

C++
for

Financial
Mathematics

CHAPMAN & HALL/CRC
Financial Mathematics Series

Aims and scope:
The field of financial mathematics forms an ever-expanding slice of the financial sector. This series
aims to capture new developments and summarize what is known over the whole spectrum of this
field. It will include a broad range of textbooks, reference works and handbooks that are meant to
appeal to both academics and practitioners. The inclusion of numerical code and concrete real-
world examples is highly encouraged.

Series Editors
M.A.H. Dempster
Centre for Financial Research
Department of Pure
Mathematics and Statistics
University of Cambridge

Dilip B. Madan
Robert H. Smith School
of Business
University of Maryland

Rama Cont
Department of Mathematics
Imperial College

Published Titles
American-Style Derivatives; Valuation and Computation, Jerome Detemple
Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option 		
 Pricing, Pierre Henry-Labordère
C++ for Financial Mathematics, John Armstrong
Commodities, M. A. H. Dempster and Ke Tang
Computational Methods in Finance, Ali Hirsa
Counterparty Risk and Funding: A Tale of Two Puzzles, Stéphane Crépey and
 Tomasz R. Bielecki, With an Introductory Dialogue by Damiano Brigo
Credit Risk: Models, Derivatives, and Management, Niklas Wagner
Engineering BGM, Alan Brace
Financial Mathematics: A Comprehensive Treatment, Giuseppe Campolieti and
 Roman N. Makarov
The Financial Mathematics of Market Liquidity: From Optimal Execution to
 Market Making, Olivier Guéant
Financial Modelling with Jump Processes, Rama Cont and Peter Tankov
Interest Rate Modeling: Theory and Practice, Lixin Wu
Introduction to Credit Risk Modeling, Second Edition, Christian Bluhm,
 Ludger Overbeck, and Christoph Wagner
An Introduction to Exotic Option Pricing, Peter Buchen
Introduction to Risk Parity and Budgeting, Thierry Roncalli
Introduction to Stochastic Calculus Applied to Finance, Second Edition,
 Damien Lamberton and Bernard Lapeyre
Monte Carlo Methods and Models in Finance and Insurance, Ralf Korn, Elke Korn,
 and Gerald Kroisandt
Monte Carlo Simulation with Applications to Finance, Hui Wang

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK

Nonlinear Option Pricing, Julien Guyon and Pierre Henry-Labordère
Numerical Methods for Finance, John A. D. Appleby, David C. Edelman,
 and John J. H. Miller
Option Valuation: A First Course in Financial Mathematics, Hugo D. Junghenn
Portfolio Optimization and Performance Analysis, Jean-Luc Prigent
Quantitative Finance: An Object-Oriented Approach in C++, Erik Schlögl
Quantitative Fund Management, M. A. H. Dempster, Georg Pflug,
 and Gautam Mitra
Risk Analysis in Finance and Insurance, Second Edition, Alexander Melnikov
Robust Libor Modelling and Pricing of Derivative Products, John Schoenmakers
Stochastic Finance: An Introduction with Market Examples, Nicolas Privault
Stochastic Finance: A Numeraire Approach, Jan Vecer
Stochastic Financial Models, Douglas Kennedy
Stochastic Processes with Applications to Finance, Second Edition,
 Masaaki Kijima
Stochastic Volatility Modeling, Lorenzo Bergomi
Structured Credit Portfolio Analysis, Baskets & CDOs, Christian Bluhm
 and Ludger Overbeck
Understanding Risk: The Theory and Practice of Financial Risk Management,
 David Murphy
Unravelling the Credit Crunch, David Murphy

http://taylorandfrancis.com

C++
for

Financial
Mathematics

John Armstrong
King’s College London, Strand, UK

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161202

International Standard Book Number-13: 978-1-4987-5005-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Introduction xvii

1 Getting Started 1

1.1 Installing your development environment 1
1.1.1 For Windows . 1
1.1.2 For Unix . 1
1.1.3 For MacOS X . 1

1.2 Running an example program 2
1.3 Compiling and running the code 3

1.3.1 Compiling on Windows 4
1.3.2 Compiling on Unix 6

1.4 Understanding the example code 8
1.5 Configuring the compiler . 12
1.6 Making decisions . 13
1.7 Exercises . 14
1.8 Summary . 15

2 Basic Data Types and Operators 17

2.1 Memory terminology . 17
2.2 Basic data types . 18

2.2.1 Integers . 18
2.2.2 Floating point numbers 20
2.2.3 Booleans . 20
2.2.4 Characters . 20

2.3 Casting . 22
2.4 Memory addresses . 26
2.5 Operators . 28

2.5.1 The sizeof operator 28
2.5.2 Mathematical operations 28
2.5.3 Comparison operators 29
2.5.4 Logical operators . 29
2.5.5 Bitwise operators . 29
2.5.6 Combining operators 30
2.5.7 Assignment operators 30

vii

viii Contents

2.5.8 If statements revisited 32
2.6 Summary . 35

3 Functions 37

3.1 The C++ function syntax 37
3.2 Recursion . 41
3.3 Libraries . 42
3.4 Declaring and defining functions 42
3.5 Functions that don’t return a value 44
3.6 Specifying default values . 45
3.7 Overloading functions . 46
3.8 Global and local variables 47
3.9 Namespaces . 48
3.10 Summary . 52

4 Flow of Control 55

4.1 while loops . 55
4.2 do-while loops . 57
4.3 for loops . 58
4.4 break, continue, return 60
4.5 throw statements . 61
4.6 switch statements . 63
4.7 Scope . 65
4.8 Flow of control in operators 65

4.8.1 Short circuit evaluation 66
4.8.2 The ternary operator 66
4.8.3 The comma operator 67

4.9 Summary . 69

5 Working with Multiple Files 71

5.1 The project FMLib . 71
5.2 Header files . 72
5.3 Creating our project . 73

5.3.1 Creating the first header file 73
5.3.2 Some code that uses the functions 75
5.3.3 Write the definitions 76

5.4 How header files work . 77
5.4.1 The meaning of include 77
5.4.2 Pragma once . 77
5.4.3 Information hiding 78
5.4.4 Inline . 80

5.5 A complete example . 81

Contents ix

5.6 Summary . 82

6 Unit Testing 85

6.1 A testing framework for C++ 86
6.2 Macros . 86
6.3 The macros in testing.h 87

6.3.1 The ASSERT macro 87
6.3.2 The ASSERT_APPROX_EQUAL macro 87
6.3.3 The INFO macro . 88
6.3.4 The DEBUG_PRINT macro 88
6.3.5 The TEST macro . 89

6.4 Using testing.h . 89
6.5 What have we gained? . 91
6.6 Testing normcdf . 92
6.7 Summary . 94

7 Using C++ Classes 97

7.1 Vectors . 97
7.2 Pass by reference and const 100

7.2.1 Pass by reference . 101
7.2.2 The const keyword 102
7.2.3 Pass by reference without const 104

7.3 Using ofstream . 104
7.4 Working with string . 106
7.5 Building strings efficiently 107
7.6 Writing a pie chart . 108

7.6.1 A web-based chart 109
7.6.2 Create a header file 111
7.6.3 Write a source file . 112
7.6.4 Enable testing in your files 112
7.6.5 Write functions to generate the boiler plate 112
7.6.6 Write a simple version of the chart data 113
7.6.7 Write a test of what we’ve done so far 114
7.6.8 Write the interesting code 114
7.6.9 Testing the interesting code 115
7.6.10 Wrap it all up into a single function 116

7.7 The architecture of the World Wide Web 117
7.8 Summary . 121

8 User-Defined Types 123

8.1 Terminology . 123
8.2 Writing your own class . 124

x Contents

8.2.1 Writing the declaration 124
8.2.2 Using a class . 126
8.2.3 Passing objects between functions 127
8.2.4 How have classes helped? 127

8.3 Adding functions to classes 128
8.3.1 Using const on member functions 130

8.4 A financial example . 131
8.4.1 What have we gained? 133

8.5 Recommendations on writing classes 134
8.6 Encapsulation . 135

8.6.1 Implementing PieChart 137
8.6.2 Using PieChart . 137

8.7 Constructors . 138
8.7.1 Writing a default constructor 139
8.7.2 An alternative, and superior syntax 140

8.8 Constructors with parameters 141
8.9 Summary . 144

9 Monte Carlo Pricing in C++ 145

9.1 A function to simulate stock prices 146
9.2 Writing a Monte Carlo pricer 151
9.3 Generating random numbers for Monte Carlo 154
9.4 Summary . 158

10 Interfaces 159

10.1 An interface for pricing options 159
10.2 Describing an interface in C++ 161
10.3 Examples of interfaces . 164
10.4 Interfaces in object-oriented programming 166
10.5 What’s wrong with if statements? 168
10.6 An interface for integration 169
10.7 Summary . 173

11 Arrays, Strings, and Pointers 175

11.1 Arrays, the C alternative to vector 176
11.2 Pointers . 179

11.2.1 new and delete . 179
11.2.2 Pointer operators . 180
11.2.3 Looping with pointers 182
11.2.4 Using pointers in practice 185

11.3 Pointers to text . 185
11.4 Pass by pointer . 187

Contents xi

11.5 Don’t return pointers to local variables 189
11.6 Using pointers to share data 191

11.6.1 Sharing with shared_ptr 194
11.7 Sharing data with references 197
11.8 The C++ memory model 199

11.8.1 The stack . 200
11.8.2 The heap . 202

11.9 Summary . 204

12 More Sophisticated Classes 205

12.1 Inlining member functions 205
12.2 The this keyword . 206
12.3 Inheritance . 207

12.3.1 What have we gained? 209
12.3.2 Terminology . 209

12.4 Overriding methods — the virtual keyword 210
12.4.1 A note on the keyword virtual 211

12.5 Abstract functions =0 . 212
12.6 Multiple layers . 212

12.6.1 UML . 213
12.6.2 Another object hierarchy 215
12.6.3 Multiple inheritance 215
12.6.4 Calling superclass methods 216

12.7 Forward declarations and the structure of cpp files 217
12.8 The static keyword . 218
12.9 The protected keyword . 220
12.10 Summary . 222

13 The Portfolio Class 223

13.1 The Priceable interface . 223
13.2 The Portfolio interface and implementation 224

13.2.1 Implementation of PortfolioImpl 227
13.3 Testing . 228
13.4 UML . 230
13.5 Limitations . 231
13.6 Summary . 232

14 Delta Hedging 233

14.1 Discrete-time delta hedging 233
14.2 Implementing the delta hedging strategy in C++ 235

14.2.1 Class declaration . 235
14.2.2 Implementation of runSimulation 237

xii Contents

14.2.3 Implementing the other methods of HedgingSimulator 238
14.2.4 Changes to CallOption 240

14.3 Testing the simulation . 241
14.4 Interpreting and extending our simulation 241
14.5 Summary . 244

15 Debugging and Development Tools 245

15.1 Debugging strategies . 245
15.1.1 Unit tests . 245
15.1.2 Reading your code 246
15.1.3 Logging statements 246
15.1.4 Using a debugger . 247
15.1.5 Divide and conquer 247

15.2 Debugging with Visual Studio 248
15.2.1 Obtaining a stack trace in Visual Studio 248
15.2.2 Breakpoints and single stepping in Visual Studio . . 250

15.3 Debugging with GDB . 252
15.3.1 Using GDB to obtain a stack trace 253
15.3.2 Breakpoints and single stepping with GDB 256
15.3.3 Other commands and features 257

15.4 Other development tools and practices 258
15.4.1 Version control . 258
15.4.2 Bug tracking . 259
15.4.3 Testing framework 259
15.4.4 Automated build . 260
15.4.5 Continuous integration 261
15.4.6 Logging . 261
15.4.7 Static analysis . 261
15.4.8 Memory-leak detection 262
15.4.9 Profiling tools . 262
15.4.10Example . 263

15.5 Summary . 264

16 A Matrix Class 267

16.1 Basic functionality of Matrix 267
16.2 The constructor and destructor of Matrix 269

16.2.1 Virtual destructors 271
16.2.2 When is a destructor needed? 272
16.2.3 Additional constructors 273

16.3 Const pointers . 274
16.4 Operator overloading . 275

16.4.1 Overloading + . 275
16.4.2 Overloading other arithmetic operators 277

Contents xiii

16.4.3 Overloading comparison operators 278
16.4.4 Overloading the << operator 279

16.4.4.1 Remarks on return by reference 280
16.4.5 Overloading the () operator 280
16.4.6 Overloading += . 281

16.5 The rule of three . 282
16.5.1 Overriding the assignment operator 282
16.5.2 Writing a copy constructor 283
16.5.3 The easy way to abide by the rule of three 284
16.5.4 Move operators . 285

16.6 Completing the Matrix class 285
16.7 Array Programming . 286

16.7.1 Implementing an efficient matrix class 286
16.7.2 Array programming 287
16.7.3 Array programming in the option classes 288
16.7.4 Array programming for the BlackScholesModel . . . 289
16.7.5 Array programming the Monte Carlo pricer 290
16.7.6 Performance . 290

16.8 Summary . 292

17 An Overview of Templates 295

17.1 Template functions . 295
17.2 Template classes . 297
17.3 Templates as an alternative to interfaces 299
17.4 Summary . 302

18 The Standard Template Library 303

18.1 typedef . 304
18.2 auto . 306
18.3 Using iterators with vectors 307
18.4 for loops and containers . 309
18.5 The container set . 310
18.6 The container vector . 311
18.7 The container list . 312
18.8 The container initializer_list 315
18.9 The containers map and unordered_map 315

18.9.1 How a map works . 317
18.9.2 How an unordered_map works 318

18.10 Storing complex types in containers 320
18.11 A mathematical model for multiple stocks 320
18.12 Using the Standard Template Library in FMLib 322
18.13 Summary . 327

xiv Contents

19 Function Objects and Lambda Functions 329

19.1 Function objects . 329
19.2 Lambda functions . 330
19.3 Function pointers . 333
19.4 Sorting with lambda functions 334
19.5 Summary . 336

20 Threads 337

20.1 Concurrent programming in C++ 338
20.1.1 Creating threads . 338
20.1.2 Mutual exclusion . 339
20.1.3 Global variables and race conditions 342
20.1.4 Problems with locking 343

20.2 The command design pattern 346
20.3 Monte Carlo pricing . 347

20.3.1 Random number generation with multiple threads . . 348
20.3.2 A multi-threaded pricer 349
20.3.3 Implementing Task 350
20.3.4 Using the Executor 351
20.3.5 Remarks upon the design 351

20.4 Coordinating threads . 352
20.4.1 The Pipeline pattern 352
20.4.2 How Pipeline is implemented 355

20.5 Summary . 358

21 Next Steps 359

21.1 Programming . 359
21.1.1 Libraries . 359
21.1.2 Software development 359
21.1.3 C++ language features 360
21.1.4 Other languages . 360

21.2 Financial mathematics . 361

A Risk-Neutral Pricing 363

A.1 The players in financial markets 363
A.2 Derivatives contracts . 366
A.3 Risk-neutral pricing . 370
A.4 Modelling stock prices . 372
A.5 Monte Carlo pricing . 377
A.6 Hedging . 379
A.7 Summary . 382

Contents xv

Bibliography 383

Index 385

http://taylorandfrancis.com

Introduction

The aim of this book is teach you C++ from scratch using examples from
financial mathematics. It is a streamlined account of the features of C++
that are most useful to a financial mathematician.

Throughout the book we will focus on a key recurring example: How do
you price a portfolio of financial derivatives? We will use this example to show

• How to use C++ language in practice

• What kinds of problems banks face

• The skills you need to solve them

These skills include C++ programming skills and mathematical skills but also
include testing, debugging, design, and software architecture.

The financial mathematics knowledge needed for this book has been kept
to a minimum and is summarised in Appendix A.

Why should you learn C++?
There are many jobs in the finance industry which require sophisticated

mathematical skills. One of those roles is being a “quant developer”. A quant
developer’s task is to implement the ideas of financial mathematics in practice
to produce practical systems to price, trade, and risk manage complex financial
products. This book is aimed at people who already know the mathematics
and want to learn the programming skills of a quant developer.

C++ is a programming language. It is just one of many languages that can
be used for performing financial calculations. When banks began to develop
their trading and risk management platforms, many of them decided that they
would write them in C++. As a result, C++ is one of the most sought-after
programming skills for quant-developer jobs.

However, it would be wrong to say that C++ is the only programming
language worth knowing if you want to be a quant developer. Languages such
as C#, Java, MATLAB®, and Python are all heavily used in the financial
industry. For someone new to programming, the biggest practical difference
between C++ and these other languages is that C++ is much harder to learn!

xvii

xviii Introduction

But as a result, C++ skills are also particularly highly valued. Moreover, once
you know C++ you will find any of these other languages easy to learn.

In summary, C++ is the language to learn if you want to open up the
maximum number of employment possibilities in quant-developer roles. Of
course, this probably won’t be true forever as technologies do change. So
before buying this book, have a search online for your dream job. If C++ is
one of the skills required, read on.

Pricing a portfolio
This book will focus throughout on financial examples. As we introduce

features of C++ we will show how they can be used to solve real financial
problems. Indeed, we will focus on a single important financial problem: How
do you compute the price and risk of a portfolio of complex financial products?
This is just a simplified version of the real problem faced by a bank of valuing
and measuring the risk of their entire position.

It is important to see just how complex this question really is. So let us
examine it in more detail.

Any major bank will trade on many different exchanges. Famous exam-
ples include the New York Stock Exchange and the London Stock Exchange.
However, there are many other less-famous exchanges in cities throughout the
world.

Each stock exchange has its own trading rules. Obviously there is some
attempt to rationalise things on national and international bases, but contracts
and conventions can, and do, vary from market to market.

Of course, one doesn’t just trade in stocks. One can also trade in stock
derivatives, currencies, currency derivatives, government bonds, municipal
bonds, commodities, electricity, etc.

Now let us return again to the problem of calculating the current value of a
bank’s overall position and the riskiness of that position. Given the complexity
of a bank’s total position, and the total amount of detail in all the contracts
they have entered into, one sees that this is a daunting task. No individual is
ever likely to understand every detail of the calculation.

Problem 1. How do you write software so that no individual has to under-
stand everything that is going on?

Problem 2. How do you write software so that a team of hundreds can work
on the software at the same time without getting in a mess?

Problem 3. How do you write code that is easy for others to understand?

Another important consideration is that the results of a computer er-
ror in financial applications can be catastrophic. If Adobe Acrobat crashes,

Introduction xix

you might swear under your breath. When Barclay’s cash machine network
crashed, it was headline news in the UK. If your trading algorithm throws
away half a billion dollars, it is unlikely that you will get as large a bonus as
you were hoping for.
Problem 4. How do you write code that doesn’t contain bugs? How do you
ensure that there are no bugs in the code written by a team of hundreds?
Problem 5. Given that you probably can’t guarantee that there are no bugs,
how do you ensure that the effects of a bug are not too harmful?

Every day, new financial products are invented and creative new financial
contracts are devised and sold. It must be possible to rapidly update the
software used by a bank to reflect these new contracts. While Microsoft only
releases a new version of its operating system periodically, banks update their
software on an almost daily basis.
Problem 6. How do you write code that can be extended easily and rapidly?
Problem 7. How do you ensure that no bugs have crept into the latest version
of your code, given that you plan to release a new version almost daily?
Problem 8. How do you release new code, when all the software has to keep
running 24× 7?

If a bank is doing well, their business should be expanding. The bank will
be moving into new markets and the data volumes in existing markets will be
growing exponentially. Nobody wants investments that have sub-exponential
growth!
Problem 9. How can you ensure that your software will continue to work
with exponentially increasing data volumes?

We can broadly categorise all of these problems as problems of scalability
and maintainability. These problems are the biggest IT problems that banks
face. It is these problems that explain why such a large proportion of the
employees in the finance sector in fact work in IT rather than finance. And
it is problems of this sort that object-oriented programming was designed to
address.

In this book we will show you how to use the object-oriented features of
C++ to solve these problems. In addition we will show you how to use other
important programming techniques such as testing, debugging, and design, all
of which are essential to building complex financial software.

Why do banks use C++?
We have already discussed why you should learn C++. In case you’ve

forgotten, it is to get a job in finance. But why do banks choose to use C++?

xx Introduction

Back in 1969, development had started on the computer language C. It
quickly caught on because it allows you to write very fast code reasonably
easily. Unfortunately that code can be difficult to maintain.

C++ first appeared in 1983. It promised to combine the speed of C with
the scalability and maintainability of object-oriented programming techniques.
By the 1990s C++ was a mature language which seemed to hold the promise
of solving the software problems faced by large financial institutions. This is
why banks started developing in C++.

The reason that banks have continued to develop in C++ is that once you
have written a lot of code in one language (and trained your teams to program
in that language) it is very expensive to start again in a different language.

These days there are many other languages available that you can use
for developing financial software. Some, such as Python, Mathematica, and
MATLAB allow you to quickly prototype mathematical ideas but aren’t as
good for writing large, high-performance systems. Others such as C# and Java
are often used for high-performance systems, but just weren’t mature enough
technologies when banks started their development. Nevertheless, many new
institutions such as hedge funds choose to use these more recent languages
rather than C++. The people who have invented these newer languages have
focussed more heavily on making these languages easy to learn.

One point that is worth emphasising is that many people believe C++
is used because it is the fastest language. It is true that C++ code has the
potential to match or outperform other code, but it can require great skill
and effort to achieve this potential. The reasons for using C++ involve many
subtle considerations other than just speed.

In fact, many banks might not choose to use C++ if they started writing
their code again today. They continue to use it as the most pragmatic option
for their business. In much the same way, it is probably the most pragmatic
choice of language for you to choose to learn if you want to work in the banking
sector.

Example: Slang

Not all banks choose to use C++ for their quant development. Goldman
Sachs makes heavy use of a language called Slang. Never heard of it? That’s
because Goldman Sachs invented the language themselves!

Deciding what language you will write your software in is a major decision.
Not only does it affect how easy your system will be to write and maintain,
it has more subtle repercussions such as how easy it is to hire people and
how good their job prospects are. Do you think it is easy to recruit Slang
developers? Do you think Slang developers are highly sought after outside of
Goldman Sachs?

Once you have chosen your language and built a system it will cost a lot

Introduction xxi

to move to a new language. For better or worse, many banks are stuck with
C++ and for better or worse Goldman Sachs is stuck with Slang.

The point to emphasise is that C++ is not necessarily “the best language”
for financial mathematics. A good quant-developer might decide to use R for
statistical analyses, Python for prototyping, C# for developing user interfaces,
Excel for their tax returns, and only use C++ to develop code for a legacy
trading system. This book focuses on C++, but don’t close your eyes to other
languages.

How to use this book
The accompanying website for this book1contains C++ code you can

download and run. This consists of a number of software projects that start
from humble beginnings and culminate in a sophisticated financial mathe-
matics library. This gives a concrete demonstration of how one can develop
complex software through an incremental process of testing and refactoring.
You will find it helpful to download the code for each chapter so you can refer
to it easily.

C++ is a computer language. It is almost impossible to learn a language
without attempting to speak it! So to get the most out of this book, it is
crucial to do as many exercises as possible. The solutions to many of the
exercises form an integral part of the software developed in this book. As a
result the solutions to many of the exercises can be found by looking ahead at
the code for later chapters. The accompanying website for this book contains
a solutions guide which shows you where to find the answers to these key
exercises.

The order of the chapters has been carefully chosen so that the most
useful aspects of C++ are taught first. Therefore, if you are using this book
for self study, I recommend that you work through the chapters in order,
completing the exercises as you go. If you are using this book as the basis of
a lecture course, then the material should be taught sequentially. Chapter 14
and Chapter 15 may be omitted without loss of continuity. Chapter 14 shows
how to simulate delta hedging in C++. It is of considerable mathematical
interest, but the programming interest is primarily in the exercises. These
challenge the reader to design their own polymorphic classes. Chapter 15
discusses debuggers and other development tools. This is very useful practical
information, but is perhaps better suited to an interactive class than a formal
lecture course.

1http://www.routledge.com/cw/armstrong

http://www.routledge.com/cw/armstrong

xxii Introduction

The book has been designed for a 12-week course at the level of a UK
financial mathematics MSc programme. For a shorter course, it would be
natural to end at one of the following milestones.

• In Chapter 9 we price a call option using the Monte Carlo method.
This gives a practical demonstration of the procedural programming skills
learned in previous chapters.

• In Chapter 13 we price a portfolio of derivatives using the Monte Carlo
method. Since there should be no restrictions on the derivatives that
might be in the portfolio, this makes heavy use of object-oriented pro-
gramming.

• In Chapter 18 we extend our model to include markets with multiple
stocks. This requires us to use some more interesting data structures and
showcases more advanced techniques such as templates and operator
overloading.

• In Chapter 20 we show how multiple threads can be used to speed up
Monte Carlo calculations. This demonstrates how the C++ techniques
described in the book can be combined to build a sophisticated project.

Finally, in Chapter 21 we give some suggestions for further reading and
give some general suggestions for possible programming projects to build on
the skills you developed by this book.

Acknowledgements
I am indebted to Plamen Turkedjiev, Sohel Rahman, and Alice Sullivan

for their many contributions to this book.

Summary
This book provides an introduction to the C++ language and the art of

writing high-quality code in that language.
We will illustrate these computer skills with financial examples, specifically

the problem of pricing a portfolio of derivatives.

Chapter 1
Getting Started

We start by learning how to write and run a simple example program to
compute compound interest. First we will need to install and configure the
software required to write C++ programs. Next we will see how to write a
simple program.

1.1 Installing your development environment
You will need to install some sort of development environment on your

computer in order to write C++ programs. A development environment is
rather like a word processor, except it allows you to write software rather
than documents. Just as with word processors, there are quite a few different
development environments you can choose from. We will give some recom-
mendations that have been tested to work with this couse.

1.1.1 For Windows
You will need to download Microsoft Visual Studio Express for Windows

Desktop1. This software is freely available.

1.1.2 For Unix
If you are using Unix you will need a text editor and the programs g++

and make. If they are not already installed, follow the instructions for your
Unix distribution, which you should be able to readily find online. Another
program you should install is gdb, which we will discuss in Chapter 15.

1.1.3 For MacOS X
Install Apple’s XCode2 development environment.

1https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
2http://developer.apple.com/technology/xcode.html

1

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://developer.apple.com/technology/xcode.html

2 C++ for Financial Mathematics

1.2 Running an example program
Let us start with an example program.
Don’t worry what it does for now. The first thing we need to do is work

out how to run it.

#include␣<iostream >
#include␣<cmath >
using␣namespace␣std;

int␣main()␣{
//␣Interesting␣code␣starts
int␣principal;
double␣interestRate;
int␣numberOfYears;

cout␣<<␣"How␣much␣are␣you␣investing ?\n";
cin␣>>␣principal;
cout␣<<␣"What’s␣the␣annual␣interest␣rate␣(%)?\n";
cin␣>>␣interestRate;
cout␣<<␣"How␣long␣for␣(years)?\n";
cin␣>>␣numberOfYears;

double␣finalBalance␣=
pow (1.0␣+␣interestRate␣*␣0.01,␣numberOfYears)
*␣principal;

double␣interest␣=␣finalBalance␣-␣principal;

cout␣<<␣"You␣will␣earn␣";
cout␣<<␣interest;
cout␣<<␣"\n";
/*␣Interesting␣code␣ends␣*/
return␣0;

}

You can also find this code on the website of the book3. Follow the link
for the project “InterestCalculator” for Chapter 1.

3http://www.routledge.com/cw/armstrong

http://www.routledge.com/cw/armstrong

Getting Started 3

1.3 Compiling and running the code
Running C++ code isn’t as easy as you might like.
The reason for this is that C++ is what is called a “compiled language”.
The chip inside a computer that does most of the work is called the CPU

(central processing unit). It does not know the C++ language or indeed any
computer language which is pleasant to program in. The CPU speaks a lan-
guage called assembly language, also known as machine code . In machine
code, all instructions are coded up as a sequence of numbers. Each number is
a code word for some action the CPU should take. Programming in machine
code directly is completely unbearable. What is worse, different CPUs may
use different versions of assembly language, so you have to rewrite your code
for different computers.

To get around this, one programs in “higher level languages” which are
written in ways that humans can understand. At some point, the program’s
instructions need to be converted to machine code.

In an “interpreted” language, the instructions are converted to machine
code every time they are executed. MATLAB and Python are examples of
interpreted languages.

In a “compiled” language, the instructions are converted to machine code
before the program is ever run. This process is called compilation. C++ is a
compiled language, so you must compile your code before you can run it.

Historically, the advantage of compiled languages was that they run faster.
The reason for this is that converting things to machine code takes time. If
you do this every time the code is run, it will necessarily run slower. The big
disadvantage was that you have to recompile your code if you change the type
of computer you want to run it on.

These days, computers are so fast that this advantage is not really relevant
any more. Modern languages can be compiled very fast and even use “just in
time compilers” that observe how the software is being used by the user and
perform optimisations based on this. This is one of the reasons why the claim
C++ is faster than languages such as Java and C# is a bit of a myth.

A good development allows you to compile and then run your code at the
touch of a button. But before we can do this, we need to get our code into
our development environment.

We will now describe the steps you need to go through to compile the
example code. Jump to the relevant section for your computer and follow the
instructions to the letter. Note that a guide to compiling on Macs can be found
on the website accompanying this book.

You will need to get everything exactly right. If you cannot get the code to
work, there is a zip file called InterestCalculator on the website for this book.
This contains working versions of the code that you can use.

4 C++ for Financial Mathematics

1.3.1 Compiling on Windows
• Open Visual Studio.

• Select File→New→Project . . .

• Select Empty→Project

• Enter the Name InterestCalculator and press OK.

• Note the name of the folder where your project is being saved.

• Notice that to the right of the screen you have an area marked Solution
Explorer inside which there is a picture of a folder marked Source
Files. Right click on this and select Add→New item. . . .

• Select the option “C++ file” and enter the name main.cpp and press
Add.

• This creates a file called main.cpp which we will use to store our code.
On the right-hand side of the screen you will see a text editor window
where you can edit the code for main.cpp.

• Copy and paste the example code from the website4into the editor win-
dow.

• Select Project→Interest Calculator Properties. . . , then select
Linker→System and set the SubSystem to Console␣(/SUBSYSTE-
M:CONSOLE) using the drop down.

• Press OK

• Press CTRL +␣F5 to compile and run your program

This should have worked if you have managed to follow every instruction
exactly. If it fails, close Visual Studio, delete all the files in the directory you
noted down and try again! But this time be more careful.

Setting up your first-ever project is probably the most fiddly and tedious
task you will have to perform in this book.

Why are there so many steps to creating your project?
Firstly a typical C++ project contains a lot of different files, so in practice

you don’t normally run through such a complex process very often. Most of
the steps above are only needed when you create a new project. The two steps
that you would be likely to perform repeatedly are:

(i) creating new C++ source files by right clicking on the Source Files
folder;

(ii) pressing CTRL and F5 to compile and run your program.

4http://www.routledge.com/cw/armstrong

http://www.routledge.com/cw/armstrong

Getting Started 5

The “project” groups together all of your files and allows you to set in one
place the configuration options for all your files. This is why it makes sense
to have a “project” as well as just the C++ files.

Secondly, you can write different types of programs on Windows. Most
programs have Windows user interfaces, but very old fashioned programs have
text input through the “console”. Console programs are easier to write, but
not the default on Windows. So we have to tell Windows that is the kind of
program we want. This is why we must set the SubSystem.

Danger!

Don’t use just F5 or press the “play” button in the toolbar to compile and run
your program. Press CTRL+F5 to run your programs. If you just press F5,
the output of your program will disappear the moment the program finishes
running, which is confusing at first. In addition, pressing just F5 will execute
your program using the Visual Studio debugger, which we do not explain how
to use until Chapter 15.

Let us examine all the files that have been created.
If you open Windows Explorer (by pressing the windows key and E) you

should be able to browse to where your project has been saved and you will
see that a lot of different files have been created.

Most of these are used internally by Visual Studio and so are of no interest.
However, the following are interesting.

• InterestCalculator/main.cpp. This contains the code we wrote.

• Debug/InterestCalculator.exe. This contains the machine code cre-
ated by the compilation process. You could give someone else with a
Windows computer this executable and they could run your program
without using Visual Studio.

• InterestCalculator.sln. You can double click this to view the project
in Visual Studio.

One problem with compiled languages is that when they are running and
a problem occurs, the original source code may no longer be available. This
makes it very difficult for a program to report where in the code the error
actually occurred. This in turn makes it very difficult to debug compiled code.

To help with this, Visual Studio can create executables for you that contain
not just machine code but also information about how that machine code
corresponds to the original source code. These are called debug executables.
By default, Visual Studio will create debug executables. This explains why
the executable is in a folder called Debug.

Adding in debugging information makes your program bigger and slower.

6 C++ for Financial Mathematics

When you finally come to release it to your users you might want to compile
what is called a release executable without all of this debugging information.
To do this you go to the drop down on the toolbar marked Debug and select
Release instead. Now return to the page where you set the properties of your
project and use the SubSystem option to indicate that the release build is a
console application too.

It’s a pain that you have to remember to set the properties for both the
Release and Debug builds, but it does make some sense that you might want
there to be differences in the options used between the two.

For the time being, let’s only use the Debug executable. Just remember
that when you want to see how fast your code really is, you’ll want to use the
Release executable.

1.3.2 Compiling on Unix
The steps to compile and run the code on Unix are as follows:
First create a new directory to store the files for the project.
Next, create a file called main.cpp in this directory. Use your text editor

to copy in the code for our example program from Section 1.2. You can just
copy and paste the code from the website of this book5.

In the same directory create a file called Makefile. Use your text editor
to copy in the following text.

#␣Automated␣Makefile

CC␣=␣g++
CFLAGS␣=␣-Wall␣-Werror␣-D_GLIBCXX_DEBUG␣-std=c++11␣-g
COMPILE␣=␣$(CC)␣$(CFLAGS)␣-c
OBJFILES␣:=␣$(patsubst␣%.cpp ,%.o,$(wildcard␣*.cpp))
PROG_NAME␣=␣InterestCalculator

all:␣myprog

myprog:␣$(OBJFILES)
$(CC)␣-o␣$(PROG_NAME)␣$(OBJFILES)

%.o:␣%.cpp
$(COMPILE)␣-o␣$@␣$<

clean:
rm␣-f␣*.o␣*.html␣$(PROG_NAME)

Note that you needn’t try to understand this text, you can just copy and
paste it into other projects. When running other programs in this book, the

5http://www.routledge.com/cw/armstrong

http://www.routledge.com/cw/armstrong

Getting Started 7

only thing you will need to change is the name of the PROG_NAME variable.
This is just the name of the executable you want to create. One aspect of the
file that is worth mentioning is the line

CFLAGS␣=␣-Wall␣-Werror␣-D_GLIBCXX_DEBUG␣-std=c++11␣-g

Here we are configuring some compiler options to aid with debugging. For
example we are saying that we would like all possible warning messages to be
shown (-Wall) and that we would like any warning to result in compilation
failing (-Werror). The flag -std=c++11 indicates that we are using a relatively
recent version of the C++ standard called C++11. We discuss the possible
compiler options further in Chapter 15.

Danger!

Note that it is crucial that the tabs on the left of this file are actual tab
characters and not spaces!

You can now compile the code by running the following from a command
shell

make␣clean␣all

You can then run the code by typing

./InterestCalculator

The make command is a standard Unix tool to make it easier to compile
C++ programs. It actually does very little itself other than call another Unix
program called g++ which actually compiles your files into assembly code. The
main advantages of make over using g++ directly are:

• You don’t need to type in the names of every single file you want to
compile. This is a big help for larger projects.

• If only one file has changed, make won’t recompile everything.

Running make␣clean gets rid of any code that has been created as part of
the compilation. Running make␣all runs an incremental compilation of the
files that have changed. Running make␣clean␣all first gets rid of all the code
and then runs a full compilation from scratch.

8 C++ for Financial Mathematics

1.4 Understanding the example code
If you have run the example code on page 6 it will ask you to supply a

principal, interest rate and duration of an investment. It then computes the
interest that will be accrued.

The mathematics is just compound interest. If the principal is P , the
interest rate is i per annum, and the duration of the investment is T , then
the interest accrued will be P (1 + i)T −P . Note that we’re using i here for an
interest rate compounded once per year.

The first few lines of code are all what is called “boiler plate” code. This is
a term for boring code that you have to write for technical reasons but which
doesn’t do much. It is called “boiler plate” because boilers often come with
a steel plate attached saying who made them and perhaps containing some
warnings about how to operate the boiler. Nobody ever reads this, but it has
to be there “for legal reasons”. The same is true for the first few lines of our
code. Its dull, and for the time being we’ll skip it.

The first interesting line of code is:

//␣Interesting␣code␣starts

This is an example of a comment. Once you write //, C++ ignores the rest of
the line. This allows you to put in helpful comments to guide others through
your code.

The last interesting line of code is

/*␣Interesting␣code␣ends␣*/

C++ also ignores any text sandwiched between the character combinations
/* and */. It even ignores new lines. For this reason this is called a multi-line
comment.

The first lines that actually do anything are the lines:

int␣principal;
double␣interestRate;
int␣numberOfYears;

These lines tell the computer to make room in memory for three variables
called principal, interestRate, and numberOfYears.

In order to work out how much space it will need to store the data, C++
needs to know what sort of data we will store in these variables. We will store
an integer in the variable principal and in the variable numberOfYears. We
will store a real number in the variable interestRate.

The phrase “int␣principal;” means: “please make room in memory for
a variable called principal that will store an integer”.6

6If you want to be really picky, it means make room for an integer within a certain range

Getting Started 9

The phrase “double␣interestRate;” means: “please make room in mem-
ory for a variable called interestRate that will store a real number”. There
are two keywords you can use in C++ to store a real number. You can use
float which stores a floating point number to a certain precision, or you can
use double which uses twice as much memory but is much more precise. Com-
puter memory is cheaper now than it was in 1969, so float isn’t used much
any more. The strange name double lives on for backwards compatibility.
If you think of double as meaning “real number” you won’t get into much
trouble.

Notice the semi-colon at the end of the statement “int␣principal;”. Ev-
ery statement in C++ ends with a semi-colon. You can think of it as the C++
equivalent of a full stop in English. However, C++ is much fussier than the
English language—if you forget a single semi-colon, the program won’t work.

The line

cout␣<<␣"How␣much␣are␣you␣investing ?\n";

writes the text “How much are you investing?” to the screen and then starts
a new line. Anything enclosed in quotation marks is interpreted as text rather
than computer code by C++. The special sequence of characters \n means
insert a new line.

The line

cin␣>>␣principal;

means read a number typed by the user and store it in the variable principal.
The next few lines behave much the same.
The mathematical heart of our calculation is given by the lines:

double␣finalBalance␣=
pow (1.0␣+␣interestRate␣*␣0.01,␣numberOfYears)
*␣principal;

double␣interest␣=␣finalBalance␣-␣principal;

These lines make room in memory for two variables called finalBalance and
interest and immediately assign values to these variables.

The computation of the interest is simple. It is just the finalBalance
minus the principal.

The final balance is computed using the formula P (1 + i)T where P is
short for principal, etc. Our code just expands the variable names, replaces
multiplication with *, and uses the function pow to raise a number to a given
power. In general pow(a,b)= ab.

Notice that C++ doesn’t care if your statements go over multiple lines.
This is great if you want to write a long formula. The price you have to pay is
that you must end all statements with a semi-colon, since C++ doesn’t look

of values that depends upon whether you have a 32 bit or a 64 bit computer, but that really
isn’t important right now.

10 C++ for Financial Mathematics

at the spacing of your code to guess where one statement ends and another
begins. We have indented our code to indicate that the first three lines should
be read as a group. You should always space your code carefully to make it
easy to read.

Unlike many other languages, C++ doesn’t have a special symbol for rais-
ing a number to a given power. You might think that the symbol ^ would be
a good choice, but C++ in its wisdom uses that for another purpose.

Notice that in mathematics we normally use single letters for variable
names such as the formula P (1 + i)T . When writing software, it is usually
better to use long variable names. This is because you can then just read the
code without having to go somewhere else to find what all the letters stand
for.

The next few lines should now be self-explanatory. They print out the
answer.

cout␣<<␣"You␣will␣earn␣";
cout␣<<␣interest;
cout␣<<␣"\n";

This example shows why C++ makes you specify the line breaks by hand:
Sometimes it can be useful to print out only part of a line.

The last few lines are more boiler plate:

return␣0;
}

If you are curious about what the boiler plate code means, don’t worry. All
will be explained shortly.

Exercises
One of the most difficult parts of learning C++ is learning how to cope

with compiler errors. So this section is very important. I recommend you refer
back to it whenever an error happens in your code.

The exercises below show what actually happens if we make some small
mistakes in our code.

1.4.1. In the line

int␣principal;

remove the semi-colon and then compile the code (recall that on Visual Studio
that means press CTRL F5 and on Unix you should type make␣all). What
error message is reported? Do you find this error message helpful?

Getting Started 11

Note that if you are working on Windows, you will have to use the scroll bar
to move the text in the Output window to the right. Better yet, find the
button on the toolbar of the Output window to enable word wrap.
Examine the error message. What part of it do you find most helpful? Can
you see how the compiler reports which line contains the error? Has it got this
right?
Put the semi-colon back, and make sure you can compile and run the code
once again.

1.4.2. Repeat the exercise above but removing the) symbol in the calculation
of the final balance instead. Make sure you get everything working again before
moving onto the next exercise.

1.4.3. Repeat the exercise above but removing the { symbol at the end of
the line

int␣main()␣{

Don’t panic! Just fix the problem.

1.4.4. Repeat the exercise above, but this time instead of just deleting a
character, insert a whole new first line of code that just contains the letter x.
Thus the code should start

x
#include␣<iostream>

Don’t panic! Just fix the problem.

1.4.5. As well as compilation errors, code can contain programming errors
that the compiler does not spot. Arguably our example contains one already.
What happens if you type “1000$” as the amount you would like to invest?
This happens because our code assumes you will only type in numbers.

1.4.6. What error do you get if you completely delete the line int␣principal;?
This happens because before you can use a variable in C++ you must tell the
compiler what type the variable is.

Tip: Dealing with compilation errors

C++ is very sensitive to tiny punctuation errors. When you get a screen full
of errors, don’t panic just: scroll up to the first error, fix that, and try
again.

Once C++ is confused it starts misinterpreting all of your code completely.

12 C++ for Financial Mathematics

So one tiny error can look like a disaster. This is why you should only ever
try and fix one error at a time.

You should treat the error messages as the compiler’s best guess of what
you’ve got wrong. As the examples above show it can get both the line numbers
wrong and the description of the error wrong.

In particular the line number might be slightly below the actual line con-
taining an error, or if you are really unlucky it might think the error is in a
different file. The line numbers reported as containing errors actually mark
the points where it realised that there was an error. This is why they are often
below where the real error occurred.

If the compiler tells you that the error is not in your code but in a library
it has definitely go it wrong!

You will find it very hard to work out where you have made an error in
your code. So always write programs a couple of lines at a time, constantly
testing that they compile and run. Then you know that any error that appears
must be in the lines you’ve just written.

If you made the mistake of writing an enormous chunk of code and can’t
work out where the errors are, then delete it all (or comment it out) and put
it back piece by piece. Learn from your mistake and start writing code a little
bit at a time.

1.5 Configuring the compiler
We have given a detailed recipe for how to configure the compiler to run

a simple program. If you are working on Windows, you will see that there are
many available options that we are ignoring. Similarly on Unix our Makefile
sets some basic compiler options, but other options are available.

We won’t worry much about configuring the compiler in this book as it
is an advanced topic which only becomes important if you are building large
programs that use different libraries or if you want to make sure the code is
fully optimised.

We have chosen to configure the compiler so that if errors occur when the
program is running, the error messages should be a bit more helpful. We call
this “debug mode”. Alternatively is also possible to configure the compiler
so that it runs as fast as possible. When developing code, or when learning
programming for the first time, it is a good idea to prioritise helpful error
messages. Once you are happy with your code, you might want to compile it
again with different settings so that it runs more quickly. This final version of
your code is called the “release” version of your code because it is the version
you would release to any users.

Getting Started 13

1.6 Making decisions
Let’s write a new program. Run through a similar process to that given

above, but this time let’s call our project ExamCalculator. Change all the
folders accordingly. The code for the main.cpp file in this project should look
like this:

#include␣<iostream >
#include␣<cmath >
using␣namespace␣std;

int␣main()␣{

int␣mark;
cout␣<<␣"What␣was␣your␣average␣mark?\n";
cin␣>>␣mark;

if␣(mark␣ >=␣70)␣{
cout␣<<␣"Congratulations !\n";
cout␣<<␣"You␣got␣a␣distinction .\n";

}
else␣if␣(mark␣ >=␣60)␣{

cout␣<<␣"Well␣done!\n";
cout␣<<␣"You␣got␣a␣merit!\n";

}
else␣if␣(mark␣ >=␣50)␣{

cout␣<<␣"You␣passed .\n";
}
else␣{

cout␣<<␣"You␣failed␣:-(\n";
}
return␣0;

}

Notice first that all of the boiler plate code is the same as in the last
example. This is why I’m calling it boiler plate code. You can just copy it
without thinking for the time being.

The more interesting thing to notice is that we are using an if statement
to make decisions on what the code should do next. The code to be executed
in each of the different circumstances is grouped together in sets of curly
brackets.

Be careful to notice the round brackets in the condition to be tested.
The else␣if parts of the statement are optional as is the else. You can

have as many else␣if statements as you like.

14 C++ for Financial Mathematics

Strictly speaking, when you only have one statement in a group you can
omit the curly brackets. For example, you could finish the code with just

}␣else
␣␣␣␣cout␣<<␣"You␣failed␣:-(\n";
return␣0;

However, it is generally accepted that code with curly brackets throughout is
easier to read. So you should always include them.

C++ doesn’t care much where you put spaces in your code. However, if
you space your code nicely it can be much easier to read. Different authors
have different preferences for how to format curly brackets. We will write our
curly brackets so that the { appears at the end of a line, the } appears at the
beginning of the line, and everything inside the brackets is indented. You will
see different conventions in other books. It doesn’t matter what convention
you choose, but it does make your code more readable if you pick a convention
and stick to it.

1.7 Exercises
1.7.1. If a company has revenue r and costs c, then its gross profits, g, are
given by g = r − c. If it has made a positive gross profit, suppose that a tax
of tg must be paid where t is the tax rate. On the other hand, if the company
has made a loss, no tax is payable. The net profit is equal to the gross profit
with tax paid subtracted.
Write a program called ProfitCalculator, which prompts the user for the
revenue, the costs, and the tax rate, and then prints out the gross profit and
the net profit.
Write two versions, one using single letter variable names and one using long
variable names such as grossProfit. Note that in C++ variable names can’t
contain spaces. This is why we use capitals in this way. This way of writing
variable names as all one word with capitals in the middle is called camel case.
The reason is because the word has now got a hump like a camel.
Do you prefer the code with long variable names or single letter names? Which
of the two versions would be easier for someone else to understand?

Getting Started 15

1.8 Summary
We have seen an example C++ program and learned how to compile and

run it. We have learned how to work with the error messages produced by the
compiler.

http://taylorandfrancis.com

Chapter 2
Basic Data Types and Operators

Whenever you use a variable in C++ you must specify the type of data that
will be stored in that variable. Moreover, once you have chosen the type of
data to be stored in a given variable you can’t change it. The jargon phrase is
that it is a statically typed language. This distinguishes C++ from computer
languages which take a more relaxed attitude to specifying the type of data.

The reason that specifying the type of data is important is that ultimately,
data is stored on your computer data as strings of 1s and 0s. Integers are
encoded as binary numbers. Letters are encoded as numbers written in binary.
Floating point numbers are stored in a binary version of scientific notation.

The problem is that if you just look at the 1s and 0s without also knowing
the type of the data, the data is completely meaningless. The chip that powers
your computer’s processing (the CPU or Central Processing Unit) treats data
blindly without caring about the type. This means that the CPU is willing to
carry out some pretty silly computations if you ask it to. For example, you
can ask your CPU to multiply the integer representing the character “w” by
the number seven. Probably the only reason you would do this is if your code
contains a bug and is accidentally using the same variable for numbers and
letters. These kinds of bugs can be found before you ever even run your code
if you use a statically typed language.

The C++ language has evolved from the C language. C is also statically
typed.

One of the reasons C caught on in the first place is that it is statically
typed. The machine-code everyone used before C came along is not statically
typed. Programmers quickly found that the C compiler was able to find a lot
of bugs automatically by checking types. This meant that they were able to
spend more time writing new code and less time fixing bugs.

2.1 Memory terminology
Because data is stored on computers using 1s and 0s, it is natural to store

integers using binary.

17

18 C++ for Financial Mathematics

• A single binary digit is called a bit. This is just a truncation of the phrase
binary digit.

• 8 binary digits are called a byte. This is just a bad joke.

• 1024 bytes make a kilobyte (1024 = 210 so the usual use of “kilo” to
mean 1000 is tweaked to work better in binary).

• 1048576 = 220 bytes make up a megabyte.

• Numbers representing memory locations are often written in hexadeci-
mal. This is base 16. The 16 characters 0, 1, 2, . . . , 9, A, B, C, D, E,
and F are used to represent hexadecimal digits. So A is equivalent to
the decimal number 10 and F to the decimal number 15. The hexadec-
imal number 10 can be written in decimal as 16. Four binary digits are
equivalent to one hexadecimal digit. For this reason, one hexadecimal
digit is called a nibble.

As is already clear, computer programmers have a particularly poor sense
of humour.

Old Joke: There are 10 kinds of people. Those who understand binary,
and those who don’t.

2.2 Basic data types
2.2.1 Integers

You can assign a fixed value to a variable of type int using the = operator
as follows.

int␣numerOfPlatonicSolids␣=␣5;

When you type an integer you should not include any commas or spaces.
So don’t write 1,000,000, simply write 1000000.

If you like you can specify an integer using a different numeric base. For
example, if you prefer counting in hexadecimal (base 16) you can type 0xFF
instead of 255. The prefix 0x means “This number is in hexadecimal”.

Confusingly, the prefix 0 on its own means “This number is in base 8”. So
the code

int␣numberOfPlanets␣=␣08;

Basic Data Types and Operators 19

doesn’t compile. Unfortunately, the chances of you remembering this fact are
slim! Fortunately, the chances of you making this error are also reasonably
low.

When you add two integers, you get an integer, of course. Similarly, if you
multiply or subtract them. However. . .

Danger!

When you divide two integers in C++ you get another integer. C++ simply
rounds down if necessary. The C++ code 3/5 evaluates to 0.

C++ actually gives you a number of choices for storing integer data de-
pending on the potential range of values your variable might take. Here are
some other data-type specifiers that are available, which all mean an integer
of one form or another:

short
int
long
long␣long
unsigned␣short
unsigned␣int
unsigned␣long
unsigned␣long␣long
size_t

The range of values you can store in each of these data types varies between
different C++ compilers. As you might guess, you can store smaller numbers
in shorts than you can in long longs. What you can be sure of is that you will
be able to store a value between −231 and 231 − 1 in an int variable and a
value between −263 and 263 − 1 in a long␣long variable.

By specifying that a variable is unsigned you are saying that it is non-
negative. Specifying the sign of a number takes up one bit of memory, so
unsigned integers can be twice as big as signed ones.

If you add one to an integer that takes the maximum possible value for
that data type, C++ wraps the value round so that it now takes the minimum
possible value for that data type. In other words, C++ does its computation
in binary and simply discards the top digits if an integer overflows the possible
range.

This isn’t normally a problem in practice unless you decide to use the
unsigned data types. For these data types you will find that the calculation
0− 1 yields a number greater than 0. This is extremely confusing and leads to
lots of bugs. For this reason I recommend that you avoid using the unsigned
data types.

The type size_t is used to store the size of data structures stored in
memory. Since the maximum amount of memory you can access on a 32-bit

20 C++ for Financial Mathematics

computer is 32 bits long, a size_t is 32 bits long for 32-bit computers and 64
bits long for 64-bit computers1.

In summary: Use int or long␣long for most purposes; use size_t for the
size of data structures; don’t bother with the other options.

2.2.2 Floating point numbers
Use double to store real numbers. Enter numerical values for real numbers

by simply entering the decimal expansion with a . character for the decimal
point.

Notice that C++ considers the numbers 1.0 and 1 to have different data
types and so to be different.

If you want, you have a choice of data types for real numbers. You can
use a float, a double, or a long␣double. We won’t describe the binary
representation of real numbers in detail. However, it is worth knowing the
following.

• Most real numbers can only be approximated by a computer. In com-
puter code calculations using real numbers will contain small rounding
errors. In particular, when testing your answers you should never test if
two decimals are equal, only if they are approximately equal.

• The coding for decimals allows for some special double values: Inf,
-Inf, NaN, -0.0. The first three represent, respectively, ∞, −∞, and
not-a-number (for example,

√
−1 is not a real number). The -0.0 con-

cept has no special purpose, but sometimes calculations give this as the
answer. Since you should only ever check if two decimals are approxi-
mately equal, the distinction shouldn’t cause problems.

2.2.3 Booleans
A bool is a variable which can take the value either true or false. These

are special keywords in C++.
bool variables are called Boolean variables in polite company. They are

named after the English mathematician George Boole.
When you print out a bool using cout␣<<, the value true is displayed as

1 and the value false is displayed as zero.

2.2.4 Characters
A char is a data type which is intended to store a character.

1For backwards compatibility, 64-bit computers can run 32-bit programs too. When
they are running in 32-bit compatability mode, they behave just as though they were 32-bit
computers.

Basic Data Types and Operators 21

Hex Character Hex Character Hex Character
20 space 40 60 ‘
21 ! 41 A 61 a
22 " 42 B 62 b
23 # 43 C 63 c
24 $ 44 D 64 d
25 % 45 E 65 e
26 & 46 F 66 f
27 ’ 47 G 67 g
28 (48 H 68 h
29) 49 I 69 i
2A * 4A J 6A j
2B + 4B K 6B k
2C , 4C L 6C l
2D - 4D M 6D m
2E . 4E N 6E n
2F / 4F O 6F o
30 0 40 P 70 p
31 1 41 Q 71 q
32 2 42 R 72 r
33 3 43 S 73 s
34 4 44 T 74 t
35 5 45 U 75 u
36 6 46 V 76 v
37 7 47 W 77 w
38 8 48 X 78 x
39 9 49 Y 79 y
3A : 4A Z 7A z
3B ; 4B [7B {
3C < 4C \ 7C |
3D = 4D] 7D }
3E > 4E ˆ 7E ˜
3F ? 4F _ 7F delete

TABLE 2.1: ASCII mapping of hexadecimal character codes to visible char-
acter codes

22 C++ for Financial Mathematics

In memory a char is stored as a number between 0 and 255, or, in hexadec-
imal, between 00 and FF. In other words, a char takes up exactly one byte.
Some of the mappings between a numeric value and a character are given in
Table 2.1.

Unfortunately, C++ was designed to be compatible with C, and C was
written by Americans in the 1960s. The authors of C clearly thought that an
alphabet of 256 characters would be more than enough for anyone, but for
languages like Chinese it is nowhere near enough. Thus a char is an appropri-
ate data type to store a character string written in English which may contain
some numbers and punctuation marks. However, using the char data type is
inappropriate for serious programs targeted at an international audience. We
will largely ignore these issues in this book, since we are far more interested
in working with numbers than working with text.

Interestingly, back when C was being devised, not everyone had computer
screens. Some computers just printed their output on paper. For this reason
the set of possible char values doesn’t just consist of letters, numbers, and
punctuation, it also contains some instructions for a teleprinter. A teleprinter
was a primitive printer that behaved more like a typewriter than a modern
printer. As a result, there is a special char value ’\n’ which means the in-
struction “new line”. ’\r’ means carriage return. ’\t’ means tab. There is
even ’\a’ which means make a ping sound to alert the user that the printout
is complete!

You specify a char by writing the character in quotes. For example:

char␣theLetterW␣=␣’W’;

Notice that a char represents a single character and not a sequence of char-
acters.

If you are extremely astute you will want to know how you write the
characters ’ and \, which seem to have special meanings. The answer is that
you write \’ and \\. A standard piece of computer jargon is that \ is an
escape character and the process of inserting \ characters is called escaping.

You can read and write a single characters using << and >> with cin and
cout just as we have been doing for numbers.

2.3 Casting
Sometimes you want to convert between one data type and another. This

is called casting.
Some type conversions that don’t result in a significant loss of information

happen automatically and without any problem. For example, you can convert
an int to a double without any worries.

Basic Data Types and Operators 23

int␣anInt␣=␣123;
double␣aDouble␣=␣anInt;
cout␣<<␣aDouble;
cout␣<<␣"\n";

This prints out 123, as you might expect.
If you have configured the compiler correctly, the code

double␣x␣=␣123.6;
int␣y␣=␣x;
cout␣<<␣x;
cout␣<<␣"\n";

should not compile.
The C++ specification says that this code is technically legitimate, but

that a warning should be issued. The instructions you followed to configure
your compiler should have included telling the compiler to fail if there is a
single warning. This has been done in Visual Studio by choosing the option to
treat warnings as errors. On Unix, our Makefile contains some instructions
to the compiler in the form of -Werror and -Wall, which mean much the same
thing.

Years of programming experience has shown that automatically converting
double values to int values whether by rounding up or down leads to bugs
in your code. Its too easy to inadvertently throw away information. For this
reason, the compiler will print a warning when you run this code and you
should treat that as a failed compilation.

The warning from my compiler is

conversion from ’double’ to ’int’, possible loss of data

Tip: Pay attention to compiler warnings

If the compiler issues a warning about your code you should fix it.
There are two reasons. First, it is almost certainly a bug in your code.

Second, if the output of your build is full of warnings, it will be hard to find
the first error. (This is important. You might recall that when the compilation
fails you should always focus on the first error message).

For this reason you should configure your projects so they fail if an error
occurs.

If you are certain that you want to convert a double to an integer by
rounding down, here is what you do:

double␣a␣=␣3.141;
int␣b␣=␣(int)a;
cout␣<<␣b;

24 C++ for Financial Mathematics

This is called casting. Note the (int), which means convert a into an
integer.

Casting a double to an int potentially loses information, namely the dec-
imal part. Casting an int to a double isn’t a problem, on the other hand.
However, casting an int to a float is risky, since the float data type uses
binary scientific notation with only a handful of significant figures. So an int
cannot be represented precisely using a float.

Casting a bool to an int converts true to 1 and false to 0. Casting an
int to a bool is possible too, but will normally result in a loss of information.

Casting a char to an int converts a character to the number used to
represent that character on your system. This is not a very useful feature
unless you are interested in performing text processing. One of the exercises
at the end of the chapter suggests you convert text to upper case by using
this feature.

Very often, the C++ compiler will automatically convert between one data
type and another for you. For example the following code works as you expect
without the need for cast statements:

int␣a␣=␣5;
double␣b␣=␣a;
cout␣<<␣b;

It prints out the number 5. However, the following code behaves rather badly.

int␣pi␣=␣3.141;
double␣r␣=␣4;
double␣area␣=␣0.5␣*␣pi␣*␣r␣*␣r;
cout␣<<␣area;

If you run the compiler so that all warnings are treated as errors (as you
should), the compiler will spot that there seems to be a typing mistake. The
variable pi should be a double not an int. However, the C++ standard
technically states that the above code is acceptable and so it is possible to
compile it, run it, and get a misleading answer.

Danger!

Always treat warnings as errors.

All though casting often happens automatically, you will sometimes want
to perform manual casting. One common case is if you want to divide two
integers to get a double. This code behaves unexpectedly:

int␣a␣=␣3;
int␣b␣=␣5;
double␣c␣=␣a␣/␣b;

Basic Data Types and Operators 25

cout␣<<␣c;

The compiler does perform some automatic casting, but in the wrong place!
It guesses that you want the data to be cast as shown:

int␣a␣=␣3;
int␣b␣=␣5;
double␣c␣=␣(double)(a␣/␣b);
cout␣<<␣c;

To understand this, it is best to break it down into two parts: the calculation
and then the cast. The code above is equivalent to:

int␣a␣=␣3;
int␣b␣=␣5;
int␣divisionResult␣=␣3␣/␣5;
double␣c␣=␣(double)divisionResult;
cout␣<<␣c;

It should now be clear why the code fails. Two ways you can write the code
so that it does what you want are:

int␣a␣=␣3;
int␣b␣=␣5;
double␣c␣=␣((double)a)␣/␣b;
cout␣<<␣c;

and

int␣a␣=␣3;
int␣b␣=␣5;
double␣aAsDouble␣=␣(double)a;
double␣c␣=␣aAsDouble␣/␣b;
cout␣<<␣c;

The syntax we have used here for casting comes from C and so is called a
C-style cast or an old-style cast. In C++ you can use an alternative notation
for casting, which is called a C++-style cast or a new-style cast. Here is an
example of a C-style cast to an integer:

double␣pi␣=␣3.141;
int␣piRoundedDown␣=␣(int)pi;
cout␣<<␣piRoundedDown;

Here is an example of a C++-style cast:

double␣pi␣=␣3.141;
int␣piRoundedDown␣=␣static_cast <int >(pi);
cout␣<<␣piRoundedDown;

26 C++ for Financial Mathematics

In my view, the C++-style syntax is bulky to type and hard to read.
However, many authors recommend using C++-style casts. In this book we
will use C-style casts, if only to save space in printouts.

2.4 Memory addresses
Another data type which is important in the C language is a memory

address, more commonly known as a pointer. Manipulating memory directly
is just the kind of thing that CPUs are good at. The aim of the C language
was to make it possible to write code that is similar to machine code in terms
of performance but is easier for humans to read and write. For this reason,
pointers are one of the basic data types in C. Since C++ contains C, pointers
are a basic data type in C++ too.

However, our aim is to do mathematics and not to manipulate computer
memory directly. For this reason we will try to avoid pointers wherever pos-
sible. We will only discuss them seriously in Chapter 11. Most C++ courses
introduce pointers very early. As a result new programmers get the idea that
they should use pointers a lot in their code too. However, an experienced
C++ programmer knows that pointers are only an appropriate tool for solv-
ing problems involving direct memory access. We will rarely use them.

Nevertheless, for the sake of completeness we will give a brief outline of
the concept now.

If you have a 32-bit computer, you can think of your memory as consisting
of up to 232 bytes of data. For 64-bit computers, simply replace the 32 with
64. We’ll assume a 32-bit computer for the remainder of the discussion.

Each of these 232 bytes is stored in a memory location. Each possible
location is itself labelled with a number. This number is called the memory
address and it takes a value between 0 and 232 − 1. Usually human beings
aren’t very interested in the precise value of a memory address, so they aren’t
often written down. But when one does write one out, it’s normal to write
them in hexadecimal. In hexadecimal we can say that a memory location is
a number between 00000000 and FFFFFFFF. This helps to clearly distinguish
memory locations from “normal” numbers.

A memory address is stored in C or C++ using a pointer data type. So
you know what type of data is stored at that memory address, the pointer
data type consists of two parts: the name of a data type that is pointed to
and a * character. For example, if we write:

double*␣dPointer␣=␣0x00000000;

then we have just declared a variable of type double* which means “a pointer
to a double” or equivalently “a memory location containing a double”. We

Basic Data Types and Operators 27

have specified the precise location that it points to, though it is extremely
unusual to do this directly.

The one place where beginners are most likely to encounter a pointer is in
so-called C-strings. Look at the following code:

const␣char*␣speech␣=␣"To␣be␣or␣not␣to␣be?";

This creates a variable called speech which is of type const␣char*. The char*
means it is a pointer to a memory location containing a character. The const
in front means that you can’t use the variable speech to change the text, only
to read it.

The memory location that speech points to contains the first letter of the
speech "T". The next memory location in sequence contains the letter "o". The
text of the speech is stored in consecutive memory locations. To mark the end
of the speech, the character code 0 is used. This is illustrated in Figure 2.1.
In this example, the memory location associated with the text is AB102C02 as
this is where the text starts.

FIGURE 2.1: Text stored in memory and a pointer to the start of the text.
The memory addresses are shown in hexadecimal.

Thinking of text in terms of pointers to memory locations is a pretty
difficult way to work. It is strongly recommended that you avoid doing this in
C++. Instead you should use the data type string. To use this you need to
have the line

#include␣<string >

near the top of the file with the other #include statements. You should also
have the line

using␣namespace␣std;

as usual. You can then create a variable of type string as follows:

string␣speech␣=␣"To␣be␣or␣not␣to␣be?";

28 C++ for Financial Mathematics

If nothing else this is easier to read than the version using const␣char*.
Use string as your preferred way of storing text.

Technically a string is not a basic data type in C++. This is why you
have to have write #include␣<string>. By default, only the basic data types
are available in C++ unless you have an #include statement to indicate that
you want to use a more complex data type.

We will talk at length about complex data types in this book. In fact, to
some extent this book is about creating your own sophisticated data types
in C++. We will create data objects to represent things such as options and
market data.

2.5 Operators
2.5.1 The sizeof operator

You can find the size (in bytes) of a data type using the sizeof operator.
For example, the code

size_t␣charSize␣=␣sizeof(char);
cout␣<<␣"A␣char␣takes␣up␣";
cout␣<<␣charSize␣<<␣"␣byte\n";

can be used to confirm that a char takes up one byte as claimed.

2.5.2 Mathematical operations
You can perform various operations on numbers. We have already discussed

+, ∗, − and /.
One other mathematical operator that you probably wouldn’t think of is

%. This is called the modulus operator. It computes the remainder on division.
So, for example, 13 % 5 is 3.

We have also already seen that you can’t raise a number to a given power
using the ^ operator. Instead you must use the function pow.

This function is defined in the library called cmath. The statement

#include␣<cmath >

at the beginning of all our programs means “we want to be able to use the
functions in the cmath” library.

There are plenty of other functions in the cmath library, such as sin,
cos, and so forth. The syntax for calling a function in C is the same as in
mathematics.

double␣x␣=␣2.345;

Basic Data Types and Operators 29

double␣y␣=␣sin(x)␣+␣cos (1.234);
cout␣<<␣"The␣answer␣is␣"␣<<␣y␣<<␣"\n";

If a function requires two arguments, then, just as in mathematics, you sepa-
rate the arguments with commas.

cout␣<<␣"The␣32nd␣power␣of␣2␣is␣";
cout␣<<␣pow(2,␣32);
cout␣<<␣"\n";

The available functions in the cmath library are listed here: http://www.
cplusplus.com/reference/cmath/.

2.5.3 Comparison operators
C++ also contains operators for performing comparisons. We have already

met >, <, >=, and <=. Also available is == (two equal signs) which is used
to test if two numbers are equal and ! = which is used to test if two numbers
are different.

Danger!

Use two equal signs == to compare numbers not one equal sign. One equal
sign is for assignment

2.5.4 Logical operators
The result of a comparison operation is a bool representing either true or

false. You can then combine bool values using the operators &&, ||, and !,
which mean and, or, and not, respectively.

So, for example, true␣&&␣false evaluates to false.

2.5.5 Bitwise operators
The operators &, |, ^, ~, << and >> treat integers as simply binary data

and perform manipulations on these bits.

• ~ is the bit inversion operator. So ~x contains binary representation of
x but with all the 1’s and 0’s switched.

• << shifts all the bits in a number to the left by a given amount. So x<<3
shifts all the bits 3 steps to the left.

• >> shifts all the bits in a number to the right by a given amount. So
x>>3 shifts all the bits 3 steps to the right.

http://www.cplusplus.com/reference/cmath/
http://www.cplusplus.com/reference/cmath/

30 C++ for Financial Mathematics

• & is the bitwise AND operator. The n-th bit of a&b is equal to 1 if the
corresponding bit of a is 1 AND the corresponding bit of b is 1.

• | is the bitwise OR operator. The n-th bit of a|b is equal to 1 if the
corresponding bit of a is 1 OR the corresponding bit of b is 1.

• ^ is the bitwise exclusive or operator (XOR). The n-th bit of a^b is equal
to 1 if the corresponding bit of a is 1 OR the corresponding bit of b is
1, BUT is 0 IF BOTH ARE 1.

These operators will be of no interest to us in this book, but are very useful if
you are working with computer graphics. For example, you can use the NOT
operator to generate the negative of a black and white image.

The only thing you have to remember is that you want to use && to mean
“and” and not &.

Danger!

The operator ^ does not mean raise to a power, it means XOR.

2.5.6 Combining operators
You can build up complex expressions by combining various operators.

However, you should be careful to use brackets to make your desired meaning
clear.

The precedence of some operators is well known. You probably know the
BODMAS rule for arithmetic that dictates that brackets come first, then
division, multiplication, addition, and subtraction. We’ve underlined the let-
ters that give the BODMAS rule its name.

The precedence of other operators is comparatively obscure. Which has
higher precedence, && or ||? It is not obvious. If in doubt, add brackets. I
recommend that you do notmemorise the rules for operator precedence beyond
the BODMAS rule. It’s better to use brackets for the benefit of everyone who
has not memorised them.

2.5.7 Assignment operators
The operators such as * and + that we have been discussing simply compute

a value. We have also seen the = operator. This assigns a value to a variable
as in the code:

int␣i;
i␣=␣3;

As we have already commented, to use a variable in an expression, we have

Basic Data Types and Operators 31

to have said what the type of the variable is at some point. This is why we
need to declare the type of the variable before we can use it in assignment
statements.

As a convenient shorthand, C++ allows you to combine assignment with
arithmetic in a single operator. For example, suppose that you want to add 3
to an integer variable called i then instead of typing i=i+3, you only need to
type i+=3.

There is also an assignment operator -= for combining assignment with
subtraction, and similarly there are operators *= and /=.

The following code is valid C++

int␣i␣=␣3;
int␣j␣=␣0;
j␣=␣(i␣+=␣4);
cout␣<<␣"The␣value␣of␣i␣is␣"␣<<␣i␣<<␣"\n";
cout␣<<␣"The␣value␣of␣j␣is␣"␣<<␣j␣<<␣"\n";

It prints out that the value of i is 7 as is the value of j. The way this code
works is that the expression i+=4 adds 4 to the value of i to compute 7. The
expression i+=4 is then itself considered to take the value 7, which is the value
assigned to j.

Here is a slightly more complex example:

int␣i␣=␣3;
int␣j␣=␣0;
j␣=␣3␣*␣(i␣+=␣4);
cout␣<<␣"The␣value␣of␣i␣is␣"␣<<␣i␣<<␣"\n";
cout␣<<␣"The␣value␣of␣j␣is␣"␣<<␣j␣<<␣"\n";

This time i works out as 7 and j works out as 21.
In general, an assignment expression both assigns a value and has a value,

which can be used for further computations.
Having said this, using the value of assignment expressions in this way

makes your code very confusing, so you shouldn’t actually do it. Unfortunately,
you will sometimes do it by accident. Consider the following code:

bool␣i␣=␣false;
bool␣j␣=␣true;
bool␣areIAndJEqual␣=␣(i␣=␣j);
cout␣<<␣"The␣value␣of␣areIAndJEqual␣is␣";
cout␣<<␣areIAndJEqual␣<<␣"\n";
cout␣<<␣"The␣value␣of␣i␣is␣";
cout␣<<␣i␣<<␣"\n";

The problem here is that the code contains a subtle bug. The expression i=j
should probably read i==j and this tiny difference changes the meaning of
the code!

32 C++ for Financial Mathematics

The next assignment operator is ++. It adds one to a variable. For example,
try the following code:

int␣c␣=␣5;
c++;
cout␣<<␣c␣<<␣"\n";

It should print out 6. This is why C++ is called C++. It is the next thing
after C. Did I mention that computer programmers like weak jokes?

You can also write ++c to increment the variable c. The difference between
c++ and ++c is that c++ takes the value of c before the c was incremented and
++c takes the value of c after c was incremented.

In other words, the code:

int␣c␣=␣5;
int␣d␣=␣c++;
cout␣<<␣"c="␣<<␣c␣<<␣"\n";
cout␣<<␣"d="␣<<␣d␣<<␣"\n";

will give the result that c=6 and d=5. Whereas

int␣c␣=␣5;
int␣d␣=␣++c;
cout␣<<␣"c="␣<<␣c␣<<␣"\n";
cout␣<<␣"d="␣<<␣d␣<<␣"\n";

will give the result that c=5 and d=6.

Danger!

Using the assignment operators =, +=, ++ etc. as part of more complex expres-
sions is very confusing. Don’t do it.

2.5.8 If statements revisited
Recall that the syntax for an if statement is:

if␣(expression)␣{
␣␣␣␣statements
}␣else␣if␣(expression)␣{
␣␣␣␣statements
}␣else␣if␣(expression)␣{
␣␣␣␣statements
}␣else␣{
␣␣␣␣statements
}

Basic Data Types and Operators 33

The expression is allowed to be any basic data type. The value 0 is inter-
preted as false and other values are interpreted as true.

So, for example, the following code snippet prints out that the test has
passed.

if␣(-1.743)␣{
cout␣<<␣"Test␣passed\n";

}

The problem occurs when you use = in tests by accident instead of ==. The
following is legal C++:

int␣i␣=␣1;
int␣j␣=␣3;
if␣(i␣=␣j)␣{

cout␣<<␣"i␣is␣equal␣to␣j\n";
}

In the if statement, the code assigns a value of 3 to the variable i and then,
observing that 3 is non-zero, prints out the false claim that i is equal to j.

Danger!

Do not use = in if statements. Use == instead. Make the compiler treat warn-
ings as errors to prevent this problem.

Exercises

Tip: Getting your code to work

If your code doesn’t compile, look at the advice on removing compiler errors
in the last chapter.

Some common errors to watch out for in beginner’s programs are:
• forgetting the semi-colon character;

• brackets that don’t match;

• forgetting either the curly brackets or the round brackets in if state-
ments;

• forgetting to enable treating warnings as errors.

34 C++ for Financial Mathematics

2.5.1. Write down, or compute, the values of:

• true␣||␣false

• (true␣&&␣false)␣||␣true

• true␣&&␣(false␣||␣true)

• true␣&&␣false␣||␣true

• 3*5==15␣&&␣(7*8==21␣||␣true!=false)

The moral of this exercise is that you should use plenty of brackets and that
you should split complex expressions into small ones.

2.5.2. Create a table of all the different basic data types and the number
of bytes that each uses. Use sizeof to find the answers. Try out various
combinations of long and unsigned, etc.

2.5.3. Cast char values to int values to find codes used for the characters
’a’, ’z’, ’A’, ’Z’, ’0’, and ’9’. What codes are used for a carriage return, a new
line, and a tab?

2.5.4. What value do you get if you subtract the unsigned␣int 5 from the
unsigned␣int 3? Try writing the numbers involved in binary to explain what
is going on.

2.5.5. Write a program that reads a single char of input and then prints out
the same character in upper case. To do this, convert the char to an integer
and use this to work out if it is a lower case letter or not. If it is, convert it
to the code for an upper case letter. Then convert this back to an integer.

2.5.6. Write a program where the user enters a decimal number and the code
prints out the nearest integer. You should use casting as part of your solution.
Write a second version the easy way by using the cmath library.

2.5.7. The following code contains several bugs. Fix them.

#include␣<iostream>
#include␣<cmath>
using␣namespace␣std;

int␣main()␣{
␣␣␣␣cout<<"Type␣0␣for␣stone,␣";
␣␣␣␣cout<<"1␣for␣scissors,␣2␣for␣paper\n";
␣␣␣␣cout<<"Enter␣player␣1’s␣move\n";
␣␣␣␣cin>>player1;
␣␣␣␣cout<<"Enter␣player␣2’s␣move\n";
␣␣␣␣cin>>player2;
␣␣␣␣if␣(player1=player2)␣{

Basic Data Types and Operators 35

␣␣␣␣␣␣␣␣cout␣<<␣"Its␣a␣draw\n";
␣␣␣␣}␣else␣{
␣␣␣␣␣␣␣␣diff␣=␣player1-player2;
␣␣␣␣␣␣␣␣if␣(diff==-2␣||␣diff==1)␣{
␣␣␣␣␣␣␣␣␣␣␣␣cout␣<<␣"Player␣1␣won\n";
␣␣␣␣␣␣␣␣}␣else␣{
␣␣␣␣␣␣␣␣␣␣␣␣cout␣<<␣"Player␣2␣won\n";
␣␣␣␣␣␣␣␣}
␣␣␣␣}
}

2.5.8. What does the following program output and why?

#include␣<iostream >
#include␣<cmath >
using␣namespace␣std;

int␣main()␣{
int␣a␣=␣ -1;
unsigned␣int␣b␣=␣0;
if␣(a<b)␣{

cout␣<<␣"a␣is␣smaller\n";
}
else␣{

cout␣<<␣"a␣is␣bigger\n";
}
cout␣<<␣"Because␣we’re␣interpreting␣a␣to␣equal␣";
unsigned␣int␣castValue␣=␣(unsigned␣int)a;
cout␣<<␣castValue;
cout␣<<␣"\n";

}

2.5.9. Write the bell character to cout. If your computer loudspeaker is work-
ing, it should beep at you.

2.6 Summary
We have learned about the useful data types int, double, char, and bool.

We have also learned some technical facts about other data types that we will
not use often in this book.

We have learned how to cast between data types and the potential pitfalls.

36 C++ for Financial Mathematics

We have learned about various C++ operators, including arithmetic op-
erators, comparison operators, logical operators, and assignment operators.

