%M:%S.

get_date() Tries to parse a date using a format that depends on the value
of the facet’s date_order() member: either no_order: %m%d%y,
dmy: %d%m%y, mdy: %m%d%y, ymd: %y%m%d, or ydm: %y%d%m. This date_
order() enumeration value reflects the locale’s %X date format.

get_weekday()
get_monthname()

Tries to parse a name for a weekday or month, possibly
abbreviated.

get_year() Tries to parse a year. Whether two-digit year numbers are
supported depends on your implementation.

�Character Classification, Transformation, and Conversion
Character Classification and Transformation

The ctype<CharType> facets offer a series of locale-dependent character classification
and transformation functions, including equivalents for those of the <cctype> and
<cwctype> headers seen earlier.

For use in the character classification functions listed next, 12 member constants of
a bitmask type ctype_base::mask are defined (ctype_base is a base class of ctype), one
for each character class. Their names equal the class names given in Table 6-1. Although
their values are unspecified, alnum == alpha|digit and graph == alnum|punct. The
following table lists all classification functions (input character ranges are represented
using two CharType* pointers b and e):

Member Description

is(mask,c) Checks whether a given character c belongs to any of the
character classes specified by mask.

is(b,e,mask*) Identifies for each character in the range [b, e) the complete
mask value that encodes all classes it belongs to, and stores
the result in the output range pointed to by the last argument.
Returns e.

scan_is(mask,b,e)
scan_not(mask,b,e)

Scans the character range [b, e) and returns a pointer to the
first character that belongs/does not belong to any of the
classes specified by mask. If none is found, the result is e.

Chapter 6 ■ Characters and Strings

208

The same facets also offer these transformation functions:

Member Description

tolower(c)
toupper(c)
tolower(b,e)
toupper(b,e)

Performs upper-to-lower transformation or vice versa on a
single character (result is returned) or a character range [b, e)
(transformed in place; e is returned). Characters that cannot be
transformed are left unchanged.

widen(c)
widen(b,e,o)

Transforms char values to the facet’s character type on a
single character (result is returned) or a character range [b, e)
(transformed characters are put in the output range starting at *o;
e is returned). Transformed characters never belong to a class their
source characters did not belong to.

narrow(c,d)
narrow(b,e,d,o)

Transformation to char; opposite of widen(). However, only for
the 96 basic source characters (all space and printable ASCII
characters except $, `, and @) the relation widen(narrow(c,0))
== c is guaranteed to hold. If no transformed character is readily
available, the given default char d is used.

The <locale> header defines a series of convenience functions for those functions
of the ctype facets that also exist in <cctype> and <cwctype>: std::isclass(c, locale&),
with class a name from Table 6-1, and tolower(c, locale&) / toupper(c, locale&). The
implementations of the former set of functions, for instance, all have the following form:

template <typename CharT> bool isclass(CharT c, const std::locale& l) {
 return std::use_facet<std::ctype<CharT>>(l).is(class,c);
}

Character-Encoding Conversions

A std::codecvt facet converts character sequences between two character encodings.
This is explained earlier in “Character-Encoding Conversion,” because these facets are
useful also outside the context of locales. Each std::locale contains at least instances
of the four codecvt specializations listed in Table 6-2, which implement potentially
locale-specific converters. These are used implicitly by the streams of Chapter 5 when
converting, for example, between wide and narrow strings. Because directly using these
low-level facets is not recommended, we do not explain their members here. Always use
the helper classes discussed in the “Character-Encoding Conversion” section instead.

�String Ordering and Hashing
The std::collate<CharType> facet implements the following locale-dependent string-
ordering comparisons and hashing functions. All character sequences are specified using
begin (inclusive) and end (exclusive) CharType* pointers:

Chapter 6 ■ Characters and Strings

209

Member Description

compare() Locale-dependent three-way comparison of two character sequences,
returning -1 if the first precedes the second, 0 if both are equivalent,
and +1 otherwise. Not necessarily the same as naïve lexicographical
sequence comparison.

transform() Transforms a given character sequence to a specific normalized form,
which is returned as a basic_string<CharType>. Applying naïve
lexicographical ordering on two transformed strings (as with their
operator<) returns the same result as applying the facet’s compare()
function on the untransformed sequences.

hash() Returns a long hash value for the given sequence (see Chapter 3 for
hashing) that is the same for all sequences that transform() to the same
normalized form.

A std::locale itself is also a std::less<std::basic_string<CharT>>-like functor
(see Chapter 2) that compares two basic_string<CharT>s using its collate<CharT>
facet’s compare() function. The following example sorts French strings first using
operator< of std::string, and then using a French locale (the locale name to use is
platform specific). In addition to <locale>, this code requires <vector>, <string>, and
<algorithm>:

std::vector<std::string> strings = { "liberté", "égalité", "fraternité" };
auto printSortedMotto = [&strings] {

for (auto& s : strings) std::cout << s << ' ';
std::cout << std::endl;

};
std::sort(begin(strings), end(strings)); // Lexicographic sort
printSortedMotto(); // fraternité liberté égalité
std::sort(begin(strings), end(strings), std::locale("french"));
printSortedMotto(); // égalité fraternité liberté

�Message Retrieval
The std::messages<CharT> facet facilitates retrieval of textual messages from message
catalogs. These catalogs are essentially associative arrays that map a series of integers
to a localized string. This could in principle be used, for instance, to retrieve translated
error messages based on, for example, their error category and code (see Chapter 8).
Which catalogs are available, and how they are structured, is entirely platform specific.
For some, standardized message catalog APIs are used (such as POSIX’s catgets() or

Chapter 6 ■ Characters and Strings

210

GNU’s gettext()), whereas others may not offer any catalogs (this is typically the case for
Windows). The facet offers these functions:

Member Description

open(n,l) Opens a catalog based on a given platform-specific string n
(a basic_string<CharT>), and for the given std::locale l.
Returns a unique identifier of some signed integer type catalog.

get(c,set,id,def) Retrieves from the catalog with given catalog identifier c,
the message identified by set and id (two int values whose
interpretation is catalog specific), and returns it as a basic_
string<CharT>. Returns def if no such message is found.

close(c) Closes the catalog with the given catalog identifier c.

�Combining and Customizing Locales
The constructs of the <locale> library are designed to be very flexible when it comes to
combining or customizing locale facets.

�Combining Facets
std::locale provides combine<FacetType>(const locale& c), which returns a copy of
the locale on which combine() is called, except for the FacetType facet, which is copied
from the given argument. Here is an example (the put_money() I/O manipulator requires
the <iomanip> header):

using namespace std;

int bigValue = 10000;
long double money = 123456;
cout << bigValue << " " << put_money(money) << '\n'; // 10000 123456

locale chinese("zh_CN"); // For Windows use "zh-CN"
cout.imbue(chinese);
cout << bigValue << ' ' << put_money(money) << '\n'; // 10,000 1,234.56

// Use the neutral "C" locale, but with Chinese monetary punctuation:
locale combined = locale::classic().combine<moneypunct<char>>(chinese);
cout.imbue(combined);
cout << bigValue << ' ' << put_money(money) << '\n'; // 10000 1,234.56

Chapter 6 ■ Characters and Strings

211

Alternatively, std::locale has a constructor accepting a base locale and an
overriding facet that does the same as combine(). For example, the creation of combined
in the previous example can be expressed as follows:

locale combined(locale::classic(), &use_facet<moneypunct<char>>(chinese));

std::locale moreover has a number of constructors to override all facets of one or
more categories at once (String is either a std::string or a C-style string representing
the name of a specific locale):

locale(const locale& base, String name, category cat)
locale(const locale& base, const locale& overrides, category cat)

For each of the six categories listed in Table 6-4, std::locale defines a constant
with that name. The std::locale::category type is a bitmask type, meaning categories
can be combined using bitwise operators. The all constant, for example, is defined as
collate | ctype | monetary | numeric | time | messages. These constructors can be used
to create a combined facet similar to the one earlier:

locale combined(locale::classic(), chinese, locale::monetary);

�Custom Facets
All public functions func() of the facets simply call a protected virtual method on the
facet called do_ func().3 You can implement custom facets by inheriting from existing
ones and overriding these do-methods.

This first simple example changes the behavior of the numpunct facet to use the
strings "yes" and "no" instead of "true" and "false" for Boolean input and output:

class yes_no_numpunct : public std::numpunct<char> {
protected:
 virtual string_type do_truename() const override { return "yes"; }
 virtual string_type do_falsename() const override { return "no"; }
};

You can use this custom facet, for instance, by imbuing it on a stream. The following
prints "yes / no" to the console:

std::cout.imbue(std::locale(std::cout.getloc(), new yes_no_numpunct));
std::cout << std::boolalpha << true << " / " << false << std::endl;

3 Nearly all functions: for performance, is(), scan_is(), and scan_not() of the ctype<char>
specialization do not call a virtual function, but perform lookups in a mask* array
(ctype::classic_table() for the "C" locale). A custom instance may be created by passing a
custom lookup array to the facet’s constructor.

Chapter 6 ■ Characters and Strings

212

Recall that facets are reference counted and that the destructor of the std::locale
hence properly cleans up your custom facet.

The disadvantage of deriving from facets such as numpunct and moneypunct is that
those generic base classes implement locale-independent behavior. To start from a
locale-specific facet instead, facet classes such as numpunct_byname are available. For all
facets seen so far, except the numeric and monetary put and get facets, a facet subclass
exists with the same name but appended with _byname. They are constructed passing
a locale name (const char* or std::string) and then behave as if taken from the
corresponding locale. You can override from these facets to modify only specific aspects
of a facet for a given locale.

The next example modifies the monetary punctuation facet to facilitate output using
a format standard in accounting: negative numbers are put between parentheses, and
padding is done in a particular way. You do so without overriding a locale’s currency
symbol or most other settings by starting from std::moneypunct_byname (string_type is
defined in std::moneypunct):

class accounting_moneypunct : public std::moneypunct_byname<char, false> {
public:

accounting_moneypunct(const std::string& name)
: moneypunct_byname(name) { }

protected:
// Put negative numbers between parentheses:
virtual string_type do_negative_sign() const override { return "()"; }
// Override formats to facilitate accounting-style padding:
static pattern acc_format() { return { symbol, space, sign, value }; }
virtual pattern do_neg_format() const override { return acc_format(); }
virtual pattern do_pos_format() const override { return acc_format(); }

};

This facet may then be used as follows (see Chapter 5 for details on the stream I/O
manipulators of <iomanip>):

const auto name = "en_US"; // Use platform specific locale name...
std::locale my_locale(std::locale(name), new accounting_moneypunct(name));
std::cout.imbue(my_locale);
std::cout << std::showbase << std::internal; //show $ sign + tweak padding
for (auto val : { 100000, -500 })

std::cout << std::setw(12) << std::put_money(val) << '\n';

The output of this program should be

$ 1,000.00
$ (5.00)

Chapter 6 ■ Characters and Strings

213

You can in theory create a new facet class by directly inheriting from std::facet
and add it to a locale using the same constructor to use it in your own library code later.
The only additional requirement is that you define a default-constructed static constant
named id of type std::locale::id.

�C Locales� <clocale>

Locale-sensitive functions from the C Standard Library (including most functions in
<cctype> and the I/O operations of <cstdio> and <ctime>) are not directly affected by
the global C++ locale. Instead, they are governed by a corresponding C locale. This C
locale is changed by one of two functions:

•	 std::locale::global() is guaranteed to modify the C locale
to match the given C++ locale, as long as the latter has a name.
Otherwise, its effect on the C locale, if any, is implementation-
defined.

•	 Using the std::setlocale() function of <clocale>. This does not
affect the C++ global locale in any way.

In other words, when using standard locales, a C++ program should simply
call std::locale::global(). To write portable code when combining multiple
locales, however, you have to call both the C++ and the C function because not all
implementations set the C locale as expected when changing the global() C++ locale to
a combined locale. This is done as follows:

// Use the user's preferred locale settings,
// but with neutral numeric and monetary formatting
std::locale::global(std::locale(std::locale(""), "C",

std::locale::numeric | std::locale::monetary));
std::setlocale(LC_ALL, "");
std::setlocale(LC_NUMERIC, "C");
std::setlocale(LC_MONETARY, "C");

The setlocale() function takes a single category number (not a bitmask type;
supported values include at least LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY,
LC_NUMERIC, and LC_TIME) and a locale name, all analogous to their C++ equivalents.
It returns the name of the active C locale upon success as a char* pointer into a reused,
global buffer, or nullptr upon failure. If nullptr is passed for the locale name, the C
locale is not modified.

Unfortunately, the C locale functionality is far less powerful than the C++ one:
customized facets or selecting individual facets for combining is not possible, making the
use of such advanced locales impossible with portable code in general.

The <clocale> header has one more function: std::localeconv(). It returns a
pointer to a global std::lconv struct with public members equivalent to the functions
of the std::numpunct (decimal_point, thousands_sep, grouping) and std::moneypunct
facets (mon_decimal_point, mon_thousands_sep, mon_grouping, positive_sign,
negative_sign, currency_symbol, frac_digits, etc.). These values should be treated as
read-only: writing to them results in undefined behavior.

Chapter 6 ■ Characters and Strings

214

�Regular Expressions� <regex>

A regular expression is a textual representation of a pattern or patterns to be matched
against a target sequence of characters. The regular expression ab*a, for instance, matches
any target sequence starting with the character a, followed by zero or more bs, and ending
again with an a. Regular expressions can be used to search for or replace particular
patterns in the target, or to verify that it matches a desired pattern. You see how to
perform these operations using the <regex> library later; first we introduce how to form
and create regular expressions.

�The ECMAScript Regular Expression Grammar
The syntax used to express patterns in textual form is defined by a grammar. By default,
<regex> uses a modified version of the grammar used by the ECMAScript scripting
language (best known for its widely used dialects JavaScript, JScript, and ActionScript).
What follows is a concise, comprehensive reference for this grammar.

A regular expression pattern is a disjunction of sequences of terms, with each term
either an atom, an assertion, or a quantified atom. Supported atoms and assertions are
listed in Tables 6-5 and 6-6, and Table 6-7 shows how atoms are quantified to express
repetitive patterns. These terms are concatenated without separators and then optionally
combined into disjunctions using the | operator. Empty disjuncts are allowed, with
pattern| matching either the given pattern or the empty sequence. Some examples
should clarify:

•	 \r\n?|\n matches line-break sequences for all major platforms
(i.e., \r, \r\n, or \n).

•	 <(.+)>(.*)</\1> matches XML-like sequences of the form
<TAG>anything</TAG> using a back reference for matching the
closing tag, and extra grouping in the middle to allow retrieval of
the second submatch (discussed later).

•	 (?:\d{1,3}\.){3}\d{1,3} matches IPv4 addresses. This
naïve version also matches illegal addresses, though, such as
999.0.0.1, and the poor grouping prohibits the four matched
numbers from being retrieved afterward. Note that without the
?:, \1 still would only refer to the third matched number.

■■ Tip  When entering regular expressions as string literals in a C++ program, all
backslashes have to be escaped. The first example becomes "\\r\\n?|\\n". Because
this is both tedious and obscuring, we recommend using raw string literals instead: for
instance, R"(\r\n?|\n)". Remember that the surrounding parentheses are part of the raw
string literal notation and do not constitute a regular expression group.

Chapter 6 ■ Characters and Strings

215

The difference between an atom and an assertion is that the former consumes
characters from the target sequence (typically one), whereas the latter does not. The
(quantified) atoms in a pattern consume target characters one by one, simultaneously
progressing left to right through both the pattern and target sequences. For an assertion
to match, a specific condition must hold on the current position in the target (think of it
as the caret position when typing text).

�Character Classes
A character class is a [d] or [^d] atom that defines a set of characters it may (for [d]) or
may not ([^d]) match. The class definition d is a sequence of class atoms, each one either

•	 An individual character.

•	 A character range of the form from-to (bounds are inclusive).

•	 Starting with a backslash (\): the equivalent of any atom from
Table 6-5 except back references, with the obvious meaning.
Note that characters such as * + . $ do not need escaping in this
context, but characters - [] : ^ may. Also, inside class definitions,
\b denotes the backspace character (\u0008).

•	 One of three types of special character class atoms enclosed
between nested square brackets (described shortly).

The descriptors are concatenated without separators. For example, [_a-zA-Z]
matches either an underscore or a single character in the range a–z or A–Z, whereas [^\d]
matches any single character that is not a decimal digit.

The first special class atom has form [:name:]. At least the following names are
supported: equivalents of all 12 character classes explained in the section on character
classification—alnum, alpha, blank, cntrl, digit, graph, lower, print, punct, space,
upper, and xdigit—and d, s, and w. Of the latter, d and s are short for digit and space,
and w is the class of word characters with [:w:] equivalent to _[:alnum:] (mind the
underscore!). That is, for the classic "C" locale, [[:w:]] == [_a-zA-Z]. As another
example, [\D] == [^\d] == [^[:d:]] == [^[:digit:]] == [^0-9].

The second type of special class atoms looks like [.name.], where name is a locale-
and implementation-specific collating element name. This name can be a single character
c, in which case [[.c.]] is equivalent to [c]. Similarly, [[.comma.]] may equal [,]. Some
names refer to multicharacter collating elements, that is, multiple characters that are
considered a single character in a specific alphabet and its sorting order. Possible names
for the latter include those of digraphs: ae, ch, dz, ll, lj, nj, ss, and so on. For instance,
[[.ae.]] matches two characters, whereas [ae] matches one.

Class atoms of the form [=name=], finally, are similar to [.name.], except that they
match all characters that are part of the same primary equivalence class as the named
collating element. Essentially, this means [=e=] in French should match not only e but
also é, è, ê, E, É, and so on. Similarly, [=ss=] in German should match the digraph ss, but
also the Eszett character (ß).

Chapter 6 ■ Characters and Strings

216

�Greedy vs. Non-greedy Quantification
By default, quantified atoms as defined in Table 6-7 are greedy: they first match sequences
that are as long as possible and only try shorter sequences if that does not lead to a
successful match. To make them non-greedy—that is, to make them try the shortest
possible sequences first—add a question mark (?) after the quantifier.

Recall, for example, the earlier example "<(.+)>(.*)</\1>". When searching for or
replacing its first match in "Bold, not bold, bold again", this pattern
matches the full sequence. The non-greedy version, "<(.+)>(.*?)</\1>", instead
matches only the desired "Bold".

As an alternative to a non-greedy quantifier, a negative character class may be
considered as well (it may be more efficient), such as "<(.+)>([^<]*)</\1>".

�Regular Expression Objects
The <regex> library models regular expressions as std::basic_regex<CharT> objects. Of
this, at least two specializations are available for use with narrow strings (char sequences)
and wide strings (wchar_t sequences): std::regex and std::wregex. The examples use
regex, but wregex is completely analogous.

�Construction and Syntax Options
A default-constructed regex does not match any sequence. More useful regular
expressions are created using the constructors of the following form:

regex(Pattern, regex::flag_type flags = regex::ECMAScript);

The desired regular expression Pattern may be represented as either a std::string,
a null-terminated char* array, a char* buffer with a size_t length (the number of
chars to be read from the buffer), an initializer_list<char>, or a range formed by a
beginning and end iterator.

When the given pattern is invalid (mismatched parentheses, a bad back reference,
etc.), a std::regex_error is thrown. This is a std::runtime_exception with an
additional code() member returning one of 11 error codes of type std::regex_
constants::error_type (error_paren, error_backref, etc.).

The last argument determines which grammar is used and may be used to toggle
certain syntax options. The flag_type values are aliases for those of std::regex_
constants::syntax_option_type. Because it is a bitmask type, its values may be
combined using the | operator. The following syntax options are supported:

Chapter 6 ■ Characters and Strings

217

Option Effect

collate Character ranges of form [a-z] become locale sensitive. For a
French locale, for instance, [a-z] should then match é, è, etc.

icase Character matches are done in a case-insensitive manner.

multiline C++17 The ^ and $ assertions (Table 6-6) are guaranteed to match the
beginning and end of a line, respectively. This option is only valid
for the ECMAScript grammar.

nosubs No submatches against subexpressions are stored in match_
results (discussed later). Back references will likely fail as well.

optimize Hints the implementation to prefer improved matching speed over
performance during construction of regular expression objects.

ECMAScript Uses the ECMAScript-based regular expression grammar (default).

basic Uses the POSIX basic regular expression grammar (BRE).

extended Uses the POSIX extended regular expression grammar (ERE).

grep Uses the grammar of the POSIX utility grep (a BRE variant).

egrep Uses the grammar of the POSIX utility grep –E (an ERE variant).

awk Uses the grammar of the POSIX utility awk (another ERE variant).

