C++ and Object-Oriented Numeric
Computing for Scientists and Engineers

Springer Science+Business Media, LLC

Daoqi Yang

C++ and Object-Oriented
Numeric Computing for
Scientists and Engineers

site
) Springer

Daogi Yang

Department of Mathematics
Wayne State University
656 West Kirby Street
Detroit, MI 48202

USA

yang @math.wayne.edu

Library of Congress Cataloging-in-Publication Data
Yang, Daoqi.
C++ and object-oriented numeric computing for scientists and engineers / Daogi Yang.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4612-6566-5 ISBN 978-1-4613-0189-9 (eBook)
DOI 10. 1007/978-1-4613-0189-9
1. C++ (Computer program language) 2. Object-oriented programming (Computer
science) I. Title.
QA76.73.C153 Y35 2000
502°.85’5133—dc21 00-044009

Printed on acid-free paper.

© 2001 Springer SciencetBusiness Media New York

Originally published by Springer-Verlag New York, Inc in 2001

Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher Springer Science+Business Media, LLC, except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

9876543

ISBN 978-1-4612-6566-5 SPIN 10946183

To Xiujuan, Joy, and Forrest

Preface

This book is intended to be an easy, concise, but rather complete, introduc-
tion to the ISO/ANSI C++ programming language with special empha-
sis on object-oriented numeric computation for students and professionals
in science and engineering. The description of the language is platform-
independent. Thus it applies to different operating systems such as UNIX,
Linux, MacOS, Windows, and DOS, as long as a standard C++ compiler
is equipped. The prerequisite of this book is elementary knowledge of cal-
culus and linear algebra. However, this prerequisite is hardly necessary if
this book is going to be used as a textbook for teaching C++ and all the
sections on numeric methods are skipped. Programming experience in an-
other language such as FORTRAN, C, Ada, Pascal, Maple, or Matlab will
certainly help, but is not presumed.

All C++ features are introduced in an easy way through concepts such
as functions, complex numbers, vectors, matrices, and integrals, which are
familiar to every student and professional in science and engineering. In
the final chapter, advanced features that are not found in FORTRAN, C,
Ada, or Matlab, are illustrated in the context of iterative algorithms for
linear systems such as the preconditioned conjugate gradient (CG) method
and generalized minimum residual (GMRES) method. Knowledge of CG,
GMRES, and preconditioning techniques is not presumed and they are ex-
plained in detail at the algorithmic level. Matrices can be stored in full (all
entries are stored), band (entries outside a band along the main diagonal
are zero and not stored to save memory), and sparse (only nonzero entires
are stored to save memory) formats and exactly one definition for CG or
GMRES is needed that is good for all three matrix storage formats. This is

viii Preface

in contrast to a procedural language such as FORTRAN, C, Ada, or Mat-
lab, where three definitions of CG and GMRES may have to be given for the
three matrix formats. This is one of the salient features of object-oriented
programming called inheritance. The CG and GMRES methods are de-
fined for a base class and can be inherited by classes for full, band, and
sparse matrices. If one later decides to add, for example, a symmetric (full,
band, or sparse) storage format (only half of the entries need be stored for a
symmetric matrix to save memory), the code of CG and GMRES methods
can be reused for it without any change or recompilation.

Another notable feature is generic programming through templates, which
enables one to define a function that may take arguments of different data
types at different invocations. For example, the same definition of CG and
GMRES can deal with matrices with entries in single, double, and extended
double (long double) precisions and complex numbers with different types
for real and imaginary parts. Again, using C or FORTRAN would require
different versions of the same function to handle different data types; when
the implementation of the function is going to be changed later for robust-
ness or efficiency, then every version has to be changed, which is tedious and
error-prone. The operator overloading feature of C++ enables one to add
and multiply matrices and vectors using + and * in the same way as adding
and multiplying numbers. The meaning of the operators is user-defined and
thus it provides more flexibility than Matlab. For example, the operators
+ and * can be used to add and multiply full, band, and sparse matrices.
These and other features of C++ such as information hiding, encapsula-
tion, polymorphism, error handling, and standard libraries are explained in
detail in the text. With increasingly complicated numeric algorithms, many
sophisticated data structures can be relatively easily implemented in C++,
rather than in FORTRAN or C; this is a very important feature of C++.
The C++ compiler also checks for more type errors than FORTRAN, C,
Ada, Pascal, and many other languages do, which makes C++ safer to use.

However, there are trade-offs. For example, templates impose compile-
time overhead and inheritance (with dynamic type binding) may impose
run-time overhead. These features could slow down a program at compile-
and run-times. A good C++ compiler can minimize these overheads and a
programmer can still enjoy programming in C++ without suffering notice-
able compile- and run-time slowdowns but with spending possibly much
less time in code development. This is evidenced by the popularity of C++
in industry for database, graphics, and telecommunication applications,
where people also care dearly about the speed of a language. The fact is
that C++ is getting faster as people are spending more time optimizing the
compiler. Some performance comparisons on finite element analysis have
shown that C++ is comparable to FORTRAN 77 and C in terms of speed.
On the other hand, C++ has the potential of outperforming FORTRAN 77
and C for CPU-intensive numeric computations, due to its built-in arith-
metic compound operators, template mechanisms that can, for example,

Preface ix

avoid the overhead of passing functions as arguments to other functions,
and high performance libraries (like valarray), which can be optimized on
different computer architectures. This potential has become a reality in
many test examples.

This book consists of three parts. The first part (Chapters 1 to 4) is
an introduction to basic features of C++, which have equivalents in FOR-
TRAN 90 or C. When a person knows only this part, he can do whatever a
FORTRAN 90 or C programmer can do. A brief introduction is also made
to Makefile, debuggers, making a library, and how to time and profile
a program. The second part (Chapters 5 to 9) is on object-oriented and
generic programming features of C++, which can not be found in FOR-
TRAN 90 or C. Many techniques for writing efficient C++ programs are
also included; see §6.5, §7.2, §7.6, §7.2.4, §7.7, and §8.6. It is this part that
causes many people to think that C++ is “too complicated.” To make it
easy to understand for a typical science and engineering student or profes-
sional, I make use of basic concepts and operations for complex numbers,
vectors, matrices, and integrals. This should be readily acceptable by a
person with elementary knowledge of calculus and matrix algebra. The
third part (Chapters 10 and 11) provides a description of C++ standard
libraries on containers (such as linked list, set, vector, map, stack, and
queue) and algorithms (such as sorting a sequence of elements and search-
ing an element from a sequence according to different comparison crite-
ria), and an introduction to a user-defined numeric linear algebra library
(downloadable from my Web page) that contains functions for precondi-
tioned conjugate gradient and generalized minimum residual methods for
real and complex matrices stored in full, band, and sparse formats. Gauss
elimination with and without pivoting is also included for full and band
matrices. This enhances the reader’s understanding of Parts 1 and 2. Fur-
thermore, it can save the reader a great deal of time if she has to write
her own basic numeric linear algebra library, which is used on a daily ba-
sis by many scientists and engineers. Great care has been taken so that
features that are more easily understood and that are more often used
in numeric computing are presented first. Some examples in the book are
taken from or can be used in numeric computing libraries, while others are
made up only to easily illustrate features of the C++ language. A Web page
(http://www.math.wayne.eud/"yang/book.htm) is devoted to the book on
information such as errata and downloading programs in the book.

On the numeric side, discussions and programs are included for the fol-
lowing numeric methods in various chapters: polynomial evaluation (§3.12),
numeric integration techniques (§3.13, §5.1, and §7.7), vector and matrix
arithmetic (86.3 and §7.1), iterative algorithms for solving nonlinear equa-
tions (§4.7), polynomial interpolation (§7.8), iterative and direct algorithms
for solving systems of linear equations in real and complex domains (§6.6,
§11.3, and §11.4), Euler and Runge-Kutta methods for solving ordinary
differential equations (§5.9), and a finite difference method for solving par-

X Preface

tial differential equations (§11.5) with real and complex coefficients. The
coverage of numeric algorithms is far from being complete. It is intended
to provide a basic understanding of numeric methods and to see how C++
can be applied to program these methods efficiently and elegantly. Most
of them are covered at the end of a chapter. People with an interest in
learning how to program numeric methods may read them carefully, while
readers who just want to learn C++ may wish to skip them or read them
briefly.

C++ is not a perfect language, but it seems to have all the features and
standard libraries of which a programmer can dream. My experience is that
it is much easier to program than FORTRAN and C, because FORTRAN
and C give too many run-time errors and have too few features and standard
libraries. Many such run-time errors are hard to debug but can easily be
caught by a C++ compiler.

After all, C++ is just a set of notation to most people and a person does
not have to know all the features of C++ in order to write good and useful
programs. Enjoy!

How to Use This Book:

This book can be used as a textbook or for self-study in a variety of ways.

1. The primary intent of this book is to teach C++ and numeric com-
puting at the same time, for students and professionals in science
and engineering. C++ is first introduced and then applied to code
numeric algorithms.

2. It can also be used for people who just want to learn basic and ad-
vanced features of C++. In this case, sections on numeric computing
can be omitted, and knowledge of calculus and linear algebra is not
quite necessary. However, in some sections, the reader should know
what a vector and a matrix are, and basic operations on vectors and
matrices, such as vector addition, scalar-vector multiplication, and
matrix-vector multiplication.

3. This book can be used as a reference for people who are learning
numeric methods, since C++ programs of many numeric methods
are included. Students who learn numeric methods for the first time
often have difficulty programming the methods. The C++ code in the
book should help them get started and have a deeper understanding
of the numeric methods.

4. For experienced C++ programmers, this book may be used as a refer-
ence. It covers essentially all features of the ISO/ANSI C++ program-
ming language and libraries. It also contains techniques for writing
efficient C++4 programs. For example, standard operator overload-
ing for vector operations, as introduced in most C++ books, may be

Preface xi

a few times slower than using C or FORTRAN style programming.
Techniques are given in the book so that the C++ code is no slower
than its corresponding C or FORTRAN style code. Examples are also
given to replace certain virtual functions by static polymorphism to
improve run-time efficiency. Other advanced techniques include ex-
pression templates and template metaprograms.

Acknowledgments:

This book has been used as the textbook for a one-semester undergraduate
course on C++ and numeric computing at Wayne State University. The
author would like to thank his students for valuable suggestions and discus-
sions. Thanks also go to the anonymous referees and editors whose careful
review and suggestions have improved the quality of the book. Readers’
comments and suggestions are welcome and can be sent to the author via
email (dyang@na-net.ornl.gov).

Daoqi Yang
Wayne State University
Detroit, Michigan

June 28, 2000

Contents

Preface
1 Basic Types

11 ASampleProgram

1.2 Types and Declarations

1.3 BasicTypes« c o v it
1.3.1 Integer Types
1.3.2 Character Types
1.3.3 Floating Point Types.
1.34 TheBoolean Type
1.35 TheVoidType

1.4 Numeric Limits,

1.5 Identifiers and Keywords.
1.5.1 Idemtifiers,
152 Keywords

16 Exercises

2 Expressions and Statements

2.1 Scopes and Storage Classifications
2.1.1 Local and Global Variables
2.1.2 External and Register Variables.

2.2 Expressions

2.2.1 Arithmetic Expressions
2.2.2 Relational Expressions

xiv Contents

2.2.3 Logical Expressions 30
2.2.4 Bitwise Expressions 31

2.2.5 Comma Expressions 33

2.3 Statements 33
2.3.1 Declarations and Initializations 34
23.2 Assignments 35
2.3.3 Compound Assignments 35

2.3.4 Increments and Decrements 36
2.3.5 Compound Statements 36
2.3.6 Conditional Statements 37
2.3.7 TIteration Statements 41

2.4 Fibonacci Numbers 44
25 Exercises 47
3 Derived Types 51
3.1 Constants and Macros 51
3.2 Enumerations 52
33 Arrays 54
3.4 Structures 57
3.5 Unionsand Bit Fields 57
36 Pointers 60
3.6.1 Pointer Arithmetic 64
3.6.2 Multiple Pointers 64
3.6.3 Offsetting Pointers 67
3.6.4 Constant Pointers 68
3.6.5 Void and Null Pointers 70
3.6.6 Pointers to Structures 70
3.6.7 PointerstoChar 72
3.6.8 Pointersand Arrays 72

3.7 References 72
38 Functions 73
3.8.1 Function Declarations and Definitions 73
3.8.2 Function Overloading 74
3.8.3 Argument Passing 75
384 ReturnValues 79
3.8.5 Recursive Functions 81
3.8.6 Inline Functions 81
3.8.7 Default Arguments 82
388 FunctionTypes 83
3.8.9 Static Local Variables 84
3.8.10 The Functionmain 85

3.9 Program Execution L. 86
3.10 Operator Summary and Precedence. 88
3.11 Standard Library on Mathematical Functions 92

3.12 Polynomial Evaluation 94

Contents xv

3.13 Trapezoidal and Simpson’s Rules 98
3.14 Exercises 101
Namespaces and Files 113
4.1 NameSpaces « vt vt e e e e e e 113
4.1.1 Using Declarations and Directives 117
4.1.2 Multiple Interfaces 119
4.1.3 Namespace Alias 120
4.1.4 Unnamed Namespaces [121
415 NameLookup. 121
42 IncludeFiles 122
4.2.1 Include Files for Standard Libraries 122
42.2 User's OwnInclude Files 124
4.2.3 Conditional Include Directives 126
424 FileInclusion 128
4.3 Source Files and Linkages 129
4.3.1 Separate Compilation 129
4.3.2 External and Internal Linkages 129
4.3.3 Linkage to Other Languages 133
44 Some Useful Tools 134
441 How to Time a Program 134
4.4.2 Compilation Options and Debuggers 136
443 CreatingalLibrary 138
444 Makefile Lo L 139
4.5 Standard Library on Strings 142
4.5.1 Declarations and Initializations 142
452 Operations 143
453 C-StyleStrings 144
454 InputandOutput 144
455 ClLibraryon Strings 145
4.6 Standard Library on Streams 146
4.6.1 Formatted Integer Output 146
4.6.2 Formatted Floating Point Output 148
463 Output Width 149
4.6.4 Input and Qutput Files 150
4.6.5 Input and Output of Characters 153
4.6.6 String Streams 157
4.7 Iterative Methods for Nonlinear Equations 158
4.7.1 Bisection Method 159
4.7.2 Newton’s Method 165
4.8 Exercises 167
Classes 173
5.1 Class Declarations and Definitions 173

xvi

Contents

53 Friends. Lo
54 StaticMembers
5.5 Constant and Mutable Members
5.6 Class Objects as Members
57 ArrayofClasses
5.8 Pointersto Members
5.9 Numeric Methods for Ordinary Differential Equations

510 Exercises

Operator Overloading
6.1 Complex Numbers
6.1.1 Initialization
6.1.2 Default Copy Construction and Assignment
6.1.3 Conversions and Mixed-Mode Operations
6.2 Operator Functions
6.3 Vectorsand Matrices
6.4 Explicit and Implicit Conversions
6.5 Efficiency and Operator Overloading
6.6 Conjugate Gradient Algorithm
6.7 Exercises e

Templates
7.1 Class Templates
7.1.1 Member and Friend Definitions
7.1.2 Template Instantiation
7.1.3 Template Parameters
7.1.4 Type Equivalence.
7.1.5 User-Defined Specializations
7.1.6 Order of Specializations
7.2 Function Templates
7.2.1 Function Template Parameters
7.2.2 Function Template Overloading
7.2.3 Specializations
7.2.4 Class Templates as Function Template Parameters .
7.2.5 Member Function Templates
7.2.6 Friend Function Templates
7.3 Template Source Code Organization
7.4 Standard Library on Complex Numbers
7.5 Standard Library on walarrays
7.5.1 The Typewvalarray.
752 SliceArrays,
7.5.3 Generalized Slice Arrays
7.5.4 Mask Arrays and Indirect Arrays
7.6 Standard Library on Numeric Algorithms
76.1 Accumulate oL,

9

Contents

7.6.2 Inner Products
763 PartialSums
7.6.4 Adjacent Differences
7.7 Efficient Techniques for Numeric Integration
7.7.1 Function Object Approach
7.7.2 Function Pointer as Template Parameter
7.7.3 Using Dot Products and Expression Templates . . .
7.7.4 Using Dot Products and Template Metaprograms . .
7.8 Polynomial Interpolation
781 LagrangeForm
782 NewtonForm
79 Exercises

Class Inheritance

81 DerivedClasses
8.1.1 Member Functions
8.1.2 Constructors and Destructors
813 Copyingo
814 ClassHierarchy
8.15 Virtual Functions
8.1.6 Virtual Destructors.

8.2 AbstractClasses

83 AccessControl

8.4 Multiple Inheritance
8.4.1 Ambiguity Resolution
8.4.2 Replicated Base Classes
8.4.3 Virtual BaseClasses
8.4.4 Access Control in Multiple Inheritance

8.5 Run-Time Type Information
8.5.1 The dynamic.cast Mechanism
8.5.2 The typeid Mechanism
8.5.3 Run-Time Overhead

8.6 Replacing Virtual Functions by Static Polymorphism

87 Exercises

Exception Handling

91 Throwand Catch

9.2 Deriving Exceptions

9.3 Catching Exceptions
931 Rethrow
932 Catch Al Exceptions.
93.3 OrderofHandlers

9.4 Specifying Exceptions in Functions

xviil Contents

9.5 Standard Exceptions 329
9.6 Exercises 331
10 Standard Libraries on Containers and Algorithms 333
10.1 Standard Containers 333
10.1.1 Vector s 334
101.2 List 341
10.1.3 MapandSet 344
10.1.4 Stackand Queue 347

10.2 Standard Algorithms 348
10.2.1 Sorting, Copying, and Replacing Algorithms 348
10.2.2 Searching and Traversing Algorithms 355
10.2.3 Set, Permutation, and Heap Algorithms 360

10.3 Standard Function Objects and Adaptors 365
10.3.1 Arithmetic Function Objects 365
10.3.2 Relational Function Objects 366
10.3.3 Logical Function Objects 366
10.3.4 Standard Adaptors, 367

10.4 Exercises oLl 368
11 Linear System Solvers 371
11.1 Matrix Storage Formats 372
11.1.1 Full Matrices 372
11.1.2 Band Matrices, 372
11.1.3 Sparse Matrices 374

11.2 A Class Hierarchy for Matrices 375
11.3 Iterative Algorithms 385
11.3.1 Conjugate Gradient Method 385
11.3.2 Generalized Minimum Residual Method 390
11.3.3 Preconditioning Techniques 398

11.4 Gauss Elimination 401
11.4.1 LU Decomposition 401
11.4.2 Gauss Elimination Without Pivoting 406
11.4.3 Gauss Elimination with Pivoting 408

11.5 Finite Difference Method for Partial Differential Equations 414
11.6 Exercises o o v i i e e e e 424
References 427

Index 430

1
Basic Types

This chapter starts with a sample C++ program and then presents basic
data types for integral and floating point types, and two special types
called bool and wvoid. Towards the end of the chapter, numeric limits are
introduced such as the largest integer and smallest double precision number
in a particular C++ implementation on a particular computer. Finally,
identifiers and keywords are discussed.

1.1 A Sample Program

A complete program in C++ must have a function called main, which
contains statements between braces { and }. Each statement can extend
to more than one line, but must end with a semicolon. Comments must
be enclosed by /* and */, or preceded by // extending to the rest of the
line. The first can be used for comments that stand on many lines while
the second for a whole line or an end part of a line. One of them can be
used to comment out the other. Comments and blank lines are ignored by
the compiler and contribute only to the readability of a program.

Below is a simple program that calculates the sum of all integers between
two given integers. The user is prompted to enter these two integers from
the standard input stream (usually the terminal screen) represented by cin.
The result is output to the standard output stream (usually the terminal
screen) represented by cout. The streams cin and cout are defined in a C++
standard library called <¢ostream>. The program reads:

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

2 1. Basic Types

/* A sample program to illustrate some basic features of C++.
It adds all integers between two given integers and
outputs the sum to the screen. */

#include <iostream> // include standard library for 1/0
using namespace std;

main() {
int n, m; // declare n and m to be integers
cout << "Enter two integers: \n"; // output to screen
cin >> n >> m; // input will be assigned to n, m
if (n > m) { // if n is bigger than m, swap them
int temp = n; // declare temp and initialize it
n = m; // assign value of m to n
m = temp; // assign value of temp to m
}

double sum = 0.0; // sum has double precision

// a loop, i changes from n to m with increment 1 each time

for (int 1 = n; i <= m; i++) { // <=: less than or equal to
sum += i; // sum += i: sum = sum + i;

}
cout << "Sum of integers from " << n << * to " << m
<< " is: "<< sum << ’\n’; // output sum to screen

The first three lines in the program are comments enclosed by /* and
*/, which are usually used for multiline comments. Other comments in the
program are short ones and preceded by two slashes //; they can start from
the beginning or middle of a line extending to the rest of it.

Input and output are not part of C4++ and their declarations are provided
in a header file called iostream that must be included at the beginning of
the program using

#include <iostream>
with the sign # standing in the first column. The statement
using namespace std;

lets the program gain access to declarations in the namespace std. All
standard libraries are defined in a namespace called std. The mechanism
namespace enables one to group related declarations and definitions to-
gether and supports modular programming; see Chapter 4 for more details.
Before standard C++, these two statements could be replaced by including

1.1 A Sample Program 3

<iostream.h>. The compiler will not recognize the identifiers cin and cout
if the standard library <iostream> is not included. Similarly, the math
library < math.h > must be included when mathematical functions like
sin (sine), cos (cosine), atan (arctangent), exp (exponential), sgrt (square
root), and log (logarithm) are used. The header files for standard libraries
reside somewhere in the C++ system, and a programmer normally does not
have to care where. When they are included in a program, the system will
find them automatically. See §4.2 for more information on how to include
a file.

The symbol << is called the output operator and >> the input operator.
The statement

cout << "Enter two integers: \n";

outputs the string ” Enter two integers:” followed by a new line to the
screen, telling the user to type in, on the keyboard, two integers separated
by a whitespace. Then the statement

cin >> n >> m;

causes the computer to pause while characters are entered from the key-
board and stored in memory at locations identified by n and m. It is equiv-
alent to the following two statements.

cin >> n; // first input from screen is stored in n
cin >> m; // second input from screen is stored in m

Notice that a variable must be declared before it can be used. The integer
variables n and m are declared by the statement:

int n, m; // declare n and m to be integers

The character "\n’ represents a newline. A character string like ” Sum of
integers from” must appear between double quotation marks, while a single
character appear between single quotation marks such as ’A’, °5’ and *\n’.
Note that "\n’ is a single character. See §1.3.2 for more details on characters,
84.5 on strings, and §4.6 on input and output streams.

The words int, double, if, and for are reserved words in C++ and can
not be used for the name of a variable. The reserved word int stands for
integers while double stands for double precision floating point numbers.
The variable sum is declared to have double precision by

double sum = 0.0; // sum is initialized to O

This statement not only declares sum to have type double, but also assigns
it an initial value 0. A variable may not have to be initialized when it is
declared.

In the if conditional statement

if (n > m) { // if n is bigger than m, swap them

4 1. Basic Types

int temp = n; // declare temp and initialize it
n = m; // assign value of m to n
m = temp; // assign value of temp to m

}

the statements inside the braces will be executed if the condition n > m
(n is strictly larger than m) is true and will be skipped otherwise. This if
statement instructs the computer to swap (interchange) the values of n and
m if n is larger than m. Thus, after this if statement, n stores the smaller
of the two input integers and m stores the larger. Notice that a temporary
variable temp is used to swap n and m. The braces in an if statement can
be omitted when there is only one statement inside them. For example, the
following two statements are equivalent.

if (p > m) m = n + 100; // one statement

if (@ > m) { // an equivalent statement
m=n + 100;

}

The second statement above can also be written in a more compact way:
if @>m) {m=n+ 100; }
The for loop in the sample program

for (int i = n; i <= m; i++) {
sum += i;

}

first declares variable ¢ of type int and assigns the value of n to 7. If the value
of 7 is less than or equal to the value of m (i.e., i <= m), the statement inside
the braces sum += ¢ will be executed; Then statement i++ (equivalent to
i =1+ 1 here) is executed and causes the value of ¢ to be incremented by
1. The statement sum += 1 {equivalent to sum = sum + i, meaning sum
is incremented by the value of i) is executed until the condition i <= m
becomes false. Thus this for loop adds all integers from n to m and stores
the result in the variable sum. The braces in a for loop can also be omitted
if there is only one statement inside them. For example, the for loop above
can also be written in a more compact way:

for (int i = n; i <= m; i++) sum += i;

Except for possible efficiency differences, this for loop can be equivalently
written as

for (int i =n; i <=m; i=1+ 1) sum = sum + i;

The compound operators in i++ and sum += ¢ can be more easily
optimized by a compiler and more efficient than ¢ = ¢ + 1 and sum =
sum +1. For example, an intermediate value of ¢ +1 is usually obtained and

1.1 A Sample Program 5

stored and then assigned to 4 in ¢ = ¢+1; while in ¢ ++ such an intermediate
process could be omitted and the value of 4 is just incremented by 1. Notice
that += is treated as one operator and there is no whitespace between +
and =. See §2.3.7 for details on the for statement and §2.3.3 for compound
operators.

Finally the value of sum is output to the screen by the statement:

cout << "Sum of integers from " << n << " to " << m
<< " jis: " << sum << ’\n’; // output sum to screen

First the character string ” Sum of integers from” is output, then the value
of n, and then string ” to ”, value of m, string ” is: ”, value of sum, and
finally a newline character \n’.

Suppose the above program is stored in a file called sample.ce. To compile
it, at the UNIX or Linux command line, type

c++ -0 add sample.cc

Then the machine-executable object code is written in a file called add. If
you just type

c++ sample.cc

the object code will be automatically written in a file called a.out in UNIX
(or Linux) and sample.eze in DOS. On other operating systems, compiling
or running a program may just be a matter of clicking some buttons. Now
you may type the name of the object code, namely, add or a.cut at the
UNIX command line, and input 1000 and 1. You shall see on the screen:

Enter two integers:

1000 1
Sum of integers from 1 to 1000 is: 500500

In this run, the input number 1000 is first stored in n and 1 in m. Since
n is larger than m, the if statement interchanges the values of n and m so
that n = 1 and m = 1000. The for loop adds all integers from 1 to 1000.
Here is another run of the program:

Enter two integers:
1 1000
Sum of integers from 1 to 1000 is: 500500

In the second run, the input number 1 is stored in n and 1000 in m. Since
n is smaller than m, the if statement is skipped.

A user may not have to input values from the terminal screen. Alterna-
tively, this sample program can also be written as

#include <iostream> // include input/output library
using namespace std;

6 1. Basic Types

main() {
int n = 1; // declare integer n with value 1
int m = 1000; // declare integer m with value 1000

double sum = 0;
for (int i = n; i <= m; i++) sum += i;
cout << "The sum is: " << sum << ’\n’;

}

or in a more compact form:

#include <iostream>
using namespace std;

main() {
double sum = 0;
for (int i = 1; i <= 1000; i++) sum += i;
cout << "The sum is: " << sum << ’\n’;

}

The disadvantage of the alternative forms is that, if one wishes to add
integers from 2 to 5050, for example, then the program needs to be modified
and recompiled.

By convention, C++ files are usually postfixed with .ce, .c, .C, .cpp, and
the like, and C++ compilers are c++, g++, gee, CC, and so on.

Notice that unlike in C or FORTRAN, declarations (like double sum;)
may not have to appear at the beginning of a program and can be mixed
with other statements. The rule of thumb is that a variable should not be
declared until it is used. This should increase the readability of a program
and avoid possible misuse of variables.

1.2 Types and Declarations

Consider the mathematical formula:
z=y+ £(x);

For this to make sense in C++, the identifiers x, f, y, and z must be
suitably declared. All identifiers must be declared before they can be used.
Declarations introduce entities represented by identifiers and their types
(e.g. int or double) into a C++ program. The types determine what kind of
operations can be performed on them and how much storage they occupy
in computer memory. For example, the declarations

int x; // x is declared to be of integer type
float y = 3.14; // y is a floating point number
double z; // z is a floating point number

1.2 Types and Declarations 7

double f(int); // £ is a function taking an integer as
// its argument and returning a double

will make the above formula meaningful, where + is interpreted as adding
two numbers, = assigns the value on its right-hand side to the variable on
its left-hand side, and f(z) is interpreted as a function call returning the
function value corresponding to argument x. The first declaration above
introduces variable z to be of type int. That is, can only store integers.
The second declaration introduces variable y to be of type float (single
precision floating point number) and assigns an initial value 3.14 to it. A
simple function definition is:

double f(int i) {
return (i*xi + (i-1)*(i-1) + (i-2)*(i-2) - 5)/3.14;
}

The function f() takes integer ¢ as input and returns a double precision
number as output. It calculates the value of the mathematical expression
(124 (i —1)2+ (i —2)? —5)/3.14 for a given integer i. In C++, the symbols
+,—,%, and / mean addition, subtraction, multiplication, and division,
respectively. All these statements can be organized into a complete C++
program:

#include <iostream>
using namespace std;

double f(int i) { // function defimition
return (i*i + (i-1)*(i-1) + (i-2)*(i-2) - 5)/3.14;
}

main() {

int x = 4;

float y = 3.14;

double z = y + £(x);

cout << "The value of z is: " << z << ’\n’;
}

Note that the definition of the function f() can not be put inside the
function main(). See §3.8 for more details on functions.

Basic types are discussed in the next section. Additional types including
functions and user-defined types are discussed in subsequent chapters.

8 1. Basic Types
1.3 Basic Types

1.3.1 Integer Types

The integer types are short int, int, and long int. An int is of natural
size for integer arithmetic on a given machine. Typically it is stored in
one machine word, which is 4 bytes (32 bits) on most workstations and
mainframes, and 2 bytes (16 bits) on many personal computers. A long int
normally occupies more bytes (thus stores integers in a wider range) and
short int fewer bytes (for integers in a smaller range).

Integers are stored in binary bit by bit in computer memory with the
leading bit representing the sign of the integer: 0 for nonnegative integers
and 1 for negative integers. For example, the nonnegative int 15 may be
represented bit by bit on a machine with 4 bytes for int as

sign bit
!

0 | 0000000 00000000 00000000 00001111

Note that whitespaces were inserted to easily see that it occupies 4 bytes,
and the leading (leftmost) bit O signifies a nonnegative integer. Negative
integers are normally represented in a slightly different way, called two’s
complement; see §2.2.4. Thus a computer with 32 bits for int can only store
integers

—231 931 1 1,...,-2,-1,0,1,2,...,2%0 — 2,231 _ 1,
while a computer with 16 bits for int can only store integers
—215 915 11,...,-2,-1,0,1,2,...,2% — 2,215 _ 1.

Half of them are negative and the other half are nonnegative. Note that
231 = 2147483648 and 25 = 32768. Numbers out of the given range of in-
tegers on a machine will cause integer overflow. When an integer overflows,
the computation typically continues but produces incorrect results (see Ex-
ercises 1.6.9 and 2.5.14 for two examples). Thus a programmer should make
sure integer values are within the proper range. Use long int if necessary
or other techniques (see Exercise 3.14.21 where digits of a large integer
are stored in an array of integers) for very large integers. For example, a
long int may occupy 6 bytes and be able to store integers:

—247 9% 1 1,...,-2,-1,0,1,2,...,247 —2 247 1.

Although the number of 8-bit bytes of storage for short int, int, and
long int is machine-dependent, it is always given by the C++ operator
sizeof. In general

sizeof(short int) < sizeof(int) < sizeof (long int).

1.3 Basic Types 9

On one machine, sizeof(int) = 4 and sizeof(long int) = 6, while on
another, sizeof(int) = sizeof(long int) = 4. However, it is guaranteed
that a short int has at least 16 bits and a long int has at least 32 bits.

A new type called unsigned int for nonnegative integers does not store
the sign bit and thus stores larger integers than the plain int, which is also
called signed int. If on a machine signed int holds integers from —32768 to
32767, then unsigned int, occupying the same number of bits but without
storing the sign bit, will hold nonnegative integers from 0 to 65535. An
integral type (short int, int, and long int) can be signed or unsigned. The
keyword long is a synonym for long int, short for short int, signed for
signed int, and unsigned for unsigned int. An int is always signed; that
is, tnt and signed int always mean the same thing.

To know their number of bytes on your machine, compile and run the
program:

#include <iostream>
using namespace std;
main() {
cout << "number of bytes in short = "
<< sizeof (short) << ’\n’;
cout << "number of bytes in long int = "
<< sizeof(long) << ’\n’;
cout << "number of bytes in int = "
<< sizeof{(int) << ’\n’;
cout << "number of bytes in unsigned int = "
<< sizeof(unsigned int) << ’\n’;

From now on, statements such as

#include <iostream>
using namespace std;

may not be explicitly included in example programs to save space and
concentrate on more important features.

Standard conversions are performed when different types appear in arith-
metic operations. Truncations occur when there is not enough space for
converting one type into another. For example,

int i = 321; // stored in sizeof(int) bytes

short ii = 321; // stored in sizeof (short) bytes

long iii = i; // implicit conversion from int to long
iii = long(i); // explicit conversion from int to long
iii = 1 + ii; // implicit conversien,

// it is same as iii =long(i) +long(ii)

iii = 123456789; // a big integer

10 1. Basic Types

ii = short(iii); // conversion from long to short
cout << ii; // on one machine, output of ii is -13035

Note that explicit type conversion requires the use of the name of the
type. For example, long(i) converts explicitly an int i to long. Explicit
type conversion is also called cast. Notice that when the value of long
integer i1 = 123456789 is assigned to short integer 1, the space occupied
by ii (sizeof(short) bytes) may not be enough to hold the value of .
Truncation may occur and lead to errors. For example, on one machine
with sizeof(short) = 2, this results in iz = —13035. The negative sign is
caused by the leading (leftmost) bit in the binary representation of ii (after
overflow), which happens to be 1.

The suffix U is used to explicitly write unsigned integer constants and L
for long integer constants. For example, 5 is a signed int, 5U is an unsigned
int and 5L is a long int. They may occupy different numbers of bytes in
memory.

unsigned int il = 5U; // 5U means unsigned integer 5
long int i2 = 5L; // 5L means long integer 5
int i = §5; // 5 means signed integer 5

By default, a number is a decimal number (base 10). A number preceded
by 0 (zero) is octal (base 8) and a number preceded by 0z is hexadecimal
(base 16). The letters a,b,c,d, e, and f, or their upper case equivalents,
represent hexadecimal numbers 10,11,12,13,14, and 15, respectively. For
example, 63 is a decimal number, 077 is an octal number, and 0z3f is a
hexadecimal number. Octal and hexadecimal numbers can be conveniently
used to express bit patterns; see §6.4 for an example. See §4.6 on how to
print them out.

1.8.2 Character Types

A char variable is an integral type and is of natural size to represent a
character (in English and other similar languages) appearing on a com-
puter keyboard (it occupies one byte almost universally and is assumed
always to be one byte in this book). A char can only store an integer that
fits in one byte (thus one of 28 = 256 values); it corresponds to a char-
acter in a character set, including (American) ASCII. For example, the
integral value 98 corresponds to the character constant '’ in the ASCII
character set. Character constants should appear between single quotation
marks like *A’, ’5’, ’d’, ’\n’ (newline character), "\t’ (horizontal tab), "\v’
(vertical tab), \0’ (null character), ’\\’ (backslash character), ’\”’ (double
quotation character), and ’\” (single quotation character). Notice the spe-
cial characters above that use a backslash \ as an escape character. See
Exercise 1.6.5 for a few more. For example,

char cc = ’A’; // assign character ’A’ to cc.

1.3 Basic Types 11

// In ASCII, cc = 65.

cc = \n’; // assign a new value to cc.

// In ASCII, cc = 10
int i = cc; // i =10, implicit type conversion
short ii = short(cc); // ii = 10, explicit type conversion

A char, occupying 8 bits, can range from 0 to 255 or from —128 to 127,
depending on the implementation. Fortunately, C++ guarantees that a
signed char ranges at least from —128 up to 127 and an unsigned char at
least from 0 up to 255. The types char, signed char, and unsigned char are
three distinct types and the use of char could cause portability problems
due to its implementation dependency. For example,

char ¢ = 255; // ¢ has all 8 bits 1
int 1 = ¢; // or: int i = int(c). Now i = 7

What is the value of ¢ now? The answer is undefined. On an SGI Challenge
machine, a char is unsigned so that 7 = 255. On a SUN SPARC or an IBM
PC, a char is signed so that 7 = —1. A signed integer with all bits equal to 1
(including the sign bit) represents the integer —1 in two’s complement; see
§2.2.4 for more details. Thus a char should be used primarily for characters,
instead of small integers.

A char is output as a character rather than as a numeric value. For
example, the program segment

char ¢ = ’A’;
int i = ’A’; // i = 65 in ASCII
cout << ¢ << ’B’ << i << "CD" << ’\mn’

»

outputs AB65CD to the screen (assuming the ASCII character set is used).
Inherited from the C programming language, a constant string always
ends with a null character. For example, the string "CD” consists of three
characters: C, D, and the null character (\0), and ”\n” (notice the double
quotation marks) is a string of two characters: the newline character (\n)
and the null character (\0). In contrast, "\n’ (notice the single quotation
marks) is a single character. This can be checked by the sizeof operator:

int i = sizeof (*CD"); // 1i=3
int j = sizeof("\n"); //] =2
int k = sizeof(’\n’); // k=1

1.8.3 Floating Point Types

The floating point types are float, double, and long double, which corre-
spond to single precision, double precision, and an extended double preci-
sion, respectively. The number of 8-bit bytes of storage for each of them is
given by the operator sizeof. In general

sizeof(float) < sizeof(double) < sizeof(long double).

12 1. Basic Types

On many machines, they occupy 4, 8, and 12 bytes, respectively, and a
float stores about 6 decimal places of precision, a double stores about 15
decimal places, and a long double about 18. A long double with 16 bytes
can have 33 decimal places of precision. The possible values of a floating
point type are described by precision and range. The precision describes the
number of significant decimal digits that a floating point number carries,
while the range describes the largest and smallest positive floating values
that can be taken by a variable of that type. For example, on machines
with 4 bytes for floats, 8 bytes for doubles, and 12 bytes for long doubles,
the range of float is roughly from 10738 to 10%, the range of double is
roughly from 1073% to 103% and the range of long double from 1074932
to 104932, This means that, on such machines, a float number f is roughly
represented in the form

f=40.dydy - de x 107,

where —38 < n < 38 and d; # 0 (here 0.d1dz - - - ds is called the fractional
part of f); a double number d is roughly represented in the form

d= :to.dldg o d15 X 10”,

where —308 < n < 308 and d; # 0; and a long double number g in the
form
g= ﬂ:Od]dg s dlg X 10”,

where —4932 < n < 4932 and d; # 0. On such machines, an overflow
happens when a float number f = £¢ x 10™ (0.1 < ¢ < 1) with m > 38
and an underflow happens for m < —38. Similar definitions of overflow
and underflow can be made for double and extended double precisions.
The value of a variable is often set to zero when underflow occurs. The
preceding discussion is true only roughly and can be made more precise in
binary representation, which is normally used in the computer; see §1.4.

The numbers of bytes given as examples above are used to store floating
point types. The IEEE (Institute for Electric and Electronic Engineers)
standards currently require that at least 80 bits be used for doing internal
computation (128 bits are used on some machines for long double calcula-
tions). When the results of a computation are stored or output, accuracy
is often lost due to roundoff errors. For example, the statements

float fpi = atan(1)*4; // include <math.h>
double dpi = atan(1)*4;
long double 1dpi = atan(i)*4;

give different precisions of the value 7. Note the function call atan(1) (for
computing the arctangent of 1) gives the value (7/4) of the mathematical
function arctan(z) with z = 1. Trigonometric and other functions are in
the library <math.h>; see §3.11. To see their difference when being output

1.3 Basic Types 13

to the screen, we can use the precision function to specify the accuracy
and use the width function to specify the number of digits in the output
(see §4.6 for more details). For example, the statements

cout.precision(30); // include <iostream>

cout .width(30); // output occupies 30 characters
cout << fpi << ’\n’;

cout .width(30);

cout << dpi << ’\n’;

cout.width(30);

cout << 1dpi << ’\n’;

output the following to the screen (on my computer).

3.1415927410125732421875
3.14159265358979311599796346854
3.14159265358979323851280895941

Compared to the exact value of 7 : 3.14159265358979323846264338..., the
float value fpi has 7-digit accuracy, the double value dpi has 16-digit,
while the extended double value ldpi has 19-digit accuracy. They are all
calculated using the same formula atan(1) * 4. The internal calculation is
done in the same way and accuracy is lost when the result is stored in
fpi,dpi, and ldpi.

The IEEE standard introduces two forms of infinity (Inf or Infinity in
computer output): +00 and —oo, for very large and small floating point
numbers (when it makes sense to do so). For example, /0 and y+y give oo
for a positive floating point number = within range and the biggest floating
point number y. So do = + 00, = * 00, and co/z. Here oo is understood to
be +oc. Similar explanations hold for —cc. The standard also introduces
the entity NaN (Not-a-Number) to make debugging easier. Indeterminate
operations such as 0.0/0.0 and 0o — oo result in NaN. So does z + NaN.
Run the program in Exercise 1.6.12 and you will see a situation where
Infinity and NaN are among the output, which can be useful debugging
information.

Variables of different types can be mixed in arithmetic operations and
implicit and explicit conversions can be performed. For example,

double d = 3.14;

int n = 2;
int m = d + n; // m =5, implicit type conversion
int k = int(d) + n; // k = 5, explicit type conversion

double ¢ = d + n; // ¢ = 5.14, implicit type conversion

Note that in the addition m = d + n, integer n is first implicitly promoted
to floating point number 2.0 and the result d + n = 5.14 is then implicitly
truncated into integer 5 for m, causing loss of accuracy.

14 1. Basic lypes

By default, a floating point constant is of double precision. For example,
she number 0.134, 1.34E—1, 0.0134E1, or 0.0134¢l is taken to be a double,
which occupies sizeof(double) bytes. Its float representation is 0.134F,
or 0.134f, suffixed with F or f, which occupies sizeof(float) bytes. The
wmber after the letter E or ¢ means the exponent of 10. For example,
1.34e—12 means 1.34 x 1072 and 1.34e12 means 1.34 x 10'2. This is the
so-called scientific notation of real numbers.

The reason for providing several integer types, unsigned types, and float-
‘ng point types is that there are significant differences in memory require-
nents, memory access times, and computation speeds for different types
and that a programmer can take advantage of different hardware charac-
seristics. The type int is most often used for integers and double for floating
>oint numbers. Despite the fact that float usually requires less memory
storage than double, arithmetics in float may not always be significantly
or noticeably faster than in double for a particular C or C++ compiler,
sspecially on modern computers; see §4.4.1 for an example and some ex-
>lanations.

1.83.4 The Boolean Type

A Boolean, represented by the keyword bool, can have one of the two values:
*rue and false, and is used to express the results of logical expressions
(§2.2.3). For example,

oool flag = true; // declare flag to be of bool

// ... some other code that might change the value of flag
double d = 3.14;
if (flag == false) d = 2.718;

The operator == tests for equality of two quantities. The last statement
above means that, if flag is equal to false, assign 2.718 to variable d.

By definition, true has the value 1 and false has the value 0 when
converted to an integer. Conversely, nonzero integers can be implicitly con-
verted to true and 0 to false. A bool variable occupies at least as much
space as a char. For example,

bool b = 7; // bool(7) is converted to true, so b = true
int i = true; // int(true) is converted to 1, so i =1
intm=b+1i; //m=1+1=2

1.8.5 The Void Type

A type that has no type at all is denoted by woid. It is syntactically a
fundamental type, but can be used only as part of a more complicated
type. It is used either to specify that a function does not return a value or

1.4 Numeric Limits 15

as the base type for pointers to objects of unknown type. These points are
explained later. See, for example, §3.8 and Exercise 3.14.24.

1.4 Numeric Limits

Machine-dependent aspects of a C++ implementation can be found in
the standard library <limits>. For example, the function numeric limits
<double> :: mazx() gives the largest double and function numericlimits
<int>:min() gives the smallest int that can be represented on a given
computer. The library <limits> defines numeric_limits <T> as a tem-
plate class (see Chapter 7) that has a type parameter T, where T can be
float, double, long double, int, short int, long int, char, and unsigned
integers. When T is, for example, float, then numericlimits < float>
gives implementation-dependent numbers for float. The following program
prints out information on float.

#include <iostream>
#include <limits>
using namespace std;

main () {

cout << "largest float = "

<< pumeric_limits<float>::max() << ’\n’;
cout << "smallest float = "

<< pumeric_limits<float>::min() << ’\n’;
cout << "min exponent in binary = "

<< numeric_limits<float>::min_exponent << ’\n’;
cout << "min exponent in decimal = "

<< numeric_limits<float>::min_exponent10 << ’\n’;
cout << "max expoment in binary = "

<< numeric_limits<float>::max_exponent << ’\n’;
cout << "max exponent in decimal = "

<< numeric_limits<float>::max_exponentl0 << ’\n’;
cout << "# of binary digits in mantissa: "

<< numeric_limits<float>::digits << ’\n’;
cout << "# of decimal digits in mantissa: "

<< numeric_limits<float>::digitsi0 << ’\n’;
cout << "base of expoment in float: "

<< numeric_limits<float>::radix << ’\n’;
cout << "infinity in float: "

<< pumeric_limits<float>::infinity() << ’\n’;
cout << "float epsilon = "

<< pumeric_limits<float>::epsilon() << ’\n’;
cout << "float rounding error = "

16 1. Basic Types

<< numeric_limits<float>::round_error() << ’\n’;
cout << "float rounding style = "
<< numeric_limits<float>::round_style << ’\n’;

Similarly, implementation-dependent information on double and long dou-
ble may be obtained as

main() {
double smallestDouble = numeric_limits<double>::min();
double doubleEps = numeric_limits<double>::epsilon();
long double largestLongDouble =
numeric_limits<long double>::max();
long double longDoubleEpsilon =
numeric_limits<long double>::epsilon();

}
and information on char may be obtained as

main() {

cout << "number of digits in char: "

<< numeric_limits<char>::digits << ’\n’;
cout << "char is signed or not: "

<< numeric_limits<char>::is_signed << ’\n’;
cout << "smallest char: "

<< numeric_limits<char>::min() << ’\n’;
cout << "biggest char: "

<< numeric_limits<char>::max() << ’\n’;
cout << "is char an integral type: "

<< numeric_limits<char>::is_integer << ’\n’;

Some explanations are given now to the terms epsilon and mantissa. A
machine epsilon is the smallest positive floating point number such that
1 + epsilon # 1. That is, any positive number smaller than it will be
treated as zero when added to 1 in the computer. It is also called the unit
roundoff error. When a floating point number z is represented in binary
as x = £q x 2™, where ¢ = 0.qiq2---¢qn, with ¢g; =1 and ¢; = 0 or 1 for
1=2,3,...,n, and m is an integer, then q is called the mantissa of x, m
is called the exponent of z, and n is the number of bits in the mantissa.
Due to finite precision in computer representation, not all numbers, even
within the range of the computer, can be represented exactly. A number
that can be represented exactly on a computer is called a machine number.
When a computer can not represent a number exactly, rounding, chopping,
overflow, or underflow may occur.

On a hypothetical computer called Marc-32 (see [CK99, KC96]; a typical
computer should be very similar to it if not exactly the same), one machine

1.4 Numeric Limits 17

word (32 bits) is used to represent a single precision floating point number:
r = il.blbz s b23 x 2™,

The leftmost bit in the machine word is the sign bit (0 for nonnegative and
1 for negative), the next 8 bits are for the exponent m, and the rightmost
23 bits for the fractional part (b1, bs, ..., and bo3) of the mantissa. Notice
that, to save one bit of memory, the leading bit 1 in the fractional part is
not stored. It is usually called the hidden bit. The exponent m takes values
in the closed interval [—127,128]. However, m = —127 is reserved for +0,
and m = 128 for oo (if by = by = --- = ba3 = 1) and NaN (otherwise).
Thus the exponent of a nonzero machine number must be in the range
~126 < m < 127. On such a machine, the single precision machine epsilon
is then 2722 ~ 1.2x 10~7, the smallest positive machine number is 27126
~ 1.2 x 10738 and the largest machine number is (2 — 272%) x 21?7 ~
3.4 x 10%8 (corresponding to b; = 1 for i = 1,2, ...,23, and m = 127).
In double precision, there are 52 bits allocated for the fractional part of
the mantissa and 11 bits for the exponent, which results in the machine
epsilon to be 2752 ~ 2.22 x 1078, the smallest positive machine number
271022 » 995 x 1073%8 and the largest machine number (2 — 2752) x 21023
~ 1.798 x 103%8.

It can be shown (see [CK99, KC96]) that for any nonzero real number z
and its floating point machine representation Z (assuming z is within the
range of the computer and thus no overflow or underflow occurs), there

holds _
-

! < epsilon,

in the case of chopping, and

r—Z

1
< iepszlon,

z

in the case of rounding to the nearest machine number. That is, the relative
roundoff error in representing a real number in the range of a computer with
a particular precision is no larger than epsilon in that precision.

The machine epsilon and number of bits in binary (or equivalent digits
in decimal) for representing the mantissa of a floating point number on a
particular computer are given in the template class numeric_limits< T>
for a floating point type T

In addition, C library <limits.h> has macros (see §3.1 for some rules
and examples for defining macros) such as those listed in Table 1.1, and
C library <float.h> has macros such as those listed in Table 1.2. These
macros are better avoided. However, the C++ library <limits> may not
be available on early (nonstandard) compilers. In this case, numeric limits
can be obtained as in the following program.

18

1. Basic Types
INT_MAX largest int
INT_MIN smallest int
LONG_MAX largest long int
LONG_MIN smallest long int
ULONG_MAX | largest unsigned long int
UINT_MAX largest unsigned int
SHRT MAX largest short int
USHRT_MAX | largest unsigned short int
SCHAR MIN | smallest signed char
UCHAR MAX | largest unsigned char
CHAR MAX largest char
CHAR_MIN smallest char
WORD_BIT number of bits in one word
CHAR_BIT number of bits in char

TABLE 1.1. Limits of integral numbers from C library <limits.h>.

DBL_MAX largest double

DBL_MIN smallest double

DBL_EPSILON double epsilon

DBL_MANT_DIG number of binary bits in mantissa
DBL_DIG number of decimal digits in mantissa
DBL.MAX_10_EXP largest exponent

LDBL.MAX largest long double

LDBL_MIN smallest long double

LDBL_EPSILON

long double epsilon

LDBL_MANT_DIG

number of binary bits in mantissa

LDBL_DIG number of decimal digits in mantissa
LDBL_ MAX_10_EXP | largest exponent

FLT_MAX largest float

FLT_MIN smallest float

FLT EPSILON float epsilon

FLT_MANT _DIG number of binary bits in mantissa
FLT_DIG number of decimal digits in mantissa

FLT_MAX_.10.EXP

largest exponent

TABLE 1.2. Limits of floating point numbers from C library <float.h>.

1.5 Identifiers and Keywords 19

#include <limits.h>
#include <float.h>

main() {
int i = INT_MIN; // smallest int
long j = LONG_MAX; // largest long int
double x = DBL_MAX; // biggest double
long double y = LDBL_MAX; // biggest long double
float z = FLT_MAX; // biggest float
double epsdbl = DBL_EPSILON; // double epsilon
float epsflt = FLT_EPSILON; // float epsilon

long double epsldb = LDBL_EPSILON; // long double epsilon

For headers ending with the .k suffix such as float.h and math.h, the
include directive

#include <float.h>
automatically gives access to declarations in float.h, and the statement
using namespace std;

is not necessary.

Note that the C++ library <limits> is different from the C library
<limits.h>, which C++ inherited from C. All C libraries can be called from
a C++ program provided that their headers are appropriately included. See
§4.2 for more details on all C and C++ standard header files.

1.5 Identifiers and Keywords

1.5.1 Identifiers

In our first program, we have used variables such as sum and m to hold
values of different data types. The name of a variable must be a valid
identifier. An identifier in C++ is a sequence of letters, digits, and the
underscore character _. A letter or underscore must be the first character
of an identifier. Upper and lower case letters are treated as being distinct.
Some identifiers are:

double sum = O; // identifier sum suggests a summation
double product; // identifier product suggests multiply
bool flag; // flag certain condition (true or false)
int Count;

int count; // different from Count

int this_unusually_long_identifier; // legal, but too long

20 1. Basic Types

and and_eq asm auto
bitand bitor bool break
case catch char class
compl const const_cast continue
default delete do double
dynamic_cast else enum explicit
export extern false float

for friend goto if

inline int long mutable
namespace new not not_eq
operator or or_eq private
protected public register reinterpret_cast
return short signed sizeof
static static_cast struct switch
template this throw true

try typedef typeid typename
union unsigned using virtual
void volatile wchar_t while

xor xor_eq

int _aAbBcCdD;

TABLE 1.3. All C++ keywords.

// legal, but no meaning

It is good programming practice to choose identifiers that have mnemonic
significance so that they contribute to the readability and documentation
of a program. Confusing identifiers should be avoided. For example, 11,
1l, lo, and 10O are different and valid identifiers but are hard to read, and
identifiers Count and count can be easily misunderstood.

1.5.2 Keywords

Keywords such as int, double, and for are explicitly reserved identifiers that
have a strict meaning in C++. They can not be redefined or used in other
contexts. For example, a programmer can not declare a variable with the
name double. A keyword is also called a reserved word. A complete list of
C++ keywords is in Table 1.3.

Note that cin and cout, for example, are not keywords. They are part of
the input and output (I/O) library <iostream>.

1.6

1.6.1.

1.6.2.

1.6 Exercises 21
Exercises

Modify the program in §1.1 to compute the sum of the squares of
all integers between two given integers. That is, find the sum n? +
(n+1)2 4 --- + m? for two given integers n and m with n < m. In
the sample program in §1.1, the variable sum should be declared as
double or long double in order to handle large values of n and m. In
this exercise, try to compute sum in two ways: as a long double and
as an nt, and compare the results. On a computer with 4 bytes for
storing int, the second way calculates the sum 12+224-3%+. .. 450002
as —1270505460. Why could a negative number as the output be
possible?

Modify the program in §1.1 to multiply all integers between two given
small positive (e.g., less than or equal to 12) integers. When one of
them is 1 and the other is a positive integer n, the program should
find the factorial n! = 1%2% 3 x-.-x (n — 1) xn. The program to find
n! may be written as

#include <iostream>

using namespace std;

main() {
int n;
cout << "Enter a positive integer: \n*;
cin >> n;

int fac = 1;
for (int i = 2; i <= n; i++) fac *= i; // fac = fac*i;
cout << n << "! is: " << fac << ’\n’;

Except for possible efficiency difference, the statement fac * = i is
equivalent to fac = facx1.

This simple program can only compute n! correctly for n = 1 up
to n = 12 on a computer with sizeof(int) = 4. When n = 13,
such a computer may calculate 13! as 1932053504 while the correct
value is 13! = 6227020800. It may also compute 20! as —2102132736
(why negative?) and 40! as 0 (why just 0?). A computer can produce
garbage very easily. Test what your computer gives you for 13!, 20!,
and 40!. A user should check the correctness of computer outputs by
all means. Sometimes outputs such as the erroneous result for 13!
above can be very hard to check. Outline a procedure to determine
the correctness of your computer output of 13!, assuming you do not
know the correct value.

22

1.6.3.

1.6.4.

1.6.5.

1.6.6.

1. Basic Types

In Exercise 3.14.21, a technique is introduced that can compute n!
correctly for much larger n, for example, n = 3000 or larger. Notice
that the number 3000! has 9131 digits that would overflow as an
integer on any current computer.

If one wishes to compute the following summation
sin(1.1) + sin(1.3) + sin(1.5) + - - - + sin(9.9),

the program in §1.1 can be modified to do so:

#include <iostream> // input/output library
#include <math.h> // math library for sin
main() {

double sum = 0; // sum initialized to O

for (double d = 1.1; d <= 9.9; 4 += 0.2) sum += sin(d);
cout << "The sum is: " << sum << ’\n’;

¥

This for loop declares d to be a variable of double precision with
initial value 1.1, and executes the statement sum += sin(d) for d
changing from 1.1 up to 9.9 with increment 0.2 each time. Compile
and run this program, and modify it to compute

el pel2 e l3 g 185

where e is the base of the natural logarithm. See §3.11 for a complete
list of mathematical functions in the library <math.h>.

Write a program that outputs the largest integer, smallest integer,
and the number of bytes for storing an integer on your computer.
Also do this with short int, int, and long int.

Write a program that outputs the integer values corresponding to
characters A4, 9, a, {, $, \n (new line), \t (horizontal tab), \0 (null
character), \\ (backslash), \r (carriage return), \” (double quote),
\b (backspace), \ f (formfeed), \’ (single quote), \v (vertical tab), \?
(question mark), and \a (alert) on your computer.

Write a program that outputs exactly the sentences:
He said: “I can output double quotation marks.”
She asked: “Do you know how to output the newline character \n ?”

Notice that the double quotation mark, newline, and question mark
are special characters in C++. See Exercise 1.6.5

1.6.7.

1.6.8.

1.6.9.

1.6.10.

1.6.11.

1.6 Exercises 23

A backslash symbol \ at the end of a line is supposed to continue it
to the next line. Test the following program to see its effect.

#include <iostream>
using namespace std;
main() {

cout << "I am outputting a string that stands on \
three lines to test the effect of a continuation line \
using a backslash\n";

}

Write a program that outputs the largest and smallest numbers,
epsilon, the number of decimal digits used to store the mantissa,
and the largest exponent for double precision floating point numbers
on your computer. Repeat this for float and long double as well.

Compile and run the program

#include <iostream>
using namespace std;

main() {

long g = 12345678912345;

short h = g; // beware of integer overflow

int 1 = g - h;

cout << "long int g = " << g << ’\n’;

cout << "short int h = " << h << ’\n’;

cout << "their difference g ~= h = " << g - h << ’\n’;
}

on your computer. Does your compiler warn you about integer over-
flow? It may not always do so. Does your computer give g — h = 07
Beware of overflow and truncation in converting a larger type to a
smaller one.

Calculate the value of 7 on your computer following the steps in §1.3.3
in single, double, and extended double precisions. How many digits of
accuracy does your computer give in each of the three floating point
types?

What is the value of ¢ in the following statement?

int i = 3.8 + 3.8;

Is it 6, 7, or 87 Type conversion may lead to loss of accuracy. Does
your compiler warn you about this? It may not always do so.

24 1. Basic Types
1.6.12. What do you think the following program will output?

#include <iostream>
#include <float.h>

int main() {
double x = DBL_MAX; // biggest double
double epsilon = DBL_EPSILON; // double epsilon
double zero = 0.0;
double y = 100.2;

double z0 = x + x;
double z1 = x * 2;
double z2 = epsilon/9;
double z3 = y/zero;
double z4 = zero/zero;
double z5 = z3 - z3;
double z6 = x + y;

cout << "outputting results:\n";
cout << z0 << ’\n’;

cout << z1 << ’\n’;

cout << z2 << ’\n’;

cout << z3 << ’\n’;

cout << z4 << ’\n’;

cout << z5 << ’\n’;

cout << z6 << ’\n’;

cout << 1 + z2 << ’\n’;

}

Run the program on your computer to check the results. You may
see Infinity, NaN, and other unusual outputs.

2

Expressions and Statements

The code segment

int n;
int m = 10;
n=m+ 5;

contains three statements. The first one is a declaration (it declares n to be
an integer; i.e., it informs the compiler that n is a variable of type int, and
the compiler will allocate appropriate memory space for it), the second one
is a declaration together with an initialization (it declares m to be an integer
and initializes it to 10), and the third statement is an assignment (it assigns
the value of m plus 5 to n) that contains an expression m+5 with operands
m and 5 and operator +. A declaration is a statement that introduces a
name associated with a type into the program. All statements must end
with a semicolon. In this chapter, various expressions and statements are
discussed, after starting with scopes and storage classifications. The chapter
finishes by providing a sample program on calculating Fibonacci numbers.

2.1 Scopes and Storage Classifications

A scope is part of a program text consisting of statements enclosed by a pair
of braces, except for the global scope that is outside all braces. Variables
defined in the global scope are called global variables, and those defined in
local scopes are called local variables. This section deals with scopes and
different kinds of variables.

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

26 2. BExpressions and Statements

2.1.1 Local and Global Variables

Unlike C and FORTRAN, a declaration is a statement that can occur any-
where another statement can, not necessarily at the beginning of a program.
f it occurs within a block enclosed by a pair of braces, it then declares a
‘ocal variable to the block. This block introduces a scope. Variables local tc
1 scope are inaccessible outside the block defining the scope. For example,

int n;

{ // this pair of braces introduces a scope
int m = 10; // m is accessible only within this scope

}

1= m; // error, m is out of scope

int m = 20; // OK, it declares a new variable m

The local variable m = 10 is not accessible outside the scope in which it is
Jefined. Thus the assignment n = m is illegal and the compiler treats m
as not having been declared. However, it is legal to define another variable
m = 20 after that scope. Variables can have the same name if they are in
ifferent scopes.

A variable declared before a block can be accessed after and within the
slock, and within all inner blocks, provided it is not hidden by another
variable declared within such a block and having the same name. A variable
Jeclared outside all blocks is said to be a global variable. When a local
variable and a global variable have the same name, the scope resolution
sperator :: can be used to access the global variable. For example,

int x = 10; // this x is global (outside all blocks)
main() {
int x = 25; // local variable x, it hides global x
int y = ::x; // y =10, ::x refers to global variable x
{
int z = x; // z = 25; x is taken from previous scope
int x = 38; // it hides local variable x = 25 above
int t = ::x; // t =10, ::x refers to global variable x
t = x; // t = 38, x is treated as local variable
}
int z = x; // z = 25, z has same scope as y

There is no way to access a hidden local variable. For example, the local
variable £ = 25 is hidden and inaccessible from the scope where integer ¢
is defined. Note that the local variables = 25 and y have the same scope
as z, the local variable introduced in the last statement of the program.
An automatic variable is created at the time of its declaration and des-
troyed at the end of the block in which it is declared, as the variables y,
t, and z above. When the block is entered, the system sets aside memory

2.1 Scopes and Storage Classifications 27

for automatic variables. When the block is exited, the system no longer
reserves the memory for these variables and thus their values are lost. A
local variable is automatic by default. It can also be declared explicitly
by the keyword auto. For example, the declaration int z = 38; above is
equivalent to: auto int x = 38;.

2.1.2 External and Register Variables

A variable defined in one file can be accessed in another file by declaring it
to be external using the keyword extern:

extern double x; // x can be accessed across files

This declaration tells the system that variable z is defined externally, per-
haps in another file (see §4.3.2 for more details). However, it does not
allocate space for the external variable z and simply means that z is ac-
cessible in all files that have the statement extern double ;. It must be
declared as usual in one and only one file:

double x; // declare it as usual in one of the files

It is this statement that creates an object and allocates space for z. (See
§4.4.2 on how to compile a program consisting of more than one file.)
External variables never disappear; they exist throughout the execution life
of the program. To improve the modularity and readability of a program,
the use of external variables should be kept to the minimum. In particular,
a function (see §3.8) should not change an external variable within its body
rather than through its parameter list or return value. An external variable
can sometimes be localized:

{
// some code
{
extern double x; // x is restricted to this scope only
double y = x;
}
}

The declaration of a register variable indicates that it is stored in high
speed registers. Since resource limitations and semantic constraints some-
times make this impossible, this storage classification defaults to automatic
whenever the compiler can not allocate an appropriate physical register.
The use of register variables is an attempt to improve execution speed
and the programmer may declare a few most frequently used variables as
register. For example,

for (register int i = 0; i < 10000; i++) {
// ... do something

28 2. Expressions and Statements

}

However, modern compilers can normally do a better job than a program-
mer as to which variable should be assigned to a register.

Thus every variable has two attributes: type and storage classification.
Three storage classifications have been talked about in this section. They
are automatic, external, and register, which are represented by keywords
auto, extern, and register. How these variables are stored distinguishes them
from each other. The use of C-style static storage classification, defining
a variable local to only one file, is discouraged in C-++, since its use is
subtle and the keyword static is overused in C++. However, C++ provides
namespaces for defining variables local to a file; see §4.1.4.

2.2 Expressions

If we define int £ = 25; int y = 10; then = — y is called an expression
having operands z and y and operator —, the value of which is 15. In this
case, — is called a binary operator since it takes two operands. It can also
be used as a unary operator as in x = —5, which takes only one operand.
Different expressions are introduced in this section.

2.2.1 Arithmetic Expressions

Arithmetic expressions contain arithmetic operations for addition, sub-
traction, multiplication, and division, whose corresponding operators are
+,—,*, and /, respectively. + and — are also unary operators. These op-
erators are defined for all integer and floating point types and there are
appropriate type conversions between different types. The reminder of one
integer divided by another is given by the modulo operator %. Note that
the division of one integer by another has an integer value in C++, where
the reminder (zero or not) is ignored. For example,

double m = 13/4; // m = 3, reminder is ignored
double n = 3/4; // n =0, it just gives quotient
double x = double(3)/4; // x = 0.75, 3 is converted to 3.0
double y = 3.0/4; // y=0.75

double z = 3/4.0; // z=0.75

int t = 13%4; // t = 1, reminder of 13/4 is 1

Left to right associativity holds for arithmetic expressions. Multiplication
and division have higher precedence than addition and subtraction, and
parentheses override this precedence as in mathematical expressions. For
example,

m=1+ 2 + 3%4; // m=3+12 =15

2.2 Expressions 29

m=1+ (2 + 3)%4; //m=1+5%4 =21
m = expl + (exp2 - exp3);

In general, the following two statements are equivalent,

m = expl + exp2 + exp3;
m = (expl + exp2) + exp3; // left to right associativity

although it is not guaranteed that expl or exp2 is evaluated before the
expression ezp3 is evaluated. That is, associativity and precedence only
group subexpressions together, but do not imply which subexpression is
evaluated first in time.

2.2.2 Relational Ezpressions

Relational operators are > (bigger than), < (smaller than), >= (bigger
than or equal to), <= (smaller than or equal to), == (equal), and != (not
equal). The notation ! is the negation operator. The result of evaluating
these operators is of type bool; it is either true or false. For example,

int x = 5;

bool b = (x < 6); // b = true, since x is less than 6
bool ¢ = (x == 0); // ¢ = false, since x is not 0O

if (b t=¢) x = 17; // if b is not equal to c, let x = 17
if (b) x = 19; // if b is true, then do x = 19

if (!b) x = 221; // if b is false, then do x = 221

In general, a zero quantity is false and a nonzero quantity is true. Care
must be taken when testing for equality of two floating point numbers
owing to finite precision in computer representation and roundoff errors;
see Exercise 2.5.10. Instead of doing so directly, one usually checks if the
absolute value of their difference is less than a small number. Notice that
m = n is an assignment while m == n is a relational expression.
Mathematical and C+-+ expressions may sometimes have surprisingly
different interpretations. For example, the mathematical expression

3<m<9

is true for m = 7 and is false for m = 20. However, consider the C++ code:

int m = 7;

bool b =3 <m < 9; // b = true
m = 20;

bool ¢ = 3 <m < 9; // ¢ = true

Due to the left to right associativity for relational operators, the C++
expression 3 < m < 9 is equivalent to (3 < m) < 9. Thus the C++

30 2. Expressions and Statements

expression 3 < m < 9 always evaluates to true because 3 < m is evaluated
to either 1 (true) or 0 (false).
Another example is that the mathematical expression

r<z+y

is always true for any positive real number y and any real number z, while
the C++ expression

x<x+y;

evaluates to false for some large value of z (e.g., z = 5e+31 in 12-byte long
double precision) and small value of y (e.g., y = 0.1) since, in this case, =
and z + y are treated as being equal (due to finite precision and roundoff
error) on the computer. Similarly, the expression z + y > z — y is always
true for any positive numbers = and y in mathematics, but not in C++.

2.2.83 Logical Expressions

Logical operators are && (and) and || (o). A logical expression has value
of type bool. If expl and exp2 are two expressions, then expl && exp2 has
value true if both ezpl and ezp2 are true and has value false otherwise;
and ezpl || exp2 has value true if at least one of expl and exp2 is true and
has value false otherwise. This can be more easily illustrated by using the
so-called truth table.

true && true =true true true = true
true && false = false || true false = true
false && true = false || false true = true
false && false = false || false false = false

Some examples of logical expressions are:

bool b = true, ¢ = false;

bool d = b && c; // 4 = false

bool e = b || c; // e = true

bool f = (e == false) && c; // £ = false

bool g = (d == true) || c; // g = false

bool h = (d = true) || c; // h = true

Note that in the last statement above, d is assigned to be true in d = true
and thus (d = true) || ¢ = true || false = true. Again, d == true is a
relational expression while d = true is an assignment.

The logical expression

i>0& i<n

2.2 Expressions 31

tests if ¢ is bigger than or equal to 0 and less than n. If ¢ is less than 0,
then the value of the logical expression is false no matter what the value
of ¢ < m is, and the subexpression i < n is skipped without evaluation.
This is the so-called short-circuit evaluation and should lead to a faster
evaluation of such logical expressions. It also applies to the logical or oper-
ator ||. It is guaranteed that evaluation is from left to right and the process
stops as soon as the outcome true or false is known. That is, in this ex-
ample, the subexpression on the left ¢ >= 0 is evaluated first and then the
subexpression ¢ < n may or may not be evaluated depending on the value
of the left subexpression. This can be more easily seen from the following
examples.

int i, j = 2;

bool k = ((i = 0) & (j = 3)); // 1i=0, k = false, j = 2
boolm = ((i =4) || (j =5)); // i=4, n=true, j =2
bool n= ((i=20) |l (j=86)); // 1i=0,j=26,n= true

In the second statement above, i is assigned to be 0 and the left subexpres-
sion (¢ = 0) is converted to false. Thus k = false no matter what value
the right subexpression (j = 3) has, and the right subexpression (j = 3)
is skipped without evaluation. In the third statement, i is assigned to be
4 and (i = 4) is converted to true, and the right subexpression (j = 5) is
skipped.

Notice that this kind of left to right evaluation is not true for arithmetic
expressions. For example, in m = expl + exp2; it is not guaranteed that
expl is evaluated before exp2.

Referring to an example in §2.2.2, the correct way of translating the
mathematical expression 3 < m < 9 into C++ is

[}

(3<m) && (m < 9)

Since operator < has higher precedence than operator &&, the two pairs
of parentheses above may be omitted.

It is defined that the operator && has higher precedence than ||. For
example, the following two statements are equivalent,

boolm =1 []| j && k;
boolm =1 || (j && k);
although z = 4 || j || k is equivalent to z = (¢ || j) || k (left to right

associativity). Parentheses can override precedence and make code more
readable.

A summary on precedence for all C++ operators is given in §3.10.

2.2.4 Bituise Expressions

Bitwise operators are & (and), | (or), " (exclusive or), ~ (complement),
<< (left shift), and >> (right shift), which can be applied to objects of

32 2. Expressions and Statements

integral type (bool, char, short, int, long, and their unsigned counterparts).
In these expressions, operands are first implicitly represented in binary
(string of binary bits) and then operation is performed on them bit by bit.
Bitwise operations can be machine-dependent and may not be portable,
since, for example, different machines may represent integers differently
and use different bytes for storing them.

Binary bitwise operations &, |, and " are performed by comparing their
operands bit by bit. If two bits are both 1, then & and | give 1, and " gives
0. If two bits are both 0, then &, °, and | all give 0. If one bit is 0 and
the other is 1, then | and “give 1, and & gives 0. This can be more easily
illustrated by the following table.

1&1 =1[1&0 =0]0&1 =0]0&0 =0
1]1 =1[1]0 =1|0[1 -=1]0]0 =0
11 =0[1°0 =1]0 "1 =1]0°0 =0

For example, 13 and 7 are in binary 0---01101 and 0 - - - 00111, respectively.
Then

int a = 13 & 7; // & is performed bit by bit

defines a to have a binary representation 0 ---00101, which is obtained
by applying the bitwise & operator to corresponding bits of the binary
representations of 13 and 7. This gives a decimal number 22 + 20 = 5.
Similarly, the statements

int b = 13 ~ 7;
int ¢ = 13 | 7;

// b
// c

define b to have a binary representation 0- - - 01010, which is 2% + 2 = 10,
and ¢ a binary representation 0---01111, which is 23 + 22 + 2! +20 = 15.

If n and s are integers, then n << s shifts the pattern of bits of n, s
places to the left, putting s zeros in the rightmost places. On the other
hand, n >> s shifts the pattern s places to the right, putting s zeros in
the leftmost places for unsigned integers. (For signed integers, s zeros or
s ones may be shifted in depending on the machine.) For example, for an
unsigned int n = 16, consider the statements

//m
// k

Since 16 = 2% has a binary representation 0 - - - 010000, left shifting its bits
by 2 positions leads to a binary pattern 0--- 01000000, which is 26 = 64,
and right shifting its bits by 2 positions leads to 0- - - 0100, which is 22 = 4.
Note that << and >>are also input and output operators and they can be
easily distinguished from the context.

The bitwise complement operator ~is unary and changes every 0 into 1
and every 1 into 0 in the binary representation of its operand. For example,

10
15

64
4

n << 2;
n >> 2;

int m
int k

2.3 Statements 33

the integer 0 has all bits equal to 0 in its binary representation and "0 has
all bits equal to 1.

The value of "n is called one’s complement of n. Two’s complement of
an integer n is the value of adding 1 to its one’s complement. On a two’s
complement machine, a nonnegative integer n is represented by its bit rep-
resentation and a negative integer —n is represented by the two’s comple-
ment of n. For example, 7 is represented by the binary string 0000 - --0111,
and —7 is represented by 1111---1001, which is obtained from adding 1 to
1111 ---1000, the complement of 7.

It can be checked that the two’s complement of a negative integer —n
has value n. For example, —7 is represented by 1111 - - - 1001. Its two’s com-
plement is 0000 - - - 0111, which is 7. In two’s complement, the integer 0 has
all bits off and —1 has all bits on. Notice that the leftmost bit represents
the sign of the integer: 1 for negative and 0 for nonnegative. On a two’s
complement machine, the hardware that does addition can also do subtrac-
tion. For example, the operation a — b is the same as a + (—b), where —b is
obtained by taking b’s two’s complement.

In Exercise 2.5.15, a program is given to print out the bit representation
of any integer on a computer.

2.2.5 Comma Expressions
The expression
i=3,1i+ 2;

is called a comma expression with a comma used to separate subexpres-
sions. Its value is the value of the last subexpression, and in this example
its value is ¢ + 2 = 5. A comma expression is guaranteed to be evaluated
from left to right. Thus, the subexpression 7 = 3 is evaluated first and then
the subexpression ¢ + 2. Consequently, the statement

j=(1=3,1i+2);

gives j = 5.

2.3 Statements

A program consists of a collection of statements. Each statement must
end with a semicolon. The null statement is simply a semicolon, which is
used when the syntax requires a statement but no action is desired. In this
section, we deal with various statements: declarations, assignments, com-
pound statements, conditional statements, iteration statements (loops),
jump statements, and selection statements. Later we encounter return state-
ments and function calls (see Chapter 3).

34 2. Expressions and Statements

2.83.1 Declarations and Initializations
The declaration
int n;

declares the variable n to be an integer and reserves for it sizeof(int) bytes
of addressable memory, the content of which is in general undefined. The
system may initialize n with a default value in some situations, but it is
safe to always assume the value of n is undefined. To give it a meaningful
value, an assignment such as

n = 10;

can be used. A variable can be declared and initialized in one statement
such as

int n = 10;

This is called an instialization. All variables must be declared before they
are used. One declaration statement can declare several variables of the
same type, separated by commas, such as

double x, y, z; // declare x, y, z in one declaration

It is equivalent to declaring them separately.
The particular block of memory reserved for a variable is sometimes
called an object. For example, when we declare an integer variable n:

int n = 10;

a certain contiguous region of memory (sizeof(int) bytes) is allocated for
it. This particular contiguous region of memory is called an object. The
name of this object is n. There are two numbers associated with the object
n: its value (the value stored in the block of memory), written as n, and its
location or address of the object in memory, written as &n. The symbol &
is called the address-of operator. It gives the address of an object. We can
change the value of object n through the assignment: n = 55;. It simply
stores the new value 55 at the same memory location. This can be checked
by the following program.

main() {
int n = 10;
cout << "The value of variable n is: " << n << ’\n’;
cout << "The location in memory of variable n is: " << &m;
n = b5;
cout << "The value of variable n is: " << n << ’\n’;
cout << "The location in memory of variable n is: " << &n;

2.3 Statements 35

Locations of objects in memory are implemented using large integers. In
§3.6, pointers are introduced as a data type to represent and manipulate
locations of objects.

2.3.2 Assignments
If a,b, ¢ have type double, then

a=>b+c;

is an example of an assignment, which assigns the sum of values of objects
b and c to the object named a at the address &a. Here b + ¢ can be called
the rvalue, and a the lvalue. The term lvalue comes from “left-hand side
value,” and rvalue “right-hand side value.” An lvalue is defined to be an
expression that refers to an object. An rvalue is obtained by reading the
content of an object and an lvalue is associated with writing. Therefore,
a statement like a + b = ¢ is meaningless and illegal, since a + b can not be
used as an lvalue.

Also note that an initialization and an assignment are two distinct op-
erations. An initialization allocates space in memory for a variable and
initializes a value for the variable at its location and thus creates an object.
An assignment does not create an object but simply assigns a value to an
object already created before.

2.8.3 Compound Assignments

The assignment operator may be combined with any of the binary arith-
metic or bitwise operators to form a compound assignment operator. If @
is one of these operators, then z @= y means z = z @ y, except for possible
efficiency differences and side effects (see Exercises 2.5.6 and 3.14.12). For
example, z /= 5 means £ = z / 5 (division), and z &=5 means c =z & 5
(bitwise and). Notice that there is no whitespace between the two operators
and they form a single operator. The complete set of compound assignment
operators are +=, —=, =, /=, %=, &=, |=, =, K=, >=.
Compound assignment (also increment and decrement; see §2.3.4) op-
erators have the potential to be implemented efficiently. For example, an
intermediate value of £ —5 is usually obtained and stored and then assigned
to z in £ = z — 5; while in £ —= 5; such an intermediate process can be
omitted and the value of z is just decremented by 5. They may also save
some typing and be more readable as in the following two statements.

my_very_long_variable = my_very_long_variable - 5; // messy
my_very_long_variable -= 5; // better

36 2. Expressions and Statements

2.3.4 Increments and Decrements

When increasing or decreasing a variable by unity, more compact notation
can be used. If n is a variable, n++ and ++n both increase the value
of n by 1. In the postfix form n++, the original value of n is used in the
expression in which it occurs before its value is incremented. In the prefix
form ++n, the value of n is first incremented by 1 and then the new value
of n is used. A similar explanation holds for the decrement operator —— .
For example,

int 1 =4, j = 4; // i and j are both initialized to 4
it++; // i=1i+ 1. S0 i= 5

++3; // j =3j+1.8 j=5

int m = i++; // first m=i, then i=i+i. So m=5, i=6
int n = ++j; // first j=j+1, then n=j. So n=6, j=6
m= ——i; // first i=i-1, then m=i. So m=5, i=5

n = j--; // first n=j, then j=j-1. So n=6, j=5
In the statement m = ——i, the value of ¢ is decremented by 1 first and
the new value of 7 is assigned to m, while in the statement n = j——, the

value of 7 is first assigned to n and then the value of j is decremented by
1.

Compound operators may sometimes cause side effects. For example, the
statement

j o= (1--) + (#+1); // unpredictable result

is a legal statement but its behavior is unpredictable and thus should not
be used, since it is nondeterministic to evaluate the left operand i —— or the
right operand ++¢ first. Suppose ¢ = 5. Then evaluating the left operand
i—— before the right operand ++1 would give j = 10. Reversing the order
of evaluation would give j = 12. See Exercises 2.5.6 and 3.14.12. Compound
operators should be used in a straightforward way. Otherwise they can
easily lead to less readable and error-prone code.

2.3.5 Compound Statements

A compound statement is a block of statements enclosed by a pair of braces.
For example,

{
int n = 10;
n += 5;

}

is a compound statement, and it creates a new scope. Notice that no semi-
colon is needed after the right brace symbol. If there were a semicolon,
it would be a null statement following the compound statement. Since

2.3 Statements 37

a compound statement is syntactically equivalent to a single statement,
compound statements can be nested. That is, a compound statement can
appear inside another compound statement. For example,

{
int n = 10;
n |= 5; // n=n |5 (bitwise or)
{ // a nested compound statement
double m = 20;
m *= 3.14;
}
}

2.8.6 Conditional Statements
if-else Statements

The simplest conditional statement is the ifstatement, whose syntax is:
if (condition) statement

where condition is a logical expression having value true or false, and
statement can be a single or compound statement. The statement is exe-
cuted when the value of condition evaluates to true and is skipped other-
wise. The condition must be enclosed in parentheses. For example,

if (n > 0) x *= 10; // when n > 0, do x *= 10

if (n == 0) { // when n is 0, do x *= 5
X *= 5;

¥

if (n) y *= 7; // when n != 0, doy *= 7

Notice that an implicit conversion is made in the third ifstatement; y x= 7
is executed when n has a nonzero value (which is converted to true) and
skipped when n has a zero value (which is converted to false).

The ifstatement should be used with caution when the conditional ex-
pression requires the comparison for variables not of integral type. For
example, if z and y are doubles, then the condition #f (z == y) may be
replaced by if (fabs(z — y) <= Small), where Small is a user-defined very
small number and fabs is a math function that gives the absolute value of
a floating point number. See Exercise 2.5.10.

The difference between if (z==y) and #f (zx = y) should also be noticed.
Such small points can be hard to detect when they are buried in a program.

The ifstatement can have an optional else part. Its syntax is

if {condition) statementl

else statement?2

38 2. Expressions and Statements

where condition is a logical expression and statementl and statement2 are
single or compound statements. statementl is executed and statement?2 is
skipped when the value of condition evaluates to true, and statement?2 is
executed and statementl is skipped otherwise. For example,

if (x == 0) cout << "denominator is zero\n"; // warning msg
else y /= x; // do division

When is not 0, a division by « is performed. Otherwise output a warning
message.
The if-else statement can be nested. For example, in the statement

if (conditionl) statementl

else if (condition2) statement?2
else if (condition3) statement3
else statement4

statement] is executed if and only if conditionl is true. If it is true,
the rest is skipped; if it is false, statementl is skipped, and the value
of condition?2 is checked. If condition?2 is true, then statement2 is executed
and statement3 and statementd are skipped; if it is false, statement2
is skipped and the value of condition3 is checked. If condition3 is true,
then statement3 is executed and statementd is skipped; if it is false, then
statement3 is skipped and statement4 is executed. The compound ifelse
statement above can be equivalently written as

if (conditionl) statementl
else {
if (condition2) statement2
else {
if (condition3) statement3
else statementd

)
)

An if or if-else statement defines a new scope and declaration of a new
variable is possible, even in the condition part. For example,

double x; // #include <stdlib.h>
if (int r = rand()) { // r is declared in condition part
x /= r; // if r is nonzero, do a division
} else { // if r is zero, do an addition
X += r; // r is also within scope here
}
double y = r; // illegal, r is out of scope

The function rand(), declared in the standard header <stdlib.h>, gener-
ates a pseudorandom number between 0 and RAND_MAX. The macro
RAND_MAX is also defined in <stdlib.h>. To generate a pseudorandom

2.3 Statements 39

number between 0 and n, using int((double(rand()) /RAND_MAX) x n)
gives a more random result than simply rand()%n.

The ternary conditional operator 7 : is defined as follows. The expres-
sion 27z : y has value = when z is true and has value y when z is false. As an
example, the following ternary conditional statement and if-else statement
are equivalent.

i=a>b?7a: b; // ternary conditional statement

if (a>b) i = a; // if-else statement
else i = b;

goto Statements

It is sometimes necessary to make an explicit jump from the point of current
execution to another point that has been labeled with an identifier using
the goto statement:

if (condition) goto label;
label: statement

The labeled statement (a colon is needed after the label) can occur before
or after the goto jump. A goto statement is useful when a jump is needed
out of deeply nested blocks. For example,

repeat: i = 9; // statement labeled by "repeat"
{
/...
{
/...
if (i == 0) goto repeat;
if (i == 8) goto done;
}
}

done: i = 1; // colon needed after label "done"

However, a succession of goto statements can lead to loss of control in a
program and should be avoided. Even a single goto statement is rarely
necessary.

switch Statements

A switch statement is often used for multiple choice situations. It tests the
value of its condition, supplied in parentheses after the keyword switch.
Then this value will be used to switch control to a case label matching the
value. If the value does not match any case label, control will go to the
default case. The break statement is often used to exit a switch statement.
For example,

40 2. Expressions and Statements

int i, j, k;
// do something to compute the value of i

switch(i) { // i is tested against the cases
case 0: // control comes here if i == 0

j = 6; // statement of case 0

k = 36;

break; // branch out of switch statement
case 5: // control comes here if i ==

j=1; // statement of case 5

k=17,

break; // branch out of switch statement
default: // use default if i !'= 0 & i !=5

j = 8; // default statement
}

In this switch statement, the value of 7 is tested. When ¢ is 0, the state-
ment corresponding to case 0 is executed. When ¢ is 5, the statement cor-
responding to case 5 is executed. When 7 is neither 0 nor 5, the default
case is executed. Notice the appearance of the break statement after each
case. Without it, every following statement in the switch statement would
be executed, until a break statement is encountered. There are occasions
when this is desired. A default choice is optional but is sometimes useful to
catch errors. For example,

char x;
double y;
// do something to compute the value of x

switch(x) {

case ’A’: // char enclosed in single quotes
case ’a’: // when x is A or a, let y = 3.14
y = 3.14;
break; // branch out of switch statement
case ’B’:
case ’'b’: // when x is B or b, let y = 2.17
y = 2.17;
break; // branch out of switch statement
default: // if x not A, a, B, b, report error
cout << "Impossible value of x happened\n";
}

In general, the switch expression may be of any type for which integral
conversion is provided and the case expression must be of the same type.
A switch statement can always be replaced by an ifelse statement, but a
switch statement can sometimes make the code more readable.

2.3 Statements 41

2.3.7 Iteration Statements
for Loops

The for loop is very versatile and convenient to use. Its general form is
for (initialize; condition; expression) statement

where initialize represents statements initializing the control variable or
variables, condition provides loop control to determine if statement is
to be executed, and expression indicates how the variables initialized in
initialize are to be modified and is evaluated (each time) after statement
is executed. The loop proceeds until condition evaluates to false. If the
first evaluation of condition is false, neither expression nor statement is
evaluated at all. For example,

for (imt i = 3; i < 50; i *= 2) {
cout << i << ’\n’;

1

It will print out integers 3, 6, 12, 24, 48. The initial value of 7 is 3. Since
condition ¢ < 50 is true, 3 is printed. Then ¢ *= 2 gives the second value
of i to be 6. Since i < 50 is still frue, 6 is printed. This process repeats
until ¢ x= 2 gives i = 96, at which time the condition i < 50 is no longer
true.

The following loop will not print out anything since the initial condition
is false.

for (imt i = 3; i > 5; i #»=2) {
cout << i << ’\n’;

}

When i = 3, the condition 7 > 5 is false. Thus the loop exits without
executing the statement inside the braces. The expression i x= 2 is also
skipped.

A for loop defines a new scope. That is, the declaration int ¢ = 3 in the
previous for loop is out of scope outside the loop:

for (int i = 3; 1 < 50; i *= 2) { // i visible omly in loop
cout << i << ’\m’;

}

i a—

= 20; // error, i out of scope

To avoid accidental misuse of a variable, it is usually a good idea to
introduce the variable into the smallest scope possible. In particular, it
is usually best to delay the declaration of a local variable until one can
give it an initial value. Both if-else statements and for statements provide
such a mechanism to avoid accidental misuse of variables and to increase
readability.

42 2. Expressions and Statements

The break statement can be used to stop a loop, and the continue state-
ment stops the current iteration and jumps to the next iteration. For ex-
ample,

for (int i = 3; i < 50; i *= 2) {

if (i == 6) continue; // jump to next iteration when i==
cout << i << ’\n’;
if (i == 24) break; // break the loop when i is 24

}

It will print out integers 3, 12, 24. When ¢ is 6, the value of ¢ is not printed
out since the continue statement causes control to go to the next iteration
with ¢ = 6 x 2 = 12. When 17 is 24, the loop is exited due to the break
statement. The break statement is often used to break an otherwise infinite
loop. For example,

int n = 0;
for (; ;) { // an infinite loop

cout << ++n << ’\n’;

if (n == 100) break; // break infinite loop when n==100
}

It will print out 1,2,...,100. The loop breaks when n is 100. This is an
otherwise infinite loop since it has no condition to check.

Comma expressions sometimes appear inside a for loop and the statement
of a for loop can be an empty statement. For example,

double sum;

int i;
for (sum = 0, i = 0; i < 100; sum += i, i++) ;
cout << "sum = " << sum << ’\n’; // sum = 4950

It initializes sum = 0 and ¢ = 0. The comma expression sum + =i, i++
is executed until 7 < 100 is not true. This for loop can also be written as

for (sum = 0, i = 0; i < 100; sum += i++) ;

The iteration variable in a for loop does not have to be integral. For
example,

for (double x = 0; x < 300.14; x += 2.17) { sum += x; }

A for loop can be nested just like any other compound statement. For
example,

double a = 0}
for (int i = 0; i < 100; i++) {

for (int j = 200; j <= 500; j++) a +=1i - j;
}

2.3 Statements 43

long double b = 5;
for (int i = 1; i < 5; i++)
for (int j = 27; j >= - 3; j==) b *= i + jxj;

They compute, respectively,

99 500 4 27
Y>> G-3) and 5[] [] G+4%,
i=0 j=200 i=1j=-3

where) stands for summation and [] for product.

while Loops

The while loop statement has the form
while (expression) statement

The statement is executed until expression evaluates to false. If the initial
value of expression is false, the statement is never executed. For example,
int x = 0;
while (x <= 100) {

cout << x << ’\n’;

X++;
}
The statements inside the braces are executed until £ <= 100 is no longer
true. It will print out 0,1, 2, ..., 100. This loop is equivalent to the following
for loop.
int x;
for (x = 0; x <= 100; x++) cout << x << ’\n’;

The following while loop will not print out anything since the initial con-
dition is false.

int x = 10;

while (x > 100) {
cout << x++ << ’\n’;

}

do-while Loops

The do-while statement resembles the while loop, but has the form
do statement while (expression);

The execution of statement continues until expression evaluates to false.
It is always executed at least once. For example,

44 2. Expressions and Statements

int x = 10;
do {

cout << x++ << "\n";
} while (x > 100);

It will stop after the first iteration and thus print out only 10.

The continue statement can also be used in a while or do-while loop to
cause the current iteration to stop and the next iteration to begin imme-
diately, and the break statement to exit the loop. Note that continue can
only be used in a loop while break can also be used in switch statements.
For example, the code segment

int x = 10;

do {
cout << x++ << ’\n’; // print x, then increment x
if (x == 20) break; // exit loop when x is 20

} while (true);
should print out all integers from 10 up to 19 and the code segment

int x = 10;

do {
if (x++ == 15) continue; // test equality, then increase x
cout << x << ’\n’;
if (x == 20) break;

} while (true);

should print out all integers from 11 up to 20 except for 16. However, the
code

int x = 10;

while (true) {
if (x == 15) continue;
cout << x++ << ’\n’;
if (x == 20) break;

¥

first prints out integers 10,11,12,13,14 and then goes into an infinite loop
(since z will stay equal to 15 forever).