We have learned the extreme importance of enabling compiler warnings.
If you do not do this, you will write bugs that take you an eternity to find.

Chapter 3
Functions

A function in C++ is a piece of code that you can call to perform some task.
We have already seen the function pow that raises one number to a given
power. The cmath library (http://www.cplusplus.com/reference/cmath/)
contains various other mathematical functions.

As we shall see, functions in C++ are used for much more than just com-
puting mathematical formulae. In C++ all software should be divided into
functions, each of which performs a particular task. One builds up complex
functions by calling simpler functions. For example, you will write a black-
ScholesCallPrice function which will price a Call option using the Black–
Scholes formula (Equation (A.6)). This in turn will call a normcdf function
to compute the cumulative distribution function of the normal distribution.

On a larger scale, a bank’s trading system will contain a function to value
the bank’s portfolio. This will call functions to: read the current trading po-
sition from a database; extract current market data from some source such
as Bloomberg or Reuters; price the many different types of traded product.
Each of these tasks is itself very complex and is coded by breaking it down
into lots of small specialist functions.

In the introduction to this book we discussed the need to write scalable
and maintainable programs. One of the key ingredients is the technique of
breaking a problem into simpler pieces, each represented by its own function.

3.1 The C++ function syntax
Consider the mathematical function:

compoundInterest : R× R× Z −→ R

given by

compoundInterest(P, i, n) = P

(
1 + i

100

)n
− P.

Here P is the principal, i is the annual percentage rate, and n is the number
of years. To formally specify a mathematical function, you need to provide
the domain and the codomain as well as the formula to use.

37

http://www.cplusplus.com/reference/cmath/

38 C++ for Financial Mathematics

One provides very similar information when writing a C++ function. First
one gives the name of the function and describes the type of data it can
be applied to and the type of data it returns. Next one specifies the actual
formulae needed for the function.

In C++ one would write the compoundInterest function as follows.

double␣compoundInterest(double␣P,␣double␣i,␣int␣n)␣{
double␣interest␣=␣P␣*␣pow(1␣+␣0.01*i,␣n)␣-␣P;
return␣interest;

}

On the first line we first provide the type of data the function computes. In
this case it computes a double. Next we give the name of the function. In
this case the name is compoundInterest. We then list the names of all the
parameters and their types. In this example we have said that the name of
the function is compoundInterest. We have said that it takes 3 parameters
named P , i and n. We have said that the variable P is of type double. i is
also of type double and n is an integer.

The actual code for the function is written between a pair of curly brackets.
You can write any collection of statements you like inside the curly brackets—
perhaps assigning several variables and some if statements, for example.
When the computation is complete, the code uses the return keyword to
say what the result of the computation is.

In summary, the syntax for defining a function is:

ReturnType␣functionName(␣ParameterType1␣parameterName1,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ParameterType1␣parameterName2,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ParameterTypeN␣␣parameterNameN␣)␣{
␣␣␣␣...␣statements␣...
}

In any code written after this function has been defined, you can just call
the function exactly as though it was a built in function like sin or pow. So
for example we can rewrite our first example program as follows:

#include␣<iostream >
#include␣<cmath >
using␣namespace␣std;

double␣compoundInterest(double␣P,␣double␣i,␣int␣n)␣{
double␣interest␣=␣P␣*␣pow(1␣+␣0.01*i,␣n)␣-␣P;
return␣interest;

}

int␣main()␣{
int␣principal;

Functions 39

double␣interestRate;
int␣numberOfYears;
cout␣<<␣"How␣much␣are␣you␣investing␣?\n";
cin␣>>␣principal;
cout␣<<␣"␣What’s␣the␣annual␣interest␣rate (%)?\n";
cin␣>>␣interestRate;
cout␣<<␣"How␣long␣for␣(␣years␣)?\n";
cin␣>>␣numberOfYears;
double␣interest

=␣compoundInterest(principal ,
interestRate ,
numberOfYears);

cout␣<<␣"You␣will␣earn␣";
cout␣<<␣interest;
cout␣<<␣"\n";
return␣0;

}

In this example, we have replaced the computation of the compound in-
terest with a call to the compoundInterest function.

Note that the file contains two function definitions, one for a function
called compoundInterest and another for a function called main. In fact our
very first program contained a function called main as well, we just didn’t
discuss it at the time.

Every C++ application for the “console” must contain a function called
main. A console application is just a program that reads and writes text to the
screen as though it was still 1973. When the user asks to run your program,
the operating system will make sure that the function main is called. There
are many other kinds of applications, for example, web applications, windows
applications, and mobile phone apps. If you’re writing a console application,
you need a main function. The rules for other kinds of application are different
and beyond the scope of this book.

Here are some things to notice in our example:

• The definitions of the functions are written sequentially in the file. We
first define compoundInterest completely, then we define main com-
pletely.

• The variable names used when we call the function can be completely
different from those used in the definition of the function. When we
choose the names of parameters and variables in a function, those names
have no meaning outside of the function.

• There is a return statement at the end of each function. When a func-
tion has computed the desired value, it sends it back to the caller using
the return keyword.

40 C++ for Financial Mathematics

What does using a function actually buy us? In this case, the code is a
little bit longer than it was before, but does precisely the same thing. So what
are the advantages?

• Reuse. Every time we want to compute compound interest, we can sim-
ply call the compoundInterest function. We never have to write it again.

• Division of labour. The person who writes the main body of the code
only has to be an expert in asking the user for input and output. They
don’t need to understand how compoundInterest is actually computed
to write the main chunk of code. If you scale this up to an iPad user
interface to price a knock-out option, you realise why you might need to
divide the task between different team members.

• Modularity. We have broken our problem into distinct simpler pieces.
Just as a theorem is easier to follow when broken into lemmas, a program
is easier to understand when broken down into functions.

• Testability. In Chapter 6 we’ll see how using functions makes our code
easier to test.

Tip: Once and only once

You should never write the same code twice. If you want to perform the same
task twice, write a function that carries out that task.

A good programmer will avoid using cut and paste. If you copy code from
one place to another, you are just increasing the number of lines of code in
your program and hence increasing the amount of code you will need to debug.

Example 1: Write a function to compute the kinetic energy of a body of
given mass and velocity using the formula: E = 1

2mv
2.

Solution:

double␣kineticEnergy(double␣mass ,␣double␣velocity)␣{
return␣0.5␣*␣mass␣*␣velocity␣*␣velocity;

}

As this example demonstrates, you can return complex expressions as well as
the value of a single variable.

One thing to observe is that this function doesn’t print anything using
cout. Instead it quietly returns the answer using return. Using cout to print
things is great for your first few programs, but we now want to start writing
functions that operate silently. As an example, consider the built-in function

Functions 41

sin. It returns a value but it doesn’t print anything. If you think about it,
it would be annoying if it printed anything. When you are asked to write a
function to compute something, you should write a function that returns the
given value rather than a function that prints the given value. If an exercise
wants you to print something it will say so explicitly.

3.2 Recursion
Functions can call other functions. For example, our compoundInterest

function calls the function pow.
A more interesting feature is that functions can call themselves. This pro-

gramming technique is called recursion.
As an example, consider the following recursively defined sequence:

xn = nxn−1 n >= 1
x0 = 1.

Clearly xn = n!.
One can define a function to compute xn as follows:

int␣factorial(int␣n)␣{
if␣(n␣==␣0)␣{

return␣1;
}
return␣n␣*␣factorial(n␣-␣1);

}

If this function is called with the value n = 0 it will return 1, otherwise it will
return n␣*␣factorial(n-1). By induction it really does compute n!.

One other feature of C++ that this example illustrates is that a func-
tion can contain arbitrarily complex statements combining if statements and
return statements. Indeed, a function can have multiple return statements.
Once a return statement has been executed, the processing of the function is
complete and all further lines of code are ignored.

Recursion can be a powerful programming technique, and some algorithms
are easier to write if one uses recursion. While recursion is a popular topic in
computer science courses, we will not use recursion much in this book. The
exercises should give you some hints as to what is possible using recursion and
some of the pitfalls.

Recursion can be used equally effectively to construct paradoxes and bad jokes
as well as software. As an example, the name of the GNU software system

42 C++ for Financial Mathematics

which is widely used on Unix computers is a recursive acronym. GNU stands
for “GNU’s Not Unix”. It doesn’t even deserve a groan, does it?

3.3 Libraries
As we have seen, a C++ console application needs a main method. How-

ever, there are many other kinds of program such as Windows programs, web
applications, and so forth. One particularly important kind of program is a
library. A library is a collection of software routines that is designed to be
used inside other computer programs.

In practice, you are more likely to write libraries than you are to write
stand-alone applications. For example, your job may be to write routines to
price individual types of financial derivatives. It will then be somebody else’s
job to assemble your libraries with libraries written by other people in order
to, say, write a trading application.

As a result we are not actually very interested in the main method of our
program at all. We will keep a main method for the purpose of testing, but
you should stop thinking in terms of writing a program. From now on, you
should imagine that the software we are writing in this book is a library for
pricing and not a stand-alone program. Our aim is to write useful functions
rather than to write a single program.

3.4 Declaring and defining functions
In our example code, we defined the function compoundInterest before

the main function. We did this because the main function uses the compound-
Interest function.

In more sophisticated recursive code, you may want to write functions that
both call each other. To support this, C++ allows you to declare a function
and then define it later.

When you declare a function, you say what its name is and the types of
arguments that it requires. When you define a function you say what the
function actually does.

In all our function definitions so far, we have put the declaration and
definition together. But if you want you can separate the declaration and
definition.

Here is a stand-alone declaration for a compound interest function.

Functions 43

double␣compoundInterest(double␣P,␣double␣i,␣int␣n);

Notice that this is exactly the same as the first line of the definition of the
function except that the curly brackets have been replaced with a semi-colon.

One can then put the definition wherever you like in the code. The defini-
tion is all the code that we saw before:

double␣compoundInterest(double␣P,␣double␣i,␣int␣n)␣{
double␣interest␣=␣P␣*␣pow(1␣+␣0.01*i,␣n)␣-␣P;
return␣interest;

}

So the C++ definition actually contains the declaration at the start.
Here’s our example program rewritten so that the main method is defined

before the compoundInterest function. Note that the compoundInterest
function is still declared first.

#include␣<iostream >
#include␣<cmath >
using␣namespace␣std;

double␣compoundInterest(double␣P,␣double␣i,␣int␣n);

int␣main()␣{
int␣principal;
double␣interestRate;
int␣numberOfYears;
cout␣<<␣"How␣much␣are␣you␣investing␣?\n";
cin␣>>␣principal;
cout␣<<␣"␣What’s␣the␣annual␣interest␣rate (%)?\n";
cin␣>>␣interestRate;
cout␣<<␣"How␣long␣for␣(␣years␣)?\n";
cin␣>>␣numberOfYears;
double␣interest

=␣compoundInterest(principal ,
interestRate ,
numberOfYears);

cout␣<<␣"You␣will␣earn␣";
cout␣<<␣interest;
cout␣<<␣"\n";
return␣0;

}

double␣compoundInterest(double␣P,␣double␣i,␣int␣n)␣{
double␣interest␣=␣P␣*␣pow(1␣+␣0.01*i,␣n)␣-␣P;
return␣interest;

44 C++ for Financial Mathematics

}

Technically speaking, you can actually trim down a function declaration
to exclude the parameter names. This is a perfectly valid function declaration:

double␣compoundInterest(␣double,␣double,␣int␣);

Notice the analogy with the mathematical statement:

compoundInterest : R× R× Z→ R.

The parameter names in a function declaration are ignored by the computer,
and so they need not match the parameter names in the definition.

The idea that you can separate declaration and definition occurs a lot in
C++. Another example happens with variables. You can declare their type
and you can separately assign them a value. Or if you prefer you can declare
and define them simultaneously in one statement.

For example:

double␣principal;

declares a variable, whereas the line:

principal␣=␣1000.0;

assigns a value to the variable. The line

double␣principal␣=␣1000.0;

performs declaration and assignment in one step.

Tip: Declarations before definitions

When you write a C++ file, put all your function declarations before the first
definition.

Since function declarations don’t contain any code (and so can’t use other
functions), the order of the different function declarations isn’t important. You
should declare the most interesting functions first so that someone reading
your file can quickly understand the intention of the code.

Resist the urge to try and reorder functions so that the code compiles
without the need for separate declarations.

3.5 Functions that don’t return a value
As well as computing a value, a C++ function can perform tasks such as

writing text to the screen, sending data down the network, printing a file, and

Functions 45

so forth. This is an important difference between a computer function and the
purely mathematical notion of a function.

Very often you want a function to perform a task and don’t actually want
to compute a value. To do this, you use the special keyword void to describe
the return type.

For example, the function printHello given below simply prints the mes-
sage “Hello” and then returns.

void␣printHello ()␣{
cout␣<<␣"Hello\n";

}

Danger!

If it isn’t obvious already, in this fragment of code we’ve omit-
ted mentioning that you need the line #include␣<iostream> and the
line using␣namespace␣std;. We’ll often omit #include statements and
using␣namespace␣std; statements.

3.6 Specifying default values
Sometimes you may want to specify default values for parameters. For

example, here is the declaration of a function that allows you to price a call
option on a dividend paying stock, but which assumes the dividend rate is
zero if it is not supplied.

double␣computePrice(double␣strike ,
double␣timeToMaturity ,
double␣spot ,
double␣riskFreeRate ,
double␣volatility ,
double␣dividendRate␣=␣0.0);

If you have separate declarations and definitions, you should put the default
value into the declaration as we have done here.

46 C++ for Financial Mathematics

3.7 Overloading functions
It is possible in C++ to have two different functions that share the same

name but which take different numbers or types of parameters.
For example, you might write the following two functions which are both

called average.

double␣average(double␣a,␣double␣b)␣{
return␣0.5␣*␣(a␣+␣b);

}

double␣average(double␣a,␣double␣b,␣double␣c)␣{
return␣(a␣+␣b␣+␣c)␣/␣3.0;

}

Although these functions have the same name, they take different numbers of
parameters so when you type average(1.0,␣2.0,␣3.0) it is possible for the
C++ compiler to work out that you must want to call the second function.

Similarly, here are two possible max functions, one operates on integers and
the other on reals.

int␣max(int␣a,␣int␣b)␣{
if␣(a>b)

return␣a;
return␣b;

}

double␣max(double␣a,␣double␣b)␣{
if␣(a>b)

return␣a;
return␣b;

}

Again the compiler can work out which one you are calling. The code max(1,2)
would call the first version, whereas the code max(1.0,␣2.0) would call the
second version. This is desirable because we are avoiding unnecessary conver-
sions from int variables to double variables.

Since the identity of a function is determined by both its name and the
types of its parameters, this combination is called the signature of the function.
The idea is that two people are the same if they have the same signature and
similarly two functions are the same if they have the same signature.

If when you call a function, there isn’t a version with just the right signa-
ture available, C++ will perform automatic casting if necessary. For example,
you can type max(1,␣2.0) and it will call the version of the code that treats
all parameters as doubles.

Functions 47

3.8 Global and local variables
The functions that we have written so far interact by passing parameters

and returning values.
Sometimes you may think it is a good idea to share a variable between

functions.
As an example, there is no standard definition for the number π in C++.

So you might want to write the following code.

const␣double␣PI␣=␣3.141592653589793;

double␣computeArea(int␣r)␣{
double␣answer␣=␣0.5␣*␣PI␣*␣r␣*␣r;
return␣answer;

}

double␣computeCircumference(int␣r)␣{
double␣answer␣=␣2.0␣*␣PI␣*␣r;
return␣answer;

}

The first defines a double variable called PI with the given numeric value.
It uses the const keyword to indicate that the value is not allowed to change.

Because PI is declared outside of any function it is called a global variable.
By contrast, the variable r in each function is called a local variable.

The names you use for local variables within a function have no relationship
with the names you use in another function. For example, we have reused
the variable name “answer” in two different functions to refer to different
quantities. Because these variables are local variables they don’t interfere with
each other.

The scope of a variable refers to the parts of code where that variable can
be used. So we say that PI has global scope and r has local scope. In C++, the
curly brackets determine the scope of a variable. If a variable is first mentioned
within a set of curly brackets, it can only be referred to within those brackets.
Once the execution of the code leaves those brackets, the variable is deleted.
We will discuss scope further in Section 4.7.

Tip: Avoid global variables other than constants

Over time, computer programmers have learned that using global variables
makes code hard to understand. When writing programs you should try to
divide things into small independent pieces. Using global variables prevents

48 C++ for Financial Mathematics

these pieces being truly independent. When you change a global variable that
is used by some other bit of code you are unaware of, you may accidentally
break that code.

Danger!

In Chapter 20 we will learn how to write code which can execute more than
one function simultaneously. This is called multi-threaded code. If you use
global variables in multi-threaded code you can have a situation where two
bits of code are trying to change the same variables at the same time. This is
called a race condition. To prevent this happening, you need to use a technique
called locking. See Chapter 20 for details on how to do this.

3.9 Namespaces
We wrote a function called average in the previous section. In some ways

this isn’t a very good idea because the word average is ambiguous. Do we
mean the mean, mode, or median?

This might not seem a big problem. Now we’ve noticed the ambiguity, we
could just rename the function.

However, suppose we are using two libraries written by other teams (or
perhaps completely different companies). In one library they have used the
word average to indicate the mean. In another library they use the word
average to indicate the median. These functions are not written by us, so we
can’t change them. Will this mean the libraries are incompatible?

Furthermore, changing the name of a function isn’t always as easy as it
sounds. If we have written a library that somebody else is using, we can’t
change the name of a function without also changing their code. For this
reason, you can’t normally rename the functions in a library once you have
released the library to your customers.

The same problem will occur if two libraries use identically named global
variables.

To get round these problems, C++ has a mechanism called namespaces.
All global variables and functions have an associated namespace which can be
used to identify the function more precisely when necessary. Unless you specify
the namespace for your functions, they will be put in the global namespace.

In a similar way, English people have a first name that you can use to refer
to them and a second name that you can use to help resolve ambiguities.

Functions 49

As an example, the global variables cin and cout that we have been using
extensively are actually declared in a namespace called std. If you were to
create your own variables with the same names, you could still refer to the
familiar variables by using the qualified names std::cin and std::cout.

In fact, unless you explicitly declare that you are using a namespace with
the using␣namespace command, you will have to fully qualify the names.
This is why all our programs have begun with the line

using␣namespace␣std;

The line above means that we want to use any code in the C++ standard
library without the need to qualify the names. One can get rid of this line,
but at the expense of needing to fully qualify the variable name as shown
below:

#include␣<iostream>
int␣main()␣{
␣␣␣␣std::cout␣<<␣"Hello␣World\n";
}

You can put your own functions into a namespace as follows.

namespace␣geometry␣{

double␣computeArea(int␣r)␣{
double␣answer␣=␣0.5␣*␣PI␣*␣r␣*␣r;
return␣answer;

}

double␣computeCircumference(int␣r)␣{
double␣answer␣=␣2.0␣*␣PI␣*␣r;
return␣answer;

}

}

This code creates two functions and puts them both in a namespace called
geometry.

We won’t write our own namespaces in this book simply because doing so
would make our code examples a little longer. However, in real code that you
expect to use in practice and share with other people, you should always use
namespaces to avoid potential naming conflicts.

50 C++ for Financial Mathematics

Exercises
In the questions below write lots of functions (at least one per question) but

only one main function that should run each of your functions in turn to check
that they work. Notice that the questions are only interested in the functions
that you write and not in the main method that tests them. So there’s no
need to write an interactive program, just check that your functions work for
a few input values.

3.9.1. Write a recursive function to compute the sum of the numbers between
1 and n.

3.9.2. Write a recursive function that takes two integer parameters a and b
and prints out all the numbers from a to b.

3.9.3. The n-th Fibonacci number can be defined by xn = xn−1 + xn−2 if
n ≥ 2. We define x0 = 1 and x1 = 1. Write a function fibonacci that
evaluates the n-th Fibonacci number by recursion. How many times is the
function fibonacci called in order to compute each of x2, x3, x4, and in
general, xn? Don’t worry, we will find a far more efficient way to compute the
Fibonacci numbers in the next chapter.

3.9.4. A commonly occurring function in financial mathematics is the cumu-
lative normal function defined by:

normcdf(x) = N(x) = 1√
2π

∫ x

−∞
exp(−t2/2) dt

If x >= 0 we define:
k = 1/(1 + 0.2316419x)

a good approximation forN(x) is given by:

1− 1√
2π

exp(−x2/2)k(0.319381530 + k(−0.356563782 + k(1.781477937

+ k(−1.821255978 + 1.330274429k)))).

For x <= 0 you can use the same formula to evaluate 1−N(−x).
The formula can be derived by choosing the general functional form and then
finding the coefficients that give the best fit. For this question, you should just
accept the formula on face value.
Write a function called normcdf to evaluate the cumulative normal function.
Why would N be a bad name for the function?

3.9.5. Is
√

2π recomputed every time your normcdf function is used? Use a
global variable to improve this.

Functions 51

3.9.6. For each n ∈ N define a mathematical function hn as follows

h0(x, a0) = a0

hn(x, a0, a1, a2, . . . , an) = a0 + xhn−1(x, , a1, a2, . . . , an).

We will call these “Horner functions” because they use the Horner method of
evaluating a polynomial. Any polynomial in x can be rewritten as

hn(x, a0, a1, a2, . . . an)

for appropriate constants ai. The advantage of using h to evaluate the poly-
nomial is that you don’t have to compute high powers of x.
Implement the first few Horner functions in C++. Give all your functions the
same overloaded name hornerFunction. Use a Horner function to simplify
your normcdf function.

Note: This question requires some tedious cutting and pasting. Hopefully you
will want to rebel against this and find a better way of solving the problem
than just cutting and pasting! However, in this case some tedious cutting and
pasting is the right thing to do. This is a rare case where you should violate
the Once and Only Once principle. The original code for normcdf should have
been very fast because it contains no complex code like loops (to be covered
in Chapter 4). We’re introducing hornerFunction to improve readability, but
we don’t want to harm the speed too much. That’s why we don’t want to be
too clever.

3.9.7. Implement the Moro algorithm for the inverse function of the cumula-
tive normal distribution. Call the resulting function norminv.
The Moro algorithm proceeds as follows:
Suppose x ∈ [0, 1]. Define y = x − 0.5. If |y| < 0.42, define r = y2 and
approximate norminv with the following formula:

y
h3(r, a0, a1, a2, a3)

h4(r, 1.0, b1, b2, b3, b4) .

We will define the constants ai and bi shortly.
Suppose |y| >= 0.42. If y is negative let r = x. Otherwise let r = 1−x. Define
s = log(− log(r)). Define t by

t = h8(s, c0, c1, . . . , c8).

If x > 0.5, norminv is approximated by t, otherwise by −t.
Here is a table of values for the constants:

52 C++ for Financial Mathematics

a0␣=␣2.50662823884;
a1␣=␣-18.61500062529;
a2␣=␣41.39119773534;
a3␣=␣-25.44106049637;
b1␣=␣-8.47351093090;
b2␣=␣23.08336743743;
b3␣=␣-21.06224101826;
b4␣=␣3.13082909833;
c0␣=␣0.3374754822726147;
c1␣=␣0.9761690190917186;
c2␣=␣0.1607979714918209;
c3␣=␣0.0276438810333863;
c4␣=␣0.0038405729373609;
c5␣=␣0.0003951896511919;
c6␣=␣0.0000321767881768;
c7␣=␣0.0000002888167364;
c8␣=␣0.0000003960315187;

3.9.8. Write a function blackScholesCallPrice, which takes five param-
eters (the strike price, time to maturity, spot price, volatility, and risk-free
interest rate) and computes the call option price using the Black–Scholes for-
mula. The formula is given in Equation (A.6) in the appendix.

3.9.9. Do you need to know about Moro’s algorithm or Horner’s method in
order to use the norminv function? Explain the connection between this and
the problems of scalability and maintainability.

3.9.10. How have you tested your code?

3.9.11. Use the online documentation for C++ to find out about the function
erfc. What do you need to include to use this function? How can you use this
function to simplify some of the code we have written in earlier exercises?

3.10 Summary
We have seen how the use of functions allows us to break our code into

small pieces which can be reused.
In the exercises, we have written a function, blackScholesCallPrice,

which relies on the function normcdf, which in turn depends upon the function
hornerFunction. We can build highly sophisticated programs by combining
functions. By getting different programmers to write different functions, we
can divide knowledge across a team.

Functions 53

We have seen how C++ allows you to write recursive functions.
We have seen that every C++ function has a namespace, a name, and

a signature. We have seen how C++ uses namespaces and types to resolve
naming conflicts.

We have learned the difference between local and global variables. We have
learned how to define const variables.

http://taylorandfrancis.com

Chapter 4
Flow of Control

We have already used the flow of control statements if and else extensively.
In this chapter we will learn the other control flow statements provided by
C++.

4.1 while loops
There are three main ways to perform a task repeatedly in C++: for

loops, while loops, and do-while loops. The easiest to understand is a while
loop.

void␣launchRocket ()␣{
int␣count␣=␣10;
while␣(count >0)␣{

cout␣<<␣count;
cout␣<<␣"\n";
count --;

}
cout␣<<␣"Blast␣off!\n";

}

To see what this code does, just call the launchRocket function from the main
function.

The flow of control is illustrated in the flow chart, Figure 4.1.
The body of the while loop is the collection of statements between the curly

brackets.

cout␣<<␣count;
cout␣<<␣"\n";
count --;

This code is executed repeatedly until the condition count>0 ceases to be
true. Recall that the instruction count-- means “subtract one from count”.
So the while loop will count down from 10 to 1 at which point the program
moves onto the first line after the while loop.

This is the line:

55

56 C++ for Financial Mathematics

FIGURE 4.1: Flow of control in the launchRocket function.

cout␣<<␣"Blast␣off!\n";

The general syntax of a while loop is.

while (<expression>) {
<statements>

}

Technically speaking, if there is only one statement in the while loop, you
can omit the curly brackets. However, it is considered good programming style
to always include the curly brackets.

Let us give another example of a while loop. This time we print out the
powers of 2 less than 1000.

void␣printPowersOf2 ()␣{

Flow of Control 57

int␣count␣=␣0;
int␣currentPower␣=␣1;
while␣(currentPower <1000)␣{

cout␣<<␣"2^"␣<<␣count␣<<␣"=";
cout␣<<␣currentPower;
cout␣<<␣"\n";
currentPower␣*=␣2;
count ++;

}
}

Here we are using the shortcut assignment operator *=.
As one further example, consider the function:

void␣loopForever ()␣{
while␣(true)␣{

cout␣<<␣"Still␣looping\n";
}

}

This program will loop forever. If you run the program, you can stop it by
typing CTRL+C (on Windows and Unix) or CMD + . (on a Mac) in the
console window where the program is running.

4.2 do-while loops
These are very similar to while loops except that the test of whether to

continue is performed at the end of the loop. For example:

void␣launchRocket_DoWhileVersion ()␣{
int␣count␣=␣10;
do␣{

cout␣<<␣count;
cout␣<<␣"\n";
count --;

}␣while␣(count␣ >=␣1);
cout␣<<␣"Blast␣off!\n";

}

The general syntax of a do-while loop is

do {
<statements>;

} while (<expression>);

58 C++ for Financial Mathematics

Because the test is only performed at the end of a do-while loop, the body
of the loop is always executed at least once.

It is generally accepted that do-while loops are hard to read, so they are
not used very often. The other looping constructs are preferred.

4.3 for loops
It was noticed by the designers of C that most while statements look, in

outline, like this:

<initialise loop variables>;
while (<test loop variables>) {

<perform main steps of code>
<update loop variables>

}

To make this repeated design more obvious in code, they introduced the
for loop. This takes the general form:

for (<initialise loop variables>;
<test loop variables>;
<update loop variables>) {

<perform main steps of code>
}

To write a for loop one simply takes a while loop of the form above and
moves the code around to match the syntax of a for loop.

For example, our code to launch a rocket becomes:

for␣(int␣i␣=␣10;␣i␣>␣0;␣i--)␣{
cout␣<<␣i;
cout␣<<␣"\n";

}
cout␣<<␣"Blast␣off!\n";

To a newcomer to C++, this doesn’t look like much of an improvement.
The only obvious advantage is that this takes up less lines than the while
loop equivalent. However, it reads less like English than the while loop. If
you are new to C and C++ you will probably think the while loop is easier
to follow.

With familiarity you will grow to prefer the for loop. Not because it’s
easier to understand when you actually read the code, but because you recog-
nise the general shape and so can guess the meaning without looking at the
details. Fairly quickly, you’ll be able to glance at a for loop and immediately

Flow of Control 59

see what it is doing, whereas with a while loop you will need to actually read
the code.

Here is the code to count up from 0 to 9 (inclusive). You should commit
this code to memory:

for␣(int␣i␣=␣0;␣i<10;␣i++)␣{
cout␣<<␣i;
cout␣<<␣"\n";

}

Matching this against the general syntax we see that the code to “initialise
loop variables” is:

int␣i=0

so this code initialises a variable called i and sets its initial value to 0.
The “test loop variables” code is i<10. So the body of the loop will be

repeated until i is equal to 10. Note that the value 10 will not itself be printed.
The “update loop variables” code is i++. So after every loop, i will be

incremented.
The “perform main steps of code” is

cout␣<<␣i;
cout␣<<␣"\n";

These main steps will be repeated a total of 10 times.
Here is the code to count up from 0 to 90 (inclusive) in steps of 10.

for␣(int␣i␣=␣0;␣i␣<␣100;␣i␣+=␣10)␣{
cout␣<<␣i;
cout␣<<␣"\n";

}

Tip: Start counting at 0

C++ programmers start counting at 0. This is a matter of convention. All the
standard data structures in C++ are labelled so that they start with 0.

You might not like it at first, but I strongly recommend that when pro-
gramming in C++ you start counting from 0 and so use < signs rather than
<= signs to compensate.

There are some pretty good reasons for starting counting at 0, because
some formulae are easier to write. For example suppose you label the entries
of a matrix as follows: 

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15



60 C++ for Financial Mathematics

Suppose you label the rows with indices i ∈ {0, 1, 2, 3} and the columns with
indices j ∈ {0, 1, 2, 3}—then the entry at (i, j) is 4i+ j. It is obvious how this
formula generalises to higher dimensional data structures than matrices.

Let’s repeat the exercise where we now count from 1. We would label the
entries of the matrix as: 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


We now label the rows with indices i′ ∈ {1, 2, 3, 4} and similarly label the
columns with j ∈ {1, 2, 3, 4}. The entry at (i, j) is now 4(i′−1)+(j′−1)+1 =
4i′ + j′ − 3. This is a much less elegant formula than before and it doesn’t
generalise as straightforwardly to higher dimensions.

Note that there is another kind of for loop in C++, which has a simpler
syntax but which is compensatingly less flexible. See Chapter 18 for details.

4.4 break, continue, return
In the middle of a loop, you can decide that you want to jump out of

the loop and start executing the statements after the loop using the break
keyword.

For example, this code keeps adding up the numbers typed by the user
until they enter a negative number. At this point, the software prints out the
total of the positive numbers.

cout␣<<␣"Enter␣positive␣numbers␣followed␣";
cout␣<<␣"by␣a␣negative␣number␣to␣quit\n";
int␣total␣=␣0;
while␣(true)␣{

int␣next;
cin␣>>␣next;
if␣(next <0)␣{

break;
}
total␣+=␣next;

}
cout␣<<␣"The␣total␣is␣"␣<<␣total␣<<␣"\n";

The continue keyword means skip the rest of the code in the body of the

Flow of Control 61

loop, go to the next test statement, and decide whether to continue looping.
Thus continue means “continue looping” whereas break means “break out
of the loop”.

Here is an example of a continue statement:

cout␣<<␣"Enter␣positive␣numbers␣";
cout␣<<␣"Type␣CTRL+C␣to␣quit\n";
int␣total␣=␣0;
while␣(true)␣{

int␣next;
cin␣>>␣next;
if␣(next <0)␣{

continue;
}
total␣+=␣next;
cout␣<<␣"Positive␣total␣is␣"␣<<␣total <<␣"\n";

}

You can also use a return statement in the middle of a loop. This stops all
looping and returns the execution to the point where the function was called.

Here is an example of a return from inside a loop:

void␣countdown ()␣{
int␣i␣=␣10;
while␣(true)␣{

if␣(i␣==␣0)␣{
return;

}
cout␣<<␣i␣<<␣"\n";
i--;

}
}

Although break and continue can sometimes make code clearer, they
typically make it harder to follow. For this reason newcomers to C++ are
best advised to avoid using these statements.

4.5 throw statements
Very often, you will want a function to stop abruptly and indicate that an

error has occurred. To do this you use a throw statement.
To use throw statements you will need to add the text

#include␣<stdexcept >

62 C++ for Financial Mathematics

alongside the other #include statements at the beginning of your code.
To indicate that an error has occurred, use the following formulation:

throw␣logic_error("You␣can’t␣do␣that");

You can include pretty much whatever text you like between the quotation
marks. Try to provide some clue as to what has caused the problem. When we
have discussed string manipulation in Section 7.5 you will be able to create
more helpful error messages.

Here is an example of how you might use a throw statement:

double␣debitAccount(double␣balance ,␣double␣amount)␣{
double␣newAmount␣=␣balance␣-␣amount;
if␣(newAmount <0.0)␣{

throw␣logic_error("No␣overdraft␣agreed");
}
return␣newAmount;

}

It is much better for a program to throw an error and terminate than for
it to print out an error message and try to struggle on. This is true for several
reasons:

• Nobody is reading the messages! A lot of the code used in finance is
running on servers and not on the user’s computer. If you write a message
to the log file of a server, then the chances are that no one will ever read
it.

• It is better to fail obviously than to fail subtly. You don’t want someone
to think a transaction has gone ahead when it has actually failed.

• If an error is thrown immediately it is easy to see where that error
occurred and what was happening when the error occurred. If you look
at a log file a day later, you may have no way of working out what was
happening.

You might be tempted to try and handle errors in a more sophisticated way
than just terminating the program, but the truth is you probably can’t. If an
error happens in the type of code we are writing, it is probably a programming
error and no amount of asking the user to try again later is going to fix the
problem. There is nothing for it but to report the error and fix the code.

Dealing with errors in software is an advanced topic in computing. If you
are writing an operating system, it is crucial that a bug in a single program
doesn’t make the entire computer crash. If you are writing a web browser, it
is important that a single rogue web page won’t make the web browser crash.
However, writing web browsers and operating systems are tasks for experts in
those fields, not experts in financial mathematics.

If you do wish to handle errors in a more sophisticated way than simply

Flow of Control 63

terminating the program you need to use the try and catch statements. In
addition you may want to throw errors of different types to just logic_error
so that you can distinguish between different types of error. You can find more
information in any C++ reference book. We will not need these techniques in
this book.

4.6 switch statements
A more complex alternative to an if statement is a switch statement.

Here is an example:

void␣printMessage(int␣score)␣{
switch␣(score){
case␣0:
case␣1:
case␣2:
case␣3:
case␣4:

cout␣<<␣"You␣have␣failed .\n";
break;

case␣5:
case␣6:

cout␣<<␣"You␣have␣passed .\n";
break;

case␣7:
cout␣<<␣"Merit.\n";
break;

case␣8:
case␣9:

cout␣<<␣"Distinction .\n";
break;

default:
cout␣<<␣"Invalid␣score.\n";
break;

}
cout␣<<␣"Good␣luck␣in␣your␣future␣career .\n";

}

This program prints out the grade for an exam based on your mark. Marks
0–4 are fails, 5 or 6 is a pass, 7 is a merit and 8 or 9 is a distinction.

The general syntax is:

switch␣(<expression>)␣{

64 C++ for Financial Mathematics

␣␣␣␣case␣<possible␣value>:
␣␣␣␣␣␣␣␣<statements>
␣␣␣␣case␣<possible␣value>:
␣␣␣␣␣␣␣␣<statements>
␣␣␣␣...
␣␣␣␣case␣<possible␣value>:
␣␣␣␣␣␣␣␣<statements>
␣␣␣␣default:
␣␣␣␣␣␣␣␣<statements>
}

The body of the switch statement is the code between the curly brackets.
This consists of a list of possible cases and some code to execute. When ex-
ecuting this switch statement, the computer will first evaluate expression.
It then looks for the first matching case statement and executes all the code
from there up to either the first break statement or up to the end of the switch
statement.

If there is no match, the computer looks for a default statement and
evaluates all the code from there to the end of the switch statement.

After executing the required statements from the body of the switch state-
ment, the program moves on to the next statement after the switch statement.
In our example this means it will wish you good luck in your career.

Notice that you have to be careful to insert break or return statements
into your switch statements to make sure the code doesn’t execute more
statements than you want it to.

For example, if you remove all the break statements from our example,
then a score of 0 would be greeted with the response

You have failed.
You have passed.
Merit.
Distinction.
Invalid score.
Good luck in your future career.

If you dislike the syntax of switch statements, you are not alone. Fortu-
nately, they aren’t very useful in modern C++ code. In modern C++ one
should use the object-oriented programming technique of polymorphism in-
stead. We will cover this subject in depth in Chapter 10. If you find yourself
tempted to write a switch statement, it’s a sign that you aren’t using object-
oriented programming to full advantage.

Tip: Always include a default case

If you must write a switch statement, always be sure to include a default

Flow of Control 65

case. Usually your default case will generate an error by using a throw state-
ment. Simply printing an error (as happens in our example) is a bad idea.

4.7 Scope
The flow of control statements above make use of curly brackets. If you de-

fine a variable within curly brackets, it can only be used within those brackets.
Once the execution of the program leaves the brackets, the variable is deleted.
The part of the code in which you can refer to a variable is called the scope
of the variable.

Here is an example code snippet that computes the sum of the squares of
the first 10 integers (starting from 0, of course).

int␣n=0;
int␣total;
for␣(int␣i=0;␣i<10;␣i++)␣{
␣␣␣␣int␣squareValue␣=␣i*i;
␣␣␣␣total␣+=␣squareValue;
}
std::cout␣<<␣n;
//␣std::cout␣<<␣squareValue;
//␣std::cout␣<<␣i;

The variable squareValue is only valid within the curly brackets. The variable
i is only valid within the for statement itself and within the curly brackets.
If you were to try to remove the comment characters // on the last two lines,
the code would not compile.

The scope of variables is used to control the use of memory in C++. When
variables go out of scope, the memory can be safely reused. Often you won’t
need to think about the memory management in C++. However, there are times
when you will want to take control of memory management yourself. We will
discuss this in Chapter 11.

4.8 Flow of control in operators
A technical point is that certain operators in C++ actually control the

flow of the program in subtle ways.

66 C++ for Financial Mathematics

4.8.1 Short circuit evaluation
The expression lhs␣&&␣rhs evaluates to true if both lhs and rhs evaluate

to true. To improve efficiency, C++ doesn’t even bother evaluating the ex-
pression rhs if lhs isn’t true. This is usually just what you want to happen.
However, if evaluating the expression rhs actually calls another function, you
may be surprised that this function isn’t always called.

Similarly lhs␣||␣rhs doesn’t evaluate rhs if it is already known that lhs
is true.

As an example, try the following code:

bool␣test1 ()␣{
cout␣<<␣"In␣test1\n";
return␣false;

}

bool␣test2 ()␣{
cout␣<<␣"In␣test2\n";
return␣true;

}

int␣main()␣{
bool␣value␣=␣test1 ()␣&&␣test2 ();
cout␣<<␣"Value␣"␣<<␣value␣<<␣"\n";
return␣0;

}

You will see that the function test2 is never called.

4.8.2 The ternary operator
The operator * as in the expression a∗b is called a binary operator because

it takes two arguments. The operator ++ on the other hand is called a unary
operator.

C++ also contains one operator which takes three arguments and which
so is known as the ternary operator.

The ternary operator is, in essence, a short cut for writing if statements.
The syntax is:

<test expression> ? <value if true> : <value if false>

As an example, here is a program that uses the ternary operator to com-
pute the maximum of two numbers:

int␣max(int␣a,␣int␣b)␣{
return␣a>b␣?␣a␣:␣b;

}

Flow of Control 67

Here is some equivalent code that uses an if statement.

int␣max(int␣a,␣int␣b)␣{
if␣(a>b)␣{

return␣a;
}␣else␣{

return␣b;
}

}

People who are too lazy to type like the ternary operator, but it results in
code which is very hard to understand. Don’t use it.

4.8.3 The comma operator
Between the round brackets of a for statement one always has three ex-

pressions separated by semi-colons. Here is an example:

for␣(int␣i␣=␣0;␣i<100;␣i++)␣{
cout␣<<␣i␣<<␣"\n";

}

You can if you like perform multiple calculations at the end of each loop
and multiple initialisations by using the so-called “comma operator”. Here’s
an example that prints out the first 10 powers of 2:

for␣(int␣count␣=␣0,␣power␣=␣1;
count <10;
count++,␣power␣*=␣2)␣{

cout␣<<␣power␣<<␣"\n";
}

In this code we maintain two loop variables, count and power, each of which
is updated every iteration.

The formal definition of the comma operator is that the expression
lhs,␣rhs evaluates lhs and discards the result and then evaluates rhs. Thus
you can, if you wish, string expressions together using the comma operator as
an alternative to using semi-colons in the conventional way.

Don’t use the comma operator yourself. It leads to code that is hard to
read (as our example demonstrates). We wrote a program earlier (page 56)
that printed out the powers of 2 using a while loop that was much easier to
follow.

68 C++ for Financial Mathematics

Exercises
4.8.1. Use a while loop, a for loop, and a do-while loop to provide different
implementations for the factorial function.

4.8.2. Given a function f : R→ R, we can approximate the integral∫ b

a

f(x) dx

using the rectangle rule. Given an integer n, the rectangle rule approximation
for this integral is:

1
n

n−1∑
i=0

f

(
a+ ih+ 1

2h
)

where h = b−a
n . Write a function that computes the rectangle rule approxi-

mation to: ∫ b

a

sin(x) dx

for given a, b and n.

4.8.3. We would like to compute the integral∫ x

−∞
exp(−t2/2) dt.

By making the substitution t = x+ 1− 1
s we can see that this is equal to the

integral ∫ 1

0

1
s2 exp

(
−
(
x+ 1− 1

s

)2

2

)
ds.

This integral can then be estimated using the rectangle rule. Write a function
that uses a for loop to compute this second integral using the rectangle rule.

4.8.4. Use the looping construct of your choice to compute the n-th Fibonacci
number. Explain why this is more efficient than the method using recursion
considered in Exercise 3.9.3.

4.8.5. Improve the norminv function so that it throws an error if asked to
evaluate a number outside the range [0, 1].

4.8.6. Improve the norminv function so that it takes an extra boolean pa-
rameter that indicates whether or not to throw an exception when given an
input outside the range 0 and 1. What would be a good default value for this
parameter?

Flow of Control 69

4.8.7. Make sure that you can write a for loop that prints the numbers from
0 to 9 in increasing order without needing to look anything up in this book.
This is the C++ equivalent of being able to count to ten in a foreign language
without using a phrase book.

4.9 Summary
We have learned how to control the flow of execution in C++ using the

following keywords:

• for

• while

• do

• break

• continue

• return

• switch

• case

• default

• throw

By far the most useful flow of control statements are for, while, and
throw.

Tip: Which control statement to use

• Use for statements for simple loops such as for counting from 0 to 99.

• Use while statements for more complex looping logic. Unusual while
statements are easier to read than unusual for statements.

• Use throw when errors occur. Don’t just print out a message and con-
tinue.

http://taylorandfrancis.com

Chapter 5
Working with Multiple Files

A realistic C++ project will be divided across many files. This helps you
organise your code logically into manageable units. This makes it possible to
follow large software projects without having to understand every detail.

5.1 The project FMLib
If you have completed all the exercises in the previous chapters, you should

now have developed quite a collection of functions.
In particular, during the exercises we have written the functions normcdf

(to compute the cumulative density of the normal distribution) and norminv
(to compute its inverse). We will want to use these functions repeatedly.

This means that it is time to start creating a better structure for our
project. We will stop throwing code away and start work on a long-term
project called FMLib.

The goal is that FMLib will be a library of useful financial maths functions.
The FM stands for financial maths.

We’re not the first people to think of writing C++ code for financial math-
ematics. There are many libraries available that you can already download.
However, in this book we will pretend that no libraries exist except those built
into the C++ standard. We will build everything else ourselves from scratch.

This is a great way to learn C++, but not an intelligent way to build a real-
world trading platform. You should, of course, take full advantage of the work
done by other people in writing libraries (and even more importantly the work
they have put in to designing, testing, and debugging these libraries). Some
libraries that you may want to consider using are Boost, GSL, and Quantlib.
Boost is a general purpose C++ library that fills in the many gaps in the C++
standard. GSL is a scientific computing library written in C which contains
many useful algorithms. QuantLib is a C++ library for mathematical finance.

At this stage, you will probably find the documentation for these libraries
impossible to understand. This is because the documentation assumes consid-
erable expertise in the C++ language.

That is why in the rest of this book we will study how to write our own

71

72 C++ for Financial Mathematics

financial maths library FMLib. Once you have mastered this book you should
forget about FMLib and learn to use these other libraries instead.

On the website for this book you can find a download called FMLib5. This
contains the version of FMLib relevant to Chapter 5. As the book progresses,
there are corresponding versions FMLib6, FMLib7, and so forth. These contain
increasingly sophisticated code. By the end of the book, we will have developed
a fully fledged library.

One aim of this book is to show you how a software project can evolve
from simple beginnings to become large and sophisticated. By seeing how a
software project can be put together in stages you will learn how to develop
your project in manageable pieces. It will also show you how to refactor your
code. This simply means how to modify your code as you learn from experience
to gradually improve your software design.

For the purposes of this chapter, you should download FMLib5. Unzip it
and take a look at its contents.

• The file main.cpp contains a main method for testing.

• The file matlib.cpp contains the definitions of various useful financial
maths functions. We’ll group together many of the standard functions
you might expect in MATLAB into this file. For example, normcdf and
norminv are defined in this file.

• The file stdafx.h provides a single place to list the libraries we’ll want
to use throughout the project.

• The file matlib.h is a header file containing the declarations of the
functions normcdf and norminv.

As you can see it contains more than one .cpp file and some .h files. The
purpose of this chapter is to explain how C++ code should be arranged using
different files in order to develop larger projects and useful libraries. We will
use FMLib5 as our example.

5.2 Header files
In C++, you can’t directly call functions that are defined in other .cpp

files. To use a function that is defined in another file, you must first load in a
“header file” that contains the declaration of that function using the #include
command.

In case you have forgotten, we discussed the difference between declaring
a function and defining a function in Section 3.4. Briefly, the declaration says
what a function does and the definition says how it does it.

The rule in C++ is that before you can use a function it must have been

Working with Multiple Files 73

declared. So you must always #include a file where the function is declared
if you want to use a function.

You can think of .cpp files as communicating via the .h files that they
include. If two .cpp files both #include the same function declarations, then
that function only needs to be defined in one of the two .cpp files. The same
definition is shared across multiple files. If two .cpp files don’t have a .h file
in common that mentions a particular function, then they can’t share that
function.

As a matter of convention, whenever we write a .cpp file we will typically
write another file with the same name, but the extension .h. This header file
contains function declarations for all the functions we want to be available
outside that .cpp file.

Some people prefer to use the file name extension .hpp for C++ header
files and leave .h for C header files.

5.3 Creating our project
Let us work through a detailed example of how to create a multi-file

project.
Begin by creating a new C++ project called MyLib. This is to distinguish

it from the model code on the website FMLib. When this section is complete,
the projects should in fact be identical.

Our aim is to write a small library that makes available a normcdf function
and a norminv function that compute the cumulative distribution function of
the normal distribution and its inverse. We also want to make available a
standard constant PI.

In a separate file, we want to write a small main function to show how the
library can be used.

5.3.1 Creating the first header file
So that other files can use these functions, we will need to declare them in

a header file. This is a C++ file with the file name extension .h.
You should now create a header file called matlib.h following the instruc-

tions for you development environment below:

• If you are using Visual Studio to create your C++ projects, you should
create all .h files by right-clicking on the folder Header Files.

• If you are using Unix, simply create header files in the same folder as
your .cpp files but give them the extension .h.

• If you are using XCode, press CMD + N and select header file.

74 C++ for Financial Mathematics

Now edit the file you have just created and type in the first line:

#pragma␣once

Then enter the declarations for all the functions we want to make available
from our library. In our example, the complete code required is:

#pragma␣once

const␣double␣PI␣=␣3.14159265358979;

/**
*␣ Computes␣the␣cumulative
*␣ distribution␣function␣of␣the
*␣ normal␣distribution
*/

double␣normcdf(␣double␣x␣);

/**
*␣ Computes␣the␣inverse␣of␣normcdf
*/

double␣norminv(␣double␣x␣);

This contains the declarations for all the functions we wish to make avail-
able. It contains both the declaration and the definition for PI.

In general, you should put the following in your header file:

(i) The first line #pragma␣once. We’ll explain why shortly.

(ii) Declarations of functions you wish to make available from your library.

(iii) Declarations of global variables you wish to make available.

(iv) Definitions of constant global variables.

Whereas in your source file you should put:

(i) Definitions of functions declared in the header.

(ii) Definitions of global variables missing from the header.

We will expand on these rules throughout this book as we meet more types
of declaration and definition.

The reason why constants are treated differently is that the C++ compiler
can “inline” them. This means to replace every use of the constant with the
actual value. This gives a slight performance boost. As a consequence, how-
ever, the definition needs to be in the header, so that every file knows the
correct value to inline.

Working with Multiple Files 75

5.3.2 Some code that uses the functions
In a source file called main.cpp write the following code

#include␣<iostream >
#include␣"matlib.h"
using␣namespace␣std;

int␣main()␣{
cout␣<<␣"normcdf (1.96)="

<<␣normcdf (1.96)␣<<␣"\n";
cout␣<<␣"norminv (0.975)="

<<␣norminv (0.975)␣<<␣"\n";
return␣0;

}

Note that we use #include to load in all the definitions in libraries. We use
angle brackets when loading in standard libraries and quotation marks for our
own libraries.

The reason for this is that our own libraries keep changing all the time,
whereas the standard libraries won’t. By using angle brackets we are telling
the compiler that a given file won’t have changed since the last compilation.
This allows the compiler to run a bit faster.

At this point, you should attempt to build the code, but you should expect
it to fail. After all, we haven’t provided any function definitions yet.

Try to build the code to see what error message to expect when we for-
get to write the definition for a function—or indeed what happens when the
definition and the declaration don’t match precisely.

When I tried to run this code on Visual Studio, I got this error:

main.obj : error LNK2019:
unresolved external symbol "double __cdecl
norminv(double)" (?norminv@@YANN@Z) referenced
in function _main

This is called a linker error. The phrase “unresolved external” is an unhelpful
way of saying that either:

(i) you forgot the definition altogether;

(ii) the type information in the definition doesn’t exactly match the type
information in the declaration;

(iii) you haven’t installed a library correctly;

(iv) some more subtle problem has happened. For example, on Visual Studio
you need to check whether the cpp file is actually listed under "Source
Files" in your project.

76 C++ for Financial Mathematics

If you examine the error message carefully, you can see that the name of the
function (norminv) can be found hidden in the text. You just have to be willing
to ignore all the parts of the error message you don’t understand. It is worth
trying to remember what this error message looks like in your development
environment so that when a similar linker error occurs you will be able to
figure out what the problem is.

The process of turning C++ source files into executables is called “build-
ing” the code. This is a three-stage process.

(1) The pre-processor performs simple text manipulation on the cpp files such
as #include statements. The statement #include for example just means
read in a copy of another file so we can use all the declarations from that
file.

(2) The resulting cpp files are compiled.

(3) The compiled versions of all the files and all the libraries are linked to-
gether. Each use of a function is linked to the place where it is defined.

Function declarations are used during the compile phase and all the function
definitions are compiled. However, there is no check that everything glues
together coherently until the linker stage. This is why mismatches between
declarations and definitions are found at the linker stage.

5.3.3 Write the definitions
Create a file called matlib.cpp to contain the function definitions. Start

the file with the line #include␣matlib.h.
In general you should have a clear correspondence between your header

files and your source files. The exceptions are: It is conventional on Windows
to have a file called stdafx.h which just contains #include statements for
the libraries you want to use; you should have a main.cpp for testing. We will
follow these conventions on all operating systems, not just Windows.

Whenever you write a .h file, make sure that the first line of the corre-
sponding .cpp file includes the .h file. This is an important test that your .h
file is correct and includes everything that it needs.

In the rest of the file, you should write the necessary code for the function
definitions. If you succeeded in writing these in the exercises, you can use your
own code. If not, it might be quicker to use the code below.

double␣norminv(␣double␣x␣)␣{
␣␣␣␣return␣1234.0;␣//␣TODO␣fix␣this
}

double␣normcdf(␣double␣x␣)␣{
␣␣␣␣return␣1234.0;␣//␣TODO␣fix␣this
}

Working with Multiple Files 77

You should now find that everything builds correctly.
As an experiment, make a change to the type in one of the function defi-

nitions as follows.

//␣change␣double␣to␣float
double␣norminv(␣float␣x␣)␣{
␣␣␣␣return␣1234.0;␣//␣TODO␣fix␣this
}

You should find that you get a linker error, which you can easily fix by revert-
ing to the original code.

5.4 How header files work
5.4.1 The meaning of include

In C++ you must adhere to the following rules about declarations and
definitions of functions:

• Every .cpp file that uses a function must contain a declaration of that
function.

• Every function that is used must be defined in exactly one .cpp file or
in a library.

On the face of it, this means that we’ve got a lot of repetitive typing to
do. We’re going to have to keep declaring every function in every file that
uses it. Fortunately C++ has the #include command which loads in all the
commands from a .h file. This way we can load in lots of declarations with
one #include statement.

There is nothing more to header files than that they save repetitive typing.
In principle you could load anything you like using #include, but in practice
it is only used for loading declarations.

Similarly, in principle you could use a function declared in another file by
typing the declaration directly into your own .cpp file. There is no technical
need to use a header file at all. However, doing this is considered to be bad
coding practice. The author of a C++ function uses the header file as a way
of indicating which of their functions they are happy for you to use and which
they intend to maintain in future.

5.4.2 Pragma once
As we have already said, every header file should start with #pragma␣once.
The reason you should start every file with #pragma␣once is that it stops

78 C++ for Financial Mathematics

the same file being #included twice. In our example, you might get a com-
piler error saying that you were trying to define PI twice if you dropped the
#pragma␣once and then #included the header twice.

Another rule you should follow is to never have circular dependencies
through #include. For example, two header files should not #include each
other.

Technically #pragma␣once isn’t part of the C++ standard. However, most
compilers understand this command and I recommend you use it.

The phrase #pragma␣once may be hard to remember since there is no such
English word as “pragma”. It is actually short for the word “pragmatic” which
is itself just a fancy word for practical. So #pragma␣once is just a practical
fix that isn’t really a part of the C++ standard.

If you are a strict adherent to the C++ standard, an alternative way to
solve the same problem is to use the following recipe: For each header file pick a
unique random name (e.g., G4569327457263475698023452376519876247) and
then start and end the header file as follows:

#ifndef␣G4569327457263475698023452376519876247
#define␣G4569327457263475698023452376519876247
...␣rest␣of␣code␣...
#endif

You’ll see this technique (which is called an include guard) used in many
C++ libraries. Naturally, many library authors want to write code that is as
portable as possible, so they stick to the letter of the C++ standard. That’s
why they use this more fiddly technique whereas you can get away with the
easier #pragma␣once.

5.4.3 Information hiding
You shouldn’t declare all your functions in your header files. You should

only declare the functions you want other people to use.
It is good practice to write lots of small helper functions. However, making

these part of your library is confusing for users of your library. Your users will
see the .h files you write as containing the definition of what your library
does. By limiting the amount of information in this file, you make life easier
on your users.

It also gives some other advantages. The moment you have released a
function as part of a library you can never change it except to fix bugs! This
is because someone else might already be using it. The less you give away
in your header file, the less potential there is to write functions you have to
spend the next ten years supporting.

Example 1: If you misspell the name of a function in a library and then give
it to your users, you have to stick with that misspelling forever.

Working with Multiple Files 79

This issue is not so pressing if you are the only person who ever uses your
code, but if you work in a team it is absolutely essential.

As a very practical matter, if you have a job writing software and your
software goes wrong for some reason, then the chances are high that you will
be asked to fix it. As a result, the more people use your code, the more likely
you are to get phoned in the middle of the night and asked to debug that
code! This means that is essential that you only let people use the code that
is of sufficient quality to be shared with the team. This means it should work
perfectly, be well documented, and be thoroughly tested. In practice you can’t
write all your code to this standard, so it is vital to be clear which parts of
your code are ready to be shared and which parts are for personal use only.
If you don’t declare your functions in header files, then that code can’t be
shared by other files and so cannot be used. This means that you can improve
your chances of an undisturbed night’s sleep if you keep the contents of your
header files down to a minimum!

Old Joke: Programming is like sex. One mistake and you have to support
it for the rest of your life.

Although simply not including things in the header files is the main way
of achieving information-hiding, you can go further with the static keyword.

You should try to use the static keyword on all variables and functions
that are not in your header file. For example, one might write the following in
a .cpp file:

static␣const␣double␣SQRT_2_PI␣=␣2.507;

This is flawed code in that it is a very low-precision estimate of
√

2π. This
might not be a big problem for your particular application, but you wouldn’t
want other people using this in their calculations. That sort of thing results
in phone calls in the middle of the night.

By marking this function as static we are saying it can only be used in
the current source file. This means that we can reuse the name in other source
files if desired. It is technically possible (but unlikely) for someone to use a
function defined in another file without declaring it in a header file. Using the
keyword static prevents this trick altogether.

Danger!

If you are a Java programmer, notice that this has nothing to do with the
Java keyword static.

80 C++ for Financial Mathematics

5.4.4 Inline
As a general rule, a good programmer never writes the same code twice.

You should write reusable functions. That way you minimise the amount of
effort you have to make in testing your code.

Novice programmers often make the mistake of using the cut-and-paste
features of their development environment as an alternative to writing func-
tions. This is a very bad idea. It results in code that is hard to read and hard
to test. If you detect a mistake in some code that has been manually cut and
pasted into 100 other files, you are going to have to track down that error in
lots of files.

Tip: Write functions. Don’t use cut and paste.

However, from a performance point of view it is ever so slightly faster to run
code that has been cut and pasted than it is to write code that has been divided
into functions. The reason is that at the level of assembly language, calls to
functions are turned into machine code CALL commands. The performance
cost of calling a function is therefore equal to the cost of running the code for
the function plus the cost of a CALL statement.

Most of the time this extra overhead of using functions is absolutely trivial
and not worth considering. But every now and again, it is worth thinking
about. The solution is not to stop writing functions: it is to tell the compiler
to “inline” the functions. This means that you wish to use functions to write
your code, but you are telling the compiler to generate the machine code as if
you had used cut and paste. The net effect is that the machine code for your
function is “copied and pasted” throughout your program by the compiler and
so there is no need for CALL statements. In other words, you end up with
the faster code you would get by cutting and pasting but without having to
sacrifice the benefits of functions.

The hornerFunction examples discussed in Exercise 3.9.6 are best inlined.
Here is one of the hornerFunctions with the inline keyword added.

static␣inline␣double␣hornerFunction(
double␣x,
double␣a0,
double␣a1)␣{

return␣a0␣+␣x*a1;
}

The optimisation can be justified in this special case because we use horner-
Function to compute norminv and we will be calling norminv a great deal
in our Monte Carlo simulations. So getting these functions to be as fast as
possible is worthwhile.

Working with Multiple Files 81

You might be tempted to make every function inline but this may actu-
ally make the performance of your program worse. The reason is that all the
duplication of machine code that would happen if you did this makes your
program much larger and so takes up more memory. This means that your
program will take longer to start and will have less memory to play with while
it is running.

Modern compilers contain some very sophisticated optimisation routines,
so it is usually best not to inline anything except for very short functions
that you know are performance critical.

Incidentally, notice that hornerFunction is also static because we don’t
want it to be part of the library. It is an implementation detail that we don’t
want our end users to know about.

The reason that we are discussing inline functions in a chapter on dividing
your code into multiple files is that inline functions cannot have separate
definitions and declarations. This means that if you wish to share an inline
function between different files you must put the definition into a header file.
For all other functions you must not put the definition into a header file1.

This does make some sense. If the compiler is going to copy in the rele-
vant code, it needs to know what that code should be. So that code must be
contained either in the .cpp file or included from a header file. On the other
hand, for non-inlined code the code should only be written once. So that code
should only be in one .cpp file and should never be included from a header
file.

5.5 A complete example
We will provide many versions of FMLib on the website for this book,

numbered chapter by chapter. For example, FMLib5 contains the code needed
to understand this chapter.

You should download this library and unzip it into a folder called FMLib5.
You should then check that you can compile and run the project.

Have a look through the code and observe the following points:

• The hornerFunction functions are not in the header file. We think users
of our library won’t want to know about them.

• The hornerFunction functions are static.

• The constants a1, a2, etc., used in our calculations are all static.

• The hornerFunction functions are inline.
1In Chapter 17 we will add an extra item to this rule to cover template functions.

82 C++ for Financial Mathematics

Exercises
5.5.1. Write a new file called geometry.cpp which contains a function to
compute the area and circumference of a circle given its radius. Ensure that
your functions can be called from main.cpp. Should your new functions be
marked as static?

5.5.2. Which file gives a better overview of our matlib functions, matlib.cpp
or matlib.h?

5.5.3. If you mark the function normcdf as static in the header file, what are
the consequences? In the cpp file? In both? What if you don’t mark horner-
Function as static?

5.5.4. Which file do you think should contain the definition for PI?

5.6 Summary
We have seen how header files allow us to write projects that use multiple

files by putting declarations into header files and definitions into cpp files. The
only exception is for inline functions.

Under normal circumstances, two cpp files can only share the same function
definition if they share the same declaration via a header file.

We have learned the importance of information-hiding, which explains why
not all declarations should be in header files.

If you have experience programming in other languages, you may won-
der why you have to use header files at all. The answer is history. Modern
languages do without header files—they provide alternative mechanisms for
information hiding that require less typing.

In addition to following the rules of the C++ language, we have also fol-
lowed some important conventions in this chapter. It is strongly recommended
that you follow the following tips when using header files.

Tip: The rules for header files

• Start every .h file with #pragma␣once.

• Don’t put a function into a header file unless you have to. Try to hide
information.

Working with Multiple Files 83

• Try to remember to use static for functions and variables that aren’t
in the header file.

• For every .h file there should be one .cpp file that defines everything
the .h file declares.

• In addition you should have one header called stdafx.h that includes
the standard libraries you’re using. It saves typing to put most of your
#include statements into one file. It is also possible to use special com-
piler settings to “pre-compile” this shared header file, which allows you
to compile your code more quickly. By convention on Windows this file
is called stdafx.h and we have decided to use the same convention on
all operating systems for simplicity.

• You should have a main.cpp file for testing.

• The first line of the .cpp files should #include the corresponding .h
file.

• Don’t write using␣namespace in a header file. You don’t want to force
the user of your library to use specific namespaces, it should be their
choice. If you were to break this rule and use a namespace in a header
file all users of that library will have to use that namespace. This would
defeat the entire purpose of the namespace.

http://taylorandfrancis.com

Chapter 6
Unit Testing

A revolution occurred in computer programming in the late 1990s (which some
banks are still struggling to catch up with). The revolutionary idea was that
you should write automated tests for all of your code.

Actually it wasn’t such a new idea. Computer programming veterans tell
me that in the 1960s and early 1970s, testing your code was commonplace.
But somehow lots of development teams forgot about it. It became quite
normal to write code without any automated tests. This code was typically
very expensive to maintain (with an army of manual testers) and was very
prone to bugs.

If you are old enough to remember software from the 1990s, then you
might have noticed that software doesn’t crash as much as it used to. I put
this down, at least in part, to the automated testing boom.

The basic ideas of unit testing are as follows.

(i) Every function (near enough) should have at least one test.

(ii) All tests should be fully automated.

(iii) You should assume that code that is not tested does not work.

(iv) You should keep your tests forever.

Naturally, some manual testing is also required, but this should be much more
along the lines of acceptance and usability testing. For example, finding out
whether your music download app is easy to use would need some manual
testing. Testing if your music download app actually works should be auto-
mated.

If you attempt to write any C++ code that is more than a few lines long,
you will probably write a bug. This is partly because you are new to C++, but
mostly because you are human and humans make errors constantly. Just as
you can be pretty sure that your calculus computation is wrong unless you’ve
double-checked it, you can be pretty sure that C++ code is wrong unless it
has a unit test.

One possible way to test your code is to write a main method to test
the bit you are working on. The problem is that you find yourself constantly
recreating tests that you have written before when you need to fix bugs.

The solution is to:

85

86 C++ for Financial Mathematics

• write all tests as functions;

• never throw any tests away;

• run all your tests every time you compile your code.

6.1 A testing framework for C++
Since C++ has no built-in support for unit testing, we’ll have to write

our own. One might argue that it would be more sensible to use a testing
framework that somebody else has written. There are lots of choices, such as
the Boost Test Library (http://www.boost.org), Google Test (Google it!),
cppunit, and many others.

Unfortunately these testing frameworks are designed for people who can
already program in C++ and so won’t be put off by their odd syntax. This
makes them inappropriate to use in an introductory C++ course.

Instead, I’ve written a very simple testing framework for use in this book.
By the end of the book, you will be able to download and use the testing
framework of your choice without too much difficulty.

Download FMLib6 and you will see that it contains a header file called
testing.h. This file should be incomprehensible to you at the moment as it
contains various C++ macros.

6.2 Macros
A macro is a special command to the C++ pre-processor which allows you

to avoid repeated typing. A classic example is the MAX macro:

#define␣MAX(a,b)␣(((a)>(b))␣?␣(a)␣:␣(b))

This definition means that every time the text MAX(a,b) appears in the code,
it should be replaced with (((a)>(b))␣?␣(a)␣:␣(b)). This expression com-
putes the maximum using the ternary operator (see Section 4.8.2 for a re-
minder of what the ternary operator is). The expression contains lots of brack-
ets which look unnecessary, but which are there because you’re allowed to
type complex expressions such as like MAX(␣3*7,␣3+5␣). Having the brackets
in place guarantees everything behaves as you expect.

The pre-processor blindly expands macro definitions. This means that you
can write “fake functions” like MAX that are really just shorthand ways of
writing out a repetitive chunk of code.

http://www.boost.org

Unit Testing 87

Generally speaking, macros are a complete waste of time. You can write
reusable code using functions and then use the inline keyword to ensure that
it is just as fast as the macro code.

However, just occasionally, macros have their uses, because they give you
access to special variables like the name of the current file or the current line
number. These special features are useful when writing developer tools (such
as a testing framework). Unless you are writing such a framework, don’t learn
how to write macros.

6.3 The macros in testing.h

6.3.1 The ASSERT macro

ASSERT(␣test␣);

This checks whether a bool valued test is true and throws an error if it is
not true.

To speed up performance of a real system, all ASSERT checks are skipped
when running the release build.

This needs to be a macro because it prints out the line where the assertion
failed. You can’t do this with functions.

Here is an example of using ASSERT to verify that the input arguments to
a function are valid. The function below will fail immediately if you attempt
to take the square root of a negative number.

double␣safeSqrt(double␣x)␣{
ASSERT(x␣>=␣0);
return␣sqrt(x);

}

6.3.2 The ASSERT_APPROX_EQUAL macro
When writing numerical methods, you don’t often want to check if two

numbers are exactly equal. You normally want to check if they are approxi-
mately equal. This is because numerical methods are only approximate and
calculations always involve rounding errors.

ASSERT_APPROX_EQUAL(x,y,tol) throws an error if x and y are not within
tol of each other. Here is an example of ASSERT_APPROX_EQUAL being used
to test the output of norminv

static␣void␣testNormInv ()␣{
ASSERT_APPROX_EQUAL(norminv (0.975) ,␣1.96,␣0.01␣);

88 C++ for Financial Mathematics

}

This example test uses the well-known fact that approximately 95% of the
probability density of a normal distribution lies between ±1.96 standard devi-
ations of the mean. So the 2.5% and 97.5% percentiles of the standard normal
distribution are −1.96 and 1.96, respectively. Our test is simply confirming
that norminv(0.975) ≈ 0.975. We will discuss the important topic of how you
can still test your code, even when you don’t know the correct answers, in
Section 6.6.

6.3.3 The INFO macro
Using std::cout doesn’t really make much sense unless you are writing

a console application. Real programs often write to a log file which can be
examined in the event of a failure, but which are normally ignored on a day-
to-day basis.

The INFO macro provides a convenient way to print out a message to-
gether with the file name and line number where the message was printed. By
modifying the macro definition you could easily change how this logging was
performed without changing all your code that actually performs logging.

INFO also has the minor advantage that you don’t have to remember the
\n on the end of each line.

double␣priceOptionByMonteCarlo(␣int␣numScenarios␣)␣{
␣␣␣␣if␣(numScenarios>1000000)␣{
␣␣␣␣␣␣␣␣INFO(
␣␣␣␣␣␣␣␣"Embarking␣upon␣a␣calculation␣with␣"
␣␣␣␣␣␣␣␣<<numScenarios<<
␣␣␣␣␣␣␣␣"␣scenarios");
␣␣␣␣}
␣␣␣␣...␣/*␣length␣calculation␣goes␣here␣*/␣...
}

Note the way the INFO macro allows you to use <<.
In practice you should use a more advanced logging framework. See Chap-

ter 15.

6.3.4 The DEBUG_PRINT macro
This behaves exactly like the INFO macro except you can control when it

prints out its message.
It will print out a message only if

• You are running the debug build.

• You have enabled debug by calling setDebugEnabled(true).

Unit Testing 89

The advantage of this is that your release code won’t be slowed down by lots
of DEBUG_PRINT messages. In addition, you will rapidly find that the DEBU-
G_PRINT messages from code you are not currently working on are annoying.
Rather than delete all the messages, simply call setDebugEnabled(false) to
silence them.

Here’s an example of how you might use it:

double␣max(double␣a,␣double␣b)␣{
DEBUG_PRINT("Entering␣max("␣<<␣a␣<<␣",␣"␣<<␣b␣<<␣")");
double␣ret␣=␣a>b␣?␣a␣:␣b;
DEBUG_PRINT("Returning␣"␣<<␣ret);
return␣ret;

}

Serious logging frameworks give you quite fine control over which functions
and files have logging enabled. They also give you a user interface so you can
interactively enable and disable logging.

Our DEBUG_PRINT macro is just a step in the right direction.

6.3.5 The TEST macro
This macro prints out the fact that is about to run a test, runs the test,

and then prints out whether the test passed or failed.
Here’s an example of how it is used:

void␣testMatlib ()␣{
TEST(␣testNormInv␣);
TEST(␣testNormCdf␣);

}

This code simply runs the testNormInv function and then runs the test-
NormCdf function.

Although the statement TEST(␣testNormInv␣) looks a bit like a function
call, it is not strictly a function call. This is typical of macros. They look
misleadingly like functions but behave in subtly different ways. This is why
one normally avoids using them, because it can easily lead to confusion.

6.4 Using testing.h
To use the testing framework, you should #include␣"testing.h" in all

your .cpp files.
For each test that you want to perform, write a function whose name

begins test. Here is an example:

90 C++ for Financial Mathematics

#include␣"testing.h"

...␣/*non␣testing␣code␣here*/␣...

static␣void␣testNormCdf()␣{
␣␣␣␣ASSERT_APPROX_EQUAL(␣normcdf(␣1.96␣),␣0.975,␣0.001␣);
}

static␣void␣testNormInv()␣{
␣␣␣␣ASSERT_APPROX_EQUAL(␣norminv(␣0.975␣),␣1.96,␣0.01␣);
}

In each .cpp file you should also write a single function which calls all the
other test functions in turn. Use the TEST macro to do this. This will ensure
you always get output telling you which function is currently running.

You should name this function after the .cpp file, define it in the .cpp file,
and you should declare it in the corresponding header file.

For example, in matlib.cpp we have

void␣testMatlib ()␣{
TEST(␣testNormInv␣);
TEST(␣testNormCdf␣);

}

And in matlib.h we have

void␣testMatlib ();

Finally, in your main method you should call all the test functions defined
in the header files.

int␣main()␣{
␣␣␣␣testMatlib();
␣␣␣␣...␣/*␣run␣other␣tests␣*/␣...
}

When you are trying to understand how your functions are behaving, you
can insert DEBUG_PRINT statements to help you follow what is going on. They
won’t be called until you call setDebugEnabled(␣true␣). Here is how you
would temporarily enable debug messages when running testNormInv.

void␣testMatlib()␣{
␣␣␣␣//␣switch␣on␣the␣DEBUG_PRINT␣statements
␣␣␣␣setDebugEnabled(true);
␣␣␣␣TEST(␣testNormInv␣);
␣␣␣␣setDebugEnabled(false);
␣␣␣␣//␣switch␣them␣off␣again

Unit Testing 91

␣␣␣␣TEST(␣testNormCdf␣);
}

6.5 What have we gained?
• We no longer need to keep writing main methods. It is no longer nec-

essary to create new projects to answer exercises in this book. Instead
we can simply write a new unit test for each exercise and have a single
project with a single main method.

• When trying out our code we don’t have to keep changing the main
method to check that our code is correct.

• We have a record of all the tests performed.

• Whenever we change our code we can retest immediately.

• We know that our code always works! (So long as we have enough tests).

• We have useful DEBUG_PRINT statements that will help us figure out
what is going on if we find a bug in future.

These advantages are enormous. So much so that many programmers ad-
vocate test-driven development. This phrase was introduced by highly influ-
ential software developer Kent Beck as part of a general set of programming
principles called extreme programming [1].

The idea of test-driven development is simple: You should write the test
before you write the code. Why is this a good idea?

Firstly it forces you to write the test. Your motivation to write a test will
drop once you have a function that already appears to work. Secondly it will
force you to think about what problem you are actually trying to solve before
you go and solve it. Third it will prevent you writing untestable code. Fourth it
tests your tests. Its quite easy to write tests that don’t actually test anything,
so its good to see that they fail until you’ve finished writing the code.

Writing tests is a significant skill and one of the most important skills
that you should develop by reading this book. A programmer who has learned
the benefits of writing unit tests and who won’t write code without them is
sometimes called test infected. It sounds like an insult, but it’s a compliment.
I hope you become test infected.

92 C++ for Financial Mathematics

Type safety and testing

From a modern perspective, a significant criticism of the C++ language is
that it claims to be designed to make large projects easy to write, but it con-
tains no built-in support for testing whatsoever! From a modern perspective
this is simply astonishing. Fortunately, there are now plenty of good testing
frameworks available to plug the gap.

What C++ has always done well is to make sure that your code doesn’t
contain any gross errors where you accidentally treat a memory location con-
taining a string as though it contains a double. C++ does this by getting the
compiler to check that all the type definitions in your code match up. How-
ever, there is a great deal more to getting code to work than ensuring that
the type definitions are correct.

Many modern languages don’t bother with type safety at all. This is be-
cause if your code is tested fully with unit tests, then there won’t be any type
safety problems. In other words, if you have good unit tests, you won’t need
to rely on the compiler testing your code for you.

6.6 Testing normcdf
The biggest challenge in testing your code isn’t writing the C++ code

for the tests. The challenge is thinking of the tests to run. It demands some
creativity to think of good tests.

Example 1: How should you test the function normcdf, which is intended to
compute the cumulative distribution function of the normal distribution?

Solution: Here are some tests you could run on normcdf:

1. Given any value x (say x = 0.3) it should be true that normcdf(x) > 0
and normcdf(x) < 1. These properties hold for any cumulative distribu-
tion function.

2. For very small values of x, normcdf(x) should be close to 0.

3. For very large values of x, normcdf(x) should be close to 1.

4. normcdf should be increasing

5. normcdf(x) should be equal to 1−normcdf(−x) by the symmetry of the
normal distribution.

Unit Testing 93

6. normcdf(0) should be equal to 0.5.

7. normcdf(norminv(x)) should equal x.

8. normcdf(1.96) ≈ 0.975. This is just a well-known fact: it is worth remem-
bering as it enables you to quickly compute 95% confidence intervals.

9. normcdf(x) =
∫ x
−∞

1√
2π exp

(
−x

2

2

)
dx. So it should be possible to test

the value of normcdf by computing the integral directly using numerical
integration.

Here is the code that runs all these tests but the last:

static␣void␣testNormCdf ()␣{
//␣test␣bounds
ASSERT(normcdf (0.3) >0);
ASSERT(normcdf (0.3) <1);
//␣test␣extreme␣values
ASSERT_APPROX_EQUAL(normcdf(-1e10),␣0,␣0.001);
ASSERT_APPROX_EQUAL(normcdf (1e10),␣1.0,␣0.001);
//␣test␣increasing
ASSERT(normcdf (0.3)< normcdf (0.5));
//␣test␣symmetry
ASSERT_APPROX_EQUAL(normcdf (0.3) ,

1␣-␣normcdf (-0.3),␣0.0001);
ASSERT_APPROX_EQUAL(normcdf (0.0) ,␣0.5,␣0.0001);
//␣test␣inverse
ASSERT_APPROX_EQUAL(normcdf(norminv (0.3)) ,

0.3,␣0.0001);
//␣test␣well␣known␣value
ASSERT_APPROX_EQUAL(normcdf (1.96) ,␣0.975 ,␣0.001);

}

As this demonstrates, writing test code is usually much easier than think-
ing of tests in the first place. Nevertheless, some tests (e.g., computing normcdf
by integration) can require quite a bit of work. However, if you are planning
to invest real money on the basis of the answers your code produces, or if
you are planning to publish a journal article based on your calculations, you
should always make sure that you test them as thoroughly as possible.