Of the last six options, only one is allowed to be specified; if none is specified,
ECMAScript is used by default. All POSIX grammars are older and less powerful than
the ECMAScript grammar. The only reason to use them would therefore be that you are
already familiar with them or have preexisting regular expressions. Either way, there is no
reason to detail these grammars here.

�Basic Member Functions
A regex object is primarily intended to be passed to one of the global functions or iterator
adaptors explained later, so not many member functions operate on it:

•	 A regex can be copied, moved, and swapped.

•	 It can be (re)initialized with a new regular expression and
optional syntax options using assign(), which has the exact same
set of signatures as its nondefault constructors.

•	 The flags() member returns the syntax options flag it was
initialized with, and mark_count() returns the number of marked
subexpressions in its regular expression (see Table 6-5).

•	 The regex std::locale is returned by getloc(). This affects
matching behavior in several ways and is initialized with the
active global C++ locale upon construction. After construction, it
may be changed using the imbue() function.

Chapter 6 ■ Characters and Strings

218

�Matching and Searching Patterns
The std::regex_match() function verifies that the full target sequence matches a given
pattern, whereas the similar std::regex_search() searches for a first occurrence of a
pattern in the target. Both return false if no successful match is found. These function
templates have an analogous set of overloads, all with signatures of this form:

bool regex_match (Target [, Results&], const Regex&, match_flag_type = 0);
bool regex_search(Target [, Results&], const Regex&, match_flag_type = 0);

All but the last argument is templated on the same character type CharT, with
implementations available for at least char and wchar_t. As for the arguments

•	 A typical combination for the first three arguments is (w)string,
(w)smatch, (w)regex.

•	 Instead of a basic_string<CharT>, the Target sequence may
also be represented as a null-terminated CharT* array (used also
for string literals) or a pair of bidirectional iterators that mark
the bounds of a CharT sequence. In both these cases, the normal
Results type becomes std::(w)cmatch.

•	 The w?[sc]match types used for the optional match Results
output argument are discussed in the next subsection.

•	 The Regex object passed is not copied, so these functions must
not (ideally cannot) be called using a temporary object.

•	 To control matching behavior, a value of the bitmask type
std::regex_constants::match_flag_type may be passed.
Supported values are shown in the following table:

Match Flag Effect

match_default Default matching behavior is used (this constant has value zero).

match_not_bol
match_not_eol
match_not_bow
match_not_eow

The first or last position in the target sequence is no longer
considered the beginning/end of a line/word. Affects the ^, $, \b,
and \B annotations as explained in Table 6-6.

match_any If multiple disjuncts of a disjunction match, it is not required
to find the longest match among them: any match will do (e.g.,
the first one found, if that speeds things up). Not relevant for the
ECMAScript grammar, because this already prescribes the use of
the leftmost successful match for disjunctions.

match_not_null The pattern will not match the empty sequence.

match_continuous The pattern only matches sequences that start at the beginning of
the target sequence (implied for regex_match()).

(continued)

Chapter 6 ■ Characters and Strings

219

Match Flag Effect

match_prev_avail When deciding on line and word boundaries for ^, $, \b, and
\B annotations, matching algorithms look at the character at
--first, with first pointing to the start of the target sequence.
When set, match_not_bol and match_not_bow are ignored. Useful
when repeatedly calling regex_search() on consecutive target
subsequences. The iterators explained later do this correctly and
are the recommended way to enumerate matches.

If either algorithm fails, a std::regex_error is raised. Because the regular
expression’s syntax is already verified upon construction of the regex object (see earlier),
this only rarely occurs for very complex expressions if the algorithm runs out of resources.

�Match Results
A std::match_results<CharIter> is effectively a sequential container (see Chapter 3)
of sub_match<CharIter> elements, which are std::pairs of bidirectional CharIters
pointing into the target sequence marking the bounds of the submatch sequences. At
index 0, there is a sub_match for the full match, followed by one sub_match per marked
subexpression in the order their opening parentheses appear in the regular expression
(see Table 6-5). The following template specializations are provided:

Target match_results sub_match CharIter

std::string
std::wstring

std::smatch
std::wsmatch

std::ssub_match
std::wssub_match

std::string::const_iterator
std::wstring::const_iterator

const char*
const wchar_t*

std::cmatch
std::wcmatch

std::csub_match
std::wcsub_match

const char*
const wchar_t*

std::sub_match

In addition to the first and second members inherited from std::pair, sub_matches
have a third member variable called matched. This Boolean is false if the match failed
or if the corresponding subexpression did not participate in the match. The latter occurs,
for example, if the subexpression was part of a nonmatched disjunct, or of a nonmatched
atom quantified with, for example, ?, *, or {0,n}. When matching "(a)?b|(c)" against
"b", for instance, the match succeeds with a match_result that contains two empty
sub_matches with matched == false.

Chapter 6 ■ Characters and Strings

220

The operations available for sub_matches are summarized in this table:

Operation Description

length() The length of the match sequence (0 if not matched).

str() / cast operator Returns the match sequence as a std::basic_string.

compare() Returns 0 if the sub_match compares equal to, and a positive/
negative number if it compares greater/smaller than, a given
sub_match, basic_string or null-terminated character array.

==, !=,
<, <=, >, >=

Non-member operators for compare()ing between a sub_match
and a sub_match, basic_string or character array, or vice
versa.

<< Non-member operator for streaming to an output stream.

std::match_results

A match_results can be copied, moved, swapped, and compared for equality using ==
and !=. In addition to those operations, the following member functions are available
(functions related to custom allocators are omitted). Note that, unlike for strings, size()
and length() are not equivalent here:

Operation Description

ready() A default-constructed match_results is not ready and
becomes ready after execution of a match algorithm.

empty() Returns size() == 0 (true if not ready() or after a failed
match).

size() Returns the number of sub_matches contained (one plus the
number of marked subexpressions) if ready() and the match
was successful, or zero otherwise.

max_size() The theoretical maximum size() due to implementation or
memory limitations.

operator[] Returns the sub_match with specified index n (see earlier)
or an empty sub_match sub with sub.matched == false
if n >= size().

length(size_t=0) results.length(n) is equivalent to results[n].length().

str(size_t=0) results.str(n) is equivalent to results[n].str().

position(size_t=0) The distance between the start of the target sequence and
results[n].first.

prefix() Returns a sub_match ranging from the start of the target
sequence (inclusive) until that of the match (noninclusive).
Always empty for regex_match(). Undefined if not ready().

(continued)

Chapter 6 ■ Characters and Strings

221

Operation Description

suffix() Returns a sub_match ranging from the end of the full match
(noninclusive) until the end of the target sequence (inclusive).
Always empty for regex_match(). Undefined if not ready().

begin(), cbegin(),
end(), cend()

Return iterators pointing to the first or one past the last
sub_match contained in the match_results.

format() Formats the matched sequence according to a specified
format. The different overloads (either string- or iterator-
based) have output, pattern, and format flag arguments
analogous to those of the std::regex_replace() function
explained later. Any match_xxx flags are ignored; only
format_yyy flags are used.

�Example
The following example illustrates the use of regex_match(), regex_search(), and
match_results (smatch):

std::regex pattern(R"(<(.+)>(.*?)</\1>)");
std::string target = "Bold, not bold, bold again.";

std::cout << std::boolalpha; // print true/false instead of 1/0
std::cout << std::regex_match(target, pattern) << "\n\n"; // false

std::smatch results;
auto begin = target.cbegin(), end = target.cend();
while (std::regex_search(begin, end, results, pattern)) {

std::cout << results.str(2) << '\n'; // "Bold", then "bold again"
begin += results.length();

}

But the preferred way of enumerating all matches is to use the iterators discussed in
the next subsection.

�Match Iterators
The std::regex_iterator and regex_token_iterator classes facilitate traversing all
matches of a pattern in a target sequence. Like match_results, both are templated with
a type of character iterator (CharIter). Four analogous type aliases also exist for the most

Chapter 6 ■ Characters and Strings

222

common cases: the iterator type prefixed with s, ws, c, or wc. The while loop from the
example at the end of the previous subsection, for instance, may be rewritten as follows:

std::sregex_iterator begin(target.cbegin(), target.cend(), pattern),
end; // default constructor creates end-iterator

std::for_each(begin, end, [](auto& results) /* const std::smatch& */
{ std::cout << results.str(2) << '\n'; });

In other words, a regex_iterator is a forward iterator that enumerates all
sub_matches of a pattern as if found by repeatedly calling regex_search(). The previous
for_each() loop is not only shorter and clearer though, it is also more correct in
general than our naïve while loop: the iterator, for one, sets the match_prev_avail flag
after the first iteration. Only one nontrivial constructor is available, creating a regex_
iterator<CharIter> pointing to the first sub_match (if any) of a given Regex in the target
sequence bounded by two bidirectional CharIters:

regex_iterator(CharIter, CharIter, const Regex&, match_flag_type = 0);

Analogous to a regex_iterator, which enumerates match_results, a regex_token_
iterator enumerates all or specific sub_matches contained in these match_results. The
same example, for instance, may be written as

std::sregex_token_iterator beg(target.cbegin(), target.cend(), pattern, 2),
end; // default construction --> end-iterator

std::for_each(beg, end, [](auto& subMatch) /* const std::ssub_match& */
{ std::cout << subMatch << '\n'; });

The constructors of regex_token_iterator are analogous to the constructor of
regex_iterator but have an extra argument indicating which sub_matches to enumerate.
Overloads are defined for a single int (as in the example), vector<int>, int[N], and
initializer_list<int>. Replacing the 2 in the example with {0,1}, for example, outputs
"Bold", "b", "bold again", and then "b". When omitted, this argument
defaults to 0, indicating only full pattern sub_matches are to be enumerated (the example
then prints "Bold" and "bold again").

�Tokenizing
The last parameter of a regex_token_iterator can also be -1 which turns it into a field
splitter or tokenizer. This is a safe alternative to the C function strtok() from <cstring>.
In this mode, a regex_token_iterator iterates over all subsequences that do not match
the regular expression pattern. It can, for instance, be used to split a comma-separated
string. In the following example, we allow comma separators to be preceded or followed
by whitespace as well:

const std::string csv = "a, b, c,123";
const std::regex regex(R"(\s*,\s*)");

Chapter 6 ■ Characters and Strings

223

std::sregex_token_iterator beg(begin(csv), end(csv), regex, -1), end;
std::for_each(beg, end, [](auto& token) { std::cout << token << '\n'; });

�Replacing Patterns
The final regular expression algorithm, std::regex_replace(), replaces all matches of a
given pattern with another. The signatures are as follows:

String regex_replace(Target, Regex&, Format, match_flag_type = 0);
Out regex_replace(Out, Begin, End, Regex&, Format, match_flag_type = 0);

As before, argument types are templated in the same character type CharT, with
support for at least char and wchar_t. The replacement Format is represented as either
a (w)string or a null-terminated C-style string. For the target sequence, there are two
groups of overloads. Those in the first represent the Target as a (w)string or a C-style
string and return the result as a (w)string. Those in the second denote the target using
bidirectional Begin and End character iterators and copy the result into an output iterator
Out. The return value for the latter is an iterator pointing to one past the last character
that was outputted.

All matches of the given Regex are replaced with the Format sequence, which by
default may contain the following special character sequences:

Format Replacement

$n A copy of the nth marked subexpression of the match, where n > 0 is counted
as with back references: see Table 6-5.

$& A copy of the entire match.

$` A copy of the prefix, the part of the target that precedes the match.

$´ A copy of the suffix, the part of the target that follows the match.

$$ A $ character (this is the only escaping required).

Analogously to earlier, only if the algorithm has insufficient resources to evaluate the
match, a std::regex_error is thrown.

The following code, for example, prints "d*v*w*l*d" and "debolded":

std::regex vowels("[aeiou]");
std::cout << std::regex_replace("devoweled", vowels, "*") << '\n';

std::regex bolds("(.*?)");
std::string target = "debolded";
std::ostream_iterator<char> out(std::cout);
std::regex_replace(out, target.cbegin(), target.cend(), bolds, "$1");

Chapter 6 ■ Characters and Strings

224

The final argument is again a std::regex_constants::match_flag_type, which
for regex_replace() can be used to tweak both the matching behavior of the regular
expression—using the same match_xxx values as listed earlier—and the formatting of the
replacement. For the latter, the following values are supported:

Format Flag Effect

format_default Default formatting is used (this constant has value zero).

format_sed The same syntax as the POSIX utility sed is used for the Format.

format_no_copy Parts of the Target sequence that are not matches of the regular
expression pattern are not copied to the output.

format_first_only Only the first occurrence of the pattern is replaced.

Most of the atoms in Table 6-5 match a single character; only subexpressions and
back references may match a sequence. Any other single character is also an atom that
matches simply that character. All atoms may be quantified as shown in Table 6-7.

Table 6-5.  All Atoms with a Special Meaning in the ECMAScript Grammar

Atom Matches

. Any single character except line terminators.4

\0, \f, \n, \r,
\t, \v

One of the common control characters: null, form feed (FF), line feed
(LF), carriage return (CR), horizontal tab (HT), and vertical tab (VT).

\cletter The control character whose code unit equals that of the given ASCII
lowercase or uppercase letter modulo 32. E.g., \cj == \cJ == \n (LF) as
(code unit of j or J) % 32 = (106 or 74) % 32 = 10 = code unit of LF.

\xhh The ASCII character with hexadecimal code unit hh (exactly two
hexadecimal digits). E.g., \x0A == \n (LF), and \x6A == J.

\uhhhh The Unicode character with hexadecimal code unit hhhh (exactly four
hexadecimal digits). E.g., \u006A == J, and \u03c0 == π (Greek letter pi).

[class] A character of a given class (see main text): [abc], [a-z], [[:alpha:]], etc.

[^class] A character not of a given class (see main text). E.g., [^0-9], [^[:s:]], etc.

\d A decimal digit character (short for [[:d:]] or [[:digit:]]).

\s A whitespace character (short for [[:s:]] or [[:space:]]).

\w A word character, i.e., an alphanumeric or underscore character (short
for [[:w:]] or [_[:alnum:]]).

(continued)

Chapter 6 ■ Characters and Strings

225

Table 6-6.  Assertions Supported by the ECMAScript Grammar

Assertion Matches If the Current Position Is …

^ The beginning of the target (unless match_not_bol is specified), or a
position that immediately follows a line-terminator character4 (the
latter is only guaranteed to work if multiline is specified).

$ The end of the target (unless match_not_eol is specified), or the
position of a line-terminator character (the latter is only guaranteed to
work if multiline is specified).

\b A word boundary: the next character is a word character,5 whereas the
previous is not, or vice versa. The beginning and end of the target are
also word boundaries if the target begins/ends with a word character
(and match_not_bow/match_not_eow is not specified, respectively).

Atom Matches

\D, \S, \W Complement of \d, \s, \w. In other words, any character that is not a decimal
digit, whitespace, or word character, respectively (short for [^[:d:]], etc.).

\character The given character, as is. Required only for \ . * + ? ^ $ () [] { } |
because without escaping, these have special meaning; but any
character may be used as long as \character has no special meaning.

(pattern) Matches pattern and creates a marked subexpression, turning it into an
atom that can be quantified, for one. The sequence it matches (called a
submatch) can be retrieved from a match_results or referred to using
a back reference (discussed later), either further in the surrounding
pattern or in the replacement pattern when using regex_replace().

(?:pattern) Same as previous, but the subexpression is unmarked, meaning the
submatch is not stored in a match_results, nor can it be referred to.

\integer A back reference: matches the exact same sequence as the marked
subexpression with index integer did earlier. Subexpressions are counted
left to right in the order their opening parentheses appear in the full
pattern, starting from one (recall: \0 matches the null character).

Table 6-5.  (continued)

Assertions, listed in Table 6-6, do not consume any characters, but simply add
conditions for a successful pattern match. The match_xxx flags are optionally passed to
the matching functions or iterators.

4 A line terminator is one of four characters: line feed (\n), carriage return (\r), line separator
(\u2028), or paragraph separator (\u2029).
5 A word character is any character in the [[:w:]] or [_[:alnum:]] class: i.e., an underscore or
any alphabetic or numerical digit character.

(continued)

Chapter 6 ■ Characters and Strings

226

To make the quantifiers in Table 6-7 non-greedy, add an extra ? after the quantifier.

Table 6-7.  Quantifiers That Can Be Used for Repeated Matches of Atoms

Quantifier Meaning

atom* Greedily matches atom zero or more times

atom+ Greedily matches atom one or more times

atom? Greedily matches atom zero or one time

atom{i} Greedily matches atom exactly i times

atom{i,} Greedily matches atom i or more times

atom{i,j} Greedily matches atom between i and j times

�Numeric Conversions
The Standard Library offers numerous ways to convert between strings and numbers. In
Chapter 5, you already encountered two: std::stringstream and sprintf() / sscanf().
And in this chapter, you saw two more: the std::num_put and num_get locale facets, and
of course the regular expression library.

All of these options, however, are somewhat verbose and cumbersome if all you want
is to quickly convert a single string or number. The <string> header offers functions to
perform one-off conversions using a single, straightforward expression.

Another issue with the mechanisms seen so far is that none of them are performant
enough for efficiently converting many values in bulk. This was addressed in C++17 by a
new header, <charconv>, that offers high-performance numeric conversion functions.

In this section, we discuss both sets of conversion functions in turn, starting with
those offered by <string> and ending with those of <charconv>.

Assertion Matches If the Current Position Is …

\B Not a word boundary: both the previous and next characters are either
word or nonword characters. See \b for when the beginning and end of
the target are word boundaries.

(?=pattern) A position at which the given pattern could be matched next. This is
called a positive lookahead.

(?!pattern) A position at which the given pattern would not be matched next. This
is called a negative lookahead.

Table 6-6.  (continued)

Chapter 6 ■ Characters and Strings

227

■■ Note T he <cstdlib>, <cwchar>, and <cinttypes> headers of the C Standard Library
contain even more functions that convert C-style strings and character buffers to numbers:
ato[i|l|ll|f](), strto[l|ll|ul|ull|f|d|ld|imax|umax](), and wcsto[l|ll|
ul|ull|f|d|ld|imax|umax](). There is little reason to use any of these in C++ though.
If convenience is what you need, use either their equivalents defined in the <string> header
or the streams seen earlier. And if performance is crucial, you should consider the functions
of <charconv>.

�Convenient Conversion Functions� <string>

�Parsing Integers
To parse various types of integral numbers represented by a given (w)string, a series of
non-member functions of the following form is provided by the <string> header:

int stoi(const (w)string&, size_t* index = nullptr, int base = 10);

The following variants exist: stoi(), stol(), stoll(), stoul(), and stoull(),
where i stands for int, l for long, and u for unsigned. These functions skip all leading
whitespace characters, after which as many characters are parsed as allowed by the
syntax determined by the base (explained shortly). It is allowed to pass a string that
starts with a number, followed by additional characters. If an index pointer is provided, it
receives the index of the first character that is not converted.

What constitutes a valid integer string is defined by the current C locale, but it
includes at least all strings consisting of the following parts (in the given order):

•	 An optional + or - sign. A minus sign is allowed even for unsigned
target types. It then has the same semantics as the unary minus
operator for unsigned integers in C++.

•	 An optional prefix 0 (zero) if base is either 8 or 0.

•	 An optional prefix 0x or 0X (zero-x) if base is 16 or 0.

•	 A nonempty sequence of digits. The set of valid digits is
determined by the given base, as explained next.

If base is between 2 and 10 (both inclusive), valid digits range from 0 to base-1. If base
is between 11 and 36, letters from the range a/A to z/Z are added to the set of valid digits
(capital letters are always equivalent to lowercase letters). For the commonly used base
16, for instance, the valid digits are 0–9, a–f, and A–F. base may not be higher than 36.

You can also use 0 (zero) as base. The actual base used for parsing is then
determined by the presence of a prefix in the input string (if any): if the string begins with
0x or 0X (zero-x), base 16 is used; otherwise, if it begins with a 0 (zero), base 8 is used;
finally, if no prefix is found, base 10 is used.

Chapter 6 ■ Characters and Strings

228

�Parsing Floating-Point Numbers
stof(), stod(), and stold() convert a given string to a float, double, and long double,
respectively. They all have the following form:

float stof(const (w)string&, size_t* index = nullptr);

These conversion functions again consume any leading whitespace and output
index of the first unconverted character to *index if index is not nullptr. Valid strings
include those consisting of the following parts (additional strings may be accepted based
on the active C locale):

•	 An optional + or - sign.

•	 An optional prefix 0x or 0X (zero-x) indicating the start of a
hexadecimal floating-point expression. Without such a prefix, a
decimal floating-point expression is expected.