2.4 Fibonacci Numbers

In this section, an example on Fibonacci numbers is given to illustrate the
use of some C++ language features.
The sequence of Fibonacci numbers is defined recursively by

f0=0? f1:1, fn+1:fn+fn_1 forn=1,2,3,....

2.4 Fibonacci Numbers 45

For instance, fo = fi+ fo=1+0=1,and s =fo+ f1 =1+1=2.
Fibonacci numbers have many interesting applications and properties. One
of the properties is that the sequence of Fibonacci quotients

anfn/fn—h n=23.4,...,

converges to the golden mean, which is (1 + v/5)/2 ~ 1.618.

The following program prints out the first 40 (starting with n = 2) Fi-
bonacci numbers and their quotients, using long int for Fibonacci numbers
and long double for Fibonacci quotients.

Making use of the for loop, the program can be written as

#include <iostream>
using namespace std;

main() {
long fp = 1; // previous Fibonacci number
long fc = 1; // current Fibonacci number
for (int n = 2; n <= 40; n++) { // main loop
cout << n << " ", // output value of n
cout << fe<< ® M // output Fibonacci number

cout << (long double)fc/ fp << ’\n’; // Fib quotient

long tmp = fc; // temporary storage

fc += fp; // update Fib number

fp = tmp; // store previous Fib number
}

}

Inside the for loop, the variable fc is used to store the updated Fibonacci
number and fp the previous one. Adding fp to fc gives the next Fibonacci
number that is also stored in fe. A temporary storage tmp is used to store
fe before the updating and assign the stored value to fp after updating,
getting ready for the next iteration. Notice that the integer fc is converted
into long double before the division fc/fp is performed, since otherwise
the result would be just an integer.

This program works fine except the output may look messy. To have a
formatted output, it may be modified to control the space in terms of the
number of characters each output value occupies:

main() {
long fp = {1; // previous Fibonacci number
long fc = 1; // current Fibonacci number
cout.width(2); // output in a space of 2 chars

cout << "n";

46 2. Expressions and Statements

cout.width(27); // output in a space of 27 chars
cout << "Fibonacci number®;

cout .width(30);

cout << "Fibonacci quotient® << "\n\n";
cout.precision(20); // precision for Fib quotients

for (int n = 2; n <= 40; n++) {
cout.width(2);

cout << n;

cout.width(27);

cout << fc; // output Fibonacci number

cout.width(30);

cout << (long double)fc/ fp << ’\n’; // Fib quotient

long tmp = fc; // temporary storage

fc += fp; // update Fib number

fp = tmp; // store previous Fib number
}

Some of the formatted output of the program is:

n Fibonacci number Fibonacci quotient
2 1 1
3 2 2
4 3 1.5
5 5 1.6666666666666666666
6 8 1.6
7 13 1.625
8 21 1.6153846153846153846
9 34 1.6190476190476190476
10 55 1.6176470588235294118
20 6765 1.6180339631667065295
30 832040 1.6180339887482036213
39 63245986 1.6180339887498951409
40 102334155 1.6180339887498947364

The results show that the Fibonacci quotients converge very quickly to
the golden mean and the Fibonacci numbers grow extremely fast. Overflow
will occur well before n reaches 100; see Exercise 2.5.14. A technique is
introduced in Exercise 3.14.21 to store a large integer into an array of

2.5 Exercises 47

integers digit by digit, which enables one to compute Fibonacci numbers
for n up to thousands or larger.

2.5

2.5.1.

2.5.2.

2.5.3.

2.54.

2.5.5.

2.5.6.

2.5.7.

Exercises

Add printing statements to the program at the end of §2.1.1 so that
the value of each variable in different scopes is output to the screen
right after it is defined. Check to see if the output values are the ones
that you have expected.

The function rand(), declared in the standard header < stdlib.h>,
generates a pseudorandom number between 0 and RAND_MAX.
The macro RAND_MAX is also defined in <stdlib.h>. Write and
run a program that outputs the value of RAND_MAX on your system
and generates 100 pseudorandom numbers between 5 and 50, using a
for loop.

Rewrite the program in Exercise 2.5.2 using a while loop. Compare
the 100 numbers generated by this program and the program in Ex-
ercise 2.5.2.

Use a nested for loop to write a program to compute the sum:

100 300

Z Z cos(é2 + /7).

i=0 j=5

Check §3.11 for the cosine and square root functions in the math
library <math.h>.

Write a program that computes the number of (decimal) digits of a
given integer n. For example, when n = 145, the number of digits of
n is 3.

Write a program that contains the statements

j o= i-- + ++1; // unpredictable result
k = j + j++; // unpredictable result
k *= k++; // unpredictable result

and outputs the values of j and & with ¢ initialized to 5. Try to run the
program on different machines if possible. The result of such state-
ments is machine-dependent and can cause dangerous side effects.
Experienced programmers can recognize such statements and do not
use them.

The two statements

48

2.5.8.

2.5.9.

2.5.10.

2. Expressions and Statements

i=5;
j=@@=7+(&k=1+3);

]

are legal, but give different results on different machines. The value
of j is either 17 or 15 depending on whether the left subexpression
(z = T) or the right subexpression (k = i + 3) is evaluated first. The
value of k is either 10 or 8. Test what values j and k have under

your compiler. Again, such legal but machine-dependent statements
should be avoided.

Can division by zero ever occur in the following code segment?

int x = rand(), y = rand(); // x, y are random int
if ((x !'= 5) & (y/(x-5) < 30))
z = 2.17; // assume z declared

Then how about this (just switch the order of the subexpressions):

.int x = rand(), y = randQ); // x, y are random int

if ((y/(x-5) < 30) && (x != 5))
z = 2.17; // assume z declared

Note that the order of evaluation in logical expressions can make a
difference.

Are the following two statements equivalent?

for (sum = 0, 1 = 0; i < 100; sum += i, i++) ;

]
]

for (sum = 0, i = 0; i < 100; i++, sum += i) ;
Note that it is guaranteed that evaluation is done from left to right
in a comma. expression. There are only three such expressions. What

are they?

Run the following program:

main() {
double sum = O;
for (double x = 0.0; x != 5.5; x += 0.1) sum += x;

}

It is intended to find the sum of 0.1 + 0.2 +--- + 5.4. Does it go
into an infinite loop on your computer? It does on most computers
since z will never be equal to 5.5 due to computers’ finite precision.
In fact, numbers such as 1/3 and 0.1 can not be represented exactly
on computers. To fix this for loop, replace it by

2.5.11.

2.5.12.

2.5.13.

2.5.14.

2.5 Exercises 49
for (double x = 0.0; x <= 5.5; x += 0.1) sum += X;

Test this loop on your computer. Equality expressions involving float-
ing point arithmetic must be used with great care. Replacing them
by relational expressions often leads to more robust code.

Write a program to test the difference between the statement
while (i++ < n) { cout << i << ’\n’; }

and the statement

while (++i < n) { cout << i << ’\n’; }

where 7 and n are given integers, say ¢ = 0 and n = 10. Is there any
difference between the following two statements?

for (char i = ’a’; i <= ’z’; i++) cout << i << ’\n’;
and
for (int i = ’a’; i <= ’z’; ++i) cout << i << ’\n’;

Here is an easy way to know the largest unsigned int on a computer
with two’s complement:

unsigned int largeui = - 1;

Test to see if largeui stores the largest unsigned int on your com-
puter. Explain the reason. Does your compiler warn you about as-
signing a negative int to an unsigned int? If it does, how about:

int i = - 1;
unsigned int largeui = i;

Rewrite the first Fibonacci number program in §2.4 using a while loop
and the second using a do-while loop so that they produce exactly
the same output as the original programs.

Can you modify the program in §2.4 so that it will try to print out the
first 100 Fibonacci numbers? Your output will probably have negative
numbers for large n. This is caused by integer overflowsince Fibonacci
numbers grow very quickly. Computation usually continues but pro-
duces incorrect results when overflow occurs. It is the programmer’s
responsibility to make sure that all variables (suspected to take on
large or small values) stay within range and stop the program or take
other actions when overflow happens. Rewrite the program so that it
will print out a warning message before overflow occurs.

50 2. Expressions and Statements

2.5.15. Write a program that outputs the bit representation of an integer. On
a computer with sizeof(int) = 4 (i.e., 32 bits are used to represent
an integer) the program may be written as

main() {
int n;
int mask = 1 << 31; // mask = 10000000 ... 00000000
for (5 ;) { // enter an infinite loop
cout << "\nEnter an integer: \n"; // input an int
cin >> n; // input is assigned to n

cout << "bit representation of " << n << " is: *;
for (int i = 1; 1 <= 32; i++) { // loop over 32 bits
char cc = (n & mask) 7 ’1’: °0’;
// take bit i from left to right
cout << cc; // print bit i from left to right
n <<= 1; // n =n << 1; left shift n by 1 bit
if (i%8 == 0 && i != 32) cout <<’ ’;
// print one space after each byte
}
}
}

Note that n & mask gives the leftmost bit of n followed by 31 '0’s
in bit representation. When this bit is 1, character ’1’ is assigned to
cc and otherwise cc = ’0°. The statement n <<= 1 shifts the bit
pattern of n to the left by 1 bit. When ¢ = 1, the leftmost bit of n
is printed out and when 7 = 2 the second leftmost bit is printed out,
and so on. Run the program on your computer and print out the bit
representations of 55555 and —55555. Modify the program to handle
integers with sizeof(int) = m, where m may be different on different
machines.

3
Derived Types

From basic types, other types can be derived. This chapter discusses derived
types such as enumeration types for representing a specific set of values,
pointers for manipulating addresses or locations of variables, arrays for
storing a number of elements having the same type, reference types for cre-
ating aliases, structures for storing elements of different types, and unions
for storing elements of different types when only one of them is present
at a time. Functions—a special type—that may take some values as input
and produce some other values as output are also discussed. Another de-
rived type called class is discussed in Chapter 5. All C++ operators and
their precedences, and all mathematical functions in the standard library
<math.h> are summarized towards the end of the chapter. The chapter
ends with one section on polynomial evaluations and another on numeric
integration techniques.

3.1 Constants and Macros

A value that can not be changed throughout a program is called a constant.
It is defined using the keyword const. It is illegal to redefine a constant
and for this reason, a constant should be initialized when it is declared.
For example,

"\t // tab character
3.1415926535897932385; // pi
2.7182818284590452354; // natural log base

const char tab
const double pi
const double e

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers
© Springer Science+Business Media New York 2001

52 3. Derived Types

pi = 3.1; // illegal, a const can not be changed
const int size; // illegal, a const must be initialized

const int dimension = 3;

const int numelements = 100*dimension; // const expression

Note that const changes a type in that it restricts the way in which an
object can be used. Constant expressions are allowed in the definition of
a constant such as numelements above, since the compiler can evaluate
constant expressions.

Constants are typed and thus preferable to traditional C macros, which
are not type-checked and are error-prone, such as

#define PI 3.1415926535897932385

A macro is defined by using define preceded by #, which must stand in
the first column. A preprocessor will substitute every occurrence of PI by
3.1415926535837932385 in the program when it is compiled. An example
of a macro with an argument is:

#define SQ(x) ((x) * (x))

Then every occurrence of SQ(z) will be substituted by ((z) * (z)) in the
program. For example, SQ(a + b) will be substituted by ((a + b) * (a +
b)). Notice the necessity of the parentheses in the definition of a macro.
Otherwise SQ(a + b) would be just (a + b * a + b) if the two inner pairs of
parentheses were omitted in ‘the macro definition. By convention, capital
letters are usually used for macro names. Although macros are still legal
in C++, they are best avoided.

The const specifier can be used together with the keyword wvolatile. A
volatile specifier is a hint to the compiler that an object may be modified
in ways not detectable by the compiler and aggressive optimizations must
be avoided. For example, a real-time clock may be declared as:

extern const volatile int clock;

This says that clock may be changed by an agent external to the program
since it is volatile and may not be modified inside the program since it is
const. Thus two successive reads of the variable clock in the program may
give two different values. An extern const may not have to be initialized.

3.2 Enumerations

The enumeration type enum is for holding a set of integer values specified
by the user. For example,

enum {blue,yellow,pink =20,black,red =pink +5, green =20};

3.2 Enumerations 53

is equivalent to

const int blue = 0, yellow = 1, pink = 20, black = 21,
red = 25, green = 20;

By default, the first member (enumerator) in an enum takes value 0 and
each succeeding enumerator has the next integer value, unless other integer
values are explicitly set. The constant pink would take value 2 if it were not
explicitly defined to be 20 in the definition. The member black has value
21 since the preceding member pink has value 20. Note that the members
may not have to take on different values.

An enumeration can be named and thus create a distinct type. By de-
fault enumerations can be implicitly converted to integers, but there is no
implicit conversion from integers to enumerations to avoid unpredictable
results. For example,

enum bctype {Dirichlet, Neumann, Robin}; // a named enum
bctype x, y; // declare x, y to be of type bctype

x = Dirichlet; // assigning a value to variable x

y = 0; // illegal, an int can not be assigned
y = 40; // to a variable of type bctype

X = bctype(2); // OK, explicit conversion, x = Robin
int i = Neumann; // 0K, enum is restricted int, i = 1
if (x !=y) i = Robin; // they can be compared

The first statement above defines a new type called betype. A variable of
this type may take on values of Dirichlet, Neumann, and Robin.

An enum is a user-defined type and often used in conjunction with the
switch statement:

bctype x; // declare x to be of type bctype
// ... compute or get the value of x
switch(x) { // do differently based on value of x
case Dirichlet:
// ... deal with Dirichlet boundary condition
break;
case Neumann: case Robin:
// ... deal with Neumann and Robin conditions at same time
break;
Default:

cout << "undefined boundary condition\n";

3

54 3. Derived Types

Although a programmer rarely needs to know the range of an enumera-
tion type, the range is normally larger than the set of values of the enumer-
ators. The range is defined to be the set of all integers in the closed interval
[0,2" — 1] if the smallest enumerator is nonnegative and in the closed in-
terval [—27,2™ — 1] if the smallest enumerator is negative, where n is the
nearest larger binary exponent of the largest (in magnitude) enumerator.
This is the smallest bit-field that can hold all the enumerator values. For
example,

enum flag { red = 1, blue = 0 }; // range: 0, 1
enum onenine { one = 1, nine =9 }; // range: 0, 1,..., 156
enum myminmax{ min = -90, max = 1000};

// range: - 2048,..., 2047
onenine m0 = onenine(5); // Ok, 5 is within range
myminmax ml = myminmax(- 1000); // OK, -1000 within range
myminmax m2 = myminmax(5000) ; // error, out of range

Since 9 = 23 + 1, the nearest larger binary exponent is n = 4. Thus the
range of onenine is the set of all integers from 0 up to 2% —1 = 15.

Constants and enumerations are designed for a better type-checking
mechanism to avoid possible type errors and accidental modification of
constant values.

3.3 Arrays

For a type T, T'[n] is the type “one-dimensional array of n elements of type
T,” where n is a positive integer. The elements are indexed from 0 to n—1
and are stored contiguously one after another in memory. For example,

float vec[3]; // array of 3 floats: vec[0],vec([1],vec[2]
int stg[30]; // array of 30 ints: stg[0],..., stg[29]
vec[0] = 1.0; // accessing element O of vec

vec[1] = 2.0; // accessing element 1 of vec

for (int 1 = 0; 1 < 30; i++) stgi] = i*i + 7;
int j = stgl[29]; // accessing the last element of stg

The first two statements declare vec and stg to be one-dimensional arrays
with 3 and 30 elements of type float and int, respectively. A for loop is
often used to access all elements of a 1D array. A one-dimensional array
can be used to store elements of a (mathematical) vector.
Two-dimensional arrays having n rows and m columns (looking like a
matrix) can be declared as T'[n][m], for elements of type T. The row index
changes from 0 to n—1 and the column index from 0 to m —1. For example,

3.3 Arrays 55

double mt[2][5] // 2D array of 2 rows and 5 columns
mt[0] [0] = 5; // access entry at row 0, column O
mt[1] [4] = 5; // access entry at row 1, column 4
double a = mt[0][0]; // access entry [0][0] of mt

for (int i = 0; 1 < 2; i++) {
for (int j = 0; j < 5; j++) mt[il[j] =i + j;
}

The first statement above declares mt to be a two-dimensional array with 2
rows and 5 columns, whose element at row ¢ and column j can be accessed
by using mt[i][j]. A nested for loop is often used to access all elements of a
2D array. A two-dimensional array can be thought of as a one-dimensional
array of one-dimensional arrays. For example, mt can be viewed as having
two “elements”: mt[0] and mt[1], where mt[0] is a one-dimensional array of
five elements representing the initial row (row 0) of mt, and mt{1] is also a
one-dimensional array of five elements but representing the second row (row
1). The symmetric notation mt[:][j] seems to be superior to FORTRAN’s
notation mt(i, j) since mt[] can be used as a one-dimensional array and
element j of mt[:] is mt[i][j]. A two-dimensional array is a natural data
structure for storing elements of a matrix.

Three and more dimensional arrays can be declared similarly. Let s, 5o,
..., 8k be positive integers; then the declaration of a k-dimensional array
als1][sa] - - - [sk] will allocate spaces for s X s2X - - - X 53, elements, which are
stored contiguously in memory row by row (unlike in FORTRAN, where
they are stored column by column).

Arrays can be initialized at the time of declaration. For example,

int v[] = {1, 2, 4, 5}; // initialization of 1D array
int a[3] = {2, 4, 5}; // initialization of 1D array
int uw[1031 = { {1, 2, 3}, {4, 5, 8} };

// initialization of 2D array
char filename[30] = "outpt"”; // a character array

In the declaration of v above, the compiler will count the number of ele-
ments in the initialization and allocate the correct amount of space for v
so that the number of elements can be omitted. In an initialization of a
multi-dimensional array such as «[][3], only the first dimension (the num-
ber of rows for u) can be omitted. However, assignments can not be done
this way:

int vv[4]; // a declaration of a 1D array
vw = {1, 2, 4, 5}; // error, use: vv[0] =1, vv[1] =2,

Since multidimensional arrays are stored row by row, they can be initial-
ized like one-dimensional arrays. For example, the following two initializa-
tions are equivalent.

56 3. Derived Types

int ia[2][3] = {1, 2, 0, 4, 0, 0};
int ia[2][3] = { {1, 2, O}, {4, 0, 0} };

Entries that are not explicitly initialized are set to 0. Thus they are also
equivalent to:

int 1af2] (3] = { {1, 2}, {4} };
For this reason, the initialization
int ib[2][3] = {5};

initializes the first entry ¢b[0][0] = 5 and all other entries to 0.
Here is an example of an initialization of a three-dimensional array:

double ax[4][2]1[3] = {
{ {11, 22, 0}, {55, 0, 0} }, // ax[0]
{{-1, -2, 0}, {-5, -6, 0} }, // ax[1]
{ {23, -7, 8}, {0, 13, 8} }, // ax[2]
{ {-3, 19, 0}, {9, -5, 3} } // ax[3]
};
In particular, az[0][0][0] = 11, az[2][0][2] = 8, az[3][1][1] = -5, and az[0]
is a two-dimensional array with entries {{11,22,0}, {55,0,0}}. Its entries
may be accessed by a triple loop:

for (int i = 0; i < 4; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 3; k++) cout << ax[i][j]1[k] << ’\n’;
The dimensions of an array must be known at the time it is declared

so that the compiler can allocate space for it. Otherwise it is illegal. For
example,

const int m = 2000;

const int k = 2%m + 100; // compiler evaluates k = 4100
double blk]; // OK, k is known to compiler

// ... compute the value of n at run-time

double a[n]; // error, compiler does not know value of n

The number of elements in a sequence often can not be known at compile-
time, but rather is calculated at run-time. If we declare a large array, it
wastes space. If we declare a small one, it may not be big enough to hold
all the elements. For this reason arrays should not be used unless their di-
mensions are exactly or roughly known at compile-time. Instead, pointers
are often used and space can be allocated at run-time; see §3.6. The stan-
dard libraries <valarray> and <vector> can also be conveniently used to
handle arrays whose sizes may not be known at compile-time; see §7.5 and
$10.1.1.

3.4 Structures 57
3.4 Structures

Unlike an array that takes values of the same type for all elements, a struct
can contain values of different types. It can be declared as

struct point2d { // a structure of 2D points
char nm; // name of the point
float x; // x-coordinate of point
float y; // y-coordinate of point

3

This defines a new type called point2d. Note the semicolon after the right
brace. This is one of the very few places where a semicolon is needed follow-
ing a right brace. The structure point2d has three fields or members, one
char and two floats. Its size in memory is sizeof(point2d) bytes, which
may not be equal to sizeof(char) + 2 x sizeof(float). Its members are
accessed by the . (dot) operator. For example,

point2d pt; // declare pt of type point2d
pt.om = ’f’; // assign char ‘f’ to its field mm
pt.x = 3.14; // assign 3.14 to its field x
pt.y = - 3.14; // assign -3.14 to its field y
double a = pt.x; // accessing member x of pt

char ¢ = pt.nm; // accessing member nm of pt

A variable of a struct represents a single object and can be initialized by
and assigned to another variable (consequently, all members are copied).
For example,

point2d pt2 = pt; // initialize pt2 by pt, memberwise copy
pt = pt2; // assign pt2 to pt, memberwise copy

It can also be initialized in a way similar to arrays:
point2d pt3 = {’F’, 2.17, - 3.14}; // OK, initialization
point2d pt4;
ptd = {’&’, 2.7, - 3.4}; // illegal, assignment

An example of struct with an unnamed enum as a member can be found
in §7.7.4.

3.5 Unions and Bit Fields

Unions are to save space, but follow the same syntax as structures. Only
one member of a union can exist at a time and all members take up only
as much space as its largest member. It can be declared as

58 3. Derived Types

union val { // i, d, ¢ can not be used at same time
int i;
double d; // d is largest member in storage
char c;

};

The union val has three members: i, d, and ¢, only one of which can exist
at a time. Thus sizeof(double) bytes of memory are enough for storing an
object of val. The exact size of val is sizeof(val). Members of a union are
also accessed by the . (dot) operator. It can be used as the following.

int n;

cin >> n; // n is taken at run-time

val x; // x is a variable of type val

if (n == 1) x.i = 5;

else if (n == 2) x.d = 3.14;

else x.c = ’A’;

double v = sin(x.d); // error, x.d may not exist all times

When z is declared, sizeof(double) bytes of memory are created for it.
This piece of memory can be used to store an int (member z.7), a double
(member z.d), or a char (member z.c). The last statement above is an
error (a compiler can not catch such an error and a programmer should be
responsible for this) since z.d may not be defined at all times. To see this,
look at the program:

main() {

union val {

int 1i;
double d;
char c;
};
val x;
x.i = 5; // only x.i is defined now.
// Other members should not exist
cout << "x.i =" <K< x.i<« " xd="
<< x.d << ", x.c =" << x.c << ’\n’;
x.d = 6.28; // only x.d is defined now.
cout << "x.i =" <« x.i<«", x.d="
<< x.d << ", x.c = " << xX.c << ’\n’;

X.c = ’G’; // only x.c is defined now.

3.5 Unions and Bit Fields 59

cout << "x.i = " << x.i << ", x.d="
<< x.d << ", x.c =" << x.c << \n’;

}

The output of this program on my computer is:

=5, x.d = 3.10143, x.c =
1374389535, x.d = 6.28, x.c =
1374389575, x.d = 6.28, x.c

x.1i G

Note that only the member that is defined can be correctly printed out.
Values of other members should not be used. When x.7 is defined to be
5, its value can be printed out (and used) correctly. However, this same
piece of memory is interpreted to be a double and a char when x.d and
x.c are printed out, respectively. The outputs for z.d and z.c are of course
erroneous in the first printing statement above.

Suppose that triangle and rectangle are two structures and a figure
can be either a triangle or a rectangle but not both; then a structure for
figure can be declared as

struct figure2d {

char name;
bool type; // 1 for triangle, O for rectangle
union { // an unnamed union

triangle tria;
rectangle rect;
b
I

If fig is a variable of type figure2d, its members can be accessed as
figname, fig.type, fig.tria, or fig.rect. Since a figure can not be a rect-
angle and a triangle at the same time, using a union can save memory
space by not storing triangle and rectangle at the same time. The mem-
ber fig.type is used to indicate if a triangle or rectangle is being stored in
an object fig (e.g., fig.rect is defined when fig.type is 0). Such a member
is often called a type tag.

Note that a union without a name is used inside figure2d. If a named
union is used, for example,

struct figure2d {

char name;
bool type; // 1 for triangle, O for rectangle
union torr { // a named union

triangle tria;
rectangle rect;
};
};

60 3. Derived Types

then the members tria and rect will have to be accessed as fig.torr.tria
and fig.torr.rect, for a figure2d object fig.

The size of a C++ object is a multiple of the size of a char, which is one
byte. That is, a char is the smallest object that can be represented on a
machine. There are occasions when it is necessary to put a few small objects
into one byte to squeeze more space. A member of a struct or union can be
declared to occupy a specified number of bits. Such a member is called a bit
field and the number of bits it occupies is called its bit width. A bit field must
be of an integral type (typically unsigned int), and it is not possible to take
its address. The bit width is at most the number of bits in a machine word
and is specified by a nonnegative constant integral expression following a
colon. Unnamed bit fields are also allowed for padding and alignment. An
example is

struct card {
unsigned int pips : 4; // pips occupies 4 bits

unsigned int suit : 2; // suit occupies 2 bits
unsigned int kq : 2; // kq occupies 2 bits
/7 ... // other fields can be added

};

A variable of card has a 4-bit field pips that can be used to store small
nonnegative integers 0 to 15, a 2-bit field suit for values 0 to 3, and another
2-bit field kq. Thus the values of pips, suit, and kg can be compactly stored
in 8 bits. It can be used as

card c; // ¢ is of type card
c.pips = 13;
c.suit = 3;
c.kq = 0;

The layout of the bits in left-to-right or right-to-left order is machine-
dependent. A compiler may not assign bit fields across word boundaries.
For example, sizeof(card) = 4 on some machines with 4-byte words. (It
still saves memory in this case since storing three unsigned int separately
would require 12 bytes.) Programs manipulating bits may not be portable.
Unless saving memory is really necessary for an application, bit fields (also
unions) should be avoided.

3.6 Pointers

For a type T, T+ is the pointer to 1. A variable of type T* can hold the
address or location in memory of an object of type T'. For this reason, the
number of bytes of any pointer is sizeof (intx) = sizeof(doublex), and so
on. For example, the declaration

3.6 Pointers 61

int* p; // p is a pointer to int

declares the variable p to be a pointer to int. It can be used to store the
address in memory of integer variables.

If v is an object, &v gives the address of v (the address-of operator &
is introduced in §2.3.1). If p is a pointer variable, *p gives the value of the
object pointed to by p. We also informally say that *p is the value pointed
to by p. The operator x is called the dereferencing or indirection operator.
The following example illustrates how the address-of operator & and the
dereferencing operator * can be used:

int i = §; // i is int, value of object i is 5
int* pi = &i; // pi is a pointer to int
// and assign address of i to pi

int j = *pi; // value of object pointed to by pi
// is assigned to j, so j=5

double* d = &j; // illegal

The second statement above declares pi to be a variable of type: pointer to
int, and initializes pi with the address of object i. Another way of saying
that pointer pi holds the address of object ¢ is to say that pointer pi points
to object i. The third statement assigns *pi, the value of the object pointed
to by pi, to j. The fourth statement is illegal since the address of a variable
of one type can not be assigned to a pointer to a different type.

For a pointer variable p, the value *p of the object that it points to can
change; so can the pointer p itself. For example,

double d1 = 2.7, d2 = 3.1;

double* p = &d1; // p points to dl, now *p = 2.7
double a = *p; // a=2.7

p = &d2; // p now points to d2, *xp = 3.1
double b = *p; // b=3.1

*p = 5.5; // value p points to is now 5.5
double ¢ = *p; // ¢ =5.5

double d = d2; // d = 5.5, since *p = 5.5

Since p is assigned to hold the address of d2 in the statement p = &d2, then
*p can also be used to change the value of object d2 as in the statement
xp = 5.5, When p points to d2, *p refers to the value of object d2 and
assignment *p = 5.5 causes d2 to equal 5.5.

A sequence of objects can be created by the operator new and the address
of the initial object can be assigned to a pointer. Then this sequence can
be used as an array of elements. For example,

62 3. Derived Types

int n = 100; // n can also be computed at run-time

double* a; // declare a to be a pointer to double

a = new double [n]; // allocate space for n double objects
// a points to the initial object

- The last two statements can also be combined into a more efficient and
compact declaration with an initialization:

double* a = new double [n]; // allocate space of n objects

In allocating space for new objects, the keyword new is followed by a type
name, which is followed by a positive integer in brackets representing the
number of objects to be created. The positive integer together with the
brackets can be omitted when it is 1. This statement obtalns a piece of
memory from the system adequate to store n objects of type double and
assigns the address of the first object to the pointer a. These objects can
be accessed using the array subscripting operator [], with index starting
from O ending at n — 1. For example,

for (int i = 0; i < n; i++) // al0] refers to initial object

afi] = i*i + 8; // a is used just like an array
double sum = 0; // find sum of all objects ali]
for (int i = 0; i < n; i++) sum += af[i];

The pictorial representation of the pointer a and the space allocated for it
can be drawn as

(el [= [af [=&l

You can print out the values of *a and a[0] to check that they are indeed the
same. This agrees with the fact that a points to the initial object a[0]. After
their use, these objects can be destroyed by using the operator delete :

delete[] a; // free space pointed to by a

The system will automatically find the number of objects pointed to by a
(actually a only points to the initial object) and free them. Then the space
previously occupied by these objects can be reused by the system to create
other objects. Since the operator new creates objects at run-time, this is
called dynamic memory allocation. The number of objects to be created by
new can be either known at compile-time or computed at run-time, which
is preferred over the built-in arrays (§3.3) in many situations. In contrast,
creation of objects at compile-time is called static memory allocation. Thus
there are two advantages of dynamic memory allocation: objects no longer

3.6 Pointers 63

in use can be deleted from memory to make room to create other objects,
and the number of objects to be created can be computed at run-time.

Automatic variables represent objects that exist only in their scopes. In
contrast, an object created by operator new exists independently of the
scope in which it is created. Such objects are said to be on the dynamic
memory (the heap or the free store). They exist until being destroyed by
operator delete or to the end of the program.

Space can also be allocated for a pointer to create just one object in a
similar way:

char* pt; // pt is a pointer to character

pt = new char; // allocate space of 1 char for pt

ptio] = ’¢’; // place ’c’ at location pointed to by pt
*pt = ’d’; // place ’d’ at location pointed to by pt
char x = pt{0]; // assign pt[0] to object x, x = ’d’

char y = *pt; // assign *pt to object y, y = ’d’

delete pt; // free space pointed to by pt

Note that when more than one object is freed, delete[] should be used;
otherwise use delete without brackets.

An object can also be initialized at the time of creation using new with
the initialized value in parentheses. For example,

double* y = new double (3.14); // *y = 3.14
int i = 5;
int* j = new int (i); // *j = 5, but j does not point to i

Declarations of forms T'*x a; and T * a; are equivalent, as in

int* ip; // these two declarations are equivalent
int *ip;

However, the following two declarations are equivalent,

int* i, j; // i is a pointer to int but j is an int
int *1i, j;
each of which declares 7 to be a pointer to int and j to be an int. This kind
of inconsistency is inherited from C, so that many C functions can be called
from C++. To avoid confusion, it is best to declare a pointer variable in a
single declaration statement.

An array of pointers and a pointer to an array can also be defined:

int* ap[10] ; // ap is an array of 10 pointers to int
int (*vp)[10]; // vp is a pointer to an array of 10 int

Notice that parentheses are needed for the second statement above, which
declares vp to be a pointer to an array of 10 integers. The first statement
declares ap to be an array of 10 pointers, each of which points to an int.

64 3. Derived Types

3.6.1 Pointer Arithmetic

Some arithmetic operations can be performed on pointers. If pt is a pointer,
then *pt represents the object to which pt points. If pt is a pointer and space
has been allocated to store more than one object, then pt points to object
0 (the initial object) and pt + k points to object k (kth object counted
starting from 0). Notice pt + k is a special arithmetic operation that simply
refers to object k in the sequence. The value of object k is *(pt+k) or pt[k].
For example,

char* cc; // cc is a pointer to char
cc = new char [3]; // allocate 3 char for cc
// cc points to initial char

ccf0] = ’a’; // or *cc = ’a’; cc points to object O
ccl1]l = ’b’; // or *(cc + 1) = ’b’;
// {cc + 1) points to object 1
ccl2] = ’¢’; // or *(cc + 2) = ’c?;
// (cc + 2) points to object 2
char* p = &cc[0]; // assign address of cc[0] to p
char dd = *p; // dd = ’a’, since *p = cc[0]
dd = #(cc + 2); // {(cc+2) points to ’c’, mow dd = ’c’
delete[] cc; // free space allocated by new

The object pointed to by p is cc[0] and the value of cc[0] is a’. Thus the
value of the object pointed to by p, that is, *p, is ’a’, which is initialized to
dd. Similarly, cc+ 2 points to object 2 in the sequence and thus *(cc+2) is
the value of object 2, which is also referred to by cc[2]. The term element
instead of object is often used when referring to an individual in a sequence,
such as an array.

3.6.2 Multiple Pointers

Two-dimensional arrays and matrices can be achieved through double point-
ers (a pointer to a pointer is called a double pointer). For example,

int** mx; // double pointer:a pointer to a pointer
mx = new int* [nl]; // new space to hold n pointers to int
// mx points to initial element mx[O]

for (int i = 0; i < m; i++) mx[i] = new int [m];
// create m objects for each of the n pointers
// mx[i] points to initial element mx[i] [0]

3.6 Pointers 65

The first statement above declares mz to be a pointer to a pointer, called
a double pointer. The second statement allocates n objects of type intx
and assigns the address of the initial element to mz. It happens that these
n objects are pointers to tnt. Now mx has value &mz[0]. This can be
pictorially depicted in the case of n = 3 as

The third statement above (the for loop) allocates m objects of type int for
each of the n pointers mz[i], 2 = 0,1, ...,n— 1. A graphical representation
of the double pointer mz in the case of n = 3 and m = 5 can now be drawn
as

mx

!
0

mx

._4
=
8
s
-
=
8
s
._4
)
2
i
By
2
=
e

—
— | mX
—

£z

The process above may be more easily explained using the keyword typedef.
A declaration prefixed by typedef introduces a new name for a type rather
than declaring a new variable. For example, the statement

typedef int* intptr; // intptr is synonym to int*

introduces intptr as a synonym to pointer to int. A typedef does not intro-
duce a new type so that intptr means the same as int * . Then the double
pointer mx can be equivalently declared as

intptr* mx = new intptr [n];
for (int i = 0; 1 < n; i++) mx[i] = new int [m];

It says that mz is a pointer to intptr, and n objects: mz[i], ¢ = 0,1,
...,n — 1, of type intptr are created by using the new operator. Then m
objects of type int are created for each mz[].

Now mx can be used in the same way as a 2D array:

for (int 1 = 0; i1 < n; i++) // mx[i] is a pointer to int
for (int j = 0; j < m; j++) // used just like a 2D array
mx[i][§] = i*i + 9; // access element mx[i] [j]

After use, the space can be freed as

66 3. Derived Types

for (int 1 = 0; i < n; i++) // free space after use
delete[] mx[il; // first free these n pointers
delete[] mx; // then free double pointer mx

In the above, n and m can be computed at run-time and space for mz
can be allocated dynamically. This is in contrast to an array that can
not be declared unless its dimension is known at compile-time. Note that
the orders of allocating and deleting space for the double pointer mz are
opposite. The same rule applies to other multidimensional pointers. The
effect of the double pointer mz can be viewed as a matrix: mz is a pointer
that points to the initial object mz[0] of an array of n pointers: mzi], i =
0,1,...,n—1 (the rows of the matrix). Each of the n pointers subsequently
points to the initial object mz[i]{0] of an array of m integers: mz[i][j], j =
0,1,...,m—1 (each row has m elements). The element at row i and column
j can be accessed using mz[i][;], the same way as in a 2D array. It can also
be alternatively accessed using the dereferencing operator as: *(mz|i] + j),
(x(mz +)], *(x(mz + %) + 7), or *(&mz[0][0] +m *i + 7).

Using pointers an n by n lower triangular or symmetric matrix can be
defined very conveniently (to save memory, zero or symmetric elements
above the main diagonal are not stored):

double** tm = new double* [n];
for (int i = 0; i < n; i++) tm[i] = new double [i+1];
// allocate (i+1) elements for row i

for (int i = 0; i < mn; i++) // access its elements
for (int j = 0; j <= i; j++) tm[il[3] = 2.1/(i+j+1);

for (int i = 0; i < n; i++) deletel] tm[i];
delete[] tm; // after using it, delete space

In the above, tm is created to store an n by n lower triangular matrix.
Since the lower triangular part of a matrix contains ¢ + 1 elements in row ¢
fori =0,1,...,n—1, only i + 1 doubles are allocated for tm[i]. A picture
for illustrating this idea can be drawn as (when n = 3)

tm

|
tm[0] — [tm[0][0
tm(l] — | tm|l tm{1][1
tm[2] — | tm{2][0] | tm[2][1] | tm[2][2] |

S,

Upper triangular matrices can also be declared using the techniques dis-
cussed here and in §3.6.3; see Exercise 3.14.12. Note that arrays can only
represent rectangular matrices. Using rectangular matrices to store trian-
gular matrices or symmetric matrices would waste space.

3.6 Pointers 67

ar-=k ar

............ ar{0] | ar(l] -+ | arn-1]
... -

ar ¥=k

FIGURE 3.1. Pointer offsetting. Originally, ar points to initial object ar[0].
Pointer arithmetic ar —= k offsets ar to the left by k positions. Then,
ar += k changes ar back to point to the initial object. That is, after offset-
ting, ar[k] = =(ar + k) is the initial object.

See Exercise 3.14.14 for triple and quadruple pointers, which can be
used to dynamically allocate space for three- and four-dimensional arrays.
Higher-dimensional arrays may be created similarly, but are less often used.
Double, triple, and quadruple pointers, and the like, may be called multiple
pointers.

3.6.8 Offsetting Pointers

It is sometimes very useful to use an array of n elements whose index
changes from k to n — 1 + k, where k is a positive or negative integer.
The case of kK = 0 corresponds to a regular array, where the index changes
from O to n — 1. The idea is to offset the pointer, k elements away from its
original place. For example, let us first assume that k is positive:

double* ar = new double [n]; // ar points to ist element
ar -= k; // offset ar, k elements to the left

The first statement allocates space for a sequence of n elements and ar
points to the initial element in the sequence. The second statement is simply
a pointer arithmetic operation, which causes ar to be decremented by k.
In other words, pointer ar is offset by k positions to the left. Now ar
may not point to any valid object at all and ar[0] should never be used.
However, if ar is incremented by k, it should come back and refer to the
initial element in the sequence. That is, now *(ar + k) = ar[k| represents
the initial element in the original sequence, and subscripting starting from
k has been achieved. See Figure 3.1 for a pictorial description.
The n objects can now be referred to as

for (int i =k; 1 < n + k; i++) {

68 3. Derived Types

arfi] = i*i + 1; // now arl[k] is initial element
// ar{n+k-1] is the last element
}

Note that the objects are not moved at all in this process. Only the pointer
ar is offset (subtracted by k) and changed back (added by k) to point
to the same object. When k is negative, the pointer is actually offset |k
elements to the right and the code above remains exactly the same. When
the memory is reclaimed, the pointer needs to be changed back first:

ar += k; // first change pointer ar back
delete[] ar; // then delete it as usual

For example, to store the number of students in classes 1999 and 2000
in an array of 2 elements, the code can be written as

int* ns = new int [2]; // ns points to initial element
ns -= 1999; // offset ns 1999 elements to left
ns[1999] = 36000; // ns[1999] now is initial element
ns [2000] = 37000; // 37000 students in class 2000
ns += 1999; // change ns back before deleting
delete[] ns; // delete the space

If an array of 108 elements is needed, but the index must change from
—100 to 7, it can be done as

double* ade = new double [108];

ade += 100; // offset ade 100 elements to right
for (int i = - 100; i <= 7; i++)

adeli] =i + 9.8; // access its elements
ade -= 100; // change ade back before deleting
delete[] ade; // delete the space

This technique is extremely useful and convenient when dealing with
band matrices, where the nonzero elements of a matrix form a band along
the main diagonal. See Chapter 11.

3.6.4 Constant Pointers

A constant pointer is a pointer that can not be redefined to point to
another object; that is, the pointer itself is a constant. It can be declared
and used as

int m =1, n = 5;

int* const q = &m; // q is a const pointer, points to m
q = &n; // error, constant q can not change
*q = n; // ok, value that q points to is now n

int k = m; // k=5

3.6 Pointers 69

Although g is a constant pointer that can only point to object m, the value
of the object that ¢ points to can be changed to the value of n, which is 5.
Thus k is initialized to 5.

A related concept is a pointer that points to a constant object; that is,
'f p is such a pointer, then the value of the object pointed to by p can not
se changed. It only says that *p can not be changed explicitly by using it
as lvalue. However, the pointer p itself can be changed to hold the address
of another object. It can be declared and used as

const int* p = &m; // p points to constant object
*p = n; // error, *p can not change explicitly
P = &n; // ok, pointer itself can change

There is some subtlety involved here. Look at the example:

int m = 1, n = 5;

const int* p = &m; // p points to m, so *p becomes 1
int i = *p; // *p=m=1,s0i=1

m = 3; // m = 3, so *p becomes 3

int j = *p; // *p =3, s0 j =3

P = &n; // ok, p itself can change, *p = 5
int k = *p; // *p=n=5,s0k=5

Since p points to m at first, the assignment m = 3 changes *p to 3. Then
the assignment p = &n changes *p to the value of n, which is 5. In other
words, *p has been changed implicitly.

"To avoid the subtlety above, a const pointer that points to a const object
can be declared:

int m =1, n=5;
const int* const r = &m;
// r is a const pointer that points to a const value

int i = *r; // i=1, since *r = m = 1

r = &n; // error, r is const pointer

*T = n; // error, r points to const value

m = 3; // this is the only way to change *r
int j = *r; // 3 =3

Since r is a const pointer that points to a const value m, it can not be
redefined to point to other objects, and *r can not be assigned to other
values. The only way to change *r now is through changing m, the value
of the object to which r points.

70 3. Derived Types

3.6.5 Void and Null Pointers

The void pointer (void*) points to an object of unknown type. A pointer of
any type can be assigned to a variable of type void*, and two variables of
type void*® can be compared for equality and inequality. It can be declared
and used as

void* pv; // pv is a void pointer
int* pi; // pi is int pointer
PV = pi; // implicit conversion from int* to void#

Its primary use is to define functions that take arguments of arbitrary types
or return an untyped object. A typical example is the C quicksort function
gsort(), declared in <stdlib.h>, that can sort an array of elements of any
type. See Exercise 3.14.24 or the book [Str97] for more details. However,
templates (see Chapter 7) can be more easily and efficiently used to achieve
the same goal.

The null pointer points to no object at all. It is a typed pointer (unlike
the void pointer) and has the integer value 0. If at the time of declaration, a
pointer can not be assigned to a meaningful initial value, it can be initialized
to be the null pointer. For example,

double* dp = 0; // dp initialized to O, dp is null pointer

This statement is an initialization, which declares dp to be a pointer to
double and initializes dp with the value 0. Since no object is located at
address 0, dp does not point to any object. Later, dp can be assigned to
hold the address of some object of type double:

double d = 55;
dp = &d; // *#dp = 55.0
*dp = 0; // it causes d = 0.0, dp still points to 4

Zero (0) is an integer. Due to standard conversions, 0 can be used as a
constant of any integral, floating point, or pointer type. The type of zero
is determined by context. No object is allocated with the address 0. Thus
0 can be used to indicate that a pointer does not refer to any object. The
negation of a null pointer is true.

3.6.6 Pointers to Structures

A pointer can point to a structure. In this case, its members are accessed
using the —> operator. Space for structure objects can be allocated by the
operator new and freed by delete. For example,

point2d ab = {’F’, 3, -5}; // ab is of type point2d
point2d* p = &ab; // let p point to ab

char name = p->nm; // assign nm field of p to name
double xXpos = p~>x; // assign x field of p to xpos

3.6 Pointers 71

double ypos = p->y; // assign y field of p to ypos
p—>x = 15.0; // ab.x = 15

p~>y = 26.0; // ab.y = 26

p~>nm = ’h’; // ab.nm = ’h’

point2d* q = new point2d; // allocate space for q
q->x = 5; // assign value to its member
delete q; // deallocate space

where the structure point2d is defined in §3.4.
A structure can contain a member that points to the structure itself. For
example,

struct stack {
char* element; // elements of stack are chars
stack* next; // points to next element in stack

};

This is allowed because next is only a pointer and occupies a fixed amount
of space (sizeof (int*) bytes). Such a self-referential structure is called a
dynamic data structure; elements can be allocated and attached to it (or
removed from it and deallocated) using the pointer next. C++ provides a
standard library on stacks; see §10.1.4.

To define two or more structure types that refer to each other, a forward
declaration is needed:

struct BB; // forward declaration, defined later
struct AA { // AA has a member pointing to BB
char c;
BB* b; // b is a pointer to BB
};
struct BB { // definition of structure BB
AA* a;
int i;
};

Without the forward declaration of BB, the use of BB in the declaration
of AA would cause a syntax error. The name of a structure or other user-
defined type can be used before the type is defined as long as the use does
not require the size of the type or the names of its members to be known.
This technique can be used to create many complicated data structures.

72 3. Derived Types

3.6.7 Pointers to Char

By a convention in C, a string constant is terminated by the null character
\0’, with value 0. Thus the size of hello” is 6 and its type is const char[6]
with the last element equal to "\0’. Due to its compatibility to C, C++
allows one to assign a string constant to char* directly. For example,

char* str = "hella"; // assign string constant to charx

str(4] = ’07; // error, string constant can not change
g g

char str2[] = "hella"; // array of 6 char, sizeof(str2) = 6
str2[4] = ’07; // OK, now str2 = "hello"

char* str3 = new char [5];
str3[4] = ’0’; // 0K
delete[] str3;

The C++ standard library <string> can be conveniently used for dealing
with strings; see §4.5. C-style strings are better avoided if possible.

3.6.8 Pointers and Arrays

As in C, pointers and arrays are closely related. The name of an array can
be used as a const pointer to its initial element. For example,

int v[5] = {6,9,4,5,7};

int* q = &v[0]; // point to initial element. *q = 6
int* p = v; // point to initial element. *p = 6
int* r = &v[5]; // point to last-plus-one element

// but *r is undefined
int* s = v + 5; // pointer arithmetic, *s is undefined

It is legal to declare a pointer to the last-plus-one element of an array. Since
it does not point to any element of the array, the value that such a pointer
points to is undefined. This is useful in writing many algorithms for a
variety of data structures such as vector (§10.1.1) and list (§10.1.2), where
begin() points to the initial element and end() points to the last-plus-one
element; see the picture on Page 338.

3.7 References

A reference is an alternative name or alias for an object. For a type T, T&
denotes a reference to T. A reference to an object b of type T is defined as

T& r = b; // T is declared to be a reference to object b

3.8 Functions 73

Any operation carried out on r is then an operation on b. For example,

int i = 5;

int& r = i; // r is a reference to int and refers to i
int x = 1; // x = 5 since r is an alias of i

r = 2; // 1 = 2 since r is an alias of i

Due to the fact that r refers to ¢, the assignment r = 2 is equivalent to
P =2.

Since a reference is an alternative name for an object, a reference must
be initialized and can not be changed to refer to another object.

The main use of references is in specifying arguments and return values
for functions and for overloaded operators; see §3.8 and Chapter 6.

3.8 Functions

3.8.1 Function Declarations and Definitions

A function is a procedure that may take some input, perform some instruc-
tions, and return some output. The input and output must be specified to
be of certain types. For example, one of the sgrt() functions in <math.h>
takes a double as its input, calculates its square root, and returns it as the
output. It is declared as

double sqrt(double); // take a double, return a double

When a function does not return an output, void is used to denote it.
When the output type is not explicitly stated, it is assumed to be int by
default. Not specifying the input of a function means that it takes no input.
Here are a few more examples of function declarations:

int square(int); // take an int, return am int
double sum(double, double);
// take two double, return a double

int £(); // take no input and return an int
void g(double, double); // take two double, return nothing
h(int); // take an int and return an int

In the declarations above, the input (called parameter or argument) and
output (called return value) just have types but no names. The names
may be included for readability, but will be ignored by the compiler. For
example,

int square(int i); // return ix*i
double pow(double base, double exp);
// return base to the power of exp

74 3. Derived Types

All these declarations are called prototypes. It is only the types that matter
in a prototype.

Every function that is called in a program must be defined somewhere
and only once. The instructions that a function performs must be put inside
a pair of braces. The return statement is used for a function to produce an
output. A function definition also serves as its declaration. For example,
the square() function can be defined as

int square(int x) { // definition of a function
return X*X;

3

A function contains a block of statements and may be called outside
the block. After execution of a function, program control reverts to the
statement immediately following the function call. For example,

int i = 5;
int j = square(i); // call function square(i) with i =5
int k = j; // control comes here after call, k=25

However, when a function is called before its definition, the function dec-
laration must appear before the statement that calls the function. Such a
declaration is called a forward declaration. For example,

main() {
int square(int); // forward declaration
int x = square(6); // call square() before its definition

3

int square(int x) { // definition of function square()
return XxX*x,;

3

In the definition of the function square(), z is called a parameter (or
formal argument) to the function. It does not take on any value until
square() is called, when it is replaced by the argument (or actual argument)
from the calling environment, as in j = square(%). In this call, the param-
eter z is replaced by the argument ¢. The type of ¢ is also checked against
the type of z and some conversion may be performed when their types do
not match.

The definition of a function can not appear inside another function. For
example, the definition of square() above can not be put inside the main()
function; it can be before or after main(), or in another file.

3.8.2 Function Querloading

We can define another square() function that takes a double and returns
a double:

3.8 Functions 75

double square(double x) { // definition of a function
return x*Xx;

}

So can we define yet another taking a long double and returning a long
double. These versions of the square() function can coexist in a program.
The compiler can decide which version to use by comparing the type of the
argument with the type of the parameter. Using the same name for similar
operations on different types is called overloading.

Return type is not considered in overloading resolution. For example,

double a = square(5); // call int square(int)
double b = square(5.0); // call double square(double)

Neither are functions declared in different scopes. An example is:

int cubic(int);
double fg(int i) {
double cubic(double); // no overloading occurs here
return cubic(i); // call double cubic(double)
}

In call cubic(i), the function cubic(double), declared in the same scope, is
used.

3.8.3 Argument Passing

There are two argument passing mechanisms in C++: pass by value and
pass by reference. In pass by value, the argument is first evaluated at the
time of the function call, and its value becomes the value of the parameter
during the execution of the function. The default is pass by value, as in the
following example.

int pass_val(int x) { // default is pass by value
X = X*X;
return x + 5;

3

int i 5;
int j = pass_val(i);
// now i =5, j =30

In the function call j = pass_val(i), the value of the argument i, which is
5, is passed to the parameter z. The function pass_val() starts with the
value T = 5, executes its block of statements, and returns value 30 to j.
Thus after the function call, ¢ =5 and j = 30.

In pass by reference, an argument must be a variable with allocated
location and the argument is passed to the function as a reference, so that

76 3. Derived Types

the parameter becomes an alias to the argument and any change made to
the parameter occurs to the argument as well. Pass by reference is signified
by the reference operator &. For example, consider an example of pass by
reference:

int pass_ref(int& x) { // pass by reference
X = X*X;
return x + 5;

}

int i = 5;
int j = pass_ref(i);
// now i =25, j =30

In the function call j = pass_ref(i), the argument ¢ is passed as a reference
to the parameter x. That is, parameter = and argument i refer to the same
object and x becomes an alias to . Thus any change made to z inside the
function also occurs to i. The function pass_ref() starts with the value
z = 5, executes its block of statements, and returns value 30 to j. However,
inside the function, z is updated to 25. This update occurs to ¢ as well.
Thus after the function call, i = 25 and j = 30.

Pass by value for pointers can achieve the effect of pass by reference,
since two pointers point to the same object if they have the same value.
For example, compare the following three versions of the swap() function,
which is intended to swap two numbers.

void swap(int& p, int& q) { // pass by reference

int tmp = p; // a temporary variable
P =q; // swap values of p and q
q = tmp;

}

int 1 =2, j = 3;

swap(i, j);

// now i =3, j=2

void swap(int* p, int* q) { // pass by value for pointers
int tmp = *p;

*p = *q;
*q = tmp;
)
i=2,3=3;
swap(&i, &j); // addresses of i, j are passed

// now i=3, j=2

void swap2(int p, int @) { // pass by value
int tmp = p;

3.8 Functions 77

P=4q;
tmp;

e}
]

}

i=2,3=3;
swap2(i, j);

// nowi=2,3j=3

In the first function call swap(), the references of ¢ and j are passed to
the function, and p and ¢ become aliases to ¢ and j, respectively. Thus any
change made to p and ¢ inside the function occur to ¢ and j as well. In the
second swap(), the values of &¢ and &3, that is, the addresses of ¢ and j, are
passed to the parameters p and g. Thus p points to object ¢ and ¢ points to
object 7, and swapping *p and *q is equivalent to swapping ¢ and j. In the
third version: swap2(), the values of ¢ and j are passed to the parameters p
and q, respectively, and they can not be changed by the function call. This
version is useless since it does not swap the values of ¢ and j at all.

Now look at another function that passes by value for its first argument
and by reference for its second:

void f(int val, int& ref) {
val++;
ref++;

}

int 1 =1, j=1;

£(1i, j);

// now j =2, i=1.

Pass by value does not change the value of the arguments and thus is safe.
On the other hand, pass by reference or pass by value for pointers usually
implies that the values of the arguments are going to be changed through
the function call, unless they are explicitly told not to, using the keyword
const. For example,

int g(int val, const int& ref) {

// ref is not supposed to be changed
val++;
return ref + val;

}

Because of the const specifier, the compiler will give a warning if ref is to
be changed inside the function. For example, it is illegal to write

void w(const int& ref) {
ref = 5; // WRONG, ref is not writable
}

Since the const specifier implies not to change the parameter ref, it can be
substituted by a constant argument in a call:

78 3. Derived Types

g(5, 100); // OK

£(5, 100); // error, 2nd arg is not a variable
int i = 100;

£(5, i); // 0K, 2nd arg must be a variable

The name of an array is a const pointer that points to its initial element.
Thus array arguments are treated as pointers and have the same effect of
pass by reference. For example,

double h(double* const d, int n) { // d is a const pointer
double sum = O;
for (int i = 0; i < n; i++) sum += d[i];

din - 1] = 1000; // but d[i] can change
return sum;
}
double af]l = { 1, 2, 8, 20, -10, 30 };
double sum = h(a, 6); // sum of elements in a
double d5 = a[5]; // d5 = 1000

Constant pointers that point to constant objects or simply constant
pointers can be used as safeguards to prevent accidental modification of
certain variables that are not supposed to be modified. For example,

double fg(double* comst d, int n) { // d is const pointer
d = new double [nl; // error
/...

}

double gh(const double* const d, int n) {
// 4 is const pointer that points to constant object
double sum = 0;
for (int i = 0; i < n; i++) sum += d[i];
d[n - 1] = 1000; // error, d points to constants
return sum; // dl[i] can not be changed

}

In the definition of fg(), the parameter d can not be made to point to
another object since d is a const pointer. Using such a parameter indicates
that space should not be allocated inside the function definition. Instead,
the caller to this function should allocate space for it before calling. Simi-
larly, the value of parameter d in function gh() should not be changed in
the definition.

3.8 Functions 79

3.8.4 Return Values

A function that is not declared void must return a value, except for the
function main(); see §3.8.10. For example,

int square(int& i) {
i *= i, // error, a value must be returned.

}

Each time a function is called, new copies of its arguments and automatic
variables (like tmp in the swap() functions) are created. Since automatic
variables will be destroyed upon the return of the function call, it is an error
to return a pointer or reference to an automatic variable. The compiler
normally gives a warning message so that such errors can be easily avoided.
For example,

int* fa() { // need to return address of int
int local = 5;
return &local; // error
} // can not return address of local variable

int& fr() { // need to return reference to int
int local = 5;
return local; // error
} // can not return a reference to local var

However, it is not an error to return the value of a local pointer variable
or the reference to a global variable. For example,

int* £ {
int* local = new int;
*local = 5;
return local; // return value of a local variable

}
int* i = £(Q);

int j = *i; // 3 =5;
delete i; // free space at address i allocated in f()
int v[30];

int& g(int i) {

return v[il; // it makes g(i) refer to v[i] (v is global)
}
g3 =T7; // now v[3] = 7, since g(3) refers to v[3]

Observe that objects created by operator new exist on the dynamic memory
(heap, or free store). They still exist after the function in which they are
created is returned. These objects can be explicitly destroyed by calling
delete. The function f() returns the address of the object created by new

80 3. Derived Types

to the variable . Thus *i gives the value of the object and the operator
delete frees the object at address i. The function g() returns a reference to
a global variable v and thus g(3) refers to v(3].

For a void function, it is an error to return a value. However, an empty
return statement can be used to terminate a function call, or a call to a
void function can be made in a return statement. For example,

void h(int);

void hh(int& i) {
int k = 0;
for (int j = 0; j < 100; j++) {
// do something to modify k and i

if (k == 0) return; // fcn terminates if k is zero
if (k == 2) return h(i);
} // call void function in return statement

}

As a more meaningful example of a function that returns a pointer, an
n by m matrix multiplication with an m-column vector can be defined and
used:

double* mxvrmy(const double** const mx,
const double* comst vr, int n, int m) {

double* tmv = new double [n]; // tmv will store product
for (int i = 0; 1 < m; i++) { // find the product

tmv[i] = 0O;

for (int j = 0; j < m; j++) tmv[i] += mx[i] [jI*vr[j];
}
return tmv; // return the address of the product

}

main() {
int n = 100, m = 200;
double** a = new double* [n]; // create space for matrix
for (int i = 0; i < n; i++) al[i] = new double [m];
double* b = new double [m]; // create space for vector

for (int i = 0; i < n; i++) // assign values to matrix
for (int j = 0; j < m; j++) alil[j] = i*i + j;
for (int j = 0; j < m; j++) b[j] = 3%j + 5;

double* ¢ = mxvrmy(a, b, n, m); // matrix-vector multiply
double sum = 0; // find sum of elements
for (int i = 0; 1 < n; i++) sum += c[il;

3.8 Functions 81

for (int i = 0; i < n; i++) delete[] a[il;

delete[] a; // free matrix a
delete[] b; // free vector b
deletel] c; // free vector ¢

}

The function mzvrmy() returns (the base address of) the product of the
matrix mx with vector vr. Inside the main() program, some values are
assigned to matrix a and vector b, and variable ¢ is initialized to point to
the initial element of the product vector, which is allocated and computed
inside the function mzvrmy(). The summation of all elements in the prod-
uct vector ¢ is computed and stored in sum. Notice that the space for the
product vector is allocated using new inside the function mzvrmy(), but
is freed using delete in main().

3.8.5 Recursive Functions

A function that calls itself in its definition is said to be a recursive function.
For example, a function that calculates the factorial n! of a nonnegative
integer n can be defined recursively:

long factorial(int n) {
if (n == 0) return 1iL; // stopping statement
return n*factorial(n-1);

}

Here factorial(n) is recursively defined as n * factorial(n — 1) and the
recursion stops when it reaches factorial(0). Thus a call like factorial(2)
can be interpreted as

factorial(2) = 2 x factorial(1) = 2 x 1 % factorial(0) =2%1%1 = 2.

Note that without the stopping statement: if (n == 0) return 1L, the
program would cause an infinite recursion.

Recursive functions may impose a lot of run-time overhead compared to
nonrecursive functions. For example, a recursive function call factorial(2)
requires actually three function calls (factorial(2), factorial(1), and fac-
torial(0)). The overhead of function calls can significantly slow down a
program when there are a large number of them.

3.8.6 Inline Functions

When a function is called, its arguments are copied and the program
branches out to a new location (on the run-time stack; see §3.9) and comes
back after the instructions contained in the function are executed. To avoid

82 3. Derived Types

such function calling overhead, inline functions can be defined using the
keyword inline for small functions. Statements in an inline function are
substituted in the program calling it during compilation. For example, an
inline function can be defined as

inline int twice (int i) { return 2*i; }

If somewhere in the program there is a statement like y = twice(z); then the
content of twice(z) will be substituted. That is, the compiler will generate
the statement y = 2 * z and a run-time function call will be avoided.

This can also be achieved as normally done in C by a macro:

#define twice(i) (2*(i))

Then every occurrence of twice(z) will be substituted by (2 * (z)) in the
compiling process. Compared to C-style macros, inline functions are type-
checked and safer to use.

However, the inline specifier is only a hint to the compiler that it should
attempt to generate code substitution. The possibility of mutually recursive
inline functions and other situations make it impossible to guarantee that
every call of an inline function is actually inlined. When it can not be
inlined, the usual function call mechanism will be used and the keyword
inline will be ignored.

3.8.7 Default Arguments

A function can have default arguments for its trailing arguments. A default
value for an argument can be specified in a function definition. For example,

void print(int v, int b = 10) { // b is defaulted to be 10
// define the function to print out integer v in base b

}

print (15,16); // print 15 in hexadecimal (base 16)
print(15,2); // print 15 in binary (base 2)
print(15,10); // print 15 in decimal (base 10)
print(15); // print 15 in decimal (base 10)

The last call is equivalent to print(15,10). That is, when a value is not
explicitly given for the second argument, 10 is assumed by default.

The default values for arguments can also be specified in a function
declaration. For example,

void print(int = 100, int = 10); // 2 default arguments
print(15,16); // print 15 in hexadecimal (base 16)

print (15,2); // print 15 in binary (base 2)
print(15); // print 15 in decimal (base 10)

3.8 Functions 83
print(); // print 100 in decimal (base 10)

void print(int v, int b) {
// define the function to print out integer v in base b

}

Note that default arguments are possible only for trailing arguments.
The compiler will be confused at

void print(int b = 10, int); // error

3.8.8 Function Types

It is sometimes useful to define a type synonym using the keyword typedef.
A declaration prefixed by typedef introduces a new name for a type rather
than declaring a new variable. For example,

typedef unsigned int Uint; // Uint is unsigned int
Uint i = 5; // i is an unsigned int

typedef double (*coef) (double);
// coef means a pointer to function
coef f; // f has type of coef

A typedef does not introduce a new type. For example, Uint and unsigned
int are the same type, and coef is the same type as a pointer to a function
that takes a double and returns a double. The last statement above declares
f to be a variable of type coef. That is, f can take on values that are pointers
to a function that takes a double and returns a double.

A pointer to a function can be passed as an argument to another function
like any other pointer. For example,

double integral(coef f, double a, double b){
return f((a+b)*0.5)*(b-a); // an inaccurate evaluation
} // of a definite integral

double square(double d) { return d#d; }

coef sfp = square; // initialize sfp with ‘square()’
double v = integral(sfp, 2, 2.01); // call integral()
sfp = sqrt; // assign sqrt in <math.h> to sfp
v = integral(sfp, 2, 2.01); // call integral()

The function call integral(square,2,2.01) now gives an approximate value
of the definite integral of the function square() from 2 to 2.01. The name
of a function is treated as a pointer to the function.

Here is a more complicated example from a C header file <signal.h>:

84 3. Derived Types

typedef void (*SIG_TYP) (int); // from <signal.h>
typedef void (*SIG_ARG_TYP) (int); // pointer-to-fcn type
SIG_TYP signal(int, SIG_ARG_TYP); // return pointer to fcn

This defines SIG.TY P and SIG_.ARG_TY P to be the type of pointer to
functions that take an int as argument and do not return a value, and
stgnal is a function returning a value of type SIG_TY P and taking an int
and a SIG_.ARG.TY P as arguments.

3.8.9 Static Local Variables

Variables defined within the body of a function are automatic variables
by default. They lose their value after the function call is completed. This
property can be overridden by use of the keyword static. A static variable,
although still local, persists across function invocations and maintains its
value after the function call is completed. Consider a function that calcu-
lates a value only when it is first called and just returns the value without
repeating the calculation in subsequent calls:

long double cal() {
static bool first = true;
static long double v;

if (first == true) {
v =5.0; // or perform some calculation to get v
first = false;

}

return v;

}

long double x = cal();

// 1st call, the ’if’ block is executed in cal()
long double y = cal();

// 2nd call, the ’if’ block is skipped in cal()

The value of the variable first is initialized to ¢true when the function
cal() is first called. Then it is assigned to have a new value false inside the
function. This new value will be retained and the initialization statement

static bool first = true;

will be ignored in subsequent calls. Since first = false, the if statement
in cal() is then skipped. The same explanation holds for the static local
variable v. For this reason, assignment v = 5.0 is executed only in the first
call.

The value of a static variable can also change with each function call.
For example,

int ged(int m, int n) { // greatest common divisor

3.8 Functions 85

static int callnum = 1;
cout << "gcd() has been called " << callnum++
<< " times so far.\n";

if (n == 0) return m;
return gcd(n,m%n);

}

When ged() is first called, callnum = 1 and callnum is then given a new
value 2. This value will be maintained when the second time ged() is called
and the initialization int callnum = 1 will be ignored. In the second call,
callnum is incremented by 1 to a new value 3. With the static variable
callnum, one can know how many times a function is called in a program.
For example, in calculating the greatest common divisor ged(215,335) the
recursive function need be called eight times. However, look at the following
two calls of the function.

int i = gcd(215,335); // after this call, callnum = 8
int j = gcd(215,335); // after this call, callnum = 16

At the beginning of the second call j = ged(215, 335), the value of callnum
is 9 (from the first call i = ged(215,335)). The value of callnum will be
incremented from 9 to 16 during the second call, since the static variable
callnum persists throughout the program.

A static variable provides a function with “memory” without introducing
a global variable that might be accidentally accessed and corrupted by other
functions.

3.8.10 The Function main
The minimal C++ program is
int main() { }

It takes no arguments and does nothing. Every C++ program must have
a function called main(). The program starts by executing this function.
The int value returned to the system indicates the program has completed
successfully or otherwise. If no value is explicitly returned, the system will
receive a zero value for successful completion and nonzero value for failure.

The function main() may take two arguments specifying the number of
arguments, usually called arge, and the array of arguments, usually called
argv, for the program. The arguments are character strings having type
char* [argc+1]. The name of the program is passed as argv[0] and the list
of arguments is zero-terminated; that is, argvjarge] = 0.

For example, consider the simple program in §1.1. Instead of inputting
two integers after the program is run, we want to input them at the
UNIX/Linux command line as

86 3. Derived Types

add 1 1000

Here add is the name of the executable object code for the program. Then
add is stored in argu[0], and 1 and 1000 will be stored in argv(1] and argv[2],
respectively. The number of arguments is argc = 3. Note that argv(3] is 0
indicating the end of arguments. Now we need to modify the program to
support this input format:

#include <iostream>
#include <stdlib.h> // library for function atoi()
int main(int argc, charx argv[]) {
if (arge !'= 3)
cout << "number of arguments is incorrect.\n";

int n = atoi(argv[1]); // first input int assigned to n
int m = atoi(argv[2]); // 2nd input int assigned to m
if (m>m { // if n > m, swap them
int temp = n; // declare temp, initialize it
n = m; // assign value of m ton
m = temp; // assign value of temp to m
}
double sum = 0; // sum initialized to O

for (int i = n; i <= m; i++) sum += i;
cout << "Sum of integers from " << n << " to " << m
<< " dig: " << sum << ’\n’; // output sum to screen

}

Note that the function atoi() in the standard header <stdlib.h> converts
a character string into an integer. A related function atof() converts a
character string into a float.

3.9 Program Execution

When a program is run, the execution is typically arranged as shown in
Table 3.1. It consists of several portions.

o The text portion contains the actual machine instructions that are
executable by the hardware. These machine instructions are gener-
ated by the compiler from the source code of the program. When
a program is executed by the operating system, the text portion is
typically read into memory from its disk file.

o The data portion contains the program’s data, which can be further
divided into initialized data (initialized by the program) and unini-

3.9 Program Execution 87

text | initialized | uninitialized | heap : — — stack

data data

TABLE 3.1. A typical arrangement of a program execution.

tialized data. Uninitialized data contain items that are not initialized
by the program but are set to a default value (typically zero) before
the program starts execution. A program file consists of the program
text and initialized data. The advantage of providing an uninitial-
ized data area is that the system does not have to allocate space in
the program file on the disk for uninitialized global variables. It also
reduces the time to read a program file from disk into memory.

e The heap is used to allocate more data space dynamically for the
program while it is being executed.

o The stack is used dynamically to contain the stack frames that in-
clude the return linkage for each function call and also the data ele-
ments required by the function.

A gap between the heap and the stack indicates that many operating
systems leave some room between these two portions so that they can grow
dynamically during a program execution. When there is no more room for
these two portions to grow, a run-time error will occur.

As an example, consider the following short program:

const int param = 10000;
double myvalue;

double £() {
double* a = new double [param];

for (int i = 0; i < param; i++) ali] = rand() + i;
double sum = 0;
for (int i = 0; i < param; i++) sum += al[il;

return sum,;

1

int main() {
myvalue = £(0);
double s = sqgrt(myvalue);
cout << "result is: " << s + 555 << ’\n’;

1

88 3. Derived Types

The variable param is stored in the initialized data area and myvalue
in uninitialized data. The constants 10000, 555, and “result is: ” (string
literal) can be stored as (read-only) initialized data. The variables q, i, and
sum are automatic variables and will be stored on the stack. When the
function f() is called in the statement mywvalue = f(), the system creates
the objects a, 7, and sum on the stack and 10000 objects pointed to by a on
the heap. After the computation in the function call is finished, the objects
a,i, and sum are destroyed and the computed value of sum is returned
to the variable myvalue. However, the 10000 objects created on the heap
are not explicitly deleted and thus still exist throughout the rest of the
program execution. The automatic variable s is also stored on the stack
while the function main() is being executed. The machine instructions for
the functions main(), f(), sqrt(), and rand() are in the text segment.

3.10 Operator Summary and Precedence

This section presents a summary of operators and their precedence, some
of which are explained later in this book. Each operator is followed by
its name and an example illustrating its use. Tables 3.2 and 3.3 contain a
summary of all C++ operators and their precedence, where a class_name
is the name of a class, structure, or union, and a member or Mem is the
name of one of its members. An object is an expression yielding an object,
a pointer an expression yielding a pointer, an expr or Er is an expression,
an lvalue is an expression denoting a nonconstant object, and a type or
Tp can be a basic type or a derived type (with *, (), etc.) with possible
restrictions.

In Tables 3.2 and 3.3, each box holds operators with the same precedence.
Operators presented in a higher box have higher precedence than operators
in lower boxes. For example, the operator * has higher precedence than —
and a—bxc means a — (bxc) instead of (a—b) *c. Similarly, ¢ <= 0|100 < %
means (i <= 0) || (100 < 7), instead of the legal but nonsense expression
i <= (0]{100 < 7). Note that there are cases when the operator precedence
does not result in obvious interpretation, such as

if (i & mask == 0) { /* do something */ }

Because of the higher precedence of == over the ‘bitwise and’ operator &,
the expression is interpreted as i & (mask == 0). In this case, parentheses
should be used to yield the desired result:

if ((i & mask) == 0) { /x do something */ }

3.10 Operator Summary and Precedence 89

Operator Summary and Precedence

Operator Name Example
scope resolution class_name :: Mem
scope resolution namespace_name :: Mem
global operator : name
member selection object.member

—> member selection pointer—>member

[] subscripting pointer{expr], array|expr]

0O function call expr(expr_list)

0 value construction type(expr_list)

++ postincrement lvalue++

—— postdecrement lvalue——

) type identification typeid(type)

0O type identification typeid(expr)

dynamic_cast

run-time cast

dynamic_cast<Tp> (Er)

static_cast compile-time cast static_cast<Tp> (Er)
reinterpret.cast unchecked cast reinterpret_cast<Tp>(Er)
const_cast const cast const_cast<Tp>(Er)
sizeof size of object sizeof (expr)

sizeof size of type sizeof(type)

++ preincrement ++lvalue

—— predecrement ——lvalue

- bitwise complement “expr

! not (negation) lexpr

- unary minus — expr

+ unary plus + expr

& address of &lvalue

* dereference *expr

new allocate one object new type

new allocate objects new type [expr]

new allocate, initialize new type (expr)

new create (place an object) new (expr) type

new create (place objects) new (expr) type [expr]
new create (place, initialize) new (expr) type (expr)
delete deallocate one object delete pointer

delete deallocate objects delete|] pointer

0 cast (type conversion) (type) expr

S member selection object.*pointer_to_Mem
—> member selection pointer—>pointer_to_Mem
* multiply €Xpr * expr

/ divide expr / expr

% modulo (reminder) expr % expr

TABLE 3.2. Operator summary and precedence.

90 3. Derived Types

Operator Summary and Precedence (continued)

Operator Name Example

+ add (plus) expr + expr

- subtract (minus) expr — expr

<< shift left expr << expr

>> shift right expr >> expr

< less than expr < expr

<= less than or equal to expr <= expr

> greater than expr > expr

>= greater than or equal to expr >= expr

== equal €Xpr == expr

l= not equal expr != expr
bitwise AND expr & expr

- bitwise exclusive OR expr " expr

| bitwise inclusive OR expr | expr

&& logic AND expr && expr

I logic inclusive OR expr || expr

= simple assignment lvalue = expr

*= multiply assignment Ivalue *= expr

/= divide assignment lvalue /= expr

To= modulo assignment lvalue %= expr

+= add assignment lvalue += expr

—= subtract assignment lvalue —= expr

<<= shift left assignment lvalue <<= expr

>>= shift right assignment lvalue >>= expr

&= AND assignment lvalue &= expr

"= exclusive OR assignment lvalue "= expr

|= inclusive OR assignment lvalue |= expr

7: conditional expression expr ? expr: expr

throw throw exception throw expr

, comma (sequencing) €Xpr, expr

TABLE 3.3. Continuation of operator summary and precedence.

3.10 Operator Summary and Precedence 91

Another example is:
if (0> i 1l 1> 100 &% abs(i) < 500) { /* ... */ }
which is equivalent to
if (0> i [l (i > 100 && abs(i) < 500)) { /* ... */ }

where the function abs(z) gives the absolute value of an integer ¢ (declared
in the standard header <stdlib.h>). Note that it is different from

if ((0 > i J]l i > 100) &% abs(i) < 500) { /* ... */ }

This can be easily checked by taking ¢ = —1000 in the two statements.
Also, the mathematical expression 0 < x < 100 can be translated into the
C++ expression

0 <= x && x < 100
or equivalently (0 <= z) && (x < 100), but never
0 <= x < 100

When in doubt, parentheses should be used; it may also increase readability
of the code.

All operators are left associative, except for unary operators and assign-
ment operators, which are right associative. For example, a — b — ¢ means
(a — b) — c and a||b||c means (al|b)||c, but @ = b = ¢ means a = (b = ¢)
and *p++ means *(p++) rather than (xp)++ (ie., ¢ = *p++ means
q = *p; pt+;).

A few grammar rules can not be expressed in terms of operator prece-
dence and associativity. For example, the expression a = b <c?d =e:
f=gmeansa=((b<c)?(d=c¢e):(f=g)).

The order of evaluation of subexpressions in an expression is undefined
in general. For example, in the statement

int i = £(x) + g(y); // undefined order of evaluation
it is undefined whether f(z) or g(y) is called first; and the result of
int i = 5;

v[i] = i++; // undefined results

is unpredictable (it may be v[5] = 5 or v[6] = 5 depending on whether
the left-hand operand or right-hand operand is evaluated first). A program
should not assume any order of evaluation for such expressions.

However, the three operators , (comma), && (logical and), and || (logical
or) guarantee that their left-hand operand is evaluated before the right-
hand operand. See §2.2.5 and §2.2.3.

The following keywords

92 3. Derived Types

and and_eq bitand bitor
not_eq or or._eq Xor

comp! not

Xor_eq

are provided for some non-ASCII character sets, where characters such
as & and "are not available. They are equivalent to the following tokens,
respectively.

&& &= & | - !
= |

However, they can also be used even with ASCII character sets for clarity.
For example, not_eq may be more readable than != to some people.

3.11 Standard Library on Mathematical Functions

The standard library <math.h> provides the following mathematical func-
tions.

double abs(double);
// absolute value, not in C; same as C’s fabs()
fabs(double) ;

// absolute value, inherited from C

double

double ceil(double d);
// smallest integral value not less than d
floor{(double d);

// largest integer not greater than d

double

double sqrt{double d);

// square root of d, d must be nonnegative
pow(double d, double e); // d to the power of e

// error if d ==0 and e<= 0

// and error if d < 0 and e is not an int
pow(double d, int 1i);

// d to the power of i, not in C

double

double

double cos(double); // cosine
double sin(double); // sine
double tan(double); // tangent
double acos(double); // arc cosine
double asin(double); // arc sine
double atan{double); // arc tangent
double atan2(double x, double y); // atan(x/y)

3.11 Standard Library on Mathematical Functions 93

double cosh(double); // hyperbolic cosine
double sinh(double); // hyperbolic sine
double tanh(double); // hyperbolic tangent

double acosh(double); // inverse hyperbolic cosine
double asinh(double); . // inverse hyperbolic sine
double atanh(double); // inverse hyperbolic tangent

double exp(double); // natural exponential, base e
double log(double d); // natural (base e) logarithm

// 4 must be > 0
double log2(double d); // base 10 logarithm, d must be > 0

double modf (double d, double* p);
// return fractional part of d, and store
// integral part of d in #*p
double fmod{double d, double m);
// floating point remainder, same sign as d
double ldexp(double d, int i); // dxexp(2,i)
double frexp(double d, int* p);
// return mantissa of d, put exponent in *p

In addition, <math.h> supplies these functions for float and long double
arguments. For complex arguments with real and imaginary parts in float,
double, and long double precisions, see §7.4. The angle returned by the
inverse trigonometric functions asin(), acos(), atan(), and atan2() are in
radians. The range of asin() and atan() is [-7/2,7/2]. The range of acos()
s [0,7]. The range of atan2() is [—m,], whose principal use is to con-
vert Cartesian coordinates into polar coordinates. For asin() and acos(), a
domain error occurs if the argument is not in [—1, 1].

The function frexp(double d,int* p) splits a value d into mantissa z and
exponent p such that d = zx 2P, and returns z, where the magnitude of z is
in the interval [0.5,1) or z is zero. The function fmod(double d,double m)
returns a floating modulus d(mod m). If m is nonzero, the value d — i x m
is returned, where ¢ is an integer such that the result is zero, or has the
same sign as d and magnitude less than the magnitude of m. If m is zero,
the return value is system-dependent but typically zero.

Errors are reported by setting the variable errno in the standard library
<errno.h> to EDOM for a domain error and to ERANGE for a range
error, where EDOM and FRANGE are macros defined in <errno.h>.
For example,

int main() {
errno = 0; // clear old error state, include <errno.h>
double x = - 50; // x can also be computed at run-time

94 3. Derived Types

double i = sqrt(x);
if (errno == EDOM)
cerr << "sqrt() not defined for negative numbers\n";
double p = pow(numeric_limits<double>::max(), 2);
if (errno == ERANGE)
cerr << "result of pow(double,int) overflows\n";

}

where cerr represents the standard error stream (usually the terminal
screen), defined in <iostream>. Thus, by checking the value of the variable
errno, the user can know if a domain or range error has occurred in calling
standard functions in <math.h>.

For historical reasons, a few mathematical functions are in <stdlib.h>
rather than <math.h>:

int abs(int); // absoclute value
long abs(long); // absolute value, not in C
long labs(long); // absolute value

struct div_t { implementation_defined quot, rem};
struct ldiv_t { implementation_defined quot, rem};

div_t div(int n, int d);

// divide n by d, return (quotient, remainder)
1div_t div(long int n, long int d);

// divide n by d, return (quotient, remainder), not in C
1div_t 1ldiv(long int n, long int d);

// divide n by d, return (quotient, remainder)

double atof(comst char* p); // convert p to double
int atoi(comnst char* p); // convert p to int
long atol(const char* p); // convert p to long int

In the definition of the structures div_t and ldiv_t, the type of quot and rem
is implementation-dependent. The functions atof, atoi, and atol convert
strings representing numeric values into numeric values, with the leading
whitespace ignored. If the string does not represent a number, zero is re-
turned. For example, atoi(”seven”) = 0, atoi(*77”) = 77, while atoi(’s’)
gives the numeric value representing the lowercase letter s.

3.12 Polynomial Evaluation
In many scientific applications, the value of an nth degree polynomial

Do) = anz™ + a1z 4+ -+ a1zt ao

3.12 Polynomial Evaluation 95

needs to be evaluated for given values of z, where the coefficients a,,,a,_1,
..., a1, ag are known. A C++ function can be written to do this job having
prototype

double eval(double* a, int n, double x);

where a is a pointer that points to the coefficients ag,a;,...,a,_1,a,. An
inner for loop may be used to do the multiplication axz* and an outer for
loop for adding all the terms. Thus the function eval() can be straightfor-
wardly defined as

double eval{(double* a, int n, double x) {
double sum = 0;
for (int k = n; k >= 0; k--) {
double xpowerk= 1;
for (int i = 1; i <= k; i++) { // or call pow(x, k)

xpowerk *= x; // compute x to power of k
}
sum += a[k]*xpowerk; // add each term to sum
}
return sum;

1

Notice that evaluating the first term a,z" requires n multiplications and
the second term a,,_;z"~! requires n — 1 multiplications, and so on. Thus
the total number of multiplications to evaluate p,(z) using the function
call eval(z) is n+ (n—1)+---+2+1 =n(n+ 1)/2. This method is very
inefficient since it duplicates the work in computing the power of z for each
term of p,(z).

An efficient method called Horner’s algorithm (or nested multiplication)
is described below. The idea is to rewrite p,(z) in a nested multiplication
form:

Pr(z) = (- ((anT + Gn_1)T + Gn-2)T + - -+ + a1)zT + ag.
An example of writing a polynomial of degree 4 from its regular form into
nested multiplication form is:

4z* + 32% + 22° + + 10 = (((4z + 3)z + 2)z + 1)z + 10.
Introduce the notation:

Un = Qn;
Up—-1 = UnT + Ap-1;

Un-2 = Up-1T + Gn—2;

U] = UsT + a1

Up = U1T + ag;

96 3. Derived Types

Thus pn(z) = ug. At first glance, wun, ty_1, ..., and ug would be stored in
an array. However, it is not necessary since after computing u,_; the value
U, is no longer needed, and so on. This procedure can be written into an
algorithm.

Algorithm 3.12.1 horner(a,n,z)
o Initialize u = an,.

o for i=n—-1,n-2,...,0) {
U — ux + a;;

}

e refurn u.

It takes only n multiplications. Now Horner’s algorithm can be coded into
C++ as

double horner(double* a, int n, double x) {
double u = aln];
for (int i =n - 1; i >=0; i--) u = uwxx + ali]l;
return u,

}

This program is not only shorter, but also more efficient than the straight-
forward approach eval(). Efficient algorithms require fewer operations and
may sometimes result in smaller accumulative roundoff errors.

Now these two functions can be compared by evaluating an 8th degree
polynomial:

ps(z) = z8 — 827 + 28z°% — 562° + 70z* — 562° + 2822 — 8z + 1

for z taking on 11 equally spaced values covering interval [0.99999, 1.0001].
Observe that pg(z) = (z — 1)8. This expression will be compared to the
values returned by eval() and horner().

#include <iostream>
#include <math.h>
int main() {
double a[9] = {1, - 8, 28, - 56, 70, - 56, 28, - 8, 1};
for (double x = 0.99999; x <= 1.0001; x += 1.0e-5) {
cout.width(18);
cout << eval(a,9,x); // straightforward evaluation
cout.width(18);
cout << hormer(a,9,x); // Horner’s algorithm
cout.width(18);
cout << pow(x-1,8) << ’\n’; // direct evaluation

The output on a computer with 8 bytes for double is as follows.

5

.32907e-15

0
.55271e~-15

0

0
.66454e-15
.44089%e-15
.21725e-15
.32907e-15
.88178e-15
.66454e-15

3.12 Polynomial Evaluation

2.14564e-16
0
1.32321e-15
-1.59367e-15
-1.76064e~-15
-6.9931e-17
~-3.5203e-15
-3.23331e-15
-1.87686e-15
~2.31586e-16
5.89264e-16

1e-40

0

1e-40
2.56e-38
6.561e-37
6.5536e-36
3.90625e-35
1.67962e~34
5.7648e-34
1.67772e-33
4.30467e-33

97

The correct value for pg(z) = (z — 1)® should be nonnegative and very
small since z is close to 1. The third column is the best since it is a direct
calculation of (z — 1)® and will be used as exact values in the comparison.
Comparing the first column (produced by eval()) with the second column
(produced by horner()), the results by Horner’s algorithm are more accu-
rate (closer to the third column) for 8 out of 11 values. Both eval() and
horner() produce negative values due to the subtractions of nearly equal
quantities in their evaluations.

Let us now enlarge the errors by 10'° times in the evaluations of eval()
and horner() so that their accuracies can be more clearly seen. Modify the
main program as

int main

double al9] = {1, - 8, 28, - 56, 70, - 56, 28,

for (d
cout

O {

ouble x = 0.99999; x <= 1.0001; x += 1.0e-5) {

.width(20);

cout << 1.0e10*(pow(x-1,8) - eval(a,9,x));

cout

cout << 1.0el0*(pow(x-1,8) - hormer(a,9,x)) << ’\n’;

}
}

.width(20);

The output becomes:

-5.32907e-05
0
-3.55271e-05
2.56e-28
6.561e-27
2.66454e-05
-4.44089e-05
6.21725e-05
5.32907e-05

-2.14564e-06
0
-1.32321e-05
1.59367e-05
1.76064e-05
6.9931e-07
3.5203e-05
3.23331e-05
1.87686e-05

- 8, 1};

98 3. Derived Types

-8.88178e-05 2.31586e-06
-2.66454e-05 -5.89264e-06

For 9 out of 11 values, the second column is no larger than the first.

In large-scale applications, it is not enough to compute correctly, but
also efficiently and elegantly. The elegance of a program should include ex-
tendibility, maintainability, and readability, while correctness should also
include accuracy, robustness, and portability. Both horner() and eval() are
correct (horner() is slightly more accurate in certain cases), but the effi-
ciency of horner() is far better for polynomials of high degrees. In finance,
evaluation of high-degree polynomials is often encountered; see Exercises
3.14.18 and 4.8.12.

3.13 Trapezoidal and Simpson’s Rules

In this section, a complete example is presented to evaluate definite in-
tegrals of the form f: f(z)dz using the Trapezoidal Rule and Simpson’s
Rule, based on partitioning the interval [a,b] into n subintervals, where n
is a positive integer. We define two functions trapezoidal() and simpson()
that take the integral bounds a and b, the integrand f, and the number
of subintervals n as arguments, and return a value for the approximate
integral.
We want to write a main program as

#include <math.h>
#include <iostream>

typedef double (*xpfn)(double); // define pfn for integrand
double trapezoidal(double a, double b, pfn f, int n);
double simpson(double a, double b, pfn f, int n);

double square(double d) { return d+d; }

int main(){
double result = trapezoidal(0, 5, square, 100);
cout << "Integral using trapezoidal with n = 100 is: "
<< result << ’\n’;

result = simpson(0, 5, square, 100);
cout << "Integral using simpson with n = 100 is: "
<< result << ’\n’;

result = trapezoidal(0, 5, sqrt, 100);
cout << "Integral using trapezoidal with n = 100 is: "

3.13 Trapezoidal and Simpson’s Rules 99

y = f(z)

f(z:)

flzicn) |

Y

Ti—1 Z;

FIGURE 3.2. The integral f:‘_l f(z)dz, representing the area of the region under

curve y = f(z) and above subinterval [z;_1,%;], is approximated by the area of
a trapezoid (with one edge drawn in dotted line), which is {f(zi-1) + f(z:)]R/2.

<< result << ’\n’;

result = simpson(0, 5, sqrt, 100);
cout << "Integral using simpson with n = 100 is: "
<< result << ’\n’;

}

Here sqrt() is the square-root function declared in <math.h>. This main
program intends to find approximate values for f05 z2dz and f05 Vzdz using
the Trapezoidal and Simpson’s Rules. Since these integrals can be evaluated
exactly, they can be used as examples for testing the correctness of the
program. An easy modification of the program enables one to find more
complicated integrals such as fol sin(z?)dz and fol V1 — sin® zdz.

Now we need to define the functions for the Trapezoidal and Simpson’s
Rules. The idea of the Trapezoidal Rule is to first partition the given in-
terval [a,b] into n (assuming equally spaced for simplicity) subintervals
[zo,z1], [x1,22], ..., [Zn-1,2p] With 2; — 2,01 = h, where h is the size
of each subinterval. Then approximate the integral f;_l f(z)dz on each
subinterval [z;_1, z;] by the area of a trapezoid passing through four points
(£i-1,0), (i1, flziz1)), (23, f(x4)), and (z;,0) (assuming f(z;—;) and
f(z;) are positive, but the result also applies to general functions). The
area of such a trapezoid is (f(zi—1) + f(z;)) * h/2. See Figure 3.2.

Thus,

f:f(z)dz = Z/I f(z)dx

100 3. Derived Types

n n—1
N~ fEio) + (@), | f(=Zo) f(zn)
~2 3 h=|Tg 4 L flm) + T by
i=1 i=1
where the subinterval size h = (b — a)/n and partitioning points are x; =
a+ixh,i=01,...,n, with zop = a and z, = b. This function can be
defined as

double trapezoidal(double a, double b, pfn f, int n) {
double h = (b - a)/n; // size of each subinterval
double sum = f(a)*0.5;
for (int i = 1; i < n; i++) sum += f(a + i*h);
sum += f(b)*0.5;
return sumxh;

Simpson’s Rule is similar to the Trapezoidal Rule but approximates
the integral f;_l f(z)dz on each subinterval [z;_1,z;] by the area un-
der a quadratic curve (represented by a polynomial of degree two) pass-
ing through three points (z;—1, f(zi=1)), (Zs, f(Zs)), and (x4, f(x;)), where
Z; = (zs_1 + 7;)/2 is the middle point of the subinterval [z;_1,z;]. It can
be shown that the area of such a trapezoid with one edge as a quadratic
curve is (f(zi—1) + 4f(Z:) + f(zi))h/6. Thus,

[P f@)dz = ; f(@)dz

< f(zicy) +4f(F:) + f(zi)h

— 6
fl@ic) + f(@), 2xm ;o
g h+t §;f(zi)h'

n

~
~

.