If you look at the testing code, you will see that we have only tested a
few specific cases of the claim normcdf(x) > 0. This is all that is needed. Our
tests give us a great deal of confidence in our code even though we have by
no means proved it worked in all cases. When you write a test you should be
trying to write a quick simple check and not a mathematical proof.

These different ideas for how to test normcdf can be generalised to test
many other functions. The last option is the most obvious but is also, in some

94 C++ for Financial Mathematics

senses, cheating. If you were the first person in history to write a normcdf
function, you wouldn’t yet know what the value of normcdf(1.96) should be.

When you come to write complex code, to price some exotic derivatives,
for example, you probably won’t be able to look up the correct answer. So you
will have to come up with rather more cunning tests. Here are some general
ideas.

• Are there any mathematical properties that should hold for your answer?
Then test that they hold.

• Can you think of alternative ways of calculating the answer? Then im-
plement both methods.

• Does your problem simplify for extreme parameter values? Then check
what happens for these extreme values.

• Can you break the calculation down into separate functions which you
can test individually? Then do so.

Exercises
6.6.1. Write a unit test for your functions that compute the area and circum-
ference of a circle. Make sure they are actually running.

6.6.2. Insert DEBUG_PRINT statements into the functions to compute the area
and circumference of a circle. Check that you can enable the DEBUG_PRINT
statements.

6.6.3. The unit test function testNormcdf is marked as static␣void. Why?
The function testMatlib is marked as void but not static. Why not?

6.6.4. Write a function to compute the price of a put option using the Black–
Scholes formula, Equation (A.7). Write a test for this function.

6.7 Summary
We’ve seen how to use the testing.h testing framework. In a production

system one would probably use something more sophisticated.
When writing C++, write lots of small functions with tests for each. Con-

stantly compile and run your code to make sure you spot your errors as soon
as you make them.

Unit Testing 95

You should try test-driven development and will hopefully become test
infected.

Throughout this book we will see many techniques that you can use in
order to test your code.

http://taylorandfrancis.com

Chapter 7
Using C++ Classes

The types double and int, etc., are too restrictive. What about complex
numbers, strings, matrices . . . ? To make significant progress with C++ we
will need to use more sophisticated data types. Indeed, as you will discover
during this chapter, with just a few more data types we will be able to write
extremely sophisticated programs. For example, in this chapter we will write
the code to produce a very attractive pie chart. As exercises you will be able
to write your own functions to produce line plots and histograms.

To use the new data types we will want some #include statements. The
correct #include statements are:

• #include␣<string> to use strings.

• #include␣<sstream> to use strings efficiently.

• #include␣<vector> to work with vectors.

• #include␣<fstream> to work with files.

• Matrices? There is no built-in type for matrices in C++. You can use a
library like Eigen, Boost, or Quantlib. Or you can write your own matrix
type. We’ll do this in Chapter 16.

We’ll assume that the relevant #include statements have all been added to
the file stdafx.h so that we can use all the libraries easily. We’ll also assume
that you’ve written using␣namespace␣std; at the top of all your cpp files.

We’ll make this kind of assumption without comment from now on.

7.1 Vectors
A vector in C++ is the name given to a data structure containing an num-

bered list of elements of a given data type. A vector of double data corre-
sponds to the mathematical notion of a vector. The name of this type in C++
is written as vector<double>.

We’ll now see some examples of how you work with vectors.

97

98 C++ for Financial Mathematics

//␣create␣a␣vector
vector <double >␣myVector;

//␣add␣three␣elements␣to␣the␣end
myVector.push_back(␣12.0␣);
myVector.push_back(␣13.0␣);
myVector.push_back(␣14.0␣);

//␣read␣the␣first ,␣second␣and␣third␣elements
cout␣<<␣myVector [0]␣<<"\n";
cout␣<<␣myVector [1]␣<<"\n";
cout␣<<␣myVector [2]␣<<"\n";

We see from this example that you use the function .push_back to add
data to the end of a vector. Notice the way we use a . before the function
name. This is an example of a member function of the vector. It is a function
that “belongs” to the vector itself and performs functionality specific to that
vector. This is typical of object-oriented programming. Objects gather together
data and functions for working with that data. So a vector<double> is a type
of object that stores numbers and provides the function push_back.

You always use a . in this way when calling a member function. You can
think of the . as meaning much the same as “apostrophe s” in English. We’re
calling myVector’s push_back function.

To read the data from the vector, we’re using the index notation my-
Vector[i] to access the element at index i. Notice that in C++ a vector’s
indices start at 0. This is one of the reasons why C++ programmers count
from 0 when writing for loops.

We can also use the index notation myVector[i] to change the elements
of a vector as shown below.

//␣change␣the␣values␣of␣a␣vector
myVector [0]␣=␣0.1;
myVector [1]␣=␣0.2;
myVector [2]␣=␣0.3;

You can use index notation to start writing more sophisticated programs
with for loops. Here’s a simple example to print out the elements of a vector
using a for loop.

//␣loop␣through␣a␣vector
int␣n␣=␣myVector.size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

cout␣<<␣myVector[i]␣<<"\n";
}

Using C++ Classes 99

Again, notice that we start counting from zero and stop counting using a less-
than sign. If you developed this habit when writing your C++ code you will
avoid a lot of bugs!

Tip: C++ programmers count from 0

Because the first index of a vector is 0, you should always count from 0 in
your for loops.

We’ve just seen another member function of vector<double> in this last
example. We’re using the member function size() to compute the size of a
vector.

You may be tempted to write the code:

for␣(int␣i=0;␣i<myVector.size();␣i++)␣{
...
}

rather than compute the size on a separate line. This is technically correct
C++, but some compilers (for example Visual Studio) issue a warning if you
do this. The reason is that the type of vector.size() is an unsigned integer
and the compiler is concerned that you are comparing signed and unsigned
data types. The fix to this problem is simply to write:

for␣(int␣i=0;␣i<(int)myVector.size();␣i++)␣{
...
}

By casting the size to a signed int, we stop the compiler from fretting. Simi-
larly, if one attempts to compile using 64-bit Windows, you need to cast the
return of size() before trying to store it in an int because the compiler is
concerned that you are trying to store a potentially 64-bit number using only
32 bits. In practice, we will not create vectors with 231 or more elements! As
an alternative we could use variables of type size_t ourselves. As we have
discussed, working with unsigned integers can cause confusion, which is why
we prefer the option of casting to an int.

Let’s see some more examples of what we can do with a vector.

• We can initialise one to be of a certain size and with certain fixed values.

• We can initialise a vector to be a copy of another vector.

• We can replace the contents of one vector with the contents of another
vector.

These actions are demonstrated in the code below:

100 C++ for Financial Mathematics

//␣Create␣a␣vector␣of␣length␣10
//␣consisting␣entirely␣of␣3.0’s
vector <double >␣ten3s (10,␣3.0␣);

//␣Create␣a␣vector␣which␣is␣a␣copy␣of␣another
vector <double >␣copy(␣ten3s␣);
ASSERT(␣ten3s.size()␣==␣copy.size ());

//␣replace␣it␣with␣myVector
copy␣=␣myVector;
ASSERT(␣myVector.size()␣==␣copy.size ());

You aren’t restricted to just vectors of double values. If you want an
integer-valued vector, just use vector<int>. If you want an ordered list of
strings, just use vector<string>. The example below shows how to initialise
a vector of integers using a list of values.

vector <int >␣threeInts ({␣2,␣3,␣4␣});

7.2 Pass by reference and const
When you write a function that takes a vector parameter, you should write

it like this:

double␣sum(␣const␣vector <double >&␣v␣)␣{
double␣total␣=␣0.0;
int␣n␣=␣v.size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

total␣+=␣v[i];
}
return␣total;

}

Notice the strange const and & symbols that have crept in. The purpose
of these additional symbols is to make it quicker to pass large objects around,
as we will explain momentarily in Section 7.2.1.

I recommend that you learn the above function off by heart as a reminder
of the syntax for

• Vectors

• for loops

Using C++ Classes 101

• Pass by reference (the &)

• The const keyword.

7.2.1 Pass by reference
Consider the following short program. What do you think it prints out?

void␣printNextValue(␣int␣x␣)␣{
␣␣␣␣x␣=␣x␣+␣1;
␣␣␣␣cout␣<<␣"B:␣Value␣of␣x␣is␣"<<x<<"\n";
}

void␣main()␣{
␣␣␣␣int␣x␣=␣10;
␣␣␣␣cout␣<<␣"A:␣Value␣of␣x␣is␣"<<x<<"\n";
␣␣␣␣printNextValue(␣x␣);
␣␣␣␣cout␣<<␣"C:␣Value␣of␣x␣is␣"<<x<<"\n";
␣␣␣␣return␣0;
}

The answer is that it prints out:

A: Value of x is 10
B: Value of x is 11
C: Value of x is 10

The reason is that when you call a function ordinarily, a copy is made of
your data and that copy is passed to the function. In this case a copy of the
variable x is passed to printNextValue. This means that the original variable
x remains unchanged when the copy is incremented.

On the other hand, the very similar program:

void␣printNextValue2(␣int&␣x␣)␣{
␣␣␣␣x␣=␣x␣+␣1;
␣␣␣␣cout␣<<␣"B:␣Value␣of␣x␣is␣"<<x<<"\n";
}

void␣main()␣{
␣␣␣␣int␣x␣=␣10;
␣␣␣␣cout␣<<␣"A:␣Value␣of␣x␣is␣"<<x<<"\n";
␣␣␣␣printNextValue2(␣x␣);
␣␣␣␣cout␣<<␣"C:␣Value␣of␣x␣is␣"<<x<<"\n";
␣␣␣␣return␣0;
}

prints out something different. It prints out:

102 C++ for Financial Mathematics

A: Value of x is 10
B: Value of x is 11
C: Value of x is 11

The only important difference is the & symbol used in the definition of print-
NextValue2. In this case the parameter x is passed by reference. This means
that the variable x in the function main is actually modified by printNext-
Value2. The function is not passed a copy of the variable, but instead is asked
to modify the variable itself.

We say that the function printNextValue which uses pass by value has no
side effects since the function simply performs the computation you expect.
On the other hand, printNextValue2 has the side effect of unexpectedly
changing the value of x.

As we will see in the next section, there are times when you might actually
want a function to change the values of the data that you pass as parameter.
When this happens, it is good practice to make sure this is obvious from
the name of the function. If printNextValue2 was instead called increment-
AndPrint it would not be such a confusing function. Its name would make its
behaviour clear. In general, programmers assume that a function won’t change
the parameters passed to it unless the documentation makes that very clear.
As a result, just as in medicine, unwanted side effects are usually considered
a bad thing.

This would seem to suggest that you should rarely use pass by reference.
However, when you pass large objects around, passing data by reference can
be much quicker than passing a copy by value. This is because creating a copy
of a large object can take a lot of time. With pass by reference there is no
need for any copying. Pass by reference works by telling the function you are
calling whereabouts in memory your data can be found. Your data is read,
and potentially modified, in situ.

Tip: When to use pass by reference (&)

When passing objects, pass them by reference as your default choice.
When passing the primitive data types double, int, and bool, pass by

value is perhaps marginally quicker, so for these data types it is conventional
to use pass by value.

7.2.2 The const keyword
We seem to be caught between two alternatives: Pass by reference is quick

but potentially confusing; pass by value is slow but should not cause confusion.
There are two possible solutions.

• Use pass by reference but take care not to actually modify the parame-

Using C++ Classes 103

ters that are passed to your function. This may seem a facetious solution
to the problem, but it is a very practical approach.

• Use pass by reference and ask the compiler to prove that the function
doesn’t modify the parameters passed in. You can do this by using the
const keyword.

When you pass a parameter as a const parameter, this means that the
function you are calling is not allowed to change the value of the parameter.
For example, if you change the code in our example so it now reads:

void␣printNextValue(␣const␣int&␣x␣)␣{
␣␣␣␣x␣=␣x␣+␣1;
␣␣␣␣cout␣<<␣"B:␣Value␣of␣x␣is␣"<<x<<"\n";
}

you will no longer be able to compile the code. This is because the function
attempts to modify the variable x contradicting the use of the const keyword.

You can use the const keyword on variables, too. We’ve seen it used on
global variables, but you can use it on local variables. Whenever it is used, it
means that the value of the variable must not change.

Tip: Use const consistently or don’t use it at all

As we have discussed, using the const keyword means the compiler will check
your functions to make sure they don’t have any side effects.

This has some advantages, but it has the obvious downside that you need
to type const! If you choose to use the const keyword you will quickly discover
that you must use the const keyword consistently throughout your code in
order to avoid compilation errors. It turns out that this will mean typing
const extremely often.

You need to decide whether you want to use const in your code or not.
In this book we will demonstrate how to write code using the const keyword
and so will use const a lot.

If you are working on an existing C++ project, a decision will have been
made on whether or not to use const in that project. In this case you should
fall in with this decision.

If you are writing your own software project, perhaps for a student disser-
tation, I personally would recommend not using the const keyword. I believe
that you will waste time trying to understand the compiler errors raised by
const that could be better spent writing unit tests. However, this view is
controversial and many projects do choose to use the const keyword.

104 C++ for Financial Mathematics

7.2.3 Pass by reference without const

We have seen that pass by reference without the const keyword can lead
to unwanted side effects. Nevertheless, there are times when you actually want
a function to change its parameters.

One example is that C++ does not allow you to return multiple values.
You can use pass by reference to get round this.

As an example, suppose that we want to write a function to convert the
polar coordinates (r, θ) into the Cartesian coordinates (x, y). We cannot write
a function that returns two doubles, so instead we write a function that doesn’t
return anything, but modifies two variables x and y that are passed in by
reference.

void␣polarToCartesian(␣double␣r,␣double␣theta ,
double&␣x,␣double&␣y␣)␣{

x␣=␣r*cos(theta);
y␣=␣r*sin(theta);

}

Here is an example of how to use this function:

static␣void␣testPolarToCartesian ()␣{
double␣r␣=␣2.0;
double␣theta␣=␣PI/2;
double␣x=0.0,y=0.0;
polarToCartesian(r,theta ,x,y);
ASSERT_APPROX_EQUAL(␣x ,0.0 ,0.001␣);
ASSERT_APPROX_EQUAL(␣y ,2.0 ,0.001␣);

}

As we shall see in the next chapter, user defined types provide an alterna-
tive means of returning multiple values.

7.3 Using ofstream
Another very useful data type is an ofstream. This stands for “Output

File Stream”. The phrase “Output Stream” is a general term for somewhere
you can write data.

For example, you can write data to a file, to the screen, to a printer, over
the Internet, etc. All of these give examples of output streams. In C++ you
can use all these streams in much the same way.

Here is an example of how to use a ofstream:

//␣create␣an␣ofstream

Using C++ Classes 105

ofstream␣out;

//␣choose␣where␣to␣write
out.open("myfile.txt");

out␣<<␣"The␣first␣line\n";
out␣<<␣"The␣second␣line\n";
out␣<<␣"The␣third␣line\n";

//␣always␣close␣when␣you␣are␣finished
out.close ();

As you can see, it works just like std::cout except for the open and closing
of the file. When using an ofstream you must call open to specify which file
you want to write to. You must call close when you have finished writing.

You must call close because C++ performs some “buffering”, which
means your data might not actually be written until you call close. Buffer-
ing is a common performance enhancement that is used when writing data to
networks and files. It is usually quicker to write 100 characters to a file in one
go than it is to make a separate call for each character. As a result, when you
write to a file, C++ will quietly batch together all your writes until it thinks
there is enough data to be worth sending to the file. Calling close indicates
that it is time to finish writing the data.

In addition, calling close indicates to other programs you are running that
you are no longer trying to write to the file—you normally want to prevent
two different programs trying to write to the same file.

When passing round an ofstream, pass a reference to an ostream. Read
the last sentence carefully: There is no f in ostream. It stands for “output
stream” and it can be used to refer to any kind of stream to which you might
wish to write the output of your program.

void␣writeHaiku(␣ostream&␣out␣)␣{
out␣<<␣"The␣wren\n";
out␣<<␣"Earns␣his␣living\n";
out␣<<␣"Noiselessly .\n";

}

void␣testWriteHaiku ()␣{
//␣write␣a␣Haiku␣to␣cout
writeHaiku(␣cout␣);
//␣write␣a␣Haiku␣to␣a␣file
ofstream␣out;
out.open("haiku.txt");
writeHaiku(␣out␣);
out.close ();

}

106 C++ for Financial Mathematics

Notice that we pass an ofstream by reference but not by const reference.
This is because we want to be able to change the stream by writing data to
it.

You can pass in any kind of ostream to the function writeHaiku. We’ve
illustrated this by writing the haiku to cout and to a file. But the function can
be used equally well to write to a printer or across the Internet. This makes
the function far more powerful. This is an example of “polymorphism”, which
we will discuss in detail in Chapter 10. Polymorphism is simply the Greek for
“many forms”: There are many different forms of output stream, but we can
write functions that work with any of them.

7.4 Working with string
The string class allows you to manipulate character data conveniently.

Here are some examples of the usage of a string.

//␣Create␣a␣string
string␣s("Some␣text.");

//␣Write␣it␣to␣a␣stream
cout␣<<␣s<<␣"\n";
cout␣<<␣"Contains␣"

<<␣s.size()␣<<
"␣characters␣\n";

//␣Change␣it
s.insert(␣5,␣"more␣");
cout␣<<␣s␣<<"\n";

//␣Append␣to␣it␣with␣+
s␣+=␣"␣Yet␣more␣text.";
cout␣<<␣s␣<<"\n";

//␣Test␣equality
ASSERT(␣s=="Some␣more␣text.␣Yet␣more␣text.");

We can construct a string using text in quotation marks. We can use
the member function .size to compute its length. We can use the member
function .insert to insert additional text at a given location. We can use +
to add text onto the end of a string.

You should pass string objects using a const reference for efficiency.
You may recall from Section 2.4 that when you write some text in dou-

ble quotation marks, this doesn’t actually create an object of type string.

Using C++ Classes 107

It creates data of type char*. This means “a pointer to a memory address
containing a sequence of characters”. You need to tell C++ that you want to
convert this to a string.

How does a char* differ from a string? The key difference is that a char*
consists only of the data. A string combines the data and a number of helpful
functions into a single package.

So, for example, the following code makes no sense in C++:

int␣a␣=␣"Quick␣brown␣fox".size();

You must first convert the raw data of "Quick brown fox" into a string object
and then you can call size.

string␣s("Quick␣brown␣fox");
int␣a␣=␣s.size();

In general, we will prefer to use a string rather than work with the raw
data directly because these functions are so helpful. Moreover, using string
is more efficient because it stores the length of the string as well as the actual
characters.

While we are discussing writing raw character strings in quotation marks,
we note that you can escape characters in double quotation marks much as
you can escape characters in single quotation marks. Use \" to mean a single
quote and \\ to mean a backslash.

You will often find that a function requires a char* argument rather than
a string. In this case use the function c_str() to convert a string back into
a char␣*.

This confusion between the string data type and the char* data type can
be traced back to the C programming language. C never had a proper data
type for strings. Programmers have historically used a pointer to a memory
location containing characters to represent a string. So for historical reasons,
many functions still expect you to pass in a char*.

string should be your first choice for representing character data. We’ll
discuss the char* data type more thoroughly in Chapter 11.

7.5 Building strings efficiently
Using + to build up strings by adding to the end of them is rather slow.

As a result you should avoid code like this:

string␣s("");
for␣(int␣i=0;␣i<100;␣i++)␣{

s+="blah␣";
}

108 C++ for Financial Mathematics

cout␣<<␣s<<"\n";

By constantly resizing the string objects we waste computer effort. Instead
it is better to write to a stringstream. A stringstream is an output stream
that stores the characters that you write.

stringstream␣ss;
for␣(int␣i=0;␣i<100;␣i++)␣{

ss<<"blah␣";
}
string␣s1␣=ss.str ();
cout␣<<␣s1␣<<"\n";

Once you have built up the string you want, call the member function .str()
to convert the stringstream to a string.

We won’t perform much string manipulation in this book and the perfor-
mance won’t be a big issue for us. But using a stringstream is also great for
testing. If you have a function that writes to an ostream you can test that
it works by seeing if it writes to stringstream correctly. You can then be
confident it will work when you use an ofstream to write to a file. You can
even be confident it will work when you write to some more exotic kind of
stream that represents an Internet connection.

This is another example of polymorphism and shows how polymorphism
makes testing easier.

7.6 Writing a pie chart
It may surprise you to learn that we now know enough C++ to be able

to produce some charts. Admittedly there is a trick: We will actually produce
the data for a chart in C++ and then use an external program to produce the
chart itself.

Given this idea, the simplest way to chart in C++ is to simply write the
data to a file and then create the chart using a spreadsheet program such as
Excel or OpenOffice Calc.

Here is the code needed to write a chart in a format that can be easily
understood by a spreadsheet program.

void␣writeCSVChartData(␣ostream&␣out ,
const␣vector <double >&␣x,
const␣vector <double >&␣y␣)␣{

ASSERT(␣x.size ()==y.size ());
int␣n␣=␣x.size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

Using C++ Classes 109

out␣<<␣x[i]␣<<","<<y[i]␣<<"\n";
}

}
void␣writeCSVChart(␣const␣string&␣filename ,

const␣vector <double >&␣x,
const␣vector <double >&␣y␣)␣{

ofstream␣out;
out.open(␣filename.c_str()␣);
writeCSVChartData(␣out ,␣x,␣y␣);
out.close ();

}

To make this part of a library we need to declare it in the header:

void␣writeCSVChart(␣const␣std:: string&␣filename ,
const␣std::vector <double >&␣x,
const␣std::vector <double >&␣y␣);

The function declaration in the header, uses the qualification std:: a lot.
We’ve had to fully qualify every type name. The reason is that you should
never write using␣namespace␣std; in a header file so unfortunately all these
boring std:: prefixes are required.

Together these two functions give a very sensible solution to the problem
of writing a chart in C++. It doesn’t feel very satisfying, however, because
one still has to manually turn the data into a chart using the spreadsheet
program. We can do a little better.

7.6.1 A web-based chart
It is surprisingly easy to create a web page containing a pie chart. Here

are the steps:

• Create a file called myPieChart.html. Open it with a text editor.

• Copy the code below into your file1. You can also download essentially
equivalent code from the website:
https://google-developers.appspot.com/chart/.

• Save the file.

• Open the file in a web browser.

<html >
<head >

<!--Load␣the␣AJAX␣API -->

1 This code is taken from Google Charts’ online documentation and altered slightly to
fit the page. The code is distributed under the Apache 2.0 license. http://www.apache.org/
licenses/LICENSE-2.0

https://google-developers.appspot.com/chart/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

110 C++ for Financial Mathematics

<script␣type="text/javascript"
src="https :// www.google.com/jsapi"></script >

<script␣type="text/javascript">

//␣Load␣the␣Visualization␣API
//␣and␣the␣piechart␣package.
google.load(’visualization ’,␣ ’1.0’,␣{’packages ’:[’corechart ’]});

//␣Set␣a␣callback␣to␣run␣when␣the
//␣Google␣Visualization␣API␣is␣loaded.
google.setOnLoadCallback(drawChart);

//␣Callback␣that␣creates␣and␣populates␣a␣data␣table ,
//␣instantiates␣the␣pie␣chart ,␣passes␣in␣the␣data␣and
//␣draws␣it.
function␣drawChart ()␣{

//␣Create␣the␣data␣table.
var␣data␣=␣new␣google.visualization.DataTable ();
data.addColumn(’string ’,␣’Topping ’);
data.addColumn(’number ’,␣’Slices ’);
data.addRows ([

[’Mushrooms ’,␣4],
[’Salami ’,␣2],
[’Spinach ’,␣3]

]);

//␣Set␣chart␣options
var␣options␣=␣{’title ’:’Pizza␣Toppings ’,

’width ’:400,
’height ’:300};

//␣Instantiate␣and␣draw␣our␣chart ,␣passing␣in␣some␣options.
var␣chart␣=

new␣google.visualization.PieChart(
document.getElementById(’chart_div ’)

);
chart.draw(data ,␣options);

}
</script >

</head >

<body >
<!--Div␣that␣will␣hold␣the␣pie␣chart -->
<div␣id="chart_div"></div>

</body >
</html >

If you have done everything correctly, when you double click on the file it
should show a pie chart like the one in Figure 7.1.

You may wonder how this works. In a nutshell it uses Google’s web-based
charting library, which makes it easy to create charts inside web documents
(.html files). We haven’t got time to learn HTML and Javascript, the two
languages involved in creating this chart. However, this isn’t a significant
problem. We can simply use our intelligence to work out how to change the
example code to print the pie chart of our choice.

This example code comes straight from Google’s own documentation for
Google Charts. If you look through their online documentation it will give you
plenty of ideas about how you can change the chart to meet your needs.

We’ve been learning to program C++ from the bottom up. In other words
we’ve been learning all the technical details step by step. Another route to

https://www.google.com/jsapi

Using C++ Classes 111

Pizza Toppings

Mushrooms

Salami

Spinach

44.4%

33.3%

22.2%

FIGURE 7.1: An example pie chart

learning a language is by immersion: you look at examples and change them.
You may never learn all the strict rules of the language, but you can get
a lot done with limited knowledge. So right now we’re learning HTML and
Javascript by immersion.

As an exercise, change the pie chart example so it produces the pie chart
of your choice. Just in case it isn’t obvious, the only bit of the code you need
to pay attention to are the lines:

data.addRows ([
[’Mushrooms ’,␣4],
[’Salami ’,␣2],
[’Spinach ’,␣3]

]);

The end result is that writing a pie chart won’t be much harder than
generating a file containing the data. There’s just a bit of extra boilerplate at
the top and bottom of the file that we don’t need to understand.

Let us run through the entire process of creating a function to generate
pie charts.

7.6.2 Create a header file
• Create a new header file.

• Call the file charts.h

• All header files should start with #pragma␣once

112 C++ for Financial Mathematics

• Include standard libraries with #include␣"stdafx.h"

• (We’ll cover tests later)

#pragma␣once

#include␣"stdafx.h"

7.6.3 Write a source file
• Create a new source file

• Call the file charts.cpp

• All source files should #include the related header file

• (We’ll cover tests later)

#include␣"charts.h"

7.6.4 Enable testing in your files
In charts.h

void␣testCharts ();

In main.cpp

int␣main()␣{
testMatlib ();
testGeometry ();
testCharts ();
testUsageExamples ();

}

In charts.cpp

void␣testCharts()␣{
}

7.6.5 Write functions to generate the boiler plate
• We pass an ostream& reference to the function

• We use \" to escape quotes in quotes.

Using C++ Classes 113

• The spacing in HTML files isn’t very important, so this function doesn’t
reproduce the spacing of Google’s example pie chart precisely. This was
done so we could fit the code on the page.

static␣void␣writeTopBoilerPlateOfPieChart(␣ostream&␣out␣)␣{
out <<"<html >\n";
out <<"<head >\n";
out <<"<!--Load␣the␣AJAX␣API -->\n";
out <<"<script␣type =\" text/javascript \"";
out <<"src =\" https :// www.google.com/jsapi\">";
out <<"</script >\n";
out <<"<script␣type =\" text/javascript \">\n";
out <<"google.load(’visualization ’,␣ ’1.0’,";
out <<"␣{’packages ’:[’corechart ’]});\n";
out <<"google.setOnLoadCallback(drawChart);\n";
out <<"function␣drawChart ()␣{\n";
out <<"var␣data=new␣google.visualization.DataTable ();";
out <<"\n";
out <<"data.addColumn(’string ’,␣’Label ’);\n";
out <<"data.addColumn(’number ’,␣’Value ’);\n";

}

Writing a function for the bottom boiler plate code is just as easy.

static␣void␣writeBottomBoilerPlateOfPieChart(
ostream␣&␣out␣)␣{

out <<"var␣options␣=␣{’title ’:’A␣Pie␣Chart ’,\n";
out <<"’width ’:400,\n";
out <<"’height ’:300\n";
out <<"};\n";
out <<"var␣chart␣=␣new␣google.visualization.PieChart(";
out <<"document.getElementById(’chart_div ’));\n";
out <<"chart.draw(data ,␣options);\n";
out <<"}\n";
out <<"</script >\n";
out <<"</head >\n";
out <<"<body >\n";
out <<"<div␣id=’chart_div ’>\n";
out <<"</body >\n";
out <<"</html >";

}

7.6.6 Write a simple version of the chart data
The hardest bit of code will be writing out the pie chart data. For the time

being we “cheat” and just write a simplified function that will print out some
fixed text that we hope will work.

https://www.google.com/jsapi

114 C++ for Financial Mathematics

This isn’t really cheating, just a sensible practice. We work in small pieces.
Once you’ve solved one simple problem, move on to the next simple problem.

static␣void␣writeFixedPieChartData(␣ostream&␣out)␣{
out <<"data.addRows ([\n";
out <<"[’Bananas ’,␣100] ,\n";
out <<"[’Apples ’,␣200] ,\n";
out <<"[’Kumquats ’,␣150]\n";
out <<"]);\n";

}

7.6.7 Write a test of what we’ve done so far

static␣void␣testFixedPieChart ()␣{
ofstream␣out;
out.open("FixedPieChart.html");
writeTopBoilerPlateOfPieChart(out);
writeFixedPieChartData(␣out␣);
writeBottomBoilerPlateOfPieChart(␣out␣);
out.close ();

}

void␣testCharts()␣{
␣␣␣␣TEST(␣testFixedPieChart␣);
}

We’ve written enough code to test, so let’s run it. When you run this test
using the standard development environment set-up, it will create the file in
the same folder as main.cpp.

7.6.8 Write the interesting code
Let us be clear on what the interesting bit of code must do. Given a string

of labels it should produce output that looks like this:

data.addRows([
[’Bananas’, 100],
[’Apples’, 200],
[’Kumquats’, 150]
]);

The last line is special—there is no comma. Other than that it all looks
straightforward.

static␣void␣writeDataOfPieChart(␣ostream&␣out ,

Using C++ Classes 115

const␣vector <string >&␣labels ,
const␣vector <double >&␣values)␣{

out <<␣"data.addRows ([\n";
int␣nLabels␣=␣labels.size ();
for␣(int␣i=0;␣i<nLabels;␣i++)␣{

string␣label␣=␣labels[i];
double␣value␣=␣values[i];
out <<"[’"<<label <<"’,␣"<<value <<"]";
if␣(i!=nLabels -1)␣{

out <<",";
}
out <<"\n";

}
out <<"]);\n";

}

There is one subtle problem. For simplicity we have assumed that the
labels don’t contain quotation marks or other special characters. We leave it
as an exercise to fix this issue.

Danger!

It is important to fix issues with special characters in production software.
Hackers love bugs based around quotation marks. For example, when using a
web application, they might try choosing the peculiar user name

Dave’); DELETE FROM Users; --

Here the hacker is guessing that you are using an SQL database and they are
hoping to trick you into executing the following SQL code on your database2:

INSERT␣INTO␣Users␣VALUES␣(’Dave’);␣DELETE␣FROM␣Users;␣--’)

This code would first create a new User called “Dave”, but then would delete
the entire database table Users! The issue is that the ’ character has a special
meaning in SQL just as it does in C++ and so it needs to be escaped when
it is used as part of a string.

7.6.9 Testing the interesting code
To test the function writeDataOfPieChart we write a test that finds the

text output by the function writeDataOfPieChart and then compares it to
the expected value. To do this we first set up some dummy data for our
pie chart. We then call writeDataOfPieChart and store the output using a
stringstream.

116 C++ for Financial Mathematics

static␣void␣testPieChartData ()␣{
//␣this␣test␣automates␣the␣checking
stringstream␣out;
vector <string >␣labels (3);
vector <double >␣vals (3);
for␣(int␣i=0;␣i<3;␣i++)␣{

stringstream␣ss;
ss<<"A␣Label␣"<<i;
labels[i]␣=ss.str ();
INFO(␣labels[i]␣);
vals[i]=(double)i;

}
writeDataOfPieChart(␣out ,

labels ,
vals␣);

string␣asString␣=␣out.str ();

We can now compare the output of writeDataOfPieChart to the output we
are expecting.

stringstream␣expected;
expected <<"data.addRows ([\n";
expected <<"[’A␣Label␣0’,␣0],\n";
expected <<"[’A␣Label␣1’,␣1],\n";
expected <<"[’A␣Label␣2’,␣2]\n";
expected <<"]);\n";
string␣expectedStr␣=␣expected.str ();
ASSERT(␣asString == expectedStr␣);

}

This gives a test that writeDataOfPieChart behaves in the way that we want.

• Since fstream and stringstream are both types of ostream, the inter-
esting code was easy to test.

• You might have thought it would be impossible to write a useful test
for code that generates a chart. Many people would argue that you need
a human to look at the chart to test the code. However, we have just
shown that it is perfectly possible to write meaningful tests of almost
any code. If you can’t test it, you’ve designed your code incorrectly or
don’t understand the problem properly.

7.6.10 Wrap it all up into a single function
The function definition below makes it easy to create a pie chart with given

labels and values from C++. The pie chart will be saved in the given file.

Using C++ Classes 117

void␣pieChart(␣const␣string&␣file ,
const␣vector <string >&␣labels ,
const␣vector <double >&␣values␣)␣{

ofstream␣out;
out.open(file.c_str ());
writeTopBoilerPlateOfPieChart(out);
writeDataOfPieChart(␣out ,␣labels ,␣values␣);
writeBottomBoilerPlateOfPieChart(␣out␣);
out.close ();

}

Hopefully you will agree that this function is very simple. We have used
functions to divide our code into manageable pieces which together produce
an interesting result.

If we want to make our function available in other files, we will need to
put a declaration into the header files as follows:

void␣pieChart(␣std:: string&␣file ,
std::vector <std::string >&␣labels ,
std::vector <double >&␣values␣);

This is copied from the code in the .cpp file except we’ve had to put in lots
of std:: statements since you should never write using␣namespace␣std; in
a header file.

7.7 The architecture of the World Wide Web
The Internet and the World Wide Web are slightly different things. The In-

ternet includes everything on the Internet including Skype, email and Netflix.
The World Wide Web is what you can see in a web browser.

So, the World Wide Web is just one particularly popular application that
runs on the Internet.

Our “trick” of writing a chart as a text-based file relies on the architecture
of the World Wide Web. The World Wide Web is based on sending text
files around. Servers receive text data (from users filling in forms and typing
URLs). Servers send out text data (HTML files like our chart).

It’s easy to write the server that generates a web page without even un-
derstanding HTML. We’ve just done this ourselves. It is also easy to test your
server code without even using a web browser.

This is a “design pattern” that you should copy. Use human-readable data
to communicate between applications. Write small simple applications that
communicate through text files. This will allow you to use C++ for what C++

118 C++ for Financial Mathematics

is good at and other languages where they work better (e.g., user interfaces
and prototyping).

This is the first significant example of software architecture in this book.
Developing software may require you to do any of the following:

• write code in a given language;

• design functions and data types in that language to produce convenient
and useful libraries;

• write systems using multiple computers and languages to create a useful
end product.

These tasks are termed coding, software design, and software architecture,
respectively. Tim Berners-Lee was acting as a software architect when he
devised the World Wide Web. As the World Wide Web demonstrates, a good
architecture can make all the difference to the success of your application.

An introductory book like this on programming in C++ inevitably focuses
on coding and on software design. However, it is worth keeping in mind that
a good software developer will be willing to use multiple interacting programs
and multiple languages to achieve their goals.

Finally, you may wonder how to produce charts that you can include in
publications from your C++ code. A tool such as GNU plot can be used to
produce very high-quality charts. The essential idea is similar: use C++ to
write a text file GNU plot understands; run GNU plot to turn this text file
into a pdf file ready for publication.

Exercises
7.7.1. Write a function solveQuadratic which takes parameters a, b, and c
and which uses the quadratic formula to find both roots of ax2 + bx+ c = 0.
It should return the number of roots and use pass by reference to return the
values of the roots. Write an alternative version of this function which uses a
vector to return the answer.

7.7.2. Write a function mean that computes the mean of a vector of doubles.
Write a test for this function.

7.7.3. Write a function standardDeviation that computes the standard de-
viation of a vector of doubles. Make it take two parameters, the vector itself
and a boolean indicating whether to compute the population standard devia-
tion or sample standard deviation. Make the default value be to compute the
sample standard deviation. Write a test for this function. Why would std be
a bad choice of name for this function?

Using C++ Classes 119

7.7.4. Write a function min and a function max which each take a vector
of doubles and return the max and min, respectively. Write tests for these
functions. Have you written a helper function to create a test vector yet?

7.7.5. Write a function randuniform(int␣n) which returns a vector of uni-
formly distributed random numbers in the range (0, 1). Use the function
rand(), which you will need to #include from cstdlib (look up the doc-
umentation here: http://www.cplusplus.com/reference/cstdlib/rand/)
to complete this exercise. You will also need to use the constant RAND_MAX
that is also defined in cstdlib. Write a test for this function.
Note that in this book we won’t try to tell you every function you might want
to use, so it is a good idea to start becoming familiar with how to use the
online documentation.

7.7.6. Write a function randn(int␣n) which returns a vector of normally
distributed random numbers with mean 0 and standard deviation 1. Write a
test for this function.

7.7.7. An alternative way to generate normally distributed random numbers
is to use the Box–Muller algorithm. To do this one first generates two uni-
formly distributed random variables u1 and u2 in the interval (0, 1). Define:

n1 =
√
−2 log(u1) cos(2πu2)

n2 =
√
−2 log(u2) sin(2πu2)

n1 and n2 will be independent normally distributed random variables with
mean 0 and standard deviation 1. Write a function to generate N normally
distributed random numbers using the Box–Muller method and write a test
for your answer.

7.7.8. Use the Google Line Chart example to find out how to create a web
page with a line chart in it. Use this to write a function plot which takes a
string, a vector of x coordinates, and a vector of y coordinates, and generates
a line chart containing a graph of y against x. Test your code by plotting a
graph of y = x2.
Plot a graph of the price of a call option against the current stock price using
Equation (A.6). Assume the volatility is 0.2, the strike price is 100, the time
to maturity is 1.0, and the risk-free interest rate is 0.05.

7.7.9. You can use the standard library function sort to sort a vector of
doubles. If v is a vector, you can sort it using the following code:

sort(␣v.begin(),␣v.end()␣);

You will also need to #include␣<algorithm> and use the namespace std.
The code above actually changes the vector v, so you may prefer to create a
sorted copy as follows:

http://www.cplusplus.com/reference/cstdlib/rand/

120 C++ for Financial Mathematics

vector<double>␣copy␣=␣v;
sort(␣copy.begin(),␣copy.end()␣);

Use this to write a function prctile that takes as input a vector of doubles
v and a percentile p and outputs the p-th percentile.
Note that there is no agreement on the precise definition of percentile. You
will need to choose a precise definition to answer the question. The definition
used in the model answer given for this exercise is illustrated in Figure 7.2 for
the sample vector (1 3 4 7). In this definition of a percentile, if v contains n

0 20 40 60 80 100
0

2

4

6

8

10

p
rc
ti
le

p

FIGURE 7.2: Percentiles of the vector (1 3 4 7)

points, then the sorted values of v determine the percentiles at p values equal
to:

100× 1
2n, 100× 3

2n, 100× 5
2n, . . . , 100× 2n− 1

2n .

The 0-th percentile is always equal to the smallest value in the sample. The
100-th percentile is the largest value in the sample. All other percentiles are
determined by linear interpolation.

7.7.10. (More challenging) You will find that the Google Line Chart can be
used to plot curves other than just the graph of functions. This is because the
vector of x coordinates need not be in ascending order and can even contain
duplicates. Use this idea to write a function hist that takes a vector of numeric
values and a number, n, of buckets and plots a histogram containing n bars
that shows the frequency of the different values. Your code should simply
create the data needed to plot a line chart and then use the answer to the
previous question. An alternative approach would be to use the Histogram
functionality provided by Google charts. What would be the problem with
this second approach for very large samples?

Using C++ Classes 121

7.7.11. (More challenging) Change the code so that it can cope with spe-
cial characters such as ’ inside the labels. You will want to find out how to
look at strings a character at a time in the online documentation for string,
which you can find on cplusplus.com.

7.7.12. In the above questions, have you passed vectors and strings by refer-
ence? Have you used the const keyword where possible? Have you used the
static keyword where possible?

7.8 Summary
This chapter marks something of a transformation of our C++ program-

ming skills. By putting everything we’ve learned together, we can write some-
thing very sophisticated.

The specific skills we learned were:

• Passing by reference and passing by value.

• Using the const keyword if we want the compiler’s help on avoiding side
effects.

• Using vector<double> to represent a mathematical vector. Pass them
as the type const␣vector<double>&.

• Using string to represent strings. Pass them as const␣string&.

• Using stringstream to build complex strings.

• Using fstream to write to files.

• Using ostream to write to any kind of stream interchangeably.

• Using the architectural design pattern of communicating between differ-
ent programs using text files.

http://taylorandfrancis.com

Chapter 8
User-Defined Types

In the previous chapter we learned how to use:

• vector<double>,

• string,

• ofstream,

• stringstream.

Using these new types has made us much more productive C++ programmers.
The next step is to learn to write our own types, which we hope will similarly
boost our productivity.

As you will learn, the main job of a programmer in an object-oriented
language is writing their own types.

Throughout this chapter we will assume that you have opened FMLib8 in
your development environment so you can view the code and experiment with
it.

8.1 Terminology
We already know the following.

• Every variable in C++ has a type (for example, double).

• You can have lots of variables of a given type.

We are about to start learning a programming style called “object-oriented
programming” in which it is conventional to use slightly different vocabulary
for the same ideas.

• Every object in C++ has a class.

• You can have lots of instances of the same class.

Example 1:

123

124 C++ for Financial Mathematics

string␣s("To␣be,␣or␣not␣to␣be?");

In the code above, s is an object of type string. It is an instance of the class
string.

The term object in object-oriented programming refers to a data type which
consists of a bundle of data together with helpful functions to work with that
data.

So a vector<double> is an object because it contains the data of a vector
and helpful functions like size(). Similarly a string is an object.

On the other hand, double, int and the raw data type char* are not
object-oriented types because they consist purely of data with no special helper
functions.

The type of data and functions supported by an object depend only on its
class. All instances of the same class have the same functions and the same
types of data.

Example 2: An instance of the class string consists of:

• data consisting of a sequence of characters;

• functions such as size, insert, erase for working with these data.

The class string is where all these functions and data types are defined.

Finally, the functions associated with an object are often called methods.
There isn’t meant to be any meaningful difference between the words function
and method. Some authors prefer the word method as the word function can
scare non-mathematicians. We will use both terms.

8.2 Writing your own class
8.2.1 Writing the declaration

To show how to write your own class, let us create a data type which
represents a point in two-dimensional space.

class␣CartesianPoint␣{
public:

double␣x;
double␣y;

};

User-Defined Types 125

The code above is called a class declaration. You can choose whether to
put a class declaration in a .h file or a .cpp file. If you want it to be part
of your library, you put it in the header file. If you are using it to implement
your library but don’t want anyone else to use it, you put it in the .cpp file.

In this case we want the class to be available to users of our library, so
we’ve declared it in the .h file geometry.h.

In the example above:

• The name of our class is CartesianPoint.

• A Cartesian point contains two double values called x and y. These are
called member variables of the class.

• Users of the library are allowed to use the values of x and y in their own
code, so these are marked as public.

When writing classes one uses the following general syntax for the class
declaration:

class CLASS_NAME {
public:

DATA AND FUNCTION DECLARATIONS
private:

DATA AND FUNCTION DECLARATIONS
};

The data and functions you declare in the section marked public: will be
available to users of your library. The data and functions marked as private:
are not available to users of your library. This allows you to hide information
about how your class works. This will make your library easier to use and
maintain.

Some points to notice are:

• You can define classes in header files or cpp files. Use header files if you
want users of the library to use your class.

• You must remember the semi-colon at the end. You may get very con-
fusing compiler errors if you omit it.

• Like variable names, class names should contain no spaces or strange
characters and should start with a letter. It is a good idea to use a
naming convention so it is easy to distinguish class names and variable
names. In this book we’ll use the naming convention of writing class
names using camel case starting with a capital letter. For example, we
have the class name CartesianPoint.

126 C++ for Financial Mathematics

8.2.2 Using a class
Let us see how someone will use the CartesianPoint class. Our example

code contains a test that shows how the class can be used.

1 CartesianPoint␣p;
2 p.x␣=␣100;
3 p.y␣=␣150;
4 cout␣<<␣"Coordinates␣(";
5 cout␣<<␣p.x␣;
6 cout␣<<␣",␣";
7 cout␣<<␣p.y␣;
8 cout␣<<␣")\n";
9

10 p.x␣*=␣2;
11 p.y␣*=␣2;
12 cout␣<<␣"Rescaled␣cordinates␣(";
13 cout␣<<␣p.x␣;
14 cout␣<<␣",␣";
15 cout␣<<␣p.y␣;
16 cout␣<<␣")\n";

This creates a point and sets the coordinates to (100, 150). It then prints
out the coordinates. Next it doubles all the coordinate values and prints them
out a second time.

To understand this in more detail, at line 1 we create an instance of the
class CartesianPoint. We do this simply by declaring a variable whose type
is CartesianPoint.

CartesianPoint␣p;

We have now created a variable called p that represents a point in space.
We then set the member variables representing the x coordinate and the y
coordinate. We choose the values so that p represents the point (100, 150).

p.x␣=␣100;
p.y␣=␣150;

When you want to access the data inside the class you use a dot . followed
by the name of the member variable.

You can only access the variables because they have been marked as
public:. Try removing the word public: and see what compiler error you
get. This will help you understand the compiler error in future should you
ever happen to forget to mark your data as public.

User-Defined Types 127

8.2.3 Passing objects between functions
Let us write a new class called PolarPoint which represents a point in

polar coordinates. It will therefore have member variables corresponding to
polar coordinates (r, θ).

class␣PolarPoint␣{
public:

double␣r;
double␣theta;

};

We can use this class to illustrate how one passes objects to and from
functions. Let us write a new function polarToCartesian which takes a point
in polar coordinates and returns the corresponding CartesianPoint.

CartesianPoint␣polarToCartesian(const␣PolarPoint&␣p){
CartesianPoint␣c;
c.x␣=␣p.r*cos(␣p.theta␣);
c.y␣=␣p.r*sin(␣p.theta␣);
return␣c;

}

As we discussed in Section 7.2.1, you should use pass by reference when
passing objects to functions. This explains the use of the const keyword and
the & symbol. Normally any custom data type should be passed by reference.
Pass by value is normally reserved just for double, int, and bool.

8.2.4 How have classes helped?
It is worth pausing to see how using classes has improved our code. Let us

examine the code needed to test our new polarToCartesian function:

static␣void␣testPolarToCartesian ()␣{
PolarPoint␣p;
p.r␣=␣2.0;
p.theta␣=␣PI/2;
CartesianPoint␣c␣=␣polarToCartesian(␣p␣);
ASSERT_APPROX_EQUAL(␣c.x ,0.0 ,0.001␣);
ASSERT_APPROX_EQUAL(␣c.y ,2.0 ,0.001␣);

}

and compare it with our previous test code:

static␣void␣testPolarToCartesian ()␣{
double␣r␣=␣2.0;
double␣theta␣=␣PI/2;
double␣x=0.0,y=0.0;

128 C++ for Financial Mathematics

polarToCartesian(r,theta ,x,y);
ASSERT_APPROX_EQUAL(␣x ,0.0 ,0.001␣);
ASSERT_APPROX_EQUAL(␣y ,2.0 ,0.001␣);

}

The first advantage that using classes has given us is that they have es-
tablished a clear convention that x-coordinates are called x and y-coordinates
are called y. This will make code written using CartesianPoint clearer than
code that uses x some of the time, X some of the time, and xcoord the rest of
the time.

The second advantage that using classes has given us is that our code no
longer depends so heavily on the ordering of parameters. One needs to be very
careful in the original code that you pass every parameter in the correct order,
and the compiler will provide no help. With classes it becomes impossible to
get the order wrong. This becomes particularly important when, for example,
passing 5 parameters to a function to price a call option. It is then all too
easy to pass the parameters in the wrong order.

The third advantage is that we are no longer using pass by reference to
return multiple values. Most people find returning a single object conceptually
simpler than modifying parameters by reference. This means that the version
of the code using classes is easier for most people to understand.

So using classes gives us consistency, readability, and reliability. The ad-
vantages may seem marginal at the moment, but, as our examples become
more and more complex, the advantages will become increasingly apparent.

There is a trade-off, however. We’ve had to write the code to represent the
classes. We should ask whether this trade-off is worthwhile. The philosophy
of library design says that our aim should always be to make life easy for
the users of the library even at the expense of more work for the author of
the library. This is because a library that is any good will be used a lot and
written only once. So it is worth putting in some extra work to make a library
as good as possible. According to this philosophy, therefore, the trade-off is
worthwhile.

In this example, the advantages of object orientation are quite small. As
we learn more of the object-oriented features of C++, the advantages of this
programming style will increase.

8.3 Adding functions to classes
The value of object orientation becomes more apparent when we add mem-

ber functions to our classes. Let us illustrate this with a Circle class. Our
circle class will have only one piece of data associated with it, the radius of
the circle. But it will also have various functions for working with that data.

User-Defined Types 129

We will write a function area() to compute the circle’s area and a function
circumference() to compute its circumference.

class␣Circle␣{
public:

double␣radius;
double␣area ();
double␣circumference ();

};

We put the declarations for the functions area and circumference inside
the declaration of the class Circle. They’re marked as public because we
want them to be available to users of our library. The declarations look like
ordinary function declarations. Notice that they don’t take any parameters at
all.

Before we attempt to implement the functions, let us be test-driven devel-
opers and write tests for them. This will allow us to illustrate how you call
the functions on an object.

static␣void␣testAreaOfCircle ()␣{
Circle␣c;
c.radius␣=␣4;
ASSERT_APPROX_EQUAL(␣c.area(),␣16*PI,␣0.01␣);

}

static␣void␣testCircumferenceOfCircle ()␣{
Circle␣c;
c.radius␣=␣2;
ASSERT_APPROX_EQUAL(c.circumference (),4*PI ,0.01);

}

As the examples above show, you use a dot to call a function on an object.
For example, c.area() computes the area of the circle c.

We are calling the area function on a specific circle c, so the function area
should return the area of that specific circle c. This is why you don’t need to
pass the radius to the member function area.

Now that we know how the functions will be used, let us see how to pro-
vide definitions for these functions. As usual for C++ functions, we write the
definitions in a .cpp file.

double␣Circle ::area()␣{
return␣PI*radius*radius;

}

double␣Circle :: circumference ()␣{
return␣2*PI*radius;

}

130 C++ for Financial Mathematics

There are several things to observe about these function definitions.

(i) When you define a member function of a class, you must always specify
the name of the class in the definition. The syntax is: CLASS_NAME::-
FUNCTION_NAME. If you forget to do this you’ll get linker errors saying
you’ve forgotten to define the function. The reason why you must specify
the name is that many classes may have functions of the same name.
For example, we might have a class Square which also has an area
function. This is why you need to say which class’s method you are
actually implementing.

(ii) The Circle class’s member functions are able to access the member
variable radius and the global variable PI.

8.3.1 Using const on member functions
As we mentioned when the const keyword was introduced in Section 7.2,

if you are going to use const at all, you must use it consistently throughout
your code. If you have decided to use const, then if a member function doesn’t
change the object, you should mark it as const. You do this by writing const
at the end of the declaration and definition.

class␣Circle␣{
public:
␣␣␣␣double␣radius;
␣␣␣␣double␣area()␣const;
␣␣␣␣double␣circumference()␣const;
};

/**
␣*␣␣␣Computes␣the␣area␣of␣a␣circle
␣*/
double␣Circle::area()␣const␣{
␣␣␣␣return␣PI*radius*radius;
}

In this example we note that measuring the area of a circle doesn’t change
the circle in any way. This is why we have added const to the declaration of
the area function.

We have then added it to the definition as well because the use of const and
& must exactly match between a functions declaration and definition. If they
don’t match exactly, you will get linker errors. It is worth experimenting with
seeing what errors actually occur if you don’t have matching const statements.

When you pass a reference to const␣Circle as a parameter to a function,
the compiler will insist that the function does not modify that circle. This
means that you won’t be able to call any of the functions on the circle except

User-Defined Types 131

those that are marked as const. This is why, if you intend to use const at
all, you must use it on every function that does not change the object.

8.4 A financial example
To see the benefit we gain from the introduction of classes, let us work

through a more sophisticated example involving financial mathematics. First
we define a class called BlackScholesModel.

class␣BlackScholesModel␣{
public:

double␣stockPrice;
double␣volatility;
double␣riskFreeRate;
double␣date;

};

The choice of member variables in this class is carefully considered. This class
only contains the variables associated with the model and not variables asso-
ciated with the financial contract. We will specify different option contracts
in different classes shortly.

We will add functionality to this class in later chapters. For example, we
will add functions to do things like simulate option prices.

Notice that we’re specifying the date as a double. We’ll measure dates in
years since 0 A.D. So January the first 2014 would be represented as 2014.0.
You wouldn’t do this in real code, but we don’t want to waste energy thinking
about leap years and how many days September hath. When you come to
price real option contracts, you will want to be a little more careful. You will
then want to use a library containing a proper date class.

We now define a separate class for the option contract. We’ll create a class
CallOption which contains a strike and a maturity but does not contain any
details about the current market data. The idea behind this design is that
we can use the same BlackScholesModel to price either a CallOption or a
PutOption. Note that the CallOption does not change as the market data
changes. This reflects reality: a call option contract is unchanged by the market
even though its price may vary.

class␣CallOption␣{
public:

double␣strike;
double␣maturity;

double␣payoff(␣double␣stockAtMaturity␣)␣const;

132 C++ for Financial Mathematics

double␣price(␣const␣BlackScholesModel&␣bsm␣)
const;

};

The CallOption has two functions. One function, payoff, computes the payoff
at maturity. The second, price, computes the price given some hypothetical
market data in the form of a BlackScholesModel.

We’ve been careful with the const statements here. Pricing a CallOption
does not change it, nor does it change the model used to price the option.

Let us now examine the implementation code for the payoff function:

double␣CallOption :: payoff(
double␣stockAtMaturity␣)␣const␣{

if␣(stockAtMaturity >strike)␣{
return␣stockAtMaturity -strike;

}␣else␣{
return␣0.0;

}
}

Notice that all the const keywords exactly match the declaration. If there were
any mismatch the code would not link correctly. Apart from the const key-
word and the CallOption::, this code is quite straightforward. The definition
of the function simply follows from the definition of a CallOption contract.

The next function is more sophisticated in that it prices the CallOption
using the BlackScholes formula.

double␣CallOption ::price(
const␣BlackScholesModel&␣bsm␣)␣const␣{

double␣S␣=␣bsm.stockPrice;
double␣K␣=␣strike;
double␣sigma␣=␣bsm.volatility;
double␣r␣=␣bsm.riskFreeRate;
double␣T␣=␣maturity␣-␣bsm.date;

double␣numerator␣=
log(␣S/K␣)␣+␣(␣r␣+␣sigma*sigma *0.5)*T;

double␣denominator␣=␣sigma␣*␣sqrt(T␣);
double␣d1␣=␣numerator/denominator;
double␣d2␣=␣d1␣-␣denominator;
return␣S*normcdf(d1)␣-␣exp(-r*T)*K*normcdf(d2);

}

Again note that we specify this is the price function for a CallOption us-
ing CallOption::. We pass the BlackScholesModel by const reference as
specified in the declaration of the function for the usual efficiency reasons.

User-Defined Types 133

Similarly we specify that the function does not change the CallOption itself
using the const keyword exactly as in the declaration.

Last but not least, we want a unit test. As well as checking the code, this
provides a helpful example of how to use our classes.

static␣void␣testCallOptionPrice ()␣{
CallOption␣callOption;
callOption.strike␣=␣105.0;
callOption.maturity␣=␣2.0;

BlackScholesModel␣bsm;
bsm.date␣=␣1.0;
bsm.volatility␣=␣0.1;
bsm.riskFreeRate␣=␣0.05;
bsm.stockPrice␣=␣100.0;

double␣price␣=␣callOption.price(␣bsm␣);
ASSERT_APPROX_EQUAL(␣price ,␣4.046 ,␣0.01);

}

8.4.1 What have we gained?
The benefits are similar to those from introducing a CartesianPoint and

a PolarPoint class, but they are now rather more striking.

• Easier programming. If we have a single function blackScholes-
Price that takes 5 double parameters, it is almost impossible to re-
member what the correct order for the parameters is.

• Easier debugging. If you have a function that takes 5 double param-
eters, its almost impossible to spot if someone has accidentally put the
parameters in the wrong order.

• Consistency. If we use the same BlackScholesModel class to price put
options, Asian options, knock-out options, etc., we’ll have a library that
is much easier to use.

In later chapters, we will apply more advanced object-oriented techniques
which will bring more striking benefits.

134 C++ for Financial Mathematics

8.5 Recommendations on writing classes
You have many choices available to you when you write a class about such

matters as the name of the class and which file to define it in. It is good to have
some conventions. In this book we choose to follow the following guidelines.

1) Whenever possible, don’t put class declarations in header files, put them
in cpp files. This follows from the general principle that you should try to
hide information if possible.

2) If you decide to put a class in a header file, define only one class in each
header file.

3) Name that class the same as the header file.

4) Give classes names that are nouns: for example CartesianPoint or Black-
ScholesModel.

5) Use upper case for the first letter of a class name.

The files BlackScholesModel.h and CallOption.h demonstrate these con-
ventions.

The file geometry.h breaks these conventions but only because we don’t
want to clutter the project with too many files that have nothing to do with
financial mathematics. If we were really writing a geometry library, we would
put all the point classes in their own header files for readability.

A second issue to consider is the const keyword. In this chapter we have
tried to use the const keyword consistently. However, the const keyword is
an optional feature in C++. You can choose to use it if you want the compiler
to guarantee that you never accidentally change an object when you didn’t
mean to, but your code will work if you never use const at all.

This means that you can make a software architecture decision for your
project. Will you use const or won’t you? This is a decision for the entire
project because it turns out that if you want to use the const keyword at all,
you really need to use it everywhere. This is because if someone has passed
you a const reference, you can only pass it to functions that themselves are
declared as taking a const reference.

In practice, this means you won’t get to choose whether to use const or
not. You will need to ask your boss whether she wants you to use it or not.

Even if you don’t like the const keyword yourself, if you are writing a
library, you’ll need to use the const keyword if you your library users want
to use the const keyword.

In this book we will use const so that you can understand the issues raised,
but you may prefer to avoid using it in your own code.

User-Defined Types 135

8.6 Encapsulation
Let us now try to understand the public keyword in more detail. To do

this let’s write an object-oriented version of our pie chart code. We begin with
a class declaration called PieChart.

class␣PieChart␣{
public:

void␣setTitle(␣const␣std:: string&␣title␣);
void␣addEntry(␣const␣std:: string&␣label ,

double␣value␣);
void␣writeAsHTML(␣std:: ostream&␣out␣)␣const;
void␣writeAsHTML(const␣std:: string&␣file␣)␣const;

private:
std:: string␣title;
std::vector <std::string >␣labels;
std::vector <double >␣values;

};

Following our conventions, you can find this in PieChart.h.
We have now marked the data variables as private. This means only

member functions of PieChart can see those variables.
The only member function that modifies the title is setTitle. The only

function that modifies the list of labels and the list of data points is addEntry.
Here are their definitions:

void␣PieChart :: setTitle(␣const␣std:: string&␣t␣)␣{
title␣=␣t;

}

void␣PieChart :: addEntry(␣const␣string&␣label ,
double␣value␣)␣{

labels.push_back(␣label␣);
values.push_back(␣value␣);

}

The interesting point is that it is now impossible for labels and values ever
to contain a different number of elements. This is because the only code that
ever modifies them is addEntry and that function maintains the guarantee
that the two vectors always have the same length. We know that there can’t
be any other code elsewhere in the project that breaks this guarantee because
the variables are private. Because we have used the private keyword, we
only have to check that member functions are well behaved to be certain that
labels and values have the same number of elements.

It is considered good programming style to make all member variables

136 C++ for Financial Mathematics

private on your classes. Doing this allows you to guarantee that your object
always remains in a consistent state. In addition it allows you to change your
mind in the future about the implementation details (i.e., how data is stored)
without users of your class being affected in anyway.

In summary, the private keyword allows you to perform more sophisti-
cated information hiding than just choosing what to put in the header file.

Not putting a class in a header file gives even more information hiding than
making things private, so that should always be your first choice. However, if
you have to make the class available to users of your library, you should try to
make all its data, and as many of its member functions as possible, private.

It was only for the sake of simplicity that we have given the BlackScholes-
Model and the CallOption public data members. We wanted to illustrate the
use of public data before explaining about private data. In practice the
library could be improved by modifying these classes.

The idea of hiding data using the private keyword is often called encap-
sulation. The word encapsulation really refers to two things:

(i) the bundling together of related items into a single object;

(ii) preventing direct messing with the internal data of an object.

Encapsulation is common in real-world design as well as in object-oriented
software design. For example, consider the design of a car.

In a car, all the lighting controls are put on the dashboard and are clearly
separated from the controls for the windows and the seats. This grouping of
functionality in a car’s controls corresponds to the grouping of functionality
into different classes in software design.

In addition, you can control a car through standard functions (turn left,
turn right, etc.) but the internal workings of a car are hidden from the user
completely (they’re kept under the bonnet). This corresponds to the software
design principle of having a small number of public functions that are available
to your users, but keeping most of the details private.

Cars are much easier to use because of the use of encapsulation. It is a
good thing that you can drive a car without being a trained mechanic. Just
as these design principles make cars easier to use, so the same principles make
objects in object-oriented programs easy to use.

To illustrate this further, consider the question of how the vector<double>
class stores its data given that it can’t be using a vector<double> itself. You
don’t know how this is done, and quite reasonably you probably don’t care
that much. You don’t need to know and your life has been made easier by not
having to think about this.

The designer of the C++ libraries has tried to make life easier for you by
making the internal data of a vector private. You should help users of your
library in the same way.

User-Defined Types 137

8.6.1 Implementing PieChart
You can find the full implementation for the PieChart class in Pie-

Chart.cpp. It is simply a re-organisation of the non-object-oriented code we
wrote in Section 7.6. You can call our new PieChart class an object-oriented
wrapper around our existing code that makes it easier to use.

8.6.2 Using PieChart
A central belief in object-oriented programming is that human beings find

the code below easy to understand:

static␣void␣testPieChartClass ()␣{
//␣just␣checks␣that␣the␣class␣compiles␣etc.
PieChart␣pieChart;
pieChart.addEntry("Mushrooms" ,200);
pieChart.addEntry("Salami" ,100);
pieChart.addEntry("Spinach" ,150);
pieChart.setTitle("Pizza␣Toppings");

pieChart.writeAsHTML(␣"PizzaPie.html"␣);
}

This really summarises one of the key points of object orientation. Object-
oriented software should make life easier for users of our libraries.

Exercises
8.6.1. Write a class PutOption that behaves in a similar fashion to a Call-
Option. Make sure you write appropriate tests and follow the conventions on
naming files.

8.6.2. Write a class LineChart which allows you to create a line plot. Add a
feature to set the title of the plot.

8.6.3. Add a function distanceTo to the CartesianPoint class. It should
take a single parameter which is another CartesianPoint and it should com-
pute the distance between the two points. Here is an appropriate test function:

static␣void␣testDistanceTo ()␣{
CartesianPoint␣p1;
p1.x␣=␣1;
p1.y␣=␣1;
CartesianPoint␣p2;

138 C++ for Financial Mathematics

p2.x␣=␣4;
p2.y␣=␣5;
double␣d␣=␣p1.distanceTo(␣p2␣);
ASSERT_APPROX_EQUAL(␣d,␣5.0,␣0.0001);

}

Have you used the const keyword twice in the declaration and twice in the
definition?

8.6.4. Write an ordinary function perimeter which takes const references
to three CartesianPoints and computes the perimeter of the resulting trian-
gle. The perimeter function should call distanceTo. Test your perimeter
function with a 3, 4, 5 triangle.
What happens if you remove either of the const keywords from the definition
of distanceTo but leave them in the definition of perimeter? Explain why it
is that “if you use the const keyword at all, you have to use it everywhere”.

8.7 Constructors
If you create a variable of type double in C++ but do not set its value

yourself, C++ does not provide any guarantees what value will be assigned.
In practice, the computer will just grab some free memory and use whatever
values happen to be there.

For example, the program below is valid C++, but it isn’t possible to say
in advance what it will print out.

int␣main()␣{
␣␣␣double␣d;
␣␣␣cout␣<<␣"What␣is␣the␣value␣of␣d?\n";
␣␣␣cout␣<<␣d;
␣␣␣return␣0;
}

This hasn’t been an issue because we’ve been paying heed to warning
messages and this will certainly cause a compiler warning even though it is
technically valid C++ code.

The following code will also result in a compiler warning for similar reasons.

class␣Point␣{
public:
␣␣␣␣double␣x;
␣␣␣␣double␣y;
};

User-Defined Types 139

int␣main()␣{
␣␣␣Point␣p;
␣␣␣cout␣<<␣"What␣is␣the␣value␣of␣x?\n";
␣␣␣cout␣<<␣p.x;
␣␣␣return␣0;
}

C++ would be a little easier to use if all double values and all int values
defaulted to 0. We can’t fix C++ to make things easier, but we can make our
own classes easier to use by giving them constructors. A constructor performs
the initialisation of an object to leave it in a sensible state.

We’ve already used constructors. For example, to construct a vector of
length 100 initialised with zeros, we know we should write:

vector<double>␣v(100,0.0);

Similarly, to construct a string with characters Some␣text, we know to write:

string␣s("Some␣text");

Most classes go further and have a default constructor that initialises the
object in a sensible default state. For example, to create an empty vector one
simply writes:

vector<double>␣v;

The default constructor is automatically called. Similarly, to create an empty
string one writes:

string␣s;

When you write a class you should almost always give it a default con-
structor to make it easy for people to use correctly. You may also want to
provide more specialised constructors to initialise objects in particular states.

8.7.1 Writing a default constructor
Let us write a class called simply Point, which is intended to behave

exactly like our CartesianPoint example, but which now has a constructor.

1 class␣Point␣{
2 public:
3 ␣␣␣␣Point();␣//␣declare␣default␣constructor
4 ␣␣␣␣double␣x;
5 ␣␣␣␣double␣y;
6 };
7

140 C++ for Financial Mathematics

8 Point::Point()␣{
9 ␣␣␣␣x=0.0;

10 ␣␣␣␣y=0.0;
11 }
12
13 int␣main()␣{
14 ␣␣␣Point␣p;
15 ␣␣␣cout␣<<␣"What␣is␣the␣value␣of␣x?\n";
16 ␣␣␣cout␣<<␣p.x;
17 ␣␣␣return␣0;
18 }

In the class declaration we now have the declaration Point(); on line 3. This
declares the constructor.

A constructor declaration looks like a function declaration, except:

(i) there is no return type;

(ii) instead of the function name, you have the name of the class.

Similarly the constructor definition looks like a function definition with the
same differences. In the example above, the constructor definition begins at
line 8.

In our example, the constructor looks like a function that takes no param-
eters. As we will see, constructors can take parameters. A default constructor
is simply a constructor that doesn’t take parameters.

You can think of a constructor as a function that is automatically called
before anyone is allowed to see the object. Technically speaking it isn’t actually
a function because it can only be called when the object is being initialised
and because it doesn’t have a return value.

Inside the definition of the constructor you should set all int, double
etc. fields to sensible default values. More generally, you should ensure that
the object is in a consistent state before anyone ever sees it and you should
perform whatever processing is required to achieve this.

8.7.2 An alternative, and superior syntax
Here is another way that we could have written the constructor for Point:

class␣Point␣{
public:
␣␣␣␣Point();␣//␣declare␣default␣constructor
␣␣␣␣double␣x;
␣␣␣␣double␣y;
};

Point::Point()␣:

User-Defined Types 141

␣␣␣␣x(0.0),
␣␣␣␣y(0.0)␣{
}

int␣main()␣{
␣␣␣Point␣p;
␣␣␣cout␣<<␣"What␣is␣the␣value␣of␣x?\n";
␣␣␣cout␣<<␣p.x;
␣␣␣return␣0;
}

In the definition of the Point constructor, you can see a list of statements:

␣␣␣␣x(0.0),
␣␣␣␣y(0.0)

This is called an initialisation list. This calls constructors for x and y in order
to initialise the data. This is slightly different from our earlier code which used
an = statement to initialise the variables.

The general syntax for a constructor with an initialisation list is:

CLASS_NAME::CLASS_NAME(PARAMETER_LIST) :
INITIALISATION_LIST {
... NORMAL CODE ...

}

Notice the colon before the initialisation list.
Experienced C++ programmers prefer an initialisation list because it is

marginally faster. This is because calling the default constructor and then
performing assignment will be slower than using the right value the first time.

In addition, once you are familiar with the syntax it is more readable
because it is immediately obvious that there is nothing clever going on. All
that is happening is that data is being initialised. This means that you can
guess that if there is some code between the curly brackets it will be relatively
interesting.

8.8 Constructors with parameters
Writing constructors that take parameters is straightforward. Here is how

one could add a constructor that takes a strike and a maturity as parameters
to the CallOption class.

class␣CallOption␣{
public:

142 C++ for Financial Mathematics

␣␣␣␣double␣strike;
␣␣␣␣double␣maturity;
␣␣␣␣CallOption();␣//␣default␣constructor
␣␣␣␣CallOption(double␣strike,␣double␣maturity);//alternative
};
//␣default␣constructor␣implementation
CallOption::CallOption()␣:
␣␣␣␣strike(0.0),
␣␣␣␣maturity(0.0)␣{
}
//␣alternative␣constructor␣implementation
CallOption::CallOption(
␣␣␣␣␣␣␣␣double␣s,
␣␣␣␣␣␣␣␣double␣m␣)␣:
␣␣␣␣strike(s),
␣␣␣␣maturity(m)␣{
}

To create an option with strike 100 and maturity 2.0 one would then write

CallOption␣myOption(␣100,␣2.0␣);

This may seem like a very convenient system, but it is probably not a very good
design. The reason is that by introducing classes we got rid of the problem of
having to remember in what order to put parameters when calling functions.
By having a constructor with multiple parameters, we’ve reintroduced this
problem!

This doesn’t mean that constructors that take parameters are always bad,
just that you shouldn’t over-use them. Certainly the ability to construct a
vector of given size and default value is a good use of constructors.

There is one strange trick with parameterised constructors that you should
try to remember. Consider the class string. It has a constructor that takes
raw text data:

string␣s("Some␣raw␣text");

C++ uses this constructor to automatically convert raw text data to strings
without your having to think about it. For example, the code:

plot(␣"myPlot.txt",␣xVec,␣yVec␣);

will work despite the fact that the first parameter of a plot is declared to be
a const␣string& and not a char*.

In general, if your class has a constructor that takes a single parameter
construction, C++ will perform similar automatic conversions. While this is
great for the string data type, usually it results in code that is very unnatural.

For example, suppose you had added a constructor to BlackScholesModel
where you provide just the stock price:

User-Defined Types 143

class␣BlackScholesModel␣{
public:
␣␣␣␣double␣stockPrice;
␣␣␣␣double␣data;
␣␣␣␣double␣volatility;
␣␣␣␣double␣riskFreeRate;
␣␣␣␣BlackScholesModel();
␣␣␣␣BlackScholesModel(␣double␣stockPrice␣);␣//␣key␣line
};

Doing this means that C++ will now automatically convert doubles into in-
stances of BlackScholesModel. This is a very odd thing to do, and is unde-
sirable. To prevent this unwanted behaviour, you should mark constructors
that take one parameter as explicit.

class␣BlackScholesModel␣{
public:
␣␣␣␣double␣stockPrice;
␣␣␣␣double␣data;
␣␣␣␣double␣volatility;
␣␣␣␣double␣riskFreeRate;
␣␣␣␣BlackScholesModel();
␣␣␣␣explicit␣BlackScholesModel(␣double␣stockPrice␣);␣//␣key␣line
};

The code above prevents automatic conversion. In the very rare event that
automatic conversion is useful (as for strings) you can drop the explicit.

If you forget the explicit it isn’t the end of the world. The confusions
that may arise from forgetting to use it are quite rare in practice.

Exercises
8.8.1. Write a default constructor for every class that you have created so
far. Use both forms of the constructor syntax to familiarise yourself with the
options.

8.8.2. Write a class Polynomial that represents the polynomial

a0 + a1x+ a2x
2 + . . .+ xn.

Here the coefficients ai are doubles which associated with the polynomial itself,
but x is an unknown.
The class Polynomial should have the following features.

144 C++ for Financial Mathematics

• It should store the coefficients ai in a vector.
• It should have a function evaluate which takes as a parameter x and

evaluates the polynomial at x.
• It should have a constructor which takes a vector of coefficients.
• It should have a function add which can be used to add two polynomials.
• It should have a default constructor which generates the constant zero

polynomial.
• It should have a constructor which takes a single double c as a param-

eter and generates the constant polynomial with a0 = c and all other
coefficients 0.

8.9 Summary
• We’ve learned how to write classes that group data together.

• We’ve learned how to add member functions to our classes.

• We’ve seen that using classes makes life easier for users of our library.

• We’ve learned how to use the keywords public and private to hide
data from users of our library.

• We’ve learned the buzzword “encapsulation”.

• We’ve learned how to use the const keyword to indicate whether or not
an object is changed by calling one of its member functions.

• We have learned that classes should normally have a constructor to
initialise the data.

Chapter 9
Monte Carlo Pricing in C++

In this chapter we take a break from extending our C++ knowledge and in-
stead work out the details of an in-depth financial example that illustrates
everything we have learned so far. With this in mind, let us review some high-
lights of what we have learned. In the exercises, we have written a large amount
of basic mathematical functionality in the file matlib.cpp. In particular we
can:

i) Generate random numbers with randUniform and randn (Exercises 7.7.5
and 7.7.6)

ii) Generate plots with plot and hist (Exercises 7.7.8 and 7.7.10).

iii) Compute statistics of vectors with min, mean, prctile, etc. (Exer-
cises 7.7.2, 7.7.4, and 7.7.9)

We have also learned how to write simple classes.
If you have not yet completed these exercises, you should try to do so. The

file matlib.cpp which you can find in FMLib9 contains working versions of
all these functions.

In this chapter we will do the following:

i) Add a function to BlackScholesModel to simulate stock prices.

ii) Test our simulations using mean, etc., and plot them using plot.

iii) Write a class MonteCarloPricer that uses a BlackScholesModel to sim-
ulate stock prices and then uses risk-neutral pricing to price a CallOption
by Monte Carlo.

In doing this we will see how all the C++ we have learned can be applied
to solve real financial mathematics problems.

Of course, pricing a European call option by Monte Carlo is unnecessary
since one already knows the Black–Scholes formula. However, it is a valuable
exercise as it illustrates the general ideas of Monte Carlo pricing. In the ex-
ercises you will extend the ideas slightly to price a path-dependent option for
which we have given no analytic formula.

Before we begin writing code, let us recall the Monte Carlo pricing algo-
rithm which is justified in Appendix A.

145

146 C++ for Financial Mathematics

Algorithm 1. To compute the risk-neutral price of an option whose payoff
is given in terms of the prices at times t1, t2, . . . , tn one should proceed as
follows:

1. Simulate stock price paths in the Q-measure. By a stock price path we
just mean one possible realisation for the stock prices at the times ti. A
typical stock price path is shown in Figure 9.1.

2. Compute the payoff for each price path.

3. Compute the discounted mean value. This gives an unbiased estimate of
the true risk-neutral price.

We will proceed in this chapter by first writing a function to simulate
stock prices following geometric Brownian motion. This process is described
by Equation (A.8). When the drift, µ, of this geometric Brownian motion is
set to equal the risk-free rate r, we will be generating stock prices in the risk-
neutral measure as described by Equation (A.5). Having written this class, we
will write some tests to confirm that our simulations are correct.

Next we will use these stock price paths to compute the price of a European
call option by the Monte Carlo method. Again we will write tests to confirm
that our answer is correct.

9.1 A function to simulate stock prices
We wish to write a function generatePricePath which generates a sim-

ulated stock price path. It will take as parameters a final date toDate and a
number of steps nSteps.

Because we want to generate a price path according to a discrete-time
version of the Black–Scholes model, we choose to make the function generate-
PricePath a member function of the class called BlackScholesModel. This is
logical since the key data that we need to generate the price path are the drift,
µ, and volatility, σ. These are already member variables of BlackScholes-
Model. In addition, by adding the function as a member of BlackScholes-
Model it becomes immediately clear that the generatePricePath function
will generate prices that follow geometric Brownian motion, as required by
the Black–Scholes model.

This specification for the function effectively tells us what we need to write
in the header file.

class␣BlackScholesModel␣{
public:
␣␣␣␣...␣other␣members␣of␣BlackScholesModel␣...