•	 A nonempty sequence of digits, optionally containing a decimal
point character. For a hexadecimal floating-point expression,
hexadecimal digits can be used (0–9, a–f, and A–F); otherwise
only decimal digits are allowed (0–9). The decimal point character
is determined by the active C locale.

•	 An optional exponent sequence. For a decimal floating-point
expression, this is the letter e or E, followed by an optional + or -
sign, followed by a nonempty sequence of decimal digits. For the
hexadecimal case, p or P is expected instead of e or E.

Other valid input strings include INF, INFINITY, NAN, and NAN(…) for infinity and
(quiet) not-a-number values, all optionally preceded with a + or - sign, and all case-
insensitive. Which character sequences are supported between the parentheses of
NAN(…) is implementation-defined.

�Error Reporting and Number Formatting
All string-to-numeric conversion functions of <string> throw an exception of type
std::invalid_argument if passed a string that does not represent a valid number, and a
std::out_of_range exception if the target type cannot represent the result.

To perform the opposite conversion and convert from numerical types to a
(w)string, you can use the overloaded functions std::to_(w)string(). Overloads exist
for int, unsigned, long, unsigned long, long long, unsigned long long, float, double,
and long double arguments. The returned value is a std::(w)string.

Chapter 6 ■ Characters and Strings

229

�High-Performance Conversion
Functions C++17 � <charconv>

The by far most efficient functions to convert between strings and numbers are those
offered by the <charconv> header: std::from_chars() and to_chars(). These are their
interfaces (overloads are available for all fundamental Integer and Float types):

from_chars_result from_chars(char* b, char* e, Integer& v, int base = 10)
from_chars_result from_chars(char* b, char* e, Float& v,
 chars_format format = chars_format::general)

to_chars_result to_chars(char* beg, char* end, Integer val, int base = 10)
to_chars_result to_chars(char* beg, char* end, Float val
 [, chars_format format][, int precision])

Both std::from_chars_result and to_chars_result are structs with these two
members (in the given order):

•	 A const char* pointer named ptr

•	 An error code named ec of type std::errc, an enum class defined
in <system_error> (see Chapter 8)

Unless stated otherwise, ptr points to one past the last character read or written.
Upon success, ec equals zero. Upon failure, it has one of the following values:

•	 errc::invalid_argument if from_chars() fails because it did not
find a valid number. ptr then equals b.

•	 errc::result_out_of_range if from_chars() parses a number
that cannot be represented by its output parameter v.

•	 errc::value_too_large if the output range of to_chars() is not
large enough to represent the number.

std::chars_format is a bitmask enumeration type with elements scientific,
fixed, and hex, and the default value general that is defined as fixed | scientific.

For from_chars(), the given format affects the strings that can be parsed: if
scientific is set but not fixed, the exponent part is no longer optional. Conversely,
when fixed is set without scientific, the exponent part may not appear. Whenever hex
is set, a prefix 0x is assumed.

For to_chars() the format parameter has the following effect: slightly simplified,
to_chars() by default results in the same output as printf() (see Chapter 5), with either
%f or %e, whichever results in the shorter string, under the restriction that the result can
be parsed again exactly using from_chars(). With a format equal to fixed, however,
conversion specifier %f is used instead. Similarly, %e is used with scientific, %a with hex,
and %g with general.

Chapter 6 ■ Characters and Strings

230

The reason these functions can be more efficient is in part because of the following
limitations compared to the conversion functions of <string>:

•	 They are independent of the active locale.

•	 0 (zero) is not supported as base.

•	 The + sign is not allowed in the input string, and the - sign is only
allowed if the target type is signed.

•	 No 0x or 0X prefix is allowed to appear.

■■ Note A t the time of writing, not all compilers (fully) support these high-performance
numeric conversion functions yet: of the compilers we verified, only Visual Studio has full
support (as of 2017 15.8), GCC only supports integral conversions (as of GCC 8), and Clang
does not provide the <charconv> at all yet. Consult your compiler’s documentation for
more details.

231
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_7

CHAPTER 7

Concurrency

�Threads� <thread>

�Launching a New Thread
To run any function pointer, functor, or lambda expression in a new thread of execution,
pass it to the constructor of std::thread, along with any number of arguments. For
example, these two lines are functionally equivalent:

std::thread worker1(my_callable, "arg", anotherArg);
std::thread worker2([=] { my_callable("arg", anotherArg); });

The given callable with its arguments is invoked in a newly launched thread of
execution prior to returning from the thread’s constructor.

Both the callable and its arguments must first be copied or moved (e.g., for
temporary objects or if std::move() is used) to memory accessible to this new thread.
Therefore, to pass a reference as an argument, you first have to make it copyable. You can
do this by wrapping it using std::ref() / std::cref(). Or, you can simply use a lambda
expression with capture-by-reference instead. Functors and reference wrappers are
discussed in detail in Chapter 2.

The thread class does not offer any facilities to retrieve the callable’s result.
On the contrary, its return value is ignored, and std::terminate() is called if it raises an
uncaught exception (which by default terminates the process: see Chapter 8). Retrieving
function results is made easier though using the constructs defined in the <future>
header, as detailed later in this chapter.

■■ Tip  To asynchronously execute a function and retrieve its result later, std::async()
(defined in <future>) is recommended over thread. It typically is both easier and
more efficient (implementations of async() likely use a thread pool). Reserve the use of
std::threads for longer-running concurrent tasks.

Chapter 7 ■ Concurrency

232

�A Thread’s Lifetime
A std::thread is said to be joinable if it is associated with a thread of execution. This
property is queried using joinable(). threads initialized with a given callable start out
joinable, whereas default-constructed ones start out non-joinable. After that, thread
instances can be moved and swapped as expected. Copying thread objects, however, is
not possible. This ensures that at all times, at most one thread instance represents a given
thread of execution. A handle to the underlying native thread representation may be
obtained through the optional native_handle() member.

The two most important facts to remember about std::threads are as follows:

•	 A thread remains joinable even after the thread’s callable has
finished executing.

•	 If a thread object is still joinable when it is destructed,
std::terminate() is called from its destructor.

So, to make sure the latter does not happen, always make sure to eventually call one
of the following functions on each joinable thread:

•	 join(): Blocks until the thread’s callable has finished executing.

•	 detach(): Disassociates the thread object from the thread of
execution which continues running autonomously until the
thread’s callable finishes. Detaching a thread is the only standard
way to asynchronously execute code in a fire-and-forget manner.

Here is a basic example of using join() (although, as noted earlier already, you
should probably use std::async() instead for cases such as this: see later):

double result;
std::thread worker([&result] { result = someExpensiveComputation(); });
// ...
worker.join();
std::cout << result << std::endl; // Safe to use result now (see later)

A std::thread offers no means to terminate, interrupt, or resume the underlying
thread of execution. Stopping the thread’s callable or otherwise synchronizing with
it must therefore be accomplished using other means, such as mutexes or condition
variables, both discussed later in this chapter.

�Thread Identifiers
Each active thread has a unique thread::id, which offers all operations you typically
need for thread identifiers:

•	 They can be outputted to string streams (e.g., for logging
purposes).

•	 They can be compared using == (e.g., for testing/asserting a
function is executed on some specific thread).

Chapter 7 ■ Concurrency

233

•	 They can be used as keys in both ordered and unordered
associative containers: all comparison operators (<, >=, etc.) are
defined, as is a specialization of std::hash.

If a std::thread object is joinable, you can call get_id() on it to obtain the identifier
of the associated thread. All non-joinable threads have an identifier that equals the
default-constructed thread::id. To get the identifier for the currently active thread, you
can call the global std::this_thread::get_id() function.

�Utility Functions
The static std::thread::hardware_concurrency() function returns the number of
concurrent threads (or an approximation thereof) supported by the current hardware,
or zero if this cannot be determined. This number may be larger than the number of
physical cores: if the hardware, for instance, supports simultaneous multithreading
(branded by Intel as Hyper-Threading), this will be an even multiple of (typically twice)
the number of cores.

In addition to get_id(), the std::this_thread namespace contains three additional
functions to manipulate the current thread of execution:

•	 yield() hints the implementation to reschedule, allowing other
active threads to continue their execution.

•	 sleep_for(duration) and sleep_until(time_point) suspend
the current thread for or until a given time; the timeouts are
specified using types from <chrono> described in Chapter 2.

�Exceptions
Unless noted here, all functions in <thread> are declared noexcept. Several std::thread
members call native system functions to manipulate native threads. If those fail, a
std::system_error is thrown with one of the following error codes (see Chapter 8 for
more information on system_errors and error codes):

•	 resource_unavailable_try_again if a new native thread cannot
be created in the constructor

•	 invalid_argument if join() or detach() is called on a non-
joinable thread

•	 no_such_process if join() or detach() is called and the thread is
not valid

•	 resource_deadlock_would_occur if join() is called on a joinable
thread from the corresponding thread of execution

Failure to allocate storage in the constructor may also be reported by throwing an
instance of std::bad_alloc or a class that derives from bad_alloc.

Chapter 7 ■ Concurrency

234

�Futures� <future>

The <future> header provides facilities to retrieve the result (value or exception)
from a function that is being, will be, or has executed, typically in a different thread.
Conceptually, a thread-safe communications channel is set up between a single provider
and one or more return objects (T may be void or a reference type):

Return object(s)
• future<T>

• shared_future<T>

Provider
• async<F, Args...>

• packaged_task<F>

• promise<T>

Shared state
T value
or
exception_ptr

set get

The shared state is an internal reference-counted object, shared between a single
provider and one or more return objects. The provider asynchronously stores a result
into its shared state, which is then said to be ready. The only way to acquire this result is
through one of the corresponding return objects.

�Return Objects
All return objects have a synchronous get() function that blocks until the associated
shared state is ready and then either returns the provided value (may be void) or rethrows
the provided exception in the calling thread.

To wait until the result is ready without actually retrieving it, use one of the wait
functions: wait(), wait_until(time_point), or wait_for(duration). The former waits
indefinitely, and the latter two wait no longer than a timeout specified using one of the
types defined in <chrono> (Chapter 2).

A return object that is associated with a shared state is said to be valid. Validity may
be checked using valid(). A valid future cannot be constructed directly but must always
be obtained from the shared state’s single provider.

There are two important limitations with std::futures:

•	 There can be only one valid future per shared state, just as
there can only be one provider. That is, each provider allows the
creation of only one future, and futures can never be copied,
only moved (futures cannot be swapped either).

•	 get() can only be called once; that is, calling get() releases the
future’s reference to the shared state, making the future non-
valid. Calling get() again after this throws an exception. Which
exceptions are raised and when is summarized at the end of the
section.

A shared_future is completely equivalent to a future, but without these two
limitations, that is, they can be copied, and get() may be called more than once. A
shared_future is obtained by calling share() on a future. This can again be done only

Chapter 7 ■ Concurrency

235

once, because it invalidates the future. But once you have a shared_future, more can be
created by copying it. Here is an overview:

Provider
get_future()

(once)

share()

(once) shared_future

Copy

future

�Providers
The <future> library offers three different providers: std::async(), packaged_tasks, and
promises. This section discusses each in turn. As example workload for asynchronous
computations, we use the following greatest common divisor function (known as Euclid’s
algorithm):

int gcd(int x, int y) { return y? gcd(y, x % y) : x; }

�Async
Calling std::async() schedules the asynchronous execution of a given function before
returning a std::future object that can be used to retrieve the result:

std::future<int> answer = std::async(gcd, 123, 6);
// ...
std::cout << answer.get(); // 3 (greatest common divisor of 123 and 6)

As with the std::thread constructor, virtually any type of function or function
object can be used, and both the function and its arguments are moved or copied to their
asynchronous execution context.

The result of the function call is put into the shared state as soon as the function is
finished executing. If the function throws an exception, the exception is caught and put
into the shared state; and if it succeeds, the return value is moved there.

The standard defines additional overrides of std::async() that take an instance of
std::launch as a first argument. Supported values include at least the following enum
values (implementations are allowed to define more):

•	 With std::launch::async, the function is executed as if in a new
thread of execution, although implementations may employ, for
example, a thread pool to improve performance.

•	 With std::launch::deferred, the function is not executed until
get() is called on one of the return objects for this call of async().
The function is executed in the first thread that calls get().

Chapter 7 ■ Concurrency

236

These options can be combined using the | operator. For instance, the combination
async  |  deferred encourages the implementation to exploit any available concurrency
but allows to defer until get() is called if there is insufficient concurrency available. This
combination is also the default policy used when no explicit launch policy is specified.

There is one important caveat when using a launch policy that includes async (i.e.,
also with the default policy). Conceptually, the thread that executes the asynchronous
function is owned by the shared state, and the destructor of the shared state joins with it.
As a consequence, the following becomes a synchronous execution of f():

std::async(f); // Blocks until f() is fully executed!

This is because the destruction of the temporary future returned by async() blocks
until f() is finished executing (the destruction of the internal shared state joins with the
thread in which f() runs).

■■ Tip  To launch a function without waiting for its result, a.k.a. fire-and-forget, create a
std::thread object and detach() it.

�Packaged Tasks
A packaged_task is a functor that executes a given function when its operator() is called
and then stores the result (i.e., a value or an exception) into a shared state. This can, for
instance, be used to acquire the result of a function executed by a std::thread (recall
that the return value of a thread’s function is ignored and that std::terminate() is
called should the function throw an exception):

std::packaged_task<int(int, int)> gcd_task(gcd);
auto gcd_future = gcd_task.get_future(); // type: std::future<int>
std::thread worker(std::move(gcd_task), 8, 12);
worker.detach();
// ...
const int four = gcd_future.get();

A packaged_task constructed with any function, functor, or lambda expression has
an associated shared state and is therefore said to be valid(); a default-constructed
task is not valid(). A single future to get() the function’s result can be obtained using
get_future().

Like all providers, a packaged_task cannot be copied, only moved or swapped. This
is why, in the previous example, we had to move the task functor to the thread (after first
obtaining its future). It is, however, the only provider that can be used more than once:
reset() on a valid packaged_task releases its old shared state and associates it with a
freshly created one. Resetting a non-valid task throws an exception.

Chapter 7 ■ Concurrency

237

There is one additional member function, make_ready_at_thread_exit(), which
executes the task’s function just like operator() would, except that it does not make the
shared state ready until the calling thread exits. This is done after, and used to avoid race
conditions with, the destruction of all thread-local objects:

std::packaged_task<int(int, int)> gcd_task(gcd);
std::thread worker([&] { gcd_task.make_ready_at_thread_exit(8, 12); });
worker.detach();
// ...
const int four = gcd_task.get_future().get();

�Promises
A promise is similar to a future but represents the input side of the communication
channel rather than the output side. Where a future has a blocking get() function, a
promise offers nonblocking set_value() and set_exception() functions.

A new promise is default-constructed and cannot be copied, only moved or
swapped. From each promise, a single future can be obtained using get_future(). If a
second is requested, an exception is thrown. Here is an example:

std::promise<int> gcd_promise;
std::thread worker([&] { gcd_promise.set_value(gcd(121,22)); });
worker.detach();
// ...
const int eleven = gcd_promise.get_future().get();

There is also a second set of member functions to fill in the result: set_value_at_
thread_exit() and set_exception_at_thread_exit(). These again postpone making
the shared state ready until the calling thread exits, thus ensuring that this occurs after the
destruction of any thread-local objects.

�Exceptions
Most functions in the <future> header throw an exception if misused. Because the
behavior is consistent across all provider and return objects, this single section provides
the overview. The following discussion refers to standard exception classes as well as the
concepts of error codes and categories, all of which are explained in detail in Chapter 8.

As usual, default and move constructors, move assignment operators, and swap()
functions are declared noexcept, and of course destructors never throw exceptions either.
Apart from these, only the valid() functions are noexcept.

Most other member functions of provider and return objects throw a std::future_
error in case of an error, a subclass of std::logic_error. More similar to a std::system_
error, though, a future_error also has a code() member that returns a std::error_
code, in this case one for which the category() equals std::future_category() (whose

Chapter 7 ■ Concurrency

238

name() equals "future"). For future_errors, the value() of the error_code always
equals one of the four values of the error code enum class std::future_errc:

•	 broken_promise, if get() is called on a return object for a shared
state that was released by its provider—because its destructor,
move assignment, or reset() function was called—without first
making the shared state ready.

•	 future_already_retrieved, if get_future() is called twice on
the same provider (without a reset() for a packaged_task).

•	 promise_already_satisfied, if the shared state is made ready
multiple times, either by a set function or by reexecuting a
packaged_task.

•	 no_state, if any member except the nonthrowing ones listed
earlier is called on a provider without an associated state. For
non-valid() return objects, implementations are encouraged to
do the same.

When using an async launch policy, async() may throw a system_error with error
code resource_unavailable_try_again if it fails to create a new thread.

�Mutual Exclusion� <mutex>

Mutexes (short for mutual exclusion) are synchronization objects used to prevent or
restrict concurrent accesses to shared memory and other resources, such as peripheral
devices, network connections, and files.

�Mutexes and Locks
Basic usage of a std::mutex object m is as follows:

m.lock();
// ... access to shared resources guarded by m
m.unlock();

The lock() function blocks until the thread has acquired ownership of a mutex.
For a basic std::mutex object, only a single thread is granted exclusive ownership at
any given time. The intention is that only threads that own a given mutex are allowed
to access the resources guarded by it, thus preventing data races. A thread retains this
ownership until it releases it by calling unlock(). Upon unlocking, another thread that
is blocked on the mutex, if any, is woken up and granted ownership. The order in which
threads are woken up is undefined.

It is critical that any and all successful calls to a lock function are paired with a call to
unlock(). To ensure this is done in a consistent and exception-safe manner, you should
avoid calling these lock and unlock functions directly and use the Resource Acquisition
Is Initialization (RAII) idiom instead. For this, the Standard Library offers several lock

Chapter 7 ■ Concurrency

239

classes. One of the simplest, leanest locks is scoped_lock, which simply calls lock() in its
constructor and unlock() in its destructor:

{ std::scoped_lock lock(m);
// ... access shared resources guarded by m

}

�Example

int counter = 0;
std::mutex m;
std::vector<std::thread> threads; // Needs <vector> and <thread>.
for (int t = 0; t < 4; ++t) // Launch 4 counting threads.

threads.emplace_back([&] {
for (int i = 0; i < 500; ++i) { // Count to 500 in each thread.

using namespace std::literals::chrono_literals;
std::this_thread::sleep_for(1ms);
std::scoped_lock lock(m);
++counter;

}
});

for (auto& t : threads) { t.join(); } // Wait for all threads to finish.
std::cout << counter << std::endl; // 2000

The result is 2,000. Removing the scoped_lock almost certainly results in a value less
than 2,000, unless of course your system cannot execute threads concurrently.

�Mutex Types
The Standard Library offers several flavors of mutexes, each with additional capabilities
compared to the basic std::mutex. More restricted mutex types can typically be
implemented more efficiently.

Mutex Type Recursive Timeouts Sharing Header

mutex No No No <mutex>

recursive_mutex Yes No No <mutex>

timed_mutex No Yes No <mutex>

recursive_timed_mutex Yes Yes No <mutex>

shared_mutex C++17 No No Yes <shared_mutex>

shared_timed_mutex No Yes Yes <shared_mutex>

Chapter 7 ■ Concurrency

240

�Common Functionality
In addition to the lock() and unlock() functions explained earlier, all mutex types also
support try_lock(), a nonblocking version of lock(). It returns true if ownership can be
acquired instantly; otherwise, it returns false.1

Implementations may also offer a native_handle() member, returning a handle to
the underlying native object.

None of the mutex types allow copying, moving, or swapping.

�Recursion
Recursive mutexes (a.k.a. reentrant mutexes) allow lock functions to be called by threads
that already own the mutex. When doing so, locking immediately succeeds. Take care
though: to release ownership, unlock() has to be called once per successful invocation of
a lock function. As always, it is therefore best to use RAII lock objects.

For nonrecursive mutex types, the behavior of locking an already-owned mutex is
undefined as per the standard, but it may very well lead to a deadlock.

�Timeouts
Timed mutexes add two extra lock functions that block until a given timeout: try_lock_
for(duration) and try_lock_until(time_point). As usual, the timeouts are specified
using types defined in <chrono>, explained in Chapter 2. Both functions return a Boolean:
true if ownership of the mutex was acquired successfully or false if the specified timeout
occurred first.

�Sharing Ownership� <shared_mutex>

Many types of shared resources can safely be accessed concurrently as long as they are
not modified. For shared memory, for instance, multiple threads can safely read from
a given location, as long as there is no thread writing to it at the same time. Restricting
read access to a single thread in such scenarios is overly conservative and may harm
performance.