W =

i=1

Notice that the first summation in the formula is the same as the Trape-
zoidal Rule. Now it can be defined as

double simpson(double a, double b, pfn f, int n) {
double h = (b - a)/n;
double sum = f(a)*0.5;
for (int i = 1; i < n; i++) sum += f(a + ixh);
sum += f(b)*0.5;

double summid = 0.0;
for (int i = 1; i <= n; i++) summid += f(a + (i-0.5)*h);

return (sum + 2%summid)*h/3.0;

3.14 Exercises 101

In §5.1, an abstract mechanism called class is used to present this exam-
ple in a different style. Notice that this C-style definition of trapezoidal()
and simpson() passes a function pointer f for the integrand as an ar-
gument, which imposes function calling overhead for each call f() inside
trapezoidal() and simpson(). In §7.7 some efficient techniques are applied
to overcome the function calling overhead in passing a function pointer to
another function call, where integration functions are written with a type
parameter so that they can also handle arithmetics in different precisions
such as float, double, and long double. For more details on mathematical
aspects of the Trapezoidal and Simpson’s Rules, see [Ste99, KC96, VPROO0].

3.14 Exercises

3.14.1.

3.14.2.

3.14.3.

Write a program that defines a const integer n, generates n random
numbers and stores them in an array, and computes and outputs
the average of these random numbers. Also compute and output the
maximum and minimum values of the random numbers generated.

The standard library <assert.h> contains a macro assert() that can
be used to ensure that the value of an expression is as expected. Here
is an example of how assert() can be used to ensure a variable n is
positive, but less than or equal to 100:

#include <assert.h>
void £(int n) {

assert(n > 0 && n <= 100);
}

If an assertion fails, the system will print out a message and abort the
program. When the macro NDEBUG is defined at the point where
<assert.h> is included, for example,

#tdefine NDEBUG
#include <assert.h>

then all assertions are ignored. Thus assertions can be freely used dur-
ing program development and later discarded (for run-time efficiency)
by defining NDEBUG. Write a program to generate Fibonacci num-
bers (see §2.4) ensuring that they are positive using an assertion.

Write a function having prototype

int sumsq(int n, int m);

102

3.14.4.

3.14.5.

3.14.6.

3.14.7.

3.14.8.

3. Derived Types

that returns the sum of squares n? + (n+1)2+- - -+ (m—1)2 +m? for
n < m. The function should also be able to handle the case n > m.

Write a function that computes and returns the number of (decimal)
digits of a given integer n. For example, it should return 3 if n = 145.

Write a function that outputs (e.g., the first 1000 terms of) the se-
quence d, = y/n—+/n—1forn=1,2,3,.... Write another function
that computes d, in a mathematically equivalent but numerically
more robust way:

1
T /atva-1

Compare the difference in the outputs of the two functions. The sec-
ond one should give more accurate results since it avoids subtracting
two nearly equal numbers and thus reduces cancellation errors.

dn for n=1,2,3,....

An algorithm to find a square root of a positive real number b is:

1 b

9 =1, xn+1=—[:zn+—], n=90,1,2,....
2 n

Write a function that implements the algorithm. A fast (quadratic)

convergence should be observed for z,, — v/b. Compare the accuracy

of this function with the built-in function sqrt() in <math.h>.

Write a function that takes three doubles a, b, and ¢ as input and
computes the roots of the quadratic equation

az? + bz +c=0.

When a = 0 and b # 0 the equation has only one root x = —¢/b.
When a # 0, its roots are given by

z) = (=b + Vb? — 4ac)/(2a), z2 = (—b — V/b% - 4ac)/(2q).

If the discriminant b®> — 4ac is negative, the two roots are complex
numbers. Output complex numbers in the form of r + mi, where
i = +/—1 and r and m are real and imaginary parts. Write a main()
program to test your function.

The statements

ali++] *= n;
ali++] = a[i++]*n;

are not equivalent. The operand a[i++] has a side effect of incre-
menting ¢. Except for possible implementation efficiency, the first
statement is equivalent to

3.14.9.

3.14.10.

3.14.11.

3.14 Exercises 103

ali]l = alil*n;
i=1i+1;

while the second statement is equivalent to either

ali+1] = al[il*n;
i=1i4+ 2;

or

al[i] = ali+1]*n;
i=1+ 2;

depending on whether the right-hand side of the assignment is eval-
uated before the left-hand side. The order of their evaluations is not
defined. Test what result your machine gives for the second statement
above. Such a statement is not portable and should be avoided.

Allocate space for a sequence, denoted by s, of 2n + 1 doubles so that
the index changes from —n to n, where n is a given positive integer.
Assign si] = @ for ¢ = —n,—{(n - 1),...,-1,0,1,...,n — 1,n, and
print out the values of s[i], —n < i < n for n = 10. Finally, delete
the space.

Explain the difference between a two-dimensional array and a double
pointer. Consider further an example of a two-dimensional array:

double tda[5][7];

The base address of the array tda is &tda[0][0], or tda[0], but not tda.
The array name tda by itself is equivalent to &tda[0]. What can you
say for a double pointer and a one-dimensional array?

Write a function that takes an » by m matrix and a vector of m
components as input and computes the matrix-vector product such
that it has prototype:

void multiply(const double** const mx,
const double* const vr, int n,
int m, doublex const pt);

Here the double pointer mz represents the matrix, single pointer vr
the input vector, and pt the matrix-vector product. Write a main()
program to test the function. Space should have been allocated for
mz, vr, and pt before calling the function.

104

3.14.12.

3.14.13.

3.14.14.

3. Derived Types

Declare an n by n upper triangular matrix utm of floats using a
double pointer. To save memory, store only the upper part of the
matrix. The entry at row ¢ and column 5 should be accessed by using
utmlil[j] for ¢ = 0,1,...,n — 1 and j = ¢,i+ 1,...,n — 1. Then
assign utmfi]{j] = 2i + j for n = 4 and print out all the entries.
Finally, deallocate space for utm. To save memory, space should not
be allocated for the lower triangular part of the matrix.

Write a function that takes an n by n upper triangular matrix and
a vector of n components as input and computes the matrix-vector
product. It may have either of the prototypes

double* multiplyutm(const double** const utm,
const double* const vr, int n);
void multiplyutm(const double** const utm,
const double* const vr,
int n, double* const pt);

Implement the matrix as in Exercise 3.14.12 and the vector as a
pointer. Write a main() program to test the function.

A three-dimensional array with dimensions p X ¢ x r using a triple
pointer can be allocated and deallocated as

int p=4,q=2, 1 =3; // or computed at run-time

double*** p3d = new double** [p]l; // allocate space
for (int i = 0; i < p; i++) {

p3d[i] = new doublex [q];

for (int j = 0; j < q; j++) p3d[i]l[j] = new double [r];
}

for (int i = 0; 1 < p; i++) // access its entries
for (int j = 0; j < q; j*+¥)
for (int k = 0; k < r; k++) p3d[il[j1[k] = i + j + k;

for (int i = 0; i < p; i++) { // delete space after use
for (int j = 0; j < q; j++) deletel[] p3d[il[j]l;
delete[] p3d[il;

}

delete[] p3d;

Note that the order of memory deallocation should be the opposite of
allocation. Allocate space for a four-dimensional array of dimensions
p X g X r X s using a quadruple pointer:

3.14.15.

3.14.16.

3.14.17.

3.14.18.

3.14 Exercises 105

double**** p4d;

Assign it some values such as p4d[i][j]{k][m] = i — j + k — m. Finally,
deallocate the space.

Write a recursive function having the prototype
long fibonacci(int n);

that takes an integer n and calculates the Fibonacci number f,; see
§2.4 for the definition of Fibonacci numbers. Also output the number
of recursions needed to obtain f,.

Write a function to print out a decimal integer v in base b having the
prototype:

void print(int v, int b = 10); // b defaulted to be 10

with 2 < b < 16. Your program should print out an error message
when a user attempts to input b outside this range. Hint: an integer v
can be expressed in base b as apan_1 - 6109 if v = ag +a1b+axd? +
e tagb® with0<a; <b, 1=0,1,...,n, and a, # 0.

Write the polynomial
ps(z) = 2° — 827 + 282% — 562° + 702 — 562> + 2827 — 8z + 1

directly into a nested multiplication form using the idea of Horner’s
algorithm. Then print out values of pg(z) for z taking on 11 equally
spaced values covering the interval [0.99999,1.0001]. You should get
the same values as the function horner(), defined in §3.12.

A man has just started a fixed-rate mortgage of total amount of S
dollars with annual percentage rate r and length of m months. But he
decides to pay off the mortgage early and pay Py, P, ..., and P,_;
dollars for the first, second, ..., and (n — 1)th month, respectively,
and pay off the mortgage at the end of the nth month with n < m.
The payoff amount P, can be computed from the formula:

n—1 r -1 r -n
S = bill1+— P14 —
Ya(ieg) +n(+h)

assuming that each F; is no smaller than his regular monthly payment
so that no penalty is imposed on him. Write a function that computes
the payoff amount P, given S, r, Py, P», ..., and P,,_,. If the man
has a 15-year mortgage of 200000 dollars at rate 0.0625, but pays P, =
2000 + 10 * ¢ dollars in month i for ¢ = 1,2,...,59, and wants to pay
off the mortgage in month 60, what is his payoff amount Pge? Hint:
Horner’s algorithm should be used in calculating the summation.

106

3.14.19.

3.14.20.

3. Derived Types

Apply the idea of Horner’s algorithm to derive efficient algorithms
for evaluating

n

%
Bn=> []bi =bo+bob +bobsba + -+« + bob -+~ b,
i—0j=0

1 1 1
;Jr‘[)d dOdl dodids dod; - - - dn,

The algorithms should require only n multiplications for B,, and n+1
divisions for D,, in addition to n additions for each. Then write
functions having prototypes

double summtp(const double* const b, int n);
double sumdiv(const double* const d, int n);

for them, where b is a pointer that points to the numbers bg, by, ...,
bn_1, bn and d points to dp,dy,...,dn_1,dn. Use both functions to
compute the partial sums:

f: 1

= n!
for m = 100,500, and 1000. Hint: your answer should be closer to
0.71828182845904523536 as m gets larger.
The base of the natural algorithm e is

e = 2.7182818284590452353602874713526624977572.. ..

to 41 significant digits. It is known that
1 n
=[1+—] —e asn — 0o.
n

Write a function that generates the sequence {z,} and prints out the
error e — . A very slow (worse than linear) convergence should be
observed for z, — e. Indeed it can be shown that |e — Tpt+1]|/|e —
Zn| — 1 as n — 00. A computationally effective way to compute e to
arbitrary precision is to use the infinite series:

Z + +i+_1.+...

To reduce roundoff errors, smaller terms should be added first in
calculating partial sums. It can be shown that

¢ Lenl| T (m+1)

3.14.21.

3.14 Exercises 107

Write another function to generate the partial sums for approximat-
ing e and compare the convergence. Horner’s algorithm may be used
to efficiently compute this kind of partial sum.

When n is large, the factorial n! can easily cause overflow. Write
a function to calculate n! by storing a large integer in an array of
integers, whose one element stores one digit of the large integer. To
illustrate the idea, consider the program:

#include <iostream> // for input and output
#include <stdlib.h> // for function exit()
const int mxdgs = 9500; // max # of digits in factorial
int main() {

int n;

cout << "Enter a positive integer: \n";

cin >> n;

// digits of n! will be stored in array dgs backwards,
// ie, highest digit will be stored in dgs[0], next
// highest in dgs[1], and so on.

int dgs[mxdgs];

dgs[0] = 1;

for (int i = 1; i < mxdgs; i++) dgs[i]l = 0;

for (int k = 2; k <= n; k++) { // n! =2+3x4...(n-1)*n
int cary = 0;
for (int j = 0; j < mxdgs; j++) {

// multiply k with every digit of (k-1)! to get k!
dgs[j] = kxdgs[j] + cary;
cary = dgs[j1/10;
dgs[j] -= 10*cary;
}
}

// counting the number of digits in n!
int count = mxdgs - 1;
while (!dgs[count]) count--;

// compute the number of digits in integer n
int numdgofn = 0;
int m = n;
while (m) {
m /= 10;
numndgofn++;

}

108

3.14.22.

3. Derived Types

// check to see if size of dgs is enough

if (mxdgs - count < numdgofn + 1) {
cout << "factorial overflow, adjust parameter.\n";
exit(1); // exit program

}

// printing n!: lowest digit dgs[count] first,

// highest digit dgs[0] last.

cout << "There are " << count + 1 << " digits in "
<< n << "!. They are:\n";

for (int i = count; i >= 0; i--) cout << dgs[il;

cout << ’\n’;

}

The standard library function exit(), declared in <stdlib.h>, is called
(and returns value 1) to terminate the program when the dgs array
is not large enough to store n!. In this program, the factorial (k¥ — 1)!
is stored digit by digit in an array of integers. To get k!, multiply
every element of the array (every digit of (k — 1)!) by k. The result is
still stored in the array. Looping k from 2 through n gives n!. Notice
that the digits of k! are stored in the array backwards. For example,
the three digits 120 of 5! are stored backwards as 021000 - - - 000 with
dgs|0] = 0,dgs[1] = 2, dgs[2] = 1,dgs[3] =0, ..., dgs[mzdgs—1] = 0.
With this technique, 3000!, which has 9131 digits, can be calculated
correctly on a computer with sizeof(int) = 4. To compute the fac-

torial of a larger (than 3000) integer, the size of the array can be
adjusted.

Write a factorial function having prototype:
facs factorial(int n, int maxdgs);

where facs is a structure

struct {
int* digits; // store the digits of factorial
int numdgs; // number of digits of factorial
};

This function returns a struct that contains the number of digits of
n! and the digits of n!. It should print out an error message and exit
when n! has more than maxzdgs digits.

Apply the Trapezoidal and Simpson’s Rules to evaluate the inte-
gral f02 e~%"dz, where e is the base of natural logarithm. Output
the approximate values corresponding to the number of subintervals

3.14.23.

3.14.24.

3.14 Exercises 109

n = 100,300, and 500. Compare your answers with 0.8820813907
(obtained from a handbook).

Compute the integral f12 ((sinz)/z)dz with five digit accuracy after
the decimal point.

The standard library <stdlib.h> contains a sorting function gsort(),
based on the quick sort algorithm. It can sort an array of any elements
in an order defined by the user through a pointer to a function. It
has prototype:

typedef int (*CMF)(const void* p, const void* q);

// a type for comparing p and q, it defines an order
void gsort(void* b, size_t n, size_t sz, CMF cmp);

// sort "n" elements of array "b" in an order

// defined by comparison function "cmp".

// Each element of "b" is of size "sz" (in bytes).

Here size.t is an unsigned integral type (possibly unsigned long)
defined in <stddef.h> and used in the standard libraries.

If an array of point2d (see §3.4) is going to be sorted in increasing
order according to its z-coordinate, a comparison function can be
defined as

int cmp2dx{const void* r, const void* s) {
double d = static_cast<const point2d*>(r)->x -
static_cast<const point2d*>(s)->x;
if (d > 0) return 1;
else if (d < 0) return - 1;
else return O0;

}

The operator static_cast converts between related types such as from

" one pointer type to another or from an enumeration to an inte-

gral type. Since r has type const void*, it needs to be converted
to const point2d before accessing its member z.

Now arrays of point2d can be generated and sorted by gsort() in the
order defined by emp2dz() :

int main() {
const int n = 10;
point2d a[n];
for (int 1 = 0; 1 < n; i++) {
ali]l.x = i*(5 - i); alil.y = 5/(i+2.3) - 1;
}

110

3.14.25.

3.14.26.

3. Derived Types

gsort(a, n, sizeof(point2d), cmp2dx);
for (int 1 = 0; 1 < n; i++)
cout << afi]l.x << " " << a[i].y << ’\n’;

For people who are curious about how such a sorting function is
defined, here is a definition of a related (based on the shell sort algo-
rithm; see [Knu98] and [Str97]) function:

void shsort(void* b, size_t n, size_t sz, CMF cmp) {
for (int gap = n/2; gap > 0; gap /= 2)
for (int i = gap; 1 < n; i++)
for (int j =1 - gap; j >= 0; j -= gap) {
char* base = static_cast<char*>(b);
char* pj = base + j*sz;
char* pjpg = base + (j + gap)*sz;
if (cmp(pj, pjpg) > 0) { // swap b[jl, blj+gap]
for (int k = 0; k < sz; k++) {
char temp = pjlk];
pjlk] = pjpglk];
pjpglk]l = temp;
}
}
}

}

Write a program that sorts an array of point2d in decreasing order
according to its y-coordinate by using the standard library function
gsort() or the user-defined function shsort() above. Note that C++
provides a more efficient mechanism for dealing with objects of a
generic type; see Chapters 7 and 10.

Generate an array of random numbers and mimic Exercise 3.14.24 to
sort this array in decreasing order in terms of absolute value.

Consider the declaration:
int* (*(*a)[10]) (double);

What is the type of a? It can be analyzed by substitution as follows.
Let b = x(*a)[10]. Then the declaration can be written as

int* (b) (double);

3.14 Exercises 111

Then b is a function that takes a double and returns a pointer to an
int. Since b = x(*a)[10], this relation can be written into a declara-
tion:

b *(*xa)[10];
where b is a type just clarified above. It is equivalent to
b* (*a)[10];

Thus a is a pointer to an array of 10 elements, each of which is a
pointer to type b. Finally it can be concluded that a is a pointer
to an array of 10 elements, each of which is a pointer to a function
that takes a double and returns a pointer to an int. This substitution
method can be rigorously justified in C++ by using the keyword
typedef (why?).

Apply this idea to explain the type of z in the declaration:
double (*(*x())[10]) (int);

using substitutions y = (xz())[10] and z = *z(). Hint: z is a function
that takes no arguments and returns a pointer to type z, where z is
an array of 10 elements of type y, and y is a pointer to a function
that takes an int and returns a double. Such confusing declarations
should be avoided in practice but are presented here for a better
understanding of pointers, arrays, and functions.

4

Namespaces and Files

C++ supports modular programming through a mechanism called names-
pace. A namespace is a logical unit that contains related declarations and
definitions. The idea of modular programming is to divide a large program
into small and logically related parts for easy management and informa-
tion hiding. Dividing a large program into different parts and storing them
in different files can also help to achieve modular programming (this is
more so in C and FORTRAN 77). A few useful tools (some in UNIX and
Linux) are also presented for managing files, creating a library, profiling a
program, debugging a program, and timing a program. Towards the end
of the chapter, two standard libraries on character strings and input and
output streams are given. Finally, iterative algorithms for solving nonlinear
equations are described.

4.1 Namespaces

The keyword namespace is used to group related declarations and defini-
tions in C++. For example, we can group vector-related declarations in

a namespace called Vec and matrix-related declarations in a namespace
called Mat:

namespace Vec {
const int maxsize = 100000;
double onenorm{const doublex const, int); // 1-norm
double twonorm(const double* const, int); // 2-norm

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

114 4. Namespaces and Files

double maxnorm{const double* const, int); // max norm

}

namespace Mat {
double onenorm{const double** const, int); // 1-norm
double twonorm(const double** const, int); // 2-norm
double maxnorm(const double** const, int); // max norm
double frobnorm(const doublex* const, int); // Frobenius

}

For a vector v = [vg,v1,...,Un—1], its one, two, and maximum (also
denoted by oo) norms are defined as

vll1 = [vo] + |v1] + -+ + |vn-1] = Z |vil,

lvllz = (Jvol® + o2 +---+ IUn—1|2) /2 _
“'U“oo = ma.x{|v0|, I’Ull, |Un 1]} — Orgax |Uzl

respectively. For example, for the vector ug = [1,-2,0,10],

[ually = 1] + | = 2[+ 0] + 10] = 13,
lugllz = (112 + | = 2% + [0]” + |10]*)"/* = /105,
l[ualloo = max{|1],| — 2, 0], [10[} = 10.

For an n by n matrix A = (a,-,j);-f]'-io, its one, oo, and Frobenius norms
are defined as

n—1 n—1 n—1
lAll = max {3 laioh, D _laiah- s 3 lain-al} = me <n2 Jas 1,
i=0 =0 i=0
n—1 n—1 n—1
| Alloo = max {3 faosh 3 lowsh- o 3 lon-14l} = Z 2351
i=0]:O]=O

n—-1n-1

1Al = (la0ol® + laoal® + -+ + lan-1a-1%) > = \| S5 3 Jasl2,

i=0 j=0

respectively. For example, for the matrix

Bs=| -4

4.1 Namespaces 115

its one, max, and Frobenius norms are:

IBslli = max{[1] +| -4} +(2|,| = 2{ + 3] + 0], 0] + [5] + [6[}
= max{7,5,11} = 11,

IBslloo = max{[1] +|— 2| +[0},| — 4] + (3] + 5], 2[+ [0] + [6[}
= max{3,12,8} = 12,

1Bsllp = /112 + =22 + |02 + |~ 4]2 + [3]2 + [5] + 217 + [0]? + [6]2
= /95.

That is, the 1-norm of a matrix is the maximum of the absolute column
sums, co-norm is the maximum of the absolute row sums, and the Frobenius
norm is the square root of the square sum of all entries. The 2-norm of
a matrix is more involved and not mentioned any further. These norms
provide certain measurements of the magnitude of a vector or matrix.

A namespace is a scope. Members of a namespace can be accessed by
using the :: operator. In particular, the functions of namespace Vec can be
defined this way.

double Vec::onenorm(const double* const v, int size) {
if (size > maxsize) cout << "vector size too large.\n";
double norm = fabs(v[0]); // fabs() in <math.h>
for (int i = 1; i < size; i++) norm += fabs(v[i]);
return norm;

1

double Vec::maxnorm(const double* const v, int size) {
if (size > maxsize) cout << "vector size too large.\n";
double norm = fabs(v[0]);
for (int i=1; i<size; i++) norm = max(norm, fabs(v[i]));
return norm; // max() in <algorithm>

1

double Vec::twonorm(const double* const v, int size) {
if (size > maxsize) cout << "vector size too large.\n";
double norm = v[0]*v[0];
for (int i = 1; i < size; i++) norm += v[i]*v[i];
return sqrt(norm);

1

The function fabs(), declared in <math.h>, gives the absolute value of its
argument and maz(), declared in <algorithm>, returns the maximum of its
two arguments. The name maxsize can be used directly without using the
qualification operator :: inside the definitions of members of namespace Vec.
This is because mazsize is a member of Vec. Note that in the third function
definition above, the variable norm could cause overflow while sqrt(norm)

116 4. Namespaces and Files

is still within the range of the machine. A robust 2-norm formula is given
in Exercise 4.8.5 that will not cause overflow if ||[v||2 is within range.

Functions for the matrix namespace Mat can be defined similarly. How-
ever, when members from another namespace are needed, the qualification
operator :: should be used. For example, use Vec::onenorm to refer to the
function onenorm() in the namespace Vec. In this way, name clashes can
be avoided. That is, members of different namespaces can have the same
names. For example,

double Mat::maxnorm(const double** const a, int size) {
double norm = Vec::onenorm(a[0],size); // 1-norm of row 0
for (int i = 1; i < size; i++)
norm = max(norm, Vec::onenorm(al[i],size)); //alil: row i
return norm,

}

double Mat::onenorm(const double** const a, int size) {
double norm = 0;
for (int j = 0; j < size; j++) {
double temp = 0; // store column abs sum
for (int i = 0; i < size;-i++) temp += fabs(al[il [j]);
norm = max(norm, temp);

}

return norm,

}

double Mat::frobnorm(const double** const a, int size) {
double norm = O;
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++) norm += alil [jl*alil [j];
return sqrt(norm);

}

See Exercise 4.8.6 for a robust definition of the Frobenius matrix norm.
However, for matrices whose entries are not large enough to cause overflow
when summing the squares of all entries, this straightforward evaluation of
the Frobenius norm should be more efficient.

Now the namespaces Vec and Mat can be applied to evaluate norms of
matrices and vectors:

// declarations and definitions of Vec and Mat may be put here

int main() {
int n = 1000;
double** a = new double* [n];
for (int i = 0; i < m; i++) a[i] = new double [n];

4.1 Namespaces 117

for (int 1 = 0; i < n; i++)
for (int j = 0; j < n; j++) alilljl = 1.0/(1 + j + 1);

cout << Mat::maxnorm(a, n) << ’\n’; // matrix max norm
cout << Vec::maxnorm(a[2], n) << ’\n’; // vector max norm

}

Notice that a[2] refers to row 2 of matrix a, which can be treated as a
vector. A matrix H, = (hz‘,j)Z;:lo with entries h; ; = 1/(i + j + 1) is called
a Hilbert matrix with dimension n.

The declarations in a namespace are called the interface part and the
definitions of the members are called the implementation part. A normal
user need only see the interface and figure out how to use it. The imple-
mentation part is usually placed somewhere else. For large programs, it has
the advantage that the user will not be confused by the implementation
details and can just concentrate on the interface. The larger a program is,
the more useful namespaces are to express logical separation of its parts.

Since a namespace is a scope, the usual scope rules hold for it. If a name
is previously declared in a namespace, it can be used directly inside the
namespace and its members. For example, the member mazsize of Vec can
be used directly in the definition of Vec::onenorm(). A name from another
namespace can be used when qualified by the name of its namespace. For
example, the name of namespace Vec must be used to qualify its function
onenorm() in order for it to be recognized in namespace Mat.

4.1.1 Using Declarations and Directives

When namespace Mat or other programs have to use members of names-
pace Vec intensively, repeated qualification using Vec:: can be tedious and
distracting, especially if a namespace has a long name. This qualification
can be eliminated by applying the keyword using:

double Mat::maxnorm(const double** const a, int size) {
using Vec::onenorm; // use onenorm from namespace Vec

double norm = onenorm(af[0] ,size); // Vec::onenorm is used
for (int i = 1; i < size; i++)

norm = max(norm, onenorm(af[il,size));
return norm;

}

The using declaration brings Vec::onenorm into the current scope and then
it can be used directly without qualifying by the name of its namespace.
Note that a function name overloading also happened here. Since Vec's
function onenorm() takes different arguments from Mat :: onenorm(), the
compiler can figure out that Vec::onenorm() is called. If both Vec and Mat

118 4. Namespaces and Files

had exactly the same members, the using-declaration would cause a name
clash.

If a member of Mat depends on several members of Vec, then the using-
declaration has to be used for each member. This can be replaced by the
using-directive:

namespace Mat {

double onenorm(const double** const, int); // 1-norm
double twonorm(const double** const, int); // 2-norm
double maxnorm(const double** const, int); // max norm

double frobnorm(const double** const, int); // Frobenius

using namespace Vec; // make all names from Vec available

}

The using directive brings all members of namespace Vec into the scope of
namespace Mat. Then all names of Vec can be used directly in namespace
Mat and the definitions of its members.

By the using-directive for namespace Vec, the code for members of Mat
can then be simplified as if everything of Vec had the same scope. For
example, Mat :: maznorm() can be defined as:

double Mat::maxnorm(const double** const a, int size) {
double norm = onenorm(al0],size); // Vec::onenorm is used
for (int i = 1; i < size; i++)
norm = max(norm, onenorm(alil,size));
return norm,

}

If two namespaces have two functions that have the same prototype and
both namespaces are used in a third namespace, it is possible to choose one
function over the other and to avoid name clash. For example,

namespace A {
int f£(int);
}

namespace B {
int f(int);
}

namespace C {
using namespace A;
using namespace B;
using A::f; // use A’s member f() instead of B::f()

int g(int i) {

4.1 Namespaces 119

return i + £(i); // A::f(i) is called
}
int h(int i) {

return i + B::f(i); // B::£(i) is called
}

}

In the definition of C:: g(), the function A:: f() is used because of the using
declaration of A:: f. Here the functions ¢g() and h() are defined inside the
namespace C. Generally speaking, this is not preferred since it makes the
interface of namespace C obscure, especially when C has a lot of members.

Namespaces enable codes written by different people to be combined
easily. For example, two programmers might have used the same name for
their variables with different meanings. Codes written by different people
can be grouped into different namespaces and name clashes can be avoided.
The using-declaration and using-directive can be used to easily access
names in different namespaces when names do not clash.

4. 1 .2 Multiple Interfaces

If the namespace Mat needs to be expanded to include new function, data,
or type members, we can combine old and new members to form a new
version:

namespace Mat {
double onenorm{const double** comnst, int); // 1-norm
double twonorm(const double** const, int); // 2-norm
double maxnorm{const double** const, int); // max norm
double frobnorm(const double** const, int); // Frobenius

doublex* eigenvalue(const double** const, int);

// find its eigenvalues
double** inverse(const double** const, int);

// find inverse matrix
void gausselim(const double** const, double* const, int);

// Gauss elimination

}

These two versions of the namespace Mat can coexist in a program so that
each can be used where it is most appropriate. For example, for a user
who just needs to evaluate matrix norms, the first version is sufficient to
bring the functions of Mat into her scope (including what she does not
need may be confusing). Minimal interfaces lead to systems that are easier
to understand, have better information hiding, are easier to modify, and
compile faster.

120 4. Namespaces and Files

The second version is equivalent to:

namespace Mat {
double* eigenvalue(const double** const, int);
// £ind its eigenvalues
double** inverse(const double** const, int);
// find inverse matrix
void gausselim(const double** const, double* const, int);
// Gauss elimination

}

provided the first version of Mat has been declared. That is, a namespace
can have multiple interfaces, but the compiler will combine all of them
together for the namespace. Another example is:

namespace A {

struct pt { double x; double y; };

int £(pt); // A has two members pt and f()
}

namespace A {
void g(Q; // now A has three members pt, £(), and g()
}

The second version of namespace A is equivalent to:

namespace A {
struct pt { double x; double y; };
int £(pt);
void g();

}

4.1.83 Namespace Alias
Aliases for long namespace names can be created. For example,

namespace Numerical_Integration { // name is very long

double lowerbound; // lower integral bound
double (*integrand) (double); // integrand function
/...

}

Numerical_Integration::lowerbound = 1.0;

The long name of this namespace takes time to type and is not quite
readable. A short name NI can be provided for the namespace:

namespace NI = Numerical_Integration;

4.1 Namespaces 121
NI::lowerbound = 1.0;

namespace my_module {
using NI::lowerbound;

/...
}

The short name N1 is very convenient to use.

4.1.4 Unnamed Namespaces

Sometimes we do not want the name of a namespace to be known outside
a local context. An unnamed namespace, which is a namespace without a
name, can be used. For example,

namespace {
int a;
void f(int& i) { i++; }
int g() { return 5; }
}

Its members are global names in the file {(more precisely, translation unit;
see §4.3) where it is defined. It is equivalent to

namespace anyname {
int a;
void f(int& i) { i++; }
int g(O { return 5; }
}

using namespace anyname;

where anyname is some name unique to the scope in which the namespace
is defined. Unnamed namespaces in different translation units (files; see
§4.3) are distinct. There is no way to refer to a member of an unnamed
namespace from another translation unit. Unnamed namespaces can be
used to avoid using one of the meanings of static in C programs (see §4.3.2).

4.1.5 Name Lookup

If a function can not be found in the scope where it is used, looking up of
the namespaces of its arguments will follow. For example,

namespace Matrix {
struct mat {
double** elem;
int size;
};

double maxnorm{const mat& a) {/* it may be defined here */}

122 4. Namespaces and Files

double onenorm(const mat& a);

}

double f(Matrix::mat a) {
double m = maxnorm(a); // Matrix::maxnorm() is called
double n = onenorm{a); // Matrix::onenorm() is called
return m+n,

}

In the call maznorm(a), the function maznorm() is not defined in the
scope. Then the compiler looks for it in its argument a’s namespace Matrizx.
It can also be explicitly qualified by the name of the namespace as Matriz ::
maznorm(a). This lookup rule not only saves a lot of typing compared with
explicit qualification, but also makes the code look more concise.

4.2 Include Files

This section deals with various issues on how to include standard library
header files and user-defined header files.

4.2.1 Include Files for Standard Libraries

The way in which a C program includes its standard libraries’ header files
is still valid in C4++. For example,

#include <math.h> // math library, inherited from C
#include <stdio.h> // 1/0 library, from C
int main() {

printf ("Hello World!\n"); // prints string to screen

printf ("square root of pi is: %f", sqrt(atan(1)#*4));
}

where the output function printf() has the prototype (it is an example of
a function that takes an arbitrary number of arguments, indicated by an
ellipsis):

int printf(const char* ...); // from <stdio.h>

It prints out strings and values of variables to the screen according to some
specified format. Here % f means to print out the value of sqrt(atan(1) *4)
as a float and % is a format control character.

All C++ standard libraries, including those inherited from C, are in a
namespace called std. However, there is no namespace in C. The declara-
tions of standard C I/O facilities from the C header file < stdio.h> are
wrapped up in the namespace std like this:

4.2 Include Files 123

// in header file stdio.h
namespace std {

int printf(const char* ...);
/] ... declarations of C’s other stuff in stdio.h

}

using namespace std;

The using-directive above makes every declaration in stdio.h globally avail-
able in every file that includes the header stdio.h.

Similarly, the declarations in C’s <math.h> file are put in the namespace
std, and made globally available. New C++ header files such as <cstdio>
and <cmath> (note: without the .h suffix) are defined for users who do
not want the names globally available. For example, the C+-+ header file
estdio looks like

// in header file cstdio
namespace std {
int printf(const char* ...);
/] ... declarations of C’s other stuff in cstdio

}

Without the using-directive as opposed to <stdio.h>, all the declarations
in <estdio> are restricted to the namespace std.

In general, for each C standard library <X.h>, there is a corresponding
standard C++ header <eX>, inherited from C. If we use C++’s headers,
our C code above should go this way:

#include <cmath> // C++ math library
#include <cstdio> // C++ I/0 (input/output) library
int main() {
std: :printf("Hello World!\n"); // print string to screen
std::printf ("square root of pi is: %f",
std::sqrt(std::atan(1)*4));
}

That is, explicit namespace qualification such as std :: printf() and std ::
sqrt() must be used here. If we do not want the namespace qualifier std ::
we can either use C-style include files with a suffix .h or do this:

#include <cmath> // C++ math library

#include <cstdio> // C++ I/0 (input/output) library

int main() {
using namespace std; // make declarations in std available
printf ("Hello World!\n"); // print string to screen
printf("square root of pi is: %f", sqrt(atan(1)*4));

}

124

4. Namespaces and Files

<assert.h>
<ctype.h>
<errno.h>
<float.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>
<signal.h>
<stdarg.h>
<stddef.h>
<stdio.h>
<stdlib.h>
<string.h>
<time.h>

diagnostics, defines assert() macro
character handling

errors and error handling
floating point limits
integer limits

localization

mathematics

nonlocal jumps

signal handling

variable arguments
common definitions
standard input and output
general utilities

string handling

date and time

Note that C++ has an alternative input and output library with headers
<iostream> and <fstream>. Details of the standard libraries <iostream>

TABLE 4.1. Standard C header files.

and <fstream> are talked about in §4.6.

Table 4.1 lists standard C header files, while Tables 4.2 and 4.3 contain

standard C++ header files.

4.2.2 User’s Oun Include Files

By convention, standard libraries are included using angle brackets, and
user’s own header files are included using double quotation marks. For

example, if a user’s own header file my.h is like this:

// in file my.h

namespace MatVec {

//
}

// declarations of matrix vector library

struct point2d {
double x, y;

};

then this header file should be included in another file using double quotes:

// note semicolon is needed after struct

// in file my.cc

#include "my.h"

// user’s own header file

4.2 Include Files

<algorithm>
<bitset>
<cassert>
<cctype>
<cerrno>
<cfloat>
<climits>
<clocale>
<cmath>
<complex>
<csetjmp>
<csignal>
<cstdarg>
<cstddef>
<cstdio>
<estdlib>
<cstring>
<ctime>
<cwchar>
<cwtype>
<deque>
<exception>
<fstream>
<functional>
<iomanip>
<108>

<ios fwd>
<jostream>
<istream>
<iterator>
<limits>
<list>
<locale>
<map>
<memory>
<new>
<numeric>
<ostream>
<queue>
<set>
<sstream>

general algorithms

set of Booleans

diagnostics, defines assert() macro
C-style character handling

C-style error handling

C-style floating point limits

C-style integer limits

C-style localization

mathematical functions (real numbers)
complex numbers and functions
nonlocal jumps

C-style signal handling

variable arguments

common definitions

C-style standard input and output
general utilities

C-style string handling

C-style date and time

C-style wide-character string functions
wide-character classification
double-ended queue

exception handling

streams to and from files

function objects

input and output stream manipulators
standard iostream bases

forward declarations of I/0 facilities
standard iostream objects and operations
input stream

iterators and iterator support

numeric limits, different from <climits>
doubly linked list

represent cultural differences
associative array

allocators for containers

dynamic memory management
numeric algorithms

output stream

queue

set

streams to and from strings

TABLE 4.2. Standard C++ header files.

125

126 4. Namespaces and Files

<stdexcept> standard exceptions

<stack> stack

<streambuf> stream buffers

<string> string, different from <cstring>
<typeinfo> run-time type identification
<utility> operators and pairs
<valarray> numeric vectors and operations
<vector> one-dimensional array

TABLE 4.3. Continuation of Standard C++ header files.

#include <cmath> // C++ math library
#include <iostream> // C++ I/0 (input and output) library

int main() {

point2d A;
{
using namespace std; // cmath, iostream available here
A.x = sqrt(5.0);
Ay = log(5.0);
cout << "A.x = " KK Ax K" "< "Ay="<KL<Ay;
}

» »

Spaces are significant within or < > of an include directive. For

example,

#include " my.h"
#include <iostream >

will not find the header files *my.h” and <iostream>.

A simple way to partition a large program into several files is to put the
definitions in a number of .cc files and to declare the types needed for them
to communicate in a .h file that each .cc file includes. As a rule of thumb,
a header file may contain items listed in Table 4.4, with an example in the
second column. Conversely, a header file should not contain items listed in
Table 4.5 (also with an example in the second column). Some of the items
in these two tables are discussed later in this book.

4.2.8 Conditional Include Directives

The directive

4.2 Include Files 127

named namespaces namespace MatVec { /* */}
type definitions struct point2d { float x, y; };

data declarations extern double b;

constant definitions const double e = 2.718;

enumerations enum color { red, yellow, green };
function declarations extern int strlen(const char*);

inline function definitions inline char get(char*p){return *p++;}
name declarations struct Matrix;

include directives #include <cmath>

macro definitions #define VERSION 12

template declarations template <class T> class A;
template definitions template <class T> class B {/*...*/};
condition compile directives #ifdef MatVec_H

comments /* This is a matrix-vector library */

TABLE 4.4. Items that a header file may contain.

ordinary function defns char get(char* p) { return *p++; }

data definitions int aa; double bb = 4.5;
aggregate definitions int table[] = { 1, 2, 3};
unnamed namespaces namespace { int size = 100; /* ... */ }

exported template defns export template <class T> f(T t){/*..*/}

TABLE 4.5. Items that a header file should not contain.

#ifdef identifier;

checks if identi fier has been and remains defined. It can be used to include
or skip some statements from it up to

#endif

depending on whether identifier has been and remains defined. For exam-
ple, C and C++ can share the following header file.

#ifdef __cplusplus
namespace std { // this line will be skipped
#endif // if __cplusplus is not defined

// declarations of standard library functions for C and C++
int printf(const charx ...);

#ifdef __cplusplus

} // skipped if __cplusplus not defined
using namespace std; // skipped if __cplusplus not defined
#endif

128 4. Namespaces and Files

The identifier __plusplus is defined when compiling (actually preprocessing)
a C++ program and thus the function declarations such as print f() are put
in the namespace std. When compiling a C program, however, __plusplus
is not defined and there is no concept of namespace, the lines related to
namespace will not be compiled.

Similarly, the conditional compilation directive

#ifndef identifier;

checks if identi fier is still undefined.
A directive of the form

#if expression

checks whether the (constant) expression evaluates to true. Similar direc-
tives are #else and #elif (else if). They may be used as

#define DEBUG 1

// debugging information can be printed out.
#if DEBUG

cout << "debug: value of a is: " << a << ’\n’;
#endif

After the debugging process, DEBUG can be defined to be 0 so that unnec-
essary information will not be printed out. In fact, this printing statement
above will then be ignored by the preprocessor when the file is compiled.
This use of directives actually serves as comments that can be easily turned
on and off.

4.2.4 File Inclusion

If a file includes a header file, the preprocessor simply copies the header
file into the file at the point indicated before compilation begins. There
are situations where several header files are necessary and one includes
another. Then there is a danger that some header files are included in a file
more than once. For example, if headl.h and head2.h both include head.h
and headl.h also includes head2.h, to avoid chaining, head.h may take the
form:

#ifndef _HEAD_H
#define _HEAD_H

void my_function(double);
// declare/define other things that need be
// declared/defined in head.h

#endif

4.3 Source Files and Linkages 129

If the file head.h has already been included by the preprocessor, the macro
_HEAD_H will have been defined and the body of the file will not be
included more than once. For safety, every header file may be designed like
this.

If somewhere the macro _.H EAD_H need be undefined, use the directive
Hundef as

#undef _HEAD_H

4.3 Source Files and Linkages

4.8.1 Separate Compilation

A file is a traditional unit of storage in a file system and a traditional unit
of compilation. A large program usually contains many files. When a file or
something it depends on is changed, all of it has to be recompiled. Breaking
a large program into suitable-size files can save tremendous compilation
time in code development, since files (and those they have included) that
have not been changed need not be recompiled.

When a source file is compiled, it is first preprocessed by a C++ pre-
processor; that is, macros are substituted and #include directives bring in
headers. The result from preprocessing a file is called a translation unit.
Then the compiler works on this unit according to C++ language rules.
Thus strictly speaking, there is a distinction between a source file and a
translation unit, although most of the time these two names are used in-
terchangeably.

To ensure successful separate compilation of the source files, the declara-
tions in these files must be consistent. Note that an object can be declared
many times (although it can only be defined once). After all source files
have been compiled, their object codes will be linked by a linker, also called
a loader. The linker can catch inconsistencies between separately compiled
files. See §4.4.2 on how to compile and link different files on UNIX or Linux.

4.3.2 External and Internal Linkages

With separate compilation, some names may be declared or defined in
one file and used in another. A name that can be used in translation units
different from the one in which it is defined is said to have ezternal linkage.
For example, consider the following two files filel.cc and file2.cc.

// filel.cc
double x = 3.141;
double f(double y) { return y + 2.178; }

int main() { /* *x/ }

130 4. Namespaces and Files

// file2.cc
extern double x; // another file may define x
extern double f(double); // another file may define f
void g(double z) { x = £(z); }

The variable z and function f() used in file2.cc are the ones defined in
filel.cc. Thus z and f() are said to have external linkage. External vari-
ables have external linkage. Note that and f are both global and external
according to definitions in §2.1. A name that can be referred to only in
the translation unit in which it is defined is said to have internal linkage.
Thus the function g() in féle2.cc has internal linkage and can not be used in
filel.cc. The keyword extern in front of a function such as double f(double)
on the second line in file2.cc can be omitted.

An object must be defined only once in a program, although it can be
declared many times as long as the declarations agree exactly with each
other. For example, consider the following two files.

// file3.cc
int i = 5; // this declaration is also a definition
float a = 3.14; // this defines a to be 3.14
extern char c; // a declaration only
int main() { /* */ }
// filed.cc
int i = 10; // i is defined again, illegal

extern double a;
extern char c;
char ¢ = ’¢’; // definition of ¢

There are two errors in these two files: the variable ¢ is defined twice and
a is declared twice with different types. Note ¢ is declared three times
but defined only once, which is not an error. These two errors can not
be caught by the compiler since each file is compiled separately. They are
linkage errors that should be detected by the linker.

At this moment, it may be a good idea to look at a few more examples
of declarations and definitions:

double d; // definition
int f(int); // declaration
extern int i; // declaration
struct s; // declaration
namespace mv { int m = 100; } // definition

inline int g(int n) { return n; } // definition
const int j = 5; // definition

4.3 Source Files and Linkages 131

extern const int k = 5; // definition
typedef unsigned int Uint; // definition
struct p2d { double x, y; }; // definition

The first statement is a definition since d is initialized by default. The names
f, i, and s are declarations and must be defined somewhere. However, the
names mv, g, j, k, Uint, and p2d are definitions since they introduce and
define some entities into the program. Notice that Uint is just defined to
be a synonym to unsigned int (it does not introduce a new type) and k is a
constant that can be accessed in another file in which it is declared (using
the statement extern const int ;).

By default, const, typedef, and macros have internal linkage in C++. For
example, it is legal (but confusing) to have the following two files.

// fileb.cc
#define DEBUG 1 // internal linkage
const double d = 3.14; // internal linkage
typedef unsigned int Uint; // internal linkage
extern const int i = 100; // external linkage
// file6.cc
#define DEBUG 0 // internal linkage
const double d = 2.17; // internal linkage
typedef unsigned long int Uint; // internal linkage
extern const int i; // declaration

However, an inline function must be defined in every file in which it is used
with exactly the same definition. For example,

// file7.cc
inline int f(int i) { return i + i*i; }

// file8.cc
inline int f(int i) { return i + i*i; }

The compiler needs to know its definition in order to make code substitu-
tion. An ¢nline function can not be made extern to simplify the implemen-
tation of C++ compilers.

These specifications may be very confusing and error-prone. The best
way to handle them is to put them in a common header file and include it
in different source files. An example is:

// £ile9.h a header file
#include <iostream> // include a standard library
#include <cmath> // include a standard library
#define DEBUG 1 // user’s stuff

const double d = 2.17;

132 4. Namespaces and Files
extern long double pi;
typedef unsigned int Uint;
struct s { int i, j; };
enum color { red, green, blue};
namespace matvec { /* ... %/ }
inline int f(int i) { return i + i*i; }

extern double g(long double, int i);

// filelO.cc for definitions of user’s functions
#include "file9.h"

long double pi = std::atan(l)*4;

double g(long double d, int i) { // definition of g
/...
return d + i;

}

// filell.cc a source file the main program

#include "file9.h"

int main() {
double a = g(pi, 5) + £(10) + d;
// ...
std::cout << "a = " << a << ’\n’;

}

Here all common declarations and definitions are put in header file file9.h
and source files filel0.cc and filell.ce both include this header. A struct,
enum, named namespace, inline function, and so on, must be defined ex-
actly once in a program. Strictly speaking, this rule is violated when their
definitions are put in a header file and included in different source files.
For convenience, the language allows this since the definitions appear in
different translation units and are exactly the same. See §4.2.2 for what

should be and what should not be put in header files.

It is worthwhile to note that there are differences in C and C++ in terms

of linkage. For example, consider these two files:

// filel2.cc
float y;
float £() { return 5; }
int main() { gO; }

// filel3.cc

4.3 Source Files and Linkages 133

float y;
void gOO {y =10, }

There are three errors as C++ programs: y is defined twice (the declarations
of y are also definitions since the compiler initializes y to a default value)
in the two files, and f() in filel3.cc and g() in filel2.cc are not declared.
However, they are correct C programs.

4.8.83 Linkage to Other Languages

Sometimes a programmer has to deal with codes written in C++ and other
languages such as C and FORTRAN. It can be difficult in general, since
different languages may differ in the layout of function arguments put on
the run-time stack, in the use of machine registers, in the layout of built-
in types such as integers and arrays, and so on. For example, the layout
of two-dimensional arrays is row by row in C++ and C, but column by
column in FORTRAN, and arguments to functions are passed exclusively
by reference in FORTRAN.

A user can specify a linkage convention in an eztern declaration. For
example,

extern "C" char* strcpy(char*, const char#);
// C linkage convention

extern *C" { // C linkage convention
int f(int); // group several declarations
int g(int); // in one block
double sqrt{(double);

}

Note that the letter C in double quotes following extern means to link
these function calls according to the C linkage convention. Here C does
not refer to a language but to a linkage convention. It can also be used to
link FORTRAN and assembler codes that conform to C implementation
conventions.

- In general, C code can be mixed with C++ code statement by statement,
provided the C code does not contain C++ keywords as user-defined names.
This enables many C programs to be called directly from and mixed with
C++ programs. Vaguely speaking, C is a subset of C++. However, dealing
with a mixture of C++ and FORTRAN programs is platform-dependent.
For example, a FORTRAN function name sum() could be compiled to a
symbol name sum, sum., sum__, or SUM, depending on the compiler. For
examples on how to mix C/C++ and FORTRAN programs, see [LF93,
Arn98].

134 4. Namespaces and Files
4.4 Some Useful Tools

This section discusses a few useful tools (some in UNIX and Linux) for
timing, debugging, and profiling a program, and for managing files and
creating libraries.

4.4.1 How to Time a Program

C++ inherits from C the time and date library with header in <ctime>
and <time.h>.

They have a function clock() that provides access to the underlying ma-
chine clock and returns an approximation to the number of CPU “clock
ticks” used by the program up to the current time. The returned value
can be divided by CLOCKS_PER_SEC to convert it into seconds. The
macro CLOCKS_PER_SEC is defined in <ctime> or <time.h>, but the
rate at which the clock time runs is machine-dependent. If the CPU clock
is not available, the value —1 is returned. The function time() returns the
calendar time, normally expressed as the number of seconds elapsed since 1
January 1970. Other units and starting dates are possible. The prototypes
of these two functions and related declarations are given in <ctime> and
<time.h> and look like the following.

#define CLOCKS_PER_SEC 100 // machine dependent
typedef long clock_t;
typedef long time_t;

clock_t clock(void); // return number of CPU clock ticks
time_t time(time_t* tp); // return calendar time

double difftime(time_t t1, time_t t0); // return t1 - t0
char* ctime(const time_t *tp);
// convert calendar time to a string

When the variable tp in function time(tp) is not the null pointer, the re-
turned value also gets stored in the object pointed to by ¢p. Note that the
calendar time (wall time) and CPU clock time may not be the same in a
time-shared operating system such as UNIX and Linux.

For example, the following program computes the wall times and CPU
times for a number of multiplications in data types of double and float.

#include <iostream> // for output
#include <time.h> // for measuring time

int main() {
int n = 100000000;
double d, dpi = 3.1415926535897932385;

4.4 Some Useful Tools 135

float £, fpi = 3.1415926535897932385;
time_t tm0 = time(0); // wall time at this point
clock_t ck0 = clock(); // clock ticks at this point

for (int i = 0; i< mn; i++) d = (double(i) + dpi)*dpi;

time_t tml = time(0); // wall time at this point
clock_t ckl = clock(); // clock ticks at this point
cout <<"wall time = " <<difftime(tmi,tm0) <<" seconds.\n";
cout <<"CPU time = " <<double(ckl -ck0)/CLOCKS_PER_SEC

<< " seconds.\n";

for (int i = 0; i< n; i++) f = (float(i) + fpi)*fpi;

time_t tm2 = time(0); // wall time at this point

clock_t ck2 = clock(); // clock ticks at this point

cout <<"wall time = " << difftime(tm2,tml) <<" seconds.\n";

cout <<"CPU time = " << double(ck2 -ck1)/CLOCKS_PER_SEC
<< " seconds.\n";

cout << "The current time is: " << ctime(&tm2) << "\n";

}

A run on a Pentium II PC running Linux (RedHat 5.1) with a GNU
C-++ compiler (gcc version eges-2.91.66) produces the results:

wall time = 8 seconds.

CPU time = 7.23 seconds.

wall time = 4 seconds.

CPU time = 3.61 seconds.

The current time is: Sat Jun 3 15:56:45 2000

A run on an SGI workstation running UNIX (IRIX64) with a GNU C++
compiler (gcc version 2.8.1) produces the results:

wall time = 8 seconds.

CPU time = 7.69 seconds.

wall time = 10 seconds.

CPU time = 8.73 seconds.

The current time is: Fri Nov 12 14:16:39 1999

The computing speed generally depends on the underlying machine and
compiler. It is surprising to observe that arithmetic in single precision may
not be faster than in double precision on some machines. Some old C and
C++ compilers promote float to double so that arithmetic in single preci-
sion can actually be slower than in double precision.

136 4. Namespaces and Files

4.4.2 Compilation Options and Debuggers

When a program consists of different files, for example, main.cc, pgm0.cc,
pgml.ce, and pgm2.cc, the UNIX /Linux command with the —c option com-
piles them:

c¢++ -¢ main.cc pgm0.cc pgml.cc pgm2.cc

If there are no errors, corresponding object files ending with .0 will be
created. Then the —o option links these object files to form a machine-
executable object file:

c++ -0 pgm main.o pgm0.o pgml.o pgm2.o0

If —o pgm is left out above, the executable object file will be created in
the default file a.out, instead of pgm. These two commands can also be
combined into one:

c++ -o pgm main.cc pgm0.cc pgml.cc pgm2.cc

Below are some useful options for the C++ compiler.

-C compile only, generate corresponding .o files
-0 name put executable object file in name

-0 attempt code optimization

-g generate code suitable for the debugger

-p generate code suitable for the profiler

-1 dir look for #include files in directory dir

-D name=def place at the top of each source file the line
#define name def

-S generate assembler code in corresponding .s files

-M create a makefile

Your compiler may not support all of these options and may provide others.
Also your compiler may not be named c¢++.

A debugger allows the programmer to know the line number in a pro-
gram where a run-time error has occurred, and to see the values of variables
and expressions at each step. This can be very helpful in finding out why
a program is not running successfully. The debuggers gdb and dbx are gen-
erally available on UNIX and Linux systems. The code must be compiled
with the —g option. To use gdb on the object code pgm, for example, at
the command line type

gdb

Then type run pgm (followed by the argument list if pgm has any) and
it will run the program. Errors, if existing, will be displayed. Then typing
where gives the exact line number and the function in which the error has
occurred. Below are some useful commands.

4.4 Some Useful Tools 137

run pgm [arglist] run program pgm with argument list arglist

print exp display the value of the expression exp

c continue running the program after stopping
next execute next program line after stopping

step execute next line (step into the line)

help name show information about GDB command name
bt backtrace, display the program stack

quit exit the debugger

The UNIX/Linux manpage may give more information on how to use it.
See [LF93] for debuggers dbz and zdb, and other tools.

In UNIX, the —p option used in compiling a program produces code that
counts the number of times a function is called. The profiler prof then
generates an execution profile, which can be very useful when working to
improve execution time efficiency. Look at the example:

#include <iostream> // for output

#include <time.h> // for measuring time
#include <stdlib.h> // for pseudorandom number
#include <algorithm> // for sort()

int main() {

int n = 100000;
double* dp = new double [n];

srand (time(0)); // seed random number generator
for (int i = 0; i< n; i++) dpli] = rand()%1000;

sort(dp, dp+n); // sort array in increasing order

}

The function srand() seeds the random number generator and causes
the sequence generated by repeated calls to rand() to start in a different
place. The function sort() sorts a sequence in increasing order by default
and is discussed further in §10.2.1.

Suppose the program is called sortrand.cc. Compile it with the —p op-
tion:

c++ -0 sortrand -p sortrand.cc

The executable object code is written in file sortrand. Next run the program
by issuing the command

sortrand

Then the command

138 4. Namespaces and Files

prof sortrand
causes the following to be printed on the screen.

%time cumsecs #call ms/call name

57.5 1.04 1 1040.00 _main
21.5 1.43 mcount
16.0 1.72 100000 0.00 .rem
2.8 1.77 100000 0.00 .mul

2.2 1.81 100000 0.00 _rand
0.0 1.81 1 0.00 .udiv
0.0 1.81 1 0.00 .umul
0.0 1.81 1 0.00 _cfree
0.0 1.81 1 0.00 _exit
0.0 1.81 1 0.00 _free
0.0 1.81 1 0.00 _gettimeofday
0.0 1.81 3 0.00 _malloc
0.0 1.81 2 0.00 _on_exit
0.0 1.81 1 0.00 _profil
0.0 1.81 1 0.00 _sbrk
0.0 1.81 1 0.00 _srand
0.0 1.81 1 0.00 _time

This execution profile gives the number of times that a function is called,
average number of milliseconds per call, and cumulative times in seconds.
For example, the function rand() was invoked 100000 times, took 0.00
milliseconds per call, and took total 1.81 seconds, while the function main()
was called once, took 1040.00 milliseconds per call, and took total 1.04
seconds.

4.4.8 Creating a Library

The UNIX/Linux operating system provides a utility called the archiver to
create and manage libraries. The name of the command is ar. By conven-
tion, UNIX library files end in .a (.1zb in DOS). For example, the standard
C++ library may be in the file libstdc++.a in the directory /usr/lib. Issue
the UNIX/Linux command

ar t /usr/lib/libstdc++.a

The key ¢ will display the titles (names) of the files in the library,

A programmer may create his or her own library. Suppose there are
files matvec.cc, mesh.cc, and fem.cc that contain matrix-vector operation,
mesh generation, and finite element analysis codes. To create a library, first
compile these source files and obtain the corresponding .o files. Then type
the two commands:

ar ruv libmvmf.a matvec.o mesh.o fem.o

4.4 Some Useful Tools 139

ranlib libmvmf.a

The keys ruv in the first command stand for replace, update, and verbose,
respectively. The library libmuvm f.a is then created if it does not already
exist. If it exists, then the .o files replace those of the same name already
existing in the library. If any of these .o files are not already in the library,
they are added to it. The ranlib command simply randomizes the library
that is useful for the loader (linker).

If there is a program consisting of two files: main.cc and iofile.cc, and
these two files call functions in the library libmvm§f.a, then the library can
be made available to the compiler by issuing the following command.

c++ -0 pgm main.cc iofile.cc libmvmf.a

The functions that are invoked in main.cc and iofile.cc but not defined
there will be searched for first in libmuvmf.a and then in C++ standard
libraries. Only those functions of libmvmf.a that are used in main.cc and
iofile.cc will be loaded into the final executable file pgm. Typing all the
commands can be tedious when there are a lot of files and libraries. A
UNIX utility named make can achieve this by specifying all the commands
in a file called Makefile; see §4.4.4.

4.4.4 Makefile

The make utility (available always in UNIX and Linux and often in DOS
as well) provides easy management of compiling source files and linking
their object files, and convenient access to libraries and associated header
files. It is efficient to keep a moderate or large size program in several files
and compile them separately. If one of the source files needs to be changed,
only that file has to be recompiled. The use of the make utility can greatly
facilitate the maintenance of the source files in a program written in C++,
C, FORTRAN, Java, and others.

The make command reads a file with a default name make file or Make-
file. The file contains dependency lines {e.g., how an object file depends
on a source file and some header files) and action lines (e.g., how a source
file is to be compiled with what options). As an example, let us write
a Makefile for a program that contains a header file matvec.h and two
source files main.cc and matvec.cc, all in the current directory. The file
main.cc contains the function main() that calls some functions defined in
matvec.cc. The header matvec.h is included in both main.cc and matvee.ce.
The Makefile for such a simple program can be just as

mat: main.o matvec.o # mat depends on main.o,matvec.o
c++ -0 mat main.o matvec.o # link object code mat
main.o: main.cc matvec.h # main.o rely on main.cc,matvec.h

cc -¢ -0 main.cc # compile main.cc and optimize

140 4. Namespaces and Files

matvec.o: matvec.cc matvec.h # what matvec.o depends on 7
cc -c -0 matvec.cc # compile with option -0

A comment in Makefile begins with symbol # and extends to the rest of
the line (just like // in a C++ program). The first line is a dependency
line that indicates that mat depends on object files main.o and matvec.o.
The second line is an action line that indicates how the object files are
to be linked and the resulting executable object code is written in a file
named mat. A dependency line must start in column 1 while an action line
must begin with a tab character. A dependency line and the action lines
following it are called a rule. So there are three rules mat, main.o, and
matvec.o in this Makefile. Note that the name of a rule must be followed
by a colon. Then the UNIX/Linux command

make mat

makes the rule mat in Makefile, which depends on two other rules main.o
and matvec.o. These two rules will be made first according to their action
lines. That is, the source files main.cc and matvec.cc are to be compiled
with the —O option. Then the rule mat will cause the object code main.o
and matwve.o to be linked and the final executable object code to be written
in file mat.

If the source file main.cc is to be changed, but matvec.h and matvec.cc
remain unchanged, then the command make mat will only cause the file
mazin.cc to be recompiled and leave the third rule matvec.o alone. However,
if the header file matvec.h is to be changed, then main.cc and matvec.cc
will be recompiled since main.o and matvec.o both depend on matvec.h
by the second and third rules.

Similarly, the command make main.o will cause the rule main.o to be
made; in this case only main.cc will be compiled. By default, the command
make without an argument simply makes the first rule in the Makefile.
For this Makefile, the commands make and make mat are equivalent.

Certain rules and macros are built into make. For example, each .o file
depends on the corresponding .c file and the second rule in the above
Makefile is equivalent to

main.o: main.cc matvec.h # main.o rely on main.cc, matvec.h
cc -¢c -0 $*.cc # compile and attempt to optimize

where $ * .cc expands to main.cc when main.o is being made. It stands for
all .cc files on the dependency line. The system also echoes a message on
the screen about the action. To suppress the message, the symbol @ can
be used:

main.o: main.cc matvec.h # main.o rely on main.cc, matvec.h
@cc -¢ -0 $*x.cc # compile main.cc with option -0

4.4 Some Useful Tools 141

A user can also define macros in a makefile. The following is a make file
that I use for compiling my code in files main.cc, fem.cc, and fem.h that
call functions in libraries matveclib.a and meshlib.a and include headers
matvec.h and mesh.h in two different directories.

Makefile for source files fem.cc and main.cc that

include fem.h. Sources main.cc and fem.cc call functions
in my libraries matveclib.a and meshlib.a

fem.h includes two headers matvec.h and mesh.h

a macro BASE for my home directory.
Value of the macro can be accessed by $BASE
BASE = /home/yang

macro for name of my compiler
CC = c++

macro for compilation options
CFLAGS = -0

directories for include files matvec.h and mesh.h
which are included in fem.h
INCLS = -I$(BASE)/c++/matvec -I$(BASE)/c++/mesh

paths for my libraries matveclib.a and meshlib.a
’\’ means a continued line
LIBS = $(BASE)/c++/matvec/matveclib.a \

$ (BASE) /c++/mesh/meshlib.a

name of executable file
EFILE = $(BASE)/c++/fem/xx

HDRS
0BJsS

fem.h
main.o fem.o

fem: $(0BJS)
@echo "linking ..."
$(CC) $(CFLAGS) -o $(EFILE) $(0BJS) $(LIBS)

$(0BJS) : $(HDRS)
$(CC) $(CFLAGS) $(INCLS) -c $*.cc

clean:
m -f $(0BJS) xx

142 4. Namespaces and Files

main.o depends on main.cc and fem.o depends on fem.cc
main.o: main.cc
fem.o: fem.cc

The files main.cc and fem.cc include the header file fem.h, all of which are
in the same directory /home/yang/c++/fem as the Makefile. Further-
more, fem.h includes two header files matvec.h and mesh.h, which reside,
respectively, in two different directories:

/home/yang/c++/matvec
/home/yang/c++/mesh

The macro INCLS means to search for header files in these directories.
When main.cc and fem.cc are compiled, these header files are searched
for by the system. When main.o and fem.o are linked to generate the
executable object file zz, the libraries matveclib.a and meshlib.a are loaded
through the macro LIBS. Note that paths for C++ standard libraries
such as <ecmath> and <complex > and their header files need not be
indicated since the system should find them automatically. Only paths for
user-defined libraries and header files have to be indicated.
At UNIX or Linux command, type

make

It will compile main.cc and fem.cc and link main.o and fem.o into the
excutable object code zz. The last two lines in this M akefile indicate that
main.o depends also on main.cc besides fem.h and fem.o also on fem.cc.
Thus any change to main.cc will cause only main.o to be regenerated. The
command make clean will remove the files defined in macro OBJS and
the file zz.

UNIX also provides a utility called SCCS (Source Code Control System)
for managing different versions of source code (or any other text files); see
[LF93].

4.5 Standard Library on Strings

The C++ standard library < string > provides a type called string to
manipulate character strings. Only a few examples are presented here to
illustrate its use. Details can be found in [Str97, LL98].

4.5.1 Declarations and Initializations

A string can be initialized by a sequence of characters, by another string,
or by a C-style string. However, it can not be initialized by a character or
an integer. For example,

4.5 Standard Library on Strings 143

#include <string>
using namespace std;
int main() {

string s0; // empty string
string s00 = ""; // empty string
string s1 = "Hello"; // initialization
string s2 = "world";
string s3 = s2;
string s33(5,’A’); // 5 copies of ’A’, s33 = "AAAAA"
string s333 = ’A’; // error, no conversion from char
string s3333 = 8; // error, no conversion from int
s3 = ’B’; // OK, assign a char to string

}

Notice that assigning a char to a string is allowed, although it is illegal to
initialize a string by a char.

4.5.2 Operations

Certain arithmetic and operations are defined for string. For example,
addition of strings means concatenation. The operator += can be used to
append to the end of a string. Strings can be compared to each other and to
string literals. The function call s.empty() returns true if string s is empty
and false otherwise, and s.maz_size() gives the maximum size that a string
can have. The function calls s.size() and s.length() both give the size of
a string s. The size of a string must be strictly less than string :: npos,
which is the largest possible value for string size (it is equal to 4294967295
on one machine). Elements in a string s can be accessed by the subscripting
operator [] (index changes from 0 up to s.size() — 1). For example,

if (82 == s1) { // test for equality of sl, s2
s2 += '\n’; // append ’\n’ to end of s2

} else if (s2 == "world") {
s3=s1+", " +s2+ "\n"; // s3 = "Hello, world!\n"

}

s3[12] = 77, // assign ’7’ to s3[12]

char h = s3[12]; // h="%

int i = s3.1length(); // size of s3, i = 14

int j = s3.size(); // size of 83, j = 14

The function call s.substr(n,m) gives a substring of s consisting of
m characters starting from s[n], s.replace(n, m,t) replaces m characters

144 4. Namespaces and Files

starting from s[n] by string ¢, s.insert(n,t) inserts a string t at s[n), and
s.find(t) returns the position of substring ¢ in string s and returns npos if ¢t
is not a substring of s. Note that if npos is used as a character position, an
exception range_error will be thrown (see Chapter 9). They can be used
as

// now s3 = "Hello, world?\n"

string s4 = s3.substr(7,5); // s4 ="world";
s3.replace(0,5,"Hi"); // s3 = "Hi, world?"
s3.insert(0,"Hi"); // insert "Hi" at s3[0]

unsigned int pos = s3.find("wor");

// find position of substring "wor"
unsigned int pos2 = s3.find("HW");

// pos2 = 4294967295 on one machine
s3.erase(0,2); // erase two characters from s3

A related function, 7 find() searches for a substring from the end of a string.
The function s.erase(n, m) erases m characters from s starting from s|n).

The usual comparison operators ==,!=, >, <, >=, and <= are provided
based on lexicographical ordering. In addition, many standard algorithms
can be applied to strings; see §10.2.

4.5.83 C-Style Strings

Conversion from string to C-style strings (charx) is provided. For example,

const char* p = s3.c_str(); // convert to C-style string
const char* q = s3.data(); // convert to an array of chars
char ¢ = q[0]; // ¢ = first character in gq

char* s6 = "Hello";
string s7 = s6; // from C-style string to string

The function s.data() converts a string s to an array of characters while
s.c_str() produces a C-style string (charx or const charx).

Note that a C4++ string is not an array of characters. That is, for a
string s, &s[0] is different from s.

4.5.4 Input and Output

Strings can be read from and written to the screen or a file using the input
and output operators. For example,

string s10;

cout << "Enter your city and state names\n";
cin >> s10;

cout << "Hi, " << s10 << "!'\n";

4.5 Standard Library on Strings 145

If you type in your city and state as
Detroit Michigan

the output on the screen is Hi, Detroit! By default, a whitespace character
terminates the input. Thus the second word Michigan above is not read
to string s10. To read the whole line, the function getline() can be used:

cout << "Enter your name\n";

getline(cin, s10); // read a whole line from cin
cout << "Hi, " << s10 << "\n";

The function
getline(istream istm, string strg, char eol);

reads a line from an input stream ¢stm terminated by character eol to the
string strg. If no eol argument is provided, a newline character "\n’ is used
as the delimiter.

4.5.5 C Library on Strings

The header <cstring> or < string.h> contains functions operating on
C-style strings. For example,

char* strcpy(char*p, const charxq);

// copy from q into p, including terminator
char* strcat(char*p, const char*q);

// append from q to p, including terminator
char* strancpy{char*p, const char*q, int n);

// copy n chars from q into p
char* strncat(char*p, const char*q, int n);

// append n chars from q into p

size_t strlen{const char* p); // length of p
int strcmp{const char*p, const char*q); // compare p, q
int strancmp(const char*p, const char*q, int n);

// compare first n characters in p and q

The pointer argument above is assumed to be nonzero, and the array of
char it points to is assumed to be terminated by 0. The strn-functions
pad with O if there are not n characters to copy. The string comparisons
return 0 if the strings are equal, a negative number if the first string is
lexicographically before the second, and a positive number otherwise. The
type size_t is an unsigned integral type defined in the standard headers
<stddef.h> and <stdlib.h>.

The header < cctype> or <ctype.h> contains functions dealing with
ASCII characters. For example,

146 4. Namespaces and Files

int isalpha(int); // Is a’..’z’ N .02 7
int isupper(int); // 1s KD 7

int islower(int); // Is ‘’a’..’z’ 7

int isdigit(int); // Is digit ’0°..°9> ?

int isspace(int); // Is space > 7 ’\t’ ’\v’ ?
int isalnum{int); // isalpha() | isdigit()

int toupper{(int); // to uppercase

int tolower(int); // to lowercase

These functions take int as argument since a character is treated as a small
integer in C and C++. Equivalent functions for wide characters can be
found in <cwtype> and <wtype.h>. The type wchar_t for wide characters
is defined in <stddef.h> and <cstddef>.

The header <estdio> or <stdio.h> contains a function called sprintf()
which can concatenate strings and numeric numbers together:

char s11[50];
int ii = 5;

int jj = 80;
sprintf(s11, "%s%d¥sidhs", "ex", ii, "h", jj, "\n");
cout << slii; // ex5h80 and a newline are printed out

In the specification ” %s%d%s%d%s” above, s means a string and d means
an integer (a digit). This function is useful when we want to generate a
string for an output file name, which represents, for instance, the example
number and grid size such as ex5h80; see §4.6.4 and §4.6.6.

4.6 Standard Library on Streams

The C++ standard libraries <iostream> and <fstream> provide func-
tions for reading from and writing to the screen or files, which are il-
lustrated through examples in this section. More details can be found in
[Str97, LL98].

4.6.1 Formatted Integer Output

The function setf() can set the format in which an integer is output. For
example,

int main() {
int i = 123456789;
cout << i << " " << i << ’\n’; // decimal
cout.setf(ios_base::oct, ios_base::basefield); // octal
cout << i << " " << i << ’\n’; // print i in octal

4.6 Standard Library on Streams 147

cout .setf(ios_base::hex, ios_base::basefield); // hex

cout << i << " " << i << ’\n’; // print i in hex
cout .setf (ios_base::dec, ios_base::basefield); // decimal
cout << i <« " " << i << ’\n’;

}

The identifiers t0s_base, 10s_base:: dec {decimal), i0s_base::oct (octal, base
8), i0s_base:: hexr (hexadecimal, base 16), and ios_base :: base field (which
base in the output?) are defined in <éostream>. Since the name ios, instead
of ios_base, was used in prestandard C++, many standard C++ compilers
may continue to support ios. This program will output the value of ¢ in
decimal, octal, hexadecimal, and decimal formats:

123456789 123456789
726746425 726746425
75bcd15 75bcdib

123456789 123456789

Setting showbase will enable one to see which base is used. By default, a
number is decimal. An octal number is preceded by 0, while a hexadecimal
number is preceded by 0z. For example, the program segment

int i = 123456789;

cout.setf(ios_base: :showbase); // show base of output
cout << i << " M << i << ’\n’; // decimal, default
cout.setf(ios_base::oct, ios_base::basefield);

cout << i << " " << i << ’\n’; // octal, base 8

cout .setf (ios_base::hex, ios_base::basefield);

cout << i << " " << i << ’\n’; // hex, base =16

cout.setf (0, ios_base::basefield); // reset to default
cout << i << " " << i << ’\n’;

will output to the screen:

123456789 123456789
0726746425 0726746425
0x75bcd1b 0x75bcdib
123456789 123456789

Setting ios_base :: basefield to O resets the base to default, that is, dec-
imal. This technique can also print out an octal or hexadecimal integer
in decimal. For example, let ¢ = 012345 or ¢ = 0z12345 above. Setting
showbase shows the base of an integer. Similarly, setting showpoint prints
trailing zeros and setting showpos prints explicitly + for positive integers.
Once set, these format flags remain valid until they are unset by calling
the function unsetf(), as in cout.unset f(ios_base :: showbase). To set or
unset several flags in one statement, the bitwise or operator can be used as
in cout.unset f(ios_base :: showbase | ios_base :: showpos).

148 4. Namespaces and Files

4.6.2 Formatted Floating Point Qutput

Floating point output is controlled by a format and a precision:

o The general format presents a number that best preserves its value
in the space available; the precision specifies the maximum number
of digits.

o The scientific format presents a number with one digit before the
decimal point and an exponent; the precision specifies the maximum
number of digits after the decimal point.

e The fixed format presents a number with an integral part and a
fractional part; the precision specifies the maximum number of digits
after the decimal point.

The general format is the default and the default precision is six digits. The
function setf() can set the format and precision() can set the precision.
For example,

double d = 12345.6789;

cout << d << * " << d << ’\n’; // default

cout.setf(ios_base::scientific, ios_base::floatfield);

cout << d << " " << d << ’\n’; // scientific

cout.setf(ios_base::fixed, ios_base::floatfield);

cout << d << " " << d << ’\n’; // fixed

cout.setf(0, ios_base::floatfield); // reset

cout << d << " " << d << ’\n’; // to default
outputs

12345.7 12345.7
1.234568e+04 1.234568e+04
12345.678900 12345.678900
12345.7 12345.7

The identifiers ios_base::scienti fic (for scientific format), ios_base:: fized
(for fixed format), and ios_base:: float field are defined in <iostream>.
Setting ios.base:: float field to O resets the format back to the default.
Note that the default precision of six digits is applied to the whole number
of the general format, while only to the fractional part of scientific and fixed
formats. To increase the accuracy of an output, the precision{) function
can be used. For example,

double d = 12345.67890123456789;
cout.setf(ios_base::scientific, ios_base::floatfield);
cout .setf(ios_base: :uppercase); // E in scientific format
cout.precision(15); // precision = 15
cout << d << " " << 1000%d << ’\n’;

4.6 Standard Library on Streams 149

cout.precision(10); // precision = 10
cout << d << " " << 1000%d << ’\n’;

The output is:

1.234567890123457E+04 1.234567890123457E+07
1.2345678901E+04 1.2345678901E+07

Since the output is in the scientific format, the precision means the number
of digits after the decimal point. Notice that E, instead of e, appears in the
exponential part of the scientific format by setting ios_base :: uppercase.

4.6.3 Output Width

The function width() can control the number of characters that the next
output number or string occupies. If the number is not long enough, whites-
pace by default or some other “padding” character specified by the function
fill() will be used. For example,

double d = 12345.678987654321;

cout.width(25); // output width 25 chars
cout.precision(15);
cout << d << ’\n’;

cout.width(25); // output width 25 chars
cout.precision(8);
cout.fill(’#°); // use ’#’ for padding extra space

cout << d << ’\n’;

It will produce the following output, which is aligned to the right by default:

12345.6789876543
12345 . 679

Adjustment of the alignment can be made by setting adjust field to left
(left alignment), internal (internal alignment, put fill characters between
sign and value), or right (right alignment). For example,

double d = - 12345.678987654321;
cout.precision(15);

cout.setf(ios_base::left, ios_base::adjustfield);
cout.width(25);

cout << 4 << ’\n’;

The alignment is adusted to the left in this output.

The width() function sets the minimum number of characters. If the num-
ber has more digits, more characters will be output in order not to lose ac-
curacy. The field width can be reset to its default by calling cout.width(0).

150 4. Namespaces and Files

4.6.4 Input and Output Files

The C++ header < fstream> provides functions for inputting from and
outputting to files. In particular, they have types ifstream for input file
stream, of stream for output file stream, and fstream for both input and
output. The open mode of a file can be

e in : to open for reading.

e out : to open for writing.

app : to append.

binary : to open in binary mode, rather than in text mode.
e ate : to open and seek to end of file.
e trunc: to truncate a file to O-length.

For example, the declarations

ifstream infile("data", ios_base::in);

// open file for input
ofstream outfile(result, ios_base::out);

// open file for output

declare the variable infile to be an input file stream that opens the file data
for reading, and outfile to be an output file stream that opens a file whose
name is stored in string result for writing.

The following is a complete program that reads an integer and a double
from a file called data, generates a string for an output file name, and writes
to the file.

#include <stdio.h> // for sprintf()
#include <fstream> // for input/output files

int main() {
ifstream infile("data", ios_base::in); // open file to read
int i;
double d;
infile >> i; // read from "data"
infile >> d;

char result[20]; // output file name
sprintf (result, "Ys¥%d%sld%s", "ex",i,"-", int(1/d), "h");
ofstream outfile(result,ios_base::out); // open output file
outfile << "example number: " << i << ’\n’;

outfile << "grid size: " << d << ’\n’;

4.6 Standard Library on Streams 151

infile.close(); // close input file stream
outfile.close(); // close output file stream

}

A file needs to be closed by calling function close() when it is no longer
used. There is a maximum number of files that can be opened at a time. If
the input file data has only two lines:

5
0.01

then the program first reads the first number 5 to variable ¢ and then reads
the second number 0.01 to variable d. The function sprintf() causes the
variable result to have value ezx5-99h. The output of the program is written
in a file called “ex5-99h”:

example number: 5
grid size: 0.01

The bitwise or operator | can be used to choose a file to have more than
one open mode. For example, to open a file for both writing and appending,
or to open a file for both writing and reading, we can do:

ofstream wafile("data2", ios_base::out | ios_base: :app);
// open file for write and append

fstream rwfile("data3", ios_base::in | ios_base::out);
// open file for read and write

To generate formatted output to files, the functions setf(), precision(),
and width() can be applied to file streams in the same way as described
earlier for cout. For example,

of stream ouf ("res", ios_base::out); // open output file
ouf .setf(ios_base::scientific, ios_base::floatfield);
ouf .precision(10);

ouf .width(30);

ouf << 12345.67890 << ’\n’;

Finally, here is an example on how to read a file with comments. Suppose
there is a file called data4 that contains a comment line as the first line
and some comments preceded by a slash sign / on every following line:

data4: input file for a test example
4 / example number
0.01 / grid size

The input file with comments is more readable since it indicates that 4
represents an example number and 0.01 a grid size. The program, which
must ignore the first line and everything after the slash sign on other lines,
may be written as

152 4. Namespaces and Files

#include <string>
#include <stdlib.h>
#include <fstream>

int main(int argc, char* argv(]) {

if (argc != 3)
cout << "input and output files must be specified\n";

ifstream infile(argv[i], ios_base::in);
if (tinfile)
cout << "can not open file: " << argv[i] << " for read\n";
string s;
int i;
double d;

infile.ignore(80,’\n’); // ignore the first line

getline(infile,s,’/’); // get a line terminated by ’/’
i = atoi(s.c_str()); // convert to an int
infile.ignore(80,’\n’); // ignore rest of line, comments

getline(infile,s,’/’); // get next line terminated by '/’
d = atof(s.c_str(Q)); // convert to a float

ofstream outfile(argv[2], ios_base::out);
if (loutfile)

cout << "can not open file: "<< argv[2]<< " for write\n";
outfile.setf(ios_base::scientific, ios_base::floatfield);
outfile << "example number: " << i << ’\n’;
outfile << "grid size: " << d << ’\n’;

infile.close();
outfile.close();

}

The function sm.ignore(streamsize n,int ct) skips from an input stream
sm at most n characters terminated by the character ct, where streamsize
is an integral type for the size of a stream, possibly int. The default ter-
minating character for ignore() is end-of-file, represented by EOF, which
is defined in <iostream >. The default number of characters ignored is
one. Thus a call sm.ignore() without any arguments means to throw the
next character away. Compile this program and suppose the object code is
written in a.out. Then the UNIX/Linux command

a.out datad result

4.6 Standard Library on Streams 153

will read from file data4 and write the output into a file called result.

4.6.5 Input and Output of Characters

There are many operations defined for reading and writing characters. For
example, the function call

ism.read(Ch* p, streamsize n)

reads at most n characters (including whitespace and newline characters)
from input stream ism (of type istream) and stores them in p[0], p[1],. ..,
where Ch can be char, unsigned char, or signed char, and streamsize is
an integral type for the size of a stream, typically int. It returns a reference
of type basic_istream to the input stream object to which it is applied.
The function ignore() is similar to read() except that it does not store the
characters read but simply ignores them. The function call ism.gcount()
returns the number of bytes read from ism in the last call read(). Similarly,
the function call

osm.write(const Ch* p, streamsize n)

writes at most n characters (including whitespace and newline characters)
stored in p[0],p[1],..., into output stream osm. It returns a reference of
type basic_ostream to the output stream object to which it is applied. These
two functions have similar return types to the input and output operators
of Cmpz in §6.1. The types basic_istream and basic_ostream are defined in
<tostream>>. The two functions can be used to write a program that reads
from an input stream and changes every character into its corresponding
upper case:

#include <iostream>
#include <fstream>
#include <ctype.h>

main() {
ifstream infile("readfile", ios_base::in);
char c;
int n =0, m= 0;
while (infile.read(&c, 1)) { // read 1 char at a time
switch(c) {
case ’,’ : n++; break;
case ’\n’: m++; break;

}
c = toupper(c);
cout.write(&c, 1); // write c on screen

1

cout << "There are " << n << " commas and *

154 4. Namespaces and Files

<< m << " lines in the input file.\n";

}

It also counts the number of commas and newlines in the input stream.
Suppose a file named readfile contains the following.

The function read(p, n) reads at most n characters and
stores them in a character array p[0], p[1], up to

pln -11. The returned object will be converted to false
when end of file is encountered.

Then the program outputs the following on the screen:

THE FUNCTION READ(P, N) READS AT MOST N CHARACTERS AND
STORES THEM IN A CHARACTER ARRAY P[0], P[1], UP TO
P{N -1]. THE RETURNED OBJECT WILL BE CONVERTED TO FALSE
WHEN END OF FILE IS ENCOUNTERED.

There are 3 commas and 4 lines in the input file.

The functions read() and write() may read or write many characters at a
time. When only one character is read or written, the functions get(Ch&)
and put(Ch) are better suited. Using get() and put(), the program above
can be rewritten as

main() {
ifstream infile("readfile", ios_base::in);
char c;
int n =0, m = 0;
while (infile.get(c)) { // read 1 char at a time

switch(c) {
case ’,’ : n++; break;
case ’\n’: m++; break;

}

¢ = toupper(c);

cout.put(c); // write c on screen
}

cout << "There are " << n << " commas and "
<< m << " lines in the input file.\n";

}

The function get() is overloaded. Calling get() without any arguments re-
turns the character just read.
Another version of get() is:

ism.get (Ch* p, streamsize n, Ch delimiter = ’\n’);

which reads at most n — 1 characters from input stream ism and places
them into p{0], p[1], ..., pln — 2]. The third argument delimiter is a char-
acter stating that the reading of characters should be terminated when it

4.6 Standard Library on Streams 155

is encountered. The default delimiter character is *\n’. The terminating
character itself is not read into array p. Thus the user may have to remove
the next character before performing a second read. The pointer p must
point to an array of at least n characters, since get() places 0 at the end of
the characters (C-style strings). The function call

ism.getline(Ch* p, streamsize n, Ch delimiter = ’\n’);

is very similar to get(), except that it discards the delimiter rather than
leaving it as the next character to be read in the input stream. The call to
geount() returns the number of characters actually extracted by the last
call of get() or getline(). Here is an example using get() and geount() to
read a file and count the number of characters on each line and the total
number of lines in the file:

void f(istreamg& ism) {
int n = 0;
char 1line[1024];
while (ism.get(line, 1024, ’\n’)) {
n++;
cout << "there are " << ism.gcount() << " characters ™
<< "on lime " << n << ’\n’;
ism.ignore(); // ignore terminate character: ’\n’
}
cout << "There are " << n << " lines in input file.\n";

}

main() {
ifstream infe("readfile", ios::in);
f(infe);

}

Without ignoring the newline character on each line (through the function
call ism.ignore(); see §4.6.4), this would cause an infinite loop. The output
of this program on the input file readfile above is:

there are 56 characters on line
there are 54 characters on line
there are 57 characters on line
there are 34 characters on line
There are 4 lines in input file.

W N R

Notice the newline character on each line is not read by get(). The function
f() above can also be alternatively written using getline():

void f(istreamg& ism) {
int n = 0;
char 1ine[1024];

156 4. Namespaces and Files

while (ism.getline(line, 1024, ’\n’)) {
n++;
cout << "there are " << ism.gcount() << " characters "
<< "on lime " << n << ’\n’;
3

cout << "There are " << n << " lines in input file.\n";

3

Thus the function getline() is normally preferred over get() when one line
needs to be read at a time. Notice this function is different from getline()
discussed in §4.6.4. The output of this program on readfile is:

there are 57 characters on line 1
there are 55 characters on line 2
there are 58 characters on line 3
there are 35 characters on line 4
There are 4 lines in input file.

The newline character on each line of the file readfile is also read by
getline().

There are three other istream operators that puts back, ungets, or peeks
a character in an input stream:

ism.putback(Ch c); // put character ¢ back into stream ism
ism.unget(); // put most recently read character back
ism.peek(); // return next character (or EOF)

// but do not extract it from ism

The following program illustrates how they might be used.

void f(istream& ism) {
char c, d;
while (ism.get(c)) {
switch(c) {
case ’/’: // look for comments starting with //
if (ism.peek() == ’/?) // if there are two slashes,
ism.ignore(1024, ’\n’); // ignore rest of the line
break;
case ’<’: // look for operator <<
d = ism.get();
if (d != ’<’) ism.putback(d); // put d back

break;
case ’&’: // look for operator &&
if (ism.get() != ’&’) ism.unget();
break;
}
}

4.6 Standard Library on Streams 157

4.6.6 String Streams

The standard library <sstream> contains two types istringstream (for in-
put string streams) and ostringstream (for output string streams), which
can be used to read from a string and write to a string using input and
output streams.

To illustrate how ostringstream can be used, consider a file named data
that contains only two lines:

5
0.01

A program can be written that reads the two numbers from this file, gen-
erates a string such as "ex5-99h” from the two numbers just read, opens a

file with this string as its name, and finally writes some information to this
file:

#include <string>
#include <fstream>
#include <sstream>
using namespace std;

main() {
ifstream infe("data", ios_base::in);
int i;
double d;
infe >> i;
infe >> d; // read from input file
ostringstream tmp; // declare variable tmp
tmp << "ex" << i << "-" << int(1/d) << "h";
string ofname = tmp.str(); // convert it into string

ofstream otfe(ofname.c_str(), ios_base::out);
otfe << "example number : " << i << ’\n’;
otfe << "grid size: " << d << ’\n’;

infe.close();
otfe.close();

}

It declares tmp to be a variable of type ostringstream and writes some
numeric values and characters into tmp using the standard output operator.
The function call tmp.str() converts an ostringstream object tmp into
a C++ string. Then c_str() is called to convert a C++ string into a
C string (charx), which is used as the output file name. Notice that an
ostringstream object can be initialized and the statements

158 4. Namespaces and Files

ostringstream tmp; // declare variable tmp
tmp << "ex"™ << i << "-" << int(1/d) << "h";

are equivalent to:

ostringstream tmp("ex"); // initialize variable tmp
tmp << i << "-" << int(1/d) << "h";

Compiling and running this program produces a file named ez5-99h:

example number: 5
grid size: 0.01

This is exactly what was achieved in §4.6.4 using the C function sprintf().

An istringstream is an input stream reading from a string. It can be
used to convert a string (with whitespace characters) into different parts,
some of which may have numeric values. For example,

main() {
string s = "ex 5 - 9.9 h";
istringstream ism(s); // initialize ism from string s

int i;

double d;

string u, v, w;

ism >> u > i > v >> d > w; // i=5,d=29.9

}

This achieves more than what C functions atoi(), atof(), and atol() do.

The libraries <string> and <sstream> are very convenient to use when
manipulating strings. Compared to C-style strings (charx), the user does
not need to do memory allocation and deallocation. However, they may
cause performance problems when used extensively, since they are built on
the top of C-style strings.

4.7 Tterative Methods for Nonlinear Equations

In this section, the bisection and Newton’s methods are presented to iter-
atively find a solution to a nonlinear equation f(z) =0 in a given interval
[a,b]. If f is a continuous function on {a,b] and f(a) and f(b) have differ-
ent signs (one is positive and the other is negative), then the Intermediate
Value Theorem guarantees that there is at least one root r in (a,b) such
that f(r) = 0. The goal of an iterative method is to find a sequence of
numbers {r} such that r, converges to a root r when n — co0. On a com-
puter, an iterative process has to be stopped after finite many iterations.
The stopping criterion can be |[rm — rm—1] < 6 or |f(rm)| < €, for some
given small numbers § and . When either criterion is satisfied, r,, may

4.7 Tterative Methods for Nonlinear Equations 159

be taken as an approximation to an exact root r. Due to the approximate
nature of an iterative method and computer roundoff errors, r,;, may never
satisfy f(r,,) = 0 exactly, no matter how many iterations are used. The
value f(r,,) is called a residual.

4.7.1 Bisection Method

The bisection method assumes that f is continuous on [a,b] and f(a)f(b) <
0. It first computes the middle point ¢ = (a + b)/2 and then tests if
fa)f(e) < 0. If it is true, then f must have a root in the smaller in-
terval [a,c]. If it is false, then f must have a root in [c,b]. In either case,
rename the smaller interval as [a, b], which contains a root but whose size is
reduced by half. Repeat this process until |b—a] or | f(¢)[is small, and then
the middle point ¢ is taken as an approximate root of f. This algorithm
can be written easily in a recursive program as

double bisctnO(double a, double b, double (*f)(double),
double delta, double epsm) {
double ¢ = (a + b)*0.5; // middle point
if (fabs(b-a)*0.5 < delta || fabs(f(c)) < epsn) return c;
(f(a)*f(c) <0) ?b=c : a = c;
return bisctnO(a, b, f, delta, epsn);

}
Note that the function can also be alternatively declared as

typedef double (*pfmn)(double); // define a function type
double bisctnO(double a, double b, pfn f,
double delta, double epsmn);

With the help of the function pointer pfn, this equivalent declaration may
be more readable to C++ beginners. Also the ternary operator ? : is used
to make the code look concise. It may also be equivalently written using
an if-statement:

if (f(a)*f(c) < 0)

b = c;
else
a=c;

Observe the close resemblance of the code to the algorithm. It recursively
calls the function itself to shrink the interval size by half in each recursion
and stops when the interval size or residual is small.

Now this program can be tested to find solutions to:

(a) flz)=xz"1-2% [a,b] =10,1],

(b) f(z)=2"*+€*+2cosz—6, [a,b=][1,3],

160 4. Namespaces and Files

(¢) f(z)=(z®+42® + 3z +5)/(22% — 922 + 18z - 2), [a,}] = [0,4].