Monte Carlo Pricing in C++ 147

␣␣␣␣std::vector<double>␣generatePricePath(
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣double␣toDate,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣int␣nSteps)␣const;
};

As this example shows, the class declaration describes the functionality of the
class without describing in detail how it is implemented. If you choose good
function and variable names, you won’t need too many comments. A well
designed class will almost document itself.

We will also want a function generateRiskNeutralPricePath which be-
haves the same, except it uses the Q-measure to compute the path. Therefore
we add the following declaration to BlackScholesModel

class␣BlackScholesModel␣{
public:
␣␣␣␣...␣other␣members␣of␣BlackScholesModel␣...

␣␣␣␣std::vector<double>␣generateRiskNeutralPricePath(
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣double␣toDate,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣int␣nSteps)␣const;
};

To implement these functions, we introduce a private function that allows
you to choose the drift in the simulation of the price path.

class␣BlackScholesModel␣{
␣␣␣␣...␣other␣members␣of␣BlackScholesModel␣...
private:
␣␣␣␣std::vector<double>␣generateRiskNeutralPricePath(
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣double␣toDate,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣int␣nSteps,
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣double␣drift)␣const;
};

This function is private because we’ve only created it to make the implemen-
tation easier. Users of the class don’t need (or even want) to know about
it.

To implement the function we need to know what algorithm to use. The
relevant mathematics is given below (and is motivated in Appendix A).
Algorithm 2. To simulate a stock price that follows discrete-time geometric
Brownian motion with drift µ and volatility σ at discrete times t0, t1, . . . tn
one should proceed as follows:
(i) Define

δti = ti − ti−1.

(ii) Choose independent normally distributed εi with mean 0 and standard
deviation 1.

148 C++ for Financial Mathematics

(iii) Define

sti = sti−1 +
(
µ− 1

2σ
2
)
δti + σ

√
δtiεi.

(iv) Define Sti = exp(sti).

The generated stock prices at Sti will have the same joint probability
distribution as those given by the Black–Scholes model.

Given this mathematical formulation of the algorithm, it is straightforward
to implement our helper function. You can find the code in BlackScholes-
Model.cpp.

vector <double >␣BlackScholesModel :: generatePricePath(
double␣toDate ,
int␣nSteps ,
double␣drift␣)␣const␣{

vector <double >␣path(nSteps ,0.0);
vector <double >␣epsilon␣=␣randn(␣nSteps␣);
double␣dt␣=␣(toDate -date)/ nSteps;
double␣a␣=␣(drift -volatility*volatility *0.5)* dt;
double␣b␣=␣volatility*sqrt(dt);
double␣currentLogS␣=␣log(␣stockPrice␣);
for␣(int␣i=0;␣i<nSteps;␣i++)␣{

double␣dLogS␣=␣a␣+␣b*epsilon[i];
double␣logS␣=␣currentLogS␣+␣dLogS;
path[i]␣=␣exp(␣logS␣);
currentLogS␣=␣logS;

}
return␣path;

}

We’ve only implemented the algorithm for evenly spaced time points. It is
easy to generalise to arbitrary time points.

Having implemented the private function, the public functions are very
simple. Again these implementations are placed in BlackScholesModel.cpp

vector <double >␣BlackScholesModel :: generatePricePath(
double␣toDate ,
int␣nSteps␣)␣const␣{

return␣generatePricePath(toDate ,␣nSteps ,␣drift␣);
}

vector <double >␣BlackScholesModel ::
generateRiskNeutralPricePath(

double␣toDate ,
int␣nSteps␣)␣const␣{

return␣generatePricePath(

Monte Carlo Pricing in C++ 149

toDate ,␣nSteps ,␣riskFreeRate␣);
}

The point to notice is that by using a design with a private helper function,
we’ve avoided writing the same complex code twice.

It is important that we test this code. The first test is a visual one, we want
to check that this really looks like a price path. We can use the LineChart
class to do this.

void␣testVisually ()␣{
BlackScholesModel␣bsm;
bsm.riskFreeRate␣=␣0.05;
bsm.volatility␣=␣0.1;
bsm.stockPrice␣=␣100.0;
bsm.date␣=␣2.0;

int␣nSteps␣=␣1000;
double␣maturity␣=␣4.0;

vector <double >␣path␣=
bsm.generatePricePath(␣maturity ,␣nSteps␣);

double␣dt␣=␣(maturity -bsm.date)/ nSteps;
vector <double >␣times␣=

linspace(dt,maturity ,nSteps);
LineChart␣lineChart;
lineChart.setTitle("Stock␣price␣path");
lineChart.setSeries(times ,␣path);
lineChart.writeAsHTML("examplePricePath.html");

}

This function makes use of a helper function linspace that has been
added to the matlib library. The call linspace(a,b,n) generates n evenly
spaced numbers between the values a and b. The output graph is shown in
Figure 9.1. The visual check is simply to observe that this looks reasonably
like a real stock price’s history.

You can run this test using FMLib9 to obtain the relevant code. I hope you
agree that producing such a sophisticated chart in C++ is strong evidence of
how far we have come in our understanding of C++.

Visual tests are useful, but we should always make sure that we have fully
automated tests of our code. The reason is that once one has a large amount
of code, it will all need regular testing in case we have accidentally written a
bug. If our tests are fully automated, we can run them every time we make
any change to the code.

One simple test is that, if our risk-neutral price path function is correct,
then the discounted mean of the final stock price should equal the initial price.
We test that in the code below:

150 C++ for Financial Mathematics

Stock price path

0.8 1.6 2.4 3.2 4.0

95

100

105

110

115

FIGURE 9.1: A simulated stock price path. The bottom axis is the time in
years, the vertical axis is the price in dollars.

void␣testRiskNeutralPricePath ()␣{
rng("default");

BlackScholesModel␣bsm;
bsm.riskFreeRate␣=␣0.05;
bsm.volatility␣=␣0.1;
bsm.stockPrice␣=␣100.0;
bsm.date␣=␣2.0;

int␣nPaths␣=␣10000;
int␣nsteps␣=␣5;
double␣maturity␣=␣4.0;

Monte Carlo Pricing in C++ 151

vector <double >␣finalPrices(nPaths ,0.0);
for␣(int␣i=0;␣i<nPaths;␣i++)␣{

vector <double >␣path␣=
bsm.generateRiskNeutralPricePath(

maturity ,␣nsteps␣);
finalPrices[i]␣=␣path.back ();

}
ASSERT_APPROX_EQUAL(␣mean(␣finalPrices␣),

exp(␣bsm.riskFreeRate *2.0)* bsm.stockPrice ,
0.5);

}

We have introduced one new feature here in the line:

rng("default");

This is not a call to a standard C++ function, it is a function in the FM-
Lib library that resets the state of the random number generator back to its
original “default” state. Calls to randUniform and randn will always generate
exactly the same sequence of “random numbers” each time the random num-
ber generator is reset to its default state. We have put the phrase “random
numbers” in quotes because the random numbers generated are never truly
random. Computer-generated random numbers merely look random in much
the same way as the digits of the number π look random. They are more
correctly called pseudo random numbers.

Resetting the state of the random number generator is very useful for
testing because it guarantees that each time the test is run, we will use the
same pseudo random numbers. This means that if the test passes once, it
will always pass and similarly if it fails once, it will always fail. It is very
frustrating when debugging code to have a test that sometimes passes and
sometimes fails—especially if you run all your tests every time you change
your code.

Tip: Tests depending on random numbers

Always reset the random number generator to a known state before running
tests that involve random numbers.

9.2 Writing a Monte Carlo pricer
We want to write a class called MonteCarloPricer that is configured with

nScenarios, the number of scenarios to generate. This will default to 10000.

152 C++ for Financial Mathematics

The MonteCarloPricer will also have a function price which takes a Call-
Option and a BlackScholesModel. It should then compute the price of the
CallOption by Monte Carlo.

The C++ declaration for MonteCarloPricer states pretty much the same
thing as the English language specification above.

#pragma␣once

#include␣"stdafx.h"
#include␣"CallOption.h"
#include␣"BlackScholesModel.h"

class␣MonteCarloPricer␣{
public:

/*␣ Constructor␣*/
MonteCarloPricer ();
/*␣ Number␣of␣scenarios␣*/
int␣nScenarios;
/*␣ Price␣a␣call␣option␣*/
double␣price(␣const␣CallOption&␣option ,

const␣BlackScholesModel&␣model␣);
};

void␣testMonteCarloPricer ();

Note the now-familiar patterns. The header file is called MonteCarlo-
Pricer.h. It begins with #pragma␣once. We #include␣"stdafx.h". The con-
structor looks like the declaration of a function called MonteCarloPricer ex-
cept there is no return type. We pass the option and the model by const
reference. There is a function to enable testing the code.

The beginning of the C++ file is similarly mundane:

#include␣"MonteCarloPricer.h"

#include␣"matlib.h"

using␣namespace␣std;

MonteCarloPricer :: MonteCarloPricer ()␣:
nScenarios (10000)␣{

}

The C++ file is called MonteCarloPricer.cpp. It includes MonteCarlo-
Pricer.h. The MonteCarloPricer has a default constructor which chooses
a value for the default number of scenarios to use.

To write the interesting code, we provide an implementation of the price
function. This follows the Algorithm 1.

Monte Carlo Pricing in C++ 153

double␣MonteCarloPricer ::price(
const␣CallOption&␣callOption ,
const␣BlackScholesModel&␣model␣)␣{

double␣total␣=␣0.0;
for␣(int␣i=0;␣i<nScenarios;␣i++)␣{

vector <double >␣path=␣model.
generateRiskNeutralPricePath(

callOption.maturity ,
1␣);

double␣stockPrice␣=␣path.back ();
double␣payoff=callOption.payoff(stockPrice);
total +=␣payoff;

}
double␣mean␣=␣total/nScenarios;
double␣r␣=␣model.riskFreeRate;
double␣T␣=␣callOption.maturity␣-␣model.date;
return␣exp(-r*T)*mean;

}

Since we’re pricing a CallOption whose payoff only depends on the stock price
at maturity, we only need one time step for our calculation.

Of course, we also need a test of this functionality. We can compare it with
the analytical Black–Scholes formula.

static␣void␣testPriceCallOption ()␣{
rng("default");

CallOption␣c;
c.strike␣=␣110;
c.maturity␣=␣2;

BlackScholesModel␣m;
m.volatility␣=␣0.1;
m.riskFreeRate␣=␣0.05;
m.stockPrice␣=␣100.0;
m.drift␣=␣0.1;
m.date␣=␣1;

MonteCarloPricer␣pricer;
double␣price␣=␣pricer.price(␣c,␣m␣);
double␣expected␣=␣c.price(␣m␣);
ASSERT_APPROX_EQUAL(␣price ,␣expected ,␣0.1␣);

}

154 C++ for Financial Mathematics

9.3 Generating random numbers for Monte Carlo
As discussed briefly above, conventional computers cannot generate true

random numbers, they can only generate pseudo random numbers.
Exercise 7.7.5 was to write a function to generate uniformly distributed

random numbers using the rand function that is built into C++. You should
have written some code that looks like this:

vector <double >␣randuniformOld(␣int␣n␣)␣{
vector <double >␣ret(n,␣0.0);
for␣(int␣i=0;␣i<n;␣i++)␣{

int␣randInt␣=␣rand ();
ret[i]␣=␣(randInt␣+␣0.5)/(RAND_MAX +1.0);

}
return␣ret;

}

We’ve called this randuniformOld because it uses the old C random number
generator rand. This isn’t a good choice for Monte Carlo algorithms because
the sequence of pseudo random numbers it generates start to repeat themselves
rather quickly.

Fortunately, experts in generating random numbers on computers have
produced much better algorithms for generating pseudo random numbers. The
Mersenne Twister algorithm is a commonly used random number generator for
Monte Carlo simulations which takes advantage of the properties of so-called
Mersenne primes to generate pseudo random numbers. The details are not
important for the purposes of this book. The C++ class mt19337 allows you to
use the Mersenne Twister algorithm without much more difficulty than using
the old rand function. Admittedly the class name mt19337 is substantially
more intimidating than the old function name rand but that is the only big
difference. The name comes from the fact that it takes a whopping 219337 − 1
calls to the random number generator before the sequence of random numbers
it generates repeats.

The code to generate random numbers using the mt19337 class is shown
below. It uses several C++ features we have not seen before. First we create
a global variable of type mt19337 called mersenneTwister.

static␣mt19937␣mersenneTwister;

The mt19937 class is a standard class in modern versions of C++. To use it
one has to #include␣<random>.

The object mersenneTwister is our random number generator. We have
rewritten the randuniform function in matlib.cpp so that it uses this random
number generator.

Monte Carlo Pricing in C++ 155

vector <double >␣randuniform(␣int␣n␣)␣{
vector <double >␣ret(n,␣0.0);
for␣(int␣i=0;␣i<n;␣i++)␣{

ret[i]␣=␣(mersenneTwister ()+0.5)/
(mersenneTwister.max ()+1.0);

}
return␣ret;

}

To generate a random integer we write mersenneTwister(). This call re-
turns a random integer in the range mersenneTwister.min()=0 to mersenne-
Twister.max(). We’ve tried to ensure that the values 0 and 1 are never actu-
ally achieved, which is why we have added in the +0.5 and +1.0. However, the
code is really not very different from the code using the old random number
generator.

One new feature is that the class mt19337 has overloaded the meaning of
(). When we write mersenneTwister() it looks as though we are calling a
function called mersenneTwister. But mersenneTwister is an object and not
a function, so that can’t be right. What is happening is that the mt19337 has
redefined what parentheses mean, so that mersenneTwister() means “gener-
ate a random number”.

You can overload the meaning of most symbols in C++ and this is dis-
cussed in detail in Chapter 16. For example, we will show how you can overload
+ and * to allow you to perform matrix multiplication.

It is very common in C++ to overload the meaning of () so that your
objects can be used as though they were functions. This is called writing a
functor and is discussed in Chapter 19.

We also need a function to reset the state of the random number generator.
The code is given below. We simply call seed and pass in the default value for
the seed.
void␣rng(␣const␣string&␣description␣)␣{

ASSERT(␣description =="default"␣);
mersenneTwister.seed(mt19937 :: default_seed);

}

A new feature here is that you can associate data with an entire class. The
default value for the seed for the Mersenne Twister algorithm is a constant
and so it doesn’t make sense to give every instance of the mt19937 class its
own copy of the default value. That would be a waste of computer memory. So
instead we associate the default value with the entire class mt19337. To access
a member variable of a class you use the :: notation as shown above. We’re
accessing the variable default_seed which is defined on the class mt19937.
We will discuss this idea further in Section 12.8.

The function rng above is designed to work in a similar way as the equiva-
lent function in MATLAB. In general we have tried to make our library matlib

156 C++ for Financial Mathematics

very similar to the MATLAB library. This is intended to make it easier for
users familiar with MATLAB to work with our library.

Note that C++ already contains built-in classes to help with generating
random numbers with a given distribution. It obviously makes more sense in
practice to use the built-in functions rather than to develop your own. We
have written our own randn function primarily for educational purposes. To
find out about the built-in methods for generating random numbers, see the
documentation for the the standard library <random>.

Exercises
9.3.1. Add a new function to MonteCarloPricer to price a PutOption. What
aspects of your answer do you find unsatisfactory?

9.3.2. What distribution of prices do you expect at time T according to the
Black–Scholes model? Use this to run both visual and automated tests on our
generation of stock price paths.

9.3.3. A continuous-time knock-out call option with strike K, barrier B, and
maturity T is an option which pays off:{

max{ST −K, 0} if St < B for all t ∈ [0, T]
0 otherwise

In other words, it has the same payoff as a call option with strike K unless
the stock price hits the barrier level B before maturity, in which case it pays
zero (in which one says it has knocked out).
A more practical contract is a discrete-time knock-out call option. This is
essentially the same as the continuous-time version, except that you only test
whether the stock price is below the barrier at some fixed time points.
Write a class UpAndOutOption that represents such an option. Give it a func-
tion computePayoff that takes a vector of stock prices taken at fixed time
points and returns the payoff of the corresponding discrete-time knock-out
option.
Add a new function to MonteCarloPricer that prices discrete-time knock-out
options by simulating price paths of length nSteps and computing the payoff
for these steps. By taking a large number of steps, the same function can be
used to price continuous-time knock-out options.

9.3.4. Write some tests for your answer to the previous question. The chal-
lenge is to think of good tests.

Monte Carlo Pricing in C++ 157

9.3.5. To compute the delta, ∆, of an option by Monte Carlo, you can use
the following algorithm.

• Choose a small value for h, say h = S0 × 10−6.
• Generate N stock price paths.
• Use the Monte Carlo method to compute the price of the option when

the initial stock price is taken to be S0 + h.
• Use the Monte Carlo method with the same price paths to compute the

price of the option when the initial stock price is taken to be S0 − h.
• Estimate the delta using the central difference estimate for the derivative

f ′(x) ≈ f(x+ h)− f(x− h)
2h .

Compute the delta of a call option using this algorithm and write a test for
your calculation. You will need to modify the class BlackScholesModel a
little to implement this.
Explain why it is essential to use the same random numbers in the calculation
of the stock prices.

9.3.6. You can use the central limit theorem to estimate the error in our
Monte Carlo estimate. In the Monte Carlo method we have generated a sample
of N discounted payoffs and taken the mean to compute an estimate for the
true expectation. By the central limit theorem, this sample mean is normally
distributed about the true expectation with standard deviation sN−1.2 where
s is the standard deviation of the discounted payoff. We can estimate s by
taking the standard deviation of our sample. Use this to compute a 95%
confidence interval for the Monte Carlo price.

9.3.7. There are numerous variance reduction techniques that can be used
to improve Monte Carlo calculations. One approach is called antithetic sam-
pling. We first simulate N stock price paths using our Q-measure model Equa-
tion (A.4). We recall the formula

log(St+δt) = log(St) +
(
µ− 1

2σ
2
)
δt+ σ(δt) 1

2 εt.

We then simulate N further stock price paths using the same random values
εt but now using the formula

log(St+δt) = log(St) +
(
µ− 1

2σ
2
)
δt− σ(δt) 1

2 εt.

We can compute an estimate for the risk-neutral price by computing the dis-
counted average payoff for all 2N paths. It turns out that for many options this
gives a more accurate answer than one obtains by simulating 2N independent
stock paths. Implement antithetic sampling to price a call option.
You should consult the literature on Monte Carlo methods for more informa-
tion on this and other variance reduction techniques.

158 C++ for Financial Mathematics

9.4 Summary
Table 9.1 summarises all the files you will find in FMLib9. It states which

files you are meant to understand completely and which one you should simply
use without understanding.

Financial and mathematical functionality:
matlib Basic maths functions
BlackScholesModel Represents the Black–Scholes Model
CallOption Represents a call option contract
PutOption Represents a put option contract
MonteCarloPricer Prices options by Monte Carlo
Non-financial functionality:
LineChart Plots line charts
Histogram Plots histograms
PieChart Plots pie charts
geometry Some elementary mathematical examples
Code you can use, but don’t fully understand:
testing Macros to make testing less boring

TABLE 9.1: Summary of the files found in FMLib9

Consider for a moment what we have achieved. We have demonstrated
that by writing code using a number of small classes and functions you can
build something very complex out of very little. We have also shown how easy
it is to automatically test a large project.

Chapter 10
Interfaces

To complete Exercise 9.3.1 to price a PutOption in the last chapter you should
have written a function that was simply a copy of the code for a CallOption
except that the type of the option has changed. This violates the “Once and
Only Once” principle (see Section 3.1).

In this chapter we will see how to write a function that can price an infinite
number of option contracts by Monte Carlo. It will work equally well with put
options, call options, digital put options, digital call options, and even options
with payoff functions we’ve not thought of yet. The possibilities are endless.

10.1 An interface for pricing options
A path-independent option is an option whose payoff is completely de-

termined by the stock price at maturity. For example, put options, call op-
tions, digital put options, and digital call options are all examples of path-
independent options. By contrast, a knock-out option depends not just on the
final stock price but upon the entire history of the stock price. This is why a
knock-out option is called a path-dependent option.

We would like to write a function price which takes two parameters:

• a path-independent option,

• a BlackScholesModel object,

and which returns the risk-neutral price of the option.
The function will compute the risk-neutral price using the following pro-

cedure.

• Compute a large number of possible stock price scenarios at the maturity
of the option.

• Compute the option’s payoff in each scenario.

• Compute the average payoff and discount by the risk-free rate to get the
current price of the option.

159

160 C++ for Financial Mathematics

This procedure only works for path-independent options because we only
simulate stock prices at maturity and not at intermediate times.

We have just given a recipe for pricing any path-independent option that
a human being can easily follow. The question is how to write this recipe in a
way that C++ understands. For the time being let us simply guess what the
code might look like.

double␣MonteCarloPricer ::price(
const␣PathIndependentOption&␣option ,
const␣BlackScholesModel&␣model␣)␣{

double␣total␣=␣0.0;
for␣(int␣i=0;␣i<nScenarios;␣i++)␣{

vector <double >␣path=␣model.
generateRiskNeutralPricePath(

option.getMaturity (),
1␣);

double␣stockPrice␣=␣path.back ();
double␣payoff␣=␣option.payoff(␣stockPrice␣);
total +=␣payoff;

}
double␣mean␣=␣total/nScenarios;
double␣r␣=␣model.riskFreeRate;
double␣T␣=␣option.getMaturity ()␣-␣model.date;
return␣exp(-r*T)*mean;

}

The code is essentially identical to the code we wrote to price a Call-
Option. The only difference is that it takes as a parameter a Path-
IndependentOption. Of course, the code won’t compile just yet. This is be-
cause we haven’t defined the type PathIndependentOption. Just as I had to
explain to you what was meant by a path-independent option for you to be
able to understand the algorithm, so you have to explain to C++ what is
meant by a PathIndependentOption.

What the C++ compiler needs to know is that a PathIndependentOption
is an object which:

• has a fixed maturity;

• has a payoff that depends only upon the stock price at maturity.

We can’t just explain this in plain English to the C++ compiler. We have to
take a more structured approach. So what we will tell the compiler is that a
PathIndependentOption is an object which:

• has a function with signature

double␣getMaturity()

Interfaces 161

• has a function with signature

double␣getPayoff(double␣stockPrice)

Here we have replaced our plain English description of a path-independent
option with a list of functions we expect to be available on any Path-
IndependentOption object. Note that in the implementation of MonteCarlo-
Pricer::price given above these are the only two functions of the option
that we actually use.

This description is called the interface of a path-independent option. It
describes how we can use a path-independent option in our code, but it doesn’t
describe at all how to implement a path-independent option. In fact it doesn’t
make sense to talk about how to implement any of these functions because
there is no one correct implementation. The implementation for a call option
and a digital put should be completely different. However, they should both
have functions getMaturity and getPayoff.

You can think of the interface as a contract or specification that a path-
independent option must fulfil. If the class is written in accordance with this
specification, we can price it by Monte Carlo.

10.2 Describing an interface in C++
How do we tell C++ that a PathIndependentOption is something with a

payoff and a getMaturity function? It’s easiest to see with an example. The
C++ definition of a PathIndependentOption is given below:

class␣PathIndependentOption␣{
public:

/*␣ A␣virtual␣destructor␣*/
virtual␣~PathIndependentOption ()␣{}
/*␣ Returns␣the␣payoff␣at␣maturity␣*/
virtual␣double␣payoff(

double␣finalStockPrice)␣const␣=␣0;
/*␣ Returns␣the␣maturity␣of␣the␣option␣*/
virtual␣double␣getMaturity ()␣const

=␣0;
};

The syntax is certainly strange. Your eye is probably drawn to the key-
word virtual and the use of =0. However, what you should focus on is the
similarities with more familiar class definitions.

The class is called PathIndependentOption. There is a function called
payoff and a function called getMaturity. They each take and return the

162 C++ for Financial Mathematics

correct types. The oddity in their definitions is that they are declared as
virtual and they are marked with the text =0.

The “=0” tells C++ that we do not intend to provide a definition for
these functions immediately. They have declarations but not definitions. It is
impossible to write a payoff function that will work for all possible types of
PathIndepentOption, so we tell C++ that we aren’t even going to try. We
will write other classes with names like PutOption and CallOption that will
each define their own specific payoff function.

In general, when you write an interface, you will not have one particular
implementation in mind, so you will write =0 to mean that you do not intend
to provide a definition right now.

The virtual keyword is harder to explain. For now, let us just say that
it is a magic word you have to utter whenever you write a function without a
definition. We’ll explain the real meaning of virtual in Section 12.3.

You may also be wondering what this strange notation means:

/*␣ A␣virtual␣destructor␣*/
virtual␣~PathIndependentOption ()␣{}

For now we’ll just pretend that we’re writing this code for good luck! It is
called a virtual destructor and we will explain its meaning once we’ve got
round to saying what a destructor is and what virtual actually means. This
won’t be until Section 16.2. For now, let us simply say that every interface
you write should have a virtual destructor and that the syntax for a virtual
destructor is:

␣␣␣␣virtual␣~CLASS_NAME()␣{}

You should carefully notice all the punctuation marks including the ~ charac-
ter.

Tip: The recipe for writing an interface

• Come up with a suitable name for your class such as PathIndependent-
Option. This is usually the hard bit. Coming up with a good name for
an abstract concept is always tricky.

• Add a virtual destructor.

• Add all the methods in your interface. Mark them with virtual and
=0.

At the moment I’m sure you find all this notation perverse and overly
complex. You’re right. It is. Many computer languages that were invented
after C++ have a simpler notation, but in C++ we have to make do with

Interfaces 163

the slightly strange notation. One just has to accept this. We’re not learning
C++ because it is pretty. We’re learning it because many banks program in
C++.

Many introductory books on programming in C++ don’t mention virtual
destructors as early as they should on the grounds that they are difficult to
explain. However, they really do need to be there. The philosophy of this book
is to show you the right thing to do from the beginning. This is because it’s
much easier to learn what you should type than why you should type it. Real
C++ programmers don’t think about every detail of what they type. Instead
they have certain habits and make certain default choices. This book aims to
teach you good habits sooner rather than later. By way of an analogy, you
probably know that it is good practice to say “s’il vous plaît” a lot in French
even though you may find it difficult to explain exactly why the French utter
this exact combination of syllables or why there is a hat on the letter ‘i’.

Now that we have specified our interface, we can tell C++ that our classes
CallOption and PutOption implement the interface. This is done using the
following construction:

class␣CallOption␣:␣public␣PathIndependentOption␣{

The line above replaces the usual class declaration. You should read it as
saying that a CallOption is a PathIndependentOption. You can think of
:␣public as being the C++ expression for is␣a.

In addition you need to actually implement the functions. Thus we must
write declarations and definitions for payoff and getMaturity in the usual
way. In fact we already implemented the payoff function. Implementing get-
Maturity is simple.

With these changes, our MonteCarloPricer now works equally well with
put options and call options.

static␣void␣testPutAndCall ()␣{
rng("default");

BlackScholesModel␣m;
m.volatility␣=␣0.1;
m.riskFreeRate␣=␣0.05;
m.stockPrice␣=␣100.0;
m.drift␣=␣0.1;

CallOption␣c;
c.strike␣=␣110;
c.maturity␣=␣2;

PutOption␣p;
p.strike␣=␣c.strike;
p.maturity␣=␣c.maturity;

164 C++ for Financial Mathematics

//␣our␣pricer␣can␣price␣puts␣and␣calls
MonteCarloPricer␣pricer;
double␣priceC␣=␣pricer.price(c,␣m);
ASSERT_APPROX_EQUAL(priceC ,␣c.price(m),␣0.1);
double␣priceP␣=␣pricer.price(p,␣m);
ASSERT_APPROX_EQUAL(priceP ,␣p.price(m),␣0.1);

}

You should download FMLib10 now and check that you can compile and
run the code. See if you can complete Exercise 10.6.1 at the end of the chapter.

The recipe for implementing an interface

class CLASS_NAME : public INTERFACE_NAME {
... declarations for CLASS_NAME ...
};

• You will need to provide a new declaration and definition for every
function defined in the interface INTERFACE_NAME.

• They must have exactly the same types, const declarations, and so
forth.

10.3 Examples of interfaces
Let us recap:

• We had two classes, PutOption and CallOption.

• These classes could be used in much the same way, so the code for pricing
them was almost identical.

• To avoid duplicating code, we carefully observed which functions Put-
Option and CallOption had in common.

• We designed an interface which simply listed these common functions,
albeit using some unusual syntax.

• We indicated that PutOption and CallOption implemented the inter-
face.

Interfaces 165

• By telling the C++ compiler about the interface we were able to write
one priceByMonteCarlo function that works for any path-independent
option.

If two different types of objects have similar functions then we can write
algorithms that will work with both types of objects by using interfaces. This
is a powerful way to avoid duplicating code.

How common is it for two different types of object to have similar func-
tions? The answer is extremely common. Here are some examples:

1. Two printers provided by different manufacturers will differ in many
ways, but the manufacturers should provide objects that allow us to
print files on the different printers without duplicating our code. They
can do this by agreeing on a common interface for all printers. This is
the same thing as saying they should agree on a common set of print
functions all printers are guaranteed to support.

2. Two monsters in a computer game (say an elf and a dragon) will have
many functions in common. For example, they will have functions to
return their weights, heights, name and to draw them on the screen.
The author of the game will introduce an interface Monster to avoid
duplicating code.

3. All stock price models should have a function generatePrices. We can
write a standard interface StockPriceModel with various implementa-
tions such as BlackScholesModel, StudentTModel, HestonModel and
JumpDiffusionModel. The last three are simply the names of some stock
price models that have been proposed in the mathematical finance litera-
ture. Our Monte Carlo pricing code can then be modified so it will work
with any model. Doing this is left as an exercise, see Exercise 14.4.5.
The end result is a very powerful pricing function that can price any
path-independent option using any model for the stock price at time T.

4. All trading strategies should have a function selectPortfolio which
decides how to invest at a particular moment in time. We can have
a general interface TradingStrategy and concrete subclasses Delta-
HedgingStrategy and BuyAndHoldStrategy. See Exercise 14.4.6.

5. Any encryption algorithm should have methods encrypt and decrypt.
This can be represented as an interface called Cipher. It is then possible
to provide different implementations of the encryption algorithm that
work in different ways. For example, you might write a CaeserCipher
that replaces a with d, b with e, c with f, etc., or you might write a
ReverseCipher that replaces a with z and b with y, etc. You could
then write software that sends encrypted messages and that is capable
of working with any Cipher.

166 C++ for Financial Mathematics

6. Any object of type GroupElement should have methods inverse and
multiply. You could then represent any mathematical Group in C++
by providing an appropriate implementation of GroupElement.

In fact, we actually met the idea of an interface before. An ostream is a
general data type. We can write data to any stream simply because it has a <<
function. We don’t need to worry about whether it is a file stream or a stream
that writes to the screen. What we have been describing in this chapter is how
to write your own general types that are as flexible as the ostream class.

While the examples above all focus on interfaces in computer software, you
can see interfaces in real world design. One example is a car: All cars have
steering wheels that behave in the same way. You can drive a car of any make
or model because they all make the same basic promise to turn right when
you rotate the steering wheel clockwise. Another example is electrical plug
sockets. All electrical appliances have the same interface and so they can all
be plugged into the same electrical sockets.

Whether we use interfaces for real world design or in software, the payoff
is the same. In one example we can learn to drive all cars at once because they
have the same interface. In another example, we can price all path-independent
options at once because they have the same interface.

We have given a lot of examples because the concept of interfaces is the
most important idea in object-oriented programming. You might find that at
first it is difficult to think of ways in which interfaces could be useful. If so
you are not alone. Most programmers find it difficult to take full advantage
of interfaces. In practice the only way to learn how to use interfaces is to see
lots of examples. In software jargon, examples of how to use interfaces are
called “design patterns” after the famous book Design Patterns: Elements of
Reusable Object-Oriented Software [4]. The aim of this book is to show you
the most important design patterns for financial mathematics.

Another piece of software jargon that is useful to know is the word poly-
morphism, which simply means “many forms” in Greek. Polymorphic software
is software that can work equally well with a variety of different data types.
So a function that uses the ostream will be polymorphic because it can be
used to write to files, strings, the network, and the screen. Our Monte Carlo
pricer is polymorphic because it can be used to price many kinds of options.

10.4 Interfaces in object-oriented programming
In C++ an object consists of two things:

• The data associated with the object,

• All the functions you can use on that object.

Interfaces 167

A useful mental picture is to think of an object as some data and an instruction
manual explaining how to make sense of the data.

When we want to price an option we need to know the strike, the maturity,
and also some instructions on how to compute the payoff at maturity. These
instructions take the form of a function called payoff.

When we call the price function on our MonteCarloPricer we pass an
option object as the first parameter. This object contains all the data we
need plus all the instructions we need. When given an option to price, the
price function looks up the getMaturity and the payoff functions in the
index of the instruction manual, and uses these instructions to perform the
computation. Implementing an interface is simply a way of stating clearly that
the getMaturity and payoff functions will be there when needed.

This simple metaphor is the heart of object-oriented programming. When
writing software you should pass round not just data, but also the instruction
manual for working with that data. An object is nothing but some data and
an instruction manual. This is why we pass objects as parameters. This is why
we write object-oriented programs.

There are many object-oriented programming languages other than C++.
Some other examples that are popular in the financial industry are Java and
C#. Object-oriented programming principles are the same in different lan-
guages. For this reason a simple system of pictures was invented which allows
you to draw the essential features of your software design without worry-
ing about language-specific details. This system of pictures is called UML
(Unified Modelling Language). Figure 10.1 shows the UML diagram for our
CallOption, PutOption, and PathIndependentOption classes.

PutOption

+payoff(stockPrice)
+getMaturity()

CallOption

+payoff(stockPrice)
+getMaturity()

interface
PathIndependentOption

+payoff(stockPrice)
+getMaturity()

FIGURE 10.1: UML diagram for PathIndependentOption

The dotted arrows in Figure 10.1 tell us that the CallOption and the
PutOption classes implement the interface. The italics tell us that Path-
IndependentOption is an interface and that the methods are only declared
by PathIndependentOption but not defined.

The advantage of the UML diagram is that it strips away some of the more

168 C++ for Financial Mathematics

ugly C++ syntax such as the virtual destructor and the virtual keyword and
lets you see the main points. These main points are:

• All PathIndependentOption objects must have a getMaturity and a
payoff function.

• CallOption and PutOption are two kinds of PathIndependentOption.

The UML specification provides an official standard for drawing class dia-
grams. For example, the + signs are used to indicate that methods are public.
Don’t be too pedantic about this kind of minor detail when you draw diagrams
of your classes. The aim is to produce diagrams that help you summarise what
is going on. Just use the parts of UML that you find helpful.

10.5 What’s wrong with if statements?
It may have struck you that there is an alternative to using interfaces.

Couldn’t we write a class such as the class GeneralOption given below?

class␣GeneralOption␣{
public:
␣␣␣␣bool␣isPut;
␣␣␣␣bool␣isDigital;
␣␣␣␣double␣strike;
␣␣␣␣double␣maturity;

␣␣␣␣double␣payoff(␣double␣stockPrice␣);
};

You are correct. The payoff function would be a little complex but wouldn’t
be too difficult to write. This would solve the problem of writing one function
that prices puts, calls, digital puts, and digital calls.

However, the real benefit of using interfaces is that our MonteCarloPricer
can already price any path-independent option. It isn’t restricted to digital
puts and calls. We will be able to use our MonteCarloPricer to price options
you’ve never thought of before: For example, an option whose payoff is given
by the tenth root of the stock price.

Even more interesting, observe that the MonteCarloPricer code and all
the existing option classes will remain completely unchanged even when you
think of a new option you want to price. This makes the MonteCarloPricer
pluggable. You can extend its functionality by simply plugging in new op-
tions. It is interesting to note once again that electrical plugs are “pluggable”
precisely because they have a well-defined interface.

In the context of writing financial software, the use of interfaces means you

Interfaces 169

can extend a trading system with new types of financial contracts, without
having to rewrite and retest the whole trading system. Interfaces are the key
to solving the complexity issues of writing real financial software.

10.6 An interface for integration
The difficulty with interfaces is not in the syntax or in the concept itself,

but in spotting when you can use an interface to solve a problem. For exam-
ple, we can use interfaces to perform numerical integration, but perhaps the
connection between integration and interfaces is not obvious.

If you attempt to write numerical integration code in C++ you will hit a
very similar problem to the one we experienced with our Monte Carlo pricer.

For example, you should find it easy to write a function that integrates
exp(−x2) from a to b using the rectangle rule. But how could you write a
function that can integrate any real valued function from a to b using the
rectangle rule? Interfaces solve this problem.

Let us proceed in the same way as the last example by writing our fantasy
code. Here it is:

double␣integral(␣RealFunction&␣f,
double␣a,
double␣b,
int␣nPoints␣)␣{

double␣h␣=␣(b-a)/ nPoints;
double␣x␣=␣a␣+␣0.5*h;
double␣total␣=␣0.0;
for␣(int␣i=0;␣i<nPoints;␣i++)␣{

double␣y␣=␣f.evaluate(x);
total +=y;
x+=h;

}
return␣h*total;

}

Our fantasy code involves a type called RealFunction. This name de-
scribes the kinds of object we can integrate. We need to write the formal
C++ interface definition.

class␣RealFunction␣{
public:

/*␣ A␣virtual␣destructor␣*/
virtual␣~RealFunction ()␣{};
/*␣ This␣method␣is␣abstract ,␣there␣is

170 C++ for Financial Mathematics

no␣definition␣*/
virtual␣double␣evaluate(␣double␣x␣)␣=␣0;

};

This code contains the necessary virtual and =0 magical incantations, but
more importantly it states that a RealFunction has an evaluate method.

Our integrate function can integrate any object that provides an
evaluate method. Here is an example of a specific implementation of our
fantasy interface:

class␣SinFunction␣:␣public␣RealFunction␣{
double␣evaluate(␣double␣x␣);

};

double␣SinFunction :: evaluate(␣double␣x␣)␣{
return␣sin(x);

}

The class SinFunction represents the mathematical sin function through its
evaluate method. We can integrate it using our integrate function because
our integrate function uses nothing other than the evaluate method.

Combining our integrate function, the RealFunction interface and its
implementation, we can now write the code to integrate sin. Here is a test
that everything fits together:

static␣void␣testIntegral ()␣{
SinFunction␣integrand;
double␣actual␣=␣integral(integrand ,␣1,␣3,␣1000␣);
double␣expected␣=␣-cos (3.0)+ cos (1.0);
ASSERT_APPROX_EQUAL(␣actual ,␣expected ,␣0.000001);

}

This code is included in FMLib10. You should check that you can compile
and run the test.

Every time we want to integrate a real valued function, we will need to
write a new implementation class like SinFunction. We don’t want to create
a new cpp file and a new h file every time we want to integrate a function, so
C++ gives us a shorthand notation that allows us to define a class inside a
function. Here is an alternative way of testing the integral of sin using a local
class.

static␣void␣testIntegralVersion2 ()␣{

class␣Sin␣:␣public␣RealFunction␣{
public:

double␣evaluate(␣double␣x␣)␣{
return␣sin(x);

Interfaces 171

}
};

Sin␣integrand;
double␣actual␣=␣integral(integrand ,␣1,␣3,␣1000␣);
double␣expected␣=␣-cos (3.0)+ cos (1.0);
ASSERT_APPROX_EQUAL(actual ,␣expected ,␣0.000001);

}

Local classes defined in this way are “throwaway”. They can only be used
inside that one function. The advantage of local classes is that the class is
quicker to write. Notice that in the local class declaration we actually provide
the definition for all the functions as well as the declaration. Note also that
this definition doesn’t contain the usual SinFunction:: qualification you need
for a standalone class.

Here is a more elaborate example where the local class uses a member
variable to access the parameters passed into the containing function.

static␣double␣integratePayoff(
double␣a,
double␣b,
const␣PathIndependentOption&␣option)␣{

class␣PayoffFunction␣:␣public␣RealFunction␣{
public:

/*␣ Member␣variable␣*/
const␣PathIndependentOption&␣option;

/*␣ Constructor␣*/
PayoffFunction(

const␣PathIndependentOption&␣option)
:␣option(␣option␣)␣{

}

/**
*␣ Overriding␣function
*/

double␣evaluate(double␣x)␣{
return␣option.payoff(x);

}
};

PayoffFunction␣integrand(option);
return␣integral(integrand ,␣a,␣b,␣1000);

}

172 C++ for Financial Mathematics

This function above integrates the payoff function of an option between the
range a and b. We have to store the member variable using a reference because
you cannot store polymorphic variables by value. Storing data in member
variables by reference can be dangerous, because the data referred to may be
deleted before the object holding the reference is deleted. This would cause the
program to behave badly and perhaps crash. In this case, the code will delete
the variable integrand from memory the moment integratePayoff returns.
So there should be no danger of option being deleted before integrand is
deleted.

There is an neater notation called lambda functions which can be used to
create local classes. We will revisit the example of writing an integrator in
Chapter 19 and show how the use of lambda classes simplifies the code.

We should also add that the rectangle rule is not the best integration
method to use. You probably already know of Simpson’s rule. An even more
interesting technique for one-dimensional numerical integration is called Gaus-
sian quadrature. Numerical libraries such as the GNU scientific library contain
sophisticated integration routines that you should use in practice.

Exercises
10.6.1. Write classes DigitalCallOption and DigitalPutOption. Price
them using the MonteCarloPricer. See Appendix A if you do not recall what
a digital option is.

10.6.2. Write a class NormalPDF and compute its integral from −1.96 to 1.96.

10.6.3. Write a function integralToInfinity that uses integration by sub-
stitution to transform an infinite integral to one the function integral can
compute.

10.6.4. Test the normcdf function against numerical integration of the pdf of
the normal distribution.

10.6.5. Write a function differentiateNumerically that can differentiate
any RealFunction.

10.6.6. Write an interface Cipher and provide at least two implementations
of your choice. Write a single function void␣testCipher(Cipher&␣toTest)
that can test any Cipher works correctly.

10.6.7. Draw a UML diagram for your Cipher classes.

10.6.8. Write a class RectangleRulePricer which can price a Path-
DependentOption using the numerical integration routines written in the ear-
lier exercises. Use Equation (A.3) to compute the probability density function

Interfaces 173

for the log of the stock price. Check your solution works with a CallOption.
This gives a numerical test of the derivation of Equation (A.6).

10.6.9. Design an interface called ContinuousTimeOption. It should have a
function payoff which takes a vector of stock prices and a vector of times
at which the price occurred. This should return the payoff that would have
occurred if the stock price had varied linearly between the time points. (Ob-
viously we can’t actually supply the stock price at an infinite number of
points). The ContinuousTimeOption should also have a function called get-
Maturity().
Write an implementation of ContinuousTimeOption called KnockOutCall-
Option. Add a function to MonteCarloPricer which can approximate the
price of any ContinuousTimeOption given a finite number of time steps.

10.6.10. Show that you could use if statement to write an integrate func-
tion which can numerically integrate any of the following specific functions
(but no others):

• sin(x)
• cos(x)
• exp(x)

Explain why this is not a good design. Use this to explain why using an if
statement to decide how to price puts and calls differently is not as powerful
as using an interface.

10.7 Summary
• By defining interfaces we can write code that will work with inputs we

haven’t thought of yet.

• This is essential to writing real code for the financial industry where
new products are invented every day.

• Interfaces are common in everyday life. Cars, doors, guitars, and plug
sockets are all familiar examples of things that are easy to use because
they implement a well-known interface.

• Learning how to use interfaces is the most important skill in object-
oriented design.

http://taylorandfrancis.com

Chapter 11
Arrays, Strings, and Pointers

One useful way to view C++ is as a collection of languages:

(i) the C language;

(ii) an object-oriented programming language;

(iii) a template programming language.

This chapter is about some of the C language aspects of C++. We have ig-
nored them so far, because you should focus your efforts on the object-oriented
features of C++. Similarly we will not discuss the template programming fea-
tures until Chapter 17.

Pointers are a central feature of the C language. They are a tool for directly
manipulating computer memory. You will not find them in a more modern
pure object-oriented programming language like Java. The feature is omitted
from other languages because pointer-based programs are typically harder to
understand than object-oriented programs.

Most of what you learn in this chapter you should never use directly. The
only thing you need to use is shared_ptr. We will discuss this towards the
end of the chapter. Unfortunately, to understand shared_ptr you must first
understand ordinary pointers.

There are three other motivations for studying the material in this chapter.

(i) The first is that C++ was originally designed for people with C pro-
gramming experience. So some C++ code is designed to be intuitive to
use if you have experience with C pointers. If you don’t study pointers,
you will find things like the C++ standard library very unintuitive.

(ii) The second is that job interviewers may assume that you know C and so
may ask some trick questions about pointers, so it is good to be prepared!

(iii) The third is that to write maximally efficient C++ programs it can be
helpful to manage memory consciously. Pointers are a tool for direct
memory manipulation.

Because this chapter and the next are more about C programming than
object-oriented programming, we’ve temporarily abandoned developing FM-
Lib for this chapter. Instead the project PointerExamples.zip contains all
code for this chapter.

175

176 C++ for Financial Mathematics

As you will see, there is just one large main.cpp file which contains all
the various examples in sequence. The main method just calls various test
functions in sequence. Some of the tests have been commented out because
they illustrate what you shouldn’t do. If you include them, the program will
probably crash.

11.1 Arrays, the C alternative to vector
The code below shows how you create an array consisting of 5 integers in

C++. An array is a bit like a vector in that it contains a sequence of values,
but as we will see, arrays are not as useful as vectors.

//␣Create␣an␣unintialised␣of␣length␣5
int␣myArray [5];
for␣(int␣i=0;␣i<5;␣i++)␣{

cout <<"Entry␣"<<i<<"=";
cout <<myArray[i];
cout <<"\n";

}

This code creates an array of 5 integers, without initialising it. It then
runs through the entries and prints them out. Since we haven’t initialised the
values, it will print out some random integers.

Note the similarities with vector. Just as with vector, we use [] to access
the entries. Just as with vector, the entries start at 0.

The one difference you can spot is that we are not using the size() func-
tion. This is because a C array has no size function. Actually, you can use the
sizeof operator and write sizeof(myArray)/sizeof(int) where we have
written 5. This would be better programming style, but I’ve avoided it be-
cause it is less readable when you are new to arrays.

To create an array that is initialised one proceeds as follows:

//␣Create␣an␣initialised␣array
int␣myArray []␣=␣{1,␣1,␣2,␣3,␣5};
for␣(int␣i=0;␣i<5;␣i++)␣{

cout <<"Entry␣"<<i<<"=";
cout <<myArray[i];
cout <<"\n";

}

Simply specify the values in a comma-separated list between curly brackets.
Notice that if we provide a list of values, we no longer have to specify the
length of the array when we create it.

Arrays, Strings, and Pointers 177

Its quite natural to want to initialise an array so that all its values are
zero. Here is the relevant code.

//␣Create␣an␣initialised␣array
int␣myArray [5]␣=␣{};
for␣(int␣i=0;␣i<5;␣i++)␣{

cout <<"Entry␣"<<i<<"=";
cout <<myArray[i];
cout <<"\n";

}

Here we specify the size of the array and write ={} to mean “set everything
to zero”. Actually, this is just a special case of a more general method of
initialising an array.

int␣myArray [5]␣=␣{1,2,3};
for␣(int␣i=0;␣i<5;␣i++)␣{

cout <<"Entry␣"<<i<<"=";
cout <<myArray[i];
cout <<"\n";

}

Here we specify the length and the first few values. The rest of the values are
padded with zeros. So the code above will print out the values 1, 2, 3, 0, 0.

One problem with arrays is that because they have no size function we
must pass their length as well as their value when we pass them to another
function.

int␣sumArray(␣int␣toSum[],␣int␣length␣)␣{
int␣sum␣=␣0;
for␣(int␣i=0;␣i<length;␣i++)␣{

sum+= toSum[i];
}
return␣sum;

}

Unfortunately, the sizeof trick I mentioned earlier stops working the moment
you pass arrays to other functions. So you really do need to pass the length
as well as the array.

Although we can pass arrays to functions, you must never return them from
a function. When you return other data types such as double or a vector the
value is copied when you return it. But this doesn’t happen for arrays. You
can think of them as being returned by reference.

This causes problems, because when a function returns, all the variables
it has created are removed from memory. If you attempt to return an array,
the caller of your function will just be given a pointer to the memory address
where the array used to be. The computer may have reused that memory for

178 C++ for Financial Mathematics

almost anything. As a result, the behaviour of the program becomes com-
pletely unpredictable. Typically it will crash, sometimes horribly. The same
happens if you try to return a local variable by reference, but you’re less likely
to try doing that.

If you like you can create multi-dimensional arrays. The syntax should be
self-explanatory. The only strange thing is that you have to specify all the
dimensions but the first by hand.

//␣Create␣an␣initialised␣3x5␣array
int␣myArray [][5]␣=␣{{1,␣2,␣3,␣4,␣5},

{2,␣0,␣0,␣0,␣0},
{3,␣0,␣0,␣0,␣0}};

for␣(int␣i=0;␣i<3;␣i++)␣{
for␣(int␣j=0;␣j<5;␣j++)␣{

cout <<"Entry␣("<<i<<","<<j<<")=";
cout <<myArray[i][j];
cout <<"\n";

}
}

Let us not waste any more time understanding arrays in more detail, because
we will never use them!

Arrays are not very useful data structures for us because you cannot change
the length of an array. You can’t insert a new item or add some items at the
end. Even worse, the size of an array is fixed at compile time. This means
when you write your program, you must choose the size of the array and it
can’t grow in response to user input. Also, passing the length around to each
function call is annoying.

Arrays are only of interest if you know the size of your arrays when your
code is compiled. For example, when working with 3D computer graphics,
arrays of length 3 can be useful.

Tip: Don’t use arrays

Vectors do everything you want to do with arrays and much more.

Arrays, Strings, and Pointers 179

11.2 Pointers
11.2.1 new and delete

Because arrays are not flexible enough, the C language also contains the
concept of a pointer. This allows a C programmer to work with sequences of
data of varying lengths.

int␣n␣=␣5;
int*␣myArray␣=␣new␣int[n];
for␣(int␣i=0;␣i<n;␣i++)␣{

cout <<"Entry␣"<<i<<"=";
cout␣<<␣myArray[i];
cout␣<<␣"\n";

}
delete []␣myArray;

The code above uses the new␣...[] operator to allocate a chunk of memory.
In this case we are creating a sequence of int data types in memory, but you
could use other data types instead.

The good news is that you can choose the size of the chunk of memory at
run time. Unlike with an array, you don’t have to choose the size in advance
when you write your program.

The downside of using new␣[] is that the memory will not be automatically
deleted when the variable goes out of scope (see Section 4.7 for the meaning of
the word scope). You must use delete␣[] to free the memory created with the
new[] operator. This is good and bad. With arrays we couldn’t return arrays
because the memory was deleted automatically, but on the other hand we
didn’t have to remember to call delete[]. With memory created using new[]
we have to remember to delete the memory by hand, but you can safely return
the data.

The value returned by new␣int[n] is called a pointer. It has type int*
which means “a pointer to an int”. In actual fact the array discussed in the
previous section was of type int* too. It’s just that the notation for arrays in
C hides the fact that an array-valued variable is just a pointer to a memory
location. All that the int* myArray contains is the memory address where
the array starts. As a result, we have to remember ourselves that the block of
memory is of length n.

You can use [] with a pointer to find the integer at a given offset in just
the same way as we use [] with arrays and vectors. We have used this in the
example above to print out the values in the array.

If you run the code example above, you will find that the entries in the
array take arbitrary values. Just as local variables of type int have unpre-
dictable initial values, so does int data created with new.

180 C++ for Financial Mathematics

You can use new[] with other data types too. To illustrate this let’s intro-
duce a simple class, Pair.

class␣Pair␣{
public:

double␣x;
double␣y;
Pair ();
Pair(␣double␣x,␣double␣y␣);

};

We assume that the default constructor of Pair initialises x and y to zero.
Given this class, the code below creates a chunk of memory containing pairs.
This time each pair is initialised to (0, 0) since Pair has a default constructor.

int␣n␣=␣5;
Pair*␣myPairs␣=␣new␣Pair[n];
for␣(int␣i=0;␣i<n;␣i++)␣{

double␣xValue␣=␣myPairs[i].x;
double␣yValue␣=␣myPairs[i].y;

cout <<"Pair␣(";
cout <<␣xValue;
cout <<",";
cout <<␣yValue;
cout <<")\n";

}
delete []␣myPairs;

The type is a Pair*. This should be read “as a pointer to a Pair”.

11.2.2 Pointer operators
A pointer is just the address in memory of some data. On a 32-bit computer

a pointer will be 4 bytes long. On a 64-bit computer it will be 8 bytes long.
This means a 32-bit computer can have up to 232bytes ≈ 2Gb of memory.
64-bit computers could in principle have vastly more memory. It is normal to
write memory addresses as a hexadecimal number; e.g., 9ABF0132 is a typical
memory address.

Consider the following code:

int*␣fivePrimes␣=␣new␣int [5];
fivePrimes [0]␣=␣2;
fivePrimes [1]␣=␣3;
fivePrimes [2]␣=␣5;
fivePrimes [3]␣=␣7;
fivePrimes [4]␣=␣11;

Arrays, Strings, and Pointers 181

After running the code, there will be an area of memory that looks as shown in
in Figure 11.1. In this figure each box denotes one int-sized unit of memory.
The x’s mark memory location whose value we know nothing about. What we
do know is that there are five consecutive entries containing the numbers 2,
3, 5, 7, and 11. The pointer fivePrimes contains the memory address of the
first of these numbers.

FIGURE 11.1: A pointer to a memory location containing an array of the
first five primes.

FIGURE 11.2: Pointer arithmetic.

You can extract the memory address of any variable even if it was not
created with new. You use the operator & to do this. You can then store this
memory address in another variable so long as that variable is declared to
have a pointer type. Given a pointer, you can access what it points to using
*. These ideas are illustrated in the following code:

int␣myVariable␣=␣10;
int*␣pointerToMyVariable␣=␣&myVariable;

cout␣<<␣"Memory␣location␣of␣myVariable␣";
cout␣<<␣pointerToMyVariable;
cout␣<<␣"\n";

cout␣<<␣"Value␣of␣myVariable␣";
cout␣<<␣(* pointerToMyVariable);
cout␣<<␣"\n";

182 C++ for Financial Mathematics

I ran the code above on a 32-bit computer and got the following output:

Memory location of myVariable 0013FE78
Value of myVariable 10

Notice that pointerToMyVariable is a pointer to an int, so it is of type
int*. Since myVariable is an int, &myVariable is a pointer to an int.

Since pointerToMyVariable is a pointer to an int, *pointerToMy-
Variable is an int.

It is worth emphasising that we use & in two completely different ways.
We’ve used this symbol previously for pass by reference. We’re using it now to
convert a variable into a pointer. These uses are completely unconnected. It
just happens to be the same character. When used as part of a type definition,
& means “reference”. When used as an operator, & means “memory location
of”.

We also use * in three different ways. We use it in type definitions to mean
“this is a pointer”. We use it to convert pointers back to references. And (in
case you’d forgotten) we also use it for multiplication!

Another very useful operator for working with pointers is ->. You can use
-> to access the fields of an object via a pointer.

Pair␣p;
Pair*␣pointerToP␣=␣&p;

//␣Use␣->␣to␣access␣fields␣via␣a␣pointer
pointerToP ->x␣=␣123.0;
pointerToP ->y␣=␣456.0;

//␣We␣check␣that␣c␣has␣changed
ASSERT(␣p.x==123.0␣);
ASSERT(␣p.y==456.0␣);

//␣You␣could␣use␣*␣and␣.
ASSERT(␣(* pointerToP).x==123.0␣);
ASSERT(␣(* pointerToP).y==456.0␣);

Using -> is equivalent to using * and . in combination but is easier to read.
You can also add and subtract integers to a pointer. For example, if p is

a pointer to a memory location, then p+1 is a pointer to the next memory
location, and p+3 is a pointer to three memory locations along. This is illus-
trated in Figure 11.2. To add one to a pointer, you can write p++. Working
with pointers in this way is called pointer arithmetic.

11.2.3 Looping with pointers
We can pass a pointer to a function much as we pass an array to a function.

Indeed, there isn’t really any difference between a function that takes an array

Arrays, Strings, and Pointers 183

as a parameter and a function that takes a pointer as a parameter. Here is
a function that adds up a sequence of length numbers which start at the
memory location toSum.

int␣sumUsingPointer(␣int*␣toSum ,␣int␣length␣)␣{
int␣sum␣=␣0;
for␣(int␣i=0;␣i<length;␣i++)␣{

sum+= toSum[i];
}
return␣sum;

}

The code here is identical to that with arrays except that we declare the type
using * rather than []. In particular, notice that you have to pass the length
as well as the pointer.

There isn’t a lot wrong with this code. Nevertheless, an experienced C++
programmer might choose to write this as follows:

int␣sumUsingForAndPlusPlus(int*␣begin ,␣int␣n)␣{
int␣sum␣=␣0;
int*␣end␣=␣begin␣+␣n;
for␣(int*␣ptr␣=␣begin;␣ptr␣!=␣end;␣ptr ++)␣{

sum␣+=␣*ptr;
}
return␣sum;

}

This code is hard to follow if you are new to C++. But because it follows
certain programming conventions, it does become easy to understand with a
little practice.

We call the first memory location begin. We call the memory location
immediately after the last element end. In the for loop we move the variable
ptr through the values from begin up to, but not including, end. At each
stage of the loop we add to sum the value pointed to by ptr.

There are two reasons why an experienced programmer might prefer this
version of the code:

(i) The code is completely standardised and therefore easy to read once you
are used to it. begin is a standard name for a pointer as is end. This
means that the reader can understand the for loop at a glance. This is
the purpose of for loops: they shout out “boring looping code” so you
can focus on the interesting bit in the middle of the loop and ignore the
rest. Later in the book we will discuss a C++ concept called iterators
that allows this pointer code to be generalised to many different kinds
of data structures. See Chapter 18.

(ii) This code may be slightly faster. We only perform one addition per loop,

184 C++ for Financial Mathematics

namely ptr++. The original code contains the addition i++ and implicit
addition when we write toSum[i]. To compute this value we need to add
i to the pointer toSum and then read the memory address. You can see
this more clearly if we rewrite the first version of the code using pointer
arithmetic instead of [].

int␣sumUsingPointerArithmetic(␣int*␣toSum ,
int␣length␣)␣{

int␣sum␣=␣0;
for␣(int␣i=0;␣i<length;␣i++)␣{

int*␣ithElement␣=␣toSum␣+␣i;
int␣valueOfIthElement␣=␣*ithElement;
sum+=␣valueOfIthElement;

}
return␣sum;

}

Tip: Avoid writing brainteasers

Used in moderation, pointer arithmetic can be very helpful. For example, we
will take advantage of pointer arithmetic when we write a class to represent
a matrix in Chapter 16. However, you should try to avoid writing code that
leaves people scratching their heads. Excessive use of pointers and pointer
arithmetic is an excellent way to write incomprehensible code.

As an example, notice that a memory location may itself contain a pointer.
A pointer to a pointer to an int is of type int**. There is no reason to
stop there if you like confusing yourself and your colleagues. There is nothing
technically wrong with an int****. Here is a genuine job interview question
that exploits this.
Question: What would be the equivalent pointer expression for referring to
the array element a[i][j][k][l]?

A. ((((a+i)+j)+k)+l)

B. *(*(*(*(a+i)+j)+k)+l)

C. (((a+i)+j)+k+l)

D. *((a+i)+j+k+l)

Answer: The correct answer, if you still want the job, is B. The correct answer
in practice is to avoid this kind of silly code.

Arrays, Strings, and Pointers 185

11.2.4 Using pointers in practice
Since we always need the number of elements as well as the pointer, it

seems wise to introduce a class such as:

class␣IntArray␣{
public:

int*␣firstElement;
int␣ length;

};

It also seems a good idea to give this class a helpful function size.
Before we go any further, we should stop and realise that this class already

exists. It is a vector<int>.
Thus although we’ve now painfully introduced pointers, we could do ev-

erything we wanted with vector already!

Tip: Avoid new []

You should avoid using new␣[] and simply work with vectors instead. The
only possible exception might be if you believe that you are such a good
programmer you will be able to get a bit more performance out of accessing
raw memory. This is unlikely to be true in practice.

11.3 Pointers to text
In C you don’t have classes, and this includes the class string. As a result,

in C the standard convention is to represent text using a block of memory
containing characters terminated by the character code 0.

Recall that a char is just an 8-bit number. The standard encoding is ASCII
where “A” is encoded as 65, the symbol “1” is encoded as 49, and the symbol
“0” is 48. The code number 0 on the other hand isn’t used for any character
symbols, so it can be safely used to mark the end of a block of memory.
You use a backslash to create the special character with code number 0 as
demonstrated in the code below.

char␣charArray1 []␣=
{’H’,␣’e’,␣’l’,␣’l’,␣’o’,␣’\0’␣};

for␣(int␣i=0;␣i<6;␣i++)␣{
cout␣<<␣"ASCII␣VALUE␣";
char␣c␣=␣charArray1[i];
cout␣<<␣((int)c);

186 C++ for Financial Mathematics

FIGURE 11.3: A pointer to a memory location containing the null-
terminated string Hello.

cout␣<<␣"\n";
}

C provides a shortcut for creating a sequence of characters ending with the
zero code, just place the desired characters in double quotes. You don’t need
to include the zero at the end, this is included automatically.

const␣char*␣charArray2␣=␣"Hello";
for␣(int␣i=0;␣i<6;␣i++)␣{

cout␣<<␣"ASCII␣VALUE␣";
char␣c␣=␣charArray2[i];
cout␣<<␣((int)c);
cout␣<<␣"\n";

}

This format of data is called a “C-style string” or a “null-terminated string”.
It is illustrated graphically in Figure 11.3. Note that we have said that the
type of charArray2 is const␣char*. This means that content of the string is
fixed.

Earlier in the book we’ve created strings by writing the text in quotes, but
we’ve tried to avoid the char* data type as far as possible. This is because
you should always try to convert a char* into a string as soon as possible.

Since this wasn’t possible in C, C contains various functions to help work
with null-terminated strings, such as strlen, which computes the length (ex-
cluding the terminating zero character) and strcpy, which copies one string
into another.

The code below shows how to use pointers directly to replicate the be-
haviour of the strlen function.

int␣computeLengthOfString(␣const␣char*␣s␣)␣{
int␣length␣=␣0;
while␣((*s)!=0)␣{

s++;
length ++;

}
return␣length;

Arrays, Strings, and Pointers 187

}

void␣testComputeLengthOfString ()␣{
const␣char*␣quotation="To␣be␣or␣not␣to␣be";
int␣l1␣=␣computeLengthOfString(␣quotation␣);
int␣l2␣=␣strlen(␣quotation␣);␣//␣built␣in
ASSERT(␣l1==l2␣);

}

When working with arrays and segments of memory, you must be very careful
not to attempt to access data outside the bounds of your array. For example,
the code below will behave unpredictably and will probably crash horribly.

char*␣shortText␣=␣new␣char [20];
for␣(int␣i=0;␣i <1000;␣i++)␣{

shortText[i]␣=␣’x’;
}
delete []␣shortText;

If you have downloaded the project PointerExamples, you can run this test
by uncommenting the testOverrunning test in the main method. I expect
that you’ll get a pretty nasty error message.

When you use classes such as string and vector in debug mode, various
additional checks are included so that you get more helpful error messages.
You could try rewriting this code using a vector<char> and compare the error
messages obtained. This is another very compelling reason for using classes
rather than pointers directly.

Tip: Avoid char*

string is designed to get rid of the many problems programmers have histor-
ically had with char*. If you are performing serious string manipulations, for
example if you’re writing a web server, even string is not up to the job as it
can’t cope with international characters.

11.4 Pass by pointer
We have already met the ideas of pass by value and pass by reference (see

Section 7.2.1). In principle you can also pass data to a function using pass by
pointer.

void␣polarToCartesian(double␣r,␣double␣theta ,

188 C++ for Financial Mathematics

double*␣x,␣double*␣y)␣{
*x␣=␣r*cos(theta);
*y␣=␣r*sin(theta);

}

void␣testPolarToCartesian ()␣{
double␣r␣=␣2;
double␣theta␣=␣atan (1);
double␣x;
double␣y;
polarToCartesian(r,␣theta ,␣&x,␣&y);
ASSERT_APPROX_EQUAL(x,␣sqrt(2),␣0.0001);
ASSERT_APPROX_EQUAL(y,␣sqrt(2),␣0.0001);

}

This code passes the parameters r and theta by value in the usual way,
but passes pointers to the parameters x and y. These are local variables of
the test function. When polarToCartesian is called it directly changes these
local variables. It is able to do this because it has been passed the memory
addresses where the variables x and y are stored.

There is very little practical difference between passing data using a pointer
and passing data using a reference. In the C language, you have to use pass
by pointer because the concept of reference does not exist.

In the C++ language, using pass by reference is the preferred approach.
The most practical difference is that the user of the function polarTo-

Cartesian is forced to use the & symbol to obtain pointers to the variables x
and y. This is, in some regards, a good thing because it makes it clear that
x and y might be modified by the function call. On the other hand, using
pointers does add a layer of conceptual difficulty.

The only real difference in what you can achieve using pointers and refer-
ences is that if you pass a pointer it is not entirely clear whether or not it is
acceptable to use pointer operators such as incrementing the pointer with ++
or calling delete. On the other hand, if you use pass by reference it is clear
that the object won’t be deleted and the ++ operator won’t be called because
you simply cannot apply these operators to a reference. This is why pass by
reference is the preferred approach in C++.

Just as with references, you can use the keyword const with a pointer.
There are two possible ways to combine the keyword const with a pointer.
Writing const on the right of the * means that the pointer itself cannot be
modified. Writing const on the left of the * means it is the data that is pointed
to that cannot be modified rather than the pointer itself. This distinction is
illustrated in the code below. If you remove the comment characters, the code
will not compile.

void␣constPointerExamples ()␣{
const␣char*␣ptr␣=␣"A␣string";

Arrays, Strings, and Pointers 189

ptr ++;
std::cout␣<<␣(*ptr);
//␣(*ptr)=’a’;␣ //␣You␣can’t␣change␣the␣data
//␣using␣a␣const␣char*

char*␣fiveChars␣=␣new␣char [5];
char␣*const␣constPtr␣=␣fiveChars;
//␣constPtr ++;␣ //␣You␣can’t␣change␣a␣char␣*const
(* constPtr)␣=␣’h’;␣//␣but␣you␣can␣change

//␣what␣it␣points␣to
}

If you find the difference between a const␣char* and a char␣*const con-
fusing, then you are not alone. One might argue that the conceptual difficulties
introduced by using const outweigh the benefits of compile time checking. As
we have said before, the lead developer on a project should have a view on
this as one should use const consistently or avoid using it altogether.

If you are planning on using const, then this discussion gives one other
reason for preferring to pass by reference to pass by pointer: There is only one
way to use const with references, so that’s one less thing to think about. Note
that this might help you remember where to put the const when working with
pointers. const on the left of the * means the same as const on the left of &.
You can’t even write const on the right of & because you can’t use operations
like ++ with references.

11.5 Don’t return pointers to local variables
Just as with arrays, you have to make sure that when you return a pointer,

you aren’t returning a pointer to a local variable that is about to be deleted.
For example, this code is incorrect:

char*␣thisFunctionReturnsAnArray ()␣{
/*␣This␣produces␣a␣compiler␣warning␣*/
char␣text[]␣=␣"Don’t␣do␣this";
return␣text;

}

void␣someOtherFunction ()␣{
char␣text[]␣=␣"Alternative␣text\n";
cout␣<<␣text;
cout␣<<␣"\n";

}

190 C++ for Financial Mathematics

void␣testDontReturnArrays ()␣{
char*␣text␣=␣thisFunctionReturnsAnArray ();
someOtherFunction ();
cout␣<<␣text;
cout␣<<␣"\n";

}

The text here is a char array so it will be deleted the moment the function
exits. This means that the code will behave unpredictably. It will probably
print some junk if you run it.

You can return a string without a problem because it is returned by
value: A new copy of the string is given to the caller. The same applies to
returning a vector.

You are allowed to return a pointer to data created with new␣[]. However,
you will then have to make sure the caller knows whether or not they will be
expected to call delete[] at some point.

By convention in C and C++, if a function returns a pointer the caller is
not expected to call delete[]. For example, if you call c_str() on a string
you shouldn’t delete[] what it returns. When you call c_str it creates a
temporary C-style string in memory that may be deleted when the string is
modified or when the string is deleted. This is the standard recommended
pattern in C++. If you create something it is your job to delete it.

As an example, the code below and the test is technically valid but vio-
lates the convention that you shouldn’t delete a pointer returned by another
function. As such most C++ programmers would agree that this is poor code.

char*␣thisFunctionReturnsAPointer ()␣{
char␣text[]␣=␣"This␣works";
int␣n␣=␣strlen(text);
char*␣ret␣=␣new␣char[n+1];
/*␣We␣now␣get␣a␣compiler␣warning␣here␣*/
strcpy(␣ret ,␣text␣);
return␣ret;

}

void␣testReturnPointerJustAboutOK ()␣{
char*␣text␣=␣thisFunctionReturnsAPointer ();
someOtherFunction ();
cout␣<<␣text;
cout␣<<␣"\n";
//␣don’t␣forget␣to␣free␣the␣memory
delete []␣text;

}

Arrays, Strings, and Pointers 191

Tip: Returning pointers

Never return a pointer to a local variable. If you wish, you may return pointers
to member variables of an object. In this case it is the object’s job to make
sure the data is deleted rather than the job of the caller. (See Section 16.2 for
information on how to achieve this using destructors)

11.6 Using pointers to share data
Here is an example of the type of problem we now wish to solve:

Example 1: We have a class Instrument. It contains lots of data about a
traded instrument. For example, the type of the instrument, the Bloomberg
code, the Reuter’s code, etc. You should imagine that each Instrument takes
up a considerable amount of memory.

We have another class, Position, which consists simply of an instrument,
the quantity held in that instrument, and the name of the trader who has
taken the position.

We wish to save memory by reusing the same Instrument instances. This
is illustrated in Figure 11.4.

FIGURE 11.4: Two Position objects sharing an Instrument.

192 C++ for Financial Mathematics

The data we have used so far has all been stored in local variables or
member variables.

Local variables are no good for long-term storage because their data is
deleted the moment the variable goes out of scope.

Member variables only last as long as the object containing the variable.
So data stored in member variables will be lost as soon as the object is deleted.

Using new, we can create long-term storage for data. This data will not be
automatically deleted, so we have to manually delete it with a call to delete.
new and delete are just like new[] and delete[] except that they create and
delete single objects rather than arrays. You have to be very careful to use
delete[] when you have used new␣[] and delete when you have used new.

Here is an example of how to create individual pair instances using new.
Note the call to delete and the use of ->.

Pair*␣myPair␣=␣new␣Pair;
myPair ->x␣=␣1.3;
myPair ->y␣=␣2.5;

cout␣<<␣"Pair␣(";
cout␣<<␣(myPair ->x);
cout␣<<␣",␣";
cout␣<<␣(myPair ->y);
cout␣<<␣")\n";

delete␣myPair;

Let us see how to use data created in this way to share Instrument data
between two positions.

First we define classes for Position and Instrument:

class␣Instrument␣{
public:

string␣bloombergTicker;
string␣ricCode;
string␣companyName;
Instrument ()␣{}

};

class␣Position␣{
public:

string␣trader;
double␣quantity;
Instrument*␣instrument;
explicit␣Position(␣Instrument␣*␣instrument␣);

};

Arrays, Strings, and Pointers 193

Position :: Position(␣Instrument*␣instrument␣)␣:
instrument(␣instrument␣)␣{

}

You should notice that the Position contains a pointer to an Instrument
and not an actual Instrument. You can see this because the type of the field
Instrument is Instrument*.

The code below initialises a vector of Position objects that both point to
the same Instrument. This achieves our goal of sharing data.

vector <Position >␣constructPositions ()␣{
//␣the␣caller␣of␣this␣function
//␣should␣call␣delete␣on␣the␣instrument
//␣when␣they␣are␣done␣with␣all␣the␣positions
vector <Position >␣positions;

Instrument*␣instrument␣=␣new␣Instrument;
instrument ->companyName␣=␣"Google";
instrument ->bloombergTicker␣=␣"GOOG␣US␣Equity";
instrument ->ricCode␣=␣"GOOG.OQ";

Position␣p1(instrument);
p1.trader␣=␣"Han";
p1.quantity␣=␣100.00;
positions.push_back(␣p1␣);

Position␣p2(instrument);
p2.trader␣=␣"Leia";
p2.quantity␣=␣ -100.00;
p2.instrument␣=␣instrument;
positions.push_back(␣p2␣);

return␣positions;
}

However, there is a catch, the caller of this function has been given the task
of deleting the instruments.

void␣testConstructPositions ()␣{
vector <Position >␣r␣=␣constructPositions ();
int␣n␣=␣r.size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

cout␣<<␣"Position␣"<<i<<"\n";
Position&␣p=r[i];
cout␣<<␣"Trader␣"<<p.trader <<"\n";
cout␣<<␣"Quantity␣"<<p.quantity <<"\n";
cout␣<<␣"Instrument␣";

194 C++ for Financial Mathematics

cout␣<<␣p.instrument ->companyName <<"\n";
cout␣<<␣"\n";

}
delete␣r[0]. instrument;

}

The caller of constructPositions has to know precisely how to call
delete. This violates information hiding—you need to know how construct-
Positions actually works to be able to use it safely.

Danger!

Initialise your pointers. We have initialised the field instrument in the
constructor. If you don’t initialise a pointer, it will fail horribly when you try
to use it.

//␣Don’t␣do␣this
Instrument*␣instrument;
cout␣<<␣instrument->companyName␣<<␣"\n";

Sometimes you wish to specify that a pointer doesn’t yet point to anything,
in which case you initialise it to nullptr. Here is code that checks to see if a
pointer is nullptr before using it.

string␣getCompanyName(␣Position&␣position␣)␣{
if␣(position.instrument == nullptr)␣{

return␣"Name␣not␣set";
}␣else␣{

return␣position.instrument ->companyName;
}

}

The danger in using nullptr is that if you forget the check you will get a
nasty error.

11.6.1 Sharing with shared_ptr
The class shared_ptr solves the delete problem. To use shared_ptr, you

need to #include␣<memory> to use shared_ptr.
shared_ptr is an example of a so-called “smart pointer”. This is a C++

class which behaves like a pointer but which handles working out when to
call delete on your behalf. In fact, shared_ptr is the most versatile smart
pointer class and the only one we will use in this book.

The way a shared_ptr works is that each shared pointer keeps track of
how often it has been copied. Once the number of copies of the smart pointer in

Arrays, Strings, and Pointers 195

existence drops to zero, the data pointed to will be deleted for you. How this is
actually achieved will have to wait until we discuss destructors in Section 16.2.

The changes one makes to use a shared_ptr are very simple. Here is a
new version of the Position class which uses a shared_ptr.

class␣PositionV2␣{
public:

string␣trader;
double␣quantity;
shared_ptr <Instrument >␣instrument;
explicit␣PositionV2(shared_ptr <Instrument >␣ins␣);

};

PositionV2 :: PositionV2(shared_ptr <Instrument >␣ins␣)␣:
instrument(␣ins␣)␣{

}

The difference is that it now contains a shared_ptr<Instrument> rather than
an Instrument*. The former means “shared pointer to an instrument”, the
latter means “pointer to an instrument”. The former is actually easier to read,
although it is undeniably harder to type.

When we use a shared_ptr we can use the operators -> and * just as if
we were working with a pointer.

vector <PositionV2 >␣constructPositionsV2 ()␣{
vector <PositionV2 >␣positions;

shared_ptr <Instrument >␣ins
=␣make_shared <Instrument >();

ins ->companyName␣=␣"Google";
ins ->bloombergTicker␣=␣"GOOG␣US␣Equity";
ins ->ricCode␣=␣"GOOG.OQ";

PositionV2␣p1(ins);
p1.trader␣=␣"Han";
p1.quantity␣=␣100.00;
positions.push_back(␣p1␣);

PositionV2␣p2(ins);
p2.trader␣=␣"Leia";
p2.quantity␣=␣ -100.00;
p2.instrument␣=␣ins;
positions.push_back(␣p2␣);

return␣positions;
}

196 C++ for Financial Mathematics

The key difference is that we use the function make_shared instead of new
to create a shared_ptr.

shared_ptr <Instrument >␣ins
=␣make_shared <Instrument >();

make_shared is defined in <memory> and is part of the namespace std.
The payoff of introducing shared_ptr can be seen in the calling function.

void␣testConstructPositionsV2 ()␣{
vector <PositionV2 >␣r␣=␣constructPositionsV2 ();
int␣n␣=␣r.size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

cout␣<<␣"Position␣"<<i<<"\n";
PositionV2&␣p=r[i];
cout␣<<␣"Trader␣"<<p.trader <<"\n";
cout␣<<␣"Quantity␣"<<p.quantity <<"\n";
cout␣<<␣"Instrument␣";
cout␣<<␣p.instrument ->companyName <<"\n";
cout␣<<␣"\n";

}
}

The essential point is that we no longer need to call delete, so information
hiding has been restored.