The <shared_mutex> header therefore defines mutexes that support shared locking,
on top of the exclusive locking scheme they have in common with all other mutex types.
Such mutexes are also commonly known as readers-writers mutexes or multiple-readers/
single-writers mutexes.

A thread that intends to modify/write to a resource must acquire exclusive ownership
of the mutex. This is done using the exact same set of functions or lock objects as used
for all mutex types. Threads that only want to inspect/read from a resource, however, can
acquire shared ownership. The members for acquiring shared ownership are completely
analogous to their counterparts for exclusive ownership, except that in their names lock

1 Although normally uncommon, try_lock() is allowed to spuriously fail, i.e., return false
even though the mutex is not owned by any other thread. Take that into account when
designing more advanced synchronization scenarios.

Chapter 7 ■ Concurrency

241

is replaced with lock_shared; that is, they are named lock_shared(), try_lock_shared_
for(), and so on. Shared ownership is released using unlock_shared().

No exclusive ownership is granted while one or more threads have acquired shared
ownership, and vice versa. The standard does not define the order in which ownership is
granted or in which threads are unblocked in any way.

The shared locks defined by the standard currently do not support upgrading
ownership from shared to exclusive, or downgrading from exclusive to shared, without
unlocking first.

�Lock Types
std::scoped_lock �C++17
scoped_lock is a textbook RAII-style class template: by default, it locks a mutex in its
constructor and unlocks it in its destructor:

std::scoped_lock<std::mutex> lock(m); // locks m, unlocks on destruction

Thanks to C++17’s class template argument deduction, you can write the previous
example shorter as follows:

std::scoped_lock lock(m); // locks m, unlocks on destruction

A scoped_lock is the only lock type that you can use to safely lock multiple mutexes
at once (i.e., without the help of the std::lock() function explained later):

std::scoped_lock lock(mutex1, mutex2);

std::scoped_lock offers one more constructor that allows it to acquire one or more
mutexes that are already owned by the calling thread. You invoke this constructor by
passing the global std::adopt_lock constant along as well:

std::scoped_lock lock(std::adopt_lock, m); // unlocks on destruction

When adopting a mutex m, the lock’s constructor no longer calls m.lock(). Of course,
m.unlock() is still called by its destructor as always.

■■ Note  The Standard Library also defines std::lock_guard. It is completely equivalent
to std::scoped_lock, except that it can only be used with a single mutex. If your
compiler supports C++17, we recommend you only use scoped_lock (to reduce the
amount of lock types you use). scoped_lock is strictly superior to the old lock_guard.

Chapter 7 ■ Concurrency

242

�std::unique_lock
Although scoped_lock is easy and optimally efficient (it uses no additional memory, nor
does it generate any branching statements), it is fairly limited in functionality. To facilitate
more advanced scenarios, the standard defines unique_lock.

The basic usage is the same:

std::unique_lock lock(m); // std::unique_lock<std::mutex> deduced

A single unique_lock cannot manage the lock for multiple mutexes at once. If
scoped_lock does not suffice, you can use several unique_locks together with the
std::lock() / try_lock() functions discussed later.

That limitation notwithstanding, unique_lock does offer several additional,
interesting features compared to scoped_lock—including these:

•	 A unique_lock can be moved and swapped (but of course not
copied).

•	 You can use owns_lock() to check whether the unique_lock will
unlock upon destruction (unique_lock also casts to a Boolean
with this value).

•	 The mutex() member returns a pointer to the underlying mutex.

•	 It has a release() function to disassociate it from the underlying
mutex without unlocking it (not even in the destructor).

What really sets unique_lock apart, though, is that it offers functions to unlock and
(re)lock its mutex. Specifically, it supports the exact same set of locking functions as
the underlying mutex type: lock(), try_lock(), and unlock(), plus the timed locking
functions for timed mutex types.

■■ Caution E ven if the underlying mutex is recursive, the locking functions of
unique_lock may still be called only once, or an exception will be thrown (which
exception is explained at the end of this section).

In addition to the obvious constructor with a given mutex, the unique_lock class
supports three alternative constructors where you pass an additional constant as the
second argument, after the mutex (in the corresponding constructor of scoped_lock, you
pass the adopt_lock constant first, before the mutex or mutexes):

•	 adopt_lock: Used when the mutex is already owned by the
current thread.

•	 defer_lock: Signals not to lock during construction; one of the
locking functions may be used to lock the mutex later.

•	 try_to_lock: Tries to lock during construction, but does so
without blocking should it fail. owns_lock() can be used to check
whether it succeeded.

Chapter 7 ■ Concurrency

243

�std::shared_lock� <shared_mutex>

Most lock types only manage exclusive ownership of mutexes. To reliably manage shared
ownership, <shared_mutex> defines std::shared_lock, which is completely equivalent
to unique_lock, except that it acquires/releases shared ownership. However, even though
they acquire shared ownership, the names of its locking and unlocking members do
not contain shared. The lock() function of std::shared_lock, for instance, invokes
lock_shared() rather than lock() on the underlying mutex. This is done to ensure
that a shared_lock satisfies the requirements for utilities such as std::lock() and
std::condition_variable_any, both of which are discussed later.

The following example shows parts of a ConcurrentPerson class that allows true
concurrent use of its getters while enforcing that only one thread at a time can modify
its state:

class ConcurrentPerson {
public:
// ...
std::string GetFirstName() const { // Don’t return reference to m_first!
std::shared_lock lock(m_mutex);
return m_first;

}
void SetFirstName(std::string first) {
std::unique_lock lock(m_mutex);
m_first = std::move(first);

}
// ...

private:

};
// ...

mutable std::shared_mutex m_mutex; // mutable for use in const members
std::string m_first;

■■ Caution  The preceding class is actually an example of poor concurrent class API design.
Let someone be a ConcurrentPerson shared between multiple threads, defined as

ConcurrentPerson someone("Jake", "Peralta");

Now suppose that one of these threads executes

someone.SetFirstName("Raymond");

someone.SetLastName("Holt");

Chapter 7 ■ Concurrency

244

Then the other threads will be able to observe the undesired in-between state where
someone is named “Raymond Peralta”. For this and other reasons, it is often best to
leave thread synchronization outside of your data classes (a principle called external
synchronization, vs. the internal synchronization employed by ConcurrentPerson). Here
it would mean to use our original Person class and combine it with an external mutex
whenever required. That would allow client code to hold an (exclusive) lock until all required
setters are called.

�Locking Multiple Mutexes
As soon as threads need to acquire ownership of multiple mutexes at the same time, the
risk of deadlocks becomes imminent. Different techniques may be employed to prevent
such deadlocks: for example, locking the mutexes in all threads in the same order (error-
prone), or so-called try-and-back-off schemes. Next to scoped_lock, the Standard Library
offers the following function template to facilitate this:

std::lock(lockable_1,  lockable_2,  ...,  lockable_N);

This function blocks until ownership is acquired for all lockable objects passed to
it. These can be mutexes (which, after locking, you should transfer to RAII locks using
their adopt_lock constructors), but also unique_locks or shared_locks (normally then
constructed with defer_lock). If all threads use std::scoped_lock or std::lock() (both
mechanisms are compatible), there cannot be any deadlocks.

A nonblocking std::try_lock() equivalent of std::lock() exists as well. It calls
try_lock() on all objects in the order they are passed and returns the zero-based index
of the first try_lock() that fails, or -1 if they all succeed. If it fails to lock an object, any
objects that were locked already are unlocked again first.

�Exceptions
Using a mutex before it is fully constructed or after it has been destructed results in undefined
behavior. If used properly, only the functions mentioned next may throw an exception.

For mutexes and locks, all lock() and lock_shared() functions (not the try_
variants) may throw a system_error with one of these error codes (see Chapter 8):

•	 operation_not_permitted if the calling thread has insufficient
privileges.

•	 resource_deadlock_would_occur if the implementation detects
that a deadlock would occur. Locking a unique_lock that already
owns the mutex, for instance, triggers this error. In general,
however, deadlock detection is only optional: never rely on this!

•	 device_or_resource_busy if it failed to lock because the
underlying handle is already locked. For nonrecursive mutexes
only of course, but again: detection is only optional.

Chapter 7 ■ Concurrency

245

Any locking functions with timeouts, including the try_ variants, may also throw
timeout-related exceptions.

By extension, both std::lock() and the constructors and locking functions of RAII
locks may throw the same exceptions as well. Any of the RAII locking functions (including
the try_ variants) are guaranteed to throw a system_error with resource_deadlock_
would_occur if owns_lock()  ==  true (even if the underlying mutex is recursive),
and their unlock() members will throw one with operation_not_permitted if
owns_lock()  ==  false.

If any locking function throws an exception, it is guaranteed that no mutex was locked.

�Calling a Function Once� <mutex>

std::call_once() is a thread-safe utility function to ensure other functions are called at
most once. This is useful, for example, for implementing the lazy initialization idiom:

std::once_flag flag;
...
std::call_once(flag, initialise, "a string argument");

Or, equivalently (any function or functor may be used):

std::call_once(flag, [] { initialise("a string argument"); });

Only a single thread that calls call_once() with a given instance of std::once_
flag—a default-constructible, noncopyable, nonmovable helper class—effectively
executes the function passed alongside it. Any subsequent calls have no effect. If multiple
threads concurrently call call_once() with the same flag, all but one is suspended until
the one executing the function has finished doing so. Recursively calling call_once()
with the same flag results in undefined behavior.

Any return value of the function is ignored. If running the function throws an
exception, this is thrown in the calling thread, and another thread is allowed to execute
with the flag again. If there are threads blocked, one of them is woken up.

Note that call_once() is typically more efficient than, and should be preferred at all
times over, the error-prone, double-checked locking (anti)pattern.

■■ Tip  Function-local statics (a.k.a. magic statics) have exactly the same semantics as
call_once() but may be implemented even more efficiently. So, although call_once()
can readily be used for a thread-safe implementation of the singleton design pattern (left as
an exercise for you), the use of function-local statics is advised instead:

Singleton& getInstance() {

static Singleton instance;

return instance;

}

Chapter 7 ■ Concurrency

246

�Condition Variables� <condition_variable>
A condition variable is a synchronization primitive that allows threads to wait until some
user-specified condition becomes true. A condition variable always works in tandem
with a mutex. This mutex is also intended to prevent races between checking and setting
the condition, which is inherently done by different threads.

�Waiting for a Condition
Suppose the following variables are somehow shared between threads:

std::mutex m;
std::condition_variable cv;
bool ready = false;

Then the archetypal pattern for waiting until ready becomes true is

{ std::unique_lock lock(m);
while (!ready) cv.wait(lock);
//... access to other resources guarded by m, if any

}

To wait using a condition_variable, a thread must first lock the corresponding
mutex using a std::unique_lock<std::mutex>.2 As wait() blocks the thread, it also
unlocks the mutex: this allows other threads to lock the mutex in order to satisfy the
shared condition. When a waiting thread is woken up, before returning from wait(), it
always first locks the mutex again using the unique_lock, making it safe to recheck the
condition.

■■ Caution A lthough threads waiting on a condition variable normally remain blocked until a
notification is done on that variable (discussed later), it is also possible (albeit unlikely) for them
to wake up spontaneously at any time without notification. These are called spurious wakeups.
This phenomenon makes it critical to always check the condition in a loop as in the example.

Alternatively, all wait functions have an overload that takes a predicate function
as an argument: any function or functor that returns a value that can be evaluated as a
Boolean may be used. The loop in the example, for instance, is equivalent to

cv.wait(lock, [&]{ return ready; });

2 With condition_variable, this exact lock and mutex type must be used. To use other
standard types, or any object with public lock() and unlock() functions, the more general
std::condition_variable_any class is declared, which is otherwise analogous to
condition_variable.

Chapter 7 ■ Concurrency

247

There are two sets of additional wait functions that never block longer than a given
timeout: wait_until(time_point) and wait_for(duration). The timeouts are, as
always, expressed using types defined in the <chrono> header. The return value of
wait_until() and wait_for() is as follows:

•	 The versions of the functions without a predicate return a value from
the enum class std::cv_status: either timeout or no_timeout.

•	 The overloads that do take a predicate function return a Boolean:
true if the predicate returns true after a notification, a spurious
wakeup, or when the timeout is reached; otherwise, they return
false.

�Notification
Two notification functions are provided: notify_all(), which unblocks all threads
waiting on a condition variable, and notify_one(), which unblocks only a single thread.
The order in which multiple waiting threads are woken up is unspecified.

Notification normally occurs because the condition has changed:

{ std::scoped_lock lock(m);
 ready = true;
}
cv.notify_all();

Note that the notifying thread is not required to own the mutex when calling a
notification function. In fact, the first thing any unblocked thread does is attempt to
lock the mutex, so releasing ownership prior to notification may actually improve
performance.3

There is one more notification function, but it is a non-member function and has the
following signature:

void std::notify_all_at_thread_exit(condition_variable& cv,
 unique_lock<mutex> lock);

It is to be called while the mutex is already owned by the calling thread through the
given unique_lock, and while no thread is waiting on the condition variable using a different
mutex; otherwise, the behavior is undefined. When called, it schedules the following
sequence of operations upon thread exit, after all thread-local objects have been deleted:

lock.unlock();
cv.notify_all();

3 Some care must be taken: it introduces a window for race conditions between setting the
condition and the notification of waiting threads. In certain cases, notifying while holding the
lock may actually lead to more predictable results and avoid subtle races. When in doubt, it is
best to not unlock the mutex when notifying, because the performance impact is likely to be
minimal.

Chapter 7 ■ Concurrency

248

�Exceptions
The constructor of a condition variable may throw a std::bad_alloc if insufficient
memory is available, or a std::system_error with resource_unavailable_try_again
as an error code if the condition variable cannot be created due to a nonmemory-related
resource limitation.

Destructing a condition variable upon which a thread is still waiting results in
undefined behavior.

�L1 Data Cache Line Size C++17 � <new>

Fetching data from main memory is slow, at least when compared to the speed at which
modern processors operate. To ameliorate that, processors generally use multiple levels
of caches, small memories that can hold smaller amounts of data, but that are much
faster than main memory. The fastest (and smallest) of these caches is the L1 cache.
The more data a processor finds readily available in its L1 cache, the less cycles it wastes
waiting for data to arrive. There are generally multiple L1 caches in a modern multicore
processor (one per core).

Data is always fetched into L1 caches in contiguous blocks of fixed size, even if you
only need part of that size. These blocks are called cache lines. In C++17, two global
constants are added to the <new> header to query two related properties of the L1 data
cache line size (a typical value for both mostly equal constants is 64):

•	 std::hardware_constructive_interference_size: Maximum
size in bytes of contiguous memory to promote true sharing

•	 std::hardware_destructive_interference_size: Minimum
offset in bytes between two objects to avoid false sharing

True sharing occurs when data that is frequently needed at the same time gets
loaded in the same cache line. Provided you mind the alignment of your Pod objects
themselves, their pea variables can thus be accessed efficiently together:

struct Pod {
int pea_1;
// Possibly some other data members in between...
int pea_2;

};
static_assert(sizeof(Pod) <= std::hardware_constructive_interference_size);

False sharing occurs when multiple cores access different values in the same cache
line, and at least one of them is writing. If one core writes to a variable, entire cache
lines may need to be reloaded for the L1 caches of other cores (most cache coherence
schemes require this). Suppose that you omit the alignas() specifiers in the following
example, and that you write to the fire variable from one thread and to ice from another.
Then, even though both threads never access the same variable, they risk constantly
invalidating the caches of the cores they are running on. All because the fire and ice

Chapter 7 ■ Concurrency

249

variables are likely loaded in the same L1 cache lines. By adding extra padding between
the variables, you avoid such false sharing:

struct KeepApart {
 alignas(std::hardware_destructive_interference_size) float fire;
 alignas(std::hardware_destructive_interference_size) int ice;
};

�Synchronization
Informally, for a single-threaded program, an optimizing implementation (the
combination of a compiler, the memory caches, and the processor) is bound by the as-if
rule. Essentially, in a well-formed program, instructions may be reordered, omitted,
invented, and so on, at will, as long as the observable behavior (I/O operations and such)
of the program is as if the instructions were executed as written.

In a multithreaded program, however, this does not suffice. Without proper
synchronization, concurrently accessing shared resources inevitably causes data and
other races, even if each individual thread adheres to the as-if rule.

Although a full, formal description of the memory model is out of the scope
of this Quick Reference, this chapter provides a brief informal introduction to the
synchronization constraints imposed by the different constructs, focusing on the
practical implications when writing multithreaded programs. We introduce all essential
synchronization principles first using mutexes. Recall the following:

m.lock(); // acquire fence
// ... (critical section)
m.unlock(); // release fence

First, synchronization constructs introduce constraints on the code reorderings
that are allowed within a single thread of execution. Locking and unlocking a mutex,
for example, inject special instructions, respectively called acquire and release fences.
These instructions tell the implementation (not just the compiler but also all hardware
executing the code!) to respect these rules: no code may move up an acquire fence or
down a release fence. Together, this ensures that no code is executed outside the critical
section, the section between lock() and unlock().

Second, fences impose constraints between different threads of execution. This
can be reasoned about as restrictions on the allowed interleavings of instructions of
concurrent threads into a hypothetical single instruction sequence. Releasing ownership
of a mutex in one thread, for example, is said to synchronize with acquiring it in another:
essentially, in any interleaving, the former must occur before the latter. Combined with
the intrathread constraints explained earlier, this implies that the entire critical section
of the former thread is guaranteed to be fully executed before the latter thread enters its
critical section.

For condition variables, the synchronization properties are implied by the operations
on the corresponding mutexes.

Chapter 7 ■ Concurrency

250

For std::threads, the following applies:

•	 When launching a thread, its constructor injects a release
fence, which synchronizes with the beginning of the execution
of the thread function. This implies that you can write to shared
memory (e.g., to initialize it or to pass input) before launching a
thread and then safely (without extra synchronization) access it
from within the thread function.

•	 Conversely, the end of a thread’s function execution synchronizes
with the acquire fence inside its join() function. This ensures
that the joining thread can safely read all shared data written by
the thread function.

Finally, for the constructs in the <future> header, making the shared state ready
through a provider contains a release fence, which synchronizes with the acquire fence
inside the get() of a return object of the same shared state. So not only can the thread
that calls get() safely read the result (luckily), but it can also safely read any other values
written by the provider. So, a future<void>, for example, can be used to wait until a
thread has finished asynchronously writing to shared memory. Or a future<T*> may
point to an entire data structure created by the provider function.

■■ Note A ll this may be summarized as follows: the behavior of unsynchronized data races
(threads concurrently accessing memory with at least one writing) is undefined. However,
as long as you consistently use the synchronization constructs provided by the Standard
Library, your program will behave exactly as expected.

�Atomic Operations� <atomic>

First and foremost, the <atomic> header defines two types of atomic variables,
special variables whose operations are atomic or data-race-free: std::atomic<T>
and std::atomic_flag. In addition, it provides some low-level functions to explicitly
introduce fences, as explained at the end of this section.

�Atomic Variables
Variables of the std::atomic<T> type mostly behave like regular T variables—thanks to
the obvious constructors and assignment and cast operators—offering a restricted set
of fine-grained atomic operations with specific memory consistency properties. More
details follow shortly, but first we introduce the template specializations of atomic<T>.

Chapter 7 ■ Concurrency

251

�Template Specializations and Type Aliases
The atomic<T> template may be used at least with any trivially copyable4 type T, and
specializations are defined for all integral types T (including bool), and pointer types T*.
The latter two offer additional operations, as described later.

For the Boolean and integral specializations, convenience type aliases are defined.
For std::atomic<xxx>, these mostly equal std::atomic_xxx. Specifically, this is true for
xxx equal to bool, char, char16_t, char32_t, wchar_t, short, int, long, or any integral
type defined in <cstdint> (see Chapter 1). For the remaining integral types, the alias
abbreviates the first words of the xxx type:

Type Alias xxx Type Alias xxx

std::atomic_schar
std::atomic_uchar
std::atomic_ushort
std::atomic_uint

signed  char
unsigned  char
unsigned  short
unsigned  int

std::atomic_ulong
std::atomic_llong
std::atomic_ullong

unsigned  long
long  long
unsigned  long  long

�Basic Atomic Operations
The default constructor of an atomic<T> variable behaves exactly like the declaration of
a regular T variable, that is, it generally does not initialize the value; only static or thread-
local atomic variables are zero-initialized:

std::atomic_int atom; // Uninitialized!