Common declarations and definitions can be put in a header file called
chiit.h:

// file ch4it.h

#include <iostream> // for input and output
#include <math.h> // for math functions
#include <stdlib.h> // for exit()

const double delta = 1.0e-8;
const double epsn = 1.0e-9;

double bisctnO(double, double, double (*){double),
double, double);

double fa(double x);

double fb{double x);

double fc(double x);

The source code containing function definitions can be put in another
file called ch4it.cc:

// file ch4it.cc
#include "ch4it.h" // include header file

double bisctnO(double a, double b, double (*f){(double),
double delta, double epsn) {

// ... put its definition here
}
double fa(double x) { // test function (a)
if (x) return 1.0/x - pow(2,x);
else {
cout << "division by zero occurred in function fa().";
exit(1);
}
}
double fb(double x) { // test function (b)
return pow(2,-x) + exp(x) +2*cos(x) - 6;
}
double fc(double x) { // test function (c)

double denorm = ({(2%x-9)*x +18)*x -2; // nested multiply
if (denorm) return (({x+4)#*x+ 3)*x +5)/denorm;
else {

cout << "division by zero occurred in function fc().";

4.7 Tterative Methods for Nonlinear Equations 161

exit(1);
}
}

The functions fa() and fc() may involve division by zero. When it occurs,
the program is terminated by calling the function exit(), declared in header
<stdlib.h>.

A main program can be written to find the roots of the functions:

// file mainch4it.cc
#include "ch4it.h"
int main() {
// find a root of fa()
double root = bisctn0(1.0e-2, 1, fa, delta, epsn);
cout << "Approximate root of fa() by bisctn0() is: *
<< root << ’\n’;
cout << "Fcn value at approx root (residual) is: "
<< fa(root) << ’\n’;

// find a root of fb()

root = bisctn0(1, 3, fb, delta, epsn);

cout << "\nApproximate root of fb() by bisctn0() is: *
<< root << ’\n’;

cout << "Fcn value at approx root (residual) is: *
<< fb(root) << ’\n’;

// find a root of fc()

root = bisctn0(0, 4, fc, delta, epsn);

cout << "\nApproximate root of fc() by bisctn0() is: "
<< root << ’\m’;

cout << "Fcn value at approximate root (residual) is:"
<< fc(root) << ’\n’;

}

Compiling and running the program gives the following output.
Approximate root of fa() by bisctn0() is: 0.641186
Fcn value at approx root (residual) is: -1.48037e-09

Approximate root of fb() by bisctn0() is: 1.82938
Fcn value at approx root (residual) is: 9.4115e-09

Approximate root of fc() by bisctn0() is: 0.117877
Fcn value at approximate root (residual) is:2.24202e+09

Observe that the program finds approximate roots for functions fa() and
fb() with very small residuals. However, the residual for f¢() is so large!

162 4. Namespaces and Files

A closer look reveals that fe() does not have a root in the given interval,
although it changes sign at the endpoints (why?). It is a good idea to
check the correctness of computer output whenever possible. In the case of
finding a solution to an equation, a small residual normally implies a good
approximate answer.

The function bisctn0() resembles the algorithm closely and has worked
fine on three test problems. However, it is not very efficient and robust in
the following sense. First, it invokes three function evaluations: f(a) once
and f(c) twice, in each recursion. Second, the product f(a) * f(c) may
cause overflow or underflow while f(a) and f(c) are within range. Third,
the middle point ¢ can be updated in a more robust way asc = a+(b—a)/2.
There are examples in which the middle point computed by ¢ = (a + b)/2
moves outside the interval [a,b] on a computer with limited finite precision.
It is numerically more robust to compute a quantity by adding a small
correction to a previous approximation. An improved version can be defined
as

double bisctnl(double a, double b, double (*f)(double),
double u, double delta, double epsn) {

double e = (b - a)*0.5; // shrink interval size
double ¢ = a + e; // middle point
double w = f(c); // fcn value at middle point

if (fabs(e) < delta || fabs(w) < epsn) return c;
((u>0 && w<0) || (u<0 && w>0)) 7 (b=c):(a=c, u=w);
return bisctni(a, b, f, u, delta, epsn);

This version bisctnl() requires only one function evaluation f(c) per
recursion (u = f(a) is passed as an argument to the next recursion) and
avoids the unnecessary product f(a) = f(c). However, these two functions
bisctn0() and bisctnl() have a common disadvantage. That is, both can
lead to an infinite recursion (why?). A safeguard is to put a limit on the
number of recursions. From §3.8.9, a static local variable may be used to
count the number of recursions and lead to the next version:

double bisctn2(double a, double b, double (*f)(double),
double u, double delta, double epsn,
int maxit) {
static int itern = 1;

double e = (b - a)*0.5; // shrink interval size
double ¢ = a + e; // middle point

double w = f(c); // fcn value at middle point
if (fabs(e)<delta || fabs(w)<epsn || itern++ > maxit)

return c;

4.7 Iterative Methods for Nonlinear Equations 163

(w0 && w<0) {] (u<0 && w>0)) ? (b=c) : (a=c, u=w);
return bisctn2(a, b, f, u, delta, epsn, maxit);

}

This new version bisctn2() achieves the goal that it stops when the num-
ber of recursions is larger than a prescribed number mazit, but has a side
effect. Since static local variable itern persists in all calls to bisctn2(), it
may cause the function to terminate prematurely in subsequent calls. For
example,

double root = bisctn2(1.0e-2, 1, fa, fa(i1.0e-2), 1.0e-8,
1.0e-9, 40);

bisctn2(1, 3, fb, fb(1), 1.0e-8, 1.0e-9, 40);

bisctn2(0, 4, fc, fc(0), 1.0e-8, 1.0e-9, 40);

]

root
root

The first call on fa takes 27 recursions to stop. The static local variable
itern = 27 at the beginning of the second call on fb, which is terminated
prematurely after 14 recursions when itern = 41. The third call on fe is
terminated after only the first recursion.

To overcome this difficulty, one more argument can be passed (by refer-
ence) to the function to count the number of iterations. It can be written
as

double bisectionr(double a, double b, double (*f)(double),
double u, double delta, double epsn,
int maxit, int& itern) {
/A ko ok o oK o o Ko oK 3K o o KKK 3o o o o Kk 3K o oK K o o Kok 3o o K o o o ok ok ok K oK
bisection algm: recursive version, returns an approximate
root of a fcn in a given interval

a, b: endpoints of interval in which a root lies
f: function is defined in interval [a,b] or [b,a].
u = f(a)

delta: root tolerance, return when updated interval is
narrower than it

epsn: residual tolerance, return when residual is
smaller than it

maxit: maximum number of iterations allowed

itern: iteration count, it must be initialized to 1.

Sk k3K o o o oo o o o ok o K 33K 3K KKK Ko o o K 3K K Kok oo oo o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok /

double e = (b - a)*0.5; // shrink interval size

double ¢ = a + e; // middle point

double w = f(c); // fcn value at middle point

if (fabs(e)<delta || fabs(w)<epsn || itern++ > maxit)
return c;

((w>0 && w<0) || (u<0 && w>0)) ? (b=c) : (a=c, u=w);

164 4. Namespaces and Files

return bisectionr(a,b,f,u,delta,epsn,maxit,itern);

1

The reference variable itern must be initialized to 1 before each call and
stores the number of iterations after a call is finished. For example,

int itrn = 1;

double root = bisectionr(i.0e-2, 1, fa, fa(i.0e-2),
1e-8, 1le-9, 500, itrn);

cout << "Number of iterations used = " << itrn << ’\n’;

itrn = 1; // itrn must be initialized to 1
root = bisectionr(1i, 3, fb, fb(1), 1e-8, 1e-9, 500, itrn);
cout << "Number of iterations used = " << itrn << ’\n’;

Run this program to know that the first call takes 27 iterations and the
second call takes 28 iterations to stop. They produce the same approximate
roots as bisctn0().

The procedure above is generally called an incremental approach to soft-
ware development. It starts with a simple version representing the main
idea of an algorithm. From there, more efficient and robust versions can be
built.

A nonrecursive version of the bisection algorithm can now be easily coded
as

double bisection(double a, double b, double (*f) (double),
double delta, double epsn, int maxit) {
/o ok ok ok ook ok ok ok 3k ok ok o ok ook ok K K K ok ok ok o o ko sk ok ok ok ok ok ok kR R
bisection algm: nonrecursive version, returns approximate
root of a fcn in a given interval
a, b: endpoints of interval in which a root lies
f: function is defined in interval [a,b] or [b,a]l.
delta: root tolerance, return when updated interval is
narrower than it
epsn: residual tolerance, return when residual is
smaller than it
maxit: maximum number of iterations allowed
ok ok ook R R R oK ok KKK K K o KRR K KR KK KRRk kR kKR kR kK [

double u = f(a); // fcn value at left pt
double e = b - a; // interval length
double c; // store middle point

for (int k = 1; k <= maxit; k++) { // main iteration
e *= 0.5; // shrink interval by half
c=a+e; // update middle pt
double w = f(c); // fcn value at middle pt

4.7 Tterative Methods for Nonlinear Equations 165

if (fabs(e) < delta || fabs(w) < epsn) return c;
((w>0 && w<0) || (u<0 && w>0)) ? (b=c) : (a=c, u=w);
}
return C;
} // end bisection()

All the disadvantages in early recursive versions bisctn0(), bisctnl(), and
bisctn2() are avoided in this nonrecursive version. Both bisectionr() and
bisection() provide safeguards against entering infinite loops. This is a good
consideration since roundoff errors and numeric instability can lead to un-
predictable behaviors.

4.7.2 Newton’s Method

Let f(z) be a function of independent variable z, f'(x) its first-order deriva-
tive, and an initial approximation z, to a root r of f. Newton’s algorithm
tries to find a better approximation x., to this root 7, and repeat this pro-
cess until convergence. The idea is to first compute the root of its linear
approximation at z, and then let z,, be this root. The linear approximation
of f(z) at z, is:

Li(zp) = flzp) + f'(zp) (T — 2p).

This is exactly the first two terms of its Taylor’s expansion at z,. Geo-
metrically, the curve f(z) is approximated near the point (z,, f(z,)) by its
tangent line at this point. To find the root of this linear approximation, set
L¢(z,) =0, that is,

f(zp) + f(zp)(z ~ 7p) =0,

and solve for z to get = z, — f'(z,) " f(zp). Then let this z be the next
approximate root x,. That is,

f(zp).

This is the iterative formula of Newton’s method. If |z, — zp| < 6 or
|[f(zn)] < €, where € and § are two given small positive numbers, then stop
and take z, to be the approximate root of f(z) near r. Otherwise let z, =
z,, and repeat this process. In order to prevent entering an infinite loop,
this process should also be stopped when the total number of iterations has
exceeded a prescribed number. It can be coded into a C++ program as

In =Tp — f,(zp)

typedef double (*pfn)(double); // define a function type

double newton(double xp, pfn f, pfn fd, double delta,
double epsn, int mxt) {
/e ok ok ok ok o ok ook o o o ke ok o o o oo o o s ks ki ok ok ok o ok ok ok ok Kok K ok ok ok ok ok ok o ok ok ok ok K oK

166 4. Namespaces and Files

newton’s algorithm: finds an approximate root of f(x) = 0

Xp: an initial guess of a root

f: the function whose root is to be found
fd: the derivative function of f

mxt: maximum number of iterations allowed

delta: program stops when distance of two iterates is < it

epsn: program stops when residual is less than it.

sk sk sk sk sk ok sk ok sk ok ok skl ok ok koo ok sk ok ok sk ok sk ok ko ok ok sk ok sk ok ok ko ok
double v = f(xp); // fcn value at initial guess
double xnew; // store new iterate

for (int k = 1; k <= mxt; k++) { // main iteration loop

double derv = fd(xp); // derivative at xp

if (iderv) {
cout << "Division by O occurred in newton() .\n";
exit(1); // stop if divisor == 0

}

xnew = xp - v/derv; // compute new iterate

v = f(xnew); // fcn value at new iterate

if (fabs(xnew - xp)<delta || fabs(v)<epsn) return xnew;

Xp = xnew;

} // end main iteration loop

return XxXnew,
} // end newton()

This function can be tested on a problem of finding a root of f(z) = 2% -
522 4+ 3z + 7 near 5. Compiling and running the program (with appropriate
declarations and header files),

double f(double x) {
return ((x - B)*x + 3)*x + 7; // nested multiply
}

double fder(double x) {
return (3*x - 10)*x + 3;

}

int main() {
double root = newton(5, f, fder, 1e-8, 1e-9, 500);
cout << "Approx root near 5 by newton method is: "
<< root << ’\n’;
cout << "Fcn value at approximate root (residual) is: "
<< f(root) << ’\n’;

4.8 Exercises 167

gives the following output

Approx root near 5 by newton method is: 3.65544
Fcn value at approximate root (residual) is: 3.71647e-14

Thus Newton’s method finds an approximate root with very small resid-
ual to this polynomial function. In general, the initial approximation z,
(also called initial guess) may not have to be very close to a root 7. But a
good initial guess can speed up the convergence and even affect the conver-
gence or divergence of the method. That is, Newton’s method may converge
with one initial guess and diverge with another. Once a good initial guess
is obtained, Newton’s method converges more rapidly than the bisection
method.

If f(r) =0 and f'(r) # 0, then r is called a simple root of f. Newton’s
method is designed for finding a simple root due to the following obser-
vation. If f’(r) =~ 0 and z, is an approximation to 7, then the iterative
formula of Newton’s method would involve a very small number or zero in
the denominator.

Let the second derivative f” be continuous and r a simple root of f.
Then there exists a neighborhood of r and a constant C such that if z, is
in the neighborhood, the next iterate z,, is closer to r and

|r —zq| < Cir — a:plz.

See [KC96]| for a proof. Such a convergence is called quadratic.

The root-finding functions can be put in a namespace. The common
declarations are put in a header file and object codes in a library. A user can
just include the header file and call the library for root-finding applications.

Notice that the bisection and Newton’s methods are programmed in tra-
ditional C or FORTRAN style in this section. They require passing a func-
tion pointer as argument, which is hard to be inlined or optimized, and
may impose function calling overhead for each function evaluation f(x)
inside them. In §7.7 some efficient techniques are applied to overcome the
function calling overhead in passing a function pointer to another function
call.

4.8 Exercises

4.8.1. Implement matrix and vector namespaces as outlined in §4.1. Add
functions for vector addition, vector-scalar multiplication, matrix ad-
dition, and matrix-vector multiplication. Compute one, two, and max-
imum norms of vector v = (v;)%-; and one, maximum, and Frobenius
norms of matrix m = (ai,j)z];lo, and the matrix-vector product mxv,
where v; = sin(i) and a; ; = cos(i® + j), for different matrix and vec-
tor sizes n = 100, 500, and 1000. Manage the files by using a Makefile
if you are on a UNIX/Linux system.

168

4.8.2.

4.8.3.

4.84.

4.8.5.

4. Namespaces and Files

Implement a matrix-vector library including vector and matrix norms,
and additions and multiplications in single, double, and long double
precisions. Put common declarations and type definitions in a header
file, implementations in a source file, and the main program in an-
other source file. Test your program on the matrix m and vector v
defined in Exercise 4.8.1 with different sizes and precisions.

Note that three versions of the same functions in single, double, and
long double precisions seem to be tedious and hard to maintain. When
the implementation is to be changed, for example, the straightforward
evaluation of 2-norms is changed to a more robust evaluation (see
Exercise 4.8.5), then every version of the function has to be changed.
This has been done in a routine way in languages such as FORTRAN
77 and 90, and C. Using templates one version suffices; see Chapter
7.

Modify the program in §4.4.1 and compare the computing speeds in
double, single, and extended double precisions on your machine.

Compute the golden mean (§2.4) in float, double, and long double.
Write the results in a file with formatted output (e.g., scientific for-
mat, 30-character output width, 20 digits of precision, aligned to the
left).

To derive a robust vector 2-norm formula for a vector v = [v,v1, .. .,
Un—1], that will not cause overflow if ||v||2 is within range, let 7o =0

and r2, , =77+ 02, for i =0,1,2,...,n — 1. That is,
2, .2 2,2 2
rf:vg, r%:vo—i-vl, ceey ri:vo+vl+---+vn_1.

Then ||v|j2 = /72 = 7. From the recursive relation rZ_; = r? + vZ,
to avoid possible overflow in summing the squares r? + vZ, com-
pute r;41 = 7134/1 + (v;/7;)? when r; is large and compute 7,41 =
lvs|\/1+ (r;/v;)? when |v;] is large. Thus an alternative but more
robust definition for Vec::twonorm() is:

double Vec::twonorm(const double* const v, int size) {
if (size > maxsize) cout << "vector size too large.\n";
double norm = fabs(v[0]);
for (int i = 1; i < size; i++) {
double avi = fabs(v[il);
if (norm < 100 &% avi < 100)
norm = sqrt(norm*norm + avi*avi);
else if (norm>avi) norm *= sqrt(1 + pow(avi/norm,2));
else norm = avixsqrt(l + pow(norm/avi,2));
}
return norm;

}

4.8.6.

4.8 Exercises 169

This robust definition involves more operations and should be slower
than the straightforward evaluation as defined in §4.1. Write a pro-
gram that compares the time efficiency of these two definitions, on a
vector v = (v;)7, where v; = cos(i) and n = 900000. Adjust the
value of n if your computer takes too long or too short. A robust
algorithm is achieved sometimes at the expense of efficiency.

Using the idea of Exercise 4.8.5, the function Mat:: frobnorm() (see
§4.1) can be defined in a more robust way:

double Mat::frobnorm(const double** const a, int size) {
double norm =Vec::twonorm(a[0],size); //2-norm of row 0
for (int 1 = 1; i < size; i++) {
double avi = Vec::twonorm(a[il], size);
if (norm < 100 && avi < 100)
norm = sqrt{norm*norm + avi*avi);
else if (norm > avi) norm *= sqrt(l+pow(avi/morm,2));
else norm = avi*sqrt(l + pow(norm/avi,2));
}
return norm,

}

It can also be defined without using the function call Vec::twonorm(),
which leads to a possibly more efficient version:

double Mat::frobnorm(const doublex* const a, int size) {
double norm = 0;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
double avi = fabs{(alil [j1);
if (morm < 100 && avi < 100)
norm = sqrt{norm*norm + avi*avi);
else if (norm > avi)
norm *= sqrt{(1l + pow(avi/norm,2));
else norm = avi*sqrt(l + pow(norm/avi,2));
}
}
return norm,

}

Write a program that compares the time efficiency of the three ver-
sions of the matrix Frobenius norm function, on an n X n matrix
evaluated repeatedly m times. You may take n = 1000 and m = 100.
Adjust the values of n and m to fit your computer.

170

4.8.7.

4.8.8.

4.8.9.

4.8.10.

4.8.11.

4.8.12.

4. Namespaces and Files

Time the program computing the first 40 Fibonacci numbers in §2.4
and the recursive program in Exercise 3.14.15. To clearly see the time
efficiency (or inefficiency) of recursive and nonrecursive function calls,
invoke each function inside a loop for m times, where m is a large
integer (e.g., m = 20000). Output the results directly into a file. Write
your own Makefile for compiling and managing the programs if you
are using UNIX or Linux.

Write a function that takes a decimal int as argument and prints out
(to the screen and a file) the integer in hexadecimal, octal, and binary
formats.

Call all the functions (defined in §4.7.1) for the bisection method
inside a main() program to find a root of

(a) f(z)=z"!—tanz, [a,b]=[0,2],
(b) flz)=z—€7%, [ab]=]L2]

Comment on the advantages and disadvantages of these methods.

Apply Newton’s method to find a root of the function f(z) =1-z—
e™® near £ = 1, and a root of g{z) = tanz — = near x = 4.5 (test
what you get if starting from = = 5 instead).

Amounts A;, A,, ..., Ay, are placed in an investment account (e.g., a
bank savings account) at the beginning of month 1, 2, ..., n, respec-
tively. Let B, be the balance in the account just after amount A,
has been invested at the end of month n. The average annual return
rate r (assuming monthly interest compounding) of this investment
account is a root to the equation:

i=1

Write a function that computes the average annual return rate r,
given B, Aj, A2, ..., and A,. If a man invests 100 dollars each
month for the first year, 200, 300, 400, and 500 dollars each month
for the second, third, fourth, and fifth years, respectively, and has
balance 28000 dollars right after the 60th investment, what is his
average annual return rate (assuming monthly compounding)? Hint:
Newton’s or the bisection method may be used to find the root and
Horner’s algorithm should be used in calculating the summation.

Amounts Aj, Ao, ..., Ay are placed in an investment account (e.g., a
mutual fund account) at the beginning of month 1, 2, ..., n, respec-
tively. Let B, be the balance in the account just after amount A, has
been invested at the end of month n. The average annual return rate

4.8.13.

4.8 Exercises 171

r (assuming continuous interest compounding; it is very close to daily
compounding) of this investment account is a root to the equation:

n
B, = ZAier(n—-i)/R‘

=1

Write a function that computes the average annual return rate r,
given By, A1, Ag, ..., and A,.

The library function system() in <stdlib.h> provides access to oper-
ating system commands. A string can be passed to it as the argument
and this string is treated as an operating system command. For ex-
ample, the program

#include <stdlib.h>

int main() {
system("date™) ;

}

executes the command date that causes the current date to be output
to the screen. Write a program on UNIX/Linux that lists all files with
a suffix .cc using the following statements.

char command{30];
sprintf (command, "1ls %s", "*.cc"); // include <stdio.h>
system(command) ; // include <stdlib.h>

Can you write a program that moves every .cc file into a corresponding
.cpp file?
A related function is asm(), whose argument is a string literal repre-

senting a piece of assembly code that will be inserted into the gener-
ated code at the place where it is specified.

5

Classes

The C++ construct class provides an encapsulation mechanism so that a
user can encapsulate data and functions manipulating the data together
to define new types, which can be used as conveniently as built-in types.
This can also increase the readability and maintainability of a program,
and separate implementation details from its user interface.

Starting with this chapter, advanced features of C++ on object-oriented
programming and generic programming are introduced. However, in this
chapter, only basic concepts about class are discussed. This chapter ends
with a section on numeric methods for ordinary differential equations.

5.1 Class Declarations and Definitions

A class is a user-defined type that may contain data members and function
members that manipulate the data. There can also be functions, called
friends, which are not members of the class but have access to members
of the class. A class may have a private part that may be accessed only by
members and friends of the class, and a public part that can be accessed
freely in the program. A member of a class is private by default and can
also be explicitly declared private. The words class, private, public, and
friend are reserved words. Thus a class provides certain access restriction
for some of its members and achieves encapsulation and information hiding.

Objects of a class are created and initialized by its member functions
specifically declared for this purpose; such functions are called constructors.

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

174 5. Classes

A constructor is recognized by having the same name as the class itself.
A member function can be specifically declared to “clean up” objects of a
class when they are destroyed; such a function is called a destructor.

As an example, consider defining pt2d to be a class with £ and y coor-
dinates of a two-dimensional point as data members and a few functions
manipulating the data:

class pt2d { // class for 2D points

private: // private members
double x; // x coordinate
double y; // y coordinate

public: // public members
pt2d(double r, double s) { // constructor

X=1;y=s;

}
void move(double, double); // move to new position
void move(pt2d); // move to new position
void draw() const; // a const member
friend double norm(pt2d); // a friend

};

Notice a semicolon is needed after a class declaration. A class declara-
tion is actually a class definition since it defines a new type. The mem-
bers and y are private and can only be accessed by member functions
p2d::p2d(), pt2d::move(), pt2d::draw(), and friend norm(), where the func-
tion p#2d::pt2d() is defined inside the class declaration and others are de-
fined below. The member pt2d:: pt2d(), whose name is identical to the name
of the class, is called a constructor and all objects of class pt2d must be
created by the constructor. For example, the statements

pt2d p(5.4, 6); // call constructor
pt2d q(5, 0); // call constructor

create an object called p of type pt2d with z-coordinate 5.4 and y-coordinate
6, and an object ¢ with coordinates z = 5 and y = 0. A destructor is not
necessary for this class since the constructor does not allocate space for it
using the operator new. Many examples in later sections need destructors;
see, for example, §5.2. Classes are different from other types in that an
object of a class must be constructed through a constructor. In this sense,
objects of a class are different from other objects.

The class scope operator :: must be used for definitions of members out-
side a class declaration. A member function such as pt2d::draw(), declared
using the const suffix, can only read but can not modify members of the
class. The keyword const here is part of the type and must not be omitted
in the definition when defined outside the class declaration. In contrast,
nonconstant member functions imply that they modify members of the

5.1 Class Declarations and Definitions 175

class and should not be invoked on constant class objects. Definitions of
other function members and the friend can be:

inline void pt2d::move(double r, double s) {

xX=71; y=Ss; // move point to (r, s)
}
inline void pt2d::move(pt2d p) {
X =p.X; ¥y=Dp.Y; // move point to p
}
inline void pt2d::draw() comst { // draw coordinates
cout << (7 <K x << 7,7 <Ky <)7, // const member
}
inline double norm(pt2d p) { // friend definition

return sqrt(p.x*p.x + p.y*p.y); // distance to origin
}

Notice the difference between the ways that members are accessed by a
function member such as move() and a friend such as norm(). In move(),
data members = and y can be used directly (they refer to members of an
object for which the member function is called), while the class qualifier
must be used in norm() such as p.z and p.y. Defining move() to be a
member function and norm() a friend here is only to show the difference
on how to define member functions and friends. The function norm() may
also be alternatively defined as a member and move() as friends. A friend
does not belong to a class but has access to members of the class. More
details on friends are given in §5.3. Member functions defined inside a class
declaration are inline by default. They can also be alternatively made
inline outside the class declaration like pt2d :: move() above. Again, inline
is only a suggestion to the compiler for code substitution to avoid function
calling overhead. Short member functions and friends can be made inline
for possible run-time efficiency. Long definitions should be put outside a
class declaration to make the interface look clean.

The following main program defines a few objects of class pt2d and calls
member functions and friend to show how this class can be used.

int main() {

pt2d a(0, 0); // create object a = (0,0)
pt2d b(5, 0); // create object b = (5, 0)
pt2d c(3, -40); // create object ¢ = (3, -40)
a.move(23, -3.5); // move a to (23, -3.5)
b.move(c); // move b to (3, -40)

c.draw(); // draw point c

176 5. Classes

double dist = norm(c); // distance from ¢ to origin

}

In the above, member functions move() and draw() are called using the
member selection operator . following a class object, while a friend norm()
is called in the same way as an ordinary function.

The following statements in f() are illegal.

void f(pt2d a) {
double ax = a.x; // can not access private member
pt2d d; // error, initializer missing

}

That is, private members of a class may only be accessed by its mem-
ber functions and friends as member 2 can be used in member function
move() and friend norm(), but not in other functions such as main() and
f() above to prevent them from accidental modification or misuse. Since
the constructor of pt2d requires two arguments, an object can not be con-
structed (for d in f() above) without specifying them. The protection of
private members in a class leads to a safer user-defined type that is also
easier to maintain. If the representation of a class is to be changed, only
its member functions and friends need be changed. User code depends only
on the public interface and need not be changed.

It is sometimes convenient to provide several constructors; the compiler
can choose the correct one to use according to the type of its arguments
just as in function overloading. For example, the class pt2d can be defined
to have three constructors:

class pt2d {

public: // in addition to other members
pt2d() { x =y =0; } // default constructor
pt2d(double p) { x = p; y=0; }

pt2d{(double p, double q) { x =p; y = q; }

3

Now objects of pt2d can be more conveniently constructed as

pt2d a; // a = (0,0), default constructor
pt2d b(5); // b= (5, 0
pt2d c(3, -40); // ¢ = (3, -40)

A constructor that takes no arguments is called a default constructor. Thus
the object a above is constructed by the default constructor of class pt2d.
These three constructors can also be combined into one:

class pt2d {

public: // in addition to other members
pt2d(double p = 0, double q = 0) { x =p; y = q; }

3

5.1 Class Declarations and Definitions 177

This is nothing but providing default arguments to a function.
An object of a class can be used to initialize another object and assigned
to another object. For example,

pt2d b(5); // b= (5, 0)

pt2d c(3, -40); // ¢ = (3, -40)
pt2d d = b; // initialize d to b
c =d; // assign d to ¢

In the above, d is constructed by a memberwise copy from object b, which is
called copy construction or copy initialization. The assignment ¢ = d causes
the content of d to be assigned to ¢ by a memberwise copy; such an assign-
ment is called copy assignment. Copy construction and copy assignment
are different operations in that a copy construction creates a new object
while a copy assignment potentially modifies an object already created.
By definition, a struct is a class with all members public. For example,

struct pt3d {
double x, y, 2z; // all members .are public

};

The members z, y, and z are public by default and can be accessed by
any function. Constructors, destructor, and other member functions may
also be defined for it. When a class does not provide a constructor, the
compiler tries to generate a default constructor for it to use. For example,
in the statement

pt3d p;

the compiler creates an object p of type pt3d and initializes the members z,
y, and z to some default value. But there are classes for which the compiler
can not generate a default constructor; see §5.6.

The keyword this refers to a constant pointer that points to the object for
which a member function is invoked. For a nonconstant member function
of class X, the pointer this is of type X#* const, and for a constant member
function, this has type const Xx* const. For example, the member functions
move() and draw() can also be implemented as

inline void pt2d::move(double r, double s) {

this->x = r; this->y = s; // move point to (r, s)
}
inline void pt2d::draw() comst { // draw coordinates
cout << ’(’ << this->x << ’,’ << this->y << 7)7;
}

Using this when referring to members is usually unnecessary. Its main use
is for defining member functions that manipulate pointers directly. Useful
examples are given in §5.2 and the next chapter.

178 5. Classes

As another example, we now define a class for definite integrals that
contains two data members for the lower and upper integral bounds, an-
other data member as a pointer to a function for the integrand, and a few
function members and a friend for manipulating and evaluating the def-
inite integral such as the Trapezoidal Rule and Simpson’s Rule. Numeric
integration was discussed in §3.13 in the procedural programming style as
in C and FORTRAN 90. Now class can be used to achieve encapsulation
of data and functions and information hiding. It can be declared as

typedef double (*pfn)(double); // define a function pointer

class integral { // members by default are private
double lower; // lower integral bound
double upper; // upper integral bound
pfn integrand; // integrand function

public: // public members

integral(double a, double b, pfn f){ // a constructor
lower = a; upper = b; integrand = f;

}

double lowbd() const { return lower; } // const fcn member

double upbd() const { return upper; } // const fcn member

void changebd(double, double); // nonconst member
double trapezoidal(int) const; // const fcn member
friend double simpson(integral, int); // a friend

}; // note semicolon

The members lower, upper, and integrand are private and can be accessed
only by its function members such as integral :: lowbd() and friends such as
stmpson(). Thus public functions integral :: lowbd() and integral :: upbd()
are provided to return the lower and upper integral bounds. When a class
has a constructor, all objects of the class must be constructed by calling a
constructor. For example, the declaration

integral di(0, 5.5, sqrt);

declares di to be of type integral and creates an object with initialization
lower = 0.0, upper = 5.5, and integrand = sqrt, where sqrt() is the square-
root function in <math.h>. A destructor is not needed for the class since
the user does not explicitly allocate space for it using the operator new.
Definitions of other function members and the friend can be:

inline void integral::changebd(double a, double b) {
lower = a; // change integral bounds to a, b
upper = b;

3

double integral::trapezoidal(int n) const { // const member

5.1 Class Declarations and Definitions 179

double h = (upper - lower)/n; // size of subinterval
double sum = integrand(lower)*0.5;

for (int i 1; 1 < n; i++) sum += integrand(lower + ixh);
sum += integrand(upper)*0.5;

return sum*h;

}

double simpson(integral ig, int n) { // a friend
double h = (ig.upper - ig.lower)/n;
double sum = ig.integrand(ig.lower)*(.5;
for (int i = 1; i < n; i++)
sum += ig.integrand(ig.lower + ixh);
sum += ig.integrand(ig.upper)#*0.5;

double summid = 0.0;
for (int i = 1; i <= n; i++)
summid += ig.integrand(ig.lower + (i-0.5)*h);

return (sum + 2*summid)*h/3.0;

The following main program can be used to evaluate integrals fos sin(z)dz
and f37 sin(z)dz.

int main(){
integral di(0, 5, sin); // sin from <math.h>
double result = di.trapezoidal(100); // call a fcn member
cout << "Integral from " <<di.lowbd() <<" to "<< di.upbd()
<< " is approximately = " << result << ’\n’;

di.changebd(3, 7); // change bounds

result = di.trapezoidal(100);

cout << "Integral from " <<di.lowbd() <<" to "<< di.upbd()
<< " is approximately = " << result << ’\n’;

result = simpson(di,200); // invoke a friend

}

More complicated definite integrals can be approximated similarly. Efficient
integration techniques are discussed in §7.7.

Protecting private members in a class leads to a safer user-defined type
that may also be easier to maintain. If the representation of the integral
class is changed to:

class integral {
double bound[2]; // lower, upper bounds

180 5. Classes

typedef double (*pfn)(double); // a member that is a type
pfn integrand; // integrand function
// other members

I

then only the member functions and friends have to be changed and the
user code as in the main() function above does not have to be changed.
This slight modification of the representation for integral has hardly any
advantage, but there are many situations in which a change of class repre-
sentation can improve efficiency or portability. For example, a matrix class
can be changed to be represented by a valarray (see §7.5) to make use of
the high performance computing library.

5.2 Copy Constructors and Copy Assignments

By default, a memberwise copy is provided for copy initialization and copy
assignment for a class, for which a copy constructor and assignment opera-
tor are not explicitly defined such as classes pt2d and integral in §5.1. This
kind of compiler-generated copy constructor and copy assignment should
be used when a class does not have a destructor that deallocates space using
delete, since they may be more efficient than user-defined copy operations.
For example,

pt2d d = b; // initialize d to b
c =d; // assign d to ¢

where every member of b is copied to d in the copy initialization in the first
statement, and every member of d is copied to ¢ in the assignment in the
second statement. Such default memberwise initialization and assignment
were already mentioned in §3.4 for structures.

If the construction of an object of a class has allocated space using the
new operator, then a destructor is needed to clean up the object when it
goes out of scope, using the operator delete. The name of the destructor
for a class X must be "X (). For example,

class triangle {

pt2d* vertices; // pt2d defined in previous section
public:

triangle(pt2d, pt2d, pt2d); // constructor

~triangle() { delete[] vertices; } // destructor

double area() const; // a function member

};

triangle::triangle(pt2d vO, pt2d vi, pt2d v2) {
vertices = new pt2d [3]; // 3 vertices in a triangle
vertices[0] = v0;

5.2 Copy Constructors and Copy Assignments 181

vertices[1] = vi;

vertices[2] = v2;
}
void £() {
pt2d x(1.0,2.0);
pt2d y(3.0);
pt2d z;

pt2d z2(7.0);

triangle ti(x,y,2);

triangle t2(x,y,22);
3

When f() is called, the triangle constructor is called for 1 and t2 to allocate
space for their vertex points. At the return of f(), the space for the vertices
are deallocated by the destructor automatically. A destructor need not
be called explicitly by the user. Instead, the system calls the destructor
implicitly when an object goes out of scope. Note that t1 is constructed
before t2, and 12 is destroyed before t1. That is, objects are destroyed in
the reverse order of construction.

Since triangle has a destructor that deallocates space using delete, the
default memberwise copy constructor and assignment operator would not
work correctly in this case:

void g(pt2d x, pt2d y, pt2d z) {
triangle ti(x,y,2);

triangle t2 = ti; // copy initialization, trouble
triangle t3(x,y,2z);
t3 = ti; // copy assignment, trouble

}

In this code segment, the copy initialization made the member vertices of
t2 equal to that of t1 (since they are pointers, being equal implies that
they point to the same object), and the copy assignment made the member
vertices of t3 equal to that of t1. Consequently, the member vertices of £1,
t2, and ¢3 point to the same object. At the time t1, t2, and t3 are destroyed
when ¢{) is returned, the same pointer is deleted three times (its behavior is
undefined) and results in an error. In general, for a class with a destructor
that deletes space allocated by its constructor, the user must define a copy
constructor and a copy assignment. For a class T', they have the form

T::T(const T &); // copy constructor
T& T::operator=(const T&); // copy assignment

where operator is a keyword that allows the assignment operator = to be
overloaded. In the case of the triangle class, they can be defined as

triangle::triangle(const triangle & t) { // copy constructor

182 5. Classes

vertices = new pt2d [3];
for (int i = 0; i < 3; i++) vertices[i] = t.vertices[i];

}

triangle& triangle::operator=(const triangle& t) {
if (this !'= &t) // beware of self-assignment like t = t;
for (int i = 0; i < 3; i++) vertices[i] = t.vertices[il;
return *this;

}

These two member functions must also be declared in the class triangle.
Since this is a constant pointer that points to the object for which a mem-
ber function is invoked, *this is then the object. The user-defined copy
assignment returns a reference to the object. Notice that new space is allo-
cated in the copy initialization and no new objects are created in the copy
assignment, which clearly reflects the fact that initialization and assign-
ment are two distinct operations. With the user-provided copy constructor
and assignment above, the function g() above should work correctly now.
In particular, at the time ¢1, {2, and t3 are destroyed, the three pointers,
for which spaces are allocated when they are constructed, are deleted. The
redefinition of the assignment operator is called operator overloading for =.
Operator overloading is discussed in more detail in the next chapter.

As another example, a class called triple (consisting of three numbers)
can be declared as

class triple { // a triple of numbers
float* data;

public:
triple(float a, float b, float c); // constructor
~triple() { delete[] data; } // destructor
triple(const triple& t); // copy constructor

triple& operator=(const triple& t); // copy assignment

friend triple add(const triplek, const triplek); // friend
void print() comst { // print out members
cout << datal[0] << * " << dataf1] << * *
<< dataf2] << ’\n’;
}
s

Member definitions inside a class declaration are inline by default. Other
members and friend (also made inline since they are short) can be defined
as follows.

inline triple::triple(float a, float b, float c) {
data = new float [3];
data[0] = a; data[1] = b; datal2] = c;

5.2 Copy Constructors and Copy Assignments 183

}

inline triple::triple(const triple& t) { // copy comstructor
data = new float [3];
for (imt i = 0; i < 3; i++) data[i] = t.datalil;

}

inline triple& triple::operator=(const triple& t) {

if (this != &t) // beware of self assignment

for (int 1 = 0; i < 3; i++) datal[i] = t.datali];
return *this;

}

inline triple add(const triple& t, comst triple& s) {
return triple(t.datal0] + s.data[0], t.data[1l] + s.data[1],
t.data[2] + s.data[2]);

Now the class triple may be used as

int main() {

triple aaa(5,6,7); // create an object

triple bbb(10,20,30);

triple ccc = aaa; // copy construction
triple ddd = add(aaa,bbb); // copy construction

ccc = add(aaa,ddd); // copy assignment

ccc = ccc; // self-copying is allowed
cce.print) ; // print out members of ccc

If a class duple {consisting of n numbers) is to be defined, the copy
assignment operation may need to take care of assignments of duples with
different sizes. To be more precise, consider

class duple { // a duple of ’size’ numbers
int size; // how many numbers?
double* data; // store the numbers

public:
duple(int n, double* a) { // constructor

data = new double [size = n];

for (int i = 0; i < size; i++) datali] = al[i]l;
}
“duple() { delete[] data; } // destructor
duple(const duple&); // copy constructor
duple& operator=(const duple&); // copy assignment

184 5. Classes

friend duple add(const duplef t, const duple& s);
void print() comst;

};

duple& duple::operator=(const duple& t) { // copy assignment
if (this I= &t) {

if (size != t.size) { // if sizes are different
delete[] data; // delete old data
data = new double [size = t.size]; //space for new data
}
for (int i = 0; i < size; i++) datal[i] = t.data[i];
}
return *this;

}

When a duple t of one size is to be assigned to a duple s of another size,
the space for s is first deleted and then allocated with the same number of
elements in t. This will make the following code work correctly:

double xx[] = { 5, 6, 7};
double* zz = new double [10];
for (int i = 0; i < 10; i++) zz[i] = i + 1;

duple d1(3, xx); // d1 contains 3 numbers
duple d2(8, zz); // d2 contains 8 numbers
dl = d42; // d1 is resized to have size 8

In the assignment d1 = d2, the object dl is resized to have the same
number of elements as d2, according to the definition of the copy assignment
operator =. Exercise 5.10.5 asks for the definitions of other members in
duple.

5.3 Friends

A friend can belong to many classes and have access to private members of
objects of these classes, while a function, data, or other member can only
belong to one class. A friend declaration can be put in either the private
or public part of a class; it does not matter where. For example, a matrix-
vector multiply function can be declared to be a friend of classes Mat and
Vec:

class Mat; // forward declaration
class Vec {
// in addition to other members

friend Vec multiply(const Mat&, const Vec&);
};

5.4 Static Members 185

class Mat {

// in addition to other members

friend Vec multiply(const Mat&, const Veck);
};

Matrix and vector classes are discused in more detail in Chapters 6 and 7.

A friend is not a class member and thus does not have a this pointer. A
member function of one class can be a friend of another class. A class can
be a friend of another; in this case all functions of the class become friends.
For example,

class X {

void £0;

int g(int);
};
class Y {

// in addition to other members

friend void X::£(Q); // £() of X becomes friend of Y
};
class Z {

// in addition to other members

friend class X; // all functions of X become
}; // friends of class Z

5.4 Static Members

Suppose we want to define a class for vectors with default (unit, zero, or
other) vectors of certain sizes. One way to do this is to use global variables
to store the default vectors. However, too many global variables will make
code unmanageable except to its original programmer. Global variables
should be kept to the minimum. C+4 provides static members for this
purpose without introducing global variables or functions. A member that
is part of a class but is not part of the objects of the class, is called a
static member. There is exactly one copy of a static member per class.
Note that there is one copy per object for ordinary nonstatic members.
Similarly, a function that needs access to members of a class but need not
be invoked for a particular object, is called a static member function. For
example,

class Vec {
private:

int size;

double* entry;

static Vec defaultVec; // holding default vector
public:

186 5. Classes

Vec(int sz = 0, double* et = Q); // constructor
Vec(const Vecd); // copy comstructor
Vec& operator=(const Veck); // copy assignment
static void setDefault(int, doublex);
// function for setting default vector
};

Vec::Vec(int sz, doublex et) { // if sz = 0 use default size
size = sz 7 sz: defaultVec.size;
entry = new double [size];
if (et == 0) { // if et is null pointer, use default
for (int i = 0; i < size; i++)

entry[i] = defaultVec.entry[il;
} else {
for (int i = 0; i < size; i++) entry[i] = etl[i];

}
}

In the constructor, the default vector size and entries are used when
it is not supplied with any arguments. The copy constructor and assign-
ment can be defined accordingly. Static data and function members such
as Vec::defaultVec and Vec::setDefault() must be defined somewhere in the
program. Since static members belong to the class, are shared by all objects
of the class, and do not belong to a particular object, they are qualified by
the name of the class using the scope resolution operator. For example,

double ad[] = {5, 6, 7, 8, 9};
Vec Vec::defaultVec(5, ad);
// defaultVec initialized by ad of size 5

void Vec::setDefault(int sz, double* p) {
Vec::defaultVec = Vec(sz, p); // reset default vector
} // note class qualification Vec::defaultVec

Note that a static data member such as Vec::defaultVec is defined in the
same way as a variable is declared and initialized, very much like the way
a function is defined. Although it is private, it may not have to be defined
through a member function. A nonstatic data member can not be defined
this way. Still, private static members can not be accessed publicly. The
default vector can be changed when appropriate. For example,

void f() {
Vec a; // default vec of size 5, a ={5,6,7,8,9}
Vec b(3); // default vector of size 3, b = {5,6,7}

double* ey = new double [8];
for (int 1 = 0; i < 8; i++) eyli]l = 1;

5.5 Constant and Mutable Members 187

Vec::setDefault (8, ey); // reset defaultVec to unit
Vec a2; // new default vec of size 8, a2={1,...,1}
Vec b2(3); // new default vec of size 3, b2={1,1,1}

double* enb = new double [9];
for (int i = 0; 1 < 9; i++) enb[i] = 8*i*i + 100;
Vec c(9,enb); // c is a vector comstructed from enb.

}

Since a and a2 are not supplied with arguments, default vectors (with de-
fault sizes and default entries) are constructed. Note the default vector is
reset by calling the static member Vec::setDefault() before the declaration
of a2. Thus a and a2 are constructed differently. Similarly, b and b2 are con-
structed differently although their declarations look exactly the same. In
contrast, ¢ is constructed according to the arguments supplied to the con-
structor. From this example, it can be seen that it would be a waste of space
if each object such as b and ¢ had a copy of static member Vec::default Vec.
That is, although class Vec has member defaultVec, an object of Vec does
not have its own copy of this member. Instead, all objects of Vec share this
member. In other words, the member default Vec belongs only to class Vec.
In contrast, every object of Vec has a copy of nonstatic members such as
size and entry.

5.5 Constant and Mutable Members

Constant member functions are not supposed to modify objects of a class.
However, if a data member is declared to be mutable, then it can be changed
by a const member function. For example, the definite integral class in §5.1
can be redefined so that it has a data member for storing an approximate
value of the integral by the Trapezoidal Rule:

class integral {
private:
double lower;
double upper;
double (*integrand) (double);

mutable double value; // store value from trapezoidal
mutable bool value_valid; // value valid or not
public:

integral(double a, double b, double (*f)(double));
void changebd(double, double);
double trapezoidal(int = 100) const; // const member

};

188 5. Classes

From the user’s point of view, the function trapezoidal() does not change
the state of an object of integral. This is why it is declared to be a const
function. The reason for declaring a mutable data member value for storing
an approximate value of the integral is that trapezoidal() might be an
expensive process and repeated invocation of it can just return the definite
integral value without repetitively calculating it. Now trapezoidal() and
other members of integral can be defined as

inline integral::integral(double a, double b,
double (*f)(double)) {
lower = a; upper = b; integrand = f; value_valid = false;

}

inline void integral::changebd(double a, double b) {
lower = a; upper = b; value_valid = false;

}

double integral::trapezoidal(int n) const { // const member
if (value_valid == false || n != 100) {
double h = (upper - lower)/n; // compute integral
double sum = integrand(lower)*0.5;
for (int i = 1; i < n; i++) sum += integrand(lower+i*h);
sum += integrand(upper)*0.5;

value = sum*h; // update mutable member
value_valid = true; // update mutable member
}
return value;

}
This newly defined class integral may be used as

integral di(7.7, 9.9, log);
double d = di.trapezoidal(); // do the calculation
double e = di.trapezoidal(); // just returns value

Observe that the mutable member value is modified by a const member
function trapezoidal(). In the first call to trapezoidal(), the approximate
value of the integral is computed and assigned to variable d, while in the
second call this value is just returned to variable e without recomputing
it. The computation is not repeated in the second call since value_valid is
set to true in the first call. This technique is especially useful for adaptive
integration methods in which the number of subintervals n is not specified
as an argument to trapezoidal(), but rather is computed by an adaptive
algorithm. Since such adaptive algorithms are often expensive, avoiding
repetitive execution of them can potentially save a lot of time.

A mutable member of a const object can also be modified. For example,

5.6 Class Objects as Members 189

integral di2(1.1, 2, log); // log() in <math.h>

const integral di3(1.1, 5, exp); // a const object

double dd = di2.trapezoidal(); // const member modifies di2
double ee = di3.trapezoidal(); // OK, although di3 is const

di2.changebd(5, 9); // OK
di3.changebd(5, 9); // error, const object di3

The mutable member value of the const object di3 is modified by the
const member function trapezoidal(). Regular (non-mutable) members of
a const object can not be modified. Thus di3.changebd() is an illegal call
since changebd() modifies regular members and di3 is a const object.

An example of a class with a const data member is given at the end of
§5.6. A class with a static const data member is presented in §9.1.

5.6 Class Objects as Members

Objects of one class can be members of another class. The initialization of
such members can be done differently from other members. For example,
define a class for line segments (in two dimensions) with a direction that
contains members of another class:

class line {

pt2d oneend; // one end of the line segment

pt2d otherend; // the other end of the line segment

bool direction; // =1 if from oneend to otherend
public: // = 0 otherwise

line(pt2d, pt2d, bool); // constructor

line(pt2d, bool); // constructor
}

line::1line(pt2d a,pt2d b,bool dir): otherend(b), oneend(a) {
direction = dir;

}

line::line(pt2d b, bool dir): oneend(), otherend(b) {
direction = dir;

}

The first constructor takes two points and a bool as arguments. Initializa-
tion for class object members (endpoints of the line segment) is done in
a member initializer list in the definition of the constructor. The member
initializers are preceded by a colon and different member initializers are sep-
arated by commas. Initialization for ordinary members (such as direction
of line) is done inside the braces, which can also be done in the initializer

190 5. Classes

list. The first constructor can create an object of class line with oneend
equal to class object a, otherend equal to b, and direction equal to dir.

Constructors of the members are called before the body of the containing
class’ own constructor is executed. The members’ constructors are called
in the order in which they are declared in the class rather than in the order
in which they appear in the initializer list. The members’ destructors are
called in the reverse order of construction. For example, the construction
for member oneend as an object of class pt2d is done before otherend when
constructing an object of class line.

In the definition of the second constructor above, the endpoint oneend of
line is taken to be the default point (the origin by the default constructor
of class pt2d; see §5.1). Thus no argument is specified for it. In this case,
it can be equivalently written as one of the following.

line::1ine(pt2d b, bool dir): otherend(b) {
direction = dir;

}

line::line(pt2d b, bool dir): otherend(b), direction(dir) { }

There is an alternative way of defining constructors for some classes. For
example, the first constructor can also be defined as

line::line(pt2d a, pt2d b, bool dir): otheremnd(b) {
oneend = a;
direction = dir;

}

Here otherend is initialized to b, but oneend is first initialized to the origin
(default construction for pt2d) and then a copy of a is assigned to it. Thus
there is an efficiency advantage to using the initializer syntax, which avoids
default construction and initializes oneend to a directly. It can even be less
efficiently defined as

line::line(pt2d a, pt2d b, bool dir) { // less efficient
oneend = a;
otherend = b;
direction = dir;

}

These three versions are equivalent except for efficiency.

However, member initializers are essential for member objects of classes
without default constructors, for const members, and for reference mem-
bers. For example,

class AA {
const int i;
line n;

5.7 Array of Classes 191

line& rm;
AA(int j,pt2d p,bool d,line& c¢): i(j), n(p,d), rn(c) { }
};

Since % is a const member, n has a type of class line that does not have a
default constructor, and rn is a reference member, they must be initialized
in the initializer list, instead of inside the braces. Since constants and ref-
erences must be initialized, a class with a const or reference member can
not be default-constructed:

struct BB {
const int i;
const float f;
double& d;

};

BB b; // error, no default comstructor is provided

struct CC {
int 1i;
float f;
double d;
};

CC c; // OK, use compiler-generated default comstructor

Objects of classes without constructors or destructors can also be mem-
bers of a union. A named union is defined as a struct, where every member
has the same address. A union can have member functions but not static
members. In general, a compiler does not know which member of a union is
used. Thus a union may not have members with constructors or destructors.

5.7 Array of Classes

If a class does not have a constructor or has a default constructor, then
arrays of that class can be defined. For example,

pt2d ap[100]1;

defines an array of 100 two-dimensional points. Each of the points has been
initialized to the origin according to the default constructor of class pt2d
(see page 176). :

However, if a class has constructors that do not provide default values,
an array of objects of such a class can not be declared. For example, if a
vector class is defined as

class Vec {
double* en;
int size;

192 5. Classes

public:
Vec(int, doublex = 0); // constructor
void f(int); // a test function
};

Vec::Vec(int s, doublex d) {
en = new double [size = s];

if (@) { // if 4 is not the null pointer
for (int i = 0; i < size; i++) en[i] = d[i];

} else { // otherwise, use default
for (int i = 0; i < size; i++) en[i] = 0;

}

}

then an n by n square matrix can not be defined directly as an array of n
vectors, each of which represents a row of n elements:

int n = 100;
Vec matrix[n]; // error, Vec has no default constructor

where each matriz[i], 1 =0,1,...,n—1, is intended to be a Vec, but their
sizes can not be specified.

Instead, an array of n pointers (a double pointer), each of which points
to an object of class Vec, can be declared. For example,

void Vec::f(int n) {

Vec** tm = new Vec* [n]; // allocate space for matrix
for (int i = 0; 1 < n; i++) { // tm[i] points to an

tm[i] = new Vec(n); // object of zero-vector of
} // size n, represent row i

for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++) // assign values to entries
tmfil->en{j] = 1.0/(i + j + 1);

for (int i = 0; i < n; i++) delete tm[i];
deletel] tm; // free space after use

}

Thus tm is an array of n pointers, each of which points to an object of
Vec that contains n elements representing a row of a matrix. Since tm|i]
is a pointer, its member should be accessed by using the operator —>
(in a member function or friend, since en is a private member of Vec).
For example, tm[i|—>en[j] represents the entry at row ¢ and column j
of the matrix. This kind of awkward notation can be replaced by using
tmli][j] through operator overloading; see Chapter 6. Because tm[i] is a
single pointer that points to only one object (although this object contains

5.8 Pointers to Members 193

n elements in a row), a simple delete, instead of delete| |, should be used
when deallocating space for it. This technique can be very useful and may
also be used to define a triangular matrix as an array of pointers; see §11.3
for an application.

5.8 Pointers to Members

It is sometimes useful to deal with pointers to member functions of a class.
A pointer to a member can be thought of as a position of the member in
an object of the class, like an index in an array. It is different from pointers
to ordinary functions. Here is a simple example:

class X {
double g(double a) { return axa + 5.0; }
double h(double a) { return a - 13; }
public:
void test(X*, X);
};

typedef double (X::*pf)(double); // define member pointer

void X::test(¥X*x p, X q { // p is pointer, q has type X

double gb = p->g(5); // call member directly

double h5 = p~>h(5); // call member directly

double gl10 = q.g(10); // call member directly

double hi10 = q.h(10); // call member directly

pf ml = &X::g; // ml is a pointer to member
pf m2 = &X::h; // m2 is a pointer to member
double g6 = (p—>*m1)(6); // call thru pointer to member

double h6 = (p->*m2)(6); // call thru pointer to member

double gi12 = (q.*m1){(12); // call thru pointer to member

double hi12 = (q.*m2)(12); // call thru pointer to member
}

Here pf is defined to be a type of a pointer to a member of class X. A
pointer to a member of a class can be obtained by applying the address-of
operator & to a qualified class member name, as in &X ::g and &X :: h. The
operators —> * and .* can be used to bind pointers to members to class
objects. If m is a pointer to a member, then p—>*m binds m to the object
pointed to by p, and b.xm binds m to the object b. This technique can be
used to evaluate integrals with different integrand functions. Pointers to
members can be used in object-oriented finite element analysis code where
different coefficient functions and basis functions have to be evaluated.

194 5. Classes

A static member of a class is not associated with a particular object. Thus
a pointer to a static member is just a pointer to an ordinary function. For
example,

struct Y {
static void f(int);

};

void (*p)(int) = &Y::f;

// OK, p is a pointer to an ordinary function
void (Y::*pm)(int) = &Y::f;

// illegal, ordinary pointer assigned to pm

Here p is declared to be a pointer to an ordinary function that takes an int
as argument and returns nothing, and pm is a pointer to a member function
of class Y that takes an int and returns nothing. The first initialization is
legal since the address of static member Y :: f can be assigned to an ordinary
function pointer p, while the second is an error since the address of a static
member is assigned to a class member pointer pm.

5.9 Numeric Methods for Ordinary Differential
Equations

Many physical problems are modeled by differential equations. In this sec-
tion, some basic numeric methods for solving ordinary differential equations
are presented.

A first-order ordinary differential equation with a given initial value is
usually written in the form

‘2—‘: = f(t.z), to<t<T, (5.1)
z(to) = o, (5.2)

where z(t) is the unknown function depending on t (often representing
time) and f(¢,z) is a given (source) function depending on ¢ and z. The
independent variable ¢t changes from ¢ to T and the initial value of z at
t = tg is given as zg. An example is:

dr (1-é')z
—_—— < .
p Tret 0<t<2, (5.3)

2(0) = 3, (5.4)

The exact solution z(t) can not be found in general. Instead, approxi-
mations to the solution z(t) are sought at certain points tg < t; < ... <
txy =T for a positive integer N. Let the approximate solution at ¢t = t; be

5.9 Numeric Methods for Ordinary Differential Equations 195

denoted by zx,k =0,1,..., N, with z¢ being the given exact initial value.
The objective of a numeric method is to find values 21, 2o, ..., 2N, which
approximate the exact solution values z(t1), z(t2), ..., and z(tn), respec-
tively. One simple such method is to approximate the derivative dz/dt at
t =t by a finite difference (41 — zx)/hk, where hy = tri1 — t is called
the grid size. This is because a derivative is defined to be the limit of
difference quotients:

dx

az - lim z(try1) — (k)
dt

T h—0 R

t=tg

The smaller the grid size hy is, the more accuracy may be expected of
this approximation in the absence of roundoff errors and numeric instability.
That is, from (5.1),

g = f(te, z(tk)) = f(tk, zk),

=ty

which leads to the so-called explicit Euler’s method:
Try1 = T + b f(t, Tk)- (5.5)

Since zg is given, z; can be obtained directly from the formula with & = 0.

Then z5 can be solved by letting £ = 1 and using z;. This procedure can

go on until zx is obtained. For simplicity, equally spaced points are often

used; that is, ty =to + kh, k=0,1,..., N, with grid size h = (T —to)/N.
Euler’s method (5.5) may be programmed as

class ode {

double tini; // initial time

double ison; // initial solution

double tend; // end time

double (*sfn) (double t, double x); // source function
public:

ode(double t0, double x0, double T,
double (*f)(double, double)) { // comstructor
tini = t0; ison = x0; tend = T; sfn = £;

}
double* euler(int n) comst; // Euler with n subintervals
};
double* ode::euler(int n) comst { // explicit Euler
double* x = new double [n + 1]; // approximate solution
double h = (tend - tini)/m; // grid size
x[0] = isom; // initial solution

for (int k = 0; k < n; k++)
x[k+1] = x[k] + h*sfn(tini + k*h, x[k]);

196 5. Classes

return Xx;

1

Here data (tind for initial time, ison for initial solution, tend for ending
simulation time, and sfn for the source function) about the initial value
problem and method euler() are encapsulated into a class called ode. The
private data members can only be accessed by function member euler() and
others defined later. Copy construction and assignment and a destructor
need not be defined for such a class. The user needs to supply the number
of subintervals N to the function euler() that returns a pointer to the
approximate solution values zg,z1,...,ZnN.

For the example (5.3)-(5.4), the exact solution happens to be found as
z(t) = 12et/(1 + €t)2. It can be used to check the accuracy of the approxi-
mate solution by Euler’s method:

double f(double t, double x) { // source function
return x*(1 - exp(t))/(1 + exp(¥));

}

double exact(double t) { // exact solution
return 12*exp(t)/pow(l + exp(t), 2);

}

int main() {
ode exmp(0, 3, 2, £); // x(0) =3, T=2
double* soln = exmp.euler(100); // 100 subintervals

double norm = 0;
double h = 2.0/100; // grid size
for (int k = 1; k <= 100; k++) // compute error
norm = max(norm, fabs(exact(k*h) - soln[k]));
cout << "max norm of error by euler’s method = "
<< norm << ’\n’;

1

The maximum norm of the error between the exact solution and the ap-
proximate solution is 0.00918355. With 200 subintervals (h = 1/100), the
error is 0.0045747. When h = 1/200, the error is 0.00228309. It can be ob-
served that the error decreases linearly with the grid size h. That is, when
the grid size h is halved, the error is reduced by a factor of two. Mathemat-
ically, it can be shown that the error is proportional to A. Such a method
is said to have first-order. For some problems, the proportionality constant
is reasonably small and the explicit Euler’s method gives good accuracy.
However, for some other problems (see Exercise 5.10.17), the proportional-
ity constant is very large, which causes the method to be very inaccurate.
In other words, the explicit Euler’s method is not very stable.

5.9 Numeric Methods for Ordinary Differential Equations 197

A modification to the explicit Euler’s method is as follows.

Tyl =Tk + hkf(tk+1,$k+1)- (5'6)

This is called the implicit Euler’s method. The only difference is that the
evaluation of the source function f(¢,z) is now at t = ;1. This scheme
requires some nonlinear methods such as Newton’s algorithm (see §4.7)
to solve for xjy1 from (5.6). Its advantage is that it provides an accurate
solution for a wider range of problems than the explicit Euler’s method.
See Exercise 5.10.17. In other words, the implicit Euler’s method is more
stable than its explicit counterpart, but requires more computational work.

Based on Euler’s method, a predictor-corrector scheme can be constructed
as

T = Tk + hkf(tk,.’l,’k), (5.7)
Tk+1 = Tk + hicf(tr+1, Th),
in which a prediction Zj is computed in (5.7) based on the explicit Euler’s
method and a correction g4 is obtained in (5.8) based on the implicit
Euler’s method. Its advantage is to avoid solving a nonlinear equation as
opposed to the implicit Euler’s method, and to provide more stability than
the explicit Euler’s method.

Runge-Kutta methods are explicit since they do not require solving non-
linear equations. A second-order Runge—Kutta method is:

Tiy1 = zf + (F1 + F2)/2, (5.9)

where

Fl :hkf(tknxk)’
Fy = hif(teyr, T + F1).

A fourth-order Runge—Kutta method is:

Tht1 :$k+(F1+2F2+2F3+F4)/6, (510)
where
Fy = hi f(te, Tr),
Fy :hkf(tk+hk/2 $k+F1/2)
F3 = hef(te + hi/2, 2 + F2/2),
Fy = hpf(tesr, e + F3).

It can be shown that the error between the exact solution and numeric
solution from (5.9) is proportional to h? (second-order accuracy) while the
error for (5.10) is h* (fourth-order accuracy) with the proportionality con-
stant depending on high-order derivatives of the exact solution. In contrast,

198 5. Classes

Euler’s methods (5.5), (5.6), and (5.7)-(5.8) have accuracy proportional to
h (first-order accuracy). When the solution to a problem is well behaved
(e.g., its high-order derivatives are not very large), high-order methods such
as fourth-order Runge-Kutta methods are preferred. For problems with a
transit area where the solution changes very abruptly such as Exercise
5.10.17 with A = —500, the implicit Euler’s method may be preferred.

Now several more functions can be added to class ode for these methods.
For example,

class ode {

public: // ... in addition to other members
double* eulerpc(int n) const; // predictor--correct euler
double* rk2(int n) const; // second-order Runge--Kutta
I

double* ode: :eulerpc(int n) const {
double* x = new double [n + 1];
double h = (tend - tini)/n;
x[0] = ison;
for (int k = 0; k < n; k++) {

x[k+1] =x[k] +h*sfn(tini + k*h, x[k]); // predictor
x[k+1] =x[k] +h*sfn(tini +(k+1)*h, x[k+11); // corrector
}
return Xx;

1

double* ode::rk2(int n) const {
doublex x = new double [n + 1];
double h = (tend ~ tini)/m;
x[0] = ison;
for (int k = 0; k < n; k++) {
double tp = tini + k*h;
double f = h*sfn(tp, x[k]);
x[k+1] = x[k] + 0.5%(f + h*sfn(tp + h, x[k] + £));
}

return Xx;

See [AP98, CK99, KC96] for more details on numeric methods for or-
dinary differential equations. Notice that a function pointer is passed to
the constructor of class ode, which may impose a lot of function calling
overhead on function evaluations of sfn() inside member functions euler(),
eulerpc(), and rk2(). In §7.7, efficient techniques for avoiding such function
calling overhead are discussed.

5.10 Exercises 199

5.10 Exercises

5.10.1.

5.10.2.

5.10.3.

5.10.4.

5.10.5.

5.10.6.

Extend the class pt2d, defined in §5.1, to three-dimensional points.
The new class should have several constructors including a default
constructor, member functions move(), draw(), and a friend for cal-
culating the distance from a three-dimensional point to the origin.

Use the class for definite integrals defined in §5.1 to evaluate the
integrals in Exercises 3.14.22 and 3.14.23.

Add printing statements in the constructors and destructor of the
class triangle, declared in §5.2. For example,

triangle::triangle(pt2d vO, pt2d vi, pt2d v2) {
cout << "allocating space in triangle\n";
vertices = new pt2d [3];
/...

}

triangle::~triangle() {
cout << "deleting space in triangle\n";
delete[] vertices;

}

Write a main program calling the function g(), defined in §5.2, and
compare the outputs without and with user-defined copy constructor
and assignment. You should see space being allocated the same num-
ber of times as being deleted with user-defined copy constructor and
assignment. What do you think will happen without them?

Define the member function triangle :: area(), declared in §5.2, to
compute the area of a triangle. Note the area of a triangle in a two-
dimensional space with vertices 4, B, and C is }|(B.z — A.z)(C.y -
Ay) — (B.y — Ay)(C.x — A.z)|. Then use the triangle class to find
the area of the triangle passing through three two-dimensional points
a(5,5),b(7,8), and (20, —4).

Define all the function and friend members in class duple, as discussed
in §5.2. When defining add() for the addition of two duples, an error
message can be first printed out and the program then exited if the
two duples have different sizes. Test a few examples on all the func-
tions, especially copy construction and copy assignment, and print
out the data to see if they work as expected.

Define a vector class that contains a pointer for the entries, an integer
for the size of the vector, and one, two, and maximum norm functions.
Test your definitions on a few simple vectors.

200

5.10.7.

5.10.8.

5.10.9.

5.10.10.

5.10.11.

5.10.12.

5. Classes

Define a matrix class that contains a double pointer for the entries,
two integers for the dimension (numbers of rows and columns) of the
matrix, and one, maximum, and the Frobenius norm functions. Test
your definitions on a few simple matrices.

Define a friend function for both the matrix class and the vector class
in Exercises 5.10.6 and 5.10.7 for matrix-vector multiplication. Test
your definitions on a few simple matrices and vectors.

Define a class for a triangle given three vertices, each of which is rep-
resented by an object of another class for three-dimensional points.
Using member initializer lists, define two constructors for it, one with
three points as arguments for the three vertices and another with two
points (the third vertex is defaulted to be the origin). Also define a
member function that moves a triangle to a new location and another
member function that prints out the coordinates of the three vertices
of a triangle. Create a few triangle objects, move them to new loca-
tions, and print out the coordinates of the triangles before and after
moving them.

Implement the root-finding problem as discussed in §4.7 using a class
with the bisection method as a member function and Newton’s method
as a friend. Then apply it to Exercises 4.8.9 and 4.8.10.

A numeric quadrature has the form:

b n—1
[@t Y wista,
a i=0

where z; are called quadrature points and w; are called weights. In a
Gauss quadrature, x; and w; are chosen such that the quadrature is
exact if f(z) is a polynomial of degree p for p as big as possible. Such
z; are called Gauss points and such p is called the degree of exactness.
It can be shown that the degree of exactness of a Gauss quadrature
is 2n — 1, where n is the number of Gauss points. An example of a
Gauss quadrature is:

[soe = 3100+ 2D+ 21D

Implement this Gauss quadrature as a class with Gauss points and
weights as static members. Check that this quadrature is exact when
the integrand f(z) is a polynomial of degree less than or equal to 5.

In Gauss-Lobatto quadratures, the endpoints of the interval are also
quadrature points. An example of a Gauss—Lobatto quadrature is:

[i g0+ 2y b+ 2 fb+ g

5.10 Exercises 201

Write a class for numerically integrating an integral f: f(x)dz with
n (equally spaced) subintervals [z;_1,2;] (¢ = 1,...,n), on each of
which the above Gauss-Lobatto quadrature is applied after a linear
transformation from [z;_1, ;] onto [—1,1]. Hint: z(t) = (d — ¢)t/2 +
(d + ¢)/2 transforms [—1, 1] onto [c, d].

5.10.13. Test the class integral defined in §5.5 to see if repeated invocations
to function trapezoidal() with the default number of subintervals re-
ally do not cause recomputation of the definite integral. The member
value of integral is defined to be mutable so that it can be modified
by const function trapezoidal(). Alternatively, value may also be de-
fined to be a regular (instead of mutable) member and trapezoidal()
a nonconstant member function. For what kind of classes does the
alternative way seem better?

5.10.14. Define an n by n lower triangular matrix as a double pointer (or
say an array of n pointers) to Vec; see §5.7 for the definition of Vec.
Each of the n pointers can be allocated space for a Vec of certain
number of elements representing a row of the matrix. Assign value
1/(i+j+1.0) to the entry at row ¢ and column j fori = 0,1,...,n—1
and j =0,1,...,:. Finally, deallocate space for the matrix.

5.10.15. Define a type that is a pointer to a member of class integral as dis-
cussed in §5.1. Use pointers to members to call function trapezoidal()
and evaluate a few definite integrals this way.

5.10.16. Implement the implicit Euler’s method and the fourth-order Runge-
Kutta method for the class ode, discussed in §5.9. Test your imple-
mentation on the example (5.3)-(5.4).

5.10.17. Compare the accuracy of explicit, implicit, and predictor-corrector
Euler’s methods, and the second- and fourth-order Runge-Kutta meth-
ods for the initial value problem: dz/dt = Az, 0 <t < 2; z(0) = 1,
with different values of A = —10, —50, —100, —500, and different grid
sizes h = 1/50,1/100,1/200, 1/400, respectively. Its exact solution is
z(t) = e*. The accuracy should decrease when \ gets smaller (nega-
tively).

5.10.18. Suppose that Ms. Li deposits $10000 in an investment account that
pays an annual interest rate of 5% compounded continuously. She
then withdraws $1000 from the account each year in a continuous
way starting in year 10. Then A(t), the amount of money in the
account in year ¢, satisfies the differential equation

dA _ | 0.054, for t <10,
dt ~ } 0.054 —1000, for t > 10.

202

5. Classes

How long will the money last? That is, at what time ¢, will the account
balance A(t) = 07 (Answer: t = 44.79 years.)

To maintain a certain life standard, she decides to adjust the with-
drawal amount to inflation and withdraws $1000e%-93(¢=10) in vear
t for t > 10 (assuming an annual inflation rate of 3% compounded
continuously); then the differential equation becomes:

% _ | 0.054, for t <10,
dt ~ | 0.054 — 1000e%-03(¢t=10) f5r ¢ > 10.

How long will the money last in this case? (Answer: 30.00 years.)

6
Operator Overloading

Suppose that v1,v2, and v3 are three vectors and m is a matrix. Mathe-
matically we can write

v3 =vl +v2;

v2 = vl 4+ mx*v3;

provided the dimensions of the matrix and vectors are compatible. In C++,
we can define classes for vectors and matrices and redefine the meanings of
4, *, and = such that vector addition and matrix-vector multiplication can
be written exactly in the same way as the mathematical expressions above.
This kind of extension of operators such as +, *, and = from built-in types
to user-defined types is called operator overloading. Operator overloading
enables the C++ code of many mathematical methods to resemble their al-
gorithms, which can make programming in C++ easier and C++ programs
more readable. In this chapter, various issues on operator overloading are
discussed. Examples are complex numbers, vectors, and matrices, which
are building blocks of many scientific programs. Note that standard C++
libraries include complex numbers (§7.4) and vectors (§7.5 and §10.1.1). A
simpler and easier-to-understand version is presented here to illustrate how
operators are overloaded. A deferred-evaluation technique is also presented
to improve the efficiency of overloaded composite operators. In the final
section, operator overloading is applied to solve systems of linear equations
using the conjugate gradient method.

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

204 6. Operator Overloading
6.1 Complex Numbers

The name of an operator function is the keyword operator followed by
the operator itself; for example, operator+, operator*, and operator =. In
this section, a class called Cmpz for complex numbers is defined and some
basic operator functions are provided, some of which are class members and
friends and others are just ordinary functions. The purpose is only to show
the idea of operator overloading and a user should use the standard library
<complex> (see §7.4) for computations involving complex numbers. It is
declared as

class Cmpx { // class for complex numbers
private:
double re; // real part of complex number
double im; // imaginary part
public:
Cmpx(double x=0, double y=0) {re=x; im=y;} // comnstructor
Cmpx& operator+=(Cmpx); // operator +=, zl += z2
Cmpx& operator-={Cmpx) ; // operator -=, z1 -= z2

friend Cmpx operator*(Cmpx, Cmpx); // binary *, z = zl1 * 22
friend ostream& operator<<(ostream&, Cmpx); // cout << z;
friend istream& operator>>(istream&, Cmpx&); // cin >> z;

};

Cmpx operator+(Cmpx) ; // unary +, eg 2zl = + 22

Cmpx operator-(Cmpx) ; // unary -, eg z1 = - 22

Cmpx operator+(Cmpx, Cmpx); // binary +, eg z = z1 + 22

Cmpx operator-(Cmpx, Cmpx); // binary -, eg z = z1 - 22
Note that the operators +=, —=, +, —, *, <<, and >> are overloaded,

among which + and — are overloaded as both unary and binary operators.
The operators + and — are declared as ordinary functions since they do
not need direct access to private members of class Cmpx. The types os-
tream and istream are defined in <iostream>. The members, friends, and
ordinary functions can be defined as {the order in which they are defined
does not matter)

inline Cmpx operator+(Cmpx z) { // unary +, eg zl1 = + 22
return z;

}

inline Cmpx operator-(Cmpx z) { // unary -, eg zl = - 22
return 0 - z ; // make use of binary -

} // 0 converted to Cmpx{(0)

inline Cmpx& Cmpx::operator+=(Cmpx z) { // add-assign, y += z

6.1 Complex Numbers 205

re += z.re; im += z.im; // increment real and imaginary
return *this;

}

inline Cmpx& Cmpx::operator-=(Cmpx z) { // egy =z
re -= z.re; im -= z.im; // decrement real and imaginary
return *this;

}

inline Cmpx operator+(Cmpx a, Cmpx b) { // binary +, z=z1+z2
return a += b; // make use of +=: a += b; return a;

}

inline Cmpx operator-(Cmpx a, Cmpx b) { // binary -, z=z1-z2
return a -= b; // equivalently: a -= b; return a;

}

inline Cmpx operator*(Cmpx a, Cmpx b) { // eg z = z1 * z2
return Cmpx(a.rexb.re - a.im*b.im, a.rexb.im + a.imxb.re);

}

ostream& operator<<(ostream& s, Cmpx z) { // output

s << "(" << zZ.re << ", " << z.im << M)"; // if z=Cmpx(2,5)
return s; // output (2,5)
}
istream& operator>>(istream& s, Cmpx& z) { // pass reference
s >> z.re > z.im; // input two numbers, writtem to z
return s; // if input 3 6, then z = Cmpx(3,6)
}

With the definition for Cmpx and the overloaded operators, we can now
write:

int main() {

Cmpx a(1,1); // construction of an object
Cmpx b = a; // copy initialization
Cmpx ¢ = a + b; // addition and copy initialization
c -= b; // subtract and assign
cout << ¢ << ’\n’; // output the complex number c
c=-b; // unary operator and assignment
cout << - ¢ + axb << ’\n’;

}

Note that operators + and — do not directly manipulate the representa-
tion of an object but rely on operators += and —= . This can be very useful

206 6. Operator Overloading

when dealing with user-defined types with a lot of data such as matrices
and vectors. The usual precedence rules still hold for overloaded operators.
For example, —c + a * b means —c + (a * b), instead of (—c+a) *b. A few
more remarks are given below.

6.1.1 Initialization
The constructor with default arguments

class Cmpx {

public: // ... in addition to other members
Cumpx(double x = 0, double y = 0) { re =x; im =y; }

LB

is equivalent to the following three constructors

class Cmpx {

public: // ... in addition to other members
Cmpx() { re = 0; im = 0; } // default constructor
Cmpx(double x) { re = x; im = 0; }
Cmpx(double x, double y) { re = x; im = y; }

};

Thus the statements

Cmpx a;
Cmpx b(3);
Cmpx f = 3;

construct a to be the complex number with real and imaginary parts zero
and construct b and f to be the complex number with real part 3 and
imaginary part 0. In the third statement above, 3 is first constructed into
Cmpz(3) = Cmpzx(3,0) and then copied to f by the compiler-generated
copy constructor.

6.1.2 Default Copy Construction and Assignment

The default compiler-generated copy constructor and assignment work just
fine for this simple class and are preferred over user-defined copy construc-
tor and assignment. A default copy constructor and assignment simply copy
all members. The user could also define a copy constructor and assignment:

class Cmpx {
public: // ... in addition to other members
Cmpx(const Cmpx& c) { re = c.re; im = c.im; }
Cmpx& operator=(const Cmpx& c) {
re = c.re; im = c.im;

6.2 Operator Functions 207

return *this;
}
};
However, this is unnecessary, error-prone, and usually less efficient than
the compiler-generated default copy constructor and assignment.

6.1.8 Conversions and Mized-Mode Operations

If @ and b are of Cmpz, then in a = 2+b, the operand 2 is first converted to
Cmpz(2) by the constructor and then added to b. To avoid such conversion
and increase efficiency, mixed-mode operations may be defined:

class Cmpx {
public: // ... in addition to other members
Cmpx& operator+=(double a) {
Te += a; // only real part is changed
return *this; // imaginary not affected here
}
};
inline Cmpx operator+(Cmpx a, double b) {
return a += b; // use Cmpx::operator+={(double)
}
inline Cmpx operator+(double a, Cmpx b) {
return b += a; // use Cmpx::operator+=(double)
}

Now adding a double to a Cmpx does not touch the imaginary part of the
complex number and thus is simpler and more efficient than adding two
Cmpz.

6.2 Operator Functions

The following operators may be overloaded by a user.

+ - * / % . &
[N ! = < > +=
—= = [= %= = &= =
<< >> >>= K= == I= <=
= & [At - e
—> (] 0 new new/ | delete delete]]

The following operators can not be overloaded by a user.

208 6. Operator Overloading

(scope resolution operator)
(member selection operator)
.+ (member selection through pointer to function)

A binary operator can be defined by either a nonstatic member function
taking one argument or a nonmember function {(a friend or an ordinary
function) taking two arguments. If both are defined, overloading resolu-
tion determines which one to use or if there is an ambiguity. For any bi-
nary operator @, aa@bb can be interpreted as either aa.operator@bb or
operator@(aa,bb). The binary operators + and — are defined as nonmem-
ber functions for Cmpz in §6.1. They could also be alternatively defined
as member functions:

class Cmpx {

public: // ... in addition to other members
Cmpx operator+(Cmpx); // binary plus as a member
Cmpx operator-(Cmpx); // binary minus as a member
I
inline Cmpx Cmpx::operator+(Cmpx bb) {
return bb += *this; // no temporary object needed
}
inline Cmpx Cmpx::operator-(Cmpx bb) {
Cmpx temp = *this; // a temporary object is used
return temp -= bb; // temp -= bb; return temp;

}

When they are defined as class members, aa + bb means aa.operator+(bb)
and aa + bb is only a shorthand notation for the explicit function call
aa.operator+(bb). Thus if aa is of type Cmpz, aa+1 means aa + Cmpz(1),
which in turn is aa.operator+(Cmpz(1)). But 1+aa will not be legal, since
it means 1.operator+(aa). Here 1 is not an object of class Cmpz and the
conversion Cmpz(1) is not tried to make a Cmpz out of 1, since otherwise
it would be possible to change the meaning of operations on built-in types
such as 1+ 1. Member functions can be invoked for objects of their class and
no user-defined conversions are applied. Similarly, the statement 1 += aa
is illegal. As a general rule, an operator function intended to accept a
basic type as its first operand can not be a member function. Thus binary
operators are most commonly defined as friends or ordinary functions. On
the other hand, operators that require lvalue operands such as =, *=, and
++, are most naturally defined as members.

Note that a temporary object temp is first created by copy construction
and then returned (after being decremented by bb) in the definition of
the binary minus operator when defined as a member function, while no
temporary object is created in the operator —=. Thus a —= b is not only

6.2 Operator Functions 209

a shorthand notation, but also more efficient than a = a — b. Attempting
to avoid such a temporary object in defining the member operator— may
easily result in an error:

Cmpx Cmpx: :operator-(Cmpx bb) { // WRONG !

return *this -= bb; // this changes the object
}
Cmpx a(9, 5.7);
Cmpx b(3);
Cmpx ¢ = a - b; // a also equals Cmpx(6, 5.7)

This definition not only assigns a — b to ¢ but also changes the object a to
a — b in a statement ¢ = a — b, since a — b simply means a.operator — (b)
and xthis —= bb in the definition of — as a member function above also
changes the underlying object. A temporary object may need be created
even for member operator + when passing by reference is used for large
objects such as vectors and matrices; see Exercise 6.7.2 and §6.3.

A unary operator, whether prefix or postfix, can be defined by either
a nonstatic member function taking no arguments or a nonmember func-
tion taking one argument. For any prefix unary operator @, @aa can be
interpreted as either aa.operator@() or operator@{aa). For any postfix
unary operator @, aa@ can be interpreted as either aa.operator@(int) or
operator@(aa,int), where the int argument is used only to indicate that
the operator is postfix, distinguishing it from prefix. The unary operators
+ and — are defined as nonmember functions for Cmpz in §6.1. They can
also be defined alternatively as member functions:

class Cmpx {

public: // ... in addition to other members
Cmpx operator+();
Cmpx operator-() ;

};

inline Cmpx Cmpx::operator+() { // unary + as member, y=+z
return *this;

3

inline Cmpx Cmpx::operator-() { // unary - as member, y=-z
return Cmpx(- re, - im);

3

Prefix and postfix operators ++ are now defined for Cmpz and their use
are illustrated:

class Cmpx {
public: // ... in addition to other members

210 6. Operator Overloading

Cmpx operator++(); // prefix
Cmpx operator++(int); // postfix

};

inline Cmpx Cmpx::operator++() { // prefix as in: ++z
re++; im++; // increment both real and imaginary
return *this;

}

inline Cmpx Cmpx::operator++(int i) { // postfix as in: z++
Cmpx temp = *this;
re++; im++;
return temp;

}

Cmpx aa = 5.0;

Cmpx bb = ++aa; // bb = Cmpx(6,1), aa = Cmpx(6,1)
Cmpx cc = aa++; // cc = Cmpx(6,1), aa = Cmpx(7,2)

A user can also define ++ to increment only the real part of a complex num-
ber, which reflects the flexibility of operator overloading on user-defined
types. If a is an integer, ++a means a += 1, which in turn means a = a+1.
For user-defined operators, this is not true unless they are defined this way.
For example, a compiler will not generate a definition of Z :: operator+=()
from the definitions of Z :: operator+() and Z :: operator =().

The operators =, [], (), and —> must be defined as nonstatic member
functions to ensure that their first operand is an lvalue. The subscripting
operator {] is used in §6.3, while the function call operator () is used in
§6.3, §7.6, §10.2.1, and §10.2.2. The dereferencing operator —> can be used
to create “smart pointers” and is discussed in [Str97, LL98].

The operators = (assignment), & (address-of), and , (sequencing) have
predefined meanings when applied to class objects. They can be made in-
accessible to general users by making them private:

class X {

private:
void operator=(const X&);
void operator&();
void operator, (const X&);

};

void £f(X a, X b) {
a = b; // error, operator = is private
&a; // error, operator & is private
a, b; // error, operator , is private

}

6.3 Vectors and Matrices 211

This is sometimes necessary to reduce possible errors or to improve effi-
ciency (see §7.5 for an example).

When an operator is overloaded for many operations with the same base
type (e.g., + can be overloaded to add two complex numbers, one complex
number and one double, etc.) or different types (e.g., + can add complex
numbers, vectors, and matrices), overloading resolution (see §3.8.2, §6.4,
and §7.2.2) then comes in to determine which one to use or if there are
ambiguities. When the definition of an operator can not be found in the
scope in which it is used, then the namespaces of its arguments will be
looked up (see §4.1.5).

6.3 Vectors and Matrices

In this section, a matrix class called Mtx, a vector class called Vitr, and
their associated operations such as matrix-vector multiply are defined. The
declaration of Vir is:

class Vtr {
int lenth; // number of entries
double* ets; // entries of the vector
public:
Vtr(int, doublex); // comstructor
Vtr(int = 0, double d = 0); // all entries equal d
Vtr(const Vird); // copy comnstructor
“Vtr(O{ delete[] ets; } // destructor

int size() const { return lemth; } // return length

Vtr& operator=(const Vtr&); // overload =
Vtr& operator+=(const Vtr &); // v += v2
Vtr& operator-=(const Vtr &); // v -= v2
double maxnorm() const; // maximum norm
double twonorm() comnst; // 2-norm

double& operator[] (int i) comst { return etsfil; }
// subscript, eg v[3] = 1.2

=+ v2
- v2

<
|

friend Vtr operator+(comst Vtr&); // unary +,
friend Vtr operator-(const Vtr&); // umary -,
friend Vtr operator+(comst Vtr&, comst Vtr&);

// binary +, v = vl + v2
friend Vtr operator-(comst Vtr&, comnst Vtr&);

// binary -, v = vl - v2
friend Vtr operatorx(double, const Vtr&);

// vec-scalar multiply
friend Vtr operator*(comnst Vtr&, double);

<
]

212 6. Operator Overloading

// vec-scalar multiply
friend Vtr operator/(const Vtr&, double);

// vec-scalar divide
friend Vtr operator*(const Vtr&, const Vtr&);

// vector multiply
friend double dot(const Vtr&, const Vtr&);

// dot (inner) product
friend ostream& operator<<(ostream§, const Vtr&);

// output operator

};

For two vectors v = [vg, 1, . .., Up—1] and w = [wo, w1, ..., Wp_1], their
dot product is a scalar v - w = Z?;Ol v;w; (here @; means the complex
conjugate of w;) and their vector product is a vector v * w = [vowo, V1w,
"'7vn—1wn—1L

The default copy constructor and assignment will not work correctly in
this case, since space need be allocated using new in the construction of
an object of class Vir and deallocated in its destructor. The operator| | is
overloaded and returns a reference here so that the elements of a vector
can be referred to more conveniently. In particular, if v is of type Vir, then
its ith element can be referred to as v[i], instead of v.ets[i], and assignment
to vli] is also possible:

double a = v[i]; // better notation than v.ets[i]
v[i] = 10; // operator[] returns a reference

Here are the definitions of the members and friends of class Vir:

inline void error(char* v) { // auxiliary fcn
cout << v << " program exited\n"; // include <iostream>
exit(1); // include <stdlib.h>

}

Vir::Vtr(int n, doublex abd) { // constructor

ets = new double [lenth = n];
for (int i = 0; i < lenth; i++) ets[i]= *(abd +i);

}

Vtr::Vtr(int n, double a) { // constructor
ets = new double [lenth = n];
for (int i = 0; i < lenth; i++) ets[i] = a;

}

Vtr::Vtr(const Vtr & v) { // copy constructor
ets = new double [lenth = v.lenth];
for (int i = 0; i < lenth; i++) ets[i] = v[i];

}

6.3 Vectors and Matrices 213

Vtr& Vtr::operator=(const Vtr& v) { // overload =

if (this != &v) { // beware of self-assignment
if (lenth != v.lenth) error("bad vector sizes");
for (int i = 0; i < lenth; i++) ets[i] = v[i];
}
return *this;
}

Vtr& Vir::operator+=(const Vtr& v) { // add-assign, u +=v
if (lenth != v.lenth) error("bad vector sizes");
for (int i = 0; i < lenth; i++) etsfi] += v[i];
return *this;

}

Vtr& Vir::operator-=(const Vtr& v) { // subtract-assign
if (lenth != v.lenth) error("bad vector sizes");
for (int i = 0; i < lenth; i++) ets[i] -= v[i];
return *this;

}

inline Vtr operator+(const Vtr& v) { // usage: u=+v
return v; // unary +

}

inline Vtr operator-(const Vtr& v) { // usage: u=-v
return Vtr(v.lenth) - v; // unary -

}

Vtr operator+(const Vtr& vi, const Vtr& v2) { // addition
if (vl.lenth != v2.lenth) error("bad vector sizes");
Vtr sum = vi; // would cause error without copy comstructor
sum += v2; // eg, vl would be changed in v =vi1 +v2;
return sum; // since sum.ets would equal vl.ets

}

Vtr operator-(const Vtr& vi, const Vtr& v2) { // subtract
if (vl.lenth != v2.lenth) error("bad vector sizes");
Vtr sum = vi; // create a temporary object
sum —= v2;
return sum; // members of sum returned

} // sum is then destroyed

Vtr operator*(double scalar, const Vtr& v) {
Vtr tm(v.lenth); // scalar-vector multiply

214 6. Operator Overloading

for (int i = 0; i < v.lenth; i++) tm[i] = scalar*v[il;
return tm;

}

inline Vtr operator*(const Vtr& v, double scalar) {
return scalar*v; // scalar-vector multiply

}

Vtr operator*(const Vtr& vi, comst Vtr& v2) { // multiply
if (vl.lenth != v2.lenth) error("bad vector sizes");
int n = vi.lenth;

Vir tm(n);

for (int i = 0; i < mn; i++) tm[i] = v1[il*v2[i];
return tm;

}

Vtr operator/(comst Vtr & v, double scalar) {
if (iscalar) // vector scalar divide
error("division by zero in vector-scalar division");
return (1.0/scalar)*v;

}

double Vtr::twonorm() comst { // two (euclidean) norm
double norm = ets[0]*ets[0];
for (int i = 1; i < lenth; i++) norm += ets[il*ets[i];
return sqrt(norm);

}

double Vtr::maxnorm() comst { // maximum norm
double norm = fabs(ets[0]);
for (int i = 1; 1 < lenth; i++)
norm = max(norm, fabs(ets[il)); // max() in <algorithm>
return norm;

}

double dot(const Vtr &vl, const Vir& v2) { // dot product
if (vl.lenth != v2.lenth) error("bad vector sizes");
double tm = v1[0]*v2[0];
for (int 1 = 1; i < vl.lenth; i++) tm += v1i[i]l#*v2[i];
return tm;

}

ostreamg operator<<(ostream& s, const Vtr& v) { // output
for (int i =0; i < v.lenth; i++) {
s << V[lJ <L n;

6.3 Vectors and Matrices 215

if (i%10 == 9) s << "\n"; // print 10 elmts on a line
}
return s;

}

Note that without the user-defined copy constructor, erroneous results
would occur in statements such as v = vl + v2, which would cause the
summation vl + v2 to be assigned to both v1 and v. The reason is that in
the definition of the binary operator + above, the variable sum is copy-
constructed from v1 and thus sum.ets would equal v1.ets with a compiler-
generated copy constructor. Thus any update to sum would occur to entries
of vl as well. Compared to class Cmpz in §6.1, temporary objects are cre-
ated for Vitr in the definitions of member functions such as the binary
operator +. This may make operation v1 + = v2 noticeably more efficient
than a seemingly equivalent one: v1 = v1+v2. The code is also written such
that the program will exit if two vectors of different sizes are accidentally
added or subtracted.