Danger!

Programming with raw pointers is hard. You may feel that you will never
forget to call delete, and so you can use pointers without using shared_ptr,
thereby writing faster code. If so, here is an example of a problem that might
catch you out.

int*␣a␣=␣new␣int [10];
int*␣b␣=␣new␣int [20000000];
cout␣<<␣"Arrays␣created";
delete []␣a;
delete []␣b;

What’s wrong with this code? Well, what happens if the second call to new
fails because we are running short of memory and so throws an error? Then
the first object will never be deleted. So your program has just leaked memory
when it was already running low on memory. It will probably crash soon.

shared_ptr works very well for most practical purposes but it does have
the problem that if you have circular references between your data objects,

Arrays, Strings, and Pointers 197

then they will never get deleted. The cure for this is either to avoid circular
references or to use an even smarter pointer library. In this book, we choose
to simply avoid circular references.

11.7 Sharing data with references
A lot of what you can do with a pointer, you can do with a reference. For

example, you can have a member variable which is a reference. If you store
data by reference you save memory just as you do if you store data by pointer.

One advantage of using references rather than pointers is that you must
initialise member variables which are references in the constructor. This means
that the errors you can get from null pointers and uninitialised pointers just
can’t happen with a reference.

However, using reference member variables is not normally as useful
as choosing shared_ptr member variables. The reason is that owning a
shared_ptr to an object means that you are guaranteed the object won’t be
deleted until you no longer need it. On the other hand, if you use a reference,
there’s a danger that someone else might delete your object.

Let’s give an example of why you shouldn’t normally use references as
member variables. First we define a new Position class that contains a ref-
erence to an Instrument.

class␣PositionV3␣{
public:

string␣trader;
double␣quantity;
Instrument&␣instrument;
explicit␣PositionV3(␣Instrument&␣instrument␣);

};

PositionV3 :: PositionV3(␣Instrument&␣instrument␣)␣:
instrument(instrument)␣{

}

This code is technically correct. Notice in particular that we initialise a mem-
ber variable reference in the constructor as is required.

The problem with this design is that the Position class has no control
over when the instrument is deleted. The following code seems to work at
first, it certainly compiles:

PositionV3␣constructPositionV3 ()␣{
//␣This␣function␣doesn’t␣work ,␣the␣instrument
//␣is␣deleted ,␣so␣all␣the␣returned␣positions

198 C++ for Financial Mathematics

//␣contain␣broken␣references
vector <PositionV3 >␣positions;

Instrument␣instrument;
instrument.companyName␣=␣"Google";
instrument.bloombergTicker␣=␣"GOOG␣US␣Equity";
instrument.ricCode␣=␣"GOOG.OQ";

PositionV3␣position(instrument);
position.trader␣=␣"Han";
position.quantity␣=␣100.00;
return␣position;

}

The problem with this code is that we’re creating a Position that appears to
be initialised but then immediately deleting the Instrument it refers to. We’re
not consciously deleting the instrument, it just happens as part of automatic
cleanup when the method exits. This means that the following code which
uses the returned position will fail.

void␣testConstructPositionV3 ()␣{
//␣This␣will␣fail␣horribly
PositionV3␣p␣=␣constructPositionV3 ();
cout␣<<␣"Trader␣"<<p.trader <<"\n";
cout␣<<␣"Quantity␣"<<p.quantity <<"\n";
cout␣<<␣"Instrument␣";
cout␣<<␣p.instrument.companyName <<"\n";
cout␣<<␣"\n";

}

You can run this code by uncommenting the appropriate line in the main
method. It will crash.

This doesn’t mean that using reference member variables is completely
forbidden. Indeed, you should already have done so for one of the exercises
in the previous chapter. Here is a C++ function which transforms an infinite
integral into a bounded integral and then integrates it.

double␣integralToInfinity(RealFunction&␣f,
double␣lowerLimit ,␣int␣nPoints)␣{

class␣DefiniteIntegrand␣:␣public␣RealFunction␣{
public:

RealFunction&␣g;
double␣lowerLimit;

DefiniteIntegrand(RealFunction&␣g,
double␣lowerLimit)␣:

Arrays, Strings, and Pointers 199

g(g),␣lowerLimit(lowerLimit)␣{
}

double␣evaluate(double␣x)␣{
return␣(1/(x*x))

*␣g.evaluate(lowerLimit␣-␣1␣+␣(1/x));
}

};

DefiniteIntegrand␣integrand(f,␣lowerLimit);
return␣integral(integrand ,␣0,␣1,␣nPoints);

}

This code is perfectly good C++ because we know that our Definite-
Integrand instance will only be kept in memory until the integralTo-
Infinity method returns. We know that the function passed in to integral-
ToInfinity will not be deleted until integralToInfinity returns. Therefore
we can safely store a reference to it as a member variable.

Tip: Think carefully before using reference member variables or
returning references

You can return references and you can store data by reference but you will
need to be certain when the reference will be deleted. You should never return
a reference to a local variable as that will always be deleted. You will need to
think carefully when returning references to member variables.

Thinking carefully takes energy, so if you don’t have any to spare use a
shared_ptr.

11.8 The C++ memory model
One of the main features of C and C++ that make it appealing to com-

puter programmers is that you can manipulate computer memory directly. For
financial mathematicians this is often more of an irritation than a blessing,
since computer memory isn’t their particular area of expertise. However, if
you wish to use pointers effectively and to debug code that uses pointers, it
helps to understand computer memory.

You can think of computer memory as divided into four sections:

(i) The memory used by other programs. You are not allowed to access this
memory. If you try to then the operating system will make your program

200 C++ for Financial Mathematics

crash. This kind of bug is called a segmentation fault or a general protec-
tion fault. You can easily produce such an error in C++ by initialising a
pointer to a random hex value and then trying to access memory using
that pointer.

(ii) The memory containing the computer code for your program. You can
read from this memory but can’t write to it. If you try to write to this
memory, your program will crash.

(iii) A region of memory called the stack. This is used for short-term storage
for calculations. You can think of the stack as rather like a stack of paper
on which rough notes are made and then quickly discarded. The local
variables you use in a function are stored on the stack. We will describe
the stack in Section 11.8.1.

(iv) A region of memory called the heap. This is used for longer-term storage
for larger data structures. You can think of it as being a bit like a filing
cabinet containing records you expect you will need to refer to repeatedly.
Data created using new is stored on the heap. We will describe the stack
in Section 11.8.2.

11.8.1 The stack
Consider the following program which tests a factorial function.

1 int␣factorial(int␣n)␣{
2 int␣ret␣=␣1;
3 for␣(int␣i␣=␣0;␣i<n;␣i++)␣{
4 ret␣*=␣(i␣+␣1);
5 }
6 return␣ret;
7 }
8
9 void␣testFactorial ()␣{

10 int␣n␣=␣3;
11 int␣nFactorial␣=␣factorial(n);
12 assert(nFactorial␣==␣6);
13 }
14
15 int␣main()␣{
16 testFactorial ();
17 return␣0;
18 }

The function main calls a function testFactorial which in turn calls the
function factorial. While this function executes, all data is stored on the
stack. You can see this because there are no calls to new and we don’t call

Arrays, Strings, and Pointers 201

any functions that might be calling new without us knowing about it (except
possibly assert).

When line 6 is executed the stack will look as shown in Figure 11.5:

factorial

{ int␣n
int␣ret
Called by testFactorial at line 11.

testFactorial

{ int␣n
int␣nFactorial
Called by main at line 16

main { Called by the operating system.

FIGURE 11.5: A snapshot of the stack.

For each function being executed, the stack stores all the parameters and
local variables. It also contains a reference to where that function was called.
The computer needs a record of where the code was called in order to be able
to move the processing back to the correct location on return.

The moment testFactorial returns, the memory used by that function
can be deleted. The local variables n and ret of testFactorial are simply
discarded from the stack. The stack will now look as shown in Figure 11.6.

testFactorial

{ int␣n
int␣nFactorial
Called by main at line 16

main { Called by the operating system.

FIGURE 11.6: A snapshot of the stack once the factorial function has re-
turned.

This simple system of using a single block of memory for all function calls
and simply adding and removing data at the top as new functions are called
and then return is extremely efficient. It is one of the reasons why C++ code
can be particularly fast.

However, the stack is not sufficient to solve all problems. For example, the
data allocated on the stack is always of a fixed size that is known when the
program is compiled. This is why C arrays are of a fixed size that is determined
before the program is compiled. As we have discussed, this makes C arrays too
inflexible for most purposes and so it is usually better to use the vector class
instead. Although it isn’t immediately apparent to the end user, a vector
must store its data on the heap.

202 C++ for Financial Mathematics

11.8.2 The heap
The heap is an area of memory that is less organised than the stack. As

shown in Figure 11.7, the stack is a neatly arranged block of memory, whereas
the heap contains objects arranged in a haphazard manner.

FIGURE 11.7: The stack and the heap

When you call new, a clever memory management algorithm hunts for an
unused area of the heap that is large enough for your requirements. When
you call delete, that same memory management algorithm is informed that
it can now reuse that area of computer memory.

The big advantage of the heap is that you can call new and delete when-
ever you like and you can choose the size of the memory allocated at run time
rather than at compile time.

Many mathematical problems can be solved without using the heap con-
sciously at all. When you create a data object such as a string or a vector
it will create data on the heap on your behalf, but you usually don’t need to
think about this in detail. However, there are times when you will need to use
flexibility of the heap yourself.

The key example for us will be when pricing a portfolio of options. We don’t
expect to know when the program is compiled exactly what our portfolio will
look like. We don’t know how many options we will hold or even what types
of option we will hold. Since the memory used by the stack is fixed at compile
time, it cannot be used to store an unknown portfolio of options. In Chapter 13
we will show how to write a Portfolio class which uses shared_ptr to store
the data of a Portfolio on the heap.

Arrays, Strings, and Pointers 203

Bugs with pointers
Using pointers introduces a number of new kinds of potential bug into our

code.

• A null pointer error. This is where you try to access data at the memory
address nullptr or 0.

• A general protection fault (GP), also known as a segmentation violation
(SEGV). This is where you try and access memory you aren’t allowed
to access because you are using an invalid pointer.

• A memory leak. This is where you call new but never call delete. Mem-
ory leaks tend not to be obvious immediately. They usually show up as
a program that gradually starts running more and more slowly to the
point where you have to close it and reopen it. Using shared_ptr is the
best way to avoid memory leaks. There are also tools such as INSURE++
that will help you detect memory leaks.

These are extremely common problems in C++ code and you are sure to
experience them at some time.

Exercises
11.8.1. Write a function sumDoubles which takes a pointer to a list of doubles
and the length of the list and returns the total. Write a test for this function.

11.8.2. Write a function reverseDoubles which takes a pointer to a list of
doubles and the length of the list and reverses it. So (1, 2, 3, 4) should be
changed to (4, 3, 2, 1), for example. Write a test for this function.

11.8.3. Write a function meanDistance which takes a pointer to a list of Pair
objects and computes the mean distance of (x, y) to the origin.

11.8.4. Write a function polarToCartesian which takes four parameters: r,
theta, x, and y. x and y should be passed by pointers. The function should
populate the values pointed to by x and y with the r cos(θ) and r sin(θ). Write
a test for this function.
In the C language, one does not have references, so passing by pointer is the
C equivalent of passing by reference.

11.8.5. Write a function reverseString which takes a char* string and re-
verses it. This should be similar to your reverseDoubles function except you
need to consider the terminating zero. Write a test for your function.

204 C++ for Financial Mathematics

11.8.6. Write a function concatenate to append one null-terminated string
to another. I’ve deliberately not told you the parameters or return type, this
is a design question for you to solve. When you have come up with your own
solution, take a look at the standard library functions strcat and strcat_s
to see how others have solved this problem. Of course, you should use the
library functions rather than write your own.

11.8.7. Write a function search which takes as input two char* strings. The
first should be phrase, a phrase to search for, the second should be text, some
text to scan through. It should return the number of times phrase appears in
text. So search("be","to␣be␣or␣not␣to␣be") should return "2".

11.9 Summary
Pointers are an essential tool for a C programmer, but aren’t so important

to a C++ programmer. Nevertheless you must use pointers to some extent if
you want to work with data of variable sizes or with long-lived data. By far
the easiest way to use pointers is to use the shared_ptr class.

• Pointers, references, and shared_ptr can be used to achieve similar
things.

• Use vector and string rather than arrays or char␣*.

• References are a bit safer than pointers, for example you can’t call
delete on a reference and you must initialise reference variables. So
pass by reference is preferred to pass by pointer.

• A shared_ptr is a bit slower than a reference or a pointer, but is really
the only viable option for long-lived data if you want to avoid memory
leaks.

Chapter 12
More Sophisticated Classes

In this chapter we discuss a variety of additional features that C++ provides
to allow you to write more complex and interesting classes.

12.1 Inlining member functions
We discussed in Section 5.4.4 that you can use the keyword inline with

a function, as a hint to the compiler that you want the machine code for
the function to be copied every time it is used. This has the advantage of
being slightly faster because calling a method uses a little computer power.
For example, we chose to inline the functions hornerFunction used in the
definition of norminv.

You can also inline member functions of a class. The procedure is to simply
place the definition inside the class in place of the declaration.

class␣Point␣{
public:

double␣getX()␣const␣{
return␣x;

}
//␣other␣members␣of␣Point

private:
double␣x;
double␣y;

};

In this example, getX is inlined. This means that using this function will result
in code that is no slower than code that accesses x directly. Using a method
has the advantage that if we change our mind about how a Point stores its
data we can do so without needing to rewrite the code that uses Point.

You will probably have noticed that writing an inline function is much less
tedious than writing a separate declaration and definition. Unfortunately it
isn’t advisable to use inlining functions just to avoid typing. You should write
separate definitions only if you actually want the function to be inlined.

205

206 C++ for Financial Mathematics

12.2 The this keyword
In order to hide information, it is a good idea to have no public variables.

We have just seen how to write a get method to provide read access to a
variable. In the example below we show how to write a set method to provide
write access.

class␣Point␣{
public:

double␣getX()␣const␣{
return␣x;

}
void␣setX(double␣x)␣{

this ->x␣=␣x;
}
//␣other␣members␣of␣Point

private:
double␣x;
double␣y;

};

We have used the new keyword this. When implementing a member function
the variable this always contains a pointer to the current object. So you can
use this-> to access the fields of the current object. We’ve just demonstrated
this with the set method.

You can also use *this to obtain a reference to the current object. To see
why you might want to do this, suppose that we want to add a price method
to a class UpAndOutOption. We decide that to implement this, we’ll simply
pass the necessary data to our existing MonteCarloPricer class and ask it to
perform the calculation. However, the class MonteCarloPricer requires you
to pass it an option object. Where do we find a reference to the appropriate
option object? *this is just what we need to pass to the pricer.

double␣UpAndOutOption::price(
␣␣␣␣␣␣␣␣const␣BlackScholesModel&␣model␣)␣const␣{
␣␣␣␣MonteCarloPricer␣pricer;
␣␣␣␣return␣pricer.price(␣*this,␣model␣);
}

More Sophisticated Classes 207

12.3 Inheritance
Inheritance is a powerful technique for reusing code in C++. It is a tech-

nique specifically designed to make it easier to implement interfaces. To give
an example of how inheritance can be useful, let us consider an example of an
interface which at first sight seems quite time consuming to implement.

The following interface defines a ContinuousTimeOption.

class␣ContinuousTimeOption␣{
public:

/*␣ Virtual␣destructor␣*/
virtual␣~ContinuousTimeOption ()␣{};
/*␣ The␣maturity␣of␣the␣option␣*/
virtual␣double␣getMaturity ()␣const␣=␣0;
/*␣ Calculate␣the␣payoff␣of␣the␣option␣given

a␣history␣of␣prices␣*/
virtual␣double␣payoff(

const␣std::vector <double >&␣stockPrices
)␣const␣=␣0;

/*␣ Is␣the␣option␣path -dependent?*/
virtual␣bool␣isPathDependent ()␣const␣=␣0;

};

A continuous time option has a maturity and we can compute the payoff come
maturity by looking at the price path up to maturity. This is the idea captured
by the ContinuousTimeOption interface.

There are three functions to implement in ContinuousTimeOption. Most
of the implementation will be the same for a PutOption, a CallOption, a
DigitalPutOption, etc. Inheritance gives a way of implementing methods for
a number of classes at once.

To use inheritance, one begins by defining a so-called “base class” that
defines functions we wish to reuse. We will call our base class Continuous-
TimeOptionBase. Here is a declaration of an appropriate base class. We’re
using the inlining technique here to implement appropriate get and set meth-
ods.

class␣ContinuousTimeOptionBase␣:
public␣ContinuousTimeOption␣{

public:
virtual␣~ContinuousTimeOptionBase ()␣{}
double␣getMaturity ()␣const␣{

return␣maturity;
}
void␣setMaturity(double␣maturity)␣{

this ->maturity␣=␣maturity;

208 C++ for Financial Mathematics

}
double␣getStrike ()␣const␣{

return␣strike;
}
void␣setStrike(double␣strike)␣{

this ->strike␣=␣strike;
}
//␣...␣more␣methods␣...

private:
double␣maturity;
double␣strike;

};

Notice that our base class has a virtual destructor.

virtual␣~ContinuousTimeOptionBase ()␣{}

We’ve seen these before with interface classes. Just like interface classes, any
class you use as a base class must have a virtual destructor.

We can now write a class PutOption which “extends” the base class. It
will automatically “inherit” all the functions.

class␣PutOption␣:␣public␣ContinuousTimeOptionBase␣{
public:

/*␣ Calculate␣the␣payoff␣of␣the␣option␣given
a␣history␣of␣prices␣*/

double␣payoff(
const␣std::vector <double >&␣stockPrices
)␣const;

double␣price(␣const␣BlackScholesModel&␣bsm␣)
const;

bool␣isPathDependent ()␣const␣{
return␣false;

};
};

The first line of the code says that the class PutOption extends the class
ContinuousTimeOptionBase.

class␣PutOption␣:␣public␣ContinuousTimeOptionBase␣{

This means that all the methods that are defined in ContinuousTimeOption-
Base are automatically provided for PutOption so we don’t need to write
them again.

More Sophisticated Classes 209

In particular, PutOption inherits the functions getMaturity, getStrike,
etc., and the data maturity and strike. There is no need to redeclare or
redefine any of these.

In addition, PutOption inherits the interface ContinuousTimeOption from
ContinuousTimeOptionBase. So a PutOption will automatically be an in-
stance of ContinuousTimeOption.

class␣ContinuousTimeOptionBase␣:
public␣ContinuousTimeOption␣{

Notice that we use the same notation in C++ to say that we extend a class
or that we implement an interface.

12.3.1 What have we gained?
So far we seem to have only made things more complicated. But we can

now easily write the following classes:

• CallOption,

• DigitalCallOption,

• DigitalPutOption,

• UpAndOutOption.

If all of them extend ContinuousTimeOptionBase, we won’t have to write
getMaturity, getStrike, etc., methods for any of them.

This gets rid of a tremendous amount of repetitive code. Notice that the
very idea of interfaces, with a fixed set of methods that must be implemented
by all classes, naturally leads to somewhat repetitive code. You should use
inheritance to avoid this kind of code repetition.

12.3.2 Terminology
Various terms are used to describe the relationship between PutOption

and ContinuousTimeOptionBase.

• ContinuousTimeOptionBase is termed a superclass or a parent class of
PutOption.

• PutOption is termed a subclass or a child class of ContinuousTime-
OptionBase.

• PutOption extends from ContinuousTimeOptionBase.

• PutOption inherits from ContinuousTimeOptionBase.

210 C++ for Financial Mathematics

12.4 Overriding methods — the virtual keyword
Let us add a new method to ContinuousTimeOptionBase to price an op-

tion given the pricing model.

class␣ContinuousTimeOptionBase
:␣public␣ContinuousTimeOption␣{

public:
/*␣Price␣the␣option ,␣by␣Monte␣Carlo␣or␣otherwise */
double␣price(

const␣BlackScholesModel&␣model)␣const;
//␣...␣other␣members␣...

};

To implement the method using Monte Carlo we would simply use the follow-
ing code:

double␣ContinuousTimeOptionBase ::price(
const␣BlackScholesModel&␣model␣)␣const␣{

MonteCarloPricer␣pricer;
return␣pricer.price(␣*this ,␣model␣);

}

This implementation works reasonably for all option types, but it isn’t nec-
essarily optimal. For example, a PutOption is best priced analytically rather
than by Monte Carlo.

Therefore we would like to be able to override the default implementation.
The keyword virtual means that a function may be overridden in a subclass.
So we must add it to the declaration of price

class␣ContinuousTimeOptionBase
:␣public␣ContinuousTimeOption␣{

public:
/*␣ Price␣the␣option ,␣by␣Monte␣Carlo␣or␣otherwise */
virtual␣double␣price(

const␣BlackScholesModel&␣model)␣const;
//␣...␣other␣members␣...

};

If you wish to override a method in a subclass you should do the following:

(i) Check it is declared as virtual in the superclass.

(ii) Declare it with precisely the same parameter and return types (and
uses of const) in your subclass. Optionally, you can use the keyword
override so the compiler checks that you have done this correctly.

More Sophisticated Classes 211

(iii) You must provide the new implementation that overrides the default
behaviour.

Here is an example for the PutOption class.

class␣PutOption␣:␣public␣ContinuousTimeOptionBase␣{
public:

double␣price(const␣BlackScholesModel&␣bsm)
const␣override;

//␣...␣other␣members␣...
};

This means that the PutOption has a different price function than the default
one. The implementation of this method is just the usual Black–Scholes pricing
formula that we’ve seen before.

The override keyword does not affect the behaviour of the program when
it is running. It is simply a way of saying that your intention is to override a
function. If you do not use this keyword and you make a small error in the list
of parameter types of your function then the compiler may not notice your
error. This can lead to bugs that are hard to spot. Therefore it is advisable to
use override whenever you wish to override a function.

When you call price on an option, the appropriate price method will be
automatically selected based on the type of the option. This will allow us to
write a class that prices an entire Portfolio of options in the next chapter.

12.4.1 A note on the keyword virtual

The keyword virtual means “may be overridden”.
When you write an interface class, the methods have no definitions, so we

must always declare them as virtual because they must be overridden.
All classes have a destructor. This is a special function called when the

object is destroyed. This must be declared as virtual in any class that may
be subclassed so that the overridden destructor will be called.

This explains why we had to use the keyword virtual several times in the
definition of an interface class.

Danger!

Virtual destructors: any class that is designed to be subclassed should have
a virtual destructor. Unfortunately most compilers don’t pick up on it if you
forget to write one.

212 C++ for Financial Mathematics

12.5 Abstract functions =0
You can say that a function has no implementation by writing =0. This

simply means that there is no default implementation, the subclass must pro-
vide its own implementation. Such functions are called abstract functions.
Clearly, functions without definitions must be declared as virtual so that
they can be overridden.

An interface class is a class which has only abstract functions. As we have
shown you can write classes which have a mixture of implemented and non-
implemented functions. An abstract class is a class that contains at least one
abstract function. For example, ContinuousTimeOptionBase is an abstract
class because it inherits the abstract payoff function but doesn’t implement
it.

12.6 Multiple layers
We aren’t restricted to just parent classes and child classes. We can build

complex hierarchies of classes.
For example, a class can have a grandparent. Indeed, we’ve already seen

this, PutOption has the parent ContinuousTimeOptionBase and grandparent
ContinuousTimeOption.

You can continue ad infinitum. For example we could (and should) intro-
duce a new class, PathIndependentOption, which contains the code common
to puts and calls but that is not used by knock-out options and Asian options.

Here is an appropriate declaration for a PathIndependentOption:

class␣PathIndependentOption␣:
public␣ContinuousTimeOptionBase␣{

public:
/*␣ A␣virtual␣destructor␣*/
virtual␣~PathIndependentOption ()␣{}
/*␣ Returns␣the␣payoff␣at␣maturity␣*/
virtual␣double␣payoff(double␣endStockPrice)␣const

=␣0;
/*␣ Compute␣the␣payoff␣from␣a␣price␣path␣*/
double␣payoff(

const␣std::vector <double >&␣stockPrices␣)␣const␣{
return␣payoff(stockPrices.back ());

}
/*␣ Is␣the␣option␣path␣dependent?␣*/

More Sophisticated Classes 213

bool␣isPathDependent ()␣const␣{
return␣false;

};
};

The implementation of PathIndependentOption does the following.

• It provides an implementation of isPathDependent.

• It has an abstract function to compute the payoff given only the final
stock price. By definition of “path independent” a path-independent
option should be able to provide an implementation of this function.

• This means we can implement the payoff function that takes an entire
path of stock prices. We only need to look at the last price.

Once we’ve written a PathIndependentOption class, we can use this to write
a CallOption class that extends it.

class␣CallOption␣:␣public␣PathIndependentOption␣{
public:

double␣payoff(␣double␣stockAtMaturity␣)␣const;

double␣price(␣const␣BlackScholesModel&␣bsm␣)
const;

};

To implement a CallOption we will have to write a function to compute the
payoff at maturity. So the payoff function above must be declared.

We have also chosen to provide an override for price. This is because we
know that it would be better to use the Black–Scholes formula to price a Call
Option than to use the default Monte Carlo implementation.

Notice that all the functions getMaturity, getStrike, etc., are imple-
mented by the grandparent ContinuousTimeOptionBase.

Similarly, the ContinuousTimeOption method payoff is implemented by
the parent PathIndependentOption, so we only have to implement a simpler
method that computes the payoff using the price at maturity.

We could write PutOption, DigitalCallOption, and DigitalPutOption
in a similar way with very little additional code. This is left as an exercise.

12.6.1 UML
Figure 12.1 shows a UML diagram for the class hierarchy of options in

FMLib12. Actually, the DigitalPutOption and DigitalCallOption don’t
exist. You should write them yourself as an exercise.

The arrows in Figure 12.1 (with the specific shape of arrow head shown)

214 C++ for Financial Mathematics

FIGURE 12.1: The hierarchy of option classes.

mean “extends”. The boxes denote classes. UML uses other types of arrows
to indicate other relationships between classes. We will see examples later.
We have followed the standard practice in UML of using italics to indicate
abstract classes and roman type to indicate concrete classes.

This UML diagram is unusually complex. Class hierarchies are usually
much simpler. We have tried to simplify the diagram a little by omitting all
details about the member functions and variables of our classes.

Our complex hierarchy is justified because it represents the “true” rela-
tionship between options. CallOptions really are PathIndependentOptions
which really are ContinuousTimeOptions. This is a pattern you should follow
in general. You should only use subclassing to mean “is a”. All the arrows in
our UML diagram can be read as “is a”.

What good software looks like

Which artist do you prefer, Mark Rothko or Hieronymus Bosch? If you are
not familiar with their paintings, they are both great painters and are polar
opposites in their style. Rothko is known for abstract paintings which have
a stunning simplicity. Bosch is known for his detailed landscapes of fantastic
imagery.

When it comes to art, you don’t actually have to pick a favourite. But in
software design you should always prefer the simplest solution to a problem.

More Sophisticated Classes 215

This means that when you design your classes you should aim for a UML
diagram that looks more like a Rothko than a Bosch.

12.6.2 Another object hierarchy
To give another example hierarchy, the geometry library has been updated

to contain an interesting object hierarchy. It contains the following.
• A class Shape that represents any finite shape in the plane. It has the

following methods.

– A method area to compute the area.
– A method contains to test if a point is in the shape.
– A method boundingRectangle that returns a Rectangle contain-

ing the entire shape.

• The class Circle is one implementation of Shape.

• The class Rectangle is another implementation of Shape.

• The class HyperCircle (the shape x4 + y4 < 1) is another implementa-
tion of Shape.

• The class Shape has a default implementation for area that uses Monte
Carlo.

• Circle and Rectangle override area.
These classes would be useful in a graphics library.

Notice the importance of abstract functions and overriding. No one would
want a graphics library whose Shape class couldn’t be extended. Similarly
no one would want a pricing library where you couldn’t define new types of
options.

These examples strike at the heart of object-oriented programming. Ab-
stract methods and overriding methods allow you to write “pluggable” sys-
tems.

12.6.3 Multiple inheritance
In C++ a class can extend more than one base class. This is called multiple

inheritance.
Multiple inheritance is useful to indicate that a class implements more

than one interface.
As an example, it might be useful to have an interface DerivativeWith-

Strike for derivatives that have some associated strike price such as call
options and put options (but not futures). The interface would simply return
the strike price as shown below:

216 C++ for Financial Mathematics

class␣DerivativeWithStrike␣{
public:

~DerivativeWithStrike ();
virtual␣double␣getStrike ()␣const␣=␣0;

};

To declare that a ContinuousTimeOptionBase implements both Continuous-
TimeOption and DerivativeWithStrike, one would write:

class␣ContinuousTimeOptionBase␣:
public␣ContinuousTimeOption ,
public␣DerivativeWithStrike␣{

When using multiple inheritance, I recommend that you ensure that at
most one of the parent classes is a non-interface class. This is not a rule
that is enforced by C++, but if you break it you will have to understand the
detailed rules of multiple inheritance in C++. This makes your code harder to
understand and therefore harder to maintain.

Tip: Multiple inheritance

Only use multiple inheritance to show that a class implements more than one
interface.

We have only shown how to publicly extend from another class. This is
why we use the keyword public whenever we extend a class. It is also possible
to extend a class privately, but this is not a very useful feature. I recommend
you do not use it.

Danger!

C++ is a difficult language with many advanced features. Other object-oriented
programming languages such as Java do not allow multiple inheritance (except
of interfaces) and do not have a concept of private inheritance. This provides
evidence that these features of C++ are not widely seen to be particularly
beneficial. They are best avoided.

12.6.4 Calling superclass methods
Sometimes it is useful to be able to call a superclass’s methods. For ex-

ample, consider an UpAndOutOption. If the barrier is lower than the current
price, the option is worthless and so it shouldn’t be priced by a slow Monte

More Sophisticated Classes 217

Carlo method. However, the rest of the time, one would want to use the de-
fault behaviour of the parent class, KnockoutOption, which is to price the
option by Monte Carlo.

The code required to do this is as follows:

double␣price(
const␣BlackScholesModel&␣model)␣const␣{
if␣(model.stockPrice␣ >=␣getBarrier ())

return␣0;
return␣KnockoutOption ::price(model);

}

The key line is the last one, where we qualify the call to the function price
with the name of the superclass KnockoutOption. If we didn’t specify that we
wanted to call the superclass’s price function, the function would recursively
call itself. The program would then crash with a stack overflow error.

12.7 Forward declarations and the structure of cpp files
The class Shape has a method boundingRectangle. This method returns

a Rectangle. This means it is impossible to write the class Shape without
first having told the compiler about the class Rectangle.

On the other hand, a Rectangle is a Shape itself, so we have a circularity.
This seems to make it impossible to declare either Rectangle or Shape.

To deal with the problem you can use a forward declaration of the class
Rectangle. Here’s an example of how to make forward declarations:

class␣CartesianPoint;
class␣Rectangle;

class␣Shape␣{
public:

/*␣ Does␣the␣point␣lie␣in␣the␣shape␣*/
virtual␣bool␣contains(const␣CartesianPoint&␣point)

const␣=␣0;
/*␣ A␣rectangle␣bounding␣the␣shape␣*/
virtual␣Rectangle␣boundingRectangle ()␣const␣=␣0;
/*␣ By␣default␣area␣is␣computed␣by␣Monte␣Carlo␣*/
virtual␣double␣area()␣const;

};

The forward declarations:

class␣CartesianPoint;

218 C++ for Financial Mathematics

class␣Rectangle;

are a promise to the compiler that we will declare the classes eventually.
The compiler will then allow them to be used as parameter and return types.
However, it is not possible to use a class as a member variable or as a superclass
until it has been fully declared.

This raises the question of what is the right order in which to put all
your declarations, definitions, and so forth within a C++ file. Here are my
recommendations. You should write cpp files in the following order.

1. Include statements.

2. using␣namespace statements.

3. Forward declarations of classes.

4. Class declarations and function declarations.

5. Function definitions and member definitions.

6. Tests (other projects often have different test conventions).

12.8 The static keyword
Sometimes you may want to associate a function with a class but not with

a particular instance. Here are some reasons why you might want do this.

• The function is designed to construct instances—a so called factory
method. We will see a detailed example of this in the next chapter.

• The function operates on vectors of instances, so you can’t sensibly
associate it with a particular instance.

• The function is designed to change the behaviour of every instance at
once. For example, you might want to enable extra logging information
for a class to help with debugging.

• The function is designed to manage all the of instances of your class.
For example, since connecting to a database the first time is slow, you
might want to maintain a pool of ten connections to a given database.
You could then associate functions with the DatabaseConnection class
that allows you to obtain and return connections from this pool.

If you want to associate a function with the class, but not with any in-
stance, you should use the keyword static. You can also declare that a mem-
ber variable is static, which means that it is shared by all instances of the
class.

More Sophisticated Classes 219

As a somewhat contrived example, let us suppose that we have found a
performance problem in our code. We suspect it is something to do with the
evaluate function of a class we have written to compute the sin function. As
part of debugging this we want to count just how often this method is called.
Here is one way we could do this:

class␣CallCountedSin␣:␣public␣RealFunction␣{
public:

static␣int␣getNumberOfCalls ();
double␣evaluate(double␣x)␣{

numCalls ++;
return␣sin(x);

}
private:

static␣int␣numCalls;
};

Our class CallCountedSin acts like the sin function, but also counts the
number of times evaluate is called on any instance. We have a static mem-
ber variable to save the number of calls and a static member function to
read the value.

The definition of the function looks just like an ordinary member function.

int␣CallCountedSin :: getNumberOfCalls ()␣{
return␣numCalls;

}

Notice that this function it is not allowed to access any variables other than
those that are static.

Here is how we initialize the static variable numCalls:

int␣CallCountedSin :: numCalls␣=␣0;

This looks pretty much like a global variable definition. In a sense, that is
exactly what it is. The difference is that we have associated the variable num-
Calls with the class CallCountedSin. This is an improvement over having
a global variable called numCalls because the static variable can be declared
private. This means it is impossible for it to be used by any function in another
class.

Here is an example of how you actually call a static function:

void␣testCallCountedSin ()␣{
CallCountedSin␣instance1;
CallCountedSin␣instance2;
integral(instance1 ,␣0,␣1,␣1000);
integral(instance2 ,␣0,␣1,␣1000);
int␣numCalls=CallCountedSin :: getNumberOfCalls ();
ASSERT(numCalls␣==␣2000);

220 C++ for Financial Mathematics

}

The point to observe is that to call the function we have to qualify its name
with the name of the class.

int␣numCalls=CallCountedSin :: getNumberOfCalls ();

Since we could have many classes with identically named static methods, it
makes sense that we have to qualify the name.

We have seen an example of a static variable before in Section 9.3. You
may recall that we reset the seed of the random number generator using the
following code:

mersenneTwister.seed(mt19937 :: default_seed);

This code is accessing the static variable default_seed that is defined in the
class mt19937. Because the default_seed will be the same for all instances,
it is logical to associate it with the class rather than any instance. For more
complex data objects than a single integer, it may save a considerable amount
of memory to have only one copy of a variable that is shared by all instances.

In summary, static functions and static variables behave exactly like global
functions and global variables except for the following.

• They can be made private and have privileged access to private data.
This increases encapsulation.

• They are associated with the class. Calls to static functions need to be
qualified with the class name. This prevents name clashes.

Confusingly, C++ also uses the static keyword with functions that aren’t
defined in any class. In this context static means “cannot be used outside
the current file”. It is unfortunate that C++ uses the same keyword for two
completely different purposes.

Danger!

Just as with other global variables, if you are using multi-threaded code then
you must be careful to use locks using non-constant static variables. See Chap-
ter 20.

12.9 The protected keyword
We know already that we can use the keywords public or private for in-

formation hiding. public means everyone can use the methods and variables.
private means nobody can use the methods/variables including subclasses.

More Sophisticated Classes 221

Now that we are using sub-classes it is worth saying that you can also use
the keyword protected. This means only subclasses can use the methods/-
variables. In practice I recommend ignoring protected for the time being as
it isn’t particularly useful.

Exercises
12.9.1. Write DigitalCallOption and DigitalPutOption classes. Refactor
PutOption so it extends PathIndependentOption.

12.9.2. Write an AsianOption which represents an Asian option. Show where
this new class fits into the UML diagram of options.

12.9.3. Create a UML diagram for the class hierarchy with base class Shape.

12.9.4. There is a lot of identical code between our different chart classes. In
particular they all have in common a title and two functions called writeAs-
HTML. Design a base class and extend it for each chart. Draw a UML diagram
of the resulting hierarchy. Use getter and setter methods to access the title.

12.9.5. Can you use the techniques of this chapter to improve the Cipher
classes written for Exercise 10.6.6?

12.9.6. This exercise tests the use of static variables and functions.

(i) Write an interface class RandomNumberGenerator that has a function to
generate a uniformly distributed random number.

(ii) Write an implementation of RandomNumberGenerator that uses the
mt19937 class. This design pattern of implementing an interface by sim-
ply calling another class to do all the work is called delegation.

(iii) Write a static function on the RandomNumberGenerator class called set-
Default that sets the current default RandomNumberGenerator instance.
Note that you should use a shared_ptr<RandomNumberGenerator> as
the parameter to setDefault.

(iv) Write a static function randUniform on RandomNumberGenerator that
allows the user to generate a uniformly distributed random number with-
out needing to create a RandomNumberGenerator.

(v) Add a non-static setAsDefault function to RandomNumberGenerator
that sets the current random number generator to be used as the default
random number generator. You will need to use the this keyword.

(vi) In what ways, if any, do you think this improves upon the existing func-
tions in matlib?

222 C++ for Financial Mathematics

12.10 Summary
We have covered quite a few different topics in this chapter. Here is a brief

review.

• Write getters and setters and use private data where possible.

• You can inline functions by writing the definition in the class.

• The this pointer makes writing setters easy. You can use it if you need
a reference to the current instance.

• Build hierarchies of classes in order to inherit functionality.

• Use the virtual keyword to mean that a method can be overridden.

• Write =0 to mean that a function has no implementation and so create
an abstract class.

• Interface classes are a special case of inheritance.

• Use forward declarations to deal with circular class declarations.

• Use static variables in classes instead of global variables. Use static
functions in classes to write functions that are associated with a class in
general rather than any particular instance of the class.

Chapter 13
The Portfolio Class

A key goal of this book is to show how to use C++ to price a portfolio containing
a variety of different options. We will achieve that goal in this chapter.

Without object orientation, this would be very difficult to achieve. But
since all our option classes have a price function that takes a BlackScholes-
Model as a parameter it will actually be extremely easy.

We will not introduce any new language features of C++ in this chapter.
The only new idea in this chapter will be a simple design pattern called the
factory pattern that can be used to increase information hiding.

13.1 The Priceable interface
Financially, a portfolio is just a collection of securities such as stocks,

bonds, and options in various quantities. The portfolio of an investor describes
their total position across all securities.

To model a portfolio in C++ we will write a class that stores a vector of
different securities and a vector of the quantities held.

We need to decide what class we will use to represent each security. This
could be a stock, a bond, a derivative and so forth. The only common feature of
these different securities is that they can be priced. This motivates introducing
a new interface Priceable. Here is the interface we will use:

class␣Priceable␣{
public:

/*␣ Compute␣the␣price␣of␣the␣security␣in␣the
Black --Scholes␣world␣*/

virtual␣double␣price(
const␣BlackScholesModel&␣model␣)␣const␣=␣0;

};

When writing a real financial system, the parameter passed to the price
function would not be just a BlackScholesModel. In reality one would pass
a more complex parameter which contains data about the entire financial
market rather than data about a single stock. By using this interface for our
securities, we are restricting our system to pricing securities involving only a

223

224 C++ for Financial Mathematics

single stock price and a fixed interest rate r. This will be sufficient to highlight
the key ideas, but obviously would need to be revisited if one was writing a
real trading system.

By making ContinuousTimeOption extend Priceable, we can ensure that
all our options classes implement Priceable. We will leave writing additional
classes Stock and ZeroCouponBond as exercises for the reader (see Exer-
cise 13.5.1 for the definition of a zero-coupon bond).

13.2 The Portfolio interface and implementation
Now that we have designed our Priceable class it is easy to design the

key functions of a Portfolio. A Portfolio class must have the following key
functions:

(i) a function to add a Priceable instance together with an associated
quantity;

(ii) a function to change the quantity held of a given security;

(iii) a function price to compute the value of the Portfolio.

The last item suggests that a Portfolio should itself implement the in-
terface Priceable. This means that it will be possible to create a Portfolio
that itself contains Portfolios. This accurately reflects how banks manage
their books. They organise their holdings into a number of different portfolios
first by line of business, then by trading desk, then by trader. Each trader will
then maintain a number of separate portfolios simply as a means of organising
their work.

One can see that our Portfolio implementation will need some way to
store objects of type Priceable in order to keep track of the investor’s po-
sition. It not possible for the Portfolio implementation to have member
variables of type Priceable because Priceable is an abstract class. For the
same reason it is impossible to have a vector of Priceable objects. The funda-
mental reason for this is that member variables and elements of vectors must
all be of the same size. Different Priceable objects will take up different
amounts of memory depending upon the variables they contain.

The solution for this is for the Portfolio to store data using shared_ptr.
This unavoidable use of pointers was the reason we had to introduce the topic
of pointers in Chapter 11.

This leads us to the following decisions about the design for the Portfolio
class.

(i) Our Portfolio implementation will hold a vector of shared_ptr objects
that point to Priceable instances.

The Portfolio Class 225

(ii) It will also have a vector of quantities.

(iii) Because we need to store shared_ptr objects, the method to add secu-
rities will take a shared_ptr to a security instead of a reference to the
security.

Before finalising our design we add in one further consideration. The users
of the Portfolio class don’t need to know anything about how we will choose
to store the data for our Portfolio. Therefore it would be best to keep all
this inessential detail out of the header file.

With all these considerations in mind, we can now design our Portfolio
class.

class␣Portfolio␣:␣public␣Priceable␣{
public:

/*␣ Virtual␣destructor␣*/
virtual␣~Portfolio ()␣{};
/*␣Returns␣the␣number␣of␣items␣in␣the␣portfolio */
virtual␣int␣size()␣const␣=␣0;
/*␣ Add␣a␣new␣security␣to␣the␣portfolio ,

returns␣the␣index␣at␣which␣it␣was␣added␣*/
virtual␣int␣add(␣double␣quantity ,

std:: shared_ptr <Priceable >␣security␣)␣=␣0;
/*␣ Update␣the␣quantity␣at␣a␣given␣index␣*/
virtual␣void␣setQuantity(␣int␣index ,

double␣quantity␣)␣=␣0;
/*␣ Compute␣the␣current␣price␣*/
virtual␣double␣price(

const␣BlackScholesModel&␣model␣)␣const␣=␣0;
/*␣ Creates␣a␣Portfolio␣*/
static␣std::shared_ptr <Portfolio >␣newInstance ();

};

The Portfolio class is an abstract class. To create a Portfolio a user of
this class must call the factory method newInstance. This function is guaran-
teed to return some kind of implementation of the Portfolio interface, but
the user does not know precisely what class will be returned. Because we don’t
want the user to even know the member variables of the Portfolio objects
we return, our factory method has to return a pointer to a Portfolio. As
usual we use shared_ptr to simplify memory management.

The advantage of this is that all implementation details are hidden in the
C++ file. Information about private fields and methods are not given to the
user. This means we can change all of these implementation details without
the user even having to recompile, they just need to link to the latest library.

The implementation is all placed in the file Portfolio.cpp.

class␣PortfolioImpl␣:␣public␣Portfolio␣{

226 C++ for Financial Mathematics

public:
/*␣Returns␣the␣number␣of␣items␣in␣the␣portfolio */
int␣size()␣const;
/*␣ Add␣a␣new␣security␣to␣the␣portfolio ,

returns␣the␣index␣at␣which␣it␣was␣added␣*/
int␣add(␣double␣quantity ,

shared_ptr <Priceable >␣security␣);
/*␣ Update␣the␣quantity␣at␣a␣given␣index␣*/
void␣setQuantity(␣int␣index ,␣double␣quantity␣);
/*␣ Compute␣the␣current␣price␣*/
double␣price(

const␣BlackScholesModel&␣model␣)␣const;

vector <double >␣quantities;
vector <␣shared_ptr <Priceable >␣>␣securities;

};

Placing all the implementation details in the cpp file has some other ad-
vantages. Let us describe some of them now.

(i) Our implementation class PortfolioImpl has a member variable with
the rather complex type

vector<␣shared_ptr<␣Priceable␣>␣>

This type is a vector of pointers to Priceable objects. It is precisely the
data structure we need to store the details about the different securities
that our portfolio contains. Had we declared the implementation details
in a header file, the type details would be even harder to read:

std::vector<␣std::shared_ptr<␣Priceable>␣>

This is because one should not write using␣namespace in a header file.
Thus putting implementation details in a cpp file allows us to take fuller
advantage of using␣namespace declarations.

(ii) In header files, the fields of all classes will normally be declared as
private to increase encapsulation. Unfortunately, this makes testing
awkward. It doesn’t matter if the fields of PortfolioImpl are pub-
lic. We’ve achieved perfect information hiding without the need for the
private keyword.

(iii) The header file is much less complex. Since every file that uses Portfolio
needs to #include our header file, this will reduce the compilation time
of classes that use Portfolio. This is a small detail for this one class,
but the cumulative effect across a project can be very large. The less
code you put in header files, the quicker compilation will be.

The Portfolio Class 227

This technique of increasing encapsulation by using a factory method, new-
Instance, to provide implementations is called the factory design pattern. It
has numerous advantage stemming from the fact that it allows one to clearly
separate the interface from the implementation. One says that this decouples
the interface and the implementation. Dependencies between different classes
in your program is called coupling. Reducing coupling results in more main-
tainable code.

13.2.1 Implementation of PortfolioImpl

All the hard work has been in the design of the classes Portfolio and
PortfolioImpl. Providing the implementation of the methods is very easy.

First, we must implement the factory method newInstance. This simply
needs to return a new PortfolioImpl instance.

shared_ptr <Portfolio >␣Portfolio :: newInstance ()␣{
shared_ptr <Portfolio >␣ret=

make_shared <PortfolioImpl >();
return␣ret;

}

The implementation of add is easy:

int␣PortfolioImpl ::add(␣double␣quantity ,
shared_ptr <Priceable >␣security␣)␣{

quantities.push_back(␣quantity␣);
securities.push_back(␣security␣);
return␣quantities.size ();

}

as is implementing the implementation of size

int␣PortfolioImpl ::size()␣const␣{
return␣quantities.size ();

}

and the implementation of setQuantity.

void␣PortfolioImpl :: setQuantity(␣int␣index ,
double␣quantity␣)␣{

quantities[index]␣=␣quantity;
}

The end result of all our efforts is that we can write a function price for a
Portfolio with ease:

double␣PortfolioImpl ::price(
const␣BlackScholesModel&␣model␣)␣const␣{

228 C++ for Financial Mathematics

double␣ret␣=␣0;
int␣n␣=␣size ();
for␣(int␣i=0;␣i<n;␣i++)␣{

ret␣+=␣quantities[i]
*␣securities[i]->price(␣model␣);

}
return␣ret;

}

All of this implementation code is very simple. However, pause for a mo-
ment to consider the fact that our Portfolio implementation can now store
any kind of stock derivative and price it. It will always choose the most ef-
ficient method of pricing depending upon the type of derivative it contains.
Call options will be priced using the Black–Scholes formula for call options.
Put options will be priced using the put option formula. Other options will
be priced by Monte Carlo. Similarly, holdings in stock and zero-coupon bonds
will be priced by calling the appropriate pricing function. The end result is
an extremely versatile and useful class.

What is more, our Portfolio will work equally well with securities we
haven’t even implemented yet! The user of our library can provide their own
implementations of our classes if they decide to sell novel financial products.
Being able to cope with rapidly changing business requirements without hav-
ing to rewrite all your software is an essential feature of commercial software.
It is this “pluggability” that makes object-oriented software so important in
the financial industry.

13.3 Testing
As we have tried to emphasise in this book, a crucial part of software

development is testing that your code works.
In this test, we check the put-call parity formula which we will now derive.
A portfolio, P consisting of 1 unit of a call option and −1 units of a put

option both with strike K will pay off an amount equal to

max{ST −K, 0} −max{K − ST , 0}

at maturity (where ST is the stock price at maturity). By considering sepa-
rately the cases where ST ≥ 0 and ST ≥ 0, one can see that this expressions
simplifies to:

ST −K.

So the value of the P is equal to the discounted expectation of ST −K. In the

The Portfolio Class 229

Q-measure, the discounted expectation of ST must be S0. We deduce that the
discounted expectation of ST −K is:

S0 − e−rTK.

This is the value of P at time 0.
The test below confirms that this holds for our Portfolio class when r = 0.

static␣void␣testPutCallParity ()␣{
shared_ptr <Portfolio >␣portfolio

=␣Portfolio :: newInstance ();

shared_ptr <CallOption >␣c
=make_shared <CallOption >();

c->setStrike (110);
c->setMaturity (1.0);

shared_ptr <PutOption >␣p=make_shared <PutOption >();
p->setStrike (110);
p->setMaturity (1.0);

portfolio ->add(␣100,␣c␣);
portfolio ->add(␣ -100,␣p␣);

BlackScholesModel␣bsm;
bsm.volatility␣=␣0.1;
bsm.stockPrice␣=␣100;
bsm.riskFreeRate␣=␣0;

double␣expected␣=bsm.stockPrice␣-␣c->getStrike ();
double␣portfolioPrice␣=␣portfolio ->price(␣bsm␣);

ASSERT_APPROX_EQUAL (100* expected ,
portfolioPrice ,0.0001);

}

One might feel that we should write many more tests for our Portfolio
class to test that it correctly prices more sophisticated portfolios. A central
benefit of our design is that writing a large number of tests for the Portfolio
class is not really necessary. We already have a suite of tests to confirm that
various different types of option are priced correctly. The Portfolio class has
a very simple price method and every line of that method is already tested
by our test of put call parity. Testing that Portfolio works with a portfolio
of complex options would add nothing new.

230 C++ for Financial Mathematics

13.4 UML

FIGURE 13.1: Design of the Portfolio class.

Figure 13.1 summarises the classes we have introduced in this chapter as
a UML diagram.

The diagram indicates that PortfolioImpl implements the interface -
Portfolio which in turn extends the interface Priceable. Priceable is also
implemented by the class CallOption.

On the other hand, a PortfolioImpl contains a vector of Priceable ob-
jects; this is indicated by the arrow labelled securities. This relationship is a
has a relationship. A PortfolioImpl has a number of associated securities.
All of these relationships are is a relationships and are implemented using
class extension.

The ∗ symbol on the arrow indicates that a PortfolioImpl can have
any number of associated securities. In UML you can label the multiplicity
of any relationship with a number or range of numbers. For example, the
relationship “parents” between a human and their parents could be labelled
with the multiplicity 2. ∗ simply means there is no limit on the multiplicity.

The newInstance function is underlined to indicate that it is a static
function.

We have deliberately omitted the full hierarchy of options from our di-
agram to keep it readable. We have also indicated that a CallOption has
public member variables strike and maturity even though these variables
can only be accessed through get and set methods. We have not mentioned
that the PortfolioImpl stores references to Priceable objects using a vector

The Portfolio Class 231

of shared pointers. Thus our diagram is a slight simplification of our classes. It
is intended to illuminate the design rather than to precisely mirror the code.

13.5 Limitations
We do not claim that the code in this chapter is the last word on pricing

a portfolio of options. Here are some important limitations.

(i) We are using a fixed number of scenarios and steps in Monte Carlo
calculations, this should be configurable.

(ii) We haven’t made any attempt to optimise our code.

(iii) We haven’t taken advantage of the multiple CPUs available on modern
computers.

(iv) Our ContinuousTimeOption and Priceable interfaces are not suffi-
ciently general. For example, they cannot cope with discrete time options
and options on multiple underlying stocks.

(v) When pricing a portfolio by Monte Carlo, it isn’t a good idea to keep
generating random numbers. It is better to generate all the risk factors
in one go and then use the same scenarios to price each element. This
both involves less random number generation and will ensure that hedges
cancel each other accurately.

Many of these limitations will be addressed in later chapters.

Exercises
13.5.1. A zero-coupon bond is a financial instrument that is guaranteed to
pay out a value of 1 at its maturity T . These instruments are not often traded
in practice, but are a useful mathematical abstraction to represent a risk-free
bank account. Putting money in a risk-free bank account up to time T is the
equivalent of investing in zero-coupon bonds with maturity T . The theory of
risk-neutral pricing tells us that the risk-neutral price of a zero-coupon bond
at time 0 is

exp(−rT).

Use this fact to create implementations of the Priceable interface for stocks
and zero-coupon bonds.

232 C++ for Financial Mathematics

13.5.2. Implement UpAndInOption and DownAndInOption. A portfolio con-
taining an UpAndInOption and an UpAndOutOption should be worth the same
as a portfolio containing a CallOption. Verify this using the Portfolio class.
Comment on the accuracy of the answer.

13.6 Summary
We have not seen any new C++ language features while developing -

Portfolio, just some design patterns for using C++ effectively.

• Use shared_ptr to build sophisticated data structures that store objects
long term.

• Use the static factory method design pattern to maximise information
hiding and reduce dependencies between files.

• Use object orientation to achieve pluggable code that will not need to
be changed even when new requirements come in.

Chapter 14
Delta Hedging

In this chapter we will show how C++ can be applied to financial mathemat-
ics questions that go beyond simple risk-neutral pricing. In particular the
exercises will show you how object-oriented programming techniques can be
applied to solve a broad range of problems.

The problem we will address is to show numerically that the delta hedging
strategy described in Appendix A is an effective trading strategy.

In [2], it is proved that the delta hedging strategy is completely risk free
providing that various approximations to reality are used. These assumptions
include that: One must be able to re-hedge one’s position in continuous time;
the stock price must follow geometric Brownian motion in the P meeasure;
there must be no transaction costs; the market must be infinitely liquid; in-
terest rates must be at a fixed level r; and so forth.

We will show in this chapter that delta hedging is still a reasonably effective
strategy if one weakens the assumption of continuous-time trading to trading
at fixed time points. The strategy is no longer entirely risk free, but the risk
can be reduced to acceptable levels by rehedging reasonably often.

The software that we develop can then easily be enhanced to test the effects
of weakening the other assumptions. In addition one can adapt the software
easily to test the effectiveness of other hedging and investment strategies.

14.1 Discrete-time delta hedging
We will simulate trading in a stock that evolves according to the Black–

Scholes P-measure model. This means that we can use our existing Black-
ScholesModel and its function generatePricePath to simulate a stock price
over a given time interval. The price of the stock at time t is denoted St.

At time 0, a trader sells a European call option on the stock with strike
K and maturity T to a customer at the Black–Scholes price. This means that
in exchange for the price P , the trader is committed to paying the customer
the amount

max{ST −K, 0}

at time T .

233

234 C++ for Financial Mathematics

The trader’s strategy is to delta hedge this liability. They delta hedge at
N discrete time steps. So each time step has length δt = T

N .
We label the times at which the trader hedges with integers i ∈ {0, N−1}.

So time point i takes place at time iδt. At time point i, the trader will ensure
that they hold precisely ∆i units of stock where ∆i is the Black–Scholes delta
of the call option at time point i. Any remaining money is invested in a risk-
free account which grows at a fixed interest rate of r.

We write bi for the trader’s bank balance at each time point i. At time
point 0 the trader puts

b0 = P −∆0S0 (14.1)

into their risk-free account and invests the remainder of the principal, ∆0S0
in stock.

We can then calculate the bank balance of the trader at subsequent time
points i using the difference equation

bi = erδtbi−1 − (∆i −∆i−1)Siδt. (14.2)

This equation follows because the money they have in the bank grows at
the interest rate r giving rise to the term erδtbi−1 representing the amount in
the bank before the trader rebalances their portfolio. The trader then needs
to rebalance their portfolio to ensure they are holding ∆i units of stock. This
means that they will need to buy (∆i − ∆i−1) units of stock. This explains
the −(∆i −∆i−1)Siδt term.

At time point N , the option reaches maturity. The trader does not delta
hedge. Instead they sell off any remaining stock holding and pay off the lia-
bility. This tells us that

bN = erδtbN−1 + ∆N−1ST −max{S −K, 0}. (14.3)

This final bank balance represents the profit or loss of the trader. Equa-
tions (14.1) to (14.3) have been derived using nothing more complex than
the definition of the delta hedging strategy and basic accounting calculations.
These calculations are no more complex than the ones you use to understand
your own personal bank accounts and shopping purchases.

We can use the difference equations (14.1) to (14.3) to compute the profit
and loss of the trader given a set of simulated stock prices. The one additional
ingredient we need is an explicit formula for ∆i.

By definition, ∆ = ∂C
∂S where C is the price of the call option and S

is the current stock price. This means that one can compute ∆ simply by
differentiating the Black–Scholes formula (A.6) for the call price. The result
is

∆ = N(d1) (14.4)

where N and d1 are as defined in Equation (A.6).
Together the formulae in this section allow us to explicitly calculate the

profit or loss of the trader in a given scenario. By generating multiple scenarios

Delta Hedging 235

we can compute statistics for the profit and loss (PnL) of the trader. Most
interestingly we can plot a histogram of the trader’s PnL. We will see the C++
code required to do this in the next section.

14.2 Implementing the delta hedging strategy in C++
Given the explicit formulae in the previous section, it is straightforward

to implement the delta hedging strategy. However, if one simply copies the
equations into C++ one will end up with code involving variables with unhelpful
names such as b that will mean nothing to someone who does not have any
documentation available.

The convention in programming is to use long variable names that clearly
explain what is going on. This is the opposite of the convention in mathematics
of using single letter variable names.

As you will see the code below uses English names for all the variables,
which makes it clear how all the terms were derived. The advantage is that
this code can be understood by looking at the code alone without needing to
read an explanatory document in another file.

14.2.1 Class declaration
Our first step is to declare a class that will run our hedging simulation. We

will call our class HedgingSimulator. It will be a configurable class so that
the user can set the value of the option to be hedged, the model to be used
for the simulation, and so forth. Our design contains some flexibility in that it
allows the user to set one model that should be used to generate stock prices
(the simulationModel) and another that is used by the trader to compute
the amount to charge the customer and the amount of stock to hold at each
time (the pricingModel). By having two separate models we will be able to
test what happens if the trader’s beliefs about the market are incorrect.

These ideas lead us to define the following private member variables for
a class called HedgingSimulator:

private:
/*␣ The␣option␣that␣has␣been␣written␣*/
std:: shared_ptr <CallOption >␣toHedge;
/*␣ The␣model␣used␣to␣simulate␣stock␣prices␣*/
std:: shared_ptr <BlackScholesModel >

simulationModel;
/*␣The␣model␣used␣to␣compute␣prices␣and␣deltas␣*/
std:: shared_ptr <BlackScholesModel >␣pricingModel;
/*␣ The␣number␣of␣steps␣to␣use␣*/

236 C++ for Financial Mathematics

int␣nSteps;

The variable nSteps corresponds to the mathematical variable N used in the
derivation of the difference equations.

We have decided to store all configuration objects using shared_ptr. This
should be your default choice when one class needs to refer to data of another
class. The alternative would be to have a member variable of type CallOption,
but this could only store the precise class CallOption and not subclasses
someone might write in the future. In fact it would probably be better to use
a member variable of a more general type so that we can simulate hedging
other types of options. See Exercise 14.4.4.

Tip: Reference other classes using shared_ptr

It is more versatile to store objects via pointer. This is because you can then
hold references to subclasses if desired. This should be your default design
choice when building classes that reference other classes.

Since all the member of our HedgingSimulator class are private, we will
need set methods so that users can configure the class. We will also want a
constructor to initialise the data to sensible values. Here are the associated
public declarations:

void␣setToHedge(
std:: shared_ptr <CallOption >␣toHedge)␣{

this ->toHedge␣=␣toHedge;
}
void␣setSimulationModel(

std:: shared_ptr <BlackScholesModel >␣model)␣{
this ->simulationModel␣=␣model;

}
void␣setPricingModel(

std:: shared_ptr <BlackScholesModel >␣model)␣{
this ->pricingModel␣=␣model;

}
void␣setNSteps(int␣nSteps)␣{

this ->nSteps␣=␣nSteps;
}
/*␣ Default␣constructor␣*/
HedgingSimulator ();

We expect the user of our class to set the option to hedge, choose the
models to use and the number of steps, and then ask our class to run a
simulation. We provide the following public method to do this:

/*␣ Runs␣a␣number␣of␣simulations␣and␣returns

Delta Hedging 237

a␣vector␣of␣the␣profit␣and␣loss␣*/
std::vector <double >␣runSimulations(

int␣nSimulations␣)␣const;

To implement this method we will want to use three helper methods. These
are private methods. The declarations are shown below:

/*␣ Run␣a␣simulation␣and␣compute
the␣profit␣and␣loss␣*/

double␣runSimulation ()␣const;
/*␣ How␣much␣should␣we␣charge␣the␣customer␣*/
double␣chooseCharge(␣double␣stockPrice␣)␣const;
/*␣ Hoe␣much␣stock␣should␣we␣hold␣*/
double␣selectStockQuantity(

double␣date ,
double␣stockPrice␣)␣const;

These helper methods are introduced simply to ensure that each function
is short and easy to read. For example, the function runSimulations simply
calls the runSimulation multiple times and stores the results in a vector.

This completes the list of member variables and member functions of the
HedgingSimulator class. The full class declaration can be found in the file
HedgingSimulator.h.

14.2.2 Implementation of runSimulation

The most interesting code is the implementation of the function run-
Simulation. It starts as follows:

double␣HedgingSimulator :: runSimulation ()␣const␣{
double␣T␣=␣toHedge ->getMaturity ();
double␣S0␣=␣simulationModel ->stockPrice;
vector <double >␣pricePath␣=

simulationModel ->generatePricePath(T,nSteps);

double␣dt␣=␣T␣/␣nSteps;
double␣charge␣=␣chooseCharge(S0);
double␣stockQuantity␣=␣selectStockQuantity (0,S0);
double␣bankBalance␣=␣charge␣-␣stockQuantity*S0;

This code begins by simulating a price path in the P-measure. It then
computes the bank balance of the trader at time 0. This code is essentially
equivalent to the argument used to derive Equation (14.1). The most obvi-
ous change is that we have rewritten everything with longer variable names.
Another detail is that we call the function selectStockQuantity that de-
cides how much stock we need to hold at each time. We also call the function
chooseCharge that decides how much to charge the customer. By separating

238 C++ for Financial Mathematics

out the computation of the amount of stock required to hedge into its own
function, we highlight the essential feature of the delta hedging strategy com-
pared to other stock hedging strategies. In addition this will make it easy to
enhance the code to find out what happens if the trader decides to pursue
another investment strategy.

Next follows a loop where we simulate trading at each intermediate time
point.

for␣(int␣i␣=␣0;␣i<␣nSteps -1;␣i++)␣{
double␣balanceWithInterest␣=␣bankBalance␣*

exp(simulationModel ->riskFreeRate*dt);
double␣S␣=␣pricePath[i];
double␣date␣=␣dt*(i␣+␣1);
double␣newStockQuantity␣=

selectStockQuantity(date ,␣S);
double␣costs␣=

(newStockQuantity␣-␣stockQuantity)*S;
bankBalance␣=␣balanceWithInterest␣-␣costs;
stockQuantity␣=␣newStockQuantity;

}

This code corresponds to Equation (14.2).
Finally we need to consider what happens at maturity. This is addressed

by the following code which completes the definition of runSimulation.

double␣balanceWithInterest␣=␣bankBalance␣*
exp(simulationModel ->riskFreeRate*dt);

double␣S␣=␣pricePath[nSteps␣-␣1];
double␣stockValue␣=␣stockQuantity*S;
double␣payout␣=␣toHedge ->payoff(S);
return␣balanceWithInterest␣+␣stockValue␣-␣payout;

}

This code corresponds to Equation (14.3).

14.2.3 Implementing the other methods of HedgingSimulator
The remaining details of the implementation of our HedgingSimulator

class are extremely straightforward.
The runSimulations simply calls runSimulation multiple times and

stores the results in a vector:

std::vector <double >
HedgingSimulator :: runSimulations(

int␣nSimulations)␣const␣{
std::vector <double >␣ret(nSimulations);
for␣(int␣i␣=␣0;␣i␣<␣nSimulations;␣i++)␣{

Delta Hedging 239

ret[i]␣=␣runSimulation ();
}
return␣ret;

}

The default constructor ensures that a newly created HedgingSimulator
has some reasonable values set for the various parameters. We choose the
values so that we can create a HedgingSimulator for testing purposes without
needing to do much configuration.

HedgingSimulator :: HedgingSimulator ()␣{
//␣Choose␣default␣models␣and␣options
shared_ptr <BlackScholesModel >␣model(

new␣BlackScholesModel ());
model ->stockPrice␣=␣1;
model ->date␣=␣0;
model ->riskFreeRate␣=␣0.05;
model ->volatility␣=␣0.2;
model ->drift␣=␣0.10;

shared_ptr <CallOption >␣option␣=
make_shared <CallOption >();

option ->setStrike(model ->stockPrice);
option ->setMaturity (1);

setToHedge(option);
setSimulationModel(model);
setPricingModel(model);
nSteps␣=␣10;

}

The function selectStockQuantity delegates its work to a function delta
on the CallOption class. This function uses Equation (14.4) to compute the
delta of a call option. It is sensible to put the computation of the delta into
the CallOption class as we will often want to compute the delta of an option.
Ideally one should add a method to compute the delta to our entire option
hierarchy (see Exercise 14.4.4).

double␣HedgingSimulator :: selectStockQuantity(
double␣date ,
double␣stockPrice)␣const␣{

//␣create␣a␣copy␣of␣the␣pricing␣model
BlackScholesModel␣pm␣=␣*pricingModel;
pm.stockPrice␣=␣stockPrice;
pm.date␣=␣date;
return␣toHedge ->delta(pm);

}

240 C++ for Financial Mathematics

In the code above, the line

BlackScholesModel␣pm␣=␣*pricingModel;

is interesting. We need to alter our pricing model so that its state reflects the
state of the market at the current time step. The member variable pricing-
Model only reflects the state of the market at the beginning of the simulation.

We do not wish to change the actual configuration of our Hedging-
Simulator, so we do not want to change the member variable pricing-
Model. We therefore create an entirely new variable pm and copy the values of
pricingModel into that variable. We can then set the current stock price and
date on the variable pm without changing the variable pricingModel. Since
the member variable pricingModel stores the data using a pointer we have
to use * to convert the pointer into a reference that we then copy.

The code that determines the amount to charge the customer is similar.
It takes advantage of the price function that we have already written for call
options.

double␣HedgingSimulator :: chooseCharge(
double␣stockPrice)␣const␣{

//␣create␣a␣copy␣of␣the␣pricing␣model
BlackScholesModel␣pm␣=␣*pricingModel;
pm.stockPrice␣=␣stockPrice;
return␣toHedge ->price(pm);

}

14.2.4 Changes to CallOption

We need to add a new public function to the CallOption class to compute
the Black--Scholes delta. Here is the definition of that function.

double␣CallOption ::delta(
const␣BlackScholesModel&␣bsm)␣const␣{
double␣S␣=␣bsm.stockPrice;
double␣K␣=␣getStrike ();
double␣sigma␣=␣bsm.volatility;
double␣r␣=␣bsm.riskFreeRate;
double␣T␣=␣getMaturity ()␣-␣bsm.date;

double␣numerator=log(S/K)+(r+sigma*sigma *0.5)*T;
double␣denominator␣=␣sigma␣*␣sqrt(T);
double␣d1␣=␣numerator␣/␣denominator;
return␣normcdf(d1);

}

Delta Hedging 241

14.3 Testing the simulation
According to the theory of [2], if a trader follows the delta hedging strategy

in continuous time and if the stock price follows the Black–Scholes model, then
the profit and loss of the trader will be exactly zero. In practice we choose a
very large value for N so that the trader is rehedging extremely frequently.
We then check that the PnL of the trader is close to zero. Here is the code
required to run this test.

static␣void␣testDeltaHedgingMeanPayoff ()␣{
rng("default");
HedgingSimulator␣simulator;
simulator.setNSteps (1000);
vector <double >␣result=simulator.runSimulations (1);
ASSERT_APPROX_EQUAL(result [0],␣0.0,␣0.01);

}

As usual we have seeded the random number generator by running to ensure
that our test is reliable. This is the purpose of the rng("default").

One can see this either as a test of our code or as numerical evidence to
back up the theory of delta hedging.

14.4 Interpreting and extending our simulation
We can use our code to see how delta hedging works in practice. In par-

ticular, if a trader re-hedges infrequently, we can draw a histogram of their
profit and loss. Given the library we have developed, this is easy.

static␣void␣testPlotDeltaHedgingHistogram ()␣{
rng("default");
HedgingSimulator␣simulator;
simulator.setNSteps (100);
vector <double >␣result␣=

simulator.runSimulations (10000);
hist("deltaHedgingPNL.html",␣result ,␣20);

}

The resulting histogram is shown in Figure 14.1. This shows that although
the expected profit and loss of the strategy is approximately 0, there is con-
siderable variance. We conclude that in practice the delta hedging strategy is
not risk free. This does not mean that delta hedging is not a useful strategy. It

242 C++ for Financial Mathematics

-0.030 -0.015 0.000 0.015 0.030

0

750

1,500

2,250

3,000

FIGURE 14.1: Histogram of the profit and loss of delta hedging, with 100
time steps and 100,000 scenarios.

simply indicates that one should charge a little more than the Black–Scholes
price to compensate for the risk one needs to take in practice.

By enhancing our HedgingSimulator it is possible to see how other as-
sumptions of the Black–Scholes model affect its conclusions. For example,
what happens if one considers transaction costs? What happens if interest
rates are not constant? What happens if the trader has an incorrect view
about the volatility? These interesting questions are given as exercises. Some
of these exercises are particularly interesting because they will require you to
develop new class hierarchies to answer them.

Exercises
14.4.1. Compute the mean absolute value of the profit and loss of the delta
hedging strategy. Generate a log–log plot showing the mean absolute value
of the profit and loss against the number of time points at which the trader
rehedges.

Delta Hedging 243

14.4.2. Why do we call generatePricePath rather than generateRisk-
NeutralPricePath in our simulator?

14.4.3. What happens if there is a bid–ask spread? The ask price is the
amount you must pay to purchase an asset. The bid price is the amount
you receive if you sell an asset. In reality these prices are different and the
difference is called the bid–ask spread.
In this question you should model the price required to buy 1 unit of stock
using the process St as before, but you should model the price obtained if one
sells 1 unit of stock as pSt where p is some fixed proportion with 0 ≤ p ≤ 1.
How will Equation (14.2) need to be changed to account for this bid–ask
spread? Change the hedging simulator so that it can be configured with a
parameter p that determines the bid–ask spread. Repeat Exercise 14.4.1 but
include a bid–ask spread with p = 0.001.
We’ve added a member variable bidProportion to HedgingSimulator and
created a function computePrice which computes the money paid/money
received when buying and selling stock with a fixed bid–ask spread taken into
account. The simulate function then uses this computePrice function when
calculating cash flows from buying and selling stock.

14.4.4. It would be good if HedgingSimulator could simulate delta hedging
put options.
The first step is to add a function delta to ContinuousTimeOptionBase.
There are two sensible approaches to providing a default implementation. The
lazy option is to simply throw an exception saying that there is no default
implementation. With more effort you could use a Monte Carlo method as
described in Exercise 9.3.5. Either way, you should also provide a specialised
implementation for PutOption which uses the formula

∆ = N(d1)− 1

which holds for European put options. N and d1 are defined as in Equa-
tion (A.6).
Once you have done this, how would you change HedgingSimulator so you
can simulate hedging put options? Write a test to check that your solution is
correct.

14.4.5. What happens if the trader is wrong? The actual path followed by
stock prices may not follow geometric Brownian motion at all, or it may follow
geometric Brownian motion but with a different volatility.
Introduce a new interface StockPriceModel which can be used to generate
stock prices in the P measure. You should ensure that BlackScholesModel
implements the interface. Provide an alternative implementation of Stock-
PriceModel called TwoLevelModel that is similar to the Black–Scholes model
except that the volatility sigma takes two different values. Up to time T/2 the

244 C++ for Financial Mathematics

volatility should be equal to some value σ1. and at subsequent times it should
equal σ2.
How would you change HedgingSimulator so that it can cope with different
models?

14.4.6. It is interesting to consider what the profit and loss would be if one
followed hedging strategies other than delta hedging. Create an interface called
Strategy that provides functions to choose how much to charge the customer
and to decide how much stock to hold at each moment in time.
You should provide four implementations of the Strategy interface.

(i) The class BondsOnlyStrategy should simulate a trader who decides to
charge the Black–Scholes price and then put all the money into a risk-free
account. They never rehedge.

(ii) The class StockOnlyStrategy should simulate a trader who decides to
charge the Black–Scholes price and then put all the money into stocks.
They never rehedge.

(iii) The class DeltaHedgingStrategy should simulate a trader who follows
the delta hedging strategy.

Modify HedgingSimulator so you can choose your strategy. Plot histograms
of the result of these hedging strategies when writing a Put Option with the
following sets of parameter values:

(i) N = 100, σ = 0.5, µ = 0.01, T = 1, S0 = 1, K = 1, r = 0.
(ii) N = 100, σ = 0.01, µ = 0.5, T = 1, S0 = 1, K = 1, r = 0.

Interpret your results.

14.5 Summary
We have developed a C++ trading simulator to test the effectiveness of

the delta hedging strategy. Our results provide numerical evidence that the
theory of appendix A is correct.

In the exercises we showed how object-oriented programming techniques
can be used to make our trading simulator extremely versatile.

Chapter 15
Debugging and Development Tools

Our software project has now become large and complex. It is still nothing like
as complex as a bank’s actual trading system, but it already spans thousands
of lines of code and dozens of files. The need for some additional development
tools to help us work productively is becoming obvious.

Because development tools are not standardised, we cannot describe in
detail how to use all the different development tools you may find useful.
We will focus on one standard tool called a “debugger”. A debugger is an
essential part of any C++ developer’s toolkit. Its primary purpose is that it
allows you to quickly locate where in your code an error is occurring. We will
indicate how you can use the standard Visual Studio debugger on Windows
and the standard gdb tool on Unix to help find bugs in your code. Other
debuggers work in a broadly similar fashion, but you will need to consult
their documentation for fuller details.

To show how a debugger can be used to find bugs, FMLib15 compiles but
does not work correctly. We will show how to find the bugs that have been
deliberately introduced.

A debugger is by no means the only development tool you should be using.
We finish the chapter with a description of some other development tools you
might want to use to increase your productivity. We will also discuss some
important software development best practices which are crucial to working
with large software projects.

15.1 Debugging strategies
Before explaining how to use a debugger, let us describe a number of

strategies and techniques you can use to debug your code.

15.1.1 Unit tests
Your code should contain a lot of unit tests. Unit tests are the most valu-

able debugging tool you have available.
This means that whenever you introduce a bug, your tests should hopefully

245

246 C++ for Financial Mathematics

tell you about it quickly. This is important because it is much easier to fix a
bug shortly after you have written it. You may even find that you can hardly
remember precisely what code changes you have made after a couple of hours
have passed. This will obviously make debugging much harder. To help with
this, write lots of unit tests and make sure all your tests are run whenever you
change your code (see Section 15.4.5).

As important as telling you which parts of your code are currently not
working, unit tests tell you which parts of your code are working. If you have
a million lines of code, knowing which parts of code you need to think about
is extremely important.

Whenever you discover a bug in your code that wasn’t picked up by a unit
test you should write a unit test to make sure it never happens again. You
should never write new code unless you are also writing tests for it.

Tip: Write a little, test a little.

Do not write large amounts of code in one sitting. Write a small amount of
code. Write some tests. Make sure everything compiles and all the tests pass.
Then back up your code using your version control system (see Section 15.4.1).
That way when an error occurs you should have a clear idea of what you are
doing that might have caused it.

15.1.2 Reading your code
Often the quickest way to find a bug in your code is to read it through.

This approach will only work if you know already which function contains the
error as you cannot possibly re-read all your code every time a bug occurs.
However, if you are following the strategy of writing a little and testing a
little, you can usually guess that the bug is in the code you have just written.

Very often it helps to explain your code to someone else. A very effective
development practice is to write your code with a colleague. This is called pair
programming [1]. You will find that you and your colleague both learn from
each other and that many bugs are spotted before the code is even executed.

Some people suggest an alternative practice called code-review, where de-
velopers read each other’s code and comment on it. This is much less enjoyable
than pair programming and, it is argued in [1], much less effective.

15.1.3 Logging statements
You have probably already discovered for yourself the strategy of insert-

ing logging statements throughout your code. By printing out the values of
different variables at each line, one can often quickly work out what is going
wrong.

You may find that you are regularly inserting and deleting logging state-

Debugging and Development Tools 247

ments from your code as bugs are found and fixed. The DEBUG_PRINT macro
from our testing framework is meant to help with this as it allows you to
switch debugging on and off without needing to actually delete the lines. See
Section 15.4.6 for a brief discussion of other logging frameworks.