A constructor to initialize with a given T value is present as well. This initialization is
not atomic, though: any operation concurrent with a variable’s construction results in a
data race:

std::atomic_int atom{ -123 }; // -123

All atomic<T> types have both an assignment operator accepting a T value and a cast
operator to convert to T and can therefore be used like regular T variables:

atom = 456;
std::cout << atom << std::endl; // 456

4 A trivially copyable type has no nontrivial copy/move constructor/assignment, no virtual
functions or bases, and a trivial destructor. Essentially, these are the types that can safely be
bitwise copied (e.g., using memcpy()).

Chapter 7 ■ Concurrency

252

Equivalent to these operators are the store() and load() members. The last two
lines of the previous code snippet, for example, can also be written as

atom.store(123);
std::cout << atom.load() << std::endl; // 123

Either way, these operations are atomic or, in other words, data-race-free. That is, if
one thread concurrently stores a value into an atomic variable while another is loading
from it, the latter sees either the old value from prior to the store or the newly stored
value, but nothing in between (no half-written values). Or, in technical speak, there are
no torn reads. Similarly, when two threads concurrently each store a value, one of these
values is fully stored; there are never torn writes. With regular variables, such scenarios
are data races and therefore result in undefined behavior, including the possibility of torn
reads and writes.

�Atomic Exchange of Values
All atomic variables also offer a few less obvious atomic operations, exchange() and
compare_exchanges. These member functions behave as if implemented as follows:

T exchange(T newVal) {
 T oldVal = load();
 store(newVal);
 return oldVal;
}

bool compare_exchange(T& expected, T desired) {
 if (load() == expected) {
 store(desired); return true;
 } else {
 expected = load(); return false;
 }
}

This is not how they are actually implemented, though, as all exchange operations are
again atomic. That is, they (conditionally) exchange the value in such a way that no thread
may concurrently store another value during the exchange or experience a torn read.

Also, there is no actual member named compare_exchange. Instead, there are two
different variants: compare_exchange_weak() and compare_exchange_strong(). The
only (subtle) difference is that the former is allowed to spuriously fail, that is, sporadically
return false even when a valid exchange could be done. This “weak” variant may be
slightly faster than the “strong” variant but is intended to be used only in a loop. The latter
is intended to be used as a stand-alone statement.

The exchange() and compare_exchange operations are key building blocks in the
implementation of lock-free data structures: thread-safe data structures that do not use
blocking mutexes. This is an advanced topic, best left to experts. Still, a classical example
is adding a new node to the beginning of a singly linked list (why this code excerpt usually
does not use any mutexes is explained shortly):

Chapter 7 ■ Concurrency

253

Node* head = m_atomic_head.load(); // m_atomic_head is an atomic<Node*>
Node* newNode = new Node(value, head);
while (!m_atomic_head.compare_exchange_weak(head, newNode))

newNode->next = head;

�Lock-Free Atomic Operations
Unless otherwise noted, all member functions of std::atomic<T> are atomic, that is,
data-race-free. For small base types T, including fundamental types and pointers, most
compilers generate one or a few special hardware instructions that guarantee atomicity
(most current CPUs support this). For larger base types T, std::atomic<T> mostly resorts to
more expensive mutex-like constructs to accomplish atomicity. You can check whether the
operations for a given atomic<> object will require locks using its lock_free() method:

std::atomic<float> fundamental;
std::atomic<std::array<int, 2>> small_type;
std::atomic<std::array<int, 100>> large_type;
std::cout << std::boolalpha // Likely results:

<< fundamental.is_lock_free() << '\n' // true
<< small_type.is_lock_free() << '\n' // true
<< large_type.is_lock_free() << '\n'; // false

Starting with C++17, you can also check this statically using the static member
constant std::atomic<T>::is_always_lock_free (a Boolean).

Take care: although atomic variables ensure that loads and stores are atomic, this
does not make the operations on the underlying object atomic. In the following example,
if another thread concurrently calls GetLastName() on the person object, then there is a
data race with SetLastName():

std::atomic<Person*> person(new Person("Phil")); // non-atomic init.
// ... (share references to person with other threads)
person = new Person("Claire"); // atomic store
person.load()->SetLastName("Dunphy"); // atomic load, non-atomic setter!

■■ Note  This even holds for types such as std::atomic<float>: while store and load
are atomic, you cannot atomically apply arithmetic operations on the underlying float
(although this may change in C++20). The Standard Library only defines certain atomic
arithmetic operations for integral and pointer types, as we explain in the next section.

Chapter 7 ■ Concurrency

254

�Atomic Operations for Integral and Pointer Types
Certain template specializations offer additional operators that update the variable
without the possibility of a data race. The selection is based on which atomic instructions
current hardware generally supports (no multiplication, for instance):

•	 Atomic integral variables: ++, --, +=, -=, &=, |=, ^=

•	 Atomic pointer variables: ++, --, +=, -=

Both pre- and postfix versions of ++ and -- are supported. For the other operators,
equivalent non-operator members are again available as well: respectively, fetch_add(),
fetch_sub(), fetch_and(), fetch_or(), and fetch_xor().

�Synchronization
In addition to atomicity, a lesser-known property of atomic variables is that they offer
the same kind of synchronization guarantees as, for example, mutexes or threads.
Specifically, all operations that write to a variable (store(), exchanges, fetch_xxx(), etc.)
contain release fences that synchronize with the acquire fences in operations that read
from the same variable (load(), exchanges, fetch_xxx(), etc.). This enables the following
idiom, which initializes a potentially complex object or data structure before storing it in
a shared atomic variable:

std::atomic<Person*> atomic_person(nullptr);
// ... (share references to atomic_person with other threads)
auto person = new Person();
person->SetFirstName("Jay");
person->SetLastName("Pritchett");
atomic_person = person; // atomic store + release fence!

Any thread that loads the pointer to the new object (a Person in this example) can
safely read all other memory it points to as well (e.g., the name strings), as long as this was
completely written prior to the release fence.

All atomic operations (except the operators, of course) accept an extra, optional
std::memory_order parameter (or parameters), allowing the caller to fine-tune the
memory order constraints. Possible values are memory_order_relaxed, memory_order_
consume, memory_order_acquire, memory_order_release, memory_order_acq_rel,
and memory_order_seq_cst (the default). The first option, memory_order_relaxed, for
instance, denotes that the operation simply has to be atomic and that no further memory
order constraints are required. The often subtle differences between the other options fall
outside the scope of this book. Unless you are an expert, our recommendation is that you
stick with the default values. Otherwise, you risk introducing subtle bugs.

Chapter 7 ■ Concurrency

255

�Atomic Flags
The std::atomic_flag is a simple, guaranteed lock-free, atomic, Boolean-like type. It can
only be default-constructed and cannot be copied, moved, or swapped. It is not specified
to which state (true or false) the default constructor initializes the flag. The only other
initialization that is guaranteed to work is this exact expression:

std::atomic_flag guard = ATOMIC_FLAG_INIT; // Initilizes guard to false

An atomic_flag offers only two more members (note that there is not even a
function or cast operator to get the current state of the flag):

•	 void clear(): Atomically sets the flag to false

•	 bool test_and_set(): Atomically sets the flag to true while
returning its previous value

Both functions have synchronization properties similar to atomic_bools and again
accept an optional std::memory_order parameter as well.

�Non-member Functions and Macros
For compatibility with C, <atomic> defines non-member counterparts or C macros
for all member functions of std::atomic<T> and std::atomic_flag: atomic_init(),
atomic_load(), atomic_fetch_add(), atomic_flag_test_and_set(), and so on. As a
C++ programmer, you normally never need any of these: simply use the classes’ member
functions.

�Fences
The <atomic> header also provides two functions to explicitly create acquire and/or
release fences: std::atomic_thread_fence() and std::atomic_signal_fence(). The
concept of fences is as explained earlier in this chapter. Both take a std::memory_order
argument to specify the desired fence type: memory_order_release for a release fence,
either memory_order_acquire or memory_order_consume for an acquire fence, and
memory_order_acq_rel and memory_order_seq_cst for fences that are both acquire
and release fences, with the latter option denoting the fence has to be the sequentially
consistent variant (the difference in their semantics falls outside the scope of this book).
A fence with memory_order_relaxed has no effect.

The difference between the two functions is that the latter only restricts reorderings
between a thread and a signal handler executed in the same thread. The latter only
constrains the compiler but does not inject any instructions to constrain the hardware
(memory caches and CPU).

■■ Caution U sing explicit fences is discouraged: atomic variables or other synchronization
constructs have more interesting synchronization properties and should generally be
preferred instead.

257
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9_8

CHAPTER 8

Diagnostics

�Assertions� <cassert>

Assertions are Boolean expressions that are expected to be true at a given point in the
code. The assert macro of <cassert> is defined similar to

#ifdef NDEBUG
 #define assert(_)
#else
 #define assert(CONDITION) \
 if (!(CONDITION)) { print_msg(__FILE__, __LINE__, ...); std::abort(); }
#endif

If an assertion fails, a diagnostic message is written to the standard error output,
and std::abort() is called which terminates the application without performing any
cleanup. The diagnostic message typically includes the filename, the line number, and
the conditional expression that triggered the assertion. While debugging an application,
certain IDEs give you the option to continue the execution if an assertion fails. Common
practice is to use assertions as a debugging aid, and to define NDEBUG when building a
release build of your application, turning asserts into no-operations.

Assertions are generally used to check invariants, such as loop invariants, pre- and
postconditions in functions, and so on. One example is parameter validation:

void foo(const char* msg) { assert(msg != nullptr); } // or: assert(msg);
int main() {

foo("Test"); // OK
foo(nullptr); // Triggers the assertion.

}

A possible output of this program is

Assertion failed: msg != nullptr, file d:\Test\Test.cpp, line 13

Chapter 8 ■ Diagnostics

258

■■ Caution  Make sure that the condition you provide to assert() does not have any side
effects that are required for the proper execution of your program, because this expression
does not get evaluated if NDEBUG is defined (e.g., for a release build).

�Exceptions� <exception>, <stdexcept>

std::exception, defined in <exception>, is not intended to be thrown itself, but instead
serves as a base class for all exceptions defined by the Standard Library and can serve as a
base class for your own. Figure 8-1 outlines all standard exceptions.

An exception can be copied and offers a what() method that returns a string
representation of the error. This function is virtual and should be overridden. The return
type is const  char*, but the character encoding is not specified (i.e., Unicode strings
encoded as UTF-8 could be used, for instance; cf. Chapter 6).

The exceptions defined in <stdexcept> are the only standard exceptions that are
intended to be thrown by application code. As a rule, logic_errors represent avoidable
errors in the program’s logic, while runtime_errors are caused by less predictable events
beyond the scope of the program. logic_error, runtime_error, and most of their
subclasses must be passed a std::string or const  char* pointer upon construction,
which shall be returned by what() afterward. There is thus no need to further override
what() when deriving from one of these classes.

exception

bad_alloc

bad_array_new_length

logic_error

domain_error

future_error

out_of_range

invalid_argument

length_error

ios_base::failure

bad_cast

runtime_error

bad_exception

bad_typeid

overflow_error

range_error

underflow_error

system_error
bad_weak_ptr

bad_function_call

regex_error

<stdexcept>

<future>

<stdexcept>

<regex>

<system_error>

<ios>

<typeinfo>

<memory>

<functional>

<exception>

<new>

bad_optional_access
<optional>

filesystem::filesystem_error

<filesystem>

bad_any_cast
<any>

bad_variant_access
<variant>

Figure 8-1.  The C++ Standard Library exception hierarchy

Chapter 8 ■ Diagnostics

259

�Exception Pointers� <exception>

The <exception> header provides std::exception_ptr, an unspecified pointer-like
type, used to store and transfer caught exceptions, even without knowing the concrete
exception type. In fact, an exception_ptr can point to a value of any type, that is, not
just a std::exception. It can just as well point to a custom exception class, an integer, a
string, and so on. Any pointed-to value stays valid while there is at least one exception_
ptr still referring to it (i.e., a reference-counted smart pointer may be used to implement
exception_ptr).

There are a couple of functions defined in <exception> to work with exception
pointers:

exception_ptr std::current_exception() noexcept

Creates and returns an exception_ptr that refers to the exception currently in
flight (remember: this can be of any type) when called from inside a catch()
block, either directly or indirectly (i.e., a catch() block may call, e.g., a helper
function to handle an exception). The returned exception_ptr refers to a null
value if called when no exception is being handled.

template<typename T>
exception_ptr std::make_exception_ptr(T t) noexcept

Creates and returns an exception_ptr that points to a copy of t.

[[noreturn]] void std::rethrow_exception(exception_ptr e)

Rethrows the exception to which the given exception_ptr points. This is the only
way to obtain the object pointed to by an exception_ptr. An exception_ptr
cannot be dereferenced, nor is there a getter function.

Once created, exception_ptrs can be copied, compared, and in particular assigned
and compared with nullptr. This makes them useful to store and move exceptions
around and to test later whether an exception has occurred. For this, an exception_ptr is
also convertible to a Boolean: true if it points to an exception, false if it is a null pointer.
Default-constructed instances are equivalent to nullptr.

Chapter 8 ■ Diagnostics

260

Exception pointers can be used, for example, to transfer exceptions from a worker
thread to the main thread (note that this is essentially what the utilities of <future>
discussed in the previous chapter implicitly do for you as well):

std::exception_ptr threadException;
std::thread t([&threadException] { // Needs <thread>
try {
throw std::invalid_argument("Test"); // In worker thread

} catch (...) {
threadException = std::current_exception(); // Store exception

}
});

t.join(); // Wait for thread to finish.

if (threadException) { // In main thread: handle exception if there is one.
try {
std::rethrow_exception(threadException);

} catch (const std::exception& caughtException) {
std::cout << "Caught from thread: " << caughtException.what() << '\n';

}
}

�Nested Exceptions� <exception>

The <exception> header also offers facilities to work with nested exceptions. They allow
you to wrap a caught exception in another one, for instance, to augment it with extra
context information or to convert it to a more suitable exception for your application.
std::nested_exception is a copyable mixin1 class whose default constructor captures
current_exception() and stores it. This nested exception can be retrieved as an
exception_ptr with nested_ptr(), or by using rethrow_nested() which rethrows it.
Take care though: std::terminate() is called when rethrow_nested() is called
without any stored exception. It is therefore generally recommended to not use
nested_exception directly, but to use the following helper functions instead:

1 A mixin is a class that provides some functionality to add to other classes (in this case, the
capability of storing a pointer to a nested exception and some related functions). In C++, mixins
are generally implemented through multiple inheritance.

Chapter 8 ■ Diagnostics

261

template<typename T> [[noreturn]] void std::throw_with_nested(T&& t)

Throws an undefined type deriving from both std::nested_exception and
T (with reference qualifiers stripped) which can be handled using a regular
catch  (const  T&) expression, ignoring the nested exception altogether.
Being a std::nested_exception as well though, it also contains the result of
std::current_exception(), which may optionally be retrieved and handled.

template<typename T> void std::rethrow_if_nested(const T& t)

If t derives from nested_exception, then calls rethrow_nested() on it, otherwise
does nothing.

The following example demonstrates nested exceptions:

void execute_helper() {
 throw std::range_error("Out-of-range error in execute_helper()");
}
void execute() {
 try { execute_helper(); }
 catch (...) {
 std::throw_with_nested(std::runtime_error("Caught in execute()"));
 }
}
void print(const std::exception& exc) {
 std::cout << "Exception: " << exc.what() << std::endl;
 try { std::rethrow_if_nested(exc); }
 catch (const std::exception& e) {
 std::cout << " Nested ";
 print(e);
 }
}
int main() {
 try { execute(); }
 catch (const std::exception& e) { print(e); }
}

The output of this piece of code is as follows:

Exception: Caught in execute()
 Nested Exception: Out-of-range error in execute_helper()

Chapter 8 ■ Diagnostics

262

�System Errors� <system_error>

Errors from the operating system or other low-level APIs are called system errors. These
are handled by classes and functions defined in the <system_error> header:

•	 error_code: Generally wraps a platform-specific error code (an
int), although for some categories the error codes are defined by
the standard (cf. Table 8-1).

•	 error_condition: Wraps a portable, platform-independent error
condition (an int). The enum class std::errc lists the built-in
conditions. They correspond to the standard POSIX error codes,
defined also as macros in <cerrno>. See Table 8-2 at the end of
this chapter.

•	 error_category: A base class for specific error categories. Error
codes and conditions belong to a category. Specific category
singleton objects are responsible for converting between both
numberings.

•	 system_error: An exception class (cf. Figure 8-1) with an extra
code() method returning an error_code.

Table 8-1.  Available Error Category Functions and Corresponding Error Condition and
Error Code Enum Classes

Singleton Function Error Conditions Error Codes Header

generic_category() std::errc <system_error>

system_category() <system_error>

iostream_category() std::io_errc <ios>

future_category() std::future_errc <future>

Next to a numeric value, both error_code and error_condition objects hold a
reference to their error_category. Within one category, a number is unique, but the
same number may be used by different categories.

While all this may seem fairly complicated, their main use is rather straightforward. To
compare a given error code, for instance, that from a caught system_error exception, with
either an error condition or code, the == and != operators can simply be used. For instance:

if (systemError.code() == std::errc::argument_out_of_domain)
 ...

■■ Note  Working with std::ios_base::failure (Chapter 5) and future_error
(Chapter 7) is analogous. They also have a code() method returning an error_code that
can be compared with known code values (cf. Table 8-1) using == and !=.

Chapter 8 ■ Diagnostics

263

�std::error_category
The different std::error_category instances are implemented as singletons, that is,
there is only one global, noncopyable instance per category. A number of predefined
categories exist, obtainable from the global functions listed in Table 8-1.

An std::error_category has the following methods:

Method Description

const  char*  name() Returns the category’s name.

string  message(int) Returns an explanatory string for a given
error condition value.

error_condition
 default_error_condition(int)

Converts a given error code value to a
portable error_condition.

bool equivalent(int,  error_condition&)
bool equivalent(error_code&,  int)

Compares error codes (given as an int
or as an error_code) with portable
conditions (given as an error_condition
or as an int). However, it’s easier to use
the == and != operators shown earlier
instead.

�std::error_code
std::error_code encapsulates an error code value and an error_category. There are
three constructors:

•	 A default one setting the error code to 0 (this conventionally
represents ‘no error’) and associates it with system_category.

•	 One accepting an error code int and an error_category.

•	 One constructing an error_code from an error code enumeration
value e by calling std::make_error_code(e). The parameter type
must be an error code enumeration type, an enumeration type
for which the std::is_error_code_enum type trait has a value
of true (see Chapter 2 for type traits). This automatically sets
the correct category as well. The enum classes for the standard
categories are shown in Table 8-1.

To raise your own std::system_error, you have to provide an error_code which
can be created with one of its constructors or with make_error_code(). For example:

throw std::system_error(std::make_error_code(std::errc::invalid_argument),
 "Now what am I to do with that argument?"); // optional what() message

Chapter 8 ■ Diagnostics

264

std::error_code provides the following methods:

Method Description

assign(int,  error_category&) Assigns the given error code and category to this
error_code

operator=() Uses std::make_error_code() to assign a given
error code enumeration value to this error_code

clear() Sets the error code to 0 and the category to system_
category to represent no error

int  value()
error_category&  category()

Returns the error value/associated category

error_condition
 default_error_condition()

Calls category().default_error_condition(value()),
returning the corresponding portable error condition

string  message() Calls category().message(value())

operator  bool() Returns true if the error code is not 0

�std::error_condition
The std::error_condition class encapsulates a portable condition code and the
associated error category. This class has a similar set of constructors and methods as
error_code, except

•	 It does not have a default_error_condition() method.

•	 Error condition enumerations are used instead of error code
enumerations, that is, those enum types for which the is_error_
condition_enum type trait has a value of true.

•	 Members that use std::make_error_code(), use std::make_
error_condition() instead.

�C Error Numbers� <cerrno>

The <cerrno> header defines errno, a macro that expands to a value equivalent to int&.
Functions can set the value of errno to a specific error value to signal an error. A separate
errno is provided per thread of execution. Setting errno is very common for functions
from the C headers. The C++ libraries mostly throw exceptions upon failure, although
some set errno as well (e.g., std::string-to-numeric conversions). Table 8-2 lists the
macros with default POSIX error numbers defined by <cerrno>.