Now vector operations in C++ can be written in a similar way to con-
ventional mathematical notation. For example,

void £ {
int m = 500;
double* v = new double [m];
for (int i = 0; 1 < m; i++) v[i] = i*i + 10;

Vir vi(m, v); // create vli from v

Vtr v2(m); // zero vector of size m
for (int i = 0; i < m; i++) v2{[i] = 5xi - 384;

Vtr v3(m, 5.8); // every entry equals 5.8
Vtr v4 = - vl + 3.3%v3; // resemble mathematics
v4 += v2;

cout << v4; // output vector

Vtr vb = - vixv4; // vector multiply

double a = dot(vl, vb); // dot product

Below is a class Mtz for matrices, in which some operations such as
matrix addition and matrix-vector multiplication are defined. To compare
the difference in defining member functions and friends, matrix addition
is implemented as a member function and matrix subtraction as a friend.
This implementation detail should not have much effect on how the Mtz
class is going to be used.

class Mtx {
private:
int nrows; // number of rows

216 6. Operator Overloading

int ncols; // number of columns

double** ets; // entries of matrix
public:

Mtx(int n, int m, double*x); // constructor (n by m)

Mtx(int n, int m, double d = 0); // all entries equal d

Mtx(const Mtx &); // copy constructor

Mx(); // destructor

Mtx& operator=(const Mtx&); // overload =

Mtx& operator+=(const Mtx&); // overload +=

Mtx& operator-=(const Mtx&); // overload —=

Vtr operatorx(const Vtr&) const; // matrix vec multiply

double* operator[] (int i) const { return ets[i]; }

// subscript, entry at row i and column j is [i][j]
double& operator() (int i, int j) { return ets[i][j]; }

// subscript, entry at row i and column j is (i,j)

// Implement plus as a member fcn. minus could also be
// so implemented. But I choose to implement minus as
// a friend just to compare the difference

Mtx& operator+() const; // unary +, ml = + m2
Mtx operator+(const Mtx&) const; // binary +, m = mi+m2
friend Mtx operator-(const Mtx&); // unary -, mi = - m2

friend Mtx operator-(const Mtx&,const Mtx&); // binary -
};

The definitions of these members and friends can be:

Mtx::Mtx(int n, int m, double** dbp) { // comstructor
nrows = n;

ncols = m;
ets = new double* [nrows];
for (int i = 0; i < nrows; i++) {

ets[i] = new double [ncols];
for (int j = 0; j < ncols; j++) ets[i] [j] = dbplil [j];

}
}
Mtx::Mtx(int n, int m, double a) { // constructor
ets = new double* [nrows = n];
ncols = m;
for (int 1 = 0; i< nrows; i++) {
ets[i] = new double [ncols];
for (int j = 0; j < ncols; j++) ets[i] [j] = a;
}

6.3 Vectors and Matrices 217

Mtx: :Mtx(const Mtx & mat) { // copy comstructor
ets = new double* [nrows = mat.nrows];
ncols = mat.ncols;
for (int i = 0; i< nrows; i++) {
ets[i] = new double [ncols];
for (int j = 0; j < ncols; j++) ets[i][j] = mat[i] [j];
}
}

inline Mtx:: "Mtx(){ // destructor
for (int i = 0; i< nrows; i++) delete[] ets[i]l;
delete[] ets;

}

Mtx& Mtx::operator=(const Mtx& mat) { // copy assignment
if (this != &mat) {
if (nrows != mat.nrows || ncols != mat.ncols)
error("bad matrix sizes");
for (int i = 0; 1 < nrows; i++)
for (int j = 0; j < ncols; j++)
ets[i1(j] = mat[i]l[j];
}
return *this;

}

Mtx& Mtx::operator+=(const Mtx& mat) { // add-assign
if (nrows != mat.nrows || ncols != mat.ncols)
error("bad matrix sizes");
for (int i = 0; i < nrows; i++)
for (int j = 0; j < ncols; j++)
ets[il [j] += mat[i] [j];
return *this;

}

Mtx& Mtx::operator-=(const Mtx& mat) { // subtract-assign
if (nrows !'= mat.nrows || ncols != mat.ncols)
error("bad matrix sizes");
for (int i = 0; i < nrows; i++)
for (int j = 0; j < ncols; j++)
ets[i] [j] -= mat[i]l[j];
return *this;

}

inline Mtx& Mtx::operator+() comst { // usage: mi = + m2

218 6. Operator Overloading

return *this;

}

inline Mtx operator-(const Mtx & mat) { // ml = -m2
return Mtx(mat.nrows, mat.ncols) - mat;

}

Mtx Mtx::operator+(const Mtx & mat) const { // m = ml + m2
if (nrows != mat.nrows |} ncols != mat.ncols)

error("bad matrix sizes");

Mtx sum = *this; // user-defined copy comstructor
sum += mat; // is important here
return sum; // otherwise ml would be changed

¥

Mtx operator-(const Mtx& mil, const Mtx& m2) { // m=ml-m2
if(ml.nrows != m2.nrows || ml.ncols != m2.ncols)
error("bad matrix sizes");
Mtx sum = mil;
sum -= m2;
return sum;

¥

Vtr Mtx::operator*(const Vtr& v) const { // u = m*v

if (ncols != v.size())

error("matrix and vector sizes do not match");
Vtr tm(nrows);
for (int i = 0; 1 < nrows; i++)

for (int j = 0; j < ncols; j++)

tm[i] += ets[il [jI1*v[j];

return tm;

}
Then the following code can be conveniently written.

int main() {
int k = 300;
doublex** mt = new doublex [k];
for (int i = 0; i < k; i++) mt[i] = new double [k];
for (int i = 0; i < k; i++)
for (int j = 0; j < k; j++) mt[i1[j] = 2*ixj + i + 10;

Mtx mi(k, k, mt); // construct ml from mt
Mtx m2(k, k, 5); // construct m2, all entries = 5
Mtx m3(k, k); // construct m3, all entries = 0

for (int i = 0; i < k; i++) // update entries of m3

6.3 Vectors and Matrices 219

for (int j = 0; j < k; j++) m3[il[3] = 1/(2%i + j + 5.7);

m3 += - ml + m2; // resemble mathematics

ml -= m3; // very readable

Vtr vv(k);

for (int 1 = 0; i < k; i++) vv[i] = 6%i + 3;

vv = m3*vv; // resemble mathematics
}

Since the function call operator () is overloaded, a matrix entry can also
be accessed using FORTRAN notation such as m3(5,7) = 10.

Note that pass by reference has been used when possible in the definition
of member functions and friends of classes Mtz and Vitr. This is more
efficient when dealing with large objects than pass by value. In the latter
case operands are copied according to the copy constructor. Pass by value
is used in C'mpz, where only two doubles of a complex number are copied.
Since matrices and vectors often have many entries, copying their members
would impose significant overhead. For example, if the binary plus operator
is defined through pass by value:

Mtx Mtx::operator+(Mtx mat) { // usage: ml + m2

Mtx sum = *this; // user-defined copy constructor

sum += mat; // is important here

return sum; // otherwise ml would be changed
}

then in the statement m = m1 + m2 (or equivalently m = ml.operator+
(m2)), members of the argument m2 will be copied to the parameter mat
by calling the copy constructor. The return value sum is also copied to
the calling environment (as a temporary object, which is then assigned to
variable m by the copy assignment operator; this temporary object can
often be optimized away). Using pass by reference just creates an alias,
instead of copying all the entries of a matrix. It would be more efficient if
the return value could be passed by reference. However, pass by reference
for a local variable (such as sum in the definition of the binary + above)
can not be used (see §3.8.4).

Pointers can not be used because it is not possible to redefine the meaning
of an operator acting on a pointer or any other built-in type.

The vector class Vtr (especially its template form in Chapter 7) may be
used to replace one-dimensional built-in arrays (see §3.3) since it provides
dynamic memory allocation and does not require the user to allocate and
deallocate space explicitly. For example,

double g(int n) {

Vtr a(n); // allocate dynamic memory
for (int i = 0; i < n; i++)

220 6. Operator Overloading

ali]l = std::sin(i*i); // can be used like an array
return a.twonorm(); // space freed automatically

1

Besides, it provides basic vector operations and the user can easily extend
it to meet specific needs. However, it may not be as efficient as the stan-
dard library <vector> (see §10.1.1) and <valarray> (see §7.5), which also
provide many more operations than Vir.

Since C++ standard libraries do not include matrices, the matrix class
Mtz (especially its template form in Chapter 7) may be used in place of
two-dimensional built-in arrays (see §3.3). For example,

double h{int n, int m) {
Mtx mx(n, m); // allocate dynamic memory
for (int i = 0; i < m; i++) // for an n by m array
for (int j = 0; j < m; j++)
mx[iJ[j] = 1.2/(i + j + 1); // can be used like array
return mx.maxnorm() ; // space freed implicitly

1

From a user’s point of view, no double pointers and memory management
need be manipulated directly.

6.4 Explicit and Implicit Conversions

A constructor with one argument also defines a conversion. For example,

class Cmpx {

public: // ... in addition to other members
Cmpx (double a); // constructor from double to complex
Cmpx (const Cmpx &); // copy comstructor

};

void f(Cmpx);

Cmpx z = 2.2; // initialize z to Cmpx(2.2)

£(5.5); // call fcn f with argument Cmpx(5.5)

The constructor first implicitly converts 2.2 into Cmpz(2.2), and then ini-
tializes z with the complex number Cmpz(2.2). This is called implicit con-
version. For some types, this conversion may not be desirable. For example,
conversion from int to an enumeration type may cause truncation. Implicit
conversion can be suppressed by declaring a constructor to be explicit.
With an explicit constructor, conversion can not be done implicitly. For
example,

class Cmpx {
public: // ... in addition to other members

6.4 Explicit and Implicit Conversions 221

explicit Cmpx(double a); // explicit comstructor

Cmpx (const Cmpx &) ; // copy constructor
};
void f(Cmpx);
Cmpx y = 2.2; // error, implicit conversion disallowed
Cmpx z = Cmpx(2); // 0K, explicit conversion
£(5.5); // error, can not convert 5.5 to Cmpx(5.5)
£ (Cupx(5.5)); // COK
f(z); // OK

Conversion operators can also be defined to convert one type to another.
If X is aclass and T is a type, then the member function X :: operator T()
defines a conversion from X to T. For example, one can define a class for
4-bit nonnegative integers, called tiny, that can be assigned to and from
integers:

class tiny {

char v;
void assign (int i) { // for range checking
if (1 & “0xf) { cout << "range error\n"; exit (1); }
v = 1i;
}
public:
tiny(int i) { assign(i); } // constructor

tiny& operator=(int i) { assign(i); return *this; }

operator int() comst { return v; } // conversion operator
I
Note that Oxf is a hexadecimal number and (f)is = (1111)2 = (15)0,
where (n), represents number n in base b. The bitwise expression i &
T 0xzf yields a value having a bit representation with the four low-order
bits zero and all other bits the same as the high-order bits of i. The hex
number "0z f is called a mask for high-order bits beyond the four low-
order bits, and Oz f a mask for the four low-order bits. Range checking is
made when a tiny is initialized by an int and when an int is assigned to a
tiny. No range checking is needed when copying a tiny so that the default
copy constructor and assignment work just fine for this simple class. Now
implicit conversion from tiny to int is handled by the conversion operator
tiny :: operator int(). Note that the type being returned is part of the
name of the conversion operator and can not be repeated in the function:

class tiny {
public: // ... in addition to other members
operator int() const { return v; } // correct

};

222 6. Operator Overloading

class tiny {

public: // ... in addition to other members
int operator int() const { return v; } // wrong !!!
}; // no return type needed

Now variables of tiny and int can be converted to each other freely:

tiny t = 12; // int is assigned to tiny
int i = t; // tiny is converted to int
cout << int(t); // convert t to int and print it out
tiny tt = 16; // range error occurs, program exits.

Note that ambiguity can arise with user-defined conversions and user-
defined operators. For example,

tiny operator+(tiny t, tiny s) { // overload + for tiny
return tiny(int(t) + int(s));
}

void f(tiny t, int i) {
t + i; // error, ambiguous: int(t) + i or t + tiny(i) 7

}

The user should replace t + ¢ by int(¢) + ¢ or t + tiny(i) according to what
is intended.

In some cases, a value of the desired type can be constructed by repeated
use of constructors or conversion operators. This must be done by explicit
conversion. Only one level of user-defined implicit conversion is legal. User-
defined conversions are considered only if they are necessary to resolve a
call. For example,

struct X { X(int); X(double); }; // X has two constructors
struct Y { Y(int); Y(double); }; // Y has two constructors
struct Z { Z(X); }; // Z has one constructor
X £(X);

Y £(Y);

Z g(2);

X h(X);

X h(double);

£(5); // error, ambiguous: f(X(5)) or f£(Y(5)) ?
£(X(5)); // 0K

f(Y(3.14)); // K

£(3.14); // error

g(5.6); // error, g(Z(X(5.6))) is not tried.

h(5); // 0K, h(double(5)) is used, h(X(5)) not used

In the call g(5.6), two user-defined conversions g(Z(X(5.6))) would be
needed and thus are not tried. Only one level of user-defined implicit con-

6.5 Efficiency and Operator Overloading 223

version is legal. In the call A(5), the standard conversion h(double(5)) for
the argument from int to double is preferred over the user-defined conver-

sion h{(X(5)).

6.5 Efficiency and Operator Overloading

When dealing intensively with large objects such as matrices and vectors,
efficiency may be a predominating factor to be considered in many scientific
computing applications. It was mentioned in §6.3 that creating temporary
objects or copying large objects could slow down a program.

In addition, multiple loops in composite operations can also affect ef-
ficiency. For example, in the so-called vector sazpy (mnemonic for scalar
a x plus y) operation z = a * z + y for vectors x,y, z and scalar a, one
loop is needed for vector-scalar multiplication ax* z, another loop for vector
addition a xx + y, and yet another for copying the result to vector z, when
using the vector class Vir defined in §6.3. Also temporary objects may
need be created for holding a * z and a * = + y in this process (besides the
construction and destruction of temporary objects for automatic variables
in the definitions of operators * and + for Vitr). That is, a few loops are
needed for a simple saxpy operation. A much more efficient and traditional
way for defining the sazpy operation is to write only one loop without any
temporary objects, as is normally done in FORTRAN 77 and C:

inline void saxpy(double a,const Vtr& x,const Vtr& y,Vtr& z){
for (int i = 0; i < z.size(); i++) z[i] = a*x[i] + y[i];

}

But this would sacrifice readability and defeat the purpose of operator
overloading. That is, instead of writing

Z = a¥x + y;
one would have to write a less expressive statement
saxpy(a, x, ¥y, 2);

in order to improve efficiency.

How can one achieve the same efficiency as in the traditional way while
still using operator overloading?

Below is a technique to achieve this. The idea is to defer the evaluations
of intermediate suboperations in a composite operation until the end of the
operation. First, define a class called Sax for scalar-vector multiplication,
which does not do the evaluation but simply constructs an object holding
the references to the scalar and vector to be multiplied:

struct Sax {
const double& a; // reference is used to avoid copying

224 6. Operator Overloading

const Vtr& x; .
Sax(const double& d, const Vtr& v) : a(d), x(v) { }
};

inline Sax operator*(const double& d, const Vtr& v) {
return Sax(d,v); // overload operator *

}

Then define a class called Sazpy for vector sazpy operations (Again, to
avoid creating temporary objects, evaluations of suboperations are de-
ferred).

struct Saxpy {
const double& a; // reference is used to avoid copying
const Vtr& x;
const Vtr& y;
Saxpy(const Sax& s,const Vtr& u) : a(s.a),x(s.x),y(w) { }
Y

inline Saxpy operator+(const Sax& s, const Vtr& u) { //a*x+y
return Saxpy(s, u); // overload +
}

inline Saxpy operator+(const Vtr& u, const Sax& s) { //x+a*y
return Saxpy(s, u); // overload +
}

Finally, define a copy constructor and a copy assignment from Sazpy to
Vtr, in which the evaluation of the sazpy operation is done:

class Vtr {
int lenth; // number of entries
double* ets; // entries of vector
public:
Vtr(int, double*); // comstructor
Vtr(int, double = 0); // comnstructor
Vtr(const Vtr&); // copy constructor
Vtr(const Saxpy&); // constructor from Saxpy
“Vtr(){ delete[] ets; } // destructor
Vtr& operator=(const Vtr&); // overload assignment

Vtr& operator={(const Saxpy&); // overload assignment
int size() const { return lenth; }
double& operator[](int i) comst { return ets[i]; }

};

Vtr::Vtr(const Saxpy& sp) {

6.5 Efficiency and Operator Overloading 225

ets = new double [lenth = sp.x.size()];
for (int i = 0; i < lenth; i++)

ets[i] = sp.a*sp.x[i] + sp.ylil;
}

Vtr& Vtr::operator=(const Saxpy& sp) {
for (int i = 0; i < lenth; i++)
ets[i] = sp.a*sp.x[i] + sp.y[il;
return *this;

}

With the new definition of class Vir, the usual scalar-vector multiplication
operator (see §6.3) should not be defined, since otherwise ambiguity would
arise. Notice that Vitr is used when defining Sazpy, and Sazpy is used
when defining Vitr. A forward declaration is actually needed to resolve this
chaining. With a forward declaration for Vitr, the name of class Vtr can be
used in Saz and Sazpy before Vir is defined, as long as its use does not
require the size of Vitr or its members to be known.

Now a sazpy operation can be evaluated without creating any temporary
Vitr objects and with only one loop:

int main() {
int k = 50000;
double* p = new double [k];
for (int i = 0; i < k; i++) pli] = i;

vtr v(k, p); // create a Vtr object using p
vtr w(k, 5); // create another Vtr object
Vtr u = 5*%v + w; // efficient saxpy operation
v = u+ 3.14*w; // efficient saxpy operation

}

In fact, a sazpy operation z = a * z + y is now equivalent to
z.operator=(Sazpy(Saz(a, x),y)).

Due to inlining for operators * and + above, this should be as efficient as
the traditional sazpy() function. This deferred evaluation technique can be
generalized into what are called expression templates; see §7.7.3.
Run-time comparisons can be made for the three versions of the sazpy
operation based on the straightforward operator overloading as defined in
§6.3, the deferred-evaluation operator overloading as defined in this section,
and the traditional procedural (C or FORTRAN) style defined as function
sazpy() early in this section. For vectors of size 50000, sazpy operations are
done repeatedly 1000 times. The three versions take 152, 57, and 72 seconds,
respectively, on a Pentium PC (100 MHz) running Linux with a GNU C++
compiler. The same operations take 104, 25, and 25 seconds, respectively,

226 6. Operator Overloading

on a SUN Ultra Workstation (167 MHz) running Solaris with a GNU C++
compiler. They take 67, 14, and 19 seconds, respectively, on a Pentium
IT1 PC (400 MHz) running Linux with a GNU C++ compiler. On an SGI
machine running UNIX, they take 78, 18, and 26 seconds, respectively. On
these four different machines, the straightforward operator overloading is
three to five times as slow as the deferred-evaluation operator overloading.
The latter is even faster than the traditional procedural function call on
three of the four machines, which is hard to explain.

6.6 Conjugate Gradient Algorithm

In this section, the conjugate gradient algorithm is presented and coded in
C++ for solving systems of linear equations. The details of this algorithm
are given in Chapter 11.

Let (¢,n) denote the usual dot product in R™ and A = (a; ;) a real n by
n symmetric and positive definite matrix; that is,

a;; = Gji, forall ¢,7=0,1,...,n -1, (6.1)
(AL, &) >0, forall £€R"and& #0. (6.2)
Given an initial guess zo, the conjugate gradient algorithm iteratively

constructs a sequence {z}, which converges to the solution of the matrix
equation Az = b. It can be stated as follows.

Algorithm 6.6.1 Tuking an initial guess xo € R™ and setting ro = b —
Axg, po = 1o, construct the sequence zi, for k =0,1,2,...,

(T, Tk)
ap = S TR) 6.3
"~ {Apx, i) (6.3)
Tk+1 = Tk + CkDk, (6.4)
Tk+1 = Tk — Ok APk, (6.5)
(The1,The1)

= — 6.6
B (T Tk) (6.6)
Pk+1 = Tk+1 + BeDk- (6.7)

Equation (6.4) shows how a more accurate solution zj41 is obtained from
an old iterate zx. The vectors p; are called search directions and the scalars
oy search lengths. It can be shown easily that 7441 = 7% — arApy = b —
Az 1. Thus ri4; represents the residual corresponding to the approximate
solution zgy1.

This algorithm can be implemented with only one matrix-vector multi-
plication and two vector dot products, two scalar-vector multiplications,
and one vector sarpy operation per iteration. The iterative process can
be stopped when a norm of the residual rx = b — Azy is smaller than a

6.6 Conjugate Gradient Algorithm 227

prescribed small number € or the total number of iterations has exceeded
a given number. The closer is the initial guess g to the exact solution, the
faster is the convergence. However, the initial guess zg is often taken to the
zero vector when not much information is known about the exact solution.

It

can be shown that, for Hermitian positive definite coefficient matrix A4,

the iterates x converge to the exact solution within n iterations no matter
what the initial guess zg is, in the absence of roundoff errors (i.e., in exact
arithmetics).

it

Making use of the vector and matrix classes defined in previous sections,
can be coded as

class Mtx {
public: // ... in addition to other members

int CG(Vcr& x, comst Vcr& b, double& eps, int& iter);

/* Conjugate gradient method for Ax = b.

*/
};

it returns 0 for successful return and 1 for breakdowns

A: symmetric positive definite coefficient matrix
X: on entry: initial guess; on return: approximate soln
b: right side vector
eps: on entry: stopping criterion, epsilon

on return: absolute residual in two-norm

for approximate solution

iter: on entry: max number of iteratioms allowed;

on return: actual number of iterations taken.

int Mtx::CG(Vcr& x, const Vcr& b, double& eps, int& iter) {

if (nrows != b.size())
cout << "matrix and vector sizes do not match\n";
const int maxiter = iter;

Ver r = b - (*this)*x; // initial residual
Ver p = r1; // p: search direction
double zr = dot(r,r); // inner prod of r and r

const double stp = eps*b.twonorm(); // stopping criteriomn

if (r.twonmorm() == 0) { // if initial guess is true soln,
eps = 0.0; // return. Otherwise division by
iter = 0; // zero would occur.
return 0;

}

for (iter = 0; iter < maxiter; iter++) { // main loop
Ver mp = (*this)#*p; // matrix-vector multiply

228 6. Operator Overloading

double alpha = zr/dot(mp,p); // divisor=0 only if r=0
x += alpha*p; // update iterative soln
r -= alpha*mp; // update residual

if (r.twonorm() <= stp) break; // stop if converged
double zrold = zr;

zr = dot(r,r); // dot product
p = 1 + (2r/zrold)*p; // zrold=0 only if r=0
}
eps = r.twonorm();
if (iter == maxiter) return 1;
else return O;
} // end CG(Q)

With operator overloading, the main loop in the code resembles the al-
gorithm very closely. Now the conjugate gradient algorithm can be tested
to solve a linear system with a 300 by 300 Hilbert coefficient matrix (which
is symmetric and positive definite) and a known solution vector:

int main() {
int n = 300;
Mtx a(n, n); // n by n Hilbert matrix
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) alil[j] = 1/ + j + 1.0);

Ver t(n) ; // exact solution vector of size n
Ver x(n); // initial guess and solution vector
for (int i = 0; i < n; i++) // true solution

t[i] = 1/(i + 3.14);

int iter 300;
double eps = 1.0e-9;

int ret = a.CG(x, a*t, eps, iter); // call CG algorithm

if (ret == 0) cout << "CG returned successfully\n";
cout << iter << " iterations are used in CG method.\n";
cout << "Residual = " << eps << ".\n";

cout << "Two-norm of exact error vector = "
<< (x - t).twonorm() << ’\n’ ;

The output of this program is:

CG returned successfully

11 iterations are used in CG method.
Residual = 1.31454e-09.

Two-norm of exact error vector = 4.44765e-06

6.7 Exercises 229

The maximum number of iterations allowed can be taken to be the di-
mension of the matrix. In Chapter 11, this algorithm is used to solve matrix
equations with real and complex matrices in different precisions and differ-
ent matrix storage formats.

6.7 Exercises

6.7.1.

6.7.2.

6.7.3.

6.7.4.

6.7.5.

6.7.6.

Test and run the class for complex numbers defined in §6.1. Add more
operations such as division, complex conjugate, complex equality op-
erator == and inequality operator !=, prefix and postfix operators
——, modulus, argument, and nth roots.

Modify the binary + and — operator functions for Cmpz as defined
in §6.1 so that they have prototype:

Cmpx operator+(const Cmpx&, const Cmpx&);
Cmpx operator-(const Cmpx&, const Cmpx&);

The only difference is that pass by reference is now used in argument
passing. Define these two functions and make sure your definitions
do not cause unwanted side effects.

Test and run the class for vectors defined in §6.3. Then comment out
the user-defined copy constructor and copy assignment and try to
add two vectors v = v1 +v2. What would happen to vector v1 in this
vector addition? Could any other vector operations also be affected
by depending on the compiler-generated copy constructor and copy
assignment?

Redefine the class for vectors defined in §6.3 so that it provides range
checking for vector indexes. That is, if v is a vector, then accessing
v[i] with ¢ < 0 or ¢ > v.size() will give a run-time error and exit the
program.

Define a new class called Cvec for vectors of complex numbers using
the simple definition in §6.1 and Exercise 6.7.1 for complex numbers.
Provide basic operations (similar to those in §6.3 for real vectors) for
complex vectors such as vector addition, vector multiplication, vector-
scalar multiplication, and dot product. Note that the dot product
of two complex vectors includes complex conjugation of the second
vector.

Test and run the class for matrices defined in §6.3. Add more opera-
tions such as matrix-matrix multiplication, matrix-scalar multiplica-
tion, and one, maximum, and Frobenius matrix norms.

230

6.7.7.

6.7.8.

6.7.9.

6.7.10.

6.7.11.

6.7.12.

3.7.13.

6. Operator Overloading

Implement the Gauss quadrature in Exercise 5.10.11 as the dot prod-
uct of two vectors; one vector represents the weights and the other
represents the function values at quadrature points. Evaluating defi-
nite integrals as dot products enables one to deal easily with integrals

with the integrand being the product or sum of several functions (see
87.7).

Following the idea of Exercise 6.7.7, implement the Gauss-Lobattc
quadrature problem in Exercise 5.10.12 as evaluating dot products
on subintervals of a given interval [a, b].

Mimic the class tiny defined in §6.4 to define a class for 6-bit non-
negative integers that can mix freely with integers in arithmetic op-
erations. Provide range checking when assigning an ¢nt to a variable
of such a class and the conversion operator from it to int.

Test and run the deferred-evaluation operator overloading code for
vector sazpy operations as defined in §6.5. Compare the run-time on
your machine for the straightforward operator overloading as defined
in §6.3, the deferred-evaluation operator overloading as defined in
§6.5, and the traditional procedural-style function call sazpy() as
defined in §6.5.

Extend the vector class defined in §6.5 using deferred-evaluation oper-
ator overloading, so that it will include efficient vector addition anc
scalar-vector multiplication (without any temporary vector objects
and with a minimum number of loops).

Define a matrix class based on deferred-evaluation operator overload-
ing as discussed in §6.5 to support efficient matrix-vector gazpy (gen-
eral A x plus y) operation z = A x z + y, where z,y, z are vectors
and A a matrix. The implementation should not use any temporary
vector objects and should apply only a minimum number of loops.

Apply the conjugate gradient algorithm to solve a system of linear
equations with a symmetric and positive definite coefficient matrix,
for example, with a Hilbert matrix of dimension 500 and a giver
right-hand side vector. Compute the two-norm of the residual of the
numeric solution to check its accuracy.

7
Templates

C++ provides a mechanism, called template, that allows a type to be
a parameter in the definition of a class or function. For example, a class
template allows a uniform and general definition for vectors whose elements
can be int, float, double, long double, and so on. A function template
permits its arguments and return value to have type parameters. This is
different from function overloading that requires several similar definitions
to be given.

A template is often called a parameterized type that directly supports
generic programming. What a template provides is referred to as compile-
time polymorphism, since the compiler will generate different forms of a
template according to the types of the actual arguments used. As function
overloading, class and function templates impose no run-time overhead.

Besides talking about class and function templates, this chapter also
presents standard libraries on complex numbers, valarrays, and numeric
algorithms. Surprisingly, templates can be used to improve run-time effi-
ciency. Several efficient template techniques are given. The chapter ends
with a section on polynomial interpolation.

7.1 Class Templates

The keyword template is used when defining a template class or function.
For example, a simple template class for vectors with a type parameter T
can be declared as

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers
© Springer Science+Business Media New York 2001

232 7. Templates

template<class T> class Ver {

int lenth; // number of entries

T* vr; // entries of vector
public:

Ver(int, const T* const); // constructor

Ver(int = 0, T = 0); // constructor

Vcr(const Vcrd); // copy comstructor

“Ver(){ delete[] vr;} // destructor

int size() const { return lenth; } // number of entries

Vcr& operator=(const Vcrk); // assignment

T& operator[](int i) { return vr[il; } // subscripting

Vcr& operator+={const Vcrd); // v += v2

T maxnorm() const; // maximum norm

template<class S> // dot product

friend S dot{(const Vcr<S>%, const Vcr<S>%&);

};

The template < class T > prefix specifies that a template is being declared
with the template type parameter T. The scope of T extends to the end
of the declaration. Here T means a type name that need not be a class.
If one prefers, a template can be equivalently declared using the keyword
typename:

template<typename T> class Vcr; // a template declaration

Notice the friend dot() is itself a template with template parameter S.
Once members and friend of this template class are defined, the compiler
can automatically generate different classes. They can be used as

Vcr<double> dv(10); // vector of 10 doubles,
Vcr<int> iv; // empty vector of int
Ver<float*> fv(15); // a vector of 15 (float*)s

doublex b = new double [10];
for (int i = 0; i < 10; i++) bl[i] = i;

Ver<double> dv2(10, b); // a vector of 10 doubles
dv2 += dv; // add and assign
double ¢ = dot(dv,dv2); // dot product of two vectors

Note that the type parameter is replaced by specific type names brack-
eted by < > and is put after the template class name. The compiler au-
tomatically generates definitions for classes Ver< double >, Ver<int >,
and Ver< floatx > from the class template Ver<T >. In particular, the
compiler-generated class Ver<double> is a class for vectors whose entries
are doubles and works exactly like the class Vir defined in §6.3. The use

7.1 Class Templates 233

of a template class does not impose any run-time overhead compared to
an equivalent “hand-written” class such as Vir, although certain compila-
tion time is needed to generate specific classes from a class template. Such
compilation time should be in general less than compiling different versions
of a class for different element types when not using a template. Besides,
templates can make user code shorter and have space efficiency.

It may sometimes be a good idea to debug a particular class such as
Vitr before turning it into a class template such as Ver<T>. In this way,
many design problems and code errors can be handled in the context of
a concrete example, which is generally easier than dealing with a general
template class. However, for experienced programmers, defining a template
directly may save a lot of code development time.

7.1.1 Member and Friend Definitions

Member functions of a template class are themselves templates. In the case
of Ver<T >, its member functions are templates parameterized by the
parameter of the template class. (In general, a member function or friend
can be parameterized by other parameters; see §7.2.5 and §7.2.6) They
can be defined either inside the class declaration like the destructor and
subscript operator above or outside as templates. For example,

template<class T> Vcr<T>::Vcr(int n, const T* const abd) {
vr = new T [lenth = n];
for (int i = 0; i < lenth; i++) vr[i]l= *(abd +i);

}

template<class T> Vcr<T>& Vcr<T>::operator={(const Vcr& v) {
if (this != &v) {
if (lenth != v.lenth) cout << "bad assignment of vector";
for (int i = 0; i < lenth; i++) vrli] = v[il;
}
return *this;

}

template<class T> T Vcr<T>::maxnorm() const {
T om = abs(vr[0]);
for (int i = 1; i < lenth; i++) nm = max(mm, abs(vr[il]));
return nm;

}
template<class T> // dot product
T dot(const Vcr<T>& vi, const Ver<T>& v2) {

if (vi.lenth != v2.lenth) cout << "bad vector sizes\n";

T tm = vi[0}*v2[0];

234 7. Templates

for (int i = 1; i < vi.lenth; i++) tm += vi[i]*v2[i];
return tm;

}

Other member functions can be defined similarly. Although dot<S> is
declared using parameter S, it can be defined using any parameter such as
T.

Within the scope of Ver<T>, qualification with <T> to refer to Ver<T>
is redundant and can be omitted, although it is not an error to keep the re-
dundance. So the constructor and assignment operator can be alternatively
defined as

template<class T> Vcr<T>::Ver<T>(int n, const T* const abd) {
vr = new T [lenth = n];
for (int i = 0; i < lenth; i++) vr[il= *(abd +i);

}

template<class T> Vcr<T>& Vcr<T>::operator=(const Ver<T>& v){
if (this t= &vec) {
if (lenth != v.lenth) cout << "bad assignment of vector";
for (int i = 0; i < lenth; i++) vr[i] = v[i];
}
return *this;

}

However, for friends and ordinary function templates, the qualification with
<T> is not redundant and must not be omitted.

7.1.2 Template Instantiation

The process of generating a class declaration from a template class and a
specific template argument is often called template instantiation. A ver-
sion of a template for a particular template argument is called a template
specialization. For example, for the program,

int main() {
Ver<float> fv(20);
Ver<double> dv(500);
Vcr<double> dv2(500, 3.14);
dv += dv2;

}

the compiler will generate declarations for Ver<float> and Ver<double>,
for their constructors and destructors, and for the operator Ver<double>::
operator+=(const Ver<double> &). Other member and nonmember func-
tions are not used and should not be generated. Specializations are gener-
ated when they are used. The user can also force an explicit instantiation:

7.1 Class Templates 235

template class Vcr<long double>; // a class
template short& Vcr<short>::operator([](int); // a member fcn

When a class template is explicitly instantiated, every member and friend
is also instantiated.

7.1.83 Template Parameters

A template can take several parameters and a template parameter can be
used in the definition of subsequent template parameters. For example,

template<class C, class T, C val, int i> class Sometype {
T v[il;
int sz;
C d = val;

public:

Sometype(): sz(i) {cout << "member d is:" << d << ’\n’;}

I

Sometype<int, double, 3, 25> di32;

Here val of type C and i of type int are also parameters of the template
class. Such parameters can be a constant expression, the address of an
object or function with external linkage, or a nonoverloaded pointer to a
member. It is an error if their values can not be determined at compile
time. ’

7.1.4 Type Equivalence

Given a template class, different types (specializations) can be generated
by supplying different template arguments. For example,

Vcr<long double> 1dv;
Vcr<unsigned int> uiv(33);
Ver<int> iv(33);

typedef unsigned int Uint;
Vcr<Uint> uintv(33);

The classes Ver<int> and Ver<unsigned int> are different types, while
Ver<Uint> and Ver<unsigned int> are the same, since typedef simply
creates a type synonym but does not introduce a new type.

7.1.5 User-Defined Specializations

A close look at the template class Ver<T> and the friend dot<T"> () reveals
that it does not work correctly when the type parameter T is a complex

236 7. Templates

number, since the maximum-norm function maznorm() should return a
real number and the dot-product function dot<T> () should include com-
plex conjugation. This could be fixed by including conjugation even for
dot products of real numbers and letting maznorm() always return a long
double. But this would sacrifice efficiency. A user-defined specialization is
a way to solve this problem. Now I define a version (a specialization) of the
template class Ver<T> when its elements are complex numbers; the C++
standard library <complex> (defined as a class template itself; see §7.4) is
used in this definition.

// *x*xxxxx a specialization of Vcr<T> for complex numbers
template<class T> class Vcr< complex<T> >{ // use <complex>
int lenth;
complex<T>* vr;

public:
Ver(int, const complex<T>* const); // comstructor
Ver(int = 0, complex<T> = 0); // constructor
Ver(const Verd); // copy comstructor
“Ver() { deletel[] vr; } // destructor

int size() const { return lenth; }
complex<T>& operator[](int i) const { return vr[i]l; }

Vcr& operator+=(const Vcr&); // add-assign
Vcr& operator=(const Vcr&); // assignment
T maxnorm() const; // maximum norm

template<class S> friend complex<S> // dot product
dot(const Vcr<complex<S> >&, const Vcr<complex<S> >&);

};

Note that this specialization is itself a template class; such a specializa-
tion is called a partial specialization. The template<class T> prefix speci-
fies that this template class has a type parameter T'. The <complex<T>>
after the template class name means that this specialization is to be used
when the template argument in Ver<T> is a complex number. Its members
and nonmembers must be redefined to accommodate special situations of
vectors of complex numbers. They may be defined as

template<class T>

Ver< complex<T> >::Vcr(int n, const complex<T>* const abd) {
vr = new complex<T> [lenth = n];
for (int i = 0; i < lenth; i++) vrfi] = *(abd +i);

}

template<class T>
Ver< complex<T> >::Vcr(const Vcr & vec) { // copy constructor

7.1 Class Templates 237

vr = new complex<T> [lenth = vec.lenth];
for (int i = 0; i < lenth; i++) vr[i] = vec[i];

3

template<class T>

T Vcr< complex<T> >::maxnorm() comst { // maximum norm
T nm = abs(vr[0]);
for (int i = 1; i < lenth; i++)

nm = max(nm, abs(vr[i])); // use <algorithm>
return nm;
%
template<class T> // dot product

complex<T> dot(const Vcr<complex<T> >& vi,
const Vcr<complex<T> >& v2) {
if (vli.lenth != v2.lenth) cout << "bad vector sizes\n";
complex<T> tm = v1[0]*conj(v2[0]); // conjugate of v2
for (int i =1; i <vi.lenth; i++) tm += vi[i]l*conj(v2[i]);
return tm;

3

The prototypes and definitions for mazxnorm() and dot() are very different
now from the previous ones.
Now we can write the following function main() to test it.

int main(){
int n = 300;
complex<double>* aa = new complex<double> [n];
for (int j = 0; j < m; j++) aalj] = complex<double>(5, j);
Vcr< complex<double> > vi(m, aa) ; // vector vi

Vcr< complex<double> > v2(n); // vector v2
for (int j = 0; j < n; j++) v2[j] =complex<double>(2, 3+j);

cout << "morm = " << vi.maxnorm() << ’\mn’; // max norm
cout << "dot = " << dot(vl,v2) << ’\n’; // dot product

Here is another example of partial specialization:

template <int height, int width> class screen {
// a class for screen with a height and width
// height and width are two template parameters
};

template <int height> class screen<height, 80> {
// a partialization for screens with 80-character width

238 7. Templates

// which may be implemented more efficiently
// Now only height is parameter, width = 80.
}

A complete specialization is one that does not take any type parameters.
For example, a complete specialization for Ver<T> is:

template<> class Vcr< complex<double> >{

int lenth; // number of entries
complex<double>* vr; // entries of vector
public:

Ver(int, complex<double>*);

Ver(int = 0, complex<double> = 0);

Ver(const Ver&); // copy constructor
“Ver() {delete[] vr; } // destructor

Vcr& operator={(const Vcr&);
int size() { return lenth; }
complex<double>& operator[](int i) const { return vr[i]l; }

Vcr& operator+=(const Vcrd); // add-assign
double maxnorm() const; // maximum norm
template<> friend // dot product
complex<double> dot(const Vcr&, const Vcrd);

};

The template<> prefix specifies that this class is a specialization for Ver<
T> that does not take any type parameters. It is a complete specialization.
The same explanation holds for template function dot(). All members and

friends must be defined for a specialization. However, only two definitions
are presented here (the rest are omitted to save space):

Vcr< complex<double> >&

Ver< complex<double> >::operator+=(const Vcr& vec) {
if (lenth != vec.lenth) cout << "bad vector sizes\n";
for (int i = 0; i < lenth; i++) vr[i] += vec[i];
return *this;

}

template<>
complex<double> dot(const Vcr<complex<double> >& vi,
const Vcr<complex<double> >& v2) {
if (vi.lenth !'= v2.lenth) cout << "bad vector sizes\n";
complex<double> tm = v1[0]*conj(v2[0]); // conjugation
for (int i = 1; i < vl.lenth; i++) tm += vi[il*conj(v2[i]);
return tm;

7.1 Class Templates 239

All specializations of a template must be declared in the same names-
pace as the template itself. If a specialization is explicitly declared such as
Ver< complex <T > >, it (including all of its members) must be defined
somewhere. In other words, the compiler will not generate definitions for
it.

Similarly, a partial specialization for vectors of pointers can be defined
as

// ®kxkkxkxkxkkk a specialization of Vcr<T> for pointers
template<class T> class Vcr<T*>{

int lenth; // number of entries

T** vr; // entries of vector
public:

Ver(int, T*x);

Ver(const Ver&) ; // copy constructor

T* & operator[] (int i) const { return vrlil; }
Ver& operator=(const Vcr&);
// ... other members and definitions

};

Specialization is a way of specifying alternative and often efficient imple-
mentations for specific type parameters. However, the user interface is not
changed; in other words, with or without the specializations, the user still
uses a Ver of complex numbers and a Ver of pointers the same way. See Ex-
ercise 7.9.4 for an alternative approach to specializing vector maznorm().

7.1.6 Order of Specializations

One specialization is more specialized than another if one argument list
that matches its specialization pattern also matches the other but not vice
versa. For example,

template<class T> class Vcr; // general
template<class T> class Vcr< complex<T> >;

// specialized for complex numbers
template<> class Vcr< complex<float> >;

// specialized for single precision complex numbers

In the above, the second class is more specialized than the first one, and
the third is more specialized than the second. The most specialized version
will be preferred over others in declarations of objects, pointers, and in
overload resolution. For example, in the declaration,

Vcr< complex<double> > cdv(100);

the second class is preferred over the first and general class.

240 7. Templates
7.2 Function Templates

A function template defines a function that takes type parameters. In §7.1,
the basic idea of a function template is illustrated through a dot product
example dot<T > () (which is a function template that happens to be a
friend of a template class) in the context of vectors. This section presents
more details on function templates.

Assume we want to sort a general array of elements in increasing order;
a sort function can be defined as a function template:

template<class T> void sort(T*, int); // function template

void f(int* vi, double* vd, stringx vs, int n) {

sort{vi, n); // sort(int*, int), T = int
sort(vd, n); // sort{(double*, int), T = double
sort(vs, n); // sort(stringx, int), T = string

}

When a function template is called, the type of the function arguments
determines which version (specialization) of the template is used. In other
words, the template arguments are deduced from the function arguments.
For example, in the call sort(vi,n), the template argument is deduced as
T = int from the type of vi.

Based on the shell sort algorithm [Knu98, Str97], the sort function tem-
plate can be defined as

template<class T> void sort(T* v, int n) {
for (int gap = n/2; gap > 0; gap /= 2)
for (int i = gap; i < n; i++)
for (int j = i - gap; j >= 0; j -= gap)
if (v[j + gapl < vijD {
T temp = vijl; // swap v[j] and v{j+gapl]
v[{jl = vIj + gapl;
v[j + gap] = temp;
}
}

Note that the operator < is used for comparison. However, not every type
has such an operator. Improvements are given in §7.2.3 and §7.2.4. Another
way is to overload the operator <. For example, an array of point2d can
be sorted according to its z-coordinate as

struct point2d {
double x, y;
};

inline bool operator<{const point2d% p, comst point2d& q) {

7.2 Function Templates 241

return p.x < q.X; // compare x coordinates

}

int main() {
const int n = 10000;
point2d aln];
for (int i = 0; i < n; i++) {
alil.x = i*(5 - 1); ali]l.y = 6/(i+2.3) - 1;
}
sort(a, n); // sort array a of n elements

}

Compare this definition with C-style polymorphic functions that rely
on a pointer to function for comparison (see Exercise 3.14.24 or the book
[Str97]). This template definition sort<T >() is shorter and most likely
faster since function calls through pointers are hard to be inlined. Running
times for this function template and the shell sort function shsort() defined
in Exercise 3.14.24 for the array of 10000 point2d on a Pentium PC are 70
and 109 seconds, respectively. They are 27 and 86 seconds on a SUN Ultra2
workstation, 10 and 19 seconds on a Pentium II PC, and 18 and 30 seconds
on an SGI workstation, respectively. On these four machines, this function
template is much faster.

7.2.1 Function Template Parameters

A compiler can deduce the types of the parameters of a function tem-
plate, provided the function argument list identifies them uniquely. How-
ever, when a template parameter can not be deduced from the template
function arguments, it must be specified explicitly within a pair of angle
brackets:

template<class T> T* £(T);

int i = 5;

double d = 3.4;

£(1); // template parameter T = int
£(5); // template parameter T = int
f(d); // template parameter T = double
template<class T, class S> T g(8);

g<int, double>(d); // T = int, S = double
g<double>(i); // T = double, S = int

g(i+d); // error: can not deduce T and S

g<double, double>(i+d); // T = double, S = double

242 7. Templates

As with default function arguments, only trailing template parameters can
be omitted. The call g<double>(%) is equivalent to g<double, int>() since
the compiler can deduce S = int by the type of i. However, the call g(i +d)
is ambiguous since there is no way to deduce template parameters T and
S from it.

Note that class template parameters are not allowed to be deduced and
must be specified explicitly since ambiguities arise for classes with multiple
constructors.

7.2.2 Function Template Overloading

As functions can be overloaded, function templates can also be overloaded.
For example,

template<class T> T abs(T); // version 1, template
template<class T> T abs(complex<T>); // version 2, template
double abs(double); // version 3, ordinary fcn
abs(2.0); // abs(double), version 3
abs(2); // abs<int>(int), versiom 1
complex<double> z(2,3);

abs(z); // abs<double>(complex<double>)

In the case of more than one overloaded function template or specialization,
the most specialized one will be chosen and used according to the arguments
of the function call. The detailed overloading resolution rules are as follows.

1. Find the set of function template specializations that match the
function call. For the function call abs(z) above, the specializations
abs < double > (complex < double >) (version 2 with T = double)
and abs < complex <double > > (complex < double>)(version 1 with
T = complex<double>) are candidates.

2. If more than one template function can be called, consider the most
specialized ones. For the call abs(z), the specialization abs<double>
(complex <double>) (version 2) is preferred over the specialization
abs<complex<double> > (complex<double>) (version 1), because
any call that matches abs<complex<T> > {version 2) also matches
abs<T> (version 1).

3. Do overload resolution for this set of template function specializations
and ordinary functions. If a template function argument has been
determined by template argument deduction (§7.2.1), that argument
can not have standard type conversions, promotions, or user-defined
conversions. For the call abs(2), abs<int>(int) is an exact match
(without type conversions, etc.) and preferred over abs(double).

7.2 Function Templates 243

4. If an ordinary function and a template specialization are equally good
matches, the function is preferred. For example, the function call
abs(double) is preferred over abs<double>(double) (version 1 with
T = double) for the call abs(2.0).

5. If more than one equally good match is found, the call is ambiguous
and an error. If no match is found, the call is also an error.

The following is another example.

template<class C> C absmax(C a, C b) {
return (abs(a) > abs(b)) ? a: b;

}

absmax(-1, 2); // absmax<int>(1, 2)

absmax (2.7, 5.6); // absmax<double>(2.7,5.6)

absmax (5, 6.9); // ambiguous, absmax<double>(5,6.9)

// or absmax<int>(5,6.9)7

The call absmaz(5,6.9) is ambiguous and illegal, since no standard conver-
sion is made for its arguments. This ambiguity can be resolved either by
explicit qualification:

absmax<double>(5, 6.9);

or by defining an ordinary function, to which standard type conversion
applies:

inline double absmax(double a, double b) {
return absmax<double>(a,b);

}

If a function template also takes basic types as its arguments, for exam-
ple,

template<class T, class S, class R> R f(T& t, S s, double d);

then standard conversions apply to the basic type argument d, although no
standard conversion can be implied for the arguments ¢ and s.

7.2.8 Specializations

The sort program given early in this section does not sort arrays of charx
correctly since it will compare the addresses of the first char for each ele-
ment of the array. Specialization can be used to define a comparison func-
tion that compares different types of elements correctly. We now use the
standard library <wvector>, defined as a class template (see §10.1.1), for a
dynamic array of elements. For example,

244 7. Templates

template<class T> bool less(T a, T b) {
return a < b; // a general template

}

template<> bool less<const char*>(const char* a,
const charx b) {
return strcmp(a,b); // specialization
} // use string-compare in <cstring>

template<class T> void sort(vector<T>& v) {
const unsigned long n = v.size();
for (int gap = n/2; gap > 0; gap /= 2)
for (int i = gap; 1 < n; i++)
for (int j = i - gap; j >= 0; j -= gap)
if (less(v[j+gapl, v[j1)) swap(v[jl, v[j+gapl);
}

Here the function template swap(), defined in the library <algorithm>,
is used to swap the values of two variables. As for class templates, the
template<> prefix implies a specialization that does not have a type pa-
rameter. The < const char*> after the template function name means
that this specialization is to be used when the template argument T =
const charx. Now the function template sort<T >() should sort numbers
and strings correctly. Since the template argument can be deduced from
the function argument list, this specialization can also be written as

template<> bool less(const char* a, const charx b) {
return strcmp(a,b); // specialization, using <cstring>

}

If complex numbers are going to be compared according to their absolute
values, another specialization can be defined as

template<class T> bool less(complex<T> a, complex<T> b) {
return abs(a) < abs(b); // specialization, use <complex>

}

With different specializations of template less<T > (), a vector of strings,
a vector of complex numbers, or a vector of point2d can be sorted in in-
creasing order or any other order defined by the specializations.

Another example of function template specialization is the useful vector
dot product, applied to real and complex arrays:

template<class T> T dot(T* a, T* b, int n) {
T init = 0;
for (int i = 0; i < n; i++) init += (*a++)*(¥b++);
return init;

}

7.2 Function Templates 245

template<class T> // specialization for complex vectors
complex<T> dot(complex<T>* a, complex<T>* b, int n) {
complex<T> init = 0;
for (int i = 0; i < m; i++) init += (*a++)*conj(xb++);
return init;

}

7.2.4 Class Templates as Function Template Parameters

When comparing vectors of char or other types according to different crite-
ria such as case-sensitive and case-insensitive comparisons, it is convenient
to pass the criterion as a class template to the compare-function template.
For example, define a function template compare<T > ():

template<class T, class S>
int compare(const vector<T>& vl1, const vector<T>& v2) {
for (int i = 0; i < vl.size() && 1 < v2.size(); i++)
if (!8::eq(vil[i], v2[il)) return S::st(vi[i], v2[il);
return v2.size() - vi.size();

}

Here the template parameter S can be a class whose member functions
S :: eq() and S :: st() are defined to represent the comparison or sorting
criteria. For example,

template<class T> class Ncomp { // normal compare
public:

static int eq(T a, T b) { return a == b; } // equal

static int st(T a, T b) { return a < b; } // smaller than
};

class Nocase { // compare by ignoring case
public:
static int eq(char a, char b) { // equal
return toupper(a) == toupper(b); // #include <ctype.h>
}
static int st(char a, char b) { // smaller than
return toupper(a) < toupper(b); // case-insensitive
}
I

The class Nocase changes characters into their corresponding uppercase
equivalents (using std :: toupper()) before comparing. Each class generated
from a class template gets a copy of each static member of the class tem-
plate. Now vectors can be compared according to rules specified by the
template argument:

246 7. Templates

void f(vector<char> vi, vector<char> v2) {
compare<char, Ncomp<char> >(vi, v2); // case-sensitive
compare<char, Nocase>(vi, v2); // case-insensitive

}

Passing comparison criteria as template parameters has the advantage that
it allows several operations to be passed as a single argument and the
comparison operators eg() and st() are trivial to be inlined. This should
increase run-time efficiency compared to C- or FORTRAN-style passing
function pointers; see §7.2 and §7.6 for run-time comparisons.

Default template arguments can be used as well:

template<class T, class S = Ncomp<T> > // default parameter
int compare(const vector<T>% vi, const vector<T>& v2) {
// define the function template as before

}

Then the normal comparison criterion need not be specified each time it is
used:

void g(vector<char> vi, vector<char> v2) {
compare(vi, v2); // use Ncomp<char>
compare<char, Nocase>(vi, v2); // use Nocase

}

Classes used as template parameters for expressing criteria or policies
are often called “traits”. See Exercise 7.9.4 for another example of traits.

7.2.5 Member Function Templates

A class or class template can have function members that are parameterized
by general parameters. For example,

template<class S> class Cmpx {
S re, im;
public:
template<class T> Cmpx(const Cmpx<T>& c)
: re(c.re), im(c.im) { }

};

The copy constructor of this class template is a template function that
defines a type conversion from Cmpz<I"> to Cmpz<S>. It can be used as

void f(Cmpx<float> cf) {
Cmpx<double> cd = cf; // float to double conversion
}

7.2 Function Templates 247

7.2.6 Friend Function Templates

A friend function of a class or a class template may be an ordinary function,
a function template, or an instantiation of a function template. In §7.1, the
function template dot<S> () is declared to be a friend of class template
Ver<I>:

template<class T> class Vcr {

// ... in addition to other members or friends
template<class S> // dot product
friend S dot(const Vcr<S>%&, const Vcr<S>&);

};

This means that all instantiations of the function template dot<S> ()
are friends to any instantiation of class template Ver<T>. In particu-
lar, dot<double> () is a friend of class instantiations Ver<double> and
Ver<float>.

It is also possible to first define or declare a function template such as
dot<T> () and then declare an instantiation of it to be a friend of a class
or class template such as class Ver<T>. For example,

template<class T> class Vcr; // template forward declaration

template<class T> // template forward declaration
friend T dot(const Vcr<T>&, const Vcr<T>&);

template<class T> class Vecr { // class template definition
// ... in addition to other members or friends

friend T dot<T>(const Vcr&, const Vcr&);
};
This means that only one corresponding instantiation of dot<T>() is a
friend to each instantiation of Ver<T>. In particular, dot<double>() is a

friend of class Ver<double>, but not Ver<float>. Notice the instantiation
syntax in the friend declaration dot<T">(). When it is omitted:

template<class T> class Ver { // class template definition

// ... in addition to other members or friends

friend T dot(const Vcr&, const Vcr&);
};

this would be interpreted as declaring an ordinary function dot() to be a
friend to all instantiations of class template Ver<T>. It could be defined
as

float dot(const Vcr<float> &vl1, const Vcr<float>& v2) {

248 7. Templates

if (vl.lenth != v2.lenth) error("bad vector sizes");
float tm = v1[0]*v2[0];

for (int i = 1; i < vl.lenth; i++) tm += vi[i]*v2[i];
return tm;

¥

double dot(const Vcr<double>& vl1, const Vcr<double>& v2) {
/...
}

Similarly, a class, a class template, or an instantiation of a class template
can be a friend of another class or class template.

7.3 Template Source Code Organization

Specializations of class and function templates are generated only when
needed (§7.1.2). Thus the definition of templates must be known to the
source code that uses the templates. A trivial strategy is to put everything
in one file so that the compiler can easily generate code as needed. But
this is applicable only to small programs. There are two other ways of
organizing the source code.

Consider the simple example for a function template that prints some
user-specified (error) messages and terminates the program. Assume the
definition of the template is put in a file called error.cc.

// file error.cc
#include <cstdlib>
#include <iostream>
template<class T> void error(const T & t) {
std::cout << t << "\nProgram exited.\n";
std::exit(1);
}

The first way is to include this template definition file in all files that use
the template. For example,

// file f1.cc
#include "error.cc”
int* a = new (nothrow) int [1000000] ;
// return O when out of memory
if (ta) error("no more space.");

// file f2.cc
#include "error.cc"
int* b = new (nothrow) int [1000000];

7.3 Template Source Code Organization 249

if (!b) error{(*b);

That is, the definition of the template and all declarations that it depends
on are included in different compilation units. The operator new throws
an exception bad_alloc when there is no more memory available. However,
using (nothrow) causes it to return 0 instead; see §9.5. The compiler will
generate appropriate specializations according to how the template is used.
This strategy treats templates the same way as inline functions.

The second way is to include only declarations of templates and explic-
itly export its definitions to different compilation units. Split the original
error.cc file into two:

// file error2.h: only declarations of the template
template<class T> void error(const T &);

// file error2.cc: definition of template and export it

#include <cstdlib>

#include <iostream>

#include "error2.h"

export template<class T> void error(const T & t) {
std::cout << t << "\nProgram exited.\n";
std::exit(1);

}

Now the declaration of the template can be included in different files:

// file £3.cc
#include "error2.h"
int* a = new (nothrow) int [1000000];
if (!a) error("no more space.");

// file f4.cc
#include "error2.h"
int* b = new (nothrow) int [1000000];
if (1b) error(*b);

This strategy treats templates the same way as noninline (ordinary) func-
tions. The template definition in file error2.cc is compiled separately, and
it is up to the compiler to find the definition of the template and generate
its specializations as needed. Note that the keyword export means accessi-
ble from another compilation unit. This can be done by adding export to
the definition or declaration of the template. Otherwise the definition must
be in scope wherever the template is used.

250 7. Templates
7.4 Standard Library on Complex Numbers

Complex numbers are provided as a template class in the C++ standard
library <complex>. 1t is defined as

template<class T> class std::complex {
T re, im;

public:
complex(const T& r = T(), const T& i = T()); // constructor
template<class 8> complex(const complex<S>&);// constructor

complex<T>% operator=(const T&);
template<class S> complex<T>& operator=(const complex<S>&);
// also operators +=, -=, %=, [=

T real() const { return re; }
T imag() comst { return im; }

};

Notice the two template member functions above, which enable con-
struction and assignment from other types of complex numbers, for ex-
ample, from complex < float > to complex < double >. However, special-
izations will be defined to restrict implicit conversions, for example, from
complex<double> to complex<float>, in order to avoid truncation.

Other functions acting on complex numbers can be defined as

template<T> complex<T> operator+(const complex<T>&,

const complex<T>%);
template<T> complex<T> operator+(const T&,const complex<T>%);
template<T> complex<T> operator+(const complex<T>&,const T&);
// also binary operators: -, x, [/, ==, i=

template<T> complex<T> operator+(const complex<T>&);
// also unary operator: -

template<T> T real(const complex<T>&); // real part
template<T> T imag(const complex<T>&); // imaginary part
template<T> complex<T> conj(const complex<T>%); // conjugate

template<T> T abs(const complex<T>&); // absolute value
template<T> T arg(const complex<T>&); // argument
template<T> complex<T> polar(const T& abs, const T& arg);

// polar form (abs,arg)
template<T> T norm(const complex<T>&); // square of abs()

template<T> complex<T> sin(const complex<T>&); // sine

7.5 Standard Library on valarrays 251

// also: cos, tan, sqrt, sinh, cosh, tanh, exp,
// log, loglO, asin, acos, atan

template<T> complex<T> pow(const complex<T>&, int);
template<T> complex<T> pow(const complex<T>%, const T&);
template<T> complex<T> pow(const T&, const complex<T>&);
template<T> complex<T> pow(const complex<T>&,

const complex<T>&);

The function polar() constructs a complex number given its absolute value
and argument. Note the misleading function name of norm(), which gives
the square of the absolute value of a complex number. The input and output
operators << and >> are also provided. Specializations for complex < float>,
complex<double>, and complex <long double> are defined to prevent cer-
tain conversions and to possibly optimize the implementations. For exam-
ple,

class complex<float> {
float re, im;

public:
complex(float r = 0.0, float i = 0.0);
complex(const complex<float>&);
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);
// ... other functions

};

The explicit constructors declared above prevent implicit conversions
from complex<double> and complex<long double> to complex<float>.
For example,

complex<float> cf(3,4);
complex<double> cd(5,6);

cd = cf; // OK, implicit conversion
cf = cd; // illegal, no implicit conversion
cf = complex<float>(cd); // 0K, explicit conversion

7.5 Standard Library on valarrays

C++ provides a standard library called <valarray> for optimized vector
arithmetics in high performance computing. Since the design priority of this
library is speed of computing, other features such as flexibility, generality,
and type checking are sacrificed. For example, it does not check to see if
the sizes of two vectors match before adding or multiplying them, and does
not provide operations for various norms of a vector and dot products.
Matrices are not directly supported, but a user can manipulate matrices

252 7. Templates

and submatrices through the (one-dimensional) valarray mechanism. If
your main concern is easy-to-use and easy-to-modify in a general setting,
you may want to write your own library (see Chapter 11) to fit your need.

7.5.1 The Type valarray
Some members of the type valarray are defined as

template<class T> class std::valarray {

public:
valarray(); // valarray with size = 0
explicit valarray(size_t n); // valarray with size = n

valarray(const T* p, size_t n); // size =n, elements *p
valarray(const T& v, size_t n); // size =n, all entries =v
valarray(const valarray&); // copy constructor
“valarray(); // destructor

valarray& operator=(const valarray%); // copy assignment

valarray& operator=(const T& v); // all elements = v
T operator[] (size_t) const; // subscript, rvalue
T& operator[](size_t); // subscripting

// scalar-vector operations: +=, -=, %=, /=, "=, &=,

// I=, <<=, >=

valarray& operator+=(const T& v); // add v to every element

// unary operator: -, +, 7, !

valarray& operator-(); // unary minus

size_t size() const; // number of elements

void resize(size_t n, const T& v= T()); // all entries = v
T sum() const; // sum of all elements
valarray cshift(int i) comst; // cyclic shift of entries
valarray shift(int i) const; // logical shift

valarray apply(T £(T)) comst; // apply f to each entry
valarray apply(T f(const T&)) const; // apply £Q)

};

Here size_t is an unsigned integral type (possibly unsigned long) defined
in <cstddef> and used in the standard libraries. In functions shift(i) and
cshift(i), left shift of elements by ¢ positions is performed when 7 > 0, and
right shift when ¢ < 0.

Here is an example for illustrating some usages of valarray.

double* pd = new double [50000];

7.5 Standard Library on valarrays 253

for (int i = 0; i <50000; i++) pd[i] = ix*i;
valarray<double> v0(pd,50000); // vector of 50000 doubles

int permu[] = {1,2,3,4,5}; // permutation

valarray<int> v(permu,5); // vector of 5 int
valarray<int> v2 = v.shift(2); // v2 = {3,4,5,0,0}
valarray<int> v3 = v.cshift(2); // v2 = {3,4,5,1,2}, cyclic
valarray<int> v4 = v.shift(-2); // right shift,v2={0,0,1,2,3}
valarray<int> v4 = v.cshift(-2); // right shift,v2={4,5,1,2,3}

Other operators and functions are provided as nonmember functions:

// o+, -, %, /), ", &, |, <<, >>, &&, |, ==, 1=, <, >, <=, >=,
// sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh,
// pow, exp, log, logli0, sqrt, abs

valarray<T> operator+(const valarray<T>&,const valarray<T>&);
valarray<T> operator+(const T&, const valarray<T>&);
valarray<T> operator+(const valarray<T>%, const T&);
valarray<T> abs{(const valarray<T>&);

T min(const valarray<T>&); // smallest value
T max(const valarray<T>&); // largest value

Note the function abs() needs a specialization in order to apply to a valarray
of complex numbers.

The output operator is not provided for valarray since different users
do it differently, especially in different applications. Neither is the input
operator provided.

7.5.2 Slice Arrays

Slices are introduced in <wvalarray> for manipulating matrices through
one-dimensional arrays. A slice describes every nth element of some part
of a valarray, for a positive integer n. It is defined as

class std::slice {

// ... representation, starting index, size, stride
public:

slice();

slice(size_t start, size_t size, size_t stride);

size_t start() comst; // index of first element

size_t size() comnst; // number of elements in slice

size_t stride() comst; // entry i is at start()+isstride()

254 7. Templates

A stride is the distance (in number of elements) between two adjacent
elements in the slice. For example, the 4 by 3 matrix A can be laid out as
a vector B of size 12 :

agp Qo1 Qo2
ap ann a1
A= 2
G20 Q21 Q22
azg asir as2

o 1 2 3 4 5 6 7 8 9 10 11
L 2 T A S

32[600 ap1 Qg2 a0 a1 412 Q42 421 G2 430 431 632]-

Then slice(0,3,1) of vector B describes row 0 of matrix A (consisting of 3
elements starting from 0 with stride 1; that is, B[0] = ago, B[1] = ao1, and
B[2] = ag2) and slice(3,3,1) describes row 1. Similarly, the slice(0,4,3)
of vector B describes column 0 of matrix A and slice(2,4,3) column 2.
That is, a slice(s, z,d) defines a mapping from three nonnegative integers
{s,2,d} into an index set I = {i : i =s+j*d, j=0,1,...,z — 1} that
describes some elements v[i],i € I, of a valarray v. In particular, a matrix
can be represented through a valarray and its rows and columns can be
described by slices. The idea is that a row or column of a matrix can be
accessed by using one index j for § =0,1,...,z—1, where z is the number
of elements in the row or column. Note that the row by row layout has
been used for representing a matrix through a wvalarray. FORTRAN-style
column by column layout can be used similarly. However, it may be better
to get used to the C++ style (row by row layout, array index starting from
0 instead of 1, and the symmetric notation m[i][j] instead of m(3, 7)) if one
wants to program in C++ extensively.

A type called slice_array is defined in <valarray> to refer to elements
of a valarrary described by slices:

template <class T> class std::slice_array {

private:
slice s;
valarray<T>* p; // implementation-dependent
slice_array(); // prevent construction

slice_array(const slice_arrayk); // prevent comnstruction
slice_array& operator=(const slice_array&);

public:
void operator=(const valarray<T>&);
void operator=(const T& t); // assign t to each entry
void operator*=(const T&); // scalar-vector multiply

7.5 Standard Library on valarrays 255
// also: +=, -=, /=, Y=, "=, &=, |=, <<=, >>=

“slice_array();

};

Since construction and copy operations are defined as private, a user can
not directly create a slice_array. Instead, subscripting a valarray is defined
to be the way to create a slice_array corresponding to a given slice:

template <class T> class std::valarray {

public: // in addition to other members
valarray(const slice_array<T>&);
valarray operator([](slice) const;
slice_array<T> operator[] (slice);

valarray& operator=(const slice_array<T>&);

};
Once a slice_array is defined, all operations on it go to the valarray:

void create(valarray<double>& vd) {
slice s(1, vd.size()/2, 2);
// slice for elements vd[1], vd[3]...
slice_array<double>& sad = vd[s];

// subscripting a valarray by a slice
sad[0] = 3.1416926; // vd[1] = 3.1415926

sad = 2.2; // assign 2.2 to vd[1], vd[3],
float a = sad[1]; // a = vd[3]
float b = sad[2]; // b = vd[5]

valarray<double> ods = vd[s];
// ods has only odd-index entries of vd

Note that it is illegal to copy slice.arrays. The reason for this is to allow
alias-free optimizations and prevent side effects. For example,

slice_array<double> create2(valarray<double>& vd) {
slice_array<double> sad0; // error, no default constructor

slice s(1, vd.size()/2, 2);

// slice for odd index entries of vd
slice_array<double> sadl = vd[s];

// illegal, no copy construction

sadl = sad0; // illegal, no copy assignment
return sado; // illegal, can not make a copy

256 7. Templates

7.5.8 Generalized Slice Arrays

A slice can be used to describe rows and columns of a matrix and multi-
dimensional arrays represented through a wvalarray. In some applications,
submatrices need be manipulated. Generalized slices gslice and arrays
gslice_array are introduced for this purpose.

An n-slice or generalized slice gslice contains n different dimensions (n
slices) and is defined as

class std::gslice {

// ... representation, starting index, n sizes, n strides
public:
gslice(Q);

gslice(size_t start, const valarray<size_t> nsize,
const valarray<size_t> nstride);
size_t start() const; // index of first entry
valarray<size_t> size() const;
// number of elements in all dimensions
valarray<size_t> stride() const;
// strides for all dimensions
};
That is, an n-slice gslice(s, z,d), where z = {z}, d = {d¢},0 < k < n,
defines a mapping from (s, 2,d) into an index set I = {i: i = s+ ZZ;S G *
dx, where jx = 0,1,...,2; — 1} that describes some elements v[i],: € I,
of a valarray v. For example, consider a 3 by 2 submatrix Ass (inside the
box in the picture below) in the lower-right corner of a 4 by 3 matrix A
represented row by row through a valarray B:

ago 401 4o2
ai an a
A — 0 12
azop | @21 Q22
azo | @31 Aas2

o 1 2 3 4 5 6 7 8 9 10 1
L T e

B = [000 o1 Qo2 @10 Q11 @12 G2 Q421 422 Q430 @3 032]-

Since every row of the submatrix Az, can be represented by a slice of size
2 and stride 1 and every column by a slice of size 3 and stride 3, a 2-slice
can be defined to describe the submatrix:

size_t z[] {2,3}; // slice(s,z[0],d[0]) for a row
size_t d[] = {1,3}; // slice(s,z[1],d[1]) for a column
{\it valarrayl}<size_t> vz(z,2); // size vector

7.5 Standard Library on valarrays 257

{\it valarray}<size_t> vd(d,2); // stride vector
gslice gs2(4,vz,vd); // starting index is 4

Thus gs2 defines a mapping from {(4, vz, vd)} into the indexset I = {i : i =
4+ 3j0+371, jo = 0,1, j1 = 0,1,2} for the submatrix As,. In particular, the
subset {7 : i = 44+50+371, jo = 0,1, j1 = 0} = {4, 5} describes row 0 of A3
(i.e, B[4] = a11,B[5] = a12), and {1 : i = 4+5o+3j1, jo =0, j1 =0,1,2} =
{4,7,10} describes column 0 of A3, (i.e., B[4] = a11,B[7] = a21,B[10] =
a31). The idea is that the submatrix A3, can now be conveniently accessed
using two indexes jo and j; for jo =0,1,...,2p—1and j; =0,1,...,2; —1,
where 2y is the number of elements in each row and 2; the number of
elements in each column of the submatrix.

The template class gslice_array is defined in the same way and offers
the same set of members. This implies that a gslice_array can not be con-
structed directly and can not be copied by the user. Instead, subscripting
a valarray is defined to be the way to create a gslice_array corresponding
to a given n-slice:

template <class T> class std::valarray {

public: // in addition to other members
valarray(const gslice_array<T>&);
valarray operator[](const gslice&) const;
gslice_array<T> operator[] (const gsliceg);

valarray% operator=(const gslice_array<T>&);

};

7.5.4 Mask Arrays and Indirect Arrays

A mask_array is defined from a valarray v through a mask valarray<bool>,
with true indicating an element of the valarray v is selected. Subscripting
a valarray through a mask creates a mask._array:

template <class T> class std::valarray {

public: // in addition to other members
valarray(const mask_array<T>&);
valarray operator[](const valarray<bool>&) const;
mask_array<T> operator[] (const valarray<bool>&);

valarray& operator=(const mask_array<T>&);

};

Similarly, an indirect_array is defined from a valarray v through an index
array (a permutation) valarray<size_t>. Subscripting a valarray through
an index array valarray<size_t> creates an indirect_array:

template <class T> class std::valarray {

258 7. Templates

public: // in addition to other members
valarray(const indirect_array<T>&);
valarray operator[](const valarray<size_t>&) conmst;
indirect_array<T> operator[] (const valarray<size_t>&);

valarray& operator=(const indirect_array<T>&);
I
Here is an example on how to use a mask_array and indirect_array:

void g(valarray<double>% vd) {
bool bal4] = {false, true, false, truel};
valarray<bool> mask(ba,4); // a mask
valarray<double> vd2 = sin(vd[mask]); // vd2[0]=sin(vd[1])

// vd2[1]=sin(vd[3])

size_t ia[4] = {3, 1, 0, 2};
valarray<size_t> index(ia,4); // an index array
valarray<double> vd3 = sin(vd[index]); //vd3[0]=sin(vd[3])
// vd3[1] =sin(vd[1]), vd3[2]=sin(vd[0]), vd3[3]=sin(vd[2])

An irregular subset of an array can be selected by a mask_array and a
reordering of an array can be achieved by an indirect-array. An index array
must be a permutation; that is, it can not contain the same index more
than once. For example, the behavior of the indirect_array is undefined if
the above index array is defined as

size_t ia[4] = {3, 3, 0, 2};

The same set of members for mask_array and indirect_array are defined
as for slice_array. In particular, mask.array and indirect_array can not
be directly constructed or copied by a user.

7.6 Standard Library on Numeric Algorithms

The standard library <numeric> contains a few numeric algorithms for
performing operations on sequences such as the built-in array (§3.3), valar-
ray (§7.5), and vector (§10.1.1). Other standard algorithms such as sorting
a sequence of elements and finding the maximum value of elements in a
sequence are discussed in §10.2.

The numeric algorithms are function templates and can be summarized
as

accumulate() accumulate results on a sequence
inner_product() accumulate results on two sequences
partial_sum() generate a sequence of “partial sums”
adjacent_difference() generate sequence of “adjacent differences”

7.6 Standard Library on Numeric Algorithms 259

7.6.1 Accumulate

The function template accumulate() calculates the sum of the elements in
a sequence given a starting and an ending pointer (or iterator; see §10.1.2),
and an initial sum. A general binary operation, instead of summation, can
also be specified as the fourth argument. It is defined as

template<class In, class T>

T accumulate(In first, In last, T init) {
while (first != last) init = init + *first++;
return init; // summation

1

template<class In, class T, class BinOp>

T accumulate(In first, In last, T init, BinOp op) {
while (first != last) init = op{(init, *first++);
return init; // general operation

1

An explanation of the meaning of (xp++) is given in §3.10. We can use
accumulate() to, for example, calculate the sum or product of elements or
their absolute values of an array. It can also be used to calculate the one,
two, and maximum norms (§4.1) of a vector. A general binary operation
can be passed as a pointer to a function. It can be used as

double SumAbs(double a, double b) { return a + fabs(b); }

int main() {
double ail[5];
for (int i = 0; i < 5; i++) aili] = ~-1;

double d = 0;
d = accumulate(ai, ai + 5, d);
// sum by default, d = -5
d = accumulate(ai, ai + 5, 0.0, SumAbs);
// sum of absolute values, d = 5

1

The first and second arguments of accumulate() must point to the first and
the last-past-one elements of a sequence, respectively. With the operation
SumAbs(), it actually computes the one-norm of a sequence. It can also
be used to compute, for example, the sum of z-coordinates of an array of
point2d:

struct point2d { double x, y; };

double Sumx(double a, point2d p) { return a + p.x; }

260 7. Templates

double f(point2d* p, int n) { // sum of x-coordinates
return accumulate(p, p + n, 0.0, Sumx);

}

Note that the second version of the function template accumulate() takes
a binary operation as its fourth argument. The fourth argument can be
either a binary function such as SumAbs() above, or a class object with
the function call operator () overloaded. For example,

template<class T> struct Multiply { // overload operator()
T operator() (const T& a, const T& b) const { return a*b; }

I

int main() {
double ail5];
for (int i = 0; 1 < 5; i++) aili] = -1;
double d =
accumulate(ai, ai + 5, 1.0, Multiply<double>()); //d=-1
}

Notice an object rather than a type is needed for the fourth argument of
accumulate(). Thus Multiply <double>() is used instead of Multiply <
double>. An object of a class with the function call operator () overloaded
is called a function-like object, or a function object. Note that from the
definition of accumulate(), the operator () is passed to its fourth argument
op in such a way that op can be either a function or a function object. More
examples on function objects are presented in §7.7 and §10.2.

Passing a function object can be more easily inlined than a call through
a pointer to a function. In the following example, we measure the times
they take in performing the same arithmetic operations.

template<class T> T SumFcn(T a, T b) { return a + b; }

template<class T> struct SumFQ {
T operator() (const T& a, const T& b) const {return a + b;}

I

int main() {
int n = 10000;
double* ai = new double [n];
for (int i = 0; i < n; i++) aili] = i - 500;
double d = 0;

time_t tml = time(0); // #include <time.h>

for (int i = 0; i < 10000; i++) // repeat 10000 times
d = accumulate(ai, ai + n, 0.0); // use default sum

7.6 Standard Library on Numeric Algorithms 261

time_t tm2 = time(0); // current time
cout << "time in default summation = "
<< tm2 -tml << " seconds" << ’\n’;

for (int i = 0; i < 10000; i++) // pass pointer to fcn
d = accumulate(ai, ai + n, 0.0, SumFcn);
time_t tm3 = time(0); // measure time

cout << "time in passing function = "
<< tm3 -tm2 << " seconds" << ’\n’;

for (int i = 0; i < 10000; i++) // pass fcn object
d = accumulate(ai, ai + n, 0.0, SumFO<double>());
time_t tm4 = time(0); // measure time

cout << "time in passing fcn object ="
<< tm4 -tm3 << " seconds" << ’\n’;

¥

On a Pentium PC running Linux, the running times are 24, 47, and 33
seconds, respectively, while on an SGI PowerChallenge they are 8, 16, and
14 seconds, and on a SUN Ultra2 workstation 10, 32, and 16 seconds. Thus
it can be more efficient to use a function object or a template argument
than passing a function pointer to another function. This implies that the
FORTRAN- and C-style passing functions as arguments to other functions
should be avoided if possible when a large number of such function calls
are needed. However, both of them can be much less efficient than plain
function calls. This suggests that a user may wish to define his or her own
version of accumulate() and other functions when portability and readabil-
ity are not as important as efficiency. For example,

template<class In, class T> // user-defined version

T accumulate_multiply(In first, In last, T init) {
while (first != last) init *= «first++; // multiply
return init;

}
template<class In, class T> // user-defined version
T accumulate_abs(In first, In last, T imit) {

while (first != last) init += abs(*first++);

return init; // sum of absolute values
}

These user-defined function templates do not require a function object or
pointer to a function passed as an argument and should be more efficient
than the standard accumulate() with a function object or function pointer
as its fourth argument.

262 7. Templates

7.6.2 Inner Products

The function inner_product(} calculates the inner product or dot product
of two sequences of floating point numbers. It is defined as

template<class In, class In2, class T>

T inner_product(In first, In last, In2 first2, T init) {
while (first != last) init = init + *first++ * *first2++;
return init;

3

template<class In,class In2,class T,class BinOp,class BinOp2>
T inner_product(In first, In last, In2 first2, T init,
BinOp op, BinOp2, op2) {
while (first != last)
init = op(init, op2(*first++, *first2++));
return init;

3

Note that only the beginning of the second sequence is passed as an ar-
gument and its size is implicitly assumed to be at least as long as the
first sequence. Range checking is not provided here. The first version of
inner_product(} does not apply to vectors of complex numbers since com-
plex conjugation is needed for the second sequence. For inner products of
complex vectors, the user may wish to define her own template instead of
using the second version for efficiency reasons. For example,

void f(valarray<double>& v1,double* v2,vector<double>% v3){
double d = inner_product(&vi[0], &vi[vi.size()], v2, 0.0);
double e = imnmer_product(v3.begin(),v3.end(),&v1[0], 0.0);
¥

template<class In, class In2, class T> // user-defined
T inner_product_cmpx(In first, In last, In2 first2, T init){
while (first != last)
init = init + *first++ * conj(*first2++);
return init;

3

void g(valarray<complex<double> >& v1, complex<double>* v2){
complex<double> 4 = 0O;
d = inner_product_cmpx(&v1{0], &vilvl.size(], v2, d);

}

For a vector vr (§10.1.1), the functions vr.begin() and vr.end() point to the
first and last-past-one elements of vr, respectively. However, a valarray va
does not have functions va.begin() and va.end(). Fortunately, it forms a

7.6 Standard Library on Numeric Algorithms 263

sequence in the sense that va[0],va[l],...,valva.size() — 1] are contiguous
in memory, and thus standard algorithms can be applied.

7.6.3 Partial Sums

Given a sequence ag, a1, . . . , 4,1, where n is a positive integer, the function
template partial_sum() produces a sequence of partial sums, defined as
ag,ap+ai,ap+ay+as,...,ap+a;+---+an_1. A general binary operation

instead of summation can also be specified as an extra argument in the
same way as in accumulate(). Its prototype is:

template<class In, class Out> // summation by default
Out partial_sum(In first, In last, Out res);

template<class In, class Qut, class BinOp> // general op
Out partial_sum(In first, In last, Out res, BinOp op);

It can be used as

void f(valarray<double>& v1, vector<double> v2) {
partial_sum(&vi[0], &vi[vl.size()], &v1[0]);
partial_sum(v2.begin(), v2.end(), v2.begin());
}

If v1 has elements 1,2,5,14, then the first call above changes it into the
partial sum sequence 1, 3, 8,22.

7.6.4 Adjacent Differences

Given a sequence ag, ay,. .., a,-1, Where n is a positive integer, the function
adjacent_difference() produces a sequence of adjacent differences, defined
as ag,a1 — Q9,82 —Ag —QA1,..-,8n-1—Ag— 01 — - — Qp_2. A general binary

operation instead of subtraction can also be specified as an extra argument
in the same way as in partial_sum() and accumulate(). Its prototype is:

template<class In, class Out> // subtract by default
Out adjacent_difference(In first, In last, Out res);

template<class In, class Out, class BinOp> // general op
Out adjacent_difference(In first,In last,Out res,BinOp op);

It can be used as

void f(valarray<double>& v1, vector<double> v2) {
adjacent_difference(&vi[0], &vilvi.size()], &v1[01);

adjacent_difference(v2.begin(), v2.end(), v2.begin());
}

264 7. Templates

If v1 has elements 1,3, 8,22, then the first call above changes it into the
adjacent difference sequence 1,2, 5,14. It is easy to see that the algorithms
adjacent_difference() and partial_sum() are inverse operations.

7.7 Efficient Techniques for Numeric Integration

This section presents several efficient techniques for numeric integration.
The techniques include using function objects instead of passing function
pointers as arguments to function calls, using function pointers as template
parameters, expression templates, and template metaprograms. These tech-
niques are very general and also apply to many other situations. Two nu-
meric integration methods, the Trapezoidal Rule and Simpson’s Rule, are
described in earlier sections. In §3.13 they are coded using traditional pro-
cedural programming style while in §5.1 a class is used for encapsulation.
The programs in §3.13 and §5.1 work fine except for run-time efficiency,
when they are called frequently. In this section, they are improved for run-
time performance and generality by using templates.

7.7.1 Function Object Approach

As pointed out in §7.2 and §7.6, using templates and function objects can
improve run-time efficiency for programs that traditionally require passing
pointer-to-functions as arguments. Using a template and a function object,
the function trapezoidal(), for numerically evaluating f: f(z)dz, can be
written and used as

template<class Fo>

double trapezoidal(double a, double b, Fo f, int n) {
double h = (b - a)/n; // size of each subinterval
double sum = f(a)*0.5;
for (int i = 1; i < n; i++) sum += f(a + i*h);
sum += f£(b)*0.5;
return sumh;

class integrand { // define a class for my integrand
public:

double operator() (double x) { return exp(-x*x); }
s

int main() {
cout << trapezoidal(0, 1, integrand(), 100) << ’\n’;
}

7.7 Efficient Techniques for Numeric Integration 265

Recall that an object of a class with the function call operator () over-
loaded is called a function object. Thus the object integrand(), instead
of the class name integrand, is passed to the function call trapezoidal().
The compiler will then instantiate trapezoidal(), substitute integrand for
the template parameter Fo, which results in integrand::operator() being in-
lined into the definition of trapezoidal(). Note that trapezoidal() also accepts
a pointer-to-function as its third argument, but this would be hard to be
inlined and may not improve the run-time.

This technique can be put in a more general form that also takes a
template parameter for the precision of integration:

template<class T, class Fo>
T trapezoidal(T a, T b, Fo f, int n) {
Th= (b - a)/n; // size of each subinterval
T sum = £f(a)*0.5;
for (int i = 1; i < n; i++) sum += f(a + ixh);
sum += f(b)*0.5;
return sum*h;

3

template<class T> class integrand2 {

public: // define a class for my integrand
T operator()(T x) { return exp(-x*x); }

3

int main() {
cout << trapezoidal(0.0, 1.0, integrand2<double>(), 100);
}

With this form, integrals such as fol e=*"dz can be integrated by the Trape-
zoidal Rule in double, float, long double, or other precisions.

7.7.2 Function Pointer as Template Parameter

The technique here to improve run-time efliciency still uses a function
pointer, but in a very different way, in which the function pointer is used
as a template parameter. Thus it can be inlined to avoid function call
overheads. It can be illustrated by implementing the Trapezoidal Rule:

template<double F(double)> // F is a template parameter
double trapezoidal(double a, double b, int n) {
double h = (b - a)/nm; // size of each subinterval
double sum = F(a)*0.5;
for (int i = 1; i < n; i++) sum += F(a + i*h);
sum += F(b)*0.5;
return sum*h;

266 7. Templates

double myintegrand(double x) {
return exp{(-x*x);

¥

int main() {
cout << trapezoidal<myintegrand>(0, 1, 100) << ’\n’;

¥

With this approach, the integrand is still implemented as a function. But
it is not passed as an argument to trapezoidal(). Instead, it is taken as a
template parameter, which will be inlined. It can be generalized to

template<class T, T F(T)>
T trapezoidal(T a, T b, int n) {
Th= (b - a)/n; // size of each subinterval
T sum = F(a)*0.5;
for (int i = 1; i < n; i++) sum += F(a + ixh);
sum += F(b)*0.5;
return sum#*h;

template<class T> T myintegrand2(T x) {
return exp{(~-x*x);

¥

int main() {
cout << trapezoidal<double, myintegrand2>(0,1,100) << ’\n’;

¥

7.7.8 Using Dot Products and Expression Templates

For integrals such as [: [f(z) + g(z))dz and [: f(z)g(z)h(x)dz, the inte-
grand is a product (or summation) of different functions such as f, g, and h,
and the C++ programs presented in previous sections can not be directly
applied, since code such as

double resultQO = trapezoidal(0, 1, f + g, 100);
double result2 = trapezoidal(0, 1, fxgxh, 100);

is illegal. One way is to write another function that returns the product or
sum of some functions:

double F(double x, double f(double), double g(double)) {
return £(x) + g(x);

¥

7.7 Efficient Techniques for Numeric Integration 267

double G{double x, double f{(double), double g(double),
double h(double)) {
return f(x)*g(x)*h(x);
}

But the original integration function

template<class Fo>
double trapezoidal(double a, double b, Fo f, int n);

can no longer be applied to F or G (due to the complicated prototypes of
F and G), and thus several versions of it are needed. For a typical finite
element analysis code, the integration of the product (or sum) of many
functions {such as basis functions and their derivatives, coefficient functions
and their derivatives) need be evaluated, and this approach would lead
to many overloaded integration functions that are hard to manage and
maintain.

In this subsection, dot products are used to evaluate numeric integration.
As an example, consider a typical Gauss quadrature:

b n-1
[1@~ Y wis(a), (7.)
a i=0

where [z, 21, ..., Z,—1] are given Gauss points and [wo, w1, ..., Wy—1] are
the corresponding weights; see Exercise 5.10.10. If vector wgts contains the
weights w; and vector fzi contains the function values at Gauss points, then
the dot product function can be called to give the approximate integral:

double dot{const Vtr& u, const Vtr& v) {
double dotprod = 0;
int n = u.size();
for (int i = 0; i1 < n; i++) dotprod += u[il*v[i];
return dotprod;

}

Vtr fxi(n);
for (dnt i = 0; 1 < n; i++) fxi[i] = f(x[i]);
double d = dot(fxi, wgts); // dot() evaluates integrals

Here Viris a vector class (e.g., the standard library vector <double> or
the class Ver defined in Chapter 6). When an integrand is the product of
many functions such as f* g = h, a vector-multiply function can be defined:

Vtr operator*(const Vtr& u, const Vtr& v) {
int n = u.size();
vtr w(n);
for (int i = 0; i < n; i++) wl[i] = ulil*v[i];

268 7. Templates

return w;
}
Vtr fghxi = fxi*gxi*hxi;
double d0 = dot(fghxi, wgts); // evaluate integral of fgh
double d2 = dot(fxi, wgts); // evaluate integral of f

where fzi, gz, and hzt are the vectors consisting of the function values of
f, g, and h, respectively, evaluated at the Gauss points [zg,Z1,. .., Zn—1]
of a given Gauss quadrature. This is a traditional way to evaluate integrals
with integrands as products {or sums or a combination of them) of many
different functions. It works fine and is very convenient to use, but performs
very poorly due to the extra work in computing the loop for fzixgzi, storing
the result into a temporary vector ¢{mp, computing another loop to obtain
tmp * hxi, and storing it in another temporary vector; see §6.5 for similar
situations.

Expression templates can be applied to improve run-time efficiency of
such vector multiplications by deferring intermediate operations and avoid-
ing temporary objects. It is similar to the technique discussed in §6.5, but
is more general. First define a class to hold left operand, operator, and
right operand in an operation such as X Y :

template<class LeftOpd, class Op, class RightOpd>
struct LOR {
LeftOpd fod; // store left operand
RightOpd rod; // store right operand

LOR(LeftOpd p, RightOpd r): fod(p), rod(r) { }

double operator[J(int i) {
return Op::apply(fod[il, rod[il);

}
};
Here the template parameter Op refers to a class whose member apply()
defines a specific operation on elements of the left and right operands.
It defers intermediate evaluations and thus avoids temporary objects and
loops. Evaluation of the operation such as X Y takes place only when the
operator [] is called on an object of type LOR.

Then define a vector class, in which the operator = is overloaded that
forces the evaluation of an expression:

class Vtr {
int lenth;
double* vr;
public:
Vtr(int n, double* d) {.lenth = n; vr = d; }

7.7 Efficient Techniques for Numeric Integration 269

// assign an expression to a vector and

// do the evaluation

template<class LeftOpd, class Op, class RightOpd>

void operator=(LOR<LeftOpd, Op, RightOpd> exprn) {
for (int i = 0; i < lenth; i++) vr[i] = exprnli];

}

double operator[](int i) const { return vrfil; }

};

Notice the function call exprn[] forces the operation Op:: apply() to eval-
uate elements of the left and right operands.

Next define a class on how left and right operands are going to be eval-
uated:

// define multiply operation on elements of vectors
struct Multiply {
static double apply(double a, double b) {
return ax*b;
}
};

Finally overload the operator * for vector multiplication:

template<class LeftOpd>

LOR<LeftOpd, Multiply, Vtr> operator*(LeftOpd a, Vtr b) {
return LOR<LeftOpd, Multiply, Vtr>(a,b);

}

The multiplication is actually deferred. Instead a small object of type LOR
is returned. For example, X Y gives an object of LOR (without actually
multiplying X and Y'), where Y is of type Vir, but X can be of a more
general type such as Vir and LOR.

They can now be used as

int main() {

double a[] = { 1, 2) 3, 4) 5}’
double b[} = { 6, 7, 8, 9, 10};
double c[] = { 11, 12, 13, 14, 15};

double df5];

Vtr X(5, a), Y(5, b), Z(5, c), W(5, d);
W=X*YxZ

270 7. Templates

When the compiler sees the statement W = X %Y x Z; it constructs the
object LOR<X, Multiply,Y> from X xY and constructs the object

LOR< LOR<X, Multiply, Y>, Multiply, Z>

from LOR<X, Multiply,Y> * Z for the expression X * Y * Z. When it is
assigned to object W, the operation Vitr::operator= is matched as

W.operator=(LOR< LOR<X, Multiply, Y>, Multiply, Z> exprn) {
for (int i = 0; i < lenth; i++) vr[i] = exprmnl[il;

}

where exprn[i] is then expanded by inlining the LOR:: operator|]:
Multiply: :apply(LOR<Vtr,Multiply,Vtr>(X,Y) [i], Z[i1);

which is further expanded into

Multiply: :apply(X[il, Y[il) * Z[i]
= X[i] * Y[i] = 2[4i].

The final result of W = X Y % Z is:
for (int i = 0; i < lenth; i++) W[i] = X[4i] * Y[i] * Z[i];

Thus there are no temporary vector objects or extra loops.
Similarly, vector multiplication V = Wx X Y x Z will be finally expanded
by the compiler into

for (int i = 0; i < lenth; i++)
VIil = W[il = X[il = Y[i] = Z[il;

That is, the expression template technique efficiently computes the product
of an arbitrary number of vectors with a single loop and without temporary
vector objects.