15.1.4 Using a debugger
The error messages produced by C++ when it is running can be very

unhelpful. Sometimes a program will crash without providing any clue as to
where in the code the problem occurred.

A debugger is a tool that helps alleviate this problem.
Recall that the compiler turns your C++ code into machine code. Dur-

ing this process, the code turns from something you wrote and understand
into something that you didn’t write and don’t understand. This is a serious
problem. To alleviate the problem, you can compile your code with additional
debugging information that links your source code to the machine code that
is being executed.

If you have compiled your program with the necessary debugging informa-
tion, then it is possible to run your program inside a debugger. The debugger
will then allow you to step through your code line by line to see what is hap-
pening. It will also translate between the machine code and your source code
so you can understand what is going on. In addition you can tell the debug-
ger to pause the execution whenever an error is detected. This allows you to
gather detailed information about the cause of the error. We will describe how
to use the Visual Studio debugger on Windows in Section 15.2, and how to
use the GDB debugger on Unix in Section 15.3. Other debuggers work in a
similar way. You should consult their documentation.

15.1.5 Divide and conquer
If you have a difficult bug to fix, it can be very useful to know the following

algorithm for debugging code.

(i) By considering which of your unit tests pass and which fail, decide which
area of your code contains the error.

(ii) Consider how to divide the code that contains the bug into two roughly
equally sized pieces. What tests can you run to determine which of these
two pieces actually contains the error?

(iii) Write the tests. Repeat this process until you have fixed the bug.

The important point is that one should not look at all your code and
read through it. This approach is very time-consuming and unlikely to work.
Instead, this approach uses a divide and conquer strategy. At each stage we
halve the size of the problem.

248 C++ for Financial Mathematics

To see the difference, imagine your program contains one million lines of
code. Reading the code through clearly takes one million steps. Let us be
honest, you will fall asleep and miss the bug. The divide and conquer strategy
might require writing log2(1000000) ≈ 20 tests before you find the problem.
This is clearly much better. It has the additional advantage that you will be
increasing the size of your test suite as you work. This means that next time
a bug occurs, you should be able to find it far more quickly.

15.2 Debugging with Visual Studio
This section describes how to use the debugger built into Visual Studio.

If you are developing on Unix using command line tools, you should read
Section 15.3 instead.

If you are using some other debugger, you should consult its documentation
for the precise details of how to debug your code. Nevertheless, this section
may be useful to you as an indication of the key things to look for when
debugging.

When debugging your code in Visual Studio, you should select “Debug”
from the drop-down menu on the Toolbar. This drop-down menu gives the
choice of compiling and running either “Debug” or “Release” versions of your
software. As the names suggest, the Debug version is very useful for devel-
opment purposes. The Release version eliminates most of the code that helps
with debugging, resulting in software that runs considerably faster.

Before launching the debugger, you should configure the debugger so that
it will pause the execution of our program whenever an exception is thrown
by our code. To do this select Debug → Exceptions... from the main menu.
Then click the box to indicate that the debugger should pause the execution
whenever C++ exceptions are thrown.

You can now compile and run the program in the debugger by pressing F5.
If you compile and run FMLib in this way, an error will occur and the execution
of the program will by paused. It is important to know that when you start the
debugger by pressing F5, Visual Studio will operate as a debugger rather than
as a compiler until your program has exited. This means that you shouldn’t
try and edit or compile your code until your program has stopped. If you want
to stop debugging at any point press Shift + F5 or select Debug → Stop
debugging from the main menu. However, we do not want to stop debugging
just yet. Instead let us read the error messages and use the debugger.

15.2.1 Obtaining a stack trace in Visual Studio
You will see an error message similar to the one shown in Figure 15.1. This

error message tells you that the error was detected in the file vector at line

Debugging and Development Tools 249

1201. The file vector is part of the C++ library, so we can be confident that
the bug didn’t actually occur in the vector class, but that it was detected by
the vector class. A useful rule of thumb is that if an error occurs, it is your
code that is wrong and not the libraries that you are using.

FIGURE 15.1: An assertion failed message generated on Windows.

If you click Retry, another window will appear asking you if you want to
break or continue. “To break” simply means to pause the execution of your
code so you can view it in the debugger. This is precisely what we want to do,
so select Break.

The execution of your program is now paused and you can use Visual Stu-
dio to find out what caused the error. The most interesting part of the display
is a Window labelled Call Stack. It should look as shown in Figure 15.2.

FIGURE 15.2: The call stack at the first bug in FMLib.

The call stack shows you what functions are executing. The second-to-last
line of the call stack tells us that the function main is executing. It is currently
on line 44 at which point it called testHedgingSimulator. You can see this

250 C++ for Financial Mathematics

because this is on the third-to-last line of the call stack. The function test-
HedgingSimulator called testDeltaHedgingMeanPayoff. Continuing in this
way, one can see all the functions that had yet to complete their processing
when the error was detected.

The very top of the call stack is shown in grey. This is because there is no
debugging information available for these lines of code. The reason for this is
that the code is in a library that wasn’t compiled in debug mode, specifically
the vector library.

The most profitable way to analyse a stack trace is from the top down.
You should work down the call stack until you see some code that you have
written. This is then the most likely place where the bug has occurred. In this
case it is line 64 of the function runSimulation in HedgingSimulator.

If you double click on the relevant line in the call stack it will bring up
that line of code for you to examine.

double␣S␣=␣pricePath[nSteps];

The cause of the problem should be made fairly obvious by your looking at
the neighbouring code. We are accessing an element of pricePath at index
nSteps but in fact the price path is only nSteps long. We see that the code
should actually read:

double␣S␣=␣pricePath[nSteps␣-␣1];

To fix the problem, first stop the debugger by pressing Shift + F5. Now
correct the code and run it once again by pressing F5. You will find that
another error now occurs. This is because we have fixed the first bug in FMLib
but there are two more to find.

15.2.2 Breakpoints and single stepping in Visual Studio
The printout that appears in the console window before the debugger

pauses the program at our second bug should look similar to the following:

Calling␣testDeltaHedgingMeanPayoff()
ASSERTION␣FAILED
Expected␣-5.90148e+300
Actual␣0
hedgingsimulator.cpp:106:

All of this printout except the last line is generated by our testing library.
It tells us that an ASSERT_APPROX_EQUAL statement has failed at line 106 of
HedgingSimulator.cpp.

If we view that code in our text editor we will see that a problem has
arisen when running testDeltaHedgingMeanPayoff.

static␣void␣testDeltaHedgingMeanPayoff ()␣{
rng("default");

Debugging and Development Tools 251

HedgingSimulator␣simulator;
simulator.setNSteps (1000);
vector <double >␣result

=␣simulator.runSimulations (1);
ASSERT_APPROX_EQUAL(result [0],␣0.0,␣0.01);

}

We can see that we expected the PnL of the hedging simulation to be approxi-
mately zero, but in fact it was the ridiculously large number −5.90148×10300.
There is clearly a mathematical error in the runSimulations function of our
HedgingSimulator class. In this case, if you use the debugger to break the
execution at this point and look at the call stack, you will discover that it
reveals nothing we haven’t been able to deduce already.

To make further progress, the first thing to do is to read through the
runSimulations code to see if there is any obvious problem. Here’s the code:

std::vector <double >
HedgingSimulator :: runSimulations(int␣nSimulations)

const␣{
std::vector <double >␣ret(nSimulations);
for␣(int␣i␣=␣0;␣i␣<␣nSimulations;␣i++)␣{

ret[i]␣=␣runSimulation ();
}
return␣ret;

}

There are no actual mathematical calculations in this code, so it doesn’t seem
likely that this is the problem. It seems a good guess that the runSimulation
method is the problem. You can see the code for this method in Figure 15.4
on page 265.

You may find it difficult to spot the bug in this code even if you read
through it line by line. The debugger can help you with this by allowing you
to pause the execution at any point and print out the values of any variables
you are interested in.

To do this you should quit the debugger. Before restarting we insert a
new “breakpoint”. This is simply a place where we would like the debugger to
pause execution of the program so we can take a look at what is going on.

You should open the file HedgingSimulator.cpp and click in the right-
hand margin of the window just next to line 39 where HedgingSimulator starts.
You want to click at the point where a ball is shown in the margin in Fig-
ure 15.3. If you click in the correct location, a red ball will appear representing
the breakpoint.

Once you have created a breakpoint, when you next run your code by
pressing F5, the debugger will pause execution at the break point.

You can now follow what is happening in your code line by line by pressing
F10. You can find this command on the menu as Debug → Step Over.

252 C++ for Financial Mathematics

FIGURE 15.3: Inserting a breakpoint. A breakpoint is shown as a ball in
the margin of your source code. You can see the ball at line 40. Click in the
margin to add and remove breakpoints.

Every time you press F10, the next line of code will be executed. You can see
the effects on the values of the local variables by looking at the area of your
display labelled Locals.

If you step through the code line by line, you should be able to see that the
calculation of interest earned is incorrect. Once you have found the problems
you should stop the debugger and retest the code until testDeltaHedging-
MeanPayoff passes.

When you have done this, there will still be one deliberate bug left in the
code. Fixing this is left as an exercise.

15.3 Debugging with GDB
GDB (Gnu Debugger) is a free debugger and is the standard debugger to

use on Unix systems. If you are working on Windows you should skip this
section and read Section 15.4.

GDB has a command line interface which is not particularly user friendly.
In practice if you are developing C++ on Unix you may want to consider
using some form of “GDB front end” that makes it easier to use. For example
you can integrate GDB with popular text editors such as up vim and emacs.
There are also integrated development environments available, such as Eclipse.
However, we will only discuss how to use GDB from the command line.

To use GDB, the first thing you must do is ensure that you have compiled
your code using the debug options of gcc. If you are using our standard

Debugging and Development Tools 253

Makefile, then this will be done automatically. The CFLAGS variable in the
Makefile uses the flags -g and -D_GLIBCXX_DEBUG for this reason. If you are
not interested in debugging, but instead want your code to run as fast as
possible, you should remove these options and replace them with appropriate
optimisation options.

15.3.1 Using GDB to obtain a stack trace
The most important use for GDB is to find the lines of code which contain

errors. FMLib15 contains some deliberate bugs. Let us see how to quickly find
the cause of the first of these bugs using GDB.

Once you have compiled FMLib15, you should run it in the debugger by
entering the following command in a Unix shell.

gdb␣FMLib

Note that we are assuming that gdb is on your path and that your current
working directory contains FMLib15.

GDB will start in a state where you can enter commands to tell GDB how
you want it act during this debugging session. For example, you may want
to enter commands to tell it to pause the execution of your program at a
particular line or to tell it to pause execution when a particular error occurs.
Once you have entered these commands you will enter the command run and
your program will be executed in the debugger.

I recommend that, at a minimum, you enter give the debugger the following
instructions before executing the command run:

(i) Tell the debugger to pause execution if any code calls the abort function
which terminates execution of a C++ program. Do this by typing:

break␣abort

(ii) Tell the debugger to pause execution if a throw statement is executed.
Do this by typing:

catch␣throw

In addition to pausing when either of these events occurs, GDB will also pause
when certain errors in your code occur. For example, if you attempt to access
memory that your program doesn’t have access to, a segmentation fault will
occur. GDB will automatically pause when this happens without you needing
to configure GDB further.

Having entered the commands above, type run. This will execute FMLib
up to the point where the first bug is found. Execution will then be paused.

Here is the end of printout that appears when running FMLib using gdb
on my computer:

254 C++ for Financial Mathematics

Calling␣testPutCallParity()
testPutCallParity()␣passed.

Calling␣testDeltaHedgingMeanPayoff()
/usr/lib/gcc/x86_64-pc-cygwin/5.3.0/include/c++/debug/vector

:406:error:
␣␣␣␣attempt␣to␣subscript␣container␣with␣out-of-bounds␣index␣

1000,␣but
␣␣␣␣container␣only␣holds␣1000␣elements.

Objects␣involved␣in␣the␣operation:
sequence␣"this"␣@␣0x0xffffc7a0␣{
␣␣type␣=␣NSt7__debug6vectorIdSaIdEEE;
}

Breakpoint␣1,␣0x000000018012c574␣in␣abort␣()␣from␣/usr/bin/
cygwin1.dll

(gdb)␣backtrace
#0␣␣0x000000018012c574␣in␣abort␣()␣from␣/usr/bin/cygwin1.dll

The first three lines are printed out by FMLib itself. They tell us that the
function testPutCallParity is working fine, but that a problem has occurred
in the function testDeltaHedgingMeanPayoff. To see this simply notice that
we have a logging statement saying that testPutCallParity has passed, but
no corresponding statement for testDeltaHedgingMeanPayoff.

The next error tells us that the error was detected at line 406 in a C++
file called vector. This doesn’t mean that the bug is in the file vector, just
that it was detected there. Since vector is part of the standard C++ library
it is very unlikely to contain any bugs. We can guess that it is our code that
is using a vector that is at fault.

The next lines are extremely hard to interpret and not very useful for
us now. Let us ignore them and move onto the last line. This tells us that
the execution has stopped at Breakpoint␣1. This means that it has stopped
because of the command break␣abort that we entered earlier. Helpfully, the
last line mentions it stopped in the function abort(). Less helpfully, the line
is also telling us which library contains the abort function and its memory
address.

To find out more about what is happening, enter the command
backtrace

This command tells the debugger to print the current state of the stack. This
is simply a list of which functions are currently running. At the bottom of the
stack you will see the main method of the program, at the top you see the
current function that is executing. Here is the printout from backtrace when
it was run on my computer.

Debugging and Development Tools 255

#0␣␣0x000000018012c574␣in␣abort␣()␣from␣/usr/bin/cygwin1.dll
#1␣␣0x00000003f508a005␣in␣cygstdc++-6!

_ZNK11__gnu_debug16_Error_formatter8_M_errorEv␣()␣from␣/usr/
bin/cygstdc++-6.dll

#2␣␣0x00000001004246be␣in␣std::__debug::vector<double,␣std::
allocator<double>␣>::operator[]␣(this=0xffffc7a0,␣__n=1000)

␣␣␣␣at␣/usr/lib/gcc/x86_64-pc-cygwin/5.3.0/include/c++/debug/
vector:406

#3␣␣0x000000010041650f␣in␣HedgingSimulator::runSimulation␣(this
=0xffffcac0)

␣␣␣␣at␣HedgingSimulator.cpp:64
#4␣␣0x0000000100416289␣in␣HedgingSimulator::runSimulations␣(this

=0xffffcac0,
␣␣␣␣nSimulations=1)␣at␣HedgingSimulator.cpp:35
#5␣␣0x0000000100416770␣in␣testDeltaHedgingMeanPayoff␣()
␣␣␣␣at␣HedgingSimulator.cpp:105
#6␣␣0x0000000100416bd3␣in␣testHedgingSimulator␣()␣at␣

HedgingSimulator.cpp:118
#7␣␣0x0000000100402466␣in␣main␣()␣at␣main.cpp:43

The bottom line tells (#7) us that the error occurred while the function main
was executing. The error actually occurred while line 43 of main.cpp was
executing. You can see this from the text at␣main.cpp:43.

Looking at the second line from the bottom, we can see that this line
must have called testHedgingSimulator. This in turn called testDelta-
HedgingMeanPayoff. Working through the stack in this way, you can see all
the functions that are currently executing.

Generally speaking, the bottom of the stack doesn’t reveal much about
what has caused the problem. To analyse a bug, you should start at the top
and work downwards until you get to the first line of code that you have
written.

In the example above, line #0 is a call to the function abort(). The line #1
is hard to interpret, but what we can say is that it doesn’t refer to any code
we’ve written. Line #2 is executing line 406 of vector. Finally on line #3 we
get to some code that we have written. It is line 64 of HedgingSimulator.cpp
that contains the problem.

Let us look at that line of code.

double␣S␣=␣pricePath[nSteps];

The cause of the problem should be fairly obvious if you look at the neigh-
bouring code. We are accessing an element of pricePath at index nSteps
but in fact the price path is only nSteps long. We see that the code should
actually read:

double␣S␣=␣pricePath[nSteps␣-␣1];

256 C++ for Financial Mathematics

Now that we know how to fix the bug, we should terminate the debugging
session. Type quit to exit the debugger. You can then terminate the running
process and exit the debugger.

You should now correct the code, rebuild it, and execute it again in the
debugger. The code should still fail, but the stack trace should be different
indicating that the bug is somewhere else.

15.3.2 Breakpoints and single stepping with GDB
The printout before the debugger pauses the program should now look as

follows:

Calling␣testDeltaHedgingMeanPayoff()
ASSERTION␣FAILED
Expected␣-5.90148e+300
Actual␣0
HedgingSimulator.cpp:106:
Catchpoint␣2␣(exception␣thrown),␣0x00000003f512a787␣in␣cygstdc

++-6!.cxa_throw
␣␣␣␣()␣from␣/usr/bin/cygstdc++-6.dll

All the printout except the last line is generated by our testing library. It
tells us that an ASSERT_APPROX_EQUAL statement has failed at line 106 of
HedgingSimulator.cpp.

If we view that code in our text editor we will see that a problem has
arisen when running testDeltaHedgingMeanPayoff.

static␣void␣testDeltaHedgingMeanPayoff ()␣{
rng("default");
HedgingSimulator␣simulator;
simulator.setNSteps (1000);
vector <double >␣result

=␣simulator.runSimulations (1);
ASSERT_APPROX_EQUAL(result [0],␣0.0,␣0.01);

}

We can see that we expected the PnL of the hedging simulation to be approxi-
mately zero, but in fact it was the ridiculously large number −5.90148×10300.
There is clearly a mathematical error in the runSimulations function of our
HedgingSimulator class. Unfortunately, in this case, if you run the backtrace
command in gdb it will not provide much additional information.

To make further progress, the first thing to do is to read through the
runSimulations code to see if there is any obvious problem. Here’s the code:

std::vector <double >
HedgingSimulator :: runSimulations(int␣nSimulations)

const␣{

Debugging and Development Tools 257

std::vector <double >␣ret(nSimulations);
for␣(int␣i␣=␣0;␣i␣<␣nSimulations;␣i++)␣{

ret[i]␣=␣runSimulation ();
}
return␣ret;

}

There are no actual mathematical calculations in this code, so it doesn’t seem
likely that this is the problem. It seems a good guess that the runSimulation
method is the problem. You can see the code for this method in Figure 15.4
on page 265.

You may find it difficult to spot the bug in this code, even if you read
through it line by line. The debugger can help you with this by allowing you
to pause the execution at any point and print out the values of any variables
you are interested in.

To do this you should quit the debugger and restart. But this time type
the command

break␣HedgingSimulator::runSimulation

before executing the run command. This will then pause execution at the
beginning of the runSimulation function.

When the program pauses you will see output similar to the following.

Calling␣testDeltaHedgingMeanPayoff()

Breakpoint␣5,␣HedgingSimulator::runSimulation␣(this=0xffffc920)
␣␣␣␣at␣HedgingSimulator.cpp:41
41␣␣␣␣␣␣␣␣␣␣␣␣␣␣double␣T␣=␣toHedge->getMaturity();

This shows you that execution has paused at line 41 of Hedging-
Simulator.cpp. The given line of code has not yet executed. To execute it,
type next.

This should have assigned a value to the local variable T. To see what value
has been assigned type print␣T.

You can now step through the function runSimulation line by line, check-
ing the values of the variables as you go. You should be able to confirm that
there is a problem with the computation of interest in the runSimulation
function that you should then be able to fix.

There is still one bug remaining in the code. Fixing it is left as an exercise.

15.3.3 Other commands and features
Let us briefly mention a few useful GDB features that we have not covered.

1. The command help can be used to find out the names of other useful
commands.

258 C++ for Financial Mathematics

2. The command step can be used to follow the execution of the code
into other functions. By contrast, next always moves within a single
function.

3. You can create a file called .gdbinit in your home area, which contains
commands that should always be executed when gdb starts. A simple
example file which would ensure gdb always pauses on calls to abort and
on throw statements is shown below:

set␣breakpoint␣pending␣on
break␣abort
catch␣throw

Of course, GDB has many other interesting features that we have not
covered. You should consult the documentation.

15.4 Other development tools and practices
A debugger is by no means the only tool you should be using to help you

develop and maintain your code. In this section we will briefly review some
of the important types of development tools that are available and that you
should consider using.

15.4.1 Version control
It is essential to back up the source files of your project. It would be a

disaster if we were to lose all the code for our project!
A source control system is used to keep a copy of all your source files

to ensure that you never lose them. In addition, source control systems have
some features that are essential for serious software development:

(i) A history of the changes that you have made to each file. This means
that if you accidentally introduce a bug, you should always have a record
of what the code looked like beforehand.

(ii) A system of labelling specific versions of your code. If you are ever go-
ing to give anyone else a copy of your software, you will want to know
precisely what code they are running. By labelling each version of your
source code, you can be certain what code your users are actually run-
ning.

(iii) Tools so that different developers can work on the same project and even
the same files without getting in each other’s way. Typically developers

Debugging and Development Tools 259

work on their own copy of the code and regularly integrate their changes
with those of other developers. The version control system provides tools
to automatically merge files together and to generate reports on the
differences between different developers’ copies of the code.

(iv) Tools so that it is possible to create patches to your system. A developer
is usually working to add new features, but when bugs occur they need
to be patched quickly without testing all the new features.

(v) Security so that only authorised users can view and edit your code.

Any serious software project will use version control. You should use some
form of version control in your projects so that you at least have a full history
of your changes and have regular backups.

One popular and free version-control system is called Git. It allows you
to store your data on the cloud using services such as GitHub and Bitbucket.
This has the advantage that issues such as backing up your data will be dealt
with for you.

To their embarrassment, some major banks have forgotten to use version
control for their projects! As recently as 2012 I knew of one major bank with
a running system where they had lost the source code and so couldn’t change
or understand the system. As well as being embarrassing, this is an enormous
operational risk. What would the bank do if a bug occurred?

15.4.2 Bug tracking
When bugs occur in any realistic system, they should be recorded in a

bug-tracking database. As well as recording bugs, you should record requests
to enhance your software.

A bug-tracking system keeps a record of what bugs are in your system,
when they were fixed, who has tested them, and so forth.

On simple projects one might think that you should always fix bugs the
moment that they are found, but in practice this is not always possible. For
example, a bug that happens on a customer’s computer may be hard to re-
produce, in which case you may have little choice but to record the details
and say that you will keep an eye on the problem.

For larger systems, a tool to help with recording bugs is essential. In par-
ticular it allows you to prioritise your work and focus on the most pressing
problems. A bug database is also essential to keeping your customers happy.
They can use it to record their complaints and monitor the progress you are
making on fixing their issues.

15.4.3 Testing framework
In this book we have emphasised the importance of testing your code.

260 C++ for Financial Mathematics

We have introduced a simple test framework for unit testing code. In prac-
tice you might want to consider using a more elaborate testing framework. For
example, you might want to use a test framework that integrates closely with
your debugger so that you can jump to the right line of code whenever an
error occurs. Another useful feature might be an online report showing you
how many tests are being run and how many pass and fail at any moment in
time.

Some test frameworks you might consider are Unit Test++, Boost library’s
testing framework Boost.Test, or Microsoft’s Unit Testing Framework for Vi-
sual Studio.

15.4.4 Automated build
It should be possible to build, test, and deploy all your code with a single

command.
In this book we have automated the process of compiling your code and

running your tests for you.
If you are using Visual Studio, we have shown you how to configure your

project so you can compile it and run it by pressing CTRL+F5. If you are
working on Unix, you can build your project by typing make and then type
the name of the project to execute it.

When working with larger projects you should make sure that you maintain
a similar level of simplicity. This is not so straightforward for larger projects
as they are often divided into multiple libraries. You will want to make sure
that it is possible to build each library individually or to build all libraries at
once. You will want to be able to build code for every operating system that
your code runs on. You will want to be able to build debug versions of all your
code and release versions of your code. Furthermore, some of your code may
actually be automatically generated by other programs that you write.

However, it is crucial that you have a simple process for the following
reasons.

(i) It should be an essentially automatic process to recreate your software
from your source code. If there are written instructions that someone
has to follow, there is a danger they won’t be followed correctly and you
will release software you cannot recreate.

(ii) It should be quick and easy to test your system. A developer new to
your system should be able to build it and test it with ease. If it is hard
to test your system, you won’t test it much. This means it will be full of
bugs.

On Windows, Visual Studio contains various tools to help automate your
build. There are also numerous open source tools that can be used with any
operating system such as make, Boost build, cmake, and Ant.

Debugging and Development Tools 261

15.4.5 Continuous integration
Continuous integration is a development practice where everyone working

on a software project integrates their code with the work of other developers
on a regular basis (often several times a day). The advantage of doing this is
that any problems caused by the interactions between different people’s work
is caught early. It is very difficult to remember how you changed the software
even a couple of hours ago, so if you don’t integrate regularly it can become
very challenging to merge code together.

To make continuous integration work, it is essential that you have a fully
automated build that is run every time changes are made. To do this you can
use a continuous integration server. A continuous integration server will:

• check your version control system to see when changes are made;

• automatically run a build;

• send emails if the build has stopped working, which say whose changes
are responsible for this.

Even for a developer who is working on their own project, it is very useful
to have a system that checks whether all your code is working every time you
make a change. It is much better to find out what errors you have introduced
at the time you introduce them.

15.4.6 Logging
Logging statements are a very useful way of understanding what is hap-

pening in your code. However, if you have too many logging statements, it
becomes difficult to see the wood for the trees. Furthermore, too much log-
ging can really slow your program down.

It is a good idea to use a lot of logging statements in your code, but to have
some mechanism to increase or decrease the amount of logging that occurs as
your program runs. As well as being able to record a log of what is happening
as you develop code, it can be a good idea to record some sort of log of what
your code is doing whenever your code runs. That way, if someone finds a bug,
they can send you the log file to help you get started on debugging.

One very useful feature is to be able to click on a line in your log file and
then jump to that line in your source code. Many text editors and integrated
development environments can do this so long as you output your error mes-
sages using a format your environment understands. You should consult the
documentation for your chosen development environment.

Tools you can use to perform logging include the Boost library’s Boost.Log,
and Apache’s log4cxx.

15.4.7 Static analysis
There are many bugs that can be detected in C++ code automatically.

262 C++ for Financial Mathematics

The build configuration that we have used performs some additional check-
ing of our code on top of that required by C++.

In particular, we have configured our builds to fail if there is a compiler
warning. We have also set the warning level so that a number of common C++
bugs will be caught automatically.

The process of looking through your code for bugs is called static analysis.
By contrast, dynamic analysis would examine what happens to your code
when it is actually running.

You might want to use more static analysis than we have used in this
book. It is possible to ask the compiler to perform a higher level of static
analysis than we have done. The danger is that the compiler will find some
false positives. In other words the compiler may refuse to accept code you
know does not contain any bugs. When this happens, all compilers give you
a way of temporarily disabling a warning so that you can ignore these false
positives. In practice it is a good idea to use more warnings and disable the
warnings when necessary.

For example, writing a class without a virtual destructor is valid C++
code. For this reason compilers do not complain if you omit a virtual destruc-
tor. However, in practice your code is likely to contain memory leaks if you
ever extend a class that doesn’t have a virtual destructor. Therefore, if your
compiler allows this, you should ask it to issue a warning whenever you extend
a class without a virtual destructor. On the rare occasions when you know
this isn’t a problem, you can suppress the warning.

15.4.8 Memory-leak detection
Memory leaks are difficult to detect using ordinary unit tests. The reason

is that memory leaks are normally only problematic once software has been
running for a considerable period of time.

A good unit testing framework for C++ should be able to help with this
by checking that the total memory used before and after each of your tests
remains the same. In addition, there are numerous tools that you can use to
help detect memory leaks in your software.

15.4.9 Profiling tools
If you have performance problems in your software then profiling tools

can help. These allow you to find out how much time the computer spends
executing different parts of your code. This then allows you to concentrate your
efforts at improving performance on the areas of the code that are actually
causing problems.

A mistake that many beginner programmers make is to assume that all
code is performance sensitive. This is not true at all. If you use a profiler,
you will discover that most (perhaps 99% or more) of the CPU effort is spent
executing only a few performance-critical functions. This means that if you

Debugging and Development Tools 263

optimise the performance of almost any other function, your effort will be
wasted!

Before making any serious attempt to optimise your code, it is advisable
that you profile it.

Unless your performance requirements are very precise, you may not need
to buy a separate piece of software to profile your code. A simple approach
is to execute the slow bit of code and then stop the processing randomly ten
times and record what is happening. You will probably find that the code is
doing much the same thing each time you stop it. You can safely deduce that
this is where the performance problem is.

It is important to say that this book is about writing good quality C++
code, but it is not about writing C++ code for absolutely optimal perfor-
mance. For most problems, it is far more important that your code executes
correctly than that it executes as fast as humanly possible. Most of the time it
is worth sacrificing some speed for other qualities of good code such as being
easy to understand, read, and extend.

Donald Knuth, a winner of the prestigious Turing Prize and a celebrated
programming expert, famously said, “Premature optimisation is the root of
all evil”.

15.4.10 Example
This book has a complex build. The text is written using LATEX and it

refers to various C++ files in numerous different projects. Each time a change
is made to this book, all of the C++ code is compiled and tested both on Win-
dows and on Unix. In addition there are tests to check that all the code shown
in the LATEX document matches the C++ code in the computer projects. Fi-
nally, the process of putting all the code examples and text onto a website is
fully automated.

Without an automated build this book would be riddled with (even more)
errors. All code contains bugs, and doubtless this book contains many errors.
Nevertheless, the automated build ensures that the most egregious problems
are quickly eliminated.

Exercises
15.4.1. Find and fix all the bugs in FMLib15.

15.4.2. Try running FMLib without the debug information and with opti-
mised machine code instead.
You can do this using Visual Studio by choosing the Release option from the
menu bar. In addition, for experts, the project configuration options give you

264 C++ for Financial Mathematics

access to a wealth of configuration parameters, many of which can be used to
tune performance.
On Unix you should remove the debugging options -g and -D_GLIBCXX_DEBUG
from the Makefile and replace them with -O for optimise. You should then run
make␣clean. Every time you change the options in the make file you should
run make␣clean. There are various more complex options for optimisation
that you can use. See the documentation of gcc.
How big a difference does this make to the speed at which the program runs?
You might want to change the number of steps in testPlotDeltaHedging-
Histogram to make the code slower so that you can see any difference more
easily.

15.5 Summary
A debugger is a useful too for finding where the errors are in your code.

Two important uses for a debugger are:

• obtaining a stack trace when an error occurs;

• stepping through code line by line to see what is going on.

While debuggers are a useful tool, they are not a substitute for unit tests.
Instead they are a complimentary development technique.

There are a number of tools and techniques that you should use when
writing software. These include version control and a bug database. The skills
of debugging and maintaining code are at least as important as the skill of
writing code in the first place. While we have not attempted to cover these
issues in depth, the books [5] and [1] discuss important aspects of software
development that go beyond simple coding.

Debugging and Development Tools 265

double␣HedgingSimulator :: runSimulation ()␣const␣{
double␣T␣=␣toHedge ->getMaturity ();
double␣S0␣=␣simulationModel ->stockPrice;
vector <double >␣pricePath␣=

simulationModel ->generatePricePath(T,nSteps);

double␣dt␣=␣T␣/␣nSteps;
double␣charge␣=␣chooseCharge(S0);
double␣stockQuantity␣=␣selectStockQuantity (0,S0);
double␣bankBalance␣=␣charge␣-␣stockQuantity*S0;
for␣(int␣i␣=␣0;␣i<␣nSteps -1;␣i++)␣{

double␣interest␣=␣bankBalance␣*
exp(simulationModel ->riskFreeRate*dt);

double␣S␣=␣pricePath[i];
double␣date␣=␣dt*(i␣+␣1);
double␣newStockQuantity

=␣selectStockQuantity(date ,␣S);
double␣costs

=␣(newStockQuantity␣-␣stockQuantity)*S;
bankBalance␣=␣bankBalance␣+␣interest␣-␣costs;
stockQuantity␣=␣newStockQuantity;

}
double␣interest␣=␣bankBalance␣*

exp(simulationModel ->riskFreeRate*dt);
double␣S␣=␣pricePath[nSteps];
double␣stockValue␣=␣stockQuantity*S;
double␣payout␣=␣toHedge ->payoff(S);
return␣bankBalance␣+interest

+stockValue␣-␣payout;
}

FIGURE 15.4: Buggy code for simulating delta hedging. It may be hard to
spot the errors by eye.

http://taylorandfrancis.com

Chapter 16
A Matrix Class

C++ does not have a built-in class that represents a matrix of real numbers.
We’re going to write our own in this chapter.

During the course of writing a Matrix class we will cover some interesting
C++ topics. Specifically,

• constructors and destructors,

• operator overloading,

• the rule of three,

• returning references,

• overloading using const.

16.1 Basic functionality of Matrix
Let us begin designing the basic behaviour of our matrix class. The Matrix

class will store a 2-dimensional array of doubles and will have the following
data members (all private).

(i) int␣nrows. The number of rows.

(ii) int␣nrows. The number of columns.

(iii) double*␣data. A pointer to the first cell.

(iv) double*␣endPointer. A pointer to one after the last cell.

The pointer data will point to a single chunk of memory of length nrows×ncols.
The cell (i, j) will be stored at the location data+(j*nRows)+i. Note that
we’re using pointer arithmetic in this last expression.

We’ve decided to use pointers and the new[] operator rather than a vector
because ultimately if you want to use special CPU optimisations (as we’ll
discuss in Section 16.7) you’ll need to have a pointer to your data rather than
just a vector object. In addition, it makes this Matrix class a good test for
your pointer programming skills.

Here is the declaration of the data members of Matrix.

267

268 C++ for Financial Mathematics

private:

/*␣ The␣number␣of␣rows␣in␣the␣matrix␣*/
int␣nrows;
/*␣ The␣number␣of␣columns␣*/
int␣ncols;
/*␣ The␣data␣in␣the␣matrix␣*/
double*␣data;
/*␣ Pointer␣to␣one␣after␣the␣end␣of␣the␣data␣*/
double*␣endPointer;

Our matrix class will allow the user to read the number of rows and columns
but not change them. So we add the following data access methods in the
header file:

/*␣ The␣number␣of␣rows␣in␣the␣matrix␣*/
int␣nRows ()␣const␣{

return␣nrows;
}

/*␣ The␣number␣of␣columns␣in␣the␣matrix␣*/
int␣nCols ()␣const␣{

return␣ncols;
}

These methods are inlined—that is, we write the function definition inside
the class declaration. Since we’ll make heavy use of the Matrix class it is
important that we take advantage of some inlining.

We have already stated that the value of cell (i, j) is stored in the memory
location data+(j*nRows)+i. Let’s supply get and set functions so that the
user can read the value of a given cell and change the value of a cell.

/*␣ Retrieve␣the␣value␣at␣the␣given␣index␣*/
double␣get(␣int␣i,␣int␣j␣)␣const␣{

return␣data[␣offset(i,␣j␣)␣];
}

/*␣ Set␣the␣value␣at␣the␣given␣index␣*/
void␣set(␣int␣i,␣int␣j,␣double␣value␣)␣{

data[␣offset(i,␣j␣)␣]␣=␣value;
}

These functions both take advantage of the function offset. This function
performs the calculation of whereabouts in memory the cell (i, j) is stored
relative to the point data.

A Matrix Class 269

int␣offset(␣int␣i,␣int␣j␣)␣const␣{
ASSERT(␣i␣ >=0␣&&␣i<nrows␣&&␣j>=0␣&&␣j<ncols␣);
return␣j*nrows␣+␣i;

}

You will notice that this code performs an ASSERT statement that checks
whether the coordinates are within the range of the matrix. This is great for
debugging since it will find many bugs quickly. However, if you know that
your code is bug free, for maximum speed you would want to ensure that this
ASSERT statement is never called. Our testing macro ASSERT is designed so
that it will only be called in debug mode.

16.2 The constructor and destructor of Matrix
The most important constructor of Matrix has the following declaration:

Matrix(␣int␣nrows ,␣int␣ncols ,␣bool␣zeros =1␣);

As we’ll see, it is often a waste of effort to initialise the contents of a Matrix.
On the other hand, it is a common bug to fail to initialise a variable. For this
reason we’ve allowed the user to say whether they would like our Matrix to be
initialised with zeros or not. By default it is initialised with zeros. This should
prevent the accidental bug, but allows the code to be optimised if desired.

Here is the definition of our constructor:

Matrix :: Matrix(␣int␣nrows ,␣int␣ncols ,␣bool␣zeros␣)
:␣nrows(␣nrows␣),␣ncols(␣ncols␣)␣{
int␣size␣=␣nrows*ncols;
data␣=␣new␣double[size];
endPointer␣=␣data+size;
if␣(zeros)␣{

//␣memset␣is␣an␣optimised␣low␣level␣function
//␣that␣should␣be␣faster␣than␣looping
memset(␣data ,␣0,␣sizeof(␣double␣)*size␣);

}
};

This is the first example where we’ve had some serious work to do in the
constructor. The most important feature is that we create the in-memory
storage using new␣[]. We then initialise it to zero if required using memset.

memset is a standard C function which can be used to initialise a large
amount of data all to the same value. Calling it may be quicker than writing
a loop since CPUs often have special instructions for repetitive tasks such as
this. We’ll discuss this more in Section 16.7.

270 C++ for Financial Mathematics

Using the new[] operator raises a problem. When will delete[] be called?
We need to ensure that when our Matrix itself is removed from memory,
someone calls delete[].

Our Matrix will be removed from memory under the following circum-
stances:

(i) If the Matrix was created by new, it will be removed from memory when
delete is called.

(ii) If the Matrix was created by new␣[], it will be removed from memory
when delete␣[] is called.

(iii) If the Matrix was created on the stack as a local variable, it will be
removed from memory when the local variable is no longer needed (i.e.,
when it goes out of scope).

(iv) If the Matrix is a member variable of another object, this will happen
when the containing object is deleted.

We need a function that is called under precisely these circumstances. That
is what a destructor is.

To write a destructor for your class you must follow these rules.

(i) A destructor is declared and defined just like a function except...

(ii) It must have the same name as the class except with the the addition of
a tilde ~.

(iii) It must have no return value (not even void).

(iv) It must have no parameters.

(v) It must not be const.

Here is the destructor for Matrix. It is inlined, so we have both declared it
and defined it in the header file.

~Matrix ()␣{
delete []␣data;

}

You don’t have to inline the destructor, you can write separate declarations
and definitions if preferred as

//␣declaration
class␣Matrix␣{
public:
␣␣␣␣...
␣␣␣␣~Matrix();
};

A Matrix Class 271

//␣definition
Matrix::~Matrix()␣{
␣␣␣␣delete[]␣data;
}

You must obey certain rules when working with destructors.

Danger!

All classes that you wish to subclass should have a virtual destructor.1

Danger!

Whenever you write a destructor other than an empty virtual destructor
you must abide by the rule of three. We’ll cover this in Section 16.5.

You will notice that our Matrix class does not have a virtual destruc-
tor, therefore you must not subclass it. The same applies to many standard
classes. For example, you should never subclass vector<double> no matter
how tempted you may feel!

16.2.1 Virtual destructors
Every C++ class has a destructor written automatically. Irritatingly, this

default destructor is not virtual. If your destructor is not virtual there is a
danger that the wrong destructor might be called when someone attempts to
delete a subclass.

To see how this might happen, recall that CallOption is a subclass of
Priceable. This means that the following code is valid.

Priceable*␣option=new␣CallOption;
delete␣option;

Here we’re using a pointer to a Priceable to delete a CallOption. If
Priceable did not have a virtual destructor, C++ would not call the de-
structor of CallOption as we would like.

Although you’re unlikely to write the code above, you are very likely to

1A pedant would actually say that any class that you might wish to delete using a
pointer to a base class should have a virtual destructor, otherwise a virtual destructor is
not necessary. If you follow the recommendation that all classes you intend to subclass
should have a virtual destructor, you will follow this rule automatically.

272 C++ for Financial Mathematics

save a pointer to a CallOption in a shared_ptr<Priceable>. For example,
our Portfolio class does this. The shared_ptr class only knows that it has
a Priceable reference, so when it calls delete, it calls the function defined on
Priceable.

Thus the calls to delete that happen due to the use of shared_ptr will
cause problems if you create a subclass of a class that does not have a virtual
destructor.

It is unfortunate that virtual destructors are not the default in C++. You
won’t get in much trouble if you give all classes a virtual destructor.

Having any virtual functions makes an object a little more complex to
write in assembly language. This is because you need to carry round both
the data for the object and information about its type in memory. Therefore
a class without any virtual functions will be marginally faster than one
without. So if your class isn’t designed to be subclassed, it will be marginally
quicker if you don’t have a virtual destructor. For most classes this won’t be
that significant an optimisation.

Tip: Virtual destructors

If in doubt, give your class a virtual destructor.

16.2.2 When is a destructor needed?
As we’ve already stated repeatedly, you need to write a virtual destructor

whenever you write a class that is designed to be subclassed.
But when do you need to write a more interesting destructor?
One situation is whenever you call new or new[] in the constructor and

don’t use a shared_ptr to store the result. More generally you should write
a destructor when you obtain a resource in the constructor that you must
release in the destructor.

The word resource is rather vague, but here are some examples of resources:

• a chunk of memory;

• a lock on a file that prevents others writing to the file;

• a print job that you’ve started;

• a connection to a database.

A resource is something that you must explicitly return to the computer
when you’ve finished with it.

In mathematical code, using resources is quite unusual. So most of the
time you won’t need to write a destructors at all (except for an empty virtual
one). In particular:

A Matrix Class 273

• member variables held by value are automatically deleted;

• member variables held by shared_ptr are automatically deleted.

This means that unless you are ignoring the advice to avoid using pointers,
you probably won’t have to write a destructor unless you try to interact with
some code that forces you to manage resources manually. In practice this
means that you will probably only have to write destructors if you wish to
interact directly with C libraries.

For example, if we hadn’t decided to write Matrix so that it used a raw
pointer, we wouldn’t have needed to give it a destructor.

16.2.3 Additional constructors
We’ve only discussed one of the constructors of Matrix so far. The Matrix

class is intended to be genuinely useful, so it has a number of other construc-
tors:

• A default constructor that creates a 1×1 matrix containing the number
zero.

• A constructor that takes a std::vector<double> and constructs a cor-
responding column vector. It has an optional additional argument you
can use if you want to create a row vector.

• A constructor that takes a single scalar and creates a 1× 1 matrix.

• A constructor that takes a string describing the contents of the matrix.

This last constructor is interesting, not because it is challenging to im-
plement but because it is useful design pattern to copy. Here’s how you can
initialise a matrix with a string:

Matrix␣m("1,2,3;4,5,6");
ASSERT(␣m.nRows()==2␣);
ASSERT(␣m.nCols()==3␣);

This makes it easy to construct new matrices to use for writing tests. It is a
good idea to write your classes so that they can be initialised and configured
easily for tests.

Another feature of C++ one can use to make it easier to create matrices
would be to use an initialiser list. These will be discussed in Section 18.8.

We have not shown the code necessary for these additional interesting
constructors because they do not require any new C++ language features.

While we may have many constructors, the class only has one destructor.

274 C++ for Financial Mathematics

16.3 Const pointers
The Matrix class has methods begin() and end() that return pointers to

the start and end of its data region.

/*␣ Access␣a␣pointer␣to␣the␣first␣element␣*/
const␣double*␣begin ()␣const␣{

return␣data;
}
/*␣ Access␣a␣pointer␣to␣the␣element␣after␣last␣*/
const␣double*␣end()␣const␣{

return␣endPointer;
}
/*␣ Access␣a␣pointer␣to␣the␣first␣element␣*/
double*␣begin ()␣{

return␣data;
}
/*␣ Access␣a␣pointer␣to␣the␣element␣after␣last␣*/
double*␣end()␣{

return␣endPointer;
}

Some of these methods return “const pointers”. Recall from Chapter 11
that you can use const with a pointer much as you can with references.
const␣double*␣p means that p points to a double but you can’t change the
value pointed to using p. So you can think of this as being very like a const
reference.

Our Matrix function has two member functions called begin(). On a
const␣Matrix we want begin() to return a const pointer to the data. On an
ordinary Matrix we want begin() to return an ordinary pointer to the data.
This will ensure that you can’t get round the const nature of a const Matrix
by obtaining a non const reference to data inside the Matrix.

To ensure that we have the begin function return the correct type of
pointer, we need two begin functions. One is called for a const␣Matrix and
the other is called for an ordinary Matrix.

Extra work like this is often required when working with const. It has to
be said, this is one of those occasions where you wonder if you are working
for the compiler rather than it working for you.

A Matrix Class 275

16.4 Operator overloading
16.4.1 Overloading +

Wouldn’t it be wonderful if you could create two matrices and add them
like this?

Matrix␣m1("1,2,3;4,5,6");
Matrix␣m2("2,3,4;5,6,7");

Matrix␣actual␣=␣m1␣+␣m2;

Matrix␣expected("3,5,7;9,11,13");
expected.assertEquals(␣actual ,␣0.001␣);

By overloading the + operator, we can make this code compile. In fact we
can overload practically every C++ operator to make the matrix class much
easier to work with.

(Incidentally, assertEquals is a helper function on Matrix that checks
that two matrices are equal within a given tolerance.)

The main challenge in operator overloading is writing down the correct
function declaration.

To overload the + operator, first notice that the + operator will need to
take two parameters, both of them Matrices. More precisely, these parameters
must be const references to Matrices.

Second, notice that the + operator will itself return a Matrix containing
the result of the Matrix addition.

Therefore, to overload the + operator, we write a function that performs the
necessary computation with the given parameters and return types. The only
peculiar thing about this function is that it must have the name operator+.

Here is the function declaration from Matrix.h.

/*␣ Add␣two␣matrices
NB␣-␣not␣a␣member␣function␣ */

Matrix␣operator +(const␣Matrix&␣x,␣const␣Matrix&␣y␣);

Notice that this is a top-level function, not a member function of Matrix. In
this chapter, when we define functions for operator overloading we will clearly
mark those that are top-level functions with a comment. All member functions
will go uncommented.

The definition is fairly straightforward:

Matrix␣operator +(const␣Matrix&␣x,␣const␣Matrix&␣y␣)␣{
ASSERT(␣x.nRows ()==y.nRows()

&&␣x.nCols ()==y.nCols ());
Matrix␣ret(x.nRows(),␣x.nCols(),␣0␣);

276 C++ for Financial Mathematics

double*␣dest␣=␣ret.begin ();
const␣double*␣s1␣=␣x.begin ();
const␣double*␣s2␣=␣y.begin ();
const␣double*␣end␣=␣x.end();
while␣(s1!=end)␣{

(dest ++)␣=␣(s1++)␣+␣*(s2++);
}
return␣ret;

}

The only issue you are likely to have in understanding this code is in the very
idiomatic use of pointers. Traditionally, C programmers write very dense code
like this when working with memory. Let us try to understand it.

First, recall that *s1 means the value pointed to by s1.
Next, note that *(s1++) means compute the value pointed to by s1, then

increment s1.
It follows that the following code:

(dest++)␣=␣(s1++)␣+␣*(s2++);

means add the values pointed to by s1 and s2 and store the value in dest.
Next, increment dest, s1, and s2. Do you find this code hard to follow? Well,
it could be written more comprehensibly as:

(dest)␣=␣(s1)␣+␣*(s2);
dest++;
s1++;
s2++;

But it is quite standard to write pointer code in a very dense (and unreadable?)
format. Use which ever one you prefer.

One additional comment is that since we receive a const Matrix as a
parameter to operator+, we must use a const␣double* to store the return
value of begin(). We’ll let all the other uses of const pointers in this chapter
pass without comment from now on.

As another example, we will want to implement addition of a scalar. This
adds the same scalar to every cell of the matrix. Here’s the declaration:

/*␣ Add␣a␣scalar␣to␣every␣element␣of␣a␣matrix
NB␣-␣not␣a␣member␣function␣*/

Matrix␣operator +(const␣Matrix&␣m,␣double␣scalar␣);

and here is the corresponding implementation.

Matrix␣operator +(const␣Matrix&␣m,␣double␣scalar␣)␣{
Matrix␣ret(m.nRows(),␣m.nCols(),␣0␣);
double*␣dest␣=␣ret.begin ();
const␣double*␣source␣=␣m.begin ();

A Matrix Class 277

const␣double*␣end␣=␣m.end();
while␣(source !=end)␣{

(dest ++)␣=␣(source ++)␣+␣scalar;
}
return␣ret;

}

In fact, we want to be able to add a matrix to a scalar too, so we’ll also need
to declare and define this version of operator+

/*␣ Add␣a␣scalar␣to␣every␣element␣of␣a␣matrix
NB␣-␣not␣a␣member␣function␣*/

inline␣Matrix␣operator +(double␣scalar ,
const␣Matrix&␣m␣)␣{

return␣m+scalar;
}

Implementing everything required for operator overloading can be time con-
suming, but it can result in a class that is very easy to use.

16.4.2 Overloading other arithmetic operators
We don’t have to stop with overloading +, you can overload other opera-

tors too. Overloading - is much the same as overloading +. Overloading * is
straightforward too apart from the fact that there are two possible choices for
how to implement it.

The choice of how to overload * is a design issue and not really an issue of
the C++ language. We have two choices for the meaning of *: should it mean
matrix multiplication or entrywise multiplication?

Let us define these terms. Let aij be the components of an m× r matrix a
and bjk be the components of r×n matrix b. The standard definition of matrix
multiplication is that the product ab is an m× n matrix with components

(ab)matrix
ik =

n∑
j=1

aijbjk.

Another possible way to define a form of multiplication for matrices is
that if aij is now an m× n matrix and bij is also an m× n matrix, then the
entrywise product is also an m× n matrix given by:

(ab)entrywiseij = aijbij .

This operation is also sometimes called the Hadamard product or the Schur
product.

Matrix multiplication is useful if one of your matrices represents a linear
transformation.

278 C++ for Financial Mathematics

Entrywise multiplication is useful if your matrices simply represent a col-
lection of data points and you want to multiply the values at certain data
points.

Should we use * to mean entrywise multiplication or matrix multiplica-
tion? There is no correct answer to this question. It is a matter of personal
taste. In FMLib16, Matrix has a function times so that a.times(b) means
entrywise multiplication. We leave * reserved for matrix multiplication. We
haven’t actually implemented matrix multiplication in FMLib16 as we don’t
need it yet. Implementing it is left as an exercise. The reason we don’t need
matrix multiplication just yet is because the data we wish to store in matrices
for Monte Carlo simulations represent simple data points. As our matrices
don’t represent linear transformations, ordinary matrix multiplication isn’t as
useful as you might expect.

Tip: Use operator overloading wisely

Operator overloading can make your code easier to read if used well. Used
badly, it leads to confusion.

C++ does not have a good track-record for using operator overloading
wisely. For example, C++ overloads the / operator for integers to mean di-
vide and round down. Most people find this confusing. Even experienced pro-
grammers can be tricked by this. Similarly C++ overloads the ^ operator to
mean bitwise exclusive or when most people might expect it to mean raise to
a given power. Even worse, the symbols * and & have many possible meanings
in C++. These issues all add unnecessary obstacles to learning C++.

By contrast, functions with names can make their meaning immediately
clear.

16.4.3 Overloading comparison operators
Overloading >, >=, ==, !=, <, <= is straightforward. Here’s a typical decla-

ration. It takes two const references and returns a Matrix of 0’s and 1’s.

/*␣ Comparison␣operator
NB␣-␣not␣a␣member␣function␣*/

Matrix␣operator >(const␣Matrix&␣x,␣const␣Matrix&␣s␣);

Here’s an example of this operator being used

Matrix␣test1("1,2;3,4");
Matrix␣test2("3,3;3,3");
Matrix␣expected("0.0 ,0.0;1.0 ,1.0");
expected.assertEquals(␣test1 >=test2 ,␣0.001);

Once again we have many various definitions for operator> to cope with
comparing matrices to scalars as well as comparing matrices to matrices.

A Matrix Class 279

16.4.4 Overloading the << operator
As we know, built-in types like double can be written to a stream using

<<. We’d like Matrix objects to be just as easy to print out. This can be
achieved by overloading the << operator. Here is the required declaration:

/*␣ Write␣a␣matrix␣to␣a␣stream
NB␣-␣not␣a␣member␣function␣*/

std:: ostream&␣operator <<(std:: ostream&␣out ,
const␣Matrix&␣m␣);

operator<< always takes an ostream as its first input. This is because we
always have a stream on the left of <<.

The second parameter is, in this case, a Matrix. This is because this is the
type of data we wish to print out.

The function operator<< returns a reference to an ostream that we can
do some more writing to. This will in practice always be the same ostream
that we pass in as the parameter out.

To see why returning the same stream is useful, consider the following
code:

cout␣<<␣"To␣be␣"␣<<␣"or␣not␣to␣be";

We’ve written code like this several times already. This code is actually equiv-
alent to the following:

(cout␣<<␣"To␣be␣")␣<<␣"or␣not␣to␣be";

We have just added brackets for clarity. You can now see why the fact that
operator<< returns a stream is useful. We’re returning a stream ready to
apply the << operator to again.

The implementation of operator<< is simple. The only point to note is
that we return out.

ostream&␣operator <<(ostream&␣out ,␣const␣Matrix&␣m␣)␣{
int␣nRow␣=␣m.nRows ();
int␣nCol␣=␣m.nCols ();
out␣<<"[";
for␣(int␣i=0;␣i<nRow;␣i++)␣{

for␣(int␣j=0;␣j<nCol;␣j++)␣{
out␣<<␣m(i,j);
if␣(j!=nCol -1)␣{

out␣<<␣",";
}

}
if␣(i!=nRow -1)␣{

out␣<<␣";";
}

280 C++ for Financial Mathematics

}
out␣<<"]";
return␣out;

}

16.4.4.1 Remarks on return by reference

We have seen that operator<< returns a value by a reference. We’ve
avoided return by reference so far.

Return by reference is acceptable so long as you don’t return a reference
to a local variable. Return by reference saves copying, and so is more efficient
than return by value. Therefore, it makes sense to use return by reference
whenever it is safe to do so. Moreover, when you don’t know how to copy the
data (e.g., for polymorphic classes like ostream), return by reference is the
only choice.

One effect of returning a reference is that whoever receives the reference
can use that reference to modify whatever it points to. For this reason, some-
times you may want to return a const reference rather than just a simple
reference.

As we will see in the next sub-section, sometimes we use return by reference
specifically because it allows the caller to modify what the reference points to.

16.4.5 Overloading the () operator
We would like to be able to change the cells of a Matrix just as easily as

we can change the cells of a vector. To achieve this we can overload the ()
operator so that you can type expressions such as m(1,2) to access the given
row and column in matrix m. Here’s an example of how we’d like to be able
to use the () operator

Matrix␣m("1,2,3;4,5,6");
ASSERT(␣m(1 ,2)==6␣);␣//␣read␣a␣value
m(1 ,2)=0;␣//␣change␣the␣value

When you overload the () operator, you must write a member function rather
than a top-level function. Here are the necessary definitions to overload the
() operator on the Matrix class.

double&␣operator ()(int␣i,␣int␣j␣)␣{
return␣data[␣offset(i,j)␣];

}

const␣double&␣operator ()(int␣i,␣int␣j␣)␣const␣{
return␣data[␣offset(i,j)␣];

}

A Matrix Class 281

We’ve written these as inlined functions for speed.
Since operator() returns a reference, you can change the value using the

returned reference. This is what makes this line of code work:
m(1 ,2)=0;␣//␣change␣the␣value

Of course, you shouldn’t be able to change a const Matrix in this way, so
we need to write two versions of operator(): One that acts on a Matrix and
one that acts on a const Matrix.

16.4.6 Overloading +=

We’ve already overloaded the + operator. What about the shortcut assign-
ment operator +=? You can overload this too. Here’s the necessary declaration:

Matrix&␣operator +=(␣const␣Matrix&␣other␣);

Just as with operator(), operator+=must be declared as a member function.
When you overload assignment operators such as this, you should always
return a reference to *this. For example, in our Matrix example += returns
the Matrix you just called += on in just the same way as << returns the
ostream you give it.

The reason for this convention is that it allows you to write code like this:
Matrix␣a("1,2");
Matrix␣b("1,2");
(a+=b)+=b;

You might argue that you wouldn’t want to write code like this in the first
place! However, it is the convention in C++ that when you overload an assign-
ment operator, constructions like this should work. Its best to be conventional
when writing code.

Here is the implementation of operator+=
Matrix&␣Matrix :: operator +=(␣const␣Matrix&␣other␣)␣{

ASSERT(␣nRows ()== other.nRows()
&&␣nCols ()== other.nCols ());

double*␣p1=begin ();
const␣double*␣p2=other.begin ();
while␣(p1!=end())␣{

*p1=(*p1)␣+␣(*p2);
p1++;
p2++;

}
return␣*this;

}

The main point of interest in this code is that we return *this much as we
return the ostream that is passed in when implementing <<.

282 C++ for Financial Mathematics

16.5 The rule of three
We stated earlier in Section 16.2 that when you write a destructor, you

must abide by the rule of three. We couldn’t actually state the rule of three
earlier because it involves overriding an assignment operator. However, we
now know everything we need.

Tip: The rule of three

Whenever you write a destructor (other than an empty virtual destructor)
you must:

• override the assignment operator =;

• write a copy constructor.

In fact, if you write any one of these three things:

• a non-trivial destructor;

• a copy constructor;

• an assignment operator =;

then you should write all three. While the rule of three is not a strict rule of
the C++ language it is a very useful rule of thumb.

16.5.1 Overriding the assignment operator
Suppose that we have two variables of type Matrix called a and b. If we

write the line

a␣=␣b;

we would like a and b to represent the same matrix. The operator = is called
the assignment operator because it is used to assign a value to a variable.

C++ automatically gives all your classes an assignment operator. The
point of the rule of three is that if your class needs a destructor then the
default assignment operator written by C++ will be wrong and so must be
overridden.

The default assignment operator simply copies all the variables of a into
b. In the case of the matrix class, this would mean that the matrices a and
b would have a member variable data which points to the same memory
location. If the variable a is then deleted but not b, then the data pointed

A Matrix Class 283

to by a would be deleted. This would leave b pointing to an invalid memory
address.

Here is how we override the assignment operator, operator= in our Matrix
class.

Matrix&␣operator =(␣const␣Matrix&␣other␣)␣{
delete []␣data;
assign(␣other␣);
return␣*this;

}

Notice the following rules for the = operator:

• The = operator should be defined as a member function.

• It should take a const reference and return a reference.

• You should always return *this.

• You should abide by the rule of three

In our example, operator= first deletes the data and then re-initialises all our
member variables such as nrows, ncols, and data to match the other matrix.
It does this by calling a helper function called assign.

Here is the actual implementation of assign.

void␣Matrix :: assign(␣const␣Matrix&␣other␣)␣{
nrows␣=␣other.nrows;
ncols␣=␣other.ncols;
int␣size␣=␣nrows*ncols;
data␣=␣new␣double[size];
endPointer␣=␣data+size;
memcpy(␣data ,␣other.data ,␣sizeof(␣double␣)*size␣);

}

Note that we don’t want to set data to equal other.data. Instead we want
to copy all the data from other so we have two duplicate matrices in memory
that we can change independently.

16.5.2 Writing a copy constructor
Just as every class is automatically given an assignment operator in C++,

every class is automatically given a copy constructor. This automatic copy
constructor will be incorrect if your class needs a non-trivial destructor. Hence
the need for the rule of three.

The copy constructor is used when you construct an object based on the
values in another object of the same type. For example, the copy constructor
is called at the second line in the code below:

284 C++ for Financial Mathematics

␣␣␣␣Matrix␣a("1,2;3,4");
␣␣␣␣Matrix␣b(a);␣//␣copy␣a

C++ will also use the copy constructor if it needs to copy data for pass by
value. This means that copy constructors are actually called a lot without you
noticing it.

Here is the declaration of the copy constructor for Matrix. We have chosen
to inline the definition.

Matrix(␣const␣Matrix&␣other␣)␣{
assign(␣other␣);

}

The syntax is essentially the same as for all other constructors. Rules for a
copy constructor are as follows.

• A copy constructor takes a single parameter, a const reference to an-
other instance.

• It is not marked as explicit despite only taking one parameter.

• It performs whatever tasks are necessary to copy the data from the other
reference.

In our example the assign function is used by both the copy constructor and
the assignment operator. This is a common pattern, you’ll often find that the
operator= implementation and the copy constructor have a lot of code in
common.

16.5.3 The easy way to abide by the rule of three
The copy constructor and assignment (=) operator won’t be called unless

either we call them explicitly or we use pass by value with instances of our
class.

However, we normally pass large objects by reference, so do we really need
a copy constructor and assignment operator at all? The answer, usually, is no.

Therefore, rather than writing a complex implementation of functions that
will never be used, a sensible approach is to implement a private copy con-
structor and a private assignment operator. Rather than have the implemen-
tation of these functions do anything, they can simply ASSERT that they are
never called. If you prefer, you can even simply fail to provide an implemen-
tation of the functions. The code will still compile and run since you actually
only need to implement functions you call.

If you follow this recipe, you will have created a class that can’t be copied
at all. For many classes this is desirable. For example, for a class like an
ostream implementation there should only ever be one instance writing to

A Matrix Class 285

a given file, so it doesn’t make sense to allow people to create copies of an
ostream.

Although our example of Matrix shows that writing a copy constructor
and implementing operator= can be useful, in general I recommend starting
with the lazy approach and only providing public copy methods if you have
a need for them.

16.5.4 Move operators
In C++11, C++ was improved so that you can reduce the amount of

copying of memory that is performed when you return data by value. This is
a performance enhancement technique called RValue references. As a result,
to write as efficient a Matrix implementation as possible, one should use
this technique. Doing this involves writing a move constructor and a move
assignment operator.

Whenever you write a class that manages its own memory, you might want
to consider whether you should write a move constructor and move assignment
operator for maximum efficiency. For this reason, in C++11 one can say that
there is a rule of five.

In practice, as a financial mathematician, your expertise is probably in
writing mathematical algorithms and not in writing data structures. For this
reason we will not discuss how to implement move constructors and move
assignment operators in this book.

16.6 Completing the Matrix class
We haven’t listed every member function of the Matrix class or every

function in FMLib16 for manipulating them. Here are some additional features
which are implemented in FMLib16.

• Member functions exp, log, sqrt, pow, times to exponentiate every cell
of a matrix, etc. These change the matrix itself rather than return a
modified copy. This is potentially more efficient than creating a copy as
less memory may be needed.

• Functions setCol and setRow to copy individual rows and columns from
one matrix to another.

• Functions row and col to extract a row or column.

• Member function positivePart that returns (x)+ for every cell x. This
is handy for call options.

286 C++ for Financial Mathematics

• matlib has been rewritten throughout so it works with Matrix rather
than with std::vector.

• matlib has new functions to make it easy to work with matrices such
as ones to create a matrices all of whose entries have the value one,
zeros to create a matrix of zeros, randn to create a matrix of normally
distributed random numbers, and so forth.

• Functions like meanRows and meanCols have been added to replace mean.
It is a better design in the long-run to force the user to say whether they
wish to compute the mean of the rows or columns, rather than guess
based on the vector’s dimensions.

If you are familiar with the GNU Octave or MATLAB you will see that the
matlib library has been designed so it can be used in a very similar way.

A class like Matrix is a prime example of a highly reusable class, so it’s
worth going to a lot of trouble to make it as useful as possible.

16.7 Array Programming
16.7.1 Implementing an efficient matrix class

We have not attempted to write the most efficient matrix class possible.
We have written the simplest C++ code that is likely to work. In practice
it may be possible to write a faster matrix class, but doing so requires using
techniques that are specific to the operating system you are using. Naturally
enough, the fastest possible class will be carefully tuned to the hardware
available.

Let us list some techniques that can be used to make a matrix class faster.

(i) Vectorisation. Most CPUs contain special instructions for performing
repetitive tasks of the type that occur frequently in linear algebra and in
Monte Carlo pricing. If our code takes advantage of these instructions it
may run faster. This technique is called vectorisation. As an example the
memset function may run faster than a simple loop that sets the values
of memory directly by using these special CPU instructions. Modern
compilers can vectorise a lot of your code automatically. However, for
optimal performance you may wish to use either assembly language or
special compiler instructions in order to take advantage of vectorisation.

(ii) Careful memory management. It can pay to think in detail about how
memory is manipulated by a computer. The actual layout of memory on
a modern computer is complex. Some data is stored on the hard drive,

A Matrix Class 287

some data is stored in read-only memory, some data is stored on the
CPU either in caches or in registers. Data that is on the CPU can be
accessed much faster than data stored in RAM. This in turn can be
accessed much faster than data stored on the hard drive. We usually
let the compiler decide on the details about how to move memory from
place to place. In principle if we think about this closely, we may be able
to improve performance significantly.

(iii) Parallel processing. A computer is able to perform multiple tasks at once.
This is called parallel processing because mutliple tasks are performed in
parallel. If you are using a computer with multiple CPUs, each CPU can
perform calculations in parallel. So you should take advantage of this to
get the maximum performance on your computer. We will discuss this
topic in more detail in Chapter 20.

(iv) GPUs. A graphics processing unit (GPU) is a chip designed specifically
for processing image data. They have been designed, for example, to
perform the highly intensive computer processing required for Hollywood
animations. GPUs have a very different design from traditional CPUs.
GPUs are designed to perform highly repetitive tasks at speed and in
parallel. CPUs are designed for general purpose computing. As a result,
for the highly repetitive tasks required for linear algebra or Monte Carlo
pricing, a GPU may out-perform similarly priced CPUs. GPUs have been
used successfully for derivatives pricing by a number of banks.

These issues are highly specialised and the details vary considerably ac-
cording to the hardware available. Moreover, as computer technology im-
proves, the optimal way to implement your code is likely to change.

This makes it extremely challenging to write a high-performance matrix
library. Fortunately it is not necessary to do so as excellent matrix libraries
are available both commercially and as open-source software. We will give a
brief list of possible libraries, though there are many other options you might
consider.

• Eigen is an open-source library with an easy-to-use interface which has
been designed to perform well across a variety of architectures.

• The Intel Math Kernel library is designed specifically for Intel proces-
sors. It is commercial software.

• cuBLAS is a linear algebra library designed for use with NVIDIA graph-
ics cards.

16.7.2 Array programming
As is clear from the previous section, it is extremely challenging to write a

high-performance matrix library. However, it is not at all difficult to use one.

288 C++ for Financial Mathematics

When writing any high-performance numerical library such as a Monte
Carlo pricer, similar considerations will arise. This suggests that writing a
high-performance Monte Carlo pricer will require a similar level of work.

The idea of array programming is to exploit the work others have already
done writing matrix libraries in order to make your numerical code more
efficient without doing too much work.

In array programming, one attempts to replace repetitive operations with
matrix calculations. For example, when performing a Monte Carlo simulation
with 10000 scenarios, we could replace every vector of length n with a 10000×n
matrix. By writing our code so that it works with matrices representing all the
scenarios at once, we can remove most of the for loops from our code and turn
all the time-consuming parts of our calculation into matrix manipulations.
The hope is that, if we then use a high-performance Matrix library, our Monte
Carlo pricer should now perform well too.

This idea is taken to an extreme in array programming languages such
as MATLAB. These encourage you to write every calculation using matrices.
Indeeed MATLAB stands for “Matrix laboratory”. Another popular example
is Python with its numerical library numpy.

Because matrix languages encourage you to work with large matrices, they
are able to perform numerical calculations extremely rapidly. There is a popu-
lar myth that C++ code is always faster than code written in other languages.
In fact, numerical code written in MATLAB or Python can often be much
faster than badly written C++ code. This is because of the use of the array
programming technique.

It is easy to introduce array programming into FMLib, although it is ad-
mittedly a little tedious. In FMLib16 we have written new versions of all the
functions in matlib that now operate on matrices instead of vectors. For ex-
ample, we now have functions such as sumRows and sumCols where before we
just had one function, sum.

By removing vector-related functionality from matlib, we force ourselves
to work with the potentially more efficient Matrix class in all our code.

16.7.3 Array programming in the option classes
The payoff in the class ContinuousTimeOption needs to be changed to

take a matrix with rows corresponding to different scenarios and columns
corresponding to times. It returns a column vector with each row containing
the payoff at a different time.

As an example, here is an implementation of the payoff function for an
UpAndOutOption.

Matrix␣UpAndOutOption :: payoff(
const␣Matrix&␣prices␣)␣const␣{

Matrix␣max␣=␣maxOverRows(␣prices␣);
Matrix␣didntHit␣=␣max␣<␣getBarrier ();

A Matrix Class 289

Matrix␣p␣=␣prices.col(␣prices.nCols ()-1);
p␣ -=␣getStrike ();
p.positivePart ();
p.times(didntHit);
return␣p;

}

Since this method now operates on an entire Matrix of prices it will automati-
cally benefit from any performance improvements made to the matrix library.
For example, just by using a matrix library our code might now be taking
advantage of GPU computing.

All of the option classes require similar vectorisation.

16.7.4 Array programming for the BlackScholesModel

Matrix␣BlackScholesModel :: generatePricePaths(
double␣toDate ,
int␣nPaths ,
int␣nSteps ,
double␣drift␣)␣const␣{

Matrix␣path(nPaths ,␣nSteps ,0);
double␣dt␣=␣(toDate -date)/ nSteps;
double␣a␣=␣(drift␣-␣volatility*volatility *0.5)* dt;
double␣b␣=␣volatility*sqrt(dt);
Matrix␣currentLogS=log(stockPrice)*ones(nPaths ,1);
for␣(int␣i=0;␣i<nSteps;␣i++)␣{

Matrix␣vals␣=␣randn(␣nPaths ,1␣);
//␣vals␣contains␣epsilon
vals*=b;
vals+=a;␣ //␣vals␣now␣contains␣dLogS
vals+= currentLogS;␣//␣vals␣now␣contains␣logS
currentLogS␣=␣vals;
vals.exp ();␣//␣vals␣now␣contains␣S
path.setCol(␣i,␣vals ,␣0␣);

}
return␣path;

}

This array programming version of generatePricePaths is a little harder to
read than the original version.

Recall that our pricing is determined by the following difference equations:

si = si−1 +
(
µ− 1

2σ
2
)
δt+ σ

√
δtεi,

Si = exp(Si).

290 C++ for Financial Mathematics

We can break this down into smaller pieces as follows:

a =
(
µ− 1

2σ
2
)
δt

b = σ
√
dt

v1 = ε1

v2 = bε1

v3 = a+ bε1

v4 = si−1 + a+ bε1 = si

v5 = exp(si−1 + a+ bε1) = Si.

In our code we use the same variable vals to store the different values v1,
v2, v3, v4, and v5. By reusing the same vector we avoid constantly allocating
memory for a temporary variable which will be deleted almost immediately.

Notice the way that array programming has naturally made us reduce the
number of times we compute the square root of dt. Previously we recomputed
this for every scenario. This simple example gives a concrete hint as to why
array programming might lead to faster code.

16.7.5 Array programming the Monte Carlo pricer
It is very easy to rewrite the Monte Carlo pricer to use array programming.

However, there is an issue that if one wishes to use a very large number of
scenarios the size of the matrices involved may become too big to comfortably
fit in memory. There is a balance to be struck between the efficiency gains
from array programming and the performance penalty that occurs from using
too much memory.

As a result, the Monte Carlo Pricer class has been written to perform its
processing in batches. Each batch uses a reasonably sized matrix of scenarios.
Since the code does not require any new programming techniques we will not
show it here.

FMLib16 is a version of our financial maths library that uses array pro-
gramming throughout.

16.7.6 Performance
We performed some numerical experiments and found that using array

programming FMLib16 actually performs a little worse than the original code.
However, when we introduce a more complex market model with multiple
stocks in Chapter 18, the array programming begins to pay off. For a multi-
stock model, our array programming resulted in code that is several times
faster than the naive code. These experiments were performed without using
any parallel processing. Much greater improvements should be possible if one
takes advantage of multiple CPUs or GPUs.

A Matrix Class 291

In summary, obtaining the optimal performance for a numerical algorithm
is extremely challenging. Array programming is a way to achieve good, if
perhaps suboptimal, performance with comparatively little effort.

Exercises
16.7.1. Overload the operator << for all of our non-abstract option classes.
This will give us helpful methods for debugging. Each option should print
what type of option it is and the various parameters such as the barrier and
strike. Use inheritance to avoid as much repetitive code as possible.

16.7.2. Overload the operator () in our RealFunction interface so that in-
stead of writing f.evaluate(x) you simply write f(x) to evaluate a function.
Which version of the class RealFunction do you prefer? What are the pros
and cons of each version?

16.7.3. Write a class that prints to cout

• Whenever it is created using its default constructor;
• Whenever it has its destructor called;
• Whenever it has its assignment operator called;
• Whenever it has its copy constructor called.

Use this to check the following claims:

• The destructor is called on a local variable once the variable is no longer
needed.

• The copy constructor is called when an object is passed by value.
• The copy constructor is called when an object is returned by value.
• The copy constructor is not called when an object is passed by reference.
• In the code

MyObject␣a;
MyObject␣b=a;

The copy constructor is called even though this looks like assignment.
• In this version of the code:

MyObject␣a;
MyObject␣b;
b=a;

292 C++ for Financial Mathematics

the default constructor then the assignment operator is called.

16.7.4. Overload the * operator to perform matrix multiplication.

16.7.5. Let us define some terminology. L is a pseudo-square root of a matrix,
A, if A = LLT .
An n × n matrix, A, is said to be positive-definite if for all non-zero vectors
v, we have vTAv > 0.
It turns out that all positive-definite symmetric matrices, A, have a pseudo-
square root. There is a unique lower-triangular pseudo-square root called the
Cholseky decomposition of A.
The Cholesky decomposition is useful for simulating multi-dimensional
stochastic processes as described in Section 18.11. We will now describe how
to compute the Cholesky decomposition mathematically. You should write the
code to compute it numerically.
The matrix L can be computed using the equations:

Li,j =


√
Aj,j −

∑j−1
k=1 L

2
j,k i = j

1
Lj,j

(
Ai,j −

∑j−1
k=1 Li,kLj,k

)
. i < j

0 i > j.

Although L appears on both sides of the equation, you should note that if you
compute the terms of the matrix L row by row and then from left to right,
you will find that each term required on the right-hand side of these equations
has already been computed.

16.8 Summary
In terms of the C++ language, we have studied the following topics:

• const pointers.

• How to write two member functions: one that works on const instances;
one that works on standard instances.

• How to overload operators such as +, *, and >=.

• How to overload the << operator to make objects easy to print.

• How to overload =, +=, and -=. Note the special rules about what pa-
rameters these take and returning *this. Most C++ operators can be
overloaded. For each operator there are standard best practices on how

A Matrix Class 293

it should be implemented, what the return type should be, and whether
or not it should be written as a member function. Consult a text such
as [13] for details.

• How to write a destructor for classes that manage memory and other
resources. Note that most classes don’t need a destructor.

• The rule of three: Whenever we write a destructor we write a copy
constructor and override =.

Although we have implemented a sophisticated Matrix class in this chap-
ter, we have done so purely to illustrate C++ techniques. Libraries containing
much better Matrix implementations already exist.

Tip: Go easy on pointers and operator overloading

• Using pointers and operator overloading is justified for a Matrix class
because we’ll use it so often.

• Pointers are only really justified in our implementation for educational
purposes. The code we’ve written would perform as well if we had used
vector. If we had done this we would not have needed to write a de-
structor, copy constructor, or assignment operator.

• Operator overloading is only justified because we come with expectations
on how to add and multiply matrices. Don’t overload operators to give
them strange meanings. This just makes code hard to read.

• Realistically, a data structure such as a Matrix is the kind of class you
should expect to find in a library rather than spending time writing it
yourself.

http://taylorandfrancis.com

Chapter 17
An Overview of Templates

We have already seen data types involving angle brackets, such as

vector<double>␣v;

Code involving angle brackets is written using a C++ language feature
called templates. In this chapter we will give a brief overview of how to write
template functions and classes.

Templates are quite a difficult subject in practice. We have already said
that you can think of C++ as consisting of three languages: C, an object-
oriented language, and the language of templates. Learning a new language
is a significant undertaking. For this reason we will only describe the basic
ideas of template programming in this chapter. You should consult another
reference such as [17] if you wish to write your own template library.

17.1 Template functions
Consider the following code to compute the maximum of a pair of numbers.

inline␣double␣findMax(␣double␣x,␣double␣y␣)␣{
␣␣␣␣if␣(x<y)␣{
␣␣␣␣␣␣␣␣return␣x;
␣␣␣␣}␣else␣{
␣␣␣␣␣␣␣␣return␣y;
␣␣␣␣}
}

inline␣float␣findMax(␣float␣x,␣float␣y␣)␣{
␣␣␣␣if␣(x<y)␣{
␣␣␣␣␣␣␣␣return␣x;
␣␣␣␣}␣else␣{
␣␣␣␣␣␣␣␣return␣y;
␣␣␣␣}
}

295

296 C++ for Financial Mathematics

This code violates the Once and Only Once principle because we have written
essentially the same function twice, the only difference is that the types are
different in the different function declarations.

Templates provide a solution to this problem. The following single template
function allows us to find the maximum of either doubles or floats.

template␣<typename␣T>
inline␣T␣findMax(T␣x,␣T␣y)␣{

if␣(x␣<␣y)␣{
return␣y;

}
else␣{

return␣x;
}

}

When you write a templated function, you don’t specify all the types
of the parameters to your function. Instead, you provide a list of dummy
variables, called template parameters, which can be replaced as necessary
with the required types. In this example, we have one template parameter
and it is called T.