Chapter 8 ■ Diagnostics

265

If you want to use errno to detect errors in functions that use errno to report errors,
then you have to make sure to set errno to 0 before calling the function, as is done in this
example (needs <cmath>)2:

errno = 0; // Reset errno to 0!
auto result = std::exp(100000); // Causes an overflow error.
// Convert the errno error code to an error_code instance.
std::error_code errorCode(errno, std::generic_category());
std::error_condition okCondition; // Default constructor creates

// a no-error condition.
if (errorCode != okCondition) // Check for an error.

std::cerr << "Error: " << errorCode.message() << std::endl;

The output depends on your platform, but can be something as follows:

Error: result out of range

For completeness, we show two alternative ways of converting the current errno
value to an error string. They use strerror() from <cstring> (take care though: this
function is not thread-safe!) and std::perror() from <cstdio>, respectively. The
following two lines print a similar message as the preceding code:

std::cerr << "Error: " << std::strerror(errno) << std::endl;
std::perror("Error"); //Prefix string is non-optional

�Failure Handling� <exception>

�std::uncaught_exceptions() C++17
You can use uncaught_exceptions() to determine whether one or more exceptions
are currently in flight that have not been caught yet—in other words, detect that stack
unwinding is in progress. It returns the number of thrown exceptions that have not been
caught yet.

The prime use case for this function is to figure out whether a destructor of a stack-
allocated object is being executed as a result of stack unwinding or not. To do this, you
should first store the result of uncaught_exceptions() in one of its member variables

2 std::exp() only sets errno for implementations where math_errhandling defined in <cmath>
contains MATH_ERRNO: see Chapter 1. This appears to be mostly the case though.

Chapter 8 ■ Diagnostics

266

during initialization. In its destructor, you then call uncaught_exceptions() again, and
compare its result with that member. Like so:

class Guard {
 const int exception_count = std::uncaught_exceptions();
public:
 ~Guard() {
 std::cout << (exception_count == std::uncaught_exceptions()
 ? "~Guard() invoked normally\n"
 : "~Guard() invoked during stack unwinding\n");
 }
};

This pattern can be used for so-called scope guards that conditionally run some
piece of code in their destructor. For instance, to roll back a failed (and potentially half-
finished) operation when an exception is thrown in the same scope. Or, similarly, to
commit an operation, but then only if no exception occurs.

■■ Note T he uncaught_exception() function, that is, singular instead of plural, returns
a Boolean, true if any exception has been thrown that is not caught yet, false otherwise.
It was deprecated in C++17 in favor of uncaught_exceptions() because there usually
is no reason or safe way to use it.

�std::terminate()
If exception handling fails for any reason, for example, an exception is thrown but never
caught, then the runtime calls std::terminate() which calls the so-called terminate
handler. The default handler calls std::abort(), which in turn aborts the application
without performing any further cleanup. The active terminate handler is managed using
the following functions from <exception>, where std::terminate_handler is a function
pointer type and must point to a void function without arguments:

std::terminate_handler std::set_terminate(std::terminate_handler) noexcept
std::terminate_handler std::get_terminate() noexcept

One use case for a custom terminate handler is to automatically generate a
process dump when std::terminate() is called. Having a dump file to analyze aids
tremendously in tracking down a bug that triggered a process to terminate(). One
should consider setting this up for any professional application.

Chapter 8 ■ Diagnostics

267

Table 8-2.  std::errc Error Condition Values and Corresponding <cerrno> Macros

std::errc enum Value <cerrno> Macro

address_family_not_supported EAFNOSUPPORT

address_in_use EADDRINUSE

address_not_available EADDRNOTAVAIL

already_connected EISCONN

argument_list_too_long E2BIG

argument_out_of_domain EDOM

bad_address EFAULT

bad_file_descriptor EBADF

bad_message EBADMSG

broken_pipe EPIPE

connection_aborted ECONNABORTED

connection_already_in_progress EALREADY

connection_refused ECONNREFUSED

connection_reset ECONNRESET

cross_device_link EXDEV

destination_address_required EDESTADDRREQ

device_or_resource_busy EBUSY

directory_not_empty ENOTEMPTY

executable_format_error ENOEXEC

file_exists EEXIST

file_too_large EFBIG

filename_too_long ENAMETOOLONG

function_not_supported ENOSYS

host_unreachable EHOSTUNREACH

identifier_removed EIDRM

illegal_byte_sequence EILSEQ

inappropriate_io_control_operation ENOTTY

interrupted EINTR

invalid_argument EINVAL

invalid_seek ESPIPE

io_error EIO

is_a_directory EISDIR

(continued)

Chapter 8 ■ Diagnostics

268

Table 8-2.  (continued)

std::errc enum Value <cerrno> Macro

message_size EMSGSIZE

network_down ENETDOWN

network_reset ENETRESET

network_unreachable ENETUNREACH

no_buffer_space ENOBUFS

no_child_process ECHILD

no_link ENOLINK

no_lock_available ENOLOCK

no_message ENOMSG

no_message_available ENODATA

no_protocol_option ENOPROTOOPT

no_space_on_device ENOSPC

no_stream_resources ENOSR

no_such_device ENODEV

no_such_device_or_address ENXIO

no_such_file_or_directory ENOENT

no_such_process ESRCH

not_a_directory ENOTDIR

not_a_socket ENOTSOCK

not_a_stream ENOSTR

not_connected ENOTCONN

not_enough_memory ENOMEM

not_supported ENOTSUP

operation_canceled ECANCELED

operation_in_progress EINPROGRESS

operation_not_permitted EPERM

operation_not_supported EOPNOTSUPP

operation_would_block EWOULDBLOCK

owner_dead EOWNERDEAD

permission_denied EACCES

protocol_error EPROTO

(continued)

Chapter 8 ■ Diagnostics

269

Table 8-2.  (continued)

std::errc enum Value <cerrno> Macro

protocol_not_supported EPROTONOSUPPORT

read_only_file_system EROFS

resource_deadlock_would_occur EDEADLK

resource_unavailable_try_again EAGAIN

result_out_of_range ERANGE

state_not_recoverable ENOTRECOVERABLE

stream_timeout ETIME

text_file_busy ETXTBSY

timed_out ETIMEDOUT

too_many_files_open EMFILE

too_many_files_open_in_system ENFILE

too_many_links EMLINK

too_many_symbolic_link_levels ELOOP

value_too_large EOVERFLOW

wrong_protocol_type EPROTOTYPE

271
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9

APPENDIX

Standard Library Headers

The C++ Standard Library consists of 88 header files, of which 6 are deprecated, and 26
are adapted from the C Standard Library. This appendix gives a brief description of each.

For each <name.h> header from the C Standard Library, there is a corresponding
<cname> C++ Standard Library header (note the ‘c’ prefix). These C++ headers put all
functionality provided by the C library in the std namespace. It is implementation-
defined whether the types and functions still appear in the global namespace. The use of
the original <name.h> headers is deprecated.

Headers are shown in the order in which they are presented in each chapter. Some
are covered by multiple chapters. Functionality not discussed in this book is shown in
italic.

�Numerics and Math (Chapter 1)

(continued)

Header Contents

<cmath> Math functions, such as exp(), sqrt(), log(), abs(), all trigonometric
functions, special mathematical functions, and more.

<numeric> The gcd() and lcm() functions (+ several algorithms: see Chapter 4).

<algorithm> min(), max(), minmax(), and clamp() (+ many algorithms: Chapter 4).

<cstdint> A set of type aliases for integral types with certain width requirements,
e.g., int32_t and int_fast64_t.

<limits> numeric_limits, offering properties—such as min(), max(), lowest(),
infinity(), quiet_NaN(), etc.—for all built-in arithmetic types.

<climits> Macros for C-style limits of integral types, such as INT_MAX. Subsumed by
<limits>.

<cfloat> Macros to describe details of the floating-point types of your environment,
e.g., FLT_EPSILON, FLT_MAX, etc. Subsumed by <limits>.

<cfenv> Advanced access to the floating-point environment to configure floating-
point exceptions, rounding, and other environment settings.

<complex> The complex class for working with complex numbers.

https://doi.org/10.1007/978-1-4842-4923-9

Appendix ■ Standard Library Headers

272

�General Utilities (Chapter 2)
Header Contents

<utility> pair, piecewise_construct, and integer_sequence.
Functions make_pair(), swap(), exchange(), forward(),
move(), move_if_noexcept(), as_const(), and declval().

<tuple> tuple, helper classes tuple_size and tuple_element, and
functions make_tuple(), forward_as_tuple(), tie(), tuple_
cat(), get(), apply(), and make_from_tuple().

<cstddef> The byte type.

<memory> Smart pointers: unique_ptr, shared_ptr, and weak_ptr. Cast
functions: static_pointer_cast(), dynamic_pointer_cast(),
const_pointer_cast(), and reinterpret_pointer_cast().
The addressof() function. Also: allocators (Chapter 3) and
algorithms for uninitialized memory (Chapter 4).

<new> Functions for managing dynamic storage: operators new, new[],
delete, and delete[], get_ and set_new_handler(), and
exceptions bad_alloc and bad_array_new_length.

<functional> Reference wrappers (created with ref() / cref()), predefined
functors (function objects), std::bind(), not_fn(), function,
and mem_fn(). The std::invoke() utility to invoke any
callable.

<initializer_list> The definition of initializer_list.

<optional> C++17 The optional class template, bad_optional_access exception,
nullopt constant, and make_optional() function template.

<variant> C++17 The variant class template, the variant_size and variant_
alternative templates, the bad_variant_access exception,
monostate structure, variant_npos constant, and the functions
visit(), holds_alternative(), get(), and get_if().

(continued)

Header Contents

<ccomplex> Simply includes <complex>. Deprecated since C++17.

<ctgmath> Includes <cmath> and <ccomplex>. Deprecated since C++17.

<ratio> The ratio template, helper templates for performing arithmetic
operations and comparisons on them, and a set of predefined ratios.

<random> Pseudorandom number generators, random_device, and various
random number distributions.

<valarray> valarray functionality for working with arrays of numeric values.

Appendix ■ Standard Library Headers

273

Header Contents

<any> C++17 The any class template, bad_any_cast exception, and any_
cast() function template.

<chrono> Time utilities: durations, time_points, and clocks (steady_
clock, system_clock, and high_resolution_clock), and
helper functions floor(), ceil(), round(), and abs().

<ctime> C-style time and date utilities such as the tm  struct, time(),
localtime(), and strftime().

<typeinfo> type_info, and the exceptions bad_cast and bad_typeid.

<typeindex> type_index, a wrapper for type_info to be able to use it as a
key in associative containers.

<type_traits> Template-based type traits for compile-time manipulation and
inspection of properties of types.

�Containers (Chapter 3)
Header Contents

<iterator> Functions to perform operations on iterators: advance(),
distance(), begin(), end(), prev(), and next(), and the
iterator tags. See also Chapters 4 and 5.

<vector> The vector class template and the vector<bool>
specialization.

<deque> The deque class template.

<array> The array class template.

<list> The list class template.

<forward_list> The forward_list class template.

<bitset> The bitset class template.

<queue> The queue and priority_queue class templates.

<stack> The stack class template.

<map> The map and multimap class templates.

<set> The set and multiset class templates.

<unordered_map> The unordered_map and unordered_multimap class templates.

<unordered_set> The unordered_set and unordered_multiset class templates.

<memory> The default allocator type and allocator-related
utilities allocator_traits, allocator_arg, and
uses_allocator(). Also: smart pointers (Chapter 2) and
algorithms for uninitialized memory (Chapter 4).

(continued)

Appendix ■ Standard Library Headers

274

Header Contents

<memory_resource> C++17 The polymorphic allocators and memory resources.

<scoped_allocator> C++17 The scoped_allocator_adaptor class template.

�Algorithms (Chapter 4)
Header Contents

<iterator> Input/output iterators, and the predefined iterator adaptors:
reverse_iterator, move_iterator, and insert iterators.
See also Chapters 3 and 5.

<algorithm> 80 different algorithms that operate on ranges.

<numeric> Numerical algorithms: accumulate(), [transform_]reduce(),
inner_product(), adjacent_difference(), partial_sum(),
[transform_]inclusive_scan(), [transform_]exclusive_
scan(), and iota().

<memory> Algorithms for uninitialized memory: destroy[_n](), destroy_
at(), and uninitialized_xxx(), with xxx equal to default_
construct[_n], value_construct[_n], copy[_n], move[_n],
and fill[_n]. Also: smart pointers (Chapter 2) and allocators
(Chapter 3).

<execution> C++17 Predefined execution policies: seq, par, and par_unseq.

�Input/Output (Chapter 5)
Header Contents

<ios> ios_base, basic_ios, and fpos, type aliases ios and wios, and
types streamoff, streampos, wstreampos, and streamsize.
Nonparametric I/O manipulators such as boolalpha, dec,
scientific, etc.

<iomanip> Parametric I/O manipulators, such as setbase(), setfill(),
get_money(), put_time(), and more.

<ostream> basic_ostream, and type aliases ostream and wostream. The endl,
ends, and flush output manipulators.

<istream> basic_istream and basic_iostream, and type aliases istream,
wistream, iostream, and wiostream. The ws input manipulator.

(continued)

Appendix ■ Standard Library Headers

275

Header Contents

<iostream> cin/wcin, cout/wcout, cerr/wcerr, and clog/wclog. Includes
<ios>, <streambuf>, <istream>, <ostream>, and <iosfwd>.

<sstream> String streams: basic_istringstream, basic_ostringstream,
basic_stringstream, basic_stringbuf, and related type aliases.

<fstream> File streams: basic_ifstream, basic_ofstream, basic_fstream,
and basic_filebuf, and related type aliases.

<streambuf> basic_streambuf, and type aliases streambuf and wstreambuf.

<iosfwd> Forward declarations for all stream I/O types.

<cstdio> The C-style I/O library. Basic file utilities remove(), rename(),
tmpfile(), tmpnam(), plus fopen(), fclose(), etc. Functions
for formatted (printf(), scanf(), etc.) and character-based I/O
(getc(), putc(), etc.). It is generally recommended to use C++ I/O
streams.

<cinttypes> Macros to use with printf()  and scanf() to handle the fixed-
width integer types of  <cstdint>. Subsumed by C++ I/O streams.

<strstream> Deprecated.

<iterator> Stream iterators istream_iterator and ostream_iterator. See
also Chapters 3 and 4.

<filesystem> C++17 Classes and functions to work with the file system.

�Characters and Strings (Chapter 6)
Header Contents

<string> basic_string, and type aliases string, wstring, u16string,
and u32string. Conversion functions such as stoi(), stof(),
to_string(), etc.

<string_view> C++17 basic_string_view, and type aliases string_view, wstring_
view, u16string_view, and u32string_view.

<cstring> Low-level memory functions: memcpy(), memmove(), memcmp(),
memchr(), and memset(). A collection of C-style string functions,
e.g., strcpy() and strcat(), and a definition for NULL and size_t.

<cwchar> Functions to work with C-style wide character strings, such as
fputws(), wprintf(), wcstof(), wcscat(), wmemset(), etc.

<cctype> Functions to classify and transform characters: isdigit(),
isspace(), tolower(), toupper(), etc.

(continued)

Appendix ■ Standard Library Headers

276

Header Contents

<cwctype> Wide character versions of functions from <cctype>: iswdigit(),
iswspace(), towlower(), towupper(), etc.

<codecvt> Unicode character-encoding conversion facets: codecvt_utf8,
codecvt_utf16, and codecvt_utf8_utf16. Deprecated since
C++17.

<cuchar> Functions to convert between 16- or 32-bit character and multibyte
sequences: c16rtomb(), c32rtomb(), mbrtoc16(), mbrtoc32().

<locale> The locale class, overloads of <cctype> functions accepting a
given locale, facet functions use_facet() and has_facet(), and
standard facet classes num_get, collate, money_put, codecvt, etc.

<clocale> lconv and the setlocale() and localeconv() functions.
setlocale() only changes the C locale.

<regex> Everything related to regular expressions.

<charconv> C++17 The from_chars() and to_chars() functions, and chars_format
class.

�Concurrency (Chapter 7)
Header Contents

<thread> The thread class and the this_thread namespace.

<future> future and shared_future, future_error, and providers
promise, packaged_task, and async().

<mutex> mutex, recursive_mutex, timed_mutex, recursive_timed_
mutex, lock_guard, unique_lock, scoped_lock, and related
types. Functions try_lock(), lock(), and call_once().

<shared_mutex> shared_mutex, shared_timed_mutex, and shared_lock.

<condition_variable> condition_variable and condition_variable_any, and the
function notify_all_at_thread_exit().

<atomic> Atomic types and fences.

Appendix ■ Standard Library Headers

277

�Diagnostics (Chapter 8)
Header Contents

<cassert> The assert() macro.

<exception> exception and bad_exception, exception pointers, nested
exceptions, terminate and unexpected handlers.

<stdexcept> Exception classes for reporting common errors: logic_error,
runtime_error, and their generic subclasses.

<system_error> The std::system_error exception used to report low-level errors,
and the concepts of error codes, conditions, and categories.

<cerrno> The errno expression, and default error condition values.

�The C Standard Library
This section lists the remaining C headers that are not mentioned earlier.

Header Contents

<ciso646> Only useful for C. Defines macros such as and, or, not, etc. In C++, those
are reserved words, so this header is empty.

<csetjmp> longjmp() and setjmp(). Do not use these in C++.

<csignal> signal() and raise(). Do not use these in C++.

<cstdalign> The __alignas_is_defined macro: always expands to 1 for C++.
Deprecated since C++17.

<cstdarg> The va_list type and functions va_start(), va_arg(), va_end(),
and va_copy() to handle variable-length argument lists. In C++ it is
recommended to use type-safe variadic templates instead.

<cstdbool> The __bool_true_false_are_defined macro: expands to 1 for C++.
Deprecated since C++17.

<cstddef> Types ptrdiff_t, size_t, max_align_t, and nullptr_t. The macro
offsetof() and the constant NULL.

<cstdlib> String conversion functions: atof(), strtof(), etc.
Multibyte character functions: mblen(), mbtowc(), and wctomb().
Multibyte string conversion: mbstowcs() and wcstombs().
Searching and sorting: bsearch() and qsort() (use <algorithm>).
Random numbers: rand() and srand() (deprecated, use <random>).
Memory management: calloc(), free(), malloc(), and realloc().
Integer functions: abs(), div(), labs(), ldiv(), llabs(), and lldiv().
Functions abort(), atexit(), at_quick_exit(), exit(), getenv(),
quick_exit(), system(), and _Exit().

279
© Peter Van Weert and Marc Gregoire 2019
P. Van Weert and M. Gregoire, C++17 Standard Library Quick Reference,
https://doi.org/10.1007/978-1-4842-4923-9

Index

_1, _2, etc., 44
"C" locale, 200
<<, xxii, 157
>>, 157

�       � A
abs(), 1
absolute(), 171
Absolute path, 163, 171
accumulate(), 132
acos(), 3
acosh(), 3
Active thread, 233
add_const, 67
add_cv, 67
add_lvalue_reference, 67
add_pointer, 67
addressof, 72
add_rvalue_reference, 67
add_volatile, 67
adjacent_difference(), 135
adjacent_find(), 118
adjustfield, 144
adopt_lock, 241, 242
advance(), 76
Aggregate, 132
<algorithm>, 115
Aliasing (shared_ptr), 41
alignment_of, 66
allocate_shared, 108
allocators, 108
all_of(), 117
any, 55
any_cast(), 56
any_of(), 117

app, 154
Appending, 79, 167
apply(), 35
Argument-dependent lookup (ADL), 32
Arithmetic type properties, 11
array, 84
ASCII, 189
as_const, 71
asctime(), 60
As-if rule, 249
asin(), 3
asinh(), 3
Assertions, 257
Associative containers

ordered, 93
unordered, 103

assoc_laguerre(), 7
assoc_legendre(), 7
async(), 235
Asynchronous programming, 235

See also Futures
atan(), 3
atan2(), 3
atanh(), 3
ate, 154
<atomic>, 250
atomic_flag, 255
atomic_signal_fence(), 255
atomic_thread_fence(), 255
Atomic Variables, 250

compare_exchange(), 252
construction, 251
exchange(), 252
integral and pointer types, 251, 254
lock_free(), 253
non-member functions, 255

https://doi.org/10.1007/978-1-4842-4923-9

■ INDEX

280

specializations, 251
store() and load(), 252
synchronization, 254

auto_format, 164
auto_ptr, 39
available, 178
Available disk space, 177

�       � B
back_inserter(), 139
back_insert_iterator, 138
bad_alloc, 233, 248, 258
bad_any_cast, 56, 258
bad_array_new_length, 258
badbit, 147
bad_cast, 258
bad_exception, 258
bad_function_call, 45, 258
bad_optional_access, 48, 50, 258
bad_typeid, 258
bad_variant_access, 52, 258
bad_weak_ptr, 258
basefield, 144
basic_string, 189
basic_string_view, 195
begin(), 75
bernoulli_distribution, 19
Bessel functions, 6
beta(), 9
Bidirectional iterator, 73
bidirectional_iterator_tag, 74
binary, 154
binary_function, 42
binary_search(), 119
bind(), 44
bind1st(), 42
bind2nd(), 42
Binding function arguments, 44
binomial_distribution, 19
bit_and, 43
bit_not, 43
bit_or, 43
bitset, 89
bit_xor, 43
boolalpha, 144
bool_constant, 63
boyer_moore_horspool_searcher, 120
boyer_moore_searcher, 120
byte, 35

�       � C
call_once(), 245
canonical(), 170
Capacity, 80, 178
CAS operations, 252
<cassert>, 257
cauchy_distribution, 19
cbegin(), 75
cbrt(), 2
<cctype>, 195
ceil(), 3
cend(), 75
cerr, 150
<cerrno>, 262, 264
C error numbers, 264
Character classes, 196, 207
Character classification, 196, 207
Character-encoding conversion, 197
Character encodings, 189, 197
<charconv>, 226, 229
chars_format, 229
char16_t, 189
char32_t, 189
chi_squared_distribution, 19
<chrono>, 56
chrono_literals, 57
cin, 152
clamp(), 10
classic(), 202
<clocale>, 213
C locales, 213
clock(), 60
Clocks, 59
CLOCKS_PER_SEC, 60
clock_t, 60
clog, 150
cmatch, 219
<cmath>, 1, 5
codecvt, 198
codecvt_byname, 199
codecvt_utf8, 198
codecvt_utf16, 198
codecvt_utf8_utf16, 198
collate, 208
common_type, 67
Compare-and-swap, 252
comp_ellint_1(), 7
comp_ellint_2(), 8
<complex>, 13
complex_literals, 13

Atomic Variables (cont.)