For references on expression templates, see [Vel95, Fur97]. Some soft-
ware libraries using expression templates to achieve run-time efficiency are
PETE [Pet], POOMA [Poo], and Blitz++ [Bli]. Besides, the Web address
http://www.oonumerics.org contains a lot of useful information on object-
oriented numeric computing.

7.7.4 Using Dot Products and Template Metaprograms

In §7.7.3, numeric integration is evaluated through dot products, where
vector multiplication can be efficiently computed by using expression tem-
plates. A typical numeric integration formula (see Exercise 5.10.11 and
§7.7.3) has very few terms in the summation, which implies that dot prod-
ucts of small vectors are usually evaluated. A dot product function is nor-
mally written using a loop:

7.7 Efficient Techniques for Numeric Integration 271

double dot{const Vtr& u, comst Vir& v) {
double dotprod = 0;
int n = u.size();
for (int 1 = 0; i < mn; i++) dotprod += ulil*v[i];
return dotprod;

}

where the size of the vectors may not have to be known at compile-time.
For vectors of a small size (say 4), an alternative definition:

inline double dot4(const Vtr& u, const Vtr& v) {
return ul[01*v[0] + ul11*v[0] + ul2i*v[2] + u[31*v[3];
}

can boost performance, since it removes loop overhead and low-level paral-
lelism can be easily done on the summation operation. Besides, it is easier
to make this small function to be inlined (reducing function-call overhead)
and its data to be registerized. All these factors can make dot4() much
more efficient than the more general dot() for vectors of size 4.

To improve performance, template metaprograms can be used so that
the dot products of small vectors are expanded by the compiler in the
form of dot4(). To illustrate the idea of template metaprograms, consider
the Fibonacci numbers defined by a recursive relation: fo = 0,f; = 1,
fn = fn-1+ fa—2, for n = 2,3,.... They can be recursively computed by
the compiler:

template<int N> struct fib{
enum { value = fib<N-1>::value + fib<N-2>::value};

};

template<> struct fib<1>{
enum { value = 1 };

};

template<> struct fib<0>{
enum { value = 0 };

};

const int f£3 = fib<3>::value;
const int f9 = fib<9>::value;

The compiler can generate that f3 = 2 and f9 = 34. The recursive tem-
plate behaves like a recursive function call (but at compile-time) and the
specializations fib<1> and fib<<0> stop the recursion.

This recursive template technique can be generalized to compute dot
products. First define a class for small vectors:

template<int N, class T>

272 7. Templates

class smallVtr {

T vrN]; // array of size N and type T
public:
T& operator[] (int i) { return vri[il; }

};
Then define a dot product function that calls a template metaprogram:

template<int N, class T>
inline T dot(smallVtr<N,T>& u, smallVtr<N,T>& v) {
return metaDot<N>::f(u,v);

}

where the template metaprogram metaDot can be defined as

template<int M> struct metaDot {
template<int N, class T>
static T f(smallVtr<N,T>& u, smallVtr<N,T>& v) {
return u[M-1]*v[M-1] + metaDot<M - 1>::f(u,v);
}
};

template<> struct metaDot<1> {
template<int N, class T>
static T f(smallVtr<N,T>& u, smallVtr<N,T>& v) {
return u[0]*v[0];
}
3

The specialization metaDot<1> stops the recursion.
Now dot can be called on small vectors:

int main() {
smallVtr<4, float> u, v;
for (int 1 =0; i < 4; i++) {
ulil = 1 + 1;

v[i] = (i + 2)/3.0;
}
double d = dot(u,v);
cout << * dot = " << d << ’\n’;

}

where the inlined function call dot(u, v) is expanded during compilation as

dot (u,v)

= metaDot<4>::f(u,v)

u[3]*v[3] + metaDot<3>::f(u,v)

u[3]1*v[3] + ul2]*v[2] + metaDot<2>::f(u,v)

u[3]*v[3] + ul2l*v[2] + ul1l*v[1] + metaDot<1>::f(u,v)

7.8 Polynomial Interpolation 273

= u[31*v[3] + ul2]*v[2] + ul1l*v[1] + u[0]*v[0]

It is this compile-time expanded code that gives better performance than
a normal function call with a loop inside.

This template metaprogram technique could result in code that is several
times faster than a normal function call when computing dot products of
small vectors.

In large-scale applications, it is not enough to compute correctly, but
also efficiently and elegantly. The elegance of a program should also in-
clude extendibility, maintainability, and readability, not just the look of
the program. The code for dot products of small vectors using the tem-
plate metaprogram technique is also elegant in the sense that it can be
easily extended to other situations, for example, dot products of complex
vectors, and can be maintained easily. Writing it in FORTRAN or C styles
would possibly result in tens of versions (dot products of vectors of sizes 2,
3, 4, 5, and so on, and for real and complex small vectors in different pre-
cisions). The Trapezoidal Rule itself is also written in efficient and elegant
ways in this section and many other functions such as Simpson’s Rule can
be as well; see Exercise 7.9.11.

7.8 Polynomial Interpolation

Given a set of n+1 values {y;}2_, of a function f(z) at n+1 distinct points
{z;}1o, where n is a positive integer, how can one approximate f(z) for z #
z;, © =0,1,...,n? Such a problem arises in many applications in which the
n+1 pairs {z;,y;} may be obtained from direct measurement, experimental
observations, or an expensive computation, but function values f(z) at
other points are needed. This section deals with polyrnomial interpolation,
in which a polynomial p,(z) of degree n is constructed to approximate f(z)
that satisfies the conditions f(z;) = pp(x;), 1 =0,1,...,n.

7.8.1 Lagrange Form

The approximating polynomial p,(z) can be written in the Lagrange form:
Pa(@) = 90L6” (@) + LTV (@) + - + L (@) = D ul (@),
=0

where each Lg") (x) is a polynomial of degree n and depends only on the
interpolation nodes {z;}7_, but not on the given function values {y;}7,.
They are defined as

n
I
@)=] z._‘i’_, i=0,1,...,n—1.
? J

j=0
j#i

274 7. Templates

That is, each Lg")(z) is the product of all factors (z — z;)/(z; — z;) for
j # 1. They have the following property.
L™(z;) =0 forj#i, and L{M(z;)=1.

1

Thus p, (z) agrees with f(x) at the given interpolation nodes {z;}% . Func-
tion value f(z) for = other than the interpolation nodes can be approxi-
mated by p,(z).
When n = 1, the interpolation polynomial p; (z) is a line passing through
(z0,y0) and (z1,%1), and has the form:
T — Ty T — Xy

= L @)y + LV (2)y = + :
pi(z) o (z)vo 1 (@)y zo—zlyo I1—on1

This is the so-called linear interpolation, which is used frequently in many
scientific works. When n = 2, pa(z) is a quadratic polynomial passing
through (zo,yo), (z1,¥1), and (z2,¥y2), and has the form:

2
pa(z) = Y L (@)
1=0

(z —z1)(z — z2) + (z — xzo)(z — z2) (z — zo)(z — 1)
(zo —z1)(z0 —22) (21— 20)(z1 —22)" " (22— o) (22 — 1)

Since some applications require more accuracy than others, a template
function can be written so that a user can conveniently choose single, dou-
ble, long double, or other precisions:

template<class T>
T lagrange(const vector<T>& vx, const vector<T>& vy, T x) {
int n = vx.size() - 1;
Ty=0;
for (int 1 = 0; i <= n; i++) {
T temp = 1;
for (int j = 0; j <= n; j++)
if (§j '= 1) temp *= (x - vx[j])/(vx[i] - vx[j]);
y += temp*vyl[il;
}
return y;

}

The vectors vz and vy store, respectively, the given x and y coordinates of
the interpolation points. The function template computes the approximate
function value at z. In particular, the inner for loop calculates Lg")(z) and
the outer for loop gives the summation >}, y,—LE")(z).

As an example, consider the interpolation problem that gives z; = 1 +
1/4.0 and y; = €* for i = 0,1,2,3. The function template can then be used
to find an approximate function value at z = 1.4:

7.8 Polynomial Interpolation 275

int main() {
const int n = 4;
vector<float> px(n);
vector<float> py(n);
for (int 1 = 0; i < n; i++) {
px[i]l = 1 + 1/4.0; pyl[i]l = exp(px[i]);
}
float x = 1.4;
float approximation = lagrange(px, py, x);

}

Compared to the exact function value e!-4, the error of this approximation
is 0.0003497 (on my machine).

7.8.2 Newton Form
The Newton form is more efficient and seeks p,(z) as
Pn(z) =coter(@—z0)+ca(z—x0)(z—21)+- - +en(—20) - (T—Zn_1),

where ¢y, ¢1, - - ., ¢, are constants to be determined. For example, the linear
and quadratic interpolation polynomials in Newton’s form are

pi1(z) = ¢ + e1(z — zo),
p2(x) = co + e1(x — 2p) + c2(x — zo) (z ~ 21).

Before presenting an algorithm on how to find ¢;, i =0,1,...,n, we talk
about how Newton’s form can be evaluated efficiently, assuming all the ¢;
are known. Write p,(z) into a nested multiplication form:

pn(I) = CO+d0(Cl +d1(02+ e +dn_3(Cn_2 +dn_2(Cn_1 +dn—l(Cn))) ..))’

where dg =z — 29, dy =2 —11,...,dp—1 = £ — Z,_1, and introduce the
notation:

Un = Cn;
Un—1 = Cp—1 + An_1Un;

Up—2 = Cp—2 + dn—2un—1;

u1 = c1 + diug;

Up = ¢o + douy;
Then py(z) = up. This procedure can be written into an algorithm:

U < Cn,

276 7. Templates

for(i:’n—l,’n—Q,...,O){
u—c;+d, *xu; //thatis:ue—ci-i-(z-zz‘)*u

}

return u;

This is the so-called Horner’s algorithm (see §3.12), which is very efficient
in evaluating polynomials.

Below is a procedure on how to find the coefficients c;. The requirement
pn(x:) = f(z;) leads to

Thus ¢ = f(zo) and ¢1 = (f(z1) — f(z0))/(z1 — o). Define the divided
differences of order 0 as

flzi] = f(zi), 1=0,1,...,n,
and of order 1 as

f[zi,z,-]=f[z—j]——f—[ﬁ]-, 1,7=0,1,...,n, and i # 7,
Tj — I3

and of order j as
flzae, Tiy1, ..o Titj)

_ flzit1, Tigas - Tagj) — flTs, Tog1, -5 Tigj—1]
Tiv; —Z4

, 4,3=01,...,n.

Then cg = flzo), c1 = f[zo,21], and
f(z2) = fzo) — c1(z2 — 20)

Cc2 =
(z2 ~ 10)(12 - 11)
flz2) = flz1) | f(z1) = f(zo) — er(z2 — Zo)
- T2 — T T2 — Iy
To — X

_ flz1, 2] — flzo, 71
T2 — Zo

= f[$0,$1,12]-

Similarly, it can be shown that ¢; = f[xo,z1,...,2;] for i = 0,1,...,n.

That is, all the coefficients ¢; can be expressed as divided differences and

7.8 Polynomial Interpolation 277

To f[fl)o} f[(l?o,fl)l] f[$07$17$2] f[$07$17x27$3]
oy flz1) | flzr,ze] flzn, 20,23

T2 flxo] | flz2, 73]

r3 flxs]

TABLE 7.1. A table of divided differences in the case of n = 3.

the interpolation polynomial p,(z) is:

pn(z) = flxo] + flzo, z1](x — z0) + flxo, 1, T2)(T — T0) (T — 1) + - -
+flzo, 1,y ..y Tal(x® — xo) (T — T1) -+ (T — Tp—1).

If a table of function values (z;, f(x;)) is given, then a table of divided
differences can be constructed recursively column by column as indicated in
Table 7.1 for the case of n = 3. In particular, the first two columns list the
given = and y coordinates of the interpolation points, divided differences
of order 1 are computed and put in the third column, divided differences
of order 2 are computed and put in the fourth column, and so on. When
the table is completed, the divided differences in the top row will be used
to compute pn(z).

For example, given a table of interpolation nodes and corresponding func-
tion values:

T 31 5 6
flzy]t -3 2 4

the table of divided differences can be computed according to Table 7.1 as

3 1 |2 -3/8 7/40
1 -3|5/4 3/20

5 2 |2

6 4

Then the interpolation polynomial can be written as

3 7
p3(z)=1+2(zx—3)— —8—(z -3)(z-1)+ E(x =3)(z - 1)(xz —5).
When n is large, calculating the divided difference table can not be done
by hand. To derive an efficient algorithm for doing this, introduce the no-
tation ¢;; = f[2,,Zit1,--.,Tit;]- Then Table 7.1 of divided differences
becomes (in the case of n = 4):

278 7. Templates

o €0 [Co,1 €02 €03 Coq4
1 Cio (€11 €2 C13

T2 Co0 | C21 C22

3 C30 | €31

Ty C40

This actually leads to the following algorithm:
for (k=0,1,...,n){
ck,0 < fxk);
}
for (j =1,2,...,n) {
for (i =0,1,...,n—) {

Cij — (Cir1,5-1 — Ci,j—1)/ (Tits — Ti);

Then p,(x) can be obtained as

Pr(z) =coo+coa(x —To) + co2(z — 2o)(@ — 1) + -
+eon(z —zo)(x —21) - (T — Tn-1)-

A closer look at the algorithm reveals that only co0,c0,1,---,Co,n are
needed in constructing p,(z), and other ¢; ; for i # 0 are just intermediate
results. A space-efficient version of the algorithm requires only an array
b = [bo,b1,...,by] of size n + 1. First store the given function value f(z;)
into b;, for i = 0,1,...,n. Note that by = ¢g0. Then compute divided
differences ¢; 1 for ¢ =0,1,...,n — 1 and store them in by, b, ..., bn. Now
bo = coo and by = co,1 are the first two desired coefficients for p,(x).
Next compute divided differences ¢; o for ¢ = 0,1,...n — 2 and store them
in ba,bs,...,b,. Now by = co0, b1 = co,1, and by = cg,2. Continue this
process until ¢g ,, is computed and stored in b,. Now the revised and more
space-efficient algorithm for calculating the coefficients of p,(x) reads:

for (k=0,1,...,n) {
be — f(zk);
}
for (j =1,2,...,n){
for(i=nmn—-1,...,7) {
bi — (bs — bim1)/(xi — Ti-j);

7.9 Exercises 279

After this algorithm computes all by, the interpolation polynomial p,(z)
can be finally constructed in Newton’s form:

Pn(z) =bo +bi(z —z0) +b2(z — zo)(z — 1) + -~
+bp(z — zo)(z —21) -+ - (T — 2p—1).

Combining this algorithm and the one for nested multiplication leads
to the following code for computing Newton’s form of the interpolation
polynomial p,(z).

template<class T>

T newton(const vector<T>%& vx, const vector<T>& vy, T x) {
vector<T> b = vy;
int n = vx.size() - {1;

// find coefficients in Newton’s form
for (int j = 1; j <= n; j++)
for (int i = n; 1 >= j; i--)

b[i] = (b[i] - bli-11)/(vx[i]l - vx[i-j1);

// evaluate interpolation polynomial at x

Tu = blnl;

for (int i =n - 1; 1 >= 0; i--) u = b[i] + (x - vx[i])#*u;
return u;

}

Applying this program to the example presented at the end of §7.8.1 pro-
duces about the same result as lagrange().

The advantage of Newton’s form is that it is very efficient and the coef-
ficients ¢;, ¢ = 0,1,...,n, can be used when later there are more interpola-
tion points available. For example, if later one more point (Zp41, f(zn+1))
is given, then pny+1(z) = pa(z) + cn+1(z — 20) -+~ (T — T5) gives cpq1 =
(f(zn+1) = Pn(@n+1))/((Tns1 — To) - - (Tnt1 — Ta))-

7.9 Exercises

7.9.1. Test the class template for vectors Ver<T> presented in §7.1 and
add more operations such as vector multiplication and addition, and
2-norm (see §6.3).

7.9.2. Test the class template for vectors Ver<T> together with its spe-
cializations Ver<complez<T> > and Ver<complez<double> > pre-
sented in §7.1. Also add more operations such as vector multiplication
and addition, and 2-norm (see §6.3).

280 7. Templates

7.9.3. Turn the matrix class Mtz defined in §6.3 into a class template.

7.9.4. Traits can be used as an alternative to certain template specializations
or function overloading. For example, the maznorm() function for
arrays of real or complex numbers can be defined as

template<class T> struct RTrait {

typedef T RType; // for return type of maxnorm()
I

template<class T> struct RTrait< complex<T> > {
typedef T RType; // return type for complex arrays
}; // a specialization of RTrait<T>

template<class T> // definition of maxnorm

typename RTrait<T>::RType maxnorm(T ull, int n) {
typename RTrait<T>::RType nm = O;
for (int i = 0; i < mn; i++) nm = max(am, abs(ulil));
return nm;

}

Here the trait class RTrait defines the return type for the function
maznorm(); but for complex vectors, the return value of a norm func-
tion must be a real number. The keyword typename must be used to
instruct the compiler that RTrait<T>: RType is a type name. One
definition of the function handles real and complex vectors. Rewrite
the vector class Ver<T > in §7.1 using this approach for the mem-
ber function maznorm(). This approach would be much better if
maznorm() were a large function. Can it be applied to vector dot
products?

7.9.5. Apply the sort function template sort<T>() defined in §7.2 to sort
a vector of complex numbers in decreasing order according to their
absolute values, by overloading the operator < for complex numbers.

7.9.6. Apply the sort function template sort<T>() defined in §7.2.3 to sort
a vector of complex numbers in decreasing order according to their
absolute values, by using a specialization for the comparison template
less<T>().

7.9.7. Write a specialization for the template less<T>() so that the sort
function template sort<T>() in §7.2.3 will sort a vector of point2d
in decreasing order according to the y-coordinate.

7.9.8. Apply function template compare<T>(), defined in §7.2.4, to com-
pare two vectors of char with case-sensitive and case-insensitive com-
parisons, respectively.

7.9.9.

7.9.10.

7.9.11.

7.9.12.

7.9.13.

7.9.14.

7.9.15.

7.9.16.

7.9 Exercises 281

Write a function object to be used as an argument of the function
template accumulate(), presented in §7.6, for calculating the 2-norm
of a vector of complex numbers. Write a function template, similar to
accurnulate(), that calculates directly the 2-norm of a vector of com-
plex numbers. Compare the efficiency of the two function templates.

Write the deferred-evaluation operator overloading for the vector
saxpy operation as presented in §6.5 into a template so that it can
handle vectors of single, double, and long double precisions.

Write Simpson’s Rule for numeric integration into the more efficient
and elegant forms as described in §7.7.

Write a template metaprogram to compute the factorial of small in-
tegers (e.g, less than 12; see Exercise 1.6.2) during compilation.

Use expression templates to write a program to add an arbitrary
number of vectors without introducing temporary vector objects or
extra loops.

Write the conjugate gradient algorithm (§6.6) into a member function
of a class template so that it can be used to solve real linear systems
Az = b for symmetric and positive definite matrix A and vectors b
and z in single, double, and long double precisions.

Write the conjugate gradient algorithm (§6.6) into a member function
of a class template with specializations for vector dot products so that
it can be used to solve real and complex linear systems Az = b for
Hermitian and positive definite matrix 4 and vectors b and z in single,
double, and long double precisions for real and imaginary parts.

Given a set of values of function f(z):

z 5 7 6 66
F@) | T —23 -50 -4

apply Lagrange and Newton forms of the interpolation polynomial to
approximate f(z) for z = 5.5 and z = 6.2.

8

Class Inheritance

A new class can be derived from an existing class. The new class, called
derived class, then inherits all members of the existing class, called base
class, and may provide additional data, functions, or other members. This
relationship is called inheritance. The derived class can then behave as a
subtype of the base class and an object of the derived class can be assigned
to a variable of the base class through pointers and references. This is the
essential part of what is commonly called object-oriented programming.
This chapter deals with various issues in class inheritance. The disadvantage
of object-oriented programming is that it may sometimes greatly affect run-
time performance. The last section of the chapter presents techniques on
what can be done when performance is a big concern.

8.1 Derived Classes

Suppose we want to define classes for points in one, two, and three dimen-
sions. A point in 1D can be defined as

class Pt { // class for 1D point
private:

double x; // x coordinate
public:

Pt(double a = 0) { x =a; } // comstructor

void draw() comst { cout << x; } // draw the point
}
D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

284 8. Class Inheritance

The function drow() is defined to simply print out the coordinate. Since
a 2D point has both z and y coordinates, it can be defined to inherit
the z coordinate from the class Pt and provide a new member for the y
coordinate:

class Pt2d: public Pt { // class for 2D point
private: // inherits x from Pt
double y; // y coordinate
public:
Pt2d(double a = 0, double b = 0): Pt(a), y(®) { }
void draw() comst { // draw x coordinate
Pt::draw(); // by Pt’s draw()
cout << " " << y; // draw y coordinate
}
};

By putting :public Pt after the name of the class Pt2d when it is declared,
the new class Pt2d is defined to be a derived class from the base class Pt.
The derived class Pt2d is also called a subclass and the base class Pt a
superclass. Pt2d has members of class Pt in addition to its own members.
The derived class Pt2d is often said to inherit properties from its base
class Pt. This relationship is called inheritance. It can be represented
graphically by an arrow from the derived class to the base:

7]

'y

Pt2d ’

Now a Pt2d is also a Pt (a two-dimensional point can be regarded as
a one-dimensional point by just looking at the z coordinate), and Pt2d*
(pointer to Pt2d) can be used as Pt*. However, a Pt is not necessarily a
Pt2d and a Pt* can not be used as a Pt2d*. The keyword public in the
definition of Pt2d means that the derived class Pt2d has a public base Pt,
which in turn means that a Pt2d* can be assigned to a variable of type
Pt* by any function without an explicit type conversion. (Inheritance using
private and protected bases is discussed in §8.3.) The opposite conversion,
from a pointer to base class to a pointer to derived class, must be explicit.
For example,

void f(Pt pl, Pt2d p2) {

Pt*x ql = &p2; // OK. Every Pt2d is a Pt

Pt2d* q2 = π // error, not every Pt is a Pt2d
}

8.1 Derived Classes 285

void g(Pt pl, Pt2d p2) { // statements below are legal
Pt* ql = &p2; // Every Pt2d is a Pt
Pt2d* q2 = static_cast<Pt2d*>(ql);
// explicit type conversion

qQ2->draw(); // x, y of p2 are printed

Pt2d* r2 = static_cast<Pt2d*>(&pl);
// explicit type conversion

r2->draw(); // OK, but y may be garbage
}
int main() { // test what is printed out
Pt a(5); // create a 1D point
Pt2d b4, 9); // create a 2D point
ga, b); // call g() on a and b
}

During the second draw in calling g(), the 1D point a does not have a
y-coordinate and thus some garbage should be printed out. The first draw
in g() on the 2D point b should print out both coordinates of b correctly.

An object of a derived class can be treated as an object of its base
class when manipulated through pointers and references. The opposite must
be through explicit type conversion using static_cast (at compile-time) or
dynamic_cast (at run-time; see §8.5), although the result of such conver-
sions can not be guaranteed in general. For example, the second cast in the
function g() above tries to convert a pointer to a base class to a pointer to
a derived class and may result in an object with an undefined y coordinate.
The operator static.cast converts between related types such as from one
pointer type to another or from an enumeration to an integral type. There
is another cast, called reinterpret_cast, which converts between unrelated
types such as an integer to a pointer. These casts may not be portable, can
be even dangerous, but are sometimes necessary. They should be avoided
when possible.

Note that the function draw() may draw garbage for the y coordinate
in r2—>draw() above. A closer look reveals that r2 is cast from a one-
dimensional point. It would be nice if the system could detect the type of an
object and invoke the draw function Pt::draw() for one-dimensional points
and invoke Pt2d :: draw() for two-dimensional points. In §8.1.5, virtual
functions are introduced so that for a 1D point, the function Pt:: draw() will
be invoked and for a 2D point, Pt2d::draw() will be invoked automatically.

286 8. Class Inheritance

8.1.1 Member Functions

Member functions of a derived class can not access the private part of a
base class, although a derived class contains all members of the base class.
For example, the function Pt2d::draw() can not be defined as

void Pt2d::draw() const { // incorrect
cout << x << " " << y; // x is not accessible

}

A member of a derived class that is inherited from the private part of a
base class may be called an invisible member of the derived class. Thus an
invisible member of a class can not be accessed by members or friends even
of the same class. This is for information hiding, since otherwise a private
member of a class could be accessed freely just by deriving a new class from
it.

However, the hidden member x of the derived class Pt2d is accessible
through the public member function Pt::draw()

void Pt2d::draw() const { // draw the point
Pt::draw(); // draw x coordinate by Pt’s draw()
cout << " " << vy; // draw y coordinate

}

Note the class qualifier Pt:: must be used to refer to a member function of
class Pt.

8.1.2 Constructors and Destructors

In defining the constructor of a derived class, the constructor of the base
class must be called in the initializer list (like class object members; see
§5.6) if the base class has a constructor. For example,

Pt2d::Pt2d(double a = 0, double b = 0): Pt(a), y(b) { }

It can also be defined alternatively as

Pt2d: :Pt2d(double a = 0, double b = 0): Pt(a) { y = b; }
But it can not be defined as
Pt2d: :Pt2d(double a = 0, double b = 0) { Pt(a); y = b; }

The third definition is wrong since the construction of base class Pt is not
put in the initializer list.

A derived class constructor can specify initializers for its own members
and immediate bases only. The construction of an object of a derived class
starts from the base class, then the members, and then the derived class
itself. Its destruction is in the opposite order: first the derived class itself,

8.1 Derived Classes 287

then its members, and then the base class. Members and bases are con-
structed in order of declarations in the derived class and destructed in the
reverse order.

In the definition of the destructor of a derived class, only spaces allocated
in the derived class need be explicitly deallocated; spaces allocated in the
base class are freed implicitly by the destructor of the base class.

8.1.83 Copying

Copying of class objects is defined by the copy constructor and assignment.
For example,

class Pt {
public: // ... in addition to other members
Pt(const Pt& p) { x = p.x; } // copy constructor
Pt& operator=(const Pt& p) { // copy assignment
if (this != &p) x = p.Xx;
return *this;

}
+;
Pt2d p2;
Pt p1 = p2; // construct pl from Pt part of p2
pl = p2; // assign Pt part of p2 to pi

Since the copy functions of Pt do not know anything about Pt2d, only the
Pt part, (z-coordinate) of a Pt2d object is copied and other parts are lost.

This is commonly called slicing. It can be avoided by passing pointers and
references; see §8.1.5.

8.1.4 Class Hierarchy

A derived class can be a base class of another derived class. For example,

class Pt3d: public Pt2d { // point in 3D

private: // inherits x,y from Pt2d
double z; // z coordinate

public:

Pt3d(double a = 0, double b = 0, double ¢ = 0)
: Pt2d(a, b), z(c) { }

void draw() const { // draw the point
Pt2d: :draw(); // draw x,y by Pt2d’s draw()
cout << " " << z; // draw z coordinate

}

};

288 8. Class Inheritance

A set of related classes derived through inheritance is called a class hi-
erarchy.

A derived class can inherit from two or more base classes. This is called
multiple inheritance; see §8.4.

8.1.5 Virtual Functions

Virtual functions can be declared in a base class and may be redefined
(also called overridden) in each derived class when necessary. They have
the same name and same set of argument types in both base class and
derived class, but perform different operations. When they are called, the
system can guarantee the correct function be invoked according to the type
of the object at run-time. For example, the class Pt can be redefined to
contain a virtual function:

class Pt {
private:
double x;
public:
Pt(double a = 0) { x = a; }
virtual void draw() comst { cout << x; } // virtual fcn

};

The member Pt::draw() is declared to be a virtual function. The declara-
tions of Pt2d and Pt3d remain unchanged. The keyword virtual indicates
that draw() can act as an interface to the draw() function defined in this
class and the draw() functions defined in its derived classes Pt2d and Pt3d.
When draw() is called, the compiler will generate code that chooses the
right draw() for a given Pt object (Pt2d and Pt3d objects are also Pt
objects). For example, if a Pt object is actually a Pt3d object, the function
Pt3d :: draw() will be called automatically by the system.

A virtual function can be used even if no class is derived from the class,
and a derived class need not redefine it if the base class version of the
virtual function works fine. Now functions can be defined to print out a set
of points (some may be 1D or 2D while others may be 3D):

void h{const vector<Pt*>& v) { // include <vector>
for (int i = 0; i < v.size(); i++) {
vii]->draw();
cout << ’\n’;

}

}

int main() { // test what is printed out
Pt a(b);

Pt2d b(4, 9);

8.1 Derived Classes 289

Pt3d <(7, 7, 7);
vector<Pt*> v(3);

v[0] = &a;
v[1] = &b;
v[2] = &c;
h(v);

3

For library <vector> see §10.1.1. This will work even if the function k() was
written and compiled before the derived classes Pt2d and Pt3d were even
conceived of, and the points (1D, 2D, or 3D) in the argument of A() can
be generated dynamically at run-time by another function. Since draw() is
declared to be virtual in the base class, the system guarantees that in the
call v[i]—>draw(), the function Pt::draw() is invoked if v[7] is a pointer to
Pt, Pt2d::draw() is invoked if v[7] is a pointer to Pt2d, and Pt3d::draw() is
invoked if v[i] is a pointer to Pt3d. This is a key aspect of class inheritance.
When used properly, it is a cornerstone of object-oriented design.

Getting the right correspondence between the function (e.g., among dif-
ferent versions of draw()) and the type (e.g., among Pt, Pt2d, or Pt3d)
of an object is called run-time polymorphism. A type with virtual func-
tions is called a polymorphic type. Run-time polymorphism is also called
dynamic binding. To get polymorphic behavior, member functions called
must be virtual and objects must be manipulated through pointers or ref-
erences. When manipulating objects directly (rather than through pointers
or references), their exact types must be known at compile-time, for which
run-time polymorphism is not needed and templates may be used. See §8.6
for examples that can be implemented using either templates or virtual
functions. In contrast, what templates provide is often called compile-time
polymorphism, or static polymorphism.

When run-time polymorphism is not needed, the scope resolution opera-
tor :: should be used, as in Pt::draw() and Pt2d::draw(). When a virtual
function is inline, function calls that do not need run-time polymorphism
can be specified by using the scope resolution operator :: so that inline sub-
stitution may be made. This is reflected in the definitions of Pt2d::draw()
and Pt3d:draw().

Pointers to class members were discussed in §5.8. A function invoked
through a pointer to a member function can be a wirtual function, and
polymorphic behavior can be achieved through pointers to virtual member
functions.

8.1.6 Virtual Destructors

A virtual destructor is a destructor that is also a virtual function. Proper
cleanup of data can be ensured by defining a virtual destructor in a base

290 8. Class Inheritance

class and overriding it in derived classes. For example, consider the following
inheritance without a virtual destructor.

class B {
double* pd;
public:
BO { // comstructor of B
pd = new double [20];
cout << "20 doubles allocated\n";
}
“BO) { // destructor of B
delete[] pd;
cout << "20 doubles deleted\n";

}
};
class D: public B { // derive D from B
int* pi;
public:
D(O): BO { // comstructor of D
pi = new int [1000];
cout << "1000 ints allocated\n";
}
DO { // destructor of D
delete[] pi;
cout << "1000 ints deleted\n";
}
};

Then the code

int main() {

B* p = new D;
// ‘nmew’ comstructs a D object
delete p;

// ‘delete’ frees a B object since p is a pointer to B

}
will produce the output

20 doubles allocated
1000 ints allocated
20 doubles deleted

Proper cleanup is not achieved here. The reason is that the new operator
constructed an object of type D (allocated 20 doubles and 1000 ints when
D’s constructor was called), but the delete operator cleaned up an object of
type B pointed to by p (freed 20 doubles when B’s destructor was implicitly

8.2 Abstract Classes 291

called). In other words, run-time polymorphism did not apply to the de-
structor of class D. If it were applied, the system would have detected the
type of the object pointed to by p and called the destructor of the correct
type (class D).

This problem can be easily solved by declaring the destructor of the base
class B to be virtual :

class B {
double* pd;
public:
BO {
pd = new double [20];
cout << "20 doubles allocated\n";
}
virtual “B() { // a virtual destructor
delete[] pd;
cout << "20 doubles deleted\n";
}
};

The definition of the derived class D is unchanged. Now the main program
above produces the following desired output.

20 doubles allocated
1000 ints allocated
1000 ints deleted
20 doubles deleted

From this, the orders of construction and destruction of objects of derived
and base classes can also be clearly seen; see §8.1.2.

In general, a class with a virtual function should have a virtual destructor,
because run-time polymorphism is expected for such a class. However, other
base classes such as class B above may also need a virtual destructor for
proper cleanups.

8.2 Abstract Classes

Some virtual functions in a base class can only be declared but can not be
defined, since the base class may not have enough information to do so and
such virtual functions are only meant to provide a common interface for
the derived classes. A virtual function is called a pure virtual function if
it is declared but its definition is not provided. The initializer “= 0” makes
a virtual function a pure one. For example,

class Shape {
public:

292 8. Class Inheritance

virtual void draw() = 0; // pure virtual function
virtual void rotate(int i) = 0; // rotate i degrees
virtual bool is_closed() = 0; // pure virtual function
virtual ~Shape() { } // empty virtual destructor

};

The member functions rotate(), draw(), and is_closed() are pure virtual
functions recognized by the initializer “= 0”. Note the destructor " Shape()
is not a pure virtual function since it is defined, although it does nothing.
This is an example of a function that does nothing but is useful and neces-
sary. The class Shape is meant to be a base class from which other classes
such as Triangle and Circle can be derived. Its member functions rotate(),
draw(), and is_closed() can not be defined since there is not enough infor-
mation to do so.

A class with one or more pure virtual functions is called an abstract class.

No objects of an abstract class can be created. For example, it is illegal to
define:

Shape s; // object of an abstract class can not be defined

An abstract class can only be used as an interface and as a base for derived
classes. For example, a special shape: Circle can be derived from it as

class Circle: public Shape { // derived class for circles
private:
Pt2d center; // center of circle
double radius; // radius of circle
public:
Circle(Pt2d, double); // comstructor
void rotate(int) { } // override Shape::rotate()
void draw(); // override Shape::draw()

bool is_closed() { return true; } // a circle is closed
1
The member functions of Circle can be defined since there is enough in-
formation to do so. These functions override the corresponding functions
of Shape. The function Circle :: rotate() does nothing since a circle does
not change when being rotated, and Circle :: is_closed() returns true since
a circle is a closed curve. Circle is not an abstract class since it does not
contain pure virtual functions, and consequently objects of Circle can be
created.

A pure virtual function that is not defined in a derived class remains a
pure virtual function. Such a derived class is also an abstract class. For
example,

class Polygon: public Shape { // abstract class
public:
bool is_closed() { return true; }

8.2 Abstract Classes 293

// override Shape::is_closed()
// but draw() & rotate() still remain undefined.
};

class Triangle: public Polygon { // not abstract any more
private:
Pt2d* vertices;
public:
Triangle (Pt2d*) ;
“Triangle() { delete[] vertices; }
void rotate(int); // override Shape::rotate()
void draw(); // override Shape: :draw()

};

Class Polygon remains an abstract class since it has pure virtual func-
tions draw() and rotate(), which are inherited from its base class Shape
but have not been defined. Thus objects of Polygon can not be created.
However, Triangle is no longer an abstract class since it does not contain
any pure virtual functions (definitions of its members rotate() and draw()
are omitted here) and objects of Triangle can be created.

Note that a virtual destructor is defined for the base class Shape. This
will ensure proper cleanup for the derived class T'riangle, which frees dy-
namic memory space in its destructor. In general, a class with a virtual
function should have a virtual destructor, although other base classes may
also need one; see the example in §8.1.6.

Below is a design problem for iterative numeric methods on solving linear
systems of algebraic equations Az = b, where A is a square matrix, b is the
right-hand side vector, and is the unknown vector. In §6.6 the conjugate
gradient (CG) method is implemented for a Hermitian and positive definite
matrix A and in §11.3 the generalized minimum residual (GMRES) method
is introduced for any nonsingular matrix A. These two iterative methods
require only matrix-vector multiplication and some vector operations in
order to solve the linear system Az = b. Details of CG and GMRES are
not needed here. Instead, a class hierarchy is designed to apply CG and
GMRES to full, band, and sparse matrices A. In some applications, most
entries of the matrix A are not zero and all entries of A are stored. Such
a matrix storage format is called a full matriz. In some other applications,
the entries of A are zero outside a band along the main diagonal of A. Only
entries within the band (zero or nonzero) may be stored to save memory
and such a format is called a band matriz. Yet in other applications most
entries of A are zero and only nonzero entries are stored to further save
memory; such a format is called a sparse matriz. Three different classes
need be defined for these three matrix storage formats, of which the full
matrix format is given in §6.3 where every entry of a matrix is stored.

294 8. Class Inheritance

Details of these matrix storage formats are not needed here, although they
can be found in §11.1.

The objective of such a design is that the CG and GMRES methods
are defined only once, but are good for all three matrix storage formats,
instead of providing one definition for each storage format. This should
also be extendible possibly by other users later to other matrix formats
such as symmetric sparse, band, and full matrices (only half of the entries
need be stored for symmetric matrices to save memory). Since CG and
GMRES depend on a matrix-vector product, which must be done differently
for each matrix storage format, the correct matrix-vector multiplication
function has to be called for a particular matrix format. To provide only
one definition for CG and GMRES, they can be defined for a base class
and inherited for derived classes representing different matrix formats. To
ensure the correct binding of matrix-vector multiplication to each matrix
storage format, a virtual function can be utilized. To be more specific,
define a base class

class AbsMatrix { // base class
public:
virtual ~“AbsMatrix() { } // a virtual destructor

virtual Vtr operator*(const Vtr &) comst = 0;
// matrix vector multiply

int CGQ);

int GMRESQ);
};
int AbsMatrix::CG() { /* ... definition omitted here */ }
int AbsMatrix::GMRES() { /* ... definition omitted here */ }

where Vir is a vector class as defined in Chapter 6, which can also be
thought of as the standard vector<double> here. This matrix class serves
as an interface for all derived classes. Since there is not enough information
to define the matrix-vector multiplication operator *, it is declared as a
pure virtual function, which will be overridden in the derived classes. For
such a class, it is natural to define a virtual destructor to ensure that
objects of derived classes are properly cleaned up, although this virtual
destructor does nothing. The class AbsMatriz is actually an abstract class
so that no objects of AbsMatriz can be created. With the matrix-vector
multiply operator * (although it is not defined yet), the functions CG()
and GM RES() can be fully defined, which can be inherited and used in
derived classes once the matrix-vector multiply operator * is defined. For
simplicity, the arguments of CG() and GMRES() and their definitions
are not given here (nor are they needed since only the design problem is
considered in this section).
Derived classes for full, band, and sparse matrices can now be defined:

8.2 Abstract Classes

class FullMatrix: public AbsMatrix {
public: // ... in addition to other members
Vtr operator*(const Vtr&) const;
// multiply a full matrix with a vector

};

class SparseMatrix: public AbsMatrix {
public: // ... in addition to other members
Vtr operator*(const Vtr¥) const;
// multiply a sparse matrix with a vector

};

class BandMatrix: public AbsMatrix {
public: // ... in addition to other members
Vtr operator*(const Vtr&) comst;
// multiply a band matrix with a vector

};

295

The matrix-vector multiply operator * can be defined (but omitted here) for
each of the derived classes and thus CG() and GM RES() can be invoked
for objects of FullMatriz, BandMatriz, and SparseMatriz. For example,

void f(FullMatrix& fm, BandMatrix& bm, SparseMatrix& sm) {

fm.CG(); // call CG() on FullMatrix fm
bm.CG(); // call CG() on BandMatrix bm
sm.CGQ); // call CG() on SparseMatrix sm

}

void g(vector<AbsMatrix*>& vm) {
for (int i = 0; i < vm.size(); i++) {
vm [i]->GMRES () ;

// the object pointed to by vm[i] could be FullMatrix,
// BandMatrix, or SparseMatrix. Its exact type may not

// be known at compile-time.
}
}

During such an invocation, the matrix-vector multiply operator * inside
CG() and GMRES() is guaranteed to be called correctly according to
the type of the objects, since the operator * is declared to be a wvirtual
function in the base class. Note that in the call vm[i]->GMRES(), vm|[i]
may be a pointer to FullMatriz, BandMatriz, or SparseMatriz. This
technique can be combined with templates so that one definition of CG()
and GMRES() can be applied to different matrix storage formats with
different precisions for real and complex matrices. This is the main subject

of Chapter 11.

296 8. Class Inheritance
8.3 Access Control

8.3.1 Access to Members

With derived classes, the keyword protected is introduced. A member (it
can be a function, type, constant, etc., as well as a data member) of a class
can be declared to be private, protected, or public.

e A private member can be used only by members and friends of the
class in which it is declared,

e A protected member can be used by members and friends of the class
in which it is declared. Furthermore, it becomes a private, protected,
or public member of classes derived from this class; as a member of
a derived class, it can be used by members and friends of the derived
class and maybe by other members in the class hierarchy depending
on the form of inheritance. See §8.3.2 for more details.

e A public member can be used freely in the program. It also becomes a
private, protected, or public member of classes derived from this class,
depending on the form of inheritance. See §8.3.2 for more details.

For example,

class B {
private:
int 1i; // a private member
protected:
float f; // a protected member
public:
double d; // a public member
void gi(B& b) { £ = b.f; } // f and b.f are accessible
};
void g() {
B bb; // by default comstructor
bb.i = 5; // error, can not access bb.i
bb.f = 3.14; // error, can not access bb.f
bb.d = 2.71; // bb.d is accessible freely
}

The specifiers protected and private mean the same when inheritance is
not involved.

Protected members of a class are designed for use by derived classes and
are not intended for general use. They provide another layer of information
hiding, similar to private members. The protected part of a class usually
provides operations for use in the derived classes, and normally does not
contain data members since it can be more easily accessed or abused than

8.3 Access Control 297

the private part. For this reason the data member z in the class Pt in §8.1
is better kept private than protected. Despite this, the derived classes Pt2d
and Pt3d can still print out the value of z.

8.3.2 Access to Base Classes

A base class can be declared private, protected, or public, in defining a
derived class. For example,

class B { /* ... */ }; // a class

class X: public B { /* ... */ }; // B is a public base
class Y: protected B { /* ... */ }; // B is a protected base
class Z: private B { /* ... */ }; // B is a private base

Public derivation makes the derived class a subtype of its base class and
is the most common form of derivation. Protected and private derivations
are used to represent implementation details. No matter what form the
derivation is, a derived class contains all the members of a base class (some
of which may have been overridden), although members inherited from the
private part of the base class are not directly accessible even by members
and friends of the derived class (they are called inuvisible members of the
derived class in §8.1.1). The form of derivation controls access to the derived
class’s members inherited from the base class and controls conversion of
pointers and references from the derived class to the base class. They are
defined as follows. Suppose that class D is derived from class B.

e If B is a private base, its public and protected members become
private members of D. Only members and friends of D can convert
a D* toa B*.

o If B is a protected base, its public and protected members become
protected members of D. Only members and friends of D and mem-
bers and friends of classes derived from D can convert a D* to a
B*.

e If B is a public base, its public members become public members of
D and its protected members become protected members of D. Any
function can convert a D* to a B*. In this case, D is called a subtype
of B.

The following example illustrates the use of protected members and pub-
lic derivation.

class B {

private:
int i;

protected:
float f;

298 8. Class Inheritance

public:

double d;

void gi(B b) { £ = b.f; } // £ and b.f are accessible
}; // by a member of B
class X: public B { // public derivation
protected:

short s;
public:

void g2(X b) { f = b.f; } // £ and b.f are accessible
}; // by members of X

Since X has a public base B, it has three public members: d and g1()
(inherited from B), and g2() (its own), two protected members: f (inherited
from B) and s (its own), but no private members. X also inherits a member
i from base B, but this member is invisible in X. The protected member
f of class B and member f of the object b of type B are accessible in the
member function B::g1(B b). Similarly, the protected (inherited from base
class) member f of class X and member f of the object b of type X are
accessible in the member function X ::g2(X b).
However, it is illegal to define a member function ¢3() of X this way:

class X: public B { // public derivation
protected:
short s;
public:
void g2(X b) { £ = b.£f; } // f and b.f are accessible
void g3(Bb) { £ = b.f; } // error: b.f not accessible

};

In the definition of X :: g3(B b), the protected member f of object b of type
B is not accessible. Member b.f of object b of type B is only accessible by
members and friends of class B. Note the only difference between X :: g2(X)
and X ::¢3(B) is the type of their arguments.

A derived class inherits members (e.g., B:: f above) that are protected
and public in its base class. These inherited members (e.g., X :: f) of the
derived class are accessible by members and friends of the derived class.
However, the derived class can not access protected members {e.g., b.f in
the definition of X ::¢3(B)) of an object of the base class, just as it can not
access protected members of objects of any other class.

No matter what type of inheritance it is, a private member of a base class
can not be used in derived classes to achieve a strong sense of information
hiding, since otherwise a private member of any class could be accessed
and possibly abused easily by defining a derived class from it.

8.3 Access Control 299

Access to an inherited member may be adjusted to that of the base class
by declaring it public or protected in the derived class using the scope
resolution operator :: as in the following example.

class B {
private:
int 1i;
protected:
float f;
public:
double d;
I

class Y: protected B { // protected derivation
protected:

short s;
public:

B::d; // B::d is adjusted to be public
};

Now the member d of Y, inherited from the protected base B, is public in
Y, instead of protected by default. Note that the private member i of B
can not be adjusted in Y, since it is not visible in Y.

If a derived class adds a member with the same name as a member of a
base class, the new member in the derived class hides the inherited member
from the base class. The inherited member may be accessible using the
scope resolution operator preceded by the base class name. For example,

class B {
public:
double d;
};
class Z: private B { // private derivation
private:
double d; // this d hides B::d
public:
void £(Z& z) {
z.d = 3.1415926; // Z::d instead of B::d
z.B::d = 2.718; // z’s member B::d
}
};

The derivation specifier for a base class can be left out. In this case, the
base defaults to a private base for a class and a public base for a struct:

class XX: B{ /x ... x/ }; // B is a private base

300 8. Class Inheritance

struct YY: B { /* ... %/ }; // B is a public base

8.4 Multiple Inheritance

A class can be directly derived from two or more base classes. This is
called multiple inheritance. In contrast, derivation from only one direct
base class is called single inheritance. This section talks about multiple
inheritance. Consider a class Circle_in_Triangle (circle inscribed in a tri-
angle) derived from classes Circle and Triangle :

class Circle {

/...
public:
virtual void draw(); // draw the circle
virtual void add_border(); // add border to circle
double area(); // find its area
void dilate(double d); // enlarge circle d times
};
class Triangle {
/7 ...
public:
virtual void draw(}; // draw the triangle
double area(); // find its area
void refine(); // refine into 4 triangles
};
class Circle_in_Triangle: public Circle, public Triangle {
/! ... // two bases
public:
void draw() { // override Circle::draw()
// and Triangle::draw()
Circle: :draw(); // call draw() of Circle
Triangle::draw(); // call draw() of Triangle
}
void add_border(); // override Circle::add_border ()
};

The derived class Circle_in_Triangle inherits properties from both Circle
and Triangle. It can be used as

void f(Circle_in_Triangle& ct) {
ct.dilate(5.0); // call Circle::dilate()
ct.refine(}; // call Triangle::refine()
ct.draw(); // call Circle_in_Triangle::draw()

8.4 Multiple Inheritance 301
}

double curvature(Circlex*); // curvature of a curve
vector<double> angles(Trianglex); // angles of a triangle

void g(Circle_in_Triangle* pct) {
double ¢ = curvature(pct);
vector<double> a = angles(pct);

}

Since public derivation is used for both base classes, any function can con-
vert a Clirclein_Triangle* to Circle* or Triangle*.

8.4.1 Ambiguity Resolution

When two base classes have members with the same name, they can be
resolved by using the scope resolution operator. For example, both Circle
and T'riangle have a function named area(). They must be referred to with
the class names:

void h(Circle_in_Triangle*x pct) {

double ac = pct->Circle::area(); // OK
double at = pct->Triangle::area(); // OK
double aa = pct->area(); // ambiguous, error
pct—>draw(); // OK
}

Overload resolution is not applied across different types. In particular,
ambiguities between functions from different base classes are not resolved
based on argument types. A using-declaration can bring different functions
from base classes to a derived class and then overload resolution can be
applied. For example,

class A {

public:

int g(int);
float g(float);
};

class B {
public:

char g(char);
long g(long);
1

class C: public A, public B {
public:

302 8. Class Inheritance

using A::g; // bring g() from A
using B::g; // bring g() from B
char g(char); // it hides B::g(char)
C g(C);

}

void h(C& ¢) {
c.glc); // C::g(C) is called
c.g(1); // A::g(int) is called
c.g(1L); // B::g(long) is called
c.g(’E?); // C::g(char) is called
c.g(2.0); // A::g(float) is called

8.4.2 Replicated Base Classes

With the possibility of derivation from two bases, a class can be a base
twice. For example, if both Circle and Triangle are derived from a class
Shape, then the base class Shape will be inherited twice in the class
Circle_in_Triangle:

class Shape {

protected:
int color; // color of shape
public:
/7] ...
virtual void draw() = O; // a pure virtual function
};
class Circle: public Shape {
/... // inherit color for Circle
public:
void draw(); // draw circle
};
class Triangle: public Shape {
// ... // color for Triangle
public:
void draw(); // draw the triangle
};
class Circle_in_Triangle: public Circle, public Triangle {
/... // two bases
public:

void draw(); // override Circle::draw()

8.4 Multiple Inheritance 303

}; // and Triangle::draw()

This causes no problems if the colors of a Circle and a Triangle for an
object of Circle_in_Triangle can be different. Indeed, two copies of Shape
are needed to store the colors. This class hierarchy can be represented as

Shape Shape
A

A

l Circle l Triangle

LC’ircle_in_TriangE[

To refer to members of a replicated base class, the scope resolution op-
erator must be used. For example,

void Circle_in_Triangle::draw() {

int cc = Circle::color; // or Circle::Shape::color
int ct = Triangle::color; // or Triangle::Shape::color
/...

Circle::draw();
Triangle: :draw();

A virtual function of a replicated base class can be overridden by a
single function in a derived class. For example, Circle_in_Triangle:: draw()
overrides Shape::draw() from the two copies of Shape.

8.4.83 Virtual Base Classes

Often a base class need not be replicated. That is, only one copy of a
replicated class need be inherited for a derived class object. This can be
done by specifying the base to be virtual. Every virtual base of a derived
class is represented by the same (shared) object. For example, if the circle
and triangle in Circle_in_Triangle must have the same color, then only
one copy of Shape is needed for storing the color information. The base
class Shape then should be declared to be virtual :

class Shape {

int color; // color of shape
public:

/...

virtual void draw() = 0; // pure virtual function

};

304 8. Class Inheritance

class Circle: public virtual Shape { // virtual base Shape

/... // inherit color
public: // for Circle
void draw(); // draw circle
};
class Triangle: public virtual Shape { // virtual base Shape
/... // inherit color
public: // for Triangle
void draw(); // draw triangle
};
class Circle_in_Triangle: public Circle, public Triangle {
/... // two bases
public:
void draw(); // override Circle::draw()
}; // and Triangle::draw()

This class hierarchy can be represented as

Triangle

AN

l Circl e_in_Trianglfj

Compare this diagram with the inheritance graph in §8.4.2 to see the
difference between ordinary inheritance and virtual inheritance. In an in-
heritance graph, every base class that is specified to be virtual will be
represented by a single object of that class. The language ensures that a
constructor of a virtual base class is called exactly once.

8.4.4 Access Control in Multiple Inheritance

A name or a base class is called accessible if it can be reached through
any path in a multiple inheritance graph, although often it can be reached
through several paths. For example,

class B {
public:
double d;

8.5 Run-Time Type Information 305

static double sdm;

I

class D1: public virtual B { /* ... %/ };

class D2: public virtual B { /* ... */ };

class D12: protected D1, public D2 { /* ... */ };

D12* pdi2 = new D12;
Bx pb = pdi2; // accessible through public base D2
double m = pdi2->d; // accessible through public base D2

The member pt2d—>d is accessible publicly since D12 has a public base
D2 and d is a public member of D2. It would be inaccessible if both D1
and D2 were protected bases. However, ambiguities might arise when a
single entity was accessible through more than one path. Again, the scope
resolution operator can be used to resolve such ambiguities. For example,

class X1: public B { /* ... */ };
class X2: public B { /* ... */ };
class X12: protected X1, private X2 {
void f(O);
};
void X12::f() {
X12* p = new X12;
// ... assign some value to *p
double i = p->d; // illegal, ambiguous
// X12::X1::B::d or X12::X2::B::d?
double j = p->X1::B::d; // OK
double k = p->X2::B::d; // OK
double n = p->sdm; // OK

// only one B::sdm in an X12 object
}

There are two copies of member d in an object of X12, but there is only
one static member sdm in X12.

8.5 Run-Time Type Information

Due to run-time polymorphism and assignment of pointers or references
from one type to another, the type of an object may be lost. Recovering
the run-time type information (or RTTI for short) of an object requires the

306 8. Class Inheritance

system to examine the object to reveal its type. This section introduces two
mechanisms that can be used to recover the run-time type of an object.

8.5.1 The dynamic_cast Mechanism

The dynamic_cast mechanism can be used to handle cases in which the
correctness of a conversion can not be determined by the compiler. Suppose
p is a pointer. Then

dynamic_cast<Tx*>(p)

examines the object pointed to by p at run-time. If this object is of class T
or has a unique base class of type T, then it returns a pointer of type T*
to the object; otherwise it returns 0. If the value of p is 0 (null pointer),
then dynamic_cast <T* > (p) returns 0. For example,

class A { /*x ... %/ };
class B { /* ... %/ };
class C: public A, protected B { /* ... */ };

void £(Cx p) {

Ax ql1 = p; // OK
Ax q2 = dynamic_cast<C*>(p); // OK
Bx pl =p; // error, B is protected base

B* p2 =dynamic_cast<Cx>(p); // OK, but 0 is assigned to p2
}

void g(Bx pb) { // assume A, B have virtual functiomns
if (A* pa = dynamic_cast<A*>(pb)) {
// if pb points to an object of type A, do something
} else {
// if pb does not point to an A object, do something else
}
}

Since B is a protected base of C, function f() can not directly convert a
pointer to C into a pointer to B. Although using dynamic_cast makes it
legal, the null pointer is returned. In g(), converting B* into Ax requires
that A and B have virtual functions so that a variable of A or Bx may be
of another type, for example, Cx.

Casting from a derived class to a base class is called an upcast because
of the convention of drawing an inheritance graph growing from the base
class downwards. Similarly, a cast from a base class to a derived class is
called a downcast. A cast from a base to a sibling class (like the cast from
B to A above) is called a crosscast. A dynamic_cast requires a pointer or
reference to a polymorphic type to do a downcast or crosscast. The result of

8.5 Run-Time Type Information 307

the return value of a dynamic_cast of a pointer should always be explicitly
tested, as in function g() above. If the result is 0, it means a failure in the
conversion indicated.

For a reference r, then

dynamic_cast<T&>(r);

tests to see if the object referred to by r is of type T. When it is not,
it throws a bad_cast exception. To test a successful or failed cast using
references, a suitable handler should be provided; see Chapter 9 for details.
For example,

void h(B* pb, B& rb) { // assume A, B have virtual functions
Ax pa = dynamic_cast<A*>(pb);

if (pa) { // when pa is not null pointer
// if pb points to an A object, do something
} else { // when pa is null pointer

// if pb does not point to an A object, do something else
}

A% ra = dynamic_cast<A&>(rb); // rb refers to an A object?
}

int main() {
try{
Ax pa = new 4;
Bx pb = new B;

h(pa, *pa);
h(pb, #*pb);

} catch (bad_cast) { // exception handler
// dynamic_cast<A&> failed, do something.

}

}

A dynamic_cast can cast from a polymorphic virtual base class to a
derived class or a sibling class, but a static_cast can not since it does not
examine the object from which it casts. However, dynamic_cast can not cast
from a void* (but static_cast can) since nothing can be assumed about the
memory pointed to by a void*. Both dynamic_cast and static.cast can not
cast away const, which requires a const_cast. For example,

void cast(const A* p, Ax q) {

q = const_cast<A*>(p); // OK
q = static_cast<A*>(p); // error, can not cast away const
q = dynamic_cast<A*>(p); // error, can not cast away const

}

308 8. Class Inheritance

8.5.2 The typeid Mechanism

The dynamic_cast operator is enough for most problems that need to know
the type of an object at run-time. However, situations occasionally arise
when the exact type of an object needs to be known. The typeid operator
vields an object representing the type of its operand; it returns a reference
to a standard library class called type_info defined in header <typeinfo>.
The operator typeid() can take a type name or an expression as its operand
and returns a reference to a type_info object representing the type name or
the type of the object denoted by the expression. If the value of a pointer
or a reference operand is 0, then typeid() throws a bad_typeid exception.
For example,

void f(Circle* p, Triangle& r, Circle_in_Triangle& ct) {
typeid(zx); // type of object referred to by r
typeid (*p); // type of object pointed to by p

if (typeid(ct) == typeid(Triangle) { /* ... */ }
if (typeid(r) != typeid(*p) { /* ... */ }

cout << typeid(r).name(); // print out type name
}

The function type_info::name() returns a character string representing
the type name. Equality and inequality of objects of type_info can be com-
pared. The implementation-independent part of the class type_info, pre-
sented in the standard header <typeinfo>>, has the form:

class type_info {

private: // prevent copy initialization and assignment
type_info(const type_info&);
type_info& operator={(const type_infok);

public:
virtual “typeid(); //polymorphic type
bool operator==(const type_info&) const; // can be compared
bool operator!=(const type_info&) const; // can be compared
bool before(const type_info&) const; // can be sorted
const char* name() const; // name of type

};

There can be more than one type_info object for each type in a system.
Thus comparisons for equality and inequality should be applied to type_info
objects instead of their pointers or references.

8.6 Replacing Virtual Functions by Static Polymorphism 309

8.5.3 Run-Time Overhead

Using run-time type information (dynamic_cast or typeid) involves over-
head since the system examines the type of an object. It should and can
be avoided in many cases in which virtual functions suffice. Use virtual
functions rather than dynamic_cast or typeid if possible since virtual func-
tions normally introduce less run-time overhead. Even a virtual function
can cause a lot of performance penalty when it is small (i.e., it does not
perform a lot of operations) and called frequently (e.g., inside a large loop).
When a virtual function contains a lot of code (i.e., performs a lot of compu-
tation) or is not called frequently, the overhead of virtual function dispatch
will be insignificant compared to the overall computation.

In large-scale computations, static (compile-time) checking may be pre-
ferred where applicable, since it is safer and imposes less overhead than
run-time polymorphism. On one hand, run-time polymorphism is the cor-
nerstone of object-oriented programming. On the other hand, too much
run-time type checking can also be a disadvantage due to the run-time
overhead it imposes, especially in performance-sensitive computations. In
§8.6, some techniques are described to replace certain virtual functions by
using templates.

8.6 Replacing Virtual Functions by Static
Polymorphism

Virtual functions provide a nice design technique in software engineering.
However, virtual functions may slow down a program when they are called
frequently, especially when they do not contain a lot of instructions. In this
section, two techniques are presented to replace certain virtual functions
by static polymorphism, in order to improve run-time efficiency.

The idea of the first technique [BN94] is to define a base template class
and define functions operating on this base class. When defining a derived
class from the base template class, the template parameter of this base class
is taken to be the type of the derived class. Then the functions defined for
the base class can be used for derived classes as well.

Consider the example in which a function CG() is defined for a base
matrix class but may be called on derived classes for full, band, and sparse
matrices. A virtual function is used in §8.2 to define matrix-vector multipli-
cation, upon which the function CG() depends. Then this virtual function
is overridden in derived classes for full, band, and sparse matrices, which
enables one version of CG() to be called for different derived classes. Here
the same goal can be achieved without using a virtual function. Rather, a
matrix-vector multiplication is defined for a base template class that refers
to the template parameter, which will be a derived class. The following
code illustrates this idea.

310 8. Class Inheritance
class Vtr { /* a vector class */ };

template<class T> class Matrix { // base class
const T& ReferToDerived() comst {
return static_cast<const T&>(*this);

)
public:

// refer operation to derived class
Vtr operator*(const Vtr& v) comst {
return ReferToDerived()*v;

}

// define common functionality in base class that can
// be called on derived classes
void CG(const Vtr& v) { // define CG here
Vtr w = (*this)*v; // call matrix vector multiply
cout << "calling CG\n";
}
3

class FullMatrix: public Matrix<FullMatrix> {
// encapsulate storage information for full matrix
public:
Vtr operatorx(const Vtr& v) const {
// define (full) matrix vector multiply here
cout << "calling full matrix vector multiply\n";

}
};

class BandMatrix: public Matrix<BandMatrix> {
// encapsulate storage information for band matrix
public:
Vtr operatorx(const Vtr& v) comst {
// define (band) matrix vector multiply here
cout << "calling band matrix vector multiply\n";
)
+

class SparseMatrix: public Matrix<SparseMatrix> {
// encapsulate storage information for sparse matrix
public:
Vtr operator*(const Vtr& v) const {
// define (sparse) matrix vector multiply here
cout << "calling sparse matrix vector multiply\n";

8.6 Replacing Virtual Functions by Static Polymorphism 311

}
};

void f(const Vtr& v) {
FullMatrix 4;
A.CG(V); // Calling CG() on full matrix

BandMatrix B;
B.CG(v); // Calling CG() on band matrix

SparseMatrix S;

S.CG(v); // Calling CG() on sparse matrix
}

Although the code above compiles and runs, it has been greatly simpli-
fied and full definitions of CG() and matrix-vector multiply functions are
not given. The function CG() is defined for the base class Matriz, which
depends on the matrix-vector multiply operator . The operator * is syn-
tactically defined for the base Matriz, but actually refers to the operator
* belonging to the template parameter 7. When T is instantiated by, for
example, Full Matriz in the definition of the class Full M atrix, this oper-
ator * now is the Full Matriz-vector multiply operator, which can be fully
defined according to its matrix structure.

In this approach, the type of an object is known at compile-time and thus
there is no need for virtual function dispatch. One version of the function
CG() can be called for different classes, which is achieved without using
virtual functions.

A simple but more concrete and complete example using this technique
is now given. First define a function sum() for a base template matrix that
adds all entries of a matrix. Then define a derived class for full matrices
that stores all entries of a matrix and another derived class for symmetric
matrices that stores only the lower triangular part of a matrix to save
memory. The goal is to give only one version of sum() that can be called
for full and symmetric matrices, without using virtual functions. This can
be achieved as

template<class T> class Mtx { // base matrix
private:
// refer to derived class
T& ReferToDerived() {
return static_cast<T&>(xthis);

3

// entry() uses features of derived class
double& entry(int i, int j) {
return ReferToDerived() (i,j);

312 8. Class Inheritance

}
protected:
int dimn; // dimension of matrix
public:
// define common functionality in base class that can
// be called on derived classes
double sum() { // sum all entries
double d = 0;
for (int i = 0; 1 < dimn; i++)
for (int j = 0; j < dimn; j++) d += entry(i,j);
return d;
}
};

class FullMtx: public Mtx<FullMtx> {
double** mx;

public:
FullMtx(int n) {
dimn = n;

mx = new doublex [dimn];

for (int i=0; i<dimn; i++) mx[i] = new double [dimn];

for (int i=0; i<dimn; i++)

for (int j=0; j<dimn; j++)
mx[1][j] = O; ~// initialization
}
double& operator()(int i, int j) { return mx[i]([jl; }
};

class SymmetricMtx: public Mtx<SymmetricMtx> {
// store only lower triangular part to save memory
double** mx;

public:
SymmetricMtx(int n) {
dimn = n;

mx = new double* [dimn];

for (int i=0; i<dimn; i++) mx[i] = new double [i+1];

for (int i=0; i<dimn; i++)

for (int j = 0; j <= i; j++)
mx[i][3] = O; // initialization

}
doubleg operator()(int i, int j) {

if (i >= j) return mx[i][j1;

else return mx[j][i]l; // due to symmetry
}

};

8.6 Replacing Virtual Functions by Static Polymorphism 313

void g {
FullMtx A(2);
A(0,0) = 5; A(0,1) = 3; A(1,0) = 3; A(1,1) = 6;
cout << "sum of full matrix A = " << A.sum() << ’\n’;

SymmetricMtx S{2); // just assign lower triangular part
$€0,0) = 5; S(1,0) = 3; S(1,1) = 6;
cout << "sum of symmetric matrix S = " << S.sum() << ’\n’;

3

Here the member function sum() depends on entry(i, j) that refers to an
entry at row i and column j of a matrix through a function call operator
(). But entry() is not defined for FullMtz and SymmetricMtz, and the
function call operator () is not defined for the base class Mtzx.

The second technique in this section does not use inheritance at all, but
only uses templates. It is much simpler in many situations. Taking the
matrix solver CG() as an example, this technique defines CG() as a global
template function whose template parameter can be any type that defines
a multiply operator with a vector:

class Vtr { /* a vector class */ };

template<class M> // define CG as a global function
void CG(const M& m, const Vtr& v) {
// define CG here for matrix m and vector v
Vir w = m*v; // call matrix vector multiply
cout << "calling CG\n";
}

class FullMatrix {
// encapsulate storage information for full matrix
public:
Vtr operator*(const Vtr& v) const {
// define (full) matrix vector multiply here
cout << "calling full matrix vector multiply\n";

}
};

class BandMatrix {
// encapsulate storage information for band matrix
public:
Vtr operator*{const Vtr& v) const {
// define (band) matrix vector multiply here
cout << "calling band matrix vector multiply\n";

3

314 8. Class Inheritance
};

class SparseMatrix {
// encapsulate storage information for sparse matrix
public:
Vtr operator*(const Vtr& v) const {
// define (sparse) matrix vector multiply here
cout << "calling sparse matrix vector multiply\n";

}
};

void ff(const Vtr& v) {
FullMatrix A;
CG(A, v); // Calling CG() on full matrix

BandMatrix B;
CG(B, v); // Calling CG() on band matrix

SparseMatrix S;
CG(S, v); // Calling CG() on sparse matrix

If this technique is applied to the second example above, where the
entries of a matrix are sum()ed, each of the classes for FullMtr and
SymmetricMtzr will need to define a function entry():

template<class M> double sum(const M& m) {
double d = 0;
for (int i = 0; i < m.dimn; i++)
for (int j = 0; j < m.dimn; j++) d += m.entry(i,j);
return d;

1

class FullMtx {
double** mx;

public:
FullMtx(int n) {
dimn = n;

mx = new doublex [dimn];

for (int i=0; i<dimm; i++) mx[i] = new double [dimm];

for (int i=0; i<dimn; i++)

for (int j=0; j<dimn; j++)
mx[i] [j]1 = O; // initialization

}
int dimn;
double& operator()(int i, int j) { return mx[il[jl; }

8.6 Replacing Virtual Functions by Static Polymorphism 315

double entry(int i, int j) comst {
return const_cast<FullMtx&>(*this)(i,j);
}
};

class SymmetricMtx {
// store only lower triangular part to save memory
double** mx;

public:
SymmetricMtx(int n) {
dimn = n;

mx = new double* [dimn];
for (int i=0; i<dimn; i++) mx[i] = new double [i+1];
for (int i=0; i<dimn; i++)
for (int j = 0; j <= i; j++)
mx[i] [j]1 = O; // initialization
}
int dimn;
double& operator()(int i, int j) {
if (i >= j) return mx[il[j];
else return mx[j][i]; // due to symmetry
}
double entry(int i, int j) const {
return const_cast<SymmetricMtx&>(*this)(i,j);
}
};

void gg(0) {
FullMtx A(2);
A(0,0) = 5; A€0,1) = 3; A(1,0) = 3; A(1,1) = 6;
cout << "sum of full matrix A = " << sum(A) << ’\n’;

SymmetricMtx S(2); // just assign lower triangular part
$(0,0) = 5; 5(1,0) = 3; S(1,1) = 6;
cout << "sum of symmetric matrix S = " << sum(8) << ’\n’;

}

When function entry() is large and accesses local information of Full Mtz
and SymmetricMtx, this may cause a lot of code duplication. In this case,
the first technique might be better. This example is only for illustrating
the idea; if just for summing entries of a matrix, the function entry() may
not be needed.

Using virtual functions as shown in §8.2, the derived classes Full Matriz,
BandMatriz, and SparseMatriz may not have to be known when the
base class AbsMatriz is compiled. That is, if one wants to add one more

316

8. Class Inheritance

class SymmetricM atriz to this class hierarchy, the code for the base class
AbsMatriz need not be recompiled. However, using the techniques here
without virtual functions, the complete type of all classes must be known at
compile-time. Thus, in this aspect, there may be some design disadvantage
to static polymorphism. Besides, not all virtual functions can be replaced
by templates.

8.7

8.7.1.

8.7.2.

8.7.3.
8.7.4.

8.7.5.

8.7.6.

8.7.7.

Exercises

Implement the class hierarchy for points in one, two, and three dimen-
sions, as outlined in §8.1. Add more functions such as moving a point,
finding the equation of the line passing through two points, and eval-
uating the distance between two points. Create a vector of (pointers
to) points and print them out using run-time polymorphism.

Implement the class hierarchy for points in one, two, and three di-
mensions, as outlined in §8.1, using pointers for their data members.
For example, declare a pointer to double for the z-coordinate in Pt
and for the y-coordinate in Pt2d. Consequently, user-defined copy
constructor and copy assignment need be defined for them, and a
virtual destructor is needed for the base class Pt.

When should a class have a virtual destructor?

Rewrite the base class B and derived class D in §8.1.6 so that B will
allocate space for d doubles in its constructor and D for ¢ integers,
where d and ¢ must be passed as arguments to the constructors.

Summarize all C++ language features that support polymorphism
(in compile- and run-times), and discuss their advantages and disad-
vantages.

Define an abstract class called Shape containing a pure virtual func-
tion distance() that takes a two-dimensional point as argument and
is meant to find the distance between the point and Shape. Derive
three classes for Triangle, Circle, and Rectangle, respectively, and
override the virtual function distance() in each of the derived classes.
The distance between a point and a figure is defined to be the min-
imum distance between the given point and any point in the figure.
Create a vector of pointers to Shape that actually point to objects of
Triangle, Circle, or Rectangle, and create a vector of points. Call
distance() to find the distance between each point to each of the
Shape objects.

Test the class hierarchy for full, band, and sparse matrices as outlined
in §8.2 in which one definition of CG() and GMRES() is given for

8.7.8.

8.7.9.

8.7.10.

8.7 Exercises 317

three matrix storage formats. Instead of writing code implementing
each function, you may just let, for example, CG() call a matrix-
vector multiply operator * and print out “Solving linear system using
CG,” band-matrix vector multiply operator * print out “multiplying
band matrix with vector,” and sparse-matrix vector multiply operator
* print out “multiplying sparse matrix with vector.” This is enough to
know if the right functions are called. Then create a vector of point-
ers to AbsMatriz which actually point to objects of FullMatriz,
BandMatriz, or SparseMatriz, and call CG() and GMRES() on
each of the matrix objects. Check the printouts to see if dynamic
binding is working correctly.

Define an abstract class called Shape containing a pure virtual func-
tion inside() that takes a point as argument and is meant to check
if Shape contains the point in a two-dimensional Euclidean space.
Derive three classes for Triangle, Circle, and Rectangle, respec-
tively, and override the virtual function inside() in each of the derived
classes. Create a vector of pointers to Shape that actually point to ob-
jects of T'riangle, Circle, or Rectangle, and create a vector of points.
Call function inside() to see which point is inside which figure.

Here is a hint on how to check if a point p(z,y) is contained inside
a triangle with vertices po(zo,y0), P1(Z1,%1), and p2(z2,y2). Let q in
boldface be a vector from the origin to point ¢ for any point ¢, and
pip; be a vector from point p; to point p;. Then p can be represented
as p = po+apop1+8pop2- Applying vector cross-product with pop1
to its both sides yields p x pop1 = (Po + @PoP1 + BPoP2) X PoP1 =

Po X PoP1+8Pop2 X PoP1- That is, (P—Po) X PoP1 = BPoP2 X PoP1-
Using the definition of vector cross-products gives

5= (z —z0)(y1 —yo) — (21 — Zo)(y —%0)
(22 — 20)(¥1 — o) — (21 — Z0) (y2 — Yo)
Now check to see if points p and p2 are on the same side of pop1 by
checking if # > 0. Similarly, check to see if p and p, are on the same

side of pop2, and if p and py are on the same side of py1p2. These
three conditions are true if and only if p is inside the triangle.

Generalize Exercise 8.7.8 to three-dimensional Euclidean spaces with
three derived classes for tetrahedron, ball, and cube, respectively.
The idea of checking to see if a point is inside a triangle given in
Exercise 8.7.8 applies to tetrahedra. Such techniques are often used
in computer-aided geometric design.

Define an abstract class Shape, derive three classes Triangle, Circle,
and Rectangle from it, and define a function

bool intersect(Shape* s, Shape* t);

318

8.7.11.

8. Class Inheritance

that determines if the two shapes s and ¢ overlap. To achieve this, suit-
able virtual functions may need be declared for the base class Shape
and overridden in derived classes Triangle, Circle, and Rectangle.
Hint: this is a so-called double dispatch problem. An answer to this
exercise can be found in [Van98].

Run the codes in §8.6 to see if they work as expected. Rewrite the
codes into more general templates with a template parameter for the
type of the entries of the matrix, so that they can handle real and
complex matrices in single, double, and other precisions.

9
Exception Handling

The aim of exception handling is to separate run-time error reporting and
error-handling. Errors that can not be resolved locally may be reported
somewhere in a program, while they are handled somewhere else. This is
intended for use in programs composed of independently developed compo-
nents such as libraries. The implementor of a library can detect run-time
errors (such as small divisors) but does not in general know what to do with
them. The user of a library may know what to do with these errors but
can not detect them. When an exception condition occurs, the program is
often aborted or exited in a programming language (e.g., C or FORTRAN)
that does not support exception handling. C++ provides exception han-
dling so that the user has the choice to either terminate the program or do
something else meaningful.

The error-handling mechanism can be seen as a run-time analogue to
the compile-time type checking. The code developed using it should have
a better chance to run as expected and to produce more reliable results.

9.1 Throw and Catch

The keyword throw is used to report an exception condition, while catch
is used to handle it. An exception is defined to be an object of some class
representing an exceptional occurrence. The code that detects an error may
throw an exception (an object). For example, a class called Small Divisor
can be defined to represent the exception condition in which a divisor is

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

320 9. Exception Handling

small. A function that detects a small divisor may throw an object of type
SmallDivisor:

class SmallDivisor { // class for small-divisor exception
public:
static const double Small; // smallest divisor
double sd;

SmallDivisor(double d) { sd = d; } // constructor
};

const double SmallDivisor::Small = 1.0e-12;
// set static member
double f(double d) {
if (fabs(d) <= SmallDivisor::Small) // if divisor is small
throw SmallDivisor(d); // throw an exception
return 5/d;
}

The function f() either returns a double or throws a SmallDivisor object
constructed by calling its constructor with argument d. The fundamental
idea is that a function that finds a problem it can not deal with throws an
exception, hoping that its (direct or indirect) caller can handle the problem.
Its caller can cope with the problem by catching an exception of the type
used to report the problem. For example,

double g(double a) {
try {
double b = f(a);
cout << "No small divisor in f()\n";
return b; // normal return if no small divisor

} catch (SmallDivisor) {
// catch exceptions of type SmallDivisor
cout << "Small divisor in £()\n";
return 10000; // return 10000 if divisor is small
}
}

int main() { // test what will be printed out
double a = g(10);
cout << a << ’\n’;
double b = g(le-14);
cout << b << ’\n’;

¥

The keywords try and catch form new scopes. If no exception is encountered
during the execution of the code in the try-block, the function g() will

9.1 Throw and Catch 321

return the value of b and the catch-block will be ignored. Otherwise, flow
of control will go to the catch-block and return 10000.

In general, if any code in a try-block, or called from it, throws an excep-
tion, flow of control will go to a catch-block with the type of the exception.
A catch-block is called an exception handler. It can be placed only imme-
diately after a try-block or after another exception handler. If no exception
is thrown, or the exception thrown is not of the type specified for the han-
dlers, the exception handlers will be ignored. If an exception is thrown
but not caught by a handler, the function std::terminate() will be called,
which in turn normally calls abort() to abort the program.

It should be emphasized that exception handling is intended for use pri-
marily in programs composed of independently developed components such
as libraries. If the source code of functions f() and g() were available to
the same programmer, the content of g() could be incorporated into the
definition of f{) and this would result in a simpler program. However, even
if the code of functions f() and g() is indeed available to the same pro-
grammer, there are at least two situations in which exception handling
may be preferred. 1) The same exception condition is handled differently
in different parts of the program, for example, in g() above and h() below.
Incorporation of exception handling into the definition of f() would result
in different versions of f(). This may be error-prone and make the source
code hard to manage when there are many such versions. 2) Changing the
definition of f() would require recompilation of program components con-
taining it. For large-scale computation, recompilation of code could cost a
lot of time, especially when the definition of f() is part of a library.

If the value of an exception (an object) need be known, a variable can
be provided for the argument of catch. For example,

double h{double a) {
try {
double b = f(a);
cout << "No small divisor in £()\n";
return b;
} catch (SmallDivisor x) {
// the object thrown by f() is assigned to x

cout << "Small divisor = " << x.sd << ’\n’;
return 0; // return 0 if divisor is small
}
}
int main() { // test what will be printed out

double a = h(10);
cout << a << ’\n’;
double b = h(1.0e-14);
cout << b << ’\n’;

322 9. Exception Handling

}

If an exception of type SmallDivisor is thrown in the try-block, it will be
assigned to the variable z in the definition of h(). Since the small divisor
is stored in a public member d of class SmallDivisor, it is accessible in
the catch-block. Thus the function A() can print out the value of the small
divisor or do something else.

More than one exception can be thrown in a program. For example,
another class can be defined to represent an exception in which a zero-
divisor occurs. Since no value need be passed to a handler when a divisor
is zero, this class can be simply empty:

class ZeroDivisor { }; // class for zero divisor

double ff(double d) {
if (d == 0) throw ZeroDivisor(); // throw a ZeroDivisor
if (fabs(d) <= SmallDivisor::Small)
throw SmallDivisor(d); // construct an object
return 5/4;
}

Since an exception is an object, ZeroDivisor() is used to construct an
object of class ZeroDivisor by the compiler-generated default constructor.
Similarly, Small Divisor(d) constructs an object from d. Now more than
one exception handler can be provided to catch the exceptions:

double gg(double a) {

try { // try the following code
double b = ff(a);
cout << "No small divisor in £()\n";
return b;

} catch (SmallDivisor x) { // catch SmallDivisor exceptions
cout << "Small divisor inm f() is " << x.sd << ’\n’;
return x.sd;

} catch(ZeroDivisor) { // catch ZeroDivisor exceptions
cout << "Zero divisor in f()\n";
return 0; // return 0 if divisor is zero
}

An exception is considered handled immediately upon entry into its han-
dler. Thus any exceptions thrown while executing a handler must be dealt
with by the callers of the try-block. For example,

void hh() {
try {
// ...

} catch (ZeroDivisor) 1

9.2 Deriving Exceptions 323

// ... while handling zero divisor exception
// ... another zero divisor exception occurred
throw ZeroDivisor();

}

¥

This does not cause an infinite loop. The ZeroDivisor exception thrown
in this handler will be handled by the caller of the function hh().

Error handlers can be nested, although such nesting is often an indication
of poor programming style.

Again, exception handling is designed to deal with nonlocal problems.
An exceptional condition should be handled locally when it is more feasible
to do so.

9.2 Deriving Exceptions

Exceptions often fall into families. Derived classes can be useful in struc-
turing exceptions and handling them. For example, the exceptions for a
matrix-vector library can be organized in a class hierarchy as

class MVerr { }; // a base class
class IntOverflow: public MVerr { }; // integer overflow
class FloatOverflow: public MVerr { }; // floating overflow
class Overflow: public IntOverflow, public FloatOverflow { };

class SmallDivisor: public MVerr { };

// small or zero divisor
class NoMatch: public MVerr { };
// matrix vector sizes do not match

This allows all MVerr exceptions to be handled without explicitly listing
all of them. For example,

void £ {
try {
// ... try some code that calls matrix vector library
} catch (Overflow) { // first handler
// ... handle overflow and their derived exceptions
} catch (MVerr) { // second handler
// ... handle MVerr errors that are not Overflow
}
}

Here only Over flow errors (integer overflow, floating point number over-
flow, and their derived exceptions) are handled specifically and all other
errors such as SmallDivisor and NoMatch are handled by the general

324 9. Exception Handling

case. When an exception occurs in the try-block, the handler immediately
following the try-block is checked first. Then the handler following this han-
dler is checked, and so forth. Exceptions of type Over flow or a type derived
from it are handled by the first handler. Other exceptions are checked by
the second handler. If they are of type MVerr or a type derived from it,
they will be handled by the second handler. Note that the order of han-
dlers is significant; see §9.3 for more details. Organizing the exceptions into
a class hierarchy can be important for robustness of code. For example,
listing all exceptions can be tedious:

void £() {
try |
// ... try some code
} catch (IntQverflow) { // handle integer overflow
/..

} catch (FloatOverflow) { // handle floating overflow
/...

} catch (SmallDivisor) { // handle small divisors
/...

} catch (NoMatch) { // matrix vector sizes mismatch
/...

}

}

Another advantage of organizing exceptions into a class hierarchy is that
virtual functions and run-time polymorphism can be used when handling
exceptions. For example, the class hierarchy for MVerr can be redefined
as

class MVerr {
// ...
public:
virtual void print() comst {
cout << "Matrix vector error\n";
}
};

class NoMatch: public MVerr {
char* op;
public:
NoMatch(char* p) { op = p; }
void print() comst {
MVerr: :print();
cout << "No Match in operatiom: " << op << ’\n’;
}
};

9.3 Catching Exceptions 325

// ... other classes can be defined similarly

An exception can be handled when it is thrown and the handler gets a
copy of the original exception. To ensure run-time polymorphism, pointers
or references can be used to handle the exceptions thrown and print out

appropriate messages and take appropriate actions:

vector<double> saxpy(const vector<double>X vi,
const vector<double>& v2, double a) {

if (vi.size() '= v2.sizeQ))

throw NoMatch("vector saxpy"); // construct an object
vector<double> sum(vi.size());
for (int i = 0; i < vi.size(); i++)

sum[il = v1[i] + a*v2[i];
return sum;

}

void £ {
try {
vector<double> vi1(50, 5);
vector<double> v2(200, 6.6);
sxapy(vl, v2, 3.14); // sizes do not match
} catch (MVerr& m) { // catch all exceptions of MVerr
/..
m.print(}; // dynamic binding for print()
}
}

The call of saxpy() triggers an exception of type NoMatch that will be
caught by the handler and assigned to variable m. Then NoMatch ::print()
will be invoked since m is actually a NoMatch object. Due to dynamic
binding through the use of the virtual function print(), all exceptions with

MVerr as a base class will be correctly handled with only one handler.

9.3 Catching Exceptions

Consider the try-catch pair:

try {
throw EQ); // throw an exception
} catch (H) { // exception handler
/...
}

The exception handler is invoked:

326 9. Exception Handling

1. if H is the same type as E or a subtype (an unambiguous public base)
of type E;

2. if H is a reference and the type it refers to is the same as or subtype
of type E;

3. if H and F are pointers and the type of the object that H points to
is the same as or subtype of that of E.

In addition, const can be added to the type used to catch an exception in
the same way as it can be added to a function parameter. This does not
affect the exceptions it catches, but only restricts the exceptions caught
from being modified.

9.3.1 Re-throw

If a handler can not completely handle an exception, it can do whatever can
be done and then re-throw the exception, hoping that another handler can
handle it better. A re-throw is indicated by a throw without an operand.
For example,

tryq{

/...
} catch (MVerr) {

/7 ... // do what can be done locally

throw; // re-throw the same exception (MVerr)
}

The exception re-thrown is the original exception caught. When it is re-
caught, it is the same exception as is first thrown.

9.3.2 Catch All Fxceptions

An ellipsis ... can be used as the argument of catch to indicate that every
exception will be caught by a handler. For example,

tryq{
/...

} catch (...) { // handle every exception by one handler
/... // do some work common to all exceptions
throw; // re-throw it or do something else

}

Examples of catching all exceptions in one handler are given in §9.3.3 and
§9.5.

9.4 Specifying Exceptions in Functions 327

9.3.8 Order of Handlers

The order of handlers in which they appear in a try statement is significant,
since derived exceptions can be caught by more than one handler. For
example,

try{

/...
} catch (Overflow) {

// ... handle integer and floating overflow exceptions
} catch (NoMatch) {

// ... handle matrix vector size no matching exceptions
} catch (MVerr) {

// ... handle all other matrix vector exceptions
} catch (...) {

// ... handle all other exceptiomns
}

The class hierarchy for MVerr is defined in §9.2. If the order of handlers
is changed, the meaning will be different:

try{
/] ...
} cateh (...) {
// ... handle all exceptions
} catch (MVerr) {
// ... handle all matrix vector exceptions
}

In this case, the exception MVerr will never be handled by the second
handler, since every exception will be caught by the first handler catch(. . .).

9.4 Specifying Exceptions in Functions

Exceptions can be specified in both function declarations and definitions
to indicate what exceptions a function can throw. For example,

void f(int) throw (X,Y); // £ can only throw X and Y

void f(int i) throw (X,Y) {
// exception specification is also needed here too
// ... define £()

}

This means that f() can only throw exceptions X and Y and exceptions
derived from them. If exceptions other than X and Y happen to be thrown
in the definition of f(), the call std :: unexpected() will be invoked; by

328 9. Exception Handling

default std :: terminate() will then be called to terminate the program.
Exception specification must appear exactly the same in both declaration
and definition of a function, although it is not part of the type of the
function and may not be contained in a typedef statement:

typedef void (*fp)(int) throw (X,Y); // error
typedef void (*fp)(int); // OK

A function declared without an exception specification is assumed to
be able to throw any exception, and a function with an empty exception
specification can not throw any exception:

int £(int); // £() can throw any exception
int g(int) throw (); // no exception can be thrown by g()

A virtual function can be overridden only by a function whose exceptions
it can throw are a subset of those of the virtual function. For example,

class B {

public:
virtual void £Q); // can throw any exception
virtual void g() throw (X); // can throw exception X

virtual void h() throw (X,Y); // can throw exceptiomns X, Y
};

class D: public B {

public:
void f() throw (X); // OK, only throw X, subset of B::f()
void g() throw (X,Y); // error: can not throw more than X
void h() throw (X); // OK, X is subset of (X,Y)

I

This ensures that a derived class will not throw an exception that is not
specified in the original virtual function. Thus a caller that can handle
exceptions thrown by a base class can also handle exceptions thrown by its
derived classes.

A similar rule holds when assigning one pointer to a function to another
pointer. For example,

void f1() throw (X);
void £2() throw (X,Y);
void £3() throw QO ;

void £4();
f2 = &f1; // OK
£3 = &f1; // error, f3 can not throw X

f1 = &f4; // error, f1 can only throw X

9.5 Standard Exceptions 329

The first assignment is legal since a caller that can handle exceptions
thrown by f2 can also handle exceptions thrown by f1. The second and
third assignments above are both illegal.

The policy of terminating a program upon encountering an unexpected
exception can be changed by adding the standard exception bad_exception
to an exception specification. Then std :: unexpected() will simply throw
bad_exception:

void f£() throw (X, std::bad_exception) {

/o

throw Y(); // Y is unexpected, throw bad_exception
}

The exception specification will catch the unacceptable exception Y and
throw the standard exception std :: bad_exception, instead of terminating
the program.

9.5 Standard Exceptions

Here is a table of standard exceptions (thrown by the language), the func-
tions, operators, and general facilities that throw them, and the page num-
bers where they first appear or are explained in this book.

| Standard Exceptions (thrown by the language) |

Name Thrown by Pages
bad.alloc new 330
bad_cast dynamic_cast 307
bad.typeid typeid 308
bad_exception exception specification 329

Besides, the C++ standard libraries may throw the following exceptions.

logic_error length_error out_of range domain_error
invalid_argument runtime_error range_error overflow_error
underflow_error ios_base::failure

For example, the exception out_of _range is thrown by function at{int %)
in the library <wvector>, when the index i is out of the range of the vector
for which it is called.

330 9. Exception Handling

The exceptions thrown by the language and standard libraries are derived
from class exception presented in the standard header <stdexcept>:

class exception {
public:
exception() throw();
exception(const exception &) throw();
exception& operator=(const exception &) throw();
virtual “exception() throw();
virtual const char* what() const throw();
private:
/..
s

The derived exceptions do not add functions to the base class exception,
but simply redefine the virtual functions. Thus it is fine to write:

int main() {

try {

// ... main code
} catch(std::bad_alloc) {

cout << "standard exception: new ran out of memory\n";
} catch(std::exception& e) {

cout << "standard exception" << e.what() << "\n";
} catch(MVerr& e) {

e.print(); // my matrix vector exceptions
} catch(...) {

cout << "other exceptions\n";

Note that the operator new can also be made to return 0 instead of throwing
standard exception bad_alloc, when there is not enough memory space, by
using nothrow:

int* a = new (nothrow) int [1000000];
// new now returns 0 if no more memory
if ('a) cout << "no more memory to allocate\n";

All standard exceptions are derived from exception. The user can also
add his own exceptions to the exception hierarchy. Thus it is a mistake to
assume that every exception derived from exception is a standard excep-
tion.

9.6

9.6.1.

9.6.2.

9.6.3.

9.6.4.

9.6 Exercises 331
Exercises

Write a function that takes a, b, and ¢ as parameters, and returns the
roots to the quadratic equation az? + bz + ¢ = 0. It throws different
exceptions when ¢ is zero or just small in magnitude. Write another
function that calls it and handles the exceptions. The handler may
stop the program when division by zero happens and just print out
a warning message when a small divisor occurs.

Write a vector template library that throws exceptions when vectors
have nonmatching sizes in vector-vector multiplication, inner prod-
uct, and addition, when indexes of vectors go out of range, when a
small divisor occurs in vector-scalar division, when the operator new
runs out of memory, and so on. The user-defined exceptions should
form a class hierarchy and print out a short message representing the
exception and the operation in which the exception has occurred.

Write a matrix-vector template library that throws exceptions when
matrix and vector have nonmatching sizes in matrix-vector multi-
plication, when matrices have nonmatching sizes in matrix-matrix
multiplication and addition, when indexes of matrices and vectors
go out of range, when a small divisor occurs in vector-scalar divi-
sion, when the operator new runs out of memory, and so on. The
user-defined exceptions should form a class hierarchy and print out a
short message representing the exception and the operation in which
the exception has occurred.

Write a class called Int with overloaded operators so that it acts
like the built-in type int, except that it throws exceptions instead of
overflowing.

10

Standard Libraries on Containers and
Algorithms

C++ provides many standard libraries such as < iostream >, <cmath >,
< complex>, and <wvector >, which are not part of the language but are
very convenient and useful. These libraries are more efficient, robust, and
portable than what a typical expert programmer can write. They come
with any standard C++ implementation.