In our example we specify that we are writing a template function and it
has a template parameter called T, by writing:

template␣<typename␣T>

The remaining code in our template function is then a copy of the desired
code to compute the maximum but using the dummy variable T to represent
the type.

We can then use our findMax function equally well with any type that
provides an implementation of <. This includes float, double but also int
and even string. This is tested using the following code:

void␣testMax ()␣{
ASSERT(␣findMax(3,␣1)==3);␣//␣ints
ASSERT(␣findMax (2.0,␣3.0)␣==␣3.0);␣//␣doubles
ASSERT(␣findMax(␣string("ant"),

string("zoo"))␣==␣string("zoo"));
}

One unusual feature of templated functions is that the definition is nor-
mally put in the header file and not in a cpp file. The actual rule is that any
declaration and definition should be in the same file. So if you are writing
a library function, the definition must be in the header file because that is
where the declaration has to be.

The reason for this rule is that the code for a template function is not fully
compiled until the template is actually used. It cannot be compiled until the

An Overview of Templates 297

template is used because the types are not yet known. This means that users
of your library will need to have access to the code required to define all your
templated functions. This in turn means that these definitions need to be in
the header file.

Danger!

If you are writing a templated library function, the definitions and declarations
must be in the header files.

17.2 Template classes
The most visible use of template classes in C++ is in data types such as

vector<double>. The syntax for template classes is very similar to that used
for template functions.

Let us suppose we want to write a very simple data structure class called
SimpleVector, which stores a vector of a fixed size n and allows the user to
access the values at index i using functions set and get. We would also like
to be able to use the same class to store values of any type.

To do this we write the class in the usual way, except we use a template
parameter T as a placeholder for the type of data stored. Here is the code for
our SimpleVector class.

template␣<typename␣T>
class␣SimpleVector␣{
public:

/*␣ Constructor␣*/
SimpleVector(int␣size);
/*␣ Destructor␣*/
~SimpleVector ()␣{

delete []␣data;
}
/*␣ Access␣data␣*/
T␣get(int␣index)␣{

return␣data[index];
}
/*␣ Access␣data␣*/
void␣set(int␣index ,␣T␣value)␣{

data[index]␣=␣value;
}

298 C++ for Financial Mathematics

private:
T*␣data;
/*␣ Rule␣of␣three␣-␣we␣make␣these␣private␣*/
SimpleVector(const␣SimpleVector&␣o);
SimpleVector&␣operator =(const␣SimpleVector&␣o);

};

We have provided inline implementations of all methods except the con-
structor of our SimpleVector.

As with template functions, all definitions should be provided alongside
the declarations in header files. Unfortunately you need to repeat the line
declaring the template parameters you are using for every function definition.
In addition you must include the template parameter in the qualifier of the
name for all the functions you define. For example, here is how we have defined
the constructor for SimpleVector.

template␣<typename␣T>
SimpleVector <T>:: SimpleVector(␣int␣size␣)␣{

data␣=␣new␣T[size];
}

As demonstrated in the unit test below, we can now use SimpleVector to
store various different data types.

void␣testSimpleVector ()␣{
SimpleVector <double >␣v1(3);
v1.set(1,␣2.0);
ASSERT(v1.get (1)␣==␣2.0);

SimpleVector <int >␣v2(3);
v2.set(1,␣2);
ASSERT(v2.get (1)␣==␣2);

SimpleVector <string >␣v3(3);
v3.set(1,␣"Test␣string");
ASSERT(v3.get (1)␣==␣"Test␣string");

}

It is possible to use multiple parameters in your templates. It is also pos-
sible to use certain simple data types such as constant integers as template
parameters. One example of this is the type array from the library <array>,
which is like a vector but of fixed length. When you create instances of array
you must specify both the type of the data and the length. Here is an example
of how you can use this type.

void␣testArray ()␣{

An Overview of Templates 299

array <int ,␣3>␣a;
a[2]␣=␣1;
ASSERT(a[2]␣==␣1);

}

Tip: You Aren’t Going to Need It (YAGNI)

One of the slogans of extreme programming is “You Aren’t Going to Need
It”. Many programmers have a tendency to write the most general software
they possibly can. However, doing this can make your design more complex
and harder to use. Often the extra generality goes unused. There is clearly no
point writing code that will never be used.

You might be tempted to write a template version of our matrix class
so that we can store matrices of double, float or more usefully complex
numbers. However, the YAGNI slogan advises that you shouldn’t bother doing
this until you actually have a use for these classes.

In general, whenever you feel tempted to use templates, remember the
YAGNI slogan and ask yourself if it is really going to be worth the trouble
and complexity.

17.3 Templates as an alternative to interfaces
Recall that we introduced interface classes so that we could generalise our

Monte Carlo pricer, so that it can work equally well with any option. We can
solve this problem in a slightly different way using templates.

We can write a monteCarloPricer function that uses template to price
options of any class using any model so long as:

(i) The option has a double valued field called maturity.

(ii) The option has a function payoff that takes the stock price at maturity
as a parameter and returns the payoff of that option.

(iii) The model has a function generateRiskNeutralPricePath that returns
a vector representing a simulated stock path in the risk-neutral measure.
This function must take as parameters: the time up to which we wish to
simulate the stock price path; the number of steps.

So long as all of these requirements are met, the following code will be able
to price the option using the given model.

300 C++ for Financial Mathematics

template␣<typename␣Option ,␣typename␣Model >
double␣monteCarloPrice(

const␣Option&␣option ,
const␣Model&␣model ,
int␣nScenarios␣=␣10000)␣{

double␣total␣=␣0.0;
for␣(int␣i␣=␣0;␣i<nScenarios;␣i++)␣{

std::vector <double >␣path␣=␣model.
generateRiskNeutralPricePath(
option.maturity ,
1);

double␣stockPrice␣=␣path.back ();
double␣payoff␣=␣option.payoff(stockPrice);
total␣+=␣payoff;

}
double␣mean␣=␣total␣/␣nScenarios;
double␣r␣=␣model.riskFreeRate;
double␣T␣=␣option.maturity␣-␣model.date;
return␣exp(-r*T)*mean;

}

This code simply assumes that the actual classes representing the option and
the model obey all the requirements described above.

For example, the classes CallOption and BlackScholesModel meet these
requirements. So this test will compile and run.
void␣testMonteCarloPricer ()␣{

CallOption␣c;
c.strike␣=␣110;
c.maturity␣=␣1;
BlackScholesModel␣model;
model.stockPrice␣=␣100;
model.drift␣=␣0;
model.riskFreeRate␣=␣0.1;
model.volatility␣=␣0.2;
model.date␣=␣0;

double␣price␣=␣monteCarloPrice(c,␣model);
ASSERT_APPROX_EQUAL(price ,␣c.price(model),␣0.1);

}

Note that the code will still run even if CallOption does not implement
any interfaces. What matters is the methods it has, not the interfaces it im-
plements. For example, BlackScholesModel doesn’t implement any particu-
lar interface, we’re just assuming that the model class passed to our template
function has a generateRiskNeutralPricePath method.

An Overview of Templates 301

This solution may seem simpler than the solution we gave using polymor-
phism. However, it suffers from a number of significant problems.

• You need to write clear documentation of how to use your template
classes. In this documentation you will need to list all the functions
you expect to be present in your template parameter classes and their
return types. By contrast, an interface class automatically documents
this information. In addition the compiler checks that the interface is
correct.

• All the code must go in the header file. This makes encapsulation more
challenging and increases the coupling between your files. One practical
consequence of this is that your code will take longer to build.

• The compiler error messages that appear when you make a mistake with
templates are very confusing. In particular the compiler will often tell
you that the error is in a library file when it is in fact in your code. See
Exercise 17.3.1 for an example of this.

• When you use templates, the compiler only finds the errors when the
template is actually used. With object orientation, the errors are found
when the code is written.

Templates can work well in mature, stable, and carefully designed and
documented libraries such as the C++ standard library and Boost. They
are less effective in financial software that has to be constantly adapted to
changing business requirements.

Exercises
17.3.1. Change the CallOption class in our template examples library so that
the word payoff is spelled incorrectly. Which file does the compiler say contains
the error?

17.3.2. Write a template class ComplexNumber which can be used to store
complex numbers of the form x + iy where x and y could both be doubles,
floats, or ints. The class should have a constructor which takes a single real
argument and a default constructor. It should be possible to add two complex
numbers with +.

17.3.3. Rewrite the integration example of Section 10.6 so that instead of
using polymorphism we use a template.

302 C++ for Financial Mathematics

17.4 Summary
Templates provide a solution to the Once and Only Once principle that

is very useful for writing data structure classes. On the other hand, using
templates to write unnecessarily generic code violates the YAGNI principle
(You Aren’t Going to Need It).

Templates can be used as an alternative to virtual functions, but virtual
functions are normally the better approach.

For financial mathematics problems it is a good idea to take advantage of
library classes that are built using templates, but to avoid writing your own
template libraries.

Chapter 18
The Standard Template Library

The Portfolio class we developed in Chapter 13 can only be used to store
options on a single stock. This is a significant limitation. In this chapter we
would like to enhance our classes so that we can cope with a market that
contains multiple stocks.

To do this we will need to use some more interesting data structures than
just vectors and matrices. In particular we will want to use a data structure
called a map which allows you to store data indexed by a key of some sort. For
example, suppose you have written a class called CompanyInfo which contains
a great deal of practical information about a company such as the address of
its head office and the names of its directors. You would then want to be
able to store a CompanyInfo object for each stock in such a way that you can
quickly look up the CompanyInfo given just the name of the associated stock.
The map class allows you to do this efficiently.

In Exercise 18.12.3, the same ideas will allow you to address another crit-
icism of our Portfolio class. If multiple options in a Portfolio have the
same maturity and underlying stocks, then we could use the same set of mar-
ket simulations to price all of these options at once. The class map allows
you to conveniently group data and so is a useful tool in developing more
sophisticated algorithms.

C++ has a number of built-in data structures. map is one, as is vector.
These standard data structures are called containers. The full library that
includes these data structures is called the Standard Template Library (STL).
It is called the Standard Template Library because all of these data structures
are written using templates.

In this chapter we will look at how to use the Standard Template Library
and will see how the data structures in the Standard Template Library can
be used to model a market with multiple stocks.

303

304 C++ for Financial Mathematics

18.1 typedef
We have already seen that the names of types in C++ can become very

long. For example, we have already had to work with the following member
variable of the PortfolioImpl class.

vector <␣shared_ptr <Priceable >␣>␣securities;

C++ contains a number of features that help with dealing with long type
names. One is typedef, which we shall discuss now, a second is auto, which
we shall discuss in the next section.

typedef allows you to define an abbreviation for a complex type. For
example, we can define an abbreviation for a shared pointer to a Priceable
as follows.

typedef␣std::shared_ptr <Priceable >␣SPPriceable;

The syntax looks as though we are declaring a variable called SPPriceable
of type shared_ptr<Priceable> except for the keyword typedef in front. In
other words, the syntax is:

typedef␣<<Complex␣Type>>␣<<Abbreviation>>;

Having defined this abbreviation, we can now rewrite the declaration of
the member variable securities as:

vector <SPPriceable >␣securities;

The advantage of typedef in terms of reducing the amount of typing is
clear. By making the code shorter, it also makes it more readable. However,
excessive use of typedef will make your code harder to understand and debug.
Each use of typedef introduces something extra for the reader of your code
to remember.

Personally I find that the convention of having type names beginning SP
to abbreviate shared_ptr is both convenient and easy to remember. I also
use a prefix of SPC to mean a const pointer such as:

typedef␣std::shared_ptr <const␣Priceable >␣SPCPriceable;

We will use these conventions without comment from now on, although they
are by no means a standard convention in C++.

Unless you have such clear conventions, it is best to avoid putting typedef
declarations at the top level in a header file. This is because it is often more
confusing than helpful. Within a cpp file you can allow yourself more freedom
because you only need to remember the abbrevation you are using within the
file.

The Standard Template Library 305

One alternative is to put the typedef inside a class declaration. By associ-
ating the typedef clearly with another class, one can often make its meaning
clear. When you do this you are creating what is called a member type. For ex-
ample, we can add a member type sp to the class Priceable to make it easier
to refer to shared pointers to Priceable. We can then use this to add a mem-
ber type spVec, which makes it easier to refer to vectors of shared pointers to
Priceable. We would then be able to use the abbreviation Pricable::spVec
to refer to this type in other classes, as shown below.

class␣Priceable␣{
public:

typedef␣shared_ptr <Priceable >␣sp;
typedef␣vector <␣sp␣>␣spVec;
//␣...␣more␣code␣...

};

class␣Portfolio␣{
private:

Priceable ::spVec␣securities;
//␣...␣more␣code␣...

};

There is an alternative notation which is sometimes necessary to help the
compiler work out whether a term such as Priceable::spVec refers to a
static member variable or a member type. The alternative notation is simply
to add the word typename at the front.

␣␣␣␣typename␣Priceable::spVec␣securities;

When working with templates, it is good practice to include the typename to
ensure your code can be compiled unambiguously.

There is not much practical difference between the convention of having
type names such as SPPriceable and the convention of having a member type
called sp. You should follow the conventions of the project you are working
on.

Member types are used heavily in the standard template library. This is
not because they provide convenient abbreviations, but because they allow
you to write template functions more easily.

Suppose that you want to write a templated sumVector function that takes
a vector of numbers of some sort and computes the sum. We want our function
to be able to add up the values in a vector of integers, a vector of real numbers,
a vector of complex numbers, or even a vector of matrices.

Our templated function will have one template parameter V which will be
some kind of vector class. Our function sumVector will take a reference to a
vector of type V as its parameter. But what will be its return type? The return
type will depend upon the type of V. For a complex vector the return type

306 C++ for Financial Mathematics

should be a complex number, for a real vector it should be a real number.
How can we deduce the return type if all we know is V?

The solution is that vectors in C++ have a member type value_type
which contains just the information we need. Therefore the return type of our
sumVector function should be V::value_type. Because of possible ambigui-
ties that could cause problems for the compiler we must write this out in full
as typname␣V::value_type when using templates.

In full the code needed for our sumVector function is:

template␣<typename␣V>
typename␣V:: value_type␣sumVector(const␣V&␣vector)␣{

typename␣V:: value_type␣total␣=␣0;
for␣(int␣i␣=␣0;␣i␣<␣(int)vector.size ();␣i++)␣{

total␣+=␣vector[i];
}
return␣total;

}

18.2 auto
The auto keyword allows you to avoid typing the full name of a type when

it can be deduced automatically. For example, if you want to store the return
value of a function in a variable of the same type, you can use auto. In the
code below, the compiler can work out that s must be of type double so we
can use auto.

double␣d␣=␣4.0;
auto␣s␣=␣sqrt(d);

You can use auto in combination with & and const to indicate whether
you want a copy of the data or the reference and whether you wish to be able
to modify the data. Here are some examples:

vector <double >␣vec (10 ,0.0);
auto&␣dRef␣=␣vec [5];
dRef␣=␣ -1.0;
ASSERT(vec [5]␣==␣ -1.0);

auto␣d␣=␣vec [6];
d␣=␣ -1.0;
ASSERT(vec [6]␣==␣0.0);

const␣auto&␣dRef2␣=␣vec [7];

The Standard Template Library 307

ASSERT(dRef2␣==␣0.0);

In this example we take advantage of the fact that the [] operator on vector
actually returns a reference to the cell in the vector. So dRef contains a ref-
erence and can be used to modify the vector. On the other hand, d contains
a copy of the data in the vector and so cannot be used to modify the vector.
Finally dRef2 is a reference but is const so it can only be used for read access
to the vector.

These examples are rather contrived since auto is only marginally quicker
to type than double. However, as we will see below, the auto keyword can
save a great deal of typing and mental energy. You should use it extensively
in your code.

18.3 Using iterators with vectors
So far in this book we have looped through vectors using a for loop to

increment an integer index i.
There is another way of looping through the elements of a vector which

works equally well for all data storage classes in the Standard Template Li-
brary. This approach is to use an iterator.

When you call begin() on a vector it returns you an object called an
iterator. Iterators are classes that behave a lot like pointers in that you work
with them by using operators such as *, ++ and ==. Here is an example of how
you could use an iterator to sum all the elements of a vector.

vector <double >␣v({␣1.0,␣2.0,␣3.0␣});

double␣sum␣=␣0.0;
vector <double >:: iterator␣i␣=␣v.begin ();
while␣(i␣!=␣v.end())␣{

sum␣+=␣*i;
i++;

}

ASSERT(sum␣==␣6.0);

The code looks as though begin returns a pointer to the first element
of the vector and end returns a pointer to one after the last element of the
vector. We access the data referenced by the iterator using * just as we do
with a pointer. We increment the iterator using ++ just as we do with a
pointer. We decide when to terminate the loop by comparing the pointer
with end just as we did when working with pointers in Chapter 16. The only

308 C++ for Financial Mathematics

clue that we are not actually working with a pointer is the type declaration
vector<double>::iterator.

The advantage of using iterators is that they can be used with all the
classes in the Standard Template Library. This means that code you write for
one container can be used with other containers. This makes it possible to
write generic algorithms using templates that can work with any container.

You can modify data using the iterator on a vector as shown in the
example below. This function uses an iterator to set every element of a vector
to zero.

void␣setZero(vector <double >&␣v)␣{
vector <double >:: iterator␣i␣=␣v.begin ();
while␣(i␣!=␣v.end())␣{

*i=0;
i++;

}
}

If you only want to view the data, you can use a const_iterator instead as
shown in the example below.

double␣sumVector(␣const␣vector <double >&␣v␣)␣{
double␣sum␣=␣0.0;
vector <double >:: const_iterator␣i␣=␣v.begin ();
while␣(i␣!=␣v.end())␣{

sum␣+=␣*i;
i++;

}
return␣sum;

}

If you call begin on a const reference, it will return a const_iterator.
So in the code above it is essential that the type of i is specified as a
const_iterator, otherwise the code would not compile.

The distinction between an iterator and a const_iterator is a little
confusing and certainly very tedious to remember. This is where auto comes
into its own. The code below is equivalent to the last example, but is both
easier to understand and quicker to type.

double␣sumWithAuto(const␣vector <double >&␣v)␣{
double␣sum␣=␣0.0;
auto␣i␣=␣v.begin ();
while␣(i␣!=␣v.end())␣{

sum␣+=␣*i;
i++;

}
return␣sum;

The Standard Template Library 309

}

18.4 for loops and containers
A container is just a class which stores data and follows the conventions

of the standard library. At a minimum it should provide methods begin and
end, which return iterators just as vector does.

This means that we have already written a container! The class Matrix
from Chapter 16 has functions begin and end which return pointers. Pointers
have definitions for the operators ++, ==, and * and so forth, so they count as
iterators.

C++ contains a special syntax for looping through the elements of a con-
tainer. For example, the following code sums all the elements of a Matrix.

Matrix␣matrix("1,3;2,4");
double␣total␣=␣0.0;
for␣(auto␣d␣:␣matrix)␣{

total␣+=␣d;
}
ASSERT_APPROX_EQUAL(total ,␣10.0,␣0.001);

This for-loop syntax means that for every element in the matrix, we will assign
the value to d and then perform the body of the loop. This syntax is often
much more convenient than writing the loop using iterators, although the end
result is essentially identical.

Having begin and end functions is just the minimum requirement for a
container. One should follow all of the conventions used in the standard tem-
plate library which make sense for your container.

Therefore we have added some member types to our Matrix class that
have precisely the same names as the corresponding members of vector.

typedef␣double␣value_type;
typedef␣double*␣iterator;
typedef␣const␣double*␣const_iterator;

If we follow the same naming conventions for our container class, it is
possible to write functions that can work equally well with vectors and with
our Matrix class. For example, here is a templated function that can be used
to compute the sum of the elements in a vector or in a Matrix.

template␣<typename␣C>
typename␣C:: value_type␣sumContainer(const␣C&␣c)␣{

typename␣C:: value_type␣total␣=␣0;

310 C++ for Financial Mathematics

for␣(auto␣v␣:␣c)␣{
total␣+=␣v;

}
return␣total;

}

18.5 The container set
One useful container class is set. To use it you must #include␣<set>.
One key difference between a set and a vector is that a set does not con-

tain duplicate elements (just like the mathematical concept of a set). Another
difference is that the data stored in a set is always sorted.

For this reason, you cannot store arbitrary data in a set, you must be
able to compare two elements using the operator <. Two elements a and b are
considered to be the same if neither a<b nor b<a.

If you want to store a particular data type in a set you will need to
overload the < operator. Actually, this isn’t quite true. You can choose to tell
the set to use another function other than < to perform the comparisons if
you like, but we will only discuss the standard case where you overload <.

Fortunately the data types one most often wants to store in a set, namely
numeric types and string, already have appropriate implementations of <.

Here is an example of how you can insert elements into a set using insert,
confirm that the set does not contain duplicates, and then print out the con-
tents of the set using the for syntax.

set <int >␣ints;
ints.insert (1);
ints.insert (3);
ints.insert (2);
ints.insert (3);␣//␣duplicate␣ignored
ASSERT(ints.size()␣==␣3);
for␣(auto␣i␣:␣ints)␣{

std::cout␣<<␣"Item␣"␣<<␣i␣<<"\n";
}

Note that if you do not mind whether the elements in the set are
sorted, you can use an unodered_set instead. It is usually faster to use an
unordered_set. See Section 18.9.2 for more information on unordered_set.

The Standard Template Library 311

18.6 The container vector
We are familiar with the container vector already, but we have not given

a great deal of detail about when it should be used and when other containers
should be used.

A vector stores its data in memory in a single contiguous region just as
happens if you create a block of memory using new␣[]. vector improves upon
creating memory using new␣[] yourself in the following ways.

(i) A vector stores the size of the memory block as well as just a pointer.

(ii) When you add elements to a vector, it will decide if it needs to allocate
more memory and, if required, it will allocate a new block of memory
and copy the data in. A vector has a capacity which is the size of the
memory it has allocated and a size which is the number of elements it
contains. The vector will always make sure the capacity is larger than
the size by allocating new memory as needed.

(iii) In debug mode, the iterator and the operator [] contain extra checks
that you are only accessing data that lies inside the vector. This is very
helpful for debugging.

(iv) A vector obeys all the conventions of the standard template library so it
can be used more easily than a raw pointer.

As we have seen already, vectors are easy to use. They are also very fast
because they use contiguous blocks of memory which the computer finds easy
to work with. In particular you can access the i-th element of a vector ex-
tremely rapidly. It does not take significantly longer than accessing the first
element.

The downside of a vector is that it is very slow to insert a new item in the
middle of a vector. The worst case is if you wish to insert a single item at the
beginning of a vector. You will then need to copy all the old contents of the
vector into new memory locations before inserting the new element. This is
illustrated in Figure 18.1.

FIGURE 18.1: Inserting into a vector is O(N). Blank squares indicate un-
used capacity.

312 C++ for Financial Mathematics

This means that a vector is not the right data type to use to store the
characters in a spreadsheet document. Nobody wants it to take a long time
to insert a single character at the beginning of a document.

We say that the time taken to insert an element into a vector is O(N)
where N is the length of the vector. On the other hand, reading a single
element at a specified index is O(1). In other words, reading a single item in
a vector is independent of the length of the vector. Adding elements to the
end of a vector is typically of O(1) unless you are unlucky and the vector has
to expand its capacity, in which case it is O(N) as the entire vector has to be
copied.

A set is faster than a vector for inserting data. Inserting is O(logN).
We will explain why when we discuss the very similar map container in Sec-
tion 18.9.1.

18.7 The container list
A list is very similar to a vector but it is designed so that it is easy

to insert data at arbitrary points in O(1). In particular, you can add data
efficiently to either the front or end of a list. By contrast, with vectors you
can only add data at the end efficiently.

This means that the list class is very useful for organising priority lists.
You can put high-priority items at the front of the list and low-priority items
at the end.

Under the covers, each element in a list is stored using a data type that
looks something like this:

class␣Link␣{
Data␣d;
Link*␣next;
Link*␣previous;

};

Each Link is stored in an arbitrary location in memory, but by following the
pointer next you can always quickly find the next item in the list. If you wish
to go backwards you can follow the pointer prev. The actual list class itself
needs to store a pointer to the first and last elements. The situation is depicted
in Figure 18.2.

This data structure is called a doubly linked list. You can quickly insert
a new element by creating a new Link and re-routing a few of the pointers.
The changes that need to be made are indicated in Figure 18.3 using bold
and dashed arrows. The important point is that the number of changes is
independent of the length of the list. This means that insertion takes O(1).

The Standard Template Library 313

FIGURE 18.2: A doubly linked list storing the numbers 1 to 5.

However, if you want to find the i-th element of the list, you have no choice
but to run through each element in sequence. This takes O(i).

FIGURE 18.3: The changes needed to insert the number 3.5 into the list.

Here is a code example showing how to insert some items at the beginning
and end of a list using push_front and push_back. We then print out the
list.

//␣use␣a␣list␣to␣store␣items␣in␣priority␣order
list <string >␣list;
list.push_back("Drinking");
list.push_back("Dancing");
list.push_front("Exam");
list.push_front("Revision");

std::cout␣<<␣"Todo␣list\n";
for␣(auto␣item␣:␣list)␣{

std::cout␣<<␣"Item␣"␣<<␣item␣<<␣"\n";
}

314 C++ for Financial Mathematics

This then prints out:

Todo␣list
Item␣Revision
Item␣Exam
Item␣Drinking
Item␣Dancing

Suppose we now wish to insert an item before “Exam”. The class list has
a function insert but it takes two parameters. The first is an iterator which
must be pointing to the point where we want to insert, the second is the data
we want to insert. Therefore we will first want to iterate through the list up
to the desired point and then call insert. The code is below.

auto␣i␣=␣list.begin ();
while␣(i␣!=␣list.end())␣{

if␣(*i␣==␣"Exam")␣{
list.insert(i,␣"Dentist");
break;

}
i++;

}

std::cout␣<<␣"Todo␣list\n";
for␣(auto␣item␣:␣list)␣{

std::cout␣<<␣"Item␣"␣<<␣item␣<<␣"\n";
}

As expected, this code will print out the same list but with the item “Dentist”
inserted before “Exam”.

Naturally you will think that this code is longer than is necessary and will
want to write a helper function to make it easier to insert elements. In fact,
C++ already contains a function find which makes this code fairly easy.

auto␣iter␣=␣find(list.begin(),␣list.end(),"Exam");
list.insert(iter ,␣"Dentist");

The function find will search through a range of values looking for a specific
item and returns an iterator to that point. To specify the range of values you
provide an iterator that points to the beginning of your search region and an
iterator that points to the end (i.e., one after the last element).

The function find is defined in the library <algorithm>. The class list
is defined in <list>.

<algorithm> contains a number of helpful functions to perform tasks such
as remove specified items from a container, sort the elements of a container,
find the smallest element in a container, and so forth.

The Standard Template Library 315

18.8 The container initializer_list
A new container type called an initializer_list was introduced in

C++11. These are useful because they are easy to create and populate with
a list of values. They are not intended for long-term storage of data. Here is
an example of an initializer list being used to create a list of doubles and then
print them out.

std:: initializer_list <double >
list␣=␣{␣1,␣2,␣3,␣4␣};

for␣(auto␣d␣:␣list)␣{
std::cout␣<<␣"Value␣"<<d<<"\n";

}

Initializer lists are read-only data structures, so they are primarily used
as a constructor parameter to another container. For example, if you want to
create a vector that contains some fixed specified values, you could use code
such as that shown below.

std::vector <double >␣v({␣1,␣2,␣3,␣4␣});

This code creates a vector which contains the values 1, 2, 3, and 4. This can
now be used like any other vector.

Most collection classes have a constructor that takes an initializer_list
as a parameter so that this convenient notation can be used.

18.9 The containers map and unordered_map
So far our containers have simply stored a sequence or a set of values.

Another broad class of data structures is used to store mappings from a key
to some associated data. To give an example, a dictionary can be thought of
as a data structure which maps a key (a word) to a value (the meaning of the
word).

Two classes that can be used to store such mappings in C++ are the class
map and unordered_map. They can be found in <map> and <unordered_map>,
respectively.

The two classes are almost indistinguishable in how you use them. The
key differences are:

(i) The elements in a map are ordered by the keys, just as the entries in a
dictionary are ordered;

316 C++ for Financial Mathematics

(ii) unordered_map is usually faster than map.

Thus you should usually use unordered_map unless the ordering is important
to you. Note that the items you use as keys in a map must overload < so that
the map knows how to sort them in the correct order.

Here is how you can insert data into a map and then iterate through it to
print the contents.

map <string ,␣string >␣fruitToCol;
fruitToCol["apples"]␣=␣"green";
fruitToCol["bananas"]␣=␣"yellow";
fruitToCol["plums"]␣=␣"purple";
fruitToCol["oranges"]␣=␣"orange";
for␣(const␣pair <string ,string >&␣p␣:␣fruitToCol)␣{

cout␣<<␣"The␣color␣of␣";
cout␣<<␣p.first;
cout␣<<␣"␣is␣";
cout␣<<␣p.second;
cout␣<<␣"\n";

}

You will see that as we iterate through the map, we obtain objects of type
const␣pair<string,string>&. Each entry in the map is a key-value pair.
The first entry is the key, the second entry is the value. We would usually
write auto for the type of p rather than write everything out in so much
detail.

The key advantage of the map structures are that we can very quickly
obtain the value associated with a given key.

auto␣i␣=␣fruitToCol.find("plums");
cout␣<<␣"Plums␣are␣"␣<<␣(i->second)<<"\n";

In this example, we happen to know that the key “plums” is indeed stored in
the map so we can be sure that i will be a valid iterator and hence the call
i->second will contain the colour of a plum (purple). Sometimes you do not
know whether a key is stored in the map or not. The code below tests if a key
is in the map and acts accordingly.

string␣fruit␣=␣"jackfruit";
auto␣iter␣=␣fruitToCol.find(fruit);
if␣(iter␣==␣fruitToCol.end())␣{

cout␣<<␣"The␣color␣of␣"␣<<␣fruit;
cout␣<<␣"␣is␣unknown\n";

}␣else␣{
cout␣<<␣fruit␣<<"␣are␣"<<␣(i->second)␣<<␣"\n";

}

The Standard Template Library 317

So, to see if an element exists in the map, we compare the iterator returned
by find with the iterator returned by end.

Although all our examples have used map, the code for an unordered_map
would be identical.

18.9.1 How a map works
A map typically stores its data in a tree structure consisting of a number of

nodes. Each node stores a key, a value, and a pointer to the nodes to the left
and to the right. Where there is no adjacent node, a null pointer is used to
indicate this. This is illustrated in Figure 18.4 where the black circles indicate
the null pointers.

FIGURE 18.4: A possible arrangement for the nodes in a map.

The map class ensures that at all times the key of a node is always greater
than the key of the nodes on its left and less than the key of the nodes on its
right.

This means that when we wish to search for the data associated with a
given key, it is easy to quickly navigate up the tree, taking either a left branch
or right branch according to whether the key of the node you are currently
looking at is greater than or less than your key. Typically you would expect
the depth of the tree to have a height of O(log2(N)) and so it should only
take O(log2(N)) steps to lookup an element with a given key.

Inserting data and removing data is a little more tricky than searching
for data. When you insert and remove nodes you need to make sure that the
ordering property is preserved. You also want to make sure that you keep the
depth of the tree of order log2(N) at all times. There are standard algorithms

318 C++ for Financial Mathematics

to do this. The red–black tree algorithm is one well-known approach. The
details are not important for this book but can be found in any book on
algorithms and data structures.

The end result is that a map can be used to search for data in O(log(N))
and you can insert and remove data in O(log(N)).

As should be clear from this discussion, a map depends crucially on the
ordering of the keys. You must have in implementation of < when using a map,
or else you must tell the map what function to use instead.

The implementation of a set is essentially the same as a map except that
there is no need to store a value. This explains the performance characteristics
of the class set that we mentioned in Section 18.5.

18.9.2 How an unordered_map works
Let us suppose that you wish to store approximately 100 key-value pairs

so that we can look up the value given the key as quickly as possible. If you
could somehow quickly associate a unique number between 0 and 99 to each
key, then you could store your data in a vector instead of a map. Simply take
a key, find the associated number, then read the element at the given index
in the vector.

The problem is that we can’t associate a unique number to a key in a
straightforward way. However, one idea that almost works for a string is to
take all the character codes in the string and add them up. This will give you
a number for each string which we will call the hash code. The hash code is
almost unique in the sense that two random strings aren’t very likely to have
the same hash code.

If you then take the remainder after dividing the hash code by 100, you
will have a number between 0 and 99. Let us call this the bucket id of the
string.

We can now group all the keys we want to use into buckets. Two strings
are in the same bucket if and only if they have the same bucket id.

In an unordered map, one stores a vector of bucket objects. There is a
bucket for each bucket id. The bucket objects contain a list of all the key-
value pairs where the key happens to have the given bucket id. The situation
is depicted in Figure 18.5. This shows an unordered map with 10 buckets, so
the bucket id has been computed by taking the remainder on dividing the
hash code by 10. In other words, the bucket id is just the last digit of the hash
code. The hash codes have been computed by adding up the character codes
for each letter in the key as described above.

To search for an element in an unordered map given a key, you proceed as
follows.

1. Compute the hash code of the key.

2. Compute the bucket id by dividing the hash code by the number of
buckets and taking the remainder.

The Standard Template Library 319

FIGURE 18.5: An unordered map with 10 buckets.

3. Read off the correct bucket from the vector of buckets.

4. Run through all the key-value pairs in the bucket until you have found
the correct element.

The idea is that there will typically only be a very few elements in each
bucket since the hash code for each key is essentially random. If we need
to store N items, we can use an unordered map with O(N) buckets so that
there will still be only a handful of items in each bucket. This means that we
can look up an element in a time which is roughly O(1) as against the time
O(log(N)) required for a map.

Inserting new elements and removing elements is similar. One finds the
correct bucket and inserts or removes the elements from the list. The only
additional complication is that if the size of the unordered map increases over

320 C++ for Financial Mathematics

a certain amount, one should increase the number of buckets and recompute
all the bucket ids. This process is called re-hashing.

Thus, roughly speaking, an unordered map allows one to insert, remove,
and query data in approximately O(1) and so is often faster than a map.

The key functions an unordered map needs to be able to perform on a key
are to compute the hash code and to check if two keys are equal. For strings
and numeric types, the unordered map will use a sensible choice of hash code
and will test equality using ==. For user-defined types, the default behaviour
is that two keys are considered equal if and only if they are precisely the same
instance of the object. If you wish to use a more refined notion of equality for
your keys, then you should consult the documentation for unordered_map.

Note that the actual hash code used for a string in C++ is computed using
a slightly cleverer algorithm than just adding up all the character codes in a
string that is more likely to produce unique hash codes.

18.10 Storing complex types in containers

Tip: Store large objects using shared pointers

It is better to store large objects in containers using a shared_ptr. For ex-
ample it is better to use a vector<␣shared_ptr<Matrix>> to store a list of
matrices than a vector<Matrix>.

It is important to know that when you store data in a C++ container, the
container stores a copy of the data. Similarly, when you extract data from a
container, you obtain a copy of the data.

This is reasonable behaviour for small data types such as int or double or
small string objects. However, if you are storing large objects in containers
this will be very inefficient. The solution is to always store large objects using
a shared_ptr.

18.11 A mathematical model for multiple stocks
STL classes will be invaluable in generalising our Portfolio pricing code

to a model containing multiple stocks. Before describing the computational
aspects of this problem, let us briefly describe a mathematical model that can
be used for such a market.

The Standard Template Library 321

Our model will be simply the most obvious multi-dimensional generali-
sation of Brownian motion. It is a natural first attempt at writing a multi-
dimensional model but is by no means the final word on modelling more
complex stock markets.

We assume that the changes in the stock prices over each time interval δt
are determined by R independent normally distributed risk factors εj with j
varying between 1 and R. We write εt for the R-vector of risk factors at time
t.

We have n stock prices Sit at each time t with i between 1 and n. We write
zit := log(Sit) and write zt for the vector of log stock prices at time t.

Our model is that the log of the stock prices evolves according to the
difference equation:

zt+δt = zt + ηδt+ (δt) 1
2Lεt (18.1)

where η is an n vector and L is an n× R matrix. It is not significantly more
difficult to simulate this multi-dimensional model than it is to simulate a
one-dimensional model.

Given the value at zt, the value at of z at time zt+δt will have a multi-
dimensional normal distribution with covariance matrix (δt)LL> where the
superscript > denotes the matrix transpose. We write A = LL> for the co-
variance matrix over a year. Two models of the form (18.1) with the same η
should be considered equivalent if they have the same value for the covariance
matrix A.

Normally one chooses the matrix L for this model by first choosing a
covariance matrix A and then finding a matrix A such that LLT = A. Such a
matrix is called a pseudo square root of A. An algorithm for finding a pseudo
square root of a covariance matrix called “Cholesky decomposition” was given
in Exercise 16.7.5.

The larger the value of R one uses, the longer it takes to compute each
term in the model (18.1). Computing each successive term in (18.1) requires
n × R2 calculations. For this reason when one has a large number of stocks
one might try to model the market with less risk factors than stocks. To do
this, one works with a lower dimensional approximate pseudo square root of
the covariance matrix instead of a true pseudo square root. This can be done
by finding a basis of eigenvectors for the covariance matrix and using only the
eigenvectors with the largest eigenvalues to create the matrix L. This allows
one to use a moderate number of risk factors to model a large market.

For simplicity, however, we will assume from now on that L is the Cholesky
decomposition of a given covariance matrix A. This is the situation we shall
model in our software.

If we consider the behaviour the i-th component of our log stock price vec-
tor zt we see that it is normally distributed with variance (δt)A(i,i) and mean
(δt)η

i
. Thus each stock individually follows a geometric Brownian motion with

drift η
i
+ 1

2A(i,i) and volatility
√
A(i,i).

We deduce that this is a risk-neutral model for stock prices in a world with

322 C++ for Financial Mathematics

fixed interest rate r if and only if

η(i) = r − 1
2A(i,i).

In addition we see that the vector η can be computed from the individual
drifts of each stock.

18.12 Using the Standard Template Library in FMLib
We wish to enhance FMLib so that it is possible to price a portfolio which

contains options on more than one stock. In addition we would like to be able
to price options such as a Margrabe option where the contract involves the
interaction of two stocks (see Exercise 18.12.2).

The key changes we need to make to FMLib are summarised in Figure 18.6.
Let us also explain them in words.

The ContinuousTimeOption interface is changed so that its payoff func-
tion now takes a MarketSimulation object as a parameter. The previous
version of this function took a matrix of stock price paths as a parameter.

The MarketSimulation class is a simple class that stores a map between
the name of a stock and a matrix of stock price paths. It stores all our sim-
ulations of the stock market. In order to compute the payoff of an option on
multiple stocks, one queries the MarketSimulation for the price paths for
each of the stocks involved in the option contract. One can now compute the
payoff of the option according to the option contract.

In addition to changing the payoff function, the ContinuousTimeOption
now has a method getStocks which can be used to query which stocks the
option depends upon. To ensure that this method does not return duplicates,
its return type is set<string>.

Most options involve only a single stock, so our base class Continuous-
TimeOptionBase has been enhanced so that it stores the name of a sin-
gle stock. It implements getStocks by returning this name. Continuous-
TimeOptionBase also implements the payoff function that takes a Market-
Simulation as a parameter by extracting the matrix of stock price paths for
this single stock and then calling an abstract function, which is also called
payoff but which takes a single Matrix as parameter. Since all our exist-
ing subclasses of ContinuousTimeOptionBase already implement this second
version of the payoff function, they will now automatically implement the
modified ContinuousTimeOption interface.

To generate the MarketSimulation objects we use a class called Multi-
StockModel. This class represents the mathematical model for multiple stocks
described above. It has functions generatePricePaths and generateRisk-

The Standard Template Library 323

FIGURE 18.6: UML summary of changes to FMLib

NeutralPricePaths that create MarketSimulation objects according to the
configuration of the model.

Internally the MultiStockModel stores most of its data using matrices. For
example, the current stock prices are stored as n × 1 matrix—i.e., a column
vector. Each of these stock prices corresponds to the price of some stock in
the market. The mapping between the names of the stocks and the index of
the stock in this column vector is stored in two different ways. Firstly they are
stored in an unordered_map called stockToIndex which maps the name of a
stock to the index. Secondly the names are stored in index order in a vector
called stockNames. Together these data structures allow one to quickly map
between stock names and indices and vice versa. To help with this mapping,

324 C++ for Financial Mathematics

MarketSimulation has a private function getIndex which maps a stock name
to its index.

The other data in MarketSimulation are stored using matrices with the
same indices. In particular there is a column vector of drifts and a covari-
ance matrix that describes both the volatilities of all the stocks and their
correlations.

Because we will often want to price options and portfolios that do not
involve the whole market, the MultiStockModel class has a getSubmodel
function. This takes as parameter a list of stocks and returns a new Multi-
StockModel which has been reduced in size to only involve the desired stocks.
For convenience it also has a function to return a BlackScholesModel object
given a single stock.

The MonteCarloPricer class can now price ContinuousTimeOption in-
stances given a multi-stock model. It first creates an appropriate sub model
using the getStocks function of the option and then the getSubmodel func-
tion of the model. It then uses this sub model to generate risk-neutral price
paths. The option is able to compute its payoff for all of these price paths.
The Monte Carlo price is then the discounted mean payoff.

Two other small changes worth mentioning are:

(i) The Priceable interface has been changed so the price method takes
a MultiStockModel as a parameter. It used to take a BlackScholes-
Model. All the implementations of this price method have been changed
accordingly.

(ii) The Portfolio class now only allows you to add ContinuousTimeOption
objects when previously any Priceable could be added. The reason is
that this makes it easier to complete Exercise 18.12.3.

The actual implementation of most of the methods is not challenging. Let
us show a few examples.

First, here is the implementation of getIndex in the class MultiStock-
Model. We chose to inline this function. It simply uses the recipe given above
for searching in a map. We have decided that we will simply report an error
if the user passes an invalid stock code.

int␣getIndex(const␣std:: string&␣ stockCode)
const␣{

auto␣pos␣=␣stockToIndex.find(stockCode);
ASSERT(pos␣!=␣stockToIndex.end ());
int␣idx␣=␣pos ->second;
return␣idx;

}

The getStockPaths function on MarketSimulation is essentially identical.

SPCMatrix␣getStockPaths(␣const␣std:: string&␣stock)

The Standard Template Library 325

const␣{
auto␣pos␣=␣stockPaths.find(stock);
ASSERT(pos␣!=␣stockPaths.end ());
return␣pos ->second;

}

One point that this code makes clear is that our MarketSimulation class
stores matrices using shared_ptr. As discussed above, since containers copy
the data that they store, it would be very inefficient to store a Matrix in
a container directly. This code also demonstrates our convention of using a
typedef to create a shared_ptr to a const with name beginning “SPC”.
You can see this convention being used in the return type of the function
getStockPaths.

As a more complex example, here is the code required to create a sub
model of a MultiStockModel given the names of the stocks you want included
in the sub model. The code has to find the correct indices for these stocks and
then extract the necessary submatrices from the member variables drifts,
stockPrices, and covarianceMatrix.

MultiStockModel␣MultiStockModel :: getSubmodel(
set <string >␣stocks)␣const␣{

int␣n␣=␣stocks.size ();
Matrix␣drifts(n,␣1);
Matrix␣stockPrices(n,␣1);
vector <string >␣newStocks(stocks.begin(),

stocks.end ());
Matrix␣cov(n,␣n);

int␣newIndex␣=␣0;
for␣(auto&␣stock␣:␣stocks)␣{

int␣idx␣=␣getIndex(stock);
drifts(newIndex)␣=␣this ->drifts(idx);
stockPrices(newIndex)␣=this ->stockPrices(idx);
newIndex ++;

}

int␣i␣=␣0;
for␣(auto&␣stockI␣:␣stocks)␣{

int␣j␣=␣0;
for␣(auto&␣stockJ␣:␣stocks)␣{

int␣oldI␣=␣getIndex(stockI);
int␣oldJ␣=␣getIndex(stockJ);
cov(i,␣j)␣=␣covarianceMatrix(oldI ,␣oldJ);
j++;

}

326 C++ for Financial Mathematics

i++;
}
MultiStockModel␣ret(newStocks ,␣stockPrices ,

drifts ,␣cov);
ret.setDate(getDate ());
ret.setRiskFreeRate(getRiskFreeRate ());
return␣ret;

}

This code demonstrates the convenience of looping using the special for syn-
tax for containers. One point worth noticing is that we can construct a new
vector that contains the data in an existing collection as follows:

vector <string >␣newStocks(stocks.begin(),
stocks.end ());

Container classes usually have constructors that take two iterators and copy
all the data between the iterators into the newly created container. Nine times
out of ten, one uses this to copy all of some existing container, but it can be
useful occasionally to only copy a part.

Finally we note that the class MultiStockModel generates price paths
using the model described in Section 18.11. The code is not much more com-
plicated than the code required to simulate a single stock price.

Exercises
18.12.1. In Exercise 3.9.3 we saw that recursion was an inefficient approach
to computing the Fibonacci numbers. However, if we use a cache of values, re-
cursion can be efficient. A cache is simply a data structure where you store the
results of previous computations. You could use a global variable containing
a map to cache values of the Fibonacci sequence that you have already com-
puted. Implement this idea and confirm that it outperforms recursion without
a cache.

18.12.2. Write an implementation of ContinuousTimeOption that represents
a Margrabe option. This is an option on two stocks S1 and S2. At maturity T
it pays off an amount equal to max{S1

T − S2
T , 0}. Confirm that you can price

it by Monte Carlo and that is price matches the analytical formula given in
[10].

18.12.3. Add a new method priceByMonteCarlo to the class Portfolio
which groups together options by their maturity and then prices options with
the same maturity using a single set of simulations. To do this you will want

The Standard Template Library 327

to write an implementation of ContinuousTimeOption that represents a port-
folio of options on a variety of stocks that all have a single maturity.
In practice you might want to use a sophisticated algorithm that groups to-
gether only those options that require Monte Carlo pricing and prices those
that can be handled analytically as before. You might also want to produce a
single simulation of stock prices across all the maturities in your portfolio.

18.12.4. Write a templated function mapGet which gets a value from a map
given a key. If the value is not present in the map it should throw an exception.
Your function should work equally well with map and unordered_map.

18.12.5. Write your own simple version of a hash map. You should only im-
plement a function store, which allows you to store a key–value pair, and
get, which returns the value associated with a key or else throws an excep-
tion. You can assume that both the key and values are strings. You should
also only use a fixed number of buckets. You may use the vector and list
classes, but you may not use map or unordered_map. Check that your hash
map performs as expected.

18.13 Summary
The standard template library is a powerful tool which will allow you to

write more sophisticated programs with ease. Key points we have covered are:

• The typedef keyword allows us to abbreviate complex type names. A
convention for naming shared_ptr types is particularly convenient.

• The auto keyword allows you to avoid typing the full name of a class
when the compiler can deduce it for you. It is possible to combine auto
with const and &.

• Classes can contain member types. This is particularly useful when writ-
ing template algorithms.

• A container is any class that stores data and returns iterators when
you call begin and end. There is a special syntax for looping through
containers using for.

• C++ contains numerous container classes that make it easy to store
data. They can also act as building blocks for implementing efficient
algorithms. All containers behave in a broadly similar manner. There are
clear conventions for naming functions such as size, insert, remove,
begin, and end.

328 C++ for Financial Mathematics

• The library <algorithm> contains a number of functions that are very
useful for working with containers such as find.

• Different data structures have different performance characteristics. You
should choose your data structure based on how you intend to access
and update the data.

• You should not store large objects in containers. Store them by reference
using shared_ptr instead.

We should add that although the standard template library is very pow-
erful, it is also rather difficult to learn. Unfortunately it makes heavy use
of sophisticated ideas such as templates and operator over-loading. The syn-
tax chosen for iterators also assumes that you are very used to working with
pointers and so will find the use of * and ++ to be natural and convenient.

When the standard template library was first invented it was rather exper-
imental. Time has shown that the object-oriented programming style is quite
intuitive. For this reason many computer languages include some form of ob-
ject orientation. On the other hand, the standard template library is quite
difficult to grasp for new programmers. As a result, the use of templates has
not been adopted in many other languages.

Tip: Use the standard template library, but don’t copy its design.

You should know how to use the standard template library as it contains
invaluable tools. Nevertheless, you should not rush to copy the design of the
standard template library. See if you can find an object-oriented solution to
your problem before using templates.

Chapter 19
Function Objects and Lambda
Functions

In Section 10.6 we designed an interface RealFunction to represent the math-
ematical notion of a function mapping real numbers to real numbers. This
solved the problem of writing an integration routine that can integrate any
real function.

However, there is a better solution in C++, called writing function objects.
A function object is simply an instance of a class that overloads the operator
(). Function objects are also sometimes called functors. The big advantage
of using function objects is that there is a special syntax for writing function
objects called lambda functions. This makes it quicker to write a function
object than a normal class.

19.1 Function objects
Here is an example of an integration function which takes as a parameter

a function object f. This code simply repeats the function we used in Sec-
tion 10.6 to integrate using the rectangle rule, but this time we are using a
function object rather than the interface RealFunction.

double␣integrate(
function <double(double)>␣f,
double␣a,
double␣b,
int␣nSteps)␣{

double␣total␣=␣0.0;
double␣h␣=␣(b␣-␣a)␣/␣nSteps;
for␣(int␣i␣=␣0;␣i<nSteps;␣i++)␣{

double␣x␣=␣a␣+␣i*h␣+␣0.5*h;
total␣+=␣h*f(x);

}
return␣total;

}

329

330 C++ for Financial Mathematics

The first thing to notice is that the type of f is declared as

function<double(double)>␣f

Here function is a class defined in the library <functional> and in the
namespace std. The interesting bit is the template type. This example means
that f represents a function that returns a double and takes a single double
as a parameter. If you wish to use function objects with different return and
parameter types, the general syntax is:

function<ReturnType(ParameterType1,ParameterType2,...)>␣f

Declaring the type of the function is the only complex part of using function
objects. When we use the function object f it is just the same as using an
ordinary function because it has overridden the operator (). Here is the line
of code where f is used:

total␣+=␣h*f(x);

To write a function object, you must write a class which overloads the
() operator. Here is an example of a class for evaluating the mathematical
function sin(x).

class␣SinFunction␣{
public:

double␣operator ()(double␣x)␣{
return␣sin(x);

}
};

Putting everything together, here is a test that our integration function
works as expected.

void␣testIntegrateSin ()␣{
SinFunction␣integrand;
double␣value␣=␣integrate(integrand ,␣0,␣1,␣1000);
ASSERT_APPROX_EQUAL(-cos (1.0)␣+␣cos(0.0) ,

value ,␣0.01);
}

19.2 Lambda functions
The big advantage of using function objects rather than writing your own

interface is that you can use lambda functions to write function objects very
quickly.

Function Objects and Lambda Functions 331

As an example, suppose that we want to write a function that takes pa-
rameters a, b and c and then computes∫ 1

0
(ax2 + bx+ c) dx

using the trapezium rule. We will first need to write a function object to
compute the integrand ax2 + bx+ c. We can then compute the integral using
our integrate function.

Here is the long answer which doesn’t use lambda functions:

class␣QuadraticFunction␣{
public:

/*␣ Members␣*/
double␣a;
double␣b;
double␣c;
/*␣ Constructor␣*/
QuadraticFunction(double␣a,

double␣b,
double␣c)␣:
a(a),␣b(b),␣c(c)␣{}

/*␣ Operator␣*/
double␣operator ()(double␣x)␣{

return␣a*x*x+b*x+c;
}

};

double␣integrateQuadratic(double␣a,
double␣b,
double␣c)␣{
QuadraticFunction␣integrand(a,␣b,␣c);
return␣integrate(integrand ,␣0,␣1,␣1000);

}

We have to define a class, give it appropriate member variables and a con-
structor, and override the operator (). We then need to construct an instance
of this class and pass it to integrate. A lambda function allows us to do all
of this in only a few lines.

double␣integrateQuadratic2(double␣a,
double␣b,
double␣c)␣{
auto␣lambda␣=

[a,␣b,␣c](double␣x)␣{
return␣a*x*x␣+␣b*x␣+␣c;

};

332 C++ for Financial Mathematics

return␣integrate(lambda ,␣0,␣1,␣1000);
}

The variable lambda is still a function object, just as integrand was in the
more verbose version of the code. The new syntax is the declaration of the
lambda function:

[a,␣b,␣c](double␣x)␣{
return␣a*x*x␣+␣b*x␣+␣c;

};

This is an extremely concise syntax which means:

• Generate a class, we don’t care what it is called.

• We will want to capture the local variables a, b, and c of integrate-
Quadratic2 and have them as member variables of our class. When
writing a lambda function, you list the captured variables in square
brackets.

• We want to write an overload of operator () that takes a single double
parameter which we will call x. When writing a lambda function, you
list the parameter types and parameter names in round brackets.

• The actual computation for the function is written inside curly brackets
and can use both the captured variables and the parameters.

In summary, the syntax of a lambda function is:

[CaptureParameters]␣(FunctionParameters)␣{FunctionImplementation}

The great thing about lambda functions is that as well as being quicker to
write, they are easier to read (at least when you are used to the syntax). This
is because all the verbose and distracting boiler plate code needed to define a
new class is hidden.

There is a lot of flexibility in how you write the capture parameters.

(i) You can specify that you would like to capture local variables by refer-
ence, by using the & symbol before the parameter name.

(ii) You can specify that you would like to capture all variables by reference
simply by specifying just &.

(iii) You can specify that you would like to capture all variables by value, by
specifying just =.

(iv) If your lambda function is written inside a member function of a class,
you can capture the member functions and member variables of that
class by specifying this.

Function Objects and Lambda Functions 333

As an example, here is how to integrate the payoff of a path-independent
option between the limits a and b.

double␣integratePayoff(PathIndependentOption&␣o,
double␣a,
double␣b)␣{

auto␣lambda␣=
[&o](double␣x)␣{
return␣o.payoff(x);

};
return␣integrate(lambda ,␣a,␣b,␣1000);

}

Since the class PathIndependentOption is abstract, we must capture the
variable o by reference. This is why the list of capture parameters says we are
capturing &o.

This same problem was considered in Section 10.6. As you can see, the use
of lambda functions makes the solution much shorter.

Notice that when you store capture parameters by reference, you must
always be careful to ensure that function object will be deleted before any
of the parameters it has captured. This is for precisely the same reason as
one needs to ensure that an instance of a class is deleted before any member
variables that are stored by reference.

19.3 Function pointers
It is possible to pass an actual function as a parameter, it is not always

absolutely necessary to write a function object. For example, to integrate∫ 1

0
(x2 + 2x+ 1)dx

we can write an ordinary function representing the integrand as follows:

static␣double␣integrand(double␣x)␣{
return␣x*x␣+␣2␣*␣x␣+␣x;

}

We can then pass this integrand to our integrate function as follows.

double␣testIntegrateFunctionPointer ()␣{
double␣value␣=␣integrate (&integrand ,␣2,␣1);
ASSERT_APPROX_EQUAL(

value ,

334 C++ for Financial Mathematics

2.3333 ,␣0.01);
}

Note the & symbol before integrand. &integrand is called a function pointer.
The C language does not have object-oriented features. In particular you

can’t write function objects. The closest you can get is to write functions and
pass them round with function pointers. If you use libraries written in C you
will see that they often use function pointers. However, C++ programmers
usually prefer to write their libraries using function objects because they are
both more powerful and more convenient.

19.4 Sorting with lambda functions
We have used lambda functions to represent a real valued function defined

on the reals. However, lambda functions can be used for many different kinds
of function, not just mathematical ones. We will give one example in this
section that shows how lambda functions can be used to customise the sort
order of the sort function.

By default, the < function for strings is based on ASCII character codes
so "A"␣<␣"B"␣<␣...␣<␣"Z"␣<␣"a". This means that using the sort function
directly on a vector of strings will not put the list in alphabetical order. All
the strings that start with upper case will come before all the strings that
start with lower case. Fortunately, sort allows you to specify a comparison
function that it will use to decide whether x should come before y or not.

void␣sortExample ()␣{
vector <string >␣list({␣"Z",␣"x",␣"a",␣"B"␣});
sort(list.begin(),␣list.end(),

[](string&␣x,␣string&␣y)␣{
return␣uppercase(x)␣<␣uppercase(y);

});
}

In this example, we create a lambda function that compares two strings x and
y and returns whether x comes before y alphabetically. To do this, it simply
converts each string to upper case and then compares them. The function
uppercase is not built into C++, it is a helper function we have written for
this purpose.

C++ libraries often make heavy use of function objects. Using them is
essential if you want to get the most out of C++.

Function Objects and Lambda Functions 335

Exercises
19.4.1. Using a lambda function, compute∫ π

0

√
1 + sin2(x) dx.

19.4.2. Write a function to compute the price of an option that has an arbi-
trary payoff f(S) at maturity T in the Black–Scholes model. Your code should
be implemented by computing the expected payoff by integration using Equa-
tion (A.3).

19.4.3. Suppose that f : [a, b] → R is a continuous function and we wish to
solve the equation f(x) = y for some value of y lying between f(a) and f(b).
Obviously there is a solution and it must lie in one of the two sub-intervals
[a, (a + b)/2] or [(a + b)/2, b]. Depending on the value of f at (a + b)/2, we
can determine which of the two sub-intervals we need to look in to solve the
equation: Simply choose the interval such that y lies between the values of f
at the end points of the interval.
This gives a recursive algorithm to numerically solve the equation f(x) = y
within a given tolerance ε. To solve the equation on [a, b]:

(i) Check if either of the end points is a solution within the desired tolerance,
in which case we are done.

(ii) Otherwise, decide which sub interval [a, (a+ b)/2] or [(a+ b)/2, b] must
contain the solution. Use recursion to apply the algorithm to the smaller
interval.

This algorithm is called the method of bisection. Implement it. (There are
many other algorithms to solve equations of this type, such as the Newton–
Raphson method. You can find implementations in libraries such as GSL, the
GNU Scientific Library.)

19.4.4. It is easy to calibrate all the parameters in the Black–Scholes formula
to the market, except for the volatility σ.
For example, the original stock price is usually taken to be the average of
the bid and ask prices quoted on the market for buying and selling the stock.
Similarly, the risk-free rate can be taken to be some specific market interest
rate, for example the LIBOR rate.
However, the volatility parameter does not correspond to any market data
in such a clear manner. Instead, one often attempts to calibrate the Black–
Scholes model to the market by inverting the Black–Scholes formula and using
the prices of call options on the market to deduce the volatility. The volatility
computed in this way is called an implied volatility.

336 C++ for Financial Mathematics

Use your answer to the previous exercise to write a function implied-
Volatility that:

• Takes parameters S, r, K, T and the price of a call option with strike K
and maturity T

• Computes the corresponding value of σ such that Equation (A.6) holds.

19.4.5. Find the current market data for call options on the S&P 500 In-
dex and plot a graph of how the implied volatility changes with the strike
price. If the Black–Scholes model was perfectly accurate, the implied volatil-
ity would be independent of the strike price. Since the Black–Scholes model
makes a number of unrealistic assumptions, you will instead find that the im-
plied volatility varies with the strike price. This demonstrates that while the
Black–Scholes model is useful, it is not accurate enough to replicate actual
market prices and more sophisticated models must be used.

19.5 Summary
Passing functions as parameters is a common requirement in C++. Use

the class std::function to pass functions as parameters. This allows you to
use lambda functions to quickly create new functions as needed.

Chapter 20
Threads

A computer is capable of doing more than one thing at once. As well as running
more than one program at a time, it is also possible for each program to be
performing more than one task at each time. Each separate program that is
running is called a process. Within each process, each separate running task is
called a thread. The programs we have written so far contain a single thread.
This chapter is about writing programs that execute multiple threads at once.

If a computer has multiple CPUs, each CPU can manage its own thread
of execution and so one can run multiple threads simultaneously. Modern
processors often contain multiple cores. You can think of each core as being
effectively a processor in its own right. Each core can execute a separate
thread.

However, even if you only have one processor you can still run multiple
threads. The threads will appear to run simultaneously, but in fact the oper-
ating system will simply allocate a little bit of time to each thread in turn.
More generally, you can run more threads than processors. One of the main
tasks of the operating system is to determine which threads to run at any one
time. For example, the operating system may give priority to graphical user
interfaces and less priority to background computations.

A multi-threaded program is simply a program that contains more than
one thread. Here is a short list of the possible benefits one might hope to
obtain from writing a multi-threaded program.

(i) CPU Performance: In order to use all your processors or cores you
must run multiple threads, so multi-threading is essential to making full
use of your computer resources.

(ii) Network Performance: When you are waiting for network operations
to complete (e.g., a web page to download), you might as well use your
processors to do other things.

(iii) Fairness: If you are writing a web server, users who want to view one
page shouldn’t have to wait half an hour for some other user’s enormous
download to complete.

(iv) Usability: While a program is performing a lengthy calculation, users
appreciate being able to perform other tasks while the processing hap-
pens “in the background”.

337

338 C++ for Financial Mathematics

(v) More natural programming: Very occasionally a program will be
simpler to write if you use multiple threads.

However, there is a price to be paid for all these positive benefits. Here
are some of the pitfalls one must consider before deciding to write a multi-
threaded program.

(i) Complexity: Multi-threaded code is much harder to write and under-
stand than single-threaded code.

(ii) Testability: Multi-threaded code is much harder to test than single-
threaded code.

(iii) CPU Performance: Using multiple threads can actually slow your
computer down if the code is not written well. This is because there
is some overhead in sending data between threads. If your code spends
most of its time moving data from one thread to another it will perform
badly.

(iv) Difficulty: The human brain seems to struggle with parallel process-
ing. We’re all quite hopeless at multi-tasking and we’re all quite bad at
writing multi-threaded code.

20.1 Concurrent programming in C++
20.1.1 Creating threads

To create a thread one constructs a thread object, passing in a pointer to
the function to call when the thread executes and any parameters required by
the function. thread is defined in the library <thread>.

The code below contains a function primalityTest that takes a single
parameter, which is a pointer to an int. The function primalityTest simply
tries every possible divisor of the referenced int and sees if it can find a
factor. If it finds a non-trivial factor, it prints out that the referenced int is
not prime. Otherwise it prints out the fact that the referenced int is a prime.

void␣primalityTest(␣int*␣pointerToInt␣)␣{
int␣toTest␣=␣*pointerToInt;
for␣(int␣i=2;␣i<toTest;␣i++)␣{

if␣((toTest␣%␣i)==0)␣{
INFO(␣toTest␣<<␣"␣is␣not␣prime"␣);
return;

}
}

Threads 339

INFO(␣toTest␣<<␣"␣is␣prime"␣);
}

void␣testPrimes ()␣{
int␣values [3]␣=␣{1299817 ,1299821 ,1299827};
thread␣t1(␣&primalityTest ,␣&values [0]␣);
thread␣t2(␣&primalityTest ,␣&values [1]␣);
thread␣t3(␣&primalityTest ,␣&values [2]␣);
t1.join ();
t2.join ();
t3.join ();

}

We wish to run the function primalityTest using three separate threads.
The function testPrimes achieves this by creating three thread objects. As
you can see we use the expression &primalityTest to obtain a pointer to the
primality test function.

When we have created each thread we wait for them to complete by calling
join. The join function of a thread blocks (i.e., performs no processing) until
the thread that has been joined completes.

20.1.2 Mutual exclusion
To see the problems that may arise when writing multi-threaded code,

consider what happens if two threads simultaneously execute the code

cout␣<<␣"The␣answer␣to␣calculation␣"<<i<<"␣is␣"<<j<<"\n";

The first thing to notice is that this code is actually equivalent to the code:

cout␣<<␣"The␣answer␣to␣calculation␣";
cout␣<<␣i;
cout␣<<"␣is␣";
cout␣<<j;
cout␣<<"\n";

If two threads execute this code at once, there is no guarantee which thread
will be able to print out a given line of the message first. As a result the
messages that are printed out may be superimposed confusingly. Below is an
example of the type of output that may occur.

The␣answer␣to␣calculation␣The␣answer␣to␣calculation␣1␣2␣is␣19
is␣18

These problems are very visible when one writes data to cout, but subtle
problems can easily occur when multiple threads access the same data or the
same objects. Consider for example the following code:

340 C++ for Financial Mathematics

bool␣debitAccount(Account&␣account ,␣double␣amount)␣{
if␣(account.balance␣ >=␣amount)␣{

account.balance␣ -=␣amount;
return␣true;

}
return␣false;

}

To see why this code is dangerous, suppose that initially the account contains
$100. Suppose that two threads both attempt to debit $100 from the account.

It is possible that, due to bad luck, it may happen that both threads will
simultaneously check the balance and see there are sufficient funds. What may
now happen is that one thread changes the balance to zero, and the second
thread then changes it to −$100. The end result will be that the account will
go overdrawn, even though it at first sight may look as though our if statement
will prevent this occurring.

This is an example of a race condition. A race condition is any situation
where two threads attempt to access the same resource and the outcome
depends upon the order of events. In our example, one imagines that the
two threads are “racing” to debit from the account.

Race conditions are inevitable unless we find some way of ensuring that
two threads cannot read and write to the same data at the same time. Mutual
exclusion locks provide a way of ensuring this.

The class mutex represents a mutual exclusion lock. It has two key meth-
ods, lock and unlock. We say that when the function lock returns, the thread
has acquired the lock. When unlock is called, the thread has released the lock.

Only one thread can acquire the lock at a time. If thread A acquires the
lock and then thread B tries to call lock, then call to lock won’t return until
thread A has called unlock. This guarantees that only one thread ever holds
the lock. It is called a mutual exclusion lock because each thread can exclude
another thread from running by holding the lock. They mutually exclude each
other from running.

In the novel Lord of the Flies, a group of boys are stranded on a desert
island. The boys find a conch shell on a beach and impose a “rule of the
conch” on themselves. They agree that no one can speak unless he’s holding
the conch. This means that the boys are using the conch as a mutual exclusion
lock to prevent them from talking over each other.

Here is an example of how we can use a mutual exclusion lock in a class
called Account which represents a bank account. We give it a member variable
which is a mutex and use this to ensure that no two threads can simultaneously
debit from the same account:

bool␣debitAccount(Account&␣account ,
double␣amount)␣{

account.mtx.lock ();

Threads 341

bool␣ret␣=␣false;
if␣(account.balance␣ >=␣amount)␣{

account.balance␣ -=␣amount;
ret␣=␣true;

}
account.mtx.unlock ();␣//␣don’t␣do␣this
return␣ret;

}

While this code works, you should not actually use the lock and unlock
methods of a mutex directly. The reason for this is that if you lock a mutex you
will need to ensure that unlock is called eventually no matter what happens.
In particular, even if an error occurs, unlock should still be called.

A mutex is an example of a resource that must be released after it is
acquired, even if an error is thrown. It is far from the only example. Memory
is also a resource that should also be released eventually. The same is true for
database connections and locks on the file system.

The solution for all problems of this type is to create a class that manages
the resource and which makes sure that it is released by using a destructor.
Destructors are called when a local variable is deleted even if an error has
occurred.

In the case of a mutex, the class we need to manage the mutex already
exists and is called a lock_guard<mutex>. (mutex is not the only lockable
resource. You can create other types of lock_guard to manage other types of
lockable resource. This is why lock_guard is a template.)

A lock_guard<mutex> calls lock on a mutex in its constructor and then
calls unlock in its destructor. In particular, this means that if one uses a
lock_guard<mutex> as shown below, the mutex will be unlocked even if an
error occurs.

bool␣debitAccount(Account&␣account ,
double␣amount)␣{

lock_guard <mutex >␣lock(account.mtx);
if␣(account.balance␣ >=␣amount)␣{

account.balance␣ -=␣amount;
return␣true;

}
return␣false;

}

Tip: Resource acquisition is initialisation (RAII)

Whenever there is some clean-up that must occur at the end of your method,

342 C++ for Financial Mathematics

use an appropriate class with a destructor that performs the clean-up. This is
summarised by saying that:

• resource acquisition is initialisation;

• resource release is deletion.

When we introduced destructors in Section 16.2, the resource we wished to
manage was memory. In this section we are viewing holding a lock as another
form of resource acquisition. In both cases there is a limited supply of the
resource that needs to be managed: A computer has finite memory; only one
thread can hold a lock.

If you do not use mutual exclusion locks, you have very little guarantee
about the order in which code will be executed (or appear to be executed).
Two problems one has to consider when one doesn’t use mutual exclusion
locks are: The compiler may decide to optimise the code by reordering certain
sections; processors have caches that contain data that may not be written to
main memory for some time. C++ does contain some classes to enable you to
write multi-threaded code without using mutual exclusion locks, but this is a
specialist subject beyond the scope of this book.

Danger!

The compiler can reorder your code as part of the optimisation process. If you
don’t use locks you have very little guarantee on what order code executes. In
other words, if you don’t use locks some very strange bugs will occur.

20.1.3 Global variables and race conditions
Whenever you use a global variable, there will be a potential race condition

if your code is used in a multi-threaded program.
For example, the output streams cout and cerr are global variables and we

have already seen that using these is problematic when writing multi-threaded
code. In FMLib20 the macros INFO and DEBUG_PRINT have been updated to
use a mutex so that messages do not overlap.

This is not the only use of global variables in our code. The function
randuniform uses a global variable to store the current state of the random
number generator. We must therefore add a mutex to the implementation of
randuniform to prevent race conditions:

/*␣ MersenneTwister␣random␣number␣generator␣*/
static␣mt19937␣mersenneTwister;
/*␣ Mutex␣to␣protect␣static␣var␣*/

Threads 343

static␣mutex␣rngMutex;

/*␣ Reset␣the␣random␣number␣generator.
We␣ignore␣the␣description␣string␣*/
void␣rng(const␣string&␣description)␣{

ASSERT(description␣==␣"default");
lock_guard <mutex >␣lock(rngMutex);
mersenneTwister.seed(mt19937 :: default_seed);

}

/*␣ Generate␣random␣numbers␣*/
Matrix␣randuniform(int␣rows ,␣int␣cols)␣{

lock_guard <mutex >␣lock(rngMutex);
return␣randuniform(mersenneTwister ,␣rows ,␣cols);

}

We have used encapsulation to ensure that the random number generator
and the mutex can only be accessed from matlib.cpp. This allows us to ensure
that it is impossible to use the random number generator without first locking
the mutex.

20.1.4 Problems with locking
Using the mutex class may seem like a simple solution. However, in practice

writing correct code for locking between threads can be rather difficult.
The first source of problems is that it is hard to notice that there is a

problem if one omits the correct locking code. Often, one will find that the
program appears to work most of the time and then intermittently fails. In
many ways this is worse than simply failing outright. Should you trust the
answers of a program that occasionally makes mistakes?

To make matters worse, writing unit tests doesn’t help very much. Errors
in locking occur when threads interleave in unexpected ways. It is hard to
write tests that force this to happen.

In addition to these practical problems related to race conditions, one also
has to consider the problem of deadlock that can occur once one uses multiple
locks within a program.

To understand the meaning of a deadlock, suppose that we have two
threads, A and B, and two mutexes a and b. Now suppose the following events
occur in the given order:

1) Thread A locks mutex a.

2) Thread B now locks mutex b.

3) Keeping hold of mutex a, thread A tries to lock mutex b.

4) Keeping hold of mutex b, thread B tries to lock mutex a.

344 C++ for Financial Mathematics

5) Neither thread A nor thread B can proceed because they are each waiting
for the other to complete.

This situation is called deadlock. It occurs whenever two or more threads are
unable to proceed because they are mutually holding resources required by
the other threads.

A famous example of deadlock is the problem of dining philosophers. The
problem is usually expressed as follows:

• A group of philosophers sit in a circle round a table to eat noodles.

• There is a chopstick on the left and a chopstick on the right of each
philosopher.

• Unfortunately they share chopsticks with their neighbours.

• Each philosopher decides at random moments to:

– pick up a free chopstick on their left or right;
– then pick up the second chopstick when it becomes available;
– eat some noodles;
– put down both chopsticks.

This situation is deadlock prone. For example, if every philosopher picks
up the left chopstick, they will then find there is no chopstick on their right
to pick up. The end result is that the philosophers will all starve to death.

A more prosaic example is given by transferring money between accounts.
Consider the following method.

bool␣transferMoney(Account&␣from ,
Account&␣to ,
double␣quantity)␣{
lock_guard <mutex >␣lock1(from.mtx);
if␣(from.balance <quantity)␣{

return␣false;
}
lock_guard <mutex >␣lock2(to.mtx);
from.balance␣-=␣quantity;
to.balance␣+=␣quantity;
return␣true;

}

This code attempts to ensure that we hold a lock on both accounts at the
same time whenever we transfer money from one account to the other.

But suppose that two threads attempt to simultaneously transfer money
between two accounts, account A and account B. Suppose that thread 1 trans-
fers from A to B whereas thread 2 transfers from B to A. It is possible that

Threads 345

thread 1 will acquire the mutex on A, thread 2 will acquire the mutex on B,
and then neither thread will be able to proceed.

There are various techniques one can use to try and resolve the problem.
For example, you could:

(i) Write single-threaded code instead.

(ii) Only use one lock for all accounts.

(iii) Give the locks an ordering and insist that (say) lock A is always acquired
before lock B.

(iv) Include a time-out so if you don’t acquire a lock in a reasonable time
frame you should release all the locks that you hold.

(v) Incorporate some deadlock detection and resolution algorithm in your
locking classes.

All of these are sensible possible solutions to the deadlock problem. Which
is the right choice depends upon what your priorities are in writing the sys-
tem. For example, the first option is probably best if ease of programming is
important to you and performance is unimportant.

Tip: Guidelines for multi-threaded code

• Don’t use global variables. If you must have global variables other than
constants you will need to use locks to protect them.

• Minimise the data shared between threads. The less that is shared, the
less locking required.

• Where possible, use const data between threads as this won’t require
locking.

• Divide your code into simple sequential algorithms and small separate
sections where threads communicate.

• Use standard established design patterns and classes for multi-threaded
code.

• Don’t write multi-threaded code unless there is a clear benefit. Even
then only a tiny part of your code should involve threading.

For example, one important design pattern for writing multi-threaded code
is to use a database to communicate between threads. Standard database soft-
ware is specifically designed for concurrent use. Commercial databases sup-
port sophisticated “transactions” which are a way of allowing multiple users

346 C++ for Financial Mathematics

to perform complex interactions, with the illusion that they are using ordinary
sequential code. The net result is that if you use a database to communicate
between threads, then the database will do all the hard work so you don’t
have to. There is a downside. Communicating with a database is much slower
than working in memory and using a mutex. Nevertheless, databases are great
if you have distributed processes.

We won’t pursue this design pattern further, but in practice it is one of the
most important software design patterns. In this chapter we’ll see some other
multi-threading patterns that can be used entirely within one C++ program.

20.2 The command design pattern
Although it is possible to use the class thread directly, the command

design pattern provides a more object-oriented alternative.
You can use the command design pattern whenever you have some “com-

mand” that you wish to instruct some other piece of code to perform on your
behalf. For example, when writing a user interface you may wish to configure
a button so that it performs a particular command when the user presses the
button.

In the command design pattern one has two classes, a Task class that
represents the command to be performed, and an Executor class that performs
the execution of the command.

Here is the Task interface that we will use:

class␣Task␣{
public:

virtual␣~Task()␣{}
virtual␣void␣execute ()␣=␣0;

};

Here is our Executor class:

class␣Executor␣{
public:

/*␣ Destructor␣*/
virtual␣~Executor ()␣{}
/*␣ Add␣a␣task␣to␣the␣executor␣*/
virtual␣void␣addTask(

std:: shared_ptr <Task >␣task␣)␣=␣0;
/*␣ Wait␣until␣all␣tasks␣are␣complete␣*/
virtual␣void␣join()␣=␣0;
/*␣ Factory␣method␣*/
static␣std::shared_ptr <Executor >␣newInstance ();

Threads 347

/*␣ Factory␣method␣*/
static␣std::shared_ptr <Executor >␣newInstance(

int␣maxThreads␣);
};

You create a subclass of Task whenever you want some task to be performed.
You pass that task to an Executor that decides when the task should be
performed. You pass a task to an Executor by calling addTask. You can wait
until all tasks are complete by calling join.

The advantage of this pattern is that it separates the decision of what
tasks need to be performed from the decision of how to actually run them.
For example, you could write different Executors for different architectures or
performance requirements. You might, for instance, decide to write a version
of Executor that waits until midnight when the computer is not so busy before
executing a task.

In our example classes, the Executor returned by newInstance manages
a set of threads, each of which can then perform tasks. It may be a little more
efficient to reuse threads in this way than to create a new thread for every
single task. This is because setting up a thread, with its associated stack and
security attributes, is a relatively expensive process. It is easy to see how you
could write alternative Executors that perform more sophisticated scheduling.

Notice that the programming task of implementing Task and Executor
are really quite different. Writing a Task involves solving a business problem,
whereas writing an Executor is more of a computer science problem. In a
realistic project the tasks and the executor would be written by different
people. In fact, this is going to be the case for our financial maths library
too: I’ll explain in detail how to implement your own Task classes, but I’ll
leave it to the interested reader to look at the code and work out how I’ve
implemented Executor.