■ INDEX

281

Complex numbers, 13
Concatenation, 79, 167
conditional, 67
condition_variable, 246
condition_variable_any, 246
Condition Variables, 246

exceptions, 248
notification, 247
synchronization, 249
timeouts, 247
waiting, 246

conjunction, 70
constexpr if, 68
Container adaptors, 91
Containers, 73
copy(), 123, 176
copy_backward(), 123
copyfmt_event, 158
copy_if(), 123
copy_n(), 123
copy_options, 177
copysign(), 4
copy_symlink(), 169
copy_symlinks, 177
cos(), 3
cosh(), 3
count(), 117
count_if(), 117
cout, 150
crbegin(), 75
create_directories(), 176
create_directory(), 176
create_directory_symlink(), 169
create_hard_link(), 169
create_hard_links, 177
create_symlink(), 169
create_symlinks, 177
cref(), 43, 46
crend(), 75
Critical section, 249 See also Mutexes
<cstdint>, 10
<cstdio>, 180, 181
C-style date and time utilities, 60
csub_match, 219
ctime(), 60
ctype, 207
Cumulative sum, 134
Currency symbol, 205
current_exception(), 259
current_path(), 170
Current thread, 233

<cwctype>, 195
cyl_bessel_i(), 6
cyl_bessel_j(), 6
cyl_bessel_k(), 6
cyl_neuman(), 6

�       � D
data() (non-member function), 89
Data race, 137, 238, 250
Date formatting, 206
Date utilities, 60
Deadlock, 137, 233, 240, 244
dec, 144
decay, 67
Decimal separator, 203
declval(), 70
defaultfloat, 145
default_random_engine, 17
default_searcher, 120
defer_lock, 242
deque, 83
destroy(), 136
destroy_at(), 136
destroy_n(), 136
Difference, 130
difftime(), 60
Digit grouping, 203
Directories, 162, 178
directories_only, 177
directory_entry, 178
directory_iterator, 178
Directory listing, 178
directory_options, 179
Directory separator, 162
discard_block_engine, 16
discrete_distribution, 20
disjunction, 70
Disk space, 177
distance(), 76
Distribution, see Random number

distributions
div(), 2
divides, 43
domain_error, 258
Dot product, 133, 160
Double-checked locking, 245
Double-ended queue, 83
Doubly linked list, 84
duration, 57
duration_cast(), 57

■ INDEX

282

�       � E
ECMAScript grammar, see Regular

expressions
ellint_1(), 7
ellint_2(), 7
Emplacement, 79, 95–96
empty() (non-member function), 89
enable_if, 68
enable_shared_from_this, 41
end(), 75
endl, 150
ends, 150
eofbit, 147
Epoch, 58
Epsilon, 12
equal(), 122
equal_range(), 119
equal_to, 43
equivalent(), 172
erase_event, 158
erf(), erfc(), 8
errc, 229, 262
errno, 264
error_category, 262
error_code, 163, 229, 262
error_condition, 262
Error functions, 8
Exception pointers, 259
exception_ptr, 259
Exceptions, 148, 163
Exceptions class hierarchy, 258
exchange(), 32
exclusive_scan(), 134
execution namespace, 136
exists(), 173
exp(), 2
exp2(), 2
expint(), 8
expm1(), 2
exponential_distribution, 20
Extension, see File extension
extent, 67
extreme_value_distribution, 20

�       � F
fabs(), fabsf(), fabsl(), 1
Facets, 202 See also Localization
failbit, 147
failure, 258

False sharing, 248
false_type, 63, 69
fdim(), 2
Fences, 249, 254, 255
File extension, 166, 168
File links, 168
File permissions, 174
Files, 162
file_size(), 177
file_status, 172
File streams, 155
<filesystem>, 162
filesystem_error, 163
File types, 173
fill(), 122
Fill character, 145, 149
fill_n(), 122
find(), 118
find_end(), 120
find_first_of(), 118
find_if(), 117
find_if_not(), 117
Fire-and-forget, 232, 236
First-in first-out (FIFO), 91
fisher_f_distribution, 19
fixed, 144
Fixed-width integer types, 10
floatfield, 144
Floating-point numbers

Epsilon, 12
Infinity, 12
NaN, 2, 4, 13

floor(), 3
flush, 150
fma(), 2
fmax(), 2
fmin(), 2
fmod(), 1
fmtflags, 144
Fold, 132
follow_directory_symlink, 179
for_each(), 115
for_each_n(), 116
Formatting, See also to_string(),

to_chars(), printf(),
Regular expressions,
and Stream I/O

date, 61, 206
monetary, 146
numerical, 144
time, 61, 206

■ INDEX

283

forward(), 31
forward_as_tuple(), 35
Forwarding reference, 31
Forward iterator, 73
forward_iterator_tag, 75
forward_list, 84
fpclassify(), 4
FP_INFINITE, 4
FP_NAN, 4
FP_NORMAL, 4
fpos, 142
fprintf(), 181
FP_SUBNORMAL, 4
FP_ZERO, 4
free, 178
Free space, 177
frexp(), 3
from_chars(), 229
front_inserter(), 139
front_insert_iterator, 138
fscanf(), 185
<fstream>, 155
function, 45
<functional>, 42, 71
Function object, 42

for class members, 46
Functor, 42
<future>, 234
future_errc, 238
future_error, 237, 258
Futures, 234

exceptions, 237
providers, 234, 235

async(), 235
packaged tasks, 236
promises, 237

shared state, 234
synchronization, 250

�       � G
gamma_distribution, 20
Gamma functions, 8
gcd(), 4
generate(), 122
generate_canonical, 19
generate_n(), 122
Generic function wrappers, 45
generic_format, 162
geometric_distribution, 19
get_default_resource(), 109

get_if() (variant), 53
getline(), 151, 153
get_money(), 146
get_terminate(), 266
get_time(), 146
get() (tuple), 34
get() (variant), 52
global(), 202
gmtime(), 60
goodbit, 147
Grammar

printf(), 181
regular expressions, 214
scanf(), 185
time and date formatting, 61

greater, 43
greater_equal, 43
gslice, 25

�       � H
hard_link_count(), 169
hardware_concurrency(), 233
hardware_constructive_

interference_size, 248
hardware_destructive_

interference_size, 248
has_facet(), 202
hash, 105
Hash functions, 104
Hash map, 104
has_unique_object_respresentations, 66
Header

<algorithm>, 115
<any>, 55
<array>, 84
<atomic>, 250
<bitset>, 89
<cassert>, 257
<cctype>, 195
<cerrno>, 262, 264
<charconv>, 226, 229
<chrono>, 56
<clocale>, 213
<cmath>, 1, 5
<codecvt>, 197
<complex>, 13
<condition_variable>, 246
<cstdint>, 10
<cstdio>, 180, 181
<ctime>, 60

■ INDEX

284

<cwctype>, 195
<deque>, 83
<exception>, 258
<filesystem>, 162
<forward_list>, 84
<fstream>, 155
<functional>, 42, 71
<future>, 234
<initializer_list>, 47
<iomanip>, 145
<ios>, 142, 143
<iosfwd>, 142
<iostream>, 142, 150
<istream>, 151
<iterator>, 73, 113, 138
<limits>, 11
<list>, 84
<locale>, 200
<map>, 94, 98
<memory>, 36, 108
<memory_resource>, 108
<mutex>, 238
<numeric>, 132
<optional>, 48
<ostream>, 149
<queue>, 91
<random>, 15
<ratio>, 14
<regex>, 214
<scoped_allocator>, 111
<set>, 98
<shared_mutex>, 240
<sstream>, 153
<stack>, 92
<stdexcept>, 258
<streambuf>, 161
<string>, 189, 227
<string_view>, 194
<system_error>, 262
<thread>, 231
<tuple>, 34
<typeindex>, 62
<typeinfo>, 62
<type_traits>, 63
<unordered_map>, 103
<unordered_set>, 103
<utility>, 29, 33
<valarray>, 23
variant, 50
<vector>, 76

Heaps, 131
hermite(), 7
hex, 144
hexfloat, 145
high_resolution_clock, 59
Hints, 97
holds_alternative(), 52
hypot(), 2

�       � I, J
ifstream, 155
ilogb(), 3
imbue_event, 158
in, 154
includes(), 129
inclusive_scan(), 134
independent_bits_engine, 17
indirect_array, 27
Infinity, 12
<initializer_list>, 47
Initializer-list constructors, 47
inner_product(), 133
in_place_index, in_place_index_t, 51
inplace_merge(), 129
in_place_type, in_place_type_t, 51–52, 55
Input iterators, 113
input_iterator_tag, 113
Input streams, see Stream I/O
inserter(), 139
insert_iterator, 139
integral_constant, 63
Integrals, 7, 8
int_fastX_t, 10
int_leastX_t, 10
internal, 144
Internationalization, see Localization
Intersection, 130
intmax_t, 11
intptr_t, 11
intX_t, 10
invalid_argument, 258
invoke, 71
invoke_result, 69
I/O, see Stream I/O
<iomanip>, 145
I/O Manipulator, see Stream I/O
I18n, see Localization
<ios>, 142, 143
ios_base, 143
<iosfwd>, 142

Header (cont.)

■ INDEX

285

iostate, 147
iostream, 142, 150, 153
iota(), 123
is_abstract, 65
is_aggregate, 66
is_alnum(), 196, 207
is_alpha(), 196, 207
is_arithmetic, 64
is_array, 64
is_assignable, 65
is_base_of, 66
is_blank(), 196, 215
is_block_file(), 173
is_character_file(), 175
is_class, 64
is_cntrl(), 196, 215
is_const, 65
is_constructible, 65
is_convertible, 66
is_copy_assignable, 65
is_copy_constructible, 65
is_default_constructible, 65
is_destructible, 65
is_digit(), 196, 207
is_directory(), 173
is_empty, 66
is_enum, 64
is_error_code_enum, 263
is_error_condition_enum, 264
is_execution_policy_v, 137
is_fifo(), 173
is_final, 65
isfinite(), 4
is_floating_point, 64
is_function, 64
is_fundamental, 64
is_graph(), 196, 207
isgreater(), 4
isgreaterequal(), 4
is_heap(), 131
is_heap_until(), 132
isinf(), 4
is_integral, 64
is_invocable, 69
is_invocable_r, 69
isless(), 4
islessequal(), 4
islessgreater(), 4
is_literal_type, 66
is_lower(), 196, 208
is_lvalue_reference, 64

is_member_function_pointer, 64
is_member_object_pointer, 64
is_member_pointer, 64
is_move_assignable, 65
is_move_constructible, 65
isnan(), 4
isnormal(), 4
is_null_pointer, 64
is_object, 64
is_other(), 173
is_partitioned(), 126
is_permutation(), 130
is_pod, 66
is_pointer, 64
is_polymorphic, 65
is_print(), 196, 208
is_punct(), 196, 207
is_reference, 64
is_regular_file(), 173
is_rvalue_reference, 64
is_same, 66
is_scalar, 64
is_signed, 65
is_socket(), 173
is_sorted(), 127
is_sorted_until(), 127
is_space(), 196, 208
is_standard_layout, 66
is_swappable, is_swappable_with, 65
is_symlink(), 169, 173
<istream>, 151
istream_iterator, 160
istringstream, 153
is_trivial, 66
is_trivially_copyable, 65, 68
is_union, 64
isunordered(), 4
is_unsigned, 65
is_upper(), 196, 208
is_void, 64
is_volatile, 65
is_walnum(), 196
is_walpha(), 196
is_wblank(), 196
is_wcntrl(), 196
is_wdigit(), 196
is_wgraph(), 196
is_wlower(), 196
is_wprint(), 196
is_wpunct(), 196
is_wspace(), 196

■ INDEX

286

is_wupper(), 196
is_wxdigit(), 196
is_xdigit(), 196, 215
iterator, 73, 113
Iterator adaptors, 138
Iterators

bidirectional, 73
categories, 73, 113
forward, 73
input, 113
output, 113
random access, 73
reverse, 74, 75
stream iterators, 160

Iterator tags, 74
iterator_traits, 75
iter_swap(), 124

�       � K
knuth_b, 17

�       � L
labs(), 1
laguerre(), 7
Last-in first-out (LIFO), 92
Launch policy, 236
Lazy initialization, 245
LC_ALL, 213
LC_COLLATE, 213
lcm(), 4
LC_MONETARY, 213
LC_NUMERIC, 213
lconv, 213
LC_TIME, 213
LC_CTYPE, 213
L1 data cache line size, 248
ldexp(), 4
ldiv(), 2
left, 144
Left fold, 132
legendre(), 7
length_error, 258
less, 43
less_equal, 43
lexicographical_compare(), 127
lgamma(), 8
<limits>, 11
linear_congruential_engine, 16

Line-by-line input, 153
list, 84
List-specific algorithms, 85
llabs(), 1
lldiv(), 2
llrint(), 3
llround(), 3
localeconv(), 213
Locale names, 200
Localization, 200

C locales, 213
combining facets, 210
custom facets, 211
global locale, 201
locale facet categories, 203
locale facets, 202
locale names, 200
standard facets, 203

character classification and
transformation, 207

character-encoding
conversions, 208

formatting and parsing
monetary values, 205
numeric values, 204
time and dates, 206

message retrieval, 209
monetary punctuation, 204
numeric punctuation, 203
string ordering and

hashing, 208
std::locale, 200

localtime(), 60
lock(), 244
lock_guard, 241, 276
Lock-free data structures, 252
Locks, see Mutexes
log(), 2
log2(), 2
log10(), 2
logb(), 3
log1p(), 2
logical_and, 43
logical_not, 43
logical_or, 43
logic_error, 258
lognormal_distribution, 19
lower_bound(), 119
lrint(), 3
lround(), 3

■ INDEX

287

�       � M
Magic statics, 245
main(), xxii
make_error_code(), 263
make_error_condition(), 264
make_exception_ptr(), 259
make_from_tuple, 35
make_heap(), 131
make_move_iterator(), 138
make_optional(), 49
make_pair(), 33
make_ready_at_thread_exit(), 237
make_reverse_iterator(), 138
make_shared(), 40
make_signed, 67
make_tuple(), 34
make_unique(), 37–38
make_unsigned, 67
Manipulator, see Stream I/O
map, 94
mask_array, 26
match_flag_type, 218, 224
match_results, 219, 220
Mathematical functions

classification, 4
common functions, 1
comparison, 4
error functions, 8
error handling, 5
exponential functions, 2
floating-point manipulation, 3
gamma functions, 8
hyperbolic functions, 3
logarithmic functions, 2
power functions, 2
rounding, 3
special functions, 5
trigonometric functions, 3

MATH_ERREXCEPT, 5
math_errhandling, 5
MATH_ERRNO, 4
max(), 9
max_element(), 118
Maximum representable

number, 11
mbstate_t, 197
Member function object, 46
memcpy(), 68
mem_fn(), 46
mem_fun(), 42

mem_fun_ref(), 42
<memory>, 36, 108
Memory model, 249
Memory pool, 110
memory_order, 254
memory_resource, 108
merge(), 129
Merging, See Appending,

Concatenation
Merging (associative containers), 100
mersenne_twister_engine, 16
messages, 209
min(), 9
min_element(), 118
Minimum representable number, 11
minmax(), 10
minmax_element(), 118
minstd_rand, 17
minstd_rand0, 17
minus, 43
mismatch(), 122
mktime(), 60
modf(), 3
modulus, 43
Monetary formatting, 146
money_get, 205
moneypunct, 204, 211
moneypunct_byname, 212
money_put, 205
monostate, 51
monotonic_buffer_resource, 110
move(), 29, 123
move_backward(), 123
move_if_noexcept(), 30
move_iterator, 138
Move semantics, 29
mt19937, 17
mt19937_64, 17
multimap, 98
multiplies, 43
multiset, 98
mutex, 238, 239
Mutexes, 238

critical section, 249
exceptions, 244
lock types

lock_guard, 241
scoped_lock, 239, 241
shared_lock, 243
unique_lock, 242

locking, 238, 241

■ INDEX

288

locking multiple mutexes, 244
native_handle(), 240
RAII, 238, 241
readers-writers, 240
recursion, 240
reentry, 240
sharing ownership, 240
synchronization, 249
timeouts, 240

�       � N
NaN, 2, 4, 13
nan(), nanf(), nanl(), 2
native_format, 164
NDEBUG, 257
nearbyint(), 3
negate, 43
negation, 70
negative_binomial_distribution, 19
nested_exception, 260
Neutral locale, 200
new_delete_resource(), 109
next(), 76
nextafter(), 4
next_permutation(), 131
nexttoward(), 4
Nodes (associative

containers), 100
none_of(), 117
normal_distribution, 19
not1(), 45
not2(), 45
not_equal_to, 43
not_fn(), 45
notify_all_at_thread_exit(), 247
npos, 190
nth_element(), 18
null_memory_resource(), 109
nullopt, nullopt_t, 48
<numeric>, 132
Numeric conversions, 226
numeric_limits, 11
Numerical formatting, 145
num_get, 204
numpunct, 203, 212
numpunct_byname, 212
num_put, 204

�       � O
oct, 144
ofstream, 155
once_flag, 245
openmode, 154, 155
optional, 48
Ordered associative containers, 93
<ostream>, 149
ostream_iterator, 160
ostringstream, 154
out, 154
out_of_range, 258
Output iterators, 113
output_iterator_tag, 113
Output streams, see Stream I/O
overflow_error, 258
overwrite_existing, 177
owner_less, 41

�       � P
packaged_task, 236
pair, 33
par, 137
Parallel algorithms, 136
parallel_policy, 137
parallel_unsequenced_policy, 137
Parsing, see stoi(), stof(), from_chars(),

scanf(), Regular
expressions, and Stream I/O

Parsing floating-point numbers, 228
Parsing integers, 227
partial_sort(), 127
partial_sort_copy(), 127
partial_sum(), 134
partition(), 126
partition_copy(), 126
partition_point(), 127
par_unseq, 137, 138
path, 164
Pathnames, 162, 166
Perfect forwarding, 31
Permissions, 174
permissions(), 175
perms, 174
Permutations, 130
perror(), 265
Person class, xxiii
Piecewise construction, 34, 96

Mutexes (cont.)