A container is an object whose main purpose is to hold other objects.
For example, a vector, set, and list are containers that can hold objects,
and objects can be inserted into or removed from them. The objects in a
container can be sorted and copied into another container. This chapter
briefly introduces C++ standard libraries on containers for vectors, lists,
maps, sets, stacks, and queues, and standard libraries on algorithms such
as sorting and searching elements in a container or sequence.

10.1 Standard Containers

C++ standard containers (and other standard libraries) are defined in the
namespace std. They are defined as template classes and have different
header files. Here is a summary of them.

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

334 10. Standard Libraries on Containers and Algorithms

Type Tllustration Header
vector<T> a variable-sized 1D array <vector>
list <T> a doubly linked list <list>
set<I> a set <set>
tnultiset<T> set, a value can occur many times <set>
map<key,val> an associative array <map>
multimap<key,val> map, value can occur many times <map>
stack<T> a stack <stack>
queue<Il> a queue <queue>
priority_queue<I> a queue sorted by value <queue>
deque<T> a double-ended queue <deque>

From a notational point view, the standard containers and their basic
operations are designed to be very similar. For example, each container has
a member function size() that gives its number of elements. They provide
basic dynamic data structures and can be very handy to use when needed.
Below is a brief description of each of them and some examples in which
they can be used. More details can be found in [Str97] and {LL98].

10.1.1 Vector

A vector v contains an array of n objects indexed from 0 to n — 1, whose
ith element can be referred to as v[i] (without range checking) or v.at(3)
(with range checking), for ¢ = 0,1,...,n — 1. When v.at(¢) is used, an
out_of range exception will be thrown if ¢ < 0 or ¢ > n. A vector is a
data structure designed for efficient and easy access to its elements based
on subscripting. It does not provide vector arithmetic such as scalar-vector
multiplication and vector addition, for which valarray (§7.5) is a good
choice. It can be used as

#include <vector>
#include <iostream>
using namespace std;
int main() {

int n = rand()¥%100; // n between O and 100

vector<int> vi(n); // a vector of n integers

for (int i=0; i<vi.size(); i++) // vi.size() = size of vi
vil[i] = i*i; // it can be used like an array

vi.resize(n + 50); // enlarge vi by 50 more entries

for (int i=n; i<vi.size(); i++) // now vi.size() = n+50
vil[i]l = (i+1)*i; // £ill additional entries

vi.resize(n+60, -3); // added elements initialized to -3

10.1 Standard Containers 335

try{
vi.at(n+200) = 0; // n + 200 is out of range
} catch (out_of_range) { // catch exception
cout << "range error occurred in vector vi \n";
3
3

The function resize() changes the size of a vector (and initializes the added
elements to a value supplied as the second argument when there is a second
argument), and size() returns the current size. Note that resize() may
move all the elements to a new location to accommodate more elements of
the vector (thus pointers to elements may be lost after resize()). Such a
vector is called a dynamic data structure since the number of elements can
grow dynamically (at run-time). Accessing elements of a vector using range
checking is safer but requires run-time overhead, since the system checks if
0 < i < vi.size() each time vi.at(z) is used.

Vectors are more convenient than built-in arrays and pointers in that
the dimensions can be determined at run-time and the user need not do
memory allocation and deallocation. When the number of elements of a
vector is not specified, it is assumed to be an empty vector (no space is
allocated for it). A vector can be created through different ways:

vector<double> dv; // an empty vector

vector<double> dv2(50); // a vector of 50 doubles
vector<double> dv3 = dv2; // a vector of 50 doubles
dv = dv2; // dv now has 50 doubles

vector<double> dv4(10, 3.14); // 10 copies of 3.14
vector<int>* p = new vector<int>(22); // pointer to vector

After the assignment dv = dv2 (every member of dv2 is copied to dv),
the size of dv becomes 50. When a vector is created, all elements can be
initialized to a value represented by the second argument as in dv4 above.

A vector of class objects can be created if the class has a default con-
structor; otherwise a vector of n copies of a class object can be created and
later changed:

struct Point {

double x, y, Z;

Point(double a, double b, double c¢) { x=a; y=b; z=c; }
};

vector<Point> vp(100, Point(0,0,0));

// vector of 100 Points, each initialized to Point(0,0,0)
vector<Point> v; // empty vector of Points
v.assign(9, Point(0,0,0)); // 9 copies of Point(0,0,0)

336 10. Standard Libraries on Containers and Algorithms

vector<Point> vp2(100); // illegal

Declaring vp2 to be a vector of 100 Point objects is illegal since Point does
not have a default constructor. The function v.assign{n,b) assigns n copies
of object b to vector v, assuming elements of v are of the same type as b.
After this assignment, the elements of v are completely changed and the
number of elements is also changed.

Using the function resize(), an n by m matrix can be created through a
vector of vectors:

vector< vector<double> > x; // an empty vector of vector
x.resize(n); // resize it to have n rows
for (int i = 0; i < x.size(); i++) {
x[i] .resize(m); // x[i] can hold m doubles
for (int j = 0; j < x[il.size(Q); j++)
x[1]1[j] = ixj; // accessing its elements
}

Compared to using double pointers for matrices, a user now need not do
memory allocation and deallocation, which is done inside the template class
library.

A user can define a derived class for vectors that does range checking
automatically. For example,

template<class T> class Vcr: public vector<T> {

public:
Ver(): vector<T>() { } // default comstructor
Ver(int n): vector<T>(n) { } // a comstructor

T& operator[](int i) { return at(i); } // range checked
const T& operator[](int i) comst { return at(i); }

};

Ver<int> vic(10); // a vector of 10 integers
vic[b] = 8; // range checked in vic[5]
vic[10] = 8; // it throws out_of_range

Accessing vic[10] causes the out_of_range exception to be thrown since the
index of vic can only change from 0 to 9.

A vector supports efficient stack (§10.1.4) operations: push_back(), to
add an element at the end, pop_back(), to remove the last element, and
back(), to read the last element. Besides, the function front() gives the
value of the first element. For example,

vector<int> vi(10);

for (int i = 0; i < 10; i++) vil[i] = i;

vi.push_back(- 50); // add element - 50 at end
vi.push_back(- 80); // add element — 80 at end

10.1 Standard Containers 337

int i = vi.back{); // i = - 80, last element
vi.pop_back(); // remove last element
int j = vi.backQ); // j = - 50, last element
int k = vi.front(); // kX = 0, first element

if (Yvi.empty()) vi.pop_back();
if (vi.size() < vi.max_size()) vi.push_back(5);

Note that pop_back() does not return the value of the last element but sim-
ply removes it. Underflow occurs if pop_back() is called on an empty vector,
whose behavior is undefined. The function empty() returns a bool value in-
dicating a vector is empty or not, and maz_size() returns the size of the
largest possible vector. A user should be aware that functions push_back()
and pop_back() change the size of a vector implicitly. Pushing an element
to a vector could be an expensive operation (linear time) since extra mem-
ory need be allocated for it. But a C++ implementation must ensure that
repeated stack operations are done cheaply (often in constant time).

A vector is often built incrementally and an application may wish to
keep some space for the vector to expand without resizing it each time an
element is added. The function reserve() enables a programmer to reserve a
specified number of elements for future expansion of a vector. For example,

vector<double> vd; // empty vector
int n = 100;
vd.reserve(n); // reserve n elements

for (dnt i = 0; i < n; i++) {
vd.push_back(i + 3.14);
cout << "size of vd = " << vd.size() << ’\n’;
cout << vd.capacity() - vd.size()
<< " reserved slots left\n";

}

Here memory allocation is done only once when vd is reserved n elements
and the for loop just pushes new elements to the vector (no space is al-
located when the vector grows). The size of vd is the number of elements
that have been added, instead of n. If the number of elements added has
exceeded n, the system will allocate space for the extra elements (vd.size()
also changes). Thus, reserve() is an efficient operation that reduces memory
allocation overhead and prevents possible reallocation of the elements when
a vector grows. The function capacity() gives the current number of ele-
ments that the reserved memory can hold. Thus vd.capacity() — vd.size()
is the number of elements that can be pushed without causing memory
reallocation.

Every standard container provides iterators to traverse along the ele-
ments of the container. An iterator is an object of some type and is used
to refer to elements in a sequence. It can be thought of as a pointer to

338 10. Standard Libraries on Containers and Algorithms

the elements, but its exact type is implementation-dependent and the user
rarely needs to know the exact type. An obvious implementation of the
iterator of a vector is to use pointers. Iterators for different types (vector
and list, for instance) are different. A const iterator is an iterator that is
not supposed to change the elements of a container. For a standard con-
tainer C, its iterator is always named C :: iterator, and its const iterator
is C :: const_iterator. The concept of iterators provides a uniform treat-
ment of many algorithms (§10.2) on sequences of type vector, list, set, and
the like. The functions begin() and end() return iterators to the first ele-
ment and one-past-the-last element (often denoted by the left-closed and
right-open interval [begin, end) using mathematical notation), respectively,
and provide traversing of the elements in the forward direction (element
0 is followed by element 1, which is followed by element 2, etc.), while
the functions rbegin() and rend() return iterators to the first element and
one-past-the-last element, respectively, in the reverse order, and provide
traversing of the elements in the backward direction (element n — 1 is fol-
lowed by element n — 2, which is followed by element n — 3, etc.). They can
be graphically represented as

begin() end()
r -
0 B s 1 | - | —|n — 1| —] !
L — 4
rbegin() rend()
r -
n—1e—in—-—24—>| - | —>] () |*+—| |
L — 4

Here n is the number of elements in the container. For a given iterator ¢, the
element it points to is *¢, the next iterator is i++, and the previous iterator
is i——. For example, elements of a vector can be traversed differently using
the iterators:

vector<int> vi(10);
for (int i = 0; i < 10; i++) vili]

i;

cout << "forward traversing\n";
for (vector<int>::const_iterator p = vi.begin(};

10.1 Standard Containers 339

p !'= vi.endO; p++) {
cout << *p << ’\n’; // traversing all elements
} // using const iterator

cout << "backward traversing\n";
for (vector<int>::reverse_iterator p = vi.rbegin();
p '=vi.rend(); p++) {
cout << *p << ’\n’; // traversing all elements
} // using reverse iterator

// traversing all elements and change values of elements
for (vector<int>::iterator p = vi.begin();
p != vi.end(); p++) {
*p = 5; // every element is changed to 5

}

Note that tterator and reverse_iterator of a container normally have differ-
ent types and are implemented differently. Thus a variable of iterator may
not be assigned to a value of type reverse_iterator. If q is of reverse_iterator,
the call g.base() returns its corresponding iterator.

As seen earlier, elements of a vector can be conveniently traversed by sub-
scripting. But subscripting may not be available for other containers such
as lists and sets. Using iterators is a general way of traversing a standard
container and can be applied to standard algorithms. For example, a vector
can be sorted by the standard algorithm sort(), presented in <algorithm>,
the order can be reversed by calling reverse(), and elements of one con-
tainer can be assigned to another:

vector<int> vint (100);
for (int 1 = 0; 1 < 100, i++) vint[i] = (i-50)%*i;

sort(vint.begin(), vint.end()); // sort in increasing order
reverse(vint.begin(), vint.end()); // reverse the order

vector<int> v2;

v2.assign(vint.begin(), vint.end()); // assign vint to v2
vector<int> v3(v2.begin(), v2.end()); // copy v2 to v3
char p[] = "a C-style string";

vector<char> v4(p, p + 5); // copy C string

The function sort() places elements of the vector in increasing order based
on a less-than operation < by default. The less-than operation, assuming
it is denoted by less, must satisfy a strict weak ordering:

1. less(z,z) is false.

340 10. Standard Libraries on Containers and Algorithms

2. If less(z,y) and less(y, z), then less(z, z).

3. If x ==y and y == z, then z == 2, where z == y is defined to be
(less(z,y) || less(y, z)).

In this ordering, equivalence of two elements is defined by inequalities. This
equivalence is used to identify duplicate elements. Integers, floating point
numbers, and strings have such a strict weak ordering <, while complex
numbers do not have a built-in less-than operation <. A user can also
supply a comparison criterion to sort a vector (also, list, map, or set); see
§10.2.1.

A vector also supports list (§10.1.2) operations: insert(), to add elements
at given positions, and erase(), to delete elements at specified positions.
These operations are not efficient (taking linear time) but are convenient at
times. These two functions are overloaded and there are several versions of
them. The call v.insert(p, z) inserts element x before the position referred
to by iterator p and returns an iterator referring to the inserted element,
v.insert(p,n,x) inserts n copies of element x before the position referred
to by iterator p and returns nothing, and v.insert(p, first,last) inserts a
sequence from the position referred to by first to (but not including) the
position referred to by last before the position referred to by iterator p
and returns nothing. The call v.erase(p) removes the element of vector
v referred to by iterator p, and v.erase(first,last) removes all elements
of vector v marked off by [first,last). The function v.clear() removes all
elements of vector v. For example,

vector<int> v(2, - 1); //v={-1, -1}
vector<int> u(3);
for (int i = 0; i < 3; i++) ulil =1i; //u=4{0, 1, 2}

vector<int>::iterator p = u.insert(u.end() - 2, 100);
// insert 100 before last but one element of u
// nowu={0, 100, 1, 2 }
// p points to the second element

cout << "inserted element: " << *p << ’\n’; // *p = 100

u.insert(u.end() - 1, 2, 99);
// insert 2 copies of 99 before last element
// now u=4{0, 100, 1, 99, 99, 2 }

u.insert(u.begin(), v.begin(), v.end(}));
// insert all elements of v at beginning of u
// nowu=4{-1, -1, 0, 100, 1, 99, 99, 2 }

u.erase(p);
// remove element pointed to by p, second element

10.1 Standard Containers 341

// nowu={-1, 0, 100, 1, 99, 99, 2 }

+

2); // remove third element
{-1,0,1, 99, 99, 2 }

u.erase(u.begin()
// now u

u.erase(u.begin() + 1, u.end());
// remove all elements from second to last
// nowu={-11}

u.clear();
// remove all elements of u. Now u is empty

Note that operations such as u.begin() + 1 and v.end() — 1 are just like
pointer arithmetic. When insertion or deletion of elements is needed many
times, using vector would be very inefficient; instead a list may be used
(see §10.1.2).

Member function swap() can swap two vectors very efficiently (through
interchanging pointers; avoid copying all elements from one vector to an-
other):

vector<long double> v1(100, -3.14);
vector<long double> v2(100, 2.17);
vl.swap(v2); // efficient swap function

Comparison functions ==,!=, <, >, <=,>= are also provided for vec-
tors, the last four based on lexicographical ordering. That is, for two vectors
vl and v2, vl < v2 is true if and only if the first element v1[z] that is not
equal to the corresponding element v2[i] is less than v2[i] or vl.size() <
v2.size() when every v1[i] equals corresponding v2[i] for 0 <7 < vl.size().
The equality vl == v2 is true if and only if vl.size() == v2.size() and
v1[z] == v2[i] for every valid index 4.

The specialization wvector < bool > is provided as a vector of Boolean
values, where each element can be implemented to take up only one bit,
instead of one byte, and the usual operations of wector still work. In a
different but related library <bitset>, a template class bitset <size_t N>
implements an array of N bits, where bitwise operations & (and), | {or),”
(exclusive or), << (left shift), and >> (right shift) are provided.

10.1.2 Lust

A list is designed to allow efficient (constant time) insertion and deletion of
elements at given positions. It provides all of the member functions of vector
except for subscripting [|, capacity(), and reserve(). Lists can be used,
for example, to find neighboring nodes of each node in an unstructured
finite element grid, which determines the positions of nonzero entries in
the stiffness matrix. The following are a few examples to illustrate its basic

342 10. Standard Libraries on Containers and Algorithms

use. It also supports efficient back and front operations that add, remove,
or read an element at the front or back of a list. For example,

list<int> nodes; // an empty list of integers

nodes.push_front(10); // add element 10 at front
nodes.push_front(10); // add element 10 at front

nodes.push_front(6); // add element 6 at front
nodes.push_back(5); // add element 5 at the end
nodes.push_back(4) ; // add element 4 at the end

nodes . push_back(4) ; // add element 4 at the end
nodes.push_back(4); // add element 4 at the end
nodes.pop_front(); // remove first element (6)
nodes.pop_back() ; // remove last element (4)
nodes.remove(10) ; // remove all elements with value 10

// now nodes = { 5, 4, 4}

nodes.sort(); // sort nodes in increasing order
// now nodes = { 4, 4, 5}

nodes.unique(); // remove duplicate elements in list
// now nodes = { 4, 5}

nodes.reverse(); // reverse the order of elements

// now nodes = { 5, 4}

The member function unique() removes duplicate elements (using opera-
tor == by default; other criteria can be supplied as an argument) only if
they appear consecutively. Thus sorting a list before applying unique() can
remove all duplicate elements. Note that the number of elements in a list
decreases after duplicate elements are removed by calling the member func-
tion list <T >:: unique(), which is different from the standard algorithm
unique() in <algorithm> (see §10.2.1). The member function remove(v)
deletes all elements with value v from the list, sort() rearranges all the
elements in increasing order by default (a sorting criterion can be passed
as an argument; see §10.2), and reverse() simply reverses the current order
of the elements in the list.

A list does not have a subscript operator []. To traverse along a list,
iterators must be used. The member functions insert() and erase() are
defined for list in the same way as for vector. For example,

vector<int> v(5);
for (int i = 0; i < 5; i++) v[i] =1 + 3;
list<int> s(v.begin(), v.end());
// create list from vector, s = {3, 4, 5, 6, 7}

list<int>::iterator p = find(s.begin(), s.end(), 4);
// find the position of element 4

10.1 Standard Containers 343

s.insert(p, - 2); // insert -2 before element *p
s.insert(p, 2, 9; // insert 2 copies of 9 before *p
// s = {3: -2, 9,9, 4,5, 6, 7}

p++; // p points to next element (5)

s.erase(p) ; // erase element at position p
// s=43, -2, 9, 9, 4, 6, T}

s.clear(); // erase all elements.

The standard algorithm find(), presented in < algorithm >, returns an
iterator indicating the position of an element in a sequence; it returns
end() if there is no such element. If there are more than one such element,
the position of the first is returned.

Two sorted lists and y can be merged by calling z.merge(y). Then
will hold the resulting sorted list and y will be empty. Elements of a list y
from position pl to (not including) position p2 can be removed and inserted
before position p of another list z by invoking z.splice(p, y, pl, p2), where
pl and p2 are iterators of y and p an iterator of z. If p2 is not specified,
it will splice only the element at position pl of y into z. If pl and p2 are
both not specified, it will splice the whole list of y into «. This function will
cause corresponding elements of y to be erased. As opposed to insert(), the
function splice() does not copy elements, but simply modifies the list data
structure that refers to the elements. For example,

list<double> ft; // an empty list

list<double> sd; // an empty list
ft.push_front(5.5); // build elements for list ft
ft.push_back(2.5);

sd.push_front(5.5); // build elements for list sd
sd.push_back(-7.5);

ft.sort();

sd.sort(); // lists may need to be sorted before merging

ft.merge(sd); // ft has the merged list, sd is empty

list<double>::iterator i = find(ft.begin(), ft.end(), 5.5);

// find position of element 5.5 in list ft
sd.splice(sd.begin(), ft, i);

// erase element *i of ft, insert it to sd at front
sd.splice(sd.end(), ft);

// erase all elements of ft, insert them in sd at back

The call z.merge(y) combines two sorted lists z and y by removing elements
from y and inserting them into x while preserving order. If x or y is not
sorted, it still produces a list containing the union of elements in z and y
but the order is not guaranteed.

344 10. Standard Libraries on Containers and Algorithms

10.1.3 Map and Set

A map 1s a container whose elements are pairs of a key and a value. When
indexed by the key, a map returns the corresponding value. For example,

map<string, int> age; // elements are <string,int> pairs
int x = age["Eric"]; // create new entry for "Eric", x=0
age["Eric"] = 27; // assign a new value for "Eric"
age["Eric"] = 30; // assign another new value
age["Eric"] += 3; // increment by 3

int y = age["Eric"]; // y =33

age["Rebecca"] = 25; // create new entry for "Rebecca"
age.erase("Rebecca"); // remove entry for "Rebecca"

for (map<string, int>::const_iterator p = age.begin();

p != age.end(); p++) { // traversing
cout << "name: " << p->first
<< " age: " << p->second << ’\n’;

}

Each element in object age contains a string-integer pair. For a given key
of type string, subscripting gives a value of type int. If no match is found
for a key, a new entry for that key with a default value (0 for an integer
type) will be inserted. A map iterator points to an object represented by a
pair <first, second> with first the key and second the value.

Compared to arrays that are indexed by integers, a map can be indexed
by a general type that has a less-than operation < by default. The elements
of a map are sorted in an ascending order based on its keys, by default. A
map<int,T> is like an array of type T, although subscripting a map (it
must first find the key with cost O(logN), where N is the size of the map)
is not as cheap as subscripting an array with an integer index. Thus a map
is a generalization of an array, whose index may not have to be integers. A
map is often called an associative array, or a dictionary. Like an array, a
map is optimized for finding values based on keys, and at most one value
can be held for each key.

A multimap is a map except that it allows multiple values with the same
key. A set can be seen as a map with just keys but no values. A multiset
is a set except that a key can occur more than once. Here is an example
showing their difference:

map<string, int> m; // a map of <string,int> pairs
multimap<string, int> mm; // a multimap
m.insert(make_pair("Eric", 27)); // m["Eric"] = 27

m.insert(make_pair("Eric", 33));

10.1 Standard Containers 345
// no effect, m["Eric"] already existed

mm. insert(make_pair("Eric", 27)); // mm["Eric"] = 27
mm. insert(make_pair("Eric", 33));
// both ("Eric", 27) and ("Eric",33) are inserted

Here make_pair() makes a pair (the standard library class pair, consisting
of two members first and second, and the function make_pair are defined
in <utility>) out of a key and a value, and insert() tries to add the pair
to a map or multimap. For a map m, the function m.insert() returns a
pair<iterator,bool>, where the bool is true if the value is actually inserted,
and the iterator refers to the element holding the key. For a multimap
mm, the function mm.insert() just returns an iterator since insertion is
guaranteed to take place. Since a multimap allows multiple elements with
the same key, it can not support subscripting the way a map does.

For a map m and a key k, the operation m.find(k) returns an iterator
to the element with key k if such an element exists, and returns m.end()
otherwise. For multimap and multiset, the returning iterator will point to
the first element with key k. For a multimap (or multiset) m, the opera-
tions m.lower_bound(k) and m.upper_bound(k) return iterators that point
to the beginning and end-plus-one elements of m with key k, respectively.
These two functions can be replaced by m.equal_range(k), which returns
both of the iterators as a pair. For example,

void f(multimap<string, int>& m, string k) {
typedef multimap<string,int>::iterator MI;
pair<MI,MI> pk = m.equal_range(k);
for (MI p = pk.first; p t= pk.second; p++)
cout << 'key: " << p->first
<< " vyalue: " << p->second << ’\n’;

}

If lower_bound(k) does not find key k, it returns an iterator to the first
element that has a key greater than k or end() if such a greater element
does not exist. Functions upper_bound(k) and equal_range(k) have similar
behaviors.

The function call m.erase(k) removes key k from m. It can also remove
an element given an iterator or a number of elements within a given range
of iterators. For example,

map<string,double> age;
age.erase(age.find("Eric")); // erase Eric
age.erase(age.find("Eric"), age.find("Joe"));

// erase from Eric to Joe

Below is a program illustrating how the library set can be used.

int main() {

346 10. Standard Libraries on Containers and Algorithms

set<int> nds; // an empty set of integers

nds . insert(5); // insert the element 5 into set
nds.insert(5); // insert the element 5. Again? Ignore
nds.insert(7); // insert the element 7 into set

nds. insert(10); // insert the element 10 into set
nds.erase(7); // remove the element 7 from set
nds.erase(3); // 3 is not in set. Ignore

for (set<int>::const_iterator p = nds.begin();
p != nds.end(); p++) {
cout << *p << ’\n’; // print out all elements

}

set<int>::const_iterator p = nds.find(5);
// is 5 in set?
if (p != nds.end()) cout << "found = " << *p << "\n";
// output if found
set<int>::const_iterator q = nds.find(9);
// is 9 in set?
if (q !'= nds.end()) cout << "found = " << *q << ’\n’;
// output if found

cout << "number of elements in set = "
<< nds.size() << ’\n’;

cout << "first element in set = "
<< *(nds.begin()) << ’\n’;

set<int>::const_iterator t = nds.end();
t--;
cout << "last element in set = "

<< %t << ’\n’;

A set, map, multimap, or multiset can be defined based on different
orders (the default is in increasing order):

set<int, less<int> > s0; // same as: set<int> sO;
set<int, greater<int> > s; // descending order
set<int, greater_equal<int> > s2;

set<int, less_equal<int> > s3;

nultiset<int, less_equal<int> > ms;

struct Nocase { // user-defined order
bool operator() (const char& si, const char& s2) const {
return toupper(si) < toupper(s2); // include <ctype.h>

}

10.1 Standard Containers 347
};

map<char, int, Nocase> nm; // case-insensitive

Here less, greater, greater_equal, and less_equal are defined in the stan-
dard header <functional> (see §10.3.2), and Nocase is a user-defined com-
parison criterion that promotes characters into their corresponding upper
cases when comparing.

A set, map, multimap, or multiset is also provided with comparison
functions ==,! =, <, >, <=, >=, member and nonmember functions swap(),
and member functions maz_size() and empty().

10.1.4 Stack and Queue

A stack is a data structure designed to support three operations efficiently:
top reads the element on the top of a stack, push inserts an element at the
top, and pop removes an element from the top. For example,

stack<int> si; // empty stack of integers
si.push(2); // si has one element, si.size() =1
si.push(4); // si has two elements, si.size() = 2
int i = si.top(); // reads top element, i =

si.pop(); // removes 4, si.size() = 1

si.pop(); // removes 2, si. size() = 0
si.pop(); // underflow occurs

A queue allows insertion of an element at the back and extraction of an
element at the front. For example,

queue<int> qi; // empty queue of integers
qi.push(5); // insert 5 at the back

qi.push(8); // insert 8 at the back

int £ = qi.front(); // read element at front, f =5

int b = qi.back(); // read element at back, b =8
qi.popQ); // extract the front, i.e. remove 5

A priority_queue, presented in <queue>, is a queue in which each ele-
ment is given a priority that controls the order of the elements that appear
at the top. By default, it compares elements using the < operator and top()
returns the largest element.

A deque is a double-ended queue, which supports operations push and
pop at both ends as efficiently as a list and the subscripting operator [] as
efficiently as a vector.

To prevent underflow in a stack or queue, the member function empty()
can be used to make sure it is not empty before popping an element. It
returns {rue on an empty container.

348 10. Standard Libraries on Containers and Algorithms
10.2 Standard Algorithms

C++ standard algorithms are defined in the namespace std and mostly
presented in the header <algorithm>, with a few numeric algorithms in
<numeric> (§7.6) and function objects in <functional> (§10.3). Some of
them such as sort() and find() were already used in the previous section.
They are defined as template functions (possibly with overloaded versions),
and apply to not only standard containers, but also sequences such as
valarray, string, input-output streams, and built-in arrays. This section

illustrates how to use some of the standard algorithms through examples.
Details can be found in [Str97, LL98, Lip00].

10.2.1 Sorting, Copying, and Replacing Algorithms

The sorting, copying, replacing, and related algorithms are as follows.

Sorting, Copying, and Related Algorithms

sort()
stable_sort()
partial .sort()

partial _sort_copy()

merge()
inplace_merge()
partition()
stable_partition()

unique()

copy()
copy-backward()
unique_copy()
reverse()
reverse_copy()
rotate()

rotate_copy()
random_shuffle()

swap()
swap_ranges()
iter _swap()
replace()
replace_if()
replace_copy()
replace_copy_if()
fl()

fill n()

sort a sequence with good average efficiency
sort, preserve original order of equal elements
sort the first part of a sequence in order

copy and sort first part of output in order
merge two sorted sequences

merge two consecutive sorted subsequences
place elements matching a predicate first

place elements matching a predicate first,

but preserve the relative order of the elements
remove adjacent duplicate elements

copy a sequence starting from first element
copy a sequence starting from last element
copy sequence-remove adjacent duplicate elmts
reverse the order of a sequence

copy a sequence in reverse order

circularly rotate elements in a sequence

copy a sequence in rotated order

reorder a sequence in uniform distribution
swap two elements

swap elements of two sequences

swap two elements pointed to by iterators
replace elements by a given value

replace elements matching a predicate

copy sequence-replace elements with given value
copy sequence-replace elmts matching predicate
replace every element with a given value
replace first n elements with a given value

10.2 Standard Algorithms 349

Sorting, Copying, and Related Algorithms (continued)
generate() replace every element with result of an operation
generate_n() replace first n elmts with result of an operation
remove() remove elements having a given value
remove_if() remove elements matching a predicate
remove_copy() copy sequence-remove elements with given value
remove_copy if() copy sequence-remove elmts matching predicate

The algorithm sort() has prototypes:

template<class RandomIter>
void sort(RandomIter first, RandomIter last);

template<class RandomIter, class Compare>
void sort(RandomIter first, RandomIter last, Compare cmp);

It sorts elements in a sequence marked off by [first,last). The plain sort()

gives a good average number of operations O(N log N) and an inefficient
worst case O(N?), where N is the number of elements to be sorted. When
worst-case behavior is important, stable_sort() can be used with cost O(N logZ N),
which also preserves the original order of equal elements in the range
[first,last). These two algorithms do not apply to the standard list, which
should be sorted using its own sorting member function.

By default, the sorting algorithms rely on a less-than operator < to sort a
sequence in increasing order. A user can also provide a comparison criterion
through an object of a class with the function call operator () defined based
on the criterion. For example, a sequence can be sorted by comparing the
absolute value of the elements:

template<class T> class CmpAbs { // user-defined comparison
public:
bool operator() (const T& a, const T& b) comnst {
return abs(a) < abs(b);
}
};

void £() {
vector<int> vi(5);
for (int i = 0; i < vi.size(); i++)
vi[i] = (3-1)*i; // vi = {0,2,2,0,-4}

sort(vi.begin(), vi.end());
// default increasing order: vi

{-4,0,0,2,2}

sort(vi.begin(), vi.end(), CmpAbs<int>());
// a user-specified order: vi = {0,0,2,2,-4}

350 10. Standard Libraries on Containers and Algorithms

Note that an object rather than a type is needed for the third argument of
sort(), so CmpAbs<int>() is used instead of CmpAbs<int> An object of
a class with the function call operator () overloaded is called a function-
like object, ar a function object. In particular, a function object (or a
function) that returns a bool is called a predicate.

Some standard predicates are given in the namespace std and header
< functional>; see §10.3.2 and §10.3.3. For example, to sort a sequence in
decreasing order, the standard predicate greater can be used:

vector<int> vi(5);
for (int i = 0; i < vi.size(); i++)
vi[i] = (3-1i)#i; // vi={0,2,2,0,-4}

sort(vi.begin(),vi.end(), greater<int>());
// vi={2,2,0,0,-4}

The function replace() replaces an old value by a new value in a sequence
and replace_i f() replaces values for which a predicate returns true by a new
value. The old and new values are passed by reference in the implementation
of the functions. They may be used as

bool greaterThanO(int i) { return i > 0; } // a predicate

int main() {
vector<int> vi(5);
for (int i = 0; i < vi.size(); i++)
vi[i] = (3-i)*i; // vi={0,2,2,0,-4}

const int nu = 100; // replace positive values by 100
replace_if(vi.begin(), vi.end(), greaterThan0, nu);
// vi={0,100,100,0,-4}
const int old = -4; // replace -4 by 100
replace(vi.begin(), vi.end(), old, nuw);
// vi={0,100,100,0,100}
}

However, in replace_copy_if(), the newly generated sequence is copied into
another container indicated by its third argument. See its prototype at the
end of the section.

The function unique() does not change the total number of elements in
a sequence, but simply moves all unique elements to the front and returns
an iterator to the end of the subsequence of unique elements. An example
describing its use is:

vector<int> vi(5);
for (int i = 0; i < vi.size(); i++) vili] = (3-i)*i;
vi.push_back(-4); // vi=H0, 2, 2, 0, -4, -4}

10.2 Standard Algorithms 351

sort(vi.begin(),vi.end()); // vi = {-4, -4, 0, 0, 2, 2}

vector<int>::iterator e = unique(vi.begin(),vi.end());

// vi=4{-4, 0, 2, 0, 2, 2}

for (vector<int>::iterator i = vi.begin(); i 1= e; i++)
cout << *i << " ¥, // output = { -4, 0, 2}

However, unique_copy() copies only unique elements into another se-
quence:

list<int> 1i;
1i.push_front(100);
1i.push_front (200); // 1i = {200,100}, li.size()=2

sort(vi.begin(),vi.end()); // assume vi = {-4,-4,0,0,2,2}
unique_copy(vi.begin(), vi.end(), li.begin()); // 1i={-4,0}

list<int> 1i2; // declare 1i2 to be empty list

unique_copy(vi.begin(), vi.end(), back_inserter(1li2));

for (list<int>::iterator p = 1li2.begin(); p!= 1li2.end(); p++)
cout << #p<< MM, // 1i2 = {-4, 0 , 2}

Here back_inserter() in unique_copy() adds all unique elements at the end
of the list (42, allocating more space for it. Two other standard inserter
functions are front_inserter() and inserter(), which cause an element to
be inserted at the front of a sequence, or before a position indicated by its
iterator argument, respectively. For example, in inserter(c,p), an element
will be inserted into container ¢ at a position before p, where p must be a
valid iterator of ¢. See §10.2.3 for an example using inserter() and §10.3.1
for an example using front_inserter(). Note that the number of elements
in the sequence Ii does not change after calling copy() or unique_copy(). A
sequence should be sorted before calling unique() or unique_copy().

It should be emphasized that most of the algorithms take iterators as
arguments to mark off a sequence. As another example, generate() replaces
elements in a sequence with newly generated values specified by its last
argument:

#include <math.h>
#include <algorithm>
#include <list>

double gensin() { // function to generate new elements
static double seed = 2.14;
return sin(seed++) ;

}

int main() {

352 10. Standard Libraries on Containers and Algorithms

list<double> td(4);
td.push_front(2.7); // generate() also replaces this value
generate(td.begin(), td.end(), gensin);

// replace every element in list td
generate_n(td.begin(), 2, gensin);

// replace first 2 elements

}

The call generate() above generates new elements sin(2.14 + i), i = 0,1,
2, 3, 4, for the list td, and generate n() only generates the first n elements
specified by its second argument.

The prototypes or definitions of selective algorithms in this section are
as follows.

template<class RandIter> void

partial_sort(RandIter first, RandIter middle, RandIter last);
// put elements from first to middle in order.
// other comparison possible by adding a trailing argument

template<class In, class RandIter>
RandIter partial_sort_copy(In first, In last, RandIter first2,
RandIter last?2);
// partial sort [first, last) and copy into [first2, last2)
// # of elements sorted is the smaller of the two sequences
// other comparison possible by adding a trailing argument

template<class In, class In2, class COut>

Out merge(In first, In last, In2 first2, In2 last2, Out res);
// merge sorted sequences [first, last) and [first2, last2)
// other comparison possible by adding a trailing argument

template<class BiDirIter>
void inplace_merge(BiDirIter first, BiDirIter middle,
BiDirIter last);
// merge sorted sequences [first, middle) and [middle,last)
// still store the resulting sequence in [first, last)
// other comparison possible by adding a trailing argument

template<class Bilter, class Pred>

Bilter partition(Bilter first, Bilter last, Pred P);
// partition sequence [first, last) by placing elements
// satisfying predicate p before elements that do not

template<class BiDirIter, class BiDirIter2>
BiDirIter2 copy_backward(BiDirIter first, BiDirlIter last,
BiDirIter Out);

10.2 Standard Algorithms 353

// copy sequence [first, last) backward into Out
// opposite of copy(first, last, out)

template<class In, class Out>
Out unique_copy(In first, In last, Out res);

template<class In, class Out, class BinPred>
Out unique_copy(In first, In last, Out res, BinPred p);

template<class BiDirIter>
void reverse(BiDirIter first, BiDirIter last);
// reverse order of sequence [first, last)

template<class BiDirIter, class QOut>
Out reverse_copy(BiDirlIter first, BiDirIter last, Out res);
// reverse order, and copy to res

template<class For>

void rotate(For first, For middle, For last);
// rotate sequence [first, last) circularly until middle
// points to the initial element in sequence

template<class For, class Out>
Out rotate_copy(For first, For middle, For last, Out res);
// rotate, and copy to res

template<class RandIter>
void random_shuffle(RandIter first, RandIter last);
// reorder sequence [first, last) in uniform distribution

template<class RandIter, class RandNumbGenerator>
void random_shuffle(RandIter first, RandIter last,
RandNumbGenerator rand);
// reorder using random number generator rand

template<class T>

void swap(T& a, T& b) { // swap a and b
T tmp = a; a =b; b= tmp;

}

template<class For, class For2>

void iter_swap(For a, For2 b);

// swap elements pointed to by iterator a and b

template<class For, class For2>

354 10. Standard Libraries on Containers and Algorithms

For2 swap_ranges(For first, For last, For2 first2);
// swap elements in two ranges

template<class In, class Out, class T>
Out replace_copy(In first, In last, Out res, const T& old,
const T& newval) {
// copy [first, last) into sequence started at res, and
// replace value old by newval
while (first != last) {
*res++ = (¥first == old) 7 newval: *first;
++first;
}
return res;

}

template<class In, class Out, class Pred, class T>
Out replace_copy_if(In first, In last, Out res, Pred p,
const T& newval) {
while (first != last) {
xres++ = p(*xfirst) 7 newval: *first;
++first;
}
return res;

}

template<class For, class T>
void fill(For first, For last, const T& val);
// assign sequence [first, last) a value val

template<class Out, class Size, class T>
void fill_n(Out seq, Size n, const T& val);
// £ill n elements with val

template<class For, class Gen>
void generate(For first, For last, Gen g);
// Appy g to sequence [first, last)

template<class Out, class Size, class Gen>
void generate_n(Out seq, Size n, Gen g);

// generate n elements using g

template<class For, class T>
For remove(For first, For last, const T& val);

template<class For, class Pred>

10.2 Standard Algorithms 355

For remove_if(For first, For last, Pred p);

template<class In, class Out, class T>
Qut remove_copy(In first, In last, Out res, const T& val);

template<class In, class Out, class Pred>
Out remove_copy_if(In first, In last, Out res, Pred p);

10.2.2 Searching and Traversing Algorithms

The searching, traversing, and related algorithms are as follows.

Searching, Traversing, and Related Algorithms

adjacent_find()
equal()

mismatch()
min()
min_element()
mazx()
maz_element()
Sfor_each()
transform()
binary_search()
lower _bound)()
upper _bound()
equal_range()
count()
count_if()
nth_element()
search()
find_end()
search_n()

find() find first occurrence of a value in a sequence
find_if() find first match of a predicate in a sequence
find_first_of() find a value from one sequence in another

find an adjacent pair of duplicate elements

return true if elements of two sequences are
pairwise equal

find first elements for which two sequences differ
return smaller of two values

return iterator to smallest value in a sequence
return larger of two values

return iterator to largest value in a sequence
perform an operation on each element in sequence
apply an operation to each element in sequence
determine if a given value is in a sorted sequence
find first occurrence of a value in a sequence

find last occurrence of a value in a sequence

find ranges in sequence containing a given value
count number of occurrences of a value in sequence
count matches of a predicate in a sequence

put the nth element in proper place

find first occurrence of sequence as a subsequence
find last occurrence of sequence as a subsequence
find a subsequence of n occurrences of a value

In addition, lexicographical_compare() determines if one sequence is lexi-
cographically before the other. Among these algorithms, for_each(), trans-
form(), and nth_element() modify the underlying sequence.

The function find_if() takes a predicate (a function or function object
that returns bool) as its third argument and returns an iterator for which
the predicate is true. If it can not find an element matching the predicate, it

356 10. Standard Libraries on Containers and Algorithms

will return an iterator referring to the end-plus-one element of the sequence.
The return value of find() is the same, which can be used to find the second
occurrence of a value in a sequence. For example,

bool Less_0(int i) { return i < 0; }
// a number less than 07

// absolute value greater than 37
template<class T> struct Abs_greater_3 {
bool operator()(const T& a) const { return abs(a) > 3; }

};

int main() {
vector<int> vi(5);
for (int i = 0; i < vi.size(); i++) vi[i] = (3-i)*i;
// vi={0,2,2,0,-4}

vector<int>::iterator p // find first element < 0
= find_if(vi.begin(), vi.end(), Less_0);

if (p != vi.end()) cout << *p << ’\n’; /l *p = - 4

if (p == vi.end()) cout << "element < 0 not found\n";

p = find_if(vi.begin(), vi.end(), Abs_greater_3<int>());
cout << *p << "\n"; // first absolute value > 3 is -4

p = find(vi.begin(), vi.end(), 2);
if (p != vi.end()) {
vector<int>::iterator q = find(++p, vi.end(), 2);
// q points to the second occurrence of 2 or vi.end{()
}
}

The template function for_each takes a function or function object as
its third argument to indicate the operation it performs on a sequence. It
may be defined as

template<class Iter, class Fcn>

Iter for_each{(Iter b, Iter e, Fcn f) {
while (b != e) f(xb++);
return b;

3

From this definition, one can see that the operator () is applied to its third
argument without caring whether it is a function or a function object.
It may be more efficient to pass a function object than a pointer to a
function. Now a function object is used to add a number to every element
of a sequence:

10.2 Standard Algorithms

template<class T> class Add{

T addend;

public:

};

Add(T a = 0) { addend = a;}
void operator()(T& a) const { a += addend; }

int main() {

}

vector<double> vd(5); // a vector of 5 elements
double daf5]; // an array of 5 elements
for (int i = 0; i < 5; i++) vd[i] = da[i] = ix*i;

for_each(vd.begin(), vd.end(), Add<double>(5.8));
for_each(da, da + 5, Add<double>(5.8));

357

Here for_each() invokes Add<double> (5.8).operator()(double) for every
element in the sequences vd and da. Thus every element in vd and da is
incremented by 5.8.
The function maz_element() returns an iterator that points to the max-
imum element in a sequence, while maz() simply compares two elements
and returns the maximum element. For example,

int main() {

vector<int> vi(5);

int aif[5];
for (int i = 0; i < vi.size(); i++)
vi[i] = aifil = (3-i)*i; // vi = ai = {0,2,2,0-4}

// use default comparison
vector<int>::iterator p
= max_element (vi.begin(), vi.end());
cout << " max element = " << *p; // 2 is printed out

// use user-supplied comparison
p = max_element (vi.begin(), vi.end(), CmpAbs<int>());

cout << " max in absolute value = " << *p; // *p = -4

int* q = max_element(ai, ai+b);

cout << " max element = " << *q; // 2 is printed out
q = max_element (ai, ai+5, CmpAbs<int>());

cout << " max in absolute value = " << *q; // *q = -4
cout << " max of -5 and 3 = " << max(-5,3); // 3
cout << " max in abs =" << max(-5,3,CmpAbs<int>()); // -5

358 10. Standard Libraries on Containers and Algorithms

The template class CmpAbs<T> is defined in §10.2.1.
The prototypes or definitions of selective algorithms in this section are
as follows.

template<class In, class T>

In find(In first, In last, comst T& v) {
while (first I= last && *first != v) first++;
return first;

3

template<class For, class For2>
For find_first_of(For first, For last,
For2 first2, For2 last2);
// find first element in sequence [first, last) that has
// a match in the sequence [first2, last2)
// A binary predicate can be added as trailing argument

template<class For>

For adjacent_find(For first, For last);
// find first adjacent pair of duplicate elements
// return forward iterator to first element of the pair
// A binary predicate can be added as trailing argument

template<class In, class In2>
bool equal(In first, In last, In2 first2);
// A binary predicate can be added as trailing argument

template<class In, class In2> // #include <utility>
pair<In, In2> mismatch(In first, In last, In2 first2);
// search for first pair of elements that are not equal
// A binary predicate can be added as trailing argument

template<class T> const T& max(const T& a, const T& b) {
return (a<b)? b : a;

3

template<class T, class Cmp>
const T& max(const T& a, const T& b, Cmp cmp) {
return (cmp(a,b))? b : a;

3

template<class In, class Out, class UniOp>

Out transform(In first, In last, Qut res, UniOp p);
// generate sequence by invoking unary operator p
// on each element in sequence [first, last)

10.2 Standard Algorithms 359

template<class In, class In2, class Qut, class BinOp>
Out transform(In first, In last, In2 first2, Out res,
BinOp p);
// generate sequence by invoking binary operator p
// on each pair of elements in two sequences

template<class For, class T>
bool binary_search(For first, For last, const T& val);
// check if element ’val’ is in sorted sequence

template<class For, class T, class Cmp>
bool binary_search(For first, For last, const T& val, Cmp p);

template<class For, class T>
For lower_bound(For first, For last, const T& val);

template<class For, class T, class Cmp>
For lower_bound(For first, For last, const T& val, Cmp p);

template<class For, class T> // #include <utility>
pair<For, For> equal_range(For first, For last, const T& val);

template<class For, class T, class Cmp>
pair<For, For> equal_range(For first, For last,
const T& val, Cmp p);

template<class In, class T> // #include <iterator>

typename iterator_traits<In>::difference_type

count(In first, In last, comnst T& val) {
typename iterator_traits<In>::difference_type n = 0;
while (first != last) if (*first++ == val) n++;
return n;

}
// count number of occurrences of ’val’ in [first, last)
// Note return type is not int, to prevent possible
// overflow on machines with small int, and to
// improve efficiency on machines with large int

template<class In, class Pred> // #include <iterator>
iterator_traits<In>::difference_type
count_if(In first, In last, Pred p);

// count number of occurrences satisfying predicate p

template<class RandIter> void

360 10. Standard Libraries on Containers and Algorithms

nth_element (RandIter first, RandIter nth, RandIter last);
// reorder elements less than *(nth) to left side,
// and elements greater than it to the right

template<class For, class For2>

For search(For first, For last, For2 first2, For last2);
// search [first2, last2) as subsequence of [first, last)
// iterator to the first matching element in [first, last)
// or ’last’ is returned
// A binary predicate can be added as trailing argument

template<class For, class For2>

For find_end(For first, For last, For2 first2, For last2);
// search [first2, last2) as subsequence of [first, last)
// backward, that is, from end of [first, last)
// A binary predicate can be added as trailing argument

template<class For, class Size, class T>

For search_n(For first, For last, Size n, const T& val);
// search a subsequence of at least ’n’ matches of ’val’
// Return iterator to first element of matching sequence
// A binary predicate can be added as trailing argument

10.2.83 Set, Permutation, and Heap Algorithms

The set, permutation, and heap algorithms are as follows.

Set, Permutation, and Heap Algorithms

includes() true if a sequence includes another
set_union() construct a sorted union of 2 sequences
set_intersection() construct a sorted intersection
set_difference() construct a sorted sequence of elements

in the first but not in second sequence
set_symmetric_difference() construct a sorted sequence of elements
in one but not in both of the sequences

next_permutation() next permutation-lexicographical order
prev_permutation() previous permutation lexicographically
make_heap() make sequence to be used as heap
push_heap() add an element to heap

pop-heap() remove an element from heap
sort_heap() sort a heap

The template function next_permutation() gives the next permutation
and prev_permutation() the previous permutation based on the lexicograph-
ical order. They take two iterators (indicating the first element up to but

10.2 Standard Algorithms 361

not including the last element that are going to be permuted) as argu-
ments and return true if the next (or previous) permutation exists and
false otherwise. Consider the sequence of three characters: {a,b,c}. There
are 6 permutations on the sequence: {abc, acbh, bac, bca, cab, cba} . These
6 permutations are also ordered lexicographically based on the less-than
operator. For example, abc is the first one, and the next permutation is
ach. But the previous permutation of abc and the next permutation of cba
do not exist. Here is a sample program illustrating their use:

#include<vector>
#include<algorithm>
#include<iostream>
using namespace std;

int main() {
vector<char> vc(8);
ve[0] = ’a’; vc[1] b2 vel2]
vel3] = ’e’; vcl4] £, vel5]
sort(vc.begin(), vc.end());
// vc ={a, b, c, d, e, f}

1]
[

)c);
3 3.
d’;

bool b = next_permutation(vc.begin(), vc.begin() + 3);
if (b) cout << "the next permutation is : ¥;

for (int i = 0; i < vc.size(); i++) cout << vec[i];
cout << ’\n’; // ve = {a, c, b, d, e, £}

b = prev_permutation(vc.begin(), vc.begin() + 3);
if (b) cout << "the previous permutation is : ";

for (int i = 0; i < vc.size(); i++) cout << vc[i];
cout << ’\n’; // ve = {a, b, c, d, e, £}

The set operations have the same prototype, except for includes(). For
example, set_union() is declared as

template <class Inlterl, class Inlter2, class Outlter>
OutIter set_union(Inlterl firstl, Inlterl lastil,
InIter2 first2, InIter2 last2, OQutIter union);

template <class InIterl, class Inlter2, class Outlter,
class Compare>
OutIter set_union(InIterl firstl, Inlterl lastil,
InIter2 first2, Inlter2 last2,
OutIter union, Compare cmp);

It constructs a sorted sequence of the union of the elements contained
within the ranges marked off by [firstl,lastl) and [first2,last2). The

362 10. Standard Libraries on Containers and Algorithms

returned Outlter points to one-past-last element placed in a container
marked off by the fifth argument of set_union(). The first version assumes
the less-than operator and the second version utilizes a sorting criterion
defined by cmp.

The function includes() has prototype:

template <class Inlterl, class InIlter2>
bool includes(InIterl firstl, InIterl lastil,
Inlter2 first2, InIlter2 last2);

template <class InIterl, class Inlter2, class Compare>
bool includes(InIterl firsti, InIterl lasti,
InIter2 first2, InIter2 last2, Compare cmp);

The first version checks to see if every element of the sequence [firstl, lastl)
is contained in the sequence [first2,last2), provided the sequences are
sorted using the less-than operator. The second version uses emp for com-
parison. -

The template set_intersection() constructs a sorted sequence of elements
present in both sequences marked off by [firstl,lastl) and [first2,last2),
set_difference() constructs a sorted sequence of elements present in the
first sequence [firstl,lastl) but not in the second one [first2,last2), and
set_symmetric_difference() constructs a sorted sequence of elements present
in the first sequence [firstl,lastl) but not in the second one [first2, last2)
and those present in the second [first2,last2) but not in the first [firstl,
lastl). If the first sequence is {0, 1, 2, 3} and the second is {0, 3, 5},
then set.union() gives {0, 1, 2, 3, 5}, set_intersection() gives {0, 3},
set_difference() gives {1, 2}, and set_symmetric_difference() gives {1, 2, 5}.
Here is a sample program illustrating their use:

#include<string>
#include<set>
#include<algorithm>
#include<iostream>
using namespace std;

int main() {
string fO[] = {"apple", "orange", "lemon", "kiwi"};
string f1[] = {"grape", "lemon", "cranberry"};

set<string, less<string> > s0(f0, f0 + 4);
set<string, less<string> > s1(f1, f1 + 3);
set<string, less<string> > s3;

set_union(s0.begin(), s0.end(), si.begin(), sil.end(),
inserter(s3, s3.begin()));

10.2 Standard Algorithms 363

cout << "set union: ";
typedef set<string,less<string> >::const_iterator SCI;
for (SCI p = s3.begin(); p !'= s3.end(); p++)

cout << *p << ’\n’; // print out all elements

s3.erase(s3.begin(), s3.end()); // or use: s3.clear();
set_difference(s0.begin(), s0.end(), si.begin(), si.end(),
inserter(s3, s3.begin()));
cout << "set difference: ";
for (SCI p = s3.begin(); p != s3.end(); p++)
cout << *p << ’\n’; // print out all elements

}

The standard insert iterator adaptor function inserter() takes two argu-
ments: a container itself and an iterator of the container indicating the
position at which insertion should begin.

A heap is a form of binary tree (see [CLR90]), whose root has a value
greater than or equal to the values of its children, using the default less-
than operator. In the heap represented by the binary tree in Figure 10.1,
the root 40 is the maximum (using the default less-than operator) among
its children 20 and 0. The children 20 and O are not required to be in
increasing order. Similarly, node 20 has the maximum value among the
nodes (20, 6, and —4) in the subtree rooted at 20, and node 0 has the
maximum value among the nodes (0 and —2) in the subtree rooted at 0.
In the four C++ heap algorithms, a heap such as the one in Figure 10.1 is
stored in a sequence such as

40 20 0 6 -4 -2

Root 40 starts first, then its left and right children 20 and 0, and finally, 6
and —4 (the children of 20), and —2 (child of 0).

The four heap algorithms have exactly the same prototype:

template<class RandIter>
void make_heap(RandIter first, RandIter last);

template<class RandIter, class Compare>
void make_heap(RandIter first, RandIter last, Compare cmp);

The algorithm make_heap(first,last) makes a heap from a sequence marked
off by [first,last). The first version uses a less-than operator, while the
second utilizes a user-supplied comparison. sort_heap(first,last) sorts a
heap represented by [first,last) in increasing order using the default less-
than operator or a user-supplied comparison. Notice that, after calling
sort_heap(first,last), the sequence [first,last) is no longer a heap, us-
ing the same comparison criterion (the less-than operator by default). If
a sequence [first,last — 1) is a heap and the new element *(last — 1)

364 10. Standard Libraries on Containers and Algorithms

A/

FIGURE 10.1. A heap represented by a binary tree. The root has value 40, which
is the maximum (using the default less-than operator) among its children. The
children 20 and O are not required to be in increasing order. Similarly, node 20
has the maximum value among the nodes (20, 6, and —4) in the subtree rooted
at 20, and node 0 has the maximum value among the nodes (0 and —2) in the
subtree rooted at 0.

has been added to it at the back (by calling, e.g., push_back()), then
push_heap(first,last) makes the sequence [first,last) into a heap. Thus
a user can build a heap incrementally by a series of push_heap() opera-
tions. Conversely, pop_heap(first,last) swaps the first element *first and
last element x(last — 1) from the heap [first,last) and makes the sequence
[first,last — 1) into a heap. Thus a user can use pop_heap(first,last) to
“remove” the largest element (*first) from the heap [first,last) and make
the rest of the elements into a new heap [first,last — 1). If the sequence
[first,last) does not form a heap before calling sort_heap(first,last) and
pop_heap(first,last), or the sequence [first,last—1) does not form a heap
before calling push_heap(first, last), the result is undefined. They are
reasonably efficient algorithms: push_heap() and pop_heap() have worst-
case performance O(log N), and sort_heap() has worst-case performance
O(N log N), where N is the number of elements in the sequence.
The following example illustrates how these algorithms can be used.

int main() {
vector<int> vi(6);
for (int i = 0; i < 6; i++) vil[i] = 3#*i*i - 7#i;
//vi={0 -4 -2 6 20 407}

make_heap(vi.begin(), vi.end());
// make heap using less-than operator
// vi=4{40 20 0 6 -4 -2}

pop_heap(vi.begin(), vi.end());
vi.pop_back();

10.3 Standard Function Objects and Adaptors 365

// remove largest element (40) from heap
// vi=4{20 6 0 -2 -4}, a new heap

vi.push_back(6);

push_heap(vi.begin(), vi.end());
// extend new element 6 into a new heap
//vi={20 6 6 -2 -4 0}

make_heap(vi.begin(), vi.end(), greater<int>());
// make heap using greater than operator
//vi={-4 -2 0 20 6 61}

sort_heap(vi.begin(), vi.end(), greater<int>());
// sort heap using greater than operator
//vi={20 6 6 0 -2 -4}

10.3 Standard Function Objects and Adaptors

Several standard function objects and adaptors are provided in the library
< functional> They can be used in conjunction with standard and user-
defined algorithms.

10.3.1 Arithmetic Function Objects

The standard header < functional> contains several arithmetic function
objects: plus, minus, multiplies, divides, modulus, and negate, among which
negate is unary and others are binary. They may be defined as

template <class T> struct plus { // binary
T operator() (const T& x, const T& y) const {return x+y;}

s

template <class T> struct negate { // unmary
T operator() (const T& x) const {return - x;}

};

Their exact definitions in < functional> are slightly different from those
defined here.

These function objects can be used together with standard or user-
defined algorithms: for example, the template function

template<class T>
void add(vector<T>& a, vector<T>&% b, vector<T>& c) {
transform(a.begin(), a.end(), b.begin(),

366 10. Standard Libraries on Containers and Algorithms

front_inserter(c), plus<T>());

}

adds corresponding elements of vectors a and b and inserts the resulting
vector into the front of vector ¢, where tranform() is a standard algorithm;
see §10.2.2. As another example of illustrating their use, two numbers can
be multiplied as

double d = 3.14, 42 = 2.17;
multiplies<double> mpd;
double d3 = mpd(d, d2); // d3 =d * d2

10.8.2 Relational Function Objects

Standard relational function objects are less, equal_to, not_equal to, greater,
greater_equal, less_equal. They can be defined very easily. For example,
less may be defined as

template<class T> struct std::less {
bool operator()(const T& a, const T& b) comst {
return x < y;
}
};

A sequence can be sorted in decreasing order by using greater and in-
creasing order by using less:

vector<int> vi(5);
for (int i = 0; i < vi.size(); i++)
vifil = (3-i)*i; // vi={0,2,2,0,-4}

sort(vi.begin(),vi.end(), greater<int>());
// vi={2,2,0,0,-4}
sort(vi.begin(),vi.end(), less<int>());
// vi={-4,0,0,2,2}

Note the default ordering for sort() is the increasing order, and it is redun-
dant to use less<int> () in the last statement above.

10.3.8 Logical Function Objects

There are three standard logical function objects: logical and, logical or,
and logical_not. Note that logical_not is a unary predicate and the other
two are binary. They may be defined as

template<class T> struct std::logical_and {
bool operator() (const T& a, const T&b) comst {
return a && b;

10.3 Standard Function Objects and Adaptors 367

}
};

template<class T> struct std::logical_mot {
bool operator() (const T& a) comst { return !a; }

};

10.3.4 Standard Adaptors

There are two standard binders: bindlst() and bind2nd(). For example, to
remove all zero elements in a vector, bind2nd() can be used to bind the
second argument of the binary function object equal_to<int> () to O:

int main() {
vector<int> vi(5);
for (int i = 0; i < vi.size(); i++)
vi[i] = (3-1i)*i; // vi = {0,2,2,0,-4}

vector<int>::iterator p = remove_if(vi.begin(), vi.end(),

bind2nd(equal_to<int>(),0)); // vi=A{2,2,-4,0,-4}
for (vector<inmt>::iterator i = vi.begin(); i != p; i++)
cout << *i << " " ; // output elements not equal to 0

}

Notice remove_if does not actually remove the zero elements but simply
moves all nonzero elements to the front and returns an iterator indicating
where the nonzero elements end. Similarly bindlst() binds the first argu-
ment of a binary function or function object to a given value.

There are two standard negators: notl to negate a unary predicate and
not2 to negate a binary predicate. They may be used as

int main() {
vector<int> vi(5);
for (imt i = 0; i < vi.size(); i++)
vi[i] = (3-1)*i; // vi = {0,2,2,0,-4}

sort(vi.begin(), vi.end(), not2(less<int>()));
// vi = {2,2,0,0,-4}
}

The sequence is sorted in decreasing order since not2() negates the binary
predicate less<int> (). This sorting statement is equivalent to

sort(vi.begin(), vi.end(), greater<int>());

368 10. Standard Libraries on Containers and Algorithms

Standard and user-defined algorithms may invoke certain operations. For
example, for.-each() invokes an operation on each element in a sequence.
However, such an operation can not be a member function of a class:

void f(const set<Pt*>& sp) { // draw a set of points
for_each(sp.begin(), sp.end(), &Pt::draw); // WRONG
}

where Pt is a class for points with a member function draw(); see §8.1.
The standard member function adaptor mem_fun() can be used to handle
such a situation:

void f(const set<Pt*>& sp) { // draw a set of points
for_each(sp.begin(}, sp.end(}, mem_fun(&Pt::draw)); // OK
}

The member function Pt :: draw() does not require any argument. The
adaptor mem._fun() can also be used for member functions that take one
argument. Notice that mem_fun() takes pointers to class objects; the stan-
dard adaptor mem.fun_ref() takes references to class objects. The stan-
dard adaptor ptr_fun() allows a pointer-to-function to be used as its argu-
ment.

10.4 Exercises

10.4.1. Create a vector of complex numbers and sort them by using the
standard algorithm sort() in the order of decreasing absolute values.

10.4.2. Create an empty vector of int. Then generate random numbers and
insert them into the vector. Print out all the elements in the vector
when the last inserted element is less than 100, and exit the program.

10.4.3. Create a vector of three-dimensional points and sort them in decreas-
ing order according to the z-coordinate.

10.4.4. Create a vector of int that has several elements with value 55. Use the
standard algorithm find() to find the position of the third element
with value 55.

10.4.5. Create a list of float and count the number of elements whose abso-
lute value is less than 4.5, using the standard algorithm count_if().

10.4.6. Create a set of int and find the sum of all its elements.

10.4.7. Write three template functions that evaluate the one, two, and max-
imum norms of a vector, respectively, using the standard algorithm
for_each().

10.4.8.

10.4.9.

10.4.10.

10.4 Exercises 369

Create two sets of int and find their union and intersection by using
the standard algorithms set_union() and set_intersection().

Create a set of points and draw them using the standard algorithm
for_each() and member function adaptor mem.fun(); see §10.3.4.

Define a structure called date that contains two int members month
and day. Use the random number generator rand() to generate a
multiset of 100 dates, representing people’s birthdays. Then write
a function to find how many people in the multiset have a given
birthday.

11

Linear System Solvers

This chapter presents and implements preconditioned conjugate gradient
(CG) and generalized minimum residual (GMRES) methods for solving
linear systems. The coefficient matrix can be stored in full (every entry
is stored), band (only entries within a band along the main diagonal are
stored), or sparse (only nonzero entries are stored) storage formats and can
be real (float, double, long double, etc.) or complex (with real and imaginary
parts in float, double, long double, etc.). All these situations are handled by
one function for CG and another function for GMRES (without different
versions as in other programming languages such as FORTRAN and C).
This dramatically reduces the size of the source code and is much easier to
maintain.

If the user later decides to implement solvers for symmetric matrices
(only half of the entries need be stored to save memory), even in a user-
defined data type, for example, doubledouble (exactly doubles the double
precision, more accurate than long double), the CG and GMRES code can
be directly reused without recompilation. This feature is the cornerstone
of object-oriented programming.

Gauss eliminations with and without pivoting are also implemented for
full and band matrices. Again, one version of the functions can handle real
and complex matrices in different precisions.

In the last section, a finite difference method is presented and coded
for numerically solving partial differential equations with real or complex
coefficients in different precisions.

D. Yang, C++ and Object-Oriented Numeric Computing for Scientists and Engineers

© Springer Science+Business Media New York 2001

372 11. Linear System Solvers

11.1 Matrix Storage Formats

This section describes three matrix storage formats: full, band, and sparse
matrices, using double precision for matrix entries. In a later section, tem-
plate classes are defined based on these storage strategies.

11.1.1 Full Matrices

In the full matrix storage format, all entries of a matrix are stored. This is
convenient and efficient for matrices whose most entries are nonzero. Space
can be allocated and deallocated for an n by m full-matrix as

double** fm = new double* [n]; // fm has n rows
for (int i = 0; i < mn; i++) // allocate space
fm[i] = new double {m]; // each row has m entries
for (int i = 0; i < n; i++) // accessing its entries
for (int j = 0; j < m; j++)
fmli]1[j] = 1 + j; // assign some values

for (int i = 0; i < n; i++) delete[] fmfi]l; // delete space
delete[] fm;

For a pictorial representation of a 3 by 5 full-matrix see §3.6.1.

11.1.2 Band Matrices

Many matrices from numeric computing have nonzero entries along the
main diagonal and zero entries away from the main diagonal. Such matrices
are called band matrices. It can greatly save memory space if only entries
within the band of a band matrix are stored. One example of band matrices
is tridiagonal matrices (only entries within the tridiagonals are stored in
the band storage format; entries outside this tridiagonal band are zero and,
to save memory, are not stored). Another example is

ag,0 Qo1 Qo2 1 6 10
a0 61,1 a12 01,3 13 2 0 11
As = a1 G2 G23 Q24 | = 14 3 8 124,
as2 G33 Q34 0 4 9
as3 Q4,4 16 5

where nonzero (and a few zero) entries form a band along the main diagonal
and zero entries outside the band are not shown above. The band matrix
As can be stored in another form (only entries within the band are stored

11.1 Matrix Storage Formats 373

row by row):

bo,~1 boo bo1 bo2 0 1 6 10
bl,—-l b170 b171 b172 13 2 0 11
Bsa=| ba-1 bao bo1 boo | =14 3 8 12
b3 1 b3o b31 b3o 0 4 9 0
ba,-1 b4,o b4,1 b4,2 6 5 0 O

»

The row index of Bs 4 changes from 0 to 4 (the same as in the original ma-
trix As), but the column index from —1 to 2. Column 0 of Bj 4 stores the
main diagonal of the original matrix As, column 1 stores the off-diagonal
immediately above the main diagonal, column —1 the off-diagonal imme-
diately below the main diagonal, and so on. The band matrix format Bj 4-
has the same number of rows as the original matrix As, but its number of
columns is only equal to the number of nonzero diagonals in As. Entries
of each row of Ag are still stored in the same row of the band format Bs 4.
Note that bo,_1, bg,1, bg 2, and b3 2 can be set to any value since they do
not correspond to entries of the original matrix As. This format of storage
has turned out not only to save memory (for large band matrices) but also
to be convenient in coding certain algorithms such as the band Gauss elim-
ination (see §11.4). In the following, this idea is extended to general band
matrices.

Definition 11.1.1 Let A = {a;; ?J":lo be an n by n matriz. For i =
0,1,..., n— 1, the right bandwidth r; and left bandwidth p; of row i of
matriz A are defined as

Ty = r?f«}{] —i:a,; # 0},

D; = r§1<ait{z —J:a;; #0}.

If there does not exist a j such that j >4 and a; ; # 0, then define r; = 0.
Define p; similarly. The right bandwidth r and left bandwidth p of matriz
A are defined as

"= Orélza}n{ri}’

p= max {p;}.

The right bandwidth r; of row ¢ is the distance between the entry on
the main diagonal a;; and the nonzero entry in row i on the right side
of a;; that is farthest from a;;. The right bandwidth r of a matrix is
the maximum of all row right bandwidths. A similar explanation holds for
the left bandwidth. According to this definition, a tridiagonal matrix has
left bandwidth and right bandwidth both equal to 1, and the matrix As
above has left bandwidth 1 and right bandwidth 2 (there is one nonzero

374 11. Linear System Solvers

off-diagonal immediately below the main diagonal and two above the main
diagonal).

For a full matrix A[n}[n] with left bandwidth p and right bandwidth r,
here is a way to allocate space to store it in a band format bda :

double** bda = new double* [n]; // bda has n rows, same as A
for (int i = 0; i < n; i++) { // allocate space for rows
bda[i] = new double [p+r+1]l; // row i has p+r+1 elements

bda[i] += p; // offset each row
}
for (int i = 0; i < n; i++) { // relation between A, bda
int ip = max(i - p, 0); // max() in <algorithm>
int ir = min{(i + r, n-1); // min() in <algorithm>
for (int j = ip; j <= ir; j++)
bdali] [j-i] = A[1][3]; // A[i] stored in bda’s row i
}
for (int i = 0; i < n; i++) {
bdal[i] -= p; // offset back before delete
delete[] bdalil; // delete each row
}
delete[] bda; // delete the double pointer

Note the row index of bda changes from 0 to n—1 and column index changes
from —p and 7. Entries of row i of the original matrix A within the band are
stored in row i of the band storage format bda, but (zero) entries outside
the band of A are simply ignored. Zero entries within the band of A are
still stored in bda.

11.1.83 Sparse Matrices

The idea of sparse storage is to store only nonzero entries of a matrix.
There are different storage schemes available [Saa96]. Only the so-called
compressed sparse row format is presented here. In this format, information
about an n by n matrix A is stored in three one-dimensional arrays:

1. An array sra stores only nonzero entries of A row by row. Suppose
A has nz nonzero entries. The number of elements in sra is nz.

2. An array clm stores the column indexes of the entries of A as stored
in sra. That is, entry srali] is in column clm[i] in the original matrix
A. The number of elements in clm is nz.

3. An array fnz has n+1 elements with fnzjn] =nz. For 0 <i <n-1,
fnzli] stores the position in sra of the first nonzero entry in row ¢ of
A, while fnz[n] stores the position in sra of the last nonzero entry of

11.2 A Class Hierarchy for Matrices 375

A plus one. That is, sra[fnz|[i]] gives the first nonzero entry in row ¢
of Afor i =0,1,...,n—1, and sra[fnz[n] — 1] gives the last nonzero
entry of A.

For example, the matrix A5 in §11.1.2 can be stored in the compressed
sparse row format as

sra = {1, 6, 10, 13, 2, 11, 14,
cdm = {0, 1, 2, 0O, 1, 3, 1,
fnz = {0, 3, 6, 10, 12, 14}.

Note that the entries a; 2 = ag2 = 0 of A5 are not stored in the com-
pressed sparse row format, but are stored in the band format Bs 4.

For an n by n matrix stored in compressed sparse row format and a
vector v, the matrix-vector multiplication (assuming the product is stored
in vector w initialized to 0) can be coded as

for (int i = 0; i < n; i++) // matrix-vector multiply
for (int j = fnz[il; j < fnz[i+1]; j++)
wlil += sra[jl*vlclm[jl1]; // w[i] stores row i of product

From this piece of code, it is clear that the entry fnz[n] is convenient.

11.2 A Class Hierarchy for Matrices

This section presents a class hierarchy for full, band, and sparse matri-
ces and declarations for their member functions and friends. They inherit
from an abstract base class that has pure virtual functions for matrix-
vector multiplication and preconditioning and has member functions for
the preconditioned conjugate gradient and generalized minimum residual
methods. CG and GMRES are defined for the base class and can be used

in the derived classes.

For a linear system
Az =b, (11.1)

where A is a square matrix of real or complex entries, b is a real or com-
plex right-hand side vector, and z is the solution vector to be found, the
efficiency of CG and GMRES methods for solving the linear system (11.1)
depends on a condition number defined as the ratio of the largest eigen-
value over the smallest eigenvalue in magnitude of the coefficient matrix A.
To improve efficiency, another invertible matrix P, called a preconditioner,
can be used to change the original linear system (11.1) into an equivalent
one:

P 'Az = P71p, (11.2)

where P is chosen such that the condition number of P~ ! A is smaller than
that of A. CG and GMRES methods applied to the preconditioned system

376 11. Linear System Solvers

(11.2) are called preconditioned CG and GMRES, respectively. In the pro-
cess of solving (11.2) using CG and GMRES, one needs to solve the linear
system Pz = r, where r is a known vector (residual) and P is the precon-
ditioner. In the code below, the preconditioner P is not assumed explicitly,
but rather a member function is required to return z for any vector r. Note
that different preconditioners P (e.g., diagonal preconditioner, symmetric
SOR preconditioner, and domain decomposition preconditioners) give dif-
ferent efficiencies. Details on preconditioned CG and GMRES are given in
§11.3.
The abstract base matrix class template AbsMtz is defined as

template<class T> class AbsMtx { // base matrix
protected:
int nrows; // number of rows

virtual Vcr<T> preconding(const Vcr<T>& r,int i=0) const=0;
// solve P z = r with preconditioner P and vector r,
// it returns z. i = 0 if no preconditioning,
// i =1 if diag preconditioner, i = 2 if SSOR precn
public:
virtual Vecr<T> operator*(const Vcr<T> &) const = 0;
// matrix-vector multiply
int CG(Vcr<T>&, const Vcr<T>&, double&, int&, int);
int GMRES(Vcr<T>&, const Vcr<T>&, double&, int&, int, int);
};

where the vector class template Ver<T > is defined in §7.1 with a spe-
cialization for complex vectors. Classes for full, band, and sparse matrices
FullMtz<T>, BandMtz<T>, and SparseMtx<T> will be derived from
this base class. The picture for this class hierarchy can be represented as

l FullMtz l] BanthxJ SparseMtx

Member functions AbsMtz<T>:: CG() and AbsMtz<T>: GMRES()
can be defined using only pure virtual function declarations AbsMtz<T>::
preconding() and AbsMtz<T >:: operator * () without knowing exactly
how they might be defined. Once these pure virtual functions are defined
in the derived classes FullMtz<T>, BandMtx<T>, and SparseMtz<T>,
the functions CG() and GM RES() can be called for the derived classes.

The class FullMtz<T> for full matrices can be declared as

11.2 A Class Hierarchy for Matrices 377

template<class T> class FullMtx: public AbsMtx<T> {

private:
int ncols; // number of columns in matrix
TH*x mx; // entries of the matrix

Vcr<T> preconding(const Ver<T>%, int i = 0) const;
// override AbsMtx<T>::preconding()
public:
FullMtx(int n,int m,T**); // n:# of rows, m:# of columns
FullMtx(int n,int m,T t=0); // all entries are set to t
FullMtx(const FullMtx &); // copy comstructor

“FullMtx(){ // destructor
for (int i = 0; i< nrows; i++) deletef]l] mx[i];
delete(] mx;

}

FullMtx& operator=(const FullMtx&); // overload =
FullMtx& operator+=(const FullMtx&); // overload +=
FullMtx& operator-=(const FullMtx&); // overload -=

FullMtx& operator+(); // unary +, mi=+m2
FullMtx operator-(); // unary -, mi=-m2
FullMtx operator+(const FullMtx&) ; // binary +, m=mi+m2

FullMtx operator-(const FullMtx&); // binary -, m=mi-m2
Tx operator([] (int i) comst { return mx([il; } // subscript
Vcr<T> operator*(const Vcr<T>%) const;
// matrix-vector multiply
void GaussElim(Vcr<T>&) const;
// Gauss elimination without pivoting
void GaussElimPP(Vcr<T>&) const;
// Gauss Elim with partial pivoting
void GaussElimCP{(Vcr<T>&) const;
// Gauss Elim with complete pivoting
3
where declarations of Gauss elimination functions without pivoting and
with partial and complete pivoting are included.
The class BandMtx <T > for the band matrix storage format can be
declared as

template<class T>
class BandMtx: public AbsMtx<T> { // band matrix

private:
int bwleft; // left bandwidth
int bwrit; // right bandwidth
T** bdmx; // entries within band

Ver<T> preconding(const Ver<T> &, int = 0) const;
// override AbsMtx<T>::preconding()

378 11. Linear System Solvers

public:

};

BandMtx(int n, int p, int r, T** t);
// n: # of rows = # of columns, p: left bandwidth,
// r: right bandwidth, t: entries within the band

BandMtx(int n, int p, int r, Tt = 0); // comstructor
BandMtx(int n, int p, int r, const FullMtx<T>& m);
BandMtx(const BandMtx &) ; // copy constructor
“BandMtx () {

for (int i = 0; 1 < nrows; i++)
delete[] (bdmx[i] -= bwleft);
delete[] bdmx;
}

BandMtx& operator=(const BandMtx&); // overload =
T* operator[](int i) const { return bdmx[il; } // row i
Ver<T> operator*(const Vcr<T>&) const;
// matrix vector multiply

void GaussElim(Vcr<T>% b) const;

// Gauss elimination without pivoting
void GaussElimPP(Vcr<T>& b) const;

// Gauss elimination with partial pivoting

where Gauss eliminations without pivoting and with partial pivoting are
included.

The class SparseMtx<T> for sparse matrices with compressed sparse

row storage format can be declared as

template<class T> // sparse matrix

class SparseMtx: public AbsMtx<T> {

private: // compressed sparse row format
int lenth; // # of nonzero entries of original matrix
T *sra; // array for storing the nonzero entries
int *clm; // column indexes of entries stored in sra
int *fnz; // first nonzero entry of each row in sra

Ver<T> preconding(const Vcr<T>&, int i = 0) const;
// override AbsMtx<T>::preconding()

public:

SparseMtx(int n, int m, Tx t, int* c, intx f);
// n: number of rows (and columns) of original matrix
// m: length of array sra for nonzero entries
// t: nonzero entries of the original matrix
// c¢: column indexes of entries stored in sra
// f: index in sra of first nonzero entry in each row
SparseMtx(int n, int m); // initialize all entries to O

11.2 A Class Hierarchy for Matrices 379

// n: number of rows (and columns)

// m: number of nonzero entries.
SparseMtx(const SparseMtx &) ; // copy constructor
“SparseMtx(){ delete[] sra; delete[] fnz; delete[] clm; }

SparseMtx& operator=(const SparseMtx &); // overload =
Vcr<T> operator*(const Vcr<T>&) const;

// matrix vector multiply
T& operator[](int i) const { return sra[il; } // subscript
int& getfnz(int i) comst { return fnz[il; }

// first nonzero entry of each row
int& getclm(int i) comst { return clm[i]; }

// column index of entries in sra

};

Note that Gauss elimination can not be conveniently defined for sparse
matrices since it may result in many nonzero entries (called fill-in) corre-
sponding to zero entries in the original matrix.

CG and GMRES functions CG() and GM RES() and the preconditioning
function preconding() are defined in §11.3, and Gauss elimination func-
tions GaussElim(), GaussElimPP(), and GaussElimCP() are defined
in §11.4. Below are definitions of some simple functions in FullMtz<T>,
BandMtz<T >, and SparseMtxz <T >. Other functions can be defined
analogously.

Some simple functions for Full Mtz<T> are as follows.

template<class T> void error(const T& t) { // an error fcn
cout << t << ", program exited." << "\n"; // print message

exit(1); // exit program
}

template<class T>
FullMtx<T>::FullMtx(int n, int m, T** dbp) {
nrows = n;

ncols = m;
mx = new T* [nrows];
for (int i = 0; i< nrows; i++) {

mx[i] = new T [ncols];
for (int j = 0; j < ncols; j++) mx[i]l [j] = dbpl(il[j];
}
}

template<class T>

FullMtx<T>: :FullMtx(int n, int m, T a) {
nrows = n;
ncols = m;

380 11. Linear System Solvers

mx = new T* [nrows];
for (int i = 0; i< nrows; i++) {
mx[i] = new T [ncols];
for (int j = 0; j < ncols; j++) mx[il[j] = a;
}
}

template<class T>
FullMtx<T>::FullMtx(const FullMtx& mat) {
nrows = mat.nrows;
ncols = mat.ncols;
mx = new T* [nrows];
for (int i = 0; i< nrows; i++) {
mx[i] = new T [ncols];
for (int j = 0; j < mcols; j++) mx[il[j] = mat[i][j];
}
}

template<class T>
FullMtx<T> & FullMtx<T>::operator=(const FullMtx & mat) {
if (this != &mat) {
if (nrows !=mat.nrows !| ncols !=mat.ncols)
error("bad matrix sizes in FullMtx::operator=()");
for (int i = 0; 1 < nrows; i++)
for (int j = 0; j < mncols; j++)
mx[i] [j] = mat.mx[i][j];

}
return *this;

}

template<class T>
FullMtx<T> & FullMtx<T>::operator+=(const FullMtx &mat) {
if (nrows !=mat.nrows || ncols !=mat.ncols)
error("bad matrix sizes in FullMtrx::operator+=()");
for (int i = 0; i < nrows; i++)
for (int j = 0; j < ncols; j++) mx[i][j] += mat[i] [j]1;
return *this;

}

template<class T>
FullMtx<T> & FullMtx<T>::operator-=(const FullMtx &mat) {
if (nrows !=mat.nrows || ncols !=mat.ncols)
error("bad matrix sizes in FullMtrx::operator-=()");
for (int i = 0; i < nrows; i++)
for (int j = 0; j < ncols; j++) mx[il[j] -= mat[i][jl;

11.2 A Class Hierarchy for Matrices

return *this;

}

template<class T>
FullMtx<T>& FullMtx<T>::operator+() { // ml = + m2
return *this;

}

template<class T>

FullMtx<T> FullMtx<T>::operator-() { // ml = - m2
FullMtx<T> zero(nrows, ncols);
return zero - *this;

}

template<class T>

FullMtx<T> FullMtx<T>::operator+(const FullMtx& mat) {
FullMtx sum = *this; // m=ml + m2
sum += mat;

return sum;

}

template<class T>

FullMtx<T> FullMtx<T>::operator-(const FullMtx& mat) {
FullMtx sum = *this; // m=ml - m2
sum -= mat;
return sum;

}

template<class T>
Ver<T> FullMtx<T>::operator*(const Vcr<T>% v) comst {
if (ncols 1= v.size())
error ("matrix and vector sizes do mot match");
Ver<T> tm(nrows);
for (int i = 0; i < nrows; i++)
for (int j=0; j<ncols; j++) tm[i] += mx[il[jI*v[j];
return tm;

}
Some functions for BandMtx<T> are as follows.

template<class T>
BandMtx<T>: :BandMtx(int n, int p, int r, T** t) {

NTOWS = 1; // number of rows
bwleft = p; // left bandwidth
burit = r; // right bandwidth

bdmx = new T* [nrows];

381

382 11. Linear System Solvers

for (int i = 0; i < nrows; i++) {
bdmx[i] = new T [bwleft + bwrit + 1];
bdmx[i] += bwleft;

}
for (int 1 = 0; i < nrows; i++)
for (int j = - bwleft; j <= bwrit; j++)
bdmx[11 [§1 = t[i1[j];
}

template<class T>
BandMtx<T>: :BandMtx(int n, int p, int r, T t) {

nrows = n;

bwleft = p;

bwrit = r;

bdmx = new T* [nrows];

for (int i = 0; i < nrows; i++) {

bdmx [i] = new T [bwleft + bwrit + 1];

bdmx [i] += bwleft;

}

for (int 1 = 0; i < nrows; i++)

for (int j = - bwleft; j <= bwrit; j++) bdmx[i][j] = t;

}

template<class T>
BandMtx<T>: :BandMtx(const BandMtx & bd) {
nrows = bd.nrows;
bwleft = bd.bwleft;
bwrit = bd.bwrit;
bdmx = new T* [nrows];
for (int i = 0; i < nrows; i++) {
bdmx[i] = new T [bwleft + bwrit + 1];
bdmx [i] += bwleft;

}
for (int i = 0; i < nrows; i++)
for (int j = - bwleft; j <= burit; j++)
bdmx [1] [3j]1 = bd[i][j1;
}

template<class T>
BandMtx<T>: :BandMtx(int n,int p,int r,const FullMtx<T>& fm){

nrows = n; // fm may be nonsymmetric
bwleft = p;
bwrit = r;

bdmx = new T* [nrows];
for (int i = 0; i < nrows; i++) {

11.2 A Class Hierarchy for Matrices 383

bdmx[i] = new T [bwleft + bwrit + 1i];
bdmx [i] += bwleft;

}
for (int i = 0; i< nrows; i++) {
for (int j = - bwleft; j <= bwrit; j++)
bdmx [i] [j1 = 0;
}

for (int i = 0; i< nrows; i++) {

int ip = max(i-bwleft, 0);
int ir = min(i+bwrit, nrows -1);
for (int j = ip; j <= ir; j++) bdmx[i] [j-i] = fm[i][;];
}
}

template<class T>
BandMtx<T>%& BandMtx<T>::operator=(const BandMtx & bd) {
if (nrows != bd.nrows || bwleft != bd.bwleft
[bwrit != bd.bwrit)
error("bad matrix size in BandMtx assignment®);
for (int j = 0; j < nrows; j++)
for (int k = -bwleft; k <= bwrit; k++)
bdmx [j] [k] = bd[j][k];
return *this;

}

template<class T> // matrix vector multiply
Vcr<T> BandMtx<T>::operator*(const Vcr<T> & vec) const {
if (nrows != vec.size())
error("matrix and vector sizes do not match");
Ver<T> tm(nrows);
for (int i = 0; i < nrows; i++) {
int ip = max(i-bwleft, 0);
int ir = min(i+bwrit, nrows - 1);
for (int j = ip; j <= ir; j++)
tmfi] += bdmx[i] [j-i]*vec[j];

}

return tm;

And some functions for Sparse Mtz<T> may be defined as

template<class T>

SparseMtx<T>::SparseMtx(int n,int m,T* et,int* cn,int* da) {
Orows = n;
lenth = m;

384 11. Linear System Solvers

sra = new T [lenth];
clm = new int [lenth];
fnz = new int [nrows +1];

for (int i =0; i< lenth; i++) {
srali] = et[i];
clm[i] = cn[il;

}
for (int i = 0; i <= nrows; i++) fnz[i] = dal[il;

}

template<class T>
SparseMtx<T>: :SparseMtx(int n, int m) {
DTOWS = n;
lenth = m;
sra = new T [lenth];
clm = new int [lenth];
fnz = new int [nrows +1];

for (int i =0; i< lenth; i++) {

sra[i] = 0;
clm[i] = 0;
}
for (int i =0; i <= nrows; i++) fnz[i] = 0;
}
template<ciass ™ // copy constructor

SparseMtx<T>: :SparseMtx(const SparseMtx& mat) {
nrows = mat.nrowvs;
lenth mat.lenth;
sra = new T [lenth];
clm = new int [lenth];
fnz = new int [nrows +1];
for (int i = 0; i < lenth; i++) {

srali] = mat[i];
clmf[i] = mat.clm[i];
}
for (int i = 0; i <= nrows; i++) fnz[i] = mat.fnz[i];
}

template<class T>
SparseMtx<T>%& SparseMtx<T>::operator=(const SparseMtx& ssm) {
if(nrows != ssm.nrows |! lenth != ssm.lenth)
error("bad matrix sizes in SparseMtx::operator=()");
for (int i = 0; i < lenth; i++) {

11.3 Iterative Algorithms 385

sral[i] = ssml[i];
clmli] ssm.clmfi];

i}

}
for (int i = 0; i <= nrows; i++) fnz[i] = ssm.fnz[i];
return *this;

}

template<class T>
Vcr<T> SparseMtx<T>::operator*(const Vcr<T>& vec) const {
if (nrows != vec.size())
error("matrix and vector sizes do not match");
Ver<T> tm(nrows) ;
for (int i = 0; i < nrows; i++)
for (int j = fnzlil; j < fnz[i +1]; j++)
tm[i] += sral[jl*vec[cim[j]];
return tm;

}

11.3 TIterative Algorithms

This section gives a detailed description of the preconditioned conjugate
gradient and preconditioned generalized minimum residual methods [Saa96,
Meu99] at the algorithmic level and provides code for the functions CG(),
GMRES(), and preconding() declared in §11.2.

The following notation is used. Let R™ be the n-dimensional vector space
of real numbers and C™ be the n-dimensional vector space of complex num-
bers. Denote either R™ or C* by F™. For a complex number c, let & denote
its complex conjugate. For a matrix or vector 4, let A¥ denote its conjugate
transpose and A7 its transpose. For two vectors £, € F™, the Euclidean
inner product is denoted by (£, 7), which is defined to be n¥¢.

11.3.1 Conjugate Gradient Method

Assume the square matrix A = (a;;) is n by n, Hermitian (i.e., (4¢,n) =
(& An) for all £,n € F"), and positive definite (i.e., (Az,z) > 0 for all
z € F™ and z # 0) with respect to the Euclidean inner product. The same
is assumed for the preconditioner P.

Let (§,7) denote an inner product in F", possibly different from the
Euclidean inner product, and M an n by n Hermitian and positive definite
matrix with respect to this inner product; that is,

(M&,n) = (& Mn), forall &neF™, (11.3)
(Mg,€) >0, forall €€ F and€ #0. (11.4)

386 11. Linear System Solvers

The discussion below begins with the linear system Mz = f for a vec-
tor f € F™ and then is extended to the preconditioned system (11.2) by
defining the inner product

(& m = (P&), (11.5)

and letting M = P~1A and f = P~ 1b.
Define the quadratic functional

Qy) = (My,y) — (f,9) — (¥, f)- (11.6)

Then for a vector p and z in ™ and any scalar a« € F = F !

Q(z +ap) = (M(z+ap),z+ap)—{f,z+ap)—{z+oapf)
= Q(z) + (Mz — f,ap) + (ap, Mz — f) + |a>(Mp,p).

By taking derivatives with respect to the real and imaginary parts of a and
setting them equal to zero, it can be easily checked that, when a takes on
value

&= (f — Mz,p)/{Mp,p),

the functional Q(z + ap) achieves its minimum

|<f - MI7p>|2
(Mp,p)

This proves that z is the solution of Mz = f if and only if z minimizes the
functional Q(y). Indeed, if z is a minimizer of Q(y), then Mz = f, since
otherwise there would exist y = £ + &p for & # 0 and p # 0 such that
Q(y) < Q(z) and Q(z) would not be the minimum. Conversely, if Mz = f,
then Q(z) < Q(z + ap) for any a € F and p € F*, and z is a minimizer of
Q(y). Thus solving Mz = f is equivalent to minimizing Q(y).

The argument above actually suggests an iterative algorithm:

(f — Mz, pr)
(Mpk,px)

Qz + ép) = Q(z) —

Tht1 = Tk + Pk, With o =) (11.7)

for finding a minimizer of Q(y), where zg is an initial guess and py € F"
are some vectors that can be generated in the iterative process.

Theorem 11.3.1 Assume the nonzero vectors g, P1,---,Pn—1 GT€ COTJU-
gate with respect to the matric M, which is defined as

(Mp;,p;) =0, for i#j; (11.8)

then the iterates To,Z1,-..,In, generated by the iterative process (11.7),
satisfy that Mz, = f for arbitrary initial point zo € F™.

11.3 Iterative Algorithms 387

Proof: From (11.7), Mzyy1 = Mzy + axMp;. Then
Mz, =Mzo 1+ n1Mpo1=Mzp 2+ p_oMpp_o+apn_1Mp,_1
= Mzo + aoMpo + 1 Mpy + - + @1 Mpp_1.
Applying the definition of o in (11.7) and the conjugacy assumption (11.8)
onp;, 0<i<n-—1,leads to
(f = Mzq,p;)
= (f — Mzo,p;) — (e: Mpi, ps)
= {f = Mazo,ps) — (f -~ Ma:,p:)
= (Mz; — Mz, p;)
= (Mz; — Mz;_1,p;) + (Mz;_1 — Mz;_9,p;) +--- + (Mz) — Mzg,p;)
= (i1 Mpi-1,p:) + (ci—2Mp;_2,p;) + - + (o Mpo, pi)
=0.
Since f — Mz, is orthogonal to po,p1,...,Pn—1, and nonzero conjugate

vectors must be linearly independent, then f — Mz, = 0. This finishes the
proof of the theorem. Il

Now the question is how to choose conjugate vectors pg,pi,...,Pn-1.

Define the residual 711 = f —Mzgy1 = f — M (2 + o) = re — o M py.
The vector pi+; is chosen in the form

Pr+1 = Tht1 + BrDr, (11.9)

where Sy, is such that pg11 and pi are conjugate with respect to the matrix
M; that is,

(Mprsr1,px) = (M(rk41 + Brpr), px) = 0.

Solving for B gives the formula:

(Mris1,px)
B = — kLRI 11.10
(Mpi, pr) (11.10)
Now the conjugate gradient method applied to the system Mz = f,
where M is an n by n Hermitian positive definite matrix with respect to

the inner product {-,-), can be stated as follows.