20.3 Monte Carlo pricing
As an example of how to use our scheduler, let’s see how we can write a

multi-threaded Monte Carlo pricer.
Monte Carlo pricing should be easy to speed up using multiple threads.

Each thread can independently perform its pricing. We then just take the
average result. The most tricky point is that we need to be careful about
random number generation.

348 C++ for Financial Mathematics

20.3.1 Random number generation with multiple threads
A naive random number generator uses a global variable to store the cur-

rent state of the random number generator. To use this in a multi-threaded
program, we would need to add a mutex to protect this global variable. This
is potentially inefficient since multiple threads will be constantly locking and
unlocking the same mutex. This will mean that the cache of each processor
will be frequently written to main memory.

A better approach is to use a separate random number generator for each
thread. So long as we obtain appropriate seeds for the random number gen-
erators, it should be possible to ensure that the numbers generated for each
thread are independent.

To implement this approach, we will want to pass around the random
number generator to use whenever we call a function that generates random
scenarios. You may recall that the name of the class we are using to generate
random numbers is the class mt19337.

For this reason, the functions such as randn and randuniform in matlib
have been updated to allow you to pass in the random number generator you
would like to use:

/*␣ Create␣uniformly␣distributed␣random␣numbers␣*/
Matrix␣randuniform(␣int␣rows ,␣int␣cols␣);
/*␣ Create␣normally␣distributed␣random␣numbers␣*/
Matrix␣randn(␣int␣rows ,␣int␣cols␣);
/*␣ Create␣uniformly␣distributed␣random␣numbers␣*/
Matrix␣randuniform(std:: mt19937&␣random ,

int␣rows ,␣int␣cols);
/*␣ Create␣normally␣distributed␣random␣numbers␣*/
Matrix␣randn(std:: mt19937&␣random ,

int␣rows ,␣int␣cols);

Similarly, we need to update the various generatePricePaths functions so
that they take in a mt19337 instance. Here is the change to the declaration of
one such method on MultiStockModel.

MarketSimulation␣generatePricePaths(
std:: mt19937&␣rng ,
double␣toDate ,
int␣nPaths ,
int␣nSteps)␣const;

In addition, MultiStockModel has a function that tells us how many random
numbers it needs to generate a given stock price.

/*␣How␣many␣random␣numbers␣are␣needed
to␣generate␣the␣given␣paths?␣*/

long␣long␣randSize(long␣long␣nPaths ,
long␣long␣nSteps)␣{

Threads 349

return␣stockNames.size ()* nPaths*nSteps;
}

This is useful because mt19337 has a discard function that can be used to
quickly update the state of the random number generator as though we had
generated a given amount of random numbers but without the expense of
creating that many random numbers. Using this we can launch n threads that
have random number generators that will be able to generate as many inde-
pendent random numbers as we need for the calculation. Note we have used a
long␣long as the return type simply because the product might conceivably
be too large to hold in an ordinary int.

20.3.2 A multi-threaded pricer
We want to modify our MonteCarloPricer so that the price method uses

multiple threads. As a first step, we should rename the existing price method.
Let’s rename it as singleThreadedPrice

double␣singleThreadedPrice(
int␣taskNumber ,
int␣nScenarios ,
int␣nSteps ,
const␣ContinuousTimeOption&␣option ,
const␣MultiStockModel&␣model␣)␣{

We’ll still want to call this method, it’s just that our new price function will
call singleThreadedPrice several times but on separate threads. It will then
compute the average result across all threads.

Note that we have made another small change at the same time. The func-
tion singleThreadedPrice takes a parameter taskNumber. Together these are
used to initialise the random number generator. Here is the relevant section
of code from inside the implementation of singleThreadedPrice:

MultiStockModel␣subModel␣=␣model.getSubmodel(
option.getStocks ());

long␣long␣randSize␣=␣subModel.randSize(nScenarios ,
nSteps);

mt19937␣rng;
rng.discard(randSize*taskNumber);

This use of discard guarantees that if we create n tasks and give them con-
secutive task numbers from 0–n, then the set of random numbers used for the
Monte Carlo calculation will be exactly the same as if we had created a single
task. In particular, all the random numbers used will be independent.

350 C++ for Financial Mathematics

20.3.3 Implementing Task

If we wish to use our Executor class, we will need to write an implementa-
tion of Task to perform the Monte Carlo pricing. We will create a number of
identical tasks, give them to the executor, and then compute the average re-
sult. The main work required by our task instances is to call singleThreaded-
Price.

class␣PriceTask␣:␣public␣Task␣{
public:

/*␣ Amount␣of␣random␣numbers␣to␣skip␣*/
int␣taskNumber;
int␣nScenarios ,␣nSteps;
const␣ContinuousTimeOption&␣option;
const␣MultiStockModel&␣model;
/*␣ Output␣data␣*/
double␣result;

PriceTask(
int␣taskNumber ,
int␣nScenarios ,
int␣nSteps ,
const␣ContinuousTimeOption&␣option ,
const␣MultiStockModel&␣model)

:
taskNumber(taskNumber),
nScenarios(nScenarios),
nSteps(nSteps),
option(option),
model(model)␣{

}

void␣execute ()␣{
result␣=␣singleThreadedPrice(␣taskNumber ,

nScenarios ,␣nSteps ,␣option ,␣model);
}

};

One thing to notice about our design is that our task does not share data
with other tasks except for the const references. Thus we are following the de-
sign recommendation given earlier to minimise the amount of communication
between the threads.

Writing this Task class is rather tedious. It would be nice to use lambda
functions instead. Doing this is left as an exercise.

Threads 351

20.3.4 Using the Executor

We now need to create a number of tasks and run them. To decide on the
most appropriate number of tasks to create, we simply add a new configuration
parameter nTasks to the MonteCarloPricer class.

We can now write a multi-threaded price function that: creates the desired
number of tasks; runs them to obtain estimates for the Monte Carlo price; and
combines the results to obtain a better estimate for the price.

double␣MonteCarloPricer ::price(
const␣ContinuousTimeOption&␣option ,
const␣MultiStockModel&␣model)␣const␣{
ASSERT(nTasks␣>=␣1);
vector <␣shared_ptr <PriceTask >␣>␣tasks;
shared_ptr <Executor >␣executor␣=

Executor :: newInstance(nTasks);
for␣(int␣i␣=␣0;␣i<nTasks;␣i++)␣{

shared_ptr <PriceTask >␣task(new␣PriceTask(
i,␣nScenarios/nTasks ,
nSteps ,␣option ,␣model));

tasks.push_back(task);
executor ->addTask(task);

}
executor ->join ();
double␣total␣=␣0.0;
for␣(int␣i␣=␣0;␣i<nTasks;␣i++)␣{

total␣+=␣tasks[i]->result;
}
return␣total␣/␣nTasks;

}

Finally we update our tests to confirm that the result of pricing an option
using multiple threads is the same result as obtained using a single thread.
Since the order of calculations is slightly different there may be very tiny
differences, so one does not expect precisely the same double value. Never-
theless, exactly the same random numbers are used in the calculation, so this
should be the only source of differences.

20.3.5 Remarks upon the design
First, notice that the Executor class has been written to use the static fac-

tory method design pattern. We don’t need to know how it was implemented
in order to use it. In fact, if you look at the code in Executor.cpp you will see
that it is very sophisticated. On the other hand, each Task is easy to write.

Second, notice that the only interaction with the Task instances happens
before and after they are run.

352 C++ for Financial Mathematics

• We set parameters in the constructor

• We access results after calling join on the Executor

This straightforward approach is much simpler than sending data between
threads using shared memory and mutual exclusion locks. Note the total sep-
aration between the algorithm to perform the financial calculation and the
code that handles the threading. This is an example of how using a good
design pattern can simplify your code.

20.4 Coordinating threads
20.4.1 The Pipeline pattern

The command design pattern allowed us to write a multi-threaded pricer
very easily. The pattern was particularly effective because there was no com-
munication whatsoever between the threads.

Nevertheless, sometimes you do want threads to interact with each other
in more sophisticated ways. In this section we will describe one design pattern
which allows two threads together in a slightly more complex manner.

Consider the following class called Pipeline:

class␣Pipeline␣{
public:

Pipeline ();
void␣write(␣double␣value␣);
double␣read ();

private:
bool␣empty;
double␣value;
/*␣ Mutex␣to␣coordinate␣threads␣*/
std:: mutex␣mtx;
/*␣Condition␣variable␣to␣signal␣between␣threads␣*/
std:: condition_variable␣cv;

};

You can use the Pipeline class to connect two threads together.
Two threads share a single Pipeline object. One thread, the write thread,

calls write on the Pipeline to store a value and then waits until the other
thread has called read. Meanwhile the read thread calls read. The read method
will wait until data becomes available to read.

The idea is that the write thread should perform part of a calculation
and then store the result in the Pipeline. The read thread can then read
the result of the partial calculation and complete the remaining processing. If

Threads 353

both threads repeat their calculations in a loop, this will result in two threads
simultaneously performing the overall calculation.

As an example of a the code used to write, here is an example of a Write-
Task:

class␣WriteTask␣:␣public␣Task␣{
public:

Pipeline&␣pipeline;

void␣execute ()␣{
for␣(int␣i=0;␣i<100;␣i++)␣{

pipeline.write(i);
}

}

WriteTask(␣Pipeline&␣pipeline␣)␣:
pipeline(␣pipeline␣)␣{

}
};

In a similar way one can write a ReadTask:

class␣ReadTask␣:␣public␣Task␣{
public:

Pipeline&␣pipeline;
double␣total;

void␣execute ()␣{
for␣(int␣i=0;␣i<100;␣i++)␣{

total += pipeline.read ();
}

}

ReadTask(␣Pipeline&␣pipeline␣)␣:
pipeline(␣pipeline␣),
total (0.0␣)␣{

}
};

Using an Executor we can run these two tasks simultaneously.

static␣void␣testTwoThreads ()␣{
Pipeline␣pipeline;
auto␣w␣=␣make_shared <WriteTask >(␣pipeline␣);
auto␣r␣=␣make_shared <ReadTask >(␣pipeline␣);
SPExecutor␣executor␣=␣Executor :: newInstance (2);
executor ->addTask(␣r␣);

354 C++ for Financial Mathematics

executor ->addTask(␣w␣);
executor ->join ();

ASSERT_APPROX_EQUAL(␣r->total ,␣99.0*50.0 ,␣0.1);
}

Although this simple example is rather abstract, the pattern can be applied
effectively. For example, consider the following code:

void␣priceByMonteCarlo()␣{
␣␣␣␣double␣total␣=␣0.0;
␣␣␣␣or␣(int␣i=0;␣i<nScenarios;␣i++)␣{
␣␣␣␣␣␣␣␣vector<double>␣path␣=␣generatePricePath();
␣␣␣␣␣␣␣␣double␣payoff␣=␣computePayoff(␣path␣);
␣␣␣␣␣␣␣␣total␣+=␣payoff;
␣␣␣␣}
␣␣␣␣return␣total/nScenarios;
}

It looks as though this can’t be parallelised using the Command pattern since
it appears that the generatePricePath function is not thread safe. This is
because it does not require you to pass in a random number generator as a
parameter so it is certainly either not thread safe or inefficient.

Nevertheless we can parallelise this code using the Pipeline design.
The write thread could call generatePricePath repeatedly and the read
thread could then call computePayoff repeatedly on the resulting path ob-
jects. Of course, one would have to use a new Pipeline class that used
a vector<double> to store the intermediate results rather than a simple
double. (Note that using templates would be a good way to achieve this).

Whether this will provide a significant performance improvement is highly
dependent upon how time consuming the generatePricePath and compute-
Payoff methods are. What is important is that the benefit gained from using
multiple processors outweighs the costs of coordinating threads. The design
is particularly useful if one or more of the functions communicates across a
network. Network communication is typically rather slow but not at all CPU
intensive. So if you can keep your CPU busy while you’re waiting to download
data, this can make a big difference in making the most of your hardware.

The pipeline design is used a lot in computing. Unix users will recognise the
communication betweeen processes down pipes as an example of the pipeline
idea. Many banks use messaging architectures where different components
perform small tasks and then forward the message to other components. This
can be seen as a sophisticated form of the basic pipeline architecture.

Threads 355

20.4.2 How Pipeline is implemented
Pipeline is not a C++ standard class. However, it is implemented using

the standard condition_variable class.
The condition_variable class is designed to enable two threads to send

signals to each other about when they should start processing. If a thread
finds that it has no work to do, it should call wait on a condition variable.
This method call will not return until another thread calls notifyAll on the
same condition variable. This basic mechanism allows one thread to pause its
execution while it waits for another thread to complete a task.

The usual way of working with a condition_variable is to test the value
of some variable to see if there is any work to do. If there is no work to do,
call wait, otherwise perform the necessary work.

Meanwhile another thread will update the variable to indicate that there is
some work to do and then call notifyAll. This wakes up the waiting threads
which check the variable again and, observing that there is now some work to
do, get on and perform the necessary work.

For this pattern to work, we will need to use a mutex to ensure that
we synchronise the use of any shared variables workAvailable correctly. In
general whenever you use a condition_variable you will have an associated
mutex. You should hold the unique_lock<mutex> whenever you call wait or
notify_all. You should also hold such a lock whenever you use the variables
that you are using to send work between the two threads.

The full process is illustrated in Figure 20.1. In this diagram Thread 1
has to wait for Thread 2 to complete some interesting task before beginning
work itself. Thread 2 communicates that work has been done by changing the
value of a boolean variable called workAvailable from false to true. The locks
and condition variables are used as described above to ensure that Thread 1
will pause its execution until there is work available and will then commence
processing.

This diagram is certainly complex. In practice, the situation is not as
difficult to work with as it seems. This is because one always uses condition
variables in essentially the same way with the same sequence of calls. Here is
a summary of how to use a condition_variable.

(a) Whenever you use a condition_variable you should also create a mutex
to guard the data.

(b) Test if the condition is met in a while loop. You will want to lock the
mutex while testing your condition.

(c) Change the data that determines whether your condition passes before
calling notifyAll. Hold the lock while modifying the data: You should
keep holding it until you have called notify_all.

(d) If you were to release the lock before calling wait it is possible that the
condition may change just before you start waiting. As a result you must

356 C++ for Financial Mathematics

FIGURE 20.1: Sequence of calls as Thread 1 waits for Thread 2 to complete
some work and set the variable workAvailable to true.

Threads 357

hold the lock using a unique_lock<mutex> and you must pass the lock
as a parameter when calling wait.

(e) The condition_variable will release your lock and start waiting as one
atomic operation.

The implementation of Pipeline follows this pattern exactly.

void␣Pipeline ::write(␣double␣value␣)␣{
unique_lock <mutex >␣lock(mtx);
while␣(! empty)␣{

cv.wait(lock);
}
empty␣=␣false;
this ->value␣=␣value;
cv.notify_all ();

}

double␣Pipeline ::read()␣{
unique_lock <mutex >␣lock(mtx);
while␣(empty)␣{

cv.wait(lock);
}
empty␣=␣true;
cv.notify_all ();
return␣value;

}

As can be seen, condition variables are much harder to understand than the
Pipeline class itself.

The classes such as thread and condition_variable supplied as part of
C++ are really designed to allow you to build threading classes that are sim-
pler to work with, such as Pipeline. We emphasise again that when writing
multi-threaded code you should always use established design patterns and
libraries.

Exercises
20.4.1. Modify Executor so that you can run function objects as well as Task
implementations.

20.4.2. Write a multi-threaded function to compute the mean of a vector
using a given number of threads.

358 C++ for Financial Mathematics

20.4.3. Change the pipeline class so that data of an arbitrary type can be
used in place of a double.

20.4.4. Write a function integrate2d that takes a function of two variables
and integrates it over a rectangular region using the Monte Carlo method.

20.4.5. Write a multi-threaded version of integrate2d.

20.5 Summary
We have learned about the C++ threading library. In particular we have

learned about the following C++ threading classes:

(i) thread,

(ii) mutex

(iii) condition_variable

(iv) lock_guard (used with mutex)

(v) unique_lock (used with condition_variable)

We have also learned some important design patterns.

• The resource acquisition is initialisation pattern.

• The command pattern

• The pipeline pattern

We have used these techniques to improve the performance of our Monte
Carlo pricer. We have learned that while, in this case multi-threaded code
was worth the extra effort, this is not always the case. Multi-threaded code is
harder to write and test. There is a danger of race conditions and deadlocks.

Chapter 21
Next Steps

This chapter gives some suggestions of the next steps you may want to take
to develop your skills as a quant.

21.1 Programming
21.1.1 Libraries

You have reached a point in your development as a C++ programmer
where it no longer makes sense to write everything from scratch. It is time to
learn some C++ libraries. Useful libraries for financial mathematics include:

(i) The standard library. We introduced some of the most useful features
in Chapter 18, but it pays to be familiar with the entire library. There
are excellent online resources as well as books such as [8].

(ii) Boost. The Boost libraries are a collection of general purpose libraries
that are useful for many C++ applications. They are written to a high
standard. Many of the newer standard C++ libraries were first part of
the Boost library. See http://www.boost.org.

(iii) Quantlib. This is a C++ library designed specifically for financial math-
ematics. See http://quantlib.org.

(iv) GNU Scientific Library. The GNU scientific library contains many
useful routines for numerical computations. See http://www.gnu.org/
software/gsl/.

21.1.2 Software development
There is more to writing software than learning to program.
Your code needs to be easy to understand, easy to test, and easy to debug.

Books such as [5] can enhance your approach to programming.
You need to learn how to make the most of a team of programmers and

how to deliver what your customers want. [1] is a thought-provoking account
of how to do this.

359

http://www.boost.org
http://quantlib.org
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

360 C++ for Financial Mathematics

You need to learn from the experience of other programmers. [4] describes
a range of tried and tested design patterns that you can apply.

21.1.3 C++ language features
We have by no means covered the whole of the C++ language in this book.
To learn the C language features of C++, the classic reference is [9]. It

can be useful to learn C as a language in its own right because many libraries
such as the GNU Scientific Library are written in C. It is easier to understand
their design if one knows how to program in C without C++.

We have covered the most important object-oriented features of C++,
but we have not given a comprehensive overview. Instead you should consult
a C++ textbook such as [16]. One issue to remember as you learn more
obscure features of C++ is that a good programmer writes code that is easy
to understand. This can mean choosing not to use certain language features
because they are obscure or difficult. It is a good idea to read a book such as
[13] that gives advice on which features of C++ work well and which to avoid.

We have only scratched the surface of template programming in C++.
Again, a C++ textbook will tell you more about the language, but you should
use a book such as [17] to learn how to use them well.

Tip: Less is more

The slogan “Less is more” was first coined by the architect Mies van der Rohe.
He used it to explain his pared-down approach to architecture and design.

The slogan applies equally well in many areas of design. Most people prefer
the sleek and simple interface of an iPad to the complex interface of a standard
PC.

Less is more applies particularly well to programming. Using every avail-
able feature of a language can make your software harder to understand. The
Java language was deliberately designed to have less features than C++ and
so is easier to learn and debug. Similarly, the kernel of the Linux operating sys-
tem is written in C not C++, because it is easier to reason about C programs
than C++ programs.

It is a good idea to increase your knowledge of the C++ language. It is
also a good idea to show restraint when you decide which features of C++ to
use.

21.1.4 Other languages
If C++ is the only computer language you know, then you should learn

some more languages. For many purposes C++ is not the best language to
use. Other languages which are used by many financial institutions include:
Python, MATLAB, R, C#, Visual Basic, and Excel. For example, if you need

Next Steps 361

to test whether a mathematical algorithm works, it will probably be quicker
to prototype the code in MATLAB or Python than to write it in C++.

21.2 Financial mathematics
Our introduction to financial mathematics in Appendix A is extremely

minimal. The books [14], [15], and [6] are very accessible introductions to the
subject.

To keep our financial mathematics pre-requisites to a minimum, we have
not covered interesting topics such as:

• pricing using trees and the related topic of PDE methods,

• pricing American options,

• pricing interest rate products,

• pricing credit products,

• improving the convergence of Monte Carlo methods,

• equity models beyond the Black–Scholes model.

Perhaps the best way to enhance your C++ skills is to learn the mathe-
matics behind these approaches and then implement them yourself in C++.
Implementing any of the above in C++ would make an excellent student
project. For example, [14] gives a detailed account of how to price many dif-
ferent derivatives using tree-based pricing. Can you code them in C++?

It is also valuable to learn how other people have approached the problem
of writing C++ libraries for financial mathematics. See for example [7] or [3].

http://taylorandfrancis.com

Appendix A
Risk-Neutral Pricing

In this appendix we will briskly review the theory of risk-neutral pricing that
is at the heart of much financial mathematics. The reader should not restrict
themselves to this chapter if they wish to learn financial mathematics. They
should begin by consulting one of the many excellent and accessible textbooks,
e.g., [14], [15], and [6].

However, it will be useful to collect together the results needed in this
book. In addition we will take a slightly different approach to these books. We
will describe the central ideas of financial mathematics without requiring any
high-powered mathematical ideas. Instead of proving theorems, we will simply
refer to the numerical experiments one can perform to verify the theorems in
practice. Hopefully the reader will find our presentation to be an interesting
complement to more standard presentations.

A.1 The players in financial markets
To understand financial mathematics, it helps to understand who the dif-

ferent players are in financial markets, and what trading strategies they are
using.

Probably the most obvious player in the financial markets is the speculator.
A speculator is someone who has a theory about what will happen in the future
and invests on the basis of that in order to make a profit. They take a lot of
risks but hope that because of their judgement they will be able to make a
large return. A famous speculator is Warren Buffett. By carefully analysing the
market and the fundamentals of companies, he has successfully made billions
of dollars, and in 2008 was named the richest man in the world by Forbes.

However, there are many other players in financial markets and many
profit-making strategies. Traditionally, one important role was the stockbroker.
They would act as a broker between different parties, some of whom wanted to
buy stock and some of whom wanted to sell stock and arrange trades. With the
advent of electronic trading, this role is now performed largely automatically
by electronic stock exchanges. These stock exchanges make a profit simply by
charging individuals to trade. The charges are quite small and often considered

363

364 C++ for Financial Mathematics

negligible. Nevertheless, stock exchanges are important players in the financial
markets. They are making money without forming any opinions on the future
direction of stock prices.

Another important player in financial markets is the ordinary pensions
investor. Each individual is an insignificant player, but together the pensions
market is enormous. Most people do not have either the qualifications or in-
terest to devise an investment strategy based on a careful analysis of company
performance. Instead they hire someone else to manage their investments on
their behalf: a pension fund manager. A pension fund manager is a member of
the financial services industry. They make their money by performing a service
for some other investor, specifically dealing with all the difficult investment
questions on behalf of the pension fund members.

In actual fact, a pension fund manager will use other members of the
financial services industry to help them. For example, one standard investment
strategy is to “diversify” your wealth across a large number of stocks in the
expectation that one’s wealth will then grown in accordance with the stock
market as a whole. This should be less risky than investing in individual stocks.
This investment approach is based heavily on the mathematical theory of
Markowitz [11]. A pension fund manager is likely to put money into investment
funds that invest in large numbers of stocks and track market indices. Whoever
manages these tracker funds will, of course, charge a fee for their service.

Notice how impractical it would be for most individuals to manage their
pension funds without any help from the financial services industry. Following
a diversification strategy where one chooses hundreds of different stocks to
invest in and monitoring the performance of one’s fund is a full-time job in
itself. Most people are glad to pay someone else to do it for them.

In addition to ordinary individuals investing for their retirement, there
are high-net-worth individuals. These are people such as dot-com billionaires
and royalty who have vast amounts of money to invest but have neither the
experience nor the inclination to play the stock market themselves. They too
pay for financial services and often use strategies such as investing in hedge
funds to manage their money. Hedge funds are simply investment funds which
use more sophisticated investment strategies than basic diversification. They
aim to produce investments that they hope will be appealing to their clients.

Speculators, pension investors, high-net-worth individuals, investment
funds, and hedge funds are all in the business of trying to invest wisely to
make a high return. They will follow quite different strategies according to
how much risk they are willing to take, and their different theories about
what may happen in the future. These players in the market are called the
buy side. The name is slightly misleading because these players both buy and
sell financial products. However, banks think of these market players as their
customers and so think of them as the buyers of their financial services.

Tracker fund managers, on the other hand, offer a pure service. They
promise that (for a cost) they will invest your money so that it tracks a par-
ticular stock market index such as the FTSE 100 or the S&P 500. Whether

Risk-Neutral Pricing 365

these indices go up or down, the tracker fund manager still makes money.
They are purely interested in selling financial products to buy-side investors.
So, tracker fund managers can be thought of as part of the sell side.

Banks are on the sell side. One part of their business is maintaining de-
posit accounts for customers and also giving loans. This part of their business
is partly acting as a broker between people who want to save and people who
want to borrow, and partly a matter of managing the risks of lending money.
Another part of a bank’s business is assisting companies with valuation, pub-
licity, and so forth when those companies decide they want to float on the
stock market. As you can see from these examples, the focus of banks is on
providing a service rather than on speculation.

This book focuses on the part of a bank’s business where they sell deriva-
tives, typically to other members of the financial services industry. Derivatives
are financial products that are designed to make it easier to manage risk.

One simple example of a derivative is a call option. A call option is a
financial product that is a promise to pay at some fixed time T an amount

max{ST −K, 0}

where ST is the price of a stock at time T and K is some pre-agreed amount
called the strike price. If you are absolutely confident that the stock price
will not fall below $100 then you will make more money by investing in a
call option with strike of $100 than you would by investing in just the stock.
However, if it turns out you are wrong and the stock price does fall below
$100, you will lose everything. So, buying a call option is a riskier strategy
than investing in the stock, but potentially more rewarding. A less risk-averse
investor might prefer to invest in a call option rather than in the stock itself.

Banks provide a large range of financial derivatives that allow investors
to tailor their investments to very precisely match their beliefs and risk pref-
erences. What banks wish to do is to sell such products to their customers
without taking on any significant risk themselves. They are interested in mak-
ing money from charges, or equivalently, by adding on a small profit margin
to all the prices that they quote.

If you are going to promise to pay someone an amount equal to the value
of the S&P 500 in one year’s time, it is rather obvious how to hedge this risk:
simply invest in the stock market in the proportions of the S&P 500. From this
it is easy to work out the minimum you should charge a customer in exchange
for making this promise if you want to guarantee that you don’t make a loss.
Note that hedging a risk simply means finding an investment strategy you can
use that counteracts that risk.

It turns out that derivatives such as options can also be hedged very ef-
fectively by following certain somewhat elaborate strategies. This means that
banks can sell derivatives to their customers without taking on significant
risk. Customers gladly buy the derivatives because they do not have the time,
expertise, inclination, or scale to follow the required hedging strategies them-
selves. Banks gladly take on the work, because they know that they will be

366 C++ for Financial Mathematics

FIGURE A.1: The payoff of a call option.

able to make a profit by charging a small margin on top of the costs of the
hedging strategy.

A.2 Derivatives contracts
A derivatives contract is nothing more or less than a clearly stated bet.

Typically they are bets stated in terms of the behaviour of the financial mar-
kets but it is possible to buy derivatives on the weather.

A European call option on a stock S with maturity T and strike K is a bet
on the stock price ST at time T . If you own such an option, then at time T
you will receive the following amount of money:

max{ST −K, 0}.

Figure A.1 shows the payoff of the call option against the value ST .
A European put option on a stock S with maturity T and strike K is a bet

on the stock price ST at time T . If you own such an option, then at time T
you will receive the following amount of money:

max{K − ST , 0}.

Figure A.2 shows the payoff of the put option against the value ST .
These peculiar-seeming contracts are called options because you can ex-

press the contract in the following way. A European call option on a stock S
with maturity T is the right, but not the obligation, to buy the stock at time
T for the strike price K. So the customer has the option at time T of whether
they wish to exercise the option and buy the stock.

To see why these formulations are equivalent, note that if at time T the
stock price ST is greater than K, the holder of the contract will certainly take
the opportunity to buy the stock for a price K. This means they gain a stock
worth ST but lose K in cash. So at time T the value of their investment is

Risk-Neutral Pricing 367

FIGURE A.2: The payoff of a put option.

ST −K. On the other hand, if at time T the stock price is less than K, then it
doesn’t make sense to buy the stock for more than the market price. So in this
case, they don’t exercise the option and so their wealth remains unchanged.
Taking both possibilities into account, one sees that they will end up making
the amount

max{ST −K, 0}.

The word European refers to the fact that the owner of the stock is only
allowed to exercise the stock at the maturity time T . When derivatives were
first traded, this was the convention for option contracts in European markets.
In American markets the convention was that one could choose whether or
not to exercise the option at any time up to maturity. Since an American
option gives you a little more choice than a European option, American option
contracts will be at least as expensive as European options.

These days the typical market conventions are not segregated so much by
continent. Typically, options on a single stock are American and options on an
index of stocks are European. We will mostly be interested in European op-
tions in this book as they are easier to price. For this reason we will sometimes
omit the word European and just talk about put and call options.

There really are no rules on what a derivatives contract can be. If you
can invent a contract and find someone who wants to buy it off you, you
have just invented a new kind of derivative. You will probably also want to
think up a trading strategy for your new derivative so that you don’t go
bankrupt! Coming up with interesting new financial contracts is the role of a
structurer. A structurer works within a bank to devise novel contracts that
the bank believes they can hedge successfully and which the bank’s customers
will consider an attractive tool for managing their risks and so be willing to
buy.

Here are some other derivatives contracts that we will consider in this book.
It’s a lot of terminology to take in, but none of the ideas are complicated.

• An Asian option with maturity T and strikeK. The payoff is determined
by taking

max avg(S)−K

368 C++ for Financial Mathematics

where avg(S) is the average stock price from time 0 up to maturity. In
practice one wouldn’t take the average over all times, but would take
a finite average over some fixed times. Options of this form were first
traded on Asian markets, hence the name.

• A Bermudan option. This is where you can choose to exercise the op-
tion at certain fixed times before maturity. It gives you more flexibility
than a European option, but less than an American option. It is called
Bermudan because Bermuda is halfway between Europe and America.

• A digital call option with maturity T and strike K. This has a payoff
equal to 1 if the stock price at maturity is greater than K and 0 other-
wise. “Binary option” or even “Boolean option” would perhaps be more
logical names, but digital is the standard term. You can get European,
American, etc., versions of digital options.

• A digital put option has payoff equal to 0 if the stock price at maturity
is less than K and 0 otherwise.

• An up-and-out knock-out call option with maturity T and strike K and
barrier B has a payoff given by:{

max{ST −K, 0} if St < B for all times t ∈ [0, T]
0 otherwise.

The name of this option comes from the fact that the option is worthless
if the stock ever goes up to or over the barrier level B. In this case we say
the option has “knocked out”. The option knocks out if we ever exceed
the barrier, which is why it is called an up-and-out option. One can
similarly define an up-and-in knock-in call option by:{

max{ST −K, 0} if St > B for some time t ∈ [0, T]
0 otherwise.

It is reasonable to ask why anyone would want to buy any of these financial
products. The general answer is that it allows people to manage their risk
according to their risk preferences and their beliefs.

Let us illustrate this with an example.

Example 1: A speculator knows that a company is involved in a major court
case and the court is due to make a decision in one month’s time. The specu-
lator believes that as a result, the company’s stock price will probably either
fall by about 15% or rise by about 15%. To exploit this theory, the speculator
might buy a call option with strike equal to the current stock price plus 5%
and a put option with strike equal to the current stock price minus 5%. The
resulting profit will depend upon the stock price, as shown in Figure A.3. Note

Risk-Neutral Pricing 369

FIGURE A.3: A “strangle” consisting of a put and a call option.

that this figure shows the total profit and not just the payoff of the options
because we have taken into account the cost of buying the options.

If the stock price stays the same, the speculator will lose money (the
amount spent buying the options), but if the stock price either moves up
sufficiently or down sufficiently, the speculator will make money. By trading
in options, the speculator is able to formulate a bet that closely matches their
beliefs. It is much easier to predict when a stock will move significantly than
to predict whether it will go up or down, so this type of strategy is a powerful
tool for a trader. This particular strategy is called a “strangle”.

Notice that by buying and selling combinations of puts and calls with
different strikes, it is possible to approximate pretty much any shape of payoff
curve you would like. Figure A.3 is just one simple example. This explains
why simple put and call options are so popular; they can be used to construct
very precisely targeted bets on the future of the stock market.

Another important point is that although the word bet seems rather neg-
ative, bets can be used for insurance. Derivatives are often used for insurance.

Example 2: Consider a pension investor who is approaching retirement. It is
unlikely they will want all of their wealth to be invested in the stock market
as it is too risky. On the other hand, they wouldn’t want all of their wealth
locked up in government bonds as the interest rate is too low. One obvious
solution is to invest some money in stocks and some in bonds. The prob-
lem with this approach is that it turns out you have to frequently rebalance
your portfolio between stocks and bonds if you wish to invest optimally (this
question was famously studied by Merton [12]). Frequently rebalancing your
portfolio requires active management of your pension. In addition, rebalanc-
ing a portfolio incurs significant transaction costs. An alternative approach
is to use derivatives to create a portfolio that has a risk somewhere between
stocks and bonds. If you assume that puts and call options are available at
all possible strikes, then it turns out that you can replicate Merton’s strategy
by trading in derivatives at time 0 and then simply waiting till the maturity.

370 C++ for Financial Mathematics

Importantly, when it comes to a practical implementation of these strategies,
buying derivatives can allow you to reduce the transaction costs and largely
eliminate the need for active management.

A.3 Risk-neutral pricing
Banks wish to provide the financial products desired by their customers.

To make their customers happy and to ensure that there is a liquid market
in their financial products, banks are typically willing to either buy or sell
the same financial product. Due to the intense competition in the market,
banks can only charge slightly different amounts for buying and selling the
same product. Of course, they do always charge slightly different amounts
for buying and selling. This difference reflects the requirement of the bank to
make a profit. This willingness to both buy and sell at similar prices is perhaps
the most immediately apparent difference between banks and speculators.

Banks behave very much like bookmakers in that they are willing to take
either side of a bet. As a result they price their financial products in a very
similar way to bookmakers.

One very interesting fact about the odds offered by bookmakers is that
these odds do not necessarily reflect the chance of a particular event happen-
ing. Instead, bookmaker’s odds tell you more about which bets are selling well
and which are selling badly.

As an example, many people are willing to bet on their favourite football
team for emotional reasons rather than because of any serious belief that they
will win. They bet on what they want to happen rather than on what they
think will happen. Similarly, many people don’t like to bet on a firm favourite.
This is because even if their horse wins they might not make enough money to
make it exciting. Most people bet for entertainment as much as profit. A 1%
return on an investment in a day is, from a financial markets point of view, an
excellent rate of return. However, if you are at a race track and bet £100 on
the only four-legged horse running a particular race in the hope of making £1
profit, then you probably won’t find your watching the race to be particularly
exciting.

As a result, bookmakers do not trouble themselves with carefully studying
the physiques and pedigrees of horses when they choose what odds to offer.
Instead they simply match up the bets between different parties in such a way
that they are guaranteed to make a profit. This profit comes from the small
difference in the price offered by bookmakers when taking the different sides
in any particular bet.

The derivatives desks of banks operate in almost exactly the same way.

Risk-Neutral Pricing 371

Derivatives traders are largely indifferent to whether a stock goes up or down
in much the same way as bookmakers are indifferent as to which horse wins a
race.

Since the margin between the buy and sell prices of both bookmakers
and banks are rather small, they find it a useful approximation to think of
themselves as offering a single price at which they will either buy or sell. In
practice, both banks and bookmakers can first choose a self-consistent set of
prices at which they are willing to either buy or sell. Then when a customer
asks to buy a particular product, they quote a slightly higher price, and a
slightly lower price when their customer wishes to sell. In this way, they expect
to make a small profit from each event that their customers bet on.

It is vital that the prices offered by the bank or the bookmaker are self-
consistent in some sense. What they don’t want to happen is for a customer to
be able to place a complex bet that the customer knows they are guaranteed
to win. Such a bet is called an arbitrage.

To ensure that such a bet is impossible, bookmakers price their bets as if
the cost of a bet was determined by the expected payoff in some probability
model. As one knows, the odds offered by bookmakers look as though they
are derived from the probability of each horse winning. Yet as we have dis-
cussed, those prices are derived by considering the market for bets and not by
considering the real chance of those events occurring.

Derivatives traders work in exactly the same way. One slight difference is
that derivatives traders offer bets over longer time periods than bookmakers,
so they factor charging and paying interest into their calculations.

The probability model used by bookmakers and derivatives traders is called
a Q-measure model. This is a model that looks exactly like an ordinary prob-
ability model, but the values it computes are measures of price and not mea-
sures of the chance of an event happening. A classical probability model that
attempts to measure the chance of an event taking place is called a P-measure
model.

If the interest rate for a risk-free bank account is at a constant level r so
that a principal P invested is worth Pert at time t, then the amount charged
by a derivatives trader for an option that pays f(ST) at time T is given by
the following formula:

Risk neutral price := e−rT EQ(f(ST)).

Here EQ denotes the expectation taken using the Q-measure model. The factor
e−rT is a discount factor to take account of interest payments. The motivation
for calling this price the “risk neutral price” will be explained shortly.

Notice that if you invest an intial sum P in the risk-free bank account,
then the payoff will be PerT and is independent of the stock price. Hence, its
expectation in the Q-measure model will also be PerT . So the “risk neutral”
valuation of a bank account in which P is invested at time 0 is:

e−rT EQ(PerT) = P.

372 C++ for Financial Mathematics

This provides a basic test of the risk-neutral valuation formula’s consistency:
It can correctly value risk free investments.

Kolmogorov’s axioms

For a pure mathematician, intuitive notions such as “chance” have no mean-
ing. To do rigorous mathematics, one needs axioms for probability theory
from which to rigorously deduce results. Kolmogorov’s axioms provide this
basic foundation. One advantage of the mathematical approach to problem
solving is that the same mathematical model can often be applied to different
phenomena. For example, the theories of gravity and electricity both obey
inverse square laws and so can be modelled in the same way. It is useful to
think of the mathematical theory of probability as a purely abstract theory
which can then be applied to either model chance events (using probability
as a P-measure) or model prices (using probability as a Q-measure). Prob-
ability theory can also be applied to study subjects which appear to have
nothing to do with chance. For example, probability theory can be used to
study integration.

The mathematical details of Kolmogorov’s axioms can be found in any rig-
orous introductory book on probability. Speaking loosely, a probability model
is defined to be a function from a set of events to the interval [0, 1], which
assigns the “probability” to each event. Note that mathematically, this model
is simply a function. Interpreting this function in terms of chance or in terms
of pricing is outside the scope of strict mathematics. This function can be
seen as a measure of the “size” of a set of events, with larger sets being those
with a higher probability of occurring. The mathematical theory which makes
this precise is called measure theory, and Kolmogorov’s axioms are stated in
terms of measure theory. This is where the word measure comes from when
we discuss the P-measure and the Q-measure.

A.4 Modelling stock prices
What would be a good Q-measure probability model for stock prices and

what would be a good P-measure model?
One idea is to assume that the stock price moves up and down by a nor-

mally distributed amount at each time step. If we choose a time step δt we
can model a stock price by assuming that it starts at a given level S0 at time
0, and then model the values at subsequent times δt, 2δt, 3δt, and so forth
using the equation:

St+δt = St +Xt

Risk-Neutral Pricing 373

where the random variables Xt are independent and normally distributed,
with some fixed mean and standard deviation. This model is called the dis-
crete Bachelier model after Louis Bachelier, one of the pioneers of financial
mathematics. (It is a discrete model because it only models the stock price at
discrete time steps δt.)

The problem with the Bachelier model is that if the stock price is $10
then $1 would be quite a big change in the stock price. Whereas if the stock
price is $1000, then $1 would be a relatively small change in the stock price.
The Bachelier model assumes the size of the increments are independent of
the current stock price and so it doesn’t have the correct scaling behaviour.
To fix this, we simply assume that the log of the stock price has independent
normally distributed increments with a fixed mean and standard deviation.
So we write

log(St+δt) = log(St) + Yt (A.1)

where the Yt are independent, normally distributed random variables with
some fixed mean and standard deviation.

We can now write each Yt in terms of some other normally distributed
random variables εt which have mean 0 and standard deviation 1. If A is the
mean of each Yt and B is the standard deviation, we have

Yt = A+Bεt.

Let us suppose there are N = 1
δt time steps from 0 to 1. Using the formulae

for the expectation and variance of a sum of random variables, we can compute
the mean and variance of logSt as follows.

E(log(S1)− log(S0)) = NE(Yt) = A

δt
.

Var(log(S1)− log(S0)) = N Var(Yt) = B2

δt
.

In finance we use units of one year to measure times. So the first of these
formulae says that the log of the stock price grows by A

δt on average each year.
The second formula can be interpreted similarly in terms of the standard
deviation over a year.

Let us write µ̃ for the expected growth in the log of the stock price over a
year and σ for the variance in the growth of the log of the stock price over a
year.

We can then compute A and B in terms of µ̃ and σ. We have:

A = µ̃δt

B = σ
√
δt.

This allows us to rewrite our model (A.1) as follows:

log(St+δt) = log(St) + µ̃δt+ σ
√
δtεt. (A.2)

374 C++ for Financial Mathematics

The advantage of reformulating the model in this way is that we have a clear
statement of how the constants µ̃ and σ can be interpreted in terms of the
change of the log of stock price over a year. By contrast, the choices for A
and B depend upon the choice of time interval δt and so don’t have such a
natural interpretation.

The sum of independent normally distributed random variables is also a
normally distributed random variable, so in our model, the distribution for
the log of the stock price is normal at all times. We can compute the mean
and variance at any subsequent time T just as we computed the mean and
variance at time 1 above. We conclude that at any time t, according to this
model, the log stock price is normally distributed with mean logS0 + µ̃t and
standard deviation σ

√
t. We write:

logSt ∼ N(logS0 + µ̃t, σ
√
t).

This means that we can also compute the distribution of St at each time. Since
logSt is normally distributed, we say that the St is log-normally distributed.

Let us compute the probability density function of St according to this
model. We can write down the probability density of zt := logSt. It is

pzt(x) = 1
σ
√

2πt
exp

(
− (x− log(S0)− µ̃t)2

2σ2t

)
. (A.3)

We can use this to compute the expected value of St = exp(zt). The necessary
integration is left as an exercise. The result is

E(St) = S0 exp
((

µ̃+ 1
2σ

2
)
t

)
.

Because the right-hand side is the same as the growth of a principal S0 in-
vested at a continuously compounded interest rate of µ̃ + 1

2σ
2, it is natural

to introduce a variable µ := µ̃ + 1
2σ

2 called the drift. Since investors already
understand the notion of interest rates very well, the drift is a somewhat more
intuitive notion to an experienced investor than µ̃. So let us rewrite our model
in terms of µ.

Definition. Discrete-time geometric Brownian motion

log(St+δt) = log(St) +
(
µ− 1

2σ
2
)
δt+ σ(δt) 1

2 εt. (A.4)

We will call this model the discrete-time geometric Brownian motion model.
Since in this book we do not make much use of the mathematical theory of
continuous-time stochastic processes, we will some times just call this model
simply geometric Brownian motion. The parameter µ is the drift and can be
interpreted as a form of interest rate as discussed above. The parameter σ is
called the volatility. It measures the size of random fluctuations in the stock
market.

Risk-Neutral Pricing 375

In [2], Black and Scholes proposed that the continuous-time version of this
model could be used as a P-measure model for stock prices. For this reason
we will sometimes refer to this model as the Black–Scholes model for stock
prices.

To answer whether it is a good P-measure model, one would need to per-
form statistical tests to see how well the model fits real-world data. The data
suggests that this is only a rather crude approximation of the real behaviour
of stock prices. One notable gap in the model is that it underestimates the
probability of large changes in the stock price. Another notable gap in the
model is that the volatility is constant, but it appears to change over time.
For real financial applications, therefore, the discrete-time geometric Brown-
ian motion might not be a good choice of P-measure model for stock prices.
However, for teaching purposes it is a good choice because it is relatively easy
to write down and analyse.

Is discrete-time geometric Brownian motion a good choice for a Q-measure
model of stock prices? In general it is not, because it would give inconsistent
price information. Recall that in a Q measure model the price of financial
products is given by the discounted expected value of the financial product.
We can use this to calculate that the stock price at time 0 is given by:

S0 exp((µ− r)t).

On the other hand, by definition the stock price at time 0 is S0. Therefore
discrete-time geometric Brownian motion can only be a Q measure model if
we have µ = r where r is the risk-free interest rate. We make the following
definition.

Definition. The Q-measure geometric Brownian motion model for the stock
price is given by

log
(
St+δt
St

)
=
(
r − 1

2σ
2
)
δt+ σ(δt) 1

2 εt. (A.5)

It is important to notice that most people would agree immediately that
this is not a plausible P-measure model. The motivation of most investors
for investing in the stock market is that they expect a better rate of return
from stocks than from risk-free investments. It follows immediately for these
investors that their P-measure model cannot be a Q-measure model. In the
case of the model (A.4) one would expect that a P-measure model would
have µ > r. This is where the phrase risk neutral pricing comes from. The P-
measure and the Q-measure only coincide for highly unusual investors who are
indifferent as to whether their investments are risky. Such investors are called
risk-neutral investors. Typical pensions investors are risk averse. Gambling
addicts are risk seeking.

While we have seen that Equation (A.5) is not a good P-measure model
for anyone but risk neutral investors, is it a good choice of Q-measure model?
It is certainly a probability model that gives the correct initial value of the

376 C++ for Financial Mathematics

stock price when one can make risk-free investments at a rate of r. This means
that a trader who prices derivatives using this model cannot be arbitraged.
However, this is only a minimum requirement for a Q-measure model. It is
also important to check if it fits market prices for derivatives well. To check
this we should compute the risk-neutral prices of put and call options. One
simply needs to compute the expected value of the payoff

max(exp(zt)−K, 0)

using the formula for p(zt) given in Equation (A.3). This is another exercise
in integration.

Theorem 1. The Black–Scholes Formulae If one uses the Q-measure
geometric Brownian motion model (A.5) to price stock options, then the price
of a European call option at time 0 with maturity T and strike K is

C = N(d1)S0 −N(d2)K exp(−rT) (A.6)

where N is the cumulative distribution function of the standard normal dis-
tribution,

d1 = 1
σ
√
T

(
log
(
S

K

)
+
(
r + σ2

2

)√
T

)
,

and
d2 = 1

σ
√
T

(
log
(
S

K

)
+
(
r − σ2

2

)√
T

)
.

The corresponding formula for a European put option is:

P = N(−d2)K exp(−rT)−N(−d1)S. (A.7)

To see if our Q-measure model accurately fits market data, we should see
if we can find parameter values so that the prices given by the formulae above
match real market prices for options. This is left as a rather tricky exercise for
you to try out using the C++ skills developed in this book (Exercise 19.4.5).
The answer is that our Q model gives a basic crude fit to the market data for
options, but a more sophisticated model is needed in practice.

We should emphasise that Black and Scholes used a far more elaborate
argument to derive these formulae based on P-measure models in their seminal
paper [2]. We have simply assumed that the pricing model takes a particular
form and then computed some integrals. We will discuss Black and Scholes’
original argument in more detail when we discuss hedging.

Tip: Dimensional analysis

It is conventional to use the year as the unit of time in finance calculations.
Often the units are omitted when writing financial formulae. For example, one

Risk-Neutral Pricing 377

might talk about an interest rate of 5% when one perhaps should state more
clearly that it is an interest rate of 5% per annum. Thus, the dimensions of an
interest rate are T−1 where T stands for the time dimension. The dimensions of
the drift parameter µ are also T−1. One can see from the above formulae that
the dimensions of the volatility parameter σ must be T− 1

2 . This states that the
standard deviation of the change in the log of the stock price grows at a rate
proportional to the square root of time. This is simply a consequence of the
formula for computing the variance of a number of independent increments.
Volatilities are often quoted as a percentage, so a volatility of 20% means that
σ = 0.2.

You can use this dimensional analysis to check various formulae in financial
mathematics. For example, we can rewrite the discrete-time Black–Scholes
model (A.4) as

log
(
St+δt
St

)
=
(
µ− 1

2σ
2
)
δt+ σ(δt) 1

2 εt. (A.8)

In this formula the stock price has units of (say) dollars, but these units cancel
in the computation of St+δtSt

to give us a dimensionless quantity. Similarly, all
the terms on the right-hand side are dimensionless.

If you have heard of fractals and the associated theory of fractional di-
mensions, you may be interested to notice that the fractional dimension of
volatility is connected to the fact that stock prices are fractals.

A.5 Monte Carlo pricing
To compute risk-neutral prices of more complex derivatives, one can use

the algorithm of Monte Carlo pricing. The algorithm is as follows.

• Simulate N scenarios for the asset prices using your Q-measure model.
A scenario is simply one possible future set of asset prices. These asset
prices only need to be computed at the times relevant to the derivatives
contract. For a European option this means you only need to compute
prices at maturity. For a discrete-time knock-out option, you would need
to compute prices at intermediate times to see if the option has knocked
out. Your simulation should have the same probability distribution as
your Q-measure model.

• Compute the mean final payoff of the derivative.

• Discount the mean payoff to take account of the interest rate. This is
an estimate for the price of the derivative.

378 C++ for Financial Mathematics

The mathematical theorem underpinning this approach is the central limit
theorem. It tells us that the expected price computed in this way is equal
to the risk-neutral price. Moreover, it tells us that the standard error in this
estimate is proportional to 1√

N
. So by increasing the number of scenarios in

the simulation one can get increasingly accurate estimates of the derivative
price. We can also compute confidence bounds for the error using the central
limit theorem.

Monte Carlo pricing is not necessary if the payoff of the derivative depends
upon a single stock price at a single time. Recall that the risk-neutral price is
defined as an expectation which is, in turn, defined as an integral. If the price
of the derivative depends on the stock price at a single time, one only needs
to calculate a 1-dimensional integral. This can be done more efficiently using
Simpson’s rule than by using the Monte Carlo algorithm.

If the payoff of the derivative depends upon the stock price at multiple
time points or upon multiple risk factors, then the relevant integral will be a
higher-dimensional integral. In general, high-dimensional integrals are difficult
to perform efficiently and some form of Monte Carlo algorithm is required. The
Monte Carlo algorithm we have given above for pricing derivatives is just an
application of the Monte Carlo integration formula.

Let us state the result explicitly even though it is simply a special case of
the central limit theorem.

Theorem 2. Let f : [0, 1]d → R be an integrable and square integrable func-
tion. Then one can estimate the d-dimensional integral

∫
f by

1
N

N∑
j=1

f((xj1, x
j
2, . . . , x

j
d))

where the xji are uniformly distributed random variables on the interval [0, 1].
By this we mean that the sum on the right hand side has expectation equal to∫
f and

√
N

 1
N

 N∑
j=1

f((xj1, x
j
2, . . . , x

j
d))

− ∫ f


converges in distribution to a normal distribution N(0, σ2).

It is important to know that section has simply described the most ba-
sic form of Monte Carlo pricing. Many refinements are possible. For a simple
example, see Exercise 9.3.7. One should consult a book dedicated to Monte
Carlo pricing to understand the state of the art. Implementing more sophis-
ticated Monte Carlo algorithms would be an excellent test of the C++ skills
you will develop by reading this book.

We remark that Monte Carlo techniques can be used for many purposes
other than just calculating risk-neutral prices. Monte Carlo methods can also

Risk-Neutral Pricing 379

be used for calculating risk figures, developing optimal trading strategies, and
testing the effectiveness of trading strategies.

We also note that Monte Carlo methods are not the only way of pricing
derivatives. We will see in the exercises that simple derivatives can be priced
using familiar integration rules such as the rectangle rule or Simpson’s rule.
There are also pricing methods based around trees and partial differential
equations.

A.6 Hedging
We have described how a trader can produce prices that are guaranteed to

be arbitrage-free if they use the risk-neutral pricing methodology. However,
this is by no means enough to guarantee that a trader who charges these prices
will make money.

This is obvious if one considers bookmakers. Bookmakers need to produce
a consistent set of prices at which they are willing to buy and sell different bets.
However, that is not all they must do. They need to work out how to hedge
their bets. This is the process of balancing the bets of different customers off
against each other in such a way that the bookmaker can be sure that they
will not lose money. Note that another way of hedging bets is to place your
own counter-bets with another bookmaker, so it is not necessary to wait for
appropriate customers to arrive before you can start hedging bets.

In general you will need to place at least one hedge for every source of
risk that you are potentially exposed to. In a simple model of a stock market
with a single stock, following the geometric Brownian motion (A.4) and with
a fixed risk-free interest rate, the only source of risk is the stock price. Thus, a
trader who sells derivatives will want to place at least one bet to reduce their
risk to changes in the stock price.

One way to measure the amount of risk of your portfolio to changes in the
stock price is to compute the sensitivity to changes in the stock price. If P is
the value of your portfolio, the sensitivity:

∂P

∂S

gives a measure of how much your portfolio would change in value if the stock
price changed, everything else being fixed. This sensitivity is called the delta
of the portfolio and is denoted by ∆.

Clearly the delta of a portfolio consisting solely of n units of stock is simply
n and the delta of a portfolio consisting of only risk-free investments is 0. This
means that by borrowing money to sell stock or by selling stock and placing
the money in risk-free investments, one can change the delta of one’s portfolio.
We assume that any amount of stock can be bought or sold at a given price

380 C++ for Financial Mathematics

and similarly that any amount can be saved in the risk-free bank account,
and that any amount can be borrowed at the same rate. This means that it
is possible to adjust the delta of a portfolio to any desired value simply by
transferring money between the risk-free account and stock.

The assumption that one can buy and sell any desired amount of stock
and that one can lend or borrow unlimited amounts all at the same rate is a
simplifying assumption. The essence of this assumption is that one is a small
player in a large market and that the costs of trading are negligible. Notice
that we allow one to sell stock one does not own in order to obtain a portfolio
containing a negative quantity of stock. This is just a mathematical shorthand
for borrowing stock off someone else in the same way that a negative bank
account is shorthand for being in debt.

Under this assumption, it is always possible to trade in stock to ensure
that the delta of your portfolio is 0. This means that, to first order, the value
of your portfolio will not change when the stock price changes. This is as good
a hedge as it is possible to make at any one time. The delta hedging trading
strategy is to regularly trade in stock in order to ensure that the delta of one’s
portfolio is always close to zero. This trading strategy is the key to the success
of risk-neutral pricing.

A trader who pursues this strategy charges the risk-neutral price for deriva-
tive products and then follows the delta hedging trading strategy. The idea
is that since the sensitivity to changes in the stock price is kept at 0, this
strategy should be close to risk free (at least if one measures risk using the Q
probabilities). The effectiveness of this strategy depends upon how frequently
one trades to keep the delta close to zero. In the limit as one approaches delta
hedging in continuous time, the risk of the strategy actually drops to zero.
We will not attempt to prove this mathematically. Instead, in Chapter 14 we
confirm this theory numerically by plotting a histogram of the profit and loss
of this investment strategy and seeing how it changes as the time interval
decreases. Notice also that the method can be generalised to multiple risk
factors, to hedge one needs to invest in financial products in such a way that
the overall sensitivity to each risk factor is zero.

The obvious objection to this strategy is that it measures the risk of invest-
ments using Q probabilities. However, if one believes that the Q probabilities
that reflect market prices aren’t so different from the actual P probabilities of
events occurring, then one might hope that the risk of the strategy will still
be low even when we measure the risk using P probabilities.

This raises the question of how the delta hedging strategy performs if
one delta hedges using a given set of Q probabilities, but stock prices actu-
ally evolve according to some other set of P probabilities. One approach to
answering this question is numerical experiments. We pursue this approach
in Chapter 14. Indeed, one can perform quite sophisticated tests of how the
delta hedging strategy performs under a variety of constraints. For example,
one can study what happens if one pursues the delta hedging strategy derived
using the Q model (A.5) but the stock price actual evolves using a completely

Risk-Neutral Pricing 381

different model, perhaps including features such as fat tails and transaction
costs. These numerical results are enough to explain whether or not trading
derivatives and investing them using the delta hedging strategy is likely to
be a profitable strategy. These results can also indicate how much one should
charge in order to make an acceptable profit even in the face of issues such as
transaction costs.

Simple though these numerical experiments are to perform, this does not
reflect the history of the development of the theory of risk neutral pricing. In
[2], it was proved mathematically that if the stock price follows the P-measure
model (A.4), then the delta hedging strategy in continuous time is risk-free so
long as one uses the Q-measure model (A.5). This has the consequence that
if you believe that the continuous-time version of the P-measure model (A.4)
is a perfect model for stock prices, then the only possible consistent way of
pricing derivatives is to use the Q-measure model (A.5).

This mathematical result has had a profound impact on financial markets.
It provides a form of mathematical explanation of how a bank can trade in
derivatives to make a profit.

However, the mathematical result requires a number of unrealistic assump-
tions. In particular:

• Unlimited amounts of stock can be bought or sold at this price and one
is not restricted to buying whole numbers of stocks (we say there is
infinite liquidity).

• There are no transaction costs.

• It is possible to trade in continuous time.

• The stock price follows the continuous-time limit of the model (A.5).

• Any amount of money may be invested or borrowed at a fixed risk-free
rate of r.

• The stock does not pay a dividend.

More sophisticated modelling can be used to remedy the last three problems
and still obtain similar mathematical results, but the first three assumptions
are essential to the argument.

In some ways, therefore, the numerical results of Chapter 14 are more
convincing than the mathematical result as one can easily test the performance
of the strategy with more realistic market models.

It is clear empirically that assumptions such as no transaction costs, infinite
liquidity, constant volatility, and log normally distributed stock prices are
unrealistic. More subtly, the assumption that the trader starts with their own
view on the likely evolution of the market (i.e., a fixed P-measure model) is also
typically false. Just as bookmakers have little or no opinion about the racing-
form of horses, so derivatives traders do not need to develop a careful opinion
about the stock market. In practice, derivatives traders choose a basic form

382 C++ for Financial Mathematics

for a Q-measure model and then fit the parameters to actual market data for
put and call prices. This process is called calibration. The traders then simply
assume that the difference between the P-measure model and their pricing
model is sufficiently small that their hedging strategy and pricing policy will
still turn an acceptable profit with an acceptable risk.

While the mathematical derivation of the Black–Scholes model and the
delta hedging strategy depend heavily upon a number of implausible assump-
tions, the practical strategy of delta hedging works effectively in practice so
long as one chooses good Q-measure models. The most convincing proof of
this is the financial success of the derivatives desk of banks.

It is important to notice that the risk-neutral pricing approach together
with delta hedging is just one possible investment strategy.

An alternative mathematical approach is to price financial products using
the notion of expected utility. A utility function assigns a number to the
future wealth of an investor that measures how happy that investor is with
the outcome. One can then model the behaviour of speculators by assuming
that they are trying to maximize their expected utility in a P model that
matches the beliefs of that investor. Using this model, speculators attempt to
derive their profits by forming more accurate beliefs than other people and
hence out-performing the market. This is an entirely different strategy to the
approach of simply following the market and making a profit by charging a
little more to buyers than one pays to sellers. In particular, speculators are
willing to take large risks in the hope of making large profits. Delta hedgers try
to avoid risks entirely and instead aim to make a profit by offering a valuable
service.

A.7 Summary
We have described the delta hedging strategy used by banks. This strategy

allows banks to make a profit by, in effect, selling a risk-management service to
their customers. Risk-neutral pricing is a key component of the delta hedging
strategy. Risk-neutral pricing tells you what you should charge your customers
if you are following the delta hedging strategy. In addition, the partial deriva-
tives of the risk neutral price tell you how to hedge your risk when you are
following the delta hedging strategy.

Other trading strategies, and hence other pricing methodologies, are used
by other types of investors.

Bibliography

[1] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2000.

[2] F. Black and M. Scholes. The pricing of options and corporate liabilities.
The Journal of Political Economy, pages 637–654, 1973.

[3] D. J. Duffy. Financial Instrument Pricing Using C++. John Wiley &
Sons, 2013.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education India,
1995.

[5] A. Hunt and D. Thomas. The Pragmatic Programmer: from Journeyman
to Master. Addison-Wesley Professional, 2000.

[6] M. S. Joshi. The Concepts and Practice of Mathematical Finance, volume
1. Cambridge University Press, 2003.

[7] M. S. Joshi. C++ Design Patterns and Derivatives Pricing, volume 2.
Cambridge University Press, 2008.

[8] N. M. Josuttis. The C++ Standard Library: a Tutorial and Reference.
Addison-Wesley, 2012.

[9] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint. The C Programming
Language, volume 2. Prentice-Hall, 1988.

[10] W. Margrabe. The value of an option to exchange one asset for another.
The Journal of Finance, 33(1):177–186, 1978.

[11] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91,
1952.

[12] R. C. Merton. Lifetime portfolio selection under uncertainty: The
continuous-time case. The Review of Economics and Statistics, pages
247–257, 1969.

[13] S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs
and Designs. Pearson Education, 2005.

383

384 Bibliography

[14] S. E. Shreve. Stochastic Calculus for Finance I: The Binomial Asset
Pricing Model. Springer Science & Business Media, 2004.

[15] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Mod-
els, volume 11. Springer Science & Business Media, 2004.

[16] B. Stroustrup. Programming: Principles and Practice Using C++. Pear-
son Education, 2014.

[17] D. Vandevoorde and D. M. Josuttis. C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., 2002.

Index

/*. . . */, multiple line comment, 8
//, single line comment, 8
&, bitwise and, 29
&, obtaining a memory address, 181
&, references, 101
&&, logical and, 29
->, pointer operator, 182
\a, bell character, 22
\n, newline character, 9
\r, carriage return character, 22
\t, tab character, 22
^, exclusive or, 29
∆ stock price delta, 379
., dot operator, 126, 129
=, assignment operator, 29
=0, abstract method, 162
==, comparison operator, 29
|, bitwise or, 29
||, logical or, 29
!=, not equals operator, 29
? :, ternary operator, 66
*, pointer operator, 181
*, type modifier, 182
~, not operator, 29

abstract functions, 212
American option, 367
antithetic sampling, 157
arbitrage, 371
array programming, 286
arrays, 176
ASCII, 22
Asian option, 368
ask price, 243
assembly language, 3
ASSERT, 87
assertions, 87

assignment operator, 282
assignment operators, 30
auto, 306

Bachelier model, 373
base class, 207
Bermudan option, 368
bid ask spread, 243
bid price, 243
bit, 18
Black–Scholes formula, 376
Black–Scholes model, 375
boiler plate, 8
bool, 20
Boolean, 20
break, 60
breakpoint, 250, 256
bug tracking, 259
build, 260
byte, 18

call option, 365, 366
capturing variables, 332
casting, 22
catch, 63
Central Limit Theorem, 378
char, 20
char*, C style string, 27, 185
character, 20
child class, 209
Cholesky decomposition, 292, 321
cin, 9
class, 124
class keyword, 125
code-review, 246
comma operator, 67
command pattern, 346

385

386 Index

comments, 8
compiled language, 3
compiler, 3
concurrent programming, 338
condition_variable, 355
console, 39
const, 47, 102, 130, 188, 274
constructor, 138
continue, 60
continuous integration, 261
copy constructor, 283
cout, 9
CPU, 17

database, 345
deadlock, 343
DEBUG_PRINT, 88
debugger, 247
declaration, 42, 125, 296
default, 63
default constructor, 139
definition, 42, 80, 130, 296
delete, 192
delete [], 179
delta, 157, 379
delta hedging, 233, 380
derivatives, 366
destructor, 269
development environment, 1
digital option, 368
do, 57
double, 9, 20
down-and-out option, 368

else, 13
encapsulation, 135
error handling, 61
escaping, 22, 115
European option, 366
extends, 208
extreme programming, 91

factory design pattern, 227
false, 20
float, 9, 20
for, 58, 309

forward declaration, 217
function, 37
function object, 329
function pointers, 333
functor, 329

general protection fault, 203
geometric Brownian motion, 375
global variable, 47
GPU, 287

header file, 72, 77
heap, 200, 202
hedging, 379
hexadecimal, 18
HTML, 117

if, 13, 32
include, 28, 72, 77
indifference pricing, 382
INFO, 88
information hiding, 78
inheritance, 207
initialisation list, 140
initializer_list, 315
inline, 80
inlining member functions, 205
instance, 124
int, 9, 18
interface, 159
interpreted language, 3
iterators, 307

kilobyte, 18
knock-in option, 368
knock-out option, 368
Kolmogorov’s axioms, 372

lambda function, 330
libraries, 359
liquidity, 381
list, 312
local classes, 171
local variable, 47
logging, 246, 261
long, 19

Index 387

machine code, 3
macros, 86
main, 39
Makefile, 6
make_shared, 196
map, 315
Margrabe option, 326
Matrix, 267
maturity, 366
measure theory, 372
megabyte, 18
member function, 129
member variable, 125
memory address, 26
memory leak, 203, 262
Mersenne Twister, 154
Merton problem, 370
messaging architectures, 354
method, 124
modularity, 40
Monte Carlo pricing, 145, 377
move operator, 285
mt19337, 154
multiple inheritance, 215
mutex, 340
mutual exclusion, 339

namespace, 48
new, 192
new [], 179
nibble, 18
null pointer exception, 203
null-terminated string, 185
nullptr, 194

object, 124
ofstream, 104
once and only once, 40
operator overloading, 275
operators, 28
ostream, 104
overloading functions, 46
override, 211

pair programming, 246
parameter, 38

parent class, 209
pass by reference, 101
pass by value, 101
pipeline, 352
P-measure, 371
pointer, 27, 179
pointer arithmetic, 182
polymorphism, 166
#pragma once, 77
private, 135
private inheritance, 215
process, 337
profiling, 262
protected, 220
pseudo square root, 321
public, 125
put option, 366

Q-measure, 371

race condition, 340
random numbers, 154
recursion, 41
references, 101
release, 12
resource acquisition is initialisation

(RAII), 341
return, 38, 60
return by reference, 280
risk-neutral pricing, 370
rule of three, 282

scope, 47, 65
seed, 155
SEGV, 203
set, 310
shared_ptr, 194
short, 19
short circuit evaluation, 66
sizeof, 28
size_t, 20
smart pointer, 194
stack, 200
stack trace, 248, 253
standard template library (STL), 303
static, 79, 218

388 Index

static analysis, 261
static members, 218
statically typed, 17
static_cast, 26
stdafx.h, 72
strike, 366
string, 106
stringstream, 107
structurer, 367
subclass, 209
superclass, 209
superclass methods, 216
switch, 63

templates, 295
ternary operator, 66
TEST, 89
test infected, 91
test-driven development, 91
testing, 85
this, 206
threads, 337
throw, 61
true, 20
try, 63
typedef, 304

UML, 167, 213, 230
unit test, 85, 245
unordered_map, 315
unsigned, 19
up-and-out option, 368
user-defined types, 123
using, 49

vector, 97, 311
vectorisation, 286
version control, 258
virtual, 162, 210
virtual destructor, 162, 208, 271
void, 45

while, 55
World Wide Web, 117

You Aren’t Going to Need It
(YAGNI), 299

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Introduction
	1 Getting Started
	1.1 Installing your development environment
	1.1.1 For Windows
	1.1.2 For Unix
	1.1.3 For MacOS X

	1.2 Running an example program
	1.3 Compiling and running the code
	1.3.1 Compiling on Windows
	1.3.2 Compiling on Unix

	1.4 Understanding the example code
	1.5 Configuring the compiler
	1.6 Making decisions
	1.7 Exercises
	1.8 Summary

	2 Basic Data Types and Operators
	2.1 Memory terminology
	2.2 Basic data types
	2.2.1 Integers
	2.2.2 Floating point numbers
	2.2.3 Booleans
	2.2.4 Characters

	2.3 Casting
	2.4 Memory addresses
	2.5 Operators
	2.5.1 The sizeof operator
	2.5.2 Mathematical operations
	2.5.3 Comparison operators
	2.5.4 Logical operators
	2.5.5 Bitwise operators
	2.5.6 Combining operators
	2.5.7 Assignment operators
	2.5.8 If statements revisited

	2.6 Summary

	3 Functions
	3.1 The C++ function syntax
	3.2 Recursion
	3.3 Libraries
	3.4 Declaring and defining functions
	3.5 Functions that don’t return a value
	3.6 Specifying default values
	3.7 Overloading functions
	3.8 Global and local variables
	3.9 Namespaces
	3.10 Summary

	4 Flow of Control
	4.1 while loops
	4.2 do-while loops
	4.3 for loops
	4.4 break, continue, return
	4.5 throw statements
	4.6 switch statements
	4.7 Scope
	4.8 Flow of control in operators
	4.8.1 Short circuit evaluation
	4.8.2 The ternary operator
	4.8.3 The comma operator

	4.9 Summary

	5 Working with Multiple Files
	5.1 The project FMLib
	5.2 Header files
	5.3 Creating our project
	5.3.1 Creating the first header file
	5.3.2 Some code that uses the functions
	5.3.3 Write the definitions

	5.4 How header files work
	5.4.1 The meaning of include
	5.4.2 Pragma once
	5.4.3 Information hiding
	5.4.4 Inline

	5.5 A complete example
	5.6 Summary

	6 Unit Testing
	6.1 A testing framework for C++
	6.2 Macros
	6.3 The macros in testing.h
	6.3.1 The ASSERT macro
	6.3.2 The ASSERT_APPROX_EQUAL macro
	6.3.3 The INFO macro
	6.3.4 The DEBUG_PRINT macro
	6.3.5 The TEST macro

	6.4 Using testing.h
	6.5 What have we gained?
	6.6 Testing normcdf
	6.7 Summary

	7 Using C++ Classes
	7.1 Vectors
	7.2 Pass by reference and const
	7.2.1 Pass by reference
	7.2.2 The const keyword
	7.2.3 Pass by reference without const

	7.3 Using ofstream
	7.4 Working with string
	7.5 Building strings efficiently
	7.6 Writing a pie chart
	7.6.1 A web-based chart
	7.6.2 Create a header file
	7.6.3 Write a source file
	7.6.4 Enable testing in your files
	7.6.5 Write functions to generate the boiler plate
	7.6.6 Write a simple version of the chart data
	7.6.7 Write a test of what we’ve done so far
	7.6.8 Write the interesting code
	7.6.9 Testing the interesting code
	7.6.10 Wrap it all up into a single function

	7.7 The architecture of the World Wide Web
	7.8 Summary

	8 User-Defined Types
	8.1 Terminology
	8.2 Writing your own class
	8.2.1 Writing the declaration
	8.2.2 Using a class
	8.2.3 Passing objects between functions
	8.2.4 How have classes helped?

	8.3 Adding functions to classes
	8.3.1 Using const on member functions

	8.4 A financial example
	8.4.1 What have we gained?

	8.5 Recommendations on writing classes
	8.6 Encapsulation
	8.6.1 Implementing PieChart
	8.6.2 Using PieChart

	8.7 Constructors
	8.7.1 Writing a default constructor
	8.7.2 An alternative, and superior syntax

	8.8 Constructors with parameters
	8.9 Summary

	9 Monte Carlo Pricing in C++
	9.1 A function to simulate stock prices
	9.2 Writing a Monte Carlo pricer
	9.3 Generating random numbers for Monte Carlo
	9.4 Summary

	10 Interfaces
	10.1 An interface for pricing options
	10.2 Describing an interface in C++
	10.3 Examples of interfaces
	10.4 Interfaces in object-oriented programming
	10.5 What’s wrong with if statements?
	10.6 An interface for integration
	10.7 Summary

	11 Arrays, Strings, and Pointers
	11.1 Arrays, the C alternative to vector
	11.2 Pointers
	11.2.1 new and delete
	11.2.2 Pointer operators
	11.2.3 Looping with pointers
	11.2.4 Using pointers in practice

	11.3 Pointers to text
	11.4 Pass by pointer
	11.5 Don’t return pointers to local variables
	11.6 Using pointers to share data
	11.6.1 Sharing with shared_ptr

	11.7 Sharing data with references
	11.8 The C++ memory model
	11.8.1 The stack
	11.8.2 The heap

	11.9 Summary

	12 More Sophisticated Classes
	12.1 Inlining member functions
	12.2 The this keyword
	12.3 Inheritance
	12.3.1 What have we gained?
	12.3.2 Terminology

	12.4 Overriding methods — the virtual keyword
	12.4.1 A note on the keyword virtual

	12.5 Abstract functions =0
	12.6 Multiple layers
	12.6.1 UML
	12.6.2 Another object hierarchy
	12.6.3 Multiple inheritance
	12.6.4 Calling superclass methods

	12.7 Forward declarations and the structure of cpp files
	12.8 The static keyword
	12.9 The protected keyword
	12.10 Summary

	13 The Portfolio Class
	13.1 The Priceable interface
	13.2 The Portfolio interface and implementation
	13.2.1 Implementation of PortfolioImpl

	13.3 Testing
	13.4 UML
	13.5 Limitations
	13.6 Summary

	14 Delta Hedging
	14.1 Discrete-time delta hedging
	14.2 Implementing the delta hedging strategy in C++
	14.2.1 Class declaration
	14.2.2 Implementation of runSimulation
	14.2.3 Implementing the other methods of HedgingSimulator
	14.2.4 Changes to CallOption

	14.3 Testing the simulation
	14.4 Interpreting and extending our simulation
	14.5 Summary

	15 Debugging and Development Tools
	15.1 Debugging strategies
	15.1.1 Unit tests
	15.1.2 Reading your code
	15.1.3 Logging statements
	15.1.4 Using a debugger
	15.1.5 Divide and conquer

	15.2 Debugging with Visual Studio
	15.2.1 Obtaining a stack trace in Visual Studio
	15.2.2 Breakpoints and single stepping in Visual Studio

	15.3 Debugging with GDB
	15.3.1 Using GDB to obtain a stack trace
	15.3.2 Breakpoints and single stepping with GDB
	15.3.3 Other commands and features

	15.4 Other development tools and practices
	15.4.1 Version control
	15.4.2 Bug tracking
	15.4.3 Testing framework
	15.4.4 Automated build
	15.4.5 Continuous integration
	15.4.6 Logging
	15.4.7 Static analysis
	15.4.8 Memory-leak detection
	15.4.9 Profiling tools
	15.4.10 Example

	15.5 Summary

	16 A Matrix Class
	16.1 Basic functionality of Matrix
	16.2 The constructor and destructor of Matrix
	16.2.1 Virtual destructors
	16.2.2 When is a destructor needed?
	16.2.3 Additional constructors

	16.3 Const pointers
	16.4 Operator overloading
	16.4.1 Overloading +
	16.4.2 Overloading other arithmetic operators
	16.4.3 Overloading comparison operators
	16.4.4 Overloading the << operator
	16.4.4.1 Remarks on return by reference

	16.4.5 Overloading the () operator
	16.4.6 Overloading +=

	16.5 The rule of three
	16.5.1 Overriding the assignment operator
	16.5.2 Writing a copy constructor
	16.5.3 The easy way to abide by the rule of three
	16.5.4 Move operators

	16.6 Completing the Matrix class
	16.7 Array Programming
	16.7.1 Implementing an efficient matrix class
	16.7.2 Array programming
	16.7.3 Array programming in the option classes
	16.7.4 Array programming for the BlackScholesModel
	16.7.5 Array programming the Monte Carlo pricer
	16.7.6 Performance

	16.8 Summary

	17 An Overview of Templates
	17.1 Template functions
	17.2 Template classes
	17.3 Templates as an alternative to interfaces
	17.4 Summary

	18 The Standard Template Library
	18.1 typedef
	18.2 auto
	18.3 Using iterators with vectors
	18.4 for loops and containers
	18.5 The container set
	18.6 The container vector
	18.7 The container list
	18.8 The container initializer_list
	18.9 The containers map and unordered_map
	18.9.1 How a map works
	18.9.2 How an unordered_map works

	18.10 Storing complex types in containers
	18.11 A mathematical model for multiple stocks
	18.12 Using the Standard Template Library in FMLib
	18.13 Summary

	19 Function Objects and Lambda Functions
	19.1 Function objects
	19.2 Lambda functions
	19.3 Function pointers
	19.4 Sorting with lambda functions
	19.5 Summary

	20 Threads
	20.1 Concurrent programming in C++
	20.1.1 Creating threads
	20.1.2 Mutual exclusion
	20.1.3 Global variables and race conditions
	20.1.4 Problems with locking

	20.2 The command design pattern
	20.3 Monte Carlo pricing
	20.3.1 Random number generation with multiple threads
	20.3.2 A multi-threaded pricer
	20.3.3 Implementing Task
	20.3.4 Using the Executor
	20.3.5 Remarks upon the design

	20.4 Coordinating threads
	20.4.1 The Pipeline pattern
	20.4.2 How Pipeline is implemented

	20.5 Summary

	21 Next Steps
	21.1 Programming
	21.1.1 Libraries
	21.1.2 Software development
	21.1.3 C++ language features
	21.1.4 Other languages

	21.2 Financial mathematics

	A Risk-Neutral Pricing
	A.1 The players in financial markets
	A.2 Derivatives contracts
	A.3 Risk-neutral pricing
	A.4 Modelling stock prices
	A.5 Monte Carlo pricing
	A.6 Hedging
	A.7 Summary

	Bibliography
	Index