■ INDEX

289

piecewise_constant_distribution, 21
piecewise_linear_distribution, 22
Placeholders, 44
plus, 43
pmr (namespace), 108, 109
poisson_distribution, 20
polymorphic_allocator, 108
Polynomials, 7
pool_options, 111
pop_heap(), 131
POSIX error codes, 264, 267
pow(), 2
Predefined functors, 43
preferred_separator, 162
Prefix sum, 134
prev(), 76
prev_permutation(), 13
printf(), 181

conversion specifiers, 182
flags, 184
formatting syntax, 183
length modifiers, 185

priority_queue, 91
promise, 237
proximate(), 171
ptr_fun(), 42
push_heap(), 131
put_money(), 146
put_time(), 146

�       � Q
queue, 91
quoted(), 146

�       � R
RAII, 36, 241
rand(), 15
<random>, 15
Random access iterator, 74
Random number distributions, 18

Bernoulli, 19
Normal, 19
Poisson, 20
Sampling

Discrete, 20
Piecewise constant, 21
Piecewise linear, 22

Uniform, 19

Random number generators, 15
Non-deterministic, 18
Pseudorandom number engines, 16

Engine adaptors, 16
Predefined engines, 17

Random numbers, 15
Seeding, 18

random_access_iterator_tag, 75
random_device, 18
range_error, 258
rank, 66
ranlux24, 17
ranlux24_base, 17
ranlux48, 17
ranlux48_base, 17
<ratio>, 14
ratio_add, 14
ratio_divide, 14
ratio_equal, 14
ratio_multiply, 14
Rational numbers, 14
ratio_subtract, 14
rbegin(), 75
Readers-writers locks, see Mutexes
read_symlink(), 169
recursive, 177
recursive_directory_entry, 179
recursive_mutex, 239
recursive_timed_mutex, 239
reduce(), 132
ref(), 43, 46
Reference wrappers, 43, 46
reference_wrapper, 43, 46
regex, 214, 216
regex_error, 216, 219, 223
regex_iterator, 221
regex_match(), 218
regex_replace(), 223
regex_search(), 218
regex_token_iterator, 222
Regular expressions, 214

grammar, 214
assertions, 214, 225
atoms, 214, 224
back reference, 214
character classes, 215
disjunction, 214
greediness, 216
lookahead, 226
quantifiers, 226

■ INDEX

290

grammar options, 216
matching and searching patterns, 218
match iterators, 221
match results, 219
raw string literals, 214
replacing patterns, 223
std::regex, 216

Relational operators, 36
relative(), 171
Relative path, 163, 171
release() (unique_ptr), 38
rel_ops, 36
remainder(), 1
remove(), 176
remove() (algorithm), 124, 275
remove() (file), 176, 180
remove_all(), 176
remove_const, 67
remove_copy(), 125
remove_copy_if(), 125
remove_cv, 67
Remove-erase idiom, 81, 124
remove_if(), 124
remove_lvalue_reference, 67
remove_pointer, 67
remove_rvalue_reference, 67
remove_volatile, 67
remquo(), 1
rename(), 176, 180
rend(), 75
replace(), 125
replace_copy(), 125
replace_copy_if(), 125
replace_if(), 125
reset() (shared_ptr), 40
reset() (unique_ptr), 38
resetiosflags(), 145
resize_file(), 177
Resource Acquisition Is

Initialization, see RAII
result_of, 70
rethrow_exception(), 259
rethrow_if_nested(), 261
reverse(), 126
reverse_copy(), 126
Reverse iterator, 74, 75
reverse_iterator, 138
riemann_zeta(), 9
Right fold, 132
right, 144

rint(), 3
rotate(), 126
rotate_copy(), 126
round(), 3
runtime_error, 258
Runtime type identification, 62

�       � S
sample(), 128
Scalar product, 133
scalbln(), scalbn(), 4
Scan, 134
scanf(), 185

conversion specifiers, 186
formatting syntax, 186
length modifiers, 187

scientific, 144
<scoped_allocator>, 111
scoped_allocator_adaptor, 111
scoped_lock, 239, 241
search(), 120
search_n(), 120
seekdir, 149
Selection algorithm, 128
seq, 137
Sequence comparison, 121
sequenced_policy, 137
Sequential containers, 76
set, 98
setbase(), 145
set_default_resource(), 109
set_difference(), 130
set_exception_at_thread_exit(), 237
setfill(), 145
set_intersection(), 130
setiosflags(), 145
setlocale(), 213
setprecision(), 145
set_symmetric_difference(), 130
set_terminate(), 266
set_union(), 130
set_value_at_thread_exit(), 237
setw(), 146
SFINAE, 68
shared_from_this(), 41
shared_future, 234
shared_lock, 243
shared_mutex, 239, 276
shared_ptr, 39
shared_timed_mutex, 239

Regular expressions (cont.)

■ INDEX

291

showbase, 144
showpoint, 144
showpos, 144
shuffle(), 128
shuffle_order_engine, 17
signbit(), 4
sin(), 3
Singleton, 245
sinh(), 3
SI ratios, 4
size() (non-member function), 89
skip_existing, 177
skip_permission_denied, 179
skip_symlinks, 177
skipws, 144
sleep_for(), 233
Sleeping, 233
sleep_until(), 233
slice, 24
Smart pointers, 36 See also RAII.
smatch, 219
sort(), 128
sort_heap(), 131
space(), 178
space_info, 178
sph_bessel(), 6
sph_legendre(), 7
sph_neuman(), 6
Splicing, 85
Splitting strings, see

regex_token_iterator
sprintf(), 181
Spurious wakeups, 246
sqrt(), 2
sscanf(), 185
<sstream>, 153
ssub_match, 219
stable_partition(), 126
stable_sort(), 127
stack, 92
Standard Template Library, xix
status(), 172
status_known(), 173
std, xxi
stderr, 150
<stdexcept>, 258
stdin, 152
stdout, 150
steady_clock, 59
STL, xix
stod(), 228

stof(), 228
stoi(), 227
stol(), 227
stold(), 228
stoll(), 227
stoul(), 227
stoull(), 227
<streambuf>, 161
Stream Buffers, 161
Stream I/O

class hierarchy, 141
default initialization, 145, 148
error handling, 148
file streams, 155
formatting flags, 144
helper types, 142
input streams, 151
I/O manipulators, 145, 150
open modes, 155
output streams, 149
standard input streams, 152
standard output streams, 150

redirect, 161
state bits, 148
stream iterators, 160
string streams, 153
thread safety, 151

streamoff, 142
streamsize, 142
strerror(), 265
strftime(), 60
<string>, 189, 227
string_literals, 192
Strings, 189

comparing, 193
constructing, 192
formatting (see Formatting)
length, 192
modifying, 191
npos, 190
parsing (see Parsing)
searching, 190
string literal operator, 192
substrings, 193
types, 189

String streams, 153
string_view, 194
string_view_literals, 195
student_t_distribution, 19
sub_match, 219
Subsequence search, 120

■ INDEX

292

Substrings, 193
subtract_with_carry_engine, 16
Summation, 132
sv (""sv), 195
swap(), 32
swap_ranges(), 123
Symbolic link, 168
symlink_status(), 172
Symmetric difference, 130
Synchronization, 249 See also Memory

model
synchronized_pool_resource, 110
sync_with_stdio(), 151, 152
system_clock, 59
system_error, 163, 229, 233, 237, 238, 244,

248, 258

�       � T
tan(), 3
tanh(), 3
terminate(), 266
tgamma(), 8
Thousands separator, 203
<thread>, 231
Threads, 231

exceptions, 233
fire-and-forget, 232, 236
identifiers, 232
joining, 232
launching, 231
sleeping, 233
synchronizing, 250
yielding, 233

throw_with_nested(), 261
tie(), 34
time(), 60
timed_mutex, 239
Time formatting, 146
time_get, 206
time_point, 58
time_point_cast(), 58
time_put, 206
time_t, 60
Time utilities, 56
tm, 60
tmpfile(), 180
tmpnam(), 180
to_chars(), 229
Tokenizing, see regex_token_iterator
tolower(), 196, 208

to_string(), 90
toupper(), 196, 208
Torn reads and writes, 252 See also Atomic

variables
towlower(), 196
to_wstring(), 228
towupper(), 196
transform(), 116
transform_exclusive_scan(), 135
transform_inclusive_scan(), 135
transform_reduce(), 132, 133
Transparent operator functors, 44, 99
True sharing, 248
true_type, 63, 69
trunc, 154
trunc(), 3
try_lock(), 244
try_to_lock, 242
<tuple>, 34
tuple_element, 35
tuple_size, 35
Type classification, 64
typeid(), 62
<typeindex>, 62
<typeinfo>, 62
Type properties, 65
Type property queries, 66
Type relationships, 66
Type traits, 63
<type_traits>, 63
Type transformations, 67

�       � U
u16string, 189
u16string_view, 195
u32string, 189
u32string_view, 195
u8path(), 164
(u)int_fastX_t, 10
(u)int_leastX_t, 10
(u)intmax_t, 11
uintptr_t, 11
(u)intX_t, 10
unary_function, 42
uncaught_exceptions(), 265, 266
underflow_error, 258
underlying_type, 67
Unicode, 192, 197
uniform_int_distribution, 19
uniform_real_distribution, 19

■ INDEX

293

uninitialized_copy(), 136
uninitialized_copy_n(), 136
uninitialized_default_construct(), 135
uninitialized_fill(), 136
uninitialized_fill_n(), 136
uninitialized_move(), 136
uninitialized_move_n(), 136
uninitialized_value_construct(), 135
Union, 130
unique(), 125
unique_copy(), 125
unique_lock, 242
unique_ptr, 36
unitbuf, 144
Universal reference, 31
Unordered associative containers, 103
unordered_map, 103
unordered_multimap, 103
unordered_multiset, 103
unordered_set, 103
unsynchronized_pool_resource, 110
update_existing, 177
upper_bound(), 119
uppercase, 144
Upstream memory resource, 110
use_facet(), 202
UTF-8, UTF-16, UTF-32, 189, 197
<utility>, 29, 33, 272

�       � V
<valarray>, 23
variant, 50
variant_alternative,

variant_alternative_t, 54
variant_size, variant_size_v, 54

vector, 76
vector<bool>, 82
visit(), 53
void_t, 69

�       � W, X
wbuffer_convert, 199
wcerr, 150
wchar_t, 189
wcin, 152
wclog, 150
wcmatch, 219
wcout, 150
wcsub_match, 219
weak_from_this(), 41
weakly_canonical(), 170
weak_ptr, 41
Weak reference, 41
weibull_distribution, 20
Working directory, 170
ws, 152
wsmatch, 219
wssub_match, 219
wstring, 189
wstring_convert, 198
wstring_view, 195

�       � Y
yield(), 233

�       � Z
Zeta functions, 9

	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Numerics and Math
	Common Mathematical Functions
<cmath>
	Basic Functions
	Exponential and Logarithmic Functions
	Power Functions
	Trigonometric and Hyperbolic Functions
	Integral Rounding of Floating-Point Numbers
	Floating-Point Manipulation Functions
	Classification and Comparison Functions
	gcd/lcm
<numeric>
	Error Handling

	Special Mathematical Functions
<cmath>
	Bessel Functions
	Polynomials
	Elliptic Integrals
	Exponential Integrals
	Error Functions
	Gamma Functions
	Beta Functions
	Zeta Functions

	Minimum, Maximum, and Clamping
<algorithm>
	Fixed-Width Integer Types
<cstdint>
	Arithmetic Type Properties
<limits>
	Complex Numbers
<complex>
	Compile-Time Rational Numbers
<ratio>
	Random Numbers
<random>
	Random Number Generators
	Pseudorandom Number Engines
	Engine Adaptors
	Predefined Engines

	Nondeterministic Random Number Generator
	Seeding

	Random Number Distributions
	Uniform Distributions
	Bernoulli Distributions
	Normal Distributions
	Poisson Distributions
	Sampling Distributions
	Discrete Distribution
	Piecewise Constant Distribution
	Piecewise Linear Distribution
	Example

	Numeric Arrays
<valarray>
	std::slice
	std::gslice
	std::mask_array
	std::indirect_array

	Chapter 2: General Utilities
	Moving, Forwarding, Swapping
<utility>
	Moving
	Forwarding
	Swapping and Exchanging

	Pairs and Tuples
	Pairs
<utility>
	Tuples
<tuple>

	std::byte
<cstddef>
	Relational Operators
<utility>
	Smart Pointers
<memory>
	Exclusive Ownership Pointers
	std::unique_ptr
	std::auto_ptr

	Shared Ownership Pointers
	std::shared_ptr
	std::weak_ptr
	std::enable_shared_from_this

	Function Objects
<functional>
	Reference Wrappers
	Predefined Functors
	Binding Function Arguments
	Negating a Callable
	Generic Function Wrappers
	Functors for Class Members

	Initializer Lists
<initializer_list>
	Vocabulary Types
	std::optional
<optional>
	std::nullopt_t
	Constructors
	Methods and Non-member Functions

	std::variant
<variant>
	Construction
	Default Construction
	Constructors

	Methods and Non-member Functions
	Example Usage
	Visitation
	Helper Classes

	std::any
<any>
	Constructors
	Methods and Non-member Functions
	Example Usage

	Date and Time Utilities
<chrono>
	Durations
	Time Points
	Clocks
	C-Style Date and Time Utilities
<ctime>

	Type Utilities
	Runtime Type Identification
<typeinfo>, <typeindex>
	Type Traits
<type_traits>
	Helper Classes
	Type Classification
	Type Properties
	Type Relationships
	Type Property Queries
	Type Transformations
	SFINAE Templates
	std::enable_if
	std::void_t

	Function Invocation Traits
	Trait Operations

	Type Operations
<utility>
	std::declval
	std::as_const

	Generic Utilities
	std::invoke
<functional>
	std::addressof
<memory>

	Chapter 3: Containers
	Iterators
<iterator>
	Iterator Tags
	Non-member Functions to Get Iterators
	Non-member Operations on Iterators

	Sequential Containers
	std::vector
<vector>
	Construction
	Accessing Elements
	Iterators
	Adding Elements
	Size and Capacity
	Removing Elements
	Remove-Erase Idiom
	std::vector<bool>
	Complexity

	std::deque
<deque>
	Complexity

	std::array
<array>
	Complexity

	std::list and std::forward_list
<list>, <forward_list>
	Complexity
	List-Specific Algorithms

	Sequential Containers Reference
	Iterators
	Size and Capacity
	Access
	Modifiers
	Non-member Functions

	std::bitset
<bitset>
	Complexity
	Reference
	Access
	Operations

	Container Adaptors
	std::queue
<queue>
	std::priority_queue
<queue>
	std::stack
<stack>
	Example
	Reference

	Ordered Associative Containers
	std::map
<map>
	Inserting in a Map
	The Square Brackets Operator
	insert() and insert_or_assign()
	emplace() and try_emplace()
	Hints
	Return Values

	std::multimap
<map>
	std::set and std::multiset
<set>
	Order of Elements
	Searching
	Moving Nodes Between Containers
	Merging Containers
	Complexity
	Reference
	Iterators
	Size
	Access and Lookup
	Modifiers
	Observers
	Non-member Functions

	Unordered Associative Containers <unordered_map>, <unordered_set>
	Hash Map
	Template Type Parameters
	Hash Functions
	Complexity
	Reference
	Observers
	Bucket Interface
	Hash Policy
	Non-member Functions

	Allocators
<memory>
	Polymorphic Allocators
<memory_resource>
	Type Aliases
	Monotonic Buffers
	Memory Pools

	Allocators for Multilevel Containers
<scoped_allocator>

	Chapter 4: Algorithms
	Input and Output Iterators
	General Guidelines
	Algorithm Arguments

	Terminology
	Algorithms
<algorithm>
	Applying a Function to a Range
	Example

	Checking for the Presence of Elements
	Example

	Finding Elements
	Example

	Finding Min/Max Elements
	Binary Search
	Example

	Subsequence Search
	Example

	Sequence Comparison
	Generating Sequences
	Example

	Copy, Move, Swap
	Example

	Removing and Replacing
	Example

	Reversing and Rotating
	Example

	Partitioning
	Sorting
	Example

	Sampling and Shuffling
	Example

	Operations on Sorted Ranges
	Permutation
	Heaps

	Numeric Algorithms
<numeric>
	Reductions
	Example

	Inner Products
	Example

	Prefix Sums
	Element Differences

	Algorithms for Uninitialized Memory
<memory>
	Parallel Algorithms
<execution>
	Parallel Execution
	Parallel Unsequenced Execution

	Iterator Adaptors
<iterator>

	Chapter 5: Input/Output
	Input/Output with Streams
	Helper Types
<ios>
	Formatting Methods (std::ios_base)
<ios>
	I/O Manipulators
<ios>, <iomanip>
	Example
	std::ios
<ios>
	Stream State
	Error Handling
	Other Methods

	std::ostream
<ostream>
	I/O Manipulators
	Global Output Streams
<iostream>
	Example

	std::istream
<istream>
	I/O Manipulators
	Global Input Streams
<iostream>
	Example

	std::iostream
<istream>

	String Streams
<sstream>
	Example

	File Streams
<fstream>
	Example

	Streaming Custom Types
	Custom << and >> Operators
	Custom I/O Manipulators
<ios>
	Example

	Stream Iterators
<iterator>
	std::ostream_iterator
	std::istream_iterator

	Stream Buffers
<streambuf>
	File Systems
<filesystem>
	Files, Paths, and Pathnames
	Error Reporting
	The path Class
	Construction and Assignment
	Conversion to Strings
	Decomposition
	Composition
	Modification

	File Links
	Path Normalization
	The Current Working Directory
	Absolute and Relative Paths
	Comparing Paths
	File Status
	File Types
	File Permissions

	Creating, Copying, Deleting, and Renaming
	File Sizes and Free Space
	Directory Listing

	C-Style File Utilities
<cstdio>
	C-Style Output and Input
<cstdio>
	std::printf() Family
	Example

	std::scanf() Family
	Example

	Chapter 6: Characters and Strings
	Strings
<string>
	Searching in Strings
	Modifying Strings
	Constructing Strings
	String Length
	Copying (Sub)Strings
	Comparing Strings

	String Views
<string_view>
	Character Classification
<cctype>, <cwctype>
	Character-Encoding Conversion
<locale>, <codecvt>
	Localization
<locale>
	Locale Names
	The Global Locale
	Basic std::locale Members
	Locale Facets
	Numeric Formatting
	Numeric Punctuation
	Formatting and Parsing of Numeric Values

	Monetary Formatting
	Monetary Punctuation
	Formatting and Parsing of Monetary Values

	Time and Date Formatting
	Character Classification, Transformation, and Conversion
	Character Classification and Transformation
	Character-Encoding Conversions

	String Ordering and Hashing
	Message Retrieval

	Combining and Customizing Locales
	Combining Facets
	Custom Facets

	C Locales
<clocale>

	Regular Expressions
<regex>
	The ECMAScript Regular Expression Grammar
	Character Classes
	Greedy vs. Non-greedy Quantification

	Regular Expression Objects
	Construction and Syntax Options
	Basic Member Functions

	Matching and Searching Patterns
	Match Results
	std::sub_match
	std::match_results

	Example

	Match Iterators
	Tokenizing

	Replacing Patterns

	Numeric Conversions
	Convenient Conversion Functions
<string>
	Parsing Integers
	Parsing Floating-Point Numbers
	Error Reporting and Number Formatting

	High-Performance Conversion Functions
<charconv>

	Chapter 7: Concurrency
	Threads
<thread>
	Launching a New Thread
	A Thread’s Lifetime
	Thread Identifiers
	Utility Functions
	Exceptions

	Futures
<future>
	Return Objects
	Providers
	Async
	Packaged Tasks
	Promises

	Exceptions

	Mutual Exclusion
<mutex>
	Mutexes and Locks
	Example

	Mutex Types
	Common Functionality
	Recursion
	Timeouts
	Sharing Ownership
<shared_mutex>

	Lock Types
	std::scoped_lock
	std::unique_lock
	std::shared_lock
<shared_mutex>

	Locking Multiple Mutexes
	Exceptions

	Calling a Function Once
<mutex>
	Condition Variables
<condition_variable>
	Waiting for a Condition
	Notification
	Exceptions

	L1 Data Cache Line Size
<new>
	Synchronization
	Atomic Operations
<atomic>
	Atomic Variables
	Template Specializations and Type Aliases
	Basic Atomic Operations
	Atomic Exchange of Values
	Lock-Free Atomic Operations
	Atomic Operations for Integral and Pointer Types
	Synchronization

	Atomic Flags
	Non-member Functions and Macros
	Fences

	Chapter 8: Diagnostics
	Assertions
<cassert>
	Exceptions
<exception>, <stdexcept>
	Exception Pointers
<exception>
	Nested Exceptions
<exception>
	System Errors
<system_error>
	std::error_category
	std::error_code
	std::error_condition

	C Error Numbers
<cerrno>
	Failure Handling
<exception>
	std::uncaught_exceptions()
	std::terminate()

	Appendix: Standard Library Headers
	Numerics and Math (Chapter 1)
	General Utilities (Chapter 2)
	Containers (Chapter 3)
	Algorithms (Chapter 4)
	Input/Output (Chapter 5)
	Characters and Strings (Chapter 6)
	Concurrency (Chapter 7)
	Diagnostics (Chapter 8)
	The C Standard Library

	Index