Algorithm 11.3.1 Taking an initial guess o € F" and setting ro = f —
Mz, po = ro, construct the sequence xy, for k=0,1,2,...,

oy = (f = Mz, pr) _ _(re,7E)
(Mpy, pi) (Mpg, pe)’
Tg+1 = Tk + QPk,

(11.11)
(11.12)
ree1 = Tk — 0k Mpg, (11.13)
(11.14)
(11.15)

B = — (Mres1,06) _ (Te41,Th+1)
{Mp, pi) (ks T)

Dk+1 = Tky1 + OBrPi.

388 11. Linear System Solvers
The second expressions in (11.11) and (11.14) are more efficient and can
be easily proved by observing the following result.

Theorem 11.3.2 In Algorithm 11.3.1, if the vectors pg,p1,...,Pm are
nonzero for m < n, then

(Tm,7i) =0, for 0<i<m,
(Mpm,p;) =0, for 0<i<m,
(Tm,pi) =0, for 0<i<m,
r; #0, for 0<i<m.

The proof of this theorem can be done by mathematical induction and
is omitted. Theorems 11.3.1 and 11.3.2 imply that the conjugate gradient
algorithm 11.3.1 converges to the exact solution in at most n iterations no
matter what the initial guess x¢ is, in the absence of roundoff errors. This
algorithm will not break down (no division by zero can occur in (11.11)
and (11.14)) unless it has already converged.

Now the preconditioned conjugate gradient method for the system Az =
b with preconditioner P, where P and A are n by n Hermitian positive
definite matrices with respect to the Euclidean inner product (-,-), can be
stated as follows.

Algorithm 11.3.2 Taking an initial guess xo € F" and setling ro = b —
Axg, po = 20 = Py, construct the sequence x, for k=0,1,2,...,

(Zk,Tk)

o = Ao’ (11.16)

Tk+1 = Tk + QkDk, (11.17)

Tk+1 = Tk — o APk, (11.18)

PRt = phtl (11.19)
(k41> Tk+1)

Br = (e o) (11.20)

Pk+1 = Zk+1 + BkPk- (11.21)

Besides solving the preconditioner linear system Pz = r once, only one
matrix vector multiplication and two inner product calculations are needed
in each iteration except for the first.

The preconditioned conjugate gradient method can be implemented as

template<class T>
int AbsMtx<T>::CG(Vcr<T>& x, comst Vcr<T>& b, double& eps,
int& iter, int pcm) {
// Preconditioned conjugate gradient method for Ax = b
// It returns 0 if successful and 1 if breakdown
// A: Hermitian positive definite coefficient matrix

11.3 Iterative Algorithms 389

// x: on entry: initial guess;

// on return: approximate solution

// b: right side vector

// eps: on entry: stopping criterion, epsilon

// on return: absolute residual in two-norm for

// approximate solution

// iter: on entry: max number of iterations allowed

// on return: actual number of iterations taken
// pen: = 0 if no preconditionmer, = 1 if diag precond
// = 2 if SSOR preconditioner

if (nrows !'= b.size())
error("matrix and vector sizes do not match");
const int maxiter = iter;

Ver<T> r = b - (*this)*x; // initial residual
Vcr<T> z = preconding(r, pcn); // solve precondit system
Ver<T> p = z; // p: search direction

T zr = dot(z,r); // inner prod of z and r

const double stp = eps*b.twonorm(); // stopping criterion

if (!r.maxnorm()) { // if initial guess is true
eps = 0.0; // solution, return. Otherwise
iter = 0; // division by zero would occur
return 0;

}

for (iter = 0; iter < maxiter; iter++) { // main loop
Vcr<T> mp = (*this)*p; // one matrix-vector multiply
T pap = dot(mp,p); // one inmner product
T alpha = zr/pap; // pap is O only when r is 0
X += alphax*p; // update the iterative soln
r -= alpha*mp; // update residual
if (r.twonorm() <= stp) break; // stop if converged
z = preconding(r,pcn) ; // preconditioning
T zrold = zr;
zr = dot(z,r); // the other inner product
T beta= zr/zrold; // zrold = 0 only when r = 0
p = z + betaxp; // update search direction

}

eps = r.twonorm();
if (iter == maxiter) return 1;
else return 0O;

} // end CGQ)

390 11. Linear System Solvers

11.8.2 Generalized Minimum Residual Method

Consider the preconditioned system (11.2) where P and A are nonsingular
n by n matrices whose entries are in F. Let 29 € F™ be an initial guess and
rg = P~1b — P71 Az be the initial residual for the preconditioned system
(11.2). Define the kth Krylov subspace

Ky = span{rg, P~ Arg, (P71 A)?rg, ..., (PTTA)F1re}. (11.22)

The kth iteration of the preconditioned GMRES is to find zx € z¢ + Ki. as
the solution to the minimization problem

P75 — P 'Az||= min_ [[P~'b~ P71Ag|, 11.23

I ll = min_ | 3 (11.23
where £ € z¢ + Kt means that £ can be written as the sum of zg and
an element in K, and ||n]l = +/(n,7n) is a vector norm induced by the
Euclidean inner product (-,-) in F™. Note that when F™ = C", complex
conjugation need be included in the inner product definition. The GMRES
iteration will be stopped and z; will be taken as the approximate solution
when the preconditioned residual ry = P~1b — P~1 Az is small.

Assume the column vectors {vg,v1,...,vk—1} form an orthonormal basis
of K¢ and let matrix Wy = [vg,v1,...,k—1]. Then for any £ € zq + Kk
there exists a vector z = [yo,y1,---,Yk-1]7 € F* such that

k-1
§—2o9= Zijj = Wgz.
=0

Thus
P~y P 1A¢ = P b~ P ' A(zg + Wi2) =g — P71 AWiz. (11.24)

The problem of finding z;, satisfying (11.23) is reduced to finding 2z, € F*
satisfying
Iro — P~ AWpzi || = min [iro — Pl AWz, (11.25)
z€

and they are related by zx — z9 = Wg2,. An efficient procedure to solve
(11.25) is given below based on Gram—Schmidt orthogonalization and Givens
rotations.

Gram—Schmidt orthogonalization can be used to find an orthonormal
basis {'Uo,'l)l, fe ,'Uk_1} of ’Ck.

Algorithm 11.3.3 gramschimdt(A, P, b, zg,v)
1. Setrg = P~'b— P71 Azg and vo = ro/||roll-
2 Fori=1,...,k—1, find
i-1

u, = P71 Av;_1 + Zajvj, where aj = (P~ Avi_1,v;) (11.26)
=0

and set v; = u,/l]uzll

11.3 Iterative Algorithms 391

Define hj; = (P~'Auv;,v;) for j = 0,1,...,4, and hiy1; = [|[P~1Av; —
> 5o hjavsll, where i = 0,1,...,k—1, and the (k+1) by k upper Hessen-
berg matrix

[hoo hoi -+ hok-2 hok—1
hio hi1 -+ hig—2 h1k-1
H, = ha 1 .h.z.’k_z .h.z.’k—l (11.27)

hr—1k-2 hr—1x-1
Pk k-1

Then the Gram-Schmidt process can be written in matrix form as

PT1AW, = Wy, H,, (11.28)
where W11 = [vg,v1, ..., vg]. This can be observed easily from (11.26).
Since 1o = |[rollvo = [|ro]|Wk+1€0, where the unit column vector ey =

[1,0,0,...,0]T € F**1 equations (11.24) and (11.28) lead to
Py P lAt =1y — PTLAW, 2
= ”’I’0|ka+160 - Wk+1HkZ = Wk+1(“’r'0”60 e sz). (11.29)

Denoting 3 = ||ro|| and noting WH Wiy1 = I yields

1P~1b~ PTHAE|? = (Wiy1(Beo — Hi2))H (Wit (Beo — Hy2))
= (Beo — Hrz) " WE | Wii1(Beo — Hyz) (11.30)
= (,860 — sz)H(Beg - sz) = “ﬁeo — HkZHZ.

Thus if zx minimizes ||feg — Hiz| over z € F*, then z = ¢ + Wiz.

To find 2z, € F*, Givens rotation is used to obtain a QR decomposition
of Hg. A 2 by 2 Givens rotation is a unitary matrix of the form

o[, 2]
-s ¢
where c and s satisfy [c|? +|s|? = 1. It rotates a unit vector [c, s]7 to vector
Gle, s]T = [1,0]T whose second component is 0. An n by n Givens rotation
replaces a 2 by 2 block on the diagonal of the identity matrix I by a 2 by

2 Givens rotation

- -

()
Il
o
@l

392 11. Linear System Solvers

Denote by G;(c, s) a (k+1) by (k4 1) Givens rotation with a 2 by 2 Givens
rotation in rows and columns j and j + 1. Let

ho,0 hi,0

o= . so= : (11.31)
V1ol + [h10f? Vlkool? + [h10]?
and Go = Go(cy, S0), then
[ohoo + Soh1o * See ok *]
0 * cee X *
GOHk — h2,1 : ‘ ‘ h2,k-2 h2,k—1 , (1132)

hie—ik—2 Pr-1k-1
L Pk k-1

where indicates that the entry of Hy has been changed by Givens rotation
Gy. Applying Givens rotation k times to annihilate all entries below the
main diagonal of Hy, leads to

Gi-1Gr-2---GoHy = Ry,

where Ry is a (k 4+ 1) by k upper triangular matrix. Let unitary matrix
Q = Gy_1Gg—2--- Gy and vector g = BQep; then

|Beo — Hizll = |Q(Beo — Hiz)|| = llg — @Hezl| = [lg — Ree2|. (11.33)

Note that ¢ — Rz € F*+1 and z € F*. Denote the ith component of a
vector g by (g);. If z € F* solves the k by k upper triangular linear system

(Rrz); = (9)s, 1=0,1,...,k -1, (11.34)

then |P~'b— P~ A¢|| = ||Beo — Hxz|| = [lg — Riz|| = [(9)k|- The stopping
criterion can be

[P~ — PLAE] = |(9)sl < e P70, (11.35)

for a prescribed small real number e. When (11.35) is satisfied, the GMRES
iteration can be terminated and the approximate solution is taken to be
Tp = ZTo + Wizk, where zx € F* is the solution to the upper triangular
system (11.34). Note that the approximate solution zx need be formed only
when the GMRES iteration has stopped. Like the CG method, GMRES
converges in at most n iterations in exact arithmetic. However, n iterations
can be prohibitive for large size systems. By choosing good preconditioners,
the number of iterations for convergence may be made to be far smaller
than n.

All is now prepared for writing down the preconditioned GMRES al-
gorithm that will be terminated if the total number of iterations exceeds
itmaz or the preconditioned residual satisfies (11.35).

11.3 Iterative Algorithms 393

Algorithm 11.3.4 gmres(A, P,z,b, ¢, itmazx)

1. Solve Pr = b—Ax. Setp = |r||, vo = /p, B = p, g = peg € Fitmaz+l
and k = 0.

2. While (p > €||P71b|| and k < itmaz) do

(a) solve for vgy1 from Puvgy1 = Avg and form entries of matriz
H:
for (7=0,1,....k)}{
hje = (Vk+1,95);

Vk41 = Vkt1 — hj k053

Prt1k = Jvksll

(b) If loss of orthogonality is detected, do reorthogonalization
for G=0,1,...,k) {
Ptmp = (Vkt1,95);
hj,k = hj,k + htmp§
Vk+1 = Vk+1 — Remp¥y;
hit1,k = [[ve41]]
(c) Vg1 = Vk+1/hkt1k
(d) Apply Givens rotations:
i. if (k> 1) apply Qr—1 = Gr—1---G1Gy to column k of H
i. form Gy : ¢k = hi g/ /|2 + hes1kl%
sk = hit1,k/ /1 hikl? + lhes1l?
wi. apply Gy to column k of H: hk,k = Crhik + Skhk+1,k;
Rit1,6 =0
. apply Gy to vector g: g = Gi(ck, sk)g

(e) calculate new residual: p = [(g)k+1]
f) k=k+1

3. Set (R);; = hsj for0<14,5 <k, and (S); = (g); for 0 <i < k;
Solve the upper triangular linear system Rz = S.

4. Set x = x + Wiz, where Wi = [v,v1,...,Vk-1], and output approxi-
mate solution x

A few remarks are given below about the algorithm. They may be incor-
porated into the implementation of GMRES to increase the robustness of
the iteration process.

Remark 11.3.1 Remarks about Algorithm 11.3.4.

394

11. Linear System Solvers

. In Step (2b), orthogonality may be tested to increase the robustness

of the algorithm. Due to the roundoff error, the vectors produced by
the Gram—Schmidt orthogonalization process in Step (2a) may not be
orthogonal. A reorthogonalization process may be needed if

| P~ Avg | + 8l|vall = [|P7 A, (11.36)
where § is chosen to be 1074 in the implementation below.

Step (2a) is called the modified Gram-Schmidt orthogonalization, which
is equivalent to Algorithm (11.3.3) in infinite precision, but is more
robust to maintain orthogonality of the basis in the presence of round-
off errors.

The basis for the Krylov subspace must be stored in the iterative pro-
cess, which demands large memory space. GMRES iteration may be
stopped when the total number of iterations has reached a large num-
ber m and the approrimate solution z.,, may be used as the initial
guess to restart the GMRES iteration. This is called restarted GM-
RES and denoted by GM RES(m). This technique alleviates the stor-
age to at most m + 1 basis vectors of the Krylov subspace. However,
GMRES(m) may break down and is not guaranteed to converge in
general.

Upon algorithm termination, the residual should always be checked to
see the accuracy of the approzimate solution.

Now the preconditioned GMRES(m) can be implemented as the fol-
lowing. Since the upper Hessenburg matrix H is manipulated column by
column, its th column is stored in a vector h[¢]. Thus its jth component of
column ¢ is stored in h[z]{j], for 0 < j < i+ 1. The zero entries in the lower
part of H are not stored to save memory. The orthonormal basis vectors
of the Krylov subspace are stored in an array of pointers to vectors, since
an array of class objects can not be declared unless the class has a default
constructor.

template<class T>
int AbsMtx<T>::GMRES(Vcr<T>%& x, const Vcr<T>% b, double& eps,

int& iter, int pcn, int m) {

// Restarted GMRES for solving Ax = b, called GMRES(m)
// Return 0 if successful and 1 if breakdown

// It outputs the approximate solution, residual, and
// number of iterations taken.

//

// A: any nonsingular matrix, may not be symmetric

// x: on entry: initial guess

// on return: approximate solution

11.3 Iterative Algorithms 395

// b: right side vector
// eps: on input, stopping criterion,

// on return, absolute two-norm residual

// iter: on imput, max number of iterations allowed
// on return, actual number of iterations taken.
// pcn: = 0 if no preconditiomer, = 1 if diag precond,
// = 2 if SSOR precond

// m: number of iterations for restarting GMRES

const int maxiter = iter;
const double stp = (preconding(b, pcn)).twonorm() * eps;
Vcr<T> r = preconding(b ~ (*this) * x, pcn);
T beta = r.twonorm(); // T may be complex<C>
bool conv = false;
if (m > nrows)

error("In GMRES(m), m is bigger than number of rows");
if (abs(beta) <= stp) { // return if initial guess

eps = abs(beta); // 1is true solution
iter = 0;
return O;

}

// orthonormal basis for Krylov space,
// v[i] is a pointer to ith basis vector
Ver<T>** v = new Vcr<T>* [m+1];
for (int 1 = 0; i <= m; i++)
v[i] = new Vcr<T>(mrows); // ith orthonormal basis

// Hessenburg matrix h, (m+1) by m;

// hli] stores ith column of h that has i+2 entries.
// Only nonzero part of h is stored

T**x h = new T* [m];

for (int i = 0; i < m; i++) h[i] = new T [i+2];

iter = 1;
while (iter <= maxiter) { // iterations for gmres(m)
*v[0] = r / beta;

Ver<T> g(m+1); // vector in least squares problem
gl0] = beta;

Ver<T> cs(m), sn(m); // Givens rotations

int k;

for (k = 0; k < m &% iter <= maxiter; k++, iter++) {

// orthogonalization

396 11. Linear System Solvers

Ver<T> w = preconding((*this) * (*v[k]), pcn);
T nmw = w.twonorm();
for (int i = 0; i <= k; i++) {
h(k][i] = dot(w, *v[il]);
w -= h[k][i] * (xv[i]);
}
h[k] [k+1] = w.twonorm();
// if h[k] [k+1] is small, do reorthogonalization
if (nmw + 1.0e-4xh[k] [k+1] == nmw) {
for (int 1 = 0; i <= k; i++) {
T hri = dot(w, *v[i]); // reorthogonalization
h[k] [i] += hri;
w -= hri * (xv[il);
}
h[k] [k+1] = w.twonorm();
}
if (h(k][k+1] == 0)
error("unexpected zero-divisor in GMRES()");
*xv[k+1] = w / h{k] [k+1];

// apply Givens G_0, G_1, ...,G_{k-1} to column k of h
for (int i = 0; i < k; i++) {
// T tmp = conj(cs[i]1)*h[k][i] + conj(snl[i])*h[k] [i+1];
T tv[2] = { cs[il, sn[i] };
T tmp = dot(&h[kI[il, tv, 2);
h[k][i+1] = - sn[il*h[k][i] + cs[il*h[k] [i+1];
h[k] [i] = tmp;
}

// generate Givens rotation G_k from kth column of h
if (h[k] [k+1] == 0) {

cslk] = 1;
sn[k] = 0;
} else {
T tpm = sqrt(dot(&h[kl[k], &h[kI[k], 2));

cs[k]
sn[k]
}

h[k] [k]/tpm;
h[k] [k+1]/tpm;

wonon

// apply Givens rotation G_k to kth column of h and to g
T tv[2] = { cslkl, snlk]l };

h{k] [k] = dot(&h[k][k], tv, 2);

T tmp = dot(&glkl, tv, 2);

glk+1] = - snlkl*glk] + cs[kl*glk+1];

glk] = tmp;

1

11.3 Iterative Algorithms 397

if (abs(glk+1]) <= stp) { // stop if residual small
k++;
break;
}

1

// back solve the upper triangular system

for (int i = k-1; i >= 0; i--){
for (int j = i+1; j < k; j++) gli] -= h{j1lil*gljl;
gli]l /= nlil[il;

}

// update the solution x = x0 + sum v[il*y[i]
for (int i = 0; i < k; i++) x += (xv[i])*glil;

// calculate residual and check for convergence

r = preconding(b ~ (*this) * x, pcn);

beta = r.twonorm();

if (abs(beta) <= stp) { // stop if residual small
conv = true;
break;

}

}

eps = (b - (*this) * x).twonorm(); // get final residual

// deallocate space for v and h

for (int 1 = 0; i <= m; i++) delete v[il;
delete[] v;

for (int 1 = 0; i < m; i++) delete[] h[i];
delete[] h;

if (conv) return O;
else return 1;
// end of gmres(m)

In order for this program to handle real and complex matrices and avoid

calling the function conj() on real numbers, the dot product function has
been overloaded for real and complex vectors. Recall that the dot product
function is defined for real and complex vectors and arrays in Chapter 7

template<class T> T dot(T* a, T* b, int n) {

T init = 0;
for (int 1 = 0; i < mn; i++) init += *a++ * *b++;
return init;

398 11. Linear System Solvers

}

template<class T>

complex<T> dot(complex<T>* a, complex<T>* b, int n) {
complex<T> init = 0;
for (int i = 0; i < n; i++) init += *a++ * conj(*b++);
return init;

}

template<class T>
T dot(const Vcr<T>&, const Vcr<T>&);

template<class T> complex<T>
dot(const Vcr< complex<T> >&, const Vcr< complex<T> >&);

However, for run-time efficiency, the dot product function for small vectors

may be defined using template metaprograms; see §7.7.4.

11.3.3 Preconditioning Techniques

This subsection deals with how to choose the preconditioner P to speed up
the iterative process. Ideally, P should be chosen such that the condition
number of P! A is smaller than that of A and Pz = r is easy to solve. A

few simple preconditioners are as follows.

1. The diagonal preconditioner. Let P be a diagonal matrix and share

the main diagonal with A; that is, P = diag(ao,0,01,1,...,8n-1,n-1).

When there are zero elements on the diagonal of A, let P = diag(co,
-1

C1, -+, Cam1), Where ¢; = (32705 af)12

. The SSOR (symmetric successive over relaxation) preconditioner. Let
P = (D+wE)D YD+ wF), where w is a relaxation parameter, and
E is a lower triangular matrix with zero diagonal elements, D is
a diagonal matrix, and F is an upper triangular matrix with zero
diagonal elements such that A = E 4+ D + F. Note that when A is
Hermitian, so is the SSOR preconditioner P.

. The LU (LU decomposition) preconditioner. Suppose A has LU (see
§11.4) decomposition A = LU, where L is a unit lower triangular
matrix and U is an upper triangular matrix. Then let P = LU. The
incomplete LU preconditioner (often denoted by ILU in the literature)
is P = L'U’, where L' and U’ are obtained by zeroing the elements
in L and U corresponding to positions of zero elements of A. Thus
the sparse structure of A can be used to store L' and U’.

These preconditioners are simple to implement and generally give notice-
able improvements on convergence. More complicated and efficient precon-

11.3 Iterative Algorithms 399

ditioners may be constructed through domain decomposition and multigrid
methods [Saa96, Meu99], when the linear system results from numerically
solving differential equations.

Below only the diagonal and SSOR preconditioners for full, band, and
sparse matrices are implemented.

template<class T> // solve Pz = r, return z
Ver<T> FullMtx<T>: :preconding(const Vcr<T>& r,

int precn) comst {

if (precn == 0) { // no preconditioner is used
return r;
} else if (precn == 1) { // diagonal preconditioning

}

}

Ver<T> z(nrows);
for (int i = 0; i < nrows; i++) z[i] = r[i]l/mx[i][i];
return z;
else if (precn == 2) { // symmetric SOR precondition
const T omega = 1.2; // SSOR parameter for precond
Ver<T> z(nrows);
for (int i = 0; i < nrows; i++) {
T sum = 0;
for (int j = 0; j < i; j++) sum += mx[i] [jI*z[j];
z[i] = (x[i] - omega*sum)/mx[i][i];

}

for (int i = nrows - 1; i >= 0; i--) {
T sum = 0;
for (int j = i + 1; j < nrows; j++)

sum += mx[1] [j1*z[j];

z[i] —= omega*sum/mx[i] [i];

}

return z;

else {

error("specified preconditioner not implemented”);

} // end FullMtx::preconding()

template<class T> // solve Pz = r, return z
Vecr<T> BandMtx<T>::preconding(const Vcr<T>& r,

int precn) comst {

if (precn == 0) { // no preconditioning
return r;
} else if (precn == 1) { // diagonal preconditioning

}

Ver<T> z(nrows) ;

for (int i = 0; i < mrows; i++) z[i] = r[il/bdmx[i][0];
return z;

else if (precn == 2) { // symmetric SOR preconditioner

400 11. Linear System Solvers

const T omega = 1.2; // SSOR parameter for precondit
Ver<T> z(nrows) ;
for (int i = 0; i < nrows; i++) {
T sum = 0O;
int ip = max(i - bwleft, 0);
for (int j = ip; j < i; j++)
sum += bdmx[1][j - il*z[j1;
z[i] = (r[i]l - omega*sum)/bdmx[i] [0];
}
for (int i = nrows -1; i >= 0; i-—-) {
T sum = 0;
int ir = min(i + bwrit, nrows - 1);
for (dnt j =1 + 1; j <= ir; j++)
sum += bdmx[i]1[j - il*z[j];
z[i] -= omega*sum/bdmx[i] [0];
}
return z;
} else {
error("specified preconditioner not implemented");
}
}

template<class T> // solve Pz = r, return z
Ver<T> SparseMtx<T>::preconding(const Vcr<T>& r,
int precn) const {

if (precn == 0) { // no preconditioning
return r;

} else if (precn == 1) { // diagonal preconditioning
Vcr<T> diag(nrows); // find diagonal entries

for (int i = 0; 1 < nrows; i++) {
for (int j = fnz[il; j < fnz[i+1]l; j++)
diag[i] += sraljl*sraljl; // geom. average
diag[il = sqrt(diag[il);
}

Ver<T> z(nrows);
for (int 1 = 0; i < mrows; i++) z[i] = r[il/diag[il;

return z;

} else if (precn == 2) { // SSOR preconditioning
const T omega = 1.2; // SOR parameter
Ver<T> diag(nrows); // find diagonal entries

for (int i = 0; i < nrows; i++) {
for (int j = fnzl[il; j < fnz[i+1]; j++) {
if (clm[j] == 1) diagl[i] += sra[jl*sraljl;

11.4 Gauss Elimination 401

else diag[i] += omega*omega*sra[jl*sralj]l;
} // averaging is used, it is more stable
diag[i] = sqrt(diaglil);
}

Ver<T> z(nrows);
for (int i = 0; i < nrows; i++) {
T sum = 0; // solve lower triangular system
for (int j = fnz[il; j < fnz[i+1]; j++) {
if (clm[j] < i) sum += sral[jl*z[c1m[j]1];

}
z[1] = (r[i] - omega*sum)/diag[i];
}
for (int i = nrows - 1; i >= 0; i--) {
T sum = O; // solve upper triangular system

for (int j = fnz[il; j < fnz[i+1]; j++) {
if (cIm[j] > i) sum += sral[jl*z{cim[j]];
}
z[i] -= omega*sum/diag(i];
}
return z;
} else {
error("specified preconditioner not implemented");
}
} // end SparseMtx::preconding()

11.4 Gauss Elimination

In this section, Gauss elimination methods [Meu99], without pivoting and
with partial and complete pivoting, are presented for the matrix equation
Az = b. Definitions of functions GaussElim() and GaussElimPP() are
given for full and band matrices, while GaussElimCP() for full matrices
only. Entries of the coefficient matrix A and right side vector b are modified
in this process, as opposed to iterative methods.

11.4.1 LU Decomposition

Assume the n by n coeflicient matrix of the linear system Az =bis A =
(az‘,j)Z;:lO, which means the row index ¢ and column index ;7 change from 0
to n—1. The purpose of LU decomposition is to find a unit lower triangular
matrix L and an upper triangular matrix U such that A = LU. Then solving
Az = b can be split into two easy ones of solving Ly = b and Uz = y.

402 11. Linear System Solvers

First denote A® = (a 50) 7720 = (aug)is 2o = A. Assuming aoo # 0,
step 0 of LU decomposition of the matrix A is to subtract the multiple
of (row 0) by a(o) /a(()?()) from (row i), that is, to perform the elementary
x (row 0), for i = 1,2,...,n — 1. The
resulting matrix, denoted by A(l), then has zero entries in column 0 below
the main diagonal. That is,

row operations: (row i) — (a; al% /a

0 0 0

s o, 45
AV =9 a,1 a1n-1 ,

1 1
0 agz—)l,l agz—)l,n—l
where the entries a of AW gatisfy
(0) 0)
u> g _ %0 *%; _
,] _—(0)_'-—7 7/7]—1727 7n_1
ap,0

Notice that row 0 of A© and row 0 of AY) are identical. Denote the unit
lower triangular matrix

1
lio

Ly = l20

ln—l,O
where [; 0 = a(o)/aoo, i=12,..
matrix is

1
—l1,0
L3t = —lap

—ln—-l,O

Q= O

o

0
1
0

0

.,n— L. It is easy to check that its inverse

0

[l

0

1

Then this step can be written in matrix form as

L7PAQ = AW or

An example of this step is

2
B=BO =

B N
~ W
-~ O Uk

4
3
6

A0) LOA(I).

B =

1 2 3 4
0 -2 -7 -7
0 -1 -2 -2}’
0 -2 -5 -9

11.4 Gauss Elimination 403

OO+ O
O OO

=D Lo o~
= O OO

where B(1 is obtained from B(® by the following procedure. First add row
0 of B(® multiplied by —3 to row 1. Then add row 0 multiplied by —2 to row
2. Finally add row 0 multiplied by —4 to row 3. This procedure annihilates
the entries in column 0 below the main diagonal. The resulting matrix is
denoted by B"), as shown above. In matrix form it is: Ly B©® = BW or
B©® = ,BW,

To continue LU decomposition with this simple matrix B, Step 1 is to
eliminate the entries of BY) in column 1 below its main diagonal. Subtract-
ing row 1 of B(N) multiplied by 1/2 from row 2 and subtracting row 1 from
row 3 leads to matrix B® and a special unit lower triangular matrix L; of
the multiples:

1 2 3 4 1 00
@_|0 -2 -1 -7 _|0o 100

B 0 0 3/2 3/2|° L 0 1/2 1 0|’
0 0 2 -2 0 101

such that LT!B®) = B@ or B = [, B?). Step 2 now eliminates the
entry of B® in column 2 below the main diagonal by subtracting row 2
multiplied by 4/3 from row 3:

1 2 3 4 10 00
@_|0 -2 -1 -7 _jo1 00
B 0 0 3/2 3/2|° L 00 10
0 0 0 -4 0 0 4/3 1

In matrix form Step 2 is: L;'B® = B®) or B® = L[,B®). Now the
reduced matrix B®) is upper triangular and is denoted by U. Denote L =
LoL,L,. It is easy to check that L is a unit lower triangular matrix and

1 0 0 0 1 2 3 4
O3 1 0o0flo 2 -7 -7
B=B"=LU=19 12 10||0 o0 32 32
4 143 1|0 0 o -4

This finishes the LU decomposition of the sample matrix B. Note the new

matrix L is formed by putting together all nonzero columns of Lgy, L;, and
L,.

404 11. Linear System Solvers

Now come back to the general case. After step k, the matrix A g
reduced to

r 0 (0 (0) 0 (0 (0) 7

)
foo Se) SaE Tk a? T e
1 1 1 1
P T -
0 0 g " Qg a2 g+ 1 LR
k+1) _ (k) k) (k)
A() — 0 0 0 .o ak,k ak]ft% PN akkn—)l R
+ +1
0 0 e 0 ak}th’)‘“ a’(‘,j‘“)l 1
+1
0 0 0 - 0 ak+2k+1 Tt Qpyon-1
(k+1) k+1
| 0 0 0 - 0 Ay 1 k+1 7 aﬁ_l,zl 1

where the entries agk+ D of AU+D) gatisfy

(k) , (k)

GlBFD)) azk*ak,J .

G5 =i T T) hi=k+lLk+2...,n-1
akk

Rows 0,1,.. .,k of A®+D) are the same as those of A®). In matrix form,
L;PA® = A+,
where the unit lower triangular matrix L is defined as
B N
1
1

Ly = let1,k ,
lkrok

ln—l,k 1

wherel,k—a)/akk,i—k+1k+2 .,n — 1. The matrix Ly has 1 on
the main dlafronal and possibly nonzero entrles only in column £ below the
main diagonal.

In step k it is assumed that a # 0. Otherwise, this procedure can not

continue. The entry a,(c ,)c is called the pivot in step k. The row with a pivot

is called a pivot row. In this case, Tow k is the pivot row in step k. After
step n — 2, the reduced matrix A(™=1) is upper triangular:

[0) (0) (0 (0) (0)
w5 oy o g oap |
1 1 1 1
a1 G12 aln 2 a1n-1
I R e
A(n—l) - 2,2 1,n—2 1,n—1
bl
n 2) (n—2)
Qp— 2,n—2 an—2,n—1
(n—1
L an—l,n 1]

11.4 Gauss Elimination 405

where the entry agz.‘l) of A1) satisfies

a(n—l) o a(n—2) _ a’i,n—2 *¥Qp 2
%] T g (n—2) ?

(n—2) n—2)
and [, In-2 = 0p_jn- 2/an 2,n—2°

The n — 1 steps above can be written in matrix form as
n— — n— —_ -1 n—
A=D = Ln—12A(D= LniQLn—ISA(V=
= L1500 s L LG T A = (LoLy -+ LngLa—2) A

Letting L = LoL1 -+ L_3Ln_o and U = A1) leads to the so-called LU
decomposition of the matrix A. That is, U = A~D = [140) = [-14
or A = LU, where U is an upper triangular matrix and L is a unit lower
triangular matrix. It is easy to check that

1
1170 1
lao o1 1
L=LoL,---Lp_3L,_o= I30 l31 I3 ,
ln20 ln—21 lp—22 - 1
L ln—l,() ln—l,l ln—1,2 ln—l,n—2 1 |

where [; & —a /a(k) fori=k+1,k+2,...,n—1and k=0,1,...,n - 2.
In the process of LU decomposition, the entries of L and U can be stored
in matrix A (without storing the 1’s on the main diagonal of L) at the
expense of destroying all the entries of the original matrix A. Note that
entries of A are no longer needed after the LU decomposition for solving
Az = b, since solving Ly = b and Uz = y then gives the solution z.

The LU decomposition of a matrix A can be performed successfully if
all the pivots agf,)c #0for k=0,1,...,n — 2. This can be guaranteed if A
satisfies one of the following properties.

1. Ais Hermitian and positive definite. That is, A¥ = A, and 27 Az > 0
for any nonzero vector z € F™.

406 11. Linear System Solvers

2. A is diagonally dominant. That is,

n—-1

§ : lai,j[Slai,ily i=0,1,...,n—1,
73=0
2 #1

and strict inequality holds for at least one i.

11.4.2 Gauss Elimination Without Pioting

The LU decomposition process described in §11.4.1 is also called Gauss
elimination without pivoting for solving linear system (11.1). With this
decomposition A = LU, solving Az = b can be split into two triangular
linear systems: Ly = b and Uz = y, where L is a unit lower triangular
matrix and U is an upper triangular matrix. The system Ly = b can be
solved as

i—1
vi=bi-Y Ly, i=012...,n-1
—~

The summation Z;’;k s; should be interpreted to be 0 whenever m < k.
This process is called forward substitution. The system Uz = y can then
be solved as

n—1
il?i:(yi— E ui,jxj)/ui,i, i=n—1,n-—2,...,1,0.
Jj=i+1

This process is called backward substitution.

Gauss elimination without pivoting for full matrices can now be coded
as follows. Note that a temporary matrix is created in order not to change
the entries of the original matrix.

template<class T> // Gauss elim without pivoting
void FullMtx<T>::GaussElim(Vcr<T>& bb) const{
if (nrows != bb.size() || nrows != ncols)

error("matrix or vector sizes do not match");
FullMtx<T> tmpx = *this; // will decompose matrix tmpx

// LU decomposition without pivoting
for (int k = 0; k < nrows - 1; k++) {
if (tmpx[k] [k] == 0)
error ("pivot is zero in FullMtx::GaussElim(O");
for (int i = k + 1; i < nrows; i++) {
if (tmpx[il[k] != 0) { // tmpx[il[k] can be complex
T mult = tmpx[i] [k]/tmpx[k] [k];

11.4 Gauss Elimination 407

tmpx [1] [k] = mult;
for (int j = k + 1; j < ncols; j++)
tmpx [1] [§] -= mult*tmpx[k] [§];
}
}
}

// forward substitution for L y = b. y still stored in bb
for (int i = 1; i < nrows; i++)
for (int j = 0; j < i; j++) bb[i] -= tmpx[i] [j1#bb[j];

// back substitution for U x = y. x still stored in bb
for (int i = nrows - 1; i >= 0; i--) {
for (int j=i+1; j<nrows; j++) bb[i]l -= tmpx[i] [j1*bb[j];
bb[i] /= tmpx[i][i];
}
} // end GaussElim()

For the LU decomposition of a band matrix A, the left bandwidth of
L and right bandwidth of U are equal to the left bandwidth and right
bandwidth of A, respectively. Thus the space for A can still hold the entries
of L and U. Gauss elimination without pivoting for band matrices can now
be coded as follows.

template<class T> // Gauss elim without pivoting
void BandMtx<T>::GaussElim(Vcr<T>& bb) const {
if (nrows != bb.size())

error("matrix and vector sizes do not match");
BandMtx<T> tmx = *this;

// banded LU decomposition without pivoting
for (int k = 0; k < nrows; k++) {
if (tmx[k][0] == 0)
error(“pivot is zero in BandMtx::GaussElim()");
int kbf = min(nrows ~ 1 - k, bwleft);
int kbr = min(nrows - 1 - k, bwrit);
for (int i = 1; i <= kbf; i++) {
int kpi = k+i;
if (tmx[kpi] [-i] != 0) {
T dmul = tmx[kpi] [-i]/tmx[k] [0];
tox [kpil [-1] = dmul; // tmx[k+i] [-i]=a[k+i] [k]
for (int j = 1; j <= kbr; j++)
tox [kpi] [j-i] -= dmul*tmx[k] [j];
} // alk+i] [k+j]=tmx [k+i] [§-i]

408 11. Linear System Solvers

// Forward substitution
for (int k = 1; k < nrows; k++) {
int kf = min(k, bwleft);
for (int j = 1; j <= kf; j++)
bblk] -= tmx[k] [-j]*bb[k-j];
} // tmx[k][-3] = alk] [k-j]

// Backward substitution

for (int k = nrows - 1; k >= 0; k--) {
int kbr = min(nrows - 1 - k, bwrit);
for (int j = 1; j <= kbr; j++)

bblk] -= tmx[k] [jI1*bblk+j];

bblk] /= tmx[k][0];

}

} // end GaussElim()

It is worth repeating that Gauss elimination without pivoting is guaran-
teed to work for Hermitian positive definite matrices or diagonally domi-
nated matrices. It may fail or lead to very inaccurate solutions for general
nonsingular matrices, which can be solved by Gauss elimination with par-
tial pivoting.

11.4.8 Gauss Elimination with Pivoting

The process in §11.4.2 can be modified so that it applies to general non-

singular matrices. In step 0, instead of using af)?()) as the pivot, the entry

in column 0 with the largest magnitude can be selected, say a;?)),o. That is,

]a;?))’ol > la;oo) ,i=0,1,...,n—1. Then row pg and row 0 (if they are differ-
ent) can be interchanged and a;?)),o is used as the pivot to zero other entries
in column 0. Row pyg is called the pivot row in this step. In performing step
k, the entry with the largest magnitude among agck), i=kk+1,...,n—1,
is selected as the pivot. The row, say pg, that the pivot lies in is called the
pivot row. The pivot row and row k (if they are different) can be inter-
changed and a;’?’ « s used to zero other entries in column k below the main
diagonal. This procedure is called Gauss elimination with partial pivoting.
Complete pivoting is such that the kth pivot entry is selected among en-
tries a{"j, 3,7 = k,k+1,...,n — 1. Complete pivoting is more robust but
requires more work than partial pivoting, and thus is not often used except
for special ill-conditioned matrices.

It can be shown that any nonsingular n by n matrix A can be decomposed
into PA = LU, where P is a permutation matrix, L is a unit lower trian-
gular matrix, and U is an upper triangular matrix. Here the permutation
matrix P represents the pivot rows {po,p1, .. .,Pn—1} in the decomposition

11.4 Gauss Elimination 409

process and {pg,p1,...,Pn—1} is a permutation of {0,1,...,n—1}. For the
LU decomposition of band matrices with partial pivoting, it can be made
that the left bandwidth of L is equal to that of A and the right bandwidth
of U is equal to the left bandwidth plus the right bandwidth of A. Now the
system Az = b can be equivalently written as PAr = Pb or LUz = Pb,
and split into two triangular systems Ly = Pb and Uz = y. Forward and
backward substitutions are needed for the triangular systems. In the case of
complete pivoting, the LU decomposition has the form PAQ = LU where
Q is another permutation matrix representing the column interchanges in
the process.

In the implementation of partial pivoting, the rows of matrix A may
not have to be interchanged in order to reduce the number of operations.
Instead, a permutation vector can be used to store the pivoting information.
If the permutation vector is denoted by [pg, p1, ---, pn_I]T, then row pi
is used as the pivot row in step k for £ = 0,1,...,n — 1. For example,
in step k, the pivot row (row p;) and row k may not have to be actually
interchanged. Rather, row p; and row & remain in their original positions
and row py is used to zero entries of column k in rows pri1, D42, .- -, Pr_1-

Now the Gauss elimination with partial pivoting for full matrices can be
coded as

template<class T> // Gauss Elim with partial pivoting
void FullMtx<T>::GaussE1imPP(Vcr<T>& bb) const {
if (nrows != bb.size() |] nrows != ncols)

error("matrix or vector sizes do not match");
FullMtx<T> tmpx = *this;

Ver<int> pvt(arows); // pivoting vector
for (int k = 0; k < nrows; k++) pvt[k]l = k;

for (int k = 0; k < nrows - 1; k++) { // main loop

// find the pivot in column k in rows pvt([k],
// pvtlk+1], ..., pvt[n-1]
int pc = k;
double aet = abs(tmpx{pvt(k]][k]);
for (int 1 = k + 1; 1 < nrows; i++) {
if (abs(tmpx[pvt[ill[k]) > aet) {
aet = abs(tmpx[pvt[i]] [k]);
pc = 1;

}

"

}
if (laet)

error("pivot is zero in FullMtx::GaussElimPP()");
if (pc !'= k) swap(pvt[k], pvt[pcl);

410 11. Linear System Solvers

int pvtk = pvt[k]; // pivot row
T pivot = tmpx[pvtk] [k]; // pivot

// now eliminate column entries logically
// below tmpx[pvt[k]] [k]
for (int i = k + 1; i < nrows; i++) {
int pvti = pvt[i];
if (tmpx[pvtil[k] t= 0) {
T mult = tmpx[pvtil] [k]/pivot;
tmpx [pvti] (k] = mult;
for (int j = k + 1; j < ncols; j++)
tmpx [pvtil [j]1 -= mult*tmpx[pvtk] [j];
}
}
}

// forward substitution for L y = Pb.
for (int i = 1; i < nrows; i++)
for (int j = 0; j < i; j++)
bb[pvt[i]l] -= tmpx[pvt[il] [j1*bblpvt[jl];

// back substitution for Ux = y
Ver<T> xx(nrows); // xx stores solution in correct order
for (int i = nrows - 1; i >= 0; i--) {
for (int j = i+l; j < ncols; j++)
bblpvt[il] -= tmpx[pvt[i]] [j]1*xx[j];
xx[i] = bblpvt[i]] / tmpx[pvtl[ill[i];
}

bb = xx; // put solution in bb
} // end GaussElimPP()

Similarly, Gauss elimination with complete pivoting for full matrices can
be coded as

template<class T> // Gauss Elim with complete pivoting
void FullMtx<T>: :GaussElimCP(Vcr<T>& bb) const {
if (nrows != bb.size() || nrows != ncols)
error("matrix vector sizes no match in GaussElimCP()");
FullMtx<T> tmpx = *this;

Ver<int> px(nrows); // row pivoting vector
Vcr<int> qy(nrows); // column pivoting vector

for (int k = 0; k < nrows; k++) px[k] = qylk] = k;

for (int k = 0; k < nrows - 1; k++) { // main loop

11.4 Gauss Elimination 411

// find pivot entry in columns qy[k], qy[k+1], ...,
// qy[n-1] and in rows px[k], px[k+1], ..., px[n-1]
int pct = k, qdt = k;
double aet = 0;
for (int i = k; i < nrows; i++) {
for (int j = k; j < nrows; j++) {
double tmp = abs(tmpx[px[il] [qy[j11);
if (tmp > aet) { aet = tmp; pct = i; qdt = j; }

}
}
if (laet) error("pivot is zero in GaussElimCP()");
swap(px[k], px[pctl); // swap px[k] and px[pct]

swap(qy [k], qylqdt]);

// eliminate column entries logically below and right
// to the entry mx[px[k]]Iqy(k]]
for (int 1 = k + 1; i < nrows; i++) {
if (tmpx[px[i]][qy[k]] != 0) {
T mult = tmpx[px[i]] [qy[k]]/tmpx [px[k]] [qy[k]];
tmpx [px [i]] [qy[k]] = mult;
for (int j = k + 1; j < nrows; j++)
tmpx [px [1]] [qy[j]] -= mult*tmpx[px[k]] [qy[jl];
}
}
}

// forward substitution for L y = Pb. Store y in b
for (int i = 1; 1 < nrows; i++)
for (int j = 0; j < i; j++)
bblpx[il] -= tmpx[px[il] [qy[jI1]*bblpx[j]];

// back substitution for Uz = y and x = Q 2
Ver<T> xx(nrows); // Xx stores solution
for (int i = nrows - 1; i >= 0; i—-) {
for (int j = i+1; j < nrows; j++)
bblpx[il] -= tmpx[px[il] [qy[j]]*xx[qy[j]];
xx[qyli]] = bblpx[il] / tmpx[px[il][qy(i]];
}

bb = xx;
} // end GaussE1imCP()

The Gauss elimination with partial pivoting for band matrices can be
coded similarly:

412 11. Linear System Solvers

template<class T>
void BandMtx<T>: :GaussE1limPP(Vcr<T>& bb) const {
if (nrows != bb.size())
error("matrix-vector sizes not match");

BandMtx<T> tx(nrows, bwleft,
min(nrows-1, bwleft+bwrit));
for (int 1 = 0; i < nrows; i++)
for (int j = - bwleft; j <= bwrit; j++)
tx[i] [j] = bdmx [i] [j];

Vcr<int> pvt(nrows); // store pivoting info

// LU decomposition with column partial pivoting
const int nrowsmone = tx.nrows - 1;
for (int k = 0; k < nrowsmone; k++) {

int kbrow = min(nrowsmone - k, tx.bwleft);

int kbcol = min(nrowsmone - k, tx.bwrit);

"

// find the pivot in the kth column
int pc = k;
double aet = abs(tx[k][0]);
for (int i = 1; i <= kbrow; i++) {
if (abs(tx[k+i] [-i]) > aet) {
aet = abs(tx[k+i][-1]);
pc =k + i;
}
}
if (ltaet) error("pivot is zero in GaussElimPP");
pvt (k] = pc;

// interchange pivot row and kth row in U, not in L
if (pc = k) {
for (int j = 0; j <= Kkbcol; j++)
swap(tx[pc] [k+j-pcl, tx[k][j1);
}

// now eliminate column entries
for (int i = 1; i <= kbrow; i++) {
int kpi = k + i;
if (ex[kpil[-i] '= 0) {
T dmul = tx{kpil [-i]/tx[k] [0];
tx[kpil [-i] = dmul;
for (int j = 1; j <= kbcol; j++)
tx[kpi] [j-i] -= dmul=*tx[k] [j];

11.4 Gauss Elimination 413

// Forward substitution LY = Pb
for (int k = 0; k < nrowsmone; k++) {
int kbrow = min(nrowsmone - k, tx.bwleft);
int pvtk = pvt[k];
T sb = bb[pvtk];
it (k != pvtk) swap(bb[k], bb[pvtk]);
for (int j = 1; j <= kbrow; j++)
bb[k+j] ~= tx[k+j][-j]*sb;

// Backward substitution U x =y
for (int k = nrowsmone; k>= 0; k--) {
int kb = min(nrowsmone -k, tx.bwrit);
for (int j = 1; j <= kb; j++) bb[k] -= tx[k] [jI1*bb[k+j];
bb(k] /= tx[k][0];
}
} // end GaussElimPP()

The pivot row and row k are actually interchanged (for only the upper
triangular part) in step & of the elimination process, which does not increase
much computation time since the bandwidth is typically small in many
applications. This has made it possible to keep L with a left bandwidth
equal to that of A. Note the right bandwidth of U is equal to the sum of
the left and right bandwidths of A. Thus a slightly larger temporary matrix
is allocated for the band LU decomposition with partial pivoting.

For simplicity, Gauss elimination functions here are written such that
LU decomposition does not change the original matrix. This clearly is not
a good choice when solving a number of linear systems with the same
coefficient matrix but different right-hand side vectors. In this case, the
functions presented here can be easily modified to decompose the matrix
only once and just perform different forward and backward substitutions.

Situations also arise in which the LU decomposition is better done in
a separate function and the result of the LU decomposition will be used
in solving linear systems with different right-hand side vectors at different
times. When solving time-dependent partial differential equations with co-
efficients independent of but sources dependent upon time, the coefficient
matrix will be the same throughout all time levels and thus need be de-
composed only once. At different time levels, only forward and backward
substitutions are performed. Gauss elimination functions above can be eas-
ily split into two with one doing LU decomposition and the other doing
forward and backward substitutions.

414 11. Linear System Solvers

Scaled-row partial pivoting is often used in an attempt to make LU de-
composition more robust. That is, instead of selecting a row with maximum
magnitude as the pivot row, a row with relative maximum magnitude is
selected. To be more specific, in step & of the LU composition, denote

8 —k< |(]
<j<n-1

k k .
= max{a{})], a0y, |-l i}, i=kk+1,n- 1

Then the row for which laﬁkk) /si| is the largest is selected as the pivot row.
The codes above can also be easily modified for the scaled row partial
pivoting.

11.5 Finite Difference Method for Partial
Differential Equations

In this section, a finite difference method is presented and coded for solv-
ing second-order steady-state problems with real or complex coefficients in
different precisions.

Consider a typical two-dimensional second-order steady-state problem of
finding u(x,y) : & — R such that

du 3] Ou
8 8 .
+b1:9; +b25—?; +cu=f in{Q,
u=g on 09, (11.38)

where all(z,y), al12(z,y), a22(z,y), bl(z,y), b2(z,y), and ¢(z, y) are given
coeficients, f(z,y) and g(x,y) represent sources inside the domain and
on the boundary 09, respectively, and the domain € is assumed to be a
rectangle [a,b] x [c, d].

To apply the finite difference method, the domain €2 is first partitioned
into a grid, consisting of IV grid lines parallel to the y axis and Ny, grid lines
parallel to the x axis, as shown in Figure 11.1(a). That is, partition Q by
parallel lines = z; = a+thg,and y = y; = c+jhy, fori =0,1,..., N, -1,
j=0,1,...,Ny—1, where hy = (b—a)/(N;—1) and hy = (d—c¢)/(Ny—1)
are the grid sizes in the z and y directions, respectively. The points at the
intersection of the grid lines are called nodes. The nodes inside the domain
Q at positions (z;,y;) for 0 <4 < N; —1and 0 < j < Ny — 1 are called
interior nodes and the ones on the boundary 8Q at posmons (zi,y;) for
i=0,i=N;—1,5=0,0r j= Ny —1, are called boundarynodes The
nodes are numbered row by row from the bottom to the top (the so-called

11.5 Finite Difference Method for Partial Differential Equations 415

2 33 34
28 29 30 $31 32 3

21 122 123 (24 125 126 |27 Ui-1,+1 Uij+1 Uitl,j+1

o

14 115 (16 f17 [18 |19]20 Ui—1,5 Ui, j Uits,j

b

7 18 9 l10 l11 {12 113
Ur—-1,5-1 Ui, j—1 Uitl,j-1
\g 91 \>2 ‘,3 4&4 <,5 <,6

(a) (b)

FIGURE 11.1. (a) Domain Q is partitioned into a rectangular grid of N, = 7
grid lines in z direction and Ny = 5 grid lines in y direction. Interior nodes are
drawn in solid dots and boundary nodes in circles. The nodes are numbered from
0 to N;Ny — 1 = 34 row by row from the bottom to the top. (b) An interior
node at position (z;,y,) with eight neighboring nodes at (zi—1,y,), (Z.41,¥;),
(Ze-1,Y5-1)s (T, Y5-1)s (Tet1,Yy-1), (Zi-1,Y541), (T0,Y541), and (Tig1, Yjt1)-

row major numbering). That is, the node at position (z;,y;) is numbered
i+j*Ng, fors=0,1,...,N, -1, j =0,1,...,N, — 1. Figure 11.1(a)
gives an example of N, = 7 and N, = 5 with nodes numbered from 0 to
NN, —1=34.

Denote by u;; the approximate (finite difference) value of the exact
solution u(z;,y;) at the node (z;,y;), for 0 <7 < Nz and 0 < 7 < N,
as shown in Figure 11.1(b). The idea of the finite difference method is to
approximate the derivative 9¢/dz at a point z of a one-variable function
¢(z) using the function values at a few nearby points:

1

¢Wﬂz§ﬂﬂx+m—¢@—hm, (11.39)
where h is a small positive number. Applying (11.39) to first-derivative

terms in equation (11.37) leads to
ou
by —
(Yoz
01 (i —uiony) | b245(ui 4 — i)

2h, 2hy

ou
+ b2a_y)(zi7 yj)

and to a second-derivative term leads to

1) ou

—_ 11_ iy Ui

oz (a 8z)(z vs)
ou ou
5;)($¢+1/2,yj) - (‘11155)(%—1/2,%)

hz
all;yy/o it — wij] —ally 1yg 5lui; — ui—1 4]
h2 ’

T

(a11

Q

Q

416 11. Linear System Solvers

where notation such as a; ; denotes the value a(z;,y;) of any coefficient
function a(z,y) at point (z;,y;) and @41/ ; denotes a(z;1,/2,y;) and
Tit1/2,j = ZT; + hy/2. Thus equation (11.37) at any interior node (z;,y;)
can be approximated by a finite difference equation:

_a11i+1/2,j[ui+1,j — Ui 5] —alli_y/s j[ui; — wio1]

h2
z
_(112i+1,j[ui+1,j+1 ~ Uitn-] = 012151501 — Uimr]
4hh,,

022 j41/2[U 541 — Uagl — 02245 172U — Ui (11.40)

hy
bl; j(uis1; — ui1;) | 02 5(usje1 — Ui 1)
4 1,7\ 2}JLI i—1,7 1,J 2]2hy 1,7 +Ci,jui,j — fi,j'

This is the so-called nine-point finite difference scheme for equation (11.37),
since it involves nine points surrounding each interior node (z;,y;). At each
boundary node, the solution is given by the Dirichlet condition (11.38):

uij=gi; fori=0, i=Ny—1, =0, or j=N,—1. (1141)

There are totally N, N, equations in (11.40)-(11.41) and N, N, unknowns
u;; fori =0,1,...,N;—1,and j = 0,1,..., Ny,—1. These unknowns can be
put in a vector v = [vg, V1, . .. ,szNy_l]T, where v, = u; ; for k =14+ 5N,
and (11.40)-(11.41) can be put in a matrix form Sv = w, where w is the
right-hand side vector (also called load vector). The stiffness matriz S is
sparse and banded with left and right bandwidths equal to N, + 1.

In implementing this finite difference method, a band matrix is used
to store entries of S. A row in matrix S corresponds to a node in the
grid. Corresponding to any interior node (z;,y;), the coeflicient of u, ; in
equation (11.40) is stored in the main diagonal S[k|[0] = (all;+1/2; +
alli_l/zvj)/hg + (a22i,j+1/2 + (1222'7]'_1/2)/}15 +ci,j7 the coefficient of Ups1,5
is stored in S[k][1] = —all;11/2,;/h2 + bli;/(2hs), and the coefficient of
u;—1,; is stored in S[k][—1] = —all,_y/p ;/hZ — bl; ;/(2hs), where k =i +
sz- Slmllarly, the coefficients of Ug, 5415 Ui 5—15 Uit 541, Ui—1 541, Ui+1,5-1,
and u;_y j—1 are stored in S[k][N;], S[k][~Nz|, S[k][N; +1], S[k][N; —1],
S[k][- Nz + 1], and S[k][—N; — 1], respectively. For the row corresponding
to each boundary node, there is only one nonzero entry S[k][0] = 1. The
load vector entries wg = f;; for interior nodes and wg = g; ; for boundary
nodes. Note that this treatment of unknowns and the coefficient matrix
applies to Neumann, Robin, or mixed boundary conditions without having
to change the data structure.

The implementation below enables one program to handle real and com-
plex coefficients and different precisions. A template class fdm<T, R> is
defined for it, where T is a type parameter for precisions (double, float,

11.5 Finite Difference Method for Partial Differential Equations 417

long double, etc.), and R = T for real coefficients and R = complex<T>
for complex coeflicients.

Here is the header file fdm.h, which contains the declaration of a tem-
plate class:

// file fdm.h
#include <math.h>
#include <complex>

#include "matvec.h" // my matrix-vector library

#ifndef FDM_ELLP_H
#define FDM_ELLP_H

template<class T, class R> class fdm {

private:

T bya, byb, byc, byd; // domain=[bya,byblX[byc,byd]

int nx, ny; // number of grid points in x, y

int npt; // npt = nx*ny

R ali(T, T); // coefficient ailil

R a12(T, T); // coefficient ai2

R a22(T, T); // coefficient a22

R bi(T, T); // coefficient bl

R b2(T, T); // coefficient b2

R rcc(T, T); // coefficient c(x,y)

R scf(T, T); // source functiom f

R bdg(T, T); // boundary function g
public:

fdm(T a,T b,T ¢,T d,int mx, int my); // comstructor
// domain={a,b]X[c,d], nx = mx, ny = my
T bhx, hy; // grid sizes in x, y directioms
Ver<R> v; // solutiom vector
T BandSolve(); // form band matrix, solve using
// gauss elimination with partial pivoting and
// return the residual in linear system solving
I8
#tendif

The member v stores the solution vector after solving the problem using the
finite difference method. The member function BandSolve() forms a band
matrix S and load vector w, solves the linear system using the banded
Gauss elimination with partial pivoting, and returns the 2-norm of the
residual w — § * v. The residual can be normally treated as an accuracy
indicator in the linear system solving process.

418 11. Linear System Solvers

The constructor and member BandSolve() can be defined in a file call
fdm.cc:

// file fdm.cc
#include "fdm.h"

template<class T, class R> // constructor
fdm<T,R>::fdm(T a, T b, T c, T d, int mx, int my):
npt (mx*my), v(opt) {

bya = a; byb = b;

byc = c; byd = d;

nxX = mX; ny = Iy,

hx = (byb - bya)/(nx - 1);

hy = (byd - byc)/(ny - 1);
}

template<class T, class R> T £dm<T,R>: :BandSolve() {
T ivhxhx = 1.0/ (hx*hx);

T ivhyhy = 1.0/(hy*hy);
T ifhxhy = 0.25/(hx*hy);
T ithx = 0.5/hx;
T ithy = 0.5/hy;

int nxmone = nx - 1;
int nymone = ny - 1;

BandMtx<R> S(npt, nx+1,nx+1); // stiffness matrix
Ver<R> w(npt) ; : // load vector
for (int j = 1; j < nymone; j++) {
for (int i = 1; i < nxmone; i++) {

T xi = bya + ixhx;

T xiph = bya + (i+0.5)*hx;

T ximh = bya + (i-0.5)*hx;

T yj = byc + j*hy;

T yjph = byc + (j+0.5)*hy;

T yjmh = byc + (j-0.5)*hy;

int rownum = j*nx + 1i;

// form stiffness matrix in each row
// corresponding to interior nodes
S[rownum]} [0] = // main diagonal
(a11(xiph,yj) + ali(ximh,yj))*ivhxhx
+ (a22(xi,yjph) + a22(xi,yjmh))*ivhyhy
+ ree(xi,yj);
S[rownum] [1] = // entries above main diagonal

11.5 Finite Difference Method for Partial Differential Equations 419

- all(xiph,yj)*ivhxhx + bi(xi,yj)*ithx;
S[rownum] [nx-1] = al12(xi-hx,yj)*ifhxhy;
S[rownum] [nx] =

- a22(xi,yjph)*ivhyhy + b2(xi,yj)*ithy;
S[rownum] [nx+1] = - al2(xi+hx,yj)*ifhxhy;

S[rownum] [-1] = // entries below main diagonal
- all(ximh,yj)*ivhxhx - b1(xi,yj)*ithx;
S[rownum] [-nx-1] = - al2(xi-hx,yj)*ifhxhy;
S [rownum] [-nx] =
- a22(xi,yjmh)*ivhyhy - b2(xi,yj)*ithy;
S[rownum] [-nx+1] = al2(xi+hx,yj)*ifhxhy;

wlrownum] = scf(xi,yj); // load vector
}
}

// dealing with boundary conditions
for (int j = 1; j < nymone; j++) {
int rownum = j*nx;
T yj = byc + j*hy;

w[rownum] = bdg(bya, yj); // on left boundary
S[rownum] [0] = 1;
w[rownum+nxmone] = bdg(byb, yj); // right boundary
S [rownum+nxmone] [0] = 1;

}

for (int i = 0; i < nx; i++) {
T xi = bya + i*hx;

w[i] = bdg(xi, byc); // on bottom boundary
sfil[ol = 1;
wl(ny-1)*nx+i] = bdg(xi, byd); // on top boundary
S[(ny-1)*nx+i] [0] = 1;

}

vV =w;

S.GaussElimPP(v) ; // solve linear equations

return (w - S#*v).twonorm(); // return residual

Consider solving the following sample problem.

Example 1

é(exau _ 0 Ou 9, ,0u
Oz

52 " 3= a "5 5y

420 11. Linear System Solvers

o o
+(100 4+ 7 + y)a—: +(1+ 3z - 50y)8—Z + (z + 492y + 2%y)u

= —(y +yH)e" Y — (2 + 2%)e¥) 1 (32 + 100y + y2)e™,

with boundary condition v = e*¥ on 9, where Q = [0,1] x [0,1].
The coefficient functions can be defined as member functions in a file

called fndef.cc:

// fndef.cc
#include "fdm.h"

template<class T, class R> R fdm<T,R>::al1(T x, T y){
return exp(x);

}

template<class T, class R> R fdm<T,R>::a12(T x, T y){
return Xx;

}

template<class T, class R> R fdm<T,R>::a22(T x, T y){
return exp(y);

}

template<class T, class R> R fdm<T,R>::b1(T x, T y){
return 100.0+x+y;

}

template<class T, class R> R fdm<T,R>::b2(T x, T y){
return 1.0+3*x -50%*y;

}

template<class T, class R> R fdm<T,R>::rcc(T x, T y){
return x*(1 + y*(49 + x));

}

template<class T, class R> R fdm<T,R>::bdg(T x, T y){
return exp(x*y);

}

template<class T, class R> R fdm<T,R>::scf(T x, T y){
return - (1 + y)*y*exp(x*(1+y)) - (1 + x)*x*exp(y*(1+x))
+ (3xx*x + y*(100 + y))*exp(x*y);

11.5 Finite Difference Method for Partial Differential Equations 421

Since the exact solution of this problem is u(x,y) = €*¥, the finite dif-
ference solution can be compared with the exact solution to see how accu-
rate the finite difference method is. Knowing the accuracy on some sample
problems helps to develop insights on the accuracy of a numeric method
for more complicated problems, whose exact solutions can not be found.
Now a main function can be written in a file called main.cc to solve this
sample problem and compare the numeric solution with the exact solution:

// file main.cc

#include "fdm.h"
#include "fdm.cc"
#include "fndef.cc"

// exact solution
double exact(double x, double y) { return exp(x*y); }

int main() {
double a =0, b=1, c=0, d=1; // domain
int nx = 50, ny // number of nodes

]
o
o

fdm<double, double> pb(a, b, c, d, nx, ny);
cout << "residual in solving linear system (two norm) = "
<< pb.BandSolve() << ’\n’;

double er = 0, er2 = 0;
for (int j=0; j < my; j++) {
for (int i=0; i < nx; i++) {
double exvu = exact(a + i*pb.hx, c + j*pb.hy);
er = max(er, abs(pb.v[i + nx*j] - exvu));
er2 = max(er2,abs(exvu));
}
}
cout << "relative FDM true error(max norm)= " << er/er?2;
} // end main()

Note the template definition files are included in the file main.cc so that
the compiler can generate instantiations of template fdm<T, R>. At the
UNIX/Linux command, type

c++ main.cc -I/home/yang/c++/1ib

to compile the program. Here the directory of my matrix-vector library
is given so that my compiler (named c++) will know where to find the

include file matvec.h. Compile the program accordingly on other systems.
After running, the output is:

422 11. Linear System Solvers

residual in solving linear system (two nmorm) = 5.05673e-11
relative FDM true error(max norm)= 1.01342e-05

Now consider a problem with complex coefficients (applications such as
wave propagation, electromagnetics, and image processing often involve
complex functions).

Example 2
o2 0? «
—5—;2" - B_yl; +(—e " +i)u=(2—e ¥ +1)el=) inQ

with boundary condition u = e*+¥%) on 9Q, where Q = [0,1] x [0, 1], and
i=+—1

The coefficient functions can be defined as member functions in a file
called fndef2.cc:

// file fndef2.cc
#include "fdm.h"

template<class T, class R> R fdm<T,R>::ali(T x, T y){
return 1;

}

template<class T, class R> R fdm<T,R>::a12(T x, T y){
return 0;

}

template<class T, class R> R fdm<T,R>::a22(T x, T y){
return 1;

}

template<class T, class R> R fdm<T,R>::bI(T x, T y){
return 0;

}

template<class T, class R> R fdm<T,R>::b2(T x, T y){
return 0;

}

template<class T, class R> R fdm<T,R>::rcc(T x, T y{
return (-exp(-xxy), 1);

}

template<class T, class R> R fdm<T,R>::bdg(T x, T y){
return exp((0, x+y));

11.5 Finite Difference Method for Partial Differential Equations 423

}

template<class T, class R> R fdm<T,R>::scf(T x, T y){

return (2 - exp(-xxy) + (0,1))*exp((0,x+y));
}

Notice that (@, 3) denotes a complex number & + 3i. The exact solution
of this problem is u(x, y) = €!*T¥) | which is used to compute the accuracy
of the finite difference solution. The main function is now written in a file
called mawn2.cc:

// file main2.cc

#include "fdm.h"
#include "fdm.cc”
#include "fndef2.cc"

complex<double> exact(double x, double y) {
return exp((0, x+y));

}

int main() {
double a =0, b=1, c=0, d =1; // domain
int nx = 50, ny = 50; // number of nodes

fdm<double, complex<double> > pb(a, b, ¢, d, nx, ny);
cout << "residual in solving linear system (two norm) = "
<< pb.BandSolve() << ’\n’;

double er = 0, er2 = 0;
for (int j=0; j < mny; j++) {
for (int i=0; i < nx; i++) {
complex<double> exvu = exact(a+i*pb.hx, c+j*pb.hy);
er = max(er, abs(pb.v[i + nx*j] - exvu));
er2 = max(er2,abs(exvu));
}
}
cout << "relative FDM true error(max norm)= " << er/er2;
} // end main2()

Running this program outputs the following.

residual in solving linear system (two norm) = 1.28818e-10
relative FDM true error(max norm)= 0.0909664

From these two examples, partial differential equations with real and
complex coefficients can be solved in different precisions using a class tem-

424

11. Linear System Solvers

plate very easily and elegantly without loss of run-time efficiency. Com-
pared with some other languages (such as FORTRAN, C, and Java) that
require many different versions of the code to achieve this, the C+4+ code
is much shorter and easier to maintain. This idea can be generalized to

solve differential equations with strongly discontinuous coefficients; see
[Yan97, Yan98).

11.6 Exercises

11.6.1.

11.6.2.

11.6.3.

11.6.4.

Apply the preconditioned CG and GMRES methods with SSOR pre-
conditioners, and Gauss elimination methods with and without piv-
oting, defined in this chapter, to solve linear systems Az = b, where
A = (a;;) witha; ; = n/(li—j]+1)+cos(i—j) fori,j =0,1,...,n—1.
You may take b to be a vector with all entries 1 and n = 100, 200, 400,
respectively. Compute the 2-norm of the residual b — AZ to roughly
see the accuracy of each numeric solution Z. You may also choose
a given vector v as the exact solution, let b = A x v be the right-
hand vector, and then compute the norm of the error between the
numeric solution produced by these functions and the exact solution
{this way the accuracy of the methods can be compared through test
examples). Do the computation in single, double, and long double
precisions, respectively.

Apply the preconditioned CG and GMRES methods with SSOR pre-
conditioners, and Gauss elimination methods with and without pivot-
ing, defined in this chapter, to solve linear systems Ax = b with com-
plex coefficient matrix A and right-hand vector b, where A = (a; ;)
with a;; =<n,i> /(| <i,i> — <4,5> [+ <1,1>) + cos(<4,i>
— <j,j5>) fori,j =0,1,...,n — 1. Here <¢,d > denotes a com-
plex number with real part ¢ and imaginary part d, and | <c¢,d > |
denotes its absolute value. You may take b to be a vector with all en-
tries <1,1> and n = 100, 200, 400, respectively. Compute the 2-norm
of the residual b — AZ to roughly see the accuracy of each numeric
solution Z. Do the computation in single, double, and long double
precisions for the real and imaginary parts of complex arithmetic,
respectively.

Do Exercises 11.6.1 and 11.6.2 for band linear systems with left band-
width n/2 and right bandwidth n/3. That is, in generating the coef-
ficient matrix A, let its entries outside the band be zero.

Solve the band linear systems in Exercise 11.6.3 in compressed sparse
row storage format using the GMRES algorithm in single, double, and
long double precisions for real and complex arithmetics.

11.6.5.

11.6.6.

11.6.7.

11.6.8.

11.6.9.

11.6.10.

11.6.11.

11.6.12.

11.6 Exercises 425

If you are familiar with Fortan 77 or 90, how many versions of the
GMRES function are needed to handle all the situations in Exercises
11.6.1 through 11.6.4, which together with many other situations can
be handled with only one version in C++ 7

Hint: it seems to take 18 versions of FORTRAN code for the GM-
RES function (3 versions for real coefficients in single, double, long
double precisions, 3 versions for complex coeflicients, 6 versions for
band coeflicient matrices, and 6 versions for coefficient matrices in
the compressed sparse row storage format). (It is possible to write
a GMRES function in FORTRAN that can handle different matrix
storage formats in a given precision. But such a function would have
neither static nor dynamic polymorphic behaviors.)

If you are familiar with C, how many versions of the GMRES function
are needed to handle all the situations in Exercises 11.6.1 through
11.6.4, which together with many other situations can be handled
with only one version in C++ ?

Add a class for sparse symmetric matrices in the class hierarchy pre-
sented on page 376. Implement the matrix vector multiplication and
preconditioning functions so that preconditioned CG and GMRES
functions, defined in §11.3, can be applied to objects of this class.
Only nonzero entries in the lower triangular part of the matrix need
be stored to save memory.

Write a Gauss elimination function template based on the scaled-row
partial pivoting for full matrices. This template should apply to real
and complex coefficient matrices in different precisions.

Write a Gauss elimination function template based on the scaled-row
partial pivoting for band matrices. This template should apply to real
and complex coefficient matrices in different precisions.

Write a Gauss elimination function template with partial pivoting
that solves a number of linear systems with the same coefficient ma-
trix but different right-hand side vectors. It can be written in matrix
form as AX = B, where A is the coefficient matrix, B is the matrix
whose columns represent right-hand side vectors, and X is the matrix
representing the solutions corresponding to B.

Modify the member function BandSolve() in §11.5 so that GM RES()
is used to solve the linear system. Then BandSolve() will take argu-
ments such as the stopping criterion, maximum number of iterations
allowed, and so on.

Add a member function SparseSolve() in §11.5 so that the finite
difference stiffness matrix S will be stored in a sparse matrix and

426

11.6.13.

11. Linear System Solvers

solved by GMRES(). Notice that most entries within the band in the
stiffness matrix are zero. Thus using a sparse matrix storage format
will save more memory.

Modify the code in §11.5 to solve partial differential equations witk
boundary condition au + B0u/0v = g on 052, where a(z,y) anc
B{(x,y) are given functions and v is the unit outward normal vector
on the boundary. Notice this is a Dirichlet boundary condition wher
B8 =0 and a = 1, a Neumann condition when 8 # 0 and a = 0,
a Robin condition when 8 # 0 and a # 0, and a mixed boundary
condition when one of & and 3 is zero on some part of 9€) and nonzerc
on some other part of 99).

References

[AP98]

[Arn98]

[Bli]

[BNO4]

[CK99]

[CLR90)

[Fur97]

[KC96]

U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Fquations. So-
ciety of Industrial and Applied Mathematics, Philadelphia, PA,
1998.

C. A. Arnholm. Portable mixed language programming using
C++ and Fortran. C/C++ User Group Library CD-ROM, Vol.
477, 1998. Web Address: http://www.hal9.com/cug/.

Blitz++ Numerical Library: A C++ Class Library for Scientific
Computing. Web Address: http://www.oonumerics.org/blitz.

J. J. Barton and L. R. Nackman. Scientific and Engineering
C++ : An Introduction With Advanced Techniques and Examples.
Addison Wesley Longman, Reading, MA, 1994.

W. Cheney and D. Kincaid. Numerical Mathematics and Com-
puting. fourth edition, Brooks/Cole, Pacific Grove, CA, 1999.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. McGraw-Hill, New York, NY, 1990.

G. Furnish. Disambiguated glommable expression templates.
Comgputers in Physics, 11(3):263-269, 1997.

D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Cole,
Pacific Grove, CA, 1996.

428 References

[Knu9g]

[LF93]

[Lip00]

[LL98]

[Meu99]

[OON]

[Pet]

[Poo]

[Saa96]

[Ste99]

[Str97]

[Van98]

[Vel95]

[VPROO]

[Yan97]

D. Knuth. The Art of Computer Programming, Vol. 3, second
edition. Addison-Wesley, Reading, MA, 1998.

R. H. Landau and P. J. Fink, Jr. A Scientist’s and Engineer’s
Guide to Workstations and Supercomputers. Wiley, New York,
NY, 1993.

S. B. Lippman. Essential C++. Addison-Wesley, Reading, MA,
2000.

S. B. Lippman and J. Lajoie. C++ Primer, third edition. Addi-
son Wesley Longman, Reading, MA, 1998.

G. A. Meurant. Computer Solution of Large Linear Systems,
Vol. 28 of Studies in Mathematics and Its Applications. North-
Holland, Amsterdam, 1999.

Object Oriented Numerics Web Page. Web Address:
http://www.oonumerics.org.

PETE: Portable Expression Template Engine. Web Address:
http://www.acl.lanl.gov /pete.

POOMA: Parallel Object-Oriented Methods and Applications.
Web Address: http://www.acl.lanl.gov/pooma.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS
Publishing, Boston, 1996.

J. Stewart. Calculus, Early Transcendentals, fourth edition.
Brooks/Cole, Pacific Grove, CA, 1999.

B. Stroustrup. The C++ Programming Language, special edition.
Addison Wesley Longman, Reading, MA, 2000.

D. Vandevoorde. C++ Solutions. Addison-Wesley, Reading, MA,
1998.

T. Veldhuizen. Expression templates. C++ Report, 7(5):26-31,
1995.

D. Varberg, E. J. Purcell, and S. E. Rigdon. Calculus, eighth
edition. Prentice-Hall, Upper Saddle River, NJ, 2000.

D. Yang. A parallel grid modification and domain decomposi-
tion algorithm for local phenomena capturing and load balancing.
Journal of Scientific Computing, 12:99-117, 1997.

[Yan98§]

References 429

D. Yang. A nonoverlapping subdomain algorithm with Lagrange
multipliers and its object oriented implementation for interface
problems. In X. Cai, J. Mandel, and C. Farhat, editors, Do-
main Decomposition Methods 10, Contemporary Mathematics,
Vol. 218, American Mathematical Society, Providence, RI, 1998,
pages 365-373.

Index

abort(), 321
abs(), 92, 251
abstract class, 292
access control, 296, 304
accumulate(), 259
accuracy, 13
acos(), 92, 251
acosh(), 92
actual argument, 74
adaptor, 365, 367
address, 34, 60
adjacent difference, 263
adjacent_find(), 355
algorithm
conjugate gradient, 226, 293,
385
GMRES, 390
numeric, 258
standard, 348
<algorithm>, 348
alias, 72, 120
and, 92
and_eq, 92
arg(), 251
argc, 85, 152

argument, 74
actual, 74
default, 82
formal, 74

argv, 85, 152

arithmetic
expressions, 28
mixed-mode, 207
pointer, 64

array, 54
associative, 344
indirect, 257
mask, 257
of classes, 191
slice, 253

ASCII, 10

asin(), 92, 251

asinh(), 92

asm(), 171

assert(), 101

<assert.h>, 101

assignment, 25, 35
compound, 35
copy, 181

associative array, 344

atan(), 92, 251
atan2(), 92

atanh(), 92

atof(), 94, 152, 158
atoi(), 94, 152, 158

atol(), 94, 158

automatic variable, 26, 79

back(), 336
back_inserter(), 351
bad_alloc, 330
bad_cast, 307
bad_exception, 329
bad_typeid, 308
band matrix, 293, 372, 416
base class, 283, 284, 297
replicated, 302
virtual, 303
base(), 339
basefield, 146, 147
begin(), 338
binary
operator, 28, 208
tree, 363
binary_search(), 355
bind1st(), 367
bind2nd(), 367
binder, 367
bit
field, 60
hidden, 17
representation, 50
bitand, 92
bitor, 92
<bitset>, 341
bitwise operator, 31
Blitz++, 270
block, 26
bool, 14
Boolean, 14
break, 39
statement, 40, 42

C language, 133, 223
cstr(), 144

Index 431

capacity(), 337

case, 39

cast, 10
bad, 307
const, 307

dynamic, 306
reinterpret, 285
static, 285, 307
catch, 319
<cctype>, 146
ceil(), 92
CG method, 293, 385
char, 10
signed, 11
unsigned, 11
class, 173
abstract, 292
base, 283, 284, 297
derived, 283, 284
hierarchy, 288
replicated base, 302
template, 231
virtual base, 303
clear(), 340
clock(), 134
close(), 151
comma expression, 33
comment, 1, 128
compilation, 129
options, 136
separate, 129
compile-time polymorphism, 231
compiler, 6
compl, 92
complement, 32
one’s, 33
two’s, 11, 33, 49
complete pivoting, 408
complex
matrix, 375
numbers, 204
<complex>, 250
compound
assignment, 35
statement, 36

432 Index

compressed sparse row, 374
concatenation, 143
conditional statement, 37
conj(), 251
conjugate gradient, 226, 293, 385
const, 51, 174
iterator, 338
member, 174, 191
const_cast, 307
constant, 51
pointer, 68
construction
copy, 181
constructor, 174
default, 176
container, 333
continuation line, 23
continue statement, 42
conversion, 9, 207
explicit, 13, 220
implicit, 13, 220
type, 53
copy
assignment, 177, 181, 206
construction, 177, 181
constructor, 206
initialization, 177
copy(), 349
copy_backward(), 349
cornerstone, 309
cos(), 92, 251
cosh(), 92, 251
count(), 355
count_if(), 355
creating library, 138
<cstdlib>, 38
<ctime>, 134
<ctype.h>, 146
<cwtype>, 146

data(), 144

dbx, 136

debugger, 136

decimal, 147

declaration, 6, 25, 34, 130

forward, 71, 74, 225
decrement operator, 36
default, 40

argument, 82

constructor, 176
deferred evaluation, 225
define, 128
definition, 130
deque, 347
dereferencing, 61
derivation, 284

private, 297

protected, 297

public, 297
derived class, 283, 284
design, object-oriented, 289
destructor, 180

virtual, 290
dictionary, 344
differential equations, 194, 414
directive, 118, 127
dispatch, double, 318
div(), 94
divided differences, 276
do-while loop, 43
dot product, 267, 271
double, 11

dispatch, 318

long, 11

pointers, 64
dynamic

binding, 289, 325

cast, 306

data structure, 335

memory, 63, 79

efficiency, 223

efficient, 207, 209, 215, 219
empty(), 337

end(), 338

endif, 128

enum range, 54
enumeration, 52

epsilon, 16

equal(), 355

equal_range(), 345, 355

equal_to, 366

erase(), 144, 340

<errno.h>, 93

Euler’s method, 195

evaluation
deferred, 225
short-circuit, 31

exception, 319
handler, 321

exceptions, standard, 329

exp(), 93, 251

explicit conversion, 10, 220

exponent, 16

export, 249

expression, 25, 28
arithmetic, 28
bitwise, 31
comma, 33
logical, 30
relational, 29
template, 264

extern, 52

external
linkage, 129
variable, 27

fabs(), 92
Fibonacci number, 44, 271
file, 150
header, 126
include, 122
input, 150
output, 150
fill(), 149, 349
fill n(), 349
find(), 144, 355
find_end(), 355
find_first_of(), 355
find_if(), 355, 356

finite difference method, 414

first-order, 196
float, 11

field, 148
<float.h>, 19

Index 433

floor(), 92
fmod(), 93
for loop, 41
for_each(), 355, 357, 368
formal argument, 74
format, 148
FORTRAN, 6, 133, 139, 223
forward declaration, 71, 74, 225
fourth-order, 197
free store, 63, 79
frexp(), 93
friend, 173, 184
front_inserter(), 351, 366
<fstream>, 146
full matrix, 293, 372
function, 73
inline, 82
object, 260, 265, 350, 356, 365
overloading, 75
pointer, 83, 264, 265
pure virtual, 291
recursive, 81
template, 241
virtual, 288
<functional>, 350

Gauss
elimination, 401
quadrature, 200
geount(), 155
gdb, 136
generalized
minimum residual, 293, 390
slice, 256
generate(), 349
generate.n(), 349
get(), 155
getline(), 145, 152, 155
global variable, 25, 26
GMRES method, 293, 390
golden mean, 45
goto statement, 39
Gram-Schmidt, 390
greater, 366
greater_equal, 366

434 Index

handler

exception, 321

order of, 327
header file, 124, 126
heap, 63, 79, 87, 363

make, 363

pop, 363

push, 363

sort, 363
Hermitian matrix, 385
hexadecimal, 147
hidden bit, 17
hierarchy, class, 288
Hilbert matrix, 117
Horner’s algorithm, 95, 276

identifier, 6, 19
if-else statement, 37
ifndef, 128
ignore(), 152
imag(), 251
implicit conversion, 220
include, 129

file, 122
includes(), 360
increment, operator, 36
indirect array, 257
indirection, 61
infinite loop, 42
infinity, 16
inheritance, 284

multiple, 300
initialization, 25, 34, 35, 55, 206
initializer list, 189, 191
inline function, 82
inner product, 262
inplace_merge(), 349
input, 2

file, 150
insert(), 144, 340, 345
inserter

back, 351

front, 351, 366
inserter(), 351, 363
instantiation, template, 234

int, 8

long, 8

short, 8
integer overflow, 23
integral, 98, 178, 264
interface, 119
internal linkage, 129
interpolation, polynomial, 273
invisible member, 286, 297
<iostream>, 2, 15, 146
isalnum(), 146
isalpha(), 146
isdigit(), 146
islower(), 146
isspace(), 146
istringstream, 157
isupper(), 146
iter_swap(), 349
iteration statement, 40
iterator, 337

const, 338

reverse, 339
<iterator>, 360

keywords, 20

labs(), 94
Lagrange form, 273
large object, 219
ldexp(), 93
1div(), 94
left shift, 32
less, 366
less_equal, 366
lexicographical ordering, 341
lexicographical_compare(), 355
library, 270
creating, 138
standard, 124
<limits>, 15
limits, numeric, 15
linkage, 129
external, 129
internal, 129
linker, 129

Linux, 153
<list>, 341
loader, 129
local variable, 26
location, 34
log(), 93, 251
log10(), 251
log2(), 93
logical operator, 30
logical_and, 366
logical _not, 366
logical or, 366
long double, 11
long int, 8
loop
do-while, 43
for, 41
infinite, 42
while, 43
lower_bound(), 355
LU decomposition, 401
Ivalue, 35

machine
epsilon, 16
number, 16
word, 8, 17
macro, 52
main, 85
make, 139
make_heap(), 360
make_pair(), 345
Makefile, 139
makefile, 139
mantissa, 16
<map>, 344
mask, 221
array, 257
<math.h>, 22, 92
matrix, 211
band, 293, 372, 416
complex, 375
full, 293, 372
Hermitian, 385
Hilbert, 117

Index

nonsingular, 390
norm, 114
real, 375
sparse, 293, 374
symmetric, 66
triangular, 66
max, 16
max(), 355, 358
max_element(), 355, 358
max_size(), 337
mem fun(), 368
mem_fun_ref(), 368
member
const, 174, 191
invisible, 286, 297
mutable, 187
pointer to, 193
reference, 191
static, 185
memory, dynamic, 63, 79
merge(), 343, 349
metaprogram, template, 264
min, 16
min(), 355
min_element(), 355
mismatch(), 355
mixed-mode arithmetic, 207
modf(), 93
modulo operator, 28
multimap, 344
multiple
inheritance, 300
pointers, 67
multiset, 344
mutable member, 187

namespace, 113
NaN, 13
negator, 367
new, 61, 330
Newton form, 275
next_permutation(), 360
norm
matrix, 114
vector, 114

435

436 Index

not, 92
notl(), 367
not2(), 367
not_eq, 92
not_equal_to, 366
nothrow, 249
nth_element(), 355
null
pointer, 70
statement, 33
number
decimal, 147
Fibonacci, 44, 271
hexadecimal, 147
octal, 147
random, 38
numeric
algorithm, 258
limits, 15
<numeric>, 258

object, 34, 174
code, 5
function, 260, 265, 350, 356,
365
large, 219
oriented design, 289
oriented programming, 309
octal, 147
one’s complement, 33
oonumerics, 270
operand, 25, 28
operator, 25, 28
., 57, 58
address_of, 34
binary, 28, 208
bitwise, 31
decrement, 36
dereferencing, 61
functions, 207
increment, 36
indirection, 61
logical, 30
modulo, 28
overloading, 182, 203

precedence, 88
relational, 29
scope, 174
ternary conditional, 39
unary, 28, 209
or, 92
or_eq, 92
order of handlers, 327
ordering
lexicographical, 341
weak, 339
orthogonalization, 390
ostringstream, 157
output, 2
file, 150
overflow, 12, 115
integer, 8, 23
overhead, 233, 309
overload resolution, 301
overloaded operators, 207
overloading, 75, 242
operator, 182, 203

pair, 345
parameter, 74
partial
pivoting, 408
sum, 263
partial sort(), 349
partial sort_copy(), 349
partition(), 349
pass by reference, 75
pass by value, 75
peek(), 156
permutation
next, 360
previous, 360
PETE, 270
pivot, 404
pivoting
complete, 408
partial, 408
scaled row, 414
pointer, 35, 60
arithmetic, 64

constant , 68

double, 64

function, 264, 265

multiple, 67

null, 70

offset, 67

quadruple, 104

to function, 83

to member, 193

triple, 104

void, 70
polar(), 251
polymorphism

compile-time, 231

run-time, 289, 291

static, 289, 309
polynomial, 94

interpolation, 273
POOMA, 270
pop(), 347
pop-back(), 336, 342
pop-_front(), 342
pop_heap(), 360
pow(), 92, 251
precedence, 88
precision, 12, 148
precision(), 148
preconditioners, 398
predicate, 350
preprocessor, 129
prev_permutation(), 360
priority_queue, 347
private, 173, 296
profiler, 137
program execution, 86
programming

object-oriented, 289, 309

protected, 296
prototypes, 74

ptr_fun(), 368

public, 173, 296, 297
pure virtual function, 291
push(), 347

push_back(), 336, 342
push_front(), 342

Index

push_heap(), 360
putback(), 156

quadruple pointer, 104
<queue>, 347

queue, priority, 347
quicksort, 109

radix, 16
rand(), 137
RAND_MAX, 39
random number, 38
range, 12

enum, 54
rbegin(), 338
re-throw, 326
read(), 153
reading, 35
real matrix, 375
real(), 251
recursive

function, 81

template, 271
reference, 72

member, 191
register variable, 27
reinterpret cast, 285
relational operator, 29
reminder, 28
remove(), 342, 349
remove_copy(), 349
remove_copy-if(), 349
remove_if(), 349, 367
rend(), 338
replace(), 144, 349
replace_copy(), 349
replace_copy_if(), 349
replace_if(), 349
replicated base class, 302
reserve(), 337, 342
reserved words, 20
reverse(), 349
reverse_copy(), 349
reverse_iterator, 339
rfind(), 144

437

438 Index

right shift, 32

robust, 168

rotate(), 349

rotate_copy(), 349

row major, 415

run-time, 225
polymorphism, 289, 291
type checking, 306

Runge-Kutta method, 197

rvalue, 35

save space, 60
scientific notation, 14
scope, 26, 36, 38, 41, 115
operator, 174
resolution, 305
resolution operator, 299
search(), 355
search_n(), 355
second-order, 197
self-referential structure, 71
separate compilation, 129
<set>, 344
set_difference(), 360
set_intersection(), 360
set_symmetric_difference(), 360
set_union(), 360
setf(), 146, 148
shell sort, 110
shift
left, 32
right, 32
short int, 8
short-circuit evaluation, 31
showbase, 147
showpoint, 147
showpos, 148
signed, 9
char, 11
Simpson’s rule, 98
sin(), 92, 251
sinh(), 92, 251
slice array, 253
software library, 270
sort, 109, 240

sort(), 137, 339, 342, 349, 350, 366
sort_heap(), 360
source code organization, 248
sparse matrix, 293, 374
specialization, 243
complete, 238
partial, 236
template, 236
splice(), 343
sprintf(), 122, 146, 151, 158
sqrt(), 92
srand(), 137
<sstream>, 157
stable_partition(), 349
stable_sort(), 349
stack, 87
<stack>, 347
standard
adaptor, 365, 367
algorithm, 348
container, 333
exception, 329
library, 124
statement, 25, 33
break, 40, 42
compound, 36
conditional, 37
continue, 42
do-while, 43
for, 41
goto, 39
if-else, 37
iteration, 40
null, 33
switch, 39
while, 43
static
cast, 285
member, 185
polymorphism, 289, 309
variable, 84
static.cast, 109, 307
std, 122
<stdexcept>, 330
<stdlib.h>, 38

storage class, 28
store, free, 79
strcat(), 145
stremp(), 145
strepy(), 145
<string>, 142
strlen(), 145
strncat(), 145
strncmp(), 145
strncpy(), 145
struct, 57, 177
structure, 57
self-referential, 71
subclass, 284
subscript, 143
subscripting, 212
substr(), 144
subtype, 297
superclass, 284
swap(), 341, 349
swap._ranges(), 349
switch statement, 39
system(), 171

tan(), 92, 251

tanh(), 92, 251

template, 231
class, 231
expression, 264
function, 241
instantiation, 234
metaprogram, 264
overloading, 242
parameter, 235
recursive, 271
specialization, 236, 243

temporary object, 208

terminate(), 321

ternary conditional operator, 39

this, 177

throw, 319

time(), 134

<time.h>, 134

tolower(), 146

top(), 347

Index

toupper(), 146
traits, 246, 280
transform(), 355, 366
translation unit, 129
trapezoidal rule, 98
tree, binary, 363
triangular matrix, 66
triple pointer, 104
truth table, 30

try, 320

two’s complement, 11, 33
type conversion, 53
type tag, 59

typedef, 65, 83
typeid, 308

typeinfo, 308
typename, 232

unary operator, 28, 209
undef, 129
underflow, 12
unexpected(), 329
unget(), 156
union, 57, 191
unique(), 342, 349
unique_copy(), 349
unit roundoff, 16
UNIX, 5, 153
unsigned, 9

char, 11
upper_bound(), 345, 355
using, 117, 301
using-declaration, 301
<utility>, 345, 360

<valarray>, 251

variable, 25
automatic, 26, 79
external, 27
global, 25, 26
local, 26
register, 27
static, 84

vector, 211
norm, 114, 168

439

440 Index

template, 231
vector<bool>, 341
<vector>, 334
virtual
base class, 303
destructor, 290
function, 288
function, pure, 291
void, 14
pointer, 70
volatile, 52

wchar_t, 146

weak ordering, 339
while loop, 43
width(), 149

word, machine, 8
write(), 153
writing, 35
<wtype.h>, 146

xor, 92
xor_eq, 92

zero, 70

